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ABSTRACT

An analysis was undertaken to better understand the phenomena
occurring in spray coolers and to develop a mathematical model for
"¢omparison with experimental data from an operating unit. The
physical characteristics of an operational exhaust gas spray cooler
and the instrumentation systems are described. A mathematical model
of a spray cooler was developed by assuming kinetic and thermodynamic
equilibrium and one-dimensional flow. A mathematical model of a
hypothetical, optimum cooler is included in order to have a basis for
defining cooler efficiency. The equations were programmed for
numerical solution on a digital computer, and several trial case runs
are presented. Experimental measurements are compared with the
efficiencies predicted by the mathematical models.
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N NOMENCLATURE

A. Cross-sectional area, ft2

a, b, c Quadratic equation coefficient

c‘b Specific heat at constant pressure, Btu/lbm °R
F Ratio of masses, myq/Mpc

Gl ..G8 Influence coefficients defined in Figs. III-1b and c
Gravitational constant, lbm ft/1bf sec?

gc
h. Enthalpy, Btu/lbm
m Mass flow rate, lbm/sec
m Molecular weight, lbm/lbm-mole
P Pressure, 1bf/ft2
Q" Volumetric flow rate, ft3/sec
a Dynamic pressure, lbf/ft2
R Gas constant, 1bf ft/lbm °R
R Universal gas constant, lbf ft/lbm-mole °R
T Temperature, °R
v Velocity, ft/sec
X Coefficient
A . Incremental change
n Efficiency
o - Mass density, lbm/ft3
SUBSCRIPTS
1 Inlet (evaporation section)
2 Exit (evaporation section), Inlet (dehumidification section)
3 Exit (dehumidification section) ‘
D Drain
fg Change by evaporation
nc' Noncondensable
S . Saturation
v Vapor
: Water
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SECTION 1
INTRODUCTION

Testing of turbojet engines and rocket motors at simulated altitude
in ground test facilities requires cooling of the high temperature
exhaust gas to a relatively low temperature before the gas enters the
exhaust gas pumping system. Cooling of the gases by water spray with
direct heat and mass exchange between the water and the exhaust gas
has been utilized in many test facilities. This method of cooling is
often called spray cooling.

Many of the spray coolers used in the Engine Test Facility (ETF)
at the Arnold Engineering Development Center (AEDC) receive exhaust
gas from a rocket or turbojet engine. The cooling process reduces the
temperature from approximately 4000°R (maximum temperature of a
turbojet engine exhaust gas) to approximately 550°R. By means of an
atomizing water spray, the exhaust gas is cooled and dehumidified.

The cooling produces a temperature compatible with the ducting, con-
trol valves, and pumping system material limits, and the dehumidifica-
tion maximizes the exhaust gas handling capacity of the exhaust pumping
machinery. Water conservation is an important consideration in opera-
tion because of the large quantities of spray water required.

There is limited knowledge\of the detailed performance of exhaust
gas coolers in general and, in particular, of coolers operating at low
pressures and with high velocity gas streams. Therefore, a program
was initiated with two objectives: (1) to develop a mathematical model
to assist in the formulation of design criteria for future coolers, and
(2) to define and understand the general operating characteristics of the
coolers in use at the ETF., When data collected during exhaust gas
cooler operation in support of normal engine test programs are com-
pared with data from the mathematical model, the limits of operation
for the coolers currently in use can be determined.

The overall work is being carried out as a joint effort between the
Arnold Engineering Development Center (AEDC) and the German Agency
for ‘Aeronautics and Space Research (DFVLR). The work at AEDC was
conducted in the Engine Test Facility. The cooler performance data
were obtained from one of the propulsion engine test cells during actual
test runs. Instrumentation for the cooler performance data was in-
stalled in the exhaust gas cooler and associated ducting. The work at
DFVLR (Refs. 1 and 2) was performed at the Institute for Chemical
Rocket Testing at Lampoldshausen. The DFVLR work is developed for
low velocity, low mass flow rates of exhaust gas, whereas the work in
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ETF is primarily concerned with high velocity, high mass flow rates of
exhaust gas.

This report contains the derivation of a mathematical model based
on thermodynamic and kinetic equilibrium at the cooler exit. A cooler
efficiency based on a hypothetical optimum cooler was defined. The
physical characteristics of an operational exhaust gas spray cooler and
the instrumentation systems are described. Experimental measure-
ments obtained from actual cooler operation are compared with the
mathematical model predictions. The mathematical model was used
over a full range of inlet conditions to calculate cooler exit conditions,
and the results are presented. A bibliography of related reports is
also presented.

SECTION 1
EXHAUST GAS COOLER SYSTEM

2.1 CONFIGURATION

The configuration for a typical horizontal exhaust gas spray cooler
consists of a diverging conical inlet section followed by a constant-area
duct to the end of the spray cooler (Fig. 1, Appendix I). The cooling
water is introduced through groups of nozzles arranged in a series of
banks (Fig. 2a), in which the first several banks of sprays consist of
nozzles projecting a fan-type spray directed downstream along the wall
to protect the ducting (Fig. 2b). The other banks consist of spray heads
arranged in a wagon-wheel configuration with several spokes, each
"spoke' containing several spray heads. Each spray head contains
several fixed-geometry, conical spray nozzles (Fig. 2c) directed
generally downstream. The water is supplied by a large header, and
each spray bank is supplied from the header by a line containing a valve
for flow control.

2.2 INSTRUMENTATION

Instrumentation was provided to measure flow rates, pressures,
and temperatures of the exhaust gas stream entering and leaving the
cooler; the cooling water into the spray cooler; and the drain water out.
of the cooler at the cooler drain line. The location of this instrumenta-
tion is shown in Fig. 3. Measurements taken by this instrumentation
provided information which was used to provide experimental correla-
tion with the analytical results from the mathematical model.
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The millivolt outputs from the thermocouples and strain-gage-type
pressure transducers were recorded on either magnetic tape or by a,
photographically recording galvanometer-type oscillograph. The mag-
mnetic tape data were reduced on a digital computer, and the oscillograph
data were reduced manually using electrical calibrations taken prior to
testing.

The cooling water flow rates were calculated using the spray noz-
zle manufacturer's value of discharge coefficient and a measured pres-
sure drop between the supply header around the cooler and an average
cooler pressure. This method assumes that the discharge coefficient
and the area of the nozzles have not changed appreciably from the
original values. The measured pressures were recorded by an oscillo-
graph.

The cooling water leaving the exhaust gas cooler at the exit through
the large (14-in. -diam) drain line was measured using a small flow-
meter (3/4-in, turbine-type) mounted as a probe in the drain line. The
data were recorded by (1) an oscillograph as an analog signal and
(2) a frequency signal. The performance of this device waé not satis-
factory because of the very low flow rates during cooler operation.

SECTION 1}
DEVELOPMENT OF THE ANALYTICAL MODEL OF THE SPRAY COOLER

The model to predict cooler exit conditions assumes that the exhaust
gas, water vapor, and liquid water are in thermodynamic equilibrium
and have the same velocity (kinetic equilibrium) at the exit. The deriva-
tion of the equations necessary to compute the exit conditions and effi-
ciency of the exhaust gas cooler is outlined below.

3.1 DERIVATION OF EQUATIONS GOVERNING COOLER BEHAVIOR

From given cooler inlet conditions (pressure, temperature, gas
velocity and composition and cooling water temperature and velocity),
the amount of cooling water necessary to reach a preselected exit tem-
perature is computed in two distinct processes: (1) saturation {evapora-
tion) and (2) dehumidification (recondensation) with the gas remaining
saturated. The exit pressure, velocity, and volume flow rate of non-
condensable gas is then calculated. The division of the cooler into
distinct processes is an idealization of the real process and is done for
analytical reasons only. A schematic of the cooler is shown in Fig. 4.
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The analysis of the cooler is based on the following assumptions:

1. Thermodynamic and kinetic equilibrium exist between
exhaust gas, water vapor, and liquid water at the
cooler exit.

2. Exhaust gas and water vapor behave as perfect gases.

3. All cooling water is injected in the axial direction and
remains in the stream as vapor or liquid.

4, The flow is one dimensional, and the cooler has a con-
stant cross-sectional area.

9. Drag forces on duct walls and spray water piping are
negligible.

6. All cooling water is injected at the same temperature,

Twl = Tw2.

The necessary equations are those of conservation of mass, species,
momentum, and energy and the equation of state. Figure 5 is a schematic
drawing showing the process.

For the saturation (evaporation) process:

Conservation of mass:

Mpe, + My, + My, = Hpc, + My, (1)
also

I.“ncl = lhncz = mpe = pnec AVne (2)
and

r'nW1 + rhvl = rh‘,z (3)

Conservation of momentum:

P;A + (ﬁ:vl + r'nncl) Vne, + ';'Wl Vw,
= P2A + (my, + fincy) Vae, (4)

Conservation of energy:

Vne 2 Y Vie, 2 . V.2
""v16‘v1 + '2—1) * fino ("“1 ey T
. vncg2 . Vnt:z2
= My, h\,2 + ) + Mncy hncz + 9 (5)

where assumption (1) has been used.
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Equation of state:
p.ft (6)

For the saturation process, energy Eq. (5) can be written as:

. Vac &~ A\ 2 my Ve % - Vw 2
1 2 . 1 h h 1 1
Myg (hncl_hncz) + 2 - vy " hw, + 2
nc
" Vn¢:22_ Vo 2 (7)
nc

(h,,2 —hwy) +

where Eq. (3) has been used to eliminate my.

For the dehumidification process:

Conservation of mass:

Mpe, + My, + My, = Mpey + My, + Myy
also

Mpe, = Mpeg = Mpc = Pnc AVye
and

My, + My, = My, + My,

Conservation of momentum:

PoA + (my, + Mpc,) Vnc, + Mw, Vw, = P3A + (my; + mpcy + my,) Ve,
’

Conservation of energy:

Vnc22 Vnc22 Vw22
my, h\'2 + — + mge hn02 + -—-——-2 + My, l’IW2 + >
r r 2
. V"“332 . vnc32 . ‘ncs
= tey (byy + —3 )+ fno(hney + —3) g (g + —

Equation (6) can be written in the form:

Pncy Pnc2 Tg
Pncgy P To (8)

ncg

Combining Egs. (2) and (8), squaring, and solving for Vpe 32 give

2 mo\?2
pn¢:2 . Pnc2 l3 .
\'nca = \"ncg = - Vm-:22 (9)

pnc32 Pnc3 Ty
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By noting that m = pVA and using assumptions (1) and (4), the following
can be written:

vg _ Pvqy _ PV3 my

- TP = (10)

Mpe Pncy ncg Mnc

By solving Eq. (3) for my5 and substituting Egs. (9) and (10) along with

myg into Eq. (5), the ratio myq/fhye can be expressed as:

. l;‘vz Pnc21‘3 ? Vnt:22 l';‘vz l:’v:.;'."-‘v
Mwg  (ney = hneg) = \\1+ Z==J\p—ory) ~ 1 5~ 57— Bwg=hvy) =y 5 g —huy!

Mne
Mne * " + (PnczTa i (vwz vnc22
w3~ Bwy) PocsTo/ ~ \Vac, 2
' (11)

This is the form of the energy equation to be used for the dehumidifica-
tion process.

To develop a usable form of the momentum equation, using
Egs. (2), (3), and (4) and dividing by m,, produces the expression:

p p 1 r;‘vz Pncy ;nwz V‘”2 + Pucg
3=F2+ X * Bne B pncy ¥ Mpe Vncg Pacy (12)

, 2
Pncy ‘ncz
1=

where

Substitution of Eq. (8} into this equation gives

m, Poco T my, Vo Ppc, T
P3=P2+2q(1+.2)(— “2 3)+.2 ( 2 . 23)] (13)
Mpe Pnc3T2 Mpe Vncz Pnc3 T,

The partial pressure of the noncondensable gases at the cooler exit
is eliminated by applying Dalton's law of partial pressures:

P3 = Py, + Py, (14)

At this point the momentum equation is rearranged and placed into
quadratic form:

aP32 « bP3 = ¢ = 0 (15)

My My, Vi
- P2+P,,3+2q 1 + - 2 + .“2 i (16)
Mne Mpe  Vneg

where

o .
1)
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and

';‘wz ";wz vw2 l:’nc2 1‘3 ""wz ';‘wz
c=2q|E+- * 3 Py, - 2 ; . -1+ + PaPyvy (16)

Mpe Mpe vn<:2

The roots of the quadratic have the form

~bt b2 - 4ac
Pq

= o {(17)

where only the (+) sign has physical meaning. In summary, the equa-
.tions to be solved are Eqs. {7) or (11) and (17) and the following condi-
tions are known:

1. The enthalpy of all constituents as a function of tem-
perature only.

2. The partial pressure of water as a function of
temperature.

3. The temperature, pressure, and velocity of the
exhaust gas entering the cooler, and the tempera-
ture and velocity of the cooling water being sprayed
into the gas stream.

The procedure used by the computer to solve the equations is given in
Appendix III.

3.2 “OPTIMUM” COOLER

An "ideal" cooler may be defined by the same assumptions as used
for the equilibrium model except that:

1. The static pressure will be constant in the cooler, and

2, All liquid water {recondensed and sprayed) will be re-
moved from the stream when it has achieved thermo-
dynamic equilibrium.

A theoretical cooler efficiency may then be defined as the ratio of the
cooling water required for this ideal cooler to that determined by the
equilibrium calculations at’conditions of equal volume flow rates at the
cooler exit.

;“w ideal

Ntheo = = (18)

My equilibrium

The requirement of equal volumetric flow rates was made because this
condition is believed to agree with conditions in ETF.
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The equilibrium analysis has been presented in the previous section.
The idealized equations are developed in this section and, because of
their ultimate use in determining cooler theoretical efficiency, just
described, are called "efficiency equations."

The idealization assumes that:

1. The cooler operates with a constant static pressure
(Py = Py = P), and

2. All previous assumptions are valid except that, after
saturation is initially achieved, all liquid water is
removed from the stream after coming to thermo-
dynamic equilibrium,

Writing mass and heat balance equations for the cooler gives:

Mass balance:

r."ncl + ';‘vl + ‘:ﬂwl = ;“ncz + ’;1v2 (19)
but
Mpey; = Macy (20)
therefore,
- m‘,l + |'rl“,1 = nlvz (21)
Energy balance:
f;lnc hncl + r.n‘,.lh‘,l + '{‘wlhwl = ';1nc }ln02 + 'hvz hvz (22)
Equations (21) and (22) can be combined to yield
hacy = bney = My,/Mne (hy, = hy,) + my /mge (hyy = hy)) (23)
Substituting Dalton's Law [Eq. (14)] into Eq. (10) gives
l';‘v2 _ Pv2 ~ Pv2 T“-v
r;'nc Pnc,y (P—Pvg) Mye (24)

Using the continuity equation (21) and solving for the ratio PVZ/P give

My, My,
Enc . +
Pvz Mpe Mpe

- (25)

P Mwy My
my +47 + - Mpe
Mpe Mpe
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Substituting Eq. (24) into Eq. (23) gives

P, ., Py
Proy = hney = (P=Pyy) e oy = hvgd = 27 Gy = o) 26
Equation (25) can be solved for = :
Mne
- P — + - - —
mp Mpe Mpe
AR - (27)
m P
ne va
= -1
This ratio is used in Eq. (26), and Py, is solved for:
m,,l
hnc2 - hnc1 + W (hwl - hvl)
P,, = P — : — - (28)
m, m, My,
hn02 - hm:1 + —ET (hvl—hv2) +(Enc + ‘:ﬁ_n:) (h“'l - h,,l)l

The dehumidification section for the ideal cooler is represented by
a series of differential elements in which water is allowed to reach
thermodynamic equilibrium with the gas phase and the recondensed
water is removed before advancing to the next differential element.
Each differential element corresponds to a dT. A schematic diagram
is shown in Fig. 6 for a single typical element.

For a differential element, the equations for the conservation of
mass and energy can be written:

Mass:
ding, = dihy + dihyp _ (29)
Energy:
Mnc dhne = hy, ditw, ~ fiy dhy = hyding = hyp diyg (30)

Substituting for dmwp, from Eq. (29) into Eq. (30) and solving for dhyc
give
ity

dhnc = (h“’l - th) "

m

My

dhy - (by = hyp)

ne Mpe Mhe

(31)
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If Py = Pyg = f(T) throughout the dehumidification section, Eq (24) may
be written as

‘ va my
'.“nc ) (P—va) F‘nc (32)
or
dm m, /m
l':‘m: ) ﬁnt: \P Pv,) (33)
By substituting Eqs. (32) and (33) into Eq. (31) and defining
drh
dF = (34)
Mpe

Eq. (31) becomes

dhpc P, m, dh, hy~h my P,
dF = + - — P [—2-) = d( >\ 35)
hwl_hwn P-P,, My, hy, —hyp hwl—th Mpc P=-P,,

Equation {35) may be simplified by introducing

hwy, = hyp = Ty, - T Note: ¢p, =1 (36)
and
hy - th = hyg (37)

Equation (35) in integrated form is

nc P\va My dh,
F f : +
Tuwg — P-Py, (Fgo (Typy-T) dT
hg m, d Py
b — — —— [——)]| 4T
Twy=T Mpe dT \P~-P,_ (38)

Equation (38) may be solved by using hpg, PVS, hy, and hfg each as a
function of T.

SECTION 1V
ANALYTICAL MODEL APPLICATION

The equilibrium and efficiency equations for the spray cooler were
programmed in FORTRAN IV language for computer solution. Com-
bustion equilibrium calculations were separately performed to establish

10
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the.cooler inlet states using the method of Ref. 3. These included the
molecular weights, species mass fractions, volume of the nonconden-
sable gas, and the gas temperatures based on certain fuel/air ratios of
conventional hydrocarbon turbojet fuels.

An exploratory series of computer runs was made to observe the
effect of varying one parameter at a time in the equations. In this way,
results can be observed in a qualitative manner. A realistic grid was
selected covering a range of experimental data for both the independent
and fixed inlet conditions. The range of the assigned values is indi-
cated as Cases I through V in Table I (Appendix 1I)

4.1 PROGRAM OUTPUT AND TYPICAL RESULTS

The computer program generated printouts of selected parameters
and graphs. These parameters included T3, P3, Pv3/P3, Vncss

myq /e, and Q/mpc.

Preliminary computer runs indicated some difficulties with allow-
ing the calculations to proceed to the temperature T3 = Tw;. Solution
of Eq. (17) presents the possibility of a negative discriminant. Addi-
tional discussion of this negative discriminanl and the required con-
straint on the program is presented in Appendix IV,

The results of the computer calculations are shown in Figs. 7
through 11,

As the temperature of the cooling water is decreased, the tempera-
ture of the exhaust gas at the exit of the cooler also decreases for a
fixed amount of water injected (see Fig. 7). In addition, the pressure
drop across the cooler decreases as the cooling water temperature de-
creases. Therefore, within the constraints of the model, where high
temperature exhaust gas may be generated and the pressure drop
across the cooler may be critical, testing should be conducted using
the lowest temperature cooling water possible.

The second variable investigated was the influence of the cooling
water injection velocity on the exit temperature and pressure (Fig. 8).
The injected water velocity has negligible effect on the final gas tem-
perature for a fixed amount of cooling water injected since the kinetic
energy of this item is almost negligible itself especially at the lower
values of mwl/mnc- Increasing the injection velocity will decrease

the pressure drop. This would be expected since the cooling water

v

11



AEDC-TR-71-60

possesses more momentum and requires less contribution from the gas
stream for its acceleration to equilibrium conditions.

The effect of decreasing the cooler inlet pressure while the remain-
ing inlet conditions remain fixed is shown in Fig. 9. The pronounced
effect on the exit temperature at initial saturation conditions is caused
by the low saturation temperature at the lower values of partial pres-
sure. For the initial conditions used, the cooling process is essen-
tially constant pressure, and lowering the inlet pressure does not
appreciably change this,

The effect of increasing the inlet gas velocity is shown in Fig. 10.
The general shape of the exit temperature and pressure curve is similar
to that of Fig. 8 where the velocity of the injected cooling water is
varied. In both cases, the exit temperature and pressure decrease as
the velocity difference between exhaust gas and inlet cooling water in-
crease. It can also be seen in Fig, 10 that as the velocity increases
there is a maximum amount of cooling water (mwl, 2/mnc) that can be
injected and still have equilibrium conditions at the exit, This also
places a minimum value on the exit temperature of the exhaust gas.
The physical significance of this limit is discussed in Appendix III.

The final variable used in the study was inlet exhaust gas tempera-
ture. This was varied from 1048 to 4057°R, and the exit temperature
and pressure were determined at various values of cooling water flow
rate (mw; g/mpc). For a predetermined value of my, g/mpe, the

lower the inlet temperature, the lower the exit temperature (Fig. 11),
The exit pressure decreased as the inlet temperature decreased, also
for a predetermined value of mwq o/mpe. The decrease in pressure

at a lower inlet temperature was because a smaller quantity of water
was vaporized and therefore a negligible increase in stagnation pres-
sure resulted (A discussion of the effects of mass additions on stagna-
tion pressure may be found in Chapter 8 of Ref. 4). Also there was
more liquid water remaining in the stream to accelerate to kinetic
equilibrium at the lower values of temperature.

4.2 KINETIC EQUILIBRIUM

An assumption made when deriving the equations for the spray
cooler performance program was that the flow is in kinetic and thermo-
dynamic equilibrium at the cooler exit. To determine the effect of
assuming kinetic equilibrium, a typical set of cooler conditions was
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chosen, and the usual parameters T3, P3, and fnw1+z/rhnc were ob-

tained, as well as the six individual terms of the momentum equation
in the following form:

P4, m, Voe m,, ¥V, P3 A, ™y Vi m,. V.c
-+(1-rl) L, Pwr ey +(a+1) 3, Mws 3

ne My Be Mne  8e e M Bc Mne  Be
where
PiA; P1A; ~ Py _ P1Rye Ty
fnc  Pocy Vacy AL Preg Vaey  Prey Viey
and similarly
. P3Aj - P3Rpe T3
Mpe B Pnc3 vnc3

The assumption of kinetic equilibrium requires that the liquid water
must be accelerated to the gas velocity leaving the cooler. Therefore,
the relative weight of the water term (rhwg/mpclVneg/g) was observed.
The inlet parameters were:

P; = 6psia

T; = 2718R

T‘”l = 520°R

Vw, = 100 ft/sec

Vg, = 480 ft/sec
and

mye = 1 lbm/sec

Table II contains values of the individual terms which comprise the
momentum equation and theirrespective values as r'nw1 2/1hnc varied.

The right hand column gives the contribution of the term
(r'nw3/rhnc)(Vn03/g) to the total momentum as the cooling water ratio
(rhw1’ o/thpe) varied. Since assuming kinetic equilibrium (i. e.,

Vw3 = Vnegl) is the limiting case, the percentages shown are the maxi-

mum contributions of the liquid water at the exit when assumed to be
in kinetic equilibrium. If the value of the water term were less, the
effect would be smaller.

Experience to date has shown that a value of approximately five or
less for the ratio mwq,9/Mmpc is sufficient for the majority of turbojet

13
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testing conditions. Thus, for the case presented in Table II, the term
directly associated with kinetic equilibrium is seen to carry approxi-
mately 6 percent of the total momentum. It is concluded that the
assumption of kinetic equilibrium at the spray cooler exit is a justifi-
able one for many cases and that the prediction of the exit pressure
would be incorrect by no more than 6 percent. This amount of error
would probably be higher for low pressure or high subsonic conditions.

4.3 THERMODYNAMIC EQUILIBRIUM

A study was also made to check the effect of assuming thermo-
dynamic equilibrium. Assuming equilibrium in this manner means that
the temperatures of all constituents (noncondensable exhaust gas, water
vapor, and liquid water) are equal as well as the partial pressures of
liquid water and vapor as they pass the exit plane of the cooler. Since
the final temperature of the liquid water (Tw3) is a function of many
items outside the scope of this computer program (such as nonequilib-
rium effects), this parameter was arbitrarily varied to determine the
effect on the required.water for cooling (my 1, o/mtnc). The tempera-
ture of the water at station 3 (Tw3) was taken to be:

TW3 . Tnc3 = (TDC3 - Twl)x

where X was equal to 0, 0.1, 0.5, and 0.7. The limiting case is X = 0,
which is the assumption of thermodynamic equilibrium. The partial
pressure of the water vapor was taken to be a function of Tpcg. The
amount of water required to cool the engine exhaust gas is extremely
sensitive to the final water temperature (Tyw3) as shown in Fig. 12. The
input conditions were the same as for the previous kinetic equilibrium

- case. To cool the exhaust gas to 590°R would require the mass ratio of
water to noncondensable gas to vary from approximately 4 to 12 for X
varying from 0 to 0.7, respectively. Hence, the cooler performance
is very sensitive to the degree of thermodynamic nonequilibrium at the
exit. An accurate independent measurement of the water and exhaust
gas temperatures is essential for determining the true state of the
exhaust gas at the exit.

4.4 EFFICIENCY OF AN EXPERIMENTAL COOLER

To show the effects on the theoretical efficiency,
My optimum

Ntheo = » of varying the parameters Twjy and V4, the

My equilibrium .
limiting values were selected from Case I and the limiting and mean

14



AEDC-TR-71-60

values from Case II, respectively. In Fig. 13a, Tw1 has the values of

500 and 545°R which experience has shown are the lower and upper
limits of the cooling water inlet temperature in the AEDC coolers of
interest. As would be expected, the lower water temperature yields a
higher efficiency for a given volume flow rate. Figure 13b shows how
Vw1 can affect the efficiency; Vy 4 took the values 50, 90, and 130 ft/sec.

For a given volume flow rate, the efficiency is greatest at the highest
water velocity. This is to be expected. High water velocity means
less momentum lost by the exhaust gaé and, therefore, a situation
closer to the ''ideal" as defined by constant pressure throughout the
cooler.

The theoretical efficiency (n4heo) €stablishes a ratio of optimum to

equilibrium conditions. The actual efficiency (ngc45)) establishes a
ratio of ideal to actual conditions. The efficiency ratio (n5ctual/ Mtheo)
establishes a ratio of actual to theoretical efficiencies resulting in a
measure of attainment of the actual case to the equilibrium case. This
provides comparison of actual test conditions with the ideal equilibrium
conditions and, as such, is a measure of effectiveness of actual opera-
tion.

To develop this efficiency ratio (ngctual/Mheo), three experimental
tests were selected on the basis of having approximately constant cooler
inlet conditions (see Table III) and assumed equilibrium outlet conditions.
With the latter assumption and measuring the necessary inlet conditions
(noncondensable and cooling water flow rates) and exit conditions (pres-
sure and temperature), the volumetric flow rate of the exhaust gas at
the exit is calculated. The temperature is measured with a bare wire
thermocouple extending into the gas stream where it will record the
temperature of the liquid water impinging on it. Since equilibrium has
been assumed, this will also be the gas temperature. The amount of
cooling water necessary to give this volumetric flow rate is calculated
using the equilibrium and "optimum' cooler computer programs. The
theoretical efficiency (Mtheg = anoptimum/rhWequilibrium) as a func-

tion of the cooling water ratio (rhw1+2/fnnc) is shown for each.experi-

mental measurement separately (Fig. 13c). This shows the maximum
achievable efficiency based on the equilibrium assumptions and the
actual efficiency based on measured values. The ratio of actual to theo-
retical efficiencies is shown in Fig. 13d to indicate how close to equilib-
rium efficiency the existing coolers are operating. It can be seen that
the cooler operates close to maximum predicted efficiency at the lower
values of my,, ,/mpc but decreases as the value.of twq,p/fpc in-
creases.
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SECTION V
CONCLUDING REMARKS

Testing of turbojet engines and rocket motors at the ETF requires
the cooling of hot exhaust gases, and direct contact water sprays are
used for cooling. To facilitate the understanding of the cooling process,
an analytical model of an exhaust gas spray cooler was developed.
Results from the model were used to compare with measurements made
during actual engine tests. The analytical model as developed includes
the equilibrium equations and ''ideal" efficiency equations and is based
on the assumptions of: (1) thermodynamic and kinetic equilibrium at
the exit, (2) perfect gases and vapor, (3) all cooling water remaining
in the stream flow, (4) one-dimensional constant area flow, (5) no ex-
ternal drag forces, and (6) discrete saturation and dehumidification
processes. The method of solution of these equations has been outlined
in the form in which they were programmed for the computer.

The computer program gives an opportunity to evaluate the influ-
ence of various parameters on the output. The analytical examination
of the kinetic and thermal equilibrium assumptions show that the calcu-
lation of cooler exit conditions is relatively insensitive to kinetic
equilibrium, but sensitive to the degree of thermal nonequilibrium.
Efficiency calculations confirm that two contributing items to higher
efficiency are low water temperature and high water velocity. Experi-
mental measurements indicate that the efficiency is closer to theo-
retical at low values of mwq4 9/Mpc than at the higher values.

Verification of the validity of the analytical model assumptions re-
garding exit equilibrium conditions will require development of new
instrumentation for two-phase flow conditions. Further refinement of
the analytical model will be required to incorporate consideration of
droplet size and distribution, and nonequilibrium thermodynamic effects.
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TABLE |

PARAMETRIC GRID OF INLET CONDITIONS (COMPUTER CASES)

Parameters
Cases p \'4 T \'4 Remarks
1 1 n¢ w w
o . 1 ol:r2 1,2
R psia | ft/sec R ft/sec
1 2718 5 480 500 to 100 Tw was varied in 5-deg increments
580 1,
I 2718 5 480 520 128 to Vw was varied in 10-ft/sec increments
1!
III 2718 §4t° 480 520 100 p1 was varied in 2-psi increments
Iv 2718 5 320 to 520 100 Vnc was varied in nonuniform increments
2130 1
v [joa8 tols 480 520 100 T was varied in nonuniform increments
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TABLE 11

KINETIC EQUILIBRIUM INFLUENCE, VALUE OF MOMENTUM EQUATION TERMS

44

PlA1 wl+2 vw mv:3 mw:3 vnc

. . +1 . I . r M:;::}:um x 100%
mnc o mnc g m mnc nc g

316.4 15.5 3.5 323.0 9.17 3.61 1.1%

316.4 15.5 15.9 319.8 6.00 22,05 6.3%

316.4 15.5 32.4 322.8 4.16 37.21 10.2%

316 .4 15.5 72.6 332.1 3.15 69.18 17.1%
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TABLE Il
SPRAY COOLER CONDITIONS USED FOR CALCULATING EFFICIENCIES

P; Ty Yncl Twl le mw1+2/ﬁnc
Run No. psia °r ft/sec °r ft/sec Actual
6-6 5.1 1096 368 512 70 1.42
6-5 5.1 1096 360 512 80 2.60
6-23 5.1 1096 374 512 100 3.16
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APPENDIX 1Nl -
PROCEDURE FOR SOLUTION OF EQUATIONS

I. Solution of Equilibrium Equations

The

procedure for determining exit conditions by solving Egs.

or (11) and (17) involves two separate steps as follows:

For
1.
2.
3.

For

that part of the process leading to saturation:
Let P9 = Pj.
Assume a Tg.

Calculate a new temperature (T2, .,,) using Eq. (7),
Egs. (9) and (10) in which Dalton's law is used to
eliminate Ppe, and the partial pressure-temperature
relationship.

Compare T2, With the assumed temperature in

step 2. If their difference is within tolerance, pro-
ceed to step 5; otherwise let Ty = T2, .y, and go back
to step 3.

Calculate a new pressure (Pg . ) using Eq. (17).

Compare P2, ., with P9 in step 1. If their difference
is within tolerance, P9 is the saturation pressure, and
T 9 is the saturation temperature; otherwise let

Py = Pznew' Tg = T2,ow+ and go back to step 3.

(7)

that part of the process beyond saturation (dehumidification):

Let T3 = Tgatuyration - &T.where AT is some small
temperature increment on the order of one degree.

Let P3 = Psn

Calculate a new pressure (P3,,,,) using the partial

pressure-temperature relationship, Eqgs. (9), (11),
and (17).

Compare P3,,, With the pressure (P3) in step 2. If
their difference is within tolerance, the equations

are satisfied at the assumed temperature (Tg). Go to
P3+ P3

2

new

step 5. Otherwise let Pg = , and go to

step 3.
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Let Tg = Tg - AT. Go to step 2.

The dehumidification procedure is allowed to continue until Tg = Two.

II. Solution of Efficiency Equations

1.
2.

The procedure for solution of Eq. (27) for the saturation case is as
follows:

Determine Pyg3, a known function of T, at an assumed T3.

Calculate Pv3new from Eq. (28).
Determine.T 3o, 2 known function of Py, at PV3new'

Compare Pv3new with Pyg. If their difference is within
tolerance, let Pv3new = PV3, and proceed to step 5; other-

+
PV 3 PV 3new

wise let PV3= and Tg = T3new, and go

2
back to step 2.

Calculate the water required for stauration using
Eq. (27).

For the dehumidification case, the solution of Eq. (38) is required.
The procedure for solving this equation is based on a Gaussian integra-
tion technique. The term (F) is the ratio of the mass flow of the water
injected into the dehumidification cooler element to the mass flow of
noncondensable gases, F = myq9/mpe. To determine the total mass
flow ratio of the entire cooler, the water injected into the saturation
section (rhwlevap/rhnc) can be added to F. This will give the ideal

mass flow ratio (fiw;g.,;/Mnc)- From this can be calculated the value

of total water required for the entire cooler for the idealized case
(thwigeal)-
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APPENDIX IV
SOLUTIONS OF THE MOMENTUM EQUATION

The original development of the momentum equation in Section III
led to the solution of the exit pressure (P3) from an equation of the
quadratic type:

= =b + Vb2 - 4ac
P3 - 2a

where a, b, and c have previously been defined. The possibility of the
quantity b2 - 4ac becoming negative and giving an exit pressure in terms
of a complex number is immediately recognized. The question becomes
(1) will this happen during numerical solution, and (2) if it does, is
there a physical explanation?

For certain cooler inlet conditions, b2 - 4ac does become negative
during the numerical solution. Correspondingly, there is a minimum

value of T2 and a maximum value of My, o/Thnc, say (mWL 2/mnc)max’

for which a solution can be obtained to the momentum equation. A
physical interpretation of this behavior is that it is impossible for
equilibrium to exist at the exit of the cooler when the value of the water

added to the cooler exceeds (mw1, 2/fnc),, .- If the cooler is oper-

ating with equilibrium at the exit and the rate of cooling water injection
equals to (rhwl. 9/Mhne) .y and the rate of cooling water injection is in-

creased, the gas phase will choke at the cooler exit, and thermodynamic
and kinetic equilibrium cannot exist at the exit., Any further increase in
water injection rate must cause an adjustment in the initial conditions.
The analysis indicates a sudden choking condition. That is, the gas
phase Mach number at the cooler exit would suddenly jump from some
subsonic valve to unity with the addition of a differential amount of water.
However, in an actual cooler which has finite length, sudden choking
would not be expected to occur because of nonequilibrium effects. Also,
the value of mwj, o/mhpc at which choking would occur in an actual cooler

would be somewhat higher than (mhwq 2/rhnc)max.
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