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DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

I. ULTRASONIC VELCCITIES OF DILATATIONAL WAVES IN FROZEN SOILS
by

K. Knuth, M. Smith, R. Martin and Y. Nakano

Introduction

Measuring the variation of the acoustic properties of solids under variable physical conditions
has become well established as an effective method for investigating the physical structure of
solids.

Although the acoustic properties of metals, plastics, and unfrozen earth materials have been
widely explored, little attention has been directed toward frozen earth materials in the past. Re-
cently there has been considerable interest in frozen earth because of military applications, such as
seismic monitoring and personnel sensor detection in cold environments, and construction engineering
applications, such as the Trans-Alaskan pipeline construction.

One of the most importiant acoustic properties of solids is the velocity of dilatational waves.
A summary of dilatational wave velocity data obtained in permafrost regions was compiled by
Barnes (1963). Eykov (1966) reviewed Russian works, Several laboratory studies on the subject
have been reported (Frolov, 1961; Mullet, 1961; Kaplar, 1963; Desai and Moore, 1967, Timur, 1968).
Frolov (1961) measured velocities of 30 kHz dilatational waves in four different types of frozen
soils (sand, clay, sandstone and silt) in the temperature range from -20°C to 20°C. Muller (1961)
measured the velocity in water-saturated sand and clay of various porosities as a function of
decreasing température. His resulis indicate that with inicreasing ice content the velocity decreases
for sand and increases for clay. Kaplar (1963) measured both dilatational and shear wave velocities
in various frozen earth materials in the temperature range from 0°C to - 20°C by the resonant bar
method, in which either flexural, longitudinal or torsional vibrations were induced by electromagnetic
means.

Recently Timur (1968) measured dilatational wave velocities in various earth materials between
26°C and -36°C hy the pulse first-arrival technique, in which the time required for an elastic wave
to traverse a sample of known length is determined. He measured velocities with both descending
and ascending temperature and found that the two measurements generally do not agree, the degree
of discrepancy depending on the specimen. It has recently been shown that freezing and thawing
bring about a dramatic redistribution of water and a reorientation of particles, particularly in fine-
grained earth media such as clay (Anderson and Hoekstra, 1965a and 1965b; Anderson and Tice,
1970). It is possible to consider a hysteresis of velocity reported by Timur (1968) as a result of
such structural change in the specimen.

This report covers the first phase of an investigation of the relationship between acoustic
properties of frozen soils and soil structure as well as constituents. The velocities of dilatational
waves in three standard soils were measured with the pulse first-arrival technique. A hysteresis of
velocities similar to that obtained by Timur was observed.
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Experimental Procedure

Sample preparatian

- Three standard rvpes of soils, 20-30 Ottawa sand, Hanover silt and Goodrich clay, were
tested under tully water-saturated conditior.s. Figure 1 shiows the gradation curves obtained
according 1o ASTM (American Society for Testing and Materials) test procedures. We prepared
circular cylindrical samples, eithier 2.5 cm diameter x about 15 cm length or 2.5 cm diameter x
about 90 ¢m length. To prepare sand or silt, dry soil was first packed into 1-inch Tygon tubing
encased in a copper jacket and was tamped or vibrated until a specified dry density was attained.
Then water was sucked into the sumple by the use of vacuum. To prepare clay, water-saturated
clay was packed into Tygon tubing in order to maintain uniform density throughout the sample.
After the ends of the tubing were sealed with aluminum plngs, the sample protected by the tubing
and the copper jucket was frozen. When the sample was ready for testing, the copper jacket was
removed and the plugs were replaced with transducer assemblies.
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Figure 1, Gradation curves for 20-30 Ottawa sand, Hanover silt, and Good-
rich clay. G, = specific gravity.

Temperature control

Copper-constautan thermoconples were inserted to the center of the sample to monitor tempera-
ture, To maintain a constant temperature during the experiment, a Forma Scientific | >del 2095
bath was used. The sample was placed in a cooling jacket, through which the cooling fluid was
circulated by a puwp via the bath, The temperature of the saumple was kept constant within +0.1 °C.

Velocity measurement

The velocities of propagating waves in the sample were measured with the pulse first-arrival
techuique (Kolsky, 1963). At either end of the sample a transducer of 0.5-inch-diameter x
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0.25-inch-thick PZT4, which was bonded to an aluminum disk 1 inch in diameter and 0.25 inch
thick with silver epoxy, was attached to the surface of the sample with a few drops of silicone
oil for better coupling. One of the transducers served as a transmitter and the other as a receiver.

A Hewlett Packard Model 214A pulse generator supplied pulses of about 1 second duration to
the transmitter with a repetition rate of 500 to 1000 pulses per second. The receiver, which was
connected to a Tektronix 50A dual-trace oscilloscope via a Krohn-Hite Model 3202 filter, displayed
the received signal, A filter was used in a bandpass mode passing 10 kHz to 1 MHz. The other
oscilloscope trace was used for a Computer Measurements Company Model A11 digital time delay
generator providing accurate measurements of arrival time with an error of less than 0.1 sec. Both
traces on the oscilloscope wers triggered by the pulse generator. This system was checked by the
use of a standard medium, such as water, copper or aluminum, prior to measurements on frozen soils.
All tests gave velocities within 1% of handbook values.

Accuracy of the pulse method

The behavior of elastic waves in any bounded medium necessarily entails various effects due
to the presence of the boundaries. The effects of boundaries in circular cylinders have been well

studied (Kolsky, 1963). Figure 2 depicts the theoretical group velocity of the first six axially
symmetric modaes in an aluminum rod 1.5 inches in diameter. The calculations were performed
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Figure 2. Group velocity versus frequency for a circular cylinder 1.5 in. in diameter, having a com-
pressional velocity of 6.42 km/sec. The expected ‘‘bar’’ velocity is 3.04 km/sec. The crosses
are observed group velocities in a 1.5 in. aluminum rod, 327.5 cm long.
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using handbook values for shear and dilatational velccities. The lowest mode approached the bac
velocity in the low-frequency limit. It is clear from Figure 2 that the mode structure of a cylindce
is fairly complex. The crosses represent cbservations of zroup arrival versus frequency taken,
with our apparatus, on a 327.5-cm aluminum rod, 1.5 inches in diameter, The primary uncertainty
in the data lies in the assigned frequency, which was obtained by a period measurement of
adjacent peaks. The agreement is quite satisfactory within the limits imposed by this error. The
spurious points at about 80 kHz may be attributable to mode coupling at the rod's support points
although we did not attempt to verify this.

As is seen in Figure 2, successively higher modes possess group velocity maxima which N
increase in both frequency and velocity. In a general way, these maxima approach the dilatational
velocity of an elastic medium increasingly closely. For example, the 14th mode possesses a maxi-
mum at 1,15 MHz and a velocity of 97% of dilatational velocity. |

In view of these cal~ulations dilatational wave travel-time measurements should be made at the
highest feasible frequency. Care shoula be taken to ensure operation in a region.whete the group
velocity is close enough to the dilatational velority to achieve the desired accuracy.

So far we have discussed the accuracy of the method applied for elastic solids. Since any
real material deviates from an ideal elastic solid in one way or another, the accuracy of the method
also depends on the anelastic behavior of the solids examined.

Results and Discussion
The results of the experiment are presented in Figures 3-5 where dilatational velocities are

plotted as a function of temperature. Originally we intended to evolve a technique that would
allow simultaneous measurement of both dilatational and shear velocities using long samples based
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Figure 3. Dilatational velocity vs temperature for Otiawa sand. The differences in density
and velocity reflect the difference in porosity.
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6 DETERMIN ATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

upon the theory of guided elastic waves in a cylinder. This effort has been unsuccessful due to
unexpacted high attenuation in the samples tested. For Ottawa sand and Hanover silt, 90-cm-long
samples barely allowed measurement of dilatational velocities in the frozen state, and did not
allow measurement in the unfrozen state. Ninety-cm-long Goodrich clay did not yield any reliable
measurement even in the frozen state. Despite the limited experimental data, we are able to
present the following observations.

Velocity versus temperature curves

The decrease in dilatational wave velocity as an initially frozen water-saturated soil is
thawed appears to be a direct consequence of the change in state of the water. Consider the soil
as a two-component mixture, that is, a granular framework whose interstitial spaces are filled
with water. A high-frequency wave traveling along any path through the sampl¢ will travel part of
the time through the crystalline framework and part of the time through either water or ice, depend-
ing on the temperature. Since the dilatational wave velocity is about 3.0 km/sec in polycrystalline
ice but only 1.49 km/sec in water, we expect that the travel time along the same path in a frozen
sample will be less than the corresponding travel time in the thawed sample. The velocity of a
wave propagating in the crystalline framework is essentially consiant over this temperature range.
Hence, the observed velocity for frozen soil should be greater th n for the same sample thawed.

In light of this explanation of the variations of dilatational velocity in saturated soil as a
function of temperature, it might be asked whether or not the observed change in velocity is in
some way proportional to the amount of water in the sample. This suggests that perhaps each
component contributes to the observed slowness in proportion to its relative abundance in the
sample and the average compressional wave velocity of the individual components. Averaging
techniques for two-component systems have been employed successfully to obtain compressibilities
and moduli of many minerals which are available only in small quantities or in finely divided
particles not suitable for bulk testing. They are first mixed with an isotropic material with known
elastic constants, The unkuown elastic parameter is then computed from the average properties
of the composite material (Anderson, 1963; Chung and Buessman, 1967; Brace et al, 1969). The
most notable method is to use Voigt and Reuss averages to obtain upper and lower bounds and then
select a composition for which the spread of the bounds is a minimum. These methods however
are not directly applicable in a straightforward way to the simple averaging of dilatational wave
velocities for a two-component system.

Timur (19.8) measured the dilatational wave velocity in water-saturated porous sandstone as
a function of temperature. He observed a change in velocity similar to the one we observed as the
temperature of tF= sample was increased from -24°C to +24°C. Moreover, only an insignificantly
small decrease in velocity was observed on a dry sandstone sampl~ as the temperature was raised
from below thie freezing point of water to room temperature. These observations also strongly
suggest that the change in dilatational velocity as a frozen sample is thawed is attributable solely
to the state of water in the pore spaces of the rock. Using an argument similar to the one we out-
lined above to explain the variation in velocity as our samples thawed, Timur (1968) proposed a
simple time-averaging method to compute the theoretical velocity of a two-component system based
on the percentage of each compunen! in the sample and the velocity of that component. This
technique assumes that the tiavel time for 3 dilatational wave through the sample is the travel
time for each component computed according to

1 A 1 -4
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where v, is the observed velocity for the sample, vy and v, are the velocities of each component,
and A is the relative volume of one component. For a water-saturated sample, the relative volume
of water present is equal to the porosity of the sample.

Applying eq 1 to his results, Timur found good agreement with his experimental results.
Typically the observed velocity fell within 5% of the predicted value. Our results on 20-30 Ottawa
sand with a porosity of 37.5% (Fig. 3) were compared with the predicted velocities obtained using
the time-averaging equation. For the frozen soil the predicted and observed values agreed to
better than 2%. However, for saturated soil above 0°C agreement was poor. The observed velocity
was 2.78 km/sec whereas the predicted value using time-averaging was not immediately apglicable
to the silt sample because the composition and relative abundance of the solid particles were not
known.

The inapplicability of the time-averaging technique to unfrozen, saturated soil presents a
difficulty. Why does the time-averaging method appear to be satisfactory for both frozen and un-
frozen porous rocks but only to frozen Ottawa sand? The fact that the compressional wave velocity
is less than the anticipated value based on time-averaging in thawed soil but in good agreement for
frozen soil suggests that the compressional velocity is largely determined by tne compressibility
of the interstitial water rather than by the compressibility of the mineral solids. It appears then
that for a consolidated and lithified elastic continuum, such as 2 porous rock, the solid and liquid
can be time-averaged in direct proportion tc cheir relative volumes to obtain a realistic value. In
the case of a non-lithified, unfrozen soil, however, time averaging does not seem to apply due to
the discontinuous nature of the mineral grains.

Hamilton (1970) studied the velocity of water-saturated marine sediments as a function of
porcsity and grain diameter. He found that the velocity typically increased from about 1.50 km/sec
to 1.86 km/sec as the porosity was decreased from 80 to 30%. A similar increase in velocity was
cbserved when the grain diameter was increared from ! tc 1000u. Applying the time-averaging
equation to Hamilton's results for sand produces no agreement between the predicted and observed
results. Our results and those obtained by Hamilton suggest that time averaging is not an applicable
method for predicting velocities in water-saturated soils. The breakdown of the time-averaging
approach to velocities when the solid minerals do not form an interconnected framework suggests

that further justification, on a sound physical basis, is required before time averaging can be
accepted wholeheartedly even for frozen soils.

Ideally we would like to have a single theory that would predict the velocity in both frozen and
unfrozen soils using easily measured properties of the components such as relative abundance,
mineral composition, velocity of the minerals, and other readily obtainable elastic properties.
Presently no such theory exists. As a major protion of our future research effort on the geophysical
properties of frozen soils, this problem will be analyzed in detail both empirically and analytically
to achieve a workable relation between porosity, mineral composition, water content and sample
velocity.

Hysteresis in the velocity during a freeze-thaw cycle

It is evident that a strong correlation exists between dilatatjional velocities and unfrozen water
content. Then it might be asked whether or not the observed hysteresis in the velocity during a
freeze-thaw cycle is also caused by the hysteresis of unfrozen water content. The low-temperature
phase composition of interfacial water has been a topic of continuing interesi. MNersesova and
Tsytovich (1963) conducted experimental investigations to determine the phase composition of water
in various frozen soils by calorimetric methods. Unfrozen water contents obtained by them for
typical non-saline soils are shown in Figure 6. In granular soil, pores are comparatively large and
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Figure 6. Unfrozen water contents in typical non--
saline soils: 1) quartz sand, 2) sandy loam, 3) loam,
4) clay, and 5) clay containing montmorillonite.

almost all of the water freezes at the freezing point of water. However, clay and silt have fine
pores, in which a significant portion of the water remains unfrozen in a liquid or semiliquid state.
Those observations are consistent with the velocity-temperature relation.

Several studies conceming phase composition have been reported. However, the hysteresis of
phase composition during a freeze-thaw cycle has not been discussed explicitly, because equilibrium
phase composition has been the main subject. Anderson and Hoekstra (1865a, 1965b) have recently
shown that freezing and thawing bring about a dramatic redistribution of water and a reorientation
of particles in clay. They studied the changes in apparent d (001) spacing in Wyoming bentonite
dwing the freeze-thaw cycle by X-ray diffraction. They found the hysteresis loop in the spacing
during the freeze-thaw cycle due mainly to supercooling, However, if, during cooling, the sample
was nucleated artificially the d (001) spacing dropped immediately and the cooling and warming
curves nearly coincided. The d (001) spacing indicates the amount of interlamellar water consti-
tuting the gel structure. Freezing altered the gel structure and most of the interlamellar water
was expelled on complete freezing; as a result, ice must form in extralamellar regions. If the
interlamellar water corresponds to the ’‘unfrozen’’ water (Anderson and Hoekstra, 1965a, 1965b),
the hysteresis of unfrozen water can occur most probably in laboratory experiments, where no control
on nucleation is made. Since almost no interlamellar water exists in granular sand, such as Ottawa
sand, it is consistent that we did not observe anv hysteresis in velocities for Ottawa sand,
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Although the unfrozen water content is one of the most important variables in determining
dilatational velocities in fine-grained frozen soils, determining the amount of unfrozen water is
quite elaborate. Efforts have been initiated to evolve a technique allowing simultaneous deter-
mination of acoustic velocities and unfrozen water contents.
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Il. DETERMINATION OF A LINEAR VISCOELASTIC CONSTITUTIVE EQUATION FOR
FROZEN EARTH MATERIALS BY THE USE OF THE RESONANCE COLUMN TECHNIQUE

by

Y. Nakano and H. Stevens

Introductiou

During the past decade considerable emphasis in soil mechanics research has been placed on
the behavior of soils under dynamic loading. This behavior depends strongly on the nature of
loading: stress, stress rate, frequency, etc. Consequently, various experimental techniques have
been developed to determine the dynamic behavior of soils subjected to a specific kind of loading.
Among these, the resonance column technique has been extensively used to investigate unfrozen
soils under relatively weak harmonic loading (stress less than 100 psi) in the frequency range of
107 - 10* Hz (Hardin and Richart, 1963; Hardin and Mossbarger, 1966; Hardin and Black, 1968;
Hardin and Drnevich, 1970).

In the resonance column method a cylindrical column of material is subjected to a steady
sinusoidal loading, eather in the torsional or longitudinal mode. When a specimer: of soil is under
vibrativnal loading, the stress-strain relation creates a hysteresis loop. Two parameters have been
used to define this relation (Hardin and Drnevich, 1970). These parameters are the modulus defined
by the rlope of a line through the ends of the loop, and the area of the loop, which is a measure of
the damping capacity of the soil. Another way of defining the stress-strain relation is to determine
the complex modulus according to linear viscoelastic theory (Lee, 1963; Hardin, 1965).

The dynamic behavior of frozen soils is less complex than that of unfrozen soils; but no
comprehensive description of either material has been obtained. One useful and practical approach
towards a quantitative description of dynamic behavior is determination of a constitutive relation
based upon mechanics of continua. Stevens (1967) used a linear viscoelastic model for interpreting
resonance column experiments and determined complex shear and Young's moduli. In his experi-
ments the mazimum dynamic stress in the specimen was varied from 0.1 psi to about 5.0 psi, where
the complex modulus was found to be weakly dependent on the stress level. Despite such non-linear
behavior in frozen soils, the linear viscoelastic constitutive equation is considered a good first
approximation under low stress loading. In the present work, efforts were made to determine the
simplest linear viscoelastic constitutive equation that can describe the dynamic behavior of frozen
soils under both torsional and longitudinal vibrations consistently. In practical applications we
encounter various types of disturbance: steady and unsteady disturbances, plane and surface waves,
and cylindrical and spherical waves. Once the constitutive equation is determined, it is possible
to predict the response of frozen soils subjected to such disturbances.

PRECEDING PAGE BLANK



12 DETERMINATION OF THE ACOUSTIC PROPERTIES OF FROZEN SOILS

Expu-imental Determinatiois of Cou plex Modulus

In a linear viscoelastic material, when the stress ¢ varies sinusoidally with time at an angulat
frequency w the strain ¢ varies with time at the same frequency but there is a phase lag 5 between
stress and strain, The stress and strain relation for linear viscoelastic solids is generally express-
ed by the following equation:

g = Ee (9

where E is defined as the complex Young's modulus and is a function of w. The complex shear
modulus C is defined similarly, We describe a method of determining these complex moduli in the
following.

Method of test

A vertical cylinder of soil is subjected to steady-state sinusoidal vibration in the torsional or
longitudinal mode at the lower base end with the other end free except for a light, relatively rigid
cap. The input and output stress waves are observed and measured by piezoelectric accelerometers
attached to the base plate and cap plate at each end of the specimen. The peak acceleration and
the frequency are recorded. The drive frequency may be any value above the so-called *‘rigid body
frequency’’ and within the limits of the drive motors, if the phase angle between input and output
waves can be accurately measured; otherwise, the specimen must be excited at a known resonance,
The ratio of output to input amplitudes and the frequency, together with the specimen properties of
density and length, are required to compute the desired parameters,

Apparatus

The complete test apparatus includes a device for holding the specimen, drive motors and
transduce:s for measuriag the response, control and readout instrumentation, and auxiliary molds and
equipment for specimen preparation., This apparatus has been discussed in detail by Hardin (1966)
and Stevens (1967). At present the apparatus does not include a pressure cell, and the specimens
are tested unconfined.

Computation of complex moduli and results

First we consider longitudinal vibration. If the wavelength of the standing wave is long in
comparison with the diameter of the specimen, a rod condition is approximately true, The equ-.tion
of motion for longitudinal vibration is:

% d%u
E — P

i @)
ox2 a2

where
E  complex Young’'s modulus
p  density of the medium
t time
u displacement along the coordinate x

X - coordinate (Lagrangian).
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At the driven end x = O the system is given a sinusoidal displacement, namely,
w0, t) = ugel® 3

At the other end x - L the effect of the mass of the cap resting on top of the specimen is con-
sidered;

2
Eau(.L, ) -y g“u(L, t)

C))
dx (9‘2
where
S = cross-sectional area of the specimen
m = end mass,

13

Solving eq 2 with the boundary conditions, eq 3 and 4, we obtain the following relationship for the

ratio of bar end displacements (or accelerations), z

. u(L t)l sec pL )
Iu(O z) 1 - ytanpL

where

In more detail (Norris and Young, 1970):

Re(z"!) = cosh (Etan )(cosf Q ¢sind) +

] ]
+ Qp £tan 5 cos € sin (Etan = ) (6a)
Im(z™!) = sinh (ﬁtan )(sinE + Q écosd) + ;
{
+ Q@ &tan g sin £ cos (ftan g) (6b)
where
5 - Im(E)
Re(E)
PN
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V,p - phase velocity = 4 ’S secg

m
pSL

The condition of specimen resonance occurs when the ratio z is a maximum. As the frequency
is increased from zero, the first maximum is the fundamental resonance and successive maximums

indicate the harmonics. For the condition of resonance, where z is a maximum and z~2 is a mjni-
mum,

4

d 9

— (z = 0,

Z ) )
Equations 5 and 7 may be solved simultaneously with a computer using an iterative process for

the expressions and tan (6/2). At sach resonance point we can determine the complex Young's

modulus {rom observed values of w and 2.

The equation for torsional vibration is perfectly analogous. In the torsional mode Q, isre-
placed by @, which is defined as

4
rop L

Q, - cPe™e 8)
r4,9L

where
r = radius of the specimen
r. = radius of the cap
Pe = density of the cap
L _ = length of the cap.

The dynamic stress in the sample varies along its length as a damped sine wave, with the
maximum at the node nearest the bottom or input end. At resonance, this node is very close to the
bottom plane of the sample and the stress computed for correlative purposes is computed for the
bottom plane.

It is difficult or impossible to accurately control the stress in the sample during the test be-
cause of the resonance phenomenon. Closest control can be obtained by keeping the input accelera-
tion level g constant. As g is directly proportional to frequency and a wide frequency range is
requir~1, it is not very practical to control g at a relatively high value,

Consequently, no attempt is made to keep either stress or g constant. Instead, the drive force
is held constant while the frequency is varied over its entire range. Then the drive force is in-
creased an arbitrary amount, and so on. Thus we ensure measurements over a range of stress levels
without knowing in advance what the values will be. '

The frequencies at which measursments are taken cannot be predetermined, as only the
resonant condition is used and resonam frequency varies with sample mass and stiffness. The first
four or five resonances are usually used.

It is desirable to determine the moduli and loss angles for a given frequency and a given stress
or strain, not only because these relationships are required, but to allow comparisons between values
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for different samples, To accomplish this, modulus and tan & are each plotted versus ‘he computed
dynamic stress at one resonance. A smooth curve is drawn through the points and the modulus of
tan & value picked off for a given stress. The resonance frequency is obtained by interpolating
between the two adjacent mearured frequencies. If, say, four resonances are used, four values at
four (requencies at a constant stress are obtained. A plot of modulus or tan & versus frequency is
then prepared and a smooth curve drawn through these points. A value for modulus or tan & for a
given frequency and a given stress can then be obtained, The same process is used to obtain
values for about three stress levels and at least three frequencies.

Usually, the test measurements plot in such a way that there is little question as to the shape
of the curve drawn through the points, However, scatter does occur, particularly for the tan &
measurements, Some guideliners are used in drawing the curves, It is assumed that the modulus
decreases or is constant with increasing stress and increases or is constant with increasing fre-
quency. Tan & is assumed to increase with increasing stress but there are no good guidelines for
the relationship to frequency. Usually, the trend is to a decrease with increasing frequency but at
times there is a strong trend to a maximum peak at a particular frequency within the test range.
The results of the experiment are presented in Table I. The specimens tested included several
standard frozen soils as well as polycrystalline ice. The foilowing variables are also listed in the
table:

L = length of specimen (cm)
D = diameter of specimen (cm)
Py = Wwet (total) density (g/cm”’)
W = water content (g water/g dry soil) (%)
pp = dry density (g/cm’)
Py = porosity (void volume/total volume) (%)
V4 = void ratio (void volume/dry soil volume) (=)
S = saturation (water) (%)
S; = saturation (ice) (%)
T = test temperature (°C)
f = frequency (kHz)
E* = absolute value of complex Young’'s modulus (Kbar)
le = phase velocity of longitudinal wave (km/sec)
G* = absolute value of complex sheat-modulus (Kbar)
V., = phase velocity of torsional wave (km/sec)
= dynamic stress imposed on the bottom circumference of the specimen (psi).
The values of E* and G* in the table are either interpolated or extrapolated from those at

resonance frequencies in order to show the properties of different frozen soils at the same frequencies,

The phase velocities, V, and V/ tpr &re computed based upon complex moduli £ and G respectively.
Gradation curves of the soils obtained using ASTM (American Society for Testing and Materials) test
procedures are also presented in Figure 7.

Despite the limited data it is possible to describe some general trends in the dynamic behavior
of frozen soils. Stevens (1967) found several important parameiers affecting such behavior: soil
type, ice content, void ratio and frequency.
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Table I.
L = 49,45 Pom 41,9
D= 70533 Vim 0.719
Pom  1.946 S.= 86,7
. ¥= 22,9 S:= 96.1
3N1953 FRUZEN wANCAI3PS: SILCD Fom 1,580 T = -3.89
£ | ¢ | vie | 7an& | e+ Vep | Ten ot
N,=  n.]
1.00 158 2,85 0,0230 67,2 1.96 0.067
2,00 167 2,93 0.0227 68,3 1.88 0,056
5,00 175 3.00 0.0215 720.3 490 0,045
19,0 177 3.02 0.0167 20,9 1.91 0.045"
L2 1.0 : ]
1.10 158 2,85 0.,0230 67.0 1.86 0,067
2,00 166 2,92 0.0227 68.3 1.87 0.056
5,00 175 3,00 0.0215 70.3 1.90 0,045
C\o= 5.0 a®
1,00 146 2,74 0,0230 62,9 1.80 0,067
2.00 164 2.90 0,0227 68,0 1.87 0,056
5,00 175 3,00 09,0215 69,7 1.89 0.0bs
10.0 177 3.01 0.0167 70.3 1.90 0.045
L= 50,8 Po= 34,0
D= 72,55 Vi= 0,516
fum 2,050 Su=m 90,2
W= 17.5 S:= 100.2
3N1052 PRO.IN 20-30 OT'PAJA 3AND b 1,79 T = - 3.89
r | _E* 1 ve | Tang | G* Vop | Tendr
n,= N.1
1.00 319 3.94 0,023 137 2,59 0,049
2,00 333 4,03 0,021 138 2,53 0,047
5,00 356 4,17 0,019 139 2,60 0,037
10.0 358 4,18 0,014 139 2,61 0,032
-m-g= loo _
1.00 | 319 3.9k 0,023 136 2,57 0,051
2.00 333 4,03 0,021 137 2,58 0,048
5,00 356 4,17 0,019 132 2,59 0,041
10,0 358 “b,18 0,014 139 2,60 0,037
m,.- 5.0
1,00 219 3.94 0,027 135 2.57 0,097
2,00 333 4,03 0,025 136 2,58 0,088
5,00 356 4,17 0,021 13?7 2,58 _0,063
10.0 358 4,18 0,014 138 2,59 0.041
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Table I (Cont'd).
L= 40,6 PBo= 68.1
D= 7,44 V= 2,130
fv- 10“33 Su= 83.6
. W= 66,0 S.:= 91,2
3N1028 7ROZEN PAIRBANKS SILT UNDISTURBED fo = 0.8619T = —9g,u44 -
¢ | E* N Tan §; [ c* | Vo | Tand:
0\.’- 0.1
0,50 | 121 2,90 0,024 42,6 1,72 0,072
1,00 121 . 2,91 0,030 42,9 _1.73 0,067
2,00 ] 122 2,92 0,038 b3 1,74 0,086
5.00 { 124 2,94 0,666 [T 1.76 0,041
= 1.0 i
0.50 | 121 2,90 0,028 42,5 1,72 0,075
1,00] 121 2.91 0,032 42,8 1,73 0,069
2,00 122 _2,91 0,039 43,4 1.74 0.058
5,00 123 2494 0,070 by ,3 1.76 0,041
G\-o- 5.0 .
0.50 | 121 2,90 0,060 42,4 _1.72 0,086
1.00 | 21 2,90 0,062 42,6 1.3 0,076
2,00 123 2,91 0,070 43,1 1.74 0,064
5,00 | 121 2,91 0,099 4.1 1475 0,042
D= 7.4 Vim 4,030
Jom 1,235 Sem B86.8
W= 130 Sim 947
3N1027 PROZZN FAIRBANKS SILT UNDISTURBZD fo =  0,5367T m — 9.l
¢ | E* 1 vee | 7ang | ¢ | Vep | Tend:
0\.- 0.1 '
0,50 973 2,81 0,018 35,3 1,69 0,064
1.00| 97.6 2,81 0,023 35,6 1,70 0,059
2,00 98,3 2,82 0,033 36,0 1.71 0,049
_So= 1.0 . )
0,50 97,0 2,80 0,027 35.3 1.69 0,064
1,00 97,4 2,81 0,032 35.6 1,70 0,059
2,00 98,2 2,82 0,041 | 36,0 1.7% 0,049
5,00 99,8 2484 0.052 36.3 1.72 0,044
— a.- 5.0
0.50 96,9 2,80 0.108 35.0 1.68 0.064
1.00 97.3 " 2,81 0.100 3543 1.69 0,061
2,00 98,0 2,82 0,083 35.8 1.70 0,055
5,00 99 4 2,84 0,060 36,4 1.72 0.054

17
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Table I (Cont'd).
L=142,1 p= 60,7
! fvm 1,552 Su= 80,3
W= 46,0 8i= B7.6
“N1026 7ROZ:N PAIRBANKS SILT UNDISTURBED /o™ 1,062 T = 9,44
t | g | vy ! mand | 6* | v | Tende
o‘\.ou 0.1
0,50] 135 2.95 | 0.024 49,3 1,78 0,062 |
1.00 135 2,95 0,023 49,6 1.79 0.060
2,00 135 2,95 0,028 50,0 1.80 0,055
5.00] 135 2,95 0,043 | _ 50,2 1.80 0,043
G‘.,= 100 o .
0,50 135 2,95 0,036 49,3 1.78 0,069
1.00] 135 2.95 0.037 49,6 1.79 0,066
2,00 135 2,95 0,040 50,0 1,80 0,059 |
5.00 1’5 T 2095 ooou 50-2 1'80 0.01&3
a.- 5.0
0,50 131 2,91 0,132 49,3 1.78 0,097
1.000. 132 2,92 0,122 49,5 1.79 0,090
2,00 133 2,93 0.092 49.8 1.79 0,073
5,00 134 2,94 0,045 49,9 1.79 0,043
D= Vim
cv - 009072 Swe
33 POLY2RYSTALLIN<+ I22 MaDI BY - Siw
I Faaazn;s wA-rlm ATOH 3904 A= Tw =9k
¢ | E* | v | 7andy | ¢* | Vv | Tand:
o0,= 0.1 ’
0,50 61.7 2,61 0,060 21.2 153 0,056
1.09 63.4 2,64 0,086 21,7 1.55 0,086
2,00 6.5 2,69 0,052 22.4 157 0,056
5,00 | 62.0 2,726 | 0,082 23,1 1,60 0,056
5‘-,2 100 ! } o
0,50 | 59.3 | 2,56 0.089 20.3 1.50 0.095
1.00 61.4 2,60 0,084 20,7 1.51 0.085
2,00 63.8 2,68 0,078 21.7 1.55 0,073
Gom 5.0
0.50 5645 2.51 0,270 18.7 1.45 0,340
1.00 | 58,6 2,55 0,254 19.4 1.47 | o0.270
2,00 61,4 2.61 0,220 20,6 1.51 0.155
5,00 66,2 2,70 0,146 22,2 1.57 0,077
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Table I (Cont’d).
L= 34,8 =
D = Vis=
° - S o= 0,9098 Sw=
. 3N1023 POLYCEY3STALLINS IC: MAD: BY W = i "
HAPID SRYSTALLIZATION 07 4ATSH  fo = T = <-9.4
| . £ | E* | vee | 7and | G* | WV | Tand:
o .= 0.1
1,00 98,8 3.12 0,055 29,0 1.78 0,017
2,00 | 88.8 3.12 0.041 29.2 1.79 0,015
5,001 88,8 3,12 0,020 29,3 1,80 0,013
-’J‘-'= 1.0
1,00 | 88.3 3.12 0.079 28,5 1.77 0,037
5,00 ] 88,3 3.11 0,027 29.3 179 0,014
Glem 5,0
1.00| 87.9 3.13 0.333 27.9 1.75 0,065
2,00 | 87.9 " 3.12 0,397 28,4 1,77 0.045
5,001 87,9 3,11 0,131 29,2 1:79 0.017

39.10 Pom 36.2
9.90 Vi= 0.568
1€.2 Si= 101.6

S EpUr
[ BB S ]

3N1019 7ROZ:N-100 LiBANON TILL 1.825 T = =94k
t | e | wvie 1 gen GJ‘__L G* | Ve | Tende

UL’- ol
0,50 | 228 3,26 0,105 89,3 2,04 0,040
. 1.00| 229 3.27 0,086 89.3 2,04 0,038
2,00 | 232 3,28 0,062 89.3 2,04 0.033
5,001 240 3,34 0,032 ol,5 2,10 0,018

L 9-'= 1.0 )

0,50 222 3,22 0,146 88,6 2,03 0.086
1,00 223 3,23 0,126 88,6 2,03 0.077
2,00 226 1 3.24 0,093 88.6 2,03 0,060
5,00 234 " 3.30 0,040 93.8 3.09 0.022

X a.- 5.0
0,50 | 216 3,20 0,370 87.9 2,03 0.317
1,00| 218 © 3,20 0,340 87.9 2,03 |- 0.277
2,00 221 1,22 N.2722 87.9 2.03 0,188
5,00 225 3,24 0,080 91.? 2,07 0.024
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Table I (Cont'd).
D = 9.888 g‘ - u80266
v - 1.753 1 ] o
,g = 10.2 sl- us.i
1617 PHOZIN, 100-200, OTTAWA SAND fom= 1,591 T = =9.44
r. £ E* I \'/T) ] Tan & | G* i Vep Tan d¢
mp- 001

0.50 9645 2,35 0,024 48,6 1.67 0.024
1.00 | 101 2,40 0,024 49.6 1.68 0,023

2,00 110 2,50 0,025 5.2 172 0,023

‘3.00 126 2.68 0.0‘40 56.“‘ d 1.79 0,022
R 5‘.,'—' 1\0 . .

0.50 95.5 2.33 " 0,060 48,3 1.66 0,062

1,00 99.3 2.38 0.060 Lol 1.68 0.083
2,00 108 2,49 0,060 51.4 1.71 0,041

5,00 125 "~ 2,68 0,060 56.1 1.79 0,028

G\o= 5.0

0.50 90,3 2,30 0.454 48,1 1,66 0,200

1.00 95.2 2.35 0,400 49,1 1.68 0,166

2,00 106 2,47 0.300 51,0 1.71 0,109

5,00 124 2,66 0,188 55.6 1.78 0,053

L= 38,19 h= 39,2
Dm 9,903 Vi= 0,645
,'- 1.966 s"- 900“'
W= 22,0 8Sim= 98,7
N1 014 PROZEN, 100-200, OTTAWA 3AND fo=  1.612 T =  =9,44
I E* 1 vy | ran& | et | vy Tan dt
ﬂ.' 0.1 '

0,50 263 3.71 0,029 105 2,31 0,032
1,00 263 3.66 0,029 105 2,3 0,030
[ 2.00] 263 3,66 0,029 105 2,31 0,028

5.00 263 3,66 0,029 105 2.31 0,024

. Nex= .0 ' B
| 0,50 263 3.66 0,074 105 2,31 0.135
| 1,00 263 3,66 0,074 105 2.31 0,120
2,00 263 3.66 0,074 105 2,31 0,094
5,00 263 3.66 0,074 105 2.1 0,024
O\py=50
1 0.50] 263 3.67 0.220 105 2.35 0.585
1,00 263 3.67 0,220 105 2.34 0,520
| 2.00 263 3,67 0,220 105 2.33 0,370
5,00 263 3.67 0,220 105 2.31 0,030
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Table I (Cont'd).
L 7.50 Pom 46,9
Jum 1.863 Sws  92.9
We 30.6 S;= 101.
1012 FROZEN SUPPIELD CLAY Pom 1.427 T= <9
i) e b v | Tan&g | G* | v | Tand
a\'P- 001
0,50 | 75.2 2,01 0,088 25,8 1,18 0.072
1.00 | 75.9 2,02 0,090 26,9 1.20 0,076
2,00 | 82.3 2.10 0.104 27.8 1.22 0,090
5,00 B1.7 2,10 0,146 29.8 1,27 0.170
R a,= 1.0 ’ i
| 0,50 | 75,2 2,00 | 0,320 25,8 1.18 0.105
1400 | 75,9 2,02 0,121 26,9 1,20 0.105
2,00 | 82,3 2,10 0.123 27.8 1.22 0.106
5,00 81,7 2,10 0,146 29,8 1.27 0.170
6\.- 5.0
‘().SO 752 2,02 0275 2508 1.18 0,157
1.00 75.9 " 2,03 0,250 26,9 1.20 0,160
2,00 82,3 2,11 0,202 27,8 1.22 0.175
- 5.00 81.7 2.10 0.124 29,8 1,27 0.195
7.63 .p,. 50.0
L 80  w= 0,962
o= 1.629 Sw= 51.6
W= 18.6 Siw  56.8
3N1007 PROZZN SUFPISLO CLAY fom 14370 Ta =9k
P TR 7P Y O T ) Tan §e
Mn,= 0.1
0.50 14,8 0,952 0,087 5,86 | 0.600 0.124
1.00 18,8 1.07 0.105 7.10 0.661 0.130
© 2,00 22,0 1.16 0.140 7,45 0,680 0,305
0N,z 1.0 d _ o
0,50 13.0 0.893 0,140 | 5.86 0.600 0.140
1,00 17.6 1,06 | 0.148 7.10 0.661 0,148
2,00 21.8 1.16 0.150 745 0.680 0.150
Com 5.0
0,501 10,8 0,821 0,360 5.2l 0,571 0.320
1,00 15,9 0.996 0,360 6.83 0.651 0,320
2,00 20,5 1.13 0.365 7.31 0,675 0.370
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U.S. Std. Sieve No.

4 10 40 200
100 'I'I'EIIT\, g ‘I'YII T LALE B B |
~
|
ro : RN : -
£ | | I N |
o 80 et — t t E
g o |
= b0 i ;\\ .
> | |
|
8 60 —T— : %
] b el AL Ne
£ r | | | \ | -
W | | | |
| | | |
E 40 T 1 T i
° ! ! ! | \
o L | | 1 ]
L~ I | I i
o b ! : \
o1 ! ! N
- : | \ : .
H = \ | |
OAllll}ll 1 i n thI | W wlala )
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Figure 7. Gradation curves.

For ice-saturated or almost saturated non-plastic frozen soils a strong correlation was found
between modulus and void ratio (Fig. 8, 9). Since such frozen soils have only two constituents,
soil minerals and ice, the moduli are bounded below by those of ice and above by those of rock.
The moduli of several standard rocks measured by Simmons and Brace (1965) are plotted in these
figures to show the upper bound.

Frozen soil specimens have a fundamental resor.ance of the order of 2.0 kHz longitudinally and
1.0 kHz torsionally. In this experiment soil was usually tested up to the third and fourth resonance.
Therefore, the range of frequency is about 1.0 kHz to 10 kHz. In this range the modulus increases
and tan & decreases with increasing frequency. Tan & is approximately a reciprocal of the quality
factor €, which is defined as the ratio of the energy carried by a wave to the energy dissipated per
radius of phase shift (Thurston, 1964) and is commonly used by seismologists (Jackson and Anderson,
1970). For ice-saturated frozen soils the correlation between @ and void ratio is not so strong as
that between modulus and void ratio.
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Q values for frozen soils were found in the range of 10-100. They are bounded below by
polycrystalline ice and above by solid rock, such as quartzite (Q = 250) and granite (@ = 70)
(Volarovich and Gurvitch, 1957).

Although many theories concerning the attenuation of stress waves in earth materials have
been proposed, none of them is definitive, The attenuation mechanism is difficult to pin down
even in the laboratory, where measurements can be made as a function of frequency, temperature,
pressure, purity, grain size, annealing history, etc. In the present work we used viscosity to
describe anelastic properties of frozen soils. When applied to solidn, this term usually means that
stress relief and deformation occur by some poorly understood process, which may be a combination
of several types of processes, and may result in linear or nonlinear internal friction of complicated
(or unknown) {requency dependence (Jackson and Anderson, 1970), Further efforts are required to
obtain complete understanding of attenuation in frozen soils.

Determination of Linear Viscoelastic Constitutive Equations from Measured Complex Modulus
The general constitutive equations of a linear viscoelastic solid are given as (Eringen, 1967)
Ro, 6, + Soy, = Pe Sy, + 2Q¢, 9)

where o, ¢ are stress and strain tensors respectively, and P, @, R and S are linear operators

defined as,

N
1
P -2 + % ,\ii (10a)
i=1 ot
Q=ypp+ X py— (10b)
i=1 gt
N .
3
R = a5 + 3 a; iy—- (10c)
i=1 gt
N .
4
S - By X B (10d)
i=1 gl

where A, p;, a, and ﬁi are constants.

Torsional mode

Theory. We deal only with circular cylindrical specimens and use cylindrical coordinates for
convenience, Let the coordinates be r, ¢ and z, with z being the axis of the cylindrical specimen,
and let the corresponding displacements be u, ug and u,. In the propagation of torsional waves, no
longitudinal or lateral displacement is to be expected and the motion is symmnetric about the axis of
the cylinder. Therefore, u, and u, must both vanish and we need to consider only the wave equation
for uy. If the torsional stress applied to the specimen varies sinusoidally with time and the strain
thus induced also varies sinusoidally but wit, a phase difference, then we may write the wave equa-
tion for viscoelastic materials as:




LINEAR VISCOELASTIC CONSTITUTIVE EQUATION FOR FROZEN EARTH MATERIALS 25

3%u %
0 _ 20 (y
a® 922

where G is a complex shear modulus, p is the density of the specimen, and t is time,

The wave equation is also written in terms of the present linear viscoelastic model as:

3% do,
'atTo - azoz (128)
auo
Sog, = @ 5 (12b)

Among many alternatives we selected the following four-parameter model for torsional vibration:

d a2
Q = §y a—t + o &2 (13&)
d 6°
S = —_ e 13b
By + o Bo e (13b)

If ug and ag, are harmonic with an angular frequency w, then the complex shear modulus G is given
as

G =G, +iG, (19)

where . w2[p1 _ #2(30 _ ngz)]

= (15a)
1 GB
n By ~ 2) %]
G, - wipy Bo ng + How (15b)
Gy
Gy = (By - ﬁ2w2)2 + o, (15¢)

The phase velocity Vtp and the group velocity Vtg are obtained as follows:
( * o
V( = G— sec (—t) (16a)

- . d (16b)
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where

G¢* - |G] (17a)
aGt

G* -

w ™ (17b)

G

5 - tan~! _2

' n <Gl> (17¢)
aat

tw = —é;- (17d)

The values of constants yu,, u,, B, and S, are determined from the four observed variables, namely
the complex modulus and the loss factor L (= tan 8t). at any two distinct frequencies. Since it is
not generally expected that the model satisfies these four conditions exactly, the following scheme
is used. Suppose the observed modulus and the loss factor at two distinct frequencies are G“).
G®, LY, and L{* respectively; then find s, and u, which minimize the derivation V. defined as:

(G - 62 | (& - &
v, - (18)
t G2, @2

under the constraints

() _ ()

LY - Ly ‘ (19a)
2) 2

LB - L3 (19b)

where G, and Lsm are the complex modulus and the loss factor predicted by the model.

Results and discussion, The four parameters u,, uo, B, and ﬁ2 were computed as follows. We
used the observed modulus and the loss factors at 1.00 kHz and 2.00 kHz to compare the constitutive
equations of different frozen soils around 1.5 kHz frequency. Since eq 19a and 19b are linear in
terms of 3, and f3,, we solved these equations to substitute 4, and u, for B, and B, in eq 18. Now
V., is a function of u, and y, only; that is,

V, = V iy ) 20)

When Vl is 2 minimum, we have

th
F(Flo Fg) = m =0 (21a)
()Vt

o
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Suppose that (u{", 44 is an approximate solution and let 8u{!) and 85" be corrections
which we shall determine, Expanding F and G in a Taylor series and truncating after the first-
order, we get:

1
OF (WD, ) 1 OF (D, )
————————— " 8“2 ——————

Fb, by + EALY
1 2 1 a“l 6“2

=0 (22a)

3G (D, D)
_—
opy

1 1
1) BG(y(l ) y(z ))

G (D, uD) 4 5D
“(1 Ko duy v

8;1&

0. (22b)

This linear system in By(ll) and 8;1(21) gives the next approximation, y(lz) and #(22)- as

e

uiD o+ 8D (23a)

WD - D . @)

The above iterative procedure is repeated until we obtain p1q and o, Which minimize V. The
results of the computation are shown in Table II.

CGS units were used in the computation. For instance, stress was expressed in dynes/cm?
The computation was quite satisfactory. An absolute minimum value of V exists for all specimens
computed and convergence is rapid. In order to indicate the degree of approximation or error we
listed V'f in the table. The values of V'{‘ vary in the range of 10™* to 10°%, which is considered
satisfactory. In the general constitutive relation, eq 9, if all other constants except A,, p, and ﬁl
are vanishing and ﬁl is equal to unity as defined, eq 9 reduces to the elastic constitutive equation,
or Hooke's law in terms of an incremental strain resulting in an incremental stress, where A, and p,
are Lamé constants, Therefore, p,, B, and B, indicate a degree of deviation from elastic solid.
For ice-saturated or almost saturated non-plastic frozen soils a strong correl ation was found between
modulus and void ratio as described before. We plotted four parameters, p,, pg, By and By, versus
void ratio in order to find out some general trends (Fig. 10). It appears that a correlation exists
between either y, or p, and void ratio, but neither S, nor S, are affected by variations of void ratio,

Longitudinal mode

Theory. If the wavelength of the harmonic wave is long in comparison with the diameter of the
specimen, the equation of motion for longitudinal vibration in Cartesian coordinates is written as:

d%u %
E X - p X (24)
ox2 on®

where

o)
it

complex Young's modulus

density of the medium

©
[}

time

]

- displacement along x coordinate.
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Table Il. Values of constants for torsional mode.
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Figure 10. Values of constants for torsional mode vs void ratio.

In this case Oy is the applied stress and the other five components of stress are zero. The
first three equations in eq 9 thus become:

R +9) o,g = PA + 2Qe ; (25a)

Ro,, = PA + 2Q¢,, (25b)

l't’axx = PA + 2Q(zz. (25¢)
Eliminating fyy and €,, from eq 25, we obtain the following equation:

QR + ) + PSla,, - (3PQ + 2Q%)«,,. (26)

The operators @ and S have been determined and the operators P and R are now to be determined
from the longitudinal vibration tests. The determination of P and R is more elaborate than the
determination of @ and S, since restrictions have already been imposed on the former in relation to
the latter.

We intend to introduce four new parameters to define P and Q. There are several ways of
choosing such parameters. In the general constitutive relation, eq 9, if all other constants except
Al. pq and B, are vanishing and ﬁl is equal to unity as already defined, eq 9 reduces to the elastic
constitutive equation, or Hooke's law in terms of an incremental strain resulting in an incremental
stress, where A, and p; are Lamé constants. It is anticipated that the dynamic properties of frozen
soils do not deviate markedly from those of an elastic solid. Thus the parameter A, is expected to
play an important role in the operator P. We choose two models defined by two four-parameter groups,
()\0, Ay @y, ap) and (Al, )‘2' aj, a2). Now we have
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] 9%
P = Ay + Ay — 4 Ay —
0 1 ot 1 Ag at2 (27a)
. p 92 . )
R - R Ry (27b)
or®

where )\2 = 0 for Model 1 and Ay = O for Medel 2.

When o, and ¢, are harmonic with an angular trequency w, then the complex Young’s modulus
E is given as,

E=ﬂ=M1+1:M2 o
L L, +iL,
where
Ly = -poay + ppoday - olpyBy + pefy + ABy +
+ AgBg) + @By + AgBy) + Ay(By - Bpw®Vw (29a)
Ly = ~pgo’ay — play + Bouy + MBy + ABy -
- 0By + peBy + Ay + AgB)) (29b)
M, = ~wBAp, + 262 + Bhgug) + w¥(Bhguy + 2u) | 29c)
My = 3hgp; - wfBApy + BAgpy + dpypy). (294)

Knowing the values of p,, p,, 3, and B,, we determine two groups of four unknown constants,

(Ags Ay, aj, a2) and (A, /\2, a,, a2) from the observed complex modulus and the observed loss factor
at any two distinct frequencies by a method similar to that used for the torsional mode. Finally we
select one of the groups, which minimizes the error V,, defined as:

(1) (1))2 (2) (212
CUED - EDR @D - B

| - (30)

14

(ED2 , E@)?)

where E(1), Eg’ are defined as in torsional vibration. The phase velocity V), and the group velocity
Vlg are given as for the torsional mode:

* o
Vi = [ sec (_‘) (31)
P 2
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El
vV, = P 31b
lg 5 o E 8 5 (#10)
‘ €08 — - — —— C0S — - — 0, 8in —
2 2 g» 1o
where
E* - |E|
E
'o‘l = tan~! 2
E,
JoE*
E* =
@ dw
09,
61 = cvmmema
@ dw
ls‘l = Re(E)
E2 = Im(E)n

Results and discussion. The actual computation of four parameters, either ()\0, Al, a,, a2) or
(A 1 )\2, as, a2), was made in the same way as in the torsional mode. We used the observed modulus
and the loss factors at 1.00 kHz and 2.00 kHz. It turns out that Model 1 always gives a better
approximation than Model 2 for all ice-saturated frozen soils examined., The results of the com uta-
tion are shown in Table III. The degree of approximation is not satisfactory. The values of V
vary in the range of 10°* ~ 107, which is much larger than V . It might be possible to obtain a
better or well balanced approximation for both torsional and longltudmal modes by selecting eight
parameters in a different manner. Also one could improve accuracy by introducing more parameters.

The most commonly used linear viscoelastic models for earth media have been the Maxwell
or Voigt models with only two parameters and very little attention has been directed toward
examination of the complete constitutive equation. Although the dynamic behavior of frozen soils
is less complex than that of unfrozen soils, the degree of deviation from perfect elasticity is
surprisingly large. It is felt that further efforts should be made to investigate the constitutive
equation of frozen earth materials according to the theory of continua.
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r.

Table III. Values of constants for longitudinal mode.
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IlI. THE USE OF FREE OSCILLATIONS TO MEASURE THE ELASTIC
PROPERTIES OF MATERIALS

by

M. Smith, R, Martin, and Y. Nakano

Introduction

This section discusses our efforts to develop, and apply, experimental techniques for the
measurement of the elastic and slightly anelastic properties of materials based on the free
resonances of layered elastic spheres. We initially undertook this effort because such spheres are
the only bounded bodies, known to us, for which we could develop exact analytic solutions, Con-
sequently we are not, a priori, restricted to considering only high or low frequency approximations
or time-limited response.

Although some classic studies of the dynamic properties of elastic spheres have long been
available (see Love, 1944), the results were generally devoid of practical significance until the
Earth’s free oscillations were observed after the Chilean earthquake of 1960 (Bullen, 1963). The
consequent attention by seismologists resulted in a well-developed literature from which many of
our references are drawn. We differ slightly in that we restrict our attention to spheres com-
posad of discrete layers and we also neglect the effects of self-gravitation, rotation, an initial
stress state, and ellipticity (see Dahlen, 1968).

The following three sections and the appendices are thenretical, with some numerical examples.
So far as we are aware, the particular development given here, that is, a layered non-gravitating
sphere, has not been published, of a piece, elsewhere. It is, however, a *‘standard,’’ albeit
complicated, problem. We believed that its detailed solution had to be explicitly laid down before
progressing into experiment.

The last sections deal with the results of pilot experimentation. We believe the results indi-
cate that the practical difficulties associated with this method are being mastered and that the
technique is a viable one,

Elastic Displacement Solutions in Spherical Coordinates

We consider a volume of space filled with an isotropic, homogeneous, lineatly elastic medium
having Lamé constants A and p, and density p. We assume the medium to be free of gravitation and
other body forces, but allow the existence of one of motre surfaces across which tractions may be
applied.

Let ube the displacement field specifying the motion of each particle from its unique rest
position. We assume u to be a first order infinitesimal and do not, therefore, have to distinguish

PRECEDING PAGE BLANK
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between Eulerian and Lagrangian coordinate systems. Let T be the elastic siress tensor. If we
assume that w = 0 corresponds with the unstressed state of the medium, T is given by (Fung, 1965)

T = MV-wl + ptvu + ue), (1)

where [ is the identity tensor. Wuis the gradient tensor of u, and u¥y is its transpose,

The conservation of linear momentum leads immediately to the equation of motion,
pdiu = v . T, ()
Equation 1 and some standard vector calculus identities convert eq 2 to
pa?u =+ 2p)V(Vew - pUx V x u, 6))
We choose to represent u by
u=TU + V|V -T x VW @
where U, V, and W are scalar fields and Vv, is defined by
v, = 09y + Plsin 6713, ' (5)

T is a unit vector directed away from the origin, ¢ and ¢ are the colalitude and longitude, and T and
¢ are their respective unit vectors. V, is the gradient operator on the surface of a sphere of unit
radius, It is related to the three-dimensional gradient by

v=T9, - rlv,. ' (6)
After some algebra, we can show (Backus, 1967) that

Al | v ) =T¢9r {(8, + rg)U + r'lva} +

+ V1 (r‘ar + -2— U + r"2v% . ()]
1‘2

and
VXVXxu ='r’¥r‘2r7r(rv¥V) = r‘2v%Ul + v tr-la,u = r“laf.(rV)l +

+ T x v, ir‘2vfw + r"laf Wi, ®

We insert eq 4, 7 and 8 into eq 3. We now appeal to the uniqueness of the representation 4 (Backus,
1967) to yield the three coupled purtial differential equations
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