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ABSTRACT 

This note presents the formulation of  a class of  optimization 

problems dealing with selecting,   at each instant of  time, one measure- 

ment  provided by one out  of  many sensors.     Each measurement has an 

associated measurement cost.     The basic problem is then to select   an 

optimal  measurement policy,   during a specified observation time in- 

terval,   so that   a wei ghted combination of   "prediction accuracy" and 

accumulated "observation cost" is minimized.     The current  analysis 

is limited to the class of linear stochastic dynamic systems and 

measurement subsystems.    The problem of selecting the optimal measure- 

ment strategy can be transformed into a deterministic optimal control 

problem.    An iterative digital computer algorithm is suggested for 

obtaining numerical results.    It is shown that the optimal measurement 

policy and the associated "matched" Kalman-type filter can be precomputed, 

i.e.   specified before the measurements actually occur. 

Accepted for the Air Force 
Joseph R.   Waterman,   Lt.   Col. ,   USAF 
Chief,   Lincoln Laboratory Project Office 
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1. INTRODUCTION 

There are many engineering situations in which a variety of 

possible measurements can be carried out on a physical system or 

process.    However,   there are also physical constraints that impose the 

requirement that,   at each instant of time,   one is able to use only one out 

of a possible total of M sensors.    In such cases,   one has to make a decision: 

Which measurement to make at present,   and when to make an alternate 

measurement.     It may also happen that one can associate with each type 

of measurement a per unit-of-time  "measurement cost" reflecting the 

fact that some measurements are more costly or difficult to make than 

others,   although they may contain more useful or reliable information. 

This type of problem arises in the following types of systems: 

Telemetry-Data Aerospace Systems.    Consider a space vehicle and 

suppose that it contains M sensors each of which measure a different 

signal (i.e.  yaw,   roll,   pitch,   or perhaps their rates).    Suppose that one 

has a single bandlimited telemetry link so that at each instant of time one 

can communicate to the ground the data signal from only one of the sensors. 

Furthermore,   suppose that the ground-control can command which sensor 

output is to be communicated.    How should the ground command the 

telemetry system to sequence the data?    What are the criteria that the 

ground-control can use in order to make such decisions?  We should like 

to stress that this is not the multiplexing problem.    Each sensor can 

provide a group of measurements which can be multiplexed for transmission 

to the ground.    However,   we assume that not all measurements can be 



transmitted to the ground at once.    Hence,  we can transmit a group of 

measurements now,   some other group later on,   and so on. 

Tracking   and Discrimination:     Consider the observation of a target 

by a radar.     Suppose that the radar has the capability to transmit over a 

specified interval at each instant of time one out of M possible  waveforms 

and that each one can be used for making a different type of measurement 

(e. g„   tracking,   Doppler,  wake measurements,   etc. ).     There may be 

different radar power requirements for each signal; furthermore,   there 

may be different computational overhead and real-time requirements 

associated with the data processing of each type of return.     If the defense 

is interested in discrimination and impact-point prediction,   how does one 

decide which waveform is to be transmitted at each instant of time? 

Socioeconomic  Problems :    In many  socioeconomic problems one 

can make measurements by assigning a group of people   to collect data 

or carry out polls or look up statistics etc.    How does the manager of an 

information-gathering subdepartment allocate his data-collecting resources 

at each instant of time so that an accurate forecasting of future trends of 

the entire company or government agency can be carried out? 

The above situations  (and many others)   represent typical situations 

in which the allocation of limited measurement resources is important. 

They can be abstracted in the following context: 

1) A stochastic dynamic  system (satellite,   target vehicle, 

socioeconomic system) is involved. 

2) One cannot measure all of the  significant variables 

(state variables) of this system. 



3) At each instant of time one has the choice of making 

only one out of many possible measurements 

4) Each type of measurement may have an associated 

measurement cost per unit  time 

5) Each measurement is unreliable  (noisy). 

6) Usually a prediction (forecasting) is involved, 

whose accuracy will depend upon the judicious 

choice of a measurement policy. 

7) There exist tradeoffs between total cost of 

measurements vs prediction accuracy. 

The purpose of this note is to formulate this class of problems for the 

simplest possible class of problems; the assumptions we make are: 

a) the dynamics of the process are linear. 

b) each signal available for measurement is a 

linear combination of the process  state variables. 

c) each measurement is corrupted by white noise. 

Somewhat related problems have been studied before,   although 

the availability of results has been relatively scarce.    Athans and 

Schweppe [l],   [Z] have  studied the problem of the timing of a measurement, 

under constraints onthe available measurement energy.     Specific 

applications were given by Schweppe [3] and Schweppe and Gray [4], 

Control problems with costly observations and pertaining to the timing 

of observations have  also been studied by Kushner [7],   Vandelinde and 

Lavi [8] and Sano and Terao flO].     The optimal control of systems with 

observation constraints has been studied by  Meier,   Peschon,   and Dressier 

[9].     The studies reported in the literature differ from the problem under 

consideration in this report due to the fact that alternate observation policies 

dealing with allocation of costly resources have not been  explicitly considered. 



The structure of this note is as follows.     In Section 2 we define 

precisely the plant under consideration,   the assumed statistics,   the sensor 

constraints,   and the measurement constraints.    An optimization problem is 

defined in Section 2. 7 which involves the selection of the optimal observation 

policy and the associated prediction algorithm so that a weighted combina- 

tion of prediction error and measurement cost is minimized.     In Section 3 

it is shown how such problems can be attacked using the Kaiman Bucy [5] 

filtering and prediction framework.     This leads to an alternate formulation 

of the basic optimization problem in Section 4; the new optimization problem 

involves the minimization of a deterministic cost functional with matrix 

differential equation constraints.     In Section 5,   the matrix minimum principle 

[6] is used to deduce the necessary conditions for optimality.    Section 6 

suggests a computational algorithm to solve the two point boundary value 

problem.    Section 7 contains a discussion of the off-line and on-line 

computational requirements. 



2. PROBLEM FORMULATION 

In this section we shall summarize the basic definitions,   notation, 

and assumptions which relate to the problem under consideration. 

2. 1    Plant Dynamics 

Consider a linear,   possibly time-varying,   plant described by 

the stochastic differential equation 

i(t) = A(t)x(t) + B(t)u(t) +£(t)     :x(t0) = Xo 

We assume that: 

The plant state vector x(t) is an n-dimensional 

column vector 

The plant control u(t) is an   r-dimensional column 

vector; we assume that u(t) is deterministic and 

known for all t > t  . o 

A(t) is a known deterministic   nxn time-varying 

matrix. 

B(t) is a known deterministic nxr time-varying 

matrix. 

A    d 

The plant driving noise,   ?(t),   is an n-dimensional 

column vector.    We assume that ?(t) is a white noise 

process with zero mean for all t,   i. e. 

E{£(t)}  =0     for all t (2.2) 

and known covariance matrix: 

cov[?(t);?(T)] = E{£(t)£'(T)}  = 3 (t) 6(t-T) (2.3) 

The nxn matrix   E(t) is assumed known for all t^t  . — o 
It is a symmetric positive semidefinite matrix    i. e. 
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Fig.   1.     Block diagram of the linear stochastic plant. 
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^(t) =^'(t)> 0 (2.4) 

The initial plant state x    is not known.     It is 

modelled as a vector-valued random variable 

with known  mean x ,   i. e. 
  —o 

ECx^-x, (2.5) 

and known covariance matrix T,     (symmetric, 
—o      ' 

positive semidefinite) 

cov[x   ;x  ]   = E((X    - x  )(x    - x  )'} = T, (2. 6) —o —o —o     —o   —o     —o —o 

S     = t'   s 0 (2.7) —o     —o     — 

x    is independent of 5(t) for all t > t   ,   i.e. 
—o — o 

covlx   ; e(t)] = 0 for all t> t   . 
—o — o 

Figure 1 illustrates a vector block-diagram of 

the plant under consideration. 

2. 2   Sensor Constraints 

Let us  suppose that we have available  M sensors which can carry out, 

not necessarily independent,   measurements;     This situation is illustrated in 

Figure 2.      We shall let z.(t) denote the measurement vector (set of signals) 

obtained from the j-th sensor at time t. 

We shall assume that the sensor measurement vector z.(t) is an 

m.-dimensional vector given by 

Zjft) = y.(t) + 9.(t) = C.(t) x(t) +ij(t),  HZ M        (2.9) 

where y.(t) is the output signal defined by 

y (t)   = C (t)x(t) (2.10) 
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Fig.   3.    Modelling of the sensor structure and sensor noise. 



and C.(t) is a known m.xn time-varying matrix,   for each j. 

In Equation (2.9)    9.(t) is the measurement noise   associated with 

the i-th sensor.    We assume that each o.(t) is a white noise process   with 
J -J  

zero mean 

E{£.(t)} = 0;    j=l,2,...,M; tatQ {2U) 

and known (symmetric,   positive-definite) covariance matrix 

cov[Mt); e.(T)] = E{0.(t)9/ (T)}  sQ.(t)6(t-T) (2.12) 
J J J J J 

®.(t) = Q.'(t) > 0 (2.13) 

We assume that each noise process is independent of x    and _£(t),   i. e. 

cov[x   ; 9_.(t)] = 0,   for all t 2 t   ,   all j=l, 2, . . . , M (2.14) 

cov[£(t); 9(T)] = 0,   for all t,  T,   all j = l, 2, . . . , M (2.15) 

The measurement noises 9, (t) and 9.(t) may be dependent. 
~~* J 

Figure 3 indicates, in block diagram form,our assumptions regarding 

the structure of each sensor. 

2. 3    Discussion 

It is important to realize that our assumptions imply that each sensor 

oan provide a group of noisy measurements. For example, suppose that we 

deal with the attitude of a satellite whose state variables are 

cp = roll angle 

Üi   = yaw angle 

9  = pitch angle 

'b - roll-rate 

'!*   = yaw-rate 
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§   = pitch-rate 

Then sensor #1 may yield the measurement (scalar) 

roll angle + noise 

while sensor #2 may yield the measurement (vector) 

roll angle + noise 

yaw rate + noise 

and sensor  #3  may yield the measurement (vector) 

roll angle + noise 

pitch angle + noise 

roll rate + noise 

yaw rate + noise. 

2.4    Measurement Constraints 

As we have indicated in the introduction,  we shall assume that at 

each instant of time,   t,   we are constrained in looking at only one of the data 

signals available from the sensors.    We are free,   of course,   to switch from 

one sensor to another. 

To motivate our definitions one can imagine that we have a measurement 

selector box whose output      z(t) can be connected directly to either z (t) or 

z2(t), ...   or j^Jt).     This is illustrated in Figure 4. 

A convenient way of modelling this simple switching task of the 

measurement selector is to define M time functions 

Vl(t),   v2(t), ...,vM(t) (2.16) 

with the following properties 

a)      at each instant of time v.(t)(j = l, 2, . . . , M) can attain either 

the value 0 or the value 1 

11 
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b)      Ifv.(t) = l,   then v, (t) = 0,   for k =1, 2, . . . , j-1, j+1, .. . , M 

Mathematically,  we can define the switching vector v(t) whose components 

are 

v(t) 

vx(t) 

v2(t) 

L vM(t) 

(2.17) 

and 
v.(t)e{0,n 

M 

The selected data signal z(t) can then be written as 

z(t) = v^tjz^t) + v2(t)z2(t) +. . . + vM(t)zM(t) 

with   (dim meaning dimension of column vector) 

dimz(t) = dimz.(t) when v.(t) = 1 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

As shown in Figure 5,  we can then model the measurement selector by 

multiplying each measurement z.(t) by v.(t) and "adding" the results.    Figure 6 

illustrates how z(t) is formed from individual possible measurements. 

2. 5    Cost of Observations 

As we have indicated in the introduction one can associate an observa- 

tion cost  to each one of the M possible observations.    Such a cost can be 

used to reflect that 

13 
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a) Special resources or instruments may be required to 

carry out a specific observation. 

b) Special computational algorithms  (different in programming 

overhead and/or real-time requirements) may be required 

to process each special observation. 

For this reason,  we shall assume that there is an inherent cost 

that must be taken into account in order to arrive at an optimal observa- 

tion policy. 

We  shall denote by q.(t) the per-unit-of time cost of making the 

observation  z.(t) at time t.    We assume that 

Osq.(t); j=l,2,...,M (2.22) 

Since one is limited to a specific observation at each instant of time,   then 

one can associate with each observation policy v(t) a total cost,   denoted by 

q(v),   by 

T 
q(v) =    f 

t 
dt (2.23) 

M 

I Vt,vi(t) 

q(v) then  represents the total observation cost associated with the use of the 

observation strategy v(t) in the time interval t    £ t ^ T. 

2. 6    Prediction Requirements 

The definition of an optimal observation policy during a time interval 

t    ^ t ^  T cannot be made on the basis of the observation cost alone.     Usuallv o 

one makes observations upon a physical plant or process in order to predict 

its future response.     (This in turn may be used for control purposes,   if it 

turns out that the future response is in some sense unsatisfactory). 

Intuitively,   one would expect that the accuracy of any prediction or före- 

15 



Casting policy will depend on the information content and accuracy of the 

observations that have been already made.    Hence,   an optimal observation 

policy must depend (in addition to the cost of observation) upon the accuracy 

of the prediction   for which observations are made. 

In this note,   we shall assume that the purpose of observations during 

a time-interval t    £ t £ T is to predict the value of a vector w(t),   associated 

with the plant variables,   at some value of time t = T  ,     T    ^T,   where  T    -   T 
P P P 

is the length of the prediction interval. 

For example,   consider the radar measurements carried out on a 

ballistic target.    Suppose that diverse measurements are carried out during 

the time-interval [t   ,   T].     Then one may be interested in predicting at some 

time  T  ,   T    > T, 
P       P 
a) the position vector of the target 

b) its mass 

to aid in decisions involving its potential threat to a defense site and/or 

potential interception. 

To be specific,  we assume that w(t) is an k-dimensional vector, 

whose components summarize important plant characteristics.    We shall 

call w(t) the important plant vector.    We  shall assume   that w(t) is linearly 

related to the plant state vector x(t) by the equation. 

w(t) = D(t)x(t) (2.24) 

where D(t) is a known,   possibly time-varying,   kxn matrix. 

We can now state in a precise manner the prediction requirements 

of our problem.     Let w(t) denote an estimate of w(t).     Then,   the accuracy of 

our   prediction scheme hinges on 

16 



a) whether or not E{w(T   ) - w(T   )]   = 0 i. e.  whether 
—     P        —    P — 

or not at the prediction time  T    the estimation error vector 
P 

w(T   ) - w(T   ) has zero mean. 
-     P        -     P 

b) the value of the mean square error 

J(T   ) = Ef(w(T   )- w(T   ))'(w(T   ) - w(T   ))1 (2.25) 
r* r r ir r 

(the smaller J(T   ),   the more accurate the prediction). 

2. 7   Statement of Optimization Problem 

We are now ready to formulate in precise terms the optimization 

problem under consideration,  whose solution will specify the optimal 

observation program defined by the observation vector v(t).    Given the plant 

x(t) = A(t)x(t) + B(t)u(t) + |_(t); x(t   ) = x^ (2. 26) 

and the important plant vector 

w(t) = D (t)x(t) (2.27) 

Given the sensor signals 

z.(t) = C.(t)x(t) + 9_.(t);     j=l, 2.....M (2.28) 

Let t    ^ t ^ T be a fixed time interval and let T  ,   T    ^ T be a fixed pre- o p       p 

diction time.    Determine the scalar variables 

v1(t),v2(t), ...,vm(t), te[to,T] (2.29) 

subject to the constraints 

M 

v.(t)e{0,l};    7    v.(t) = 1 

3=1 
(2.30) 

17 



and a prediction algorithm,   such that if w(T   ) denotes an estimate of w(T   ), 

given  an observation program and observations during t    s ts T,   then 

E{w(T   )-W(T   )}  = 0 
-     P    -     P - 

(2.31) 

and the scalar cost functional 

J=   a J 
M 

I q.(t)v.(t) dt + E{(w(T   ) - w(T   ))'(w(T   ) - w(T   ))} —    p        —     p        —     p        —    p 

aq(v) + J(T   ) (2.32) 

with a > 0 (2. 33) 

is minimized. 

We remark that a is a weighting constant that reflects the relative 

importance of the total observation cost 

T 
q(v) =   J   , Y   qj(t)v.(t) dt 

with respect to the "mean square error" 

J(T   ) = E[(w(Tp)-  w(T  ))'(w(T   ) - w(T   ))} 

in the overall cost functional   J. 

(2.34) 

(2.35; 

18 



3. PREDICTION ACCURACY FOR ANY GIVEN OBSERVATION POLICY 

Let v(t),te[t   , T] denote any fixed observation policy during the time- 

interval  t    st £ T  .    For any such observation policy one can determine a 

Kaiman- Bucy filter,    [5],which is  "matched" to the observation policy. 

3.1    State Estimation 

Denote by x   (t) the estimate of  the plant state x(t),   given an observa- 

tion program V(T),   t    <. r < t and the subsequent observation   z^T),   t    £ r £ t, 

as generated by the Kaiman-Bucy filter.     The subscript v is used to stress 

the dependence of the estimate upon the observation policy used. 

Let y,   (t) denote the state estimate error covariance matrix,  i.e.     the 

covariance matrix of the  state estimation error   x(t) - x   (t), 

Ev(t) = E{(x(t) - xv(t))(x(t) - x(t))'} (3.1) 

It can be shown '    that the estimate x   (t) is generated by the solution of the 

stochastic differential equation (Kaiman-type filter) 

^xv(t) = A(t)xv(t) +£v(t) 

M 
r 

M 

7 v (t) cUt)P,rl(t) 
-•    J      -J     -J 

-(t) i /_, v (t)c.(t)i 
ü=i  J     J 

(3.2) 

+ B(t)u(t);     x   (t   ) = x 
—     — —V    o — o 

where z(t) is the actual observation signal obtained from the policy v(t) 

M 

z(t) =V  v (t)z.(t) (3.3) 

The error covariance matrix 7,   (t) is the  solution of the matrix Riccati —v 

differential   equation 

* because the essential  linearity of the equations is not affected from the use 
of a specific measurement policy. 

19 



-4r (t) = A(t)r (t) + E (t)A'(t) +S(t) 
at —v —    —v —v     — — 

" =v(t) 

M 
(3.4) 

E  (t); E  (t  ) = E —V —v    o        —o 

We remark that,   for any given v(t),   the state estimation error has zero mean: 

E{x(t) - x   (t)l   = 0     for all te[t   , T] (3.5) 

3.2    State  Prediction 

The predicted estimate ic(T   ) of the state x(T   ) can be computed from 
-     P -     P 

the  state estimate x   (T) by 

xv(T   ) = f(T     T) xv(T) +   J*      $(T    T)B(r)u(T)dr (3.6) -v     p 

where $(t, T) is the transition matrix defined by A(t),   i. e. 

-^$_(t, r) = A(t)|_(t, T);     l(T,r) = I 

3.3    Important Parameter  Prediction 

(3.7; 

The predicted estimate w   (T   ) of w(T   ) is generated by r —v     p —     P 

w   (T   ) =   D(T   )x(T   ) (3.8) 
-v     p        -     p -     p 

It can be shown that this leads to a zero mean prediction error,   i. e. 

E{w(T   ) - w   (T   )}  = 0 (3. 9) —     p        —v     p — 

Let S   (T   ) denote the covariance matrix of the prediction error w(T   ) - 
-v     p -v    p 

w   (T   ),   i.e. 
—v     p 

Sv(Tp) = E{   (w(Tp) - wv(T   ))(w(T   ) - Wy(T  ))'! (3. 10) 

Then the error covariance matrices S   (T   ) and £(T   ) are related by 
—v     p —     p ' 

20 



S   (T   ) = D(T   )E   (T   )D'(T   ) -vv   p        -*   p'-vv   p'-       p' (3.11) 

But the predicted state error covariance matrix £   (T   )   is related to the state -v     p 

error covariance matrix £   (T),   at the end time  T of the observation interval,   by 

I   (T   ) = $(T  , T)E   (T) $ '(T   , T) (3. 12) 
—v     p p v p 

where £(t,T) is the transition inatrix defined by Equation (3. 7). 

Hence,   from Equations  (3. 11) and (3. 12) we conclude that 

S   (T   ) = D(T   ) $(T   , T) E   (T)*'(T  , T)D'(T  ) 
-vv   p'      -v   p' -v   p'     '-vv    '-       p'     '-       p' (3.13) 

Let us now recall that our prediction accuracy was measured by 

the  "mean square error" (See Equation (2.35)) 

J (T   ) = E{(w(Tp) - Wv(Tp))'(w(Tp) - ^v(Tp))l     (3.14) 

By a matrix identity,   J(T   ) can also be written as 

J(T   ) = E{  tr     (w(T   ) - w   (T   ))(w(T   ) - w   (T   ))'      } x p L     P    —    p       p    —v  p 

= tr 

= tr 

|"E((W (T   ) - w   (T   ))(w(T  ) -w   (T   )) 
p        —vx   p    v—v   p       —v     p '] 

and so,   in view of Equation (3.13),   J(T   ) is given by 

(3.15) 

J(T   ) = tr D(T   )I(T  ,T)E   (T)$'(T  ,T)D'(T   ) 
—v   p   —    p       —vv      —       p        —       p 

(3.16) 

We can now see that any given observation policy v(t),   te[t  , T],   defines a 

state error covariance matrix E   (T),  by the solution of the matrix Riccati 
—v 

A 

differential equation(3. 4) and,   hence,   a value of J(T   ) from Equation (3. 16) 
ir 

Zl 



4. REFORMULATION OF THE OPTIMIZATION PROBLEM 

The above discussion points out that the optimization problem stated 

in Section 2. 7 can be reformulated as follows: 

Given the matrix Riccati differential equation 

M 

^-E(t) = A(t)E(t) + E(t)A'(t) +H(t) - E(t)[   T v.(t)C'.(t)®".1(t)C,(t))s:(t); 
dt 

j=l 
J     -J     -J       -J 

T (t   ) = E —   o       —o (4.1) 

(The elements of £(t) are viewed as the state variables and the v.(t) as the 

control variables) 

Given the constraints on the v.(t),      j=l, 2,.. . , M. . 

J 

v.(t)e{0, 1},       for all te[t  , T] 

M 

Y    v.(t) = 1,       for all te[t  , T] 
ig J L   O 

Find the optimal v.*(t) such that the cost functional,   with t   , T fixed 

(4.2) 

(4.3) 

J =a J 
o 

M 

y q,(t)v (t) 
= 1    J        J 

dt + tr D(T   )«(T  , T)E(T)$'(T  , T —     p —     p       —       —       p D'(Tp)] 

(4.4) is minimized. 

We remark that this is a deterministic optimal control problem.   Since 

the dynamic constraints  (4. 1) are naturally expressed via a matrix differential 

equation,   one can obtain the solution through the use of the matrix minimum 

principle       (Athans,   [6 ]). 
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5. APPLICATION OF  THE MATRIX MINIMUM PRINCIPLE 

Let P(t) denote an nxn costate matrix associated with the covariance 

matrix £(t). 

Define the scalar Hamiltonian function for the posed optimization 

problem as follows: 

H = H(E(t),   P(t),v.(t),t). 

M 

a   7    q.(t)v (t) + tr[£(t)P'(t)] 
J       J 1 —      — 

(5.1) 

or 
M 

H = a   Y    q.(t)v (t) + tr [A(t)E(t)P'(t)j 
J J 

j=l 

+ tr [E(t)A'(t)P'(t)] + tr [3 (t)P'(t)] 

/M 

E(t)[£   v^tK/(W^MC^tA 2(t)P'(t) 

(5.2) 

+ tr 

5. 1   Conditions for Optimality 

Let v.*(t) characterize the optimal observation policy,   E*(t) the 

resultant state error covariance matrix,   and P#(t) the corresponding costate 

matrix.     Then the following properties are true. 

Canonical equations: 

dt-  [ '        dP(t) A = A(t)E*(t) + £*(t)A'(t) +   B(t) 

= E*(t) 

M 

Y   v.*(t) C.'(t)(9._1(t) C.(t) 
-•     J        —J     —J —J 

(5.3) 

S*(t) 
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dt -   l '       3E(t) P*(t)A(t) - A'(t)P*(t) 

M 

+ P*(t)E*(t)| V    v*(t)C'.(t)® ~\t)CAt) 
J        -J    -J -J 

Y v.^tJC.'WQ.'^tKUt)] ' 5>'(t)P*(t) 
J J J J (5.4) 

Boundary Conditions 

At t = t 

E*(t ) = r 
—     o       —o (5.5) 

At t = T 

P*(T) =   ,r,T,       tr   [D(T   )§(T  , T)E(T)§'(T  , T)D'(T   )] — o£(l) —     p—     p —       —        p —        p 

=   $'(T  , T)D'(T   )D(T  )i(T  , T) —       p        —       p —v   p —x   p (5.6) 

Hamiltonian Minimization 

The inequality 

H(E*(t), F*(t),   v *(t), t) s H(E*(t), P*(t),   v (t), t) (5. 7) 

or (see equation (5.2)). 

M 

aY   q.(t)v.*(t) -  tr 
j = l J J 

M 

£ aY q.(t)v (t) - tr 
j = l J        J 

M 

E*(t)[   Y v *(t)C.'(t)@.-1(t)C.(t))   E*(t)Pftt) 

/ M 

E*(t)|   Y   v.(t)C'.(t)(H)._1(t)C.(t) | E*(t)P*'(t) 
\j=l 

(5.8) 
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M 

must hold at each te [t   , T] and for all v.(t)e{0,l}, )   v.(t) = 1. 

j=l 
J 

5.2    Implications of Necessary Conditions 

The properties of the trace function can be used to simplify the 

inequality (5. 7).    Since 

(r 

M 

E*(t)    Y v (t)C.'(t)© _1(t)C.(t) ] E*(t)P*'(t) 
Y±l J     -J       —J —J 

M 

V v (t)c '(t)©.^(tKUt)) r*(t)F*'(t)r*(t) 
--,   J   —J    —J      -J 

L\j=i 

M 

= Y Vj(t) tr[C'(t)© "1(t)Cj(t)C*(t)P>'(t)E*(t)] (5.9) 

define,    for notational simplicity, the  (symmetric at least positive semi- 

definite) matrices L.(t) by * 
_J A , _i 

L.(t) = C.'(t)©.   l{t)C.{t) 
-J —J       —J —J 

(5.10) 

Using the above,   the inequality (5. 7) can be written as 

M 
Y v *(t)aq.(t) - tr [L.(t)E*(t)P*'(t)r*(t)] 
/ J J J 
—' L 

M 

s Y v.(t) aq.(t) - tr [L.(t)S*(t)P*'(t)E*(t)] '] (5.11) 

'•'• One can think of the L.(t) as the matrices that are related to the  "signal- 
to-noise" ratio of the      ^   j-th possible observation at time t. 
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Define the switching functions s.*(t),   j = l, 2, . . . , M 

s.*(t) = aq.(t) - tr[L.(t)E*(t)P*'(t)E*(t)] (5.12) 

In view of the constraints on the v.(t) we can conclude that 

v.*(t) = 1    if s.*(t) £ s.*(t) for all k   = 1, 2, . . . , M, k^j 

v.(t) = 0       otherwise (5. 13) 
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6.      NUMERICAL SOLUTION OF THE TWO POINT BOUNDARY 
VALUE PROBLEM 

The equations that define the properties of the optimal observation 

policy,   derived by the matrix minimum principle,   and stated in Section 5 

represent a nonlinear two point boundary value problem.    Since we deal 

with nonlinear matrix differential equations,  techniques such as Newton's 

method are difficult to apply since they involve the computation and inversion 

of a fourth order tensor quantity.     On the other hand,   standard gradient 

techniques cannot be used due to the "on-off" nature of the observation 

variables v.(t). 

A technique which can be used, ina relatively straight forward manner, 

is the H-minimal  technique  suggested by Kelley [11].    For the sake of completeness 

the algorithm is   summarized in the flow chart of Figures 7. 1 to 7. 4.     In the 

construction of this algorithm the following properties  (which are easy to verify) 

have been used 

The costate matrix P*(t) is symmetric 
and at least positive  semidefinite 

The covariance matrix E*(t) is symmetric 
and at least positive semidefinite 

There is no guarantee of convergence of the H-minimial algorithm 

in general.    Also,   the nonlinear nature of the matrix differential equations 

involved precludes any a priori knowledge of existence   of locally optimal 

observation strategies in addition to the globally optimal one.    Additional 

research is currently underway to determine convergence properties and the 

use of alternate computational algorithms for the  solution of the 2_point boundary 

value problem. 

27 



INPUT 

n = dim A, t  , T, T -•   o p 

AU). HI*). 5  . M, C CM (C    = m.Xn) 

i, ,m, m. .,©. (t) ®w(t) (8. = m. X m.) \        c M   — 1 —M —j j 

D(t), a, qj(t) lM(t)' £,J-1 

Compute 4>(T   , T) _    P 

*(t,T) = A(t)  *(t,T);   *(T,T) = I 

P, =   *'(T   ,T)D'(T   ) D(T   ) *(T   , T) -f-p -p-p-p 

j =  1 

-*- 

Invert ®.(t) 

L.(t) = CUt) ®_1(t) C.(t) 

YES 
j = j + 1 

18-3-13537 

Fig.   7.    Structure of the digital computer algorithm for the determination 
of the optimal observation policy. 
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k =  0 

Vj(t)   =   1 

,(t) = 0 

vM(t) = ° 

First guess on v.(t) 

M 

M(t) =    £    vjM L (t) 

j = l 

18-3-13538 

o 

Solve covariance equation,  t€[t  , T] 

2(t) = A(t) Z(t) + L(t) A'(t) + = (t) - E(t) M(t) £(t) 

Compute cost J, 

M 
T 

loJ= 

Jk =   a \        E    v.(t) q.(t) dt + tr[S(T) Pfl 

Fig.   7.     Continued. 
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(8-3-13539 

YES 
-H STOP 

Solve costate equation,   t€ [t   ,T] 
(backward in time) 

P(t)      -P(t)  [A(t) - Sit) M(t)] - [Alt) - S(t) M(t)]'   Pit) 

PIT) = P 

wit) = r(t) Pit) sit) 

1 

Computation of switching functions 

sjlt) =   aqjlt) - tr [Lj(t) W(t)| 

s2(t) =   oq2(t) - tr [L2(t) W(t)] 

sM(t) =   aVt)_tr [±M{t) ^<t" 

• • 

Fig.   7.    Continued. 
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Set v.(t) = 0 

i +  1 

>-*• 

ll»-3-13540] 

YES 

Set 

v.(t)  .   1 

VK,<t)    =    0 

Fig.   7.    Continued. 
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v«(t)      v»(t) 
0 

16-3-13541 

z«(t) 

•   Vj^ (to Kaiman  Bucy 
•-    •+ filter) 

OPTIMAL   OBSERVATION   POLICY   SELECTOR 

Fig.   8.    Generation of optimal measurement z*(t). 
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7. IMPLEMENTATION 

It is important to recognize that the determination of the optimal 

observation policy v*(t),   te [t   , TJ,   is an off- line problem.     That is,   the 

solution of the two-point-boundary value problem does not have to be done 

while measurements are being made.     The reason is that the actual measure- 

ments z.(t) do not enter in the equations of the optimization problem whose 

solution determines the optimal observation policy; rather,   it is only the 

statistics of the problem and the plant dynamics that are relevant, rather 

than the measurements themselves. 

Once the optimal observation policies v.*(t),   v2*(t), . . „ , v    *(t) has 

been computed (off-line!),   then one can implement the  "matched" Kaiman 

Bucy filter and predictor which operates upon the actual measurements to 

generate the optimal estimate w*(t) of the important plant parameter vector 

w(t) at any instant of time and at the prespecified prediction time  T  . 

Figure 8 shows the generation of the actual signal z*(t) that drives 

the Kaiman filter once v*(t) has been obtained (compare with Figure 5) from 

the naturally available measurements z,(t), . . . .^^(t). 

M 

£*(t) =    7  v*(t)z (t) (7.1) 

j=l 
The optimal state error covariance matrix   E*(t) 

can be computed off-line,   once v*(t) has been obtained by solving the matrix 

Riccati equation (compare with Equation (3.4)). 
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u(t)       DETERMINISTIC 
"o INPUT 

lll-3-1354?l 

M 
G'lOh'lD 

(precompuled) 

z»(t) 

_-l iv'ioc.'itie. (t) 
I 

i 

C,(t) 

C2(t) 

w 

(to 
predictor) 

v*(t) v|(t) 
.        (from  off-line 

vl computation) 

Fig.   9.    Structure of the Kalman-type filter which is "matched' 
to the optimal observation policy. 

18-3-13543 

x»(t) 
o— *(Tp,t) 

(from  Kaiman Bucy 
filter) 

I 
 I 
PRECOMPILED 

^0 
x«(Tplt) 

D(Tp) 

w'(Tplt) 

INSTANTANEOUS 
PREDICTED   ESTIMATE 
OF w(T )   GIVEN 
MEASUREMENTS 
UP  TO TIME  t < T 

J      •(Tp.r) B(r) u(r)dT 

(precomputed) 

Fig.   10.    Structure of the predictor. 
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-gjZ*(t) = A(t)E*(t) + E*(t)A'(t) +H(t) 

(7.3) 
M 

-r*(t)  V v.^(t)c.'(t)<^.-l(t)c.(t) E*(t); p(to) = ro 

The structure of the Kaiman filter that generates the state estimate x*(t) 

is shown in Figure 9.        The Kaiman gain matrix G*(t) 

M 

G*(t) = E*(t)    y v.*(t)C.(t)£.-1(t) (7.5) 

j = l J 

can be computed off-line once v*(t) and E*(t) have been found. 

The diagram of Figure 9 helps to visualize how the optimal observa- 

tion variables v.*(t), . . . , v^ *(t) determine the signal to be subtracted from 

z*(t),   generated by the selector of Figure 8.     One can obtain the instantaneous 

estimate w*(t) by simply multiplying the  state x*(t) of the Kaiman Bucy filter 

by the known matrix D(t). 

As the actual observations are being made,   one can compute the 

predicted estimate w*(T  | t) of w(T   ) given observations only up to time t 

(t ^  T).    Figure 10 illustrates the on-line computations required to generate 

this predicted estimate. 
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8. CONCLUDING REMARKS 

A digital computer program is currently being developed to solve 

the two point boundary value problem discussed in Section 6.     Its performance 

as well as numerical examples will be  reported in the future. 

Extensions of the basic ideas to the nonlinear dynamics case are 

currently under investigation.     The approach consists of matching an ex- 

tended Kaiman filter to a particular observation program and then attempting 

to optimize the observation program.     However,   in the  nonlinear case the 

situation is much more complex,   since in the extended Kaiman filter the 

(pseudo) error covariance matrix cannot be accurately precomputed and, 

in fact,   it is coupled to the estimation equation.     For this  reason,   the 

optimal observation program has to be computed and updated on line.     This 

may present excessive on-line computational requirements.     The projected 

research effort will be focused on techniques that have less  severe on-line 

computational requirements; however,   these may yield suboptimal measurement 

strategies.     Hence,   trade-off studies will be necessary in order to establish 

concrete results in this important class of problems. 
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