
3d DU o o

EZ ESD-TR-71-105

ESDAC
TRi Call No

Copy No.

DC

ESD RECORD COPY
RETURN TO

SCIENM C 8 TECHNICAL INFORMATION DIVISION

(TRI), Building 1210

MTR-2050

THE APPLICATION OF MICROPROGRAMMING TECHNOLOGY

J. A. Clapp

MAY 1971

Prepared for

DEPUTY FOR COMMAND & MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

4 *

This document has been approved for public re-

lease and sale; its distribution is unlimited.

Project 6710
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

F19(628)-71-C-0002

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destrov

ESD-TR-71-105 MTR-2050

THE APPLICATION OF MICROPROGRAMMING TECHNOLOGY

J. A. Clapp

MAY 1971

Prepared for

DEPUTY FOR COMMAND & MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public re-

lease and sale; Its distribution is unlimited.

Project 6710
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Fl9(628)-71-C-0002

FOREWORD

This work was conducted in support of Project 5550 by the MITRE
Corporation, Bedford, Mass. , under Contract F19(628)-71-C-0002
and was monitored for the U. S. Air Force by Dr. John B. Goode-
nough, ESD/MCDS.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

JOHN B. GOODENOUGH
Project Officer
Systems Analysis Division

EDMUND P. GAINES, JR. , Colonel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

u

ABSTRACT

This report surveys promising applications of microprogramming.
Emphasis is on the value of microprogramming as a tool which permits
computer users to modify the architecture of a general-purpose machine
to better match a particular set of requirements. Factors are discussed
which affect the choice of microprogramming over hardware and software
in the design and implementation of computer-based systems. Actual
and potential examples of its application are given to illustrate its
relevance to the solution of implementation and performance problems
arising in typical Air Force systems. Finally, research and develop-
ment tasks are proposed which lead to the realization of the benefits
of this technology in operational command control and communications
systems. Methods are described for integrating the results into exist-
ing and future systems in the next several years.

iii

TABLE OF CONTENTS

LIST OF TABLES

SECTION I

SECTION II

SECTION III

SECTION IV

AN INTRODUCTION TO MICROPROGRAMMING
A DEFINITION OF MICROPROGRAMMING
STATUS OF MICROPROGRAMMING
THE FUTURE

DESIGN CONSIDERATIONS IN THE APPLICATION
OF MICROPROGRAMMING
INTRODUCTION
DEFINITIONS
MICROPROGRAMMING VERSUS HARDWARE

Flexibility
Cost
Speed
Reliability

MICROPROGRAMMING VERSUS SOFTWARE
Speed
Cost
Reliability
Protection
Capability

CONCLUSIONS

MICROPROGRAMMING RESEARCH AND DEVELOPMENT
RATIONALE FOR RESEARCH AND DEVELOPMENT
IMPACT OF RESULTS
Adding to an Existing Computer
Adding or Replacing Processors

RESEARCH AND DEVELOPMENT TASKS
Data Management Systems
Security
Software Production
Multiprogramming and Multiprocessing
Microprogramming Techniques

vi

1
1
3
5

7
7
7
8
8
9

10
10
11
11
13
15
16
16
17

EXAMPLES OF THE APPLICATION OF MICROPROGRAMMING 18
INTRODUCTION 18
INPUT/OUTrUT PROCESSING 18
REAL-TIME DATA PROCESSING 19
AIRBORNE SYSTEMS 21

23
23
24
25
26
27
27
29
31
33
35

TABLE OF CONTENTS (Concluded)

SECTION IV

REFERENCES

CONCLUSIONS

Page

35

36

LIST OF TABLES

Table Number
A Survey of Microprogrammable Computers

Page
4

vi

SECTION I

AN INTRODUCTION TO MICROPROGRAMMING

A DEFINITION OF MICROPROGRAMMING

A computer hardware designer and a computer user, or programmer,
have two very distinct views of what a computer is like. To the hard-
ware designer the computer consists of a collection of hardware elements,
each of which performs some function, and a set of connections which
allow data to flow among these elements. He sees the entire operation
of the computer as under the direction of a control unit which can
send signals causing data to flow in some predetermined order and in
some specified direction within and among the other units of the
machine. The programmer who uses the machine, on the other hand, sees
himself as entirely directing the operation of the computer through
sequences of instructions which make up his software program, whether
he programs in a high-level language such as FORTRAN or uses machine
language. The program must be translated to machine instructions,
each of which is a request to the control unit to activate some sequence
of basic hardware functions which actually accomplish the more complex
machine instruction, so that both views are true.

Despite the analogy between the way the machine executes a soft-
ware program and the way the control unit causes a sequence of sub-
operations to be performed, the methodologies for specifying and imple-
menting hardware logic and software logic were quite different in the
computers of the 1950fs. The programmer specified a sequence of machine
instructions which were stored in the machine memory, and the control
unit would step through them, performing the specified operations.
The hardware designer conventionally used sequential control logic to
specify, for each machine instruction, the block diagram showing all
the necessary connections. The control unit consisted of a prolifera-
tion of different kinds of hardware and specific fixed, hard-wired
logic sequences with many cross-connections for control. The result
was so complex that the unit became difficult to understand, maintain,
and modify. In 1951 Wilkes W proposed a solution to the problem of
improving hardware reliability. He showed that by rearranging the
structure of the control unit, it would be possible to specify a
machine instruction as a sequence of subcommands. The control unit
could be viewed as a matrix consisting of one vertical line for each
control gate and a set of horizontal lines having access to all possi-
ble control gates at the intersections. A machine instruction could
then be specified as a set of horizontal lines, each of which was
connected to the specific combination of gates it wished to pulse to

control the paths over which data would flow. Thus, the horizontal
lines corresponded to subcommands or steps which he termed "micro-
operations ," and the sequence of steps for one machine instruction
was called a "microprogramme." This approach meant that the logic
designer, like the software programmer, could specify the sequence of
operations to perform some function and that sequence could be stored
in the machine. There were now two similar levels of control: the
machine instruction of the programmer and the microoperation, or
microcode, of the logic designer.

While Wilkes1 scheme was elegantly simple, it was not practical
at the time because it was extravagantly expensive. Wilkes and his
colleagues set about refining the original design to provide greater
flexibility, particularly in control of sequencing through the micro-
operations. Others sought to improve the timing and reduc« the num-
ber of control lines. When hardware technology produced faster com-
ponents, the goal of realizing efficient, economical hardware organi-
zations according to Wilkes1 principles was finally reached. Such
machines were called "stored logic" computers to emphasize that the
logic was not fixed, hard-wire. The place where the microprograms
reside is called the control store.

Although the first intention of microprogramming was to make the
design of control units more systematic, its implications were more
far-reaching. As Wilkes himself observed, the underlying structure
of the control unit was now independent of the actual machine instruc-
tion set which was implemented. It became possible to select an
instruction set much later in the development of the hardware by
changing the contents of the control store instead of redesigning and
rewiring the control unit. He noted that when the contents of con-
trol stores could be replaced, then a programmer would be able to
"choose his order code to suit his own requirements and to change it
during the course of the programme ••••' Machines are available
which can permit this freedom to the programmer. It is now incumbent
on him to take advantage of it.

There are many contexts in which the term "microprogramming" is
used. In this report it designates the process of specifying a machine
instruction set as sequences of microinstructions which can be stored
in the control store of a computer. The microprograms which are pro-
duced are referred to as "firmware," a word coined by Opler (2) to
distinguish it from hardware and software.

STATUS OF MICROPROGRAMMING

A brief summary of the current status of microprogramming appli-
cations is presented here. For a more complete description, a tutorial
paper by Rosin (3), an annotated bibliography (4), and a book by
Husson (5) serve as good sources.

The first major application of microprogramming was in the develop-
ment by IBM of the System 360 series of computers. Each computer type
in the series has a different hardware configuration, and some computers
include a microprogrammable control store. Microprograms were developed
to provide compatibility with earlier IBM equipment and among the com-
puters in the series. The first type of compatibility, called emula-
tion, allows the instruction set of a computer such as the 1410, which
is architecturally quite different from a 360 machine, to be interpreted
through microcode on the 360. The advantage to a user is that software
for one machine can be made to operate on another machine with little
or no modification. The success of the emulation technique is dependent
on the similarity between the two machines, and under some circumstances
the emulated software may run more slowly although the new machine is
actually faster. Among the System 360 computers, where most of basic
machine architecture is intentionally similar, microprogramming has
been used to provide a common instruction set on all machines so that
a user can move software from one machine to another. Clearly, such
applications of microprogramming benefit the manufacturer in selling
machines which are downwards or upwards compatible at the software
level. Many other manufacturers have joined IBM in using micropro-
gramming as a means of implementing a machine. Table I shows some
current microprogrammable machines. The table is not intended to
cover all of the available computers, but rather indicates the broad
range of computers for which microprogramming has been deemed appro-r
priate.

Engineers have been prolific in applying new hardware technology
such as Large Scale Integration (LSI) to the design of control stores
and in developing different kinds of micromachines. Originally micro-
programs were stored in read-only memories to gain the necessary speed
improvement over main memory. There has been a marked trend toward
the use of writable control store, sometimes in conjunction with read-
only memory. In the recently announced IBM 370/165, read-only memory
contains microprograms for control of basic functions and writable
control store contains microprograms for control of different modes
of machine operation Such as emulation and microdiagnosis. On current
computers there are many different implementations of microprogram
storage, some of which can only be altered by physical replacement;
others are mechanically or electronically alterable. The ease of

Table I

A Survey of Microprogrammable Computers*

DATE
MAIN- MEMORY

WORD SIZE RANGE DATA PATH CYCLE TIME
(UTS) (1024 WORDS) (BITS) U6ECS)

Cincinnati Milacron
CIP-2000 1969 8 4-32 6 1.1
CIP-4000 1970 18 4-64 18 1.2

Digital Scientific
Meta-4 1970 16 8-64 16 .9

IBM
360/25 1967 8 16-48 16 1.8
360/30 1965 8 8-64 8 1.5
360/40 1965 6 8-256 16 2.5
360/50 1965 8 32-512 32 2.0
360/65 1966 8 128-1024 6. .75
360/85 1969 e 512-4096 121 1.0(3)
370/145 1970 e 112-512 64 .540/.608(2)
370/155 1970 6 256-2048 128 2.07(3)
370/165 1970 8 512-3072 64 2.0(3)

Interdata
3 1967 8 4-64 16 .98
4 1968 e 4-64 16 .98
5 1970 e 8-44 16 .9«

Micro System
Micro W)0 1969 6 4-32 8 1.1

Raytheon
EAC 251 1970 32 4-64 32 1.8

RCA
Spectra 70/45 1966 6 16-256 16 1.44

Spiras
65 1969 16 4-64 LI 1.8

Standard Computer Corp.
MLP-900 1970 36 32-4096 36 .7

CONTROL STORE
TYPE READ ONLY

OR WRITABLE
WORD

LENGTH (BITS)
CAPACITY

(WORDS)
PROCESSOR CYCLE
TIME (NANOSECONDS)

Diode
IC Chips

R
1

16

M
1024
1024

220
400-1000

Air Coupled Induction 32 2048 85

CORE W (1) 16 8192 900
Card Capacitor R 60 4096 ^50

Transformer * 60 4096 625
Balanced Capacitor R 90 2816 500
Balanced Capacitor R 100 2816 125

Monolithic R,W 128 2500 80
Monolithic W (1) 32 16384 202.5-315 .0
Monolithic R 72 8192 115
Monolithic R.W 108 2560 80

Transformer R 16 4096 370
Transformer R 16 3500 3 70
Transformer R 16 1700 370

Diode & 16 1024 220

Bipolar LSI R 96 $12 350

Transformer F 54 2048 480

Braided Wire 1 32 1024 45C

Semiconductor W 32 4096 126

Notes

1. Main storage and control storage reside in the same physical storage.

2. Fetch/store times.

3. Also equipped vlth an auxiliary high speed buffer storage which reduces the
effective cycle time.

Prepared by R. H. Bullen

changing microprograms, the amount of architectural variation possible
through microprogramming, and the cost depend on the specific machine.
However, control stores tend to be relatively expensive and hence much
smaller than other kinds of storage in today's computers; a judicious
use must be made of the available space.

Manufacturers have provided their own impetus for the development
and application of microprogrammable machines. Users have not been as
actively involved in modifying the architecture of delivered machines
to tailor them to their own requirements for machine instruction sets
and computer organization. There are several reasons for this:

1. Many manufacturers have been reluctant to allow customers to
do their own microprogramming, primarily because they do not
wish to maintain delivered hardware and software under varying
machine architectures which might lead to incompatibilities.
IBM, in particular, has resisted the release of microprogram-
ming capabilities to users, although their machines have been
modified to customer specifications on an RPQ basis. Other
companies, such as Burroughs, provide engineering support or
allow microprogramming with administrative constraints.

2. Microprogramming, while similar to software programming,
requires more detailed knowledge of machine hardware charac-
teristics; and timing must be considered in selecting sequences
of microinstructions. In general, the micromachine is not as
easy to deal with, and the support tools for coding and check-
ing out microprograms have not been as sophisticated as those
available for implementing software.

3. Users do not fully understand the benefits to be gained from
microprogramming and when it is appropriate to apply it,
although the idea of microprogramming has been around for
twenty years. The newness of interest in this technology is
best demonstrated by the fact that the first book on the sub-
ject was published in 1970 '-*'. The number of documented,
proven applications of microprogramming to enhance performance
for particular kinds of computer processing is accelerating,
which would indicate that users are learning of its value.

THE FUTURE

Most attempts to predict the important computer hardware and
software developments over the next decade include forecasts indi-(2)
eating the emerging importance of microprogramming. In 1967 Opler
predicted that microprogramming, or firmware as he called it, would

assume a dominant role in structuring a computer because present soft-
ware is too complex, too expensive and too slow. A trade off between
software and firmware would obtain the greatest price/performance
improvement. Amdahl W felt that microprogramming would be important
in the f 70fs because its proven effectiveness as a design technique
will make it more widely available on machines, especially since LSI
technology makes it possible at a reasonable cost. Withington w) >

who forecast technological trends likely to affect Management Informa-
tion Systems technology over the next five years, stated that such
systems will be constrained by software capabilities far more than
hardware. Software, according to his studies, must be made more
reliable, efficient and convenient to use. He sees microprogramming
as a technique for enhancing software efficiency. A survey W of
computer manufacturers indicates that although they still have reser-
vations about making it available to users, microprogramming has
received approval as a technology. To add yet another prediction, it
seems clear that manufacturers are introducing small and large com-
puters with the express purpose of allowing customers to microprogram
them; it is also clear that the use of minicomputers for dedicated
tasks is on the upswing. Microprogramming of minicomputers to support
these dedicated tasks will be one of the obvious applications of micro-
programming. Emulation is another use of microprogramming which will
continue in the future. Much more effort will be put into using micro-
programming to make significant changes in machine architecture to
support some of the difficult problems with software existing today,
in particular its performance and reliability. Even after new hardware
becomes available in a practical sense to allow new kinds of machine
and memory organization, microprogramming will continue to be important
as a means of creating the machine instructions in the logic unit
which make the hardware accessible to the programmer. The most immediate
problem in the application of microprogramming by computer users is to
determine when and for what it is appropriate.

SECTION II

DESIGN CONSIDERATIONS IN THE APPLICATION OF MICROPROGRAMMING

INTRODUCTION

One of the reasons, given earlier, for the delay in users1 accep-
tance of microprogramming was a lack of understanding of its suitability
to their problems. General principles for determining when it is
appropriate to use microprogramming have not been available to users.
It is clear that what may be an advantage in one set of circumstances
may be a disadvantage in another. Nevertheless, there are common
processes used in determining the suitability of any tool, including
microprogramming, to a particular problem. Undoubtedly the same fac-
tors will be involved even when each user gives his own weight to those
factors in reaching a final decision. It is therefore worthwhile
to develop these principles to clarify the choices presented by micro-
programming to systems designers. In this section, some of the benefits,
as well as the limitations of microprogramming, are discussed in rela-
tion to other alternatives available to a designer of a computer-based
system. The rationale for design choices is the effect on design as
well as on the implementation or fabrication phase and on the system
performance and cost. One problem which faces the designer is how to
make use of the resources available to him to accomplish the functions
needed to meet the system's requirements. Conventionally, the major
resources for obtaining functional capabilities have been hardware and
software, until the advent of microprogramming which now offers a third
alternative. It is the responsibility of the designer to consider the
factors involved and to analyze the effects of distributing processing
among these resources. The final decision is very complex because of
the interaction among the relevant alternatives, which necessitate
trade offs among the factors which contribute to a particular set of
requirements. In order to simplify the discussion of major factors
in the selection of microprogramming as a resource, it will be compared
first with hardware and then with software, with each factor considered
independently of the others.

DEFINITIONS

Each of the three resources being compared is defined in terms
of its use to accomplish some complex functional requirement of a
system. The term "hardware" refers to the use of hard-wired equipment
which is not modified after its delivery; e.g., a controller for a
particular kind of peripheral device or the physical equipment of a

computer. "Microprogramming," as a resource, refers to the firmware
which modifies the behavior of a computer to make it perform some
function. "Software" implies the use of computer programs to perform
the required function.

MICROPROGRAMMING VERSUS HARDWARE

Flexibility

Microprogramming offers the flexibility to modify general-purpose
hardware without making hardware modifications. Flexibility is probably
the most important advantage of firmware over hardware. This kind of
flexibility can be useful in the following ways:

1. To meet unanticipated kinds of requirements.

A typical application of this kind of flexibility would be
the handling of peripheral devices, whether by a separate peri-
pheral processor or by a general-purpose computer. If a new kind
of device is introduced, hardware cannot be easily adapted to
handle device characteristics for which it was not originally
designed. If the device handling is performed in a microprogram,
it can be recoded to allow for the new device characteristics.

2. To upgrade existing capabilities.

If a processing function is microprogrammed, then it is pos-
sible to upgrade that function's capabilities or performance as
new techniques become available. For example, on the 360/50, an
improvement in the accuracy of floating point arithmetic was made
by rewriting the microcode. This change was easily installed in
computers in the field by a replacement of the microprogram.

3. To standardize procurements of hardware.

A single type of general-purpose, microprogrammable computer
can be procured for use in performing different functions in dif-
ferent parts of a system or even in different applications or
environments. Microprogramming can be used to adapt each of the
computers for those specialized functions it must perform. The
Logicon 2+2 system consists of an integrated set of four mini-
computers, three of which are identical models with different
microprograms. One is a control processor, one is a peripheral
processor, and the third is an application processor ™) t

4. To use a computer for more than one purpose.

Through microprogramming it is possible to change the mode
of operation of a single processor to serve more than one purpose
or to combine functions which would normall} be performed by dif-
ferent special-purpose hardware processors. The IBM 360/40 has
two modes of operation: it can be used for normal 360 instructions
or to emulate the machine instructions of a 1410 computer. The
change from one mode to another can be accomplished in different
ways depending on the hardware configuration; e.g., the micropro-
gram on an Interdata 3 must be changed by physically replacing
read-only memories; the IBM 370/145 has a writable control store
which can be loaded from a special disk. Some control stores may
be modified dynamically as easily as core memory and, in fact,
may reside there.

An example of a single microprogram to perform the functions
of many hardware devices is an integrated communications controller
^ ' , which reduced the need for unique hardware channels and con-
trol units for a wide variety of communications devices by handling
the functions for these devices in one microprogram.

Cost

If the alternatives in achieving a complex functional capability
are special-purpose hardware or microprogramming a general-purpose
computer, then microprogramming can often reduce the time and cost of
custom design and fabrication and can result in smaller maintenance
costs. LSI technology is making the microprogrammed approach more
economically feasible. In one comparison of a microprogrammed aero-
space computer and a similar non-microprogrammed computer 'H) , LSI
technology was not used; and the microprogrammed machine was more
expensive by about the cost of the read-only memory. However, it was
estimated that about 85% of the logic modules external to the micro-
program storage were amenable to LSI implementation compared with
about 50% for the non-microprogrammed machine. Predicated on a lower
gate cost for LSI than unit logic, the microprogrammed computer would
be cheaper. Another report d2' substantiates the potentially lower
cost of microprogrammed machines with LSI circuits. The inherent
flexibility of microprogrammed machines can also reduce the cost of
changes. New capabilities can usually be added to a microprogrammed
machine with no additional hardware cost, except when additional con-
trol memory is needed, whereas additional logic in a special-purpose
machine requires additional hardware.

There is a cost savings which may be realized by replacing several
hardware units with one processor microprogrammed to perform the com-
bined functions of the other units. Some hardware duplication, such
as separate power supplies, can be avoided. Functions which were the
same in different units can be implemented just once.

Speed

The execution time for a function which is hard-wired will often
be shorter than for the equivalent function executed in microcode,
assuming both methods are well-designed. Hard-wired functions in com-
puters can usually be made to operate at memory speed. Whether the
same is true for microcode will, in part, depend on the ratio of micro-
instruction cycle time to memory speed; i.e., how many microinstructions
can be executed in one memory cycle. A hard-wired approach allow«? sore
operations to occur concurrently than microcode permits; e.g., a multiply
operation can be done more quickly in hardware through a set of parallel
shifts and adds, while a sequence of microinstructions is needed. Every
machine instruction which is executed must be decoded. In a micropro-
grammed machine, the microinstructions must also be decoded, although
this may not be significant in the overall execution time.

Reliability

A microprogrammed computer has a simpler, more regular design
for its control logic with fewer different kinds of hardware components
than a hard-wired or sequential logic control unit. Wilkes* (1) origi-
nal motive for microprogramming was to improve the reliability of con-
trol units of computers, and it was the driving force behind manufacturer
acceptance of this approach to logic design. When comparing the use
of microprogramming to special-purpose hardware for accomplishing a
particular function, the advantage of microprogramming increases with
the complexity of the function. There are simple functions which might
result in simple hardware logic which, in turn, might be more reliable
because of its simplicity.

When the same set of hardware can be microprogrammed to serve
different functions, a facility may contain fewer machines or several
identical machines dedicated to special processes which can be main-
tained in similar ways. Alternatively, a set of special-purpose pro-
cessors which are physically different might each require a different
set of maintenance procedures. Reliability should improve when mainte-
nance is simplified. Identical machines performing different functions
through microprogrammed specialization offer the advantage of being
interchangeable at the hardware level. The implication is that the
total reliability of a system configuration can be improved when any
of the identical machines is a potential replacement for another one

10

which has failed. Even if it has been performing a different function,
a machine's microprogram can be changed to allow it to assume the role
of a machine which is down. For example, if a configuration contains
processors and I/O controllers which are all using the same kind of
machine with different microprograms, then it is possible to configure
them so that an I/O controller can become a processor if a processor
fails and vice versa, depending on which function is considered more
important to sustain.

One of the significant contributions that microprogramming can
make to improve the reliability of operational systems is to dynamically
perform error checking and correction and to achieve fail-soft operation
by dynamically changing algorithms to bypass hardware components which
have failed. This role for microprogramming is discussed in greater
detail below in the comparison with software, where the trade offs can
be identified more easily. Specific requirements must be known to
determine the effectiveness of microprogramming in contrast to hardware
circuitry for the detection and correction of hardware failures. Micro-
programming can be used in conjunction with hardware to provide slower,
but functionally equivalent, capability to be used in the event of hard-
ware failure. In the IBM 360 model 85, there is a low speed multiply
algorithm in microcode which can be used when there is a failure or
malfunction in the high speed multiply hardware '13) #

MICROPROGRAMMING VERSUS SOFTWARE

Speed

The major advantage that has been promulgated for the use of
microprogramming to replace software has been its greater speed, which
can enhance the performance of systems. It is not an a priori truth
that a software function can be replaced by a microprogram, and its
execution time will be shorter. The actual performance ratio is a
function of the sequence of operations which must be performed as well
as the performance characteristics of the microinstruction set. The
kind of software function which is most suited to replacement by a
microprogram has one or more of the following attributes:

1. It is CPU-bound, rather than dependent on input/output trans-
fer time.

2. It produces many intermediate results which are used in the
processing and do not have to be preserved when the process
is complete.

11

 . —-,

3. It is highly repetitive, either internally within the process
or because it is frequently used as a part of some larger
process, and consumes a significant portion of total execution
time.

4. It is awkward to do with the existing instruction set and more
natural to the microinstruction set.

5. The machine instructions used to perform the function have a
high ratio of overhead time, spent on instruction fetch and
address generation, to actual operation execution time.

Typically, logical functions which must be repeated many times are
good candidates for microprogramming. Complex computational functions
which use machine instructions which are inherently slow may not yield
as large a performance improvement by replacing softwai- with firmware.

The characteristics of microprograms which affect performance are
the following:

1. The speed of execution of microinstructions and its ratio to
main memory speed. Where memory accesses for data are not
involved, this ratio roughly indicates the number of micro-
instructions that can be executed in the time of one machine
instruction, since each machine instruction must be fetched
from memory to be executed.

2. The amount of parallelism in microinstructions. Often a
single microinstruction can cause several operations to occur
simultaneously, whereas the machine instruction set may not.

3. The width and scope of the data paths for operands of micro-
instructions. Where the size of operand at the machine instruc-
tion level may be fixed for convenience in defining a general-
purpose instruction set, the hardware may support different
sizes of operands; and the microinstruction set may have more
complete access to processor registers, which makes it better
suited to some processes.

When the proper match exists between the process and the micropro-
gramming facilities of the machine, then efficiency gains may accrue
for any of the following reasons:

1. A single instruction performs the function of many software
instructions which must be fetched and decoded. The collateral
saving in eliminating core storage space for the software instruc-
tion sequence can increase the utilization of core memory and

12

also result in a performance improvement when many copies of
the same sequence would otherwise occupy core memory. Sub-
routines, which are the software equivalent of saving memory
space by avoiding multiple copies of code, exact an execution
time penalty for linkage to and from the subroutine.

2. The number of memory accesses for fetching and storing data
is reduced. In this case, the data may be constants which
are stored in the microprogram or intermediate results stored
in faster hardware storage accessible to the microinstructions;
e.g., registers or scratchpad memory.

3. The nature of the microinstructions makes possible more effi-
cient algorithms. As an example, a square root function was
coded in software, using the Newton-Raphson method; and the
equivalent function was microprogrammed using an algorithm
which computed a bit at a time instead of using shift and
divide operations 0-4) . While the results are dependent on
main storage time, the example showed the way in which time
was spent in each case; and the microprogrammed version was
eight times faster for 16-bit numbers. In another study of
a hypothetical machine with writable microstorage (15)9 a
completely microprogrammed square root program was only 20
percent faster than the equivalent version in IBM 360 Assembly
language. This contrast in results serves to underscore the
fact that the efficacy of microprogramming as an alternative
to software is dependent on the hardware resources for writing
microprograms as well as the algorithms chosen for applying
them.

Before the system designer can fruitfully apply microprogramming
to gain efficiency, he must determine what parts of a process might be
suitable for microprogramming. For a system which is not operational,
such an analysis might require a simulation of the operating times.
Next, the processes to be optimized must be analyzed to see if the
microprogramming facilities available can be of any use in performing
the same functions faster, in the same or different ways, than software.
The generalizations above can be tested to see which apply to the par-
ticular situation.

Cost

There are two distinct ways in which the trade off between soft-
ware and microprogramming can be viewed as affecting the cost of devel-
oping a system: the use of microprogramming to lower software costs
and the comparative costs of producing software and microprograms.
It is well known that the cost of procuring a system is primarily the

13

cost of procuring the software rather than the hardware, with estimates
as high as 70 percent attributable to software (16). While some of
these costs can be mitigated by performing more software functions in
hardware and firmware, it is an oversimplification if the cost of the
hardware and microprograms are not also considered. It should be
obvious that the implementation of microprograms is itself a task not
unlike that of producing software. It requires a design phase, a
coding phase, and a checkout phase. There is a parallel between the
early stages of the development of software technology, when time and
attention were given to programming languages and tools, and the cur-
rent interest in the same problems for microprogrammers. Presently,
the aids to microprogramming have not yet reached the level of sophis-
tication of software techniques, although microprogrammers will undoubt-
edly borrow heavily from their software counterparts.

There are significant differences between microprogramming and
software programming which make microprogramming a more difficult pro-
cess (17). The microprogrammer has to understand much more about the
hardware, including a consideration of timing between instructions.
Microinstructions on some machines support parallel execution of opera-
tions by one instruction, which is more difficult to contend with than
sequential operation. The microprogrammer is often dependent on a
simulator to check out his microprograms, particularly if they will
eventually reside in read-only memory. Simulators cannot always repro-
duce timing and detect timing errors; therefore, complete checkout is
not possible. It has also been noted (18) that the slowness of some
simulated checkout tends to discourage completeness in testing. Since
the cost of control stores and working storage for microprograms are
usually expensive, and they are therefore small, difficulties in pro-
ducing microprograms can arise from the complexity introduced by limi-
tations in program and data space. A further drawback to microprogram-
ming arises if it is difficult or expensive to modify a microprogram
after it has been installed; namely, corrections and additions may have
to be made by patching in a way that minimizes the number of physical
changes but obscures the logic. The trend is toward writable control
stores and techniques which should lower the cost of modifying micro-
programs in the newer machines and toward better languages and support
tools for writing and testing microprograms.

A more subtle use of microprogramming to reduce the cost of soft-
ware production is to change the architecture of the machine, and its
instruction set, to more closely match the way in which the programmer
of software would like to use the machine. The programming task can
then be simplified, which would not only make programmers more produc-
tive, but also reduce the number of coding errors. One experiment in
microprogramming has been performed (1°) with this objective in mind.
Functions such as storage and process management, which interfere with

14

or distract from the logical requirements of a system, were removed
from the purview of the programmer and placed in the microprogram.
There are architectural changes which can be made to facilitate the
checking out of software as well. By making it easier to monitor the
behavior of software while it is being executed, the cost incurred by
debugging time can be reduced.

Another facet of the use of microprogramming to lower the cost of
producing software is presented when there is a large investment in
software for a particular machine, and it is necessary to replace the
machine. In order to preserve the software, it may be more economical
to make the new hardware behave like the old hardware at the software
level, by emulating the instruction set of the machine for which the
software was written. Many factors influence the effectiveness of
this approach (19). in most cases, the new machine is faster than the
old machine. While emulation may produce the equivalent of faster
execution time for the emulated software, even greater performance
improvements might be achieved by redesigning and recoding the soft-
ware to take advantage of the new machine architecture. If the two
machines are sufficiently different, then the ways of processing that
were originally defined may no longer be appropriate. Emulation will
be discussed further in Section IV.

Reliability

Physically, microprograms tend to be more reliable than software
because they are not subject to modification or destruction. Read-
only memories cannot be modified by the execution of firmware or soft-
ware. Many writable control stores can only be loaded with micropro-
grams which cannot modify themselves during operation, and some writable
control stores are only written under control of instructions in the
read-only memory, as in the IBM 360/85.

Firmware can be more effective than software in maintaining the
reliability of machine hardware. Microdiagnostics have been success-
fully used on several IBM machines (13» 2^/, including the 370 series,
instead of software. Microinstructions require fewer hardware circuits
and can therefore be executed using a smaller hard core, the part of
the machine required to be working before diagnostics can be performed.
Microinstructions deal more specifically with hardware components than
software and can disable parts of the system to localize errors more
precisely. In the 360/30, it was reported that microdiagnostics reduced
the hard core from 50 percent to 1 percent of the CPU and allowed loca-
tion of more than 90 percent of the failures in the CPU with very high
resolution (20). in cases where parts of the hardware are not accessi-
ble through microinstructions or the control store is too small for
complete diagnostics programs, a combination of firmware and software

15

is feasible. The application of microdiagnostics during system execu-
tion, as mentioned earlier, can result in fail-soft operation by detect-
ing hardware failures and substituting alternate means of achieving
the same functions.

Microprogramming can also be used to improve the reliability of
software by causing architectural changes which simplify the program-
ming process or standardize the way in which important operations are
accomplished. Hopefully the programmer is then less prone to make
coding errors.

Protection

When it is physically impossible to read the contents of a control
memory with software, then vital algorithms and data contained there
cannot be compromised. Whereas rules can be imposed which proscribe
performing certain functions in software, microprograms can be written
which actually prevent undesirable operations from being performed;
e.g., a user can be prevented from accessing or modifying the contents
of parts of memory which do not belong to him. This kind of control
is necessary to protect system software from users and, in multiprogram-
ming, to prevent independent users from interfering with each other.
At least one computer, the Gemini under development by Computer Opera-
tions Inc., has special architectural features provided by firmware
and software for the protection of data from unauthorized access (21)t

Capability

Microprogramming makes it possible to add capabilities which are
not achievable, in a practical sense, in software. A simple but useful
example is a bootstrap loader. In many machines a method is needed to
initiate the loading of software into a "bare" machine. A program to
accomplish this is called a bootstrap loader, since it usually contains
the minimum amount of code necessary to start reading from a peripheral
device containing a more sophisticated program to load the remainder of
a system. On small machines, it is not unusual to find that the boot-
strap loader must be manually entered through switches into core memory.
In cases where it is wired in, the loader will only start a specific
device. A bootstrap function can easily be accomplished through a
microprogram which is activated by some manual control (22) . At MITRE,
such a bootstrap was microprogrammed to load either punched paper tape
or cards, depending on a switch setting v2-*'.

Another kind of capability made possible through microprogramming
is the ability to make a function indivisible. This can be explained
by considering the effect of interrupts on the execution of some criti-
cal operation involving several instructions. An interrupt can be

16

defined as the suspension of execution of a sequence of code at the
completion of any instruction in the sequence in order to perform
another sequence which may or may not be related. This kind of inter-
rupt occurs in multiprogramming environments when the processor is
switched from one task to another. There are critical sequences which
should not be interrupted until they are complete, or the integrity of
the function they perform may be destroyed. This is the case if the
code executed changes values being used by the interrupted function.
By making such a function a single machine instruction and performing
the sequence of operations in a microprogram rather than software,
the operation can be made indivisible with respect to interruption.

CONCLUSIONS

Microprogramming, under the right circumstances, is a viable
alternative to hardware or software for accomplishing a function,
whether because it is easier, more efficient, more economical or more
flexible. The primary advantage of microprogramming a general-purpose
computer over employing specialized hardware is the flexibility of the
microprogrammed machine. On a cost basis, the microprogrammed machine
is becoming competitive, while on a reliability basis, it may surpass
its "hard-wired" equivalent.

The primary advantages of microprogramming with respect to soft-
ware are collaborative, supporting the software where greater perfor-
mance or capability is needed and modifying the machine architecture
to make software production a simpler process.

17

SECTION III

EXAMPLES OF THE APPLICATION OF MICROPROGRAMMING

INTRODUCTION

The previous section described the major factors involved in
deciding when to use microprogramming. Some actual examples of its
use may better illustrate how microprogramming can be integrated with
hardware and software to yield a total solution to the problems of
specific application areas. The magnitude of the effect of using
firmware will be indicated wherever possible.

INPUT/OUTPUT PROCESSING

An area of application of microprogramming which is developing
rapidly is input/output processing, characterized by communications
processing and control of peripheral devices. Some of the salient
features of this kind of processing can be summarized as follows:

1. It is device-specific, dealing with the characteristics of
individual devices such as character codes, formats, and
other conventions for addressing devices.

2. Timing is usually important.

3. The processing must be responsive to interrupts because it is
initiated by inputs to a System from a device, in contrast to
other kinds of processing which are initiated by the processor
and can be performed in some sequence or according to some
schedule.

4. The processing covers a fairly narrow range of functions
which are frequently repeated; e.g., assembling and disassem-
bling characters. These functions can usually be done effi-
ciently in real-time at the channel level because they are
simple and have few parameters.

5. Large amounts of high-speed memory are not usually required,
except for buffers, in contrast to other data processing
where programs and data for a process may be large.

18

Examples of input/output processing can include polling, multi-
plexing, routing and addressing messages, generating transmission codes,
error detection and correction, data compression, as well as more sophis-
ticated processes such as editing and source data automation.

The methods of performing input/output functions range from exclu-
sive use of hardware, as in device controllers or communications equip-
ment, to combinations of hardware, firmware, and software. With any
of these methods, the processing can be performed within the mainframe
processor or in a separate processor. It is claimed ' ' that a large-
scale computer can be impaired by up to 40 percent of its throughput
capacity if it does its own data communications housekeeping. There
are other cogent arguments to support the use of separate minicomputers
for input/output processing: the software of the large machine is
simpler when device-specific code is removed, and device interrupts
need not be handled; the overhead operations in I/O processing and the
space for code to perform these operations can be eliminated to make
more efficient use of the computer. The shorter word length and smaller
high-speed storage of a minicomputer do not preclude performing I/O
processing. When the I/O processor is programmable, then it has the
flexibility to add new functions and to change processing methods to
provide new capabilities or to handle new devices. The characteristics
of I/O processing described above are all compatible with the capabilities
of firmware described in the previous section. The use of microprogram-
ming for I/O processing enhances the processor performance because micro-
programming is closer to the hardware and can often be used to control
devices more easily, more efficiently and more closely than software.

There are numerous examples of microprogrammed input/output pro-
cessing which have been described in the literature [e.g., ^-0) , (25)>

(26)^ (29)j# Manufacturers are also marketing communications processors
and device controllers which are microprogrammed and can compete favor-
ably on a cost basis with hard-wired controllers. Control of multiple
devices of the same or different kinds are usually accommodated with a
single microprogram.

REAL-TIME DATA PROCESSING

Real-time data processing is typified by the processing of data
which is collected at frequent intervals and referred to as real-time
data. This class can include processing which happens in direct response
to the receipt of the data, usually in order to perform some control
function; e.g., guidance or navigation control using sensor inputs.
Analysis of real-time data to produce reports can also be included in
this class. Examples of real-time data are signals, whether from radars,

19

acoustic or optical devices. Examples of real-time data processing
are multi-sensor correlation, spectral analysis, pattern recognition,
and filtering of digital signals.

In some ways input/output processing is similar to real-time data
processing, but a distinction can be made by emphasizing the following
characteristics of real-time data processing:

1. Large volumes of data are involved.

2. Efficiency of processing is important because of the volume
of data for which processing must be done. Response time is
especially important in control situations. Even when the
data is being used for analysis or simulation, the amount of
computer time can become exorbitant.

3. The repetitive operations which are performed tend to be com-
putational in nature, as opposed to the bit and character
manipulation operations of input/output processing.

4. In many cases, the functions are performed on arrays of data.
This implies large amounts of data must be accessed to perform
one cycle of processing. It can also imply that parallel
execution of operations on more than one set of data at a time
is suitable for some of the processes.

Microprogramming can be employed in several ways to effect an
improvement in performance for real-time data processing. The extent
to which implementation of arithmetic functions in microprogramming
rather than software can be beneficial is a function of the nature of
the microprogrammed machine architecture and the nature of the algorithms.
In an internal IBM study quoted in w(±t was stated that the improve-
ment for microprogrammed composite arithmetic operations is small, on
the order of 1.2 to 1.6, because the instruction fetch time saved is
such a small proportion of the time spent on performing arithmetic
operations. On the other hand, an implementation of a matrix inversion
instruction in microprogram (28) for two models of the IBM 360 gave a
3:1 improvement over equivalent software, and a square root routine
was eight times faster than the equivalent software (14) . Several
special-purpose processors have been implemented in microprogramming
to process real-time signals efficiently and perform functions such
as Fast Fourier Transforms (e.g., 12). Such processors can be used
to distribute processing in a real-time system. The most powerful
application of microprogramming for speed up of real-time data processing
appears to be in conjunction with special-purpose hardware. One such
case is the IBM 2938 Array Processor (29), which can be used with sev-
eral models of the IBM 360 computer by attaching it as a channel-driven

20

device using standard input/output commands. The Array Processor can
run concurrently with the CPU of the 360 computer to perform a small
set of vector and matrix operations. It has a high-speed arithmetic
unit capable of performing high-speed floating-point multiply-adds.
The logic to accomplish the operations is microprogrammed in the
Array Processor. Measurements of performance improvements indicated
that the use of the Array Processor allowed a complex operation such
as a convolving multiply to be 250 times faster, and a matrix multiply
was 40 to 50 times faster. It was noted that the improvement was
greater for larger arrays and for more complex operations. In com-
paring its use with different machines, it was noted that the greatest
improvement was on the least powerful machine. Another case, described
in '->) also involved signal array processing to be performed every
50 milliseconds. Execution time in software would have required 545
milliseconds. The final approach, which reduced the time to 49 milli-
seconds, used a combination of microprogramming and a hardware multi-
plier-summation processor. While microprogramming was only one
source of the performance improvement and its exact contribution was
not stated, it played a central role in adding special-purpose high-
speed hardware to a system without causing perturbations in the
behavior of its existing hardware and software.

AIRBORNE SYSTEMS

An airborne system which uses a digital computer has many of the
requirements found in input/output processing and real-time data pro-
cessing. Additional requirements of airborne computer systems are
very high reliability, compact size, and minimized weight. The hard-
ware technology of microprogrammed machines, particularly with LSI
components, should make them more compact and more reliable than
their hard-wired logic counterparts. In previous sections, the use
of microprogramming to improve reliability by dynamically performing
diagnostics in firmware has been described. The RCA VIC computer (*0)
was a microprogrammed machine designed with high reliability in mind
for airborne applications. Because of its experimental nature, not
all of the intended design was realized, but the principles are valid.
The hardware emphasized reliability without restricting the flexibility
to design new instruction sets. The RCA VIC is being used at SAC
and illustrates another application of microprogramming which is
relevant to airborne systems; namely, the ability to emulate a por-
tion of the instruction set of the ground computer in the airborne
machine. This provides sufficient compatibility to allow software
for the airborne computer to be developed on the larger ground
computer with the aid of software tools which may not be available
on the smaller machine. Compatibility of instruction sets can also
allow common software for parts of the systems on each machine, despite
disparities in hardware.

21

There are several examples of microprogrammed airborne or aero-
space computers already in existence, which perform real-time computa-
tions (11» 30). in examining the trends in digital systems aboard
aircraft, a study noted that microprogramming will be emphasized as a
means of economizing on storage capacity and processing time (31). An
approach to achieving this economy is through the development of machines
whose instruction sets can directly execute higher-level language pro-
grams such as Jovial or Space Programming Language. Several Avionics
laboratories in the Air Force and the Navy are initiating research into
the architecture of such machines and the practical means of achieving
them. The feasibility of this approach was demonstrated by Weber (32)y

who produced a microprogrammed compiler and an interpreter for an
Algol-like language. The compiler translates statements in the lan-
guage to an intermediate language which matches the high-order language
and, at the same time, can be interpreted by microprogrammed machine
instructions. The advantage of this approach to airborne applications
is that programs represented in the intermediate language are more
concise and therefore require less storage space than their expansion
into the usual machine instructions. Gains in speed of execution as
high as an order of magnitude over the equivalent software can also be
realized for some sequences of operations. Airborne digital systems
are assuming data management functions, in addition to navigation, as
exemplified by the Advanced Airborne Command Post. As the size of the
data base increases, the efficient use of storage becomes more urgent
in order to conserve space and weight.

In proposing the design of a computer to meet the Naval airborne
data processing requirements for 1975 to 1985, Entner (33) revealed
another aspect of microprogramming for airborne applications. His con-
cern was to meet processing requirements and also reduce the enormous
cost of computer procurement:. His solution is standardized modular
building blocks which can have their control structure dynamically
reconfigured through microprogramming. An installation can consist of
several specialized processors under central control. Current achieve-
ments and ongoing developments indicate that the contribution that can
be made by microprogramming to airborne digital systems is significant.

22

SECTION IV

MICROPROGRAMMING RESEARCH AND DEVELOPMENT

RATIONALE FOR RESEARCH AND DEVELOPMENT

There are many ways in which microprogramming is already used
profitably, and many areas in which it can clearly be of benefit.
Research and development tasks are proposed below which show high
probability of payoff in solving some of the urgent problems exist-
ing in a broad spectrum of computer-based systems which are of imme-
diate relevance to the Air Force. These systems can be characterized
as requiring large amounts of software to do complex processing.
Operational requirements demand that they be reliable, and constraints
are placed on processing time. Examples of such systems abound in
real-time, command control and communications areas. The Advanced
Airborne Command Post (AABNCP) and the MAC Integrated Management
System (MACIMS) are both representative. The number of such systems
being formulated is accelerating at a rate which is not commensurate
with our ability to produce them at a reasonable cost and according
to the standards expected. The size and complexity of software has
an adverse effect on its reliability and response time; conversely,
the need for greater capability and faster response time leads to
larger and more complex software.

Areas of research and development have been chosen which directly
relate to these problems. While microprogramming can speed up spe-
cific parts of specific applications by replacing software with faster
firmware, this approach can be self-limiting. Such uses of micropro-
gramming tend to be narrow in scope or relevance to other situations,
since they represent a careful optimization for a particular set of
conditions. It is the intention of the activities below to focus on
general problems for a wide range of systems like those in use or
contemplated by the Air Force. Microprogramming is a proven tool for
tailoring machines to efficiently handle classes of applications.
Effective use of microprogramming to solve a particular problem
requires that the causes, as well as the results of the problem, be
fully understood before constructive steps can be taken. It is
therefore a part of these tasks to identify the causes and demon-
strate how microprogramming alleviates then.

23

One of the tasks described below applies microprogramming to
improve the performance of Data Management Systems. A second task
employs microprogramming to enhance the usefulness of such systems in
environments which require processing of data with multiple levels of
security classification from remote terminals. A third task addresses
the problem which pervades all of the large, complex systems; namely,
the need for producing reliable software in a reasonable amount of
time. The fourth task is concerned with the control of multiprogramming
and multiprocessing, techniques which can improve the overall perfor-
mance of multi-user systems and the utility of hardware. In particular,
the application of microprogramming to operating systems is considered.
Finally, it is suggested that improved methods of producing firmware
should be supported to help deliver the products which result from
the other tasks.

The conduct of such tasks by the Air Force might serve to mitigate
some of the criticisms leveled at the Department of Defense by the
Blue Ribbon Defense Panel (3^) :

"There is no significant software systems design capa-
bility in the Department. Such capability as exists is
widely dispersed and focused on narrow spectrums, usually
tied to specific applications. As a consequence, no effec-
tive mechanism exists for development of more flexible
languages, compilers, executive monitors, data storage
and retrieval software, operating systems, translators and
liberation programs, etc. Current practise makes the
Department highly dependent on hardware manufacturers for
design of system software. The manufacturers have no incen-
tive to provide increased flexibility to the Department
which might increase the Department's independence of the
supplier's particular machine and increase Department-wide
compatibility of ADP programs."

IMPACT OF RESULTS

The kinds of tasks proposed below will serve to demonstrate, in
a laboratory environment, principles which can be applied in opera-
tional situations and to prove their usefulness. A period of two
years should be sufficient to select, implement, and evaluate techniques
for applying microprogramming in the designated areas. At the end of
that time period, the recommendations which are made can obviously be
of value to planners of systems which have not yet been implemented.
For these systems there is still freedom to influence the selection
of computers or to define the architecture of an already available
microprogrammable computer. The application of these principles is

24

not limited to systems under development. Microprogramming also per-
mits the integration of changes in machine architecture into existing
operational environments. Several methods are available, depending
on what kinds of changes or improvements are desired and what parts
of the system can, or must, be changed. Typically, hardware configu-
rations may change as new types of peripheral devices become available.
Software may have to be changed to meet new functional requirements.
Improvements may be necessary because the system is too slow or the
capacity too small. A major consideration is to preserve as much of
the existing software as possible, because it represents a considerable
investment in time and money. Some of the methods for accomplishing
this are summarized below.

Adding To An Existing Computer

When any computer in a system is microprogrammable, then it can
be modified; yet all of the capabilities and characteristics originally
available may be retained, so that existing software continues to
operate. The following examples illustrate how this technique can be
used:

Adding New Instructions

By adding new instructions to an existing computer, it is possi-
ble to redistribute the processing between the software and the firm-
ware. This can be done to achieve greater speed for particular pro-
cesses or to add new processing capabilities not previously available
in the instruction set of the computer. Software can then be selec-
tively modified to take advantage of the new instructions.

Re-implernenting Existing Instructions

In this case the instruction set remains the same; but the algo-
rithms for accomplishing instructions might be modified to be more
efficient, or new functions might be added that are transparent to
the user. The latter approach can be used to accommodate new types
of hardware or to add error checking. An example of this occurred
when an associative memory was added to a 360/40 computer, and it was
necessary to modify the microprogram for all I/O processing without
changing its outward behavior ^35'.

Architectural Changes To The Computer

A computer may be microprogrammed to provide new primitives in
the instruction set that are appropriate to some class of applications.
New capabilities can be added which are transparent to the instruction
set, such as task management on the Venus machine (23) . The addressing

25

scheme might be modified or the class of operands. In this case,
the instructions and their behavior may be considerably different.
Such changes may be motivated by a better understanding of the kinds
of primitives that are conceptually employed in the application pro-
cessing and can provide a better mapping of the requirements onto the
computing resources. If the application programs have been written in
a higher-level language, then it may be possible to preserve their code
by modifying the compiler to reflect the architectural modifications,
provided the strategies of the system design and implementation are
still appropriate. A case in point is the design of machines which
directly execute some higher-level language by providing primitives
which closely correspond to statements in the language and data types
available. The logic of software in that language is not affected,
but its performance time can improve.

A New Independent Mode Of Operation

By adding to existing firmware new microprograms which create
different instructions and a different architecture, it is possible
to leave the original machine and its software unchanged and yet
introduce new software which is matched to the new architecture. This
approach extends the utility of the computer. A method of changing
from one mode to another must be available. On the 360 series there
is a means of running a 360/40 in its own mode or 1410 emulation mode.
On small, inexpensive microprogrammable machines, such as the Interdata
3, the mode of operation can be changed by physically changing read-
only memories. This is practical when the two modes are used at dif-
ferent times. The advent of writable control stores, such as those
in the IBM 370 series, simplifies changing modes. It is possible to
dynamically change the mode of operation of a machine and even operate
processes in different modes concurrently under multiprogramming on
such machines as the IBM 360/85 and the 370 series.

Adding Or Replacing Processors

The need to change operational computer-based systems has often
occurred because they are overloaded and cannot cope with the amount
of data or processing demanded of them. A notable example today is
the Burroughs 3500 base computer. To combat this problem, the only
feasible solution is often to supplement the available processor or
to replace it. Consider the difficulties imposed when the machine in
use is obsolete, and it is no longer possible or feasible to acquire
additional computers of the same type or to provide additional capa-
bility on the existing machine. If the machine is not microprogrammable,
then any of the previous approaches; i.e., modifying or adding micro-
programs, are not possible. The option of acquiring new hardware intro-
duces a means for utilizing microprogramming to smooth the transition
and to optimize the cost/performance ratio of the new processor hardware.

26

Replacement Of A Processor

It is highly probable that a replacement for a processor will be
a microprogrammable machine which is larger and/or faster. The soft-
ware can be moved to the new machine which can emulate the previous
machine's instruction set in its microprogram. It may also be possi-
ble to extend the capabilities of the new machine in the ways described
above so that existing software can gradually be phased over to a new
architecture, or new applications can use new or additional capabilities,
An example of this application of microprogrammed emulation is underway
at SAMSO, where there are nine CDC 160Afs which are overloaded, and
there is too much software to reprogram for another machine. The deci-
sion was made to replace the CDC processors with META 4's which will
emulate the CDC machine. The META 4 has a memory speed seven times
faster than the CDC 160A. With emulation, the software should run up
to six times faster than before.

Addition Of Processors

Another approach to adding capacity or decreasing processing time
is to add new processors. A new processor may be compatible with an
existing processor, although not the identical hardware, through emula-
tion. If the new processor will serve a functionally different role,
then microprogramming can be valuable in tailoring it to that role.

RESEARCH AND DEVELOPMENT TASKS

Data Management Systems

The management of data is what computers are for, according to
users. Data management systems (DMS) contain the software to make it
easier for users to describe the structure and relationships among
data and how the data should be processed. Unlike a series of COBOL
application programs which together make up all the data management
functions but are individually independent, data management systems
are composed of a set of programs which are highly interrelated,
logically and physically. The DMS usually offers data management ser-
vices consisting, at a minimum, of file creation, updating, retrieval,
and report generation. The continuum of capabilities starts with
tape-oriented, serial batch processing and moves conceptually, if not
actually, to on-line, real-time data storage, retrieval, and reporting
systems. Data management systems have become a focal point of concern
because of their evident relevance to military applications. There is
an increased awareness that present techniques cannot cope with the
volumes of data already available or anticipated without becoming
increasingly slow, unless the processing algorithms and the data

27

organization become more complex. This results in a longer time to
develop the system and a degradation in reliability due to the additional
complexity. Problems in the development of data management systems are
discussed in detail by Glore ^36).

The performance of current data management systems is slow com-
pared to the requirements of many military applications. Serial, batch
processing time increases rapidly as the size of the data base grows.
Added complexity can increase the speed of some functions, such as
retrieval, at the cost of others, such as updating. The size of pro-
grams, as well as the size of data, causes delays while limited amounts
of high-speed memory must be filled and refilled. At the heart of
these problems is the mismatch between the hardware and the demands of
the data management processes. Faster processors and larger, faster
memories are not economically feasible, nor would they resolve all of
the difficulties in acquisition of data management systems. The archi-
tecture of conventional machines is inadequate for some of the kinds
of processing which are needed. New hardware developments, such as
content-addressable memories, are aimed at facilitating the rapid
retrieval of data, but their application is restrained by the state
of the technology. Changes in machine architecture can be made through
microprogramming which will reduce the implementation and performance
problems of data management systems. The Software Production task,
described later, focuses on methods of improving programmer productivity
and software reliability. The Multiprogramming and Multiprocessing
task considers ways of improving performance by distributing processing
among several processors. In this task, microprogramming is used to
make the processes specific to data management systems more efficient.
Microprogrammed changes will be made to speed up time-consuming parts
of the execution time of current systems and to modify the way in which
data is represented or processing is accomplished.

The following subtasks have been identified in the conduct of
this task:

1. Select several data management functions and a simple data
structure. Define the functions from the "outside in"; i.e.,
in terms of what a user would expect to happen.

2. Define algorithms for performing the functions. If there
are several distinct methods of performing the same function,
more than one algorithm might be specified.

3. The algorithms will be implemented in a high-level language,
typical of the kind that would be used for a DMS. Most likely
candidates are JOVIAL and PL/I. Any recommendations on pro-
gramming languages and procedures resulting from the work on

28

Highly Reliable Programming under Project 5550 ' ^ will be
incorporated in this activity. The machine code produced
will be examined for gross inefficiencies due to the lack of
optimization in the compiler, and some code may be replaced
by machine code directly. The objective is to obtain a
representative sample of machine code for some data management
functions.

4. An analysis will be performed of the machine code to determine
how parts of the code contribute to the execution time and
the relationship between statements in the language and the
amount of code that is generated. Instrumentation techniques
are available for performance measurements of distribution
of CPU and I/O time as well as how CPU time is spent among
parts of the code. Both kinds of data will serve as a basis
for selecting new machine features to be implemented in firm-
ware which will conserve program space and speed up processing.

5. Variations in machine architecture will be devised to support
the functions analyzed. Their effect will be derived by
specifying the microprograms and estimating the execution time.
The results will be reported and recommendations made for those
microprogramming changes which are most beneficial to the
particular functions analyzed and data management in general.

Security

The security of computer-based systems is concerned with control-
ling access to the information in the system, based on the level of
classification of the user and of the data, and controlling processes
exercised by users in order to access data or create data. Protection
must be provided against accidental or overt destruction of processes
and data as well as illegal access. The traditional method of provid-
ing security in data processing systems is to place the user and the
computer in a secure environment and take electronic precautions to
prevent any radiation from emanating out of that shielded environment.
Such an approach is anachronistic in the face of current hardware and
software technology permitting multiple users to time-share a computer
and access it from remote locations. Three features of multi-user
systems which make it difficult and complex to assure security of data
have been described *J ^ :

1. "concurrent multiple users with different access rights
operating remote from the shielded room;

2. multiple programs with different access rights co-resident in
memory;

29

3. multiple files of different data sensitivities simultaneously
accessible."

At MAC and at AF/AFACS, requirements have been expressed for a data
processing capability which can handle mixed levels of classification
on data, and both cleared and uncleared users, with some at terminals
in uncleared areas.

The organization of most commercially available operating systems
precludes their certification. The functions affecting security have
not been sufficiently isolated, and the complex interrelationships of
parts of the operating system prevent complete identification of modifi-
cations to provide security. There have been some notable attempts to
handle the security problem with a combination of hardware and software
(, ' 9 but there are no time-sharing systems or multiprogramming
systems in existence at this time which have been certified for opera-
tion in an open environment. The problems stem from the complexity of
software, in the operating system as well as the data management facili-
ties, which must be certified. At present, the problem of computer
security is not well understood. There are no accepted criteria for
certifying software design and implementation.

The solution to the security problem in information processing
will probably involve a combination of hardware and software techniques.
Firmware may also be of assistance to create a machine architecture
which more carefully controls software and reduces the time penalty
for monitoring activities. The Multics System (39) uses some hardware
features such as addressing mechanisms and privileged instructions as
expedients in controlling access. Firmware can provide these and other
functions.

Subtasks of this task are the following:

1. Identify criteria for secure handling of data. The list will
by no means be exhaustive, since this is a research subject
in itself. Studies of the deficiencies in existing operating
systems and partial solutions have identified some of the major
kinds of protection that are needed.

2. Design architectural features to support these criteria and
the means of achieving them in firmware for demonstration
purposes.

3. Design the structure of an operating system which would use
the new machine architecture. The objective is to minimize
the amount of software that would require certification.

30

4. Implement the demonstration capability to illustrate and
evaluate the principles. Heavy use will be made of an inde-
pendent test team.

At a minimum, the results should increase understanding of the
computer security problem. They can also contribute toward the estab-
lishment of criteria and methods for achieving them. An activity which
relates to this research area is the work on Highly Reliable Programming
in Project 5550 of the Advanced Development Program '37), which might
be expected to make recommendations about methods of organizing and
implementing procedures whose correctness might be proven. Certainly
the parts of software which handle security are likely candidates.

Software Production

The amount of software which will be produced in support of computer-
based Air Force applications over the next five to ten years is prodi-
gious. One source (40) predicts that the Air Force will spend half its
time on checkout and testing of software. With the current rate of
programmer productivity estimated as from 125 to 500 instructions per
man-month ™1) | ±t ±s clear that the production of software will be a
major expenditure, surpassing the cost of hardware. The software which
has already been produced has been notoriously unreliable and will con-
tinue to be so unless something is done to change the environment of
the systems designers and programmers who produce the present and future
computer-based systems.

A notable attempt to improve programmer productivity and software
reliability was the development of high-order programming languages
(HOL's). Such languages are intended to resemble the way in which a
programmer conceptualizes his data and processing requirements. HOL's
are labeled "machine-independent" to emphasize that HOL programs can
be run on different machines with different architectures, but also to
indicate that they are different from any machine architecture. The
need for developing HOL's is a symptom of the fact that machine archi-
tectures and machine instructions are not suited to the humans that
use them. The extent of this mismatch can be seen by the fact that
the code produced by HOL compilers is not efficient of space or operat-
ing time, and a great deal of effort is being expended on devising
means for compiler optimization of code. Despite this effort, it is
difficult for HOL programs to be as efficient as machine language pro-
grams because the HOL shields the programmer from the important charac-
teristics of the machine architecture such as word length and instruc-
tion set. This prevents the programmer from determining the consequences
of alternative, logically equivalent, algorithms for performing a func-
tion. At the language level, all alternatives seem equally appealing,
or the shortest number of statements may seem best. He must produce

31

the program and inspect or measure the results in order to determine
efficiency. IBM supplies Programmer Guides to aid in the analysis of
the effect of the machine and the compiler on the size and efficiency
of the code produced.

Programmer productivity is estimated to be doubled by the use of
HOL's. There is no evidence of the extent to which the software pro-
duced is less error-prone. Despite the inefficient code, their use
is considered desirable by the Air Force for the implementation of
large systems. There are two major ways in which microprogramming can
be used to improve the effectiveness of HOL's in the software production
process:

1. Modifications will be made to machine architecture where the
features of a language which is suitable for a class of appli-
cations do not map well into the machine instruction set of a
computer. The design of a machine language wl.Ich more directly
executes statements of a high-order language is feasible, and
the design of compilers makes them amenable to this approach,
as described for Airborne Systems in Section III. Some of
this work will be carried out under the Data Management Systems
task, described above, for that class of applications.

2. Even in the best of all possible worlds, implementation errors
will occur, and predictions of performance will be wrong.
Microprogramming offers the opportunity to extend the archi-
tecture of machines to allow the introduction of tools for
monitoring the behavior of software, both to isolate errors
and to analyze performance. In providing these services,
conspicuously absent in most of the current computers, it
becomes possible to achieve faster, more thorough testing of
systems and to devote time to optimizing performance where it
can be most effective.

Work in applying microprogramming to improving software production
has been conducted at The MITRE Corporation (18> 23>. A microprogram
and software system, called the Venus Multiprogramming System, was
developed specifically to facilitate the production of large software
systems by teams of programmers. Microprogrammed features were pro-
vided to perform dynamic allocation of storage and to facilitate the
use of many program modules in constructing a system. Machine primi-
tives were added to permit systematic management of multiprogramming
of cooperative, rather than independent, processes. This experience
has shown the implications of the new architecture on the design and
development of an operating system, a prime example of complex software.
The hands-on use of the system has also suggested further uses of micro-
programming, particularly to provide better aids to system testing and
measurement. The subtasks below are a direct extension of the Venus work:

32

1. Analyze and report the benefits and deficiencies of the Venus
firmware for software production.

2. Select and implement modifications and extensions to the Venus
microprogram based on the analysis. Special attention will
be given to support for debugging, and instrumentation aids,
suitable for high-order language programming as well as machine
language.

3. Apply the new architecture to a software implementation and
evaluate the impact. In support of this activity, a compiler
will be built to permit the use of the Venus System with a
high-order language.

The relationship of this entire activity to the Data Management
task has already been acknowledged. The microprogrammed changes arising
from that task will be integrated with changes proposed by this task.
It is suitable to use a data management application to evaluate both
tasks.

Multiprogramming and Multiprocessing

Multiprogramming has developed as a way of more efficiently using
the computer resources at hand, by trying to have the load equalized
over the different parts of the system. Multiprocessing can provide
a variety of services: faster execution time, when response time is
critical; reliability for a system made up of a combination of similar
components which can keep operating when some of the components fail;
flexibility for making a system that can be tailored to cover a range
of applications and computing power requirements. The Air Force and
the Navy have expressed interest in the capabilities offered by multi-
processing in command and control (cf. post 1975 TACC requirements for
a multiprocessor).

Both multiprogramming and multiprocessing, while often effective,
introduce complexity to systems and create problems not found in simple
systems. Some problems arise in defining parallel processes during
system design and in designing the mechanisms for controlling asynchro-
nous operations when concurrent processes cooperate in performing tasks.
In addition, when multiprocessing is involved, the order in which com-
putations should be performed is not necessarily the same as for a
single processor system. The testing of such multi systems is particu-
larly difficult because their asynchronous nature can create very subtle
and unforeseen combination of events, their complexity makes it difficult
to create or reconstruct test conditions at will, and it is impossible
to test all the possible combinations of events.

33

One of the ways in which microprogramming can contribute to more
effective use of asynchronous processes is to provide a machine archi-
tecture which permits systematic handling of concurrent activities.
An approach is to provide machine operations to govern the sharing of
data among the processes according to a set of principles which prevents
conflicts in use of shared data. Operations can also be devised for
synchronization among concurrent processes. The Venus Multiprogramming
System, developed at MITRE, contains microprogrammed machine instructions
which perform such functions in accordance with the work of Dijkstra
' ' , who defined operators for the purpose of synchronization as well
as sharing data. A similar machine organization was proposed by Wirth
'^', although microprogramming was not used to realize it. These tech-
niques can be applied to the problem of cooperating processors as well
as processes. Microprogramming can also facilitate the dynamic recon-
figuration of the system when one component fails and modify scheduling
for the reduced set of processors.

In developing larger multiprocessing systems, such as those which
might be used for DMS applications, microprogramming offers the possi-
bility of a partially specialized processor. In this case, any proces-
sor in the system would be able to perform any operation, but through
the microprogramming different processors would be optimized for the
performance of critical problems. The problem of scheduling the various
special processors could also be handled on the microcode level.

Multiprogramming and multiprocessing have increased the importance
of operating systems, and there is an obvious necessity for them to
perform efficiently and reliably. Microprogramming can also be used
for this purpose.

Subtasks which have been identified for the coming year.

1. Application of microprogramming techniques for the efficient
and reliable operation of operating systems. More thought
and research is needed to determine how to distribute the
operating systems' functions between firmware and software.
To support improved efficiency, monitoring must also be made
of the system on both the software and firmware levels.

2. Application of microprogramming techniques for a system which
can have a variable number of processors, from one to many.
The area incorporates the complexities of designing such a
variable system, dynamic reconfiguration and error detection.
This is especially important in view of the TACC proposal.

3. Investigation of the appropriate types of association of
processors to processes for different applications of multi-
processing.

34

4. Investigation of the applicability of semi-special processors
for the use in multiprocessor systems, especially a DMS.

Microprogramming Techniques

To produce firmware is a programming job. Producing microprograms
effectively is necessary in order to deliver the products of the research
described above. In many ways, described earlier, microprogramming can
be more difficult than software programming. While attention is being
given to the design of microprograms and the tools for specifying, test-
ing, and optimizing them, it is desirable to have a separate task to
monitor this work. Where advances are made, they can be applied to the
other research tasks. Deficiencies must also be recognized and solutions
devised. New problems, not unlike those faced in software systems, will
arise from the application of dynamically writable control stores.

CONCLUSIONS

The problems addressed by the proposed research exist today in
the Air Force software systems being procured. None of the problems
has an obvious or simple solution. Microprogramming is a tool which
exists and can have an effect on the causes of the problems. Whether
it is the best solution for a specific problem is difficult to assess,
as shown in Section II. However, microprogramming is relatively inex-
pensive to apply for creating new computer architectures. Its flexibil-
ity permits changes and improvements to be made. For these reasons it
is a compelling choice as a means of proving the acceptability of new
machine features. It is then possible to determine whether these
features can be realized in other ways, such as acquisition of new
hardware, which are more cost-effective, if the microprogramming
flexibility can be sacrificed in a particular situation.

35

REFERENCES

1. M. V. Wilkes, "The Best Way to Design an Automatic Calculating
Machine," Manchester University Computer Inaugural Conference,
July 1951, Manchester, England, 16-18.

2. A. Opler, "Fourth Generation Software," Datamation, 13, 1,
January 1967, 22-24.

3. R. F. Rosin, "Contemporary Concepts of Microprogramming and Emulation,"
Computing Surveys, 1, 4, December 1969, 197-212.

4. T. Berschback, Annotated Microprogramming Bibliography, M69-65,
ESD-TR 70-204, AD-709-765, Contract F19(628)-68-C-0365, Bedford,
Mass., July 1970.

5. S. S. Husson, "Microprogramming: Principles and Practices,"
Prentice-Hall, 1970.

6. L. Amdahl, "Architectural Questions of the Seventies," Datamation,
16, 1, January 1970, 66-68.

7. F. G. Withington, "Trends in MIS Technology," Datamation, 16, 2,
February 19 70, 108-119.

8. J. K. Wineke and M. Spiegel, "Generation IV: The Shape of Systems
to Come," Computer Decisions, j2, 10, October 1970, 18-23.

9. R. Wolfe, "Multiple Minicomputers Go to Work for Large Timesharing
Applications," Data Processing, 12, 9, (19 70), 33-37.

10. A. W. Maholick and H. H. Schwarzell, "Integrated Microprogrammed
Communication Control," Computer Design, J3, 11, November 1969,
127-131.

11. D. E. Waldecker, "Comparison of a Micro-programmed and a Non-
microprogrammed Computer," Computer Design, 9_9 6, June 1970, 73-78.

12. G. Hombuckle and E. Ancona, "The LX-1 Microprocessor and Its
Application to Real-Time Signal Proc.," IEEE Transactions on
Computers, C-19, 8, August 1970, 710-720.

13. N. Bartow and R. McGuire, "System/360 Model 85 Microdiagnostics,"
AFIPS SJCC, 36, (1970), 191-197.

36

REFERENCES (Continued)

14. W. J. Patzer and G. C. Vandling, "Systems Implications of Micro-
programming," Computer Design, 8, 12, December 1967, 62-67.

15. R. W. Cook and M. J. Flynn, "System Design of a Dynamic Micro-
processor," IEEE Transactions on Computers, C-19, 3, March 1970, 213-222.

16. H. Barsamian, "Firmware Sort Processor with LSI Components,"
AFIPS SJCC, 36, (1970), 183-190.

17. C. W. Ramamoorthy and R. L. Kleir, "A Survey of Techniques for
Optimizing Microprograms," Preprints of the 3rd Annual Workshop
on Microprogramming, October 1970.

18. B. H. Liskov, The Venus Multiprogramming System - Year End Summary,
The MITRE Corporation, MTR 2004, ESD-TR-70-408, Contract F19(628)-68-C-0365,
Bedford, Mass., 31 August 1970. —

19. H. A. Lichstein, "When Should You Emulate?," Datamation, 15, 11
November 1969, 205-210.

20. A. M. Johnson, "The Microdiagnostics for the IBM System/360
Model 30," Preprints of the 3rd Annual Workshop on Microprogramming,
October 1970.

21. Computer Operations, Inc., Gemini Computer Systems Information
Manual, Costa Mesa, Calif., (1970).

22. J. A. Howard and L. Pfeifer, "An ROM Bootstrap Loader for Small
Computers," Computer Design, £, 10, October 1970, 95-97.

23. B. J. Huberman, Principles of Operation of the Venus Microprogram,
The MITRE Corporation, MTR 1843, ESD-TR-70-198, Contract F19(628)-68-C-0365,
Bedford, Mass., 1 May 1970.

24. R. L. Brening, "External Control," Datamation, 16, 10, 1 September
1970, 48-55.

25. H. Burner, R. Million, 0. Rechard, J. Sobolewski, A Programmable
Data Concentralor for a Large Computing System, Washington State
University, WSU-1969-1, 1 May 1969.

26. S. Matsushita, "A Microprogrammed Communication Control Unit, The
TOSBAC DN-231," IFIP 68, Hardware Computer Systems, (1969), North
Holland Publishing Co., 812-817.

37

REFERENCES (Continued)

27. W. C. McGee and H. E. Peterson, "Microprogram Control for the
Experimental Sciences," Proceedings - AFIPS FJCC, 27, I, (1965),
77-91.

28. D. R. Doucette,"Performance Enhancement by Special Instructions
on the System/360, Models 40 and 50," delivered at the Third
Annual Workshop on Microprogramming, October 12-13, 1970.

29. J. F. Ruggiero and D. A. Coryell, "An Auxiliary Processing System
for Array Calculations," IBM Systems Journal, 8^, 2, (1969),
118-135.

30. E. H. Miller, "Reliability Aspects of the Variable Instruction
Computer," IEEE Transactions on Electronic Computers, EC-16,
5, October 1967, 596-602.

31. "New Airborne Computer Concepts Evolve," Aviation Week and Space
Technology, 22 June 1970, 213-219.

32. H. A. Weber, "Microprogrammed Implementation of Euler on IBM 360/30,"
Communications of the ACM, 10, 9, September 1967, 549-558.

33. R. S. Entner, "The Advanced Avionic Digital Computer System,"
Computer Design, 9_, 9, September 1970, 73-76.

34. The Blue Ribbon Defense Panel, Report to The President and The
Secretary of Defense on ehe Department of Defense, 1 July 1970, 153.

35. G. E. Hoernes and L. Hellerman, "An Experimental 360/40 for Time
Sharing," Datamation, April 1968.

36. J. Glore, Major Problems of Generalized Data Management System
Development, M70-56, The MITRE Corporation, February 1970.

37. Development Plan RCS: DD-DREE(AR)637, Development Plan, Advanced
Development Program, Data Processing Hardware and Software Tech-
nology, Project 5550, Air Force Systems Command, November 1970.

38. C. Weissman, "Security Controls in the ADEPT-50 Time-Sharing System,"
AFIPS Fall Joint Computer Conference, (1969), 119-133.

39. E. L. Glaser, "A Brief Description of Privacy Measures in the
Multics Operating System," AFIPS Spring Joint Computer Conference,
(1967), 303-304.

38

REFERENCES (Concluded)

40. B. W. Boehm, The RAND Corporation, Some Information Processing
Implications of Air Force Space Missions: 1970-1980, RM-6213-PR,
Santa Monica, Calif., January 1970.

41. E. Dijkstra, "The Structure of the 'THE1 - Multiprogramming System,"
Communications of the ACM, 11, 5, May 1968.

42. N. Wirth, "On Multiprogramming, Machine Coding, and Computer
Organization," Communications of the ACM, 12, 9, September 1969,
489-498.

43. J. D. Aron, "Estimating Resources for Large Programming Systems,"
Software Engineering Techniques, NATO Science Committee, Brussels,
Belgium, (1970), 68-79.

39

UNCLASSIFIED
Jj*curityCl«««ific«tion

DOCUMENT CONTROL DATA R&D
(Security eimuMiflcmtion of tlita, body of abatract and indexing mnnotmtion muat ba antaradwhan tha orarall report la claaalllad)

I. ORIGINATING ACTIVITY (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

is. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
ab. GROUP

3 REPORT TITLE

THE APPLICATION OF MICROPROGRAMMING TECHNOLOGY

4. DESCRIPTIVE NOTES (Typa of rmport and inclusive dataa)

9. AUTMOR(S) (Firat name, middla initial, laat nama)

Judith A. Clapp

6. REPORT DATE

MAY 1971
7a. TOTAL NO. OP PAGES

45

76. NO. OF REFS

43
•«. CONTRACT OR GRANT NO.

F19(628)-71-C-0002
b. PROJECT NO.

6710

9a. ORIGINATOR'S REPORT NUMBER«)

ESD-TR-71-105

tb. OTHER REPORT NO(S) (Any other numbara that may ba aaaigned
thie rmport)

MTR-2050
10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Electronic Systems Division, Air Force Systerc
Command, L. G. Hanscom Field, Bedford,
Massachusetts

IS. ABSTRACT

This report surveys promising applications of microprogramming. Emphasis is on the
value of microprogramming as a tool which permits computer users to modify the architecture
of a general-purpose machine to better match a particular set of requirements. Factors
are discussed which affect the choice of microprogramming over hardware and software
in the design and implementation of computer-based systems. Actual and potential examples
of its application are given to illustrate its relevance to the solution of implementation and
performance problems arising in typical Air Force systems. Finally, research and develop-
ment tasks are proposed which lead to the realization of the benefits of this technology in
operational command control and communications systems. Methods are described for
integrating the results into existing and future systems in the next several years.

DD,Tv\.1473 UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification

KEY WOMOI
LINK A

AIRBORNE COMPUTER SYSTEMS

COMPUTER PROGRAMMING

COMPUTER SYSTEMS PROGRAMS

COMPUTER PROGRAMS

COMMUNICATIONS PROCESS

INPUT-OUTPUT ROUTINES

MICROPROGRAMMING

PROGRAMMING TECHNIQUES

PROGRAMS (COMPUTERS)

REAL TIME OPERATIONS

SOFTWARE (COMPUTERS)

UNCLASSIFIED
Security Claasification

