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The development of the turbulent compressible boundary layer on two typical helicop-
ter rotors, for a range of hover conditions, has been calculated using two different
analytical methods: the differential method, which uses the differential form of
the boundary layer momentum equations and solves for the local velocity gradients,
and the integral method, which uses the integrated form of the momentum equations and
solves for the development of the characteristic boundary layer thickness parameters
and skew angle. Both methods decouple the chordwise and spanwise boundary layer
equatious without making any small crossflow assumptions. The effects of rotational
speed, vortex-induced crossflows, surface curvature, and applied chordwise pressure
gradients vere evaluated separately and in combination to simulate rotor airfoil
boundary layer growth. The effect of the rotation was found to be small. In all
but the pressure gradienr cases, boundary layer development along the streamwise
direction followed closely two-dimensional behavior. The results from the differen-
tial method indicated that the influence of unfaverable chordwise pressure gradients
is reduced in rotating flows by the presence of an inward spanwise velocity compo-
nent aft of the quarter chordline. Correlation between the results predicted by the
two methods is good for the characteristic thickness parameters and the sur face
shear stresses but poor for the cal:ulated skew angles. The use of either, or both,
of these methods should improve the prediction of surface skin friction effects in
a rotating flow.
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ABSTRACT

The development of the turbulent compressible boundary layer on two
typical helicopter rotors, for a range of hover conditions, has been cal-
culated using two different analytical methods. The techniques used were
the Differential Method, which employs the differential form of the
boundary layer momentum equations and solves for the local velocity
gradients before integrating them over the surface to follow the flow
development, and the Integral Method, which employs the integrated form
of the momentum equations, having assumed a velocity profile form, and
solves for the development of the characteristic boundary layer thickness
parameters and skew angle. Both methods decouple the chordwise and span-
wise boundary layer equations without making any small crossflow assump-
tions. The effects of rotational speed, vortex induced crossflows,
surface curvature and applied chordwise pressure gradients were evaluated
separately and in combination to simulate rotor airfoil boundary layer
growth. The effect of the rotation was found to be small. In all but
the pressure gradient cases, boundary layer development along the stream-
wise direction followed closely two-dimensional behavior. The results
from the Differential Method indicated that the influence of unfavorable
chordwise pressure gradients is reduced in rotating flows by the presence
of an inward spanwise velocity component aft of the quarter chord line.
The influence of typical airfoil upper surface curvature was found to be
negligible. Correlation between the results predicted by the two methods
is good for the characteristic thickness parameters and the surface shear
stresses but poor for the calculated skew angles. The use of either, or
both, of these methods should improve the prediction of surface skin
friction effects and give a more reliable definition of separation point
in a rotating flow.
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1. INTRODUCTION

With the notable exception of von Karman's exact solution for the flow
over a rotating disk, Reference (1), all the early attempts at solutions
of the boundary layer form of the Navier-Stokes equations were restricted
to flows that could be generally classified as two dimensional; that is,
flows where the mean velocity within the boundary layer is in the same
direction as the external flow. This neglect of flows which make up the
majority of those occurring in practice is not surprising, since the number
of velocity gradient and shear stress terms which must be considered in
the full three-dimensional solution is large and at first sight intimi-
dating. Fortunately, two-dimensional solutions were found to be adequate
for most engineering applications, and activity was concentrated in this
area, with several exact and empirical solutions being found. Solutions
were based for the most part on the results of the experimental programs
vhich paralleled the analytical studies.

With the arrival of higher aircraft speeds and the adoption of swept lift-
ing surfaces, it became evident that two-dimensional boundary layer solu-
tions would no longer be adequate. This led to a widening of the field of
study to include the whole range of realistic cases from the early work on
the boundary layers on vawed cylinders of Reference (2) to the up-to-date
techniques discussed in References (3), (4), and (5) which make full use of
modern computing machinery and allow the calculation of boundary layer
development not only over simple surfaces but also around involved shapes.
Paralleling the development of techniques to calculate boundary layer
growth over yawed surfaces was the study of the boundary .ayer on com-
pressor and turbine blades and on aircraft propellers anc. helicopter
rotors. In both the swept and rotating surface probleme, the three-
dimensionality is introduced by the presence of a spanwise, or radial,
pressure distribution and, in the rotating case, by the extra presence of
centrifugal and Coriolis accelerations.

The early rotating disk work by von Karman, Reference (1), and the later
effort in the same area in Reference (6), did little to ease the task of
trying to establish the behavior of viscous flow on a rotating propeller
or rotor blade. The disk flow is dominated by a considerable radial com-
ponent and there is no circumferential growth of the viscous region,
vhereas on the blade, with its radially disposed leading edge, the chord-
wise or tangential effects predominate and radial flow effects are com-
paratively small.

The earliest significant study of a rotating blade as opposed to a disk is
given in References (7) and (8), and the analogous problem of flow on the
floor of a curved channel is given in Reference (9). Later work in
Reference (10) investigated the special case of flow over a helical blade,
and most recently work in References (11), (12), and (13) has discussed
the development of boundary layers on helicopter rotors in forward flight.

The basic problem that all of these investigators have had to face, in
addition to the nonlinearity of the governing equations, is that the pair
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of boundary layer momentum equations used to define the flow are coupled,
and the assumptions made to decouple the equations that the methods
differ. The approach used in Reference (8) was to consider velocities

and gradients of velocity in the radiai direction to be of small order
compared to chordwise or tangential velocities and gradients. This allows
the chordwise equation to be decoupled from the spanwise equation, and,
for laminar flows at least, a modified Blasius solution may be developed
in the chordwise direction. The limitation of this approach is that it
may only be applied on blades of high aspect ratio and at large distances
from the center of rotation. Later workers, particularly Reference (9),
assumed some characteristic velocity profile form and, on providing some
coupling between the streamwise and normal velocity couponents, solved
the equations of motion using integral techniques. In References (11)

and (13), the small crossflow work of Reference (8) is used as the de-
parture point in a regular perturbation expansion which allows the calcu-
lation of the development of the boundary layer velocity profiles in cases
where the translational effects are superimposed on the steady rotation
and enables the effects of unfavorable pressure gradients to be included.
A Blasius solution for the primary or chordwise flow is still used,
however.

The historical background discussed above is not intended to be all-
inclusive, but merely to be indicative of the principal approaches to the
problem of calculating the development of the boundary layer on a rotating
blade. These solution techniques, with the exzeption of Reference (9),

are restricted to laminar flows. It is felt by the authors that this may
not be a realistic state of affairs since for most full-scale helicopter
applications, the Reynolds number of the flow is well above that required
for transition, even on a smooth flat plate, and it is considerably
greater than that for transition on the aerodynamically rough airfoils in
practical use. Another restriction is that all the presently available
techniques deal only with incompressible flows, an inappropriate assumption
in light of the high subsonic Mach numbers found on present-day. helicopter
rotor blades. Consequently, it was felt that if new methods of calculation
were to be set up or if existing methods were to be developed further, the
effects of the turbulent nature of the flow and compressibility should be
taken into account. In addition, it was felt that the unique capabilities
of modern computing machines should be exploited as far as possible.

Two-dimensional boundary layer theory has advanced step by step with ex-
perimental investigation of actual flows. Unfortiunately, no significant
body of experimental data is yet available to the worker in three-dimen-
sional flows. and consequently, none of the theories developed or under
development can be considered valid until experimental proof is found.
With this in mind and the above requirements as a guide, it was decided to
develop two separate and independent methods which could be used for com-
parison and corroboration of the results.

Since the method of Reference (9) was the only one of the early three-
dimensional solutions to consider the calculation of turbulent flows, it
was decided to use this as the basis for the integral method. Modifica-
tions included allowing for the effects of compressibility and adverse
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pressure gradients. The resulting method was developed for application
with modern computing methods which were unavailable at the time of the
origiaal work.

For the second method, jt was decided to use an extension of a technique
vhich has received considerable use in two-dimensional applications. This
is to carry out a full solution of the differential equations for the
chordwise gradients of velocity and to integrate the gradients progress-
ively over the surface. In the three-dimensional case, if the velocity
components are known aloug a radial line, the spanwvise velocity gradients
car be calculated and the chordwise and spanwise flow equations can be
evaluated simultaneously. This differential method has the potential to
provide a more exact solution of the viscous flow, but it still relies on
certain assumptions concerning the shear stress distribution for which no
three-dimensional turbulence data is available.

Usirg both the integral and differential methods, the development of the
boundary layer over two representative rotors was calculated for a range
cf conditions including various angular velcocities, vortex induced cross-
flows, adverse pressure gradients, and blede surface curvatures. The
development and use of these methods and the results are discussed in the
following sections.




2. DEVEIOPMENT OF THEORY

2.1 THE GOVEFNING EQUATIONS

2.1.1 The Momeatum Equation

Reference (14) gives the generalized vector form of the equation of motion
for an incompressible viscous fluid moving relative to a fixed reference.
frame as

2
=7 (pa) + %pVe? - pgxw = - Vp - uWxu, (1)

where q is the general velocity vector and w, the vorticity, is given by

Q= qu

If the axis system is now rotated with angular velocity i, all ‘erms, with
the exception of the unsteady contribution, apply unchanged relative to
the rotating frame. The relation between rates of change of a vector
transformed from a fixed to a rotating frame is given in Reference (15) as

2 =2 3

The vector r is the position vector of a point in the rotating frame. If
only steady flow in the rotating system is considered, then the above
equation reduces to

2 _
2 (pg); = 2xng + px(2xz)

The first term on the right-hand side represents the Coriolis and the
second the centrifugal force. When this is substituted iato Equation (1),
the general equation of motion for a fluid in a rotating axis system
becomes

20xpq + p@x(@xr) + %pVq? - pgxw = - Vp = uVxy (2)
S, N 4 Saa oy S S N—
I II III IV v Vi

Again following Reference (1L4), the component equations of motion will be
written relative to an orthogonal curvilinear axis system with axes x, y
and z. The scaling factors will be hy, hy and h3, which will generally be
functions of x, y and z, and the unit vectors i, ] and k respectively.

The vector quantities may ve written in terms of their components,

r=xi+yl+ zk,
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a=ui + v + wk
and £=9xl+ﬂrl*ﬂz£
The vorticity may also be expanded in like form with

9=“’xi+“’y¢1+“’25

Now the vorticity is defined ag equal to Vxq and may also be written

L 2 o
with components Wy = hahy [ay (hgw) - a5 (hav) }

wy = i [:—z(hlu) -:—x(h3w)]

& 3 2
and Wy = hing [ax (hov) - % (hlu)]

Equation (2) may now be expanded term by term into its component parts.
Term I, 29_ng, becomes on expanding,

2c(wdy - vz)1
+ 2o(uft; - way)y (3)

+ 20(vay - ud )k
Term II, p@x(Qxr), gives
P [(yﬂy * 2y - (a2 4 nzz)x]i
+o [ty v wnn - (0,2 4 %y | (¥)

+o [(xnx e, - (2.2 + nyz)z];
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and q2 = u? + v2 + w2, term III may be expanded to give

i
2 e [@u, av, av
W% = T ot Vax t Vax |
o [2u, 2v,
+ hp .uay Vay vay]i (5)
. [2u, v, aw],
h3y | 9z 9z z|=

Taking the component form of the vorticity w and expanding it, together
with the components of the velocity q, gives term 1V,

pguw = plvwg - wuy)i

+ p(wwy - wz)) (6)
+ D(lwy = V‘“x)ﬁ
The pressure term, term V, is simply
Tt - FRE -t FEE 2 ()

with the viscous effects, as represented by term VI, being given by

WOxy = —t— g—y- (hjwz) - g—z (hawy)| 1
4

- h2h3
E 3 |
—u fa _a I
* hgha [ox (P2yy) - gy (hexdd| k)

Collecting the i, ] and k groups from the expanded terms gives the com-
ponent equations of motior in the x, y and z directions respectively:

x Equation:
- b 2 2 e aw
i -] o [y s - 07 0] < B e v o

D ) 9
<o [y -] = - 3o B - PR Etngua)- Sogy)] 900




Y _Equation:
20 [unz = Vgx] +p [(xnx + zﬂz)ﬂy - (sz + ﬂxz)y] + %[u— ¢ V—y—

s yo[2 Ne
p ["“’x = u““Z] a Esﬁ - h3hl 3z (hlwx) a_x'(h3wz)]

z Equation:
20 [vﬂx - uﬂ}] +p [(xﬂx+ yﬂy)ﬂz - (Qx2 + gyZ)z] + B ua, V— v—]

)
= .23, __b [3 _3
=0 [uuy = VNX] S h3 dz + hlhe 3X (hzuy) -a?(hlwx)]

At this point in the development of two-dimensional boundary layer
equations, it would ormal to carry out an order of magnitude compar-
1son of terms and reu .cc the equations to the standard short form.
Before this is done in the present case, it is useful to consider the
surface over which the flow is taking place, the orientation of the axes
relative to the surface, and the dependence of the scaling factors on x,
y and z. Figure (1) gives the system of axes used in the present work.
Following References (8) and (11), and others, the axes will be fixed in
the rotating surface. The x and y coordinates will define the surface

2 =0, and z will follow the local normal to the surface. Curvature
will be restricted to the x axis, making scaling factors h_, and h_equal
unity. Since the blade may be represented by a cylindxicaf surfale,

the scale factor h1 becomes a function of z alone.

It is conventional, in treating the boundary layer equations in two
dimensions with the flow in the x direction, to assume that x, u and p
are all of order unity, 0 (1), and that z and w are of the order of the
boundary layer thickness, 0(8). In addition to these, the existence of
the crossflow field introduces terms involving y, v, bhl, h2, h3 and Qiz,
which are all of order 0(1), and Qy, and Rx or order 0(§). The angular
velocity Qiz is generally large and will be treated as equal to 1, the
angular velocity of the rotor about its axis. By expanding equations 9x,
9y and 9z and discarding terms on the basis of their relative orders of
magnitude, and at the same time substituting Qifor 1z and replacing the
scaling factors hp and h3 with their value of 1.0, the full equations of
motion are reduced to the equations of motion for the steady flow of a
viscous fluid over a singly curved rotating surlace:




x Squation:

-2om-pnzx+L“a—“+ auq- 3“+M.3_ =_.l§2 3 | 123
h) 3x QV?}; ¥z hy 3z(hl) hy 9x * Haz hy E(hlu)
(10x)
Y _Equat’ n:
. v Vv v ) ) ]
2 o ﬂ — = .. —B —-E- —
o n, ax ¥ PVay + o o7 By 3z hlszfv) (10y)
z Equucion:
u_a_ = _L13p

This completes the development of the boundary layer momentum equations.

2.1.2 The Continuity Equation

The generalized vector form of the equation of continuity in a fixed axis
frame is given by

2 4+ 9:(pg) = 0 (11)

Since the density p is not a vector quantity, Equation (11) will apply
unchanged if the coordinate system is rotated. If the further requirement
is made that the flow relative to the rotating axis system not be time-
dependent, then the continuity equation for steady flow relative to a
rotating axis system is simply

Ve(pq) = 0 (12)

Bearing in mind that in the curvilinear coordinate system the operator V
is given by

1l 9 l 9 1l 23
= e——— i — — — ——
TR R A TRTE
Equation (12) may be expanded into
2 2 2 ]
V-(pg) = 3 (hohgeu) + 3= (h3byev) + 5= (hhgpw) = 0 (13)

In defining the surface and coordinate system for the rotor blade problem,
hp and h3 were specified above as unity and h) as a function of z alone.
With this in mind the continuity equation (Equation (13)) now becomes

% % (pu) + % (pv) + 58; (pw) + % (pw)z—= = (1%)
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2.1.3 The Energy Equation

No original treatment of the energy equation will be attempted here; the
solution of the equation derived in Reference (1k4) will be used. For the
case of the adiabatic wall to be assumed here, a relation for the local
temperature is given of the form

T =T

m+2+[Ui+Vi-u2-vz] (15)
“P

If this is rearranged to give the local density in terms of the local
velocity and the Mach number of the external flow, it becomes

R o

2 = 2 v2+v2

2.1.4 Reymolds Stress Effects

The flow equations developed above have been in terms of the instantaneous
values of the flow variables. To determine the effect of the turbulent
velocity fluctuations in the boundary layer, it is conventional to replace
the instantaneous values of the flow variables with the sum of the time
mean and fluctuating parts. For example,

us=u+ u'

The bar denotes a time-mean, and the dash a fluctuating quantity. The
mechanics of performing this operation are covered in References (16) and
(17), and will not be dwelt on in this analysis. In the absence of any
significant body of experimental turbulence data in three-dimensional
flows, only those terms known to be significant in two~dimensional flows
vill be considered, together with their obvious cross-flov partners.
Bearing this in mind and neglecting triple and higher order products of
the fluctuating terms, the motion and continuity equations become

- -Zz‘li-ﬁ—ﬂ—va_ﬁﬁ_a“_l]
SRoiad m""hlax"‘“’ay*(""""")[az"hlaz

z_-iéi... .i[hl ™ (hl")]__[—W] R (17X)

h; 9x
20“9-9023!"’9_123:’ —+(ov+_"_")5ﬂ:
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and

] 3, — 9 e -
By ax (pu)'ray (°V)+az (pw + W)

ah
s+ Ligwepv = =0 (18)
h_'n' 02

The most significant effect of turbulence is the addition of an apparent
ghear stress term to each of the momentum equations. These are the
Reynolds stress terms, the time mean of the product of the fluctuating
velocities in the x and y directions, and the normal velocicy fluctuation.
The precise form of these terms and their dependence on the mean flow
parameters will be discussed in a later section.

2.2 THE SOLUTIONS

2.2.1 Limiting Conditions

The equations governing the flow over a cylindrical surface rotating about
some axis perpendicular to its length were developed in Equations (17x)
and (17y), the momentum equations, in Equation (18), the continuity
equation, and in Equation (16), a solution of the energy equation for the
special case of adiabatic flow. In succeeding sections, they will be
manipulated and subsequently solved to determine the development of the
boundary layer over the surface. The two methods of solution used differ
considerably, but they must both satisfy the same boundary conditions:

that there be zero slip at the wall, z = 0, with u= v = 0 and consequently

du _ du _ Iv _ v
—_— e 2 == ()

9x 3dy ax oy

In the case of the flow over a solid wall with no transpiration, wy, is also
equal to zero. A further condition is that at large distances from the
surface, u and v must approach U, and Vo, the velocities of the external
flow.

2.2.2 The Differential Method

It is convenient at the outset to nondimensionalize the velocity components
in the x (chcrdwise) and y (spanwise) directions by dividing by U,, the
velocity of the external flow in the chordwise direction. They become -

chordwise c = U_u_
and spanwise 3 & =Y
Ue
10
k . aasednitiuloctain . %

|
|
|




The equations of motion written in terms of c and s became

ou 2 ¢ ac 3¢ . c 2
5 _ an2 —- . 9C 2 g 9C — . ——T|9c , ¢ _ 3
20psU_ - p01%x + By cax+pUn aay+Uﬂ(ow+cv)az*hl == (hp)
13, 31
"y ax | ez (19x)
and
2
- 002y 4 RU=S | 38 2 498 = 4 oToT) 98
20pcU_ - oR2y + B c 3.t ey, say+U°(OV+pw') ™
= .3, 123
ay*hl L} (19y)

(In the interest of clarity, ‘he bars have been dropped from the time mean
quantities except for the (pw + p'w') term.) The viscous and Reynolds
stress terms have been combined in the terms 31,/3z and 371y/3z above.

The main object of the solution is to isolate the gradients of velocity in
the chordwise direction, 3c/3x and 3s/3x, and these are the principal un-
knowns in the above equations. Before they can be determined, hovever,
substitutions must be made for the pressure gradient terms, the normal
velocity term (PW + p'w'), and the shear stress variation normal to the
surface.

The pressure gradient terms may be found by evaluating Equations (17x) and
(17y) at the surface in the absence of viscous effects or by cousidering
the differentiated form of Bernoulli's equation in a rotating system.
Bernoulli's equation for the flow being considered here may be written as

2
Rk u2+ev)+ L (2ey2) e lo,

P stag

If this is differentiated with respszct to x and y, it is found that

R, _ Wee Na 24 +
ax = " Pelle 3x ¥ Vg ) * PuAx

density
and gradient (20)
terms of
. _, (y VUn N 2y +
3y o, Uy 3y + \Lay ) + o R%y small order

The term containing the normal velocity may be removed by substitution
from Equation (18), the continuity equation. Equation (18) must first be
rearranged and integrated along a normal to the surface to give

11




Z
(5w + o) = -% f[;a; (o3) +h1:—y(¢v)]dz (21)

0

Equation (16) gives an expression for the density in terms of the velocity

components, and if this is differentiated with respect to x and y, the inte-
grand of Equation (21) becomes

9 9 su v
e (ou) + hy % (pv) = ot he o 2y

2 Mo ] 24 y2 -1 )Ma2
- u() o,[n-lm, o () n, B {lz,,v:zﬁ- {f,gl%?,( L 3")]

2 2 2 M2
n 2 [ mn - o5 B - (o ]

Collecting terms involving the spanwise and chordwise velocity gradients
and expressing the velocities in terms of the velocity ratics ¢ and s
leads to the final form of Equation (21):

— =TT\ . PaUs L 252 98 52, 9¢C 2
(pw + pTwT)= hl f{ax[(p-)*cl“] +axcsF +aycsth

+ ay [(Bﬂ) h; + stZ] -[1 + (%‘)2- c2- 52] [Mia—::'--o- MBQ ] F%dz (22)

where

FZ.uZMZ(..E.)ZJl._lL.
@ ® o

U24+v2
[ J ®

The shear stress terms in Equations (19x) and (19y) must now be expressed
in terms of the mean flow quantities. From Equations (17x) and (1Ty), the
shear stress terms 31,/dz and 31y/dz are given by

3t " ]
_a -
3z | 9z [hl 3z (Byu) - euTWT |
(23)
Ity 3 av ]
- TT
and 7z = 3z [ uhy 3z hijpv'w

-

Knowing the velocity profiles, the viscous shear stresses may be determined
directly. Unfortunately, some assumptions must be made to obtain an
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expression for the Reynolds stress terms. In tvo-dimensional doundary
layer solutions, the relation between turbulent shear stress and mean flow
is most commonly supplied by the eddy viscosity or related mixing length
hypctheses. Other approaches involve solutions of the turbulent kinetic
energy equation or an eddy viscosity transport equation. Hovever, as a
result of the present poor state of knowledge of the behavior of turbu-
lence, all methods employ empirical relationships to some degree.
Reference (18) gives an up-to-date summary of all the mecthods in common
use and an assessment of their applicability. In three-dimsnsional flowvs,
the data available is very limited and the relationship betveen the tur-
bulent shear stress and the mean flov is still a matter of argument.
Considering this, it will be assumed for the present solutiocn that a mix-
ing length relationship may be applied and the turbulent shear stress aay
be related to the normal gradient of the local resultant velocity by

=TT . g2 | 22| 22
priv’ = ot laz 3z (2k)

vhere r = (u? + vz)ﬁ is the local resultant velocity and or'v' i{s the
resultant turbulent shear stress. The two do not necessarily act i{n the
same direction. Reference ( 5) suggests that it is most probable that the
turbulent shear stress acts in the direction of the maximum rate of strain
of the mean flow given Ly

du
ulvl -,,—ﬁ (25)
v'v' E

With the magnitude of the resultant shear stress given by Equation (2k)
and the direction by Equation (25), it may be further assumed that

(r'wh2 = (W'w")2 + (viw¥)2

It is now possible to arrive at expressions for the Reynolds stress com-
ponents in the x and y directions:

ac
puwY = p,'z ar 3_!'
and (26)
aa
oviw' = pg? 3r
9z az [( (35) ] H

The form of the mixing length 2 suggested for two-aimensional flov in
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Reference (19) hes been used in the present work. [t is given by

%'%‘tmb (%li‘)

vhere L_ 1s the value uf L in the outer boundary layer, typically 2 /6 =
0.09 to 0.09%, and ¢« is the von Karman constant relating the mixing length
to distance normal 0 the wvall. The tvo-dimensional value of x is
typically 0.4,and this vill be used here. The relations given in
Equations (26) only epply in that part of the boundary layer vhere tur-
bulent stresses predominate. In the regions close to the vall viscous
effects control the flowv,and the expression for the mixing length has to
be modified. This has been dona for tvo-dimensions. flows in Reference
(20)s but 1t vas felt that, because of the approximat ‘ons made in the tur-
bulent region and the lhree-disensionality of the flov, the refinement
sugrested vould be i(nappropriate. Instead, the shear stress gradients in
the laminar region vere determined by {nterpolating dbetveen conditions at
the vall and at the edge of the sudblayer.

8ince flovw in this region is controlled by the effects of viscosity, and

References (20 and (27) highlight the significance of the shear velocity,
ue, close to the vall, this vas used as the dasis for the interpolation.
The shear stress gradients are given by

?
and

"

’—;1 L BO . Blr’(l) * Ba\l.z
vith

u * u/(t,/o.)"

The i{nterpolation i{s given {n full {n the appendix.

The expressions for the pressure gradient, Equation (20), the term

(59 « 0'w'), Equation (.’2), and the shear stress gradient, Equation (26),
may nov te substituted {nto the boundary layer momentum equations, (19x)
and (19y), to give the unknovn chordwise gradients in terms of known

parameters:

- - : [ - —-—— 2 ——
2fosV R¢x(o "'g| l) ¢ ) 1 c FY ¢ pU “s ?

-
-

- 2.9._[3_‘: o« = i_(nlb]f(blg—: . bz-:-:-0 b3:y—c0 bh%’¢ bgldz
® 3_1‘ * _p.u (&Q !la—v‘)
-} n x U, 9x

1




and

2
- a2v(o- pUx" 38 . 2, 98
2pcU_ - Q%y(p-p_) + hy c o5 * pU s 5y

Ve Vg

'ﬁ— azf(blg;*baax* bsay*‘buay*bs)dz --—_Y. +o U (—+—-57)

h
where 'bl = [-& + CZFZ]
p@
bp = csF?
b3 = esF?h,

by = [hlsp— + stz]

M 3x

(27y)

and b5=-[1+(%n) 2-c2‘92] [_c.a_}qn..,i%] F

The shear siress gradients 371y4/5z and 31y/3z have been
form since Equations (26) are strictly only applicable
lapinar sublayer. Equations (27x) and (27y) represent
with two unknowns, and as such they are soluble. They
through the integral term which contains both unknowns
equations. The group mem2 may be removed as a factor
rearranged to give

3c _lpe [, c 3, .38
X ¢ op [Bz+h1 9z (hl)][(blax+b2?f)dz

|
)
A
2l
+
£
—
(-3}
S ln
b‘ln
vlq’
v
—
—_—
'\l
"
w
+
:1'
LR
+
o
w
S
o
N
——

left in the general
outside of the

a pair of equations
are, howvever, coupled
and appears in both
and the equations

(28x)
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h 2 3
Ll=) _,. 00 28 0 1 dtwy . 1 Wy , Vg 3V,
" T p{ 2e 5 Um+ ¥ U2 (pw s o, UZ 3z ' U, ( ¥y U ay)

z
= B BLQ. + 98 f(b33_°+ bu:—;-* bs)dz } (28y)
0

z
or ac ac 98
a—x- - le/(bl-a; + baa)dz = fyo (29x)
0
2
and 98 ac L] _
x fylf(blax + bga)dz = fyg (29}’)
0
=L1Pm |3, ¢ B
vith fx1 = 55 [ = By 3z (hl)]
1 Py 3s
fy1 ¢ p 3z

The right sides of Equations (26x) and (28y) are revresented b% £x2
and fyg, respectively. Multiplying Equation (29x) by fy1 and Equation

(29y) by fyx] and subtracting one from the other gives

Jc 98

Tyl 5x = fx1 3x = fxafyl - fypf (30)

If Equations (29x) and (29y) are then multiplied by b; and b, respectively
and added, they become

ac 9s % 3c 98
0

Equation (31) may be expressed in terms of a new unknown,

— 3s
G(z) = blax + b23x
z2
G(z) = (byf, + bgfyl)fG(z)dz + (byfy, + bafyp) (32)
0
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This may be easily solved for G using iterative techniques which are
ideally suited for machine computation. The problem has now been reduced
to the solution of two simultaneous equations in 5c¢/3x and 9s/9x:

9C 98

41 5% = fx1 3y - fxefy1 - fyefx (33)
3c 98 _
iy * b2 3  602) (30)

The solution is now a routine matter of separating the unknowns using
Equations (33) and (3k).

The calculation of the gradients 3c/9x and 3s/3x described above is

carried out at a number of points along the normal to the swrface within
the boundary layer. The actual number of solution points is determined by
the need to accurately specify the velocity profiles, and their spacing is
determined by the need to adequately describe the rates of change of
quantities normal to the wall. In the present calculation, the points have
been distributed logarithmically from the wall with a minimum of twenty
points within the boundary layer. It is then possible to integrate the
chordwise gradients to the next point using a forward stepping finite
difference technique. If this id done for a number of stations along a
constant x line, for which the flow conditions are known, then the develop-
ment of the boundary layer over the surface may be calculated.

2.2.3 The Integral Method

The principal difficulty in turbulence work lies in specifying the shear
stress. Most work thus relies on some type of semiempirical model to
define the turbulent shear stress throughout the boundary layer. By using
an integral technique, this necessary approximation may be partially
avoided. The momentum equations may be integrated with respect to the
distance normal to the surface out to the free stream. The integral of the
shear stress term is the value of the gkin friction at the surface for
which an empirical model must then be provided. This can be done without
affecting the accuracy of the results in many cases, and at the same time,
numerical complexity can be significantly reduced. However, variations
normal to the surface are eliminated because the boundary layer is defined
in terms of overall parameters. This technique has proven its usefulness
in two-dimensional work, and its extension to three dimensions is shown to
be practical in Reference (9).

Several steps must be taken before integration of the momentum equations
becomes feasible. The pressure gradient terms can be evaluated directly
from Equations (17x) and (1Ty) by inserting the free stream density and
velocities. The effect of variation of pressure normal to the surface is
considered to be negligible. Thus, the resulting pressure gradient ex-
pressions are applicable from the free stream to the surface. The value of
the shear siress term outside the boundary layer is zero. The pressure
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gredient expressions then become

1 3p _ Pale g 3u 83Uy, 1 9hy
" b 9% h. i = s -5 2.
hy 9x h, X PV 3y + o VW, ™ +p WU e 2%y _- p Q%
(35x)
_3p ol Vg Ve 3V )
3y ~ hy 0x @ Pelm gy * PaWe gy * 2WU, - P 0% (35y)

When these expressions are substituted into the momentum equations and
written with the intended integration, the fnllowing equations result:

6
1. _.sn. au 1V u
fh—l(p u_ o pu )dz + f(p“V” . = PV ay)dz
0
é

_f(FvTi'pw')a( l)dz_eﬂf(pv-pv)dz-ﬂz f(p - p)dz

f-l dz (36x)
é 6
J{i‘(pmuw %‘ - pu g—:)dz +f (o V, g;“’ - pv -g—;’)dz
)
-.[(E—+51wg—:z+29/pU—pudz-f2f(p - pldz
0 0
f—ldz (36y)

Since the external flow is considered to be para.llel to the surface, terms
involving W_ have been set equal to zero. The bars have been

dropped from the time mean quantities except for the (pw + p'w') term. In
the x component, the two terms with coefficients of (pw + p'w') have been

combined.

Equation (18),_the continuity equation, may be employed to supply an ex-
pression for (pw + p'w') ir terms of the remaining variables, as was done
in section 2.2.1. The result, Equation (21), is repeated here.

Z
(a7l ) ﬁf [%(pu)ml%};(pw] a (21)
0

Now (pw + p'w') may be eliminated from the momentum equations, and the
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0 0
where the second nalf of each of the first t
continuity equation.

stream, their integral
the chordwise ang span
can be rewritten as

resulting double integral terms

8 s 2
rrrlii e e h
0
and 5 s A
0 0 0

+ The complete momentum equations can then be
written
i Apu) _  3(pu)
1 e su alpu _ ., 9{pu
f hl[ptwuc° ax ~ Puax t U, ox U ax ]dz
0
8
3y du 3pv) a(pv)
T — - —— -
+./.[°°°‘°° oy TPy Tl T -ugy |
0 5 5
- 20 f(pmvw - pv)dz - Q2x /(pw -pldz = T8 (38x%)
0 0
and

9x

s .
av, . 9V dlpu alpu
IS e
0

dy

Py
L)
0

8
+ 20 f(mem - pu)dz - Q2y ’/-fpu° - pldz = Toy (38y)

8 have values only at the lower limits.

These are
wise skin frictions, 14

x and Toy. These equations




8 8
L 3u _pu__ 12 2 [ e ., _u
h; 3x °-U-f(l o 0092 * By o ["wuw U, 1=y )dz]

0 - -} - -]
$
U Vo _pv_ _ 2 pv_ 5
Ty Pl f W oo e [" =ta: of o ¥ gl
0 0
6v )
- 200 U_ f(ﬁ: - &)dz - ﬂzxf (o, - p)dz = 150 (39x)
0 0
and
§ $
1 Ve = L Y 3_ 2 P__ E
3V, P Y.
CASY B — _ 2 BV = z L.
Yoy Pale (-: pmum)dz Yy [p‘”u‘” Pl 0 Va Uw)dz]
0 0

8
+ 20me,/(1 - L)dz - 2% [ (b = plaz = 15y (39y)
0 @ ©

At this stage it is convenient to transform the distance normal to the
wall by using a Stewartson transformation of the form

The integral terms can then be written in an incompressible form as

A A
8% + 6y = /(1-L)dz =[(1-;—)dn +f(l-‘;L)dn (bla)
[ -] 0 [- -]
* ® S Veo PV A ® \ 4 e
6}' + t 60 = (U— - puVm)dz = (E - I-J:)d + K (1 - m)dn (41p)
0 0 0

8 A

- f B (1 - folas = f;: (1 - g (b1c)
0 0

6. 8,

Oy = p_D,,U,., (1 -2 = f T (1 - E:)dn (41d)
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R L I
0 0
8 v
Byy = f (% (%“‘ = ;—-)dz =/ {,J_ (U_n - :_J,—)dn ’ A1)
A o0 ™ ® © ) @ @ hed

where A is the thickness of some related incompressible boundary layer.
These &are the three-dimension&l forms of the displacement and momentum
thicknesses. The terms 6x and Oyxx are the same as in two-dimensional
boundary layer theory. The term §, represents a change in thickness due
to compressibility. The other thickness parameters, 6;. Oxy» Byy and 8yx,
arise from the existence of the velocities in the y direction and are not
present in two-dimensional flows. If the density ratio can be related to
the local velocities, the only unknowns remaining on the left side of the
momentum equations are the integral terms involving u and v. The solution
of the energy equation (Equation (16)) can be used to supply this ratio.

In two-dimensional work, only the momentum and displacement thicknesses in
the x direction appear. A shape factor, H = sx/eu, can be used to relate
these variables, thereby permitting a solution of the momentum equations
without a knowledge of the velocity profiles. In the three-dimeusional
case, velocity profiles are required to relate the numerous thickness
parameters and reduce the number of variables in the integrated equations.
Power law profiles of a form suggested in Reference (9 ),

1/N
= ° @ (b2)
and -
2 1/N
T=a-P@ e (43)
where 1o
¢ = L= tan(e) > (k)
ox

are used in the streamwise and crossflow directions. Their shapes are
shown for various exponents in Figure (2 ). The angle ¢ is the angle
between the surface streamline and the external flow. Since the overall
thickness parameters rather than the details of the velocity profiles are
required in the equations, these profiles are considered to be sufficiently
representative without involving the complexity of integrating a three-
dimensional form of a perhaps more rigorous .aw of the wall/law of the
weke profile. Thus, power law profiles are resolved into streamwise and
chordwise directions,
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1/N 1/N
T 1/ Iy (L
o=@ mea-p @ e
and
1/N 2 1/N
@ ra-p@ e,

and are then used to evaluate the integrals in terms of the thickness 4,
the skew angle ¢, and the quantity N:

6;+69=A[1-A*X-“¢B] +l;-1-Mm2A[1-C-¢2E] (k5a)
[ v \/ Vool
exx=AhA-I¢B-C+2ﬁ:¢D-E{¢2E] (k5b)
= .l.;. v v2 1“;2
Oxy A.UmA+¢B-ﬁ:C-(l-ﬁ:z)D¢+Uw¢E] (45¢)
A I v_«»x-_lz[_._z]
5y+G:60—A[Uw(l A) ¢B] oy =M 281 - C - ¢%E (k54)
[y 2
8yy = & _%?(A-C)+¢%(B-2D)-¢2E] (45e)
ovy = 8|S (a- ) - Ve gp - (1= Yedyep + Yo g2p (L5£)
yx - -Um - -i:z-¢ B -Uno2¢ UQ¢
where A= N f 1
_ N 2N N
B_N+l-2N+l+3N+l
_ N
C'N+2
p= N N N
N+2 N+1 3N+2
g = N 2N 6N N _ N

N+2 N+1 3N+2 2N+1 58N+2
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The momentum equations, normalized by pOUQZ, now appear as

1 1 3y ®
U ax (8x *+ 6p) +——y§(o U_%6yy)

hy o 0X
_l.% .v;". _la_ 2
.0, Ve n2x Tox
-2 ""“ {,Gy + Uw 6p) - U;z 69 = D.U.I (h6X)
1l 1 a3V, ( - 1l 1
hy U 3x X "P" " hyp U2 “Oyx
1 3V 2
+2—n-(6.+6) 2315.T°y
U“ b 4 p/ = UQZ p pnuoz (LGY)

Two things remain to be specified: <the skin friction and the quantity N
from the power law. In zero pressure gradient cases, a value of seven is
commonly used for N; however, for more general use, 1/N may be related to
the shape factor H by evaluating 6§/exx in two-dimensional form, giving

=\~

_ -l
- b (u7)

The change in H as the boundary layer develops in pressure gradient cases
can be obtained from an empirical relation such as that given by
von Doenhoff and Tetervin, Reference (21),

2 2
Y.680(H - 2.975) [_ SLQ;? %Mw-l 9"—;%‘— - 2.035(H - 1.286)]
® (48)

di _
8.

The momentum thickness, Gq, is evaluated using the streamwise velocity
profile. There are several other methods of accounting for shape factor
changes, but the above relationship is the most readily compatible with
the present integral technique. Since the conditions under which it wes
determined are similar to the cases with which it will be used, good
results might be expected. These conditions include turbulent boundary
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layers under moderate adverse pressure gradients on the upper surface of
an airfoil.

The skin friction must also be obtained from an empirical relation.
Integral techniques have most commonly relied on the Ludweig-Tillman law
from Reference (22),

T -0.6784H
ﬁ;.[= .123 x 1070-67 (Re

-0.268
o)

This relationship illustrates tiic dependence of the skin friction on the
shape factor, H. However, since the work of von Doenhoff and Tetervin
was based on the skin friction law of Squire and Young, Reference (23),
their relation

2
T
p—g'“r =1/ [5.890 log, ,(k.074 Reeq)] (k9)

must be used. Since H does not enter into this relation, it may be in-
accurate for large values of the shape factor. However, the growth of the
calculated boundary layer should be unaffected by this since it is con-
trolled by the empirical shape factor relationship.

Both the shape factor relation and the skin friction law are two-
dimensional in origin and are to be applied along the streamwise direction.
The skin friction can be resolved into spanwise and chordwise components,

S I @y L

Toy Toq, Q, in

This follows from the definition of ¢. The shape factor is not a direc-
tional property. Its value is considered to be unique at every point and
therefore determinable from the two-dimensional relation.

A solution of the momentum equations is now possible. This becomes clear

if they are rewritten as two simultaneous partial differential equations
in the form

F§+Gs-‘l= (50x)

24




R85, (50y)

X 9x
Fal Sxx
vhere q A
2
- —A- -v. - - v
G By | U (2D - B) 25:5-03

H._.l..l.ﬂh(s:,

12 2) Sxx
- =t L (py
h; U, ax $) p U ax (pU.%) h)

A A (Ya -B) - Ya ,2
hy 9 (u. [0(21) B) 25 ox]

28 aucX Tox

YU (& U 8p) + uz%* oz
R= _13n
hy 4

gt Vol (1-V2)D+2!- E
By 5.7 v v, *

S N ) 0 W - 2y Syx
TR iy (6% %) iax("U)l

A (Ve _ Va 2
hlax(Uw)[A C+2 o(n-a)+.z]
LWy ® Ve -3 2
U ay (GY*UQ S0) - o7 5 (0U 20yy)
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If {nitial values of 4, ¢, and H are specified along a linc parallel to
the leadirng edge, the spanvise gradients can be evaluated and the skin
friction and shape factor gradient can be calculated at regular points
along this line. The momentum equations can then be solved for the chord-
vise gradients at each of these points; these gradients may then be inte-
grated in the x direction from each point to determine the parameters 4,

¢ and H along a nev line parallel to the leading edge. The process can
then be repeated as far dovnstream as required. The value of &, can be
used to transfors the results back into a compressible coordinate system.

2.3 THE BOUNDARY CONDITIONS

2.3.1 The External Flow

The tvo independent methods of predicting turbulent boundary layer develop-
ment on & rotor blade .equire that the external flov magnitude and direc-
tion be specified beforehand. This flov is comprised of the rotational
velocity, the velocity induced by the pressure distribution cu the blade,
and a superimposed crossflov Vvelocity component due to the close passage
of the trailing tip vortex from the preceding blade.

In a rotating rectangular coordinate system, the spanvise apd chordwise
rotationel velocity components can be expressed as

U, = oy (51a)

and
v, = alx - P (51b)

respectively; y is measured from the axis of rotation, as described in
Figure (1). In performing the calculation on & rotor blade, the x = c/b
line is made to coincide with the quarter chord line. Spanwise rotational
flov is outward ahead of this line (negative x) and inward behind this
line (positive x).

The flow over a rotating flat plate is described completely by the above
rotational velocities. When the surface assumes a thickness distribution
such as that of an airfoil, the local flow velocities are altered by the
resulting pressure distribution. The pressure distribution is expressed
in terms of the pressure coefficient,

= Py ~— pa
RN A

which, for later use, can be rewritten as

2
gﬂ =] + 2&2&2 (
P p 52)
a a
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The subscript (a) refers to the ambient conditions, which are also the
static conditions in the rotating sysiem, and the subscript (=) refers %o
the local conditions Just outside the boundary layer. In the absence of
exact pressure distribution data which includes the effect of the external
crossflows, an approximate two-dimensional pressure distribution based on
the chordwise flow is used.

To solve for the local velocity, U_, in terms of the pressure coefficient
and the ambient conditions, the pressures are first related to the Mach
numbers,

1 1 1
Y=1 2] Y=
Pg _ [l+ (57 M,
P

o [1 s (%l_) Maz];-Ll

This may be combined with Equation (52) to eliminate the pressure p_,

o Jx=1
e 05w () uadiy’

2o b ] :

(53)

The local Mach number may then be expressed as

- x=1
2 =1 % paV 2Cp Y E }
Mw2=';f{[l+ (15_) Maz] (l+——;':—) 1

The local velocity can be obtained from U_ = M_a_, but first the local
] sound speed, &, must be defined. The adisbatic temperature ratio and
Equation (53) are used to find an expression for the ratio of local to
ambient sound speeds,

Jd §
-1 2] 2 Y
[1+(2)Ma =a~2=(l#koaU‘Cp)
[l n (15}0 MnZ] aa2 P,

PBI!—]
P |8

The local velocity is then written in terms of the pressure coefficient
and the static conditions,

=1
2 %pU?2Cp)\ Y
2.2 2 x=1( Ua -( __u_) ]
U= ey [1* 5 (aa) 1+ P (55)
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By using the adiabatic density ratio, the local density, p,» can be
obtained in a similar manner and expressed as
Ay
2 2
%p0,U, Cp) Y

Pp = pa ( i+ ——-E;————-
a

(56)

The local velocity and density are thus known in terms of the ambient con-
ditions and the pressure distribution of the airfoil. Typical upper sur-
face pressure distributions at angles of attack of 0° and 4O for a Mach
number of 0.65 from Reference (24) are plotted in Figure (3). They were
obtained from two-dimensional tests conducted on a 12%-thick symmetrical
airfoil section. In both cases, an approximation of the measured pressure
distribution has been made by assuming a constant pressure over the first
quarter of the chord and an increasing pressure over the remainder. Since
the actual pressure distributions are also functions of the Mach number,
the approximations rre meant to be representative of the adverse pressure
gradients that may be¢ encourtered on an airfoil. These pressure gradients
cauce a deceleration of the flow and a thickening of the boundary layer
toward the trailing edge. It is this region of an airfoil cn which a
turbulent boundary layer is most likely to separate. Lower surface
pressure distributions at positive angles of attack may be adequately pre-
sented by a constant or mildly adverse pressure distribution.

The magnitude of the pressure gradient may be obtained from the slope of
the pressure coefficient, and if this is nondimeusionalized by the chord,
the approximated distributions have values of dCp/d(x/C) of 1 and 2. The
local velocity gradient to which the boundary layer is subjected is ob-

tained by differentiating the velocity expression, Equation (55), to give

-1

2= (2 2 Y
m M e ) (), 2el9) -
X TUGDPa C d(x/C pa 5

Similarly, the density gradient is given by
1y

30 ¥oU2p\ Y %pou?
. lﬂ(lﬁ- aa aa ;_d(z.:g (58)
9x a oy \ Pa pa C d(x/C

In multibladed rotors, a significant external spanwise flow may be imposed
by the presence of a trailing tip vortex from the preceding blade. It has
Leen shown in References (25) and (26) that such vortices remain near the
plane of the rotor until they pass the following blade and are then swept
down awvay from the blades. The region of blade-vortex interference is
somewhat inboard of the tip due to wake contraction; for this analysis, it
can be assumed to be centered at the 90-pe:icent radial station. A more
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precise positioning of the vortex would be necessary for rotor performance
calculations.

The magnitude of this spanwise flow can be estimated from potential theory
by writing the stream function of a line vortex and its image, each of
which is parallel toc the x direction at a distance Z from the surface

z =0 and at a distance Y from y = 0O,

(Y-y)2 + (z-2)2

T
¢ = chge (Y_y)z E (Z+z)2 (59)

The resultant spanwise velocity at the surface is determined by differen-
tiating the stream function with respect to z and setting z equal to zero,

2
v =ﬂ=%% Z (60)

The portion of the vortex which is in the region of the blade is repre-
sented as a straight segment parallel to the x direction. This spanwise
velocity distribution may be superimposed on the chordwise flow to create
a representative rotor blade flow to which a Loundary layer may be sub-
Jected. The thicikness of the boundary layer on the surface has been
neglected in -~ - ating V, since it is much less than the height Z, which
itself has on.» . approximate value.

2.3.2 The Rotor Blade

In the development of the equations of motion and of the “wo solution
methods, the scale factor depicting coordinate curvature in the chordwise
direction, h,, was retained. This scale factor is related to the radius
of curvature of the x coordinate in the 2z direction by

U S

h, 3z R

1 X

Since h% has been taken to be solely a function of 2, the derivative can
e

be written as a total rather than a partial, and the scale factor can be
determined as a function of z by integration. This gives

h. = _SL__E. (61)

vwhere R,, has been written as the radius of curvature of the surface plus
the dis%ﬁnce from the surface, R, + z, and the constant of integraticn
has been determined by letting hy =1 at z = 0. In the integral method,
one-half of the boundary layer thickness, §, is used as the appropriate
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value of z. The gradient of the scale factor can be obtained by
differentiation,

dhy

oa
@ R e

and can be seen to be constant above every point on the surface. If the
surface is assumed to be a circular arc, R, will be fixed for all points
on the blade. Such an arc is shown in Figure (4), along with an NACA 0012
airfoil for comparison. The two curves are tangent at the 30-percent
station, and they intersect at the trailing edge. It can be shown by trig-
onometry that the radius of such an arc is R, = 4.1C, where C is the chord
in feet. This approximation will be used in conjunction with the assumed
pressure distribution and the voirtex crossflow representation to simulate
actual conditions for the prediction of turbulent boundary layer growth on
a rotating blade.
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3. APPLICATION OF THEORY

3.1 DEVELOPMENT OF THE NUMERICAL METHODS

3.1.1 The Differential Method

With the exception of some difficulty with the shear stress gradients the
development of the numerical methods for the differential technique was
comparatively routine. A computer program was written first to solve the
reduced form of the equations of motion, Equations (33) and (34), for the
local chordwise velocity gradients along normals to the surface in the
initial X plane, and then to integrate them over the surface to follow the
flow development.

A simple fixed mesh structure was used as a basis for the solution. The
spacing of the solution points in the direction of solution, the X or
chordwise direction, was determined by a compromise between several
Tactors: the sensitivity of the inteagration procedure to step

size; the requirement, noted in Reference (5 ), that for a stable solution
the ratio of the chordwise wnd spanwise steps, Ax/Ay, should not exceed
Un/Ves and the more practical economic factor that excessively small chord-
wise steps would result in unacceptably long computation times. In the
early stages of development,a fixed chordwise step size of 0.5 times the
smallest boundary layer thickness present on the surface was used. It was
found that this could be increased considerably, and an initial step size
of 0.01 ft was eventually used for all the conditions examined. This
initial step size was used for the first four steps of the calculation to
allow conditions to stabilize and was then increased by a factor of 2x for
the remainder of the calculation. The regular step size was felt to be
acceptable in view of the simple forward stepping integration technique
being used. If an iterative technique were employed, or if an implicit
solution were being considered, then variable chordwise steps would perhaps
be more appropriate. The step size in the spanwise direction was also
chosen to give economic computation times without sacrificing definition of
the flow field in regions of high spanwise rates of change or ccmpromising
the stability requirement noted above. The steps used were 1.0 ft on the
large blade, Ay/R = 0.025, and 0.5 ft on the small blade, Ay/R = 0.05. 1In
a differential solution, and particularly in one in which numerical dif-
ferentiation of the variation of parameters normal to the surface has to
be carried out, the distribution of points normal to the surface must be
considered with particular care. Foints must be distributed with not only
the ratec of change of conditions normal to the wall in mind but also the
peculiarities of the differentiating techniques to be used. In order to
keep the computation as simple as possible, a fixed normal coordinate system
was used with the points distributed exponentially away from the wall
following

5 = 0.5x10™" [100‘1“"1)-1]

The dimensions of z are in ft, and k is an integer with value 1 at the wall
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and 40 at the point furthest from the wall. This distribution gave at
least 20 points within the boundary layer for the thinnest case ccnsidered,
with & minimum of 8 points in the laminar sublayer.

Evaluation of the coefficients of Equations (33) and (34) requires that
the gradients of several quantities, in a normal and spanwise direction,
be known. Since the mesh size is regular in the spanwise direction and
rates of change are comparatively low, a simple three-point Lagrangian
interpolation formula was used to determine the gradients in this direc-
tion. The nonuniform step size normal to the wall presented some
problems, however. Initially, a five-point Lagrangian interpolation
scheme with nonuniform intervals was used. It was found that this method
introduced significant errors in the first and unacceptable errors in the
second derivative because of the concentreation of points in the lower end
of the groups. The problem was overcome and the errors were minimized by
transforming the normal coordinate into a form where the intervals between
solution points were uniform and carring out the differentiation using a
second order, orthogonal Lagrangiasn polynomial fit on five adjacent points.
The transformation used was simply the inverse of the expression used
above to define Zy» the differentiation being carried out in terms of k.

In order to give a basis for comparison, the two calcualtion methods used
identical initial conditions. The boundary layer was fully developed and
turbulent from the leading edge, and initially, both the skin friction
and the total boundary layer thickness were given by the simple zero
pressure gradient forms

|

w1
§ = 0.37x [Tx-:ll and

1
5
me]

Cf = 0.0296 [T

Since the external flow is specified, the above expressions may be used to
glve the skin friction and boundary layer thickness along the starting
line, x/c = 0.1. The law of the wall/law of the wake form for the turbu-
lent profile suggested in Reference (27) and the tanh form of the sublayer
profile suggested in Reference {28) were used, together with the surface
skin friction and boundary layer thickness given above, to define the
initial velocity profile. The initial crossflow velocity profile was
assumed to be given by Equation (43). The calculation was found to be
insensitive to the initial value of the surface skew, ¢ in Equation (L43),
the spanvise velocity profile being dominated by the spanwise camponent of
the streamvwise profile, and an initial value of zero was subsequently used.

The most significant effort during the development of the method was in
finding satisfactory form for the shear stress gradient normal to the
wall. It was originally intended that the shear stress gradients in the
turbulent part of the layer be determined by differentiating the stresses
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calculated using the mixing length approach, Equation (26). These would
then be faired into the wall values using an interpolation based on the
tanh series suggested in Reference (19) and extended to the three-dimen-
sional case. This method was found to be impractical since it was very
sensitive to the quality of the match at the edge of .ne sublayer. Any
nonuniformity in the shear stress gradient normal to the feeds into the
calculation of the chordwise velocity gradient, and this tends to magnify
the irregularity as the solution proceeds. This is associated with the
difficulty of obtaining precise gradients using a numerical differentiation
scheme discussed above. The problem is accentuated because obtaining the
gradient of the shear stress involves differentiating the product of
several previous differentiation operations, Equations (26). The errors
are compounded and the difficulty of obtaining a uniform match at the edge
of the sublayer arises. Considerable effort was put into finding a
solution to this problem, but with little success. Eventually, the first
five points outside the sublayer were fitted by a least mean square
process to follow u+2, and the interpolation outlined in the appendix wvas
used.

3.1.2 The Integral Method

The development of the integral method entailed no major problems. A
computer program was initially written to evaluate the integral form of
the momentum equations (Equations (50x) and (50y)) simulteneously over a
simulated rotor blade surface. The Ludweig-Tillman skin friction relation
was originally used in this program to calculate boundary layer growth
with zero pressure gradient. The shape factor was assumed to have a con-
stant value of H = 1.286. This corresponds to a power law profile with an
exponent of 1/7, as indicated by Equation (47). The requirsd initial
values of § were obtained fram a two-dimensional relationship suggested
in Reference (16).

-1
5

v

§ = 0.3Tx [ﬂ]

This presupr ses a turbulent boundary layer from the leading edge {x = 0)
onvard, as was previously indicated.

The initial value o1 the tangen® of the skew angle, ¢, is not as readily
estimated., At first, this was done by assuming ¢ = 0.0 along the first
row of chordwise stations. This appeared reasonable, sincs the solutions
that followed over the remainder of the blade indicated that the crossflow
stayed small. Nevertheless, several initial values for ¢, including nega-
tive numbers, were tried; the solutions were found to »e unaffected after
four or five steps. Thus, ¢ = 0.0 hes been used in starting all sub-
sequent calculations.

With these initial conditions and a knowledge of the external flow, the
integral momentum equations ~an be evaluated according to the procedure
outlined at the end of Section 2.2.3. No spanwise boundary conditions are
required; all variables are deterrir-d either from the preceding chordwise
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station or from the external flow conditions. The spanwise gradients are
calculated with a three-point Lagrangian interpolation. The end gradients
are determined from the last thrce spanwise points with an appropriate

form of the interpolation, which is justifiable except when the spanwise
flow is entering the calculation region, as pointed out in Reference (5).
This condition occurs at the tip aft of the quarter chord due to the
circular form of the streamlines. The possible ill effects of this are
considered to be small because the external flow and its gradients are well
defined in these regions and because they behave smoothly in all cases.

The next major step in the development of the integral method was the use
of a variable shape factor to allow consideration of adverse pressure
gradients. Equations (55) through (58) are used to specify the free stream
velocity and density and their chordwise gradients when pressure distri-
butions of the form discussed in Section 2.3.1 are applied. The computa-
tion procedure was modified to calculate the shape factor gradient from the
von Doenhoff-Tetervin relation before solving the motion equations. The
shape factor at each step is determined from its value and gradient at the
previous step. In constant pressure regions, the gradient is zero. The
skin friction law was replaced with the Squire-Young relation, Equation
(L), as is required for compatibility with the von Doenhoff-Tetervin
equation. The change of skin friction relationships decreased 5 in zero
pressure gradient cases. This is examined more fully in the discussion of
results.

The chordwise step size was chosen to be 0.1 foot. Steps which were an
order of magnitude smaller were tried, but no significant difference was
observedi without pressure gradients. For adverse pressure gradient cases,
the 0.1-foot step is larger than von Doenhoff and Tetervin recommend, but
the location of the separation point on a blade with a chord of 2 feet is
changed less than 5 percent. Larger chordwise steps would significantly
impair the results. Spanwise gradients were found to be very small in
relation to chordwise gradients. Thus, the use of a larger spanwise step
size is considered sappropriate. A step of 1 foot was used in this
direction.

3.2.1 Dati Input

Data input to the boundary layer programs is accomplished via punched
cards. This allows the greatest ease and flexibility in setting various
conditions for the computation. Details of the usage of the programs are
covered in the Documentation of Software Report. The data required by poth
programs is basically the same. Ambient air conditions, including density,
temperature, pressure, and sound rpecd, are read in. The blade geometry is
spezified by inputting the blade radius, chord and the blade surface radius
of curvature, along with the inboard radial station for starting the cal-
culation. Spanwise and chordwise step sizes are also read in. The angular
velocity combined with the minimum pressure coefficient and the nondimen-
sionalized pressure gradient erabie the programs to calculate the chordwise
external flow field. A nonrotating case can be run by setting 1 = 0.0 and
giving a positive value for the two-dimensional free-stream velocity.

(Use of botr this velocity and a nonzero Q2 will not simulate forward
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flight.) The amount of the blade which is subjected to constant pressure
in the adverse pressure gradient cases is an input variable, but values
other than one quarter of the chord have not been used. The vortex cross-
flow is defined by supplying values of the circulation strength and the
spanwise and normal positions of the vortex core. In addition, the
integral method requires the initial value of the shape factor. The data
output format is selected in each method by a series of inputs which are
discussed in the Documentation of Software Report.

A wide range of input data is acceptable, although a few reservations
saould be observed. Singularities that should be avoided occur when the
external chordwise velocity is zero and when the surface radius of curva-
ture is zero. The first will happen when both the two-dimensional velocity
and Q@ are zero. Free stream flows should genevrally remain subsonic. Even
though the solution of the energy equation which has been used is appro-
priate above these velocities, no consideration has been given to the
rossibility of shock formation or shock wave/boundary layer interaction.
The general choice of step sizes has been discussed in Section 3.1.

In performing the calculatlions, standard sea level conditions were used for
the ambient air. Since the effects of rotation are to be considered rela-
tive to helicopter applications, two blade redii, 4O feet and 10 feet, were
selccted as representative of large present-day helicopter main and tail
rotors. The large and small blades have chords of 2 feet and 1 foot,
recpectively. Angular velocities of 10, 15, and 20 rad/sec for the large
blade and 4O, 60, and 80 rad/sec for the small blade were chosen. These
speeds encompass a wide range of angular velocities without introducing
locally supersonic [Yow even in the strong pressure gradient cases. The
form of the pressure distribution, aloag with the magnitudes of the surface
radii of curvature, was discussed in Section 2.3.

Circulation strengths of +200 and +L00 ft2/sec and a passage distance from
the surface of Z = 2 feet are considered appropriate for the vortex inter-
fering with the L0-foot blade. The positive values represent a vortex
passing over the top surface by imposing an outward flow and the negative
values represent a vortex passing under the lower surface by imposing an
inward flow. The ci -culation strengths for thc 10-foot blade are +25 and
+50 ft2/sec at a dist nce from the surface of Z = 1 foot.

3.2.2 Data Output

Calculated data is printed out in tabular form for each of the programs, as
is described in detail in the Documentation of Software Report. Data is
listed according to chordwise and spanwise position. The variables avail-
able for output include the various thickress related parameters, the shear
stresses, the skew angles, and the calculiated external flow. The differ-
entiel method inherently has more output information available in the form
of a listing of the actual velocity profiles, as well as a breakdown norma’
to the surface of the forces that influence the flow. The available in-
formation is used ac a practical aid in the data analysis. To obtain a
record of the output that can be put to future use by the computer, the most
vital data was punched on cards. This is detailed in the Documentation of

35

L i e e Sttt




Software Report. This form of output was the source for the data summary
presented in Tables I through XII and the plotted data in Figures (5)
through (LO). In both cases, the original output cards were used to
supply the required information which was repunched in the necessary
fcrmat. The tables were generated by listing these punched output cards.
The output for the figures was used to generate curves for a numerically
controlled drafting machine. The displacement thickness curves in Figures
(5) through (16) and the skew angle curves in Figures (17) through (28)
were obtained by fitting a curve with second derivative continuity through
the data points. Irregularities in the velocity profiles near the surface
where the calculation points are extremely close together prevented this
curve fit routine from being used, so Figures (29) through (4), the
velocity profiles, were drawn with straight line segments connecting each
point. The figures are grouped to illustrate separately the effects of
variation of angular velocity, vortex crossflow, pressure gradient, and
surface curvature. The order of these groups is repeated for both the
large and small blades, and this pattern is repeated for the presentation
of the displacement thickness, the skew angles, and the velocity profiles
of the flow. The summary data is similarly arranged in Tables I through
al.
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4. DISCUSSION OF RESULTS

4.1 EFFECTS OF ROTATION

The equations of motion for the development of a turbulent boundary layer
on a rotating blade were obtained in Section 2. The equation for the
chordwise flow is analogous to the two-dimensional form of the boundary
layer equation with extra forcing and inertial terms added by the presence
of a crossflow velocity component and the fact that the whole system is
rotating about axis with some angular velocity Q. The basic form of the
boundary layer equations used in both solution methods is given in
Equations (17x) and (1T7y), and they are repeated below for convenience.
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The terms -pQ2x and -pA2y in Equations (17x) and (1Ty), respectively, are
components of the acceleration of the rotating coordinate system toward
the center of rotation. Except for the origin, all points which are
stationary in the rotating system have an acceleration in the inertial
frame of reference. In addition, a point moving in the rotating system
has a Coriolis acceleration perpendi :ular to its direction of motion and
the axis of rotation. The terms -2pvl and +2pul represent the chordwise
and spanvise rates of change of momentum of a point as it traverses a re-
gion of varying rotational velocity. These two sets of acceleration terms
represent the direct effects of the rotation. Further indirect effects
are associuted with the choice of the coordinate system. The flow is
being defined relative to a rectangular coordinate system fixed on the
blade surface and rotating about an axis on the blade quarter chord line.
Because of this the spanwise external flow velocity is positive ahead of
the quarter chord line and negative aft, and an effective pressure gradient
term is introduced into the chordwise equation even when no chordwise
pressure gredient is present, Equation (20). The spanwise equation, (17y),
1s of course dominated by the radial gradient of the chordwise velocity
associated with the rotation.

The effect of centrifugal force on the boundary layer is small and only
becomes significant close to the wall when compressibility effects become
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large. This is apparent from Equations (27Tx) and (27y) where the centrif-
ugal contribution is given as -22x(p-p,/h1)and -A2y(p-p=) respectively.
The p, terms are introduced from the pressure gradient substitution. For
low Mach number flows, p¥p, and the centrifugal effect are essentially zero.
The influence of the Coriolis force, on tke other hand, is significant,
particularly on the spanwise flow. Since the chordwise velocity u is, for
attached flows at least, positive, the effect of the Coriolis force will
be to decelerate the spanwise flow. In the chordwise flow, the small effect
of Coriolis force may be either accelerative or decelerative depending on
whether the spanwise flow is outward or inward. Again, in the chordwise
flow, the effect of the "pseudo" pressure gradient term, VewdVw/3x in
Equations (20), introduced by the external spanwise flow,is generally
small. In rotating flat plate flow, Vo=-fi(x-c/k) with 3Ve/3x = - 1, making
the effect of the term decelerative ahead of the quarter chord line and
accelerative behind. Since the effect is proportional to 92,it may be
expected to be more significant on the smaller blades with the higher
rotational speeds. The equivalent term in the spanwise equation,
UwdUw/3y, is dominant and controls the flow in this direction.

The first noticeable feature of the boundary layer on the rotating surface
is the spanwise variaiion of its characteristics due to the distribution
of free stream velocity caused by rotation. This is most readily observed
from the figures that compare results for various au:gular velocities,
Figures (5), (11), (17), (23), (29), and (35), and from Tables I and VII.
'The increase in velocity with radius has a thinaning effect on the thickness
parameters and results in lower values of the skin friction, Jjust as an
increase in free stream velocity affects two-dimensional boundary layer
growth. The boundary layer also becomes thinner for a given spanwise
station as the angular velocity is increased, as can be seen by comparing
parts {a), (b), and (c) of Figures (5) and (11).

When the chordwise momentum and displacement thicknesses are compared with
two-dimensional results obtained at the same chordwise velocity, the
differences are almost negligibie. There is a very ali%ht thinning in the
three-dimensional case because the resultant velocity Qo = Un? + V&l
along the chordwise lin2 used for comparison is large. .han that of the
two-dimensional case. Further adjustments to Us in the two-dimensional
case for the sake of ccamparison would not be meaningful because the
differences in resui*s are already beyond the limits of practical signif-
icance. The behavior of the rotating boundary layer in terms of its growth
rate is virtually two dimensional. The effects of rotation of the chord-
wise growth are negligible on both blades. The terms which describe these
effects in the x momentum equation are typically two or three orders of
magnitude less than the shear stress term which controls the development.

In Figures (Sc) and (llc), the displacement thickness can be seen to in-
crease with span rather than decrease. This occurs on the outer portion
of both the large and small blades for the highest angular velocity cases
and for the pressure gradient cases, but only when the free stream velocity
exceeds approximately 600 ft/sec. Its origin may be traced to the effect
of compressibility and the definition of the displacement thickness. From
the solution of the energy equation (Equation (16)), the density within the
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boundary layer can be seen to decrease near the surface as the Mach
number increases. The displacement thickness,

.
Sx = | (1 - Eﬂu:]d:
o

is thus increased as the ratio p/p, becomes less than one. This thickness
can be defined as the distance by wvhich the surface would need to be moved
if the flow were inviscid to produce the same external flov character-
istics. If the density in the boundary Jayer is reduced, then the dis-
placement thickness will correspondingly increase if the velocity profile
is unchanged.

The boundary layer thickness, §, remains unaffected tecause the velocity
distribution is not significantly affected. A similar increase does not
occur for the momentum thickness. The density ratio would appear from the

definition
Lu_ o
Oxx 'fo.u. (1 - go)az
o

to reduce this quantity, but the effect is not noticeable. The momentum
thickness is the thickness of a unit depth of the external flow which
contains a momentum flux deficiency of the boundary layer. It is thus
directly re.atable to the profile drag of the surface.

Values of the thickness parameters calculated using the two different
nethode are in relatively good agreement for the flat plate case being
discussed here. The results of the differential method show somevhat
more sensitivity to the effects of Q@ than do those from the integral
method.

The growth of the skew angle, ¢, is a function of chordwire and spanwise
position. In the integral method, the skew angle is practically indepen-
dent of O in the zero pressure gradient cases. In Figure (Ll), ¢ is
plotted versus y for a chordwise position of 1 foot for both the large and
small blades. The intermediate angular velocity for each blade was used.
This curve shows the inverse relatioanship between ¢ and y. Of particular
interest is the close match between the skew angle predicted by the
integral method at the tip of the 10-foot blade, which is traveling at

600 ft/sec, and at the y = 10-ft position of the LO-foot blade, which is
traveling at 150 ft/sec. This occurs because in the final integral form
of the momentum equations, (50x) and (50y), the terms in the solution of
3e/3x are either constant in the spanvise direction or proportional to 1/y.

Skev angles predicted by the differential method are generally larger, in
an absolute sense, than those predicted by the integral method. This is
not surprising, since ¢ is calculated by taking the difference between the
external and vall flow directions and the latter is calculated by obtaining
a ratio of the wall shear stresses. In the integral method the shear
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stress is analytically defined, whereas in the differential method it is
calculated fraom the velocity profiles. The differences between the values
of ¢ presented are within those indicated by the shear stresses.

The chordwise skin friction coefficient is higher in the rotating cases
with the same chordwise velocity. Since the equations acre normalized with
respect to PwUnl, the streamwise skia friction coefficient in the integral
method is resolved into chordwise and spanwise components as

Tox_ . _Toq % Voo
Qmua OQUu ‘-"D (l B ¢ Uo)

and

Tog . Togq 1 Se
PalUea® PolUn- Uy, (Um ¢)

The tangent of the skew angle, ¢, is usually pojitive while the crossflow,
Vo» i8 negative, and thus the chordwise skin friction coefficient is

greater than Toq/p.U.z by at least a factor of Quw/Us; Tox 18 not necessar-
1ly less than 1oq.

The spanwise skin friction coefficient indicates the relative amount of
spanvise flow. From the tabulated results it can be seen that *here is a
difference of two orders of magnitvde between the spanwise and the chord-
wise coefficients. The relative sizes of these two variables is controlled
by the relative size of their respective external flow velocity components
and the value of the skew angle, as indicated in Equations (50). Both Ve
and ¢ remain small in most cases. Values for the flat plate skin friction
coefficients cal~ulated by the two methods are in good agreement with the
differential method, again indicating a greater sensitivity to the effects
of external crossflow than does the integral method. This is reflected in
smaller absolute values of the spanwise skin friction coefficient at the
inboard stations, where the ratio of spanwise to chordwise external flow
velocities is grasatest.

Figure (L2) shows the chordwise skin friction coefficient plotted against
Reynolds number for a wide range of conditions as calculated by the
differential method on both large and small blades and the two-dimensional
values. Agreement is generally very good except at the high Reynolds
number values where compressibility plays a significant role.

4.2 Effect of Vortex Crossflow

The details of the interference of a tip vortex shed from a preceding blade
can be best observed by studying the spanwise distribution of 62and € at a
constant chordwise position over the outer portion of the blade. This has
been plotted in Figure (43) for the LO-foot blade for both methods. The
effects are not shown as well in the machine-plotted figures due to the
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dirferent scele. The displacement thickness increases on one side and
decreases on the other side of the centerline of the vortex, depending on
the sign of the circulation strength, I'. The same effect is manifest in
6 and 6x. Near the centerline of the vortex these variables remain almost
unchanged even though the crossflow velocity, Ve, is the highest in this
poaition. However, the velocity gradient 3Vw/3y has an inflection with a
zerc vaiue at the vortex centerline, and this quantity influences the
chordwise growth of the boundary layer and causes the spanwise inflection
in tae thickness parameters.

When T is positive, the velocity Vo at the centerline is outward, or
positive, vhercas the original undisturbed flow would have been negative.
Inboard of the centerline there is a divergence of the external stream.-
lines vhere 3Vo/dy is positive, and the boundary layer is reduced in
thickness. Outboard, 9Ve/3y is negative and the streamlines tend to be
convergant. In this region, the boundary layer is thicker. The opposite
sitvaiion occurs when T' is negative. The influence of 3Ve/3y is confirmed
when the results fiom the I'/h = + 200 ft/sec cases are examined. Here,
3Vo/3y ie smaller, and as would be expected the deviations from the I' = O
case are reduced proportionately.

The skew angle predicted by the integral method increases inboard of the
vortex centerline and decreases outboard of it, regardless of the sign of
I'. Figure (43) shows that the variation is larger for negative values of
I' than for positive. In the integral solution for e, terms with coeffi-
cients of VwdVw/3y have a dominant effect. The sign of this expression
will always be positive inboard of the vortex and negative outboard, caus-
ing the skew angle to develop as it does.

The skew angle variation predicted by the differential method is radically
different from that discussed for the integral method. The reason for this
difference is not hard to find. The variation of € in the differential
method, while being influenced by VwdVe/3y like the integral method, is
more strongly controlled by the radial variation of the chordwise skin
friction. Figure (44) shows the sensitivity of crx predicted by the
differential method at the trailing edge to the presence of the vortex.
The integral method shows no comparable effect. The differential method
calculates skew angle by taking the difference between external and wall
flow directions and determines the latter from the ratio of ceyx/ cry at the
wall. This explains the form of the € variation when the radial variation
of cfx and cey under the vortex is considered.

4.3 Effect of Surface Curvature

The characteristics of the boundary layer are virtually unaffected by the
surface curvature tested on both the large and small blades. Careful
examination of the complete data listings reveals that there is occasion-
ally an insignificant increase of %the order of 0.1 percent in the thickness
related parameters. There is no deiactable change in the surface shear
stress as predicted by either method. The slight increase in the growth
rate is a result of the factor of 1/h; in the chordwise velocity gradient
term of Equation (17x), pu/h3(3u/dx). Since 1/hj is less than 1, the

b1




magnitude of 3u/3x will be increased. This term is generally negative;
the increased magnitude produces a thickening of the boundary layer. From
Equation (61), the value of h) is seen to be equal to, or less than,

(1 + 6/Rg). The changes noted in § are consistent with this.

Similar effects were noted on blades with vortex crossflows and in the
cases which combined surface curvature and adverse pressure gradients. In
general, for the surface radii tested in this report, the effects of sur-
face curvature are negligible. The radius of curvature o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>