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Abstract 

\ 

A new method Is presented  for determining the moments of nuclear 

magnetic resonance absorption lines from the shape of either the free 

Induction decay or that of the echo.     Unlike previously used techniques, 

this method does not  require the assumption of an analytical  function for 

the lineshape or the fitting of the experimental  decay with a polynomial. 

A fast,  suitably precise and numerically stable algorithm has been developed 

for performing the  integration required by the new method. 

V 
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The moments of the NMR absorption line of a solid are important 

structure-sensitive parameters.  The increasing application of NMR rf- 

pulse methods to solids has led to an interest in determining the moments, 

especially the second moment, from the data obtained in such experiments. 

Two different approaches have been employed to extract the moments from 

the shape of either the free induction decay (FID) or that of the solid 

echo. 

In one, the experimental decay curve is fitted by an assumed analytical 

function1 and the moments are then calculated from the parameters describ- 

ing the optimal fit. The main drawback of this method is the required 

assumption of a particular absorption lineshape. 

In the second approach, the beginning of the experimental decay curve 

Is fitted by a polynomial.2 The coefficient of t  in this expansion is 
i. 

then set equal to (-1) M-i/^k.'), where M denotes the nth moment. The 

odd moments are obtainable in the same way from the out-of-phase component 

of the induced signal. While avoiding any assumption about the lineshape, 

this method is unreliable from a numerical point of view since very good 

fits may often be obtained with very different polynomials. 

In this note we present a new method for determining the moments which 

requires neither an assumption about the functional form of the lineshape 

nor the fitting of the experimental decay by an analytical function. 

Theoretical 

The nth moment of the absorption line g(u)) is defined as 

•t» -too 

Mn = J u)ng(u)0-»ti))duu / J g(u))du) , (1) 
-00 -00 

where uu    is the center of the band,  chosen such that o 
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M, = 0    . (2) 

The shape of the FID (or of the echo)  obtained by phase sensitive detec- 

tion  is 

-K» 

G(t,a)  = Re {exp[ i(nt^a)] J" g(üu)exp(-iuutjdu)}    , (3) 

where Q Is the  irradiation  frequency and a  is the phase of the detector. 

If a pair of mutually orthogonal phase sensitive detectors  Is used,   for 

the first of which   a = cp,   one obtains two FID curves described by 

•to 
G (t)    = G(t,qp)        = Re{exp[l(nt-Kp)]  J g((u)exp(-lu)t)du)}     , 

-to 
^'(t)  =G(t,(p+^T)  = -Ini{exp[l(Ot-Kp)]  J g((jü)exp(-lu)t)dü}   .     (4) 

The functions G (t)  and G   '(t)   satisfy the relations 

V"^    =   Gcp(t)  cos2CP -G^'Ct)   sln2(p 

(5) 

For t=0 these relations  lead to the condition 

tartP = ^'(Oj/G^O) (6) 

which provides an operational definition of the phase cp.     In particular, 

it makes  it possible to adjust the phase sensitive detector3 until  G   '(0)=0 

In which case cp=0 (if G (0)  > 0). 

Assuming that the phase has been properly adjusted, we introduce the 

notation 

G||(t)  =G(t,0) 

Equation (5)  now reduces to 

and Gj,(t)  =G(t,TT/2) (7) 
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G||(-t)  =G||(t) and G^(-t)  = -G^( t)     . (8) 

From Eq.   (4)   It  follows  that 

g(u)0-Ku) =(1/2TT) J [G.((t)  - IG|(t)]exp[l(a>-6)t]dt    . (9) 

where   6  = n - üüä . o 

By substituting Eq. (9) In the definition of the first moment and 

using Eq. (8) to simplify the result, we obtain 

M, = 6 +^(0)/G.j(0)  , (10) 

where the dot denotes the derivative with respect to .time.     By Eq.  (2), 

this  implies that 

6 =n -U)0 = -GjjOj/G^O) (11) 

which may serve as an operational  definition of 5.    Accordingly,  to 

satisfy experimentally the on-resonance condition 6=0,  one simply adjusts 

U)o so that Gj(0)=0, with G|j(0)^0 . 

With this adjustment made, we may shift the origin of the frequency 

scale by putting uu =0.     Equation (9)  then becomes 

g(u))  =(1/2TT)  J* [G||r(t)   - IGj^(t)]exp(iu)t)dt    , (12) 

where the superscript    r    refers to the on-resonance condition.    The 

even moments of g(w) are  identical with the corresponding moments of its 

symmetrical  part which,   by Eqs.   (12)  and (8),  can be written as 

es 

9s(u)) = (l/TT)Re J Gj|r(t)exp(lujt)dt    . (13) 

Correspondingly, the odd moments of g(ijü) are the moments of its anti- 

symmetrical part 
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u 

g (ID) = (I/n)Im J G|r(t)exp(iiüt)dt . (14) 
o -'■ 

Note that Gjr(t)=0 if the absorption line is symmetrical. 

Next, we introduce quantities Q (e) defined as 

tt"(e)-i^^9Wd" ■ (,5) 

where e  is a positive parameter which has  the dimension of time,   and v 

equals  1   for even n and 0 for odd n.     The quantity Q (6)   is connected to 

the nth moment by the extrapolation formula 

Mn ' ,lm(in(^/G||r^     • 

By using  Eqs.  (13)-(15)  one may write 

a2n(e) -J6||r(t)f2n(c.t)dt 

and 

(16) 

(17a) 

(17b) 

in which the functions f (c,t) are given as 

■to        2n 
f2n(e.t)  »(I/IT)  J 

l-Kau) 2n+2 exp( iu)t)düu 

-to        2n+l 
f2n+I(e'^  = "^I/1T) I     / 27^2 exp( lüüt)dtü 

(18a) 

l-Kau) 

For e / 0 these integrals converge and their values can be calculated 

directly from the residue theorem.  The resulting formulas for the first 

several functions f (e,t) are (for positive t): 

(18b) 

"^-""wr»! x i m 
■ 
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Me.t)  =(l/e2)exp(-|)   . 

Mc.t)  =(l/e3)exp(-^)  cosC^ + J)   . 

f3(e.t)  =(l/e4)exp(-^r) cos(^)   . 

/it UM   = (l/3e5){exp(- \)  + 2 exp(- ^  cos(^ + J)}  . 

f9(e.t)  = (l/3e
6)[exp(- |)  + 2 exp(- ^  cos(^)}    . (19) 

The  individual  moments can now be obtained from the observed decay 

functions G|jr(t)   and G|r(t)   by combining  Eqs.   (16),  (17),  and (19),     It 

is  important to note that the limit,   Eq.  (16),   is reached  in each case 

with a zero slope since,   from Eq.  (15), 

lim d(i (e)/de = 0    . (20) 
«^0     n  ' 

This greatly facilitates the extrapolation of Q (€) for s-»0. 

The off-resonance condition of Eq. (11) may lead to experimental 

error when either the dead time or the experimental noise limits the data 

available in the vicinity of t=0.  For this reason, we now consider the 

effects upon the moments of having 6^0. It may be shown that 

Inn 

6 = 11m rG|(t)fl(e,t)dt/G||(0) . (21) 

Therefore, the extrapolation procedure used to determine the moments can 

serve also for an accurate determination of 6.  By comparing Eq. (9) with 

Eq. (12) one obtains the relations 

G||r(t) =Gj,(t) cos(6t) -GjU) sin(6t) 

G|r(t)  =Gj(t) cos(6t) + G|i(t) sln(6t) (22) 

which, once 6 is known, enables one to calculate the moments from the off- 

resonance decays G||(t) and Gi(t).  Off-resonance measurements have lower 
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sensitivity than on-resonance observations and there are additional ex- 

perimental errors due to the oscillatory behavior of Gii(t) and Gj(t), 

Therefore, Eqs. (21) and (22) are best used to correct for small devia- 

tions from resonance. 

Comments on the Numerical Procedure 

For n > 2 and for small e, the functions f (e, t) rapidly oscillate. _ n 

This leads to substantial problems in the numerical integration required 

by Eq. (17). The simple Simpson rule proved, in fact, to be inadequate 

with any experimentally reasonable spacing between the digitized data. 

The choice of a smaller integration step, combined with suitable interpola- 

tion of the experimental data, increases the numerical stability but the 

calculation time Increases as well. An algorithm was developed which 

proved to be both fast and numerically stable. 

A quadratic Interpolation polynomial y.(t) = a.t2 + b.t + c. Is 

determined for each set of three consecutive experimental points G(t. ,), 

G(t.), and G(t. .).* The contribution to Q (e) arising from the interval 

Tj s < 2^tM+tj)»2^t|+t|+i)
> ts ca'culated as 

qn
,(e)=JT G(t)fn(e.t)dt = JT yjCOf^e.^dt ,       (23) 

using explicit formulas for the  integral  on the right-hand side of this 

equation.    The quantity Q ( c)   Is then set equal to the sum of all q    (e) 

plus a similarly obtained correction term arising from the  initial   Interval 

<Q>öiti+tz)>, where t|  Is the coordinate of the first experimental   point 

At this point we have to stress that the difficulties connected both 

with the numerical  stability and with the sensitivity of the results to 

experimental errors  Increase drastically with increasing order of the 

moment.     We feel   that with reasonably good experimental  data  it   is  possible 

to obtain at most  reliable second and third moments and semiquantitative 

Information about  the fourth moment. 

■ 
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Results and Discussion 

In order to test the proposed method, we have performed the numerical 

Integration required  in Eq.   (I7a)   for M2,   using  for G||r(t)  analytically 

generated sets of "data" as well as experimentally obtained digitized 

data.    Gaussian and more complicated decay curves' were generated with 

durations corresponding to second moments ranging  from 1 to 16 Gauss2 

for fluorine.    The Gi ■   (t)  values were calculated with a spacing of 1  ^sec, 

which is experimentally feasible with a  fast digitizer.    In Fig.   I we give 

the results obtained for the ratio Q2(c)/M2 as a function of e for several 

of the generated decays. 

The values obtained for the second and higher moments are very sensi- 

tive to the shape of the  induction signal4 G(t)   at small  values of t.     The 

quantity Q (e)  depends upon the full   range of G(t)  but the weight given 

to G(t)  for large values of |t|   decreases rapidly with decreasing e.    This 

does not present any problem if the shape of G(t)   is known for all  values, 

of time,  as  in the case of echo experiments on sol ids—either the regular 

echo2 or the recently reported "magic" echo.5    However,  the situation  is 

substantially different  for the free  induction decay,  for which data are 

not obtainable during the dead time <0,t .> following the rf pulse. 

The latter point  is shown in Fig.   2 which reproduces the experimental, 

time averaged FID of the fluorine NMR in solid KASFö powder at  room tem- 

perature,  observed with a pulse spectrometer operating at 25 MHz.    The 

data are digitized for every microsecond and the dead time is about  12 

tisec.    This dead time leads to the drastic divergence in the values obtained 

for QaCe)  at small  values of e,   illustrated  in Fig.   1  by the numerical 

results corresponding to the experimental  FID in Fig.  2.    If the divergence 

occurs before 0,2(e)  has approached M2  to a suitable degree of accuracy, 

the data are  inadequate for the determination.     It may be shown that the 
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F!g.   I.      Values of ^(e) calculated numerically as a function of e 
for several   Induction decay curves corresponding to different 
values of Ma  for fluorine nuclei.    The solid lines are for 

"data" points generated with G|ir(t)  = exp(-a2t2/2); the dashed 

line, with Gj|r(t)  = exp(-a2t2/2) x (l/bt)sln bt.    The points 

with dashed line    are for the experimentally obtained Gjir(t) 
given In Fig.  2. II 
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Fig.  2. The time averaged l9F free induction decay observed at 25 MHz 
for KASFö powder at room temperature. The data are digitized 
at  1  txsec  intervals following a dead time of about  12 M-sec. 

Only the in.phase component G||   (t)  of the induction signal 
was observed. '11 
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fault  lies  in the lack of data and not  in the mathematical   procedure 

employed.     In a case such as this,   the determination of M2  by fitting 

the decay data with a series expansion2 would give what appears to be 

a mathematically definite answer but which  is physically unreliable 

On physical grounds,  one would expect the divergence to occur when 

e < t .,  which  is verified by our numerical   results,   those   in  Fig,   1   for 

KAsFe being typical.     It   is seen that QzCe)  diverges  for e < 6 Usec, 

with t . about  12 tisec.    Moreover,   a smaller value of e  is  required for 

Q2(e)  to approach a larger value of M2.    This enables  limits to be placed 

upon t . for establishing M2  to a given accuracy.    Our  results  in Fig.   1 

indicate that  if an accuracy of better than 5 percent   is desired  in M2, 

the dead time must meet the condition 

td < 2.5xl05//Mr    , (24) 

where t .  is  in Usec and M2   is   in rad2sec~2. 

Alternately,  one can attempt to correct the beginning of the decay 

curve for the distortion due to slow recovery of the receiver from satura- 

tion.    A method has been described by Barnaal  and Lowe6 for this purpose. 

Of course such recovery transients are avoided  in the echo technique,  which 

is an advantage of the echo as compared to the FID. 
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