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ABSTRACT

Initially nonconducting gas is ionized by a thin viscous

* shock wave. Upstream there can be no macnetohydrodynamic inter-

action because of the zero conductivity, but the conducting

downstream region may have a magnetic structure which interacts

with the flow variables. A theoretical analysis is made in the

zero-magnetic-Prandtl-numbey ("non-viscous") limit, i.e., Ohmic

dissipation is the dominant diffusion mechanism. Unlike magne-

tohydrodynamic shocks in a pre-ionized gas, ionizing shock

waves are not necessarily plane-polarized. Thus "skew" shock

I structures can exist, in which the upstream and downstream

*1 .magnetic field vectors and the shock wave normal do not all lie

in a single plane. The existence of the viscous subshock at

Athe front of the magnetic layer requires the upstream Mach
number to be greater than unity. Explicit solutions are given

for typical values of the governing parmneters, showing how the

magnetic field vector rotates about the shock wave normal as
its ,:ransverse component changes in magnitude through the shock

layer. Skew shocks are necessarily sub-Alfvinic dovnstream.

Unlike the pre-ionized case, the range of trans-Alfve'nic shock

waves is not excluded, since these shocks can absnrb Alfven

waves within their structure. With strong magnetic fields it

is possible to achi-,,e very high downstrt-am temperatures by

Joule heating. Alte-.natively, in some cases, magnetic energy

can be fed into directed kinetic energy, producing an overall

expansion shock.



1. introduction

This article concerns the magnetic structure of ionizing

shock waves when Ohnic dissipation is the dominant diffusion

mechanism. Viscous and heat conduction effects are neglected

in the magnetic shock layer, and are important only in an in-

finitely thin subshock, which is assuned to exist at the front

of the magnetic layer. This subshock is responsible for ioniz-

ing the previously non-icnized upstream gas so that it becomes

an electrical conductor somewhere within the subshock, and re-

mains conducting everywhere downstream. As will be show in

§ 2.3, the detailed variation of the (scalar) electrical con-

ductivity, although important in the full analysis of the prob-

lem, can be suppressed by a suitable nonuniform "stretching"

of the normal space coordinate. The initia; analysis is thus

equivalent to that of a hypothetical gas which has zero conduc-

tivity upstrean of the subshock, and constant (finite) conducti-

vity everywhere downstream. The neglect of subshock fine-struc-

ture ieans that the present analysis is the "cuter expansion" in

a matched asymptotic expansion procedure as described, for exam-

pie, by Van Dyke (196 i). The inner expansion and matched compo-

site solution, together with the analysis of the stretching ef-

fects of variable conductivity (due to variations in the degree

of ion'zation and in the electron temperature) will be presented

at a later date.

ASeveral par.m-eters govern the behaviour of ionizing shock

waves. Naturally it is not feasible to present details for a



i full range of all the parameters. For this reason, only cases

t of infinite epstream Mach number M1 will be considered, i.e.,

[flow kinetic energy] > [thermal energy], upstream. For Mach

- number- above H1 - 20, this is certainly a good approximation,

because the thermal terms which are neglected in the analysis

are O(M 2).

The shock wave normal defines one direction (e.g., the

x axis, say). Perpendicular to this, the constant transverse

electric field defines another suitable reference direction

(e.g., the z axis, say). The other mutually perpendicular

transverse direction (y axis) completes a Cartesian coordinate

system. The special cases of "normal" shock waves (no upstream

* transverse magnetic field components) and "oblique" shock waves

(the upstream magnetic field has finite x and y components,

but no z com-onent) will be considered in a subsequent paper

[Leonard, (970b)]. "Skew" shock waves (in which the upstream

magnetic field involves all three components) will be discussed

here, but, primarily, for only one set of upstream angles (see

§ 3). The term "skew" seems to be appropriate for this latter

type of shock: whereas, in normal and oblique shock waves, the

upstream and downstrear. magnetic field vectors and the shock

wave normal lie in a single plane, 'n skew shocks they do not.

Hence skew shocks represent :ne most general type of geometrical

configuration. The possibility of such shock waves was mentioned,

in passing, by Cowley (1967), who, however, confined his atten-

tion to the more comaonly studied cases involving only a single
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transverse component. As will be shown in the companion paper,

in oblique shocks, the magnetic field vector lies in a single

plane throughout the entire shock structure, provided the con-
r

ductivity is a scalar. Hence oblique shocks are always plane-

polarized. This is also true of normal shocks. The structure

of "transverse" ionizing shock waves (no normal magnetic field

component) is discussed in Appendix I of that paper, where it

is shown that such shocks must always be of the magnetically-

trivial gas shock variety, when Ohmic dissipation is the only

significant diffusion mechanism.

It will be shown in § 3.3 that skew shocks are necessarily

sub-Alfvenic downstream. Skew shocks which are entirely sub-

Alfvenic always have a range of structures, uniquely determined

by the strength of the transverse electric field, which is taken

to be a free parameter. Unique structures can also be found for

a range of (trans-Alfvenic) shock waves in which the upstream

regio :s super-Alfv~nic, i.e., unity-local-Alfv5n-number occurs

within the shock structure. The fact that these trans-Alfvenic

ionizing shock waves are stable to rotational Alfven disturbances

(in constrast to the anomalous trans-Alfve'nic "solutions" in the

pre-ionized case) has been discussed previously [Leonard, (1970a)].

In terms of typical ionizing shock structure behaviour, there is,

in fact, no significant distinction between the -rans-Alfvenic

and completely sub-Alfvenic regimes.

In the next section, the goveriing equations will be devel-

oped. The behaviour is governed y two first-order differential
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4 equations for the transverse magnetic field components, with

auxiliary variables being defined aigebraically. An integral

coordinate transformation decouoles the basic equations from

variable-conductivity effects. In § 3, typical behaviour of

the solutions is discussed with particular reference to the

parametric variation of the electric field strength. Optimi-

zation of the electric field for the achievement of maximum

downstream temperature is also discussed. It appears that the

conversion of magrctic energy into thermal energy by Joule heat-

ing can be responsible for raising the downstream temperature

by a factor of several times the downstream subshock temperature.

Under certairt circumstances, magnetic energy can be converted

U{ into directed kinetic energy in the magnetic layer, so that after

an initial (viscous) compression, a re-expansion takes place

downstreaim, giving the possibility (for relatively large upstream

magnetic pessure ratios) of o-erall expansion shocks.

In the examples of § 3 and the Appendix, all results are

obtained by exact numerical evaluation of algebraic expressions or

by numerical integration of the governing differential equations.
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2. Governing equations

2.1 Physical laws

It is assumed that a shock-fixed coordinate system can be

chosen such that the shock structure becomes steady and one-

dimensional. Dimensional variables carry a bar. The R

coordinate is taken as the single independent va.iable, which

is positive downstream, with its origin at the subshock. Uni-

form conditions (d/d -. 0) are assumed far upstream (R = --)

where, for the -ioment, completely general conditions are assumed
for the velocity V = [Vvz 1] magnetic field I=

I [l, Byl,-zl,  and electric field TI = [ExlEyl,-Ezl ] " A tran-

sition to uniform downstream conditions (as x--+') given by

Y21 2' and 2' is sought. The most symmetrical form of the

governing equations seems to arise if the coordinate system is

chosen such that the downstream F field and velocity are in

the same plane [the (x,y) plane, say]. This can always be

done as follows:

(i) Rotation about the x axis -F2 = [B x2By2'0 ] ;

(ii) Translation parallel to the z axis -4 v [-Vx2 vy2 'O ] '

since a Galilean transformation does not change the magnetic

field in a nonrelativistic theory.

A translation parallel to the y axis is still available.

This is chcsen so -hat the upstream velocity can be taken as

VI = [Nxl' 0, Vl] for convenience. In general the upstream

magnetic field may have three nonzero components. The form of



the electric field can be determined from Ohm's law for the

conduction current density J,

U = -[T+VxfI, (M)

where - is the scalar electrical conductivity. Ampere's

equation in the steady state gives

Vx (B/P) = j+ p A U, (2)

where P is the magnetic permeability, and p is the negli-

gibly small charge density. Applied in the downstream uniform

region, where it is assumed that C2 i 0, equations (1) and

f (2) require

so, in the chosen coordinate system, E2 = [O,0,Z 2 ]. Faralay's

law in the steady case requires _-x'[ = 0; thus the transverse

components of E are constant throughout the shock layer:

" y(R) -= 0, and 'z ("R) " 'z2= F'z , say. At: this stage, no preli-

minary information is available on Ex (Poisson's equation

merely implies that the charge density will be extremely small),

hence the electric field can be written as

r(:) = fFx(3), 0, Fzr. (4)



The solenoidal condition, 7-T= 0, requires the constancy

of the normal magnetic field component, IT (R) a = const.x x

The transverse components are variable, hence

N= (5)
X y Z

Viscous and heat conduction terms will be neglected unless

the gradients of velocity and temperature become "infinite"

(i.e., when these variables change by order unity in a length

which is very small compared with the "magnetic" length scale).

This is the zero-magnetic-Prandtl-number approximation:

Pm = 0 -0, (6)

where v is the kinematic viscosity. in this limit, the Ohmic

diffusion length resulting from the nonzero electrical resistivity

(= "- ), is larger than diffusion lengths of the relatively

small viscosity or heat conductivity. Mathematically this leads

to the previously mentioned outer expansion in a matched asymp-

totic expansion procedure in terms of a small parameter Pm.

It must be stressed that the discontinuities appearing in the

t In the author's experience in other analyses (Leonard, 1969 ),

matched first-order composite solutions give very "reasonable"

results even when the perturbation parameter is as large as

one-third.

2I
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present solutions can (in principle) be resolved by using suit-

able 'nner expansions and matching to form uniformly valid

composite solutions; but this will not be attempted here.

For steady flow, the mass, momentum, and energy conserva-

tion equations can be written, respectively

V-(p_ ) = 0, (7)

V.p - g/1 + [i5+ 2/(2t)']= 0, (8)

V.[(- +p -) + + (+xi)/J = 0, (9)

where - is the density, p the pressure, and U the specific

internal energy. Electrostatic terms have been ignored for

reasons explained by Shercliff (1965). For convenience, ideal

gas state and internal energy relations are assumed, introducing

the effective gas temperature T

p= RT, (10)

and

-u = RT(y-1), (11)

where R is the gas constant and y the specific heat ratio.

t As used herel, T = Th + 'T e' where "h" refers to heavy particles,
"e" to electrons, and is the degree of ionization. Note that
this is not the overall temperature, Toa= T/(I+).



Ionization energyt has been neglected because only large-Mach-number

cases will be studied.

2.2 Nondimensional equations

Appendix I of a subsequent paper [Leonard, (1970b)] considers

the case of purely transverse ionizing shock waves (-Bx = 0).

Thus it is necessary here to consider only those shocks for

which-Bx 9 0. This cc.mponent is therefore used in the nondimen-

sionalization of the following: B = -/Bxf v = -/E = xlx
A- -x - xl' x

p = P/Pl' and T = T/7. Equations (7), (8), and (9) take the

integrated one-dimensional forms rusing equations (10) and (11)].

pv = const.[l] = 1, (12)

(this has been used in the following)

I 2 2 _

+ T- + 2 x(B2 + B ) = const.[l)

x I

= + I + .2 1(B 2 + B2 (13"Cxi yl 1)
yM I

v - I2 B = const.[ll (14)
y y

v - 21B = const.[2J = 0, (15)
z "X I

tThis term, -.,]t/M, could be formally kept, but the (weak) coupling

with a intr-iduces mathematical complications which disappear when
H2
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qand

M (y-l) X Y ZY

T 2 2 2

+ I + +x Bz 2) - 2xiEzByu. (16)

where the x component magnetic pressure ratio is

2 2 -2 2 (7xl 1= (B2/P)/-1x)=I/A 1, (17)

( A1 being the shock Alfven number), and the shock Mach

number MI is given by

2 2 (18)
M1 =x

Note that equation (15) requires the z components of the

velocity and magnetic field to be proportional throughout the

shock layer. In particular this must be true upstream; this

2 4 2fact has been used in replacing VzI by C iBzl on the right

hand side of equation (16). The constants appearing in these

fluid equations have been evaluated in the regions shown in

square brackets; they are seen to depend on the parameters:

y, M 2xi By, Bz1 , and Ez. Equations (13) - (16) are in-

validated if gradients of velocity and temperature become very

large as in the viscous subshock, however these equations must

be satisfied immediately in front of and behind the subshock.

i'
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If - is eliminated between equations (1) and (2) the

nondimensional component equations become

x =Rm(Ex + v yB - vzBY) = - PcVx 0, (19)

Jy = - dB z/d_ = Rm(v z - vxBz), (20)

and

J = dBy/d" = Rm(E z + vxBy - vy), (21)

where J = U/[BNx/(L'ZR)), X = ;/1R9 and a quasi-local magnetic
magnetic Reynolds number Rm(x) = [ixlLRT (-) has been intro-

duced using a reference length tR which is as yet unspecified.

[ Rm(Z) can be regarded as a nondimensionalized conductivity.]

In equation (19) the extremely small charge density

PC = Pc/['ffx/(1RVxl))] has been included for later reference,

but has been completely neglected in equations (20) and (21).

Recall that - (and hence Rm ) is proportional to the

degree of ionization and inversely proportional to the electron-

heavy particle collision frequency,which depends on the local

(non-equilibrium) electron temperature. This coupling with

ionization and electron temperature effects (which may occur

over a length scale comparable to the magnetic length because

of ionization lags and non-equilibrium Joule heating of the

electrons) can be suppressed by the coordinate transformation
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of § 2.3. Hence it is not necessary at this stage to give

explicit equations describing the electron temperature behaviour

and the ionization dynamics. Note however that it will be as-

sumed that ", which is zero upstream, does have some finite

value everywhere on the downstream side (x > 0+) of the vis-

cous subshock. In addition, precursor ionization, if it exists,

will be assumed to be confined to a length scale comparable

to the viscous length, or else to be of such small magnitude

that significant magnetic effects do not occur upstream of the

subshock. (The upstream change in magnetic field is proportion-

al to the precursor ionization length scale times some average

degree of ionization; thus the solutions of the present analysis

are applicable only to those cases for which this product is

small.)

Subst;tuting equations (14) and (15) into equation (19)

gives

Rm[fEx (BBB)z lB~) (22)

i.e.,

RmEE- ( By)Bz ]  0. (23)REx

IUpstream (where Rm = 0) this is automatically satisfied.

Note that equation (20) requires Bz= const.= Bzl everywhere

upstream, but equation (23) still allows E ('<O) to be

I
I ___
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arbitrary. Downstream, Rn is nonzero, so eqi!ation (23) requires

Ex (x 1B y l )Bz1 x > O, (24)

and from Poisson's equation the charge density p, is propor-Itional to the derivative of this, which in turn is proportional
to J y [from equation (20)]. To an excellent approximation

the nondimensional relationship is

= /-Ic) dExdX = (- C) 2 B J (25)

where E is the electromagnetic propagation speed. This extremely

small charge density is caused by insignificant deviation of

Ex  from the value given by equation (24) [solve for pc in

equation (19)].

In the general case, Bl = [,1BylBzl , v1 = [1,0,0 2IBzl ],

equations (20) and (21) require that upstream (where Rm = 0)

and across the subshock: B(x0+) a B1 . Since B does not vary

upstream, there can be no magnetohydrodynamic interaction on the

fluid variables, so v(<O_) v1; but note that across the sub-

shock, x = 0-' 0+, v changes discontinuously. In the down-

stream magnetic layer B and v may change continuously in

magnitude and in both direction angles, finally approaching the

uniform downstream state in which Bz2 = Vz2 = 0. Clearly

neither the magnetic field vector nor the velocity vector lies

in a single plane in the general case of skew shocks.
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The above discussion assunes that the electrical conducti-

vity is a scalar. When Hall currents are present in conducting-

upstream shock waves, as described by Leonard (1966), B and v

-[ contain spiralling components in the (y,z) plane, although

their upstream and downstream limits must lie in a single plane

with the shock wave normal. This spiralling behaviour is also

expected to occur in ionizing shocks (whether skew, oblique or

normal), when Hall currents are important, but will not be

considered here, i.e., it will be assumed that -5 is a scalar.

Equations (20) ann J21) are the fundamental "magnetic"

equations for the structure of the transverse magnetic field

components in the downstream shock layer. The coupling with

the transverse velocity components can be eliminated explicitly

by using equations (14) and (15), giving

dB- 2
__ Rm[E x- Vx)By3' (26)

and

dBz Rm( 2 )Bz, (27)

_! where

E*= Ez + Z21By 1 = const. (28)

ii-) -_



It is notationally convenient to leave the coupling with v

in these equations rlthough, in Fact, v = v B,B.,) in the

magnetic layer, which means that equations (26) and (27) are

implicitly coupled.

if Vy, vz , and T are eliminated from equations (13) -

(16), the relationship between vx, By, and Bz  can be found;

in an implicit form it is

f(vx ,ByB )

= 2 ! CL2 I[(B -B )(B+B-2B') +B2  B2
x= .-- xl. y (y-yly ) - zl3

(y+l) Vl=O
+ (v0- )(vx - (29)

where

By = By(v x ) = 2 (30)
X L I-xFYvxI (y-Il

and where the downstream subshock velocity v- is
x

= vx ( =m = (y-l + 2/M )/(y-+l). (31)

Note that, everywhere upstream and across the subshock,

By= Byl, and Bz= Bzi, hence equation (29) requires vx= I

(for x ! 0- ), or Vx = vx (for x = 0+).
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i1 Equation (29) represents a surface f = 0 in (vxB yB Z)

_ space, It can be rearranged as

(B B +Bz

(B 2 2 +(y+l)v -l)v' -v*)
= (B ,--By&) 2 + B2I + x- xX (32)%1C [M1 (.y-1)-.rv xl

In this form, it can be seen that planes vx= con3t. intersect

the surface in circles with centres at B = By(Vx), B = 0,

and of radius equal to the square root of the right hand side

of the equation (32). From equation (30) the "centreline"

curve is seen to be a hyperbola in the (vx,B y ) plane with an

asymptote at vA =2, (y- )/y . The radius also has a singularity

at this value. Note that f = 0 contains the upstream point

[vx=l, By=Byl Bz=Bzl], and the subshock downstream point

[v =v, B =Byl, B =B ,].xx y y] z z

In § 2.3 a new space coordinate x is introduced which

eliminates the variable-Rm factors in equations (26) and (27);

thus B(x) and B (x) can be found by direct simultaneous
(numerical) integration, the normal velocity vx(x) being

ji computed from equation (29) as the integration proceeds. The

density is p(x) = I/vx, from equation (12). Equations (14)

and (15) give the transverse velocity components vy(x) =

xl(BY- By,), and vz= Cx 1Bz. Equation (13) can be rearranged

to give the temperature

E
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__ __ , 2 .2

T- v l + yMI v× x 1 )rl)3:, (33)

where Br B2 . B2  A decrease in the transverse magnitude

Br corresponds to a conversion of magnetic energy into thermal

energy. The nondimensional pressure and internal energy are

given, respectively, by

---2 2p -/ (PlVI) = T/ (vYM1), (34)

and

u ad d/V 2 1= T/[yM2(y-1)]. (35)

For steady flow, and in the absence of viscous dissipation

and thermal conduct.ion (i.e., in the magnetic layer, but not

in the subshock), the dimensional entropy equation given by

Shercliff (1965) becomes

- "-- - . .2/..SP l",xl- =

-1 ,-d9 ,- (36)

f dx ~ dx -

where all the entropy production is due to Ohmic dissipation.

The nondimensional form of this equation is discussed in the

next section where the entropy s is given as an explicit
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integral involving By Bz , vx , and T.

Finally, it is sometimes convenient to rescale the temper-

ature in terms of the viscous temperature T*= T(x=O+), which,

from equation (33), with Br Bri , and N= is

T* * yMi(l-v*)]

2y (y- ) - (Y-i -I II + 2 (37)

2 I(y+l) 2 (y-I)M(

Then the rescaled temperature is

T T/IT

(y+1) 2Vx[1 - vx + l/(yM)_ 2 (l B2TB rI) (38)

2(y-)[I- (y-)/(2yM')Ifl + 2/[(Y-I)M)]}

In this form, the Mach number dependernce of T is 0(1).

2.3 Integral coordinate transformation

This analysis assumes that the electrical conductivity

a is identic3lly zero from x = -= to x = 0 (just upstream

of the viscous subshock) and that, from 3 = O (just down-

st-eam) to ; = +P -& is finite and will, in general, vary with

3 (depending on the local values of th.- degree of ionization

a and the electron temperature Te " Nondimensionally:
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Rm = Rm(m,Te), where a and Te are functions of the space

coordinate. Formally, equations (26) and (27) can be rewritten
as

x - E (Xx I- v x)B y

n= dy (Vx, y say, (39)

and

dx 
z

TX = - (xl vx)Bz

= gz(vxB, say, (40)

where a new space coordinate x has been introduced satisfying

the differential relation

dx = Rm d, for x, X? 0+, (41)

locally. Equations (39) and (40) can be integrated [using the
auxiliary equation (29)] to give By = B (x) and B = B (x),

y y z z

independently of the variation in a ard Te . The analysis is

completed by finding a and Te as functions of the new coordi-

nate x (using appropriate equations, not discussed here);

then equation (41) is integrated (numerically) to give
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rx  dx

-ro Rml'a(x),Te(X)i ' (42)

which can then be inverted to give x = x( ). When this func-

tion is used in the arguments of the dependent variables, the

latter are thus given as functions of the original nondimensional

space coordinate x; e.g., B = B [x(x)], etc.Y y

The only other equation to be affected by the coordinate

transformation in the present case is that for the entropy,

equation (36). This equation can be nondimensionalized to give

2 2ds _yMl xl ,d(, dBz\ 1

- YMla x T y (43)

where s = !/R, and gy and gz are given by equations (39)

and (40). The coordinate transformation d = Rm-1 dx may now

be applied and the Rm- factors cancelled, giving, on integra-

tion,

2 2 2

ss(x) = T al x + +.(4)

ii 22= 2 ie
Note that the factor, yM 1 ax (I)/(PlRTI) = 1 gives a

measure of the ratio of the upstream magnetic pressure to the

The gas subshock entropy jump gives s(O+) =Q(Iog M).
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gas pressure. However, for large Mach numbers, the downstream

temperature, being the same order of magnitude as the viscous

temperature T*, is 0(M2 ), so that s - 2 rather than

of In this case it is convenient to use the rescaled

temperature T, giving [from equations (37) and (38)], for

ASMAG s -

2 2 rx 2 2

ASMAG (y+1) xlou+[(g+ Z )T]dx(4r)

2(y-l)[l - (y-l)/(2yM)l]fl + 2/[(y-])M ]]

For small values of 2IAS = O(ex12 ), but for large values of

a21  T a2  [from equation (38)], so that ASMAG =(- ) in this

case.

2.4 Mathematical formulation

The problem to be studied in this paper is summarized here,

for reference. Shock structure profiles of v, B, T, and ASMAG

are required as functions of the transformed space coordinate x.

No attempt will be made to find x(x) in this report.

Given explicit values of the governing upstream parameters

ry, M , axl' By,, z1I' Ez], the values of v* and E* can be

computed using equations (28) and (31). The basic problem is to

compute the downstream (x ; 0+) magnetic structure B(x),

using equations (39) and (40) [and the fact that Bx = I) with

equations (29) and (30) as auxiliary equations for vx(By,Bz).

The initial conditions are those just downstream of the subshock



(x= 0+): vx  v By B Bz  B Except in isolated

special cases, (numerical) integration of the two coupled first-

order nonlinear differential equations for B y and B!z  can

proceed from the subshock towards downstream infinity, at which

j point the system (usually) has a nodal singularity. The other

dependent variables, v(x), T(x), p(x), p(x), u(x), and s(x),

can be computed from the respective algebraic or integral relations

given by equations (29), (33), (12), (34), (35), and (44), or

si the equivalent relations for the thermodynamic variables involv-

ing the rescaled temperature T.

Note that the downstream singular point [(d/dx)+- 0],

Iwhich must lie on f = 0, is found from equations (39) and (40)

to be given by the intersection of this surface with the hyper-
.bola gz= gy= 0 [i.e., with Bz2= 0, By2= E*/(a2 _Vx2 )).

z y 2 2X 2

Since this point is in the (v ,B ) plane, it is found by the
x y

intersection of the hyperbola

B - E (46)
(xl x

with the plane curve f = 0 given by
A

i

f (v ,B u f(v B90)

X1 Ly- y y y y - B

+ I- (v- -I) (v*) = 0, (47)
xx

F from equation (29).
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3. Skew shock structure

3.1 Typical behaviour

In (vx,ByB z ) space, the structure trajectories of skew

shocks start at (1,ByiBz), which is the upstrezm sing,-ar

point corresponding to x = --. This point is on the surface

f = 0. Note that dB y/dx = dB z/dx = 0 at this point (and,

in fact, everywhere upstream, x : 0) because Rm(x O) = 0 in

equations (26) and (27), even though, in general, gy and gz

[equations (39) and (40)] will be nonzero upstream. As x is

increased from --, everything remains constant at its upstream

value until x = 0. From x = 0 to x = 0+, the viscous

subshock occu . In (vxB y,B z ) space, this is a straight line

para!lel to the vx axis, starting at the upstream point and

terminating at ancther point on f = 0 given by= ~VxBylBzl,

where v*<l. At this point, Rm is no longer zero (by assumption),x

and as x is further increased, the trajectory moves away from

the subshock point along an integral curve which lies entirely in

the surface f = 0. As explained in the Appendix, this "magnetic"

p.3rt of the trajectory must be on the subsonic sheet of f = 0

(whereas the upstream point is necessarily on the supersoric

sheet); the sonic curve on f = 0 is the locus of points -f tan-

gency of lines parallel to the v axis. As x - +-, the trajectory

approaches the downstream (nodal ) singularity, given by the

tExcept in isolated special cases, as explained in § 3.3,

when the downstream subshock point lies exactly on the saddle-

point separatrix [corresponding to a particular value of E*
= A.

(=E-i~x



- -- - -- __ __ ____=- - -- - .,- .---- ,----.-_--=------_-- ------... -:; .. .

* 26

intersection of the hyperbola gy = 0 and the (vx,B y) plane

curve fo = 0. The part of the solution trajectory on f = 0

is only one of a family of integral curves which densely cover

this surface. The Appendix discusses the topology of these

integral curves and some typical shapes of the surface f = 0

on which they lie.

Figure 1 shows two projections of the complete (vx,ByBz)

structure trajectory for a given set of parameters: y = 5/3,

= By] Bzl = 1, a2 = 1.5, and E* = -0.30. The

corresponding structure profiles are shown in figure 2.

Figure 3 is a three-dimensional sketch of the behaviour of the

magnetic field vector throughout the shock layer, for this

typical skew shock. In this case, the value of E has been

chosen so that By changes sign. For other (positive) values

of E , this component may increase or decrease (but remain

positive). [The case E = 0 corresponds to a switch-off shock,

and, as explained in the Appendix, this type of shock is plane-

polarized, and should therefore prcperly be considered as belong-

ing to the family of oblique shocks rather than to that of skew

shocks ".

Another case, corresponding tc the upstream and downstream

magnetic field vectors being at right angles (Byi=OBz1==), is

portrayed by its trajectory projactions in figure 4, for

E = z > 0. It is clear from syimetry considerations that,

for each solution for a given positive value of Ey there is a

-~ 
1Fo switch-off shocks there is no downstream datum for (y,z)-

orientation of the coordinate system, which may thus be chosen

so that Bzl = 0.
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mirror-image solution for the same Bzl and a corresponding

negative value of E. with the same magnitude. [This is also

true in the case of normal shocks (which also have B1 = 0);

but ;n these cases, B.,=0 in addition, and the structures are

plane-polarized.]

in order to consider the full ranges of the parameters

governing skow shock r..gnetic field angles, the above discuss;on

implies that projections of upstream points need be taken only

in the first quadrant of the (B y,B z ) plane, assuming that

B y2 - 0. B By2 may vary over a range of positive and negative

values, depending on the value of E*.] Upstream points with

projections on the By axis correspond to oblique shocks, with
the origin representing normal (possibly switch-on) shocks.

With upstream piojections on the Bz axis, only strictly positive

values of By2  (corresponding to Ez > 0) need be considered.

I all cases, switch-off shocks, By2 = 0, can be treated as oblique

shocks by reorientation of the coordinate system.

in considering typical examples of skew shocks, the remainder

of this paper will be concerned only with the single set of upstream

angle conditions: By] = 1, Bzl = 1, since, clearly, the !arge
number of input parameters %y, y and E )

makes more complete cataloguing out of the question.

3.2 Variation with E

If different values of E are taken, holding the other

parameters constant the various resulting hyperbolas, gy = z= 0,

are qualitatively e3sily visualized; however, the shape of the

curve fo = 0 changes considerabley with E*. It is therefore



128

more convenient to plot a new curve in the (vxB y) plane which

j. is independent of E , giviiig the locus of downstream points

(Logether with other extraneous intersections of g = 0 with

fo 0) as E* is varied parametrically, for constant values

of the other parameters. This is cbtained by eliminating E

and Byt between equations (46), (47), and (30), giving

h(vxB ) (B [( 2 B )-yTv I

y = Byi)fBy [ Ixl x- Y_I 2y (y- 1 )rfx21 + (2-y)V x"

2 B2

[(y-I)mxl - yv x ] B z

(y- I )CL x1 + (2-y)v x ]

(y + l)(vx - i)(v x - vX )
+ -2 x

xl [L(Y ' I ) Xl + (2-y)v x ]

0 0. (48)

The intersection of this oval curve with the downstre3m - singular

- point hyperbola of equation (46) for a given value of E gives

the possible location of the downstream point in the (vx,By)

plane, provided certain structural and thermodynamic requirements

i1 are met. This is shown in figure 5: Y = 5/3, Ml = . BY = 1'

zi = 1, and a xl = 1.5, for several values of E . The respective

projections of the magnetic trajectories are also shown. It is

rlear from figure 5(a) that there is a maximumt and a minimum

tSee § 3.3 for a case in which the maximum E value is limited by

the saddle-point-separatrix solution.
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value of E_1 in between which solutions may exist (shown by

the heavy curve on a section of h= 0), Provided they also satisfy

the thermodynamic requirements; e.g., negative te.nperature (or

I pressure) obviously must not occur on a structure trajectory.

Outside of this range of E , no solutions are structurally

I possible. The type of downstream points corresponding to E=

EMAX or EIN, where the hyperbola g = 0 is tangent to the

curve h = 0, have sometimes been referred to as (generalized)

I Chapman - Jouguet points, because the downstream normal velocityI
I is just equal to the downstream magneto-acoustic speed in these

cases (see Kunkel and Gross (1962)].

I In order to get some idea of the temperature va: :ation in

the magnetic layer, it is necessary to visualize the intersection

of a structure trajectory with the family of lamellar surfaces

of revolution about the vx axis, given by T = const. from

equation (38) In the infinite-Mach-number case, this equation

I becomes

(y-)" v rl - v x - 'xl(B rBrl) = T" (49)

IThe intersection of these surfaces with the (v 13 plane is
shown in figure 6, which also includes the downstream locus

curve, h = 0, the limiting hyperbolas, and a trajectory projection

__

StNcte that this equation is also independent of E
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corresponding to the E value (= H say) for which TH2T (E

has its maximum value TMAX for this set of the other parameters.

In addition to section curves for the surface T = 0 (which

contains the upstream point) and for the surface T = 1 (which

contains the downstream sutshock point), section curves are

also given for the surfaces T = -1, for reference, and T

The latter is clearly given by that value of T for which the

section curve is tangent to h = 0 in the range where structures

are possible.

Typically, figure 6 shows that the structurally - allowable

range on h = 0 lies well inside the T = 0 section - curve

parablola, and that all the trajectories lie !nside the corr-s-

I, ponding paraboloid of revolution. On a trajectory, T jumps

fm 0 to across the subshock, and then varies continuously

Itowards its downstream equilibrium value (although not necessarily

I{ monotonically).

Note that the parabola for T = 0 intersects the v axis

2 2
at xo xlB rl, and the corresponding paraboloid meets

il he ByBz)plne t 2  B2  2

the~~ ~ (B Brllnea + 2/ al" For reference, the point

Icorresponding to the limiting (maximum) value of T for which

] there are real surfaces, TLIM, has also been shown. This occurs

I on the vx axis at vx =1v gin the value =, x o giin the vaueTIM

v I(y+l)2v~o(y-l). in general, TMAX (which must occur on h =0)
A

will be less than TLIM

!1 It has been found that T MAX usuallv occurs at points having

values of By2 near zero. By inspection of equation (49), it is
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clear that this corresponds to most of the magnetic energy hav-

I ing been converted into thermal energy (through Joule dissipation).
The fact that By2  is not exactly zero for TMAX is due to the
coupling with the flow kinetic energy through the v x terms in

equation (49).

In skew shocks in which Bz! ), all T2 values are

usually greater than the viscous temperature T = I, because the

transverse magnetic field magnitude has decreased, thus creat-

ing thermal energy downstream. However, in some cases (especially
for oblique or almost - oblique shocks operating near the upper

Chapman - Jcuguet point), the transverse magnitude may actually
increase, and T 2 will be slightly less than the viscous

temperature. Thus in shock - tube experiments operating in the
Chapman - Jouguet mode, if one of the goals is the achievement

of hi-h downstream temperatures by making use of the "magnetic

dumping: effect of Joule heating, it is clearly desirable to

try to produce the lower Chapman - Jouguet condition rather

than the upper one.

3.3 Variation with a2

For other values of a2x1' the behaviour is qualitatively

similar to the case for a2i = 1.5, given abo.:z., over a finiterange of a2  As the magnetic pressure ratio is increased,

the oval curve of figure 5 at first elongates in the v direc-

tion and shrinks in the Sy direction, bodily moving towards

e v2larger v values. At higher a , values, it shrinks in its
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v x dimension as well. For all skew shocks, there is an upper

a2  at which this oval curve disappears entirely

j(for oblique and normal shocks, there is no upper limit). How-

ever, well before this limit is ,eached, certain structural

properties limit the range of E* values to lie in a restricted

range, not extending to one or both of the tangent points (i.e.,

one or both of the Chapman-Jouguet points are excluded). This

is because the topology of the surface f = 0 is such that,

for E* values outside of the restricted range, the trajectory

passing through the subshock po;nt, instead of travelling on

the subsonic sheet directly to the nodal singularity, runs into

1the sonic curve, at which posnt it must leave the surface, fly-

ing off to v . This phenomenon shows up in the nunerical

I integrations as vx  becoming imaginary in the subsequent in-

crement in x.]

Figure 7 shows a set of trajectories for a 2 = 2.3. The

maximwi E* value is not restricted to lie below the tangent

(Chapman-Jouguet) value, and the behaviour is similar to that

of smaller magnetic pressure ratios until E* reaches a value

I near -0.33 (compared with the lower tangent value of -0.444).

Figure 8 shows why lower E* values are impossible.

Note in figure 7 the occurrence of overall expansion shocks.

After the sudden gasdynamic compression through the viscous sub-

shock, MD interaction expands the gas, as magnetic energy is

converted into directed kinetic energy. The density profile

and corresponding magnetic field, temperature, and entropy plots

are shown in figure 9. It should be noted that these expansion
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shocks also develop relatively large downstream temperatures

due to Joule heating. In such cases, it is evident that the

expansion is not at the expense of thermal energy.

At still larger values of 2 there is a restriction on
xl'

the maximum E* value as well, as shown in figure 10 for 2=

2.9. There are no solutions above cx2 = 2.92.

Structural restrictions of a different nature occur at

values of a2 numerically near v ( 0.25 in this infi-
.1xi x

-i f nite-Mach-nuinber case). This concerns the relative position

of the separatrix going into the saddle point which occurs on

the subsonic sheet of f = 0 for these smaller values of (2

In some cases, the upper tangent value of E* is such that

this separatrix does not enclose the subshock point, as shown

in figure 11(a) for (21 = 0.27, and E*x is restricted to a

smaller value, as shown in figure 11(b). Structures of this

latter limiting type are actually composed of two shocks: a

skew shock (including the viscous subshock) leading to condi-

tions given by the saddle-point singularity, followed (at an

arbitrary distance downstream) by a slow, co.pletely subsonic,

Mi-ID oblique shock from the saddle point to the nodal singulari-

V ty. The isolated saddle-point solution is the analogue of the

(magnetically trivial) gas shock appearing in the case of pure-

ly oblique ionizing shock structures which are sub-Alfvenic

downstreamn. [Clearly, there is a unique value of E* asso-

ciated with this type of solution - a coniron feature of all
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shock waves invol-v.ing downstream saddle points.] However,

there are no skew shock structures analogous to the su.er-

Alfv~nic gas shocks (because skew shocks must aiways be sub-

Alfvenic downstream), and so there is a distinct lower limit

to 12 (upper limit to the shock Alfven number A,) beyond

which skew shocks do not occur, for a given set of upstream

fie!d angles.

These properties can be summarized by making graphs of

the ranges of E* and the downstream quantities By2 , vx2,

and T2  plotted against L2 1 or, preferably, against21 x1orprfrbyagis

A (= a;' ), which gives a direct measure of shock speed. For

comparison with earlier work by Taussig (1965, 1967) on nor-

mal and oblique shocks, the range of the downstream Alfven

number A2 = V x2V1P 2 /B A1Jx2 is also plotted against

A1 . Figures 12(a)-(e) show these ranges. The details of E*,

Sx2 , and T 2 for A near v x are shown on a finer scale

in figures 13(a), (b), and (c).

In addition to the Chapman-Jouguet and structurally-

limited boundaries in figures 12 and 13 (solid cLrves), the

tangent values are shown (dotted), and also the locus of maxi-

mum temperature points (light dashed). The saddle-point solu-

tions are shown by the heavy dashed curve. Expansion shocks

occur in the shaded region. Switch-off shocks have E* = By2 =.

The plots of vx2, A2, a. T2 can be visualized as pro-

jections of three-dimensionol surfaces, the other coordinate

being E*. In this way, the double-valued regions may, perhaps,
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be more readily comprehended.

Finally, it should be noted that, under optimum condi-

tions, significant Joule heating can occur, giving maximum

downstream temperatures up to about 13 times as large as

the viscous subshock temperature, for this particular set of

upstream field angles (By1 = Bz1 = 1). This is because mag-

netic energy has been converted into thermal energy, the effectI 2
becoming rapidly stronger as the magnetic pressure ratio 2x!

is increased (or Alfven number A1  decreased) until struc-

tural limitations are met.

IB

I
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Conclusion

The most general form of ionizing shock wave involves a

magnetic field vector whose transverse component may rotate

while changing magnitude throughout the shock layer. These

are called skew shocks because the upstream and downstream

magnetic field vectors and the shock wave normal do not, in

general, all lie in a single plane. This pienomenon arises

because the electric field in the noncondu;ting upstream region

has a certain amount of freedom in both megnitude and direction.

Much has been written previously on the degree (or lack) of

freedom of the transverse electric field magnitude in ionizin

shock waves. There seems to have been a certain amount of

hesitancy in being prepared tc assign the electric field the

status of a parameter, and many studies have apparently been

motivated by an attempt to find conditions requiring a unique

value of the E- field. The philosophy of the present approach

has been to treat the E- field as a (free) parameter, allow-

ing the detailed structure to determine whether or not there

are unique values associated with certain kinds of solution.

As is well known in the theory of nonlinear two-point boundary-

value problems, parameter-uniqueness is always associated with

the requirement of a solution trajectory to lie exactly on .i

saddle-point separatrix. Thus, in ionizing shock wave theory,

those structures which involve a downstream saddle point will

be associated with a unique value of the transverse E- field;
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i.e., the E- field will be structurally determinate. [The

downstream singularity is the determining one for ionizing

I shock waves because upstream, there is no singular point in

phase space but, rather, a whole region (lying on f = 0) in

which a = 0.) The saddle point may lie in the (vx,B y ) plane

as is the case for oblique (and normal) ionizing shock waves,

or (for Pm = 0) on the f = 0 surface [as seen, for example,

by projection onto the (By, B.) plane] in the case of skew

shocks. The former may have structures for super-Alfvenic as

well as sub-Alfvenic saddle points, but the latter exist only

for sub-Alfvenic saddle points. Transverse shocks always in-

volve a super-Alfvnic downstream saddle point in the (vx , B )
plane. In zero-Pm theory, all (V,B y)- saddle-point structures

are magnetically trivial gas shocks.

Much more interesting, however, is the range of structures

possible when the downstream point is a (necessarily sub-Alfvenic)

node. In this case the E- field is a free parameter, and can

range over a continuum of values between limits determined by

other kinds of topological features of the structure. In

zero-Pm skew shocks, this node lies in the subsonic sheet of

the f = 0 surface. [In fact, this singularity (which is cha-

racterized by vx < cs, the slow magneto-acoustic speed) is also

nodal in the (vx, By ) plane; however, for zero Pm, the form

is degenerate, and all trajectories erter along the curve fo = o,

except for one straight line parallel to the vx axis.]

I w ~ u
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On. lifficulty in studying ionizing shock waves is in

cataloguing the large number of different types of solutions

for ranges of the five governing parameters: Mach number,

Alfvgn number, two field angles, and the transverse electric

field. This analysis has been restr.cted to M, = =, and

most of the solutions are given for By1 = Bzl =1; thus, A1

and Ez  (actually, E* = E +A; 2By1 ) are the main parameters

of interest.

Finally, it should be stressed that this analysis has

studied the magnetic structure of skew shocks. This is made

possible by the coordinate transformation of § 2.3, which de-

couples variable ionization and nonequilibrium electron tempera-

ture effects on the electrical conductivity. The structure

of these variables can now be studied separately, with the

* -known magnetic structure being used as an input (through Joule

heating and the MIID interaction on the fluid variables). The

two classes of problem are finally combined by making the in-

verse coordinate transformation (a single straight-forward

numerical integration). Work is proceeding along these lines.
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Apendix

Integral curves on f = 0

The shape of the surface f = 0 is defined by a family

of circles v. = const., whose centres lie on the centreline

hyperbola: By = B (v x) , Bz = 0. The intersection of the

surface with the (vx, B I plane forms the curve f. = 0,

the detailed shape of which varies considerably depending on

the value of E*, and the location of the asymptote of the

centreline hyperbola, vx  I / = v*

and vx = 1.

There are so many topologically different characteristic

shapes, that it is not feasible to indicate all of them here.

Instead, a few cases will be chosen which most clearly demon-

strate the qua'itative behaviour of the integral curves lying

on f = 0.

This surface can be considered to be divided into two

"sheets" by the space curve lying on it formed by the locus

of points of tangency of lines parallel to -he vx axis. Since

2rad f [in (V, By, B z ) space) must be perpendicular to the

vx axis on this curve, it is given by the intersection of f = 0

with the surface

f---" -1) 0 (A.:)
x "By Bz
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from equations (29), (30), (31), and (33), where M is the

local Mach number, given by

2 22 2

M , - z -Z M (TV-)V (A.2)

a Ta 1

EI
since the ordinarl sound speed a is proportional to T 2

It can be shown that M is a monotonically increasing function

of vx, for a fixed i13, thus the two sheets of f = 0 can

be labelled as "supersonic" (corresponding to larger vx values)

and "subsonic", being sparated by the "sonic curve", on which

H = 1. As with ordinary gas shocks, an acceptable ,iscous sub-

I" shock trajectory must have its upstream end or th-; supersonic

*sheet and its downstream end on the subsonic sheet. The sub-

sequent magnetic portion of the trajectory must, if it is to

j be a solution trajectory, lie entiraly on the subsonic sheet,

because trajectories on f = 0 which reach the sonic curve

subsequently fly-off to vX = +-. This behaviour is similar

to that of slow oblique shocks in a [-inized gas (especially

Ain cases of tensor conductivity (Leonard, 19u6)], which always

-have their magnetic trajectories on the subscnic sheet of

]f = 0, even when there is no subshock (Mt r 1). Fast oblique

or normal shocks, however, have their magnetic scructure on the

supersonic sheet, upstream (where A1 # 0) of a suoshock, if

one exists.

Figure A.1 represents the case: y 5/3, =

I
I
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= 1, Bzl = 1, 2= 0.5, E* = 0.25. [For M1 = and
y = 5/3, equation (A.2) is written M2 = 16V2/ (5T).] in the

(vx,B y) projection of figure A.1(a), the curve fo = 0 is

shown, together with the downstream hyperbola gy = 0 and the

centreline hyperbola By = BA (vx) The arrow directions on

fo = 0 correspond to the sign of gy in the three different

regions determined by the branches of the downstream hyperbola.

Since gz = 0 in the (vxBy) plane, this determines those

integral curves which lie in this plane. In figure A.I(b),

the circles vx = const. on the subsonic sheet of f = 0 are

shown; i.e., this represents the view as seen from the origin,

looking in the positive v× direction.

To find the shape of the remaining integral curves which

lie on the subsonic sheet, it is convenient to study their
direction-field projection in the (By. B ) plane. From equa-

tions (39) and (40), it is seen that

dB g

E* -1 2 2 x)B

(ax2- vx)Bz

[B E"/ (a 2 vx)]I= B X (A.3)- Bz

r Note from this equation that if vx = const. [a circle in



A.4

figure A.1(b).:, a given value of dBy /dBz = S, say, gives

the sLraight line B - E*/ (C 2
1 -v ) = SBz, which itself has

slope S. Where this straight line intersects the circle

vx = const., the integral curves at those points have slope S.

In other words, at any point (v(f ) B(f ) B(f)) on the sur-

face f = 0, the (By, Bz ) projection of the integral curve

passing through that point is directed along a straight line

joining the point (B(f ) B(f )) with the point (B(g) B(g )),
y z y'z_= (f _g .Tesneo

where B(g) = E*/ ( 21 -  f)), and Bz 0(g) 'he sense of

the arrows representing dx > 0 is determined by dtB l /dx Z 0
2s (f) (fas (ax -vx ) Z 0 [or by continuity, on the circe -Vx

2 and by dB /dx < 0 as gy <0, if Bz = 0 ras with
1 xy y

oblique and normal shocks). To make this clearer, figure A.2

shows four cases depending on the location of the "fan point"
(B g ) O):
y

(a) inside the circle,

(b) on the circle,

(c) outside the circle, and

(d) at infinity (f) CL 2

rThe sense of the arrows has been assigned arbitrarily.]

Given only the curve fo = 0, it is a very straight-for-

ward matter to make a graphical construction of the complete

direction field, from which the integral curves can be deter-

mined, as shown in figure A.3(b); the (vx, B y) projecticn of

figure A.3(a) is found by cross-plotting.



(a) (b)

BY yB

( C) (d)

jFIGURE A.2. Graphical construction of the direct-

ion field projection in the (B y Bz) plane.
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Note that the downstream point is a node, whereas the

other intersection of gy 0 with fo 0 is a saddle

I point. The respective separatrices have been shown in slight-

ly heavier curves.

For given upstream conditions [in the present case, the

point (1, 1, 1)] the solution trajectory jumps from the su-

personic sheet to the subsonic sheet at (v*, 1, 1), from

I which point on it follows the integral curve passing through

that point until it reaches the downstream singularity. Note

that if BZ1 = 0 (oblique or normal shocks), the complete

trajectory lies entirely in the (vx , By) plane, the magnetic
x y

portion following fo = 0, which in this case passes through
the point (v*, 1, 0). Also, if E -= 0, the surface f = 0

x

becomes a surface of revolution, and all trajectories are

radial lines, as sho-n in figure A.4. Clearly, there is no

distinction between oblique and skew shocks in this case;

i.e., all switch-off shocks with the same 1B11 are plane-

I polarized, and have identical IBI - structure. The dow.nstream

singularity in this case is a special type of completely sym-

metrical node ("sink"); for small IE*I values, the singulari-

ty has the more standard form of figure A.3(b) locally, al-

though, further away from the node, most of the trajectories

are fairly straight in (By, Bz ) - projection.

Finally, figure A.5 shows the case for 21 = 0.5,

E* = EAx = 0.2976. This is typical of the upper Chapman-

Jouguet solutions for moderate values of 2 The singularityJouguetILX siglrt
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in this case has saddie-point behaviour above the separatrix

and nodal behaviour below. As mentioned in §3;3, the up-

stream point must lie within the separatrix, as shown, for

a Chapman-Jouguet solution to exist. A similar situation

occurs for the usual type of E* , except the position of
MIN'

the singularity is well below By1  (and possibly below By = 0)

and the forn of the singularity is the inversion of that shows

in figure A.5. This singularity has some rather interesting

properties in that it cannot be linearized locally, and tra-

jectories entering on the nodal side do so only extremely

slowly (as if they were being "pushed away" by the outgoing

tendencies of the saddle-point side).

.*

I-
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