

U. S. NAVAL WEAPONS LABORATORY

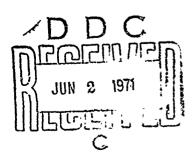
TECHNICAL MEMORANDUM

April 1961

No. K-10/61

REVIEW OF DATA ON INDUCED MASS

AND DRAG OF THE BASIC FINNER MISSILE


by

A. V. Hershey and G. E. H. Vibrans Computation and Analysis Laboratory

Approved by:

Calph & Nelsian. R. A. Niemann

Director Computation and Analysis Laboratory

	UMENT CONTROL DATA - R & D
ISecurity classification of title, body of abstr ORIGINATING ACTIVITY (Corporate author)	tract and indexing annotation must be entered when the overall report is classified)
ORIGINATING ACTIVITY (Corporate autor)	22. REPORT SECURITY CLASSIFICATION
Noval Hearing Tabana have	UNCLASSSIFIED
Naval Weapons Laboratory	
Dahlgren, Virginia 22448	
PENTER OF DATA ON TIDUCED MACC AN	
DESCRIPTIVE NOTES (Type of report and inclusive	ND DRAG OF THE BASIC FINNER MISSILE
. AUTHORISI (First name, middle initial, last name)	
-	
V Herchew and C F W Wibray	70
A. V. Hershey and G. E. H. Vibran REPORT DATE	74. TOTAL NO. OF PAGES 75. NO. OF REFS
April 1961	
a. CONTRACT OR GRANT NO.	94. ORIGINATOR'S REPORT NUMBER(5)
5. PROJECT NO.	
	TM-K-10/61
с.	95. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
d	
0. DISTRIBUTION STATEMENT	
•	
· · · · · · · · · · · · · · · · · · ·	
Approved for public release; dist	tribution unlimited.
1- SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
<u> </u>	
3. ABSTRACT	
Experimental data from David	dson Laboratory on induced mass and drag of the basic
Experimental data from David	ated at the Naval Weapons Laboratory. All but four
Experimental data from David inner missile have been reevalua of the runs must be discarded as	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David Finner missile have been reevaluat of the runs must be discarded as in velocity. It is concluded that only be achieved through mathemat	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can
Experimental data from David inner missile have been reevalua of the runs must be discarded as in velocity. It is concluded that	ated at the Naval Weapons Laboratory. All but four determinations of induced mass because of uncertainty at an insight into the mechanism of induced mass can

TABLE OF CONTENTS

•

1444

	Page
ta com i 00	1
ABSTRACT	1
FOREWORD	1
INTRODUCTION	
TRAJECTORY INTEGRATIONS	2
	5
FLOW ANALYSIS	6
RECOMMENDATIONS	
CONCLUSION	7
REFERENCES	7
APPENDICES	
A. Tables I and II	
B. Figures 1 and '2	
C. Input Data	
D. Error Plots	

E. Distribution

a de la de

ہ -ز

ľ.,

\$

د «

> 0 r C .

> > °.

: 6

6

ļ,

×

ſ

ABSTRACT

Experimental data from Davidson Laboratory on induced mass and drag of the basic finner missile have been reevaluated at the Naval Weapons Laboratory. All but four of the runs must be discarded as determinations of induced mass because of uncertainty in velocity. It is concluded that an insight into the mechanism of induced mass can only be achieved through mathematical analysis.

FOREHORD

This report has been prepared in compliance with BUWEPS Directive RRRE_07 004/210-1/R009-02-003 dated 10 October 1960. Date of completion was 6 April 1961.

INTRODUCTION

An extensive effort has been made in various laboratories to determine the hydrodynamic characteristics of missiles. Quantitative data on forces and moments are available for steady flight. The interpretation and utilization of data for unsteady flight require a knowledge of the induced mass and moments of inertia of the entrained fluid. Theoretical studies of this induced mass have been limited to ideal fluids. No reliable information is available yet about how the induced mass varies with Reynolds number or acceleration modulus.

The California Institute of Technology has investigated the motion of the basic finner missile in vertical and horizontal flight. Quantitative interpretation of the horizontal runs probably will be possible after we know the dependence of induced mass on Reynolds number. Quantitative correlation of the vertical runs has not been possible without an assumption that the actual masses were incorrectly recorded. No reruns have been possible because the apparatus has been dismantled.

The Naval Weapons Laboratory proposed in reference 1 that programmed acceleration trials be run in a towing tank. The Davidson Laboratory has made such trials and has established new values for the steady state drag of the basic finner missile. The drag curve has a

mysterious hump, but no documentation of flow regimes is available . to explain the cause of the hump. The instrumentation was barely adequate to measure the induced mass $(k_1 \sim 0.15)$. The following sources of error are considered noceworthy.

or the billion of the second

a. The interior of the model was flooded with fluid. Although a portion of the interior was plugged, the pressure gradients during acceleration were those of a hollow shell filled with fluid. The equivalent mass of the fluid content was a substantial part of the internal mass, and this caused a loss of sensitivity.

b. The interior of the model was exposed to the fluid pressure at the rim of the flat base. The steady drag was correctly determined insofar as the base pressure is uniform. The effect of induced mass was probably in error because the pressure distribution from induced mass is not uniform over the base.

c. 'The velocity of the model could not be controlled to follow closely an ideal stepwise variation. The velocity records were recorded at too small a scale to be read with precision.

Although these errors largely obscure the induced mass, a reanalysis has been made at the Naval Weapons Laboratory in an attempt to . retrieve some useful information.

TRAJECTORY INTEGRATIONS

Station Contraction of the State of the Stat

The test conditions of the runs were forwarded by Davidson Laboratory in reference 2 and the original records were forwarded in reference 3. A catalog of the test conditions is given herewith in Table I and samples of the records are reproduced in Figures 1 and 2.

With the exception of the first four runs in Table I the velocities were recorded at much too small a scale. The smallest scale division on the speed records has been converted to speed increments through the use of a calibration chart which was supplied with reference 3. The speed 'ncrement' per scale division is listed in

Table I. Even with the assumption that the speed records can be estimated correctly to one fifth of a scale division the uncertainty in speed is enough to mask the induced mass*. Thus there would be a 100% error in induced mass if there were an error of 0.36 (ft)/(sec) over a velocity range of 5 (ft)/(sec).

The uncertainty in the records from wiggles is clearly apparent from an inspection of Figures 1 and 2.

The original records from the Davidson Laboratory have been reanalyzed at the Naval Weapons Laboratory on the basis of a momentum-displacement correlation instead of a force-velocity correlation. The objective of the change in correlation was a reduction in the uncertainty from wiggles in the oscillographic records. The drag records were reevaluated to obtain a set of average drag forces whose summation would reproduce the area under the drag traces. The results of this reevaluation are documented in Appendix C.

Simplified trajectory integrations were performed on NORC with a uniform time interval of 0.5 (sec). The trajectory integrations utilized a mass coefficient m and a drag coefficient k. The mass coefficient m (slugs) for the test models is related to the added mass coefficient k_1 by the equation**

$$m = (1.01) + (0.50) k_1 \tag{1}$$

and the drag coefficient k (slugs)/(ft) is related to the drag coefficient C_D by the equation**

 $k = (0.0888) C_{\rm D}$ (2)

where C_D applies to the base area alone.

*In reference 1 the specification of accuracy was 0.5% of full scale.

**These equations are derived from a base area of 0.0916 (ft)², a total volume of 0.2599 (ft)⁸, and a total weight of 32.48 (lb), as quoted in reference 4. The accumulated error in impulse ε_n (lb) (sec) after *n* steps of integration is given by the equation

$$\varepsilon_n = \sum_{i=1}^n \left\{ \frac{1}{2} \, \bar{f}_i - (m_i \, v_i - m_{i-1} \, v_{i-1}) - \frac{(k_{i-1} \, v_{i-1}^2 + k_i \, v_i^2)}{4} \right\} \tag{3}$$

where \overline{f}_i (1b) is the average force in the *i*th interval and v_i (ft)/(sec) is the velocity at the end of the *i*th interval. The coefficients were interpolated from a table of values at half intervals in velocity. A table of values is given in Appendix C. Thus the values m_i were computed from the equation

 $m_i = m_j + (2 v_i - j) (m_{j+1} - m_j)$ (4)

and the values k_i were computed from the equation

$$k_{i} = k_{j} + (2 v_{i} - j) (k_{j+1} - k_{j})$$
(5)

where j is the serial number in the table for that entry v_j which is next smaller than v_i . The results of computation were plotted on the CRT printer. A set of results is given in Appendix D where ε_n is plotted against v_n , and each point is labeled with the value of *n*. An error in m_j is reflected in the plots by a nonzero slope during increment of velocity and an error in k_j is reflected by a nonzero drift rate during stationary velocity. The entries in the table of coefficients are so adjusted by trial as to minimize the random deviation of the plots from the velocity axis.

Various adjustments of mass and drag were tested. The induced mass could be varied by 25% from the value which is reported in reference 4 without appreciable improvement in the error curves. The drag from the constant speed runs was not the optimum and an improvement in the error curves could be achieved through an adjustment of drag. Values of k_j from the constant speed runs are listed in the second column of Table II and the values of k_j after adjustment are listed in the third column of the table*. The adjusted values are basic to the error curves in Appendix D.

*Although constant values are listed in the table for low velocity and for high velocity these were never used in the actual integrations.

Even if all runs are rejected except the first four because of error in velocity, there is still a discrepancy in induced mass between runs 2 and 20.

FLOW ANALYSIS

Experimental determinations of induced mass heretofore have not been quantitative. It seems obvious that mathematical analysis is necessary for an insight into the characteristics of induced mass.

If a missile were accelerated suddenly from one constant velocity to another then a potential flow would be superimposed upon the preexisting flow. Since the potential flow would not satisfy the boundary condition of constant velocity at the surface of the missile, the potential flow would be modified gradually through a diffusion of vorticity. Meanwhile the drag would decay from a large initial value to a steady final value. The acceleration thus would initiate a greater total impulse than that required to create the potential flow.

If a rapid acceleration cycle were applied to the missile the diffusion of vorticity would not have time to develop and the induced mass would be just that of the classical potential flow. A computing program for potential flow over missiles has been developed by the Douglas Aircraft Company. Details are given in reference 5 and subsequent reports. The computing program can be applied to the basic finner missile.

If a slow acceleration cycle were applied to the missile the diffusion of vorticity would have time to develop and the total impulse would be the integrated result of differential increments of flow configuration.

A theoretical study of induced mass is underway at the Naval Weapons Laboratory. An initial model consisted of a pair of line vortices behind a cylinder. The effect of the vortices was found to be a decrease of induced mass. An acceleration moves the vortices closer to the cylinder, and diminishes the pocket of entrained fluid.

Although circulatory motion can be observed in the trailing wakes of cylinders, the concept that vorticity is concentrated in the pocket is illusory. Valid solutions of the Navier-Stokes equation show that the vorticity trails off from the cylinder in a vortex sheet from each separation point. There is relatively little vorticity in the pocket of entrained fluid, while there is even less potential gradient.

A new computing program for solving the Navier-Stokes equation is now in preparation. The new program will give time dependent solutions for flow past a cylinder. Line vortices are placed at the intersections in a grid. The rate of change of vortex strength at each grid point is determined by finite difference approximations of the diffusion and convection of vorticity. Stream function is determined by the summation of contributions from each line vortex. Storage requirements in the calculator are minimized by the use of a polar grid. This program will provide the first determination of a variation of induced mass with Reynolds number.

More information about flow regimes is needed. Possibly small models of the basic finner missile could be moved through a bentonite suspension in a tank with polaroid windows. Photographs of the double refraction would show the onset of turbulence at various points on the missile.

RECOMMENDATIONS

1. It is recommended that further tests on induced mass be sponsored at Davidson Laboratory, but only if all of the following specifications are met:

a. The power drive and recording system be modified to give a better control and a more precise determination of the velocity.

b. The model be mounted on side struts instead of the bash sting (as recommended by Davidson Laboratory).

c. The interior of the model be sealed off from fluid contact (with dynamometer in struts).

2. It is recommended that a project be established at a hydraulic leboratory for the photography of flow regimes.

3. It is recommended that a project be established at Douglas Aircraft Company for the computation of potential flow over the basic finner missile.

4. It is recommended that the programming and calculation of the vortex strength behind a cylinder be continued at the Naval Weapons Laboratory to the point of determining the induced mass of the entrained fluid.

CO? TUSICH

It is concluded that an insight into the mechanism of induced mass will not be gained without a mathematical analysis of flow regimes.

REFERENCES

- 1. Proposal for the Experimental Investigation of Induced Wass and Drag of the Basic Finner Missile, A. V. Hershey, W. E. Moyer,
 - D. P. Fields, NPG Tech Memo No. K-11/58 (dated July 1958)
- 2. Ltr from R. E. Prowse, (Davidson Laboratory) to F. D. Donoghue (Bureau of Ordnance) dated 3 Oct 1959
- 3. Ltr from P. W. Brown (Davidson Laboratory) to A. V. Hershey (Naval Weapons Laboratory) dated 21 Sept 1960
- Added-Mass and Drag Coefficients of Basic Finner Missile, D.
 Savitsky and R. E. Prowse, Davidson Laboratory Report No. R-824 (dated December 1960)
- 5. Exact Solution of the Neumann Problem. Calculation of Non-Circulatory Plane and Axially Symmetric Flows about or within Arbitrary Boundaries, A. M. O. Smith and J. Pierce, Douglas Aircraft Company Report No. ES 26988 (dated 25 April 1958)

*

:..

1

ŕ,

ž

R

¢

TABLES

		· ·	LOUND DAIR	-
Run Number	Sting Diameter (in)	Speed Range (ft):/(sec)	Scale Division (ft)/(sec)	Run Number*
'n	1.75	0 - 11.28	0.12	1
6	1.75	0 - 10.45	0. £2	2
9	1.75	0 - 17.22	0.12	3
20	1.75	6.12 - 11.14	0.12	อิ
21	1.75	11.76 - 16.50	1.8	6
22	1.75	9.85 - 5.86	1.8	7
25	1.75	14:06 - 8.40	1.8	9
27	1.75	18.18 - 14.00	1.8	• 10
28	1.75	9.70 - 6.50	1.8	• 8
·33	[.] 2.50	0 - 11.96	1.8	11
·33	2.50	11.96 - 5.72	1.8	13
39	2.50	13.63 - 17.50	1.8	12
47	2.50	17.69 - 14.00	1.8	14
54	1.75	0 - 16.22	1.8	4

CATALOG OF RECORDS FROM ORIGINAL DATA

TABLE I

*Runs as renumbered in the final report, reference 4.

and An S

Str. Polyne

and the second of the second

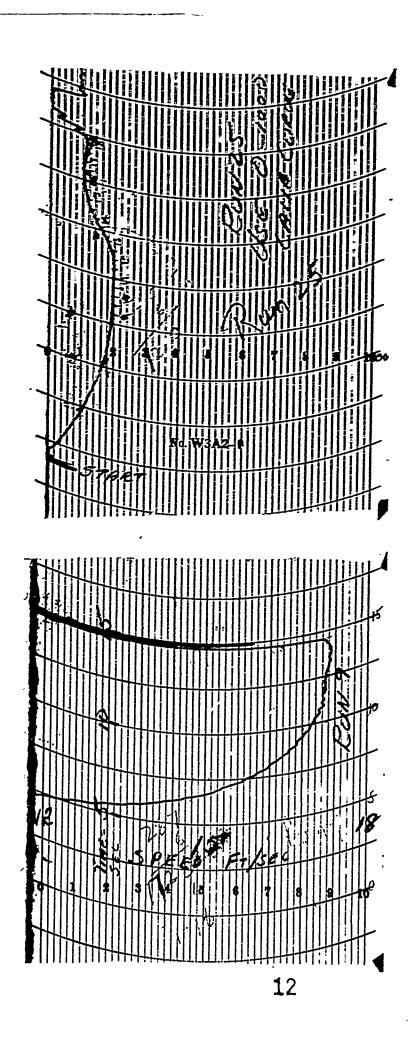
9

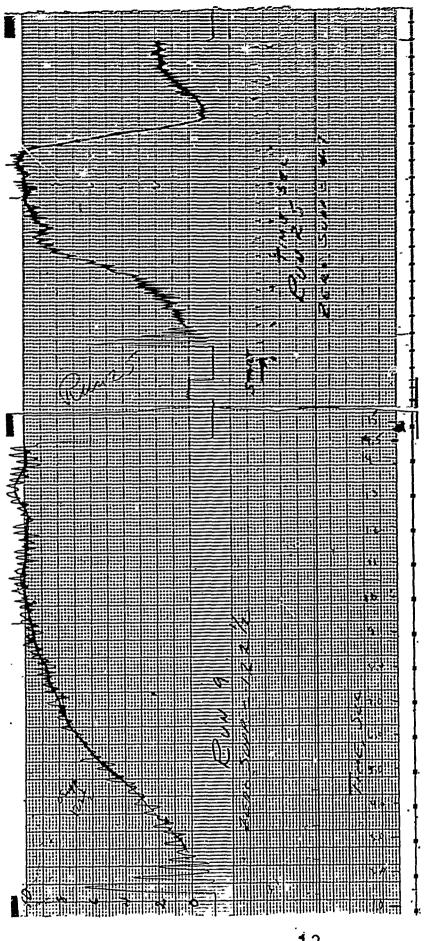
L. S. W. W. W. W. W. W. W.

TABLE II

, 111 v

AFTER ADJUSTMENT FOR OPTIMUM ERROR CURVES						
<u>j</u>	v _j	k _j Constant Speed	k _j Optimum Error			
0	0	0.0372	0.0372			
·2	1	0.0372	0.0372			
4	2	0.0372	0.0372			
6	·3	0.0372	0.0372			
8	4 ·	0.0363	0.0363			
10	5	0.0354	0.0354			
12	6	0.0346	0.0346			
14	7	0.0341	0.0341			
16	8	0.0381	0.0381			
18	ð	0.0392	0.0392			
·20	10	0.0375	0.0354			
·22	11	0.0354	0.0353			
24	<u>1</u> 2	0.0352	0.0352			
26	13	0.0347	0.0347			
28	14	0.0344	0.0344			
-30	15	0.0341	0.0344			
·32	16	0.0340	0.0344			
-34:	17	0.0339	0.0344			
36	18	0.0339	0.0344			
·38	19	0.0338	0.0344 [.]			
40	`~ <u>2</u> 0	0.0338	0.0344			


.


DRAG COEFFICIENTS FROM CONSTANT SPEED RUNS AND

APPENDIX B

SAMPLE RECORDS

APPENDIX C

Blocks of Input Data for Trajectory Integrations.

Block 6000. Values of m_j (slugs) for $0 \le j \le 40$. NORC numbers with v_j in the range 0 (0.5) 20.

Block 0001. Values of k_j (slugs)/(ft) for $0 \le j \le 40$. NORC numbers with v_j in the range 0 (0.5) 20.

First Block with Block Number equal to Run Number. Special numbers: xxxx.xxxx xxxx.xxxx

	ليمب إ
ti (sec)	v_i (ft)/(sec)

Second Block with Block Number equal to Run Number. Special numbers: xxxx.xxxx xxxx.xxxx

 \overline{v}_i^2 (ft)²/(sec)² \overline{f}_i (lb)

land land

The number of intervals determines the length of block.

	20000000000	0000000000	00000	00000	0000	0000	6000
	00000000000 00000000000 00000000000	00000000000 0000000000 0000000000	2000	00000 00000	2404 0404	0000	0000 -000 -000
VORD 4	00000000000000000000000000000000000000	00000000000000000000000000000000000000	4000 4000 4000 4000 1100	00000 00000 00000 00000	0000 0000 0000	0000	10001
	00000000000000000000000000000000000000	72222222222222222222222222222222222222	00000 00000 00000	24400000000000000000000000000000000000		0000 0000 7400 7400	0000 10000 10000
	6666666666	000000000000000000000000000000000000000		NNGPP - JONN	0000	46-10	9404
	0000000000		00000	00111	°°°°° _	0071	0000
	0	6			50	50	
			64000 00000 000000	4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2800 2800 2800 2800 2800 2800 2000 2000	3500 1000 1000 1000 1000 1000 1000 1000	1400
n	+0000000000000000000000000000000000000	+0000000000000000000000000000000000000	0002 00107 00110 00110 00111	00000 00000 00000 00000	0000 0010 0010 1117	0000 0000 0000 0000 0000 0000 0000 0000 0000	0013 0015 0015
VOR D	00000000000000000000000000000000000000	CC 64 8 64 44 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		46946	10000 10000 10000 10000	5600 8000 4100 2000	8000 8000 8000 8000
		nnnnnnnnn n 0000000000	00000	0400N 0400N	9000 90000	4000 40004	000-
	00000000000 000000000	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$ \$\$	00000	00000	00000	000110	0000
-			21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000	40000 40000 40000	3300 8100 4500 4500	0000 0000 0000 0000 0000	2400 3000 6800 1600
PAGE 2			100000000000000000000000000000000000000	0000 00000 10000 10000 10000	000000000000000000000000000000000000000	00000 00000 00000	0012 0015 0016 0017
VORD		ссоссоссоссос 0000000000000000000000000	00000 000000 000000	0000 6900 2700 2400		0000 0000 0000 0000 0000 0000 0000 0000 0000	
		n#####################################	00000	23.85	00001	01000	1003
	80000000000000000000000000000000000000	₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽₽₽₽₽₽₽₽		E0000000000000000000000000000000000000	00000	00000	
			0002 4100 0100 2800 2800	4000 4000 10000 10000 10000 10000	0006 1200 5000 4500	00000 00000 00000 00000	0009 7600 1000
_	10000000000000000000000000000000000000	10000000000000000000000000000000000000	1119 0005 0009 1119 1119	1219 0003 0004 0004 1219	1117 0008 0010 0010 0010	1217 0003 0003 0003	1114 0014 0016 0017
VORD	<pre>4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	10000000000000000000000000000000000000	1101 0000 0000 1101	1201 5400 5300 5300 1201	1100 2000 2000 2000 2000	1201 6100 9200 8800	1101 5000 5000 5000
-	4 00,0000000000000000000000000000000000	**********	404000¢	485229	40000	465640	4004
	N0000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N00001	N000118	10000 ·	1.000110	N000 4000
	8 0 8	80 60 80	808	808	B0B	808	BOB
CARD	0000 0000 0000 0000 0000 0000 0000 0000 0000	0000 0000 0000 0000 0000 0000 000 000	0001 0001 0001 0001 0001 0001	0000 0000 0000 0000 0000	0002 0003 0003 0003 0003	0001 0002 0003 0004	0001 0002 0003 0004
BLOCK	0000	1 000000	0005	0005	0006	9000	6000

and the street was not

C 0 B

:

÷

	C o A					E 0 E	E 0 B			
	7700 7900 1900	1400 7800 2800	3600 1100 7200 3300	4500	2300	800000 800000 800000 800000	400000 000000 000000	4 000 4 000 4 000	0 9 0 0 7 6 0 0 8 1 0 0 8 1 0 0	1 600 6 0 0 0
4 0	0000	\$000 1100 1100	000 0000 0003 0003	0012 0015 0016	0000 0000 0010	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00003 00001 00001 00001	0000 0000 0000	0000 0000 0002 0002	6100 8100
NON	720022800	0000 0000 0000	5 800 7100 3 200	0000 2000 2000	9 60 0 1 80 0 8 70 0	000001	7500 24900 34000 34000 1200	0000 0000 0000	1400 4200 5600 5600	0000
	8986 2985	6 F 19 0	2004	004	4 - 9 5 6 5 8	011110	0000000 000000	9645	266120	11
	~~~~ 000-	6000 0000	0000	000	000	00000	000000 00000	0000	4400	00
	0000 0000 0000 0000 0000 0000 0000 0000 0000	1200 8600 1400	3100 2900 28000	7600 4000 1600	0800 5400 9200	8500 8500 86000 86000 86000	42000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000000	0600 6500 4000	2000 2200 8100 7700	3500
n 0	6000 6000	0006 0007 0011 0011	0000	0011 0014 0016	\$000 \$000	0000 0000 0000 0000 0000 0000 0000 0000 0000	100000 0000000000000000000000000000000	0014 00011 0000	0001 0001 0002	0018 0016
VOR	2400 5500 2300	00000 · 00000	4500 2800 3200		3000 1600 9800	50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000000	0200 24000 34000 34000	5000 5000 5000 5000	6800 5200 5200	5000
	946 1104 404	0 N 4 9 N N N N	2004 2000	241	5 0 0 5 0 0	004408	69nnnn 44000	1000	1212	801
	- N N N 0 0 0 0	0000	0000 0000	ິິິຊ	2000 g		000000	0000	1100	000
				E01	EOI					
N	0000 03000 3000	1200 5400 5800 1600	0000 6000 2700	7600 6000 9000	0000 3200 6000 0021	8500 8500 85000 85000 85000	0000 2000 3000 3000	0600 6500 2000	0000 5600 8100	9000
PAGE	6000 6000	0006 0006 0011 0011	0000 0000 0000 0000	0011 0015 1112	0000 0008 0009 1212	00000 00000 00000 00000 00000 00000 0000	000000000000000000000000000000000000000	0014 0012 0008 0008	0000 0004 0000 0005	0017
VOR D	0000 9700 2500 4400	5000 5000 5000	0000 11000 11000 11000 11000	5000 5000 1101	0000 1200 5300 1201		0000 7600 2200 3400 3400		0000 6800 4000	0000
	935 945 93	23223	0425	01 16 01 16	00 46 94	004490	00 00 00 00 00 00 00 00 00 00 00 00 00	1000	75 75 81 66	108
	0000	°°°°° <b>"</b>	8855 a	0000	10100	200000	000000	ິ	0000 m	000
		60	50					EO	E0	
	0009 8500 7600 3000	0020 9800 1900 0020	0020 9100 2600 0700 0020	0021 7000 5000 6100	0021 5000 3900 1900	0022 3600 8600 8600 8600	0022 9000 3000 3000	0025 0025 0500 0500 025	0025 4600 4600 0025 0025	0027 9000
-	12140000	1115	1215 0001 0006 1215	1112 0012 0015 0015	1212 0006 0010	Å122 0006 00055 00055	1222 00002 0001 0001 0001	1115 0013 0009 1115	1215 0006 0001 0002 1215	1110 0017
VORD	1201 3300 3600 3700	11101 0000 0000 1101	1201 9500 2300 1201	1101 0000 0000	1201 4600 6300 2500	1101 5000 5000 5000 5000	1201 0200 6900 7800 3400	1101 5000 5000 1101	1201 7800 5500 8000 1201	1101 5000
-	4030	4 N N N A	40000 40000	4-100	442 442 545	401111	40425 40425 40544	40494 40494	466646 466744	94 09
	~~~~~	10001	20010	1000	1000	N00000	N000000	N00021.	20012	12 00
	11) 0 12		80 B	808	808	808	BCB	808	808 8	108
CARD	0001 0002 0003	0000 0000 0000 0000	0001 0002 0003 0003	0000 0003 0003	0001 0002 0003 0003	0001 0002 0003 0004 0005	0001 0003 0003 0004 0005	0001 0002 0003 0003	0001 0003 0003 0005	0001 0002
BLOCK	6000	0020	0020	0021	0021	0022	0022	0025	0025	0027

a substantia a substant

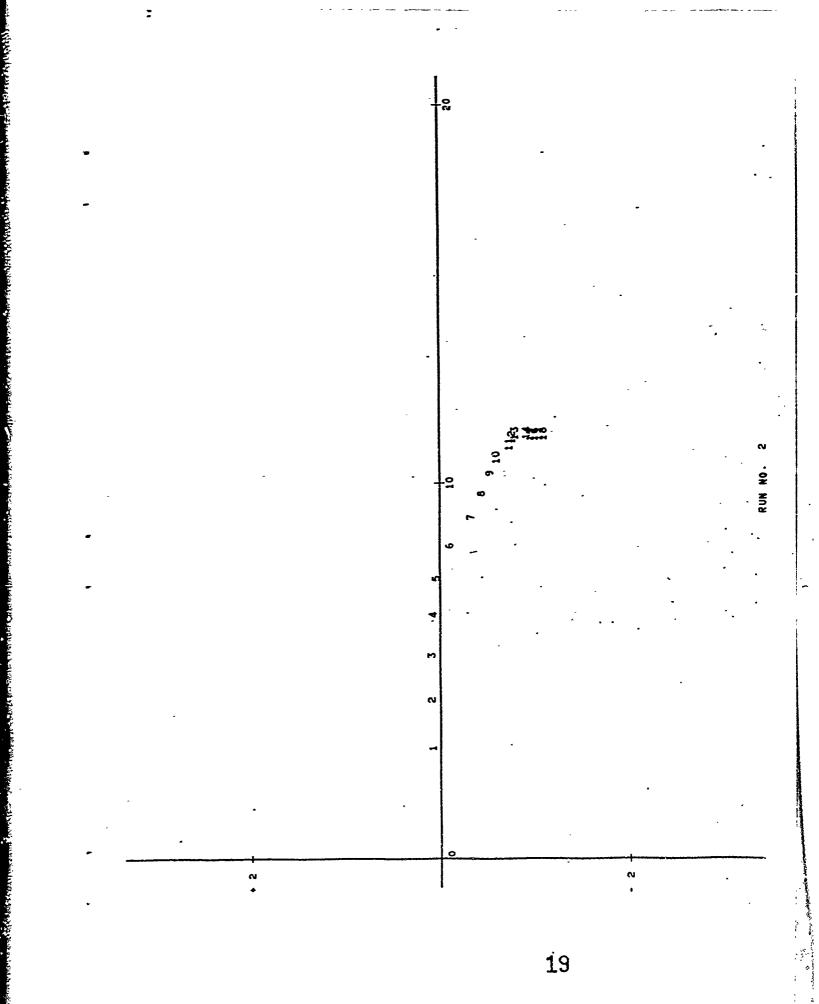
an manufactering (Alartic (Alartic an an

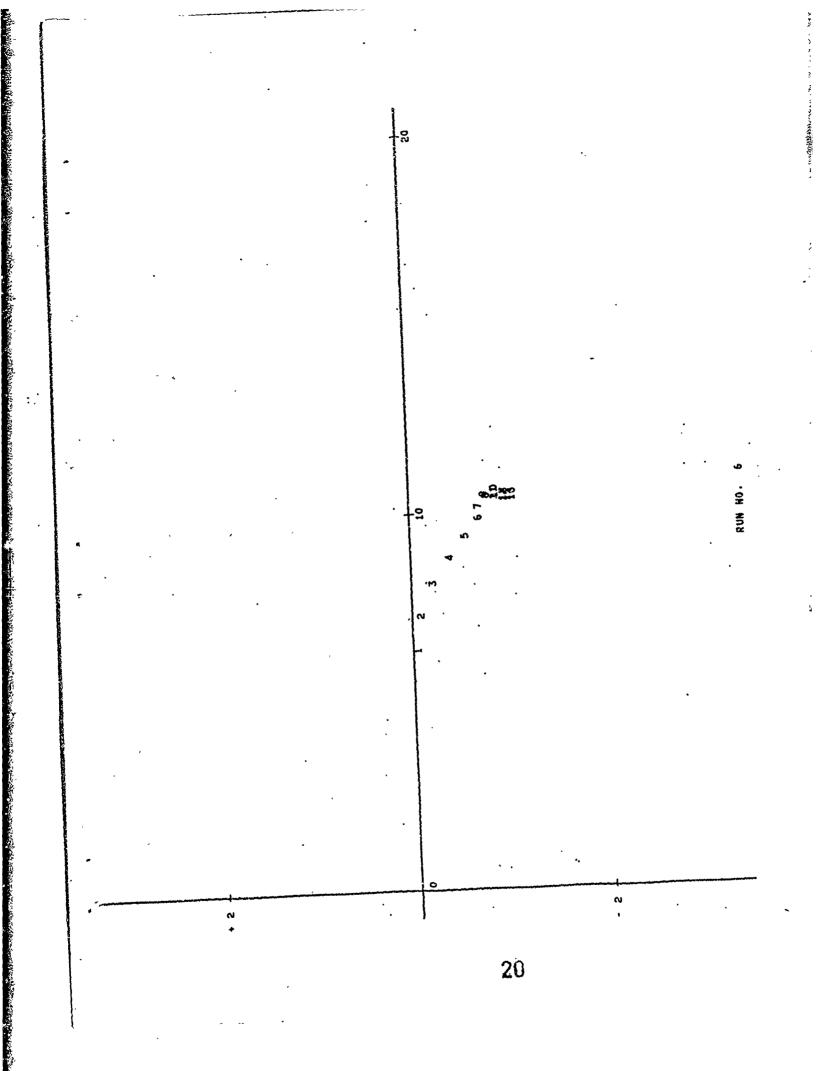
.......

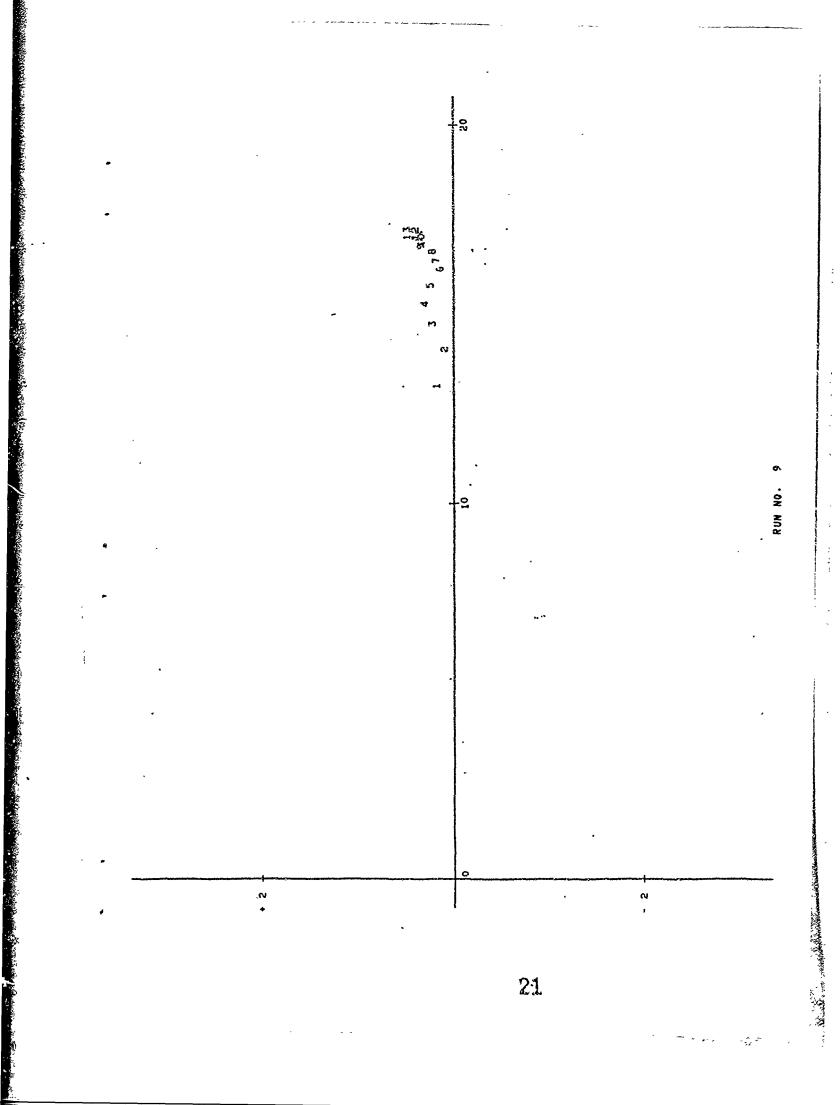
•

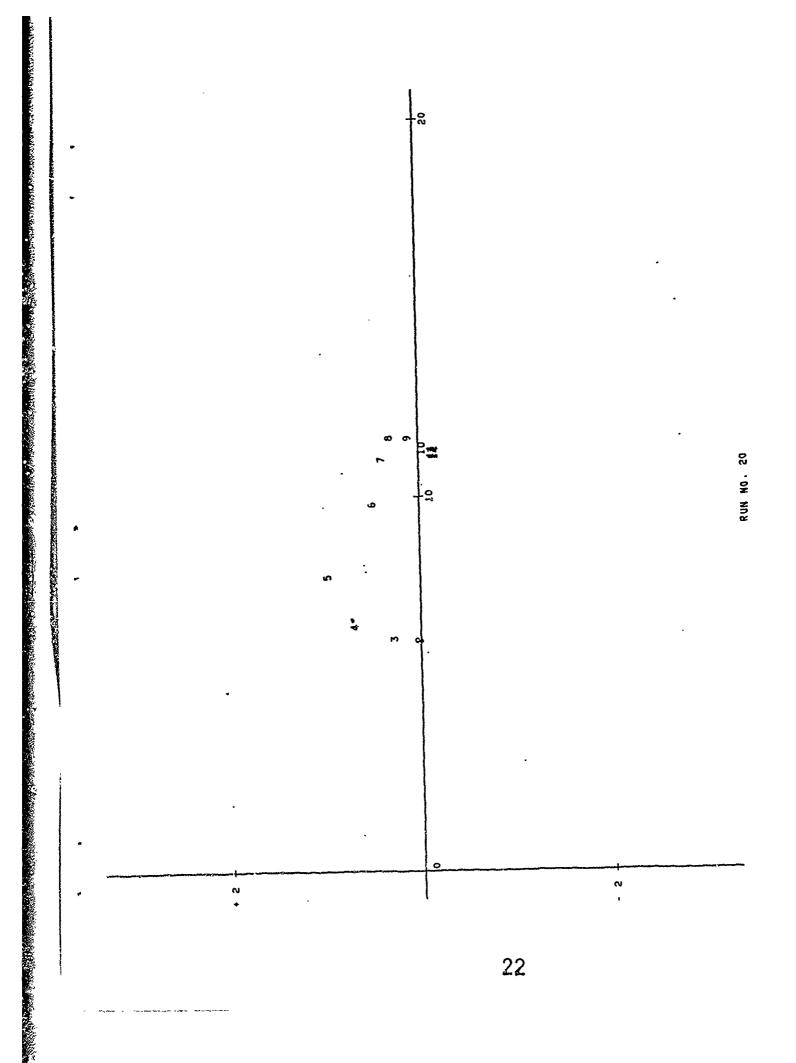
	803	603	E 0 B	E 0 B		
	0027	5100 6300 0027	7000 1000 0028	5000 8500 0028	0000 00000 00000 00000 00000 00000	6695 6695 600446 6000 6000 6000 6000 6000 6000 6
7 02	1110	000120007	0000 0000 1110	0003 0002 1210	0001 0014 0015 0015 0016 0016	400000 900000 900000
VOR D	1011	2600 3400 1201	0000 1011	0 900 4 800 1 20 1		9400 9400 9000 9000 9000 9000 9000 9000
	46	55.4	90 84 94	94 78 46	120061	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
*	12	100	001	0001	000000	010000000000000000000000000000000000000
						p •
•	7000	2400 3900 7300	7000 6000 5000	5500 3000 2000	22000 22000 22000	8000 1500 8600 2500 2500
n	0014	0012 0008 0007	9000 9000	0003	00155 00155 00155 00155	00000 · · · · · · · · · · · · · · · · ·
VORD	5000	2000 9100 0500	5000 5000	0900 1200 2500	888888 88888 88888 88888 88888 88888 8888	22000 22000 22000 25000 25000 25000 25000
	12	8 8 1 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	200 000	94 89 89	11005003	518430 63183333
	00	000 000	800	000	0000000	50 00 00 00 00 00 00 00 00 00 00 00 00 0
			•			
	0006	0000 1100 8800	7000 7000 5000	0000 5500	6600 6600 4700 7700 2200	0000 5850 6000 4000 4000
PAGE 2	0014	0000 0010 0007	0009 0009	0000 0000	0002 0013 0015 0015 0015	0000 0000 0000 0000 0000 0000
40R D	0000	0000 4600 5200		0000 0900 4000		0000 5400 5400 5400 5400
	12	26 10	05 09	00 94 8	002 001 11 002	81 0 81 2 6 3 6 3 6 3
	00	0 0 0 0 0 0 0	000	000	000000 0000000000000000000000000000000	₩ 000000000000000000000000000000000000
	2000	0027 9600 7300	0028 7000 4 000	0028 5500 1000	0054 6500 7000 6500 22200	0054 0054 0056 0056 0056
_	0015	1210 0011 0007	1110 0009 0008	1210 0003 0001	1123 0008 0012 0014 0015 0015 1123	1223 0009 0009 0009 0009 0009 0009
VORD	5000	1201 4600 2000	1101 5000 5000	1201 0900 6800	1101 5000 5000 1101	1201 2000 7600 5900 3500 1201
-	11	94 37 37	4 0 0 4 0 0	94 94 76	9004 9004 9004 9004	40444960 40440960
	00	100	12000	1000	N00000	101000000
		808	803	B0B	80 B	8 0 8
CARD	0003	0001 0003	0001 0002 0003	0001 0002 0003	0001. 0002 0003 0004 0005 0005	0001 0003 0004 0005 0005 0005
BLOCK	0027	0027	0028	0026	0054	9004

APPENDIX D

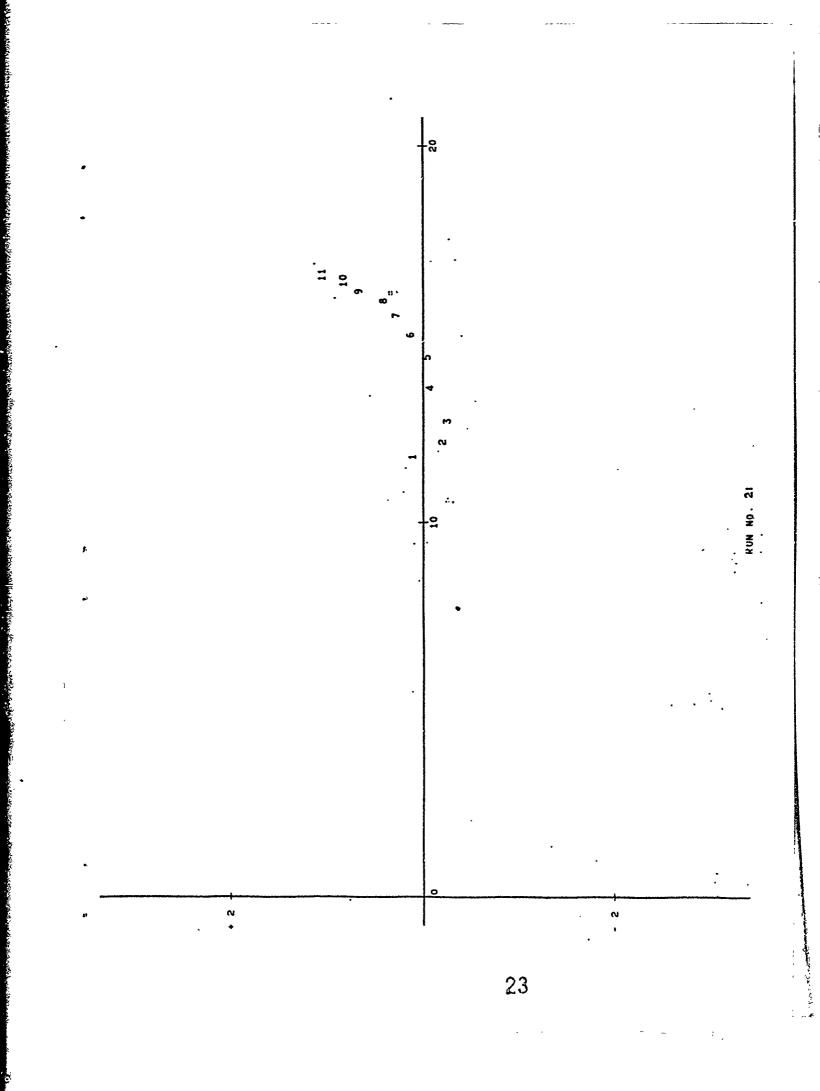

a any in the shadow

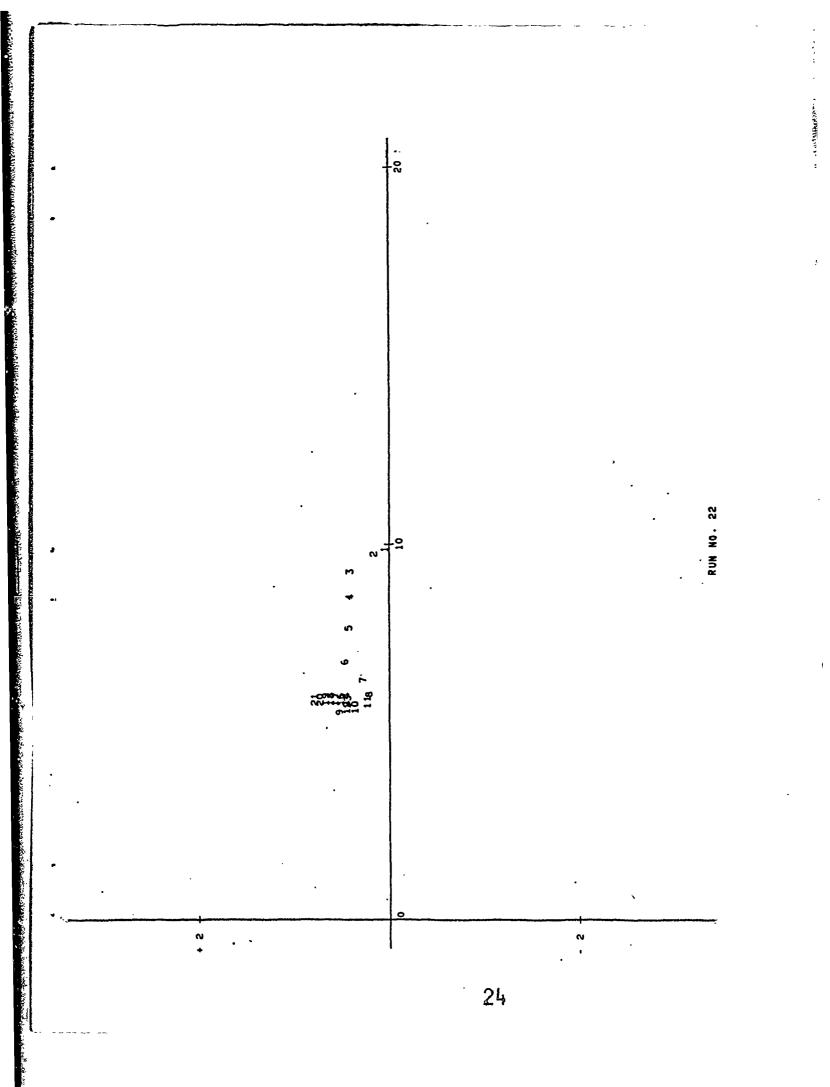


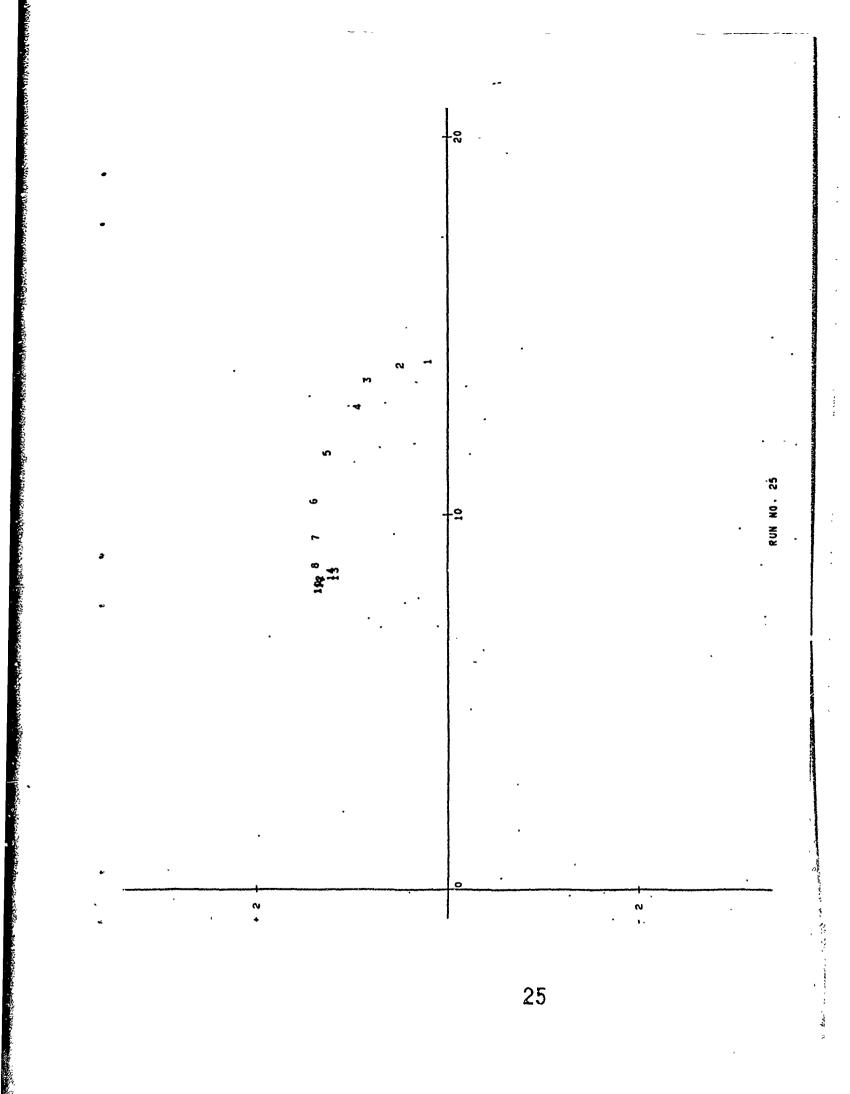

Plots of ε_n (ordinates) versus v_n (abscissae) for each run with each point marked by the value of n. (Sting diameter = 1.75 in. The data for the larger sting diameter ran off scale.)

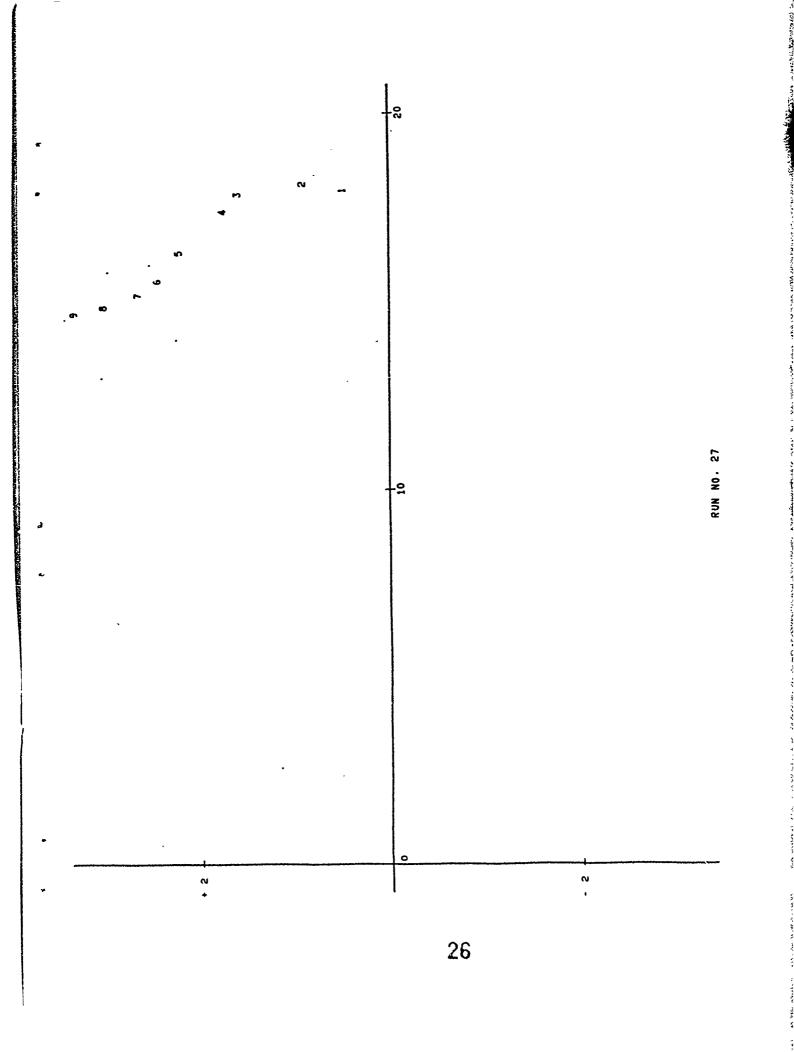

and the second second second

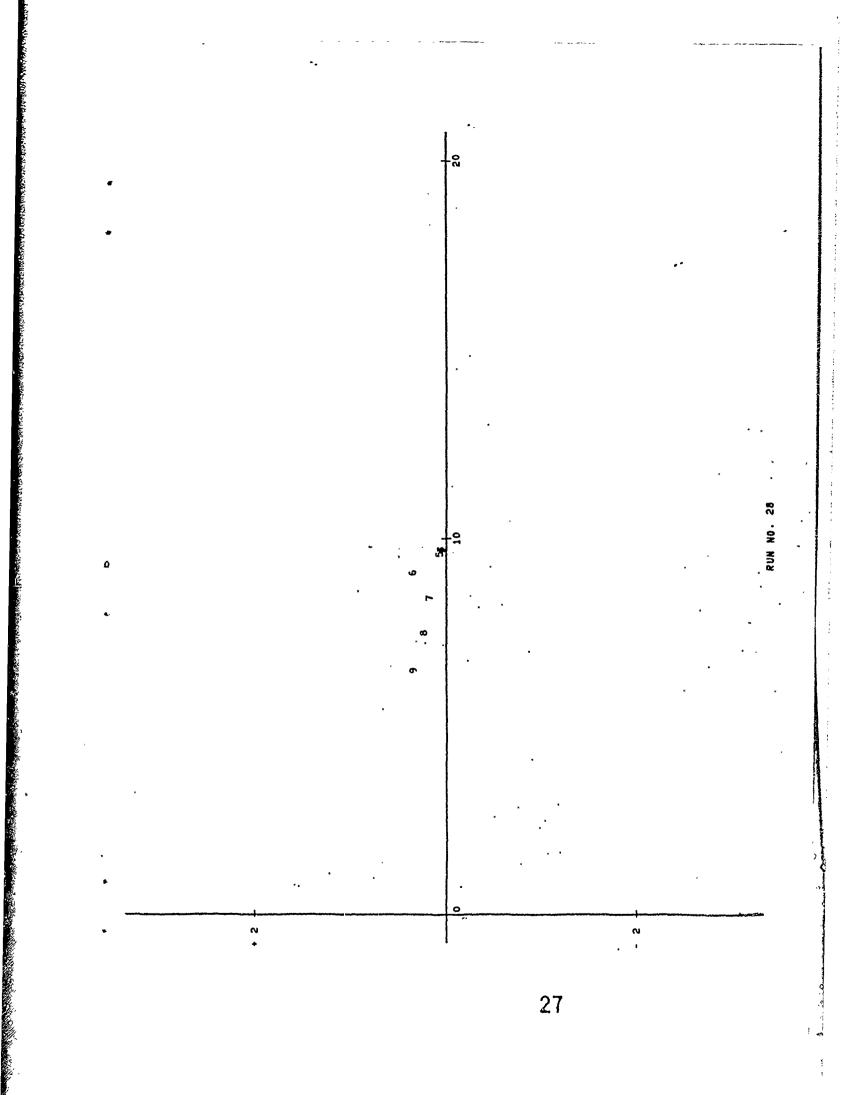
All states










REAL PROPERTY.

