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-13. ABSTRACT

Initially nonconducting gas is ionized by a thin viscous shock =ave. Upstream there
can be no magnetohydrodynamic interaction because of the zero conductivity, but the
conducting downstream region may have a magnetic structure which interacts with the
flow variables, A theoretical analysis is made in thc zero-magnetic-Prandti-number
(”hon-viscousﬁb limit, i.e., Ohmic dissipation is thc dominant diffusion mechanism,
Unlike magnetohydrodynamic shocks in a pre-ionized gas, ionizing shock waves are

not necessarily plane-polarized. Thus ®'skew™ shock structures can exist, in which
the upstream and downstream magnetic field vectors and the shock wave normal do not
all lie in a single plane. The existence of the viscou=z subshock at the front of

the magnetic layer requires the upstream Mach number to be greater than unity.
Explicit solutions are given for typical values of the governing parameters, showing
how the magnetic field vector rotates about the shock wave nermal as its transverse
component changes in magnitude through the shock layer. Skew shocks are necessarily
sub-Alfvénic downstream. Unlike the pre-ionized case, the range cf trans-Alfvénic
shock waves is not excluded, since these shocks ..an absorb Alfvén waves within their
structure. With strong magnetic fields it is possible to achieve very high downstream
temperatures by Joule heating. Alternatively, in some cases, magactic enexgy can be
fed into directed kinetic emergy, producing an overall expansion shock. °
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ABSTRACT

Initially nonconducting gas is ionized by a thin viscous
shock wave. ipstream there can be rnio macnetohydrodynamic inter-
action because of the zero conductivity, but the conducting

downstream region may have a magnetic structure which interacts

with the flow variables. A theoretical anazlysis is made in the

zero-magnetic-Prandtl-number (¥non-viscous") limit, i.e., Ohmic
dissipation is the dominant diffusion mechanism. Unlike magne-

tohydrodynamic shocks in a pre-ionized gas, ionizing shock

waves are not necessarily plane-polarized. Thus '"skew" shock
structures can exist, in which the upstream and downstroam
magnetic field vectors and the shock wave normal do not all lie
in a single plane. The existence of the viscous subshock at
the front of the magnetic layer requires the upstream Mach
number to be greater than unity. Explicit solutions are given
for typical values of the governing parameters, showing how the
magnetic field vector rctates about the shock wave normal as
its transverse component changes in magnitude through the shock
layer. Skew shocks are necessarily sub-Alfvénic dowmstream.

Unlike the pre-ionized case, the range of trans-Alivénic shock

waves is not excluded, since these shocks can absnarb Alfvén
waves within their structure. With strong magnetic fields it
is possible to achizve very high cdownstr::am temperatures by

Joule heating. Alternatively, in some cases, magnetic energy

can be fed intc directed kinetic energy, producing an overall

expansion shock,




l, Introduction

This article concerns the magnetic siructure of ionizing

shock waves when Ohmic dissipation is the dominant difrusion

mechanism. Viscous and heat conduction effects are neglected

in the magnetic shock layer, and are important only in an in-
finitely thin subshock, which is assumed to exist at the front

of the magnetic layer. This subshock is responsible for icniz-

ing the previously non-icnized upstream gas so that it becomes

an electrical conductor somewhere within the subshock, and re-

mains conducting everywh2re downstream. As wiil be shown in

g§ 2.3, the detailed variation of the (scalar) electrical con-

ductivity, although impcrtant in the full analysis of the prcb-

lem, can be suppressed by a suitable nonuniform "stretching”

of the normal space coordinate, The initia: analysis is thus

equivalent to that of a2 hypothetical gas which has zero conduc-
tivity upstream of the subshock, znd constant {finite) conducti-

vity everywhere downstream. The neglect of subshock fine-struc-

ture means that the present analysis is the 'cuter expansion" in

a matched asymptctic expansion procedure as described, for exam-

ole, by Van Dyke (i96L4). The inner expansion and matched compoc-

site solution, together with the analysis of the stretching ef-
fects of varisbie conductivity {due to variations in the degree

of ionization and in the electron temperature) will bz presented

at a later date.
Severa! parameters govern the behaviour of ionizing shock

waves, Naturally it is not feasible to present detaiis for a
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full range of all the parameters. For this reason, only cases
of infinite vpstream Mach number M, will be corsidered, i.e.,
[flow kinetic energy] >> [thermal energyl, upstream. For Mach
numbers above M, ~ 20, this is certainly a good approximéticn,
because the thermai terms which zre negiected in the analysis

are Q(H;z).

The shock wave normal defines one direction (e.g., the
x axis, say). Perpendicular to this, the constant transverse
electric field defines anothker suitable reference direction
{e.g., the z axis, say). The other mutually perpendicular
transverse direction {y axis) completes a fartesian coordinate
system. The special cases of "normal"™ shock waves (no upstream
transverse magnetic field components) and “obiigue” shock waves
(the upstream magnetic field has finite x and y compeonents,
but no z component) will be considered in a subseguent paper

fLeonard, (:370b)]. "Skew" shock waves (in which the upstream

magnetic field involves all three components) will be discussed

here, but, primarily, for only one set of upstream angles (see
§ 3). The term "skew" secems to be appropriate for this latter
type of shock: whereas, in normal and oblique shock waves, the
upstream and downstreamn magnetic field vectors and the shock
wave normal lie in a single plane., in skew shocks they do nct.

Hence skew shocks represent ifie most general type of geometricsl

configuratior. The possibility of such shock waves was mentioned,

in passing, by Cowley (1967), who, however, confined his atten-

tion to the more commonly studied cases involving only a single
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transverse component, As will be shown in the companion paper,

in oblique shocks, the magnetic field vector lies in @ single
nlane throughout the entire shock structure, provided the con-
ductivity is a scalar. Hence oblique shocks are always plane-
polarized. This is also true of normal shocks. The structure
of "transverse" ionizing shock waves {(no normal magnetic field
component) is discussed in Appendix 1 of that paper, where it
is shown that such shocks must always be of the magnetically-

trivial gas shock variety, when Ohmic dissipation is the only

significant diffusion mechanism.

It will be shown in g§ 3.3 that skew shocks are necessarily

sub-Alfvénic downstream. Skew shocks which are entirely sub-

Alfvénic always have a range of structures, uniquely determined
by the strength of the transverse electric field, which is taken
to be a free parameter. Unique structures can also be found for

a2 range of (trans-Alfvénic) shock waves in which the upstream

region is super-Alfvénic, i.e., unity-local-Alfvén-number occurs

within the shock structure, The fact that these trans-Alfvenic
ionizing shock waves are stable to rotational Alfvén disturbances
(in constrast to the anomalous trans-Alfvenic "solutions” in the

pre-ionized case) has been discussed previously [Lecnard, (1970a)].

In terms of typical ionizing shock structure behzsvicur, there is,
in fact, no significant distinction between the trans-Alfvénic

and completely sub-Alfvéric regimes.

In the next section, the governing equations will be devel-

oped. The behaviour is governed oy two first-order differential
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equations for the transverse magnetic field components, with
auxiliary variables being defired aigebraically. An integral
coordinate transformation decounles the basic equations from
variable-conductivity effects. In g 3, typical behaviour of

the solutions is discussed with particular reference to the
parametric variation of the electric field strength. Optimi-
zation of the electric field for the achievement of maximum
downstream temperature is also discussed. It zppears that the
conversion of magn<tic energy into thermal energy by Joule heat-
ing can be responsible for raising the downstream temperature

by a factor of several times the downstream subshock temperature,
Under certain circumstances, magnetic energy can be converted
into directed kinetic energy in the magnetic layer, so that after
an initial {viscous) compression, a re-expansion takes place
downstream, giving the possibility (for relatively large upstream

magnetic prassure ratios) of overall expansion shocks,

In the examples of § 3 and the Appendix, all results are
obtained by exact numerical evaluation of algebraic expressions or

by numerical integration of the governing differential equations.
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2. Governing equations

2.1 Physical laws

It is assumed that a shock-fixed coordinate system can be
chosen such that the shock structure beccmes steady and one-
dimensional. Dimensional variables carry a bar. The X
coordinate is taken as the single independent va-—iable, which
is positive downstream, with its origin at the subshock. Uni-
form conditions (d/dx = 0) are assumed far upstream (X = -®)
where, for the noment, conpletely general conditions are assumed
for the velocity v, = [V%l,VYE‘Vé]]. magnetic field B, =
[§k,,§y],ﬁzl], and electric field E, = [E%l’fyl’ﬁzlj' A tran-

sition to uniform downstream conditions {as x = +=) given by

¥,» B,, and E,, is sought. The most symmetrical form of the
governing equations seems to arise if the coordinate system is
chosen such that the downstream B field and velocity are in

the same plane [the (X,y) plane, sayl. This can always be

done as foliows:

(i) Rotation about the x axis =B, = [sz,Byz,OJ;

(ii) Translation parallel to the Z axis ~Yy, = EVQZ’VyZ’OJ’
since a Galilean transformation doss not change the magnetic

field in a nonrelativistic theory.

A translation parallel to the y axis is still available,

This is chcsen so .hat the upstream velocity can be taken as

vy = [vg, 0, VZ]] for convenience, In general the upstream

magnetic field may have three nonzero components. The form of




the electric field can be determined from Ohm!'s law for the

conduction current density J,

J = SIE+YxE], (1)

1<

where © is the scalar electrical conductivity. Ampere's

equation in the steady state gives

Ix @/w) = T+3y¥ ~ 7, (2]
where u is the magnetic permeability, and Pe is the negli-

gibly small charge density., Applied in the downstream uniform

region, where it is assumed that ?2 # 0, equations (1) and

(2) require

'E2=—:\Z x B (3)

so, in the chosen coordinate system, EZ [0,0,Ezz]. Faraday's

law in the steady case requires VxE = Q; thus the transverse
components of E are constant throughout the shock layer:

Ey (x)

i

0, and Ez(;) s F22= Eé, say. At this stage, no preli-
minary information is available on E% {Poisson's equation
merely implies that the charge density will be extremely small),

hence the electric field can be written as

E®) = [E(), 0, E,l. (%)
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The solenoidal cendition, ¥-B = 0, requires the constancy
of the normal magnetic field component, B (x) = B, = const.

The transverse components are variable, hence
BE(x) = I[B,, B,(x), B, (x). (5)
Viscous and heat conduction terms will be neglected unless
the gradients of velocity and temperature become "infinite"
(i.e., when these variables change by order unity in a length
which is very small compared with the "magnetic" length scale).
This is the zero-magnetic-Prandtl-number approximation:

Pm = yov — O, (6)

where VvV is the kinematic viscosity, In this limit, the Ohmic

diffusion length resulting from the nonzero electrical resistivity

=0 ' ), is larger than diffusion lengths of the relatively
small viscosity or heat conductivity, Mathematically this leads
to the previously mentioned outer expansion in a matched asymp-
totic expansion procedure in terms of a smailt parameter Pm,

It must be stressed that the discontinuities appearing in the

' In the author's experience in other analyses (Leonard, 1969 ),

matched first-order composite solutions give very "reasonable"

results even when the perturbation parameter is as large as
one-third.
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present solutions can (in principle) be resolved by using suit-
able inner expansions and matcning to form uniformly valid

composite solutions; but this will not be attempted here,

For steady flow, the mass, momentum, and energy conserva-

tion equations can be written, respectively

I-(Y) = o, (7)
T-{ovy - BB/u + [F + B%/(20)181 = o, (8)
T-L(50 + £6V)Y + BY + (BE)/u) = o, (9)

where p is the density, p the pressure, and u the specific
internal energy. Electrostatic terms have been ignored for
reasons explained by Shercliff (1965). For convenience, ideal

gas state and internal energy relations are assumed, introducing

.1 =
the effective gas temperature T

P = PRT, (10)
and

u = RT/(y-1), (1)

where R is the gas constant and vy the specific heat ratio,

fAs used here, T = TB + dTé, where "h" refers to heavy particles,

"e" to electrons, and a is the degree of ionization. Note that
this is not the overall temperature, Toa= T/ (14a).
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lonization energy! has been neglected because only large-Mach-number

cases will be studied,

2.2 Nondimensional equations

Appendix 1 of a subsequent paper [Leonard, (1970b)] considers
the case of purely transverse ionizing shock waves (§¥ = 0).
Thus it is necessary here to consider only those shocks for
which §g # 0. This ccmponent is therefore used in the nondimen-
sionalization of the following: B = E/-B'x, v = :__V/Vx], E=E/ (Vxlgx)
p="7/p, and T = T/T,. Equations (7), (8), and (9) take the

integrated one-dimensional forms Tusing equations (10) and (11)].
pv, = const. [1] =1, (12)

(this has been used in the following)

v+ _"I'Z + %ail(sz + Bg) = const.[1]
v_YM y
x'
3 i 1.2 2 2 .
vy - "ilBy = const.[11 (14)
v_ - az B. = const.[2] = 0 (15)
z x1"z : ?

-

This term, ~a/M%, could be formally kept, but the (weak) coupling

with a introduces mathematical complications which disappear when

2
M] ®,
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E?E;r?3 + %(vi vyt vz) xlEsz = const.[1]
= .gfzij?; + (1 + ay] le) i,E Byl’ (16)
where the x component magnetic pressure ratio is
= (BX/w)/ (¥ = /A%, (17)
( A, being the shock Alfvén number), and the shock Mach
number M, is given by
yM = V2,7 (RT,). (18)

Note that equation (15) requires the 2z components of the
velocity and magnetic field to be proportional throughout the
shock layer. In particular this must be true upstream; this
fact has been used in replacing vi, by a&l 21 on the right
hand side of equation (16). The constants appearing in these
fluid equations have been evaluated in the regions shown in
square brackets; they are seen to depend on the parameters:

2 2

Y, M], a B Bz]’ and E,. Equations (13) — (16) are in-

y1?
validated if gradients of velocity and temperature become very
large as in the viscous subshock, however these equations must

be satisfied immediately in front of and behind the subshock.
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If J is eliminated between equations (1) and (2) the

nondimensional component equations become

Jx = Rm(Ex + vsz —-vZBy) = =PV = o, (19)
Jy = - dBZ/dx = Rm(vz-— Vsz)’ (20)

and
J, = dBy/dx = Rm(EZ + vay - vy), (21)

where J = 27{3*/(QTR)], X = §77R, and a quasi-local magnetic

magnetic Reynolds number Rm(X) = [uV*,TRJE(f) has been intro-

duced using a reference length IR which is as yet unspecified.
[ Rm(xX) can be regarded as a nondimensionalized conductivity.]
In equation (19) the extremaly small charge density

Pe = Bélrﬁx/(uzkvx])] has been included for later reference,

but has been completely neglected in equations (20) and (21).

Recall that ¢ (and hence Rm ) is proportional to the
degree of ionization and inversely proportionai to the electron-
heavy particle collision frequency,which depends on the local
(non-equilibrium) electron temperature. This coupling with
ionization and electron temperature effects (which may occur
over a iength scale comparable to the magnetic length because
of ionization lags and non-equilibrium Joule heating of the

electrons) can be suppressed by the coordinate transformation
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of § 2.3. Hence it is not necessary at this stage to give
explicit equations describing the electron temperature behaviour
and the ionization dynamics, Note however that it will be as-

sumed that o, which is zero upstream, does have some finite

value everywhere on the downstream side (X > 0,) of the vis-
cous subshock. In addition, precursor ionization, if it exists,

will be assumed to be confined to a length scale comparable

to the viscous length, or else to be of such small magnitude
that significant magnetic effects do not occur upstream of the
subshock. {The upstream change in magnetic field is proportion-
al to the precurscr ionization length scale times some average
degree of ionization; thus the solutions of the present analysis
are applicable only to those cases for which this product is

small.)

Substituting eduations (14) and (15) into equation (19)

gives

2 2 -
Rm[Ex + ax,(ay— By] )BZ - ux,BZByJ ~ C, (22)

2 - .
Rm[Ex— “‘xlBy])BzJ ~ 0, (23)

Upstream (where Rm = 0) this is automatically satisfied.

Note that equation (20) requires B_= const.= B, everywhere

upstream, but equation (23) still allows Ex(§k0) to be
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arbitrary. Downstream, Rm is nonzero, so equztion (23) requires
E, ~ (a2,B_,)8,, x>0 (24)
X x1"yl 722 ?

and from Poisson's equation the charge density p_ is propor-
tional to the derivative of this, which in turn is proportional

to Jy [from equation (20)]. To an excellent approximation

the nondimensional relationship is

_ 2 ~ —\2.2
po = @/ 2EJR = (@, /) %kB (25)

y’
where ¢ is the electromagnetic propagation speed. This extremely
small charge density is caused by insignificant deviation of

E, from the value given by equation (24) {solve for p_ in

c
equation (19)].

In the general case, By = []’Byl’le]’ vy = [I,O,ai]BZ]],
equations (20) and (21) require that upstream (where Rm = 0)
and across the subshock: §(§SO+) = B;. Since B does not vary
upstream, there can be no magnetohydrodynamic interaction on the
fluid variables, so x(;ko_) = vys but note that across the sub-
shock, X = 0 -0, v changes discontinuously. In the down-

stream magnetic layer B and v may change continuously in

magnitude and in both directicn angles, finally approaching the
uniform downstream state in which §22 =V, = 0. Clearly
neither the magnetic field vector nor the velocity vector lies

in a single plane in the general case of skew shocks.




The above discussion assumes that the electrical conducti-
vity is a scalar. When Hall currents are present in conducting-
upstream shock waves, as described by Leonard (1966), B and v
contain spiralling components in the (y,z) plane, although
their upstream and downstream limits must lie in a single plane
with the shock wave normal, This spiralling behaviour is also
expected to occur in ionizing shocks (whether skew, oblique or
normal ), when Hall currents are important, but will not be

considered here, i.e,, it will be assumed that © is a scalar.

Equations (20) ana {21) are the fundamental ''magnetic"
equations for the structure of the transverse magnetic field
components in the downstream shock layer. The coupling with
the transverse velocity components can be eliminated explicitly

by using equations (14) and (15), giving

dB
Eix Rm[E (o, v,) y]’ (26)
and
dB
z _ 2
;if = — Rm(ukr— vx)Bz, (27)

where

E™ = Ez + ax]By] = const, (28)
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it is notationally convenient to leave the coupling with Vo

in these equations zlthough, in fact, v = v‘(By,B,) in the
magnetic layer, which means that equations (26) and (27) are

implicitly coupled,

If Vyr Voo and T are eliminated from equations (13) —
(16), the relationship between Vyes 8B, and Bz can be found;

Y
in an implicit form it is

f(vx’By’Bz)

2 ryvx

2 2 .2
C ' yTT — o'x]][(By—By])(By+8y]“28yé) +B, — B,y]

+ %%;%% (v 1 v— v:) = 0, (29)

where

s

~

B,y =B 41(v. )= (30)
vé ~ Tye [a,zd— v,/ (v-1)]
and where the downstream subshock velocity v: is
* ~ _ 2yt
VX = Vx (X——0+) - (Y-] + Z/M‘ )/ (!+] )- (3] )

Note that, everywhere upstream and across the subshock,

By= By,, and B_= B, hence equation (29) requires Vo

il
——d

(for X s0), or P v: (for X = 0,).
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Equation (29) represents a surface f =0 in (vx,By,Bz)

space, It can be rearranged as

B2
z

2
(BY BYQ) )
2 (v ])(vx 1)(Vx v;)

+ . (32)
2 g Tog (v-1)-v, ]

_ _ 2
= (BY] By¢) + B

In this form, it can be seen that planes v, = const. intersect

z - 0,

and of radius equal to the square root of the right hand side

the surface in circles with centres at B = B ;(v_), B
y  yd'x

of the equation (32). From equation (30) the "centrel ine"

- curve is seen to be a hyperbola in the (vx’By) plane with an

asymptote at vﬁ = i,(y—l)lv. The radius also has a singularity

at this value. Note that f = 0 contains the upstream point

fv =1, By=B

. B_=B,,], and the subshock downstream point

VA
v, =vy, B =By, B,=B,,1.

In § 2.3 a new space coordinate x is introduced which
eliminates the variable-Rm factors in equations (26) and (27);
thus By(x) anc Bz(x) can be found by direct simultaneous
(numerical) integration, the normal veiocity vx(x) being
computed from equation (29) as the integration proceeds. The
density is p(x) = llvx, from equation (12). Equations (1%)
and (15) give the transverse velocity components vy(x) =
ail(By-'Byl)’ and vz==u§182. Equation (13) can be rearranged

to give the temperature
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_ p 2 1.2 2 o2
T = v {1+ yMj0l - v - 30 ,(8:Br;)]]}, (33)
where B = Bs + Bg. A decrease in the transverse magnitude
B. corresponds to a conversion of magnetic energy into thermal
energy. The nondimensional pressure and internal energy are

given, respectively, by

= B/ (5,V2,) = T/ (v,¥M), (34)

©
|

and

1

U/Vi,: T/ LyM} (v=1)1. (35)

For steady flow, and in the absence of viscous dissipation
and thermal conduction (i.e., in the magnetic layer, but not
in the subshock), the dimensional entropy equation given by

Shercliff (1965) becomes

5.7 g5 3%/5
Pxlgx T
dB dB
1 /1 \ e — = 9B\ -
= - {2 —XLWT+uxB) - |~ (E+vUxB 5)

where all the entropy production is due to Ohmic dissipation.
The nondimensional form of this equation is discussed in the

next section where the entrcpy s is given as an explicit
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integral involving By’ Bz, Vs and T,

Finaliy, it is sometimes convenient to rescale the temper-

ature in terms of the viscous temperature T = T(§¥0+), which,

from equation {(33), with Br = Brl’ and Ve = Vs 1S
T = VI Ml ()]
- ____.22\2::‘)) My - ;V;:).'[l + i )M}'] (37)
Then the rescaled temperature is
T = /1"
(ve v [ = v+ l/(yM,) ~ 3a?,182-82))]

= (38)
2(y=1)[1 - (y—l)/(zm,)J{l + 2/ [ (v-1 )M,]}

In this form, the Mach number depender.ce of T is 0(1).

2.3 Integral coordinate transformation

This analysis assumes that the electrical conductivity

]

o is identically zero from X =-o to X =0_ (just upstream
of the viscous subshock) and that, from X = 0, (just down-

st eam) to X = +», ¢ is finite and will, in general, vary with
X (depending on the local values of th. degree of ionization

a and the electron temperature T. ). Nondimensionally:
e Y
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Rm = Rm(a,Te), where o and T, are functions of the space

coordinate, Formally, equaticns (26) and (27) can be rewritten

as

dB N 2
Eix = BT = (o Vx)By’

= g9,(v,B ), say, (39)
and
ds
z 2
ax - 7 (ax]* vx)Bz
= g,(v,.,B)), say, (40)

where a3 new space coordinate x has been introduced satisfying

the differential relation

dx = Rm dx, for x, x > o,, (41)

locally. Equations (39) and (40) can be integrated [using the

auxiliary equation (29)] to give By = By(x) and B = Bz(x),

independently of the variation in a anrd Te. The analysis is

completed by finding a and Te as functions of the new coordi-
nate x (using appropriate equations, nct discussed here);

then equation (41) is integrated (numerically) to give
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X dx (L}Z)

X = x(x) = | ), 1,607 ¢

which can then be inverted to give x = x{X)., When this func-
tion is used in the arguments of the dependent variables, the
latter are thus given as functions of the original nondimensionai

space coordinate X; e.g., By = By[x(?)], etc.

The only other equation to be affected by the coordinate
transformatiecn in the present case is that for the entropy,

equation (36). This equation can be nondimensionalized to give

2 2
dx T dx /7Y Ndx 7Z-
2 2
Rm(g_ +g_)
= oyl —Y 2 (43)

where s = s/R, and gy and g, are given by eguations (39)

1

and (40). The coordinate transformation dXx = Rm  dx may now

be applied and the Rm- factors cancelled, giving, on integra-

tion,
2 2
(g, +9.)
s = s(x) = yMzaz rx —Y _"Z 4x + s(0,). (a)?
] x]Jo T +
+
Note that the factor M202 = (§2/u)/(— RT,) = B'] ives a
: » YO0 x MRy =P8 g

measure of the ratio of the upstream magnetic pressure to the

TThe gas subshock entropy jump gives s(0+) = 0(log M%).




A

AR T

i f
ginlt
VEHPRAC) Ay

SR rk

23

gas pressure., However, for large Mach numbers, the downstream

temperature, being the same order of magnitude as tne viscous

ok
temperature I

B;l. In this case it is convenient to use the rescaled

, 1S 'Q(M%), so that s ~ aﬁl rather than

temperature T, giving [from equations (37) and (38)], for
BSypg = 5 — s(0.),
x ~
(v+1) 22, [ L (a% + g2)/T1ex
20v-1)[1 - (v-1)/(2yM) {1 + 2/T(y-1)M}13

BSpiaG =

(45)

2 _ 2
For small values of a1 85mag = 9(°x])’ but for large values of
“i]’ T~ “il [from equation (38)], so that ASMAG = 0(1) in this

case,

2.4 Mathematical formulation

The problem to be studied in this paper is summar ized here,
for reference. Shock structure profiles of v, B, %, and ASmaG

are required as functions of the transformed space coordinate x

N

No attempt will be made to find x(X) in this report.

Given explicit values of the governing upstream parameters

2 * *
[v, M%, Ty By1’ Bz]’ Ez], the values of v and E can be

computed using equations (28) and (31). The basic problem is to

compute the downstream (x 2 0;) magnetic structure B(x),

using equations (39) and (40) [and the fact that B, = 1 J with

equations (29) and (30) as auxiliary equations for Vx(By’Bz)'
The initial conditions are those just downstream of the subshock
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i

(x = 0+): v. = v B =8 B. =8B

< x* By y1* Bz 21° Except in isolated

special cases, (numerical) integration of the two coupled first-
order nonlinear differential equations for By and B, can
proceed from the subshock towards downstream infinity, at which
point the system (usuallyj has a nodal cingularity. The other

dependent variables, v(x), T(x), p(x), p{x), u(x), and s(x),

: can be computed from the respective algebraic or integral relations
% given by equations (29), (33), (12), (3&), {(35), and (4k4), or
the equivalent relations for the thermodynamic variables invelv-

»

ing the rescaled temperature T.

Note that the downstream singular point [(d/dx), -~ 0],
which must lie on f = 0, is found from equations (39) and (40)

28 to be given by the intersection of this surface with the hyper-

11t
g -

_ _ - . _ _ g¥enl
bola g_= 9~ 0 [i.e., with B,,= 0, Byz_ E7/ {a,, vxz)].

Since this point is in the (vx,By) plane, it is found by the

giint

HIT MY
Attt

intersection of the hyperbola

2
~

) = —E 6)
(GX] - Vx)

with the plane curve f, =0 given by

B i
DRI E

| Lt iR
TS SR T I I Rt

Yok Ll

from equation (29).

ég fc(vx,By) = f(vx,By,O)

E

k- 21y 2 2

§ = "xl[ﬁ'“ﬂ]{wy“’yi”By“Byl'ZByt)‘lej

i B2 v - v -V = o, (47)
4

E

E
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2& Skew shock structure

3.1 Typical behaviour

In (vx,By,Bz) space, the structure trajectories of skew

shocks start at (]’Byl’szl)’ which is the upstrezm sing -ar

point corresponding to x - This point is on the surface

f 0. Note that dBy/dx

de/dx = 0 at this point (and,
in fact, everywhere upstream, x s 0) because Rm(x<0) = 0 in
equations (26) and (27), even though, in general, 9 and g,

[equations (39) and (40)] will be nonzero upstream. As x is

increased from -=, everything remains constant at its upstream

value untii x =0_. From x=C_ to x =0, the viscous

subshock occu -, In (Vx’By’Bz) space, this is a straight line
parallel to the Vi axis, starting at the upstream point and

- - - - *
terminating at ancther point on f = 0 given by (Vx’Byl’le)’

where v:<:l. At this point, Rm is no longer zero (by assumption),

and as x is further increased, the trajectory moves away from
the subshock point along an integral curve which lies entirely in
the surface f = 0. As explained in the Appendix, this "magnetic"
part cf the trajectory must be on the subsonic sheet of f =0
(whereas the upstream point is necessarily on the supersoric
sheet); the sonic curve on f = 0 1is the locus of points of tan-
gency of lines parallel to the Vy axis. As x — +o  the trajectory

approaches the downstream (noda]f) singularity, given by the

fExcept in isolated special cases, as explzined in 8 3.3,
when the downstream subshock point lies exactly on the saddle-

point separatrix [corresponding to a particular value of E¥

(=Epp )]
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intersection of the hyperbola 9y = 0 and the (vx,By) plane
curve fo = 0. The part of the solution trajectory on f = 0
is only one of a family of integral curves which densely cover
this surface. The Appendix discusses the topology of these

integral curves and some typical shapes of the surface f =0

on which they lie,

Figure 1 shows two projections of the ccmplete (vx,By,Bz)
structure trajectory for a given set of parameters: vy = 5/3,

= @ - = 2- *-—-
M == B,=1, B, = 1, O = 1.5, and E™ = -C.30. The

1
corresponZing structure profiles are shown in figure 2,

Figure 3 is a three-dimensional sketch of the behaviour of the
magnetic field vector throughout the shock layer, for this
typical skew shock. In this case, the value of E* has been
chosen so that By changes sign. For other (positive) values
of E*, this component may increase or decrease (but remain
positive)., [The case E* = 0 corresponds to 3 switch-off shock,
and, as explasined in the Appendix, this type of shock is plane-
polarized, and should therefore prcperly be considered as belong-
ing to the family of oblique shocks rather than to that of skew

shocks?.]

Another case, ccrresponding tc the upstream and downstream
magnetic field vectors being at right angles (By‘=O,BZ]=I), is
portrayed by its trajectory projactions in figure 4, for
E* = EZ > 0. It is clear from symmetry considerations that,

for each solution for a given positive value of Ez, there is a

fFor switch-of f shocks there is no downstream datum for (y,z)-
crientation of the coordinate system, which may thus be chosen
so that le = Q,
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Shock structure profiles for the same parameters as in figure 1,

FIGURE 2,




FIGURE 3,

Three-dimensional

representation of the
on through the shock

ameters as in Figure 1,
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mirror-image solution for the same Bz] snd a corresponding
negative value of E, with the same magnitude, [This is also
true in the case of normal shocks (which also have Bvl = 0);
but in these cases, le=0 in addition, and the_struc&ures are

plane-polarized,]

in order to consider the full ranges of the parameters
governing skow shock n.ognetic field angles, the above discuss:ion
implies that projections of upstream points need be taken only
in the first guadrant of the (By,BZ) plane, assuming that
By2 # 0. [ By2 may vary over a range of positive and negative
values, depending on the value of E*.] Upstream points with
prcjections on the By axis correspond to oblique shocks, with
the origin representing normal (possibly switch-on) shocks.
With upstream projections on the B, axis, only strictly positive
values of By2 (corresponding to E, > 0) need be considered,

I all cases, switch-off shocks, By2 = 0, can be treated as oblique

shocks by reorientation of the coordinate system,

in considering typical examples of skew shocks, the remainder
of this paper will be concerned only with the single set of upstream

angle conditions: Byl =1, le = 1, since, clearly, the large

number of input parameters [y, M], Byl’ Bz]’ ail, and EZ)

makes more complete cataloguing out of the question.

3.2 Variation with £~

*

If different values of E  are taken, holding the other
parameters constant the various resulting hyperbolas, 9y = 9, = 0,
are qualitatively easily visualized; however, the shape of the

* .
curve fo = 0 cnanges considerabley with E, It is therefore
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more convenient to piot a new curve in the (vx,By) plane which

* .
is independent of E , giving the locus of downstream points

(ingether with other extraneous intersections of gy = 0 with
% R

fo = 0) as E is varied parametrically, for constant vaiues

of the other parameters. This is cbtained by eliminating E

and Byt between equations (46), (47), and (30), giving

L(y-1 )a)zd - va]le

h ,8.,) = (B -8B ){B -
Py YOV f(y-1al) + (2-v)v, ]

2 2
[(Y"] )G'X1 - YVX]BZ]

[(v-1iaZ, + (2-¥)v,]

)

(‘Y+])(Vx- 7)(Vx-vx

9
ol Tly-1)asy + (2-v)v, ]

= 0. (48)

The intersection of this oval curve with the downstream - singular
- point hyperbola of equation (46) for a given value of E* gives
the possible location of the downstream point in the (vx,By)
plane, provided certain structural and thermodynamic requirements
are met. This is shown in figure 5: v = 5/3, My == B

yt =0
le =1, and ail = 1.5, for several values of E . The respective
projections of the magnetic trajectories are also shown. It is

~lear from figure 5(a) that there is a max imum’ and a minimum

+ *
See § 3.3 for a case in which the maximum E~ value is limited by
the saddle-point-separatrix solution.
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value of E*, in between which solutions may exist (shown by

the heavy curve on a section of h=0), provided they alsc satisfy
the thermodynamic requirements; e.g., negative teaperature (or
pressure) obviously must not occur on a structure trajectory.

. . ® .
Outside of this range of E , no solutions are structurally

possible., The type of downstream points corresponding to £ =
Emax

curve h = 0, have sometimes been referred to as {(generalized)

or E;lN’ where the hyperbola g = 0 is tangent to the

Chapman - Jouguet points, because the downstream normal velocity
is just equal to the downstream magreto-acoustic speed in these

cases [see Kunkel and Gross {1962)].

In order to get some idea of the temperature va::ation in
the magnetic layer, it is necessary to visualize the intersection
of a structure trajectory with the family of lamellar surfaces
of revolution about the Vo axis, given by T = const. from
equation (38)f. in the infinite-Mach-number case, this equation

becomes

2
D V- vy, - 3k 82-82)] = i (49)

(124

The intersection of these surfaces with the (vx,By) plane is
shown in figure 6, which also includes the downstream locus

curve, h = 0, the limiting hyperbolas, and a trajectory projection

"Nete that this equation is also independent of E
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corresponding to the E¥ value (= E T say) for which fz(E")

*
HO
has its maximum value ?MAX for this set of the other parameters.

In addition to section curves for the surface T = 0 (which
contains the upstream point} and for the surface T =1 (which
contains the downstream sutshock point}, section curves are

A

also given for the surfaces T = -1, for reference, and T =

-{>

MAX*
The latter is clearly given by that value of T for which the

section curve is tangent to h = 0 in the range where structures

are possible,

Typically, figure 6 shows that the structurally - aliowable
range on h = 0 lies well inside the T =0 section - curve
parablola, and that all the trajectories lie inside the corr-s-

-

ponding paraboloid of revolution. On a trajectory, T jumps

3

from 0 to i across the subshock, and then varies continuously

towards its downstream equilibrium value (although not necessarily

monotonically),

Note that the parabola for T =0 intersects the V. axis

at v, = 1-+%ui]B§], and the corresponding paraboloid meets
the (By,BZ) plane at 83 = B§]-+2/a§1. For reference, the point

corresponding to the limiting (maximum) vslue of T for which

there are ieal surfaces, ?LIM’ has also been shown., This occurs

on the v axis at v = %vxo’ ¢iving the value Tim=
1 2 2 2 . -
B(y+]) vxo/(y-l). In general, TMAX {which must occur on h = Q)

A

will be less than TLIM.

-~

It has been found that Thax usuaiiv occurs at points having

values of By2 near zerc, By inspection of equation {49}, it is
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clear that this corresponds to most of the magnetic energy hav-

ing been converted into thermal energy (through Joule dissipation).

The fact that By2 IS not exactly zero for TMAX is due to the

coupling with tihe flow kinetic energy through the v, terms in
equation (49).
In skew shocks in which Bz' = 0(1), all %2 values are

usually greater than the viscous temperature T = 1, because the

transverse magnetic field magnitude has decreased, thus creat-

ing thermal energy downstream. However, in some cases {especislly

for oblique or almost - oblique shocks operating near the upper

Chapman - Jcuguet point), the transverse magnitude may actually

= increase, and Ty will be slightiy iess than th

he viscous
E temperature. Thus in shock - tube experiments operating in the
g R Chapman - Jouguet mode, if one of the goals is the achievement

of hizh downstream temperatures by making use of the “magnetic

dumping” effect of Joule heating, it is clearly desirable to
try to produce the lower Chapman - Jouguet condition rather

than the upper one

-

ST TR DM it

0]
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3.3 Variation with uﬁ;

For other

™ T
BRI Y A

values of uﬁ,, the behaviour is qualitatively

m
A4

similar to the case for 2 =

a’.
X
range of aﬁi. As the magnetic pressure ratijo is increased,

1.5, given abo.c, over a finite

i

AL

g R

the oval curve of figure 5 at first elongates in the Ve direc-

tion and shrinks in the By direction, bodily moving towards

M

= larger Vo values, At higher “ii values, it shrinks in its

| e i e
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Vo dimension as well., For all skew shocks, there is an upper

2
x 1

(for oblique and normal shocks, there is no uprer limit), How-

limit on « at which this oval curve disappears entirely
ever, well before this limit is .eached, certain structural
properties limit the range of E* values to lie in a restricted
range, not extending to one or both of the tangent points (i.e.,
one or both of the Chapman-Jouguet points are excluded). This
is because the topolegy of the surface f = 0 is such that,
for E* values outside of the restricted range, the trajectory
passing through the subshock point, instead of travelling on
the subsonic sheet directly to the nodal singularity, runs into
the sonic curve, at which point it must leave the surface, fly-
ing off to VT =, [This phenomenon shows up in the numerical
integrations as v becoming imaginary in the subsequent in-

crement in Xx.J

Figure 7 shows a3 set of trajectories for uii = 2.3. The
maximun E™ value is not restricted to lie below the tangent
(Chapman-Jouguet) value, and the behaviour is similar to that
of smaller magnetic pressure ratios until E¥ reaches a value

near -0.23 (compared with the lower tangent value of -0, 4Lk),

Figure 8 shows vhy lower ET values are impossible,

Note in figure 7 the occurrence of overal!l expansion shocks,
After the sudden gasdynamic compression through the viscous sub-
shock, MiHD interaction expands the gas, as magnetic energy is
converted into directed kinetic energy. The density profile
and corresponding magnetic fizld, temperature, and entropy plots

are shown in figure 3, It should be noted that these expansion
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shocks also develop relatively large downstream temperatures
due to Joule heating. In such cases, it is evident that the

expansion is not at the expense of thermal energy.

At still larger values of a2, there is a restriction on

x1?
the maximum E* value as well, as shown in figure 10 for ui, =

~j 2.9. There are no solutions above a§1

= 2,92,

Structural restrictions of a different nature occur at
values of ni1 numerically near v: ( = 0.25 in this infi-
e nite-Mach-nunber case), This concerns the relative position

= of the separatrix going into the saddle point which occurs on
= 2

the subsonic sheet of f = 0 for these smaller values of a q-

In some cases, the upper tangent value of E¥ is such that

. this separatrix does not enclose the subshock point, as shown
= in figure 11(a) for aii = 0.27, and E§Ax is restricted to a
E smaller value, as shown in figure 11{b). Structures of this

= latter limiting type are actually composed of two shocks: a

skew shock (including the viscous subshock) leading to condi-

tions given by the saddle-point singularity, follcwed (at an

b idisé

arbitrary distance downstream) by a slow, completely subsonic,

S
£ A

MHD oblique shock from the saddle point to the nodal singuleri-

iy

Tl

ty. The isolated saddle-point solution is the analogue of the

(magnetically trivial) gas shock appearing in the case of pure-

",
Flll'!qlm !
LY L SR B kN it iblit

ly cblique ionizing shock structures which are sub-Alfvénic

LT A P P A Mty

. downstream, [Clearly, there is a unique value of E* asso-

{

ciated with this type of solution — a conmon feature of all

1)

"
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shock waves involving downstream saddle points,] However,

there are no skew shock structures analogous to the super-

Alfvénic gas shocks (because skew shocks must aiways be sub-
Alfvénic downstream), and so there is a distinct lower limit
to ai1 (upper limit to the shock Alfvén number A;) beyond

which skew shocks do not occur, for a given set of upstream

field angles,

These properties can be summarized by making graphs of
the ranges of E* and the downstream quantities By2’ Vg
and fz, plotted against a§1, or, preferably, against
A (= a;; ), which gives a direct measure of shock speed, For
comparison with earlier work by Taussig (1965, 1967) on nor-
mal and oblique shocks, the range of the downstream Alfvén
number A2 = ngJEE;/”Ex = AIJ;;; is also plotted against

A Figures 12(a)-(e) show these ranges, The details of E¥,

[N

Vyps and fz for A, near v:‘

in figures 13(a), (b), and (c).

are shown on a finer scale

In addition to the Chapman-Jouguet and structurally-
limited boundaries in figures 12 and 13 (solid curves), the
tangent values are shown (dotted), and also the locus of maxi-
mum temperature points (light dashed)., The saddle-point solu-
tions are shown by the heavy dashed curve. Expansion shocks

occur in the shaded region. Switch-off shocks have E* = Byy = 0.

The plots of Vo AZ’ aad ?2 can be visualized as pro-
jections of three-dimensionual surfaces, the other coordinate

being E*, In this way, the double-valued regiors may, perhaps,
g
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be more readily comprehended.

Finally, it should be noted that, under optimum condi-

+

tions, significant Joule heating can occur, giving maximum

AU TR

G L
HIA AN i LRI s e BILILRILIGAN
R LTy R U L O e L U D i G | L s

downstream temperatures up to about 13 times as large as

the viscous subshock temperature, for this particular set of

i

upstream field angles (By1 =B, = 1). This is because mag-

netic energy has been converted into thermal energy, the effect

pey
AL it iR

becoming rapidly stronger as the magnetic pressure ratio ai,

pHEb

3 is increased (or Alfvén number A1 decreased) until struc-

o

tural limitations are met,

it

ULttt




Conclusion

The most general form of ionizing shock wave involves a
magnetic field vector whose transverse component may rotate
while changing magnitude throughout the shock layer. These
are called skew shocks because the upstream and downstream
magnetic field vectors and the shock wave normal do not, in
general, all lie in a single plane. This pienomenon arises
because the electric field in the noncondu:ting upstream region

has a certain amount of freedom in both megnitude and direction.

Much has been written previously on the degree (or lack) of
freedom of the transverse electric field magnitude in ionizinag
shock waves. There seems to have been a certain amount of
hesitancy in being prepared tc assign the electric field the
status of a parameter, and many studies have apparently been
motivated by an attempt to find conditions requiring a unique
value of the E - field. The philoscphy of the present approach
nas been to treat the E-field as a (free) parameter, allow-
ing the detailed structure to determine whether or not there
are unique values associated with certain kinds of solution,

As is well known in the theory of nonlinear two-point boundary-
value problems, parameter-uniqueness is always associated with
the requirement of a solution trajectory to lie exactly on =»

saddle-point separatrix. Thus, in ionizing shock wave theory,

those structures which involve a downstream saddle point will

be associated with a unique value of the transverse E - field;
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ity

i.e., the E - field will be structurally determinate. [The

il

downstream singularity is the determining one for ionizing

. shock waves because upstrzam, there is no singular point in
phase space but, rather, a whole region (lyingon f = 0) in
which o0 = 0.] The saddle point may lie in the (Vx’By) plane
as is the case for oblique (and normal) ionizing shock waves,

or {for Pm = 6) on the f

0 surface [as seen, for example,

SN I LR

by projection onto the (By, B,) plane] in the case of skew

shocks, The former may have structures for super-Alfvénic as
well as sub-Alfvénic saddle points, but the latter exist only
for sub-Alfvénic saddle points. Transverse shocks always in-

volve a super-Alfvénic downstream saddle point in the (vx, By)

Hiik

plane., In zero-Pm theory, all (V,:By)' saddle-point structures

‘,uuuﬁlj‘«‘vrw' TR

are magnetically trivial gas shocks.

i)

Much more interesting, however, is the range of structures
possible when the downstream point is a (necessarily sub-Alfvénic)
node. In this case the E - field is a free parameter, and can
range over a continuum of values between limits determined by
other kinds of topological features of the structure. In

zero-Pm skew shocks, this node lies in the subsonic sheet of

the f = 0 surface. [In fact, this singularity (which is cha-

racterized by v, < ¢ the slow magneto-acoustic speed) is also

s’
nodal in the (vx, By) plane; however, for zero Pm, the form
is degenerate, and all trajectories ernter along the curve fo = 0,

except for one straight line parallel to the v_ axis.]
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Onz difficulty in studying ionizing shock waves is in
cataloguing the lTarge number of different types of solutions
for ranges of the five governing parameters: Mach number,
Alfvén number, two field angles, and the transverse electric
field. This analysis has been restricted to M1 = «, and

most of the solutions are given for By1 = 821 =1; thus, A1

and E, (actually, E* = Ez'*A;ZByl) are the main parameters

of interest,

Finally, it should be stressed that this analysis has
studied the magnetic structuie of skew shocks. This is made
possible by the coordinate transformation of 8 2.3, which de-
couples variable ionization and nonequilibrium electron tempera-
ture effects on the electrical conductivity. The structure
of these variables can now be studied separately, with the
known magnetic structure being used as an input (through Joule
heating and the MHD interaction on the fluid variables). The
two classes of problem are finally combined by making the in-
verse coordinate transformation (a single straight-forward

numerical integration). Work is proceeding along these lines.
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Aggendix

Integral curves on f =0

The shape of the surface f = 0 is defined by a family
of circles v, = const,, whose centres lie on the centreline
hyperbola: By = Byé(vx)’ B, = 0. The intersection of the
surface with the (vx, By) piane forms the curve fo = 0,

the detailed shape of which varies considerably depending on

the value of E*, and the location of the asymptote of the

centreline hyperbola, vi = (y-1)a§1‘/y, relative to v, = vF
and v = 1.

There are so many topologically different characteristic
shapes, that it is not feasible to indicate all of them here,
Instead, a few cases will be chosen which most clearly demon-

strate the qualitative beshaviour of the integral curves lying

on f = 0.

This surface can be considered to be divided into two
sheets' by the space curve lying on it formed by the locus
of points of tangency of lines paraliel to the Vi axis. Since

grad f [in (Vs By, B)) space] must be perpendicular to the
i

v, axis on this curve,

x t is given by the intersection of f =0

with the surface

s af
\3v ) =
X

15:77 (]-ui) =0, (A1}
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from equations {29), {(30), (31), and (33), where M is the

local Mach number, given by

VZ vz'\}'2 vZ

2 _ "x _ x xt _ 2 {"x

MW = = = ——7% = M (‘T‘) , (A.2)
a T 34

N~

since the ordinary sound speed a is proportional to T °.

It can be shown that M is a monotonically increasing function
of v, for a fixed iBl, thus the two sheets of f =0 can
be labelled as "supersonic" (corresponding to larger vy values)
and "subsoric', being sparated by the "sonic curve', on which
M= 1. As with ordinary gas shccks, an acceptable viscous sub-
shock tra}eétory must have its upstream end or th- supersonic
sheet and its downstream end on the subsonic sheet. The sub-
sequent magnetic portion of the trajectory must, if it is to
be a solution trajectory, lie entir2ly on the subsonic sheet,
because trajectories on f = 0 whicn reach the sonic curve
subsequently fly-off to v, = ¥, This behaviour is similar

+0 that of siow oblique shocks in & pre-ionized gas [especially

in cases of tensor conductivity (Leonard, 1946)], which always
have their magnetic trsjectories on the subscnic sheet of

f = 0, even when there is no subshock (M; = 1), Fast oblique
or normai shocks, however, have their magnetic scructure on the
supersonic sheet, upstream (where 'E! # 0) of a suoshock, if

one exists,

Figure A,1 represents the case: vy = 5i3, ﬁ1 = o,
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y1 =1, 0')2(1 = 005’ E* = 0.25, [For M] = ® and

Yy = S/3, equation (A,2) is written M2 = 26V§A/(5f).] in the

B, =1, B

z1

(Vx'By) projection of figure A,1(a), the curve fo =0 is
shown, together with the downstream hyperbola 9y = 0 and the

centreline hyperbola By = Byt(vx)‘ The arrow directions on

Kt

fo = 0 correspond to the sign of 9y in the three different

st hig o

regions determined by the branches of the downstream hyperbola.

it

Since g, =0 in the (vx,By) plane, this determines those

g

integral curves which lie in this plane. In figure A ,1(b]},

T
n.w‘. L Iu‘i\\n

the circles Vy = const, on the subsonic sheet of f = 0 are

"
Fitd it

shown; i.e., this represents the view as seen from the origin,

[l

looking in the positive Vi direction,

To find the shape of the remaining integral curves which

l1ie on the subsonic sheet, it is convenient to study their

direction-field projection in the (By, BZ) plane. From equa-

b u..'-tht'l ! "t.lr" i oyt

tions (39) and (40), it is seen that

gttt

i

dB g
B, 9z

{i

B

VeRonRrsy
—

-

%

* 2
[By—E / (ux1 -vx)] .

= (A.3)
B,

Note from this equation that if v, = const. [a circle in




it

u‘,).i.,

VT

figure A,1(b)], a given value of dBy/'de = S, say, gives
the ciraight line By- EX/ (ait-vx) = SBz’ which itself has
slope S, Where this straight line intersects the circle
v, = const., the integral curves at those pcints have slope 8.

In other words, at any point (v(f) B(f) Béf))

x * By s on the sur-
face f = 0, the (By, Bz) projection of the integral curve
passing through that point is directed along a straight line
joining the point (Bsf), Béf)) with the point (Bsg), Bég)),
where Bsg) = E*/’(aﬁl-vﬁf)), and Big) = 0, The sense of
the arrows representing dx > 0 is determined by d!B,l‘/dx 20
as (aii-vif)) 2 0 [or by continuity, on the circle v;f) =
2 .c .
“xIJ’ and by dBy;/dx 20 as gy 20, if B, =0 [as with
oblique and normal shocks]l. To make this clearer, figure A,2
shows four cases depending on the location of the ''fan point"
(Bf,g))O) :

(a) inside the circle,

(b) on the circle,

(c) outside the circle, and

(d} at infinit (v(f) = az )

Y x x17°

[The sense of the arrows has been assigned arbitrarily.]

Given only the curve fo =0, it is a very straight-for-

ward matter to mske a graphical construction of the complete

direction field, from which the integral curves can be deter-

mined, as shown in figure A.3(b); the (vx, By) projecticn of

figure A, 3(a) is found by cross-plotting.




3 ! (a) (b)

(g)

—
A
i

“Bre Bye :< /

(c) (d)

g FIGURE A.2. Graphical construction of the direct-
§ ion field projectica in the (By, Bz) plane,
:§ .
i
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Note that the downstream point is a node, whereas the
other intersection of gy = 0 with f, = 0 is a saddle
point, The respective separatrices have been shown in slight-

ly heavier curves,

For given upstream conditions [in the present case, the
point (1, 1, 1)] the solution trajectory jumps from the su-
personic sheet to the subsonic sheet at (v:, 1, 1), from
which point on it follows the integral curve passing through
that point until it reaches the downstream singularity. Note
that if le = 0 (oblique or normal shocks), the complete
trajectery lies entirely in the (vx, By) plane, the magnetic
portion following fo = 0, which in this case passes through
the point (v:, 1, 0). Also, if E®*= 0, the surface f =0
becomes a surface of revolution, and all trajectories are
radial lines, as shown in figure A4, Clearly, there is no
distinction between oblique and skew shocks in this case;

i.e., all switch-off shocks with the same lﬁa‘ are plane-
polarized, and have identical |B| — structure. The downstream
singularity in this case is s special type of completely sym-
metrical node ({''sink'); for small !E*I values, the singulari-
ty has the more standard form of figure A.3(b) locally, al-
though, further away from the node, most of the trajectories

are fairly straighkt in (By, Bz)-— projection,

Finally, figure A.5 shows the case for ai, = 0.5,

E* = EﬁAX = 0,2976. This is typical of the upper Chapman-

Jouguet sclutions for moderate values of a?

1° The singularity
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Note the unusual clrcular singular curve at
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in this case has saddie-point behaviour above the separatrix

and nodal behaviour below. As mentioned in 33,3, the up-
stream point must lie within the separatrix, as shown, for

a Chapman-Jouguet solution to exist, A similar situation
occurs for the usual type of Eﬁ!N’ except the position of

the singularity is well below By’ (and possibly below By = 0)
and the form of the singularity is the inversion of that showr
in figure A,5. This singularity has some rather interesting
properties in that it cannot be linearized locally, and tra-
jectories entering on the nodal side do so only extremely

slowly (as if they were being "pushed away" by the outgoing

tendencies of the saddle-point side).
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