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ABSTRACT 

An analysis was undertaken to better understand the phenomena 
occurring in spray coolers and to develop a mathematical model for 
'comparison with experimental data from an operating unit.    The 
physical characteristics of an operational exhaust gas spray cooler 
and the instrumentation systems are described.   A mathematical model 
of a spray cooler was developed by assuming kinetic and thermodynamic 
equilibrium and one-dimensional flow.    A mathematical model of a 
hypothetical,  optimum cooler is included in order to have a basis for 
defining cooler efficiency.    The equations were programmed for 
numerical solution on a digital computer,  and several trial case runs 
are presented.    Experimental measurements are compared with the 
efficiencies predicted by the mathematical models. 
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., ,-•-. NOMENCLATURE 

A- Cross-sectional area,  ft2. 

a, b, c Quadratic equation coefficient 

c'p Specific heat at constant pressure, Btu/lbm °R 

F Ratio of masses,  mwi/mnc 

G'l. .. G8 Influence coefficients defined in Figs. Ill-lb and c 

gc Gravitational constant," lbm ft/lbf sec2 

h,- Enthalpy,  Btu/lbm 

m Mass flow rate,  lbm/sec 

m Molecular weight, lbm/lbm-mole 

P Pressure,  lbf/ft2 

Q:' Volumetric flow rate,  ft^/sec 

q Dynamic pressure,  lbf/ft^ 

R Gas constant,  lbf ft/lbm °R 

R Universal gas constant, lbf ft/lbm-mole °R 

T1 Temperature, °R 

Y Velocity,  ft/sec 
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A -     Incremental change 

f] Efficiency 

p . Mass density, lbm/ft3 

SUBSCRIPTS 

1 Inlet (evaporation section) 

2 r Exit (evaporation section), Inlet (dehumidification section) 

3 Exit (dehumidification section) 

D Drain 

fg Change by evaporation 

nc Noncondensable 

s Saturation 

v Vapor 

w:'' Water 
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SECTION I 
INTRODUCTION 

Testing of turbojet engines and rocket motors at simulated altitude 
in ground test facilities requires cooling of the high temperature 
exhaust gas to a relatively low temperature before the gas enters the 
exhaust gas pumping system.    Cooling of the gases by water spray with 
direct heat and mass exchange between the water and the exhaust gas 
has been utilized in many test facilities.    This method of cooling is 
often called spray cooling. 

Many of the spray coolers used in the Engine Test Facility (ETF) 
at the Arnold Engineering Development Center (AEDC) receive exhaust 
gas from a rocket or turbojet engine.    The cooling process reduces the 
temperature from approximately 4000°R (maximum temperature of a 
turbojet engine exhaust gas) to approximately 550°R.    By means of an 
atomizing water spray, the exhaust gas is cooled and dehumidified. 
The cooling produces a temperature compatible with the ducting, con- 
trol valves,   and pumping system material limits,  and the dehumidifica- 
tion maximizes the exhaust gas handling capacity of the exhaust pumping 
machinery.    Water conservation is an important consideration in opera- 
tion because of the large quantities of spray water required. 

There is limited knowledge of the detailed performance of exhaust 
gas coolers in general and, in particular,  of coolers operating at low 
pressures and with high velocity gas streams.    Therefore,  a program 
was initiated with two objectives:   (1) to develop a mathematical model 
to assist in the formulation of design criteria for future coolers,   and 
(2) to define and understand the general operating characteristics of the 
coolers in use at the ETF.    When data collected during exhaust gas 
cooler operation in support of normal engine test programs are com- 
pared with data from the mathematical model,  the limits of operation 
for the coolers currently in use can be determined. 

The overall work is being carried out as a joint effort between the 
Arnold Engineering Development Center (AEDC) and the German Agency 
for Aeronautics and Space Research (DFVLR).    The work at AEDC was 
conducted in the Engine Test Facility.    The cooler performance data 
were obtained from one of the propulsion engine test cells during actual 
test runs.    Instrumentation for the cooler performance data was in- 
stalled in the exhaust gas cooler and associated ducting.   The work at 
DFVLR (Refs.   1 and 2) was performed at the Institute for Chemical 
Rocket Testing at Lampoldshausen.   The DFVLR work is developed for 
low velocity,  low mass flow rates of exhaust gas, whereas the work in 
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ETF is primarily concerned with high velocity, high mass flow rates of 
exhaust gas. 

This report contains the derivation of a mathematical model based 
on thermodynamic and kinetic equilibrium at the cooler exit.    A cooler 
efficiency based on a hypothetical optimum cooler was defined.   The 
physical characteristics of an operational exhaust gas spray cooler and 
the instrumentation systems are described.   Experimental measure- 
ments obtained from actual cooler operation are compared with the 
mathematical model predictions.    The mathematical model was used 
over a full range of inlet conditions to calculate cooler exit conditions, 
and the results are presented.   A bibliography of related reports is 
also presented. 

SECTION II 
EXHAUST GAS COOLER SYSTEM 

2.1   CONFIGURATION 

The configuration for a typical horizontal exhaust gas spray cooler 
consists of a diverging conical inlet section followed by a constant-area 
duct to the end of the spray cooler (Fig.   1,  Appendix I).    The cooling 
water is introduced through groups of nozzles arranged in a series of 
banks (Fig.  2a),  in which the first several banks of sprays consist of 
nozzles projecting a fan-type spray directed downstream along the wall 
to protect the ducting (Fig.  2b).   The other banks consist of spray heads 
arranged in a wagon-wheel configuration with several spokes,  each 
"spoke" containing several spray heads.   Each spray head contains 
several fixed-geometry,  conical spray nozzles (Fig.   2c) directed 
generally downstream.   The water is supplied by a large header,  and 
each spray bank is supplied from the header by a line containing a valve 
for flow control. 

2.2  INSTRUMENTATION 

Instrumentation was provided to measure flow rates, pressures, 
and temperatures of the exhaust gas stream entering and leaving the 
cooler; the cooling water into the spray cooler; and the drain water out. 
of the cooler at the cooler drain line.   The location of this instrumenta- 
tion is shown in Fig.  3.   Measurements taken by this instrumentation 
provided information which was used to provide experimental correla- 
tion with the analytical results from the mathematical model. 
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The millivolt outputs from the thermocouples and strain-gage-type 
pressure transducers were recorded on either magnetic tape or by a, 
photographically recording galvanometer-type oscillograph.    The mag- 
netic tape data were reduced on a digital computer,  and the oscillograph 
data were reduced manually using electrical calibrations taken prior to 
testing. 

The cooling water flow rates were calculated using the spray noz- 
zle manufacturer's value of discharge coefficient and a measured pres- 
sure drop between the supply header around the cooler and an average 
cooler pressure.    This method assumes that the discharge coefficient 
and the area of the nozzles have not changed appreciably from the 
original values.    The measured pressures were recorded by an oscillo- 
graph. 

The cooling water leaving the exhaust gas cooler at the exit through 
the large (14-in. -diam) drain line was measured using a small flow- 
meter {3/4-in. turbine-type) mounted as a probe in the drain line.    The 
data were recorded by (1) an oscillograph as an analog signal and 
(2) a frequency signal.    The performance of this device was not satis- 
factory because of the very low flow rates during cooler operation. 

SECTION III 
DEVELOPMENT OF THE ANALYTICAL MODEL OF THE SPRAY COOLER 

The model to predict cooler exit conditions assumes that the exhaust 
gas,  water vapor,  and liquid water are in thermodynamic equilibrium 
and have the same velocity (kinetic equilibrium) at the exit.    The deriva- 
tion of the equations necessary to compute the exit conditions and effi- 
ciency of the exhaust gas cooler is outlined below. 

3.1 DERIVATION OF EQUATIONS GOVERNING COOLER BEHAVIOR 

From given cooler inlet conditions (pressure, temperature,  gas 
velocity and composition and cooling water temperature and velocity), 
the amount of cooling water necessary to reach a preselected exit tem- 
perature is computed in two distinct processes:   (1) saturation (evapora- 
tion) and (2) dehumidification (recondensation) with the gas remaining 
saturated.    The exit pressure, velocity,  and volume flow rate of non- 
condensable gas is then calculated.    The division of the cooler into 
distinct processes is an idealization of the real process and is done for 
analytical reasons only.   A schematic of the cooler is shown in Fig.  4. 
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The analysis of the cooler is based on the following assumptions: 

1. Thermodynamic and kinetic equilibrium exist between 
exhaust gas,  water vapor,  and liquid water at the 
cooler exit. 

2. Exhaust gas and water vapor behave as perfect gases. 

3. All cooling water is injected in the axial direction and 
remains in the stream as vapor or liquid. 

4. The flow is one dimensional,   and the cooler has a con- 
stant cross-sectional area. 

5. Drag forces on duct walls and spray water piping are 
negligible. 

6. All cooling water is injected at the same temperature, 
Twi = TW2- 

The necessary equations are those of conservation of mass,  species, 
momentum,  and energy and the equation of state.    Figure 5 is a schematic 
drawing showing the process. 

For the saturation (evaporation) process: 

Conservation of mass: 
"^nc!   +  mWl   +   mVl   =  mnC2   +   mV2 (1) 

also 
n>no1   =  mnC2   =   mnc   =  pnc   AVnc (2) 

and 
mwj   +  »YJ   =   "ivj (3) 

Conservation of momentum: 

PlA   +   (mVl   +  mnCl)VnCl   +   mWl   VWl 

=   P2A   +   (mV2   +   mnC2)VnC2 (4) 

Conservation of energy: 

4M(S + ~T-) + *™ (hnci + ^T~) + ™wi (hwi + "T~ ) 

/      Vnc2 \    .    /        Vnc2 \ 
= mv2lhv2 + — 1 + mnc2 |hnc2 + — I 

(5) 

where assumption (1) has been used. 
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P-&L (6) 

For the saturation process,  energy Eq. (5) can be written as: 

v2-v2 m        / v2-v2 
* n c j *nc2 v 1       / * n c i w 1 

i2 '"nci      "nc2'   "*"     [hvl-hwl   +- - I 
mnc       \ / 

(hv„ — hw ,)   + 

V 2-v       5     (7) v nc2 wl 
'v2      "wi' 2 

where Eq.  (3) has been used to eliminate mWi. 

For the dehumidification process: 

Conservation of mass: 

■"1102   +   ™w2   +   mv2   =   •J,nc3   +   lilW3   +   mV3 

also 
mnco   =   mnc=   =   mnc   =   Pnc   A> nc 

and 
mw2   +   mv2   =   mw3   +   mv3 

Conservation of momentum: 

P2A  +   (mV2  +  mnC2)   \aC2  +  mW2  Vw2  =  P3A   +  (mV3   +   m„c3   +  mW3) VnC3 

Conservation of energy: 

(Vnc2     \                   /                     Vnc2   \ / Vw2    \ 
K2  + — J*-  mnc ^c2  +   —)    +  *w2 ^w2  +  ——J 

■ L    *^2\ ■ L      VncA 1 •   L    Vnc32 \ ■  mv3 ^hv3   +  —\ J+  mnclhnC3   + I   +  mW3 lhW3   +  —  J 

Equation (6) can be written in the form: 

Pnc2 "ncj        1 3 

Pnc3 PnC3        T2 <8) 

Combining Eqs. (2) and (8),  squaring,  and solving for VnCq2 give 

2 
/Pnc2    T3\

2     . 

few Vn Pnc2                             1 - nee ■ J   \ • / ,r,-., 
V    2 =        ' v    2   - I -  I v     2                                 (9) '11C3 "HC2    ""   I ' v„^„ 

Pn c a 2 
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By noting that rh = pVA and using assumptions (1) and (4), the following 
can be written: 

1 v3 ^v3 *v3 
m v 

Pnc3 P nc3    mnc 
(10) 

By solving Eq. (3) for mWg and substituting Eqs.  (9) and (10) along with 

rhwq into Eq. (5), the ratio m^/mnc can be expressed as: 

Vnc2 
l"v2 

PV3ffiv 
~2~ " ft^T (h"3 - hyj ~ Pnc3anc 

(hv3 ~ hw3' 

Lvpnc3T2/ ~ \vnC2yJ   2 

2 

(hwg - h„2) + 

(ID 

This is the form of the energy equation to be used for the dehumidifica- 
tion process. 

To develop a usable form of the momentum equation,  using 
Eqs. (2), (3),  and (4)'and dividing by mnc produces the expression: 

E™v2\   / Pnc2   \ ",w2      / V"2 P"c2\] 1 ♦ <r) (j - T=T) 
+ ^r \^rt

+ 7^7)1    u» 
where , 

D     v rnc2   * nc2 

2 

Substitution of Eq. (8) into this equation gives 

P3 = P2 + 2q 17, . b.\ k . I-iLV -a. fit. I=ii\|   (13) 
ß ">no/\ Pnc3T2y        mnc       \VnC2 PnC3 T2/J 

The partial pressure of the noncondensable gases at the cooler exit 
is eliminated by applying Dalton's law of partial pressures: 

P3 = Pv3 - Pnc3 (14) 

At this point the momentum equation is rearranged and placed into 
quadratic form: 

aP3
2 * bP3 - c = 0 (15) 

where 
a - 1 

L \ mnc ""nc       Vnc2/J 
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and 

c   =   2q 
m«2 mw2 w2 

l + -— + ■— 
mnc mnc      *nC2 

P„,oT 
P 

'3 

"ncj   ' 3       /mw2 
mwA 

2q   —      (- 1    +   — }*    P2Pv3   {16) 
1 2 \ mnc mnc/ 

The roots of the quadratic have the form 

P3=-b±Vb2"4aC (17) 
2a 

where only the (+) sign has physical meaning.    In summary, the equa- 
tions to be solved are Eqs. (7) or (11) and (17) and the following condi- 
tions are known: 

1."     The enthalpy of all constituents as a function of tem- 
perature only. 

2. The partial pressure of water as a function of 
temperature. 

3. The temperature,  pressure,  and velocity of the 
exhaust gas entering the cooler,  and the tempera- 
ture and velocity of the cooling water being sprayed 
into the gas stream. 

The procedure used by the computer to solve the equations is given in 
Appendix III. 

3.2  "OPTIMUM" COOLER 

An "ideal" cooler may be defined by the same assumptions as used 
for the equilibrium model except that: 

1. The static pressure will be constant in the cooler,  and 

2. All liquid water (recondensed and sprayed) will be re- 
moved from the stream when it has achieved thermo- 
dynamic equilibrium. 

A theoretical cooler efficiency may then be defined as the ratio of the 
cooling water required for this ideal cooler to that determined by the 
equilibrium calculations at'conditions of equal volume flow rates at the 
cooler exit. 

mw    ideal 
ftheo   =  (18) 

mw    equilibrium 

The requirement of equal volumetric flow rates was made because this 
condition is believed to agree with conditions in ETF. 
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The equilibrium analysis has been presented in the previous section. 
The idealized equations are developed in this section and,  because of 
their ultimate use in determining cooler theoretical efficiency, just 
described,  are called "efficiency equations." 

The idealization assumes that: 

1. The cooler operates with a constant static pressure 
(Pj = P2 = P), and 

2. All previous assumptions are valid except that,  after 
saturation is initially achieved,  all liquid water is 
removed from the stream after coming to thermo- 
dynamic equilibrium. 

Writing mass and heat balance equations for the cooler gives: 

Mass balance: 

nine!   +  mVl   +  mWl   =  mnC2  +   mV2 (19) 

but 

therefore, 

mnc i    —   mnc i ~ mnc2 (20) 

mVl  +  mwi  =  mVs 

(21) 

Energy balance: 

mnc hnCl   +  mVl hVl   +  mWlhWl   =   mnc hnc2  +  ™v2 '1v2 (22) 

Equations (21) and (22) can be combined to yield 

hnc2   ~   *1nc1   =   mv2^mac ^vx   ~   hv2)   +   ™w1/™nc('>w1   -  kj) (23) 

Substituting Dalton's Law [Eq.   (14)] into Eq.  (10) gives 

mv pV2 P„2        mv 
^_£_=   = _— (24) 
mnc Pnc2 (P-rv2)     mnc 

Using the continuity equation (21) and solving for the ratio PVQ/P give 

-— + -—) 
mnc mnc/ 

(mYtl                mvi   \   __ 

    + ) mnc 
mnc              mnc/ 

PV2 ,      ... .... (25) 
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Substituting Eq. (24) into Eq. (23) gives 

"nc2        "nc i 

pv2 
mv 

(P - PV2) mnc 

m w - 
(hVj   -  hV2)   +   (hWl   -  hyj) (26) 

Equation (25) can be solved for 
m wi 
mnc 

(Pv2\/
mv i»vA 

P   / \™nc      mnc/ 

v2 
-1 

(27) 

This ratio is used in Eq. (26),  and PV2 is solved for: 

P     - P rv2 - r 

"nc2 - Kci + -— (hvx - K2) +  ■=— + -— 
mnc                                       \mnc           mnc/ 

|(hwi -hVi) 

(.28) 

The dehumidification section for the ideal cooler is represented by 
a series of differential elements in which water is allowed to reach 
thermodynamic equilibrium with the gas phase and the recondensed 
water is removed before advancing to the next differential element. 
Each differential element corresponds to a dT.   A schematic diagram 
is shown in Fig.  6 for a single typical element. 

For a differential element, the equations for the conservation of 
mass and energy can be written: 

Mass: 

Energy: 

dniv,,  =  drhv   +  dmv 

mnc dhnc   =   h„2 dmW2   -  iiiv   dhv   -  hv dmv   -   hWD dmWD 

(29) 

(30) 

Substituting for dmW[) from Eq. (29) into Eq. (30) and solving for dhnc 

give 

dmw.            mv dm, 
dhnc   =   0iWl   -  hwD)   •: :  dhv   -  (hv   -  hw   )   —— (31) 
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If Pv = PVg = f(T) throughout the dehumidification section, Eq. (24) may- 
be written as 

or 

m v 

"nc CP-PVg) 

dm v ^-   it £d 

(32) 

(33) 

By substituting Eqs. (32) and (33) into Eq. (31) and defining 

dm „, 

Eq. (31) becomes 

dh. 

dF = 

dh. 

(34) 

dF = 
^Wj-hwD P-Pvs 

mnc hw1
-llwD 

Equation (35) may be simplified by introducing 

and 

Equation (35) in integrated form is 

Vhwi-hwn/V-nc/   Vp-pvJ 

Note:    cD     =1 r w (36) 

(37) 

F = 
i 

/ 
T2 

1 dh. dh. 

TW2-T        dT P-PvB      <S„C) <TW2-T)        dT 

d     /  P, 

¥2-T   mnc     dT   \P-Pv9/_ (38) 

Equation (38) may be solved by using hnc, Pvs* nv»  and nfg each as a 
function of T. 

SECTION IV 
ANALYTICAL MODEL APPLICATION 

The equilibrium and efficiency equations for the spray cooler were 
programmed in FORTRAN IV language for computer solution.   Com- 
bustion equilibrium calculations were separately performed to establish 

10 



AEDC-TR-71-60 

the.cooler inlet states using the method öf Ref.   3.    These included the 
molecular weights, species mass fractions, volume of the nonconden- 
sable gas,  and the gas temperatures based on certain fuel/air ratios of 
conventional hydrocarbon turbojet fuels. 

An exploratory series of computer runs was made to observe the 
effect of varying one parameter at a time in the equations.   In this way, 
results can be observed in a qualitative manner.    A realistic grid was 
selected covering a range of experimental data for both the independent 
and fixed inlet conditions.    The range of the assigned values is indi- 
cated as Cases I through V in Table I (Appendix II) 

4.1   PROGRAM OUTPUT AND TYPICAL RESULTS 

The computer program generated printouts of selected parameters 
and graphs.    These parameters included T3,  P3,  PV3/P3,  VnCo, 
mv^/rhnc,  and Q/mnc. 

Preliminary computer runs indicated some difficulties with allow- 
ing the calculations to proceed to the temperature T3 = TW1.   Solution 
of Eq.  (17) presents the possibility of a negative discriminant.    Addi- 
tional discussion of this negative discriminant and the required con- 
straint on the program is presented in Appendix IV. 

The results of the computer calculations are shown in Figs.  7 
through 11. 

As the temperature of the cooling water is decreased, the tempera- 
ture of the exhaust gas at the exit of the cooler also decreases for a 
fixed amount of water injected (see Fig.   7).   In addition, the pressure 
drop across the cooler decreases as the cooling water temperature de- 
creases.   Therefore,  within the constraints of the model,  where high 
temperature exhaust gas may be generated and the pressure drop 
across the cooler may be critical, testing should be conducted using 
the lowest temperature cooling water possible. 

The second variable investigated was the influence of the cooling 
water injection velocity on the exit temperature and pressure (Fig.  8). 
The injected water velocity has negligible effect on the final gas tem- 
perature for a fixed amount of cooling water injected since the kinetic 
energy of this item is almost negligible itself especially at the lower 
values of mw< /mnc.    Increasing the injection velocity will decrease 
the pressure drop.    This would be expected since the cooling water 
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possesses more momentum and requires less contribution from the gas 
stream for its acceleration to equilibrium conditions. 

The effect of decreasing the cooler inlet pressure while the remain- 
ing inlet conditions remain fixed is shown in Fig. 9.    The pronounced 
effect on the exit temperature at initial saturation conditions is caused 
by the low saturation temperature at the lower values of partial pres- 
sure.    For the initial conditions used, the cooling process is essen- 
tially constant pressure,  and lowering the inlet pressure does not 
appreciably change this. 

The effect of increasing the inlet gas velocity is shown in Fig.  10. 
The general shape of the exit temperature and pressure curve is similar 
to that of Fig.  8 where the velocity of the injected cooling water is 
varied.   In both cases, the exit temperature and pressure decrease as 
the velocity difference between exhaust gas and inlet cooling water in- 
crease.   It can also be seen in Fig.  10 that as the velocity increases 
there is a maximum amount of cooling water (mWi   9/mnc) that can be 
injected and still have equilibrium conditions at the exit.    This also 
places a minimum value on the exit temperature of the exhaust gas. 
The physical significance of this limit is discussed in Appendix III. 

The final variable used in the study was inlet exhaust gas tempera- 
ture.   This was varied from 1048 to 4057°R, and the exit temperature 
and pressure were determined at various values of cooling water flow 
rate (mw^  2^innc^    ^or a predetermined value of mw^  2^rnnc *ne 

lower the inlet temperature, the lower the exit temperature (Fig.   11). 
The exit pressure decreased as the inlet temperature decreased,  also 
for a predetermined value of mwi  2/mnc-    The decrease in pressure 
at a lower inlet temperature was because a smaller quantity of water 
was vaporized and therefore a negligible increase in stagnation pres- 
sure resulted (A discussion of the effects of mass additions on stagna- 
tion pressure may be found in Chapter 8 of Ref.  4).   Also there was 
more liquid water remaining in the stream to accelerate to kinetic 
equilibrium at the lower values of temperature. 

4.2   KINETIC EQUILIBRIUM 

An assumption made when deriving the equations for the spray 
cooler performance program was that the flow is in kinetic and thermo- 
dynamic equilibrium at the cooler exit.    To determine the effect of 
assuming kinetic equilibrium,  a typical set of cooler conditions was 
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chosen, and the usual parameters T3, P3, and mWj+2/mnc were ob- 
tained, as well as the six individual terms of the momentum equation 
in the following form: 

P1A1 /mvl \   Vt>ci mwj    Vwj P3 A3 /mv3 \     Vnc3 
mw3    Vnc3 (™V1 \   V'nC1 mWl    VW1     ^   P3A3 /nV3 \    V 

mnc I      gc mnc       gc mnc \mnc /      I 

where 

"Inn Sc 

mnc Pnoj Vnej Al Pnci^nci "ncj ^ncj 

and similarly 
P3A3 P3 Rnc T3 

p      v 1 nc3   *nc3 

The assumption of kinetic equilibrium requires that the liquid water 
must be accelerated to the gas velocity leaving the cooler.    Therefore, 
the relative weight of the water term (mW3/innc)(VnCg/g) was observed. 
The inlet parameters were: 

Pi    =  6 psia 

Ti    =  2718°R 

TWl=  520°R 

VWl=   100 ft/sec 

Vgl =  480 ft/sec 

and 
mnc   =   1 lbm/sec 

Table II contains values of the individual terms which comprise the 
momentum equation and their respective values as rhWi   2^I^1nc varied. 
The right hand column gives the contribution of the term 
(mW3/mnc)(Vnc3/g) to the total momentum as the cooling water ratio 
(mwi   2/mnc^ varied.    Since assuming kinetic equilibrium (i. e., 

VWg = V11C3) is the limiting case, the percentages shown are the maxi- 
mum contributions of the liquid water at the exit when assumed to be 
in kinetic equilibrium.   If the value of the water term were less, the 
effect would be smaller. 

Experience to date has shown that a value of approximately five or 
less for the ratio rhwi^/^nc *s sufficient for the majority of turbojet 
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testing conditions.   Thus, for the case presented in Table II, the term 
directly associated with kinetic equilibrium is seen to carry approxi- 
mately 6 percent of the total momentum.    It is concluded that the 
assumption of kinetic equilibrium at the spray cooler exit is a justifi- 
able one for many cases and that the prediction of the exit pressure 
would be incorrect by no more than 6 percent.   This amount of error 
would probably be higher for low pressure or high subsonic conditions. 

4.3  THERMODYNAMIC EQUILIBRIUM 

A study was also made to check the effect of assuming thermo- 
dynamic equilibrium.   Assuming equilibrium in this manner means that 
the temperatures of all constituents (noncondensable exhaust gas,  water 
vapor, and liquid water) are equal as well as the partial pressures of 
liquid water and vapor as they pass the exit plane of the cooler.   Since 
the final temperature of the liquid water (Twg) is a function of many 
items outside the scope of this computer program (such as nonequilib- 
rium effects), this parameter was arbitrarily varied to determine the 
effect on the required.water for cooling (mWi  2/I*1nc)-   The tempera- 
ture of the water at station 3 (TWß) was taken to be: 

lwj   =    I11C3   —  'I11C3   ~   1«^' * 

where X was equal to 0,  0.1,  0. 5, and 0. 7.   The limiting case is X = 0, 
which is the assumption of thermodynamic equilibrium.    The partial 
pressure of the water vapor was taken to be a function of TnCq.    The 
amount of water required to cool the engine exhaust gas is extremely 
sensitive to the final water temperature (TWg) as shown in Fig.   12.    The 
input conditions were the same as for the previous kinetic equilibrium 
case.    To cool the exhaust gas to 590°R would require the mass ratio of 
water to noncondensable gas to vary from approximately 4 to 12 for X 
varying from 0 to 0. 7, respectively.   Hence, the cooler performance 
is very sensitive to the degree of thermodynamic nonequilibrium at the 
exit.   An accurate independent measurement of the water and exhaust 
gas temperatures is essential for determining the true state of the 
exhaust gas at the exit. 

4.4  EFFICIENCY OF AN EXPERIMENTAL COOLER 

To show the effects on the theoretical efficiency, 
mw optimum . .  ^ ., , 

0 = — ,  of varying the parameters 
mw equilibrium 

limiting values were selected from Case I and the limiting and mean 

mw optimum , .     xl ,_ , Tr ^theo = ~   »  °* varying the parameters Twi and VW1, the mw equilibrium 
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values from Case II,  respectively.   In Fig.   13a, TWj has the values of 
500 and 545°R which experience has shown are the lower and upper 
limits of the cooling water inlet temperature in the AEDC coolers of 
interest.    As would be expected, the lower water temperature yields a 
higher efficiency for a given volume flow rate.    Figure 13b shows how 
VWj can affect the efficiency; Vw^ took the values 50,   90,  and 130 ft/sec. 
For a given volume flow rate, the efficiency is greatest at the highest 
water velocity.    This is to be expected.    High water velocity means 
less momentum lost by the exhaust gas and, therefore,  a situation 
closer to the "ideal" as defined by constant pressure throughout the 
cooler. 

The theoretical efficiency (itheo' establishes a ratio of optimum to 
equilibrium conditions.    The actual efficiency {1actual^ establishes a 
ratio of ideal to actual conditions.    The efficiency ratio ("actual/^heo^ 
establishes a ratio of actual to theoretical efficiencies resulting in a 
measure of attainment of the actual case to the equilibrium case.    This 
provides comparison of actual test conditions with the ideal equilibrium 
conditions and,  as such,  is a measure of effectiveness, of actual opera- 
tion. 

To develop this efficiency ratio (lactual/^theo^' three experimental 
tests were selected on the basis of having approximately constant cooler 
inlet conditions (see Table III) and assumed equilibrium outlet conditions. 
With the latter assumption and measuring the necessary inlet conditions 
(noncondensable and cooling water flow rates) and exit conditions (pres- 
sure and temperature), the volumetric flow rate of the exhaust gas at 
the exit is calculated.    The temperature is measured with a bare wire 
thermocouple extending into the gas stream where it will record the 
temperature of the liquid water impinging on it.   Since equilibrium has 
been assumed,  this will also be the gas temperature.    The amount of 
cooling water necessary to give this volumetric flow rate is calculated 
using the equilibrium and "optimum" cooler computer programs.    The 
theoretical efficiency (nthe0 = mw0ptimum/lhwequilibrium) as a func_ 

tion of the cooling water ratio (ihwi^/^nc) is shown for each-experi- 
mental measurement separately (Fig.   13c).    This shows the maximum 
achievable efficiency based on the equilibrium assumptions and the 
actual efficiency based on measured values.   The ratio of actual to theo- 
retical efficiencies is shown in Fig.   13d to indicate how close to equilib- 
rium efficiency the existing coolers are operating.   It can be seen that 
the cooler operates close to maximum predicted efficiency at the lower 
values of mw1   _/mnc but decreases as the valueof ihwi^/^nc m" 
creases. 
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SECTION V 
CONCLUDING REMARKS 

Testing of turbojet engines and rocket motors at the ETF requires 
the cooling of hot exhaust gases, and direct contact water sprays are 
used for cooling.    To facilitate the understanding of the cooling process, 
an analytical model of an exhaust gas spray cooler was developed. 
Results from the model were used to compare with measurements made 
during actual engine tests.    The analytical model as developed includes 
the equilibrium equations and "ideal" efficiency equations and is based 
on the assumptions of:   (1) thermodynamic and kinetic equilibrium at 
the exit, (2) perfect gases and vapor,  (3) all cooling water remaining 
in the stream flow, (4) one-dimensional constant area flow, (5) no ex- 
ternal drag forces,   and (6) discrete saturation and dehumidification 
processes.   The method of solution of these equations has been outlined 
in the form in which they were programmed for the computer. 

The computer program gives an opportunity to evaluate the influ- 
ence of various parameters on the output.    The analytical examination 
of the kinetic and thermal equilibrium assumptions show that the calcu- 
lation of cooler exit conditions is relatively insensitive to kinetic 
equilibrium, but sensitive to the degree of thermal nonequilibrium. 
Efficiency calculations confirm that two contributing items to higher 
efficiency are low water temperature and high water velocity.    Experi- 
mental measurements indicate that the efficiency is closer to theo- 
retical at low values of mwi+ 2/innc than at the higher values. 

Verification of the validity of the analytical model assumptions re- 
garding exit equilibrium conditions will require development of new 
instrumentation for two-phase flow conditions.    Further refinement of 
the analytical model will be required to incorporate consideration of 
droplet size and distribution,  and nonequilibrium thermodynamic effects. 
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Fig. 1   Exhaust Gas Cooler in Propulsion Development Test Cell (T-1) 
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c.   Multinozzle Spray Heads, View Looking Upstream (Banks No. 4 through 11) 
Fig. 2   Concluded 
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TABLE I 
PARAMETRIC GRID OF INLET CONDITIONS (COMPUTER CASES) 

CO 

Cases 

Parameters 

Remarks T 
i 

°R 

P 
l 

psia 
l 

ft/sec 

T w 

°R'
2 

V w 

ft/sec 

1 2718 5 480 500 to 
580 100 T    was varied in 5-deg increments 

1,2 

II 2718 5 480 520 50 to 
130 

V    was varied in 10-ft/sec increments 

1,2 

III 2718 2 to 
14 480 520 100 p was varied in 2-psi increments 

IV 2718 5 320 to 
2130. 520 100 V   was varied in nonuniform increments nc 

l 

V 1048 to 
4057 5 480 520 100 T was varied in nonuniform increments 

l 
D 
O 
H 
20 
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TABLE II 
KINETIC EQUILIBRIUM INFLUENCE, VALUE OF MOMENTUM EQUATION TERMS 

1+2 

nc 

1.15 

5.13 

10.46 

23.41 

P A 
l   l 

nc 

316.4 

316.4 

316.4 

316.4 

/m nc 

+  1 
ill nc 

15.5 

15.5 

15.5 

15.5 

m V w w 
1+2 1 

m g nc 

3.5 

15.9 

32.4 

72.6 

P A 
3   3 

nc 

323.0 

319.8 

322.8 

332.1 

nc 

,m nc 

9.17 

6.00 

4.16 

3.15 

m  V w  nc 
3     3 

m   g nc  ° 

3.61 

22.05 

37.21 

69.18 

/m      V w  nc 
3     3 

,m   g nc ° 

Total 
Momentum^ x 100% 

1.1% 

6.3% 

10.2% 

17.1% 



TABLE Ml 
SPRAY COOLER CONDITIONS USED FOR CALCULATING EFFICIENCIES 

Pi Ti - nci 
T 
Wi V m    /m w1+2  nc 

Run No. psia °R ft/sec °R ft/sec Actual 

6-6 5.1 1096 368 512 70 1.42 

6-5 5.1 1096 360 512 80 2.60 

6-23 5.1 1096 374 512 100 3.16 

> 
m 
O 
o 
H 
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APPENDIX 111 
PROCEDURE FOR SOLUTION OF EQUATIONS 

I.     Solution of Equilibrium Equations 

The procedure for determining exit conditions by solving Eqs. (7) 
or (11) and (17) involves two separate steps as follows: 

For that part of the process leading to saturation: 

1. Let P2 = Pi. 

2. Assume a T2. 

3. Calculate a new temperature (T2new) using Eq. (7), 
Eqs. (9) and (10) in which Dalton's law is used to 
eliminate Pno  anc* tne partial pressure-temperature 
relationship. 

4. Compare T2new with the assumed temperature in 
step 2.    If their difference is within tolerance,  pro- 
ceed to step 5; otherwise let T2 = T2new, and go back 
to step 3. 

5. Calculate a new pressure (P2new) using Eq.  (17). 

6. Compare P2new w^h P2 in step 1.   If their difference 
is within tolerance,  P2 is the saturation pressure,  and 
T2 is the saturation temperature; otherwise let 
P2 = P2new'  T2 = T2new*  and §° back to steP 3- 

For that part of the process beyond saturation (dehümidification): 

1. Let T3 = Tsaturatjon - AT.where AT is some small 
temperature increment on the order of one degree. 

2. Let P3 = Ps. 

3. Calculate a new pressure (P3new) using the partial 
pressure-temperature relationship, Eqs. (9), (11), 
and (17). 

4. Compare P3new with the pressure (P3) in step 2.   If 
their difference is within tolerance,  the equations 
are satisfied at the assumed temperature (T2).    Go to 

P-i + P3 "          new step 5.    Otherwise let P3 = 0 »  and go to 

step 3. 
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5.     Let T3 = T3 - AT.    Go to step 2. 

The dehumidification procedure is allowed to continue until T3 = TW2- 

II.   Solution of Efficiency Equations 

The procedure for solution of Eq. (27) for the saturation case is as 
follows: 

1. Determine Pv'3»  a known function of T,  at an assumed T3. 

2. Calculate PVQ from Eq.  (28). 

3. Determine.T3new,  a known function of Pv,  at Pv3 

4. Compare Pv3np    with Py3-   If their difference is within 

tolerance,  let PVo = PVo,   and proceed to step 5: other- 
3new        v3 

P      + P 
0 °new 

wise let PVo = ö    and T, = T*       ,  and go v3 2 J ■'new ö 

back to step 2. 

5. Calculate the water required for stauration using 
Eq".   (27). 

For the dehumidification case, the solution of Eq. (38) is required. 
The procedure for solving this equation is based on a Gaussian integra- 
tion technique.    The term (F) is the ratio of the mass flow of the water 
injected into the dehumidification cooler element to the mass flow of 
noncondensable gases,  F = mW2/rhnc.    To determine the total mass 
flow ratio of the entire cooler,  the water injected into the saturation 
section (rhw^ /^nc) can ^e added to F.    This will give the ideal 

mass flow ratio (ihw^ea^/mnc).    From this can be calculated the value 

of total water required for the entire cooler for the idealized case 
(mwideal). 
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APPENDIX IV 
SOLUTIONS OF THE MOMENTUM EQUATION 

The original development of the momentum equation in Section III 
led to the solution of the exit pressure (P3) from an equation of the 
quadratic type: 

_   -b + Vb2 -4ac 
P3   " Ta 

where a, b, and c have previously been defined.   The possibility of the 
quantity b^ - 4ac becoming negative and giving an exit pressure in terms 
of a complex number is immediately recognized.    The question becomes 
(1) will this happen during numerical solution, and (2) if it does, is 
there a physical explanation? 

For certain cooler inlet conditions, b2 - 4ac does become negative 
during the numerical solution.   Correspondingly, there is a minimum 
value of T2 and a maximum value of mw<   2^I*lnc'  say ^^wi  2^I*lnc^        * 

for which a solution can be obtained to the momentum equation.    A 
physical interpretation of this behavior is that it is impossible for 
equilibrium to exist at the exit of the cooler when the value of the water 
added to the cooler exceeds (mw^ 2^nc^max-   *' the cooler is oper- 
ating with equilibrium at the exit and the rate of cooling water injection 
equals to (mw^  2/r*1nc)max anc* *ne rate °^ cooling water injection is in- 
creased, the gas phase will choke at the cooler exit,  and thermodynamic 
and kinetic equilibrium cannot exist at the exit.    Any further increase in 
water injection rate must cause an adjustment in the initial conditions. 
The analysis indicates a sudden choking condition.   That is, the gas 
phase Mach number at the cooler exit would suddenly jump from some 
subsonic valve to unity with the addition of a differential amount of water. 
However, in an actual cooler which has finite length, sudden choking 
would not be expected to occur because of nonequilibrium effects.   Also, 
the value of ihwi  2^mnc a* which choking would occur in an actual cooler 
would be somewhat higher than (mw^  2^I^1nc^mav- 
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