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ABSTRACT
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collection of negatively biased flush electrostatic probes is experi-
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I. INTRODUCTION

The plasma associated with a vehicle entering the earth's atmos-
phere at hypersonic velocity is the source of a number of observable
phenomena. Among these phenomena is the change in radar cross-section
of the entering vehicle, the communication difficulties with the
vehicle, and recognition difficulties in the case of ICBMs, in terms of
discrimination between actual, lethal missiles and accompanying
penetration aids. One of the important observables dealt with in this
context is the ionized particle number density. Since on entry, in
addition to the air, ablating products are included, the chemistry and
composition of the gases surrounding the entry vehicle and found in the
wake become extremely complicated. Thus, the only recourse is to
experimental research and the problem of diagnostic instruments
therefore becomes one of major importance.

Among a variety of diagnostic instruments utilized to measure
ionized particle density in a given plasma, the Langmuir or electro-
static probe has always been the most attractive to the experimentalist,
notwithstanding the fact that interpretation of the measurements has
not always been trivial, This attraction to the electrostatic probe
~an be attributed to its simplicity and wide dynamic range. There are
basically three types of electrostatic probes in operation today; they
are the spherical, cylindrical and flush mounted probes. Sufficient
theoretical and experimental work has been done on spherical and
cylindrical probes operated in different regimes to permit the experi-
mentalist to relate the collected current density to the free stream

1-4

ionized particle density. In the case of the flush mounted electro-

static probe , this is not the case. The few theoretical or experimental



resalts vrailanle of-7 Lo Lo ) o . conditiors and specific cases.

The analyris nf Chunq5 of a one-dimensional geometry probe in a
frozen flow, with no Crp.ection;AiG of special irterest because the
author reduceé his results to a simple equation relating the current
density to the free strecm ionized particle number densityﬁ.
BresxZaldl and Scharfman7 proposcd another theory based on the planar
space charge limited, mobility controlled, diode equation. The
experiment: conducted by Scharfman indicated that the measured current
densities were bounded by fhe current densities predicted by the
Bredfeldt-Scharfman and Chung equations. The above was based on the
assumption that the collected current represcants *he saturation current.
In most of the work reported and known to the authors, the question of
what constitutes ion saturation, the effeet of increasing bias, the
effect of geometry ard orientation of the probes and the effect of size
on the current collection has not been sufficiently explored.

in the present work an attempt is being made to answer some of
these questions in a systematic way. To that end a 6" diameter
pressure driven shock tube has been utilized. The tests were conducted
in the ionized flow behind the incident shock where a continuum regime

existed.

II. REVIEW OF THE CHUNG AND BREDFELI'P-SCHARFMAN THEORIES

As indicated above, fo&vr theories have been advanced in recent
vears that deal with the operation of flush electrostatic probes in a
continuum regime. In these treatments, one or more of the following
assumptions have been made in order to simplify the fluid-electromagnetic
equations. This resulted in solutions which are of limited

applicability.



The primary assumption is, of course, that continuum flow holds
throughout the flow field; i.e., all mean free paths are much smaller
than the probe dimension. The next most common assumption made in
these analyses is that the electron temperature is known at the edge
of the velocity boundary layer. Third, the electron and ion temperatures
are assumed constant or to form the same ratio within the flow field.
Fourth, recombination effects are neglected on the probe surface; and
fiith, charge separation does not occur to any high degree except near
the probe surface.

One such theory which was developed, and which was not limited to
any of the special non-typical flow fields arrived at by invoking many
of the previous assumptions, was developed by Chung. This theory was
applied to the stagnation point boundary layer flow of slightly ionized
gasess.

Later, Chung and Blankenship6 recast this analysis into a more
useable form for determining free-stream charge density from
measurements of net collected current, by considering the problem posed
by rarallel plate electrostatic probes. Further restrictions were made
in order to obtéin a simple form for the solution, namely, frozen
boundary layer flow, constant ion mobility, low applied bias and
knowledge of peak charge density. The result of this analysis was given

by
23/2(x,/m v )% o

fe” J..oo+o.94('re/'i'n ) © (1)

In their analysis, Chung and Blankenship used as the characteristic

flow dimension the boundary layer thickness given by

V X
6=(T?');5 (2)



and a characteristic mcan free path defined by

3v
A= () (2)
th
where the thermal velocity was given by
8kT
= (2% '
Ven™ ( nmi) (4)

Substituting equations (2) and (3) into equation (1}, and

expressing in terms of net current density, gives

X
3~2"1 1.00 + 0.94(1_/1 ) 1 +3(7] ()
where
nemeVth A
J(r] = yn . [3 ] (6)

For the case of Te=Tn' expression (5) reduces to

Ne ev

o th A
J~ 0,92 7} . [3 ] (7)

Physically, this can be interpreted to mean that instead of a
simple, collision-free current collection, the flux arriving at the
probe is reduced by a factor [ % ] in diffusing through a thickness 3§,

Equation (7), which gives the net current in terms of the reduced
current flux can be rewritten in a form familiar for electrostatic

probes in a stationary plasma, namely,

ne eV
_ @ "th r A
or
U v
[-- - -] k
an-nem( Xq ) (9)

Several features can be readily noted. First, for given flow
conditions and distance from the leading edge, there is a saturation
of current collected with applied biasy increases in applied bias once
saturation current is reached would have no effect. As determined,

experimentally in this work, this conclusion is incorrect. Second,



for given gas properties and charge density, the saturated current
varies inversely with the sguare root of the streamwise distance. This
conclusion is also not justified in general. Third, current collection
is linearly related to charge density for given gas properties and
distance from the leading edge of the fliat plate.

Bredfeldt and Scharfman7 approached the problem posed by flush probe
current collection and on the grounds of physical reasoning, supplemented
by experimental evidence, arrived at a result similar to that obtained
considering a stationary plasma.

Bredfeldt and Scharfman considered the case of current collection
for which all mean free paths are less than the sheath thickness and
assumed that the full, random thermal flux arriving at the sheath edge
is collected by the probe. Furthermore, they assumed that the planar
mobility controlled diode equation.s could be used to locate the sheath
edge.,

Solution of these equations gave expressions for the sheath thickness
and current density in terms of parameters evaluated at the sheath edge;

these expressions were

. V2 1/3
n__ev
I = _esj.ﬂ.‘i (11)

The simplicity of these equations is misleading; a velocity and charge
density must first be calculated by a suitable boundary layer theory
before they can be used, Fig., 1. For highly non-uniform boundary
layers, this theory is not applicable,because the assumption that the
mobility controlled diode equations can.be used to locate the sheath

edge is no longer valid.



Br:dfeldt and Scharfman justify this result by theorizing that in a
collision dominated flow, the charged particles are scattered deeper into
the sheath by Eollisions occurring in the first mean free path after
entering the sheath. Collection is thus more assured bec§use the field
is stronger near the probe than at the sheath edge.

While this theory does not explicitly reflect a dependence of ion
current density upon applied bias, it does attempt to account for the
variance between physical probe area and sheath area, which becomes
significant at large values of applied bias. It is the flux
collecting area of the probe sheath that is of importance.

This method assumes that the ion current is collected over a 90°
segment of a cylinder bordering on the perimeter of the probe, with
radius given by sheath thickness.

Thus, for probes whose streamwise and cross-stream dimensions are
approximately equal,

c=241‘21?3=0.500+nds-‘%3f—s)-
probe P
and for probes whose streamwise length is much greater than cross-stream
width

A
cD=.A_SLﬂ = 0.500 + 0.250mds (L+4ds).

probe

III. EXPERIMENTAL FACILITY

A conventional double~-diaphragm pressure driven shock tube was used
to generate the required low density, high enthalpic flow. A
schematic of the shock tube facility is presented in Fig. 2. The
facility consists cf a driver, driven, double diaphragm and test sectiems,

a dump tank, instrumentation, vacuum and pressurization systems. A



full description of this facility is given in Ref. 8.

The test section housed a flat plate, Figs. 3 and 4, to which'
removable model inserts were attached, Figs. 5 and 6. The leading edge
of the flat plate was a sharp 20° wedge and the upper surface was
mounted at zero angle of attack. All surfaces were machined smooth
on the flat plate and the model inserts. A cylindrical Langmuir probe
extended ahead of the leading edge of the flat plate, well into the
undisturbed flow, as seen in Figs. 3 and 4.

The instrumentation consisted of the various pressure sensing
devices, a shock speed timer and the data recording system. Test data
were recorded on Tektronix 565 oscilloscopes, each equipped with 2
Polaroid camera.

The flush electrostatic probes used in these experiments were
machined from brass to close tolerance in both size and geomet:y and
imbedded in plastic, which served a dual purpose of support and
insulation. A typical probe circuit is shown in Fig. 1. The negative
bias furnished by a battery or regulated power supply was applied to the
probes in series with a fixed resistor across which the collected ion
current was measured. The specific geometries, areas and orientation

of the flush probes with respect to the flow are shown in Figs. 5 and 6.

IV, EXPERIMENTAL RESULTS

With the shock tube and probes described previously, several
series of tests were conducted., Due to the unreproducibility of the
test, traceable to the inhomogeneity -f the diaphragm material, the
shock Mach number obtained with the 0.1 Torr driven pressure varied

from 10.4 to 11.8 and for the 1.0 Torr driven pressure from 8.4 to 9.6,



Before attempting to explain the behavior of the probes under
conditions of different bias, area, geometry and position on the platg,
the uniformity of the flow field over the plate had to be ascertained,
This w.. done by running a series of tests using a number of probes of
the same size and bias, distributed over the plate., It waé found that
the collected current deviated no more than.about 10% from the centerline
probe current, on each line of probes., Some representative traces of
the recorded raw data are shown in Fig. 7. Héving established this,
tests were conducted to determine t' 2 dependence of thé collected ion
current on the bias. Due to the Mach number variation between tests, the
data obtained were, fof the sake of comparison, reduced to a Mach number
of 10.3 and 9.3 for the 0.1 and 1.0 Torr cases, respectively. The
results of these tests are shown in Fig. 8, where the normalized
collected ion current density is élotted vs. bias for the 0.1l and 1.0
Torr of driven pressure for probes of 1/4" diameter. The next
series of tests was concerned with the dependence of the collected
current density on the size of the probes. To achieve this the bias was
maintained constant and the area was variedG, The results of these
tests are shown in Fig. 9, where the normalized ion current densities are
plotted vs. the normalized area for the 0.1 and 1.0 Torr.

The current density as a function of bias with the area as a
parameter and normalized to the current density of the smallest probe
at the given bias is shown in Figs. 10 and 11 for the 0.1l Torr and 1.0
Torr initial pressure, respectively. The decrease in current density
with the increase in area at constant bias is evident in both cases.
There is also a slight decrease in current density with increasing bias.
This behavior, howevér, is not monotonic as there is a minimum, then
an increase in current density with the increase in bjias in the 0.1l Torr

initial pressure case.



In the 1.0 Torr case this effect could not be found because of
Frecakdown at higher biases of the larger area probes. The combined
effect of bias,sheath thickness and area is shown, for both cases of
“.] and 1.0 Torr in Fig. 12, In this context, and due to the con-
struction of the test inserts, the question of interference of probes
~‘ith each other, particularly at high probe biases, arose. To answer
this question, a series of tests was conducted with all probes at a
given bias ahd a series with alternate probes grounded to the plate.
From the measured current densities, no interference effect between
adjacent probes could be detected.

The effect of position of the probe on the plate, on the collected
cucrent density is shown in Figs. 13 and 14, where the current density
is plotted as a function of position of tlie probe from the leading edgo
of the plate with the applied bias as a parameter for the 0.1 and 1.0
Torr of driven air, respectively. It is evident that the prediction cf
~ehavior by Chung, based on boundary layer theory, is not completely
ratis-ied, The deviation is quite strong and increases with the bias.

The current density data obtained in the above tests were comparnd
tc the current densities predicted by the theories of Chung, Bredfeldt
and Scharfman, by relating the free stream ionized particle number
densities to their corresponding ion current densities The res'lts are
srcwn in Figs. 15 and 16 for the 0.1 and 1.0 Torr, respectively. It is
.vident in both cases that the theory of Chung is applicable at very low
kLiases whereas the simple theory of Bredfeldt and Scharfman is more
applicable at high biases. Neither is completely valid. The density
calculated using either theory may deviate from the actual dersity by

as ruch as a factor of 2 or more,




The effect of geometry was explored using circular and rectangular
probes of the same area. No distinguishable effect could be detected.
This is indicated in Figs. 15 and 16, where the geometry effects are

compared for 1/8" diameter circular probes and 1/8" square probes.

V. DISCUSSION OF EXPERIMENTAL RESULTS AND CONCLUSIONS

As indicated above, the aim of this work was to obtain some
experimental information on the behavior of flush electrostatic probes
in a continuum flow., The effect of bias on current collection is of
particular importance, since determination of the ion number density,
which is the main objective of using electrostatic probes, can only
be accomplished by relating the above.

An implication of Chung's analysis, from the linear relation
between the collected ion current density and the free stream ion
density, is a saturation ion cu£rent, or independence of the collected
ion current from the applied bias. This, as seen from the experimental
results as presented in Fig. 8, is clearly not the case. The current
density increases with increasing bias. This increase is non-
linear, depending on the density and degree of ionization as indicated
in the figure and evident from Table I.

The effect of area of the collecting probes on the current density
is shown in Fig. 9. It is evident that the collected current density
decreases with the increase in area. The decrease in current density
is also dependent on the degree of ionizatiosn. An explanation in terms
of ion depletion is not possible, because the collected currents are
very small, and the area effect increases with an increase in neutral
density. This seems to be pointing towards the effects of mobility and
collisions. A decrease of mobility with an imcrease in density results

in a decrease in current density. The combined effect of area and

10



sheath thickness is shown in Fig. 12, As can be seen here, the
increase of mobility increases the sheath thickness and decreases the
current density with an increase in area.

The current collection as a function of position on the plate is
snown in Figs. 13 and 14. As is evident from the inspection of these
figures. Chung's prediction of—the collected current density, based on
his boundary layex analysis, is not satisfied. The experimental data
reveal a strong dependence on the bias and again on the neutral number
density.

The next problem of this experimental investigation was the question
of the applicability of the Chung and/or Bredfeldt-Scharfiian theories
to the reduction of the data. 1In Figs. 15 and 16, the results of the
investigation are shown., Here ion current densities, as a function
of the free stream charge densities,are computed using Chung's and
Bredfeldt's relations. The actual measured current densities are then
plotted vs, free stream ion number density as measured by cylindrical
probe mounted in front of the plate. The ion number densities
corresponding to the measured shock Mach numbers were thus confirmed.
The data obtained with low biases seem to agree with the calculated
densities according to Chung, whereas at a higher probe bias the data
agreed more with the analysis of Bredfeldt and Scharfman. Neither is
completely valid. From the data in Figs. 15 and 16, it is also evident
that the geometry of the probes has a very minor effect on the current
collection,

In conclusion, from the data presented above, it is evident that
the flush mounted probe cannot be considered an absolute type of a
diagnostic instrument for the following reasons:

1. The collected ion current density is bias dependent.

11



2. The collected ion current density is area dependent.
3. The collected ion current density is neutral density dependent
" (collision dependent).
4. The relationship between the collected current density and the
free stream ion density is so complicated that nc'satisfactory

analytical theory exists which is capable of relating the above.

This dces not mean that the flush electrostatic probe is useless. On

the contrary, it is a simple rugged instrument which is capable of

providing qualitative data in very harsh environment where the

survival of c:her diagnostic instruments is nonexistent. 1In many cases,

where the regime of operation and the flow field is known, it is also

capable of providing valuable quantitative data.
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Reynolds Number/Unit Length
Plate Surface Temperature
Ion Temperatur:

Electron Temperature
Charged Particle Density

lD- Debye Shielding Distance

TABLE 1

P1=0.1 Torr

3000k

1.73 x 10" %atm.
2,94

7.0 x 102/cm
300°K

3000°k

3000°K

1.55 x loloi/cc.

3.0 x 10™° cm

14

P1=1.O Torr

3000k

1.41 x 10 latm.
2,74

5.0 x 103/cm
300k

3000°K

3000°K

6.0 x loloi/cc.

1.55 x 10> cm
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FIG. 4 PHOTOGRAPH OF TEST SECTION SHOWING
FLAT PLATE, CYLINDRICAL LANGMUIR PROBE
AND TEST MODEL IV INSTALLED
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P=0.I TORR

Probe Bias: -9 volts
Sensitivity: 0.5 v/div.

Sweep: 50usec/div.,
Oroap? 10 k 0
Ms: 11.20

Probe Bias: -9 volts
Sensitivity: 0.2 v/div.

Sweep: 100usec/div.
QLOAD: 10 k O
Mss 9.32

FIG 7 TYPICAL ION CURRENT TRACES
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