
TRI FILE COPY

ESD-TR-7I-8I

ESD Aca^iyiM us
TRI Call No.

Copy No.

OPERATING SYSTEM VALIDATION TESTING

William C. Mittwede
Kenneth P. Choate

January 1971

ESD RECORD COPY
RETURN TO SC1ENT1nC&TECHN1CAL',KFORMAT1ONO1V.Sl0N

(TRI), Building 1210

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; Its distribution Is
unlimited.

(Prepared under Contract No. FI9628-70-C-0258 by The COMTRE Corporation,
151 Sevilla Avenue, Coral Gables, Florida 33134.) * f\nn //-> J-O

A I) ILH7fI

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-71-81

OPERATING SYSTEM VALIDATION TESTING

William C. Mittwede
Kenneth P. Choate

January 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; Its distribution Is
unlimited.

(Prepared under Contract No. FI9628-70-C-0258 by The COMTRE Corporation,
151 Sevilla Avenue, Coral Gables, Florida 33134.)

FOREWORD

This report presents the results of an analysis conducted by The CCMTRE
Corporation of Coral Gables, Florida, in support of Project 6917, Task
691701 under Contract F19628-70-C-0258. The analysis presented in this
report was performed by William C. Mittwede and Kenneth P. Choate. Dr.
John B. Goodenough (ESD/MCDS) was the ESD Project Monitor.

Publication of this report does not constitute Air Force approval of the
report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

EfffiuW"ff"%S] riNES/^W^Tölo^r, USAF
Director, Systems »esign & Development
Deputy for Commantl & Management Systems

ABSTRACT

This report presents functional testing requirements for use in the validation
testing of computer operating systems. The requirements are structured in a
tabular format and are applicable to the executive/control functions, system
management functions and data manipulation functions of current commer-
cially available operating systems. In concert with the tabulation of require-
ments for each of the operating system functions, further tabulation has also
been performed relating the test requirements to the type of environment that
the operating system must support: batch, real-time, or time-sharing. Basic
testing procedures have been defined to verify the requirements and these
testing methods have then been grouped into test packages.

in

-

Section

Section II

Section III

Section IV

Section V

Appendix I

Appendix II

CONTENTS

Introduction 1

1.1 Purpose 1

1.2 Scope 2

Operating System Measurement 3

2.1 Current Approaches 3

2.2 Limitations 7

2.3 Conclusions 8

System-Assisted Testing 9

3.1 Concept 9

3.2 Event Logging for Post-Mortem Analysis 10

3.3 Event Simulation 16

3.4 Interactive Test Control 17

3.5 Programmed Test Control 20

3.6 Conclusions 20

Functional Testing Requirements 21

4.1 Approach 21

4.2 Testing Requirements 21

Part I: Executive/Control Functions 23

Part II: System Management Functions 42

Part III: Data Manipulation Functions 46

Test Design 55

5.1 Test Packages 55

5.2 Validation Methods 61

Part I: Executive/Control 62

Part II: System Management Functions 96

Part III: Data Manipulation 105

Bibliography 127

Record of Testing and Measurement Interviews 129

•

SECTION I

INTRODUCTION

1. 1 Purpose

This is the third report of a series produced by The COMTRE Corporation for the

Electronic Systems Division of the Air Force Systems Command. The first report of this

series, ESD-TR-70-377, presented an integrated functional classification structure applic-

able to the executive/control functions, system management functions, and data manipulation

functions of current commercially available operating systems. The second report developed

selection criteria and the methods for establishing a relationship between these criteria and

the operational requirements derived from the functions given in the first report.

In this report, validation requirements have been developed within the functional

classification scheme for all levels and types of operating systems supporting current

computer configurations. These validation requirements are presented in tabular form

to allow easy selection of pertinent tests based upon fundamental applications of the

Operating System (OS) in question.

The objective of this report is threefold:

1) to assure a high degree of completeness as well as uniformity in

OS acceptance test design;

2) to increase the utility of benchmark programs currently used to

debug, test, and validate operating systems;

3) to identify facilities that can be inserted into operating systems

which will assist in the validation process.

The analysis presented within this report is based upon the assumption that validation

should have two distinct objectives:

• to verify the presence of OS functions and their proper

performance; and

• to observe the effects of benchmarks to assure that the

system does perform as a unit.

Benchmark programs were designed by considering all OS functions as outlined by the

functional classification scheme, determining the types of tests necessary to validate the

functions, and then organizing these tests into a logical series of test packages applicable

to varying system orientations.

1

The approach taken to the area of OS-assisted validation was to survey current

techniques in the field of system measurement and to extrapolate relevant techniques for

system validation. Also, several existing and proposed debugging techniques were inves-

tigated for possible application to validation.

1.2 Scope

This report defines procedures, software and data for systematic validation testing of

current commercially available operating systems. The validation testing requirements

presented encompass all significant levels and types of operating systems and are structured

to permit selection and generation of tests for any given operating system.

The report is organized into five sections with two supporting appendices. The next

Section presents the current approaches to OS measurement, their limitations, and the

conclusions reached by this analysis. Section 3 is a concept development of system-assisted

testing and Section 4 is a delineation of the OS functional testing requirements. Section 5

is a test design for validation. The appendices comprise a bibliography of documents re-

viewed during the study and a record of interviews with various representatives on the

technical aspects of OS validation.

•

SECTION II

OPERATING SYSTEM MEASUREMENT

2.1 Current Approaches

The performance of operating system measurement has long been an area of interest

within the computer community and is even more important with the advent of third genera-

tion operating systems which often support multiple processing configurations in addition to

multiprogramming capabilities. In many instances system measurement and system validation

are construed to be one and the same thing. Although these two functions can be complemen-

tary, they are, in fact, quite different. Measurement may be considered a system design tool

to ascertain that the best possible performance is being delivered by a system or to determine

why a system is not performing properly. Validation, on the other hand, is a process for

determining if a system's performance is within the requirement specifications for a given

facility. In other words, system measurement techniques are used to "tune" an operating

system in an attempt to achieve its ultimate capabilities and operating system validation

determines if the designed system satisfies a facility's specific requirements. This does not

mean that system measurement techniques would not be useful to a facility in evaluating

prospective systems or for further improvement or testing of its system after acceptance;

however, system measurement techniques are most appropriately applied during operating

system design. Since it is possible that certain measurement techniques may be applicable

to operating system validation, a survey has been performed of some of the current measure-

ment methods.

Currently, there are two classes of measurement techniques that have been developed

for acquiring operating system measurements. These are the hardware instrumentation methods

which involve the attachment of "probes" to various computer components to record activity

in certain areas of the computer system and the software instrumentation method which

involves either a modification to the basic operating system or the addition of software

routines which have access to pertinent areas within the operating system.

In surveying the hardware monitoring devices available today, it appears that they all

provide nearly the same type of measurements. The basic factors provided are CPU utiliza-

tion, I/O channel utilization and peripheral device utilization. Other measurements

usually provided include system overhead, data base activity, allocation of time between

problem programs and the operating system, op code usage, time within a given memory

area, number of entries/exits from a given routine, operator response time, number of instruc-

tions executed, etc. Usually, this type of information is then processed and presented in report

form indicating the system's performance activity and utilization.

As is evidenced by the type of measurements provided by the hardware monitoring

devices, the major goal is improving system efficiency or, in evaluation, determining which

system is the most efficient.

The major advantage in using hardware monitoring methods over software monitoring

methods is that the former does not introduce any overhead into the system and therefore a

true operational environment is measured.

A typical hardware monitoring device is the X-RAY system manufactured by the Applied

Systems Division of the Computer Learning and Systems Corporation. A general description

of this system as stated in the X-RAY system manual is as follows: X-RAY is designed to

measure the total efficiency of a computer system. X-RAY provides a data collection,

reduction and analysis facility for accurate reporting of all aspects of system performance

including such major areas of interest as:

1. Computer System Utilization;

2. System Program Overhead;

3. Problem Program Efficiency;

4. Data Base Element Activity.

X-RAY isolates specific areas of operating inefficiency so that system improvement

measures such as the following may be applied:

1. Equipment Configuration Balancing;

2. Job Scheduling Procedure Modification;

3. Operating System Residence Real location;

4. Program Structure and Code Optimization;

5. Data Base Reorganization/Redistribution.

The X-RAY recorder samples hardware registers, indicators and lines using a passive

signal acquisition technique. The data samples are recorded on magnetic tape for post-

processing by a software package designated as the X-RAY/Analyzer which produces reports

describing configuration usage, program execution and data base activity. The X-RAY/

Analyzer also provides a facility with the capability to generate its own reports.

Other hardware monitoring devices currently available are:

• The Computer Performance Monitor II (CPM II) which is produced by

Allied Computer Technology, Inc. This system is designed to locate

system imbalance and monitor system utilization as a tool in eval-

uation of system operation and program performance.

• The CPA 7700, produced by Computer Programming and Analysis,

Inc., which provides measurements of such items as system wait

state, I/O utilization, and problem and supervisor time allocation.

• The System Utilization Monitor (SUM) which is produced by Computer

Synectics, Inc. This system measures: wait state time, channel

usage, operator response time, problem time versus supervisor

time, seeks performed, number of instructions executed, number

of cards read/punched, I/O errors, CPU errors, storage errors,

etc.

• The Dynaprobe system, produced by COMRESS, which is designed

basically to study central processor activity versus data channel

and I/O device usage. This system provides measurements such as

system state, CPU active time, CPU wait time, system idle time,

system active time, channel busy time, device idle time, instruc-

tion class, file access rate, etc.

In surveying the software measurement systems available today it appears that they pro-

vide the same types of information as provided by the hardware monitoring systems, with

one important exception. This exception is the fact that the software measurement systems

provide the capability of presenting the causal element. In other words, that program

which caused an event to occur can be determined. This factor is very important in answer-

ing utilization questions during system monitoring and is a definite aid in "tuning" a system.

The software measurement systems surveyed were:

• Boole and Babbage, Systems Measurement Software (SMS/360),

Configuration Utilization Evaluator (MCUE, Version 1) (CUE,

Version 2). This system extracts and analyzes data describing

hardware usage, data-cell or disk head movements, transient

supervisor call routine loading, etc.

• Boothe Resources International, Inc., Computer Installation Man-

agement System (CIMS/l). This system records and analyzes data

describing job step nomenclature, CPU utilization, hardware usage,

I/O requests, etc.

• Webster Computer Corporation, S/360 Disk Operating System,

Machine Utilization Reporting System (DOS MURS). This system

extracts and analyzes data describing program nomenclature, CPU

utilization, core utilization, I/O wait time, operator ID, etc.

• Computing Efficiency, Inc., COMPUMETER. This system extracts

and analyzes data regarding the utilization and cost related to

the computer system, the computer operators, and the programming

staff.

• Computer Learning and Systems Corporation, Computer-Aided

System Evaluation (CASE). This system utilizes simulation to deter-

mine file requirements, file utilization, and input component util-

ization.

Two measurement systems of interest which have been developed and utilized are the

Data Collection Facility (DCF), presented by T. B. Pinkerton (see reference 13 in the

bibliography) and the instrumentation methods utilized in the measurement of Multics

(see reference 15 in the bibliography).

The DCF was developed as a monitoring system for a time-sharing system. The

monitoring system itself was designed into the operating system providing information

which is more detailed than data sampling methods but not approaching hardware monitor

resolution. The interesting facet of this system is the minimal amount of interference that

is introduced into the system by the DCF (this factor can affect system assisted validation).

Also, the conclusions reached during the research performed in support of the development

of DCF are very important and should be considered in the design of any software perform-

ance measurement system. These conclusions are:

• attempt to associate overhead caused by measurement with processes

independent of those being measured;

• defer analysis of data for post processing;

• provide capabilities to choose among data to be extracted;

• attempt to utilize continuous data extraction rather than

sampling;

6

• provide a monitoring system which is an integral part of the

operating system and can be used during normal operation.

The measurement of multics is interesting in light of the development of measurement

techniques as an integral part of the system design. Also, the utilization of hardware de-

vices in conjunction with software and integrated into the system provides for the utiliza-

tion of the best features of both types of measurement. The instrumentation of Multics

was utilized during system design and was directed primarily toward an understanding of the

internal operation of the operating system rather than measuring throughput, system capacity,

or the characteristics of the system load. However, areas of interest which are directly

applicable to software validation testing are the tracing package and simulation script

utilized by the system. The tracing package performs a continuous looping function in

which the calendar clock is continuously read. Normally successive clock readings will

vary by the loop transit time, large differences are caused by control being given to

another process. By analyzing the output of these recorded differences and by utilizing

a known operational scenario it would be possible to validate system interrupt handling,

algorithmic scheduling and proper peripheral utilization. The simulation script is much

like a known benchmark program in that it offers a known measurable operational scenario.

It is important in system validation testing that a known or controlled operational scenario

be utilized and the simulation script method offers this type of scenario..

2.2 Limitations

The major limitation uncovered in the survey of commercially available software

measurement systems is their dependency upon the operating system. This is caused by the

measurement system's requirement to extract necessary information from coFe. This extrac-

tion is dependent upon timing parameters and format of information which is a function of

the individual operating system. Therefore, each measurement system is written to perform

with a particular operating system. Thus, for each operating system, a unique measure-

ment system is required. It was found that the majority of software measurement systems only

provide their service for the IBM 360 system. Also, software measurement systems tend to

introduce a certain amount of overhead into an operating system. Although it is usually

stated that this is usually stated that this is a minimum factor, it must be considered never-

theless.

The hardware measurement systems surveyed offer the same type of information as the

software measurement systems and are able to perform this function without introducing

overhead into the operating system. However, the hardware measurement systems lack

the flexibility of their software counterparts and, although they can present utilization

factors, they cannot present the utilization causal factors which is possible using software

measurement systems.

2.3 Conclusions

From the material surveyed on commercially available measurement systems, it appears

that these tools are truly useful to a facility in "tuning" an operating system to best satisfy

its operational requirements and that they can provide a means for obtaining more efficient

utilization of the system. It is quite plausible to consider that ultimately system measure-

ment will be performed by a hybrid system, encompassing the best features of hardware and

software measurement systems. The problem of requiring a different measurement system for

each operating system has no apparent solution because of the inherent differences among

operating systems. This will continue to be the case until standardized measurement

recording requirements are imbedded within each operating system during design.

The simulation tool surveyed appears to be a highly useful device for a facility

attempting to determine the hardware/software configuration that best satisfies its require-

ments but does not apply to system measurement as performed by the systems surveyed.

The type of information obtained by both the hardware and software measurement

systems can be very useful in evaluating the capabilities of different systems when used

in conjunction with a standard benchmark program. However, these measurements appear

to have little significance in the validation of operating systems with the exception of

determining which system best utilizes its resources and which system could best satisfy

peak loading conditions.

*

8

SECTION III

SYSTEM-ASSISTED TESTING

3* 1 Concept

Many of the services afforded an application program by the system supervisor

are rather easily validated by simple test programs. For example, the capability to

issue I/O commands, request the time of day, take a core dump, etc., can be tested

in a fairly straightforward manner. The difficult system area to validate is supervisory

and management control. For example, the areas of dynamic allocation, multiprogram-

ming control (scheduling and dispatching), job and task management, total system man-

agement, etc., are representative of those functions that cannot be directly observed.

Insofar as a test program is usually a single application program operating independently

of any other application program, it is difficult, except in trivial cases, to develop

the timing inter-relationships which cause the system to exercise Its supervisory control

functions.

For this reason, this section presents several approaches which, if implemented,

will allow the behavior of the supervisor to be observed in a manner that is not now

commonly possible. Each of these approaches involves additions and modifications

to the design of existing supervisor programs. Some of these capabilities are fairly

easily provided with the addition of a minimal amount of coding; others may, in

some supervisory structures, require extensive program re-design. It is felt, however,

that these modifications will permit a level of system validation that has not been

previously possible. A further benefit, though of somewhat less importance than

the validation aspect, is that the ability to observe a supervisor's control operation

will also facilitate debugging operations when supervisor errors are encountered.

The concept, called system assisted-testing, is based upon the inclusion within the

supervisor of a number of routines which record various system actions for immediate or

subsequent visual verification, other routines which create conditions to which the

control program must respond, and selected facilities which enable certain system control

variables to be dynamically modified during supervisor validation proceedings.

Since validation procedures are normally conducted quite independently of

normal system operation, each of the procedures mentioned should not be permanently

installed within the operational supervisor. Rather, the concept is based upon a

special mode of operation called, perhaps, the validation mode, wherein the super-

visorwill be dynamically augmented by the addition of the validation routines.

Thus, if the validation mode is specified during system initialization the super-

visor nucleus would be modified to enable linkages to the actual validation routines.

These routines, depending upon the design of the particular system, could then be

either loaded as a part of the system nucleus, established in a privileged supervisor

partition, or called dynamically into a transitional area when referenced.

A disadvantage to this approach is that the supervisor being validated is some-

what modified from the actual operational supervisor. However, this disadvantage

is compensated for by the fact that the resident operational supervisor will have a

smaller main storage requirement and/or a somewhat faster mode of operation when

validation techniques are inactive. Since the frequency of validation procedures is

quite small compared to normal operating time, the tradeoff of time and core seems

justified.

The following Subsections present four system-assisted validation techniques. Each

attempts to provide a slightly different technique and is independent of the others.

Thus, any or all might be incorporated into an existing or proposed system depending

upon the level and type of validation desired.

3#2 Event Logging for Post-Mo rtem Analysis

The first technique is based upon a capability implemented by the designers of

the General Electric Comprehensive Operating System III (GECOS III - see Reference

5 in the Bibliography). To the authors' knowledge, this technique was not available

in operational versions of the system, but was, instead, incorporated into pre-production

testing of the system.

The capability should be invoked by a system control card or an operator key-in

during system initialization. Invocation enables a system trace or logging routine which

will record the occurrence of various events upon a log file on a dedicated output

device. A fairly high blocking factor should also be provided to reduce I/O inter-

ference. The log file is available for subsequent analysis by a series of general

10

purpose routines which will reduce the data collected to a series of charts depicting

an overview of system operation.

Most of the event logging routines (I/O buffers, trace file write, initializa-

tion) need not be imbedded within the supervisor nucleus. Rather, they can be

loaded into a permanent area for execution when the capability is activated. The

required changes in the supervisor nucleus are fairly minimal and should not signi-

ficantly alter the nucleus size.

Operation: When initialized for validation, each time a specified event

occurs, an event record will be constructed and transferred

to the system log file. The event record should look somewhat

like the following:

TIME OF DAY
EVENT
CODE

JOB OR
SYSTEM

REFERENCE NUMBER
TASK

NUMBER

INTERRUPT
OR

ERROR CODE
RESOURCE

ID

The following events are indicative of the conditions that should cause the production

of a logging record:

01 Recognition of a new job submitted to the system

02 Placing a new job on the scheduling queue

03 Removing a job from the scheduling queue and placing it in the

executing job mix

04 Removing a job from the scheduling queue for another reason

(e.g., operator command)

05 Initiating a task within a job

06 Assigning a single resource to a job or task (allocation)

07 Releasing a single resource by a job or task (de-allocation)

08 Removing a single resource from a job or task (operator^irected action)

09 Assigning the CPU to a task

10 Removing the CPU from a task

11 Loading a program page or segment

12 Releasing or overlaying a program page or segment

13 Rolling out a program area

11

14 Rolling in a program area

15 Initiating core compaction

16 Normal task termination

17 Abnormal task termination

18 Job termination

19 Interrupt occurrence (A certain selectivity should be provided for

the types of interrupts logged. For example, I/O interrupts

might well be excluded.)

20 Exceeding a pre-specified program limit (core space, time, records, etc.)

21 Hardware error occurrence

22 Program error occurrence

23 Recognition of a new system resource

24 Deletion of an existing system resource

25 Receipt of a computer operator command relating to a resource or job

26 Initiation of symbiont routine

27 Termination of symbiont routine

28 Start of output symbiont processing for a specific job

29 End of output symbiont processing for a specific job

Validation technique: A pre-planned scenario of system benchmarks

should be prepared to simulate normal system operation. Only

those system events relating to specific test objectives should

be activated; the others should remain dormant. Once the log

file has been obtained, it will be processed by one or more

data reduction programs to produce a map of the internal system

actions of interest. This map, in turn, can be visually validated

to assure that the event sequences correspond to the actual

steps the system is required to perform.

The following layouts are examples of the types of data reduction

maps that could be produced to validate various operating system

functions:

12

1. Scheduling Process

For each job scheduled:

time of day the job was scheduled

other jobs remaining in the job scheduling queue

length of time each job has been in the scheduling queue

any resource assignments that have been made to unscheduled

jobs

2. Time Slicing or Priority Dispatching Algorithm

job/task name

time processor assigned to the task

time processor removed from the task

3. Degree of Multiprogramming or Time-Sharing

For each job scheduled or terminated:

time of day

job initiation or job termination indicator

job name

number of jobs/tasks currently active in the job mix

4. Peripheral Device Allocation

For each peripheral device:

time assigned to a specific job/task

time released by a job/task

job/task name

If dynamic allocation is available, then the following information should

also be included:

time of job/task initiation,

time of job/task termination.

If the device is added or deleted from the system, then an appropriate

message should also be included.

13

5. Memory Management

a) Paged memory environment

For each job:

time of day

identification of page loaded or removed

indicator for pages loaded: was previous page swapped out prior to loading?

number of pages currently active for the job

b) Non-paged environments

For each instance of storage compaction:

time of day

previous memory map

new memory map

For each instance of program roll out:

time of day

program (name) rolled-out

program (name) causing roll out

previous memory map

new memory map

For each job using an overlay structure:

initial core storage assignment

any modifications to core storage assignments with the corresponding time of
day

For each instance of overlay:

time of day

core area overlayed

name of overlaying segment

6. Symbiont Processing

a) Input symbionts

time symbiont is initiated

time symbiont is terminated

14

For each job:

time job is initially recognized by the system

time job is placed on the scheduling queue

time job is entered into job mix

b) Output Symbionts

time symbiont is initiated

time symbiont is terminated

For each job:

time job is terminated

time symbiont processing is initiated for the job

time symbiont processing is completed for the job

7. Task Sequencing/Program Termination Control

For each job, list the following events and the respective time of event
occurrence:

job initiation

task initiation

task termination

job termination

device allocation

device de-allocation

program error occurrences

hardware error occurrences

program limits exceeded

8. Hardware Error Control

This display should list all non-scheduling related events that occur from the

time of error recognition until a new job is selected from the scheduling

queue. This should produce a trace of all interactions that might occur due

to unrecoverable errors (e.g., re-allocation of resources, suspension of

intermediate processing, etc.).

15

The event logging facility thus imposes a minimal impact upon the system

undergoing validation and allows a rather comprehensive post-mortem analysis of the

system control functions being tested. The suggested examples of data reduction are

by no means complete. Rather,they are indicative of the varying types of functional

verification that may be provided. A comprehensive test employing this technique is

limited only by the ingenuity of the test designer and the extensiveness of the event

logging facility. Furthermore, this approach may be extended to validate new func-

tional capabilities incorporated into future operating systems.

3.3 Event Simulation

One of the major problems in validating an operating system is to create a

series of time-related events to which the system must react. Insofar as the system is

proceeding at a rate measured in nano- or microseconds, it becomes virtually impos-

sible for a human operator to cause specific events to occur within selected time con-

straints. At best, he can provide events at a tolerance measured in seconds. Furthermore,

a comprehensive test of a time-sharing system, for example, requires the close coordination

of a number of remotely located terminal operators which only further compounds the problem.

The technique of event simulation has been used quite successfully to test and

validate special purpose real-time and/or time-sharing features. In particular, the

event simulator provides an almost unique capability to test system overload and other

time-dependent relationships.

To prepare for event simulation, the test designer creates a time-dependent

scenario of system events. The types of events to be considered are those that are external

to the system; activation (log-on) of a local or remote terminal, arrival of an input

message, arrival of a line-control interrupt, activation of an operator interrupt, etc.

Each of these events is tagged with the time of day, to the best resolution provided by

the system (millisecond , microsecond, or nano-second), that the event is to occur. If

the system is extremely complex or if the number of terminals or event type is large, it

may also be advisable to develop an event generation program that can create a random

sequence of events within the time tolerances specified.

16

Each of the generated events is placed on an on-line event file and the super-

visor is modified at system initialization time to disable the actual events. Further,

an event recognition routine is loaded with the supervisor. This routine sets an inter-

val timer interrupt to occur at the specific time of each event on the event file. A

standard set of benchmark programs can then be initiated to provide a multiprogram-

ming batch mode of processing. At each interval timer interrupt, the causing event

is read from the event file and the event recognition routine causes a linkage to be

established to the proper interrupt handling routine.

An additional modification must be inserted in each interrupt handling routine

to process the event from the linkage information provided by the event recognition

routine. Further, if the interrupt handling routine masks out any other events, this

information must be returned to the event recognition routine so that future events

will be held pending until the mask is removed. When the event file is exhausted, the

system should be notified to terminate validation operations and to notify the operator

of test completion.

As indicated earlier, this technique is frequently used to validate real-time

oriented systems. Consequently, it seems quite likely that the modifications to the

supervisor described will already exist in a vendor's pre-production version of the

system. When this is the case, this capability can be easily provided by the vendor

for the validation sequence. When such a capability has not been developed by the

vendor, the modifications to the operating system will be quite extensive. However,

if the event sequence to be tested is considered critical to operational performance,

such modification may still be justified.

It should also be noted that no capability to display the results of event occur-

rence and system reaction has been specified. In this area, it is recommended that

the event logging for postmortem analysis capability (see Subsection 3.2) be employed

to validate the event processing sequence.

3.4 Interactive Test Control

This validation technique is based upon the concept that the individual performing

system validation should be allowed to interact with the system to structure and record

the results of selected activities of the system. Jerry Grochow has described g capability

17

3.4 (Continued)

provided to the MULTICS system designers which utilizes a PDP-8 computer to display

various system statistics and to selectively modify the system during operation (see

Reference 7 in the Bibliography). The capability described herein is based somewhat

upon this concept though it does not necessarily entail the use of a separate proces-

sor.

A dedicated on-line console device is designated for the use of the system valid-

ator and a privileged partition is provided for the interactive test control program. This

program should be designed to display various portions of the system supervisor area on

the console device and to, upon command, modify selected system variables within

the supervisor. All references to the system supervisor are symbolic to prevent in-

advertent modification of actual core locations by the system validator.

In essence, the interactive test program would provide the validator with the

following on-line commands:

1) Display logical system elements - This command will provide a

structured display of the various logical elements comprising the

system. These elements would consist of, but are not limited to,

the following:

- main storage allocation,

- secondary storage allocation,

- resource allocations,

- current job mix,

- dispatching queue,

- scheduling queue.

2) Halt or proceed with validation run - This command will cause temporary

suspension or resumption of system processing. Suspension would normally

be invoked prior to displaying the various system elements or prior to

modifying a system element. Resumption would cause the test sequence

to continue.

18

3) Modify selected system control elements - This command will set selected

system variables to a specified status. Then, the system validator can

create overload conditions by restricting the amount of core or number of

devices available or by reducing the number of entries permitted in

scheduling, dispatching and I/O request queues. Further, he can modify

resource availability to either include or exclude specific devices to satisfy

his immediate test objectives.

4) Proceed until specific conditions arise - This command will permit the

system to run uninterrupted until a specified condition occurs. Normally,

the validator would issue this command to allow the system to create the

necessary testing environment that he wishes to validate. The types of

conditions that would be recognized are suggested by the following:

- V entries in a dispatching, scheduling, or I/O request queue,

- specific job initiation or termination,

- activation of a specific supervisor routine (e.g., a roll-out),

- an elapsed time interval, etc.

5) Force event occurrence - This command will cause the invocation of

the processing routine which handles a selected event. The types of

events to be invoked would be:

- the hardware error control routine,

- the program error control routine,

- an external interrupt,

- a power failure, etc.

6) Invoke or release the event logging routine - This command will cause

the event logging mechanism described in Subsection 3.2 to be initiated

or terminated. Normally, the event logging routine, if available, would

be dormant until the actual test environment is created (command 4) and

then activated. By using the event logging capability, the validator

is afforded a rather comprehensive post-mortem analysis of the system

reaction to his structured test.

19

3.5 Programmed Test Control

This validation technique is quite similar to the previous technique except that

the validator does not have on-line access to the system. Instead, all of the on-line

commands are made available to a privileged executing program which will direct the

activation of selected conditions and monitor the results of the system reaction to these

conditions. All of the commands described in Subsection 3.4 would be available to the

privileged program in addition to a more comprehensive display of supervisor status var-

iables.

It is felt that this approach is more realistic for smaller systems or for those that

do not provide an on-line console capability.

3.6 Conclusions

This Section has described four areas in which a system-assisted validation method-

ology can be employed to increase the information available from the operating system

validation process and the amount of control the system validator can exercise over the

process. The implementation of these recommendations should involve a considerable

amount of design review to further ascertain the types of information that are relevant

to system testing/validation objectives. These recommendations constitute only the first

step in an attempt to increase the precision of the validation proceedings.

However, it is noteworthy that most systems, particularly the larger and more

complex operating systems, utilize a large number of testing aids during the system debug

cycle. The fact that these aids are normally unavailable to the system validator decreases

the sophistication, and ultimately, the value of the validation process itself. Conse-

quently, when it is known that extensive system debugging aids exist, it is strongly

recommended that the system validator be made aware of these aids in order to design

a more comprehensive program for ensuring that the proposed operating system fulfills

the requirements of the intended application.

In this regard, the addition of a criterion to the system evaluation process whereby

a vendor is also evaluated on the level and sophistication of his system testing aids is

worth consideration. While testing/validation aids would not be a firm requirement,

the award of "bonus points" for effective testing aids should encourage vendors to make

available many of the routines which have already been developed and which would

facilitate the design of more extensive and exhaustive system control tests.

20

SECTION IV

FUNCTIONAL TESTING REQUIREMENTS

4.1 Approach

The functional testing requirements are delineated by a tabulation within the integrated

functional classification structure (see Reference 12 in the Bibliography). This method ensures

a comprehensive listing of test requirements for test implementation selection.

Since different types of operating systems exhibit different operational characteristics,

each functional requirement is related to a particular system type, viz., real-time, batch,

time-sharing, etc. The criticality of each functional requirement is denoted by designa-

ting it as a fundamental or special case requirement. Finally, each requirement is

referenced to a test package which is defined in Section 5.

This particular method of structuring operating system testing requirements provides a

means by which test designers can procedurally relate any operating system to possible

testing requirements.

4.2 Testing Requirements

Operating system testing requirements are presented within three functional areas:

Part I: Executive/Control Functions,

Part II: System Management Functions,

Part III: Data Manipulation Functions.

The testing requirements for each area are structured using a tabular format. For the

Part I functions, this format consists of four columns entitled Functional Area, System Type,

Capability Level, and Cross Reference to Test. The column entitled Functional Area contains

a delineation of the functional areas within an operating system and the testing requirements

found within each area. The column entitled System Type delineates the type of system

within which each requirement occurs: RTS, Real-Time System; BPS, Batch Processing

System; TSS, Time-Sharing System; ALL, all of these system types. The designation MPS

in the System Type column indicates that the requirement is peculiar to multiprogramming

systems. The column entitled Capability Level denotes whether a requirement is fundamental

to a system type or occurs in special cases. The final column, entitled Cross Reference to

Test, contains the alphabetic designation of one of the Test Packages presented in Section

5. For example, the letter "A" in the final column indicates that the recommended testing

21

of its associated criteria is included in "Test Package A - System Foundation" while

the letter "C" in the final column indicates that the recommended testing of its associated

criteria is included in "Test Package C - Normal Operation Control, etc. An example

utilizing the system is as follows: It is necessary to validate Abnormal Termination which

is functional area 1.1.5.3 on page 29. This function references test package "B".

Turning to test package B, page 57, it is found that item "16" is Abnormal Termination

Functions. Item "16" references Part I, Function 1.1.5.3, techniques (a)-(f). This ref-

erence is then found on page 74 and the validation technique stated is to "Force abnormal

termination, and then observe the ensuing system action." Also, for certain requirements,

a single asterisk or double asterisk is placed in the last column to denote the following:

* This system control function is somewhat unwieldy to test unless

one of the techniques suggested in Section 3 is employed. Conse-

quently, the given test should be replaced by a system-assisted

technique, if available.

** This function is implicitly validated by one or more of the tests

designed to verify other operating system functions. Consequently,

a unique test validating this function is unnecessary.

For the Part II functions the tabular format consists of the columns Functional Area,

Capability Level, and Cross Reference to Test. Each of these columns contain the same

type of information as described for like columns occurring in the Part I tabulation.

For the Part III functions the tabular format consists of the columns Functional Area

and Cross Reference to Test. Again, each of these columns contain the same type of

information as described for like columns occurring in the Part I tabulation.

22

TESTING REQUIREMENTS - PART I: EXECUTIVE/CONTROL FUNCTIONS

N3
GO

FUNCTIONAL AREA

1.0 JOB MANAGEMENT

1.1 Job Control

1.1.1 Scheduling

1.1.1.1 Algorithmic Scheduling

recognition of job priorities

recognition of resources allocated/not allocated

recognition of scheduling delay time

recognition of job type (I/O, processor, etc.)

capability to modify job priorities by operator

capability to modify job priorities by user

capability to modify scheduling algorithm

1.1.1.2 Time Initiated Scheduling

recognition of time-of-day as a scheduling parameter

recognition of job deadline time as a scheduling parameter

recognition of an elapsed time interval as a scheduling
parameter

1.1.1.3 Event Initiated Scheduling

recognition of specific events or interrupts

1.1.1.4 Program Initiated Scheduling

capability to initiate scheduling of symbionts

capability to initiate scheduling of subprograms/subtasks

SYSTEM TYPE CAPABILITY LEVEL
CROSS

REFERENCE TO TEST

RTS,BPS fundamental C

BPS fundamental C*

BPS fundamental C*

BPS fundamental C

BPS special cases C

BPS special cases C

BPS special cases C

BPS special cases c*
BPS special cases c
RTS,BPS fundamental c

RTSJSS fundamental c*

BPSJSS special cases c
ALL special cases c

FUNCTIONAL AREA

1.1.1.4 (cont'd.)

capability to provide scheduling for immediate execution

capability to provide scheduling for asynchronous execution

capability to provide scheduling for subsequent execution

1.1.1.5 Conditional Scheduling

recognition of task completion/abnormal termination

recognition of internal switches set by prior task

recognition of error code set by prior tasks/job steps

recognition of externally set switches

specification of conditional logic on job control cards

capability to specify conditional scheduling at the job
level

capability to specify conditional scheduling at the job
step level

capability to specify conditional scheduling at the task level

1.1.1.6 Scheduling Queue Maintenance

capability to maintain scheduling queues

1.1.2 Resource Al location

1.1.2.1 Core Storage Allocation

capability to provide static (fixed) core allocation for:

program expansion,

I/O buffers,

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL special cases C

MPS,ALL special cases c*
RTS,BPS special cases c

BPS,RTS fundamental c
BPS special cases c
BPS special cases c
BPS special cases c
BPS special cases c
BPS special cases c

BPS special cases c

BPS special cases c

ALL fundamental c*

BPS

ALL

fundamental

fundamental

C**

c**

Cn

FUNCTIONAL AREA

1.1.2.1 (cont'd.)

common areas,

subtask execution.

capability to provide dynamic core allocation for:

program expansion,

I/O buffers,

common areas,

subtask execution.

capability to provide dynamic core allocation through
storage pools

capability permitting common (shared) core allocation bet-
ween tasks of the same job

capability providing storage protection against unauthorized
program access

capability to provide storage protection against unauthorized
I/O processor access

capability to provide storage write protection

capability to provide storage read protection

1.1.2.2 I/O Device Allocation

capability to dynamically allocate devices/files

capability to allocate actual physical devices

capability to allocate devices according to access method

capability to allocate devices according to device type

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

BPS,RTS fundamental c**
ALL fundamental C**

MPS,ALL special cases C*

MPS,ALL

MPS,ALL

special cases

special cases

C*

c*
MPS,ALL special cases c*
MPS,ALL special cases c**

MPS,BPS special cases c

MPS,TSS fundamental
•

c

MPS,ALL fundamental c

MPS,ALL fundamental c
MPS,ALL fundamental c

MPSJSS special cases c
ALL special cases c
TSS,BPS special cases c
ALL special cases c

FUNCTIONAL AREA SYSTEM TYPE CAPABILITY LEVEL
CROSS

REFERENCE TO TEST

O-

1.1.2.2 (cont'd.)

capability to allocate devices by symbolic references

capability to provide exclusive allocation of devices/files

capability to provide shared allocation of devices/files

1.1.2.3 Common Subroutine Allocation

capability to support serially reusable subroutines

capability to support reentrant subroutines

1.1.3 Program Loading

capability to load programs from the system library

capability to load programs from a user library

capability to load programs from the input stream

capability to load programs in relocatable form

1.1.3.1 Structure Control

capability to support simple program structures

capability to support overlay program structures

1.1.3.2 Loading Control

capability to initiate loading via control cards

capability to initiate loading via explicit program references

capability to initiate loading via implicit program references

capability to initiate compaction of fragmented core upon
task termination

capability to initiate compaction of fragmented core when
dictated by priority requirements

ALL fundamental C

ALL fundamental C

MPSJSS fundamental C

MPS, ,ALL special cases C

MPS, ALL special cases C

ALL fundamental A**

BPSJSS special cases A

BPSJSS fundamental A

ALL fundamental A

ALL special cases C**

ALL special cases c

BPS fundamental A**

ALL special cases A

ALL special cases A

MPS special case C*

MPS special cases C*

>

FUNCTIONAL AREA

1.1.3.2 capability to initiate compaction of fragmented core when
directed by the operator

capability to provide automatic overlay loading

capability to provide directed overlay loading

1.1.3.3 Swapping Control

capability to provide roll-in/roll-out

capability to allow programs to time share core storage

1.1.4 Event Monitoring

1.1.4.1 Dispatching Control

capability to provide fixed time-slice dispatching

capability to provide variable time-slice dispatching

capability to provide contention (priority) dispatching

1.1.4.2 Event Synchronization

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

recognition of time intervals

recognition of abnormal termination

recognition of unsolicited key-ins

1.1.4.3 Interrupt Processing Control

recognition of interrupt priorities

capability to mask interrupts

MPS,BPS special cases C*

ALL special cases C

ALL special cases C

RTS,BPS special cases C*

TSS fundamental ^■***

MPSJSS special cases C*

MPSJSS special cases C*

MPSJSS special cases C*

ALL fundamental C*

ALL fundamental B**

RTSJSS special cases C

ALL fundamental C*

ALL fundamental c

oo

FUNCTIONAL AREA

1.1.4.4 Program Limit Monitoring

specification of limits for execution time

specification of limits for number of input records

specification of line limits for printed output

specification of limits for punched card output

specification of limits for output records

specification of limits for main storage utilization

specification of limits for secondary storage utilization

1.1.5 Program Termination Processing

1.1.5.1 Resource Deallocation

capability to explicitly close files

capability to explicitly release I/O devices

capability to explicitly release core devices

capability to implicitly close files

capability to implicitly release I/O devices

capability to implicitly release core devices

1.1.5.2 Summary Information Outputting

capability to provide error summaries

capability to provide summaries of CPU time utilization

capability to provide summaries of device utilization

capability to provide summaries of file access statistics

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL fundamental C*

BPSJSS special cases C

BPSJSS special cases C

BPSJSS special cases c
BPSJSS special cases c
ALL special cases c
BPSJSS special cases c

ALL fundamental c
ALL fundamental c
ALL fundamental c
ALL special cases c
ALL special cases c*
ALL special cases c*

ALL fundamental B

BPSJSS fundamental c*
BPSJSS special cases c
ALL special cases c

FUNCTIONAL AREA

1.1.5.3 Abnormal Termination

capability to dump core

capability to dump files

capability to execute a specified termination program

capability to initiate recovery procedures

capability to notify the operator of abnormal terminations

capability to notify remote terminal users of abnormal term-
inations

1.2 I/O Control

1.2.1 I/O Scheduling

capability to queue I/O requests by channel

capability to queue I/O requests by device

1.2.1.1 Device Resolution

capability to specify device assignment by input stream
control cards

capability to specify device assignments by operator
commands

capability to specify device assignments by program requests

capability to specify device assignment by an interactive
user

1.2.1.2 Request Stacking

capability to permit specification of device priority

capability to permit specification of request priorities

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL fundamental B**

ALL fundamental B**

ALL fundamental B

ALL special cases B

ALL

BPS,TSS

fundamental

fundamental

B

B

ALL special cases C

ALL special cases C

BPS,TSS special cases A

ALL special cases A

jests ALL special cases A

e TSS special cases A

ALL

RTS

special cases

fundamental

C

C

CO
O

FUNCTIONAL AREA

1.2.1.3 Alternate Routing Control

capability to initiate alternate channel/device selection
automatically

capability to initiate alternate channel/device selection by
the operator

1.2.2 Data Transfer

1.2.2.1 Buffering Control

capability to provide system buffer pools

capability allowing user buffer pools

capability to provide exchange buffering

capability to provide chained segment buffering

capability to allow buffer assignment via job control
statements

1.2.2.2 Data Code Translation

capability to convert data to/from device oriented coding
schemes (e.gT paper tape formats)

1.2.3 Device Manipulation

capability to permit forms control through specific requests

capability to permit forms control via control characters
embedded in output records

capability to provide card stacking through direct commands

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL fundamental A

ALL special cases A

ALL special cases C

ALL special cases C

ALL special cases C

ALL special cases C

BPS,TSS

ALL

special cases

fundamental

C

A

ALL special cases A

ALL special cases A

ALL special cases A

FUNCTIONAL AREA

1.2.3 (cont'd.)

1.2.4

CO

1.3

1.3.1

capability to permit card stacking through control characters
imbedded in output records

capability to position sequential access devices

Remote Terminal Support

capability to communicate with the central computer inter-
actively

capability to communicate with the central computer in the
remote batch mode

capability to provide concurrent remote terminal activity

capability to provide inter-terminal communication

capability to provide operator/remote terminal user commun-
ication

capability to permit operator control over remote terminal
activity

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

A

A

System Communication

capability to provide device independent communication
formats

System Startup

capability to startup the entire system

capability to startup on a partition by partition basis

capability to startup using catalogued procedures

capability to respecify system generation parameters

capability to specify device availability

ALL special cases

ALL fundamental

TSS fundamental

BPS special cases

MPSJSS special cases

ALL special cases

ALL special cases

ALL special cases

ALL special cases

C

c

c
c
c

ALL fundamental A

MPS,ALL special cases A

ALL special cases A

ALL special cases A

ALL fundamental A

CO
ho

FUNCTIONAL AREA

1.3.1 (cont'd.)

capability to permit controlled system reconfiguration

1.3.1.1 System Initialization

capability to modify partition sizes

capability to modify/assign partition priorities

capability to modify/assign time-slicing specifications

capability to schedule user initiation programs

capability to request time/date specification

1.3.1.2 System Restart

capability to employ user restart programs

capability to automatically restart jobs that were executing
when the system halted

capability to automatically reschedule queued jobs

capability to reconfigure the system in the event of mal-
function and maintain continuity of operation

1.3.2 Job Control Communication

1.3.2.1 Non-Interactive Control

capability to permit job control from the operator console

capability to permit job control from remote terminals

capability to use catalogued job control procedures

capability to modify catalogued job control procedures

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL special cases A

MPS,ALL special cases A

MPS,ALL special cases A

TSS,BPS special cases A*

ALL special cases A

ALL fundamental A

RTS,BPS fundamental A

RTS
BPS,TSS

fundamental
special cases

A
A

ALL special cases A

BPSJSS
RTS

special cases
fundamental

A
A

ALL

BPS,RTS
TSS

BPS,TSS

BPS,TSS

fundamental

special cases
fundamental

special cases

special cases

A
A

A

A

FUNCTIONAL AREA

1.3.2.2 Interactive Job Control

capability to provide interactive job control through a
local console

capability to provide interactive job control through a
remote console

1.3.3 Input/Output Stream Control

capability to provide automatic editing of job control
command formats

1.3.4 Resource Status Modification

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

1.3.5

BPS,TSS fundamental A

TSS, fundamental A
BPS special cases A

BPS,TSS fundamental B

capability permitting operator control of system resource ALL fundamental

CO status
CO

capability to recognize the following device conditions: ALL fundamental
available,
assigned,
down,
reserved,
test mode.

capability to permit the following types of resource
modification: ALL

addition,
deletion,
replacement,
switching.

System Status Interrogation

capability to display the status of the system upon request ALL

capability to display the status of the system continuously ALL

fundamental

fundamental

fundamental

A

A*

C

C**

CO

FUNCTIONAL AREA

1.4 Recovery Processing

1.4.1 Checkpointing

capability to provide a checkpoint initiation by a program
request

capability to provide system-initiated checkpoints

capability to provide checkpoint initiation by an operator
request

capability to provide checkpoint initiation by an interactive
user

capability to permit user assignment of checkpoint files

capability to provide automatic assignment of checkpoint
files

capability to provide multiple checkpoint records

1.4.2 Restarting

capability to initiate a restart by a job control command

capability to initiate a restart by a user program request

capability to initiate a restart by an operator request

capability to initiate a restart by an interactive terminal
user

capability to restart from a point other than the last one

capability to restart from the beginning of a job step

capability to provide automatic replacement of refreshable
modules

capability to reposition sequential input/output data files

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

BPS,RTS
TSS

fundamental
special cases

B
B

BPS,RTS special cases B

ALL fundamental B

TSS special cases B

ALL special cases B

ALL fundamental B

ALL special cases B

BPSJSS fundamental B

ALL special cases B

ALL fundamental B

TSS,BPS special cases B

ALL special cases B

BPS special cases B

ALL special cases B

ALL fundamental B

. .

2.0

2.1

2.1.1

&

2.1.2

FUNCTIONAL AREA

DIAGNOSTIC ERROR PROCESSING

Hardware Error Control

Error Correction

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ty to detect CPU errors

ty to detect I/O device errors

ty to detect I/O channel or I/O processor errors

ty to detect storage parity errors

ty to detect co-processor errors

ty to detect power-failures

ty to provide linkage to user routines upon error

capabil

capabil

capabil

capabil

capabil

capabil

capabil
detection

capability to provide alternate I/O routing

Error Notification

capability to provide operator console error messages

capability to provide interactive user console error messages

capability to permit subroutines and tasks to return error
codes to calling programs

capability to update and maintain error statistics files

capability to provide diagnostic logout of permanent errors

capability to provide an error trace showing the events
leading to an error

ALL fundamental

ALL fundamental

ALL fundamental

ALL fundamental

ALL special cases

ALL fundamental

ALL special cases

ALL special cases

ALL fundamental

TSS,BPS fundamental

ALL fundamental

ALL special cases

ALL special cases

ALL special cases

B*

B*

B*

B*

B*

B*

B

B

B**

B**

B

B

B

B

FUNCTIONAL AREA

2.1.3 Error Recovery

2.2

2.2.1

8

capability to provide system reconfiguration via alternate
device utilization

capability to provide system reconfiguration via controlled
system degradation

capability to permit on-line diagnostic device testing

capability to provide automatic restart from a system-
maintained checkpoint

Program Error Control

Error Correction

capabil

capabil

capabil

capabil

capabil

capabil

capabil

SYSTEM TYPE CAPABILITY LEVEL
CROSS

REFERENCE TO TEST

RTS
BPSJSS

fundamental
special cases

B*
B*

RTS
BPS,TSS

fundamental
special cases

B*
B*

ALL special cases B

ALL special cases B*

ty to detect arithmetic errors

ty to detect invalid instructions

ty to detect privileged instructions

ty to detect invalid address errors

ty to detect storage protection errors

ty to detect invalid data errors

ty to provide linkage to user routines upon detection
of a program error

capability to provide interactive correction procedures

ALL fundamental B

ALL fundamental B

ALL fundamental B

ALL fundamental B

ALL fundamental B**

ALL fundamental B

ALL special cases B

RTS,TSS special cases B

FUNCTIONAL AREA

2.2.2 Program Error Notification

capability to output program error notification on the
operator's console

capability to provide abnormal termination indicators

capability to permit job steps to set error indicators for
subsequent job steps

capability to provide error notification to interactive users

2.2.3 Program Termination

capability to provide conditional termination when a speci-
fied error level is reached

capability to initiate abnormal termination by an operator
command

capability to initiate abnormal termination by a user program
request

capability to initiate abnormal termination by an interactive
user request

2.3 Interface Error Control

2.3.1 Operator Key-In Editing

capability to edit operator commands

capability to provide command rejection upon job control
command error

2.3.2 Job Control Command Editing

capability to issue a request for clarification by the operator
for command errors

SYSTEM TYPE CAPABILITY LEVEL
CROSS

REFERENCE TO TEST

RTS
BPS,TSS

fundamental
special cases

B
B

ALL fundamental B

BPS special cases B

TSS fundamental B

ALL special cases B

RTS,BPS fundamental B

ALL fundamental B

TSS fundamental B

ALL

ALL

ALL

fundamental

fundamental

special cases

B

B

CO
00

FUNCTIONAL AREA

2.3.2 (cont'd.)

capability to provide job termination upon job control
command error

2.3.3 Remote Terminal Communication Editing

capability to provide message format editing

capability to edit command structures

capability to edit data

capability to provide error notification via coded messages

capability to provide error notification via free format
messages

capability to provide error notification in tutorial message
form

2.3.4 Program to System Link Verification

capability to recognize errors in linkage sequences

3.0 Processing Support

3.1.1 Real Time Clock Service

capability to provide the current date

capability to provide the time of day

capability to provide date conversion of facilities

capability to provide time format conversion facilities

capability to provide facilities for task interruption at a
specified real time

CROSS
SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

BPS,RTS

ALL

fundamental

fundamental

B **

TSS
BPS

fundamental
special cases

B
B

TSS
BPS

fundamental
special cases

B
B

TSS,BPS special cases B

TSS
BPS

fundamental
special cases

B
B

TSS,BPS special cases B

TSS special cases B

B

ALL special cases A

ALL special cases A

ALL special cases A

ALL special cases A

RTS fundamental A*

FUNCTIONAL AREA
CROSS

SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

3.1.2

3.2

3.2.1

CO
SO

3.2.2

Interval Timer Service

capability to provide an interrupt at the completion of a
specified time interval

Testing/Debugging Service

Storage Dump Control

ALL

capabi

capabi

capabi

capabi

capabi

capabi

capabi

capabi

ity to provide snapshot storage dumps

ity to provide postmortum storage dumps

ity to dump all available storage

ity to dump resident supervisor storage

ity to dump user storage areas

ity to dump I/O storage areas

ity to dump common storage areas

ity to dump all storage between specified starting
and ending locations

capability to provide conditional dump display facilities

capability to initiate dumps via control statements

capability to initiate dumps via operator key-ins

capability to initiate dumps via interactive user key-ins

Tracing Control

capability to provide data tracing

capability to provide instruction tracing

capability to provide logic tracing

fundamental

ALL fundamental A

ALL fundamental A

ALL fundamental A

ALL special cases A

ALL fundamental A

ALL fundamental A

ALL fundamental A

ALL fundamental

special cases

A

ALL A

BPS special cases A

ALL fundamental A

TSS special cases A

ALL special cases A

ALL special cases A

ALL special cases A

o

FUNCTIONAL AREA

3.2.2 (cont'd.)

capability to provide supervisor service request tracing

capability to provide subroutine call tracing

capability to initiate tracing from control statements

capability to initiate tracing from operator key-ins

capability to initiate tracing from an interactive key-in

3.2.3 System Test Mode Control

facilities to ignore I/O requests

facilities to reroute I/O requests

facilities to log I/O requests

facilities to simulate I/O error conditions

capability to allow the user to override abnormal abort
conditions

capability to allow the user to override subsequent job step
cancellation

capability allowing the insertion of breakpoints in programs

capability allowing the user to start or restart a program at
a specified address

capability permitting memory searching/displaying

capability permitting memory modification

CROSS

SYSTEM TYPE CAPABILITY LEVEL REFERENCE TO TEST

ALL special cases A

ALL special cases A

BPS special cases A

RTS special cases A

TSS special cases A

RTS fundamental B
BPS,TSS special cases B

RTS fundamental B
BPS,TSS special cases B

ALL special cases B

RTS fundamental B
BPS,TSS special cases B

ALL special cases B

BPS special cases B

ALL special cases A

ALL special cases A

RTS, TSS special cases A

ALL special cases A

FUNCTIONAL AREA SYSTEM TYPE CAPABILITY LEVEL
CROSS

REFERENCE TO TEST

3.3

3.3.1

3.3.2

3.3.3

3,4

Logging and Accounting

Maintaining Job Charge Information

capability to record and maintain job charge information

capability to provide linkage to user-supplied accounting
routines

capability to display job charge information at a user's
terminal

capability to display job charge information at a central
site device

Maintaining Error Statistics

capability to accumulate information for a hardware error
summary

capability to accumulate information for a program error
summary

facilities for the analysis of error statistics

capability to provide a list of file access violation attempts

Maintaining System Utilization Statistics

capability to maintain a summary by user account

capability to maintain a summary of file accesses

capability to maintain a summary of system service requests

Program Accessible System Description Maintenance

capability to maintain current system status information

capability to maintain current system description information

BPSJSS fundamental

BPSJSS fundamental

BPSJSS fundamental

BPSJSS fundamental

C

c

c

c

ALL fundamental B

BPSJSS special cases B

ALL special cases B

ALL fundamental B

BPSJSS fundamental C

BPSJSS special cases C

ALL special cases c

ALL fundamental c
ALL fundamental c

—

TESTING REQUIREMENTS - PART II: SYSTEM MANAGEMENT FUNCTIONS

FUNCTIONAL AREA CAPABILITY LEVEL

These functions may appear in any system type; therefore, the
System Type column is deleted from the presentation.

1.0 OPERATING SYSTEM MANAGEMENT

1.1 System Generation

capability to specify system configuration: CPU's, I/O controllers, peri- fundamental
pheral devices, on-line console devices, memory size, etc.

capability to incorporate user-developed routines

capability to assign default values for operator commands

capability to assign default values for job control commands

capability to modify the scheduling or dispatching algorithms

1.2 System Maintenance

capability to permit on-line supervisor patching

capability to allow definition of new command

capability to rename job control commands

capability to alter default value specifications

2.0 PROGRAM MAINTENANCE

2.1 Library and Directory Maintenance

CROSS REFERENCE
TO TEST

capab

capab

capab

capab

capab

capab

lity to dynamically catalog load modules

lity to dynamically catalog task/procedure definitions

lity to statically catalog load modules

lity to statically catalog relocatable modules

lity to statically catalog source modules

lity to statically catalog macro routines

fundamental

fundamental

fundamental

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

A

A

A

A

E

E

E

E

E

E

E

E

E

E

&

FUNCTIONAL AREA

2.1 (cont'd.)

capability to statically catalog task/fob procedures

capability to copy system libraries

capability to specify library space allocation

capability to punch or list library elements

capability to display library elements

2.2 Load Module Generation

capability to bind multiple modules into a single load module

capability to resolve inter-module instruction linkages

capability to resolve inter-module data field references

capability to resolve, alter or patch binder-generated code

capability to scan the system library for unresolved references

3.0 COMPILER INTERFACES

capability to recognize compiler parameters on OS control cards

capability to use system-maintained compiler communication
tables

capability to use non-standard input symbionts for processing
specially formatted compiler output files

capability to use compilation error codes as conditional scheduling
parameters by subsequent job tasks

capability to link to system sort/merge routines

capability to link to system peripheral conversion routines

capability to link to data management system routines

CROSS REFERENCE
CAPABILITY LEVEL TO TEST

special cases E

special cases E

special cases E

special cases E

special cases E

fundamental A

fundamental A

fundamental A

special cases A

special cases A

special cases A

special cases A

special cases C

special cases c

special cases D

special cases A

special cases D

4.0

4.1

4.2

fe

4.3

4.4

4.4.1

FUNCTIONAL AREA

MANAGEMENT SUPPORT UTILITIES

Peripheral Device Support

capability to perform surface analysis

capability to provide automatic defective track replacement

capability to provide track replacement upon operator command

capability to overwrite disk/drum/core as a file purging routine

System Simulation Routines

capability to simulate I/O device activity

capability to simulate real-time interrupts

capability to simulate message transmission

capability to simulate message receipt

System Measurement Routines

capability to provide job throughput times

capability to provide file or device utilization figures

capability to provide a visual display of current system utilization

capability to provide a visual display of past system utilization

Stand-Alone Utilities1

Status Display

capability to dump core storage

capability to dump file storage areas

capability to dump the contents of machine registers

CAPABILITY LEVEL
CROSS REFERENCE

TO TEST

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

special cases

fundamental

special cases

fundamental

B

B

B

B

C

C

c
C

C

c
c
c

A

A

A

Note - These capabilities are independent programs rather than routines within the supervisor; consequently,
they provide a supplementary (and redundant) capability when the supervisor is inadvertently destroyed.

FUNCTIONAL AREA

4.4.1 (cont'd.)

capability to dump diagnostic log-out areas

capability to dump read-only storage

4.4.2 Recovery Support

capability to rebuild message queues

capability to rebuild system processing queues

capability to reconstruct on-line file transactions

capability to re-initiate suspended processing

capability to re-establish communication line links

CAPABILITY LEVEL
CROSS REFERENCE

TO TEST

special cases A

special cases A

special cases B

fundamental B

special cases

fundamental

B

B

special cases B

&

TESTING REQUIREMENTS - PART III: DATA MANIPULATION FUNCTIONS

CROSS REFERENCE
FUNCTIONAL AREA TO TEST

These functions may appear within any system type; also
whether they are fundamental or special cases is dependent
upon the inherent characteristics of each unique system;
therefore/ the System Type and Capability Level columns
are deleted from this presentation.

1.0 DATA MANAGEMENT

1.1 File Management

1.1.1 File Recognition

capability to locate files using catalogued addresses A

capability to recognize system-assigned labels A

ot capability to recognize user-assigned labels A

capability to locate data using hierarchical levels of cataloging A

1.1.2 File Access Control

capability to restrict access to a protected element' C

capability to specify read-only access C

capability to specify selective write access C

capability to provide concurrent file access to a number of users C

1.1.3 Backup and Restoration

capability to provide automatic file restoration C

capability to provide operator-initiated file restoration C

1.2 I/O Support Facilities

1.2. 1 Data Access Control

capability to provide non-queued data access C

'A protected element may be a volume, a file, a logical record, a physical record or a data element.

*.
S4

FUNCTIONAL AREA

1.2.1 (cont'd.)

capability to provide automatic read-ahead (queued) data access

1.2.1.2 Keyed/Indexed Access Control

capability to provide automatic key computation

capability to provide automatic index maintenance

capability to provide access via hardware keys

1.2.1.3 Random Access Control

capability to permit direct data access

1.2.1.4 Teleprocessing Access Control

capability to provide message time stamping

capability to provide input/output message routing

capability to provide input/output message queueing

capability to provide priority message recognition

capability to provide periodic polling of teleprocessing lines

1.2.2 Data Blocking/Deblocking Control

capability to permit blocking/deblocking of fixed length records

capability to permit blocking/deblocking of variable length records

capability to permit blocking/deblocking of records of undefined length

1.2.3 Label Processing

capability for automaticallv aeneratina system labels upon opening a
file

capability for generating system labels upon closing a file

CROSS REFERENCE
TO TEST

C

c
c

c
c
c
c
c

c
c
c

c

c

00

FUNCTIONAL AREA

1.2.3 (cont'd.)

facility permitting generation of user labels upon opening a file

facility permitting generation of user labels upon closing a file

capability to automatically check system labels

capability to check labels upon user request

1.3 Data Management System Facilities

1.3.1 Control Specification

capability to provide specification of formats for:

files,

reports,

input data,

retrieval queries.

1.3.2 Data File Generation and Maintenance

capability to structure sequential files

capability to structure hierarchical files

capability to structure indexed files

capability to structure ring files

capability to structure list files

capability to validate input data by an equal value comparison

capability to validate input data range verification

capability to validate input data masked comparison

capability to sequence check input data

CROSS REFERENCE
TO TEST

C

c
c
c

D

D

D

D

D

D

D

D

D

NO

FUNCTIONAL AREA

1.3.2 (cont'd.)

capability to automatically truncate input data

capability to automatically pad input data

capability to encode input data

capability to decode input data

capability to modify input data by a constant factor

capability to recognize input termination by a standard (embedded) field

capability to recognize input termination by a special control character

capability to update files according to conditional (logical) criteria

capability to automatically update subordinate files when the master file is
modified

capability to restructure files

capability to perform intra-file merging

capability to perform inter-file merging

capability to perform interactive error correction procedures

capability to perform error correction using pre-established procedures

1.3.3 Data Qualification and Retrieval

capability to permit pre-stored fixed logic queries

capability to permit pre-stored modifiable logic queries

capability to permit a cue/response mode of file interrogation

capability allowing Boolean operators in retrieval queries

CROSS REFERENCE
TÖTEST

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

O

FUNCTIONAL AREA

1.3.3 (cont'd.)

capability allowing quantitative operators in retrieval queries

capability allowing statistical operators in retrieval queries

capability allowing application-defined operators in retrieval queries

capability allowing constants as operands in retrieval queries

capability allowing data fields as operands in retrieval queries

capability allowing arithmetic expressions as operands in retrieval
queries

capability to query a single file

capability to query an inter-file logic search

1.3.4 Data Output

capab

capab

capab

capab

capab

capab

capab

capab

capab

capab

ty to output page header labels

ty to output page trailer labels

ty to output data labels

ty to specify data positioning

ty to right/left justify data

ty to edit output data

ty to decode data values

ty to tally occurrences of specific data values

ty to total specific data elements

ty to provide pagination control

CROSS REFERENCE
TO TEST

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

<_n

FUNCTIONAL AREA

1.3.4 (cont'd.)

capability to produce multiple report copies

capability to provide user structured reports

capability to provide system structured reports

capability to provide interactively defined reports

2.0 DATA HANDLING UTILITIES

2.1 Data Handling Utilities

capability to provide unformatted display facilities

capability to provide system specified display formats

capability to provide user specified display formats

2.2 Peripheral Device Support

2.2.1 Volume Positioning

capability to provide magnetic tape positioning:

backspacing,

rewinding,

unloading,

erasing.

capability to provide direct access device positioning

2.2.2 Media Copy Facilities

capability to provide facilities for copying punched card data

capability to provide facilities for copying magnetic tape data

capability to provide facilities for copying paper tape data

CROSS REFERENCE
TO TEST

D

D

D

D

A

A

A

A

A

A

FUNCTIONAL AREA

2.2.2 (cont'd.)

capability to provide facilities for copying random access storage data

capability to provide facilities for copying main storage data

capability to provide format conversion during data copying

capability to provide code conversion during data copying

2.2.3 Data Editing Facilities

capability providing single file scanning/editing

capability providing file comparisons

capability providing selective field comparisons

2.2.4 Test Data File Support

capability to support transaction files

capability to support terminal message files

capability to support history (trace) files

capability to support input or data file generation

capability to provide control message generation

capability to provide output file generation

3.0 Sorting and Merging

3.1 Sort Module Development

capability providing control card parameter specification

capability to perform ascending/descending output sequence

capability to support single/multiple sort control fields

CROSS REFERENCE
TO TEST

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

i

3.1 (cont'd.)

capability

capability

capability

capability

capability

capability

3.2 Sort Modu

capability

GO
capability

capability

capability

capability

capability

capability
records

capability

capability
deletion

capability
deletion

capability

capability

FUNCTIONAL AREA

to support single/mixed data field formats

to recognize alphanumeric field keys

to recognize binary field keys

to recognize zoned/packed decimal field keys

to recognize floating point field keys

to recognize user-specified collating sequence

le Execution

to sort independent data files

to sort records provided by an internal record address table

to sort full data records

to sort only data record tags

to selectively reduce record size by field selection

to output sorted data to external data files

to construct an internal record address table of sorted data

to include user coding for label processing

to include user coding for input record insertion/modification/

to include user coding for output record insertion/modification/

to include user coding for blocking/deblocking control

to include user coding for error processing

CROSS REFERENCE
TO TEST

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

SECTION V

TEST DESIGN

5.1 Test Packages

This Subsection defines a series of Test Packages for validating the requirements delin-

eated in Subsection 4.2. These Test Packages were developed by subdividing System Valid-

ation into five major areas, viz., System Foundation, System Error Detection and Recovery,

Normal Operation Control, Special Features, and System/Program Maintenance. Then the

functional classification scheme was analyzed to relate facilities, i.e., groups of similar

requirements, to each of these areas. This identified the Validation Techniques (given in

Subsection 5.2) which each Test Package should contain. Finally, a logical sequence was

determined for conducting the tests comprising each Package. These sequences are not uni-

que, and may, of necessity, be varied for the validation of a particular operating system.

As noted above, each Test Package is designed to validate groups of similar require-

ments. It should be noted that the execution of each Package is dependent upon the proper

performance of its predecessors and, although the successful execution of each Test Package

will implicitly validate some of the facilities tested in succeeding Packages, it is still

necessary to verify these requirements explicitly as delineated in the latter Packages.

Each Package is described by a list of its component tests, each of which is designed

to validate a specific facility. Each list entry gives the name of the function providing the

facility to be validated, the part of the functional classification scheme in which this

function and the facility are contained, the number of the function and facility within this

part of the classification scheme and the corresponding Validation Technique(s). By using

these packages as a model, test designers can select and order tests for the validation

testing of any commercially available operating systems.

55

Test Package A - System Foundation

Certain requirements must be validated at the beginning of system testing, since

their proper execution is essential to the further validation of the system. The following

ordered tests are recommended for the verification of System Foundation.

1. System Startup - Part I, Function 1.3.1, Techniques (a)-(f)
2. System Initialization - Part I, Function 1.3.1.1, Techniques (a)-(c)
3. System Generation - Part II, Function 1.1, Techniques (a)-(c)
4. Program Loading - Part I, Function 1.1.3, Techniques (a)-(d)
5. Loading Control - Part I, Function 1.1.3.2, Technique (a)
6. Load Module Generation - Part II, Function 2.2
7. Compiler Interfaces - Part II, Function 3.0
8. Storage Dump Control - Part I, Function 3.2.1, Techniques (a)-(b)
9. Tracing Control - Part I, Function 3.2.2, Techniques (a)-(e)
10. Status Display - Part II, Function 4.4.1, Technique (a)
11. Non-Interactive Control - Part I, Function 1.3.2.1, Techniques (a)-(d)
12. Interactive Control - Part I, Function 1.3.2.2, Techniques (a)-(b)
13. Resource Status Modification - Part I, Function 1.3.4, Techniques (a)-(c)
14. Data Code Translation - Part I, Function 1.2.2.2
15. Data Handling Utilities - Part III, Function 2.0
16. File Location Recognition - Part III, Function 1.1.1, Techniques (a)-(c)
17. Device Resolution - Part I, Function 1.2.1.1, Techniques (a)-(d)
18. Device Manipulation - Part I, Function 1.2.3, Techniques (a)-(e)
19. Alternate Routing Control - Part I, Function 1.2.1.3, Techniques (a)-(b)
20. Real-Time Clock Service - Part I, Function 3.1.1, Techniques (a)-(c)
21. Interval Timer Service- Part I, Function 3.1.2
22. System Restart - Part I, Function 1.3.1.2, Techniques (a)-(d)

•-

56

Test Package B - System Error Detection and Recovery

After System Foundation has been validated, the system's error handling capabilities

should be verified. The following ordered tests are recommended.

1. Hardware Error Control - Part I, Function 2.1, Techniques (a)-(e)
2. Error Notification - Part I, Function 2.1.2, Techniques (a)-(e)
3. Error Correction - Part I, Function 2.1.1, Techniques (a)-(c)
4. Error Recovery - Part I, Function 2.1.3, Techniques (a)-(c)
5. Program Error Notification - Part I, Function 2.2.2, Techniques (a)-(d)
6. Program Error Correction - Part I, Function 2.2.1, Techniques (a)-(d)
7. Program Termination - Part I, Function 2.2.3, Techniques (a)-(b)
8. I/O Stream Control (Editing) - Part I, Function 1.3.3
9. Operator Key-In Editing - Part I, Function 2.3.1, Techniques (a)-(b)
10. Control Command Editing - Part I, Function 2.3.2, Techniques (a)-(b)
11. Remote Terminal Communication Editing - Part I, Function 2.3.3, Techniques (a)-(c)
12. Program to System Link Verification - Part I, Function 2.3.4, Techniques (a)-(b)
13. I/O Simulation - Part I, Function 3.2.3.1, Techniques (a)-(d)
14. Abnormal Termination Recognition - Part I, Function 1.1.4.2, Technique (b)
15. Abnormal Termination Service - Part I, Function 3.2.3.2, Technique (c)
16. Abnormal Termination Functions - Part I, Function 1.1.5.3, Techniques (a)-(f)
17. Volume Maintenance - Part II, Function 4.1.2
18. File Purging - Part II, Function 4.1.2.2
19. Checkpointing/Restarting - Part I, Functions 1.4.1/1.4.2
20. Recovery Support - Part II, Function 4.4.2, Techniques (a)-(e)
21. Maintaining Error Statistics - Part I, Function 3.3.2, Techniques (a)-(c)
22. Summary Information Outputting - Part I, Function 1.1.5.2, Techniques (a)-(d)

57

Test Package C - Normal Operation Control

This testing phase validates system performance under nearly "true" operational

conditions. The following tests are recommended in the order given.

1. Structure Control, Part I, Function 1.1.3.1, Techniques (a)-(b)
2. System Communication, Part I, Function 1.3
3. System Simulation, Part II, Function 4.2, Techniques (a)-(b)
4. Compiler Interfaces, Part II, Function 3.0
5. Algorithmic Scheduling, Part I, Function 1.1.1.1, Techniques (a)-(e)
6. Time Initiated Scheduling, Part I, Function 1.1.1.2, Techniques (a)-(d)
7. Event Initiated Scheduling, Part I, Function 1.1.1.3, Techniques (a)-(b)
8. Program Initiated Scheduling, Part I, Function 1.1.1.4, Techniques (a)-(c)
9. Conditional Scheduling, Part I, Function 1.1.1.5, Techniques (a)-(d)
10. Scheduling Queue Maintenance, Part I, Function 1.1.1.6, Techniques (a)-(b)
11. Dispatching Control, Part I, Function 1.1.4.1, Techniques (a)-(c)
12. Core Storage Allocation, Part I, Function 1.1.2.1, Techniques (a)-(f)
13. I/O Device Allocation, Part I, Function 1.1.2.2, Techniques (a)-(d)
14. I/O Scheduling, Part I, Function 1.2.1, Techniques (a)-(b)
15. Request Stacking, Part I, Function 1.2.1.2, Techniques (a)-(b)
16. Common Subroutine Allocation, Part I, Function 1.1.2.3, Techniques (a)-(b)
17. System Status Display, Part I, Function 1.3.5, Techniques (a)-(b)
18. Resource Deallocation, Part I, Function 1.1.5.1, Techniques (a)-(b)
19. Buffering Control, Part I, Function 1.2.2.1, Techniques (a)-(e)
20. Compaction of Fragmented Core, Part I, Function 1.1.3.2, Techniques (b)-(d)
21. Swapping Control, Part I, Function 1.1.3.3, Techniques (a)-(b)
22. Event Synchronization, Part I, Function 1.1.4.2, Techniques (a)-(c)
23. Interrupt Processing Control, Part I, Function 1.1.4.3, Techniques (a)-(b)
24. Label Generation, Part III, Function 1.2.3, Techniques (a)-(b)
25. File Security Control, Part III, Function 1.1.2.1, Techniques (a)-(b)
26. Read/Write Access Control, Part III, Function 1.1.2.2, Techniques (a)-(c)
27. Sequential Access Control, Part III, Function 1.2.1.1, Techniques (a)-(b)
28. Keyed/Indexed Access Control, Part III, Function 1.2.1.2, Techniques (a)-(b)
29. Random Access Control, Part III, Function 1.2.1.3
30. Teleprocessing Access Control, Part III, Function 1.2.1.4, Techniques (a)-(g)
31. Concurrent Access Control, Part III, Function 1.1.2.3, Techniques (a)-(b)
32. Backup and Restoration, Part III, Function 1.1.3, Techniques (a)-(e)
33. Data BIocking/beblocking, Part III, Function 1.2.2, Techniques (a)-(h)
34. Remote Terminal Support, Part I, Function 1.2.4, Techniques (a)-(f)
35. System Measurement Routines, Part II, Function 4.3
36. Maintaining Job Charge Information, Part I, Function 3.3.1, Techniques (a)-(d)
37. Maintaining System Utilization Statistics, Part I, Function 3.3.3, Techniques (a)-(b)
38. Current System Status Interrogation, Part I, Function 3.4.1, Techniques (a)-(h)
39. System Definition Interrogation, Part I, Function 3.4.2
40. Summary Information Outputting, Part I, Function 1.1.5.2, Technique (a)-(d)
41. Program Limit Monitoring, Part I, Function 1.1.4.4, Techniques (a)-(g)

58

-

Test Package D - Special Features

The following ordered tests should be? employed to validate the special features

provided by the operating system.

1. Compiler Interfaces, PartII, Function 3.0
2. Control Specification, Part III, Function 1.3.1, Techniques (a)-(c)
3. Structure Definition, Part III, Function 1.3.2.1, Techniques (a)-(b)
4. Retrieval Mode Control, Part III, Function 1.3.3.1, Techniques (a)-(b)
5. Query Processing, Part III, Function 1.3.3.2, Techniques (a)-(d)
6. Data Record Selection, Part III, Function 1.3.3.3, Techniques (a)-(c)
7. Input Transaction Processing, Part III, Function 1.3.2.3, Techniques (a)-(c)
8. Logical Record Maintenance, Part III, Function 1.3.2.4, Techniques (a)-(c)
9. Interactive File Maintenance, Part III, Function 1.3.2.5, Techniques (a)-(b)
10. File Reorganization, Part III, Function 1.3.2.6, Techniques (a)-(c)
11. Data Error Procedures, Part III, Function 1.3.2.7, Techniques (a)-(b)
12. Data Output, Part III, Function 1.3.4, Techniques (a)-(f)
13. Sorting and Merging, Part III, Function 3.0

59

Test Package E - System/Program Maintenance

The maintenance requirements of the operating system should be validated using

the following ordered tests.

1. System Maintenance, Part II, Function 1.2, Techniques (a)-(c)
2. Dynamic Cataloging, Part II, Function 2.1.1, Techniques (a)-(b)
3. Static Cataloging, Part II, Function 2.1.2, Techniques (a)-(e)
4. Utility Functions, Part II, Function 2.1.3, Techniques (a)-(e)

-

60

5.2 Validation Methods

This Subsection defines software validation tests for confirming the presence and pro-

per performance of the various facilities afforded by contemporary operating systems.

As in the presentation of the testing requirements, the facilities and their corresponding

Validation Techniques are structured within the functional classification scheme.

The particular tests presented here should not be considered unique. On the other

hand, considerable effort has been devoted to design tests which are simple in nature but

yet complete. Effort has also been devoted to stating the Technique clearly and concisely.

In the description of many of the tests, the Technique necessary for validation is presented

and the actual verification required upon successful execution is nothing more than a pre-

designed message from the test program to the operator. For example, Test I 1.1.1.1 (c),

which validates the "recognition of scheduling delay time " is stated as follows: "Include

a job in the scheduled test series with a priority sufficiently low to ensure that the job

will not be scheduled during an established time limit." When this job does execute, it

should notify the test conductor. To avoid unnecessary repetition, the requirement for

notification is not always explicitly stated. In tests for which the means of determining

success or failure is not obvious or may be ambiguous, the method is given. Also, remarks

concerning the order in which the tests should be conducted are quite limited since the

previous Subsection presents a recommended grouping and sequence.

61

FUNCTION

PART I: EXECUTIVE/CONTROL

1.0 JOB MANAGEMENT
1. 1 Job Control
1.1.1 Scheduling
1.1.1.1 Algorithmic Scheduling

o^

FACILITIES

(a) Recognition of job priorities

(b) Recognition of resources allocated/
not allocated

(c) Recognition of scheduling delay
time

(d) Recognition of job type
1) CPU-bound
2) l/O-bound

VALIDATION
TECHNIQUES

(a) 1) Schedule a series of varying
priority jobs and observe the execu-
tion sequence.
2) Schedule two jobs with different
priorities but the same resource
requirements.

(b) Schedule a high-priority job
requiring all available resources.

(c) Include a job in the scheduled test
series with a priority sufficiently
low to ensure that the job will not
be scheduled during an established
time limit.

(d) l)-2) Include two jobs in this test
phase. One of these jobs should
contain a control parameter indi-
cating that it is CPU-bound and
the other a parameter denoting
that it is l/O-bound. Observe
whether the system shares resources
among all the scheduled jobs or
allocates resources for long periods
of time to these particular jobs.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

1.1.1.1 Algorithmic Scheduling (Cont'd.) (e) Operator modification of job
priorities

1.1.1.2 Time Initiated Scheduling

o^
CO

(a) Time-of-day recognition

(b) Elapsed time interval recognition

(c) Periodic interval recognition

(d) Deadline recognition

1.1.1.3 Event Initiated Scheduling (a) Recognition of:

1) Process control interrupts
2) Communication interrupts
3) I/O completion interrupts
4) Task completion interrupts
5) Error condition interrupts
6) Unsolicifed key-in interrupts
7) Operator interrupts

(e) Attempt to alter the original
priorities assigned to the jobs
in this test phase via the operator
console. Then rerun these jobs
and observe their execution
sequence.

(a) Include a job in this test phase
that is to be scheduled at a par-
ticular time of day.

(b) Include a job in this test phase
that is to be scheduled after a
particular time interval.

(c) Include a job in this test phase
that is to be scheduled after each
elapsement of a specified time
interval.

(d) Include a job in this test phase
which must be scheduled no later
than a specified time.

(a) l)-7) In each case, force the
interrupt to be issued.

FUNCTION FACILITIES

1.1.1.3 Event Initiated Scheduling (b) Interrupt priority recognition
(Cont'd.)

1.1.1.4 Program Initiated Scheduling

s

1.1.1.5 Conditional Scheduling

1.1.1.6 Scheduling Queue Maintenance

(a) Scheduling for immediate execution

(b) Scheduling for subsequent execution

(c) Scheduling for asychronous execution

Scheduling upon recognition of:

a) Task completion/abnormal
termination

b) Internal switches set by
prior task

c) Error code set by prior task
d) Externally set switches

VALIDATION
TECHNIQUES

(b) Simultaneously, force a group of
interrupts, each of which is
assigned a unique level.

(a) From an executing program,
initiate a call for another pro-
gram to be executed at once
(suspending the calling program).

(b) From an executing program, initate
a call for another program to be
executed when the calling program
terminates.

(c) From an executing program, initiate
a call for another program to execute
concurrently with the calling program.

(a)-(d) The ability of the system to continue
operation during the execution of
multiple test programs validates
scheduling based upon task comple-
tion; the introduction of abnormal
termination, internal switches, error
codes, and external switches will
validate system operation as spec-
ified.

Display the scheduling queue periodically
and verify that its contents correspond to
the sequence in which the test programs
are actually being executed.

.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

1.1.1.6 Scheduling Queue Maintenance (a) Operator modification
(Cont'd.)

(b) Overload handling capability

(a)

1.1.2 Resource Al location
1.1.2.1 Core Storage Allocation

o

(b)

(a) Static (fixed) core allocation
for:
1) Program expansion
2) I/O buffers
3) Common areas
4) Task execution

(b) Dynamic core allocation
for:
1) Program expansion
2) I/O buffers
3) Common areas
4) Task execution

(o)

(b)

Use operator commands to delete
and add jobs to the scheduling
queue. Then observe the execu-
tion sequence.

Use operator command to add jobs to
the scheduling queue in excess of its
capacity and observe the resulting
system action.

l)-4) These capabilities are verified
implicitly throughout System Valida-
tion and can be directly verified by
designing test programs requiring
these functions to be performed.

l)-4) Use a test program to request
additional core storage, indicate
core provided, and release core.
Similarly, issue a request to each
I/O device allocatable, verify
that each device has been allocated,
and then read/write data to validate
dynamic I/O buffer allocation.
Then release each device. Task
execution can be validated by re-
quiring the program to request a task;
then verify its execution. If com-
mon areas are nMocqtable bv the sys-
tem, use two programs, each requiring
access to a commonly defined data

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

1.1.2.1 Core Storage Al I ocation
(Cont'd.)

o-

1.1.2.2 I/O Device Allocation

(c) Dynamic core allocation through
storage pools

(d) Allocation of common (shared) core
between tasks of the same job

(e) Storage protection against unauthorized
program access

(f) Storage read/write protection

(a) Dynamic device/file allocation

pool. Log each request and instance
of successful use of the allocatable
area.

(c) Execute two programs that request
additional core. Then dump both
programs to verify that they received
core from the same area of memory.

(d) Execute two tasks designed to share
core. Allow each task to alter a
portion of the common area and then
dump this area.

(e) Execute a test program which attempts
to access a protected area of memory.
Verify notification to the operator
or to the user of the unauthorized
access attempt.

(f) The same type of tests can be per-
formed to validate these functions as
were utilized to validate I 1.1.1.2(e).
For additional verification of the write
protect facility, attempt to write to a
known area; then dump this area to
verify that it has not been altered.

(a) This facility is verified during the
validation of dynamic core allocation.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

1.1.2.2 I/O Device Allocation (Cont'd.) (b)

5

Allocation of the following:
1) Actual physical devices
2) Devices according to access method
3) Devices according to device type
4) Devices by symbolic reference

(c) Exclusive allocation of devices/files

(d) Shared allocation of devices/files

(b) l)-4) This facility is verified
implicitly throughout System
Validation.

(c) Attempt to access a device/file
previously assigned to another
program. This can be done by
physical device reference (if
this method is supported). This
facility can also be tested by
using a program which requests
all devices, and a second pro-
gram that requests one, or several,
devices. The failure of the
second program to gain access
to any device constitutes
verification.

(d) Employ several test programs which
require the same devices/files. In
a time-sharing system, verify con-
current servicing of the tests by
monitoring each terminal. In a
multiprogramming batch system, exe-
cute test programs requiring the same
devices/files. To verify that known
information was written into these
files, dump them following test com-
pletion. The sharing feature can
be verified by requiring the test
programs to log each instance in
which they gain access to the
devices/files.

FUNCTION

1.1.2.3 Common Subroutine Allocation

o- 00 1.1.3 Program Loading

1.1.3.1 Structure Control

1.1.3.2 Loading Control

FACILITIES

(a) Support for serially reusable subroutines

(b) Support for reentrant subroutines

Program loading:
a) From the system library
b) From a user library
c) From an input stream
d) In relocatable form

(a) Support for simple program structures

(b) Support for overlay program structures

(a) Initiate loading via:
1) Control cards

VALIDATION
TECHNIQUES

(a)-(b) Require a test program to call
and execute a common subroutine.
Whether the routine is serially
reusable or reentrant is dependent
upon its design. To verify common-
ality of subroutine usage in a multi-
programming system, require two
programs in operation to request
the same subroutine; then, for
each program, dump the area of
core containing the call to the
subroutine. If the call addresses a re
identical, then each program used
the same subroutine.

(a)-(d) In each case, attempt to
utilize the facility. The proper
execution of the loaded program
validates the facility.

(a)-(b) The loading and execution of a
single program within a defined core
area validates support of simple pro-
gram structures, while the loading
and execution of a program that
exceeds a defined core area vali-
dates the overlay function.

(a) 1) Successful execution of a program
loaded under card control implicitly
validates this facility.

' i <

FUNCTION

1.1.3.2 Loading Control (Cont'd.)

FACILITIES

2) Explicit program references

3) Implicit program references

(b) Compaction of fragmented core:

1) Upon job termination

(b)

2) When dictated by priority
requirements

VALIDATION
TECHNIQUES

2) Require an executing test program
to request the loading of a test sub-
routine or an overlay segment.
Execution of the loaded element
verifies the facility.

3) Require an executing test program
to access a non-resident routine.
Upon recognizing this access attempt,
the system should load the routine
and re-execute the call.

To validate this facility, execute
a mix of known jobs and perform
the following tests:
1) Before any job reaches termin-
ation, record the starting addresses
of all of the jobs. After a job has
terminated, record the starting
addresses of all of the remaining
jobs. Verify compaction by com-
parison.

2) Schedule a high priority job with
memory requirements that will nec-
essitate the compaction of the
currently executing jobs. If the
high priority job goes into execu-
tion, compaction is validated.

FUNCTION

1.1.3.2 Loading Control (Cont'd.)

FACILITIES

3) When directed by the system
operator

1.1.3.3 Swapping Control

(c) Automatic overlay loading

(d) Directed overlay loading

(a) Roll-in/roll-out

VALIDATION
TECHNIQUES

3) During the processing of this job
mix, dump core. Then request
compaction and dump core again.
Compare the two dumps with a
program designed to read the
dump files.

(c) Attempt to load and execute a
test program with core requirements
that exceed available memory.

(d) Using specified control parameters,
structure a program into overlays
and attempt to load and execute it.

(a) Require a foreground program to
request core for expansion that
exceeds the amount of foreground
memory available. Verify that
the system rolls out background
programs (to release core) and that
the foreground program continues
executing. Also, verify the
resumption of execution of pro-
grams in the background area
upon normal termination of the
foreground program.

i »

FUNCTION

1.1.3.3 Swapping Control (Cont'd.)

FACILITIES

(b) Program time-sharing of core
storage

1.1.4 Event Monitoring
1.1.4.1 Dispatching Control (a) Fixed time-slice dispatching

(b) Variable time-slice dispatching

vi

VALIDATION
TECHNIQUES

(b) Issue requests for service from several
time-sharing terminals and attempt
to execute a program from each.
Note the return of output to each
terminal according to the system's
time-sharing scheme (round-robin,
priority, etc.).

(a)-(b) Execute several test programs that
read the real-time clock each time
they are dispatched and record the
readings against the program name.
Allow these programs to execute
for a given period of time and then
terminate each. Print the recorded
output and verify that the clock
readings recorded by each program
represent the same fixed increment
of time. This same test program can
also be employed to verify the correct
implementation of a variable time

(c) Contention (priority) dispatching

slice scheme.

(c) Execute several test programs,
assigning each a different priority.
At the initiation of each program,
log its name and the reading of the
real-time clock. This will verify
the time of initiation of each program
for comparison with it? priority..

FUNCTION

1.1.4.2 Event Synchronization

FACILITIES

(a) Recognition of time intervals

(b) Recognition of abnormal termination

(c) Recognition of unsolicited key-ins

1.1.4.3 Interrupt Processing Control (a) Recognition of interrupt priorities

VALIDATION
TECHNIQUES

(a) Execute a test program that requests
a "wait" for a given time interval.
The test should record the clock
reading prior to the wait request
and immediately upon regaining
control.

(b) Force a test program to terminate
abnormally. Verify system recog-
nition by monitoring operator
messages.

(c) Initiate an unsolicited key-in from
the operator's console or from a user
terminal. Monitor the system's
response.

(a) The verification of this facility can
usually be performed by introducing
external stimuli to the system. If
operator inputs are specified as a
high level of interrupt, recognition
of unsolicited key-ins will partially
verify this function. In some systems
end-of-tape, hardware, and system
errors, etc. cause interrupts at a
level that requires immediate atten-
tion. These types of functions can be
simulated for validation. A frequent-
ly used method for priority interrupt
verification is the use of a hardware
simulator to mimic these interrupts.
Proper handling of these interrupts
can be verified by observation.

.

FUNCTION

1.1.4.3 Interrupt Processing (Cont'd)

FACILITIES

(b) Masking of interrupts

1.1.4.4 Program Limit Monitoring

a

1.1.5 Program Termination Processing
1.1.5.1 Resource Deallocation

Specification of limits for:
a) Execution time
b) Number of input records
c) Printed output
d) Punched card output
e) Output records
f) Main storage utilization
g) Secondary storage utilization

(a) Capability to explicitly:
1) Close files
2) Release I/O devices
3) Release core devices

VALIDATION
TECHNIQUES

(b) Execute a test program which enables/
disables different sets of interrupt
conditions and which operates in an
idle loop between each masking oper-
ation. While each mask is in effect,
attempt to generate the disabled
interrupts and verify that they are
unacknowledged.

(a)-(g) Specify all limits permitted
by the system for a test program
which is expressly designed to
violate each of them.

(a) l)-3) Schedule two programs, each
of which requires the same devices/
files. The first program should use
a device/file, release it, and then
go into an idle loop. Verify that
the second program goes into execu-
tion as each device/file is released
or after all of the devices/files
have been released.

FUNCTION

1.1.5.1 Resource Deallocation (Cont'd.)

1.1.5.2 Summary Information Outputting

2
1.1.5.3 Abnormal Termination

1.2 I/O Control
1.2.1 I/O Scheduling

FACILITIES

(b) Capability to implicitly:
1) Close files
2) Release I/O devices
3) Release core devices

Capability to produce summaries of:
a) Error statistics
b) CPU time utilization
c) Device utilization
d) File access statistics

(a) Provide a core dump

(b) Provide a file dump

(c) Execute a specified termination program

(d) Initiate recovery procedures

(e) Notify the operator of abnormal
terminations

(f) Notify remote terminal users

(a) Queue I/O requests by channel

(b) Queue I/O requests by device

VALIDATION
TECHNIQUES

(b) l)-3) These facilities can be verified
by scheduling two programs which
require the same device/file. At
the termination of the first program,
the second should be able to access
the device/file used by the previous
program.

(a)-(d) This facility can be verified by
executing a program with known
characteristics and then comparing
these characteristics against the
system-produced summaries.

(a)-(f) Force abnormal termination, and
then observe the ensuing system
actions.

(a)-(b) Use a test program to initiate a
known sequence of I/O requests and
then display or record the contents
of the I/O queue. The use of priv-
ileged instructions or the privileged
access mode will probably be required
to obtain the information in the queue.

! -

' I

FUNCTION

1.2.1.1 Device Resolution

1.2.1.2 Request Stacking

a
1.2.1.3 Alternate Routing Control

1.2.2 Data Transfer
1.2.2.1 Buffering Control

FACILITIES

Specify device assignment by:
a) Input stream control cards
b) Operator commands
c) Program requests
d) An interactive user

(a) Specification of device priorities

(b) Specification of request priorities

(a) Automatic initiation of alternate
channel/device selection

(b) Manual initiation of alternate
channel/device selection

VALIDATION
TECHNIQUES

(a)-(d) In each case, attempt to
utilize the facility and observe
the results.

(a)-(b) Schedule a known sequence of
I/O actions and display or record
the I/O queues. Also, issue a
priority command or initiate a
request for priority I/O action.
Then display or record the I/O
queues.

(a)-(b) During the execution of a test
program which produces known
output, disable a channel and/or the
devices that the program requires.
By comparison with the previous ouH
put, verify system selection of an
alternate channel and/or devices
for the program. Perform the
alternate channel/device selection
manually after the system notifies
the operator of their "down" status.

(a) Provide system buffer pools

(b) Allow user buffer pools

(c) Provide exchange buffering

(d) Provide chained segment buffering

(a)-(e) Different systems provide various
methods of buffering. The test to
validate buffering capabilities
should verify provision of the
buffering control specified rather
than the implementation of buffering.

FUNCTION

1.2.2.1 Buffering Control (Cont'd.)

1.2.2.2 Data Code Translation

1.2.3 Device Manipulation

VALIDATION
TECHNIQUES

£

1.2.4 Remote Terminal Support

FACILITIES

(e) Allow buffer assignment via job control
statements

Corvert data to/from device-oriented coding Execute a test program which utilizes all
schemes

(a) Permit forms control through specific
requests

(b) Permit forms control via control characters
embedded in output records

(c) Provide card stacking through direct
commands

(d) Permit card stacking through control
characters

(e) Provide positioning of sequential devices

(a) Interactive communication with the
central computer

(b) Remote batch mode communication
with the central computer

(c) Concurrent remote terminal activity

(d) Inter-terminal communication

(e) Operator/remote terminal user
communication

(f) Operator control of remote terminal
activity

of the system's code conversion routines.

(a)-(e) In each case, attempt to utilize
the facility and observe the results.

(a)-(f) In each case, attempt to utilize
the facility and observe the results.

. <

I 1

1.3

FUNCTION

System Communication

1.3.1 System Startup

1.3.1.1 System Initialization

FACILITIES

Provide device independent formats

VALIDATION
TECHNIQUES

Address different devices using the
same call format and observe the
results.

(a) Capability to startup the entire system (a)-(c) Attempt the actual system start-up.

(b) Capability to startup on a partition-by-
partition basis

(c) Capability to startup using catalogued
procedures

(d) Respecification of system generation
parameters

(e) Specification of device availability

(f) Controlled system reconfiguration

(a) Modification of partition sizes

(b) Modification/assignment of partition
priorities

(d)-(f) In each case, attempt to make
changes in the system by utilizing the
facility. Verify the system's
recognition of these changes by
executing applicable test programs.

(a)-(b) During system initialization, ex-
ercise each of the options afforded
by the system. If partition sizes
are modifiable, alter them, and
then schedule background and
foreground test programs which record
or display their starting addresses. If
partition priorities can be assigned,
invoke this operation and then,
using the previously described test
programs, verify that the foreground
programs reside in the high priority
partitions and that the background
programs reside in the low priority
partitions.

FUNCTION

1.3.1.1 System Initialization (Cont'd.)

1.3.1.2 System Restart

te

1.3.2 Job Control Communication
1.3.2.1 Non-Interactive Control

FACILITIES

(c) Modification/assignment of time-
slicing specifications

(a) Schedule user restart programs

(b) Automatically restart jobs in execution
at system halt

(c) Automatically reschedule queued jobs

(d) Reconfigure the system in the event of
malfunction and maintain continuity of
operation

(a) Capability to exercise job control via
the operator console

(b) Capability to exercise job control via
local/remote terminals

(c) Use of catalogued job control procedures

(d) Capability to modify catalogued job
control procedures

VALIDATION
TECHNIQUES

(c) Alter the time-slicing specifications
and employ the same kind of programs
described for Tests I 1.1.4.1 (a)-(b).

(a)-(c) Force a system halt while a known
test program scenario is in operation.
Upon restart, this scenario should
continue operation, or be totally
restarted, depending upon the type
of capability provided by the system.

(d) Using the simulator described in
Tests I 2.0, mimic a device malfunc-
tion during the execution of a test
program. System operation should
continue. Compare the program's
output to that produced during an
uninterrupted run.

(a) This facility is tested implicitly
throughout System Validation.

(b) Attempt to utilize the facility and
observe the results.

(c)-(d) Employ the job procedures
afforded by the system. If the
system permits modification of
the procedures, alter them and,
by observation, verify their imp-
lementation.

FUNCTIONAL AREA FACILITIES
VALIDATION
TECHNIQUES

1.3.2.2 Interactive Job Control

1.3.3 Input/Output Stream Control

1.3.4 Resource Status Modification

^

(a) Capability to exercise job control via
a local console

(b) Capability to exercise job control via
a remote console

Automatic editing of job control command
formats

(a) Operator control of system resource
status

(b) Recognition of the following device
conditions:
1) Available
2) Assigned
3) Down
4) Reserved

(c) Permit the following types of resource
modifications:
1) Addition
2) Deletion
3) Replacement
4) Switching

(a)-(b) In each case, attempt to
utilize the facility and observe
the result.

Enter erroneous control command formats
into the I/O stream and note the result.

(a) Alter the status of the system resource
via the operator console and observe
the results. This facility is easily
verified for system peripherals but
requires test programs and core
dumps to verify the alteration of
memory status.

(b) l)-4) These facilities are
verified implicitly throughout
System Validation.

(c) l)-4) In each case, attempt
to utilize the facility and observe
the result.

FUNCTIONAL AREA

1.3.5 System Status Interrogation

FACILITIES

(a) Display system status upon request

(b) Display system status continuously

00 o

1.4 Recovery Processing
1.4.1/ Checkpointing/
1.4.2 Restarting

1.4.1.1/ Program Initiated Checkpointing/
1.4.2.1 Restarting

1.4.1.2/ System Initiated Checkpointing/ (a) Initiation of checkpointing to accom-
1.4.2.2 Restarting piish task suspension and roll-out

VALIDATION
TECHNIQUES

(a)-(b) Execute a known operational
scenario which has a predictable
status. Monitor the requested
status or the continuously displayed
status and compare it with that of
the scenario.

Because of their close relationship,
this Validation Techniques for Check-
pointing and Restarting are described
jointly.

Select a test program that is known to
have executed correctly which produces
its output on a printer file. Insert a request
for a program checkpoint by a suspension
request employing a user-specified
device. Specify the program termin-
ation routine as the restart address.
Execute and then attempt to restart
this version of the program. Follow-
ing program completion, compare
its output to that produced by the
original version of the program.

(a) Select two test modules that are
known to execute correctly
which produce their output on
a printer file. The second pro-
gram should require considerably
more core that the first. Insert
a unique identification message

FUNCTIONAL AREA

1.4.1.2/ (Cont'd.)
1.4.2.2

FACILITIES

(a)

oo
(b) Initiation of checkpointing to provide

protective error recovery
(b)

VALIDATION
TECHNIQUES

(Cont'd.)
into each program to be output
upon program completion. Assign
a low priority to the first program
and a high priority to the second.
Subsequently, initiate execution
of the second. Outputting of the
second program's identification
message first, and production of
output by each program identical
to that produced previously, veri-
fies the facility.

Select a test program that is known
to have executed correctly which
produces its output on a printer
file. Re-execute this program,
taking periodic system checkpoints
while it is running. When the pro-
gram issues a request to output its
data, invoke the simulator (des-
cribed in the tests for I 2.1 Hard-
ware Error Control) to mimic a
hardware device error. Attempt
to restart the program from the last
checkpoint taken. Compare its
output to that produced previously.

FUNCTION

1.4.1.3/ Externally Initiated Check-
1.4.2.3 pointing/Restarting

1.4.1.4 Checkpoint Notification

00
1.4.2.4 Device Repositioning

FACILITIES

Initiation of checkpointing/restarting from:
(a) A control card
(b) The operator console
(c) An interactive user terminal

Provision of direct checkpoint notification
to:
(a) The console operator
(b) The job output stream
(c) The system log

VALIDATION
TECHNIQUES

Select a test program that is known to
have executed correctly which pro-
duces its output on a printer file.
Then, for each facility afforded by the
system, checkpoint and attempt to re-
start the program. Compare the output
to that produced previously.

For the tests outlined above, verify
checkpoint notification to the proper
recipients. Also, verify the accuracy
of the message formats.

Prior to attempting restarting for the
tests outlined above, rewind all of
the sequential tape files.

i

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.0
2.1

DIAGNOSTIC ERROR PROCESSING

Hardware Error Control Detection of the following errors:
(a) CPU errors
(b) I/O device errors
(c) I/O channel or I/O processor errors
(d) Storage parity errors
(e) Co-processor errors

2.1.1 Error Correction

00
OJ

(a)-(e) Where possible, simulate
these hardware error conditions
via software (with supervisory
coding, if necessary). The
capability to detect a particu-
lar error is validated when the
corresponding error correction,
notification, and recovery pro-
cedures are verified.

(a) Retry capability (a)

(b) Alternate I/O routing (b)

For error conditions that permit
retries, mimic continual fail-
ures (via the software simulator)
and verify the transmission
threshold.

Issue requests to use the system's
primary I/O devices and attempt
to transmit known data patterns.
Use the simulator to mimic I/O
hardware errors. Dump the con-
tents of the secondary I/O de-
vices to verify their substitution
for those devices which are
"down".

FUNCTION

2,1.1 (Cont'd.)

2.1.2 Error Notification

8

FACILITIES

(c) Control of linkage to user routines (c)

(a) Operator notification

(b) Interactive user notification

(c) Subroutine/task error notification
to the calling program

(d) Maintenance of error statistics
files

(e) Error tracing

(a)

(b)

VALIDATION
TECHNIQUES

Simulate the occurrence of those
hardware errors for which user
modules have been developed.

For error messages output on
the operator's console, verify
their correspondence to the
errors mimicked and also verify
the accuracy of the message
formats.

Perform Test I 2.1.2(a) using
remote terminals instead of the
operator console.

(c) The verification required for this
facility is self-explanatory.

(d) Manually maintain a logofall
"errors" which are successfully
mimicked during the validation

of I 2.1.1. Upon completing
the testing of I 2.1.1, dump
the error statistics file and
compare it to the log.

(e) Verify the capability to output
messages stating the success or
failure of various system com-
ponent as data is transmitted
through them.

» ».

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.1.3 Error Recovery (a) System reconfiguration
1) Alternate device utilization

00

2) System degradation

(b) Manual reconfiguration
1) Resource respecification
2) System regeneration

(c) Automatic restarting from a system
checkpoint

(a) 1) Issue requests to utilize
specific devices and attempt
to transmit known data pat-
terns. Use the simulator to
mimic hardware errors. Dump
the contents of the appropriate
backup devices to verify their
substitution for those devices
which are "down".

2) Use the simulator to mimic
hardware errors when requests
are issued for the use of cer-
tain devices which service on-
line processing requirements.
Then observe the system's
ability to continue processing
the most critical requirements,
viz., high-priority interrupt
conditions.

(b) l)-2) The verification required
for these facilities is self-
explanatory.

(c) This capability is verified
during the validation of
I 1.4.1.2 System Initiated
Restarting.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.2 Program Error Control
2.2.1 Error Correction (a) Control of linkage to user routines upon

the detection of:
1) Arithmetic errors

i) Division by zero
ii) Exponent over/underflow
iii) Integer overflow

2) Invalid data

8

(b) Control of linkage to system routines
upon the occurrence of:
1) Instruction errors

?) Invalid instruction

ii) Privileged instruction

(a) 1) i)-i??)Force these errors
by executing routines designed
to ensure their occurrence.
The subsequent execution of
the appropriate user-supplied
routines verifies this linkage
facility.

2) Verify the capabilities to
read data from and write data
to the various I/O device
types in the system-provided
representations (fixed point,
floating point, etc.) formatted
in the standard record sizes for
each device type. Also verify
such facilities as end-of-f?le
recognition, etc.

(b) 1) ?) Attempt to execute an
instruction with an operation
code bit configuration which
is not defined in the machine's
instruction repertoire.
ii) Attempt to execute instruc-
tions within an application
routine which are reserved
for supervisory mode use.

t

p »

FUNCTION

2.2.1 (Cont'd.)

FACILITIES

(c) Invalid address errors

(d) Storage protection errors

VALIDATION
TECHNIQUES

(c) Generate, through indexing,
the address of a non-existent
location in main memory.
Then attempt to execute an
instruction which references
this "location".

(d) Attempt to execute an
instruction which references
a cell in a protected area
of main memory.

^ 2.2.2 Error Notification (a) Outputting of program error messages
on the operator's console

(b) Providing abnormal termination indicators

(c) Capability to permit job steps to set
error indicators for subsequent job steps

(a) If real-time programs are
to be processed by the
system, temporarily alter some
of them to produce errors.
Note the outputting of
related messages on the oper-
ator's console

(b) Verify the production of off-
line error messages upon
abnormal termination.

(c) If the system can process
batch programs, verify the
ability of routines to make
logic decisions based upon
the detection of error flags
set by routines previously
executed within the job.

FUNCTION

2.2.2 (Cont'd.)

2.2.3 Program Termination

00
00

FACILITIES

(d) Capability to provide error notification
to interactive terminal users

(a) Conditional termination upon reaching
a specified error level

(b) Initiation of abnormal termination by:
1) The system

2) The operator

3) A batch program

4) An interactive user program

VALIDATION
TECHNIQUES

(d) Verify the production of
error messages at remote
terminals upon the execution
of jobs with "built-in"
errors.

(a) Attempt to compile a pro-
gram which has been designed
to contain errors in excess
of the total number permitted
by the compiler

(b) 1) Verify abnormal termina-
tion upon a user-program
attempt to employ a privi-
leged instruction or to refer-
ence a protected area of
memory

2) Verify the capability to
allow operator initiation of
termination procedures upon
notification of program errors.

3) Verify the capability of
a batch program to initiate
termination upon detecting
"built-in" errors

4) Verify the capability of
a time-sharing program to
initiate termination upon
detecting "built-in" errors.

■ i

» '

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.3
2.3.1

Interface Error Control
Operator Key-In Editing (a) Assumed default options

00
-o

2.3.2 Control Command Editing

(b) Error notification by:
1) Coded messages

2) Free format messages

3) Tutorial messages

(a) Job termination

(o)

(b)

(a)

Verify the capability of the
operating system to continue
execution in accordance
with pre-established para-
meters after requests are
made for console input and
no responses are supplied.

1) Enter erroneous key-ins.
Verify the production of the
proper error codes.

2) Enter erroneous key-ins.
Verify the production of
the proper error messages.

3) Issue a request (via the
operator's console) containing
insufficient information for a
system service. Verify the
system's ability to "guide"
the operator in formulating
the correct request.

Submit jobs to execute in the
batch mode with control cards
containing various types of
errors. Verify the system's
capability to terminate these

Ah » wgrjfw fUo r»rQr>£r

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.3.2 (Cont'd.)

(b) Command rejection

2.3.3 Remote Terminal Communication
Editing

o

(a) Capability to edit:
1) Message formats
2) Command structures
3) Data structures
4) Character structures

(b) Error notification by:
1) Coded messages
2) Free format messages
3) Tutorial messages

(c) Editing of user/terminal ID's

2.3.4 Program to System Link Verification (a) Calling sequence

(b) Parameter list validation

correspondence of error messages
produced to the control card
errors.

(b) Submit jobs for execution from
an interactive terminal which
contain erroneous commands.
Verify the system's capability
to terminate these jobs.

(a)-(b) For each case, (a) l)-4),
attempt to enter erroneous
forms and verify the system's
capability to terminate the
job and/or notify the remote
user of the errors. The noti-
fication procedures (b) l)-3)
may be validated using the
same methods recommended
for verifying I 2.3.1 (b) 1)-

3).

(c) Attempt to enter the system
using ID's which have not
been defined to the system

(a)-(b) Verify the ability to call
system routines from user pro-
grams. Verify this capability
for routines which require
calling parameters as well
as for those which do not.

* •

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

3.0
3.1
3.1.1

PROCESSING SUPPORT
Timing Service
Real-Time Clock Service

o

3.1.2 Interval Timer Service

(a) Capability to provide:
1) Current date
2) Time of day

(b) Date/time conversion

(c) Task interruption until a specified time

Task suspension for a specified amount of
time

(a) l)-2) Request the current
date and time of day and
output them.

(b) Same as Test I 3.1.1(a) 1).
(The conversion routines will
automatically be called when
the request is made.)

(c) Design a test program to request
suspension until a specified
time. When the test program
regains control, require it to
verify that this reading is
approximately the same as
the specified restart time.

Design a test program to obtain
the current time of day, set the
interval timer for a known inter-
val of time, and then, upon in-
terruption, read the time of day
again. The difference between
the readings should be approxi-
mately the same as the interval
for which the timer was set.

3.2
3.2.

Testing/Debugging Service
Storage Dump Control (a) Snapshot storage dumps

(b) Postmortem storage dumps
(a)-(b) In each case, attempt

to utilize the facility.

FUNCTION

3.2.2 Tracing Control

3.2.3 System Test Mode Control
3.2.3.1 I/O Simulation

FACILITIES

Capability to provide:
(a) Data tracing
(b) Instruction tracing
(c) Logic tracing
(d) Supervisor service request tracing
(e) Subroutine call tracing

Simulation facilities for:
(a) Ignoring I/O requests
(b) Rerouting I/O requests
(c) Logging I/O requests
(d) Simulating I/O error conditions

VALIDATION
TECHNIQUES

(a)-(e) In each case, attempt
to utilize the facility.

(a)-(d) logically disconnect all
system I/O devices and then
attempt to utilize each of these
facilities.

NO

3.2.3.2 Abnormal Termination Service (a) Automatic storage dumps

(b) Automatic file dumps

(c) User override of normal abort conditions

(a)-(b) These facilities are verified
by Tests I 1.1.5.3(a)-(b).

(c) Attempt to utilize the facility.

3.2.3.3 Interactive Testing Service (a) Insertion of breakpoints in programs
(b) Starting or restarting a program at a

specified address
(c) Memory searching/displaying
(d) Memory modification
(e) Error notification and override capability

(a)-(e) In each case, attempt to
utilize the facility.

3.3 Logging and Accounting
3.3.1 Maintaining Job Charge Information (a) Recording and maintaining the following

job change information:
(a)-(b) No test module may be

designed to explicitly validate

(Continued on next page.)

* I

FUNCTION

3.3.1 (Cont'd.)

NO
CO

FACILITIES

1) CPU time utilization
2) I/O channel and device time

utilization
3) I/O record units
4) Main storage utilization
5) Secondary storage utilization
6) Remote terminal utilization
7) Job termination conditions

(b) Linkage to user-supplied accounting
routines

(c) Displaying job charge information on
a central site device

(d) Displaying job charge information at a
user's terminal

VALIDATION
TECHNIQUES

these facilities since this
would require use of the
facilities themselves. How-
ever, if vendor-developed
documentation is available
for application routines
supplied with the system,
it will probably contain this
data for some of these items.
In this case, these routines
should be executed and their
statistics should be compared
to those given by the manu-
facturer. (See Test I 3.3.3

(a).)

(c)-(d) Verify the accuracy of
the formats for the information
produced by Tests I 3.3.1 (a)-
(b).

3.3.2 Maintaining Error Statistics (a) Accumulation of information for a
hardware error summary

(b) Accumulation of information for a
program error summary

(a) After completing Test I
2.1.1 (b), output the hard-
ware error summary file.

(b) Verify the accuracy of the
program error summaries after
executing each of the routines
described in Test i 2.2.1(a).

3.3.2

FUNCTION

(Cont'd.)

FACILITIES

(c) Maintaining a record of file access
violation attempts

3.3.3 Maintaining System Utilization
Statistics

(a) Maintenance of a summary by user
account

NO

VALIDATION
TECHNIQUES

(c) Verify that a correct record
of file access violation
attempts is maintained for
Tests III 1.1.2.2(a)-(b).

(a) Assign dummy account numbers
to each job used in Test I
3.3.1(a). The number of
distinct accounts should be
less than the total number
of jobs. After verifying
I 3.3.1(a), sum, for each
account, the totals for all
of the jobs designated to
be charged to the account.
Compare these figures to
those maintained by the
system for each account.

(b) Maintenance of a summary of file
accesses

(b) Following Tests III 1.1.2.3
(c) 1) and (d) 1), output
the file access summary
statistics.

3.4

3.4.1

Program Accessible System
Description Maintenance
Current System Status Interrogation System status interrogation for the following

information:

(a) Number of jobs
(b) Number of interactive users
(c) List of active terminals
(d) Main storage allocation

(a)-(h) For a known job mix,
interrogate the system for
each of these data wh ich
are maintained.

i * ,

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

3.4.1 (Cont'd.)

3.4.2 System Definition Interrogation

(e) Secondary storage allocation
(f) Device allocation
(g) Device status
(h) Elapsed execution time

Interrogation of the system for a description
of its current hardware configuration.

Execute a test module which
utilizes several different types
of devices and interrogate the
system for current component
status.

S3

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

PART II: SYSTEM MANAGEMENT

1.0
1.1

OPERATING SYSTEM MANAGEMENT
System Generation

1.2 System Maintenance

(a) Operating system configuration
specifications
1) CPU's
2) I/O devices
3) Console devices

(b) Incorporation of user-developed
routines

(c) Specification of default values

(a) Dynamic Maintenance
1) System reconfiguration

i) Augmented system operation
ii) Component replacement
iii) Degraded system operation

2) On-line patching

(b) Off-line maintenance
1) System regeneration
2) Patching

(c) User-controlled maintenance
1) New command definition
2) Command renaming
3) Operand renaming
4) Default value alteration

(a) l)-3) Design the System Vali-
dation tests so that every device
is used at some point in the
scenario

(b)-(c) If these capabilities are
employed during system gener-
ation, they will be verified
when the applicable functions
are validated.

(a) l)i) - iii) These facilities will
be verified by Tests I 2.1.3
(a) 0-2).

2) Invoke a privileged instru-
ction and attempt to alter
an area of protected memory.

Dump this area.

(b) l)-2) There is no requirement
to test these facilities.

(c) l)-4) Attempt to use each
facility afforded by the
system.

.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.0
2.1
2.1.1

PROGRAM MAINTENANCE
Library and Directory Maintenance
Dynamic Cataloging (a) Load modules

(b) Task/procedure definitions

2. 1.2 Static Cataloging (a) Load modules
(b) Relocatable modules
(c) Source modules
(d) Macro routines

(a) Dynamically catalog one of the
System Validation modules to
the system load module library
or to the user load module
library. Execute the cataloged
module by calling it from the
library.

(b) Design a procedure which con-
tains a set of control cards
different from any of those pro-
vided in the system procedure
library. Utilize the procedure
to execute a test program and
immediately thereafter attempt
to catalog the control cards to
the procedure library. Attempt
to execute the test program again
using a single control card to
reference the procedure.

(a)-(d) Write a source code instruc-
tion set which is different from
any other instruction set in the
macro library for that compiler
language and attempt to catalog
it. Write a source code program
which uses this macro and cata-
log this program to the source
code library. Compile the
source code library element

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

2.1.2 Static Cataloging (Cont'd)

(e) Task/Job procedures

00

2.1.3 Utility Functions

(a) Library space allocation

(b) Punching/Listing/Displaying

and catalog the result to the
relocatable library. Execute
the linkage editing function to
retrieve the element from the
relocatable library, build a
load module and catalog it to
the load module library. Ex-
ecute the program from the
load module library.

(e) Design a procedure and catalog
it to the procedure library.
Then execute the procedure by
referencing it on the procedure
library.

For the following tests, it is suggested
that the System Validation test pro-
grams be used as elements for verify-
ing the library functions.

(a) Create a library on a secondary
storage device. This may be
either a new library or an ex-
pansion of one of the system
libraries. The library used
may be either a source,
relocatable, or load module
library. For a more extensive
test, the procedures can be
repeated for each library.

(b) Punch and display one of the
test modules. List the entire
test library for use in verifica-
tion of Tests II 2.1.3 (c)-(e).

i

i •.

FUNCTION

2.1.3 Utility Functions (Cont'd.)

FACILITIES

(c) Copying

(d) Renaming

(e) Repacking library space

VALIDATION
TECHNIQUES

(c) Alter the name of a specific
module on the test library.

(d) Delete one or more of the
modules from the test library
and repack the remaining
modules.

(e) Copy the test I ibrary to a
new library area.

List the final, copied version of
the test library to verify that these
functions were executed correctly.

SO

2.2 Load Module Generation

This function is largely confirmed by the actual system generation process and *

the compilation and execution of the various verification tests being applied against

the system. Care should be taken to verify the binding capabilities of the system by

a test program comprised of multiple relocatable elements. There are two facilities

which, if available, should be verified explicitly: alteration of binder-generated

code and system library scanning for unresolved references.

The ability to alter binder-generated code is directly verified by making known

alterations to a test program. As an example, a test routine could include two entry

points. Upon branching to the first, the message "CODE HAS NOT BEEN ALTERED

SUCCESSFULLY" is typed. Then control is unconditionally returned to the main

routine. Upon branching to the second entry point, the message "CODE HAS BEEN

ALTERED SUCCESSFULLY" is typed and control is returned to the main program. Write

a test program which branches only to the first entry point. After compiling this test

program with the routine, attempt to alter the branch in the test program to jump to

the second entry point. Verification is performed by executing the job.

The ability to scan the system library for unresolved references may be verified

by inserting a call to a named library element in one of the test programs. Relinking

the test program and executing it will verify the inclusion of the named relocatable

library element.

-

100

3.0 COMPILER INTERFACES

The various support services provided to the system language compilers via inter-

faces to the operating systems should be validated for each compiler (ALGOL, FORTRAN,

COBOL, JOVIAL, etc.). This may be done quite easily by a group of programs written

in compiler language which utilize or "trigger" and then verify (usually through proper

operation and printed output) the availability of the interfaced capabilities for each parti-

cular compiler. These capabilities may include one or more of the following:

1) executive routine support for

a) compiler parameters on OS control cards,

b) system-maintained compiler communication tables,

c) program testing/debugging control;

2) libraries in support of

a) source programs,

b) macros,

c) subroutines;

3) system utilities in support of compiler language programs such as

a) sort/merge programs,

b) peripheral conversion programs,

c) data management system programs.

101

FUNCTION FACILITIES

VAU D ATI ON
TECHNIQUES

o

4.0 MANAGEMENT SUPPORT

4.1 Peripheral Device Support
4.1.1 Volume Preparation
4.1.1.1 Record/Track Formatting
4.1.1.2 Directory Creation
4.1.1.3 Space Allocation

4.1.2 Volume Maintenance
4.1.2.1 Diagnostic Verification
4.1.2.1.1 Surface Analysis
4.1.2.1.2 Track Replacement

4.1.2.2 File Purging

This function will be verified implic-
itly by performing the usual System
Initialization procedures prior to
System Generation.

Usually, verification of these facil-
ities is not possible during the check-
out of a new system. However, if a
damaged media is discovered during
the validation of another functional
area, then it may be used to validate
some of these facilities.

To test this function, which usually
consists of a tape erase or core or
disk/drum/data cell overwrite,
purge a known portion of secondary
storage and verify this by using a
separate program to dump the
purged files.

4.2 System Simulation Routines Capability to simulate:

(a) Real-time interrupts
(b) Communication facilities

(a)-(b) If system simulation facilit-
ies are available, they should be
used to validate the interrupt
handling and teleprocessing
support functions. This will also
validate the utilization of these
features.

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

4.3 System Measurement Routines

4.4 Stand-Alone Utilities

S 4.4.1 Status Display

4.4.2 Recovery Support

Capability to display?
a) Core storage
b) Hardware registers
c) File storage
d) Logout areas
e) Read-only storage

Capability to support the rebuilding
of:

a) Message queues
b) System processing queues
c) On-line transactions
d) Suspended processing

e) Communication line links

Analyze the validation tests to deter-
mine those for which the system-meas-
urable statistics may be derived a
priori. Following these tests, output
the computed statistics and compare
them with the expected values.

Select a convenient point during Sys-
tem Validation to force a failure from
which the system cannot recover us-
ing normal diagnostic routines. Im-
mediately prior to this action, dump
the message queues and system pro-
processing queues.

(a)-(e) In each oase, execute the
status display routine.

Initiate the pre-failure environment
reconstruction routines to provide the
following types of recovery support:

a) Rebuild message queues
b) Rebuild system processing queues
c) Reconstruct on-line transactions
d) Re-initiate suspended pro-

cessing
e) Re-establish communication

line links

(Continued on the next page.)

FUNCTION FACILITIES
VALIDATION
TECHNIQUES

4.4.2 (Cont'd.) Then dump the message and
system processing queues
for comparison with the first
queue dumps and attempt to
resume on-line transactions
and execution of the suspend-
ed processing.

s

.

\

FUNCTION

PART III: DATA MANIPULATION

FACILITIES VALIDATION
TECHNIQUES

o

1.0 DATA MANAGEMENT
1.1 File Management
1.1,1 File Location Recognition

1.1.2 File Access Control
1.1.2.1 File Security Control

1.1.2.2 Read/Write Access Control

(a) Location of files using:
1) Catalogued addresses
2) Label recognition

(b) Location of data using hierarchical
levels of cataloging

(c) Maintenance of separate catalogs

(a) User ID protection

(b) Password protection

(a) Read only access

(a) Attempt to locate files by:
1) Searching the master directory
2) An on-line sequential label

comparison search

(b) Search files at each cataloging
depth, including the maximum

(c) Apply Tests III 1.1.1(a) 1) & b)
to catalogs containing system-
assigned file labels and user-
assigned file labels

Attempt to access a protected unit*
by:

(a) A user ID other than one of those
authorized by the file's creator

(b) A password other than that author-
ized by the file's creator

(a) Attempt to write to each unit
that is write protected

kA protected unit may be a volume, a file, a physical record, a logical record, or a data element.

FUNCTION

1.1.2.2 (Cont'd.)

1.1.2.3 Concurrent Access Control

o

FACILITIES

(b) Read and selective write access

(c) Unrestricted access

(a) Single user read only access

(b) Single user read and write access

(c) Multi-user read only access

(d) Multi-user read/single user write
access

VALIDATION
TECHNIQUES

(b) Attempt to write to the restricted
areas of each selectively write-
pro tected unit

(c) 1) Attempt to read all of the data
contained by each unrestricted
unit.

2) Attempt to write to the entire
area of each unrestricted unit.

(a) 1) Force concurrent read attempts
for each applicable unit.

2) Force single write attempts
for each applicable unit.

(b) 1) Force concurrent read attempts
for each applicable unit.

2) Force concurrent write attempts
for each applicable unit.

(c) 1) Force concurrent read attempts
for each applicable unit.

2) For single write attempts for
each applicable unit.

(d) 1) Force concurrent read attempts
for each applicable unit.

2) Force concurrent write attempts
for each applicable unit.

•

FUNCTION FACILITIES VALIDATION
TECHNIQUES

1.1.3 Backup and Restoration
Capabilities

1.2 I/O Support Facilities
1.2.1 Data Access Control
1.2.1.1 Sequential Access Control

o

(a) Automatic restoration
(b) Operator-initiated restoration
(c) Restoration from transaction data files
(d) Restoration from grandfather files
(e) Restoration from checkpoint files

(a) Basic sequential access

(b) Queued access

1.2.1.2 Keyed/Indexed Access Control (a) Keyed access

(b) Indexed access

(a)-(e) Perform operations that damage
selected routines and data in
various files and then verify the
restoration of their prior contents
by the method chosen.

(a) 1) Attempt to access specified
magnetic tape records

2) Attempt to access consecutively
stored records on disks, drums,
etc.

(b) Verify the automatic read-ahead
capability for the secondary storage
devices

(a) Attempt to access records by:
1) Selected data fields
2) Hardware keys

(b) Attempt to access records by:
1) Searching the field value/

record address directory
associated with the file

2) Utilizing all possible levels
of indexing

FUNCTION

1.2.1.3 Random Access Control

FACILITIES

Direct access

1.2.1.4 Teleprocessing Access Control (a) Automatic message time stamping

(b) Optional message time stamping

(c) Input/output message priority

o
00

(d) Input/output message routing

(e) Input/output message queuing

VALIDATION
TECHNIQUES

Attempt to access non-consecutive
records from disk, drum, etc; random
access can usually be verified by test-
ing the record identification/storage
address algorithm

(a)-(b) Send a series of teleprocessing
messages and verify that the time
of receipt has been appended to
the message header block.

(c) Generate unique terminal-to-
computer and compute r-to-termina I
messages with assigned priorities.
Use a single program to produce
a set of varying priority messages
for a terminal and observe the
order in which they are dispatched.

(d) Generate unique terminal-to-com-
puter, computer-to-terminal and
terminal-to-terminal messages with
assigned headers and note the sites
where they are received.

(e) Generate unique termina I -to-com-
puter and computer-to-terminal
messages and note if the order in
which these messages are stored in
the I/O queues is in accordance
with the queuing scheme (priority,
time of initiation, etc.)

FUNCTION

1.2.1.4 (Cont'd.)

FACILITIES

(f) Periodic polling

(g) Request polling

o
NO

VALIDATION
TECHNIQUES

(f) Send a unique message from each
terminal and maintain a log of
all messages as they are received
at the main computer.

(g) Initiate polling by the central
computer
1) If all terminals are to be polled,

attempt to send a unique mes-
sage from each terminal when
it is to be polled and maintain
a log of all messages as they
are received at the main com-
puter.

2) If only selected terminals are
to be polled, activate these
terminals and again apply
Test III 1.2.1.4(g) 1). Then
activate terminals which are
not to be polled, attempt to
send unique messages from
them and note any occurrence
of their messages in the central
computer log.

1.2.2

FUNCTION

Data Blocking/Deblocking
Control

FACILITIES

(a) Locate mode blocking for system-
specified size groups of:

1) Fixed length records
2) Variable length records

(b) Locate mode blocking for user-speci-
fied size groups of:

(b)

1) Fixed length records
2) Variable length records
3) Undefined length records

(c) Locate mode deblocking of system-
specified size blocks of:

(c)

1) Fixed length records
2) Variable length records

VALIDATION
TECHNIQUES

(a) Attempt to access system-defined
size blocks of known information.
Perform this test on data collec-
tions composed of each allowable
type of record:

1) Fixed length
2) Variable length

Dump the accessed data.

Attempt to access user-defined
size blocks of known information.
Perform this test on data collec-
tions composed of each allowable
type of record:

1) Fixed length
2) Variable length
3) Undefined length

Dump the accessed data.

Attempt to access selected records
containing known information from
blocks of system-defined size.
Perform this test on blocks com-
prised of each allowable type of
record:

1) Fixed length
2) Variable length
Dump the accessed data.

.*

FUNCTION

1.2.2 (Cont'd.)

FACILITIES

(d) Locate mode deblocking of user-
specified size blocks of:

1) Fixed length records
2) Variable length records
3) Undefined length records

(e) Move mode blocking for system-
specified size groups of:

1) Fixed length records
2) Variable length records

(f) Move mode blocking for user-
specified size groups of:

1) Fixed length records
2) Variable length records
3) Undefined length records

(d)

VALIDATION
TECHNIQUES

Attempt to access selected records
containing known information from
blocks of user-defined size. Perform
this test on blocks composed of each
allowable type of record:

1) Fixed length
2) Variable length
3) Undefined length

Dump the accessed data.

(e) Attempt to move known information
as a unit (block) of system-specified
size. Perform this test on groups of
each allowable type of record:

1) Fixed length
2) Variable length

Dump the contents of the destination
storage area.

(f) Attempt to move known information
as a unit (block) of user-specified
size. Perform this test on groups of
each allowable type of record:

1) Fixed length
2) Variable length
3) Undefined length

Dump the contents of the destination
storage area.

FUNCTION

1.2.2 (Cont'd.)

N)

1.2.3 Label Processing

FACILITIES

(g) Move mode deblocking of system-
specified size blocks of:

1) Fixed length records
2) Variable length records

(h) Move mode deblocking of user-
specified size blocks of:

1) Fixed length records
2) Variable length records
3) Undefined length records

(a) System label generation

VALIDATION
TECHNIQUES

(g) Attempt to move selected records of
known information from system-speci-
fied size blocks. Perform this test
on blocks composed of each allowable
type of record:

1) Fixed length
2) Variable length

Dump the contents of the destination
storage area.

(h) Attempt to move selected records of
known information from user-specified
size blocks. Perform this test on
blocks composed of each allowable type
of record:

1) Fixed length
2) Variable length
3) Undefined length

Dump the contents of the destination
storage area.

(a) Generate dummy files and check for
the presence or absence of a system
label after open and/or close opera-
tions. If a label is written, verify
its contents.

. «

FUNCTION

1.2.3 (Cont'd.)

FACILITIES

(b) User label generation

VALIDATION
TECHNIQUES

(b) Generate dummy files and check for
the presence or absence of a user label
after open and/or close operations.
If a label is written, verify its contents.

CO

FUNCTION FACILITIES VALIDATION
TECHNIQUES

1.3 Data Management System
Facilities

1.3.1 Control Specification

1.3.2 Data File Generation and Main-
tenance

1.3.2.1 Structure Definition

1.3.2.2 Space Allocation

(a) Specification of formats for files,
reports, input data, and retrieval
queries

(b) Locating file description tables

(c) Derivation of control functions

(a) Sequential, hierarchical, indexed,
ring and list structures

(b) Normal, hierarchical, and inverted
indexing schemes

Storage media supported:
1) Tape
2) Disk
3) Drum
4) Mass storage

(a)-(c) The capabilities of the functional
control modules are verified when
the various facilities of a specific
data management system are valid-
ated.

(a)-(b) Attempt to structure each allow-
able type of file. Dump each file
and verify its format.

Validation of the various capabilities
afforded by a data management system
verifies space allocation for its data
base.

The capabilities provided by 1.3.3 Data Qualification and Retrieval for locating data
by their names or indices must be validated prior to verification of the next 5 functional
areas (1.3.2.3 - 1.3.2.7) as the testing of their facilities requires data element and
record retrieval.

v

FUNCTION

1.3.2.3 Input Transaction Processing

FACILITIES

(a) Input validation

1) Range verification

(a)

Ui

2) Masked character comparison

3) Sequence checking

(b) Input alteration (b)

1) Automatic truncation

2) Automatic padding

3) Decoding

VALIDATION
TECHNIQUES

Verify production of the proper error
messages upon attempting to enter the
following into the data base:

1) i) Elements which are less than
the minimum allowed values for
designated variables
ii) Elements which are greater
than the maximum allowed values
for designated variables

2) Elements containing an erroneous
character in each checked posi-
tion

3) Elements sequenced in other than
the established ordering scheme

Attempt to enter the following into the
data base and, if successful, retrieve
the corresponding stored entries:

1) Elements which exceed the maxi-
mum allowable length for parti-
cular variables

2) Elements with less than the maxi-
mum number of characters which
require leading or trailing blanks
or zeroes

3) Elements in pre-established
abbreviated forms

FUNCTION

1.3.2.3 (Cont'd.)

FACILITIES

o 1.3.2.4 Logical Record Maintenance

4) Encoding

5) Constant factor modification

(c) Input termination

1) Termination by an embedded
field

2) Termination by a special char-
acter

(a) Updating by logical querying

(b) Multi-record logic

(c) Automatic subordinate file
updating

VALIDATION
TECHNIQUES

4) Elements in their actual or full
representation

5) Elements which are arithmetic
operands (addends, factors, etc.)

(c) Attempt to halt input transaction pro-
cessing by:
1) A non-standard control field

2) A character or character set other
than the designated termination
symbol

Perform the following tests and then retrieve
the records and elements to be altered:

(a) Attempt to update files according
to conditional criteria

(b) Attempt to update data by queries
which are effected only after the
successful comparison of test values
to elements of more than one record

(c) Update records in a logical substruc-
ture of a file which consequently
necessitate the updating of records at
a lower substructure

I • »

FUNCTION

1.3.2.5 Interactive File Maintenance

1.3.2.6 File Reorganization

1.3.2.7 Data Error Procedures

FACILITIES

(a) Overriding of data values

(b) Update logic capabilities

(a) File Restructuring

(b) Intra-file merging

(c) Inter-file merging

(a) Interactive correction

VALIDATION
TECHNIQUES

(a)-(b)The validation techniques for this

functional area are identical to those
for Logical Record Maintenance and
File Reorganization except that cont-
rol is exercised in the conversational
mode.

(a) 1) Attempt to add new data fields
to and delete existing data fields
from the file; dump the resulting
file

2) Attempt to alter the size of
existing data fields; dump the
resulting file

(b) Attempt to merge records contained
within the file; dump the resulting
file

(c) Attempt to merge records contained
within several files to form a single
new file; dump the new file

(a) Attempt to enter erroneous elements
into the data base via the conversa-
tional mode. Upon error notification,
attempt to correct these elements and
then retrieve their stored values.

FUNCTION FACILITIES VALIDATION
TECHNIQUES

1.3.2.7 (Cont'd.)

1.3.3 Data Qualification and Retrieval
1.3.3.1 Retrieval Mode Control

(b)

CD

(a)

Attempt to enter erroneous elements
into the data base. Then retrieve the
corresponding stored elements, noting
instances of automatic correction

Interrogation by pre-stored queries

1) Fixed logic queries

2) Modifiable logic queries

3) Parameterized queries

(b) Interrogation by interactive queries

1) Cue-response queries

2) Prompting queries

(b) Pre-established correction
procedure

(a) Attempt to retrieve known data ele-
ments by executing:
1) Queries which contain all of

their operands and operators
when they are called from a
system library

2) Queries in which the user has
varied the operands and/or
operators from those of the
original queries in the system
library

3) Queries in wfrich the user
has supplied some or all of
the operands and/or operators
to the skeletal forms of the
queries called from the system
library

(b) Attempt conversational retrieval
of known data elements by:
1) Participating in a question/

answer dialogue with the
system

2) Responding to a series of
system-provided query form-
ulation aids

FUNCTION

1.3.3,2 Query Processing

ZJ 1.3.3.3 Data Record Selection
>o

FACILITIES

(a) Boolean, quantitative, arith-
metic, statistical, and application
defined operators

(b) Logical connecting operators
(AND, OR, NOT)

(c) Nesting of logical operators

(d) Use of constants, data fields,
interim query results, and arith-
metic expressions as operands

(a) Single file searching

(b) Multi-file searching

(c) Inter-file searching

VALIDATION
TECHNIQUES

(a)-(d) The set of queries used in the
validation of Retrieval Mode Control
should include all of these facilities
which are available since the valid-
ation of Query Processing is con-
comitant with that for Retrieval Mode
Control

(a)-(c)The set of queries employed in the
validation of Retrieval Mode Control
should include those necessary for
validating Data Record Selection.

The following facilities should be verified where appl cable for
each type of report that may be prepared, e.g., user structured,
system structured, or interactively defined.

FUNCTION FACILITIES VALIDATION
TECHNIQUES

1.3.4 Data Output (a) Labeling
1) Headers/trailers

2) Data labels

(a) 1) Attempt to output specific
labels in designated positions
at the top and bottom of each
page or frame of the report

2) Attempt to label specific
output values

(b) Data formatting capabilities (b) l)-2) Attempt to output speci-
1) Horizontal/vertical positioning fic data elements to desig-

ho 2) Right/left justification nated positions on the output
o media

(c) Data altering capabilities (c) 1) Attempt to afix algebraic
1) Data editing and dollar signs to specific

output values
2) Decoding 2) i) Attempt to output stored

abbreviated data values in
their actual or full represent-
ation
ii) Attempt to output stored
data values with leading zeros
suppressed

(d) Accounting capabilities (d) 1) Attempt to determine the
1) Counting total number of occurrences

of specific values for given
data elements

• » • i

FUNCTION

1.3.4 (Cont'd.)

FACILITIES

(d) 2) Totaling

(e) Pagination control

(f) Multiple copy capability

VALIDATION
TECHNIQUES

2) Attempt to output the sum of
the stored values of specific
data elements

(e) Attempt to output specific data
to a page or frame designated
relative to the current page or
frame.

(f) Produce multiple copies, i.e.,
copies on different device types,
of a single report

N>

2.0 DATA HANDLING UTILITIES

The explicit and individual verification of each type of peripheral device support
facility would require an almost infinite battery of tests. The procedure outlined below
defines a typical series of tests for validation of this functional area.

Step 1 Generate and store in a main memory work area several data sets. Each set
should contain all of the characters representable in the system ordered
according to the system collating sequence.

Step 2 Fill a second main memory work area with "nines" and write this area to magnetic
tape followed by an end-of-file mark, thus creating a "dummy" tape file.

Step 3 Punch the test data (the contents of the first work area) into cards and paper
tape, write it beyond the dummy file on magnetic tape, and to a specific area
of a disk.

Step 4 Read the cards into a third main memory work area and compare its contents to
the first work area, advising the test conductor via a console output device of
any discrepancies. Similarly, verify the paper tape, magnetic tape, and disk
copies of the test data.

Step 5 Dump the data in the first work area to the system printer using an unformatted
display routine.

Step 6 Output the first work area to a CRT using a routine containing user format
specifications.

Step 7 Apply field insertion and code conversion to the data in the first work area.
Then output the area to the system printer.

-■

122

II

IV

VI

3.0 SORTING AND MERGING

As in the case of DATA HANDLING UTILITIES the direct, isolated verification
of each sort/merge facility would involve a very extensive battery of tests. Again, a
compact scenario of representative tests will provide sufficient validation of this func-
tional area. The major capabilities of sorting and related user-supplied routines are
given in the list below. Combinations of these capabilities, selected to typify the actual
verification requirements, are described in the subsequent tests.

Sort/Merge Options

I Input Source

a) External Data Files
b) Internal Record Address Table

Data Format

a) Integer
b) Floating Point
c) Zoned/Packed Decimal
d) Alphanumeric
e) Other

Control Fields

a) Single
b) Multiple

Source of Control Parameters

a) Control Cards
b) Internal Linkage Parameters

Output Collating Sequence

a) Ascending
b) Descending
c) User Specified

Special Outputting Facilities

Data Conversion

VII User-Provided Output Facilities

a) Input Record Insertion
b) Input Record Deletion
c) Input Record Modification
d) Output Record Insertion
e) Output Record Deletion
f) Output Record Modification

123

VIII Output Destination

a) External Data Files
b) Internal Record Address Table

IX Output File Format

a) Blocked, Fixed-Length Records
b) Blocked, Variable-Length Records
c) Unblocked, Fixed-Length Records
d) Unblocked, Variable-Length Records
e) Variable - Blocked, Fixed-Length Records
f) Variable - Blocked, Variable-Length Records

124

Sort/Merge Validation Techniques

Tests III 3.0 (a) and III 3.0 (b) validate sorting capabilities while Test III
3.0(c) validates sorting and merge facilities. The test data files should be program
generated. The success or failure of each test should be determined by a program
that reads and processes the resulting sorted output file and verifies the correct record
sequence.

Test III 3.0 (a)l)Create a data set composed of the alphabetic sequences A.. .A, AA.. .AB,
 , AA...AZ, AA...ABB, ..., AA...AZZ, ..., AB...B, ..., AZ...Z, where
each member (sequence) of the data set is 26 characters in length. Then create the data
set composed of the sequences B...B, BB...BCb, ..., BB...BZB, BB...BCCb, ...,
BB...ZZb, ..., BC.Cb, ..., BZ.. ,Zb, where each member of the set is again 26
characters in length and the last character b of each sequence except the first is a blank.
Continue generating data sets until the algorithm is exhausted. Z...Z is the sole member
of the last, i.e., the 26th, data set.

(2) Now sequentially number the elements of each set. The first set of
sequences will be numbered 1 to 626; the second, 1 to 577; etc.

(3) Employ a random number generator (either vendor or user-developed) to
create random integers. Attach a random number to each of these alphabetic-numeric
combinations. Then write the data to a secondary storage unit using system I/O routines,
if available.

(4) Call the sort routine and submit a control card indicating that the test data
are to be sorted into ascending order using the generated set of random numbers. Submit
another card defining the output blocking factor and record length, and indicating that
the output is to be written in blocked fixed-length records.

(5) Submit subsequent control cards indicating that these two-field strings are
to be sorted by their assigned sequence numbers, and that each alphabetic group for each
sequence number is then to be sorted according to the system collating sequence and
written to tape in unblocked fixed-length records.

(6) Following verification of (e), attempt output record modification by chang-
ing the first character of each sequence to a special character, e.g., an £ (or +).

Test III 3.0(b) Again use the random number generator to create a set of random integers,
Prior to writing this data to tape, convert the integers to floating point and divide each
by three to create mixed floating-point numbers. After creating a multi-tape file,
submit control cards indicating that the data are to be sorted into descending sequence.
Output the file in unblocked variable-length records.

Test III 3.0(c) 1 jRecreate the file of data sets described in Test III 3.0 (a) 1) and write
them to a secondary storage device.

2) Now sort each sequence type according to the collating sequence of the
system so that all sequences of the form A.. .A, ..., Z.. ,Z, are ordered into a group;
all sequences of the form AA.. ,AB, ..., BB.. .BCb, are ordered into a group; etc.

3) After all possible groups (626 total) have been created according to this
pattern, attempt to merge them to form the original test data file.

125

APPENDIX I

BIBLIOGRAPHY

1. Appleman, Robert C, Generalized Procedures for System Testing and Evaluation
of Time-Sharing and Multiprocessing Computer Systems, Vol. I: Entering the
TFird Generation, (TM-BN-001/001/02); System Development Corp.; Santa
Monica, Cal.; 9 Aug. 1968.

2. Arden, B., & Boettner, D., Measurement and Performance of a Multiprogramming
System; publication of the Second ACM Symposium On Operating Systems
Principles; Princeton, New Jersey; p. 130, Oct. 20-22, 1969.

3. Balzer, R. M., EXDAMS - Extendable Debugging and Monitoring System; AFIPS
Conference Proceedings, AFIPS Press; Montvale, New Jersey; Vol. 34, p. 567;
1969.

4. Bryan, G. E.,&Shemer, J. Ev The UTS Time-Sharing System: Performance Analysis
and Instrumentation; publication of the Second ACM Symposium On Operating
Systems Principles; Princeton, New Jersey; p. 147; Oct. 20-22, 1969.

5. Campbell, D. J.,& Heffner, W. J., Measurement and Analysis of Large Operating
Systems During System Development; AFIPS Conference Proceedings (1968 Fall
Joint Computer Conference); p. 903.

6. Cantrell, H. N.,& Ellison, A. L„ Multiprogramming System Performance Measurement
and Analysis; AFIPS Conference Proceedings; Thompson Book Co.; Washington, D7~C;

Vol. 32, p. 213; 1968.

7. Grochow, J. M., The Graphic Display as an Aid in the Monitoring of a Time-
Shared Computer System, (MAC-TR-54), 1968.

8. Hart, L. E., The User's Guide to Evaluation Products; Datamation, p. 32, Dec.
15, 1970.

9. Karush, Arnold P., Two Approaches for Measuring the Performance of Time-
Sharing Systems; publication of the Second ACM Symposium On Operating
Systems Principles; Princeton, New Jersey; p. 159; Oct. 20-22, 1969.

10. Kolence, Ken W., System Improvement by System Measurement; Data Base; Vol. 1,
No. 4, p. 6; Winter 1969.

11. Martin, James, Programming Real-Time Computer Systems; Prentice-Hal I, Englewood
Cliffs, New Jersey; 1965.

12. Mclntosh, Clinton S., et. al., Analysis of Major Computer Operating Systems
(ESD-TR-70-377), for HQ ESD (AFSC), L. G. Hanscom Field, Bedford,
Massachusetts, by The COMTRE Corp.; Coral Gables, Florida; August 1970.

127

13. Pinkerton, Tad B., Performance Monitoring in a Time-Sharing System; Communi-
cations of the ACM, Vol. 12, Number 11, p. 608; 1969.

14. Presser, L., & Melkanoff, M. A., Software Measurements and Their Influence
Upon Machine Language Design; AFIPS Conference Proceedings; AFIPS Press;
Monrvale, New Jersey; Vol. 34, p. 733; 1969.

15. Saltzer, Jerome H., & Gintell, John W., The Instrumentation of MULTICS;
publication of the Second ACM Symposium On Operating Systems Principles;
Princeton, New Jersey; p. 167; Oct. 20-22, 1969.

16. Trapnell, F. M., A Systematic Approach to the Development of System Programs;
AFIPS Conference Proceedings; AFIPS Press; Monrvale, New Jersey; Vol. 34,
p. 411; 1969.

17. Wulf, William A., Performance Monitors for Multi-Programming Systems; publica-
tion of the Second ACM Symposium On Operating Systems Principles; Princeton,
New Jersey; p. 175; Oct. 20-22, 1969.

18. CIMS/l (Computer Installation Management System); Booth Resources International,
Inc.; Los Angeles, Cal.

19. CIMS/l I (Computer Installation Management System/Version II); Booth Resources
International, Inc.; Los Angeles, Cal.

20. COMPUMETER II; Computing Efficiency, Inc.; Bohemia, New York.

21. DOS MURS (Machine Utilization Reporting System); Webster Computer Corporation;
Danbury, Connecticut.

22. System Measurement Software: SMS/70 TDOS Problem Program Evaluation (SPPE,
"^Version 1) Product Description; Boole & Babbage, Inc.; Palo Alto, Calif.;

May 1970.

23. System Measurement Software: SMS/360 Configuration Utilization Efficiency (CUE,
Version 2) Product Description; Boole & Babbage, Inc.; Palo Alto, Calif.; Rev. 1,
June 1970.

24. System Measurement Software: SMS/360 Configuration Utilization Evaluator (MCUE,
Version 1) Product Description; Boole & Babbage, Inc.; Palo Alto, Calif.; April 1970.

25. System Measurement Software: SMS/360 Data Set Optimizer (DSO, Version 1) Product
Description; Boole & Babbage, Inc.; Palo Alto, Calif.; Rev. 1, June 1970.

26. System Measurement Software: SMS/360 Problem Program Evaluator (PPE, Version 2),
(MPPE, Version 1) Product Description; Boole & Babbage, Inc.; Palo Alto, Calif.;
April 1970.

128

APPENDIX II

RECORD OF TESTING AND
MEASUREMENT INTERVIEWS

1.0 Purpose - General meeting on technical aspects of OS validation

Participants - Representatives of USAF (Hq. ESD); Project MAC;
Honeywell, Inc.; Bolt, Beranek, and Newman;
and The COMTRE Corporation

Date - 6 July 1970

2.0 Purpose - Discuss the validation aspects of operating systems as they
relate to system procurement

Participants - Representatives of ESD/ESMDA, ESD/ESMCT, and
The COMTRE Corporation

Date - 6 July 1970

3.0 Purpose - Discuss OS validation as it relates to maintaining the
Burrough's B3500 Master Control Program

Participants - Representatives of ESD/ESMDA, AFDSDC/DIA, and
The COMTRE Corporation

Date - 7 July 1970

4.0 Purpose - Discuss OS validation and the validation activities of the
quality control section of DSDC

Participants - Representatives of ESD/ESMDA, AFDSDC/SCCQ, and
The COMTRE Corporation

Date - 7 July 1970

5.0 Purpose - Discuss OS validation and the validation activities at DIA

Participants - Representatives of DIA/DIAMS-3 and The COMTRE
Corporation

Date - 8 July 1970

6.0 Purpose - Discuss OS validation and the validation of the GECOS III
system at the center

Participants - Representatives of AF/Data Services Center and The
COMTRE Corporation

Date - 9 July 1970

129

7.0 Purpose - Discuss OS validation as it relates to the activities of the
NMCSSC

Participants - Representatives of NMCSSC and The COMTRE Corporation

Date - 9 July 1970

»

130

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security clmssi(icmlion of title, body of abatracl and indexing annotation must be entered when the overall report la clasailied)

1 ORIGINATING ACTIVITY (Corporate author)

The COMTRE Corporation
15F Sevilla Avenue
Coral Gables, Fforida 33134

2«. REPORT SECURITY CLASSIFICAT ON

UNCLASSIFIED
26. GROUP

N/A
3 REPORT TITLE

OPERATING SYSTEM VALIDATION TESTING

4. DESCRIPTIVE HO T ES (Type of report and inclusive dates)

None
5 AUTHOR(S) (First name, middle Initial, laat name)

William C, Mittwede
Kenneth P. Choate

6. REPORT DATE

January 1971
7«. TOTAL NO. OF PAGES

130
7b. NO. OF REFS

3 plus Bibliography
8«. CONTRACT OR GRANT NO.

FI9628-70-C-0258
6. PROJECT NO.

6917

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-71-8I

9b. OTHER REPORT NO(S) (Any other numbers that may bo assigned
thia report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

)eputy for Command and Management Systems,
\q Electronic Systems Division (AFSC),

G Hanscom Field, Bedford, Mass. 01730
13. ABSTRACT

This report presents functional testing requirements for use in the
validation testing of computer operating systems. The require-
ments are structured in a tabular format and are applicable to the
executive/control functions, system management functions and
data manipulation functions of current commercially available
operating systems. In concert with the tabulation of require-
ments for each of the operating system functions, further tabula-
tion has also been performed relating the test requirements to the
type of environment that the operating system must support: batch,
real-time, or time-sharing. Basic testing procedures have been
defined to verify the requirements and these testing methods have
then been grouped into test packages.

DD,rr«1473
Security Classification

Security Classification

I".
K EY WORDS

validation testing
operating system (computer)
executi ve/contro I
system management
data manipulation
environment
requirements

Security Classification

- • • 9

I

*

I

I

*

a

