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ABSTRACT

This Volume, Part 2 of the Final Report for the Architectural
Study for Advanced Guidance Computers: represents the results of a study
to specify the architecture of missileborne computers which will permit
the effective use of higher order prugramming languages to define and
implement advanced guidance mission programs. The Space Programming
Language (SPL) was selected and 1mproved‘ and its syntactic forms analyzed
for efficient compiler implementation. Utilizing a selected set of guidance
and targeting equations as a vehicle for conducting tradeoff studies, compiler
code forms were studied for interfacing with computer functions. The
resulting architecture is effective in satisfying other computer system
requirements while significantly improving the size efficiency qf generated

object code.
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FORWARD

This is the final report on the Architectural Study for Advanced
Guidance Computers. This effort was performed for SAMSO, Air Force Systems
COullnd.'USAr, under contract number F04701-70-C-0065, over a ten month

period from 15 February to 15 December 1970.

The objective of the study is to define an advanced guidance
computer architecture that will permit the effective use of high-order
programming languagén in the definition and 1ﬁpiementation of advanced

ballistic missile missions. =~ -

This Volume, Part 2 of the Final Report, entitled Guidance Computer
Architecture Study, contains the selected architecture gogether with'the.
SPL language and compiler considerations involved in the design, and the"
programming tradeoff studies. The sgudy placed emphasis on the ability of
the architecture to efficiently execute compiler generated code. The size
efkiciency of the object code compared to that of assembly programming for
traditional single address fixed poiht alrborne computer architectures was

the major design consideration.

The other volume of the final report, Part 1, entitled Guidance
Programming Language Study, contains a syntactic analysis of the Space
Programming Language (SPL/MK II), the revisions and extensions to create SPL/

MK III, and the verified metalinguistic definition of SPL/MK III in TBNF.
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1.0 Introduction

The primary objective of the‘Architecture Study for Advanced
Guidance Computers was to develop an advanced guidance computer architecture
together with a compagible guidance system programming language ﬁhich would
permit the effective use of the programming language for définition and
implementation of advanced guidance missions. The study set out to show
how with effective interplay between compiler writers and.maqh;ne designers,
an architecture could belevolved which would permit compiler generation of

efficlent object code for the selected architectural configuration.

The first step in the effort was to select a.suitable high order
programming ianguage for guid#nce system programming. A versioﬂ of the Space
Programming Language (SPL/MK II) was selected. A careful syntactic anélysis
of the language was conducte&, and obvious ambiguities and 1nconsi§tencies
which would impede efficient object code generation for any machine architecture
were resolved. Next extensions and revisions to the language were proposed
to make the language more effective for advanced guidance programming. Each
language form was carefully studied from both the user's viewpoint, and in
relation to the type of code that could be produced by an effective compiling
process. The subset of SPL selected together with the revisions and extensions
comprised a definition of the language (SPL/MK III),'the syntax of which was

verified by developing a metalinguistic definition (TBNF), and finally generating

1-1
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- architecture is necessary to verify the initial design, to conduct timing
tradeoff studies, and to verify the sizing estimates derived under the

current effort,

The design ratioﬁale for the architecture is presegted in Section 3,
together with a summary of the salient features of the selecied architecture.
The summary includes a description of the ;rithmetic/control functions, the
data representation, memory allocation, the program string syllable structure,

and the control descriptors.

An extensive description of the architecture is presented in
Section 4. In addition to the architectural descrfptiop, the language and
compiler implications are presented together with numerous source program

and object code examples.

The programming tradeoff studies are presented in Section 5. An
gnalysis is presented for each of the guidance and targeging equations and
functions, ard a sdmmary created of the program sfring required to execute
the equations on the selected architecture. The SPL/MK III source pfogram is
next presented. The advaﬁced guidance computer archigecture (AGC) code which
resulted from hand compilation of the SPL/MK III source program is presented.

This is followed by the assembly language coding for the IDCU,

Section 6 presents some additional ‘considerations in relation to
the guidance programming language. These considerations were developed late in
the study effort and resulted from code optimization considerations in the

final stages of the programming studies.

s

i L S s sl bins



2.0 Summary of Results

The study has clearly demonstrated the feasibility of p?oviding
an Advanced Guidance Computer Architecture which solves the problem which
currently plagues the aerospace comp}ler user, that of grave 1neffic1enc1el'
introduced into the operational program through code expansion from compiler
generated code. By considering both the characteristics of the high-order_
language, in this instance the Space Programming Language (SPL/MK III), and
the aspects of the compiling process during the functional design process for
the airborne computer, compatibility has been achie&ed between tﬁe high-order

language and the sclected architecture.

The results of the progr;mming studies clearly indicate the superiority
of the selected architecture over both a traditional single address airborne
computer architecture and an improved airborne processor such as the IDCU. A
set of 24 equations was used throughout the study. This certainly represents

a sufficient sample size to clearly indicate an efficiency trend.

A summary of the programming efficiency for the AGC architecture
compared to the ATS single address baseline and to the IDCU is presented in -Table
2-1. There is an overall reduction of 60X in the memory requirements for the AGC
architecture vs a traditional single address architecture for implementing the
same set of guidance equations and furictions. This percentage holds for both

the in-line code and for the service routines as a whole. This relationship

2-1
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Thére is no doubt that the significant increase in compiler program-
mning efficienéi for the AGC architecture is achieved at the expense of additional
processor control logic. The availability of large scale integration (LSI)
licroelectronico is rapidly reducing the size,.weight. power, and reliability,
penaltieé for increases in control complexity. There are at present 42
arithmetic and control functions identified for the AGC, 26 of which appear
to be probable candidates for implementation in registers and flip-flops
rlther than in dedicated memory locations. The selection of these functions
for register 1np1emen£ation wvas in most instances done on a feeling of what
functions would need to be implemented as high speed operations to sustain
computation efficiency. A more effective means of setting computational
performance and control functional implementation locaéion is through

simulation of the proposed architecture.

There are several indications that the selected architecture will
execute the selected equations and functions well within the specified
execution timing requirements. The architecture has a form of pipe-lining
for the program string. This approach minimizes instruction access time. The
operand/operator string reduces memory accesses thereby increasing effective
execution time. The architepture incorporates an automated way of handling
the stack operagions between the arithmetic registers and the stack in scratch
pad memory. Program constints are carried as literals in the program string
and are transferred directly t6 the stack further reducing memory access time.
Finally, some programming language functions, for example loop-control, are

directly implemented in the architecture.

-3



holds for the in-line code for each of three different subsets (figures) of
the representative equations and functions.

There is an overall reduction of 40% in the memory requirements for
the AGC architecture vs the IDCU for'programming the same set of guidance and
targeting functions. For one subset the reduction was 30% whereas for the
other subset the reduction was 55%. The AGC's efficiency is due to the use of
a polish stack with implied addressing, the use of floating éoint, the number
representation used, direct fetch of literals from instructions, built-in
array operations and use of 1 or 2 byte instructions without word-boundary
restrictions. |

It is recognized that further analysis might reduce the differences
in programming efficiency between the three archifecturea. On the one hand
one could argue that the 20% allowance for such functions as shifting, scaling
and growth for the sizing done for the ATS configuration could be reduced
by careful reprogramming of the equations and functigns. On the other hand
the AGC program string includes many constants which in the single address
configuration are stored and addressed as data. The Qige of the equation
and function sample has resulted in a number of data points which make the
probability of reversing the indicated efficiency trend very small.

ADVANCED GUIDANCE COMPUTER ARCHITECTURE
SUMMARY OF PROGRAMMING EFFICIENCY .

AGC Memory | ATS Memory | AGC Memory IDCU Memorv
Words Words Words ~ Words
Figure Figure Figure Figure
2,3,4 2,3,4 155 1,5
In-Line Program 76 177 55 106
Service Routines 80 193 32 32
Totals 156 | 370 87 138

All word lengths are 32 bits. Figure numbers refer to Section 5.

2-2




There is no doubt that the significant increase in compiler program-
ming efficiency for the AGC architecture is achieved at the expense of additio
processor control logic. The availability of large scale integration (LSI)
microelectronics is rapidly reducing the size,‘weight, power, and reliability,
penalties for increases in control complexity. There are at present 42
arithmetic and control functions identified for the AGC, 26 of which appear
to be probable candidates for implementation in registers and flip-flops
ratﬁer than in dedicated memory locations. The selection of these functions
for register. 1mp1emenfation was in most instances done on a feeling of what
functions would need to be implemented as high speed operations to sustain
computation efficiency. A more effective means of setting computational
performance and control functional implementation locaéion is through

' simulation of the proposed architecture.

There are several indications that the selected architecture will
execute the selected equations and functions well within the specified
execution timing requirements. The architecture has a form of pipe-lining
for the program string., This approach minimizes instruction access time. The
operand/operator string reduces memory accesses thereby increasing effective
execution time. The architegture incorporates an automated way of handling
the stack operations between the arithmetic registers and the stack in scratch
pad memory. Program constants are car;ied as literals in the program string
and are transferred directly t6 the stack further reducing memory access time.
Finally, some programming language functions, for example loop-control, are

directly implemented in the architecture.
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It is easy to conclude that by utilizing a 2 microsecond cycle time
in NDRO memory coupled with T2L MSI/LSI circuitry the selected architecture
will satisfy the necessary computational requirements. However, it is very
difficult to determine, without simulating the architecture, which control
features must be implemented in circuitry, and which functions could best
be located in memory in order to minimize control circuitry, while maintaining

the computational efficiency necessary to meet the timing requirements.

The second objective of the study was achieved with the creation of
a verified syntax for the Space Programming Language (SPL/MK III)., All
known ambiguities and inconsistencies were removed from the selecte_d subset
of SPL, necessary revisions to selected language elements iccomplished,
desirable extensions to language elements were proposed, and a metalinguistic
definition of the recommended guidance programming language (SPL/MK III) was

created and verified.
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Finally, the compiling process either accomplishes the memory allocation
process, or accomplishes partial memory allocation and furnishes information
to the object time loader to complete memory allocation in a dynamic manner

at object time.

A commonly used form of the intermediate language for the arithmetic
and logical 'porfions of the source input is poﬂ.sh notation. The original
not'gtion has been successfully expanded to include many other functionms,
for example, procedures and subroutines calls by name and value. The
architecture selected executes a left-hand polish operand/operator string
which 1is a direct transformation of the intermediate language. There are
several features of the operand/operator string worth noting at this time.
The polish string concept minimi;el storage requirements for intermediate
results for arithmetic and logical equations. The natural embodiment
of this concept in machine architecture is through a last-in-first-out (LIFO)
" stack. In this manner, the scalar operators utilize either the top two
items in the stack (binary) or the top item in the stack (unary) leaving
the result in the top of the stack. This is frequently termed implicit

addressing, and results in considerable savings in addressing operations.

Operands such as constants and program addresses, which are known
as the program string is generated, are directly included in the program string
as literals. This is quite natural to the compiling process. The literals are

transferred directly from the program string to the top of the stack. This is

. 3=2
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3.0 Architecture Summary

3.1 Design Rationale and General System Description

3.1.1 Design Rationale

The architecture under consideration has been evolved from an
analysis of the language elements that comprise SPL/MK III together with
the compiling processes necessary to transform SPL source program into
object code. The SPL language and compiler considerations have been
included as part of the architecture description'throughout Section 4,

In most instances the language considerations, and the compiling process,

are discussed and then illustrated with examples.
‘ :

In a simplified sense the compiling process Q;y be functionally
described as scanning the source program and translating the source input
string into an intermediate language. The intermediate language is highly
compact in relation to the source string. The information concerning data
items, variables, constants, arrays, is placed in Tables. The information
concerning program control, and information concerning allocation, is placed
in other Tables. Utilizing the information contained in the various Tables,

the compiling process then shifts to generating object code.

First the program string I!s generated for each of the parsed source
statements. Modern compilers generate invariant code which is relocatable
without modification by the allocation process. The compiler process next.
utilizes the control information, for example, procedure references, subroutine

and function calls, and loop control, to interconnect the program strings.




another form of implicit addressing and again results in savings in addressing
operations. The remainder of the operands are obtained by placing relative

" addressing references to their memory locations in the program stream.

The selected architecture utilizes the table created by the compiling
process for program control, and the table of descriptions of data arrays as
part of its control structure. These tables are.stored in the form of
descriptors in a portion of the program memory called the program control
table (PCT). The architecture utilizes the program control table t6 control
the flow of the object program. This implementation considerably, reduces the
amount of compiler generated code to accomplish these functions. In addition
it simplifies and reduces the 1neffic1encies_aasociated with the memory

allocation process.

The nature of the airborne guidance problem suggests that memory
allocation be completed in the compilation process rather than by the
object time loader. The rationale for this is based upon the neces;ity for
the airborne program to reside in a memory which cannot be altered in the
operational environment, and the lack of auxilary atofage necessary for dynamic
itorage allocation in the operating environment. The compiling process would,
therefore, assign the base addresses for each program segment and the base
address for each data array and inpuf/output area in the appropriate descriptors
in the program control table to complete the allocation process. For a typical

guidance program the completion of the allocatiorn process would involve assigning
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less than a thousand actual addvesses.

In developing the operand/operator scheme for the architecture, a
great deal of attention was given to the information content. of the program
string. It was determined that all scalar operators could be accommodated
within a byte (8-bits), and that all direct addressing operations could be
accomplished within 2 bytes. Literals in the prograr string could bg
accommodated in most cases with 1 byte, and in virtually all cases, within !
2 bytes. Transfers of control between program segments, 1nit1a;1ng of'input/
output operations, and the first reference to each data array could be handled
by a.2-byte indirect addressing operation. This resulted in an extremely L‘f
compact program stream consisting of 2-byte addressing syllables, one-byte (:) i
operator syllables, and one or two byte literal syllables. The mechanization
of the program string utilizes the first 2-bits in a syllable to determine the -
syllable type. In order to eliminate unusable portions of 32-bit words, which
would otherwise greatly reduce the efficiency of the program syllable stream, a

design has been provided such that addressing syllables and 2~byte literal

syllables may cross 32-bit word memory boundaries.

Considerable atte;tion was given to the information content of the
addressing operations. The concept of implicit addressiné threugh the use of
scelar and array stacks has already been mentioned. The explicit addressing -
structure gives consideration to the radiation environment, which requires
that scalar variables, arrays, and stacks be separated from the program segments.

The concept of partial addressing was utilized throughout the design. Provisions(;_



vere made to divide the scratch pad and program storage into segments. The

size of each segment is set by the allocation process of the compiler.

The base location of each segment type is assigned by the allocation process

to base address registers which can be either dedicated locations in scratch
pad memory or addresses contained in program control storage. For‘examplé,
scalar variables are accessed relative to the base address of scratch pad memory
(SPM), the stacks are acceased via the stack pointer registers (Po, 21, and P ),
each program control table through the program control table address (ECT), and

each program begment through the program segment base register (PSB).

The direct addressiné syllable -can directly addresé éé;iafévariables
and scratch paq memory and the érogram control table;“It can also difectly
address any control stream syilaﬁle or local constant in a program segment.

‘ This addressing scheme couéled with the implicit addressing associated with
stack operation covers the vast majority of the addressing operations in

program execution.

The indirect addressing éyllable accesses descriptors in the program
control table which in turn contain the base address of program segments, the
base address of input/output areas, and the base addfess of'data arrays.
Information from the addressing syllable is combined with information contained
in contro; descriptors to perform at object time comple% addressing operations

which would otherwise be inefficiently performed by compiler generated code.



The selection of the architecture considered the efficient imple-
mentation of SPL procedure execution and of sﬁbroutine anq function entry
and exit. Careful attention has béen given to the efficieﬁt passing of
parameters to subroutines and functions and to the return of results upon

subroutine or function completion.

The utilization of stacks is an integral part of the proposed
architecture. The architecture contains tﬁree stacks, one for scalar
operations, and two additional stacks for array operations. The scalar
stack is'a combination of a portion'of scratch pad memory coupled to the
arithmetic registers, vhereas the additional array stacks are lists in'
scratch pad memory. A me?hod has been provided to automatically handle
adjusting the top of the stack and to minimize memory references for scalar

stack operation.

A uniform method of arithmetic representation has been selected

for the proposed architecture. The representation is caﬁable of accomplishing

the potential advanced guidance and targeting equation and functions for
advanced guidance missions within the accuracy requirements, without the use
of fixed point operations. The arithmetic representation selected is a
floating point representation whereby a zero éxpénent represents arithmetic

integers. This representation was selected to eliminate the inefficiencies

involved in generating code for fixed point and mixed arithmetic operationms.

Additional floating point control functions have been provided to terminate

computations on boundary conditions.
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The architecture provides for partial word operations for handling

the formatting and conversion of input and output quantities, input and output

character or bit streams, and output telemetry data. The partial word

insertion and extraction operations are based on the concept of identifying

the starting bit and field length of the partial word data.

-Indexing operations in the AC. architecture have been separated
into two functional areas, indexing for' progran loop control, and indexing
for }ihndling data arrays. This separation permits efficient handling of the
indexing function by the compiler. Indexing operations on arrays are handled

in the array mode by the array operators, whereas accessing a data element

'from.an array is handled by an addressing operation which involves an index

value in the stack and the array descriptor. Indexing operations for loop
control are handled by a generalized indexing function which combines an
increment with a current value to test against a final value upon the
completion of each iteration of the loop. For nested loops the higher level

loop control values are stored in the scalar stack.

T An array processing mode has been provided in the selected
architecture. The mode provides for array operations on couplets of two
dimensioned arrays of up to 32x32 elements. When in the array mode the
addressing operators will load the arrays by column or By row into the proper .
stacks, perform the designated array operation placing the results in the third
stack. Addressing operations will properly store the array result in accordance

with the result array descriptor. Utilization of the array mode significantly

reduces the code generated by the compiler for array operations.



The interrupt functions provided by the selected architecture provide
for the setting of the priority level for each intetrubt in the control memory.
This will permit change in priority level of an interrupt function without
engineering redesign., A masking function is provided to prevent the
occurrance of selected interrupts during interrupt processing. Each of
the interrupts causes transfer to an address of an interrupt array contained
in the program control table. The compiler inserts the starting address of

the appropriate interrupt processing routine into the interrupt array.

The architecture provides for the efficient implementation of the
circumvention process. The machine states normally stored in the stack for
subroutine entry and loop ‘control are redundantly stored in dedicated
locations. A recovery routine utilizes this dgta together with redundantly
stored critical variables to reinitiate processing. The circumvention process
is recursive, and permits the recovery routine to handle any number of

interrupts.

The input/output functions for the selected architecture operate in
a manner which is completely asynchronous of the main program execution.
Input or output is initiated within the central processor function but then
proceeds to completion without further program control. Information is passed
between the memory of the central processor and the input/output on'the basis
of cycle stealing during an appropriate part of the instruction cycle. Inpuf
and output is initiated by addressing input or output descriptors in the
program reference table. The descriptor contains sufficient information for the

complete interpretation of the input or output function to be performed;




B

3.1.2 General Systeém Deéscéription

3.1.2.1 General Organization

The Advanced Guidance Computer (AGC) is a general-purpose,
stored-program machine whose design has been influenced by the physical
limitations of its intended operating environment and by the requirement
that most of the programs which it will execute will be generated by a
compiler from source language statements written in a higher order
language, namely SPL as specified in Part 1 of this report. The design
of the AGC is aimed toward efficient object code tepresentatién of
compiled SPL statements.

The AGC memory cont;ihs 32768 32-bit words of which 2048
words are scratch pad (NDRO) stor;ge and 30720 words are electrically
alterable (NDRO) storage. There is, in additfon, a 1024-word high
spzed control memory which contains the microprogram used to implement
the AGC instruction repertoire. |

The logical organization of the AGC is composed of three
principal sections:

Control: Fetches each AGC syllable while the current

syllable is being executed. Syllables are fetched from the

program memory one word at a time into a two-word register
in a one-word look-ahead scheme that permits a two-byte

syllable to.span a word toundary. The control section then
interprets the one or two-byte AGC syllables, furnishes the
timing and directs the sequencing of events for the logical

realization of programs.
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3.1.2.2

Arithmetic: Carries out the arithmetic and logic functions
as directed by the Control section.

Input/Output: Provides for the operation of input/output

functions in a manner which is asynchronous to the main
program execution. The main program initiates the input/
output request and is interrupted when the request has been

fulfilled.

Memory Allocation and Addressing

The Scratchpad' storage section of memory is further dividéd

into three subsections. These are:

Dedicated Register Area: These are memory locations used to’

hold registers and other control functions whose speed
requireménts or frequency of use do not appear to call for
control registers or flip-flop implementation.

Scalar and Array Variable Storage: The function of this

area is implied by its name and it immediately follows the
dedicated register area. The first 1024 locations are
available for the storage and retrieval of program alterable
scalar variables. The first word of this 1024 sub-area is
marked by the Scratchpad Memory (SPM) base address register.
This base register is added to all ten-bit addresses of
addressing syllables which refer to "scratch pad memory." °
Arrays which are accessed only by array descfiptore may be

stored anyvhere in scratch pad memory and thus may be stored

in the sub-area between scalar variable storage and the stack

area (see below).
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Scalar and Array Mode Stacks: This area is of a length

sufficient to satisfy the u;cimum stack depth requirements of
the operational guidance program and occupies the tail end of
the scratchpad memory. Within it, operands are stored and
fetched according to the address contained in the scalar
mode pointer register rP. In array mode, .whr'le arrays are
loaded and stored and individual elem'ents accessed according
éo the contents of the three array mnde stack pointer

registers Po (=rP of scalar mode), P, and P,

Within the stack area of scratchpad umr;v, subroutine and
function calling sequence arguments are located by the Calling Seqt.:ence
Base Address Register (CSB)'. The current contents of CSB are preserved
~ whenever a subroutine or function call is executed. The CSB is then
reset to the highest stack address of a group of stack words consisting

of calling sequence arguments and Return Parameter Words (RPW's).

The program storage section of memory is further divided into
three subsections. These are:

Microprogrum Storage Reserve: This is a 1024-word area which

holds a copy of the microprogram operating out of a high-speed
control memory. This copy is used to restore the latter

vhenever a radiation interrupt recovery is initiated.

‘Program Control Table (PCT): This is a 1024-word area whose
first word is marked by the PCT base address register. The
program control table is used to store descriptor words.

These descriptor words define all variable and constant
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3.1.2.3

arrays, all subroutine and function entry points and all
input/output operations.

General Program Area: The remaining approximately 28000

locations of program storage are a#ailable for storing the
operational guidance program. Each program within this

area 1s a subsertion of or occupies one or more "program
segments.” Each program segment consists of up to 1024
program words and up to 1023 local data words. The first
word of the program segment is marked by the Program Segment
Base Address Register (PSB) and succeeding program word;
occupy successively higher addresses. The local data words '
of a program segment are also located relative to the
setting of the PSB but the relative addressing is negative,
i.e., successively higher local data as generated are

stored in successively lower absolute addresses. Within

the program area of the segment individual syllables may be
addressed at the byte level while references to local single
or double precision data conform to memory word boundaries.

Operating Modes and Control Stream Syllables

The AGC has two modes of operation:

Scalar Mode: Scalar mode handles all of the usual arithmetic,

Boolean and logical computations that are perfofmed on one or two-
word data items including individﬁal elements of arrays.

The following types of program functions are restricted to

scalar mode: input/output, transfer of control including

subroutine or .function calls, partial word operations.
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Array Mode: Array mode allows for operations on whole one

or two-dimensional arrays and array cross-sections (individual
columns or rows of a two-dimensional array). The operations
encompassed are simple assignment; array exchange; element-
by;elenent addition, subtraction, multiplication and division;
matrix multiplication including dot product; vector cross-
produc;. The element-by-element operations provide for one of
the operands to be a ascalar. All array operations except
simple assignment and exchange are elementary couplet
operations in which a result must be stored each time and may
not be retained without fetching as an operand for a further

computation.

In either mode, AGC syllables are of four basic types which are

identified by the first two bits of the instruction. These are:

Literal Fetch (00): Allows a 5 or 13-bit integer literal to be

loaded into the arithmetic registers directly from the
instruction itself without any additional memory access. The
5-bit literal is contained in a one-byte literal fetch syllable
and the 13-bit literal in a two-byte literal fetch syllable.
The literal fetch syllable is recognized ir. both array and
scalar modes but has slight mode~dependent differences in
effect.

Operators (01): Operator syllables are always oneé byte long

and are used in scalar mode to perform arithmetic, Boolean,
logical, manipulative, storage and control functions. The
implied address(es) of the operand(s) is the one (are the two)
item(s) at the top of the scalar mode stack. In array mo&e;
operators are available to call out or facilitate the
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assignment, exchange, element-by-element, multiplication and (:)
cross-product operations. The implied addresses of the

array operands are the array mode stacks. Two operators,

EAM (enter array mode) and ESM (enter scalar mode), are

recognized in either mode.

Addressing §211ab1§s'(10): Addressing syllables are two

bytes long with the last ten bits containing an address

relative to one of the four base registers. In scalar

mode, addressing operators are used to fetch one or two~wor&

operands to the top of the scalar mode stack or to store one

or two-word results in scratch pad memory. In array mode the |
fetching operators are used to place scalar operands at the L-‘
top of the array mode stacks. Such a fetch also causes the (:)
given array mode stack to be locked onto the scalar operand

creating, in effect, an array all elements of which are r—
identical.

Descriptor Call Syllables (11): Descriptor call syllables

are also two bytes long with the last ten bits containing an
address relative to the Program Control Table (PCT) or
Calling Sequence Base (CSB). A descriptor call initida.es
the execution of an instruction which requires complicated
supplementary data or elaboration of execution details that
cannot be encoded into the descriptor call itself. This
additional information is, therefore, encoded in a 32-bit
word called a descriptor and the descriptor is located by

the address field of the descriptor call. In scalar mode, (_
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descriptor calls are available for: fetching and storing an
individual element of an array, the descriptor containing
information on the precision, dimensions and base address of
the array; calling a subroutine, the descriptor containing

the address of the entry point and word count of the calling
sequence; initiating input and output, the descriptor containing
information on AD/DA conversion, channel identification, bit or
byte transfer, serial or parallel operation. In array mode,
descriptor calls are available for: fetching a whole array

by row or by column; fetching an array cross-section; storing

a vhole array by column; storing an array cross-section;
fetching a cross-product operand. In all of these cases the
descriptor is an 'array descriptor as described for scalar

mode element fetch and store.

Confining attention to scalar mode alone, the major categories

of operators are:

Arithmetic: Nine basic ar:l.t‘hmet:lc operators are provided
including single and double precision floating point addition,
subtraction, multiplication and division and integer quotient
and remainder. In addition to the usual interrupts for
floating point underflow and overflow, facilities are provided
for controlling floating point operations on the basis of
alignment and normalization shift limits.

‘Boolean: The six relational states (<, <, =; #, 2, >) are |
represented by binary operators which produce the values

"true" (1) or "false" (0) which can be combined by the
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operations for "logical or'", "logical and", "logical exclusive or"

and "not."

Decision‘and‘nrancﬂigg: Operators are provided for uncondi-
tional jumps within and between program ségments. Conditional
branching instructions are.based on the recognition of the
values "true" and "false" as established by Boolean operations
and also may be intra or in;eraegmental. A "universal fall
through symbol" 1s recognized by mo;t branching instructions to
enable the execution of SPL declared switches with fall through
positions.

Subroutines: Subroutine and fﬁnction calls are accomplished
by a descriptor call syllable as discussed above. Operators
are proQided for normal (immediately following point of call)
and abnormal subroutine returns (to a label specified as an
argument). The abnormal subroutine exit operator is capable
of short-circuiting intervening levels of subroutine nesting
to return to the level wkere the label argument is a local
label. Calling sequence arguments and’ return control
information are sequestered in the scalar mode stack and upon

- normal return this information ia'removed in a fashion that
allows a functional result to remain on the top of the stack.
Indexing; Indexing in the conventional sense, that is
creating effective addresses by index register modificatién,
is implemental in a different manner in the AGC architecture.
These &architectural functions of indeiing are met through the
descriptor call syllab}es of scalar and array mode. Indexing

on the AGC reférs to provisions made for efficient compilation
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and eiecution of iterative loops (SPL FOR-loop). A single
operator provides for the simultaneous setting of loop control
registers and the preservation in the scalar mode stack of their
previous contents together with the loop return point address.

A single operator provides the facility for updating and testing

'fthé.loép control.parameter and for branching to the loop

return point (iteration incomplete) or restoring the loop control

':ggisters to thelr previous values (iteration complete).

'Pattfal'Words: Extraction and insertidn of signed or unsigned

partial word fields is pfovided without the use of shift
operations tﬁrough the use of operators whose arguments are the
starting bit and field length.

Storing: Although most needs for storing operands in scratch
pad memory are met by the addressing syllables, several two-
argument operators are provided to permit the étorage of
subroutine results where the location of the result is known

to the subroutine as an address argument.

Intercept Processing/Circumvention: Operators are provided

for accessing the interrupt condition and interrupt mask
register. Interrupt conditions can, therefore, be enabled

and disabled at the programmer's discretion during interrupt
processing. An operator is ﬁrovided to breakpoint the guidance
program's operation at critical points by redundantly storing
processor status information in dedicated locations., Another
operation is provided to restore program operation to the last

program point thus preserved.
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3.1.2.4 Stack Concept and Function

The central feature‘whibh distinguishes the AGC from otﬁér
guidance computer architectures is its organization about a last-in-
first-out stack mechanism. The scalar mode stack consists of two
arithmetic registers and the scalar mode stack pointer register (xP) which
contains an address in the stack area of scratchpad storage. As
operands are fetched from scratch pad memory, from the control stream,
from the PCT, or from program storage, they eﬁter the top-most'atithmetic
register. The previous contents of this register move to the lower
arithmetic register and the previous contents of the latter move into the
membry portion of the stack marked by rP. Tihe stack mechanism is augmented
by additional controls to designate the fullness/emptiness of an arithmetic
register and a control which désignates whicﬁ of the two ;rithmetic
registers is currently to be regarded as top-most. The net effect is a
mechanism which achieves push-down pop-up capability in a manner that
minimizes actual data movement and memory accesses.

Stack functioning is automatically adjusted by the presence
of double precision operands so that storage of a &ouble precision
operand in the memory portion of the stack or its retrieval therefrom
affects the two halves of the double-length arithmetic registers and
two movements of the stack pointer register.

In the execution of operators, those which require a single
operand first invoke & control subsequence which verifies the presence
of at least one operand in the arithmetic registers and makes this
register top-most if necessary; this accomplished, the operation
proceeds. Operators that require two operands, first invoke a control

subsequence which verifies that both arithmetic registers are filled,
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filling any empty register from memory and maintaining in the regis:
the zeverse order of the operands' entry to the stack; this
done, fhe operatiow. proceeds., One-operand operations generally repluace

their arguments by-their results, If we call the top-most arithmetic

reghtcr rA and the other register rB, the pattern for a two-operand

operation is rB op rA + rB, mark rA empty.
3.1.2.5 Masmonic Descriptions

The definition of the AGC operator Mnemonics used throughout
the remainder of this report are presented in Table 3-1. The fo'llow:lng
tables of inetruction mnemonics present in alphabetical order all of the
AGC instruction mnemonice. The instructions of both scalar and array
modes are merged in this list’ with notation a‘s to which mode they operate
under. Por each instfuction the tabled date includes:

1, ‘Mnemonic: This is generally a three-letter symbol.

Certain arithmetic operators are represented by their
conventional algebraic or SPL symbol with a2 qualifying
letter, é.g., +S is single precision addition, +I is
integer division.
- 2. Mode: A = Operates in array mode only.
B = Operates in both array and scalar mode.
S= Oper'a'ces in scalar mode only.
3. Type: L = Literal fetch (1 or 2 bytes).
0 = Operator (1 byte).
A = Addressing operator (2 bytes).
D = Descriptor call (2 bytes).

4. ‘Number of Opérarnds: The number of operands required to be

on the top of the stack (T0S). These operands are
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6.

accessible only when they occupy the two arithmetic
registers at the TOS, rA and rB. Therefore, at the start
of each operation a process of stack adjustment must be
undertaken to make sure that at least one register is
loaded for one operand operation or both are loaded for
two operand operations. This preliminary stack adjustment
is omitted from the functional descriptions of the
instructions. If an instruction requires more than two
operands, the step of adjustment required to get at the
third, etc., operand is indicated by the symbol ADJ.

Functional Description: A brief formula and/or verbal

description is given in terms of registers. Extremely
complex operations such as subroutine entry.(ESP) cannot

be described briefly except in general functional terms.
Timing: A range of probable syllable execution times is
given in microseconds (us) for the scalar operatiomns, : These
figures are based on the feasibility of utilizing a clock:
rate in the 5 to 10 mc range: Meaningful estimation of
execution times for array functions can only be obtained

by simulation, and will be heavily dependent on
arithmetic/control unit hardware vs control memory/mgin

memory tradeoffs and on array size,
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Mnemonic Mode Type # Ops.

Functional Description

+S

*S

RS

+D

*D

+RD

+1

0

2

Single Precision Floating or Integer 2-4
Addition. rBtrA+*rB. Produces an

integer result when both operands

are integers if result has <24 bits.
Floating point results are normalized

and mantissa may have more than 24

bits.

Single Precision Floating or Integer  2-4
Subtraction. rB-rA+rB., See remarks
pertaining to +S.

Single Precision Floating or Integer 14-18
Multiplication. rB#*rA+rB. See
remarks pertaining to +S.

(
Single Precision Floating (Real) 16-20
Division. rB#rA+rB. Produces a

floating point result without regard

to operands.

Double Precision Floating Addition. 4-6
tB+rA+rB. Producee full 56-bit !
result from 56-bit operands.

Double Precision Floating Addition. 4-6
rB-rA+*rB. Produces full 56-bit
result from 56-bit operands.

Double Precision Floating Multiplica- 16-20
tion. rB*rA+rB. Produces full 56-bit
resuit from 56-bit operands.

Double Precision Floating (Real) 18-22
Divisio.r. rRirA+*rB. Produces full
56-bit result from 56-bit operands.

Integer Division. 16-20
1. rA, rB if not already integers
are integerized.
2, Truncated integer quotient
[rB/rA]-+xB.
3. Integer remainder -rA.

The following four operators are
intended for use in procedures to
store scalar results at addresses
supplied as output parameters.

Table 3-1
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Mnemonic Mode Type # Ops.

Functional Description Timing (us)

+C

&c

«K

&K

ABS

ADE

ADE,C

AE+

0

2

1. rA contains an SPM relative 2
a address; rB contains a single
precision operand.
2. Store rB operand at address in rA.
3. Purge both address and operand
from TOS.

Same as +C except rB contains a DP 2-4
operand. Left half stored at address;
right half at address +1.

Same as +C except only the address is 2
purged.

Same as &C except only the address is 2-4
purged.

Abgolute Value Operator. Sign of rA 1
or rB, whichever is at T0S, is set to O.

Address of Element Descriptor Call.

Upon inspecting array dimensions in the
addressed array descriptor:

1. 1If array is nxl or lxn, one index 3-4
(I) is present at TOS. The address of
array element A(I) is left at TOS with

I purged.

2. Otherwise array is mxn with both 3-4
m,n>1 and two indices (I,J) are present

at TOS (I beneath J). The address of
element A(I,J) 18 left at TOS replacing
both I and J.

Array Element Addition.

Adds array or scalar in Stack O
element-by-element to array or scalar
in Stack 1 (not both scalars) and
stores array result in Stack 2. The
array dimensions and array

vs. scalar character of the operands
are set by the operand or array
fetches used to load Stacks O and 1.
The precision of the result is set by
the array precision bit from the array
descriptor.
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Mnemonic Mode Type # Ops. * "Functional Description Timing (us)

(f) . AE- A 0 2 Array Element Subtraction. See
' remarks pertaining to AE+.

AE* A iplication. See remarks
© 2y Elameps pujstettcacion

AE+ A (o] 2 Array Element Division. See remarks
. pertaining to AE+.

AFC A D 0 Array Fetch by Column. The base

AFC,C address, dimensions and precision bit
of the addressed array descriptor are
distributed to control registers and
used to fetch the array by columns to
Stack O or Stack 1 if Stack O already
contains an array mode operand.

AFR A D 0  Array Fetch by Row. Seme as AFC/AFC,C

AFR,C except that the array is fet.ched by
rows.,
AND S o 2 Logical and Boolean And Operator. 1-2

rBnrA+rB. The result is 32 bits on a
bit-by~bit basis.

—_ ASC A D 1 Array Store by Column. The array

) AsC,C result stored by colum in Stack 2
(see however operators SS0,SS1) is
stored by column according to the
addressed array descriptor. The
dimensions of the result as determined
by the preceding array operation (see
AE+ ,AE- AE* AE+ MXM and VXP) take
precedence over the dimensions in the
addressed descriptor.

ASX S 0 1 Abnormal Subroutine Exit., The operand 2-6
at TOS is either a program reference
descriptor (PRD) which specifies the
location of an abnormal (alternate,
error) return point from a subroutine
or else it is an argument locator
refering to the next most dynamic
outer level of subroutine nesting. In
the latter case, the operation iterates
until the argument located by the:
argument locator is a PRD,

CHS S 0 1 Change Sign (Unary Minus) Operator. 1

The sign of rA or rB, whichever is
TOS, is complemented.
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Mnemonic Mode Type # Ops.

Functional Description

CMP

CoXx,C

DCI

DUP

ELF
ELF,C

EQ

EQUIV

ESC
ESC,C

S

0

1

Logical One's Complement Operator. 1
The operand in rA or rB, whichever

is TOS, is complemented on a 32-bit,
bit-by-bit basis. The result replaces
the argument. Note, this is not the
Boolean Not Operator (NOT).

Array Column Cross-Section Fetch. The
operand at TOS is the column index and
this is combined with data in the
addressed array descriptor to fetch
the column to Stack O or 1 as per AFC
or AFR.

Descriptor Call Indirect. The target 2-3
of the CSB relative address is a
descriptor call which is executed.

Duplicate Operator. rA is emptied 1if 1-2
need be and a carbon copy of rB is
propagated to rA.

‘Lnter Array Mode. The ASMC flip-flop 1

is set =1, and all instructions, most
particularly descriptor calls, are
given their array mode interpretation.

Element Fetch Descriptor Call. Exactly &4-6
like ADE/ADE,C except that the element
rather than its address is fetched to

the TOS.

Equal Relational Operator. If rA=rB 1-2
then an integer 1 (0~==——- 01 = Boolean
True) 1is left at TOS with both comparands
purged. If rAfrB, the comparands are
replaced by 0 (=Boolean False).

Boolean Equivalence Operator. rB 1-2
EQUIV rA*rB on a 32-bit, bit-by-bit

basis: 1 EQUIV 1=1, O EQUIV o=l,

o EQUIV 1=1 EQUIV 0=0.

Element Store and Clear. Upon inspecting 2-3
array dimensions in the addressed array
descriptor:

1. If the array is nxl or 1lxn, the

stack contents are an element A(I) be-
neath the index I. The element is

stored and both element and index are
purged.
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Punctional Description Timing (us)

Mnemonic Mode Type # Ops.

ESK s D 2
ESK,C or

ESM B 0 0

ESP S D 0
ESP,C

EXT S 0 3

2. Otherwise array is mxn with both 3-4
m,n>1 and stack contents are
A(I,J) beneath J beneath I. The
element is stored and all three
. operands are purged.

Element Store and Keep. Same as ESC/ 2-3
ESC,C except that only the index or
indices are purged.

Enter Scalar Mode. The ASMC flip-flop 1
is set =0, and all instructions are
given their scalar mode interpretation.

Enter Sub-Program Descriptor Call. 5-8
The contents of the arithmetic regis-
ters, if any, are pushed down into the
memory portion of the stack. Then the
contents of the PSB, CSB and PC
registers (base addresses and location
counter) together with a count of the
number of words in the argument list
(taken from the subroutine call
descriptor addressed by the ESP/ESC,C .
instruction) are stored as two return
parameter words (RPWj, RPW2) at TOS.
These are then pushed down into the
memory portion of the stack and PSB
and PC are reset from the address field
of the descriptor, while CSB is reset
from the current contents of rP (scalar
stack pointer register). Control is
resumed at the location indicated in
PC. Control is returned by the
execution of an NSX operator to the
byte following the ESP/ESP,C.

Partial Field Extract Operator. The 4-6
topmost two operands iIn the stack are

the field length (1<FL<32) and the

starting bit (0<SB<31; FL+SB<32; SB

beneath FL). These are removed to

special purpose registers. The third
operand is then ADJusted and the

specified field is extracted therefrom

and left at TOS right-justified and
left-zero-filled.

3-25



Mnemonic Mode Type # Ops.

Functional Description

FCV

FDC
FDP
FDS
FOT

FIC

FIM

FRAC

FSR

0

0

Fetch Current Value Register Operator. 2
The contents of the CVR (current value
register) are entered at TOS right-
justified, left~zero~filled. The

14-bit CVR contains the value of the
FOR-loop loop control variable at the
innermost dynamic level of nesting.

See the CR and NDX instructions.

Fetch Double relative to C=CSB, P=PSB, 4-6
S=SPM, T=PCT. The 10-bit -address of

these addressing operators is

added to the appropriate

base register and the con-

tents of the two locations beginning at
the resultant effective address are
fetched to TOS as a double precision
operand (left-hand half from lower
address). The register precision
flip-flop (APFF or. BPFF) is turned on
in scalar mode. In array mode the
appropriate stack precision flip~flop
(SPFF_ or SPFF.) is set as is the
apnrogriate stlck lock flip-flop
(SLFF, or SLFF;) thus marking the
affected stack as containing a scalar
operand.

Fetch Interrupt Conditicn Register. 2
The contents of the 32-bit ICR are
duplicated at the TOS. The ICR is
unchanged.

Fetch Intérrupt Mask Register. The 2
contents of the 32-bit IMR are dupli-
cated at the TOS. The IMR is unchanged.

Fraction Operator. The integer bits 1-3
of a single or double precision number

are removed and the remaining fraction

is normalized. If the operand was an
integer, a zero result is generated.

See INT.

Fetch Scalar Result. Transfers the
single or double precision vector
scalar (dot) product at the top of
Stack 2.to t~p of Stack O making it
available as a formula operand.

3-26

Timing (us)



~ Mnemonic Mode Type # Ops. Functional Description Timing (us)

FSC
FSP B A 0 Fetch Single relative to C=CSB, P=PSB, 4-5
FSS S=SPM, T=PCT. Operates like the cor-
FST responding FD-series shown above except
that only one word of data is
fetched (into the left-hand
side of the receiving register). The
register and stack precision flip-flop
are turned off (=0). The array mode
effect on the stack lock flip-flops
is the same.

6Q s 0 2 Greater Than or Equal Relational 1-2
GR Operator. ~
. Greater Than Relational Operator.
If rB§3 {rA, the comparands are replaced.
>
~ /by an integer 1(0-—-——-- 01=Boolean
" True). Otherwise, the comparands are
replaced by a 0(=Boolean False).

IN § D 0 Input Initiating Descriptor .Call. 2-4

- IN,C Initiation of input begins with an

(;) interrupt of the central processor.
After determining the type of input to
be processed, the program executes an
addressing descriptor call syllable. The
descriptor call references the appropriate
input file descriptor in the PRT, which is

. sent to the I/0 for execution.
INS s O 4  Partial Field Insert Operator. The top- 6-8
most tvo operands are as described under
EXT. These are removed to special pur-
pose registers whence they are used.
- _ The third operand is the receiver word

; ' i and the fourth operand is the sender

word. The last FL bits of -the sender

are ghifted so that the first bit is in

bit position SB. This field is inserted

into the designated field of the

receiver word with the other parts

thereof unaffected. Only the receiver

word remains at TOS.
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Mnemonic Mode Type # Ops.

INT

INX

JoF

JoS

S

0

1

Functional Description Timing (us)
Integerize Operator. The floating 1-2
point number at TOS is truncated to

an integer as follows: Let e = the

exponent, m = the mantissa, then

1. Do nothing if either m=o or e>o.

2. Replace TOS by 0 1f e<-24.

3. If -24<e<o then shift mantissa
right one bit: and e+etl. Repeat
until e=o.

Increment Index Operator. The incre- 2-3
ment value register is added to the

current value register, i.e., IVR+CVR>CVR.
Control is transferred to the 17-bit

address (15 for word, 2 for byte) stored

as the operand at TOS (last 17 bits).

'The operand is not purged from the stack.

Jump Operator.
1. 1If operand is <o it is a program 2-4
reference descriptor. Operation is
- same as JOS, q.v.
2. If operand is >0 but field (1//19)
+0, continue operation in sequence.
3. Else interpret last 12 bits as jump
address as follows:
Word = PSB+first 10 bits.
Byte = last 2 bits.

Jump on False Operator. rA contains 1-4
an operand which is interpreted

exactly as in the JMP instruction save

only that the jump is conditioned on

the contents of rB. If the last bit

of rB (bit 31) is 0, the jump is

_taken, otherwise control continues in

sequence. Both operands are purged
jump or no jump.

Jump out of Segment Descriptor Call. The PCT- 2-4
relative addressed descriptor is a
program reference descriptor (PRD)
which contains a segment base address
(+PSB) and an entry point displacement
(epd; Word = first 10 bits of epd + PSB
Byte = last 2 bits of epd )
Control is transferred to the word and
byte as thus determined.
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Functional Description Timing (us)

= Mnemonic Mode Type * Ops.

JOT s 0 2

LFS B L 0

. bytes long.

LS

MIN

NDX S 0 2

Jump on True Operator. Logical dual 1-4
of JOF. Last bit of rB must =1 for

jump to take place.

Literal Fetch Syllable. If third bit 1
of this instruction is =0, then

instruction is l-byte long. last 5

bits of imstruction are sert to TOS,
right-justified and left-zero-filled.

If third bit =1 then instruction is 2

Last 13 bits of instruction
are sent to TOS, right-justified and
left-zero-filled. Sets SLFF, or

SLFF; in array mode.

Less Than or Equal Relational Operator.
Less Than Relational Operator.
Exactly like GR/GQ as regards the
relations {s }
S <

Maximum Operator: Max {rA, ‘rB}+rB.
Minimum Operator: Min {rA, rB}+rB.
The rejected comparand is purged.

Matrix Multiply. The operands are both
arrays in Stacks 0 and 1 with matching
inner dimensions. The product is
generated by columns and stored in
Stack 2 whence it may be stored in
memory by an ASC/ASC,C descriptor call
or sent to top of Stack O by an FSR
operator if the result is 1xl.
Index and Test Operator. The loop con- 2-4
trol registers are incremented and
tested
1. IVRHCVR+CVR
2, If IVR>0 and CVR<FVR
or
IVR<0 and CVR>FVR
then control is transferred to the '
address stored at TOS (See
'INX instruction)
else the address operand is purged
and the index control word (ICW)
is used to reset the loop con-
trol registers as follows:
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Mnemonic Mode Type # Ops.

Functional Description Timing (us)

NIX s 0 1
NOP s o0 0
NOT s 0 1
NQ s 0 2
NSX s 0 0
OR s 0 2
OuT, S D 0
oUT,C

field of ICW+FVR

field of ICWIVR

field of ICW+ACVR
and reset CVR with contents of
address now stored in ACVR.

Purge Operator: Tle operand at TOS 1-2
is purged.
No Operation: Advance to next 1

sequential instruction.

Boolean Not Operator: The result is 1-2
31-zeroes followed by the complement

of the last bit of the argument. NOT

applied to any argument results in the

truth/ falseness of itseven parity.

Not Equal Relational Operator: Same 1-2
as EQ vis-a-vis +.

. Normal Subroutine Exit: Use the current 6-8

value of the CSB to locate the RPW's.
Use the contents of these to reset the
PSB,PC,rP and CSB. Control resumes at
the byte following the ESP/ESP,C which
caused the RPW's to be stored. Note
that rP is wound down to the point it
was at before the first argument of
the calling sequence was stored or
generated in the stack. When the stack
is thus wound down, the arithmetic
registers are not affected, providing
a place for the return of function
sub-program results.

Logical Boolean Or Operator. rBurA-»rB. 1~2
The result is 32 bits on a bit-by-bit

basis.

Initiate Output Descriptor Call: Outpui 2-4
is initiated by the central processor

either as a result of completing some

program function or by interrupt. The
processor executes a descriptor

call syllable. The descriptor call refer-
ences the appropriate output file descrip~
tor in the PRT, which is sent to the I/O

for execution.
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Mnemonic Mode Type # Ops.

Functional Description Timing (us)

PCR S
PCY s
PRR S

RD .S

ROX A

ROX,C

SCV S

SCX A

SCX,C

0

0

Program Recover Return: Returns pro-

‘cessor to state recorded by last

executed PRR., Used for radiation
circumvention recovery. :

Preserve Current Value Register: The 2
CVR is stored at the address in the
ACVR.

Program Record: Redundantly stores 6-8
processor status information in

dedicated area. Permits roll back to

recorded point after radiation

interrupt.

Round Operator: Jf TOS contains a 2-3
single precision operand (APFF or

"BPFF=0) then the first extension bit

(25th mantissa bit) is added to the
24th mantissa bit and exponent is
adjusted if necessary. The extra
mantissa bits can result from all of
the single precision arithmetic
operations and from INT. If TOS
contains a double precision operand
(APFF or BPFF=1) the same rounding
operation takes place and APFF or
BPFF 1is set to O.

Array Row Cross-Section Fetch: The
operand at TOS is the row index and
this is combined with data in the
addressed array descriptor to fetch the
row to Stack 0 or 1 as per AFC or AFR.

Set Current Value Register: Last 14 bits 1-2
of operand at TOS are stored in the CVR.
The operand is purged.

Store Array Column Cross-Section: The
topmost value on Stack 2 is taken to be
the column index. The column vector
reposing in Stack 2 beneath this index
i1s stored at the appropriate part of
the array whose descriptor is addressed.
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Mnemonic Mode Type # Ops.

sSbC

SDK

Sbz

SGN

SIC

SIM

SNS

SRC

SRK

S

A

1

Functional Description : Timing (us) (

Store Double and Clear: If the operand 2-3
at TOS is single precision (APFF or

BPFF=(0), the right half of the appropri-

ate register (rA or rB) is zeroed and

the operation proceeds as double precision.

If a double precision operand is present

at TOS, the left half is stored at the

giv:n address (relative to SPM) and the

right half at the next higher location.

The operand ie purged.

Store Double and Keep: Same as SDC . 2-3
except that the operand is not purged.

Store Double Zero: A double precision 2-3
zero (two words of all zero) is stored

at the given address (relative to SPM)

and the next higher location. The stack

is not affected.

Signunm Operation: If the operand at TOS ]

18 <0 it is replaced by an integer -1. b
Otherwise, it is replaced by an

integer +1. (w'
Set Interrupt Condition Register: The & 1-2 l
operand at TOS is stored in the 32-bit s

ICR. The operand is purged.

Set Intefrrupt Mask Register. The 1-2
operand at TOS is stored in the 32-bit
IMP. The operand is purged.

Signed Partial Fileld Insert Operator: 8-12

Same as INS except that before the field '
"last FL bits of the sender" is moved

into position for insertion, this field

is reconstituted by circularly shifting

the sign bit of the sender (bit 0) into

the last bit position of the sender

(bit 31).

Store Rounded and Clear: Performs 2-3
actions of RND on operand at TOS and

then stores the single precision result

at the given (SPM relative) address.

The operand is purged.

Store Rounded and Keep: Same as SRC 2-3 (_
except that rounded operand is not
purged.
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Functional Description

Timing (us)

Mnemonic Mode Typa # Ops.

SRX
SRX,C

$80
851

§sz

STC

STK

SXT

TRC

XCH

A

D

1

Store Array Row Cross-Section: Same
as SCX/SCX,C vis-a-vis row cross-
section.

1
operations allow simple array assign-
ment and exchange statements to be
executed without the normal "load
Stack 0, load Stack 1, Perform
operation, Unload Stack 2" sequence.

Set Store from Stack,(oj. These

Store Single Zero: A zero word is
stored at the given (SPM relative)
address. The stack is not affected.

Store Truncated and Clear: Same as
SRC except the preliminary RND is
replaced by a TRC.

Store Truncated and Keep: Same as
SRK except the preliminary RND is
replaced by a TRC.

Signed Partial Field Extract Operator:
Exactly the same as EXT except at the
very end, bit 31 of the result is
rotated into the sign bit position.

Truncate Operator: Zero out the right
half of the double length TOS register
and turn off the appropriate precision
flip-flop if it is on.

Vector Cross Product: The vector cross
product of the 3-vectors in Stacks 0
and 1 is developed and stqred in

Stack 2. The operands are actually
fetched twice into each of the stacks.
See XPF.

Exchange Operator: The contents of

rA and rB are exchanged: rA2rB. This
is actually done without moving the

data by complementing the c-bit which
specifies the identity of the arithmetic
registers.
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Mnemonic Mode Type # Ops.

Functional Description

XCR

XR

XPF
XPF,C

A

0

4

Index Create Operator: The four 8-12
operands are, from the top down -

the commencing value

the final value

the increment value and

the SPM relative address of the

variable whose value is at TOS.

These refer to the parameters of a FOR-

" loop and the address of the loop con-

trol variable.

1. The current contents of IVR, FVR
and ACVR are packed and stored as
an index control word (ICW) in the
stack. The CVR is stored at the
address in the ACVR. ,

2, The absolute address of the byte
following the XCR is stored at TOS
as a loop return point (LRP).

3. The four operands are distributed
to CVR, FVR, IVR and ACVR in top
down order and are purged.

(The stack additions of steps 1 and 2

actually take place after step 3).

Boolean and Logical Exclusive Or 1-2
Operator: The 32-bit, bit-by-bit

exclusive or (symmetric difference)

of rA and rB is developed and stured

in rB. rA is purged.

Cross Product Operand Fetch: The
3-vector whose descriptor is addressed
18 loaded twice to Stack O or Stack 1
(1f Stack 0 contains an operand).
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3.2 Arithmetic and Control Function Summary

The following 18 a summary of the arithmetic and control functions

of the AGC. The summary is brokea down by functional category and each

:éategory is accompanied by a briz=f description of its function. Those

functions whose implementation 1s presently planned to he a hardware
register or flip-flop are starred (*). Tﬁ?se functions which are not
starred are to be represented as fields in control memory. Some of the
functions.are listed under more than one category.

)
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3.2.1 Arithmetic and Stack Control

Name No. Bits Function
P * 11 Stack pointer register. Gives the scratch pad memory

address of the top word of the memory portion of the

arithmetic stack.

AR, * 64 Double length arithmetic registers representing the
ARl * 64 arithmetic register portion of the arithmetic stack.
Fg - 1 Arithmetic register validity flip-flops. If off,
F 1 the corresponding AR is regarded as empty.
PFFq 1 Arithmetic register precision flip-flops. Iflg?fl , the
doublel
PI“F1 1 corresponding AR holds a single precision quantity. &
p Top register flip-flop.
When —3 : c=0 c=1
The Control ¢ is called is called
AR, rA rB
AR1 rB . rA
F a b
c 1 4 0
Fl b a
PFFO APFF BPFF
PFFl BPFF APFF
\
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3.2.2

Name

IR

Cs

CB:

NB

NS

DDR

ILFF

Instruction Fetching and Decoding -

No. Bits

64

16

15

32

Function
Instruction Register: Double-length, wrap-around

register for fetching instruction words with one

- word- look-ahead.

Current Syllable Register: Holds the 1 or 2 byte

syllable gated from IR, currently being executed.

Current Byte Register: Holds the number (Oth to 7th

of IR) of leading byte of syllable in CS.

Next Byte Register: Holds the number (Oth to 7th
of IR) of leading byte of syllable which will follow

syllable in CS (if a jump does not occur).

Next Syllable Register: Holds the word address of

the word in IR which contains byte NB.

Descriptor Decoding Register: Holds for decoding a

descriptor fetched by a descriptor call syllable.

Instruction Length Flip-Flop.
= 0 if current syllable is 1 byte long

= 1 1f current syllable is 2 bytes long
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3.2.3 Addressing

Name No. Bits:
CSB % 11
PSB * 15
SPM '11
PCT - 15

Function

Calling Sequence Base Register: Base address of

words in current level procedure calling sequence.

Program Segment Base Register: Base address of current

program segment.

Scratch Pad Memory Register: Base address of

writable portion of memory.

Prograu Control Table Register: Base address of

program control table portion of NDRO memory.

Partial Word Operations

s b 5

Starting Bit Regiéter: Holds bit number (0 left

to 31 right) of starting bit of field for extraction

or insertion.

Field Length Register: Holds the length minus 1 of
said field.
These two registers are coincident with array mode

registers rMO, rNo respectively.
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3.2.4 Index Operations

Name No. Bits ~ Function
ACVR 10 Address-of-Current-Value Register: Holds address

relative to SPM of the loop control variable

at the dynamically innermost level of nesting.

.CVR % 14 Current Value Register: Contains current value of

the loop control variable defined under ACVR.

FVR * 14 Final Value Register: Contains thel‘];;‘;:ﬂ limit

) ‘
on said loop control variable as IVR (below) is [igl .

IVR * 8 _ Increment Vaue Registet': Contains the seven-bit
plus sign increment that will be applied to CVR by

CVR = CVR + IVR at the end of the loop.
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3.2.5

Floating Point Control
Name No. Bits Function
\
ASL * 6 - Alignment Shift Limit Register: Holds limit value '
on number of bits mantissa is shifted to align
exponents. ‘I value in ASL is exceeded, the
ASFF 1 Alignment Shift Flip-Flop is set.
NSL # 6 Normalization Shift Limit Register: Holds lmit
value on number of bits ﬁantissa of result is shifted
to normalize it. If vglue in ﬁSL is exceeded, the
1l Normalization Shift Flip-Flop is set.

NSFF
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3.2.6
Name

IFF

ICR

IPR

PFW

Interrupts

No. Bits

1

32

32

128

(4 words)

Function

Interrupt Flip-Flop: 1Is set vhen any interrupt

i8 detected and allowed.

Interrupt Condition Register: Holds 32 indicators

each specific to a different interrupt conditiom.

Interrupt Mask Register: Holds 32 enable/disable
indicators (0 enable, 1 disable) cor.<sponding

one-to-one with ICR.

Interrupt Priority Register: Holds the priority

leyel.(0-15) of the interrupt currently being

. processed.

Priority Field Words: These are 32 four-bit fields
each containing the priority of bne of the 32 possible

interrupt conditions.
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3.2.7

Name

ASMC

rMi

N

SLFF

SPFF

Array Processing

No. Bits

11

11
11

64

15

y1=0, 1

S

’

\

Function

Array/Scalar Mode Control: Indicates whether

the processor is in scalar mode (=0) or in
array mode (=1). This flip-flop is not specifically

mentioned in the text of the report.

Stack Pointer Registers for the three array
mode stacks. Po is .P of the scalar mode

arithmetic stack.

Array Regult Register: Auxilary arithmetic register

for holding intermediate and final element result

in array computations.
Number of Rows

Number of Columns
Base Address of Array

Stack Lock Flip-Flop (=1 when Stack i holds a scalar

operand)

Stack Precision Flip-Flop (=1 when Stack i holds a
double precision scalar

or array)
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() 3.3 Data Representation

3.3.1 Numeric

Numeric data is represented on the AGC either as (single precision)

integers or single precision or double precision floating point numbers.

A single precision floating point number is represented by a
24-bit mantissa plus sign with a six-bit plus sign (unbiased) base-two exponent.
The mantissa is normalized whenever the exponent is non-zero and the radix
point is located at the right-hand-end of the mantissa. A double precfsion

floating point number has the second word as an unsigned continuation of the

mantissa.
Unbiased ] Mantissa . g .
LC—— >
- 4 | Exponent A 24 bits - . .
) - - A

Sign of Exponent - 'Radix Point

Sign of Mantissa
3.3.2 Partial Word

A partial word is represented in the AGC as a field within a word
(may be the entire word) which begins within the word at a starting bit (SB)
and whose lenj;th in bits is within the word (LF). The field may be signed.
If signed, the sign is carried at the right hand end of the field and is con-

sidered part of LF.

SB
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3.4 Memory Allocation

A
N
Dedicated Register Storage
SPM :
Scalar Variables
Max 1024
V77 //
DEEA .
2048 ¢ Scratch Pad (program alterable)
Array Variables ‘Memory -
P
0 ~"_»| Scalar & Array
Py ST ==-» Mode Stacks
P s
2 v
Stack Pointer
Registers 4 .
Microprogram Storage
Reserve 192# L;::i
' 4 PSB[™
Program Control Table Hﬁ 4 Control
PCT f - Stream
Syllables
A 30220 \
b 2
W%W/ y > NDRO - Unaltergble
B 87
General
Min
Prggrﬂm 28672
Area
vy Y
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3.5

" W

Program String Syllables

Syllable Type Length First
(bytes) | Two Purpose
Bits

Literal Fetch lor2 00 Bring integers € 8191 into TOS.

Operator 1 01 Perform no-address operations.

Addressing Operator 2 10 Address operations. Address operands
directly.

Descriptor Call 2 11 Address operations. Address arrays,
subroutines, etc., indirectly via
descriptor words. '

3.5.1 Literal Fetch Syllable (LFS)

An LFS is used to load a positive integral value to the top of the
stack.
OO O] XXX XX| for literals < 31
JOOI|XXXXXXXXXXXXX] for literals € 8191
3.5.2 Operator Syllable

The format of an operator syllable is

[OiJffffff)

where f 7s specific to the operation to be performed and is used

for such functions as +, -, ¢, AND, OR, etc.
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3.5.3 Addressing Operator Syllable

An addressing operator is always two bytes long with the last six
or ten bits constituting an address relative to one of the four base address

registers SPM (Scratch Pad Memory), PSB (Program Segment Base), PCT (Program
Control Table) and CSB (Calling Sequence ZE.se).

The format of an addressing operator is

'4A 10 >

10 i dress Rel to SPM, PSB, PCT
81 82 83 84 (777577 Address Rel to CSB]
6

l/

I

where g is specific to the function to be performed , such as

FSS (fetch a single precision operand relative to SPM),

p-——
SRK (round-off and store a single precision operand and keep it for

further use).

The function of an addressing operator is to fetch to or store

from the TOS a data item where the address referé directly to the item.
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3.5.4 Descriptor Call Syllable <

L}

’

A descriptor call syllable is two bytes long with the same

address structure as an addressing operator except that the address pertéins

only to the PCT (ten bits) or the CSB (six bits). The entity referenced by

the address is called a descriptor.

The format of a descriptor call syllable is

0123456789101112 131415
0 b h Address Relative to PCT
i l_i'h Y Addr Rel to CSB

where h is specific to the function to be performed, and bit 2 deter-

mines whether the address is relative to the PCT or the CSB for 0 £ h £ 5.

The h-bits select such functions as:
ESP (enter sub-program - the descriptor contains the absolute address
of the entry point and the number of words in the calling sequence),
ELF (element fetch - the one ;; two indices are at the TOS - the

descriptor contains the base address, dimensions and precision

[single vs double] of the array).
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3.6 Descriptor Summary
3.6.1 Program Reference Descriptor (PRD)

/ The begram‘Reference Descriptor permits entry to a program segment
at 1ts beginning (base address) or to any syllable within the segment (entry

point displacement).

The Program Reference Descriptor in the Program Control Table (PCT)

has the following format:
(“—3->1< 12 >1< 15

77' Entry Point .
10 14457; Displacement " Absolute Address
PRD Lz /{ § i

01 5 16" 17 - ' 31

v

The entry point displacement (epd) consists of 10 bits of word address

and 2 bits of byte address. The word part is added to the absolute address.

3.6.2 Subroutine Call Descriptor (SCD)

The subroutine call descriptor permits entry to a subroutine, a

procedure or a function. The SCD has the following format:

- b | f—— ———D| €— 15- >
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3.6.3 Array Descriptor (ARD)

Array Descriptors in the PRD describe the location and structure
of data arrays.. They are used in.the scalar mode for accessing an array
element, and in the array mode for a variety of array processing functions.

An array descriptor has the following format:

2 11(; 5 5 15
ARD 01 % 21 ? f# Rows | # Cols - Address
01'2 3'&251 11'12 16'17 a :
Code / L.Aﬁ;;:the first element of
Array Descriptor . the array
| b——Number of Columns in array - 1

1 < # Cols < 32 stored as 0 - 31.

+Number of Rows in array -1
1 < # Rows < 32 stored as 0 - 31.

;Precisi,on : 0 = single precision
1 = double precision

Bit 3: W/X = 0/1 for'wﬂole Array vs. Cross-Section..
Bit 4: B/C:- 0/1 for Row vs Colunn Cross;Section if Bit 3 = 1
| .These two bits are not part of an ARD as stbred in the PCT, but are
created at object timé'by compiler supplied code and placed in the stack when
an array cross-section is to be used as an afgument to a subroutine. The
address is also altered to the address of the leading element of the cross-
section. Thus, the argument generated for A(,J) is

(ARD(A) + J* (ARD(A)(7//5) + 1)*(ARD(A)(1//2) + 1)) LOR

HEX'18000000'
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3.7 File Descriptor (FD) (f}_

In the AGC architecture all input/output is viewed as data
files. File Descriptors in the PCT describe the characteristics and
location of input and output data. File Descriptors are accessed by
descriptor call syllables, and are sent to Input/Outéut Control. Once
initiated Input/Output proceeds in an asynchronous manner to comple-
tion, which is indicated by setting interrupt conditions. The de=-
coupling of the Input and Output from the AGC CPU functions is
achieved by providing separate input and output buffer registers for
both serial and parallel input and output data. The format of ghe

+

File Descriptor is:

FD 0 o0 File Record Memory
Control Control Address

0 1 2 11 12 21-22 31 5
Code for File Descriptor

The file control field is used to pass control information
to the I/0 section of the AGC architecture. It is issued to specify
such things as device and chained information and to indicate whether

the file 1s composed of single or multiple word data.

The record control field is used to indicate such things as
the location of record data within a word, and the significance of

data content in relation to input or output discretes.

The memory address represents the beginning address in
scratchpad memory where the first word of the input will be placed,
or the first word of output will be sought. If the input data is
less than a word (a field) then the data will be contained within

that word. (
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4.0 Architecture Description

4.1 Memory Structure & Addressing

The current AGC architecture memory addresses 32768 words of
32-bits each of which the first 2048 are alterable (scratch pad memory)
and the last 30720 are unalterable (or NDRO). A memory map is shown in

Figure 4.1.

4.1.1 Scratch Pad Memory

The addressing structure further subdivides scratch pad memory
into variable length portions for the scalar and array mode stacks, scalar

variable storage, array variable storage and dedicated register storage.

4.1.2 Stack Storage & Addressing

The stack storage area is addressed by the stack pointer registers
Po, Py and Py of which only the first is acfive in the scalar mode. The
scalar stack pointer register P GBPO) links the arithmetic registers rA and
rB to memory to achieve a LIFO stack méchanism (see Section 4.4). 1In array
mode, the pointefs PO’ Pl’ P2 serve as memory-to-memory links for'loading
and storing whole arrays (see Section 4.10). Each of the registers Pg, Py, Py
is 11 bits in length and represents a direct address, i.e., an address which

does not have to have a base address (register) added in to arrive at an

effective address. The stack area is at the high end of the scratch pad memory.



Within the scalar mode stack, data may be addressed relative to
the calling sequence base (CSB) register. This is discussed at length in

Section 4.9.

4.1.3 Dedicated Register Storage

Dedicated register storage is at the low end of the scratch pad
memory. This.area is of fixed length and contains all registers,
flip-flops, etc., whose frequency of use and speed requirements

do not necessitate direct hardware implementation.

Some of the entities in this area are made available for testing

or manipulation by the program via the SPL HARDWARE declaration.

4.1.4 Scalar Variable Storage

Scalar variables are one or two word items which are fetched by
the.addressing operators FSS or FDS, stored by any of eight storage addressing
operators or stored by any of four operators which find the address as well
as the data to be stored as the first two elements in the top of the stack.’
In all these operations, the addressing operation spans ten bits or 1024
words. The addresses in these operations are interpreted as being relative

to the SPM (scratch pad memory register).
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The SPL program refers to scalar variables as unsubscripted identifiers
which have been typed as integer, floating, Boolean, status or logical variables

without the CONSTANT attribute.

4.1.5 Array Variable Storage

One and two-dimensional arrays which are to be altered during program
execution are ;llocated by the compiler to the upper portion of the
scratch pad area where some of the addresses may require eleven'bits.
This does not require a base address (like SPM) since all

arrays are addressed via array descriptors. ‘These are 32-bit words which con- b

tain the full 15-bit base address of the array as well as array dimensions

and storage mode (single or double precision). The array variable storage
area may overlap the scalar variable storage area depending on the ==

structure of the particular program.

4.1.6. NDRO - Unalterable Memory

This section of memory cannot be altered by the operating program.
This memory section is further divided into areas for microprogram storage

reserve, program control table and general program area.



4.1.7 Microprogram Storage Reserve

It is anticipated that the logical control of the AGC will be
implemented via microprogramming. The microprogramming inf;astructure will
be heavily slanted toward the stack concept which AGC uses. It is further
anticipated that the microprogram storage will be equivalent to 1024 x 32-bits
of very high speed memory (not shown in Figure 4-1). When AGC operation is
resumed after a radiation interrupt, the first task that must be acéomplished
is to restore the microprogram high speed memory from the microprogram
storage reserve held in NDRO.

b
4,1.8 Program Control Table

The program control table or be is a variable length section of
maximum length 1024, It is intended principally as a depository for
descriptors which control the program flow and describe complex data. All
scalar and array mode references to arrays, subroutine calls, intersegmental
jumps, and I/0 are done via indirect addressing, i.e., the control stream
syllable (descriptor call) which has a ten-bit address fetches one of the 1024
PCT words to the descriptor deéoding register (DDR) where it is broken up and

distributed to other control registers.

In addition to descriptors, globally defined scalar constants may be
stored in the PCT, e.g., 7, M/2, degrees 5 radians, earth's polar and equatorial mean
diameters, etc. These may be feteched by the PCT relative addressing operators

C
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FST, FDT. Constant arrays of global interest may also be stored in the PCT,
.e.g., launch and aim point coordinate vectors. These are addressed (for
fetching purposes only) with descriptor calls to the appropriate array

descriptors.

Scalar and array constants arise in SPL programs from giving the
CONSTANT attribute to named data entities. Globality is conveyed either by
use of a COMPOOL or by placing data declarations in the outermost (main

program) level of a nested block.

4.1.9 General Program Area

| The general program area contains data and control stream syllables
(1.e., instructions) organized into progfam segments apd subroutines (which
are also program segments). Each program segment contains in addition to its
control stream those constants and literals which are purely local to itself.
Integer (including Boolean) literals which are less than 8191 in absolute
value are embedded in the control stream itself and are fetched by the literal
.fetch syllable. Integer literals greater in magnitude than 8191 and all
other non-integer literals and constants are stored backward relative to
the beginning of the program segment which is marked by the program segment
base (PSB) register. These are then accessible via the FSP and FDP addressing

operators.

These matters are more fully described in Sections 4.5, 4.8 and 4.10.
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4.2 Numeric Data & Arithmetic
4,2.1 Formats

Numeric data is represented on the AGC either as (single precision)

integers or single precision or double precision floating point numbers.

! A single precision floating poiht number is represented by a
24-bit mantissa plus sign with a six-bit plus sign (unbiased) base-two exponent.,
The mantissa is normalized whenever the exponent is non-zero and the radix

‘point is located at the right-hand-end of the mantissa.

\ =

p—
Unbiased : Mantissa
4 | Exponent A 24 bits i
e A
Sign of Exponent Radix Point
Sign of Mantissa
Example:  -101.5)) = -145.4g
[11]010001(1]/]12100101 .10 . 0]
= A

(

iceo ’ -145-48

mantissa

= (-145.44 ° 217y x 27

* -145.4g x 217
17

exponent
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The position of the exponent sign at the end of the exponent
makes the exponent compatible with partial word operations (q.v.). The
position of the radix point at the right-hand-end of the mantissa has two
consequences:

- first, the range of numerical magnitudes representable
in this format is not symmetric about zero, i.e.,

magnitude smallest number = 223 x 2763 . 240

magnitude largest number = (224-1) x 263 < 287

- second, integers can be represented as right justified (un-
normalized) floating point numbers with exponent-zero. This
means that floating point numbers and integers may be freely
intermixed in a computation without the need to convert from
one format to another. A whole number may thus have two
representations: as a normalized floating point number or
as an integer

s=l + | 0 | + }Jo 0 5] integer

5.0=| + | 258 | -1I50 0 flt. pt.
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The latter fact also has consequences for the compactness of the
control stream. Small integer literals (< 8191) may be fetched out of the

control stream for use in floating point computations (LFS syllable, Section 4.5).

A double precision floating point number is simply a two-word
floating point numbers in which the second word is an unsigned

continuation of the mantissa.
&

Example: 0.6 = 0.46318 -

+] 308 1-1 46314631 ] 46314631462

4—word le———> |¢—word 2—>
last digit

base 4.

4.2.2 Arithmetic Operations

The arithmetic operations +, -, * and {R are available in single
and double precision versions. If we adopt a ranking of types from low to

high
I (integer) < S (single) < D (double)

then any operation between two of these takes the type of its highest type
operand. If both operands are integers (exponent = 0) then an integer result

is proddced unless the mantissa would exceed 24 bits. The exception to this

- § Notation ,abc means .abcabc ... Thus, i1/7 = 0.142857 (base ten)



rule is division 2R which produces a floating point result even when both
operands are integers. It should be noted that single prccision operations
generally produce double precision results which may be retained at'the

higher precision, truncated or rounded.

The integer divide operation 2i is for single precision operands
only. If the operands are not already integers, they are made so by truncation
before the division is performed. The operation produces the truncated integer

quotient and the integer remainder.
Example: Suppose X = 101.5, Y = 10.3
X+Y=101 %1 10 = (10, 1)

where’ 10 is the truncated quotient

and 1 is the remainder.

4.2.3 Control of Floating Point Operations

The AGC provides a degree of control over floating point operations
not usually found in even large general purpose computers. This control is
exercised through alignment and normalization control in addition to the usual

trapping of floating point overflow and underflow.
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4.2.3.1 Alignment Control

Before two floating point numbers can be added or subtracted,
they must be aligned with respect to one another so that their radix points
meet:

(145.4g ¢ 217) x 2717

+ (0.46315 ® 224y x 2-24

= 145.40000
+ __.463141631
146.06314 631

The progiam has access to the alignment shif£ limit register (ASL)
via a HARDWARE declaration and an ordinary assignment statement. The limit
which is stored in the ASL is compared to the actual shift count required to
align the numbers (diffexences of the exponents) after the operation has been
completed. If the bound is exceeded, the ASFF (alignment shift flip-flop) is
turned on. This flip-~flop which is also accessible via a hardware declaration

may be tested in an ordinary Boolean test.

4.2.3.2 Normalization Control

Once a non-integer floating point number has 5een computed, it must .
be normalized. A register and flip-flop similar to those described above is

available for detecting computations in which an excessive normalization shift
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occurs. These are the NSL (normalization shift limit) and NSFF (normalization

shift flip-flop).

4.2.3.3 Floating Point Overflow and Underflow

These floating point faults are detected as interrupt conditions which
may be enabled or disabled and for which the programmer may provide

contingency actions via the ON-statement group. (See Section 4.11) .

Floating point overflow results when a floating point single or
double precision operation produces a result for which the exponent exceeds
63. Floating point underflow results when sﬁch an operation produces a
‘result for which the exponént is less than -63. In either case, the signed,
normalized and possibly double precision mantissa is left in rB, the out-of-
range exponent is left in rA in integer format (sign in bit 0) and the original
operands are pushed down into the memory portion of the stack, all these actions

taking place before the interrupt action is undertaken.

Example: The following AGC coding could be used to treat a floating
point overflow by the rule: halve the exponent and increase a counter by 1;

alsc count up the number of times the out-of-range exponent was odd.

4-12
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¢N FP@ "ASSUMED SINGLE PRECISION"
DIRECT Upon entry RPW, with a zero count field is at TOS
LFS 4 TOS = 4, RPW,- )
OR RPW, now has a count field = 4
FSC 2 Fetch the out-of-range exponent at 2 relative to the CSB.
STC XPON St;re at XPON; purge from TOS.
FSC 3 Fetch the mantissa at 3 relative to the CSB.

STC MANT Store at MANT; purge from TOS.

END
Divide XPON by 2 and set

+REMQUO (XP@N, 2 = RDR, XP¢N) RDR to the remainder

MANT(S 1//7) = XPON Insert XPON into exponent field
of MANT

NTXH = NTXH + 1 .Count up number of times exponent
has been halved

N@DD = N@DD + RDR Count up number of times exponent
was odd

DIRECT

FSS MANT Leave altered result at TOS
END
END

The last END causes the generation of the NSX return.
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4.3 Instruction Fetch Cycle (!

‘Control stream (instruction) words will be fetched one at a time
with one-word look-ahead into a wrap-around 64-bit Instruction Register, IR,
consisting of IR0 and IRl,

which 1s to be executed is transferred from IR to the Control Stream or

left and right halves respectively. The syllabie

Current Syllable register, CS, which is 16 bits wide and holds a one or two-
byte (8 bits) instruction syllable. The word address of the next syllable

to be executed (if the current syllable doesn't cause a transfer of control)

is contained in the 15-bit Next Syllable register, NS. There are in additionm, '
two 5-bit registers: CB which contains the Current Byte and NB which contains

the Next Byte. The byte numbers contained in these two registers range from

. PR
0 thru 7 and correspond to the numbering of the bytes in the 8-byte IR register.
| (
An additional one-bit flip-flop ILFF contains the length of the
current syllable minus 1. : 3

The registers discussed above are illustrated in Figure 4-2 together

with bit and byte numbering conventions.

The architectural approach allows instruction syllables to be

stored in memory without regard to word boundaries.
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< IR, > < IR} >

< IR >

bytes 0 1

bits |[0]1]2] | j15] [0 4|
cs NS '

bits

CB NB

Figure 4-2 : Instruction Fetch Registers

N IR = Instruction Register. Holds two words at a time.

CS = Control Stream or Current Syllable register. Holds syllable being
executed. '

NS = Next Syllable register. Holds word address of next syllable to be
executed.,

CB = Current Byte number in IR of leading byte in CS.

NB = Next Byte number in IR of leading byte of syllable which will be
executed next. )
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In addition to these registers, we use for convenience of
description the following virtual registers in the balance of this

report:

PC = Program Counter. This is a 17-bit virtual register
giving the word (bits 0-14) and byte (bits 15-16)
address of the next syllable to be executed. The
first 15 bits are the contents of NS. The last two
bits are bits 1 and 2 of NB.

NW = Next Word. This is a 15-bit virtual register giving
the address of the next word which will be loaded
into either IRO or IRyj. NW is really NS+2.

IL = Instruction Load flip-flop. This is a one-bit virtual
flip-flop. When it = 0, IR, is next to be loaded from
memory and when it = 1, IR; is next. It 1is'really bit O of CB.

-

In program execution, when a transfer of control occurs, the
formula PC<— Address is to be interpreted as, NS<—Address bits 0-14, NB

bits 1 and 2<—Address bits 15 and 16, and NB bit 0«0,
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4.3.1 Fetching an Instruction

l. Load Byte O of CS with Byte NB of IR, set ILFF = 0,

2. Inspect appropriate bits of CS to determine if a second byte
is required for this syllable. If so, load Byte 1 of CS with Byte (NB + 1)

Mod 8 of IR, set ILFF = 1,
3. Replace CB register by NB register. .
4. Set NB to (CB + ILFF + 1) Mod 8.

5. If CB is < 4 and NB > 4, load IBO with word at address NW,

set NS to NS + 1.

If CB is > 4 and NB < 4, load IR1 with word at address NW,

set NS to NS + 1.

6. Execute syllable in CS.
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Instruction
Fetch

{
| mrreo
Byte 0 of CS<«Byte NB of I
' i
Byte 1 of CS €— | -
Byte (NB + 1) Mod 8 of IR
ILFF &1 (

CB<+—NB

r""'l

NB <+ (CB+ILFF+1) Mod 4

Yes

NS<—NS + 1

)

Execute Syllable in

CS

Figyre 4~3 : Instruction Fetch Cycle
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Example:

A program segment starting at Byte 0 of address 12345 is to be
executed. The syllables are labelled with capital letters as follows.
Note that two-byte syllables (which may contain a ten-bit address as the

last ten bits) can be split over word boundaries:

12345 A B C
12346 c D | E F
12347 F Y H
12350 1 J K
12351 L M

Figure 4-4: Example of Syllables
in Memory
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4.4

The Stack Mechanism

The stack mechanism consists of

two high-speed arithmetic registers to which we attach

the temporary names ARO and ARl. These are to be con-
sidered 32 bits wide in single precision operations

and 64 bits wide in double precision;

two one-bit flip-flops F0 and F1 which correspond to

ARo and AR1 respectively. These flip-flops aré used

to denote whether (=1) or not (=0) the corresponding
arithmetic register 1is empty;

a one-bit fliﬁ-flop ¢ which indicates which of the pairs
(ARO, Fo) or (AR, Fl) corresponds to the top of the stack;
an eleven-bit stack pointer register P which contains the
address of the highest Address (top of the mémory portion) of
the stack. P is altered during ordinary stack operations
in a manner to be explained below.

the stack area of scratch pad memory. This is the area

pointed at by P and i3 allocated by the compiler/executive system.

The topmost arithmetic register is referred to as rA or the A

register and the other is called rB or the B register as follows:

- 4-21



If ¢ = 0,AR; 18 called rA and Fy 1s called a,

AR, 15 called rB and F) s called b.

1f ¢ = 1,AR; 1is called rA and F; is called a,

ARO is called rB and Fo is called b.

The operation of the stack will be illustrated by'examining closely
two instructions:
FSS Y : Fetch a single precision operand from scratch pad memory.
Y is the address of the operand.
Binary Compositions
' e.g. + : Add rA to rB. Leave the résult in rB and mark rA empty. o

This is typical of most operations. (

After these illustrations, we shall drop the notation AR;, ARl, Fo, -

F; ir the balance of this report and use only A, B, a, b,
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4.4.1

Fetching an Operand to the Stack (FSS)

In SPL-style notation the rules are

IF rA is empty THEN fill it and mark it filled ELSE

IF rB is empty THEN f£i1l it, mark it filled and invert the

registers '(rA becomes rB becomes rA)

ELSE empty rB into memory and proceed as though rB had been empty

ENDALL

Operation
Complete

Figure 4-6: Operand Fetch
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Thus, starting with an empty stack, the first two fetches fill
the registers A and B while a third fetch causes the contents of B to be
stored in memory to make ‘room for the new operand. The last fetched (or
computed) quantity is always on th: top of the stack and is the first entity

available for storing. Such stacks are called LIFO's for last in first out.

Example: Fetch X, Y, Z in that order. Assume stack empty,

c =0 and P = 1000.

Event Initial After After After
Register Condition | FSS X FSS Y Fss 2
c Contains 0 0 1l o
F Is called a a b a
0 Contains 0 1l 1 1
Fl Is called b b a b
Contains 0 0 1 1 (
ARO Is called rA rA rB rA
Contains Hob X X Z
AR, Is called| rB rB rA rB
Contains | b Lo Y Y
P Contains 1000 1000 1000 1001
(P) Contains Bac 00C oYs4s X

Notes: 1. (P) is the contents of the address contained in P

2. ... denotes empty or unspecified.
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4.4,2 Binary Compositions (+, —, *, <, etc.)

All arithmetic and Boolean operations take the form rB op rA —>rB

mark rA empty:

Binary
Composition

AR &= (P) ARye— (P)
P4= P-]1
1 Foe—1

AR0¢—-AR0 op ARl AR1<-AR1 op ARO

»f{ Operation Y\

- Complete

Figure 4-7

4-25




To summarize, if we number the elements on a stack as (@) for top-

most, @ next, etc., then ignoring the ¢ flip-flop we have

Stack Contents

a b O ¢ ®

1 1 A rB (xP)

1 0 rA (xP) (rP-1)
0 1 B (xP) (rP-1)
0 0 (rP) (rP-1) (xP-2)

The topmost position or its contents will often be referred to

below as TOS (top of stack).

4.4.3 Stack Behavior with Double Precision Operands

Whén a double precision number is fetched to the top of the stack,
the most significant half (the word addressed) goes to the left half of rA and
the least significant half (at address + 1) goes into the right half of rA.

This causes the APFF (rA pregision flip~-flop) to be turned on. Similarly, when
a double precision number is to be stored in the meﬁory portion of the stack,

the most significant half is stored first followed by the least. Thus, rP ends
up pointing to the least significant half of a double precision number. Then,
when a double precision arithmetic operation requires a stack adjustment (i.e.,
filling of the arithmetic registers) before it can proceed, the least significant
half is fetched to the right and the most significant half to the left half of

rB, setting the BPFF (rB precision flip-flop) and counting rP down twice.
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4.5 Instruction Syllables -~

- The AGC processor allows for two modes of operation, the scalar and
array modes. Scalar mode is the mode in which ordinary arithmetic, Boolean and
logical computations are performed on one or two-word data items including
individual elements of arrays. Scalar mode also allows for input, output,
calling of subroutine and function subprograms and for operations on partial
words. Array mode allows for operations on whole arrays (vectors and matrices)
and array cross-sections (rows or columns selected from a matrix). The scope of
operations includes element-by-element operations between two arrays or cross-
sec;ions (result element = simple arithmetic binary composition of two elements),
scalar operations (result element = simple arithmetic biﬂary composition of a
scalar and an array element in either order), array multiplication (which may
produce a scalar result) and vector cross product. Array mode does not permit

input, output, calls of subprograms or partial word operationms.

Scalar mode is entered by execution of the ESM (enter scalar mode)
syllable and array mode by the EAM (enter array.mode) syllable (Table 4-1).

These operators are valid in both modes.

Instruction syllables are of length 1 or 2 bytes which may be

stored without regard to word boundaries. They are of four distinct types as

shown in Table 4-1. Each type is discussed at length in the following sections.
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Syllable Type Length First
(bytes) | Two Purpose
Bits
Literal Fetch lor 2 00 Bring integers < 8191 into TOS.
Operator 1 01 Perform no-address operations.
Addressing Operator 2 10 Address operations. Address operands
directly.
Descriptor Call 2 11 Address operations. Address arrays,

subroutines, etc., indirectly via
descriptor words.

Table 4-1 : Control Stream Syllable Types -
Scalar and Array Mode

4.5.1 Literal Fetch Syllable (LFS)

An LFS is used to load a positive integral value to the top of the

stack. This 1is useful in two regards

- first, to fetch operands I: |I|_5 8191 used in floating point

and integer arithmetic computations.

- second, to fetch twelve-bit address displacéements to the top

of the stack for conditional and unconditional Jumps.

4-28
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The use of the LFS results In considerable program compression in
that an LFS fetches a literal in one or two bytes whereas six bytes would
otherwise be required: 4 bytes to store the literal as a whole word item

and 2 bytes to fetch it with an addressing operator (see below).

An LFS can be one or two bytes in length as follows

[OOOIXXXXX] for literals < 31

[CO0I[XXXXXXXXXXXXX] for literals < 8191

Examples:

1. FJRI =0T¢ 29 BY 1

As will be seen later, this SPL language form requires the
values 1, 29, 0 (in that order) to be placed on top of stack. A part of the
appropriate coding is, therefore,

LFS 1

LFS 29 length 3 bytes

LFS 0
2. GPTP STLAB

Suppose that STLAB turns out to be the third byte (byte 2) of

word 903 relative to the start of the program gegment containing the G@T@.
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The appropriate coding with commentary is

length 3 bytes |LFS 7036g This is 4%903 + 2

JMP Last 17 bits of TOS —PC

4.5.2 Operator Syllable

An operator syllable is always one byte in length and is used
to perform all arithmetic, Boolean, logical, manipulative, storage and
control functions for which (because the operands generally are at.the
top of the stack) no address is required or for which (as in the immediately

preceding example) an address is already present at the top of the stack.

The format of an operator syllable is

lo1lf f£££f £

where f is specific to the operation to be performed. The
following tables show the scalar mode operations classified by general type.
No assignment of operator has been made except for ESM (f = 008) and

EAM (f = 778).
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Symbol or

Mnemonic

+

t+ R

CHS

ABS

TRC

INT

FRAC

MIN

SGN

Function
rB'+‘rA>+ rB
rB - rA + rB
rB + rA » rB
[tB + rA] + rB
rB Mod rA » rA
rB * rA + rB
-r@ + rA

|rA| » xA

Single Double

X X
X X
X X
X

X X

Round rA at word boundary

Comments

Real

Operands are integers
or are made so.

]

Singularize double to sihgle precision by truncation| sign is retained

Replace rA by its integer part

Replace rA by its fractional part

Min {rA, rB} - rB

Max {rA, rB} + rB

If rA |< 0
>—

Table 4-2:

,,-|l+rA
+.

Scalar Operations

Arithmetic Functions: all
operations are floating point
unless otherwise noted.
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Symbol or
Mnemonic

AND
OR
XPR

EQUIV

NOT
XCH
DUP
NIX
EXT )
SXT

INS

SNS ]

Table 4-3:

Function

: rBnrA->rB

rBy rA > rB
rBV rA->rB
rBATYTA o 1B

Cl(rA) > rA

Comments

& Bit by bit for 32 bits

s

Logical Not

0 » rA (0//31) and Complement last bit: Boolean Not.

rA 3 rB

Partial word
Operations

Exchange operator.
Duplicate top of stack.
Delete word in TOS.
r Extract a partial word.
Extract a partial word and sign.

Insert a partial word.

L Insert a partial word and sign.

Scalar Operations

Boolean, Logical, Manipulative Functions
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Symbol or
Mnemonic

GR 9
GQ

NQ

n
LQ

LS J
JMP )
q¢T' s

JPF

- NSX
ASX

NDX

INX

Function

& REL

Jump to address in rA

Comments
If rB REL rA is true, a Boolean
true (integer 1) —»rB
If rB REL rA is false, a Boolean
false (integer 0) —»rB. In either case

both comparands are deleted from the stack.

unconditionally

if rB contains true
false

Normal Subroutine Exit

Abnormal Subroutine Exit

Transfer of control at end of
FOR-loop (conditional)

Transfer of control at end of
FOR-loop (unconditional)

Table 4-4: Scalar Operations
Comparison & Branching Functions
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Symbol or

Mnemonic

FIC

SIC

FIM

SIM

Function

TOS «—ICR
TOS —» ICR
TOS «— IMR

TOS —+ IMR

Table 4-5

0o
i " s £

Comment
Fetch Interrupt Condition Register to TOS
Store TOS in Interrupt Condition Register
Fetch Interrupt Mask Register to TOS

Store TOS in Interrupt Mask Register

Scalar Operations
Interrupt Processing
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Symbol or
Mnemonic

«—<C
&
XK
&

FCV

SCV
PCV

XCR

ESM
PRR
_ PCR

NOP

Function Comments
rB—>Address in rA Single Precision Both rA, rB are cleared
rB—+Address in rA Double Precision from stack.
rB—>Address in rA Single Precision Only rA is cleared from
rB—+Address in rA Double precision stack. rB is kept.

Current value of innermost FOR-loop control variable
(contents of CVR register)—»TOS

TOS — CVR

CVR—>Address in the ACVR register

Index create. Set up new values in the FORe~loop control
registers (ACVR, CVR, FVR, IVR) after preserving their
current contents and the loop return point.

Enter Array Mode

Enter Scalar Mode

Program Record (see section on circumvention).

Program Recover Return (see section on circumvention).

Pick up next syllable.

Table 4-6: Scalar Operations

Storing, Indexing & Miscellaneous Functions
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Example:

In the following example, the mnemonics for the required addressing

operators are written out.

Length
2

2

14 bytes

Compile

Mnemonic

LFS
Fetch
Fetch
LFS
Fetch

*R

XCH

Y=X*® (Y- 2/W)

Address

A(Y)
X

Y

Comments
Literal giving address of Y relative

to the scratch pad memory

2/w

Y - 2/W

X * (Y - 2wW)

Interchange result with A(Y)

Store Clear Single

When we have discussed the addressing operators, we shall repeat

this example reducing its length by 2 bytes by using the storage addressing

operators

. The left arrow operator used here (see Table 4-6) is intended for

subroutines whereinaresult is known by address: Compute result, fetch

address argument, left arrow.
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4.5.3 Addressing Operator Syllable

An addressing operator is always two bytes long with the last six
or ten bits constituting an address relative to one of the four base address
registers SPM (Scratch Pad Memory), PSB (Progrém Segment Base), PCT (Program
Control Table) and CSB (Calling Sequence Base). .These matters are discussed
at greater length in sections on memory séructure, addressing. program

segmentation and subroutine entry.

- 0 The. format of an addressing operator is

| — 10 ~d

Address Rel to SPM, PSB, PCT

( 10(g; 82 83 84 muidress Rel to CS
< 6 >

where g is specific to the function to be performed.

The function of an addressing operator is to fetch to the TOS a
one or two-word data item where the address refers directly to the item

(if one word) or to its first word (if two words).
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The g-bits are encoded as follows:

g, - 0 for fetching

= 1 for storing

8, = 0 for single precision

1 for double precision

g, 83 vhen gy = 0 (fetching operations)
= 00 fetch relative to SPM
= 01 fetch relative to PSB
= 10 fetch relative to PCT

= 11 fetch relative'to CSB

g2 83 Wuen g1 = 1 (storing operations)
gy = 0 store by truncating

= 1 store after rounding the TOS continuation register
into the TOS most significant half.

g3 = 0 clear the operand from TOS after storing it.

= 1 keep the operand on TOS after storing it.
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This scheme results ir two meaningless combinations 1101 (store double
round clear) and 1111 (store double round keep). Accordingly, the first of
these is used to store a single precision zero and the second to store a
double precision zero at the given address. All storage addresses are
relative to SPM. The scalar mode addressing operators are summed up in

Table 4-7.
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Mnemonic | _g-Bits Function
FSS 0000 Fetch Single from SPM
FDS 0001 Fetch Double from SPM
FSP 0010 Fetch Singlc from PSB
FDP 0011 Fetch Double from PSB
FST 0100 Fetch Single from PCT
FDT 0101 | Fetch Double from PCT
FsSC 0110 Fetch Single from CSB
FDC 0111 Fetch Double from CSB
STC 1000 Store (Single) Truncate Clear
sbC 1001 Store Double Clear .
STK 1010 Store (Single) Truncate Keep
SDK 1011 Store Double Keep in SPM
SRC 110 0" Store (Single) Round Clear
ssZ 1101 Store Single Zero
SRK 1110 Store (Single) Round Keep
Sbz 1111 Store Double Zero

Table 4-7 : Scalar Addressing Operators
-~ Those with 0 < g < 7 are also
Recognized in Array Mode
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Examples:

1. Compile
Length Mnemonic
2 FSP
2 FSS
1 -LFS
2 FST
1 +R
1 -
1 *
1 2 SRC
12
2. Compile
) Length Mnemonic
2 FSS
2 - FST
1 *
2 SRK
1 CHS
2 FSS
1 +
2 STC
13

Y=X*(Y-2/W

Address

X

Comments
X is local to program segment.

Y is in SPM

W is global to all programs
2/w

Y - 2/W

X * (Y - 2/W)

Round & Store Single Precision Result
& clear from TOS.

PHI = THETA - OMEGA = ALFA * PI

Address

ALFA

PI

OMEGA

THETA

PHI

Comments
Global Constant

Store & Retain for further use.

- OMEGA

PHI declared with TRUNCATE attribute.
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4.5.4 Descriptor Call Syllable

A descriptor call syllable is likewise two bytes long with the
same address structure as an addrvessing operator except that the address
pertains only to the PCT (ten bits) or the CSB (six bits). The entity
referred to by the address is not the data itself but a word which describes
the data. These words, called descriptors, are of eéVeral different types
of which two will be described later in this section by their use in .

examples.

The execution of a descriptor call involves the following steps:

1. Recognize descriptor call.

2. Fetch the descripto; into the Descriptor Decoding Register
(DDR).

3. Depending on the particular descriptor call, distribute the
partial fields of DDR to other control registers for use during execution.

4, Execute the operation implied in the descriptor call.
The DDR is a description of a function which may be assumed by a
part of the microprogramming logic.

The format of a scalar mode descriptor call is

0123456789101112131415
0 Address Relative to PCT
11h b hmﬁdr Rel to CSB

where h is specific to the function to be performed, and bit 2 deter-

mines whether the address is relative to the PCT or the CSB for 0 <h £ 5.
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Table 4.8 presents the scalar mode descriptor calls.

emonic h-Bits Function
o .
fLF 1000 Fetch an element from a one or two-dimensional
array. Indices are at TOS and dimensions, base
address & storage mode of array are contained in
an array descriptor. One may not use two indices
if either dimension is 1.
0
ESC 1001 Store an element in a one or two-dimensional array.
Clear TOS of indices and element.
0
IESK 1010 Same as ESC, but data element is saved.
0 3
IN 1011 Initiate input according to File Descriptor.
0
pur 1100 Initiate output according to File Descriptor.
, 0
ESP 1101 Enter fubroutine Program,
JOS 0110 Jump to new Program Segment utilizing Program
Descriptor in PCT.
WDCI 1110 Execute the descriptor call stored relative to CSB.
0 L]
ADE 1111 Use the element indices at TOS to create and leave
at TOS the absolute address of the element.
Table 4-8: Scalar Mode Descriptor Calls
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Examples:

1. DECLARE (10, 15) FLOQATING, A, B, C -

FAR J = 1 BY 1 TO0 14
FARI=1BY1TO9

A(I, J) = B (I-1, J) + C(I, J-1) ENDALL

We defer consideration of the loop set-up and testing syllables until

indexing operations have been discussed.

Length Mnemonic Address - " Comments =
1 FCV 1—-T0S _ (
1 LFS 1 1—T0S
=
1 = I-1—TO0S
2 FSS J T0S=J, I-1
2 ELF D(B) B(I-1, J)—»TOS
1 FCV I —»TOS
2 FSS J J —T0S ’.
1 LFS 1 J - 1—TO0S .
1 = TS =J-1,1 |
2 ELF D(C) TOS = Cc(1, J-1), B(I-1, J)
1 + B(I-1, J) + C(I, J-1)—»TOS
1 FCV I—-»TOS
2 FSS J ~ T0S = J, I, B(I-1, J) + C(I,J-1)
ﬁz)_ ESC D(A) B(I-1, J) + C(I, J-1)— A(L, J) L.
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descriptors of A, B, C respectively.

storage these have the

In this example, D(A), D(B), D(C) are the addresses of the array

Without implying their consecutive

following format:

: 4= §—> (5| +—5+] & 15 >
DCA) [ O0f1] 0 IN\\\\Y 9 14 | Address of A(0, 0)
D(B) [ 0]1] 0 [N\\\\\} 9 14 | Address of B(0, 0)
D(C) [0]1] 0 N\N\\\N 9 14 | Address of C(0, 0)
€ 32 bits >

Bit 2 gives the storage mode (0 = single precision, 1 = double

precision).

Length
2

2

Example:

2. Call a subroutine

Y= .SIN (W+ Z)

Mnemonic Address
FSS W
FSS Z

+
ESP D(.SIN)
SRC Y

Comments

W—>TO0S

Z—>T0S

Leave value of argument at TOS

Compute sine

Store,

round, clear

The subprogram call descriptor D(.SIN) has the following format:

6

15

D(.SIN) [1 1

9
A7,

1 | Address of first word of subroutine
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4.6 Partial Word Operations

4.6,1 Language Considerations

Syntax: Partial word operations are permitted in SPL/MK III

through the use of the bit modifier which is written as

- a parenthesized pair of fields which can be
- literals
- variables
- arithmetic expressions

with the fields separated by a pair of slashes.

- an alternative form in which the literal letter '"S"

appears between the opening parenthesis and the first

field described above.
The first field gives the starting bit number, SB:

0 < SB< W~ 1 where W = word length in bits and bits
are numbered 0 to W - 1 left to right.

The second field imparts the length of the partiadl word field, LF:

l1<LF<W
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Note also that the following condition must obtain:
SB+LF LKW
The word length W for the AGC is 32 and the balance of these

discussions assume this value.

1. D=6 %A (S0//16)
2. D (8//8) = BYTE 1

Semantics: Extraction: A bit modifier appearing anywhere

in an arithmetic or logical formula is regarded as a postfixed unary operator
calling for extraction. As a unary operator, the usual rules for the scope
of its effect apply. On the AGC this means that it is applied to the
quantity at the TOS without regard to how the latter get there. In practical
terms, this means that partial word field; can be extracted from parenthesized
expressions and used as operands in further computation:
A= (P+Q*R)(S1//7) + 64

This expressions calls for the signed floating point exponent of
the quantity P + Q * R to be added to 64. As a unary operator, extraction has
higher precedence than any other operator except the prefixed unary

operators +, -,
4.6.1.1 Extraction

Extraction in SPL/MK III means field extraction: The fields

adventitious to the field specified by the bit modifier are zeroed out and

then the specified field is right justified and left zero filled. The
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alternative form of the bit modifier with the letter "S" calls for signed

field extraction which is the same

the bits of the extracted field is

as field extraction except that one of

put into the sign position of the result.

On the AGC, the last bit of the sender field is stored as the sign (bit 0)

of the rece:ver:

0———11,12 18,194 20 31
A pe——B —>1 S c Sender
Recelver . Receiver
) 0 B 5 S| 0 ' 0 B
Sender bits 12—19 B 12—18

Field Extract (12//8)

A further form of extracti

but leaves the extracted field in p

Signed Field Extract (S 12//8)

on which removes the adventitious fields

lace is termed logical extraction. It

may be achieved under certain circumstances by the logical LAND operation.
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4,6,1.2 Insertion:
A bit modifier appearing on the left side of an assignment statement
or on either side of an exchange statement is regarded as a modified storage

» a

instruction which calls for the (field) insertion of the sender field (last

LF bits of the word at the TOS) into field (SB//LF) of the receiver word (the

simple or subscripted variable appearing before the bit modifier. Signed field
insertion is the same as field insertion except that the sign bit of the
sender is combined with the last LF - 1 bits of the sender to make up the

field to be inserted. The AGC picture is: )
0 2 9 20———3
A B 5 C Receiver

Sender

X Ijl! B ;—tﬂ S Y B
— 4 —130 01 24 2531
field insert (12//8) ' signed field insert (S 12//8)

Note that extract leaves a result on TOS whereas insert causes a result

to be stored in memory.

A further form of insertion which inserts tﬁe correspondingly positioned

field of the sender into the receiver is termed logical insertion. It may be
accomplished under certain circumstances by the logical operations LAND, LOR and

LNOT.
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4.6,2 Compilation Considerations

The methods chosen for implementing extraction and insertion on
the AGC are motivated by the need for an easily implemented left-to-right '
compiler scan of the bit modifier. Thus, assuming for both extraction and
insertion that the sender is at the TOS, the basic coding pattern adopted
is

- get SB to TOS

- get LF to TOS

- issue extract or insert operator which uses
shifting at the microprogram level.

More specifically, the'steps for extraction are:

E.1 Set a flag on if "S" appears after "(", otherwise set flag off.

E.2 Drive out code to evaluate SB.

E.3 Drive out code to evaluate LF.

Steps E.2 and E.3 can therefore be
LFS for a literal
FS - (or FCV) for a variable or constant

or a sequence of fetches and arithmetic operators

to evaluate a formula.

The net result is that the stack contains at this point:
rA LF
rB SB

(P) Sender
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E.4 Issue an EXT (extract) if Step 1 flaé is off and an SXT

(signed extract) if the flag is on.
The corresponding steps for insertion are:
I.1 Fetch the value of the receiver to the TOS with an FSS.

1.2~1.4 Same as steps E.1l thru E.3.
The net result is that the stack contains at this point:
TA LF -
rB SB
(P) Receiver
| (f—l) Sender
I.5 Issue an INS (insert) if step 1.2 flag is off and an SNS
. (signed insert) if the flag is on.

1.6 Issue an STC to the address of the receiver.
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4.6.3 Architecture Considerations

The two methods available for extracting and inserting are masking
and shifting. Masking is available through thre logical SPL operations LAND,

LOR, LNOT and is relevant only under the following conditions:

- a logical extract or insert is desired;

- the parameters SB and LF are both intager literals.
Under these circumstances, the following SPL coding could be used

Extract: REC = SEND LAND MASK

. . (.
Insert: REC = SEND LAND MASK LOR REC LAND LNOT MASK
i
, LNOT is Ones Complement (Unary operator).
MASK is a constant with ones at the desired field and r
zeros elsewhere. ’

When a field extract is wanted, the masking operation must be followed
by a shift so that shifting might as well have been used from the start; when
either SB or LF is not a literal, a dynamic mask haé to be created, presumably
by shifting. Thus, there seems to be no way to avoid shifting operations in
connection with partial word sperations. CIRAD has beer unable, however, to
identify any other situation in the guidance and navigation computational
environment which (given floating point operations) absolutely requires shift
instructions. Shift operations are available, therefore, only at the micro-
program level for the implementation of the operators shown in Tables 4-2 thru

4-7, including the extract and iﬁsert operators which will be discussed below.
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4.6.4 Microprogramming Considerations

The following steps suggest one possible way to implement extraction

and insertion via shifting operations. (Mu (y) stands for micro.)

4.6.4.1 Extraction: (EXT or SXT) :

pE.1l

pE. 2

uE-4

HE.5

Integerize rA; rA-1 - rL.

The subtraction allows LF (1 < LF < 32) which may have
six bits to be stored in a five-bit register.

Adjust Stack; Integerize rA; rA - r§

The integerization of LF and SB allows them to be computed
by general arithmetic computations. The integerization is
by truncation not rounding. rL and rS are five-bit registers
coincident with a pair of the M and N registers of array
mode. -

Adjust Stack. Sender is now in rA.

Extract by the following shift operations:
(See Figure 4.8)

HE.4.1 Set shift count from rS. Left shift rA losing the
leading SB bits. 1If SB=0, “his is a null operation;
this remark applies to the rest of the shifts
described below.

ME.4.2 Set shift count from the ones complement of rL (=32-LF).
Right shift rA leaving desired field right-justified,
left-zero-filled.

SXT only: Right circulate rA one place putting the last bit
of the field in the sign position. '
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Note that the total shift count is 32 - LF + SB. In view of the
constraints 0 < SB < 31, 1 < LF < 32 and SB + LF < 32, the maximum count
of the number of ones bits in any extract is 10 (SB = 31, LF = 1). This
means that the shifting steps in uE.4 can be accomplished in a maximum of

10 clock Limes.

P Q R rA before yE.4,1°
s G B2 |&——LF —>|% 32~ A
(SB+LF)
Q R 0 O rA after yE.4.1

. LF——'+——3)LF

v

.0 0 Q rA after pE.4.2
(EXT ends here)

g 0 0 Q ‘ .rA after uE.5
= 2 (SXT only)
1< 32-LF »* &LF-1—

Figure 4-8: EXT and SXT -Shifting Steps
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4.6.4.2

Insertion: (INS or SNS)

uI.3 Adjust Stack. Stack is: rA = Receiver
rB = Sender

uI.4 Considering rA as a double length .register with halves

.xA; and rAp. .
rA, 'rAR
B + rAL

0-+b

i.e.

rA'=| Sender | Receiver |

uI.5 SNS only: Left circulate rAL 1 place to put sign bit of sender
"at end of field.

ul.6 Insert by the following shift operations. (See Figure 4-9)

ul.€.1 Set shift count from rS + rL + 1. Left circulate rAp.

uI.6.2 Set shift count from rL + 1. Double right shift
rAp and rAp together.

uIl.6.3 Set shift count from rS. Right circulate rAg.

uI:? rAR hd rAL

Note that the total shift count is 2*%(SB 4+ LF) for which the maximum

ones bit count is 16 (SB = 15, LF = 15). Thus steps yI.4 - uI.7 can be

accomplished in a maximum of 20 clock times (21 for SNS).
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r T
A : Ar
]
Q P q R
LF . SB . LF 32-
' (SB+LF)
:
Q "R P q
LF ! SB LF
[}
|
L I Q R P
4 LF SB
]
.oo P Q .R
, SB LF 32~
g (SB+LF)
[)
Q R 555

Figure 4-9: INS and SNS Shifting Steps
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Examples:

1. Extraction: D = 6 * A(S 0//16)

Length Mnemonic Address Comment

1 LFS 6 Multiplier
2 ~ Fss A Sender —»T0S
1 LFS 0
Unary Extract operator on A
1 LFS 16 '
1 - -SXT
1 * RHS of equation is complete
2 SRC D
9

2. Insertion: D(I + 8//8) = BYTEl

Length Mnemonic Address Comment

2 FSS BYTE1 Sender — TOS

2 FSS D Receiver —»TOS

1 FCV A I-»TOS

1 LFS 8 I+ 8

1 +

1 LFS 8 TOS = 8, I + 8, Receiver, Sender

1 INS

2 STC D

11
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4.7 Indexing

There are four major uses for index registers in computers of
traditional architecture. These are

1. To serve as base addresses for program relocation and fOt.
major sections of constant and variable storage.

On the AGC, there is no need for index regiéters for program
relocation as this is not a desirable feature in the guidance computing
environment. A group of special base address registers has been provided
to allow data to be addressed with six or ten bit addresses. These are the
PCT, PSB, CSB and SPM base registers which are Qiscussed elsewhere.

2. For accessing elements of an array.

This need is met on the AGC by loading the subscripts into the
arithmetic stack and invoking one of the descriptor calls ELF, ESC or ESK.
The descriptor call combines the subscripts in the stack with the base
* address, dimensions and precision information in the descriptor to create
the element address and then fetch the contents thereof to TOS, replacing
the subscripts in the stack. In addition, array mode descriptor calls and
operations provide for array computations that obviate the need for handling
individual elements.

3. For control purposes such as an n-way switch.

The SPL n-way switch takes the form of an indexed GOTO on a list
of statement labels which is explicitly declared as a SWITCH or implicitly
declared in the GOTO statement itself. The AGC hardware/software solution to

this problem is to store the switch list as a vector, creating a descriptor
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for it. The ELF descriptor call can then be used to fetch the appropriate
address to the TOS where it can be operated on by a JMP, JOF or JOT operator.
The details are provided elsewhere.

4, For iterative-loop control.

This is the only general indexing capability not otherwise
provided for. It is not a pure need, for quite often one needs to use the
loop control variable as an arithmetic operand or as an array subscript for .
an operation which cannot be handled by the array mode operatioms.

The SPL language need for iteration control is met in two general

ways. The first takes the form

lWHILE <Boolean formula>

UNTIL

Statement 1

Statement n
ENDALL

END

In this form of iteration control it is assumed that the variables

entering into the Boolean formula are initialized before the loop is entered

and are altered in some manner in the body of the loop so that the termination

condition will eventually be fulfilled.
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This form of iteration control (Boolean loop control) is easily
handled at the compilation level simply by treating the loop as though it
had been coded:

LRP. Statement 1

Statement n
lUNTILl 1F {NOT I<Boolean formula> GOTO LRP

WHILE empty

In this form, it can be handled by the comparison and branching

facilities already present in the scalar mode operationms.

The other major form of iteration control is provided by the concise

loop statement which takes the forms

FgR LCV = CV (a)
or FgR LCV = CV BY IV (b)
or F@R LCV = CV T@ FV (c)
or  FPR LCV = CV Tg FV BY IV (d)
or FgR LCV = CV BY IV T§ FV (e)
or FgR LCV = CV, IV, FV (f)

Where the following shorthand notation has been used:
LCV: Loop Control Variable. This is an integer item

(non-subscripted).
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CV: Commencing Value )

t Val |
or Current Value | May be literals, variables

IV: Increment Value or formulas

FV: Final Value /

Forms (d), (e) and (f) are compiete and require no further comment
except that the signs of IV and FV-CV must agree. Form (c) is treated as
though one had appended "BY 1". Form (a) is treated as though one had written

"FOR LCV = CV TO CV BY 1", i.e., the loop will be executed exactly once.

When form (b) is used, it must be assumed that the programmer has
included his own Boolean test for termination in the body. of the loop. For
purposes of starting the.compilation of such a loop, it is treated as though
one had written "FOR LCV = CV TO CV BY IV" and thus treat it like all of the
other cases. The loop will, however, be terminated by the equivalent of
CV = CV + IV followed by an unconditional transfer to the start of the loop,
whereas the other cases follow this incrementation with the equivalent of the
test

IF IV GQ O AND CV LQ FV @R
IV LS O AND CV GQ FV G@TY LRP
where LRP is the virtual label of the first statement of the loop

(1 return point).

The following table shows the cost of actually expanding the
incrementation and testing steps into AGC code based on the explicit SPL

statements shown in the previous paragraph .
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C A S E S
a
Item c-f b
Number of Bytes 30 10
Number of Syllables 22 6
Number of Memory Accesses 7 4

This is reduced in the architecture to 1 byte, 1 syllable and a
lesser number of memory accesses which are dependent on implementation (hard-
ware register vs dedicated memory location) by the introduction of the four

loop control registers:

# bits Nave .Function
14 CVR holds CV
14 FVR holds FV
8 IVR holds IV
10 &CVR holds the address of the LCV

This imposes the following constraints on the size of CV, FV and IV:
0 < CV < 16383 (14 bits)

0 < FV < 16383 (14 bits)

-127 < 1V < 127 (7 bits and sign)
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4.7.1 Setting Up a FOR Loop

(
The first thing that is required is to put the address of the LCV

on the TOS. Since this is a ten bit number (relative to SPM) this can be

done with an LFS, or an FSC if the LCV is an output parameter of a subroutine.

Then the quantitites IV, FV-and CV are lcaded to TOS in that order.

This is done as follows:

LFS if literal ¢ 8191

FS- if variable, constant, or literal > 8191

FCV 1f LCV of next outer FOR loop

or a sequence of syilables to evaluate a formula

and leave result on TOS

Finally, an XCR syllable is executed. This syllable saves the
current contents of ACVR, CVR, FVR and IVR and reloads them with the values
of address of LCV, CV, FV and IV respectively which are on TOS. Finally, it
causes capture of the PC as the address (word and byte) of the LRP (syllable

following XCR).
The steps in the execution-of XCR are

1. Pack and hold in the ARR (array result register) which is not
in use at this time the following

0 7,8 21,22 31
ICW1 L_IWR FVR ACVR |
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2. Store the contents of CVR at the addresé contained in the ACVR,
i.e., CVR—*(ACVR). This step is also available as an independent syllable
i

\

PCV which will be discussed later.

3. Adjust the stack (ADJ)
Integerize rA (INT)

vA—» CVR

4., ADJ, INT, rA-—-»FVR
5. ADJ, INT, rA—>IVR
6. ADJ, rA—ACVR

7. ARR-—TOS

8. PC—TOS

Example:

ACVR = CVR = FVR = IVR = 0
FORJ =N+ 2 T0 Z BY -2

[ACVR = Address (J), CVR = .N + 2

FVR = 2, IVR = -2

| TOS = Address (LRPJ),
FORI =0 BY4TOJ+ X

[ACVR = Address (I), CVR = 0 )

IFVR = J+ X, IR = & {

k'ros = Address (LRPI), [-2] 2 Ta(d) IJ
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The net result of XCR is that the four values CV, FV, IV and

address (LCV) are held in registers where they are easily accessed, and the

Y
immediately preceding values of these registers are either stored in memory

(CVR) or held in the staék (IVR, FVR, ACVR) whence they may be used to
restore ACVR, CVR, FVR, IVR when the inner loop is exhausted. The address
of the LRP is also available in the stack for branching to the start of the
loop when the inner loop is not exhausted. It should be noted, also, that
the formulas used in computing CV, FV and IV can be quite genera} in that

any non-integer result will be integerized (truncated) before it is used.

4.7.2 Accessing the Innermost LCV as an Operand

Once inside the body of a FOR-loop, the value of the LCV is kept

in the CVR and the address of the LCV is kept In the ACVR. The value in CVR

is incremented at the end of the FOR~loop but the value in the CVR is stored
at.(ACVR) only when necessary. Program events which require preserving the
CVR are the following:

1. VWhen entering an inner FOR-loop. This is taken care of

automatically by the XCR syllable.

2. Before exiting to a subroutine. Once in the subroutine, the

LCV may be sought by an ordinary FSS fetch from its memory location.

3. Before any GPT@ in which the label falls outside the range

of the FOR-loop.
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4, Before any switch GPT@ in which at least one label falls

1
N

outside the range of the FOR-loop.

For the last three cases, the operator PCV (preserve current

value) 18 used. The action is CVR—+(ACVR).

Inside the innermost FOR-loop, the LCV is available by a 1 byte
direct fetch from the CVR. This is the syllable FCV (fetch current value).

The SCV (set current value) operation can be used to alter CVR.

PCV: CVR—> (ACVR)
FCV: CVR—=TOS

SCV: TOS—sCVR

FOR J =
FSS I gets 1
FCV gets J
FORI =
FSS J gets J
FCV gets I
END
FSS 1 gets 1
FCV gets J
END
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It should be noted that the two loop words put in the stack, by
XCR must be purged if the loop is aborted by a GOTO or a TEST statement.
The restriction on entering a FOR-loop from anywhere but its top or by a

)
subroutine return is absolute.

4.7.3 Termination of a FOR-loop

There are two syllables which can be uséd to terminate a FOR-
loop.

Tﬁe first of these is INX (inérement index) which causes the
following

1) IVR + CVR—»CVR

2) Jump to the LRP address (rel to PSB) at TOS without

deleting same.
This form is intended for case (b) of the concise loop statement.

The other loop terminating syllable, NDX, is for cases (a), (c) -

(f) and accomplishes the following: 

1) 1IVR + CVR—»CWR ,
2) IF IVR >0 AND CVR < FVR do step 2 of INX.
IF IVR < 0 AND CVR > FVR do step 2 of INX.
3) Otherwise
3.1 Delete LRP address from TOS

3.2 Restore registers as follows:
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T#S (0//8) — IVR
T9S (8//14)-—>FVR
T¢S (22//10) —>ACVR

(ACVR)—» CVR

If the terminated loop was nested, the restored contents of the loop
control registers is the same as upon entry to the terminated loop and further

computation cr the NDX for the outar loop can occur.
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4.8 Program Segmentation & Transfer of Control

A program segment is a block of control stream syllables of < 1024
. W
words with the .first syllable on the word boundary (byte 0). To this may be
added up to 1023 words of local scalar and array constants or mon-control

stream literals (non-integer or » 8191 in magnitude).

Tl;e first word of a program segment is marked by the program
segment base (PSB) register which is reset by subroutine calls and inter-
segmental jumps. Within a segment, data, in common with all data references,
is addressed on the word boundary as one or two-word items. These data
items are addressed by the PSB relative fetching addres.sing operators FSP
(single precision) and FDP (double precision) of which the relativ_e 10-bit
addresses are backwards relative to PSB, i.e., FSP 4 fetches the single word
item whose address is PSB-4. By contrast, intrasegmental address references
for transfer of control in the control stream are byte addresses, i.e.,
they are twelve-bit addresses of which the first ten address the word containing
the byte and the last two address the byte (0-3) within that word. These
addresses are forward relative to the PSB. Thus, a jump to address 102.1

transfers control to the second byte of the word stored at PSB + 102.

A FSP or FDP O will place a single or double precision O in the TOS.
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4.8.1 . Transfer of Control

t

s
We shall first categorize transfers of control as intersegmental
and intrasegmental and then show how these are accomplished in the context

of particular transfer operations and SPL program forms.

4.8.1.1 Intersegmental Transfers

Intersegnental transfers of control are of two types. The first
is the subroutine call initiated by the ESP descriptor call. This is
discussed separately in Section 4.9. We note here, only that an ESP initiated
transfer 1s always to byte 0 of the first control stream syllable word of

the new segment.

By contrast, the JOS (jump out of segment) descriptor call is not a
subroutine jump (doesn't store return information) and causes a jump to an
arbitrary byte address in the control stream of another program segment. The
purpose of the JOS intersegmental jump is to permit a program to be of arbitrary
length. The programmer and/or the compiler is not forced to chop a very long
program up into a group of subroutines in order to comply with the 1024 word

restriction on program length.

The JOS syllable is, as noted above, a descriptor call. The descriptor

that it calls is called a program reference descriptor (PRD). A PRD has the
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following format:

3->|< 12 > < 15 >
Entry Point
10 Displacement Absolute Address

9 j

1'2—4" 5 16" 17 ' 31

Figure : Program Reference Descriptor (PRD)

Format

'( The steps in the execution of a JOS syllabie.are as follows:

1. JOS Q : (Q kel PCT)-->DDR

2. DDR (17//15) (address)—» PSB

The previous contents of the PSB are lost. -

3. The entry point dispiacement (epd) consists of 10 bits of
word address and 2 bits of byte address. The word part is
added to the absolute address: :
3.1 DDR (5//10) + PSB—»NS register

The byte portion is put in the next byte register
3.2 DDR (15//2)—> NB (1//2)

( 0 —*NB (0//1)
{
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(NS+1)-—)IR1

The instruction fetch cycle may now be initiated. The meanings of
registers NS, NB, IR, IR1 and the steps of the instruction fetch cycle are

all found in Section 4.3 1In that section, the abbreviation for steps 3.1,

3.2
Address + epd —»PC

is explained. This abbreviation will be used in the balance of this section.

Intrasegmental Transfers

It may be noted that the JOS could also be used for an intrasegmental
transfer but it takes six bytes to do so (4 bytes for the.fRD, 2 bytes for
the descriptor call). A more ecoﬁomical method as well as one offering the
flexibility of conditional transfers is provided by the operators JMF (jump
unconditionally), JOF (jump on false) and JOT (jump on true). These may be
exercised by fetching a positive 12-bit iiteral to TOS (2-byte LFS) and then

invoking one of these operators (1 byte) for a total of three bytes.

A compilation condition which arises in SPL (which does not require
all labels to be declared at the beginning of a block) is the problem of forward
labels, i.e., a label is used but it (the label) is not found until much later

in the program. Thus, one has to generate an LFS, JXX pair and put the address
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. of t'he LFS syllable on a list of unfulfilled addresses. When the whereabouts

of the label becomes known, this 1ist may be used to complete the LFS. Since
ve are allowing simple jumps between pro;ram segments, it may turn out that
the missing forward label is in another segment. The simplest solution to
this problem is to generate a PRD for the forward label, store it in the

PCT and replace the LFS (2 bytes) with an.FST of the PRD (alsc 2 bytes). This

makes sense only when the following test is added to the execution of a JMP,

JOF or JOT syllable:

- 1f the word at the TOS is really a PRD (i.e., is less than 0),
put it in the DDR and if (JOF, JOT) the éondition is met, behave as though

a JOS had been executed.

4-73



PCT :
1
PRD |10 101.2 11304
|
E J Data Area
PSB=34216 '
| Intersegmental Jump:
'
PST PRD Jump to byte 2 of relative location
IMP 1018 of segment starting at 11304.
[ ' ;
I
I
; |
I
]
v/ lData Area
PSB'=11304 i
I
!
|
11405 3
Intrasegmental Jump:

LFS 101,2
JMP

st
Jump %o byte 2 of 1018_ location

of this segnent.

—
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A second software problem arises from the explicit dec’aration of a
switch. An empty position in the declaration means that control should step
thru if the switch index takes a value corresponding to the empty position.

Since the switch may be used in many different places, the step-thru positions

of the vector of labels stored in the PCT generated by the switch declaration
must be filled with a "universal step-thru label". This may be accomplished

by appending the following test behind the previous additjon:

-~ 1f the address in the TOS is not a PRD, but the field

(1//19) # 0 then step thru.

An overall flowchart of a possible execution sequence for the three

operators JMP, JOF and JOT is shown in Figure 4-10.
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Example:
DECLARE SWITCH, SE'"N = (LO,,,L3, L4, L5,)

This declaration might cause the following switch vector to be

generated and stored in the PCT at location 4772

4772
LO
Step-thru
Step-thru
L3

PRD L4
PRD L5
Step-thru

The array descriptor of this vector stored at PCT relative address

412:
%
01 0?6 0| 4772
72
Compilation of G@T@ SEVEN(K):

Length Mnemonic Address Comment )

2 FSS K

2 ELF PCT412 Kth element of switch —»TOS

1 JMP
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s o A B VTS

(m, JoF, J¢T )

T0S —» DDR

J@s-Step 2
Page .

(1//19) = 0

DDR (20//12)—>EC

Operation

Complete

Figure 4-10: Execution of Transfer Operators JMP, J§F, JOT

477



4.9 Procedure Entry & Return

4.9.1 Setting Up A Calling Sequence

All the input and output arguments of a procedure are stored in the
stack. The representation of an argument is either by value, by address or
by descriptor according to the argument type and whether it is an input or
output argument. The stack representations of the various argument t.ypes

=

are set forth in Table 4-9,

The computational significance of storing the arguments in the
stack is great efficiency in compiling and executing complex arithmetic

statements in which there are nested calls to function procedures. For example:
Y = .SQRT (A**2 + (B*,SIN (X-.SORT (.C05(Z))))))

compiles rather easily and compactly to

Step Length | Mnemonic Address Comment
1 2 FSS A

2 1 DUP

3 1 # a2

4 2 FSS B

5 2 FSS X

6 2 FSS z z, X, B, A

7 2 ESP p(.cos) |cos z

8 2 ESP D(.SQRT) | Vcos z
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Step 'EEEEEE. Mnemonic Address Comment

9 1 - X- C€O0sz

10 2 ESP D(.SIN) |SIN(X - COS Z)

11 1 * B* SIN (X - COS Z)

12 1 + A2 + B* SIN (X -  COS Z)
13 2 ESP p(.sqr) |V A2 + B* SIN (X - COS Z)
14 _2_§_ SRC Y Result —»Y

=

A second consequence of usiny the stack to hold the arguments is that
because the return information is also stored in the stack, a procedure with

only input parameters represented by value can be called recursively. Thus,

for example, the following is a valid SPL/MK III procedure for the AGC:

PROC .FIBON(N) I DECLARE I, N
IF N LS O THEN RETURN (.FIBON(-N)) ELSE
IF N LS 2 THEN RETURN (1)  ELSE
RETURN (.FIBON(N-1) + .FIBON (N-2))
ENDALL |

EXIT

. Implied in both of these examples is that a procedure which is used
as a function leaves its (one or two-word) result on the TOS. This precludes

the use of vector or matrix valued functions.
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Actual Argument Type

Stack Representation

CSB Relative Addressing
Operator or Descriptor
Call for Access

INPUT
1. Scalar

1.1 Literal
1.2 Variable
1.3 Formula

Latter two may in-
clude array
elements.

2. Array

2.1 Whole Array
(no formulas)

3. Procedure Name

4, File Name for
Input

OUTPUT

1. Scalar

2. Array
2.1 Whole Array

3. Statement Label

4, File Name for
Qutput

Actual Value

Array Descriptor (ARD)

Subroutine Call Descriptor
(scD)

Input/Output Descriptor
(10D)

Address of Scalar
Relative to SPM

Array Descriptor

Usually a Program
Reference Descriptor (PRD),
but see text, this section.

Input/Output Descriptor
(1I0D)

FSC or FDC
(See Section 4.5)

AFC, AFR, ELF, XPF
ESP (this section)

IN (Section 4,13)

FSC followed by a left arrow
store operator. (Section 4,

ASC, ESC, ESK

FSC followed by Abnormal
Subroutine Exit operator
(ASX). (this section)

OUT (Section 4.13)

Table 4-9 ¢ Stack Representat&ons of Subroutine Arguments
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4.9.2 Calling a Procedure

After the calling sequence has been loaded into the stack, the
descriptor call syliabie ESP (enter subroutine program) is issued. The
ESP syllable contains either a ten-bit address which is taken relative to
the Pcf for a procedure whose name is not itself a procedure argument at the
place where it is used,or else a six-bit address taken relative to the CSB
(calling sequence base register) for calling a procedure name passed as a

descriptor in a calling sequence. (See Section 4.9.3 and Table 4.9.) The

descriptor called by the ESP syllable is a subroutine call descriptor (SCD).

The format of an SCD is:

N ——15
W WA Count Address

Code for SCD Number of Words Absolute Address of
(not arguments) in Procedure (Byte 0)
calling sequence

—
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The functions of the ESP syllable are
- save return information in the stack

- reset the CSB register so that items in the calling sequence
may be accessed inside the new subroutine

- transfer control to byte 0 of the first program segment of the
procedure.

In detail, the steps are:

1. Recognize ESP Eyllable and transfer SCD descriptor to the DDR
(descriptor decoding register).
| 2. Create two return parameter words (RPW's) st&ring each at TOS:
2.1 PSB current contents —RPW, (17//15)
2.2 PC current contents'—bRPWl ( 0//17)
2.3 RPWl : —> TOS

2.4 CSB current contents —RPW, ( 0//11)

2.5 DDR (10//7) =#RPW, (25// 7)
count field
of the SCD

2.6 RPW2 =3T0S

3. Reset program counter (PC) and program segment base (PSB)
registers as follows
3.1 DDR (17//15) — PC word portion (NS register)
0 —> PC byte portion (NB register)

3.2 DDR (17//15) —» PSB
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4. Porce rA and rB into the memory portion of the stack leaving

rP pointing to the memory locafion of RPWZ.

5. Reset the calling sequence base (CSB) register as
rP -5 CSB.
The result of this is that the CSB in any subrcutine points to
the memory location of RPWZ, CSB-1 to RPWl, CSB-2 to the last argument word,

etc.

6. (NS) -—)IR0

(NS+1)-~>IR1

actions are: load first two control stream words of the subroutine into the

enter instruction fetch cycle. In words, these

instruction register.

Example:
.SUBA (A,B = C,D)
Let us suppose that this subroutine is called at location 12503.1 °
of a program segment which began at 12477. We suppose, further, that A and B
are scalar formulas} C and D are scalar items; that we are at the main program
level so CSB = 0; and finally that the SCD for the subroutine is at PCT location

304: g

Tz % | 24103 |
SCD at PCT 304

i.e., the subroutine begins at byte 0 of 24103 and the subroutiﬁe

starts, say, with a fetch of the first argument.
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Before ESP

After ESP-Before FSC Fetch

Calling Program Segment

Subroutine Program Segment

12477 | Syllables to 24103 ] FSC 5 |
12500 | Evaluate A 24104
12501 | Syllables to
12502 Evaluate B]|LFS
C
Addr
LFS Target
12503 D |ESP 304| ~—f— Syllable
Addr for
Return
Stack Stack
rA Addr D TA 550
rB Addr C rB | .} both empty |
(2133) = (rP) Value B (2137) = (xP) oooom 4

(rP-1) Value A

(xP-1) [ 12503.3 | 12477

(rP-2) "Addr D
(rP-3) Addr C
(rP-4) Value B
(rP-5) Value A

Registers

IR0 IR1

[ (12503) |

(12504) |

cs NS NB CB
[Esp 304} {12503 (3] [1]}

PSB CSB rP
{12477 ] 0000 [2133]

Registers
IR0 IRy
L (4103) | -(24104) |
CS NS NB CB

(ESP 304 | {24103 ] {0 |]1]

PSB CSB rP
[ 24103 | [2137] [2137 ]
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4.9.3 Accessing Procedure Arguments

All procedure arguments are accessed with addressing operators or
descriptor calls with a seven-bit address (2 < address ¢ 65) which is taken

relative to the CSB register. Thus, in the preceding example

FSC 5 fetches value of argument A
FSC 4 fetches value of arguﬁent B
FSC 3 fetches address of argument C

FSC 2 fetches address of argument D

A software consequence of passing a;guments by value in the stack
is that the requirement that the number and storage mode (single vs double
precision) agree betwixt subroutine and cglling program is absolute. If
+SUBA, in this example, expects A and B to be double precision then, it will
attempt to fetch the two words of A with FDC 7 (pulling up whatevér was in
the stack at the time the program began to generate the caliing sequence).
Seeking B, an FDC 5 will bring up the two single precision values A and B
as though they were one double precision number. The addresses will be
correctly fetched. Such an error has consequences also for the process of

returning. This will be discussed later.

Running the relative addresses from 2 to 65 rather than 0 to 63
(seven vs six-bit CSB relative address) permits the programmer to have access
to the RPW's., It should be noted that procedures are confined to a maximum
of 64 words in their calling sequences. This count will not be the same as

the number of arguments when any value argument is double precision.
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Table 4-9 gsummarizes the addressing operators and descriptor calls

used to fetch different argument types.

4.9.4 Return from a Procedure

4.9.4.1 Normal Return

The basic method for effecting a normal procedure exit is predicated
on the notions that a procedure may be used as a function and that it is
undesirable to have two different ways to return from a procedure, i:e., a
subroutine exit and a function exit. Therefore, all procedure exits are
done function style which means that the memory portion of the stack (rP) is
returned to the position which existed just before the calling sequence was
constructed ("winding dowﬁ the stack") and the arithmetic registers are (;j

left holding any results which may have been generated by the procedure.

Exaggle:

Figure 4-11 shows successive snapshots of the stack during
the computation shown on page 4-78. The horizontal line divides the arithmetic
registers from the memory portion of the stack. The steps numbers are keyed '
te the step numbers shown on page 4-78. The stack pictures during the computations
inside the functions called are not shown. The portions of the stack which
must be removed during the procedure return process are boxed. The RPW's are

shown as Rl and Ry with appropriate distinguishing superscripts.
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The normal procedure exit is caused by the operaior NSX which is
issued any place in a procedure where the flow of control requires a return.

The steps undertaken in the execution of this operator are:

1. Restore the program counter:

RPH, (0//17) —PC

2. Restore the program segment base

RPW, (17//15) —PSB

3. Wind down the stack
CSB - RPW, (25//7) -2 —»xP if CSB ¢ 0
Tﬁis refers to the count field of RPW, which originally came
from the count field of the SCD of the procedure. The result is that rP will
be set to the value it had before the calling sequence was put in the stack.
This step assumes that the count field and the actual number of argument

words are equal. See also Step 3.3 on page 4-90.

4. Restore the calling sequence base
RPW, (0//11)—>CSB
The steps shown access RPW, and RPW, as (CSB) and (CSB-1)
respectively, i.e., the stack need not have RPW, at the top of the memory

porticn at the time the NSX is issued although this is the usual case.
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4.9.4,2 Abnormal Return

Abnormal return is provided for non-function (subroutine) procedures.
The SPL linguistic form is RETURN (statement label) where the statement label

appears on the output side of the calling sequence with a period postfixed.

The stack representation of the abnormal return statement label
depends on whether the label is local to the calling progreu or was passed
to the calling program in its calling sequence. In the first case, the compiler
puts a PRD for the label into the calling sequence and in the second case,
stores in the calling sequence the relative position of the second hand label,
i.e., 1f the label 1s CSB relative 3 in the caliing“éequence of the calling

program then it passes the label on as the literal 3:

Outermost Level (0)

Level 1

.SUBA (X = .@SCAR) ~— PROC .SUBA (Q = LBL.)

+SUBB (V, W = LBL.)

Level 2

PROC .SUBB (Z, D = ERR.)

IF Z LS 2*D RETURN (ERR)
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Here OSCAR., since it is a label local to the outermost level, will be represented
by a PRD in the call to .SUBA, whereas LBL. will be represented by 2 in the call
on .SUBB since 2 is the CSB relative position of LBL. in the formal calling '

sequence of ,SUBA.

The purpose of this distinction is to permit the stack to be wound
down to the level it was at prior to leaving the subroutine level which

contains the abnormal return label.

The abnormal return is initiated by bringing the return parameter

to the top of the stack with an FSC addressing operator and then issuing an

ASX operator. The steps undertaken in the e;:ecution of this operator are:

1. If rA contains a PRD (rA < Q) go to step 3, ot;herwise to |
step 2.
2. RPW, (0//11) ~»CsSB

(CSB-rA)— rA

Return to step 1.

This winds down one level and resets rA to the stack
representative of the label at the previous level. Eventually a PRD must be
reached.

3.
3.1 PRD address + PRD epd —>PC
3.2 PRD address —» PSB

3.3 CSB-RPW2(25//7) -2 =P

3.4 RPW,(0//11) ~ —»CSB
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4.10 Array Mode Processing

Array mode descriptor calls are used to fetch and store whole
arrays (one or two-dimensional) or array cross-sections (rows or columns of
a rectangular array). Array mode operators are used to perform the usual
array on array and scalar on array operations (see Table 4-11) on the entities
thus fetched. Array operations do not presently allow for genefal formula
capability, i.e., only couplzt formulas are accommodated. If a scalar
operand is involved, it must be a literal or a simple (unsubscripted) variable;

1t may not be a formula.

All array mode arithmetic is either single precision (which

includes integers) or double precision floating point according to the

following rule:

-~ If either operand is double precision, double precision operations
are used. The precision of an array is carried as a bit in

the array descriptor.

- Single precision operations generate double precision results
which are rounded to single precision prior to storage if the

receiver 1s single precision with the R@UND attribute.

Array operations are performed using three stacks with stack

pointer registers Py, P, and Py. The stack pointer register Py is the same
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as P, the stack pointer register of the ordinary scalar operations stack.

There 1is, in addit:lo;x, a third double-word arithmetic register,

ARR (Array Result Register) used in array mode operations. The typical array
mode operation proceeds as follows:

1. Array mode is entered (EAM). This causes the contents of the
arithmetic registers, rA and rB, if valid, to be forced into the memory
portion of the ordinary scalar operations stack. Thereafter, as long as
array mode continues, the arithmetic registers rA, rB and ARR are not

considered to be part of either stack 0 (Po), stack 1 (Pl) or stack 2 (Pz).

2. The first operand of the couplet (scalar or array) is fetched

to stack O.

3. The second operand of the couplet (scalar or array) is fetched

to stack 1.

4. The array operation is issued. This causes
4.1 Clear ARR
4,2 Stack 0 operand—»>rA.
4.3 Stack 1 operand —»rB.
4,4 rA OP rB (or vice versa)
optionally + ARR—>» ARR
4.5 When intermediate result in ARR is complete

ARR—>» Stack 2.
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5. When entire result is ready in stack 2, result is stored with

an array storage operation which is a descriptor call.

The selection of stacks in steps 2, 3, 4 and 5 is automatic but
may be overridden for operations such as simple array assignment (A = B) and

array exchange (A == B),

A scalar is fetched to stack O or stack 1 by a literal fetch or an

addressing operator as in scalar mode except that when the scalar has been

‘fetched a stack lock flip-flop (SLFF) 1is set for the appropriate stack to

permit repetitive fetching of the operand to the arithmetic registers.

When the operand to be fetched is an array and that array is trans-
posed (primed), attention must be given to whether the operand is to be fetched
by row or by column. In Table 4-10, we show by a C (for column) or R (for row)
how an array is to be fetched. X and Y are arrays while S is a scalar.

Note that the result is always generated by column.
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Table 4-10: Column vs. Row Fetch in Array Operations

It is anticipated that arrays will be stored forward by columns and

it should be noted that array fetch operations (Steps 2 and 3 above) which move

forward element by element will result in the array being étored forward

in its stack but with the last element the first accessible.
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4.10.1 Array Mode Control Stream Syllables

The four types of syllables shown in Table 4-1 are also found in

array mode.

4.10.2 Literal Fetch Syllable - Array Mode

Pefforms the same function as in scalar mode except that the ,
literal is fetched directly to the memory portion of either stacﬁ 0 or stack 1
and the corresponding stack lock flip-flop (SLFF) is set. SLFF0 and SLFFl are

both reset when a store operation has been completed.

4.10.3 Addressing Operators - Array Mode

The addressing operators with 0 < g < 7 shown in Table 4-7 are recognized
in array mode except that the operand is fetched and locked as described under

literal fetch syllable immediately above.

4.10.4 Operators - Array Mode

Note that because of stack locking as described previously, it is

not necessary to distinguish between element-by-element operations that are

array on array and those that are scalar on array (or vice versa).

The following tables list the array operators.
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Mnemonic Function
AE+ Array Element-By-Element Operations
AE- X; OP Yj—sStack 2
AE* OR xij OP Yij->Stack 2
_AE 3
MXM Matrix Multiply - Can produce scalar (1 X 1) result. When

this occurs, the FSR (Fetch Scalar Result) operation can be

used to retrieve it. See Table 4-12.

VXP' Vector Cross Product. Each operand must be 1 X 3 or 3 X 1.

Table 4-11 ;: Array Arithmetic Operators
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The dimensions of an array are held in special control registers

during an array operation. These are used to govern the execution of the

array operations. Some rules that pertain are:

Mnemonic

" PSR
SSO }
ss1

ESM

FCV

1. For AE operations
- If both SLFFO and SLFFl are 0 then the number of elements
generated is = minimum of the products of the dimensions of
the two arrays.
- If either SLFFO or SLFFl = 1 (both cannot be) then the
number of elements generated is = product of the dimensions
of the array operand. .
2, For MXM
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