

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.



# PICATINNY ARSENAL

DOVER, NEW JERSEY

NATIONAL TECHNICAL INFORMATION SERVICE

| M.Z.SIIM          |                        |
|-------------------|------------------------|
| 117811            | WEITE LEETING          |
| 205               | init section []        |
| BULK ROCKS        | a 🗆                    |
| <b>IBSTIFICAT</b> | <b>9</b> 5             |
|                   | *****                  |
| 64<br>613131891   | ISH/AVAILABILITY COSES |
| ° 9757.           | AVEN. MEAN PERIAL      |
| A                 |                        |

The findings in this report are not to be construed as an official Department of the Army position. ٩.

į.

### DISPOSITION

Destroy this report when no longer needed. Do not return to the originator.

### Technical Memorandum 1982

### A METHOD OF CHOOSING PROJECTILE MANUFACTURING TOLERANCES SO AS TO MINIMIZE COSTS OF PRODUCTION WHILE SATISFYING FUNCTIONAL REQU'TREMENTS

by

Eugene Friedman Edward Lacher Chiu Ng

December 1970

This document has been approved for public release and sale; its distribution is unlimited.

AMCMS Code 4810.16.2911.6

Engineering Sciences Laboratory Feltman Research Laboratories Picatinny Arsenal Dover, New Jersey

ar when a standarder about a bride a collision for it

いちのちょうちん あんちんちん しんしょう しちょうちょう

UNCLASSIFIED

. .

and the second second

1

.

| Socusity Classification                                                                                      |                    |                               |                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|-------------------------------------|--|--|--|--|
| DOCUMENT CONTROL DATA - R & D                                                                                |                    |                               |                                     |  |  |  |  |
| (Becuity classification of title, and obstruct and indusing .<br>1. Officing Ting ACTIVITY (Communic and or) | anceletion anot be | 20. REPORT SE                 | CURTY CLASSIFICATION                |  |  |  |  |
| Picatinny Arsenal, Dover, New Jersey                                                                         |                    | T                             | Inclassified                        |  |  |  |  |
|                                                                                                              |                    | UNCIDSSIFIED                  |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
| S. HEPORT TITLE                                                                                              |                    | <u></u>                       |                                     |  |  |  |  |
| A METHOD OF CHOOSING PROJECTILE MANU                                                                         | FACTURING          | TOLERANCI                     | es so as to min-                    |  |  |  |  |
| IMIZE COSTS OF PRODUCTION WHILE SATI                                                                         | SFYING FUN         | CTIONAL I                     | REQUIREMENTS                        |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
| 4. DESCRIPTIVE NOTES (Type al report and inchesive dates)                                                    |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
| Eugene Friedman Chiu Ng                                                                                      |                    |                               |                                     |  |  |  |  |
| Edward Lacher                                                                                                |                    |                               |                                     |  |  |  |  |
| S. REPORT DATE                                                                                               | 74. TOTAL NO. O    | F PAGES                       | 78. NO. OF REFS                     |  |  |  |  |
|                                                                                                              | 12                 |                               |                                     |  |  |  |  |
| BR. CONTRACT OR SRAHT NO.                                                                                    | S. ORIGINATOR      | REPORT NUM                    | )ER(8)                              |  |  |  |  |
|                                                                                                              | Technical          | Momoran                       | 11m 1982                            |  |  |  |  |
| A. PROJECT NO.                                                                                               | Tecunical          | . Hemorall                    | an 1922 11 an a' 14 69              |  |  |  |  |
| AMCMS Code 4810 16 2911 6                                                                                    |                    |                               |                                     |  |  |  |  |
| E WALL CARE FOIL FAILER                                                                                      | N. OTHER REPO      | RT NO(5) (Any of              | nor millibore that stay be accident |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
| 10. DISTRIBUTION STATEMENT                                                                                   | L                  |                               |                                     |  |  |  |  |
| This desument has been approve                                                                               | d for nubl         | ic relea                      | se and sale: its                    |  |  |  |  |
| This document has been approve                                                                               | a for publ         | TO TOTOR                      | se una sarcy res                    |  |  |  |  |
| distribution is unlimited.                                                                                   |                    |                               |                                     |  |  |  |  |
| 11. SUPPLEMENTARY NOTES                                                                                      | 12. SPONSORING     | HLITARY ACTI                  | 1177                                |  |  |  |  |
| •                                                                                                            |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              | L                  | فستعري والماران والتحو الأوري |                                     |  |  |  |  |
| IJ. ABSTRACT                                                                                                 |                    |                               |                                     |  |  |  |  |
| A method has been devised which                                                                              | allows or          | e to com                      | pute the tolerances                 |  |  |  |  |
| of dimensions of a projectile or oth                                                                         | er manufac         | tured it                      | em in such a man-                   |  |  |  |  |
| ner as to minimize the costs of prod                                                                         | luction. I         | he metho                      | d further allows                    |  |  |  |  |
| the imposition of any number of ineq                                                                         | uality con         | straints                      | (tolerances) on                     |  |  |  |  |
| properties of the dimensions (weight                                                                         | ;, volume,         | center o                      | f mass position,                    |  |  |  |  |
| etc.), which will be satisfied to a                                                                          | linear app         | roximati                      | on.                                 |  |  |  |  |
|                                                                                                              |                    |                               | lan has been shered                 |  |  |  |  |
| A particular form (hyperbolic)                                                                               | tor the co         | st funct                      | ion has been choser                 |  |  |  |  |
| as the example here computed, but the method is not limited to this form.                                    |                    |                               |                                     |  |  |  |  |
| A computer program to facilitate numerical application of this technique                                     |                    |                               |                                     |  |  |  |  |
| has been written, and another program to compute the required sensitivity                                    |                    |                               |                                     |  |  |  |  |
| coefficients for three dimensional mass asymmetry fimits is presently                                        |                    |                               |                                     |  |  |  |  |
| IN development.                                                                                              |                    |                               |                                     |  |  |  |  |
| <u>(</u>                                                                                                     |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |
|                                                                                                              |                    |                               |                                     |  |  |  |  |

UNCLASSIFIED Security Classification I

۲۰٬۰۰۰ <sup>مرو</sup>مهمه بیزمان میکوش

UNCLASSIFIED

|                                             | LINK A   |               | LINK B    |          | LINK C   |    |
|---------------------------------------------|----------|---------------|-----------|----------|----------|----|
| EGROW YEA                                   |          | WT            | ROLE      |          | ROUE     | #7 |
|                                             |          |               |           |          |          |    |
| Tolerance, dimensional                      |          |               |           |          | ]        |    |
| Costs of production                         |          |               |           |          |          |    |
| Weight                                      |          |               |           |          |          |    |
| Volume                                      |          |               |           | ]        | ]        |    |
| Center of mass                              |          |               | l         | }        | ļ        |    |
| Computation                                 | ]        |               |           |          |          |    |
| Computer program re tolerancing to minimize | l        |               |           | Į        |          |    |
| costs                                       | Į        |               | 1         |          |          |    |
| Sensitivity coefficients                    |          |               | 1         | ł        | Į        |    |
| Three dimensional mass asymmetry limits     | [        |               | ]         | [        | 1        |    |
|                                             |          |               |           |          | [        | ľ  |
|                                             | <b>!</b> |               | }         | {        |          |    |
|                                             |          | ĺ             |           |          | l        | l  |
|                                             | ł        | ł             |           | !        | ł        | l  |
|                                             | {        | [             |           | ļ        | 1        | ļ  |
|                                             | 1        |               | [         | 1        |          | ł  |
|                                             | 1        | 1             | 1         | 1        | 1        | ł  |
|                                             | 1        | l             | I         | 1        | 1        | l  |
|                                             |          |               | 1         | ļ        | l        | 1  |
|                                             | [        | 1             | 1         | 1        | 1        | ł  |
|                                             | [        | 1             | 1         | 1        | ł        |    |
|                                             | 1        | 1             |           | 1        | 1        | 1  |
|                                             | Į        | Į             | l         | 1        |          |    |
|                                             |          | ]             |           | 1        |          |    |
|                                             | 1        |               | 1         |          | ſ        | 1  |
|                                             |          | <b> </b>      |           |          |          | ł  |
|                                             |          |               |           |          | Ì        |    |
|                                             | Į        | Į             | 1         | 1        | ł        | [  |
|                                             |          |               |           |          | ĺ        |    |
|                                             |          | ļ             | 1         |          | 1        | 1  |
|                                             |          | 1             | 1         | 1        | l        | i  |
|                                             |          |               |           |          |          | Í  |
|                                             | 1        |               | {         | 1        | 1        |    |
|                                             |          | 1             | 1         |          |          |    |
|                                             |          | Į             |           | 1        |          |    |
|                                             |          | l             | Ì         |          | l I      |    |
|                                             | ł        |               | 1         | 1        | Į        |    |
|                                             |          | {             | 1         |          | }        |    |
|                                             |          |               |           |          | 1        |    |
|                                             | Į        |               |           |          |          |    |
|                                             | Į        | 1             | 1         | <u> </u> | 1        |    |
|                                             | I        | 1             | ]         | 1        | 1        |    |
|                                             |          | }             |           | 1        | 1        | 1  |
|                                             | I        | 1             | l         | ]        | I        |    |
|                                             | 1        | l             | 1         | 1        | 1        |    |
| ]                                           | 1        | 1             | ]         | ]        | 1        | ł  |
|                                             | 1        | 1             |           |          |          |    |
|                                             | 1        | ]             | ]         | ł        | 1        | Ì  |
|                                             | 1        | ł             | 1         | {        | 1        |    |
|                                             | ł        | !             |           | 1        | 1        |    |
|                                             | 1        | ]             | 1         | ļ        | 1        |    |
|                                             |          |               | L         |          | <u> </u> |    |
|                                             |          |               |           |          |          |    |
|                                             |          | UNCL          | ASSIF.    | LED      |          | -  |
|                                             |          | The second in | • Classif | aatiaa   |          |    |

## TABLE OF CONTENTS

|                   | Page |
|-------------------|------|
| Summary           | 1    |
| Introduction      | 1    |
| Discussion        | 2    |
| Conclusions       | 6    |
| Distribution List | 8    |

,

#### SUMMARY

A method has been devised which allows one to compute the tolerances of dimensions of a projectile or other manufactured item in such a manner as to minimize the costs of production. The method further allows the imposition of any number of inequality constraints (tolerances) on properties of the dimensions (weight, volume, center of mass position, etc.), which will be satisfied to a linear appro imation.

A particular form (hyperbolic) for the cost function has been chosen as the example here computed, but the method is not limited to this form. A computer program to facilitate numerical application of this technique has been written, and another program to compute the required sensitivity coefficients for three dimensional mass asymmetry limits is presently in development.

### INTRODUCTION

Certain problems of dimensional irregularity encountered during the production of the 175mm, M437 Projectile were brought to the attention of this laboratory. The effects of these irregularities on the static and dynamic unbalances and the effect of these unbalances on the flight of these projectiles were not sufficiently well understood to justify acceptance or rejection of the projectiles in question. During the course of the investigation of the flight dynamic effects of these irregularities (which did not fall within manufacturing tolerances) it became clear that an opportunity existed for the introduction of more sophisticated engineering methods into the decision making process. These methods ought to be useful for evaluation of requests for waiver of tolerance.

The following analysis is an early result of a search for superior techniques for choosing projectile tolerances.

### DISCUSSION

If the properties of an item one wishes to control in manufacture are called  $Z^{i}$  and these  $Z^{1}$  are functions of the dimensions of the item,  $X^{i}$ , and the minimum and maximum acceptable values of  $Z^{i}$  are  $C_{1}^{i}$ , and  $C_{2}^{i}$ , one may say

$$C_{1}^{i} \leq Z^{i}[X^{k}, k=1, n] \leq C_{2}^{i}$$
 (1)

2

X

· · with ' in Level by here

If we assume that any variation in any actual dimension of an item is small compared to the nominal dimension itself, then

$$\Delta z^{i} \simeq \sum_{k=1}^{n} \frac{\partial z^{i}}{\partial x^{k}} \qquad (2)$$

where the  $\frac{\partial Z^{i}}{\partial \chi^{k}}$  are evaluated at the nominal dimensions of the item, and are called sensitivity coefficients.

Combining Equations 1 and 2 we obtain, approximately

$$\delta C_{1}^{i} \leq \sum_{k=1}^{n} \frac{\partial Z^{i}}{\partial x^{k}} \Delta x^{k} \leq \delta C_{2}^{i}$$
(3)

where  $\delta C_{1}^{i} = C_{1}^{i} - Z_{nominal}^{i} \leq 0$ ,  $\delta C_{2}^{i} = C_{2}^{i} - Z_{nominal}^{i} \geq 0$ and  $\Delta Z^{i} = Z^{i} - Z_{nominal}^{i}$ ,  $\Delta X^{k} = X^{k} - X^{k}_{nominal}$ 

In order to assure that

 $\sum_{k=1}^{n} \frac{\partial Z^{i}}{\partial x^{k}} \Delta x^{k} \leq \delta C_{2}^{i}$ 

One may require that

$$\frac{\partial z^{i}}{\partial x^{k}} \Delta x^{k} \leq f_{k} \delta C_{2}^{i}$$
(4)

where the  $f_k$  are not a priori known but obey

$$0 \le f_k \le 1 \tag{5}$$

$$\sum_{k=1}^{n} f_k = 1$$
 (6)

and, similarly, to assure that

$$\sum_{k=1}^{n} \frac{\partial z^{i}}{\partial x^{k}} \Delta x^{k} \geq \delta C_{1}^{i}$$

we require that

$$\frac{\partial z^{i}}{\partial x^{k}} \Delta x^{k} \geq f_{k} \delta C_{1}^{i}$$

with the  $f_k$  obeying Equations 5 and 6.

Assuming that the  $f_k$  be somehow determined for each control property,  $Z^{i}$ , the minimum and maximum excursion of the  $\Delta X^k$  can be written

 $\Delta \mathbf{x}_{i\min}^{\mathbf{k}} \equiv \frac{\delta \mathbf{C}_{1}^{i} \mathbf{f}_{\mathbf{k}}}{\frac{\partial z^{i}}{\partial \mathbf{x}^{\mathbf{k}}}} \qquad \frac{\partial z^{i}}{\partial \mathbf{x}^{\mathbf{k}}} > 0. \quad (8)$   $\equiv \frac{\delta \mathbf{C}_{2}^{i} \mathbf{f}_{\mathbf{k}}}{\frac{\partial z^{i}}{\partial \mathbf{x}^{\mathbf{k}}}} \qquad \frac{\partial z^{i}}{\partial \mathbf{x}^{\mathbf{k}}} < 0.$ 

and

a strate of an and marked on

$$\Delta x_{i_{max}}^{k} \equiv \frac{\delta C_{2}^{i} f_{k}}{\frac{\partial z^{i}}{\partial x^{k}}} \qquad \qquad \frac{\partial z^{i}}{\partial x^{k}} > 0.$$
(9)

$$= \frac{\frac{\delta c_{1}^{i} f_{k}}{\frac{\partial z^{i}}{\partial x^{k}}}}{\frac{\partial z^{i}}{\partial x^{k}}} < 0$$

ŧ

from Equations 4 and 7.

If these be interpreted as limits on the range of  $x^k$  due to the limits imposed on  $Z^1$ , the intersection over all i of the regions

$$\Delta x_{i_{\min}}^{k} \leq \Delta x^{k} \leq \Delta x_{i_{\max}}^{k}$$

will have bounds  $\delta X_{\min}^k$  and  $\delta X_{\max}^k$  and still obey all requirements within the approximation (Eq 2). These are the intersections of all the sets of restrictions:

$$\delta x_{\min}^{\mathbf{k}} = \max_{\mathbf{i}} (\Delta x_{\min}^{\mathbf{k}})$$
(10)

 $\delta \mathbf{x}_{\max}^{\mathbf{k}} = \frac{\min}{\mathbf{i}} (\Delta \mathbf{x}_{\max}^{\mathbf{k}})$ (11)

The absolute minimum and maximum may be chosen at this point although the  $f_k$  are not known. Since for a given k all the  $\Delta X^k$  contributing to  $\delta X^k_{max}$  have the same  $f_k$  (and different C's and  $\frac{\partial Z^i}{\partial X^k}$ 's), the minimum  $\Delta X^k_{max}$  is the one with minimum  $\frac{\delta C}{\frac{\partial Z^i}{\partial X^k}}$ . The same argument holds for  $\delta X^k_{min}$ .

So for a given projectile and specifications [ Z, X, C ],  $\delta x_{\min}^k$  and  $\delta x_{\max}^k$  are constants times  $f_k$ .

It is now necessary to introduce the notion of a cost function, which reflects the unit cost of production with a given process or sequence of processes, and depends on the tolerances required. Given the equipment and size of the lot, the fixed costs are determined. Call this  $\xi_{\rm o}$ .

It is apparent that there exists some tolerance which is not quite possible to obtain using the  $\ell$ th process; call it  $n_{\ell}$ . The production cost grows very large as the tolerance.

on this process,  $\delta X_{\max}^{\ell} - \delta X_{\min}^{\ell}$ , approaches this  $\eta_{\ell}$  and the cost function must reflect this tendency. Further, each process is different and each has its own constant,  $\xi_{\ell}$ , multiplying its contribution to the total cost. Therefore we define a cost function  $\xi_{\ell}$ .

$$\$ = \xi_0 + \Sigma \frac{\xi_\ell}{\delta x_{\max}^\ell - \delta x_{\min}^\ell - \eta_\ell}$$
(12)

where the  $\xi_{\ell}$  are provided; they reflect the cost of reducing the tolerance on a given process; they need not be given in absolute terms, but relative to each other: i.e.,  $\xi_j=2.3 \ \xi_{j-1}$ ; and the  $\eta_{\ell}$  are the lowest practical value of the tolerance of the  $\ell$ th operation. So the problem proposed is to minimize \$ by a suitable choice of the  $f_k$  subject to the conditions  $\Sigma f_{j}=1$ ,  $f_{j}\geq 0$ . Note that the  $\delta X^{j}$  are linear in  $f_j$  and are functions only of  $f_j$  and the constants of the minimization problem.  $C_1^i$ ,  $C_2^i$ ,  $\frac{\partial Z^i}{\partial X_j}$  are all fixed for a given projectile. Therefore we propose to minimize

$$s = \xi_0 + \ell_{z=1}^{\Pi} \frac{\xi_\ell}{k_\ell f_\ell - \eta_\ell}$$
(13)

where  $\eta_{\ell}$  is the tightest tolerance possible by the  $\ell$ th manufacturing operation, and  $\xi_{\ell}$  is the rate of change of cost with respect to tolerance level for the  $\ell$ th operation, subject to the condition

$$\sum_{\ell=1}^{n} f_{\ell} = 1 \xrightarrow{\ell} \sum_{\ell=1}^{n} (f_{\ell} - \frac{1}{n}) = 0$$
 (6a)

Equations 5,6a, and 13 can be combined into

$$\$ = \xi_0 + \Sigma \left[ \frac{\xi_{\ell}}{\kappa_{\ell} f_{\ell} - \eta_{\ell}} + \Pi \left( f_{\ell} - \frac{1}{n} \right) \right]$$
(14)

where  $\Pi$  is a Lagrange multiplier ( $\neq$  0) and the usual condition for an extremum with respect to  $f_i$  is applied:

$$\frac{\partial \xi}{\partial f_{j}} = \frac{-\xi_{j}k_{j}}{[k_{j}f_{j} - n_{j}]^{2}} + \Pi = 0,$$

which is n equations in the n f's and one II and

$$\sum_{\ell=1}^{n} f = 1$$
 is the n+1<sup>th</sup> equation.

Solving for  $f_i$  and  $\Pi$  yields:

$$f_{j} = \frac{\frac{\xi_{j}k_{j}}{\Pi} + \eta_{j}}{k_{j}} = \frac{\xi_{j}}{k_{j}} + \frac{\eta_{j}}{k_{j}}$$
(15)

and

$$\Pi = \left\{ \begin{array}{c} \frac{n}{\sum_{j=1}^{n} \sqrt{\xi_{j/k_{j}}}} \\ \frac{j=1}{1 - \sum_{j=1}^{n} \eta_{j/k_{j}}} \end{array} \right\}^{2}$$
(16)

ĺ

ŧ

Therefore, the actual tolerances can be calculated from these closed form solutions by substituting actual values into Equations 8, 9, 15, and 16, and the results into Equations 10 and 11.

### CONCLUSIONS

It has been demonstrated that it is possible to optimize the cost of production of a projectile in a manner which guarantees approximate satisfaction of any number of inequality constraints on any property of the dimensions (the functional requirements).

This is, of course, in some sense a "worst case" solution since an item with maximum error in all its dimensions still satisfies all the inequality constraints. This may lead to impractically tight tolerances. It is then clear that some small but finite failure rate (fail-

ure to meet the functional requirements) is acceptable in a lot, if all of the items in it satisfy the tolerances imposed on the dimensions.

,

1

We believe that the above computed distribution of tolerance (that is, the relative sizes of the tolerance) is still useful. Further, it is felt that a suitable constant for each tolerance can be developed which will involve the probability of each half-distribution of dimension exceeding tolerance, normalized in such a way that each half distribution will contribute an equal amount toward the probability of not satisfying the functional requirements.

Further effort in this direction is necessary for a more complete understanding of the probabilistic effects and this effort will be pursued.