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DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS 

I.  ULTRASONIC VELOCITIES OF DILATATIONAL WAVES IN FROZEN SOILS 

by 

K. Knuth, M. Smith, R, Martin and \. Nakano 

Introduction 

Measuring the variation of the acoustic properties of solids under variable physical conditions 
has become well established as an effective method for investigating the physical structure of 
solids. 

Although the acoustic properties of metals, plastics, and unfrozen earth materials have been 
widely explored, little attention has been directed toward frozen earth materials in the past. Re- 
cently there has been considerable interest in frozen earth because of military applications, such as 
seismic monitoring and personnel sensor detection in cold environments, and construction engineering 
applications, such as the Trans-Alaskan pipeline construction. 

One of the most important acoustic properties of solids is the velocity of dilatational waves. 
A nummary of dilatational wave velocity data obtained in permafrost regions was compiled by 
Barnes (1963). Eykov (1966) reviewed Russian works. Several laboratory studies on the subject 
have been reported (Frolov, 1961; Mullet, 1961; Kaplar, 1963; Desai and Moore, 1967; Timur, 1968). 
Frolov (1961) measured velocities of 30 kHz dilatational waves in four different types of frozen 
soils (sand, clay, sandstone und silt) in the temperature range from -20oC to 20oC. Müller (1961) 
measured the velocity in water-saturated sand and clay of various porosities as a function of 
decreasing temperature.  His results indicate that with increasing ice content the velocity decreases 
for sand and increases for clay. Kaplar (1963) measured both dilatational and shear wave velocities 
in various frozen earth materials in the temperature range from 0oC to •20oC by the resonant bar 
method, in which either flexural, longitudinal or torsional vibrations were induced by electromagnetic 
means. 

Recently Timur (1968) measured dilatational wave velocities in various earth materials between 
260C and -360C by the pulse first-arrival technique, in which the time required for an elastic wave 
to traverse a sample of known length is determined. He measured velocities with both descending 
and ascending temperature and found that the two measurements generally do not agree, the degree 
of discrepancy depending on the specimen.  It has recently been shown that freezing and thawing 
bring about a dramatic redistribution of water and a reorientation of particles, particularly in fine- 
grained earth media such as clay (Anderson and Hoekstra, 1965a and 1965b; Anderson and Tice, 
1970).  It is possible to consider a hysteresis of velocity reported by Timur (1968) as a result of 
such structural change in the specimen. 

This report covers the first phase of an investigation of the relationship between acoustic 
properties of frozen soils and soil structure as well as constituents. The velocities of dilatational 
waves in three standard soils were measured with the pulse first-arrival technique. A hysteresis of 
velocities similar to that obtained by Timur was observed. 
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Experimental Frucedure 

Sample preparation 

Three standard types of soils, 20-30 Ottawa sand, Hanover silt and Goodrich clay, were 
tested under fully water-saturated conditions.  Figure 1 shows the gradation curves obtained 
according to ASTM (American Society for Testing and Materials) test piocedures. We prepared 
circular cylindrical samples, either 2.5 cm diameter * about 15 cm length oi 2.5 cm diameter x 
about 90 cm length.  To prepare sand or silt, dry soil was first packed into 1-inch Tygon tubing 
encased in a copper jacket and was tamped or vibrated until a specified dry density was attained. 
Then water was sucked into the sample by the use of vacuum.  To prepare clay, water-saturated 
clay was packed into Tygon tubinn in ordc to maintain uniform density throughout the sample. 
After the ends of the tubing were sealed with aluminum plugs, the sample protected by the tubing 
and the copper jacket was frozen. When the sample was ready for testing, the copper jacket was 
removed and the plugs were replaced with transducer assemblies. 
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Figure 1.   Gradation curves (or 20-30 Ottawa sand, Hanover silt, and Good- 
rich clay.  GH   -- specific gravity. 

Temperature control 

Copper-constantan thermocouples were inserted to the center of the sample to monitor tempera- 
ture.  To maintain a constant temperature during the experiment, a Forma Scientific R xlel 2095 
hath was used.  The sample was placed in a cooling jacket, through which the cooling fluid was 
circulated by a pump via the bath. The temperature of the sample was kept constant within +0.1 0C. 

Velocity measurement 

Tiie velocities of propagating waves in the sample were measured with the pulse first-arrival 
technique (Kolsky, lv)().1).  At either end of the sample a transducer of 0.5-inch-diameter x 
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0.25-inch-thick PZT4, which was bonded to an aluminum disk 1 inch in diameter and 0.<!E> inch 
thick with silver epoxy, was attached to the surface of the sample with a few drops of silicone 
oil for better coupling. One of the transducers served as a transmitter and the other as a receiver. 

A Hewlett Packard Model 214A pulse generator supplied pulses of about 1 second duration to 
the transmitter with a repetition rate of 500 to 1000 pulses per second. The receiver, which was 
connected to a Tektronix 50A dual-trace oscilloscope via a Krohn-Hite Model 3202 filter, displayed 
the received signal. A filter was used in a bandpass mode passing 10 kHz to 1 MHz.  The other 
oscilloscope trace was used for a Computer Measurements Company Model All digital time delay 
generator providing accurate measurements of arrival time with an error of less than +0.1 sec.  Both 
traces on the oscilloscope were triggered by the pulse generator. This system was checked by the 
use of a standard medium, such as water, copper or aluminum, prior to measurements on frozen soils. 
AH tests gave velocities within 1% of handbook values. 

Accuracy of the pulse method 

The beiiavior of elastic waves in any bounded medium necessarily entails various effects due 
to the presence of the boundaries. The effects of boundaries in circular cylinders have been well 
studied (Kolsky, 1963). Figure 2 depicts the theoretical group velocity of the first six axially 
symmetric modos in an aluminum rod 1.5 inches in diameter. The calculations were performed 

300 400 

FREQUENCY (KHZ) 

Figure 2.  Group velocity versus frequency for a circular cylinder 1.5 in. in diameter, having a com- 
pressional velocity of 6.42 km/sec.   The expected "bar" velocity is 3.04 km/sec.   The crosses 

are observed group velocities in a 1.5 in. aluminum rod. 327.5 cm long. 
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using handbook values for shear and dilatational velocities. The lowest (node approached the bar 
velocity in the low-frequency limit. It is clear from Figure 8 that tha mode structure of a cylindci 
is fairly complex. The crosses represent observations of group arrival versus frequency taken, 
with our apparatus, on a 327.5-cm aluminum rod, 1.5 inches in diameter.  The primary uncertainty 
in the data lies in the assigned frequency, which was obtained by a period measurement of 
adjacent peaks. The agreement is quite satisfactory within the limits .imposed by this error. The 
spurious points at about 80 kHz may be attributable to mode coupling at the rod's support points 
although we did not attempt to verify this. 

As is seen in Figure 2, successively higher modes possess group velocity maxima which 
increase in both frequency and velocity. In a general way, these maxima approach the dilatational 
velocity of an elastic medium increasingly closely.  For example, the 14th mode possesses a maxi- 
mum at 1.15 MHz and a velocity of 97% of dilatattonal velocity. 

In view of these calculations dilatational wave travel-time measurements should be made at the 
highest feasible frequency. Care should be taken to ensure operation in a region where the group 
velocity is close enough to the dilatational velocity to achieve the desired accuracy. 

So far we have discussed the accuracy of the method applied for elastic solids. Since any 
real material deviates from an ideal elastic solid in one way or another, the accuracy of the method 
also depends on the anelastic behavior of the solids examined. 

Results and Discussion 

The results of the experiment are presented in Figures 3-5 where dilatational velocities are 
plotted as a function of temperature. Originally we intended to evolve a technique that would 
allow simultaneous measurement of both dilatational and shear velocities using long samples based 
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Figure 3.  Dilatational velocity vs temperature (or Ottawa sand.  The differences in density 
and velocity reflect the difference in porosity. 
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upon the theory of guided elastic waves in a cylinder. This effort has been unsuccessful due to 
unexpected high attenuation in the samples tested   For Ottawa sand and Hanover silt, 90-cm-long 
samples barely allowed measurement of dilatational velocities in the frozen state, and did not 
allow measurement in the unfrozen state. Ninety-cm-long Goodrich clay did not yield any reliable 
measurement even in the frozen state. Despite the limited experimental data, we are able to 
present the following observations. 

Velocity versus temperature curves 

The decrease in dilatational wave velocity as an initially frozen water-saturated soil is 
thawed appears to be a direct consequence of the change in state of the water. Consider the soil 
as a two-component mixture, that is, a granular framework whose interstitial spaces are filled 
with water. A high-frequency wave traveling along any path through the sample will travel part of 
the tune through the crystalline framework and part of the time through either water or ice, depend- 
ing on the temperature. Since the dilatational wave velocity is about 3.0 km/sec in polycrystalline 
ice but only 1.49 km/sec in water, we expect that the travel time along the same path in a frozen 
sample will be less than the corresponding travel time in the thawed sample. The velocity of a 
wave propagating in the crystalline framework is essentially constant over this temperature range. 
Hence, the observed velocity for frozen soil should be greater th'n for the same sample thawed. 

In light of this explanation of the variations of dilatational velocity in saturated soil as a 
function of temperature, it might be asked whether or not the observed change in velocity is in 
some way proportional to the amount of water in the sample. This suggests that perhaps each 
component contributes to the observed slowness in proportion to its relative abundance in the 
sample and the average compressional wave velocity of the individual components. Averaging 
techniques for two-component systems have been employed successfully to obtain compressibilities 
and moduli of many minerals which are available only in small quantities or in finely divided 
particles not suitable for bulk testing. They are first mixed with an Isotropie material with known 
elastic constants. The unkiiown elastic parameter is then computed from the average properties 
of the composite material (Anderson, 1963; Chung and Buessman, 1967; Brace et al. 1969).  The 
most notable method is to use Voigt and Reuss averages to obtain upper and lower bounds and then 
select a composition for which the spread of the bounds is a minimum. These methods however 
are not directly applicable in a straightforward way to the simple averaging of dilatational wave 
velocities for a two-component system. 

Timur (19CS) measured the dilatational wave velocity in water-saturated porous sandstone as 
a function of temperature.  He observed a change in velocity similar to the one we observed as the 
temperature of tho sample was increased from -240C to +240C. Moreover, only an insignificantly 
small decrease in velocity was observed on a dry sandstone sample as the temperature was raised 
from below the fpeezing point of water to room temperature. These observations also strongly 
suggest that the change in dilatational velocity as a frozen sample is thawed is attributable solely 
to the state of water in the pore spaces of the rock. Using an argument similar to the one we out- 
lined above to explain the variation in velocity as our samples thawed, Timur (1968) proposed a 
simple time-averaging method to compute the theoretical velocity of a two-component system based 
on the percentage of each compwicn! in the sample and the velocity of that component. This 
technique assumes that the tiavel time for a dilatational wave through the sample is the travel 
time for each component computed according to 

L.±+LzA (i) 
V0        Vl V2 
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where v0 is the observed velocity 'or the sample, vl and ve are the velocities of each component, 
and A is the relative volume of one component. For a water-saturated sample, the relative volume 
of water present is equal to the porosity of the sample. 

Applying eq 1 to his results, Timur found good agreement with his experimental results. 
Typically the observed velocity fell within 5% of the predicted value. Our results on 20-30 Ottawa 
sand with a porosity of 37.5% (Fig. 3) were compared with the predicted velocities obtained using 
the time-averaging equation.  For the frozen soil the predicted and observed values agreed to 
better than 2%. However, for saturated soil above 0oC agreement was poor. The observed velocity 
was 2,78 km/sec whereas the predicted value using time-averaging was not immediately applicable 
to the silt sample because the composition and relative abundance of the solid particles were not 
known. 

The inapplicability of the time-averaging technique to unfrozen, saturated soil presents a 
difficulty. Why does the time-averaging method appear to be satisfactory for both frozen and un- 
frozen porous rocks but only to frozen Ottawa sand? The fact that the compressional wave velocity 
is less than the anticipated value based on time-averaging in thawed soil but in good agreement for 
frozen soil suggests that the compressional velocity is largely determined by the compressibility 
of the interstitial water rather than by the compressibility of the mineral solids. It appears then 
that for a consolidated and lithified elastic continuum, such as a porous rock, the solid and liquid 
can be time-averaged in direct proportion to their relative volumes to obtain a realistic value. In 
the case of a non-lithified, unfrozen soil, however, time averaging does not seem to apply due to 
the discontinuous nature of the mineral grains. 

Hamilton (1970) studied the velocity of water-saturated marine sediments as a function of 
porosity and grain diameter. He found that the velocity typically increased from about 1.50 km/sec 
to 1.86 km/sec as the porosity was decreased from 80 to 30%. A similar increase in velocity was 
observed when the grain diameter was increased from 3 tc lOOOpt. Applying the time-averaging 
equation to Hamilton's results for sand produces no agreement between the predicted and observed 
results. Our results and those obtained by Hamilton suggest that time averaging is not an applicable 
method for predicting velocities in water-saturated soils. The breakdown of the time-averaging 
approach to velocities when the solid minerals do not form an interconnected framework suggests 
that further justification, on a sound physical basis, is required before time averaging can be 
accepted wholeheartedly even for frozen soils. 

Ideally we would like to have a single theory that would predict the velocity in both frozen and 
unfrozen soils using easily measured properties of the components such as relative abundance, 
mineral composition, velocity of the minerals, and other readily obtainable elastic properties. 
Presently no such theory exists. As a major protion of our future research effort on the geophysical 
properties of frozen soils, this problem will be analyzed in detail both empirically and analytically 
to achieve a workable relation between porosity, mineral composition, water content and sample 
velocity. 

Hysteresis in the velocity during a freese-thaw cycle 

It is evident that a strong correlation exists between dilatational velocities and unfrozen water 
content. Then it might be asked whether or not the observed hysteresis in the velocity during a 
freeze-thaw cycle is also caused by the hysteresis of unfrozen water content.  The low-temperature 
phase composition of interfacial water has been a topic of continuing interest. Ncrsesova and 
Tsytovich (1963) conducted experimental investigations to determine the phase composition of water 
in various frozen soils by calorimetric methods. Unfrozen water contents obtained by them for 
typical non-saline soils are shown in Figure 6. In granular soil, pores are comparatively large and 



DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS 
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Figure 6.   Unfrozen water contents in typical non- 
saline soils: 1) quartz sand, 2) sandy loam, 3) loam. 

4) clay, and S) clay containing montmorillonite. 

almost all of the water freezes at the freezing point of water. However, clay and silt have fine 
pores, in which a significant portion of the water remains unfrozen in a liquid or semiliquid state. 
Those observations are consistent with the velocity-temperature relation. 

Several studies concerning phase composition have been reported. However, the hysteresis of 
phase composition during a freeze-thaw cycle has not been discussed explicitly, because equilibrium 
phuse composition has been the main subject. Anderson and Hoekstra (1965a, 1965b) have recently 
shown that freezing and thawing bring about a dramatic redistribution of water and a reorientation 
of particles in clay. They studied the changes in apparent d (001) spacing in Wyoming bentonite 
dming the freeze-thaw cycle by X-ray diffraction.  They found the hysteresis loop in the spacing 
during the freeze-thaw cycle due mainly to supercooling. However, if, during cooling, the sample 
was nucleated artificially the d (001) spacing dropped immediately and the cooling and warming 
curves nearly coincided.  The d (001) spacing indicates the amount of interlamellar water consti- 
tuting the gel structure.  Freezing altered the gel structure and most of the interlamellar water 
was expelled on complete freezing; as a result, ice must form in extralamellar regions. If the 
interlamellar water corresponds to the "unfrozen" water (Anderson and Hoekstra, 1965a, 1965b), 
the hysteresis of unfrozen water can occur most probably in laboratory experiments, where no control 
on nucleation is made. Since almost no interlamellar water exists in granular sand, such as Ottawa 
sand, it is consistent that we did not observe anv hysteresis in velocities for Ottawa sand. 
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Although the unfrozen water content is one of the most important variables in determining 
dilatational velocities in fine-grained frozen soils, determining the amount of unfrozen water is 
quite elaborate. Efforts have been initiated to evolve a technique allowing simultaneous deter- 
mination of acoustic velocities and unfrozen water contents. 
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II.   DETERMINATION OF A LINEAR VISCOELA8TIC CONSTITUTIVE EQUATION FOR 
FROZEN EARTH MATERIALS BY THE USE OF THE RESONANCE COLUMN TECHNIQUE 

by 

Y. Nakano and H. Stevens 

Introdnetton 

During the past decade considerable emphasis in soil mechanics research has been placed on 
the behavior of soils under dynamic loading. This behavior depends strongly on the nature of 
loading: stress, stress rate, frequency, etc. Consequently, various experimental techniques have 
been developed to determine the dynamic behavior of soils subjected to a specific kind of loading. 
Among these, the resonance column technique has been extensively used to investigate unfrozen 
soils under relatively weak harmonic loading (stress less than 100 psi) in the frequency range of 
10"' -104 Hz (Hardin and Richart, 1963; Hardin and Mossbarger, 1966; Hardin and Black, 1968; 
Hardin and Drnevich, 1970). 

In the resonance column method a cylindrical column of material is subjected to a steady 
sinusoidal loading, father in the torsional or longitudinal mode. When a specimen of soil is under 
vibrational loading, Che stress-strain relation creates a hysteresis loop. Two parameters have been 
used to dtfine this relation (Hardin and Drnevich. 1970). These parameters are the modulus defined 
by the ««lope of a line through the ends of the loop, and the area of the loop, which is a measure of 
the damping capacity of the soil. Another way of defining the stress-strain relation is to determine 
the complex modulus according to linear viscoelastic theory (Lee, 1963; Hardin, 1965). 

The dynamic behavior of frozen soils is less complex than that of unfrozen soils; but no 
comprehensive description of either material has been obtained. One useful and practical approach 
towards a quantitative description of dynamic behavior is determination of a constitutive relation 
based upon mechanics oi continua. Stevens (1967) used a linear viscoelastic model for interpreting 
resonance column experiments and determined complex shear and Young's moduli. In his experi- 
ments the ma-;imum dynamic stress in the specimen was varied from 0.1 psi to about 5.0 psi, where 
the complex modulus was found to be weakly dependent on the stress level. Despite such non-linear 
behavior in frozen soils, the linear viscoelastic constitutive equation is considered a good first 
approximation under low stress loading. In the present work, efforts were made to determine the 
simplest linear viscoelastic constitutive equation that can describe the dynamic behavior of frozen 
soils under both torsional and longitudinal vibrations consistently. In practical applications we 
encounter various types of disturbance: steady and unsteady disturbances, plane and surface waves, 
and cylindrical and spherical waves. Once the constitutive equation is determined, it is possible 
to predict the response of frozen soils subjected to such disturbances. 

mam 

i "      ' ■■a* 
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12 DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS 

Expt imental Determinations of Cooplex Modulus 

In a linear viscoelastic material, when the stress a varies sinusoidally with time at an angular 
frequency w the strain t varies with time at the same frequency but there is a phase lag 8 between 
stress and strain. The stress and strain relation for linear viscoelastic solids is generally express- 
ed by the following equation; 

a * Ei (1) 

where E is defined as the complex Young's modulus and is a function of CJ. The complex shear 
modulus C is defined similarly.  We describe a method of determining these complex moduli in the 
following. 

Method of test 

A vertical cylinder of soil is subjected to steady-state sinusoidal vibration in the torsional or 
lot uitmlinal mode at the lower base end with the other end free except for a light, relatively rigid 
cup.  The input and output stress waves are observed and measured by piezoelectric accelerometers 
attached to the base plate and cap plate at each end of the specimen. The peak acceleration and 
the frequency are recorded. The drive frequency may be any value above the so-called "rigid body 
frequency" and within the limits of the drive motors, if the phase angle between input and output 
waves can be accurately measured; otherwise, the specimen must be excited at a known resonance. 
The ratio of output to input amplitudes and the frequency, together with the specimen properties of 
density and length, are required to compute the desired parameters. 

Apparatus 

The complete test apparatus includes a device for holding the specimen, drive motors and 
transducers for measuring the response, control and readout instrumentation, and auxiliary molds and 
equipment for specimen preparation. This apparatus has been discussed in detail by Hardin (1966) 
and Stevens (1967).  At present the apparatus does not include a pressure cell, and the specimens 
are tested unconfined. 

Computation of complex moduli and results 

First we consider longitudinal vibration. If the wav length of the standing wave is long in 
comparison with the diameter of 'he specimen, a rod condition is approximately true. The equation 
of motion for longitudinal vibration is: 

E0-!. pfü (2) 
<?x2 dtz 

where 

C complex Young's modulus 

p density of the medium 

i time 

u displacement along the coordinate x 

x coordinate (Lagrangian). ,  . ^ 
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At rhe driven end x - 0 the system is given a sinusoidal displacement, namely, 

u(0, t)  - u0e
/wt (3) 

At the other end x     L the effect of the mass of the cap resting on top of the specimen is con- 
sidered; 

,Fdu(L.t) _     md
2uiL.t) (4) 

a» ßt2 

where 

S ■• cross sectional area of the specimen 

in m end mass. 

Solving eq 2 with the boundary conditions, eq 3 and 4, we obtain the following relationship for the 
ratio of bar end displacements (or accelerations), z: 

z .- \aJhl\ = I       8ecPL    I (5) 
lu(0, t) I      ll - ytanpLI 

where 

p2 -iSl! 
E 

mcj2 

Y m 

pSE 

In more detail (Norris and Young, 1970): 

Reiz"1) - cosh (^tan-j (cos^ - QL£sin& + 

E / Ä   \ 
+ 0, ^ tan - cos ^ sin K tan - I (6a) u 2 \ 2 ' 

Im(z-1) = sinh Krtan-)(sinf + QLfcosö + i 

+ QL f tan - sin f cos U tan - j (6b) 

where 

Im(£) B 
Re(£) 

*      (nL 

m 
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#■ 
Vjp      phase velocity  = •» /—  sec - 

m 

The condition of specimen resonance occurs when the ratio z is a maximum. As the frequency 
is increased from zero, the first maximum is the fundamental resonance and successive maximums 
indicate the harmonics.  For the condition of resonance, where z is a maximum and z~2 is a mini- 
mum, 

- (*-2)  - 0. (7) 

Equations 5 and 7 may be solved simultaneously with a computer using an iterative process for 
the expressions and tan (5/2). At 'jach resonance point we can determine the complex Young's 
modulus from observed values of OJ and z. 

The equation for torsional vibration is perfectly analogous. In the torsional mode QL is re- 
placed by Qt, which is defined as 

Qt  - ^ (8) 
r*pL 

where 

r = radius of the specimen 

rc = radius of tlie cap 

pc = density of the cap 

Lc = length of the cap. 

The dynamic stress in the sample varies along its length as a damped sine wave, with the 
maximum ut the node nearest the bottom or input end.  At resonance, this node is very close to the 
bottom plane of the sample and the stress computed for correlative purposes is computed for the 
bottom plane. 

It is difficult or impossible to accurately control the stress in the sample during the test be- 
cause of the resonance phenomenon.  Closest control car. be obtained by keeping the input accelera- 
tion level g constant. As g is directly proportional to frequency and a wide frequency range is 
mqiuiH, it is not very practical to control ^ at a relatively high value. 

Consequently, no attempt is made to keep either stress or g constant. Instead, the drive force 
is held constant while the frequency is varied over its entire range. Then the drive force is in- 
creased an arbitrary amount, and so on. Thus we ensure measurements over a range of stress levels 
without knowing in advance what the values will be. 

The frequencies at which measurements are taken cannot be predetermined, as only the 
resonant condition is used and resonant frequency varies with sample mass and stiffness.  The first 
lour or five resonances are usually used. 

It is desirable to determine the moduli and loss angles for a given frequency and a given stress 
or strain, not only because these relationships are required, but to allow comparisons between values 
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for different samples. To accomplish this, modulus and tan 8 are each plotted versus the computed 
dynamic stress at one resonance. A smooth curve is drawn through the points and the modulus of 
tan S value picked off for a given stress. The resonance frequency is obtained by interpolating 
between the two adjacent measured frequencies. If, say, four resonances are used, four values at 
four frequencies at a constant stiess are obtained. A plot of modulus or tan 8 versus frequency is 
then prepared and a smooth curve drawn through these points. A value for modulus or tan 8 for a 
given frequency and a given stress can then be obtained. The same process is used to obtain 
values for about three stress levels and at least three frequencies. 

Usually, the test measurements plot in such a way that there is little question as to the shape 
of the curve drawn through the points. However, scatter does occur, particularly for the tan 8 
measurements. Some guidelines are used in drawing the curves. It is assumed that the modulus 
decreases or is constant with increasing stress and increases or is constant with increasing fre- 
quency. Tan 8 is assumed to increase with increasing stress but there are no good guidelines for 
the relationship to frequency. Usually, the trend is to a decrease with increasing frequency but at 
times there is a strong trend to a maximum peak at a particular frequency within the test range. 
The results of the experiment are presented in Table I. The specimens tested included several 
standard frozen soils as well as polycrystalline ice. The following variables are also listed in the 
table: 

L = length of specimen (cm) 

D m diameter of specimen (cm) 

Pw = wet (total) density (g/cm') 

W m water content (g water/g dry soil) (%) 

pD = dry density (g/cm1) 

P0 = porosity (voicf volume/total volume) (%) 

Vä m void ratio (void volume/dry soil volume) (-) 

Sw = saturation (water) (%) 

Si m saturation (ice) (%) 

T - test temperature (0C) 

/ = frequency (kHz) 

E* = absolute value of complex Young's modulus (Kbar) 

Kj = phase velocity of longitudinal wave (km/sec) 

G* - absolute value of complex shear modulus (Kbar) 

V m phase velocity of torsional wave (km/sec) 

ffD ■ dynamic stress imposed on the bottom circumference of the sperimen (psi). 

The values of E* and G* in the table are either interpolated or extrapolated from those at 
resonance frequencies in order to show the properties of different frozen soils at the same frequencies. 
The phase velocities, V^  and V'   , are computed based upon complex moduli £ and G respectively. 
Gradation curves of the soils obtained using ASTM (American Society for Testing and Materials) test 
procedures are also presented in Figure 7. 

Despite the limited data it is possible to describe some general trends in the dynamic behavior 
of frozen soils. Stevens (1967) found several important parameters affecting such behavior: soil 
type, ice content, void ratio and frequency. 
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Table I. 

3N1053 *H0/,!ä.4 fHAHQASIVi?.   ilLT 

L - U9.U5 ft- ^1.9 
0 ■ 7.533 V4m 0.719 
A- 1.9M 3.« 86.7 
w - 22.9 Si- 96.1 
/.- 1.5^0 T - -3.«9 

t E»        1       Vi.              T«n <fi              G»       I        Vt,             Tan «ft 

!                                   «"•»-  0.i                                       | 
1.00 15« 2.85 0.0230 67.2 1.96 O.O67 
2.00 167 2.93 0.0227 68.3 1.88 O.056 

5.00 175 3.00 0.0215 70.3 1.90 0.045 
10.0 177 3.02 0.0167 70.9 1.91 0.0*5 

1                                              ?.,«   1.0 
1 

1.00 158 2.85 0.0230 67.0 1.86 0.067 
2.00 166 2.92 0,0227 68,3 1.87 0.056 

5.00 175 3.00 0.0215 70,3 1,90 0.0*5 
10.0 177 3.02 0.0167 70.7 1.91 0«0*5 

!                                                               6V,-    5.0                                                                     | 

1.00 1*6 2,7* 0.0230 62,9 1,80 0,067 

2.00 16U 2,90 0.0227 68,0 1,87 0.056 

5.00 175 3.00 0.0215 69.7 1.89 0.0*5 
10.0 177 3.01 0.0167 70.3 1,90 0.0*5 

3M1052 »HOliW 20-30  Om.VA  3AND 

L - 50.8 R>- 3*.0 
0 - 7.55 Vim 0.516 
/-- 2.05* S». 90.2 
w - 17.5 Si- 100.2 
A- 1.7*9 T - - 3.89 

I    r E. VJ. Ian Si 3» w. Tan/t    | 
|                                              <a,- 0.1 

1.00 319 3.9* 0.023 137 2.59 0.0*9 

2.00 333 *.03 0.021 138 2.5? 0,0*7 

5.00 356 *.17 0.019 139 2.60 0.037 

10.0 358 *.18 0.01* 139 2.61 0,032 
r,,= 1.0 

2.57 1.00 319 3.9* 0.023 136 0.051 

2.00 333 *.03 0.021 137 2.58 0.0*8 

5.00 356 *.17 0.019 137 2,59 O.Ofl 
10.0 358 *,18 0.01* 139 2,60 0.037 

[                                                 cw- 5.0                                                        | 
1.00 :i9 3.9* 0.027 135 2.57 0.097 

2.00 333 *.03 0,025 136 2.58 0.088 

5.00 356 *.17 0.021 137 2.S8 0.063 

10.0 358 *.18 0,01* 1?8 2.^ 0.0*1 
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Table I (Cont'd). 

3M1028 ?ROZBW ?AIRBAMK3 SILT UNDISTICJBBD 

L 
0 
A 
u 

^0.6        Ri 

1,^33   Swi 
66.0       Si i 
0.8619T - 

68.1 
2.130 

83.6 
91.2 
-9.^ . 

f E* VJ. Tan it G» Wf 1     Tan (Tt 
|                                                      öl,-   o.i                                                            j 

0.50 121 2.90 0.024 42.6 1.72 0.072 

1.00 121 2.91 0.030 42.9 1.71 O.O67 

2.00 122 2.92 0.038 43.4 1.74 O.OS6 

5.00 124 2.94 0.066 44.4 1.76 0.041 
(?.,=   1.0 

1.72 0.50 121 2.90 0.028 42.5 0f075 

1.00 121 2.91 0.032 4^.8 1.73 0.069 

2.00 122 2.91 0.039 43.4 1.74 O.OSfl 

5.00 123 2.94 0.070 44.3 1.76 0.041 
1                                                           CVo-   5.0                                                                 | 

0.50 121 2.90 0.060 42.4 1.72 0.086 
1.00 121 2.90 0.062 42.6 1.73 0.076 

2.00 121 2.91 0.070 43.1 1.74 0.064 
5.00 121 2t9l 0.099 44.1 lf75 0.042 

3N1027 

L - 
D - 

i-: 
?R0Z3N  PAIHBANK3 3ILT UNDI3TURBSD /. 

50.6      R- 80.2 
7-44     V*m 4.030 
I „235   S— 86.8 

130           Si» 94.7 
0.5367T - -9.44 

f E» VJ. TanÄ G* v^ !     Tan /t    1 
1                                                         *■•■    0'1                                                               1 

0.50 97.3 2.81 0.018 35.3 1.69 0.064 

1.00 97.6 2.81 0.023 35.6 1.70 0.059 

2.00 98.3 2.82 0.033 36.0 1.71 0.049 

5.00 100 2.84 0.051 36.4 1.72 0.044 

0-,=   1.0 

0.50 97.0 2.80 0.027 35.3 1.69 0.064 

1.00 97.4 2.81 0.032 35.6 1.70 0.059 

2.00 98.2 2.82 0.041 36.0 1.71 0.049 
5.00 99.8 2.84 0.052 36.3 1.72 0.044 

|                                                               6V»-   5.0                                                                     | 

0.50 96.9 2.80 0.108 35.0 1.68 0.064 

1.00 97.3 2.81 0.100 35.3 1.69 0.061 

2.00 98.0 2.82 0.083 35.8 1.70 0.055 

_5fW. ??.4 2.84 0.060 36.4 1.72 0.054 
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-Ml026 

Table I (Cont'd). 

L 
D 

W 
?R0ZiM PAIHBAW.C3   ULI UNDISTUnBED   A 

w.l R- 60.7 
7.41 VJ- 1.5^5 
1.552 Sw. 80.3 

46.0 Si« 87.6 
1.062 T - -9.^ 

f E» VJ, TanÄ 0« V». 1     TanA 
j                                                  1,-   o.i                                                       | 

0,50 135 2.95 0.021 49.3 1.78 0.062 
1.00 135 2.95 0.023 49.6 1.79 0.060 
2.00 135 2.95 0.028 SO.O 1.80 o.oi«: 
5.00 135 2.95 0.043 S0.2   • 1.80 0^043 

!                                                               ft.«    1.0                                                                     | 

0.50 135 2.95 0,036 49,3 1.78 0,069 
1.00 135 2.95 0.037 49.6 1.79 0.066 
2.00 135 2.95 0.040 50,0 1,80 0.049 
5.00 135 2.95 0,044 50.2 1,80 0.043 

!                                                            CV»-   5.0                                                                 | 

0.50 131 2.91 0.132 49.3 1,78 0.097 
1.00 132 2.92 0.122 49. S 1.79 0.090 
2.00 133 2.93 0.092 49.8 1.79 0.073 
5.00 13* 2.9f 0,045 49.9 1.7? 0.043 

f  ■ 

3M1024 POLYOaYSTALLIi^ 12i HAOI 3Y 
PR33SING '.«ATiU   41TH   ifiOM 

L m 40.0 n> 
0  m W 
/.- 0.9072 s* 
W   m Si 
A« T ■ -9.44 

f E» VJ, TanÄ G» V^P Tan ift 
tfLe" 0.1 

0.50 61.7 2.6i 0.060 21.2 1.53 0.056 

1.00 63.4 2.64 0.056 21.7 1.55 0.056 

2.00 6'i.5 2.69 0.0S2 22.4 1.57 0.056 

5.00 69.0 2.76 0.052 23.1 i.^o 0,056 
C.,« 1.0 

0.095 0.50 59.3 2.56 0.089 20.3 1.50 

1.00 61.4 2.60 0.084 20.7 1.51 0.085 

2.00 63.8 2.68 0.078 21.7 1.S5 0.073 

5.00 67.6 2.73 0.072 22.9 1.59 0.066 
|                                                         ffto» 5.0                                                                1 

0.50 56.5 2.51 0.270 18.7 1.^5 0.340 

1.00 58.6 2,55 0.254 19.4 1.47 0.270 

2.00 61.4 2.61 0.220 20.6 1.51 0,155 

5.00 66.2 2,70 J.146 22,2 l-?7 0,077 
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Table I (Cont'd). 

3N1023 POLYCmTALLINi; IJi MADi BY 

L 
D 
A 
w 
/, 

JU.B ft« 
Vd = 

0.9098   S«" 
Si 1 
T - -9.^ 

t E* Vi. TanÄ 0* Wr Tan «ft 
tfl,-   0.1 

1.00 88.8 3.12 O.OSi,' 29.0 1.78 0.017 

2.00 88.8 3.12 0.0U1 29.2 1.79 0.015 

5.00 88.8 3.12 0.020 29.3 1.80 o.on 

CX9B   1.0 

1.00 88.3 3.12 0.079 28.5 1.77 0.037 

2.00 88.3 3.11 0.062 28.9 1.78 0.026 

5.00 88.3 3.11 0.027 29.3 1.79 0.014 

j                                          a»- 5.0                                               1 
1.00 87.9 3.13 0.333 27.9 1.75 0.065 

2.00 87.9 3.12 0.397 28.4 1.77 0.045 

S.00 87.9 3.11 0.131 29.2 1.79 0.017 

iNini9 ?aOZ3M-lOO LEBANON TILL 

L   m 39.10 R>> 36.2 
D   - 9.90 Vim O.568 
/•- 2.156 S— 91.8 
W - 1£.2 Si. 101.6 
/.- 1.825 T - -9.44 

f E. Vi, Can St G» Vv |     Tan <ft    | 
|                                            (H..0.1                                                   | 

0.50 228 3.26 0.105 89.3 2.04 0.040 

1.00 229 3.27 0.086 89.3 2.04 0.038 

2.00 232 3.28 0.062 89.3 2.04 0.033 

S.00 240 3.34 0.032 94. S ! 2.10 0.018 
Closs   1.0 

2.03 e.so 222 1.22 0.146 88.6 0.086 

1.00 223 3.23 0.126 88.6 2.03 0.077 

2.00 226 3.24 0.093 88.6 2.03 0.060 

5.00 234 3.30 0.040 93.8 2.00 0.022 
i                                                  cv»« 5.0                                                       1 

0.50 216 3.20 0.370 87.9 2.03 0.317 
1.00 218 3.20 0.340 87.9 2.03 0.277 

2.00 221 3,22 0t272 fl7.Q 2.03 0.188 
5.00 22^ 3.24 0.080 91.7 2.07 0.024 
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Table I (Cont'd). 

Jii! L i»HOZiN,   100-200,   OTTA'rfA SAUD 

L 
0 

W 

38.22 
9.888 
1.753 

10.2 
1.591 

A- uo.o 
Via 0.666 
3mm 40.6 
3i- 45.1 
T ■ -9.44 

-V/t. Tan ji 
tfVD TTT 

G* Vt» Tan <ft 

Oj «10 

K00 

2.00 

96.5 ZQg 0.024 48.6 1.67 0.024 
101 

-Uü. 

2.40 0.024 49.6 

2.50 n.n?; ■4i~3- 

1.68 

-UW- 

0.023 

n.n?3 
•i.oo 126 2.68 0.040 56.4 1.79 0.022 

I   - 
0.50 95.5 

«l.«  1,0 

2.33 0.060 48.3 1.66 0.062 

1.00 99.3 2.38 Q.06Q 40-4 1.68 Q.Q53 
2.00 108 2.49 0.060 51.4 1.71 0.041 

5.00 125 2.68 0.060 56.1 1.79 0.028 
ei»m 5.0 

0.50 90.3 2.30 0.454 48.1 1.66 0.200 
1.00 95.2 2.35 0.400 49.1 1.68 0.166 
2.00 106 2.47 0.300 51.0 1.71 0.109 
5.00 124 2.66 0.188 55.6 1.78 0.053 

5N1014 PROZSN,   100-200,   OTTAWA SAND 

L 
D 

W 

38.19 ft 
9.903 U 
1.966 S» 

22.0 Si 
1.612 T . 

39.2 
0.645 

90.4 
98.7 
-9.44 

[„x.„. E» Vi. Tanfj G« V+r Tan «ft 
«■,- O.L 

*   0.50 263 3.71 0.029 105 2,31 0.032 

1.00 263 3.66 0.029 105 2.31 0,030 

2.00 263 3.66 0.029 105 2,31 0.028    1 

5.00 263 3.66 0.029 105 2,31 0.024 
Öl,, l.o J 

2.31 0.50 263 3.66 0,074 105 0.135 
1.00 263 3.66 0,074 105 2.31 0.120 
2.00 
5.00 

263 3.66 0,074 105 2.31 0.094 

263 3.66 0.074 105 2.31 0.024 
CV»-5.0 

0.50 263 3.67 0,220 105 2,35 0.585 
1.00 263 3.67 0.220 105 2.34 0.520 

2.00 263 3.67 0.220 105 2.33 0.370 
5.oo 263 3.67 0,220 105 2.31 0.030 
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Table I (Cont'd). 

:ilot2 PHOZBN SUPPIELD CUY 

L 
D 

W 

37.50 
10.00 
1.863 

30.6 
1.^27 

Si i 
T ■ 

46.9 
0.885 

92.9 
101.5 
-9.44 

.... X  E* VJ. Tantfj 0« Vtr Tan «ft 

«"■P"   o.i 

Ji.lL. 
1.00 

Ü.00 

s.oo 

 —i 

1 0.50 

75.2 2.01 0.088 25.8 1.18 0.072 

75.9 2.02 0.090 26.9 1.20 0.076 

82.3 2.10 0.104 27.8 1.22 0.090 

81.7 2.10 0.146 29.8 1.27 0.170 

Öl.»   i.o 

0.105 75.2 2.01 0.120 25.8 1.18 
1.00 

2.00 
75.9 2.02 0.121 26.9 1.20 0.105 

82.3 2.10 0.123 27.8 1.22 0.106 

5.00 81.7 2.10 0.146 29.8 1.27 0.170 
|                                                             Ct,«   5.0                                                                    | 

0.50 75.2 2.02 0.275 25.8 1.18 0.157 
1.00 75.9 2.03 0.250 26.9 1.20 0.160 

2.00 82.3 2.11 0.202 27.8 1.22 0.175 
5.00 81.7 2.10 0.124 29.8 1.27 0.195 

-iW1007 PR0Z3N   UJ.'PIJXO CLASf 

L 
D i 
/»■ 

W i 

A- 

37.63 A- 
9.880 tt- 
1.629 Sw- 

18.6 Si- 
1.370 T - 

50.0 
0.962 

51.6 
56.8 
-9.44 

f E»        1        ViK             Tav.Sjt              3»        |        Kf             Tan Jt 
(aB»   0.1 

0.50 14.8 0.952 0,087 5.86 0.600 0.124 

1.00 18.8 1.07 0.105 7.10 0.661 0.130 

• 2.00 22.0 I.l6 0.140 7.45 0.680 0.305 

c.,=   1.0 

0.50 13.0 0.893 0.140 5.86 0,600 0.140 

1.00 17.6 1.04 0.148 7.10 0.661 0.148 

2.00 21.8 l.l6 0.150 7.45 0.680 0.1.50 

cv,-   5.0                                                      | 
0.50 10.8 0.821 0.360 5.24 0.571 0.320 

1.00 15.9 0.996 O.36O 6.83 O.651 0.320 

2.00 20.5 1.13 0.365 7.31 0.675 0.370 
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Curve 

U.S. Std. Sieve No. 
4       10 40 

i  i    I' —-LS11 "f 
200 

"SÄNÜ" 
Groin Size, mm 

Med. Fine SILT or CLAY 

Coorse 

Description 
Specific     Liquid     Plastic     Plastic       Non- 
gravity       limit limit index       plastic 

A 20-30 Ottawa sand 2.65 
B -100-200 Ottawa sand 2.65 
C 100 Lebanon till 2.86 
D Hanover silt 2.74 
E Fairbanks silt 2.70 
F Manchester silt 2.73 
G Suffield clay 2.69 

X 
X 
X 
X 
X 
X 

45.0 24.0 21.0 

Figure 7.  Gradation curves. 

For ice-saturated or almost saturated non-plastic frozen soils a strong correlation was found 
between modulus and void ratio (Fig. 8, 9). Since such frozen soils have only two constituents, 
soil minerals and ice, the moduli are bounded below by those of ice and above by those of rock. 
The moduli of several standard rocks measured by Simmons and Brace (1965) are plotted in these 
figures to show the upper bound. 

Frozen soil specimens have a fundamental resonance of the order of 2.0 kHz longitudinally and 
1.0 kHz torsionally. In this experiment soil was usually tested up to the third and fourth resonance. 
Therefore, the range of frequency is about 1.0 kHz to 10 kHz. In this range the modulus increases 
and tan 8 decreases with increasing frequency. Tan S is approximately a reciprocal of the quality 
factor Q, which is defined as the ratio of the energy carried by a wave to the energy dissipated per 
radius of phase shift (Thurston, 1964) and is commonly used by seismologists (Jackson and Anderson, 
1970).  For ice-saturated frozen soils the correlation between Q and void ratio is not so strong as 
that between modulus and void ratio. 
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Figure 8.  E* vs void ratio,   t Granite, Stone Moun- 
tain, Georgia. 2 Quartzite, Rutland, Vermont. 
3 Granite, Westerly, Rhode Island.  4 Limestone, 
Oak Hall Quarry, Pennsylvania. 6 Fused quartz. 
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Figure 9. G* vs void ratio.  1 Granite, Stone Moun- 
tain, Georgia.  2 Quartzite, Rutland, Vermont. 
3 Granite, Westerly, Rhode Island.  4 Limestone, 
Oak Hall Quarry, Pennsylvania.  6 Fused quartz. 
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Q values for frozen soils were found in the range of 10-100. They are bounded below by 
polycrystalline ice and above by solid rock, such as quartzite (Q s 250) and granite (Q s 70) 
(Volarovich and Gurvitch, 1957). 

Although many theories concerning the attenuation of stress waves in earth materials have 
been proposed, none of them is definitive. The attenuation mechanism is difficult to pin down 
even in the laboratory, where measurements can be made as a function of frequency, temperature, 
pressure, purity, grain size, annealing history, etc. In the present work we used viscosity to 
describe anelastic properties of frozen soils. When applied to solidn, this term usually means that 
stress relief and deformation occur by some poorly understood process, which may be a combination 
of several types of processes, and may result in linear or nonlinear internal friction of complicated 
(or unknown) frequency dependence (Jackson and Anderson, 1970). Further efforts are required to 
obtain complete understanding of attenuation in frozen soils. 

Determination of Linear Viscoelastic Constitutive Equations from Measured Complex Modulus 

The general constitutive equations of a linear viscoelastic solid are given as (Bringen, 1967) 

R'rAl   + Hi   -  P'rr5kl   + 2^kl ^ 

where a^, i^. are stress and strain tensors respectively, and P, Q, R and S are linear operators 
defined as, 

»i       it 
(10a) *! rV 

p - Ac \ 1 
1=1 

^2 

K 
Öl1 

Q = /'o + 
i=l 

^3 

H 
dt' 

fl1 

H =  a0 + V ai 
i=l dt' 

w4 j s =   ^0 + 1 
i = l 

^1 
dt1 

(10b) 

(10c) 

(10d) 

where Aj, ^j, a^ and ßi are constants. 

Torslonal mode 

Theory. We deal only with circular cylindrical specimens and use cylindrical coordinates for 
convenience.  Let the coordinates be r, 6 and z, with z being the axis of the cylindrical specimen, 
and let the corresponding displacements be u., Uß and uz. In the propagation of torslonal waves, no 
longitudinal or lateral displacement is to be expected and the motion is symmetric about the axis of 
the cylinder. Therefore, u and uz must both vanish and we need to consider only the wave equation 
for UQ, If the torslonal stress applied to the specimen varies sinusoidally with time and the strain 
thus induced also varies sinusoidally but witli a phase difference, then we may write the wave equa- 
tion tor viscoelastic materials as; 
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(ID 
3^0          dzue 

p   = G   

where G is a complex shear modulus, p is the density of the specimen, and t is time. 

The wave equation is also written in terms of the present linear viscoelastic model as: 

d\       da6z 

dt 8 dz 

Sodz   =  Q 
du 0 
dz 

(12a) 

(12b) 

Among many alternatives we selected the following four-parameter model for torsional vibration; 

(13a) 

(13b) 

If UQ and aQz are harmonic with an angular frequency OJ, then the complex shear modulus G is given 
as 

G  = Gj  + iG2 

where 
Gl = 

0)2 [f11   ~  ^2^0   _  ^a^2)] 

(14) 

(15a) 

oj[n1(ß0  - /32a)2)  + /i2w ] 

2^2 (/30 - ß2o>'r + o>-. 

The phase velocity Vt   and the group velocity Vt  are obtained as follows: 

r*-^~°&) 

tg 
fi 

,         5t        1         Gl] S I cos — - - «a I I cos 
2       2     \G*/ 2 

1     .       .   0t 

(15b) 

(15c) 

(16a) 

(16b) 

•'«««»ieiMjBatiftMa* 
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where 

G*   =  |G! (17a) 

G: - ~ (i7b) da) 

(17c) 

^t 
V«^- (17d) 

The values of constants ^, fZg, /80 and ßz are determined from the four observed variables, namely 
the complex modulus and the loss factor Ls(= tan St), at any two distinct frequencies. Since it is 
not generally expected that the model satisfies these four conditions exactly, the following scheme 
is used. Suppose the observed modulus and the loss factor at two distinct frequencies are G^, 
G^'', L(

s ', and L(
s
2) respectively; then find /^ and ^2 which minimize the derivation Vt, defined as: 

[(G«1)  - G^1))2  *  (G(2> - Gj2))2] 
Vl  =  * 5Ü  (18) 

(G^Z  + G(2)2) 

under the constraints 

L%  = L^ (19a) 

1% -  Li2) (19b) stn 

where Gm and L,,^ are the complex modulus and the loss factor predicted by the model. 
Ill Sill 

Results and discussion. The four parameters /ij, ng, ßQ and /3g were computed as follows.  We 
used the observed modulus and the loss factors at 1.00 kHz and 2.00 kHz to compare the constitutive 
equations of different frozen soils around 1.5 kHz frequency. Since eq 19a and 19b are linear in 
terms of ß0 and ß2, we solved these equations to substitute /jj and ^ for ßo an(* ^2 in e^ ^  ^ow 

V( is a function of ^ and ^ only; that is, 

Vt = ^t^i.^). (20) 

When Vl is a minimum, we have 

Fl/ij. ^g) ==--!-=  0 (21a) 
Oft i 

Gifi^^)   . -_i = 0. (21b) 
dfi 2 
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Suppose that Qiy), /x^) is an approximate solution and let Sp^ and Sfi^ be coirections 
which we shall determine. Expanding F and G in a Taylor series and truncating after the first- 
order, we get: 

d^1 d/i2 

= 0 (22a) 

0. (22b) 

This linear system in S/j * and Sfi^ gives the next approximation, p.^ and ^\ as 

^ - #) + V/) (23a) 

42) = 41) + 541). (23b) 

The above iterative procedure is repeated until we obtain n1 and ^2, which minimize t^. The 
results of the computation are shown in Table II. 

CGS units were used in the computation. For instance, stress was expressed in dynes/cm1. 
The computation was quite satisfactory. An absolute minimum value of Vt exists for all specimens 
computed and convergence is rapid. In order to indicate the degree of approximation or error we 
listed Vf in the table. The values of V? vary in the range of 10'2 to 10'3, which is considered 
satisfactory. In the general constitutive relation, eq 9, if all other constants except Aj, ^ and ßj 
are vanishing and ßl is equal to unity as defined, eq 9 reduces to the elastic constitutive equation, 
or Hooke's law in terms of an incremental strain resulting in an incremental stress, where Aj and /^ 
are Lama constants. Therefore, /x2, ß0 and ß2 indicate a degree of deviation from elastic solid. 
For ice-saturated or almost saturated non-plastic frozen soils a strong correlation was found between 
modulus and void ratio as described before. We plotted four parameters, nl, //2, ß0 and /32, versus 
void ratio in order to find out some general trends (Fig. 10). It appears that a correlation exists 
between either nlot n2 and void ratio, but neither ß0 nor ß2 are affected by variations of void ratio. 

Longitudinal mode 

Theory. If the wavelength of the harmonic wave is long in comparison with the diameter of the 
specimen, the equation of motion for longitudinal vibration in Cartesian coordinates is written as: 

(92uT dzur 
E 1 = p—Ü (24) 

dxz dt2 

where 

E = complex Young's modulus 

p = density of the medium 

t = time 

ux = displacement along x coordinate. 

I'-nrngm) 
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Table II. Values of constants for torslonal mode. 

CJ      i'J 1053    ;.anchast9r Silt 

^o 0.5 1.0 
"■       o.78 x lUtO (s.ff x 10,10 

'n?* TC loij 'i.76 x io!i 
^.?7 r 10?. 3.27 r 1.0Z . 

,;       -1.68 x 10-: -l..^S v 10-L' 
v;        S.^? r 10-3 B.72 x 10-3 

( ')    .« \^2    Ottawa Sani 

0.1 1.0 
1.38 x lOll 1.36 x lOll 

(.      \M r 10^ l.U'S x 10^ 
2.1'* x 102, 2.26 x 10z, 
1.33 x 10-2 -1.33 x 10-;? 

v;'    1.31 x 10-3 2.30 x 10-3 

• n    .Sfl  1029    Palrtaanks Silt 

0.1 1.0 
u<    U.32 x 10.1

L
0 4.31 x 10.^° 

/(-    4.00 x lO1*' 4.06 x 10u 

(?.    3.24 x 10?- 3.37 x 10* 
$. -1.43 x 10-6 .^O x 1o-6 
M?  5.78 x 10-3 5.10 x lO-3 

;';} ' SN 1027    Fairbanks Silt 

!hi 0'1   .« l*0  in ü.    3.58 x 10.10 3.5S x lOf0 

^    3.*1 x 102 3.41 x 10* 
A    2.89 x 10* 2.89 x 10* 
rf.   -1.12 x IQ"» -1.12 x 10-° 
\t^  4.6l x 10-3 ^.6! x io-3 

(;)    SN 1026    ?airbanks Silt 

Ä»              0.1   ,. 1.0 4ft 
«.   4.98 x 10,10 4.99 x lOj0 

.^   4.55 x 10* 4.64 x 10* 
5    2.72 x 102. 3.06 x lOf, 
,>• -I.74 x 10-A -1.83 x 10"° 
i//'  4,08 x 10-3 4.00 x 10-3 

fö) SM 1024 Polynrygtalllne lo« 

^e   0.1 ,. 1.0 
^  2.21 x lOj0       2.12 x 10f0 
^ 3.20 x 10;       3.28 x 10* 
/«. 2.34 x lO2. 4.06 x 102, 
^-1.52 x 10"^ -1.69 x 10-* 
W* 1.53 x 10-2       2.18 x 10-2 

(7) 3M 1023 Polyorystalllne lea 

^p     O.l in 1.0 
*    2.91 x lO."       2.87 x lOj0 
a.    1.16 x 10*       2.00 x 10; 
(\    7.96 x 10 _       2.01 x 102 
t   -2.92  x 10-' -9,91 x 10-« 

V'*   3.52 x 10-3       6,99 x 10-3 

5 •0 .„ 
M5 X lofo 

1°! 4.63 'V 

3.27 T 102. 
-1»67 > l o-A 
3.35 X 10-2 

s .0 
1.3o X 1011 
1.91 X io| 
4.44 X 1C2. 

-2.78 X 10-'1 

1.79 X 10-3 

4.30 
5 
X "I0 

1°, 4.25 X 
3.81 X 102 A 

-I.69 X 10-6 
5.36 X 10-3 

5, •0  « 
3.56 X 

»0 3.8l X 
2.81 X i^ -1.53 X 

6.33 X 10-3 

4.98 
5. 
X > 

4.81 X 10^ 
4.48 X 10 6 10-6 -2.00 X 
1.92 X 10-3 

5. ,0 
2.04 X 10i0 
3.05 X 10^ 
1.6l X lo37 -6.22 X to-? 
1.92 X 10-2 

2.82 
5. 
X 

10* 3.35 X 
3.56 X 107 
•1.39 X 10-7 
7.89 X 10-3 
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Figure 10.  Values of constants for torsional mode vs void ratio. 

In this case axj[ is the applied stress and the other five components of stress are zero. The 
first three equations in eq 9 thus become: 

(R + S)aX]t = PA  + 20^ (25a) 

Raxx  = PA  +  2Q(yy 

Ra„  = PA  + 2Qfzz. 

(25b) 

(25c) 

Eliminating (    and t    from eq 25, we obtain the following equation: yy 

[Q(R + S) + PS]axx  =  (3P0  + 2Q2)fxx. (26) 

The operators Q and S have been determined and the operators P and R are now to be determined 
from the longitudinal vibration tests. The determination of P and R is more elaborate than the 
determination of Q and S, since restrictions have already been imposed on the former in relation to 
the latter. 

We intend to introduce four new parameters to define P and Q, There are several ways of 
choosing such parameters. In the general constitutive relation, eq 9, if all other constants except 
Aj, n1 and ßl are vanishing and ßl is equal to unity as already defined, eq 9 reduces to the elastic 
constitutive equation, or Hooke's law in terms of an incremental strain resulting in an incremental 
stress, where Aj and ni ate Lam4 constants. It is anticipated that the dynamic properties of frozen 
soils do not deviate markedly from those of an elastic solid. Thus the parameter A1 is expected to 
play an important role in the operator P. We choose two models defined by two four-parameter groups, 
(A0, Aj,, aj, a2) and (Aj, Ag, a,, a2). Now we have 
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d (92 

P  = A0  ^ Aj       + A (27a) 

d d2 

dt dt2 

where A2 = 0 for Model 1 and A0 = 0 for Model 2. 
When ^xx and fxx are harmonic with an angular frequency w, then the complex Young's modulus 

E is given as, 

w      M,  + iAfp 
£   = £ = _i _i (28) 

L       Lj  + iLp 

where 

f A2/30)  + cüa(n2ß2 +  A2^2)   f A0(j80 - /Sgcü2)/^ (29a) 

L2   =  -n2(o2ai  -  /Xjiu^g  +  ßo/zj   f  Ajfyj   r  A^j   - 

- ca2(^1/32 + /ig/Sj  +  Aj/Ö,  + Ag/Sj) (29b) 

Wj  = -wteA^j  + 2/if + SAo/xg) + w3(3A2/i2 + 2/i|) (29c) 

M2   =  3A0'J1   -  ^3V2   +   3Vl   +   4'il/i2)- (29d) 

Knowing the values of /ij, n2, ß0 and /Sg, we determine two groups of four unknown constants, 
(A0, Aj, aj, a2) and (Aj, A2, a^ a^) from the observed complex modulus and the observed loss factor 
at any two distinct frequencies by a method similar to that used for the torsional mode.  Finally we 
select one of the groups, which minimizes the error Vj, defined as: 

[(£(!)   „   E(l))2   +   (£(2)   ,.   £(32] 
V]   .  -   (30) 

(£:(1)2   (   £(2)2) 

where Eu\ E^' are defined as in torsional vibration. The phase velocity V^   and the group velocity 
V.   are given as for the torsional mode: 

".P • y/r^ir) (31a) 
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Vf 

where 

\ - —g— g* v P ^ r (31b) 

cos —   cos o,,, sm — 
2      2    E* 2       2   lw        2 

E*  =  |£| 

i E2 
S,  - tan-1 — 

1 *x 

*l> 

Slo> 

dB* 

El = Be(£) 

Ez = Im(£). 

Results and discussion.  The actual computation of four parameters, either (A0, Aj, a^ a2) or 
(Aj, A2> alr «2), was made in the same way as in the torsional mode. We used the observed modulus 
and the loss factors at 1.00 kHz and 2.00 kHz. It turns out that Model 1 always gives a better 
approximation than Model 2 for all ice-saturated frozen soils examined. The results of the computa- 
tion are shown in Table III. The degree of approximation is not satisfactory. The values of V^ 
vary in the range of 10'2 - ID*1, which is much larger than V^'. It might be possible to obtain a 
better or well balanced approximation for both torsional and longitudinal modes by selecting eight 
parameters in a different manner. Also one could improve accuracy by introducing more parameters. 

The most commonly used linear viscoelastic models for earth media have been the Maxwell 
or Voigt models with only two parameters and very little attention has been directed toward 
examination of the complete constitutive equation. Although the dynamic behavior of frozen soils 
is less complex than that of unfrozen soils, the degree of deviation from perfect elasticity is 
surprisingly large. It is felt that further efforts should be made to investigate the constitutive 
equation of frozen earth materials according to the theory of continua. 
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Table III. Values of constants for longitudinal node. 

1053    Könchester 311t 

Ay           0.: 
i.    -n.zü A 10" 
A,       7.05 x 10'' 
x,       6.50 x 10'' 
ii      1.53 x 10"* 
^     1.41 x 10"' 

1.0     _ 
-4.28 x lO'^ 
7.60 x 10'" 
6.52 xl.0"' 
1.53 x lO'4" 
1.41 x 10"' 

-4.71 x  lO' 
7.32 x  10'' 
7.89 x 10" 
1.82 x 10-* 
1.76 xlO"' 

K;';;     ürtiwa Sand 

..'U              0.1 
►.      I.SO x   10'^ 
A,     4.80 x lO'" 
.    -I.92 x 10"' 
a.     1.87 x  10'' 
vV<   1.18 x 10"' 

t-0 

1.41 x 10'" 
4.52 x 10" 
3.21 x 10 ^ 
2.39 x 10"' 
1.10 x lO"' 

5.0    ^ 
1.33 x 10 ^ 
4.21 x 10" 
5.65 x lO'2 

3.83 * 10' 
1.02 x 10"' 

102?   fdrbanks ällt 

&P            0.1 
A>   -1.44 x 10'1 

A,    4.37 x 10"; 
*.    1.77 x 10"' 
^'    4.40 x 10"* 
V/*   6.64 x lO'' 

-7.13 x 10* 
3.73 x lO'« 

-7.04 x 10"J 

1.28 x lO"' 
3.78 x 10"* 

5«0   ,s 
-1.01 X  10' 
9.13 X  10'" 
5.58 x 10"' 
2.35 x 10'f 

8.37 x iO'J 

6N  1024    Polycrystalllno Ice 

Ä»           o.l                                 1.0 5.0      . 
A.  4.26 x 10,+                1.91 x 10'*" 4.60 1 10J 

4.56 x 10" 4.79 x lO'" 
-5.37 x lO"' -2.35 x lO,",. 
3.70 x 10"* 9..41 x 10 ; 
8.35 x lO"' 1.22 x 10 

Ac 4.58 X lO'0 

M. -6.75 X 10"' 
■*, 1.36 X io-J 

v/ 1.32 X IO-' 

3N 1023    Pol Ly< >ryst 

■Ao 0." I 
A, 3.82 X 10'* 
A, 4.69 X 10" 
*> -5.73 X 10' 

4.38 x io'* 3.05 no'; 
4.69 x 10'" ^.34 x lO'" 

-7.01 x 10"' -1.39 x 10_t 
or.  3.31 x 10"*                 7.55 x 10"* 5.44 x 10 
Vl44 6.65 xlO"2 1.02 x 10"' 4.67 x 10 
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ID.  THE USE OF FREE OSCILLATIONS TO MEASURE THE ELASTIC 
PROPERTIES OF MATERIALS 

by 

M. Smith, R. Martin, and Y. Nakano 

Introduction 

This section discusses our efforts to develop, and apply, experimental techniques for the 
measurement of the elastic and slightly anelastic properties of materials based on the free 
resonances of layered elastic spheres. We initially undertook this effort because such spheres are 
the only bounded bodies, known to us, for which we could develop exact analytic solutions. Con- 
sequently we are not, a priori, restricted to considering only high or low frequency approximations 
or time-limited response. 

Although some classic studies of the dynamic properties of elastic spheres have long been 
available (see Love, 1944), the results were generally devoid of practical significance until the 
Earth's dree oscillations were observed after the Chilean earthquake of 1960 (Bullen, 1963). The 
consequent attention by seismologists resulted in a well-developed literature from which many of 
our references are drawn. We differ slightly in that we restrict our attention to spheres com- 
posed of discrete layers and we also neglect the effects of self-gravitation, rotation, an Initial 
stress state, and ellipticity (see Dahlen. 1968). 

The following three sections and the appendices are theoretical, with some numerical examples. 
So far as we are aware, the particular development given here, that is, a layered non-gravitating 
sphere, has not been published, of a piece, elsewhere. It is, however, a "standard," albeit 
complicated, problem. We believed that its detailed solution had to be explicitly laid down before 
progressing into experiment. 

The last sections deal with the results of pilot experimentation. We believe the results indi- 
cate that the practical difficulties associated with this method are being mastered and that the 
technique is a viable one. 

Elastic Displacement Solutions in Spherical Coordinates 

We consider a volume of space filled with an Isotropie, homogeneous, linearly elastic medium 
having Lam4 constants A and fi, and density p. We assume the medium to be free of gravitation and 
other body forces, but allow the existence of one of more surfaces across which tractions may be 
applied. 

Let u be the displacement field specifying the motion of each particle from its unique rest 
position. We assume c to be a first order infinitesimal and do not, therefore, have to distinguish 

NBEUK PAK BUUK 
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between Eulerian and Lagrangian coordinate systems. Let T be the elastic stress tensor. If we 
assume that u      0 corresponds with the unstressed state of the medium, T is given by (Fung, 1965) 

T = A(V. uU + /iftTu + uy), 

where Ms the identity tensor. Vu is the gradient tensor of u, and uVis its transpose. 

The conservation of linear momentum leads immediately to the equation of motion, 

pdf u = V • T. 

Equation 1 and some standard vector calculus identities convert eq 2 to 

Pdfu = (A + 2/i)V(V' u) - fiV x V x u. 

We choose to represent u by 

u =Tl/   f V^  -Tx VjW 

where U, V, and W are scalar fields and Vj is defined by 

Vj = 'daß + ^'(sin 6)~i3<f>. 

(1) 

(2) 

(3) 

(4) 

(5) 

Tis a unit vector directed away from the origin, 0 and </> are the colalitude and longitude, and 0 and 
^Tare their respective unit vectors.   Vl is the gradient operator on the surface of a sphere of unit 
radius. It is related to the three-dimensional gradient by 

After some algebra, we can show (Backus, 1967) that 

V(V. u) =T(9r |^r + -^U + r^vfvj + 

(6) 

(7) 

and 

V x v x u =rlr2(?r(fvflO - r-2vfl/l + Vj \ridlU - rld*(rV)\ + 

+ T x Vj IrVfif + r-^f m\. (8) 

We insert eq 4, 7 and 8 into eq 3.  We now appeal to the uniqueness of the representation 4 (Backus, 
1967) to yield the three coupled partial differential equations 
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P^U = (A + ZtfdJld, + ^) U + rlvlv\  - 

and 

- iL \dt(nfiV) - v?t/l . (9a) 
r2 

pd*v = (A + 2p)S(rldt + -I)17 + r*Viv} - 

- t\dn - d*m\, (9b) 
r     r           r 

pd*w = f jaf w + rVi»' I. (9c) 

We note that both V and W may be augmented by any constant without affecting u (see eq 4). There- 
fore, we may expect these two scalar fields to be determined only to within an additive constant. 
We also note that eq 9a and 9b both involve U and V but not W, while eq 9c involves W but neither 
of U and V. 

The manner in which one elects to solve eq 9a, 9b and 9c (plus whatever boundary conditions 
appertain) depends upon the intended application of the solution. For our purposes, we wish to find 
a set of complete, linearly independent vector fields If1, tz, ...\ each of which satisfies eq 3. If the 
set is complete, all possible solutions to eq 3 may then be expressed as some linear combination of 
the members of the set, the coefficients used in the expansion being determined by boundary and 
initial conditions. 

In pursuit of this, we Fourier transform eq 9a-9c, going from time t to angular frequency <u. We 
do not introduce a distinct symbol for Fourier transforms since it will be clear from the context 
whether a symbol refers to the transformed or untransformed variable. The result of Fourier trans- 
formation is to replace dz by -w2. 

To transform the resultant trio of equations from partial to ordinary differential equations we 
introduce a surface spherical harmonic expansion of U, V and W. For i > 0 and -i < m < /, we 
define (Hill, 1953) 

Yf (6, <f>) = (-ir f^_Li   U "  |m')'|'/'  Pl> (cos 6) e1'"^ (10) 1 I     4ff      (i  +   |ra|)!j        ' 

where P™ is the Associated Legendre Function given by 

Pf (x) * I1      * ' dl'\m\ (x2 - V,1. (11) 
1 i X 

2*1! 

If Sj is the surface of a sphere o" unit radius centered on the origin, the Kj" are orthonormal in the 
sense 

/ Yf (6. 4>) Y% (0, <f,) sin Odddt = 51A5 (12) 
sl 

whete the bar indicates complex conjugation i id ^j is the Kronecter delta. 
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The Yf (0, </)) form a complete set and, if we assume U,V apiW are sufficiently regular, we 
may expand them as 

| 
U (r, 0, 0. w) = 2      1    U* (r. v) Kj" (0, <f,), (13a) 

1=0   m=-l 

Vir. 0, 0, w) =  2     2    VPir. a) Y? (0. <f>), (13b) 
1=1 m=_i 

and 

Wit, e,<t>.co)  = l      i   W* (r, a>) Kf (0. 0). (13c) 
1=1 m=-l 

The i = 0 terms have been omitted (Tom eq 13b and 13c since inspection of eq 4 reveals that these 
terms do not contribute to the displacement field. 

We now insert eq 13a-13c into the transformed equations 9a-9c, and make use of the relation 

vfyj" = -id + DY*. t (i4) 

The resultant expressions are then multiplied by a particular Yf and integrated over the surface of 
a sphere of radius r. Application of eq 12 leads immediately to 

- p^t/J"  = (A + 2ii)dt /(<9r +j)üT - iL^ii Vf\  + 

+ A |/(i + l)dt(rVf) - 1(1 + l)Uf\ (15a) 
r2 

^ \dtUf  - <9f (rVpl, (15b) 

pot 

r 

and 

- p^Wl1  = t IdfirW*) - 1{1 +  l2 Wf\ . (15c) 

We note that none of eq 15a-15c explicitly involves m. 

The set 15a-15c can be solved by any of several standard techniques. The method used here 
is detailed in Appendix A. The results are 

,: -t      vV 
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L-      r^btfyr)]      r^lri^yr)] 

ft) 

and 

i 

where 

7 (A    +    2fi) Vr 

anu 

w 

# 

for / > 0; 

(16) 

I/o = ^r;o(^)   ^o^)'jc^ (17a) 

Vo = 0; (17b) 

Wj = N,(yf)    ry^yr)! ipi       for / > 0; (18a) 

Ifo = 0; (18b) 

* = = = ^ • (19) 

(20) 

V   and Vs are, respectively, the compressional and shear velocities of the medium. Each of ^j, 
ß, F] represents a spherical hanuonic of degree 1. That is, each one is some linear combina- 
tion of the 21 + 1 functions lY^1, .... Y^, .,., KJI but we cannot specify, without considering a 
particular problem, what linear combination each is. To be specific, we may express them as 

A^e,^) =    i    AfYfie,<fi), (20a) 
m=-l 

and similarly for B,, C,, />,, £, and F,.  The Aj... are not constants but the Af... are. Equations 
16-18 thus contain 6(21 + 1) presently undetermined constants. (When i  = 0, there are only two 
constants.) 

We believe that the manner in which we have dealt with the spherical harmonics merits further 
elaboration. We will use eq JO as an example. We could retain the superscript m and have 

Wf = |£fr/,(yf) + Ffry^yrKYftf,*}). (21) 



40 DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS 

Let us then define 

m=—1 

Combining these, we have 

^i = r/^yr)   2    Ef Yf {$. tf») + ry^yr)    1    FfYftf,*) 
m=-l in=-l 

where we were able to regroup the sums because each of the two independent solutions to eq 15c, 
namely r/, (yr) and ryj (yr), is independent of m. This last expression is simply eq 18a. 

Any linear combination of spherical harmonics of the form 

H, =    i    afYf ($,<!>) (22) 
in=-l 

is itself a spherical harmonic and satisfies 

vf F! = - i(l + 1)H,. (23) 

The set lYT1, ...,Y9 Y[\ serves only as an orthonormal basis for the 21 + 1 dimensional 
space of spherical harmonics satisfying eq 22, and has no inherent significance. At this point in 
our development we can only know, then, that each set of radial functions in eq 16-18 will be 
multiplied by some spherical harmonic, //[. We cannot know //,'s precise form; the af in eq 22 will 
be determined by boundary and initial conditions. 

■ 

Fres OsclUations of a Layered Elastic Sphere 

We consider a sphere divided into N concentric spherical shells. We number the shells from 
the center outwards and let r, be the outermost radius of the ith shell. Then rN is the radius of the 
sphere. Let r0 equal zero. We suppose that the ith shell is composed of an elastic, homogeneous, 
Isotropie medium of density pi and having Lam^ parameters Xi and fi^ These parameters define the 
compressional velocity V . and the shear velocity Vai. 

We assume that the surface r = r„\s free from all tractions, and that no body forces (such as 
gravitation) are present. We wish to know for what angular frequencies at there exists a non-trivial 
displacement u(r) eia>t, such that the surface is free of traction and all internal boundary conditions 
(discussed below) are fulfilled. We shall label such angular frequencies eigenfrequencies and their 
associated displacements eigenlunctions. We refer to such traction-free motions as free oscillations. 

Let u(,\r) e'wt be the displacement field in the layer. From the displacement, we can compute 
a stress tensor, T*'', by eq 1. Equation 2, namely. 

P afa =   V- T (2) 

must hold everywhere in the medium, since it expresses only the conservation of momentum and is 
not dependent upon such assumptions as isotropy, homogeneity, etc. In particular, eq 2 is valid 
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in a small "Gaussian pillbox" which encompasses a portion of the surface r = r,, the boundary 
between the itA and (i + i)tb shells. Let u denote the volume enclosed between the radii r. - Sr 
and r j + Sr and by some range of the coordinates 6 and 0. Then 

fpdfvdv = / v Tdu. (24) 

If 1 is the surface of v. Gauss's theorem leads to 

fpdfudv = f T- Tda 
u 1 

where n is the unit outward normal on X. If we let Sr go to zero, then the volume of u also vanishes 
and, if pd^u remains bounded, the left-hand integral goes to zero. The right-hand side becomes 

/ |T(i+1) - T^M .Tda = 0      atr = f.. (25) 
1 

Since this result is independent of the details of the shape of I we conclude that the quantity T • 7" 
must be everywhere continuous, and in particular across boundaries. 

To condition 25 we add one expressing our intuition of the behavior of elastic materials. If 
both the ifA and (/ + l)fA shells are solid, we require that the displacement a be continuous. We 
refer to interfaces at which this is true as being "welded." If, however, one or both shells are 
fluid (that is, fi = 0), we require only the radial component of displacement to be continuous. In the 
latter case, we allow the boundary to slip but in neither case do we allow holes to open or matter to 
interpenetrate itself. 

The quantity T • Tis a vector and represents the traction (force) acting on a surface normal to 
7T In a fashion identical to eq 4, we may represent it as 

T .T=7P +   VjQ -Tx   V!«, (26) 

where P. Q and R are scalar fields. Equation 25 states that P, Q and ft are continuous across an 
interface. The stress-displacement relations, eq 1, enable us to relate P, Q and RtoV,V and W, 
the scalar representatives for u. These relations, which are derived in Appendix B, are 

P  =  (A + 2a)dU   + —U  + -r£V, (27a) 
r f f       * 

and 

ft . ,rar(I). (27c) 

The import of the boundary conditions, then, is that P, Q, ft and V are continuous everywhere 
and V and V are continuous in solid domains. 
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We now have six scalar fields to contend with. However, an examination of eq 16, 17, 18 and 
27 indicates that we can group them into two sets, one consisting of U, V, P and Q, and one 
consisting of W and R. These two sets are completely independent; they do not interact in any 
way. And we may, without loss of generality, treat them separately. 

The set (I/, V, P, (?) is the set of spheroidal variables. The displacements described by this 
set give rise to both coi;ipressional and shear strain, and are interference products of compressional 
and vertically polarized shear waves. Among other things, this set gives rise to the spherical type 
of Rayleigh surface waves. 

The set (W, R) is the set of toroida] variables. The displacements described by this set are 
orthogonal to r and produce only shear strains.  They are the interference products of horizontally 
polarized shear waves.  Love surface waves are associated with this set. 

From this point forward we will discuss only spheroidal types of motion. A similar development 
for toroidal oscillations can be easily formulated since the toroidal problem is, in fact, substantially 
simpler. 

For any specified angular frequency of oscillation w, the set ((/, V, P, Q) can be expanded in 
terms of spherical harmonics as 

l/(r, 0,0, w) =   !      S    VPir.oüY* {$,<(>) 
1=0   m=-l 

(13a) 

V(r. Ö, 0.w) =22    ^(r. ^^(0, 0) 
1=1   m=-l 

(13b) 

P(r. Ö. 0.0)) =   2       2   P^O-, o)^«?, 0) 
1=0   m=-l 

(28a) 

Q(r. 0. 0, w) =22   QjD(r,<u)i7(Ö, 0). 
1=1   m=-l 

(28b) 

The üj" and Vj" are given, in terms of a set of coefficients, by the analytic solutions 16 and 17. 
P|n and Q" are then given by eq 27. Our problem is to determine those frequencies, eu, for which 
we can construct U, V, P and Q by this method, for each layer, such that all boundary and interface 
conditions are met. 

However, because the Fj" are an orthogonal set, we may consider the above problem separately 
for each y™.  That is, given 

uit.e.t.ox) = uf(r,w)y™(0. 0) (29) 

etc., for what angular frequencies w can we satisfy all internal and external boundary conditions? 
Since m, as discusstd earlier, is a degonerate index, we can simplify eq 29 to 

ü(r, 0. <f>.u>) = (/jCr, ^^(0, 0), 

V(i,d, <t>,ü>) = FjOv ^//jtf.^). 

(30a) 

(30b) 
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P(tt $, <ß,o) = P^t.^H^d,^), 

Q(r, 9. t, a>) = Qx{i. o>)Hx(.d. <l>). 
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(30c) 

(30d) 

where Hx is given by eq 22 and is some spherical harmonic of degree /. The details of N, are of 
no particular interest since the eigenfrequencies and the form of üj, .,., Qj remain fixed no matter 
what Wj we choose. 

Our problem now is to find the eigenfrequencies associated with spherical harmonics of degree 
1. If we wish to know all eigenfrequencies, we must repeat this procedure for each of / - 0, 1, 
2. ... 

We will devise a constructive algorithm which will enable us, for a given angular frequency o, 
to construct a solution from the center outwar; which meets all boundary conditions save one. If 
the last condition is met, &> is then an eigeafrequency. 

We consider eq 16, which expressed U^ and Vx as a linear combination of four independent 
functions of radius. The coefficients Ax Oj were taken to incorporate all spherical harmonic 
content.  Equation 27 allows us to extend eq 16 to 

(31) 

v V 
where i  = 1, ..., N designates the layer to which the solution is appropriate. #{ is a 4 x 4 matrix 
constructed from 

and 

hZi = (A + ^«V'lj + —"ij - A~^—v 

A4j « ^r1*^ + r.yr1^)! 

(32a) 

(32b) 

and the first two rows of Wj are taken from eq 16. The set U|, ... OJI serve as constants, and not 
spherical harmonics. For the remainder of this development, we shall omit the 0 and <f> terms for 
convenience. 

We rewrite eq 31 as 

SV) = H'(r) • C1' (33) 

Bi, where we have omitted the subscript i. The vector S^r) includes both the stress and displacement 
terms. 

We will now proceed to construct a solution satisfying all internal boundary conditions. In 
region 1 which includes the point r = 0 we can a priori eliminate those solutions which go as 
yx{kT) and yj(yr). Therefore, C1 has the form 

' 
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A1^  + Blr2 (34) 

where e^ and e^ are four-dimensional unit coordinate vectors directed along the first and second 
coordinate axes. In the first region, then, we have 

S^r)  = Jl(f)  •  U1^  + BlT2\. (35) 

In the second region, we have 

S2(r) = //2(r) •  C2. (36) 

assuming both regions to be solid, the boundary conditions require that 

S2^) = S^rp. (37) 

or 

ff2(f1) •  C2 = W^rj)  •  U1^  + B1^!. (38) 

Because the solution composing the columns of W is linearly independent, matrix theory guarantees 
that W is nonsingular. Therefore, we may express C2 as 

C2 = [H2^)]-1  • H^fj)  •  M1^ + S1^!. (39) 

An alternative form for eq 39 is 

C2  = ^1^2 + BlC2 (40) 

where 

i2 = IHVJ)]-
1
 • HHrJ • e-j (41) 

£2 = [W2(f1)]"-1  • HHrJ - r2. (42) 

Equations 40, 41 and 42 suffice to specify S2(r). By a similar procedure, we can extend the 
solution from the i£* to the (i +  I)1* shell. The appropriate relations are 

S' + 1(r) = _Hi+1(r)  •  Ci+1 (43) 

Ci+l   = ^i^ri+l  ^   BlCi+1 (44) 

fifl  =  [Hi+1(rn-x  - H^r) •  ? (45) 

Ci+1 = [HuHr)] • HHr) • {*. (46) 
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In fact, either of ^i fl or Ci+l can be computed alone by starting with eq 41 or 42 and simply 
applying eq 45 or 46 as many times as is necessary. 

We suppoce now that we have computed (N and CN where N is the number of shells. The 
solution in this shell is given by 

Sfit) - HN(r) •   U1^ + B1^!. (47) 

We note that both the solution associated with £N [i.e., S' (r) when B1 = 0] and the solution 
associated with £N separately satisfy all of the internal boundary conditions. If w is an eigen- 
frequency, we will be able to find some il1 and B1, not both zero, such that the last two 
components of SN (fN) are zero. 

A straightforward way to do this is to evaluate 

WSN =^(rN) •  <;N. (48a) 

and 

(6)siv m £w(rN) . ^jv0 (48b) 

If S^(rN), i.e. P, must vanish, ^ and B1 must satisfy 

AHaS%) = - B1^). (49) 

We may, without loss of generality, impose a normalization such as 

{Ah2 + (B1)2 = 1. (50) 

which, with eq 49, allows us to compute A1 and B1. Using A1 and B1, we then compute S^ (fN), i.e. 
Q, and examine it to see if it vanishes. If it does, co is an eigenftequency; if it does not, a> is not 
an eigenfrequency. 

If w is an eigenfrequency then we may use the values of i41 and B1 in eq 43 and 44 to compute 
the eigenfunction S^r) at any radius in the system. We recall that S' (r) must be multiplied by some 
spherical harmonic of degree I and the factor eiait to obtain the full solution, 

S{(r, 0. ^ t) =   tyr) H^e, <f>) ei<ot 

where we have reinstated the subscript J. We emphasize again that the precise nature of //, depends 
upon initial conditions and is not relevant here. 

This method requires modification when either i = 0 or 2 ^ 0 but one or more shells have a 
vanishing shear modulus. We will briefly outline the form these modifications take. 

When I      0, B1 vanishes identically and only the solution is propagated. The matrix Bj is 
collapsed to a 2 x 2 matrix by eliminating those solutions with arguments, yr. V and Q both vanish 
and the only condition at r = rN is that P vanish. A1 becomes merely a scale factor and may be 
taken as equal to unity. 

In a fluid region, Q vanishes identically. Across a solid/fluid or fluid/fluid interface V may be 
discontinuous and Q is continuous and zero. If we are propagating upward through a solid and 
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100 

Figure 11.  Loci, in the (f, I) plane, of the frequencies of free oscilla- 
tion of a sphere of radius 10.16 cm composed of material having a density 
of 2.202 g/cm3, a compressional velocity of 5.968 x 10' cm/sec, and a 
shear velocity of 3.764  x 105 cm/sec. Solid lines connect modes of the 
same overtone number.  Dotted line indicates the asymptotic slope (do)/ 
dl > associated with Rayleigh wave propagation in an infinite half-space 

having the same material properties as the sphere. 

encounter a fluid, we must combine the ^and ^solutions to yield Q = 0 at the interface. This re- 
quirement determines A1 and B1 and, therefore, C' for all shells up to, and including the fluid 
region. 

Consequently, in a fluid region we have only one solution. In crossing from a fluid to a solid 
region, we must "start" a new solution having some non-zero V, but for which U, P and Q vanish. 
We may always find some £ which yields this result. 

For a given i, we shall arrange the frequencies of free oscillation in ascending order, as QWJ, 
.wj, o^j, • • •  We shall designate the displacements, as a function of rj as QUJ, JUJ, ... and the 
four-vector of displacement and stress by QSJ, JSJ etc. The "lowest" mode, for a given I, is 
referred to as the "fundamental" mode and the remainder as "overtones." 

Figure 11 shows the loci, in the (w, I) plane, of all spheroidal eigenfrequencies lying below 
100 kHz for a homogeneous sphere with 10.16 cm radius.  The sphere has a density of 2.202 R/cm^ 
a compressional velocity of 5.968 x  105 cm/sec, ind a shear velocity of 3.764 x 10s cm/sec. 
The results show several features common to such -alculations. 

The lowest fundamental mode is 0a)2. This, almost always, is the case. Secondly, the modes 
for / _> 2 tend to arrange themselves in smoothly varying suites, each of a given overtone, or radial, 
number. These are knc wn to correspond to the fundamental and higher-mode Rayleigh surface waves. 
To establish the conntction, we observe that Y^(d, 4>) has the value 

Y\{d, 0)  = (- 1) '      
2l + 1   (s,n ^  eiH 

I 477(21)] p/ 
(51) 

as can be seen from eq 10 and 11.   KJ describes motion which is closely confined to the equator 
(0 = n/2) and which behaves as waves traveling circumferentially about the equatorial zone. The 
change of phase, per unit of distance traveled in the $ direction, is //a and is therefore the mode's 
surface wave number.  For large values of w, we may, roughly, expect that the quantity 
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t/' =a^ (52) 

represents a group velocity and 

C*   = ^ (53) 

represents a phase velocity. In Figure 11 we have placed a dashed line whose slope is given by 
eq 52 when U* is equal to the group velocity of Rayleigh waves propagating along a half-space, the 
properties of which are the same as the sphere's. We regard the agreement as good. 

The numerical techniques used in this, and subsequent, calculations are discussed in 
Appendix C. 

The Inverse Problem 

In the preceding two sections we have developed the "forward" problem for a layered elastic 
sphere. The forward problem consists of the generation of the eigenvalue spectrum associated 
with a given model. In this section we consider the inverse problem of utilizing a measured 
eigenvalue spectrum (which will, inevitably, be incomplete) to infer the properties of the materials 
of which the sphere is composed. 

Let M be the space of all layered elastic sphares having N layers delimited by the points 
I'o« ri> • • •• fN' where, as before, r0 = 0 and rN is the sphere's radius. Then all models in M have 
a common geometry but differ in the elastic properties (including density) ol' their component shells. 
M, then, is i». space of dimension 3JV (since each shell has three distinct properties) and we may 
represent a g ven model by m, a vector of dimension 3/V. We further limit M by requiring that it 
encompass on. y physically realizable models. A model is said to be physically realizable if each 
shell's properties satisfy 

p > 0, (54a) 

H > 0, (54b) 

and 

A > - 3 /<, (54c) 

where both equalities 54b and 54c are not simultaneously true. The latter two constraints merely 
express the condition that an elastic material be thermodynamically stable (Fung, 1965). 

Let ncoi (m) be the nth overtone of the spheroidal mode of degree I associated with the model m. 
(Botfi n and J range over the non-negative integers.) We cannot express  «Uj (m) in closed analytic 
form but we can, through techniques previously discussed, generate it numerically. We can now 
formulate the inverse problem in the following manner. 

Let JOJ^, i = 1 K be observed resonant frequencies associated with particular modes of 
oscillatira.  We wish to determine a model m, satisfying 

mwjjdn) = nioj^ i = 1 K. (55) 

1 ■       ■ ..-... 
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As Backus and Gilbert (1967) have pointed out, we do not know, a priori, if the set of solutions 
to eq 55 is empty, has a single member, or is a subspace of M of one or more dimensions. 

We do not know a direct procedure for solving eq 55 for one or more models m. We resort here 
to iterative methods for, hopefully, generating successively improved approximations for m.  For 
convenience we rewrite eq 55 as 

Djdn)  =  D° i - 1 K (56) 

where the D^ are data and the Di (ra) are data /unctions. Dj (m) is a scalar-valued function whose 
domain is the 3W-dimensional vector space M and whose value is the angular frequency of free 
oscillation of the n|/l overtone of degree 1^ Let in0 be some model which we beheve to lie near m. 
WP wish to find some perturbation, 5m, in m0, such that m0   + Sm more nearly satisfies eq 56. 
(m   and m    + Sm must both lie in M but 8m alone need not.) We wish to have 

Djtm0  + 5m)  = D,0 i  = 1, ... K. (57) 

Expanding D^m) in a Taylor series gives 

3S  \dD. 1 
D.dn0 + 5m) = D. (m0) + V   —1        dmi + 0(\Sm\2) i = 1, ... K. (58) 

Then, to first order in |5BI|, we wish Sm to satisfy 

3^   idD] 
EL-i Smj   = D°  - ^(m0) i = 1, ...if. (59) 

If |5m] is sufficiently small we may expect that m1  = m0 + Sir will more nearly satisfy eq 56 
than m0 did. As a measure of a model's suitability , we may define 

*     |D>)  - D°| 
f(m) = V — -• (60) 

tf D? 

Equations 59 constitute a. K x 3N set of linear equations in the components of Sm. We may 
not, in general, expect to find Sm exactly satisfying eq 59 for all possible cases. If the rank of the 
system does not exceed 3N, such a Sm exists but is not necessarily unique. If the ru,nk exceeds 
3iV. it does not exist. 

Various methods of solution have been applied to the system 59 (Backus and Gilbert, 1967; 
Anderson and Smith, 1968; Smith and Franklin, 1969; Jordan and Franklin, manuscript, 1971). We 
adopt here a general technique proposed by Franklin, (unpublished manuscript, 1969.) 

We rewrite eq 59 more compactly as 

^(m0)  •  Sm  =  R(m0) (61) 

where^4 (m0) is the matrix whose elements a^ are 
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and R(m0) Is the vector of data residuals whose i"1 component is Dj* - Dj(ni0). We now regard 
eq 61 us a linear relation between three stochastic processes: a signal process, a data process 
and a noise process. Sm is a sample of the signal process, and R(in0) is the sum of a sample of 
the data process plus a sample of the noise process. Each process is taken to have zero 
expectation. 

The use of stochastic techniques to solve eq 61 is based, in part, upon contemplation of some 
of the potential sources of error entering into the relation. The measured spectral values DP are 
contaminated by measurement error and possible mode raisidentification. The physical system upon 
which measurements are made may deviate from the class of models U in which m must lie. It is 
possible that there is no model m in Af that would then satisfy eq 56. 

Let R1" denote the autocorrelation associated with the signal process Sm , and R0 denote the 
autocorrelation operator associated with the noise process.   Rm is a 3iV x 3iV square matrix whose 
(i, })th component is the expectation of the product Sm^m.. Rr is defined analogously. The best 
linear estimate for 8a is > iven by (Franklin, 1969): 

Sm = R0 . Aim0) - UOn0) • ßm • 4T(»0) + .g0]-1 • R(»0). (63) 

A solution, Sm, can be guaranteed to exist if R0 is a positive definite matrix. 

Pending the acquisition of experience, we will forego at this time any suggestions about the 
fabrication of Rm and R0. 

We have outlined above a method for inverting measured eigenvalue spectra to produce a model 
m consistent with the spectra. The only remaining theoretical problem is the computation of the 
partial derivatives. 

l^J«0 

which form the components oM (m0). These expressions are, typically, extracted by applying 
Rayleigh's principle.  Particularly good discussions are available in Backus and Gilbert (1967) 
and Dahlen (1968). We give here only the results. If A, p and p in a particular layer are altered by 
small amounts, the resulting alteration in <o is given by 

rN 
1/   (SAA + Sfik      SpR)r2dr\ 

1  (64) 
rN 

I2W /  [Uz + 20 + l)Vz]pr2dr\ 

where 

(dtü  + f-^F)2. (65a) 

0 

■ 

, 
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M = 2{dtU)2 + 1(1 + i)r2[y + (fdt - 1)V]2 + 

+ r2Fz + r2(i - Dia + DU + 2)u2. (65b) 

ß   =   -a.2«/2   +  i(i + 1W2], (65c) 

and 

F  = 2t/  - /U + 1)V. (65d) 

Preliminary Experimental Results 

As a first step in the validation of the foregoing theoretical results we elected to attempt to 
measure the normal mode spectra of layered spheres of known composition. Spherical samples are, 
in general, difficult to prepare, and our first specimen was composed of a thin steel shell filled 
with distilled water. 

The steel shell was formed by joining two stainless steel hemispheres with epoxy. The 
sphericity and homogeneity of the resulting shell is open to question; the hemispheres were pro- 
cured from an industrial float works. However, we believed that mechanical perfection was not, at 
this point, necessary. 

A small transducer was bonded to the shell and the sample was placed in the experimental 
arrangement shown in Figure 12. Coupling between the sample and the "driving" transducer was 
weakened by inserting rubber padding and an "0" ring between the two. Some experimentation 
indicated that coupling in this configuration is sufficiently weak that the measured spectra are not 
significantly influenced. 

The apparatus produced a graphical record of the response of the sample to a sinusoidal source 
us a function of frequency. A portion of that result is recorded in Figure 13.  The center frequency 
of significant peaks is given above each such peak. The amplitude scale is arbitrary, but linoar. 
Tentative assignments of peaks to a particular mode are indicated by the designation „Sj, v here n 
is the overtone number and I is the harmonic degree. 

Figure 14 is a juxtaposition of the observed resonance frequencies and the values computed 
for a sphere composed of an inner core of density 0.998, having a compressional velocity of 
1.498  x  105, and a radius of 7.6?.  The core is surrounded by a shell of thickness 0.0904, with a 
density of 7.3772 and having compressional and shear velocities of, respectively, 5.79  x 105 and 
3.1       105. We regard the agreement as being generally satisfactory. 

In Figure 13, it can be seen thai we have, in several instances, assigned a mode to a small 
collection of adjacent peaks.  Perturbation theory (Dahlen, 1968) tells us that small deviations from 
spherical symmetry will generally split the 2/ +  1 individual modes associated with a given (n, /) 
pair apart in frequency. That is, asphericities either remove, or at least decrease, the degeneracy 
of a particular mode.  (Only the family nS0 is not degenerate, and it, too, can still be shifted.) It is 
not unieasonable to expect that the abundant asphericities present in our sample will produce such 
an effect and that, for instance, the twin peaks associated with 0S2 in Figure 13 are an expression 
of this. We believe that such effects can be greatly reduced by increasing the mechanical symmetry 
of the sample. 

The sample fabrication method used above is not a particularly happy one for routine measure- 
ments of the properties of fluids.  Figure 15 shows the partial derivative uf eigenfrequency with 
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Figure 12.  Experimental apparatus used to measure frequencies of free oscillation. 
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plane, of the frequencies of free oscillation, computed 
for a stainless steel shell, filled with distilled water, 
of tne dimensions used in the experiment.  Filled cir- 
cles indicate measured resonances. Arrows indicate 
overlapping symbols. Assignment of an ordinate to 

measured frequencies is arbitrary. 

respect to compressional velocity in the fluid and the shell, and shear velocity in the shell, as a 
function of i, for the fundamental modes oSj.  We see that for i > 2 shear velocity in the shell 
dominates all other controlling parameters, and that for / > 5 compressional velocity in the fluid 
is the least significant parameter. At I  =  13, compressional velocity in the fluid is about 1/40 
as important as shear velocity in the shell. 

A preferable arrangement is one in which the quantity of interest is the controlling parameter. 
One way to achieve this is to utilize higher-order overtones.  For example, for jSg we have 

Of 
- 0.126 (fluid core). 

df 

dvp 

=  1.65  v IQ"6 (shell), and 

df 

3V. 
3.39   x lO-3 (shell). 

Thus iSQ is substanrially more influenced by the properties of the fluid than by those of the shell. 
This behavior results, in a general way, from the increasing concentration of energy in the interior 
associated with higher and higher overtones.  Unfortunately one result of this is that such modes 
are difficult to excite, or observe, from the surface. 
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Figure 15.  The partial derivatives of the fundamental frequencies of 
free oscillation, as a function of 1 and with respect to various indi- 
cated properties, of a water-filled steel shell. For visual ease, the 

derivatives have been joined by smooth curves. 

A more promising approach is to use shells composed of a material, such as Lucite, whose 
properties do not represent as severe an impedance contrast to the interior material. Exploratory 
calculations are presently being made on the optimum shell composition. We are also arranging to 
have shells machined, as opposed to other methods of fabrication, to greatly reduce the variations 
and aspherlcities of the sample. 

The preparation of spherical soil samples proved to be considerably more difficult, owing to the 
volume change of water upon freezing. After extensive experimentation we were Anally able to form 
a frozen soil inside a spherical steel shell by maintaining strong temperature gradients across the 
sample while allowing for the venting of unfrozen water from the sphere. 

Figure 16 shows a portion of the resonance spectrum for a 4-in.-diameter sphere of frozen, fully 
saturated 20/30 Ottawa banding sand. The experimental arrangement used in this measurement 
differed from that depicted in Figure 12 in that a) the sphere was supported on inflated plastic 
cushions and b) the applied signal consisted of a four cycle tone burst generated every 10 milli- 
seconds. 

The modes 0Sg and oS0, together with their partial derivatives, were used to estimate the 
compressional and shear velocities of the frozen soil. Forward calculations for the new model are 
shown in Table IV and compared to the data. The maximum relative error for the lowest five ob- 
served modes is 3.7% for 0Sg, which Figure 16 shows as being badly split 

'    :■   ■■ ' i 
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Figure 16. Portion ot the measured upectrum of a stainless steel shell, 0.040 in. thick 
and 4 in. O.D. filled with frozen, saturated, 20/30 Ottawa banding sand at -38nC. 

Table IV. Computed and observed frequencies of free oscillation of a saturated, 
frozen 20/30 Ottawa banding sand tanple encased in a steel shell. 

Mode Computed1 Observed Comp-Ooo 
(kHz) (kHz) Comp 

oS, 21.01 21.01 0 
OS. 27.72 28.11 -1.4 x 102 

oS, 30.96 31.96 -3.2 x 10"J 

oS„ 33.42 33.44 -6x 10"4 

oS4 39.38 39.88 -1.3 x 10'' 
oS, 47.14 ?2 

1. Computed for ri = 4.961 cm, V ^ = 4.391 x 105 cm/sec, 
Vsl = 2.66 x 105 cm/sec, pl = 2.0, fg = 5.062 cm, V 2 = 
5.79 x 105 cm/sec, Vg2 = 3.1 x 105 cm/sec, p2 = 7.8772. 

2. Splitting for oSg is too severe to allow a useful result. 
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Conclusions and Projected Research 

We believe that this procedure will provide a theoretically straightforward and experimentally 
practical method of measuring the elastic properties of solids and fluids, and in particular, of 
frozen ground. We further expect, with the existing apparatus, to be able to measure Q, or attenua- 
tion, simultaneously with the elastic properties. (The necessary theory for attenuation measure- 
ments is well-developed. See Anderson and Archambeau (1964).) 

The technique should be particularly useful in discerning small variations of elastic properties 
as a function of temperature. Such information is of value in deciphering the physical chemistry 
of frozen soils through, and near, the freezing point. 
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IV. DETERMINATION OF ACOUSTIC PROPERTIES OF FROZEN EARTH MATERIALS 
BY THE USE OF A CRITICAL ANGLE TANK 

by 

Y. Nakano, M. Smith and R. Martin 

lotroduetinn 

One of the standard methods for determining acoustic properties of earth materials is an 
ultrasonic technique using a critical angle tank. In spite of its inherent interpretive problems, it 
theoretically allows simultaneous operation in both dilatation and shear at wavelengths small com- 
pared to the sample thickness. 

The method, applied to metal, was first described by Schneider and Burton (1949) and sub- 
sequently used by Subbarao and Rao (1957) on rocks. King and Fatt (1962) used it to determine 
velocities in rock specimens subjected to confining pressures, and Wyllie et al. (1962), Gregory 
(1963), and Banthia et al. (1965) applied the techniques to determine velocities in rocks under both 
differential external confining pressures and internal pore fluid pressures. Recently Attewell (1970) 
used this method to study triaxial anisotropy of rocks. 

In the present work dilatational and shear wave velocities, as well as attenuation of several 
standard frozen soils, were determined by the use of the critical angle tank. 

Experimental Apparatus 

The critical angle tank is constructed from V:-inch-thick Plexiglas, 13 inches long x 9 inches 
wide x 9 inches deep (Fig. 17). At either ond, a transducer mounted on an aluminum rod is inserted 
through the wall of the tank by means of an O-ring seal. The distance between the two transducers 
can be changed. One transducer, made of 2.5-inch-diameter x 0.5-inch-thick PZT4, serves as a 
transmitter for producing uniform plane dilatational waves. The transmitter is connected to a Wayne 
Xerr Model SR-268 signal generator via a General Radio Model 1396-B tone-burst generator so that 
a harmonic burst of any number of cycles can be sent to the transmitter with any desired time interval. 
The other transducer, of 1.0-inch- diameter x 0.5-inch-thick PZT4, serves as a receiver, and is 
connected to a Tektronix type 567 dual-trace oscilloscope via a Krohn-hite filter, which passes only 
signals of a specified frequency range. One trace of the oscillosci-pe is triggered directly from the 
pulse generator to display received signals. The other oscilloscopfc trace is used for a Rutherford 
Electronics time delay generator, which is triggered by the pulse generator and is used for accurate 
measurements of arrival time with error less than +0.1 sec. 

The tank is filled with Dow Corning 200 silicone oil used both as a cooling medium and as a 
medium for transmitting the input pulses across the tank to the receiver. The cooling medium is 
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Figure 17.  Critical angle tank. 

circulated through a Forma Scientific Model 2095 refrigerated bath which maintains the rwplicd 
temperature. A sample holder 7 inches long x 8 inches deep that can hold a specimen up to 1 inch 
thick is placed vertically inside the tank. A frozen soil specimen, 4.5 inches in diameter, is mounted 
at the center ot the sample holder so as to intercept the ultrasonic beam. The surface of the frozen 
soil specimen is sealed by a thin vinyl sheet. The sample can be rotated about a vertical axis 
running through the center of the tank, the angle of rotation of the sample from normal beam incidence 
being indicated on a circular dial graduated in degrees and readable to 0.1° by means of a vernier 
scale. 

Theory 

A transmitted sound wave, after passing through the fluid, strikes tne sample at an angle i to 
its normal (Fig. 18a). Of the incident dilatational energy, part is reflected back at an angle i and 
part is transmitted into the sample. Since the dilatational velocity Cp in frozen soils (~ 4.0 km/sec) 
greatly exceeds that (Cw) in silicone oil (- 1.0 km/sec), the transmitted (refracted) portion of the 
incident energy is rotated from the normal at an angle 6   > i according to Snell's law: 

sin ■'(H (i) 
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Figure 18.  Reflection and refraction geometry of a beam of dilatational pulses 
on a slab of frozen soils in silicone oil. (a) Near normal incidence, (b) Crit- 
ical refraction of the dilatational beam,   (c) Critical refraction of the shear 

beam. 

The component of the particle motion iiOt accounted for by the transmitted dilatation P forms 
a shear wave S which is refracted at a small angle d0 (<ÖJ since C„ > C0 (~2.0 km/sec) > C,„. 

o p p 8 W 
S is polarized within the plane of incidence again according to Snell's law: 

(3) 

At the second surfaco of the sample, since fluid cannot accommodate the shear mode, both wave- 
trains are refracted back towards the normal at an angle i in the form of dilatational waves and 
activate the receiving transducer.  Each of the shear and dilatational signals striking the second 
surface will, in general, give rise to both shear and dilatational waves, in the sample, which 
emanate from the interface. However, by considering only the first portion of the received signal 
we may eliminate these. 

As i is increased by mechanical rotation of the sample, a critical angle J    is reached (Fig. 
18b) at which P skims across the surface of the sample in a transitional stage between refraction 
and reflection,  At this stage, from eq 1, 

P       s'n(icp) 
(3) 

As i is increased still further, P becomes totally reflected and at a second critical angle, iC8 

(> i   ), S skirrs across the surface of the sample (Fig. 18c). (In fact, refl«ction is complete only 
if the sample is infinite in thickness. Signals incident at, or beyond, thy critical ar ;le will "tunnel" 
through a finite sample in a fashion exactly analogous to the well-know i quantum mechanical 
phenomenon. For samples greater than a few wavelengths, we may disregard this effect.) Again, 
from eq 2, 

C.  = 
sin (ics) 

(4) 

■ 

: ■• «>; 
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At normal incidence the beam travels the shortest dimension of the sample and suffers minimal 
attenuation. As i is increased, the wave path in the sample increases and the transmitted pulse 
amplitude decreases.  When i = i'   , P is removed from the transmitted beam and the resolved 
amplitude for i     exhibits, in practice, an intermediate minimum rather than an inflection on the 
curve.  At i  = it.s> S is eliminated from transmission and one is left with an absolute minimum 
bunplitude.  In practice, the theoretical sequence of events outlined above is disorganized as a re- 
sult of the interference between the incident beam and reflected beams within the specimen. Inter- 
ference patterns often lead to difficulty in locating J'     with precision.  Therefore, another method, 
a fluid displacement technique, was used to determine dilatatlonal velocities in the present work. 
The difference in delay time St between the pulses received after crossing the liquid path alone 
as compared with their passage through liquid and specimen interposed at normal incidence produces 
a value for C   in the following way. If tj la tno time delay arising from transmission across the 
tank through liquid alone and lw is the wave path in liquid, then tl = iw/Cw.  The time delay 
arising from transmission across the tank when a sample is interposed at normal incidence is, 

'w  - d        d 
to     =           +       2 C C w p 

where d is the sample thickness. Then the difference in both delays is. 

t = tl  - l2 

Therefore, 

C d 
Cn  =  (6) 

p       d  - C...St w 

The attenuation is determined from the measurement of the ratio of the amplitudes Ai and A. 
of the received waves for specimens of two different thicknesses L^ and L:, respectively 
(Auberger and Rinehart, 1961). Namely, the attenuation coefficient a (nepers/cm) is given as: 

In M/A) 
a 

(LJ - V 

or the value of Q is given as; 

Q 
(»A) (Lj - ̂  

In (A/A.) 

where A is a wavelength. 
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Results and Discussion 

We examined ^hree standard types of soils, Ottawa sand, Hanover silt, and Goodrich clay, whose 
gradation curves obtained according to ASTM test procedures are shown in Fig. 1. The size of the 
specimen used for velocity measurements is 4.5 inches in dimneter x 1.0 inch thick. All measure- 
ments were made at subzero temperature due to the fragility of the sample holding device. 

Dilatational wave velocity 

Velocity of dilatational waves was measured as a function of temperature and frequency. It 
was found that the frequency has no distinguishable effect on dilatational velocities in the range 
between 300 kHz and 1.2 MHz examined. Fig. 19 shows the observed dilatational velocities as a 
function of temperature. The detailed discussion on ;he correlation between the dilatational 
velocity and temperature or unfrozen water content is presented in another part of this report. 

5.0 

u  4.0 

o 

> 
3.0 

2.0 

20-30 Ottawa Sand (p»2.0l7) 1 r , 

Honovtr Silt (/>•!.806) 

Goodrich Clay (/> = !.799) 
1      6" 

-15 -10 -5 
Temperature, C 

Figure 19.  Dilatational velocity vs temperature. 

Shear wave velocity 

Measured shear velocities are shown in Figure 20 as a function of temperature. Although the 
data are somewhat scattered, there is a general tendency for the shear velocity to decrease with 
ascending temperature. The roll of unfrozen water in shear wave propagation is more complicated 
than the decrease of velocity as in dilatational wave propagation. Since liquid water cannot 
accommodate the shear mode, shear waves are expected to attenuate severely while traveling through 
a layer of liquid water. Therefore the crystalline matrices consisting of soil minerals and possibly 
ice are the path through which shear waves propagate. In view of the fact that the slope of velocity- 
temperature curves does not differ markedly among the tested samples, soil mineral matrix might 
play a major roll. Since the soil samples used are well packed, soil minerals must contact each other 

, 

i 
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Figure 20.  Shear velocity vs temperature for 20-30 Ot- 
tawa sand, Hanover silt, and Goodrich clay. 

closely. If the soil is not well packed, a different result might be obtained. The shear velocities of 
crystalline rock and polycrystalline ice are about 3.0 km/sec and 1.6 km/sec respectively. The 
measured shear velocities of frozen soils fall between these two bounds. 

The sheai velocity was found sensitive to frequency in an almost linear manner in the range of 
0.3 MHz to 1.2 MHz. The velocity increases with increasing frequency. This trend was also re- 
ported by Attewell (1970), who measured the shear velocity of the Penrhyn slate of North Wales using 
the critical angle method. He claimed that the shear wave dispersion resulting in frequency de- 
pendence of velocity is a function of the critical angle technique and does not represent the shear 
velocity conditions in the slate. Any increase of velocity with frequency implies distortion of the 
spectrum of traversing waves through the solid. Although AttewelTs reasoning based upon much 
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experimental evidence is convincing, the reason why the critical angle technique does not accurately 
represent the shear conditions in the slate was not explained. 

Since we do not have sufficient experimental results, we are not able to evaluate the accuracy 
of shear velocity measurements in frozen soils.  Further efforts are needed to clarify this problem. 

Attenuation of dllatational waves 

Attenuation of waves in earth materials at high frequency is one of the least understood 
phenomena. Wyllie et al. (1962) stated that attempts to measure attenuation in porous media at 
frequencies higher than 100 kHz gave equivocal results. Auberger and Rinehart (1961) measured 
attenuation of longitudinal waves in rocks by the pulse method in the frequency range 0.2 MHz to 
1.0 MHz. No definite conclusion was made on the correlation between frequency and attenuation, 
since attenuation does not follow any marked law of increase or decrease with frequency. Attewell 
(1970) reported attenuation of dllatational waves in hard blue Penrhyn slate by the critical angle 
technique in the frequency range 0.5 MHz to 5.0 MHz. He did not describe any difficulty or problem 
concerning attenuation measurement. 

We measured the attenuation of dllatational waves in frozen soils by using samples of different 
thickness. Although the wave patterns of the received signals for samples of different thickness 
resemble each other and the amplitude of an initial rise or first arrival can be measured without 
difficulty, we are plagued by lack of reproducibility. We do not know whether this is inherent in 
the frozen soils examined or is due to error in measurements. Therefore we are not able to present 
our results in this report. 
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APPENDIX A. ANALYTIC SOLUTIONS OF THE TRANSFORMED WAVE EQUATION 

We represent u by 

u = V^ + V * T^X +  V x V xTrff (Al) 

where 0, x and a are scalar fields. The representation Al was chosen because it is "natural" to 
the field equations (eq 3). 

It is helpful to develop the following useful expressions 

V•  u = v2^, 

and 

VxVxu=VxVx   V* ("x) +V*VxVx    Vx (Tra) = 

=  V x lv(V • Trx) - V2^^)' + 

+   V x  V  x  h7(V • Tra) - VZ{rra)\. 

We expand Vzlfrx) as 

V'Jrrx) =r|v2(rx:) - yx| + ^l/f^j 

= Tr v2 X +   ^12 X I 

as may easily be shown by expanding. So, 

yx  vxu = -VxTrv2x-Vxvxr> V2^. 

If we insert these into the field equation (eq 3) and regroup terms, we find 

V\pd*tl> - (A + 2/i)V20l + V xTrlp(J2x - /^x' + 

+   V x  V x Tr \pS^a - ^v2ffl = 0. 

In order to ensure that eq 3 is satisfied, it is sufficient that ip, x and o be solutions to 

pdfy - (A + S^v2^  = 0, (A2a) 

PACE BUNK 
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p^x - HVZX  = 0. (A2b) 

and 

pdf a - nv2a =  0. (A2c) 

We have not shown that all solutions to eq 3 can be expressed in terms of functions satisfying 
eq A2 and Al. These solutions are, however, known to be complete (Stemberg, 1960). 

We now Fourier transform the system and introduce the.expansions 

.Mr. 0, <£, u) =   2      S    < (r. Cü)Y? (Ö, 0). (A3a) 
1=0 m=-l 

X(r. Ö. ^ to) « 2       i    xf (r. to)Yf (0. ft, (A3b) 
1=1   m=-l 

and 

ab. 6, <(>, u»)  * %       i   of (r, o>) Y? (Ö, </>). (A3c) 
1=1   m=-l 

The terms of degree / = 0 in the expansions for x and a have been omitted since they do not 
contribute to the displacement field. 

The expansions A3a-A3c are inserted into the transformed versions of A2a-A2c. We make use 
of eq 6 and 14 to simplify the result. If / is some scalar field, then by eq 6 

and 

V2/ - af/ +1 df + f"2^,-. (A4) 
r r      r i 

The resulting expressions are multiplied by Yf {6, 4>) sin 6 and integrated over 0 and <£. We appeal 
to the orthogonality relation 12.  We then have 

[d* + ! 5, +  fP     - l(l +  l)] <(r. co) = 0, (A5a) 
[ r       r    r      A + 2^ ,2      J     ' 

{^2      2 j       (ü2p       2(2  +  1) I    m,      .      n <?,+-<?.+ — > Xi w, a)) = 0, 
r   *       n              r2      J 

(A5b) 

and 

im 
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Each of the operators in brackets is some form of the spherical Bessel's operator. Its solutions 
are well-known and they are 

^f - ilf.^/jOtr) + BffeOyjÜkT), (A6a) 

Xf  = Cf (a.) 7, (yf) + Df (a,) y, (yf). (A6b) 

and 

of  ~ Ef {(o)i1 (yr) + Fj" (^y, (yr), (A6c) 

where 

^ 

"sr <A7> 

and 

(A8) 

VT 
We wish now to relate f/, K and If to ^, x and a. To do this, we will rearrange eq Al to 

resemble eq 4. For convenience we will drop subscripts and superscripts. 

We note immediately that 

^ = Td^ + ViO-"V). 

Also, 

V x frx = r^v  x f- "?*■* V(rx) 

= -Tx vO-x) 

m   ~T*    VxX- 

The third term can be expanded as 

V x V x fra = V(V • Tra) - V2 Hfra) 

= -Trvza ~ v(2a) + V [r*dr ^a)] 

iua^«i»r«MNiHS 
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^ x  v x Tr ff =TI-rv8ff + dtlf-2dt<t3a) - Za]] + 

+ v^r-^d^a) - 2rlo] 

i f 

Collecting these we have 

u = r|a^ - IU + 
r 
i>,}+ 

Therefore 

üj" = ^r^r - Kl + 
r 

1)      m of, 

Vf = r1 [^ + (Jr(fo«)], 

and 

w® = xr- 

TirV2»! + Vilr"1» + d,a\ 

.r|l«LlilaU Vjr^^o)!. 

1 ff > +   ^ !r V + r 1dr (rff)l - r x  VjX- 

(A9a) 

(A9b) 

(A9c) 
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APPENDIX B. THE TRACTION ON A SPHERICAL SURFACE 

Let X be the elastic stress tensor resulting from a displacement field u. T is given by 

T   = A(V •  n)i + ^(Vu + av) (Bl) 

where nV is simply the transpose of Vn. The force (not stress) acting across a surface whose 
unit normal isTTis given by n* • T, which is a vector quantity. We represent the force acting 
across a surface whose normal is the radius vectorTby 

F.  T    =7?»  +   VxQ - Tx   Vi«. (B2) 

Our problem is to relate the scalars P, Q and R to the scalars U, V and W which characterize the 
displacement field. 

We note first that 

T- I  = A(V •  u)T+ /if*. {57u + uVt. (33) 

The divergence of u can be expanded as 

V • u = (r<?r + r1^) • Tf/ + ViV) (B4) 

since 

V' i-Tx  VjW) - -r- (V x VjHO 

= -T. (Tx  VdtW) 

= 0 

because?'x   Vd^ must be normal toT. Equation B4 can be written as 

v • n = dtu + rlv\v +ifßt • VjK + r1^ -Tu. (B5) 

The third term vanishes since <?r commutes with Vl, and Vj^v is normal to7*. The fourth term is 
equal to (2/r) U as mty be seen by replacing r-1 Vl with V - Tdr, an equivalent expression. We 
then have 

V • * ~  (dt +l)v * f^vfv. (B6) 
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The term 7* •  IV u + u VI in eq B3 is more difficult to deal with. In terms of the coordinate 
representation of u, (i.e. ur. ug, and u -), 

T.  tVu + uvl = ^(a^u,) + ^Udöur + '^(—1     + 

^{T^J*^ *'*•{¥)]■ (B7, 

By inspection of eq 5 which explicitly gives the coordinate components of Vj, we see that eq 87 
may be rowritten as 

7*.  Ivu + uvl - l\Zdtut) +  ?i(---) + 

We note that dt commutes with Ö'and ^ The expression in square brackets represents the non-radial 
portion of u and must therefore be identical with Vj v - 7* x   V^. Since ur is identical with U, 
we have 

7*. Ivu + «Vt =l\2dtv) + 1 ^u + rdl-V^ - i.7*x   V^i 

or 

i.^i,)!-^,.^)! 7*.  I Vu + uVt = 7t2dru) +   Vj 

Combining the above results, we have 

P -  (A + 2,i) (9 u  + -^ u  + - r?v. (B8a) r r r     * 

{-O] Q = H\- + rdt[L\\, (B8b) 

and 

(B8c) -f.(7)} 
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APPENDIX C.  NUMERICAL TECHNIQUES 

We outline, briefly, in this appendix the numerical techniques used in this study to a) generate 
the suite of normal modes for a layered elastic sphere and b) evaluate various integrals of interest 
associated with these modes. 

For a given i and tu, the generation of solution functions proceeds exactly as outlined in 
Section B. The matrix inversion required by eq 45 and 46 was not done explicitly. We chose instead 
to solve two sets of simultaneous linear equations. The Crout Reduction (Hildebrand, 1956) was 
found to be particularly convenient. 

Bessel functions were generated by using Miller's well-known recurrence algorithm (Abramowitz 
and Stegun, 1968). One consequence of this technique is that the accurate evaluation of a spherical 
Bessel function for many values of its argument, as required, say, for integration, is a time-consuming 
process. For such applications it would perhaps be more efficient to numerically solve Bessel's 
equation, but computer memory limitations did not permit the additional coding this required. 

In practice, the program was assigned a model and a value of I and proceeded to compute trail 
solutions for evenly spaced values of frequency. As the computation proceeded, indicator variables, 
as explained in Section B, were monitored for a change of sign, which was taken to indicate a zero 
crossing. When this occurred, an estimate was made of the location of the zero crossing and the 
algorithm described below was invoked to iteratively improve the estimate. In general, two applica- 
tions of the following procedure sufficed to locate the eigenfrequency to within one part in 10*. 

Gilbert and Backus (1967) observed that Rayleigh's principle could be utilized to improve 
estimates of eigenfrequencies obtained by coarser methods. Suppose that for some frequency &>, 
near an eigenvalue, &>*, we have computed a trial solution and find that the stress-free surface con- 
dition cannot be met.   We may apply Rayleigh's principle, or perturbation theory, to the solution we 
Aave generated to estimate the change in «u the elimination of surface stress would produce. The 
first order estimate for this change is given by 

o<u  = (8ff<u)     . (Cl) 

/   pf8mf(r) + Hi + l)Vf{r)\dr 
o 

We will not derive eq Cl here. We then replace &> by u + du and repeat the process. We chose to 
terminate the iteration when |W(5w + <u)| fell below 10**. 

The last point we wish to mention is the evaluation of integrals of the form 

/ = / Z(u)dr (C2) 
o 
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where Z is some operator on the solution functions, U(r), etc. In general, we may expect Z to vary 
appreciably over a length L of about 

2nVn 
L  =  1 (C3) 

where V  is the local compressional velocity. L is simply the wavelength of a compressional wave 
of angular frequency u. In computing /. the program was designed to utilize steps not exceeding 
tLj; where t is a small (~ 3 x 10'*) number and Li is the scale length appropriate to a given shell. 
This technique yielded a reliably constant accuracy over many wide variations of scale without 
extracting undue computing labor for small values of <u. 


