
ESD-TR-70-44I

ESD AuUibblUINL L
TR; 7

WYPPI
Copy /^ w^

PRELIMINARY PPL USER'S MANUAL

E. A. Toft

ESD RECOR

October 1970

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
safe; Its distribution Is
unlimited.

(Prepared under Contract No. FI9628-68-C-0I0I by Harvard University,
Cambridge, Massachusetts.) AH~7 0 0// O

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-70-441

PRELIMINARY PPL USER'S MANUAL

E. A. Taft

October (970

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; Its distribution Is
unlimited.

(Prepared under Contract No. FI9628-68-C-0I0I by Harvard University,
Cambridge, Massachusetts.) Jl

FOREWORD

This report was prepared in support of Project 2801, Task 280102 by
Harvard University, Cambridge, Massachusetts under Contract F19628-68-C-0101,
monitored by Dr. John B. Goodenough, ESD/MCDS, and was submitted 30 November
1970.

This technical report has been reviewed and is approved

\.M «L
SYliviA R. MAYER
Project Officer

EDMUND P.
Director,
Deputy for

Colonel, USAF
ri & Development

Management Systems

ii

ABSTRACT

PPL» is an interactive, extensible programming language
incorporating data definition facilities and operator definition facilities.
This manual introduces the various features of the language and serves
as a practical reference document for its use. The manual is indexed
and several appendices detail parts of the language in tabular form.

PPL runs under the standard 10/50 monitor series of the Digital
Equipment Corporation's PDP-10 and also under the TENEX monitor
system of the Bolt, Beranek and Newman Corporation. A library of
PPL extensions is available containing extensions for doing matrix,
rational, formula, polynomial, complex, and vector arithmetics and,
in addition, for manipulating lists, strings, and trees. The language
is useful for manipulating data in a wide variety of application areas.
Being interpretive and conversational, however, it is more well
adapted toward personal and educational uses of computers using
interactive terminals than it is for doing large institutional computing
applications requiring long running times or voluminous input-output.

-in-

TABLE OF CONTENTS

Abstract. . iii

Table of Contents v

Section I. Introduction 1

Section II. Getting Started with PPL 2

Section III. Using PPL as a Desk Calculator 3

Section IV. Variables 6

Section V. Other Built-in Data Types 7

Section VI. Function Calls 9

Section VII. User-Defined Functions 11

Section VIII. Errors and User Suspension 15

Section IX. Text Editing 18

Section X. More on Numbers 24

Section XI. Definition of Operators 27

Section XII. Data Definitions 29

Section XIII. Miscellaneous Important Information 40

A. Copying and Sharing 40

B. ^Identifiers 42

C. Erasing Definitions 42

D. Read and Write 43

Section XIV. Advanced Debugging Facilities 44

Appendix A - Table of Built-in Functions 46

Appendix B - Automatic Type Conversion 49

Appendix C - Summary of Editing Commands 51

Appendix D - Summary of Data Definitions 52

-v-

Appendix E - ASCII Character Codes 53

Appendix F - System Errors 54

Historical Note and References 56

Implementation Note 57

Index to PPL User's Manual 59

-vi-

•

-

-

.

SECTION I

Introduction

PPL. is a conversational, extensible language oriented toward
personal rather than institutional uses of computers. For example,
in PPL one can write a program to differentiate formulas in twenty
minutes, but a PPL program to do large reactor core calculations or
to compute payrolls would be impractical even though it is possible.
PPL has been designed to promote rapid composition, modification
and debugging of programs over a wide variety of application areas.
To achieve this property, the mechanical efficiency of the language
has been consciously sacrificed, in certain cases, in favor of
flexibility and generality.

The version of PPL. described in this manual represents the first
of several phases of development. In a nutshell, this first version
consists of a typeless conversational language similar to Iverson's
APL in which the Iversonian mechanics of arrays have been subtracted
out, and to which powerful data definition facilities as well as operator
definition facilities have been added. PPL's conversational mechanics
include the abilities to trace running programs, to interrupt running
programs, to set and remove breakpoints, to write programs that
converse with users, and to edit the text of programs. Running time
is proportional to the demand for computation, and, in particular,
trivial requests are satisfied rapidly. Using the data definition
facilities, it is literally possible within an hour to write programs
that perform useful operations on data such as: matrices, complex
numbers, vectors, formulas, rational numbers or polynomials, or
on strings, lists or trees. Defined operations may be associated with
unary and binary operators of the user's own choosing, including
redefining the meaning of operators given in the initial state of the
language.

Additional development of PPL is contemplated in three areas:
(1) control structure definition facilities [including concurrent
processes, continuously evaluating expressions, the creation of
indivisible processes, and coroutines, among other things], (2) syntax
extension facilities [including syntax macros and tree mappings], and
(3) a fully compatible compiler [the present version of PPL being
interpretive].

-1-

SECTION II

Getting Started with PPL,

Assuming one has somehow gained access to the Harvard PDP-10,
PPL is started simply by typing, in response to the monitor's period,
the command

. R PPL

PPL will respond with a title line identifying the version number and
date, and will then move out eight spaces from the left margin and
stop. This is PPL's signal that it is expecting input from the user.

A command may now be typed to PPL. The command is not
interpreted or executed until a carriage return is typed. PPL contains
text editing mechanisms that allow the user to correct errors in the
command being typed. Editing is accomplished by the use of several
control keys, two of which are as follows.

RUBOUT: Pressing the rubout key (sometimes labelled 'DEL')
causes the most recently typed character to be erased.
The erased character is typed back or 'echoed' by PPL.
Further rubouts will erase preceding characters on the
line.

Control-U: To erase the entire line being typed in, press
down the control key (labelled 'CONT' or 'CTRL')
and simultaneously type U. PPL will respond by
typing '|U' and moving eight spaces from the left
margin on the next line. Another command may
now be begun.

-

-2-

SECTION III

Using PPL. as a Desk Calculator

One of PPL's many features is that it is conversational and
interactive. Any PPL. command may be typed in for immediate
execution.

The value of a numerical expression may be obtained by simply
typing it in and pressing return. For example:

3+2
5

25* (46+2)
1200

3.14159*(2. 5t 2)
19- 63494

It may be seen above that user typein always begins eight spaces from
the left margin. PPL typeout in response to a user command, how-
ever, always begins at the left margin.

PPL recognizes the following arithmetic operations:

addition
subtraction
multiplication
division
raising to a power {

In addition, PPL provides two unary arithmetic operations:

+ unary plus
unary minus

Left and right parentheses may be used freely to indicate precedence
of operations. Expressions within parentheses are evaluated by PPL.
before expressions outside. It is recommended that beginners in PPL.
make liberal use of parentheses in constructing expressions. This is
because PPL's default assumptions, used in the absence of explicit
grouping information, are somewhat different from both normal
algebraic conventions and most other programming languages.

PPL's precedence rule is very simple: every operator takes as
its right operand the value of the expression up to the next right
parenthesis, right bracket, comma, or end of line. (This scheme is
used in APL and is called 'Iversonian precedence' after its designer).
A few examples will suffice to demonstrate PPL's precedence.

-3-

3*3*3+5*5*5
1152

1152
3*(3*(3+(5*5*5)))

(3*3*3)+(5*5*5)
152

2.

2.

10. 0/3+2

10. 0/(3+2)

(10.0/3)+2
5.333333

-

example 1

example 2

In each example above, the first expression typed in contains no
parentheses. The second indicates the assumptions made by PPL in
evaluating such an expression. The third shows the most common
assumptions made in other programming languages.

Numbers entered in PPL may be integer, real, or double-
precision real (hereafter referred to as INT, REAL, and DBL). An
INT is a sequence of decimal digits not containing (or immediately
preceded or followed by) a decimal point (period). A REAL is a
sequence of decimal digits either (a) containing, immediately preceded
by, or immediately followed by a decimal point, or (b) immediately
followed by the letter E, an optional sign, and a one or two digit
decimal exponent. The magnitude must contain eight or less
significant digits; otherwise it is a DBL, which may also be
explicitly indicated by using D instead of E to precede the decimal
exponent.

Examples of INTs:

31 0 987654321 000130

Examples of REALs:

3.14159 .52 0. 1. 347E28 52E-7

Examples of DBLs:

1.4D0 9.327863415 83. 5216D27 1D-10

PPL arithmetic operations are an example of PPL's 'polymorphic'
capabilities. REALs, INTs, and DBLs may be freely mixed in
arithmetic expressions; the necessary type conversions are all handled
automatically. When confronted with an arithmetic operation involving
operands of different type, the 'weaker' operand is converted to the
type of the 'stronger', with strength defined on the scale INT<REAL<DBL.
This policy requires little attention on the part of the user except in a

-

-4-

Single case: that of division of an INT by another INT. In this case
it should be remembered that the result is also an INT and will
therefore be truncated.

The following are a few examples of polymorphic arithmetic
operations:

1

1.5

1.5

6.9

3/2

3/2.

3./2

3+4-.1

-5-

-

SECTION IV

Variables

Values in PPL may be as singed to variables. A variable is
represented by an 'identifier', which is a string of letters, digits,
and periods, beginning with a letter, not ending with a period, and
containing no two adjacent periods. The following are legal
identifiers:

W3 TH1. 3V SUM. OF. 9. DIGITS

! operator (left-arrow on
The left operand must be

Assignment is performed by the f*
most terminals, but underline on some),
a variable name (identifier), and the right operand a value of some
sort. Once so defined, variables may be used in PPL expressions
exactly like numbers or other expressions.

5.4

N«-5.4
N

30. 20914

3.3

Q3«-(Nt3)+54
Q3/7

N*-N-2.1
N

As the last example above indicates, it is quite legal to assign
a new value to an already-defined variable. The new value need not
be of the same type as the old. In PPL's polymorphic handling of
data, 'type' is an attribute, not of variables, but rather of values. A
variable is capable of holding any type of quantity; what might be
considered to be the variable's type is actually the type of value
stored in it at any given time. Thus, variable type declarations,
required in many programming languages, are completely unnecessary
in PPL. Further examples of assignment:

N«-3
(N+D/2

2
N*-3. 35E+8
(N+D/2

167500000.
PI*- 3.1415927
PI*Nt2

3. 525652E+17

•

-6-

SECTION V

Other Built-in Data Types

Besides the types INT, REAL, and DBL already presented, PPL
has three other built-in data types, as follows:

A Boolean datum (BOOL) has as its value either TRUE or FALSE.
BOOL-type values are generated by logical and comparison operations
(see below). For convenience, the identifiers TRUE and FALSE are
initially defined as variables containing these values.

A character (CHAR) is a datum consisting of a single ASCII
character. A constant of type CHAR is typed in as a single quote
followed by the desired character. For example:

C«-'Q
C

Q

A STRING is an arbitrary-length sequence of ASCII characters.
To type in a string, surround it with double quotes. If it is desired to
include a double quote within a string, it should be entered by typing
two adjacent double quotes.

"I AM A CHARACTER STRING"
I AM A CHARACTER STRING

QQ«-!IHE SAID " ,,FOOn". "
QQ

HE SAID "FOOn.

PPL has a number of built-in operators for generating and
manipulating data of type BOOL. These may be divided into two groups:
comparison operators and logical operators.

Comparison operators operate on two arithmetic (INT, REAL, or
DBL) quantities and produce a result which is a BOOL. In the table
below, the result is TRUE if the condition holds, otherwise it is FALSE.

A = B A equal to B
A < B A less than B
A <= B A less than or equal to B
A > B A greater than B
A >= B A greater than or equal to B
A # B A not equal to B

Logical operators operate on values of type BOOL and produce a
result of the same type. The result is TRUE if the condition below
holds, otherwise FALSE:

-7-

A & B the 'AND' operation - A and B both TRUE.
A .' B the 'OR' operation - either A or B (or both) TRUE.
- A the »NOT» operation - A not TRUE.

Note that the meaning of the '-f operator depends on its operand. When
it operates on a datum of type INT, REAL, or DBL, it indicates
negation, whereas when it operates on a BOOL it indicates logical
complementation.

-8-

SECTION VI

Function Calls

All data operations examined thus far have been expressed
through the use of binary and unary operators such as '+' and '-'.
Each operator invokes a process that operates on one or two
operands or arguments, and returns a single result which may itself
be used as an operand within a larger expression. PPL. also has a
more general function calling mechanism capable of invoking
processes that take any number of arguments (or none at all)* indeed,
it turns out that unary and binary operations are handled by PPL as
special cases of function calls.

An explicit function call is made by giving its name (an
identifier) followed by a list of arguments contained within a pair
of parentheses. If there is more than one argument, the arguments
are separated by commas. If the function takes no arguments, the
parentheses may be omitted except in certain cases where a pair of
parentheses with nothing between them is necessary to relieve
ambiguity between the name of a function and the value obtained by
calling it.

As an example, consider the system function "ADD1, which is
implicitly invoked by the binary operator '+' but which may also be
called explicitly:

ADD(53, 27)
80

3. 4+(ADD(ADD(l, 5), 7)-8. 5)
7.9

All the built-in operations so far presented are similarly
associated with internal functions accessible by using the proper
identifier, according to the following table:

ADD(A,B)
SUB(A,B)
MUL(A,B)
DIV(A,B)
PLUS(A)
MENUS(A)
EQ(A,B)
LESS(A, B)
LESSEQ(A,B)
GR(A, B)
GREQ(A,B)
NOTEQ(A,B)
AND(A,B)
OR(A,B)
ASSIGN(A,B)

-9-

A + B
A - B
A ■\- B
A / B
+ A
- A
A - B
A < B
A < B
A > B
A > B
A a B
A & B
A i B
A +- B

Note that the assignment operation is performed by a system function;
that is, the statement 'ASSIGN(Q, 3)' is exactly the same as 'CM1.
Though the primary operation of this function (the assignment) is done
internally, the function does in fact return a value which is the value
assigned. Thus, assignments may be embedded within expressions.

7

9.7

1.

INT(3.1+(I«-9.7)/2)

I

A«-B-«-C"*-l. 0
B

The user might wonder at this point what prevents the immediate
printout of the value returned by the system function 'ASSIGN' in a
normal assignment expression such as 'X«-3'. PPL. treats this case
specially, according to the following rule: if the final operation
performed in a statement is an assignment, printout is suppressed.
The same occurs if the final operation is a call to a non-value-
returning function (several such functions exist and will be presented
later).

In addition, there are a number of built-in functions not
associated with operators. These must be explicitly called when
they are needed. As an example, two such built-in functions are:

INT(A): For A a REAL or DBL, has as its value the result
of converting A to an INT.

REAL(A): Converts the value of A to a REAL and returns it.

A list of all PPL's built-in functions is given in Appendix A.

-10-

SECTION VII

User-Defined Functions

PPL. allows the user to define his own functions in such a way that
they may be called in exactly the same manner as the system functions
described in the previous section. Function definition is the means by
which a set of PPL. statements may be stored for later execution.

A user-defined function consists of a function header and a set
of numbered statements comprising the body (executable part) of the
function. As these statements are typed in, PPL stores them away
rather than executing them immediately.

The following example will be used to explain the mechanics of
function definition. The defined function, called FACT, takes a single
argument N and computes N factorial.

[1
[2.
[3]
[4;
[5]
fc
[7]

£FACT(N); I
FACT«-1. 0
I«-N
(I<=0)-->%0
FACT*-FACT* I
I*-I-l
-->%3
$

The first line of the definition begins with a dollar sign. This is
a signal to PPL that what is being typed is a definition rather than an
executable statement. After the dollar sign is the name of the function
(FACT), which may be any legal identifier that has not previously been
defined. Within the body of the function, this name (referred to as the
'procedure identifier') is used as a simple variable which represents the
value of the function; during execution, the last value assigned to the
procedure identifier (by a statement of the form 'FACT-«-expression')
will be the value returned to the caller.

Following the procedure identifier appears the dummy argument
list enclosed in parentheses. Each dummy argument is an identifier.
If more than one dummy argument is listed, the arguments are separated
by commas. If the function takes no arguments, the parentheses are
omitted. Dummy arguments are used within the body of the function to
refer to the values of the corresponding arguments specified when the
function is called.

The last part of the function header is a list of local variables.
These are separated from the rest of the header by a semicolon; if
more than one local exist they are separated by commas or semicolons.
These variables are called 'local' because their values are accessible

-11-

only within the body of the function in which they are defined. Thus,
within the sample function FACT, the variable I is a local. It is
entirely separate from any meaning the identifier I may have either
within other functions or in the global environment (in which control
resides when PPL. is started). Thus, the use of locals is an effective
means of avoiding name conflicts between identically-named variables
in different functions.

The dummy arguments (sometimes known as formal parameters)
may also be treated as locals, in the sense that they are accessible
only within the function that uses them. Formal parameters and locals
differ in one respect, however. Whereas formals are initialized with
the values of the calling arguments when the user function is entered,
locals initially have no value. This is true on each function entry no
matter how many times the same function is called. The procedure
identifier is likewise unassigned on entry.

The function header line is terminated normally, by pressing the
return key. PPL now responds by typing '[l]1, indicating that it is
prepared to accept the first line of the function. PPL statements may
be typed in this manner on successive lines, with the line numbers
supplied automatically, until a line containing only a dollar sign is
typed. This indicates the end of the definition, and PPL. responds by
skipping a line and moving eight spaces from the left margin.

Now that the function has been defined, it may be called:

FACT(3)
6.

FACT(IO)
362880.

25+FACT(FACT(4))
6.204484E+23

In the first example above, the call of the function FACT takes
place as follows. The argument (3) is evaluated and assigned as the
value of the formal parameter N within the function being called.
Control is then passed to statement [l] of FACT.

Unless otherwise directed, PPL executes statements within the
function in numerical order. Two methods of altering this flow are
demonstrated in the FACT function, both of which use the --> operator.
In statement [6], where it is unary, this operator means 'unconditionally
goto', and its execution passes control, in this case, to line 3. Note
that the line number is preceded by a percent sign. This means
"relocatable line 3", and, as we shall see, comes in very handy when
we go to edit the function (discussed in the next section). However,
statement [6] could have just as well been written as

[6] -->3.

-12-

SECTION VIII

Errors and User Suspension

When PPL detects one of any number of error conditions, it
stops whatever it is doing and prints an error message. These errors
belong to one of two classes: syntax errors and execution errors.

A syntax error is detected by PPL immediately after the user
has typed in a statement. The error may be some sort of illegal
format in an editing command, or it may be an error such as unbalanced
parentheses in a statement. In all cases, PPL prints out a message
that attempts to pinpoint the source of the error. Whenever a syntax
error is detected by PPL, none of the given statement will have been
executed. If a line of a function was being typed, PPL will repeat
the line number and await a corrected version.

Note that after an error, as well as at any other time, the most
recently typed line may be reopened for editing simply by pressing
the alt-mode key. The mechanisms for text editing are presented in
the next section.

The second class of errors occurs during actual execution of a
statement. Such errors as attempts to use unassigned variables in
expressions can be detected by PPL only when the statement containing
the expression is actually executed. Messages indicating execution
errors are preceded either by the words »EXECUTION ERROR' or by
an indication of what system function was being executed when the
error was detected. The next line typed indicates where execution was
stopped. The message 'STOPPED IN DIRECT STATEMENT' means
that the error was detected within a line the user had typed in for
immediate execution. However, if the message is 'STOPPED IN LINE'
followed by a function name and line number, the error was detected
during the execution of a user function. In this case, we say that
execution has been 'suspended' within the function in question.

While in this suspended state, the user may issue statements to
be immediately executed, just as he could while in the global (top level)
environment in which PPL was started. However, such statements are
now interpreted in the environment of the suspended function; that is,
the procedure identifier, the formals, the locals, and the labels are
accessible as if the immediate statement were a line of the function
itself.

The user is now allowed to change the values of any variables
whose names are accessible in the current environment, and to resume
execution at any statement in the function by means of the --> operator.
(However, the current implementation of PPL does not allow the user
to edit any functions if he is currently suspended within a function. In

-15-

order to do editing, the user must first call the RESET function, which
is a built-in parameterless procedure, to return control to the global
environment.)

Occasionally it is necessary for execution of a program to be
prematurely terminated (because it has gone into an infinite loop, for
example). To do so, the user should type control-C twice to return
to the PDP-10 timesharing monitor. Then the REENTER command
should be typed. PPL will now suspend execution at the beginning of
the next statement, and will print out the name of the current function
and the number of the line it was about to execute. Execution may be
resumed if desired by use of a --> operator to that statement.

The following example illustrates some possible errors and an
example of user suspension.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

TRUE

$PRIME(N); I

PRIME«- FALSE
(N<4)-->%7
(N=2*N/2)-->%0
I«-3
(N=I*N/l)-->%0
((lt2)<=N)-->%5
PRIME*-TRUE
$

PRIME(5)

FUNCTION TO DETERMINE WHETHER
N IS PRIME

PRIME(7)
ILLEGAL PHRASE OF LENGTH THREE

PRIME(7)
TRUE

PRIME(13)

\i
.REENTER

PRIME [6]

N
13

3

tc

tc

I

-->%6

[Left off right parenthesis.]
[Syntax error comment by PPL.]

[Program goes into a loop. |C
used to escape to the monitor.]

[Return control to PPL.]

[Suspended at line [6] of PRIME.]

[Examining local variables in
environment of suspension.]

[Resuming execution.]
[Function resumes but is still in
loop.]

[User must suspend it again.]

-16-

.REENTER

PRIME [5]
I

RESET
$PRIME[5.
I*-1+2
1

3

[5.5]
[5.6]

5]

TRUE

FALSE

PRIME(13)

PRIME (14)

[Value hasn't changed - there is a
bug in the program!]

[Reset to global environment.]
[Edit the function, using text editing
facilities explained below.]

[Operation now correct.]

There is a third case which we might consider a 'suspension',
though it really is not. A running program will request input from the
user when it encounters a question mark (called the 'demand symbol')
in a statement. The expression now typed in by the user will be
evaluated and substituted for the demand symbol, and execution will
continue.

This feature is useful for talkative programs that require input
during their execution. A statement containing a demand symbol should
usually be preceded by a statement that prints a message explaining
what is being requested from the user. The following is a trivial
example of the use of the demand symbol:

^SQUARE
"HI. I FIND SQUARES. "
"GIVE ME A NUMBER, PLEASE. "
N*-?
"THE SQUARE OF THAT NUMBER IS"
Nf2
$

SQUARE
HI. I FIND SQUARES.
GIVE ME A NUMBER, PLEASE.

29
THE SQUARE OF THAT NUMBER IS
841

There is a final class of error, one that should never be
encountered. This is the 'system error'. System errors cause control
to return to the PDP-10 time-sharing monitor. It is usually possible
to recover from such an error by giving the monitor REENTER command.
For a more detailed discussion of system errors, see appendix F.

-17-

SECTION IX

Text Editing

One of the most important of PPL's many features is that it is
conversational and interactive in all phases of its operation. Once a
function has been defined to PPL, there must be a convenient means
for editing that function in order to make changes and remove errors.

PPL has an extensive text editing mechanism that may be used
any time PPL is requesting input from the user. Basically, what we
can do is open an existing function for editing, make changes via
insertion, deletion, or updating, and close the function again.

Opening a function for editing consists of typing a dollar sign,
the function name, and a line number enclosed in square brackets.
PPL responds by typing the line number at the left margin. A new
statement may now be typed to replace the old statement on that line.

Pressing carriage return causes the newly-typed line to replace
the old, unless the new line contained no characters (in that case, the
old line remains). PPL responds by typing the line number of the
next line in sequence. This statement is in turn open for replacement
if desired.

To delete the current line without replacing it with a new line,
control-G should be typed. PPL responds by typing 'IG1 and
sequencing to the next line.

To edit a line which is not the next in sequence, a line should be
typed containing only the number of the line to be edited enclosed in
square brackets. This line is interpreted as an editing command and
does not replace the current line. PPL responds by typing the number
of the new line at the left margin.

A line is inserted between two others by specifying a 'Dewey-
decimal1 line number containing a decimal point and a one or two digit
fractional part. Thus, to insert a new line between lines [2] and [3],
one might input a line [2. 5]. When return is typed after this line, PPL
sequences to line [2. 6] automatically. Note that this sequencing is
Dewey-decimal, so that [2.9] sequences to [2.10].

The function is closed by typing a line containing only a dollar
sign. This again is interpreted only as an editing command,and the
dollar sign does not replace the current line.

These operations become clearer by the use of an example. We
first define a function MAX, which takes two arguments and returns the
maximum value. The function entered below contains several errors

-18-

and produces incorrect results:

in
13

$MAX(A,B)
(A<B)-->%3
MAX-B
MAX-A
$

MAX(3, 5)

We now want to insert a statement between [2] and [3] to return
after the assignment MAX—B. We also want to reverse the comparison
in statement [l]. The required editing is as follows:

[2.5]
[2. 6

5

6

$MAX[2. 5]
-->%0

(A>B)-->%3

MAX(3, 5)

MAX(6,2)

[Open MAX at statement 2. 5]
[Insert a function return]
[Go edit statement 1]

[Close function]

[Results are now correct]

To find out exactly what our editing has done to the MAX function,
we now display it. This is done by typing a question mark followed by
the name of the function.

?MAX
£MAX(A,B)
(A>B)-->%4
MAX-B
-->%0
MAX-A

The first thing that may be noticed is that the lines have been
renumbered using sequential line numbers. This operation is performed
automatically upon closing the function. The second item of note is that,
in statement [l], the -->%3 has been changed to -->%4, thus continuing to
refer to the statement it previously referred to. Whenever PPL renumbers
lines, it performs this conversion on all 'relocatable line numbers'. A
relocatable line number is a decimal number of one to three digits preceded
by a percent sign. During execution, a relocatable line number behaves
essentially the same as an integer in all calculations that use it; its
primary use, however, is in the range of a --> operator.

It should be noted at this point that all editing operations presented
thus far are also available while typing in a function for the first time.

-19-

The following example demonstrates some of the possibilities encountered
while creating a function MIN to compute the minimum of three
arguments.

-

1
21
3_
4
5

[3.5]
[3.6]
[5. 5]
[5.6]

6~

8

3

3

3

3

sMIN(X, Y,Z)
(X<Y)-->%4
(Z>Y)-->%6
MIN«-Y
(Z<X)-->%7
MIN«-X

-->%0

-->%o
[6]
(X<Z)-->%5
MIN-Z

(Z<Y)-->%6
$

MIN(3, 5, 7)

MIN(7,3,5)

MIN(7, 5, 3)

?MIN
$MIN(X, Y, Z)
(X<Y)-->%5
(Z<Y)-->%8
MIN^-Y
-->%0
(Z<X)-->%9
MIN«-X
-->%0
(X<Z)-->%6
MIN<-Z

[Go insert a line 3. 5]

[Go insert a line 5. 5]

[Now continue original sequence]

[Go correct error in line 2]

[Close function]

A few more points should be noted before we proceed further with
text editing. First, comments may be appended to lines by preceding
them with a string of three periods. When PPL sees three periods it
considers the rest of the statement to be a comment and ignores it. The
comment remains in the text, however, and is printed out when the
function is displayed using the question-mark command. The user is
warned that the first period should not be adjacent to a digitj otherwise,
the period may be construed as a decimal point and the comment as part
of the statement. A separation of a single space or tab is sufficient.

-20-

-

i

Second, a statement may be continued on more than one line. To
continue to a new line, the line feed key is used; PPL. spaces down one
line, moves eight spaces from the left margin, but does not print a line
number. There are only two restrictions on the use of continuation
lines: first, a single lexeme (number, identifier, multi-character
operator, etc.) may not be split between lines. Second, the entire
statement may not be more than 500 characters in length. Note that
a comment may be continued in the same way. Continuing a line within
a string causes a return and a line feed to be included within the string:

"THIS IS A
SPLIT STRING"

THIS IS A
SPLIT STRING

[Line-feed for continuation]

Besides the line-by-line editing already presented, PPL also
offers extensive character-by-character editing. The character editing
mode is entered by pressing the alt-mode key (sometimes labelled ESC).
Depending on when alt-mode is typed, PPL will now take one of three
actions. If no function is open and alt-mode is the first character typed
on a line, PPL will open the most recently typed line for character
editing. If it is not the first character on the line, the current line is
terminated and opened for editing. If a function is open at the time, and
alt-mode is the first character typed after PPL types the line number,
then the previous text of that line is opened for editing if it exists;
otherwise, the line most recently typed in by the user is opened.

The selected text is now retyped by PPL on the next line. (If the
statement contains continuation lines, only the first line is typed).
PPL then positions the typehead below the first character on the line.

The user now has several options. If a printing character, a
space, or a tab is typed, it replaces the character immediately above
the typehead. If a rubout is typed, it deletes the character above the
typehead; a back-slash (\) is echoed.

Characters in the existing line may be passed over without change
by the use of any of the following control characters:

Control-N: passes by and echoes the Next character on the line.

Control-E: passes over and echoes every character until the End
of the current line (leaving the typehead at the end).

Control-T: passes over and echoes Ten characters.

Control-S: passes over and echoes characters until a Separator
character (something other than a letter or digit) is
reached.

-21-

The following control characters may be used to perform the
indicated actions:

Line feed:

Alt-mode:

Control-R:

Return:

Control-A:

moves to and retypes the next continuation line if one
exists. This line may now be edited.

retypes the first line of the statement and reopens it
for editing.

retypes the current line of the statement and reopens
it for editing.

closes the entire statement, with changes, and enters
it just as if the user had typed it directly. If a function
is open, the statement is stored; if not, the
statement is immediately executed.

This character is used for insertion. PPL responds
by spacing down one line and printing an upward
arrow. This points to the character on the current
line before which characters are to be inserted. All
printing characters, as well as space or tab, may now
be typed for insertion. In this mode, the rubout key
will delete and echo the most recently-inserted
character (if all inserted characters have been rubbed
out, it will start deleting characters before the
insertion in the current line). Insertion mode is
terminated by typing control-A or control-R, which
will retype the current line. Line feed, alt-mode,
return, and control-E retain their normal functions.

One useful rule to remember with regard to control characters is
that all characters recognized by PPL cause some visible action. If an
illegal control character is typed, it is simply ignored.

Because of the difficulty of representing the use of non-printing
control characters on the printed page, no examples will be presented
of character-by-character editing. It is hoped that the preceding
description has been clear enough to enable the user to become
familiar with the control characters on his own.

Some further notes: It is possible to edit the header of the
currently open function. This is done by making a request to edit line
zero. It is illegal, however, to change the name of the function by this
means.

PPL has a provision for labelled statements. A label is an
identifier immediately followed by a colon, and must appear first in a
statement. The label name is considered to be a local and has all the
same properties. However, when the function is called, the label

-22-

variable is initialized with the integer line number of the statement in
which it was defined. This allows an alternate method of ensuring that
--> statements refer to the proper lines even after repeated editing and
renumbering of the function. The label variable may even be reassigned
during execution of a function^ however, this affects only the call of the
function and does not change the position of the label within the function
definition. The following is an example of the use of labels:

£SSUM(N,P)
SSUM«- 0
AGAIN: SSUM«-SSUM+NtP
((N«-N-1)>0)-->AGAIN

If no function is currently open, the text of a single line may still
be displayed. This is done using the question-mark command; the
line number desired should be given in square brackets after the name.
For example:

?MIN[5]
[5] (Z<X)-->%9

-23-

SECTION X

More on Numbers

A more formal presentation of the text representation of numbers
will now be presented. In particular, it is necessary to become familiar
with the lexical contexts within which numeric constants are recognized.

In scanning from left to right in a statement, PPL. will recognize a
number (INT, REAL, or DBL) when it sees one of the following
character sequences:

a) Any decimal digit which is not part of an identifier. This will
be the first digit of an INT, REAL, or DBL.

b) A period followed by a digit. This indicates the beginning of a
REAL or DBL.

c) A number sign (#) followed by a digit. This indicates the start
of an octal (base 8) number, which is simply another lexical representation
of an INT. There may be one to twelve octal digits (0 through 7)
following the '#'. The digits 8 and 9 are not allowed.

d) A percent sign (%) followed by a digit. This indicates the start
of a relocatable integer, which has the property of being changed when-
ever a line to which it refers is renumbered. There may be one to three
decimal digits after the percent sign.

The user should note carefully that certain text characters may
have different meanings when used in other contexts. For example,
the character '#' is the relational operator 'not equal to1 if it does not
precede a digit; on the other hand, it signals the following digit string
to be an octal integer if it is followed by a digit. Thus, a statement
such as:

[3] (X#3)-->%5

will not perform as intended; the '#' takes on the latter meaning. In
order to make it mean the 'not equal to' operation, it is sufficient to
place a space or tab between the '#' and the digit, thus:

[3] (X#3)-->%5

The arithmetic characteristics of numbers in PPL are as
follows:

An INT is capable of representing any integer number from
-34359738368 to 34359738367.

-24-

A REAL can represent, to approximately eight significant digits'
precision, a real number whose magnitude is either zero or between
approximately 1.4695E-39 and 1. 7014E + 38.

A DBL can represent, to approximately sixteen digits of
precision, any real number within the limits given for REALs.

When numbers are printed out by PPL, either by the 'implied
print' feature (simply typing an expression on a line for evaluation) or
by the PRINT system function (see section 12), certain conventions are
followed. They are as follows:

An INT, being inherently precise, is printed to its full precision
(up to 11 digits) with leading zeroes suppressed. No decimal point is
printed.

A REAL or DBL suffers from the problems of conversion to and
from the computer's internal floating-point binary notation; thus, few
decimal numbers can be represented 'exactly'. Thus, though a REAL
has nearly eight digits of precision, and a DBL nearly sixteen, the last
digit in either case is not particularly reliable.

By convention, PPL rounds a REAL to seven significant digits
before printing, and a DBL to fifteen. It then suppresses leading and
trailing zeroes. A decimal point is always printed. Exponential
notation is used if it is more compact than the standard decimal
notation.

A system function, called FORMAT, is provided to allow user
control over numeric output formatting. This is necessary, for
example, when attempting to format output into columns. FORMAT
takes any number of arguments, which it processes from left to right.

If the argument is of type STRING, it is decoded and used as a
'format specification' for future output by FORMAT. This specification
is composed of the following elements:

'E ' or 'D': print in exponential format (with 'E ' or 'D' and a two-
digit exponent). If this part of the specification is
omitted, standard (non-exponential) decimal format is
assumed.

'nZ': where n is an integer less than 64, indicating the
number of zero-suppressed digit positions to be
allowed to the left of the decimal point. If this
specification is omitted, zero is assumed.

'nD': the number of non-zero-suppressed digit positions to
the left of the decimal point.

-25-

'. ' (period): indicates a decimal point is to be printed
(otherwise it is omitted, and the next two specifications
may not be included).

'nD': the number of non-zero-suppressed digit positions to the
right of the decimal point.

'nZ': the number of zero-suppressed digit positions to the right
of the decimal point.

A FORMAT argument of type INT, REAL, or DBL is printed
according to the most recently-specified format specification. Blanks
are substituted for leading and trailing zeroes if they are in zero-
suppressed positions; otherwise, the zeroes are printed out. If the
number is negative, the minus sign is printed in the last leading zero-
suppressed position (if there is one). If the 'E' or 'D' specification has
been included, the number is adjusted by powers of ten so as to exactly
fill the leading non-zero-suppressed places.

If the magnitude of a number is too large to fit in all the leading
positions, an execution error occurs, with the message 'SIGNIFICANT
HIGH-ORDER DIGITS LOST'.

The following examples illustrate some uses of FORMAT. Note
that FORMAT does not print a carriage return after printing a number;
this must be done explicitly by the user.

■

[1]
[2]
[3]
[4]
[5]
[6]
[7]

$FTEST
FORMAT("3Z.4D", 7.41)
t» ft

FORMAT("3D.4Z", 7.41)

FORMAT("ElZ2D.4D", 7.41)
It I!

go to next line

FTEST
7.4100

007.41
74. 1000E-01

In addition, a format specification of "FF" or "FF. " indicates
printing in free format (the latter specifies a decimal point to be printed
unconditionally). Free-format printing is the same as PPL's conventional
print format except rounding is done to one greater digit of precision,
i. e. 8 digits for a REAL and 16 for a DBL.

-26-

SECTION XI

Definition of Operators

We now turn to a new area of PPL's capabilities: that of
extensibility. PPL contains the mechanisms for extension in several
directions* the first we shall consider is the definition and
redefinition of symbolic operators.

As has already been mentioned in passing, the execution of
unary and binary operators is considered to be a special case of system
function calling* thus, the expression 'A+B ' is evaluated as 'ADD(A,B)'.
This is done through a predefined association between the operator ■+•
and the built-in function 'ADD'. However, the user is allowed to change
this association and to define new operators.

An operator in PPL. is a sequence of one to four characters taken
from the following set:

; #$%&*+-. /<=>@Nt*- :

To associate an operator with a function taking one argument (thus
defining a unary operator), we call the system function UNARY. This
function takes two arguments, the first of which is a datum of type
STRING defining the operator, and the second of which is the name of
an already-defined function (system or user) taking one argument. We
can similarly give an operator a binary meaning by associating it with
a two-argument function by executing the system function BINARY.

In the following example, we shall create a function REMAIN,
which takes two REAL arguments and returns the remainder resulting
from dividing the first by the second. We will then associate this
function with the binary operator '\f. Having done this, we may then
use the f\' operator freely within expressions for computing the
remainder.

$REMAIN(A,B)
[1] REMAIN«-A-B*INT(A/B)
[2] *

REMAIN(5. 0, 3. 0)
2.

BINARY(ff\J», REMAIN)
5. 0\3. 0

2.
(34. 2 + 547. 1)\?7. 0

26. 3

Redefinition of existing operators may be done in exactly the same

-27-

manner. A word of caution is in order. When writing a function designed
to take over the meaning of a commonly-used operator (such as '+'),
the user must take care not to use that operator within the definition
of the function. Any such use of the operator will result in a recursive
call of the function; this is not usually what is intended! Also note
that, since the built-in operations are still accessible by name (the
ADD function, for example), it is possible to restore the original
meaning of an operator that has been redefined.

For example:

BINARY("+", ADD)

-28-

SECTION XII

Data Definitions

Of the six data types already presented, five (INT, REAL, DBL,
BOOL, and CHAR) are 'atomic', meaning that they are the basic forms
predefined within PPL; a number of built-in operations may be
performed on these types.

Being an extensible language, PPL contains the mechanisms
required for defining and manipulating new types of data. Once the
user has defined a data type, he may write functions for manipulating
instances of that type, and he may associate these functions with
symbolic operators. The result is that complicated programming
projects involving lists, trees, and other such structures are greatly
simplified,* through the use of data definitions, PPL may be extended
to such a degree that simple expressions become extremely powerful
in their actions.

In PPL we may define three different classes of data types.
First, we may have structures. A structure is a datum consisting of
any number of possibly heterogeneous, named parts. We will make
use of the following example to explain the use of structure definitions:

^COMPLEX = [RPrREAL, IP:REAL]

This is read: "Define a COMPLEX to be a structure containing an RP
of type REAL and an IP of type REAL". Issuing this definition causes
the following actions to be taken:

First, a 'constructor' function COMPLEX is created by PPL.
This is a function which takes as many arguments as there are elements
in the data definition (i. e. two for COMPLEX), and creates a datum of
type COMPLEX. For example,

X*-COMPLEX(3. 7, 59. 0)

assigns X a value obtained by constructing a COMPLEX whose RP is 3. 7
and whose IP is 59. 0. The types of the arguments must agree with the
types of the corresponding components in the data definition.

Second, each identifier to the left of a colon is defined to be a
'selector' name. A selector then becomes a function that operates on
a constructed datum and extracts one of its parts. In the definition of
COMPLEX above, RP and IP are defined as selectors. An example
of the selection operation is as follows:

-29-

3. 7

72.

R-RP(X)
R

13+IP(X)

The selection operation may alternatively be denoted in subscript
notation by placing the selector name within square brackets immediately
following the value from which the selection is being made, thus:

X[RP]
3. 7

13+X[IP]
72.

Third and finally, the name of the data definition (COMPLEX) is
also defined as a 'predicate'. A predicate may be thought of as a type
name, and there exists an operator for testing whether or not a given
datum is an instance of a particular type. This is the ! = =' operator. It
takes as its left operand a value, which it checks against the right
operand which must be a predicate. If the value is an instance of the
predicate, the == operator returns the value TRUE; otherwise it is
FALSE. For example, having constructed a COMPLEX and assigned
it to the variable X, we may execute the following statements:

X^COMPLEX
TRUE

3. 427 ==COMPLEX
FALSE

At this point we shall note that predicates also exist for the five
atomic data types. These predicates, as one might expect, are named
INT, REAL, DBL, BOOL, and CHAR. The following example will
illustrate their use:

TRUE

FALSE

TRUE

3==INT

4. 5E9==INT

V«-93+(45. 2/6)*3. 5
V^REAL

The second type of data definition we may make is a sequence
definition. A sequence is a datum consisting of any number of homo-
geneous, numbered parts. The indexing is done by some continguous
subset of the integers.

As an example of a sequence definition, we will define:

£ROW [1: 1 REAL

-30-

which is read: "Define a ROW to be a sequence of REALS, indexed by
integers starting at 1 and extending to an indefinite upper limit".

As is the case for structures, issuing a sequence definition causes
a constructor function to be created by PPL. The constructor function
ROW will take any number of arguments of type REAL and will construct
a ROW out of them. For example,

X«-ROW(3.56, -28.59/2, 3*55.21/4)

assigns to X a ROW consisting of three elements which are the values
of the three arguments.

Given a datum of type ROW, we may select any one of its elements
by means of indexed selection or 'subscripting'. When the value of X
was constructed, the first element of the ROW was associated with the
index 1, the second with the index 2, and the third with the index 3. We
select a component of X by placing the desired index in square brackets
after the name X, thus:

X[l]
3. 56

1-3
o-x[i-i]
Q

-14.295
(Q+X[l])/2

13. 55625

Note that the indices start at the number specified on the left side
of the colon in the sequence definition. Thus, if we had defined ROW as:

$ROW - [-10:] REAL

then the three elements of X would be X[-10], X[-9], and X[-8]. Attempts
to select nonexistent elements of a sequence will result in an execution
error.

Making a sequence definition also causes a predicate to be created,
as in the case of a structure definition. We may test for occurrences of
sequences in exactly the same way as for structures:

X^ROW
TRUE

X==COMPLEX
FALSE

We may also make sequence definitions with fixed upper bounds;
for example:

-31-

$ROW4 = [1:4] INT

defines ROW4 to be a sequence of four components of type INT, numbered
1, 2, 3, and 4.

The third form of data definition we may make is an alternate
definition, which defines a new predicate to be the union of any number
of other predicates. For example:

$ARITH = INT ! REAL ! DBL

defines an ARITH to be either an INT, a REAL, or a DBL. The names
on the right side of the definition may be built-in predicates (e. g. INT),
user-defined predicates (e. g. COMPLEX), or predicates defined in
other alternate definitions.

Predicates defined in alternate definitions are useful in a variety
of ways. The first is in explicit type checking:

TRUE

FALSE

TRUE

(3. 276*54) = =ARITH

X==ARITH

(X[3]/X[2]) = =ARITH

. . . Recall that X contains a ROW of REALs

•

-

-

However, alternate types are much more powerful than this.
Consider the following definition:

$VECTOR = [1:] ARITH

Given such a definition, it is possible to construct VECTORs consisting
of any set of components which are defined as being of type ARITH (i. e.
INT, REAL, or DBL). The following example illustrates the behavior
of this kind of construction:

3

TRUE

FALSE

TRUE

TRUE

TRUE

X«-VECTOR(3, 7.9, 1.54/7)
X[l]

X[1]==INT

X[1]==REAL

X[1]==ARITH

X[3]-=REAL

X[3]-=ARITH

-32-

There exist five built-in predicates with the following properties:

ATOMIC - the union of all atoms (INT, REAL, DBL, BOOL, and
CHAR).

STRUCTURE - the union of all structures.

SEQUENCE - the union of all fixed sequences (i.e. those with
upper bound declarations).

V. SEQUENCE - the union of all variadic sequences (i. e. those
with no upper bound declarations).

GENERAL - the union of all data types in the entire system.

There also exists the following built-in data definition:

$TUPLE = [1:] GENERAL

The usual data operations may be performed using this definition; for
example:

X«-TUPLE(3, »Q, TUPLE(4.1, "ABCDE"))

However, a more concise syntax is available for constructing TUPLEs.
A TUPLE is indicated by a list of zero or more values enclosed in square
brackets. For example:

X«-[3, 'Q, [4.1, "ABCDE"]] ... a tuple of length 3
Y«-[TRUE] ... a tuple of length 1
Z«-[] ... a tuple of length 0

When PPL is requested to print out the value of a user-defined
datum, it does so in the following form:

X«-VECTOR(3, 7.9, 1.54/7)
X

[3,7.9,-22]
COMPLEX(5. 7, -32.4)

[RP:5. 7,IP:-32.4]

In this representation, the square brackets delimit the extent of the
datum in question. This is done because user-defined structures may
be nested. For example, a two-dimensional array might be defined,
constructed, and displayed as follows:

$ARRAY - [1:] VECTOR

-33-

A*-ARRAY(X, VECTOR(3, 2,1))
A

[[3, 7. 9,. 22], [3, 2,1]]
Q-l
A[Q+1]

[3,2,1]

Selection is a much more general operation than the examples so
far have shown. First, a selection expression may appear on the left
side of an assignment statement as well as on the right. Such an
operation causes the value of the right-hand expression to be assigned
as the selected component of the named variable (of course, this is
legal only if the right-hand expression is of the correct type). A few
examples will illustrate this behavior.

X
[3,7.9,-22]

X[2]*-88. 54E-27
X

[3,8.854E-26, .22]
X[2]

8.854E-26
A

[[3,7.9,. 22] [3,2,1]]
A[l]-A[2]
A

[[3, 2,1], [3, 2,1]]

Second, we may perform 'multiple selection' on compound
structures whose elements are in turn compound structures themselves.
The following example illustrates two possible notations for doing this
in the case of user-defined sequences:

X«-ARRAY(VECTOR(ll, 12, 13), VECTOR(2l, 22, 23), VECTOR(31, 32, 33))
X

[[11,12,13], [21, 22 23], [31, 32, 33]]
(X[l]) [3] ... Select the third element of X[l]

13

13

32

32

X[l][3] . . . Exactly equivalent to above

X[3][2]

X[3, 2] ... A more compact representation

For compound data types consisting of structures, we have even
more possibilities. Let us define a NUM as either an ARITH (that is,
a REAL, INT, or DBL) or a COMPLEX. Then we shall define a NUMSEQ
as an arbitrary sequence of these types.

-34-

£NUM * ARITH ! COMPLEX

£NUMSEQ = [1:] NUM

X«-NUMSEQ(3. 42, COMPLEX(8.1, -33. 0), -5)
X

[3.42,[RP:8.1,IP:-33.], -5]
X[2][IP]

-33.

-33.

8.1

X[2,IP]

RP(X[2])

It should be noted at this point that a STRING is actually a compound
data structure, for which a data definition is predefined in PPL. This
definition is:

^STRING = [1:] CHAR

Thus, it is possible to access individual characters of a string by-
selection.

"STRING CONSTANT" [6]
G

X<- "STRING"
X[4]«- »U
X

STRUNG
X==STRING

TRUE
X[4]==STRING

FALSE
X[4]==CHA.R

TRUE

Note that a STRING is an exception to PPL's usual printing
convention. Since a STRING is a compound datum, it would normally be
printed thus:

"ABCDEFGH"
[A,B,C,D,E,F,G,H]

However, PPL omits the compound structure notation for STRINGs.

As a demonstration of the power of the data definition facility so
far presented, we shall now give an example of formula manipulation in
PPL. First, the following synonyms must be established (note: these
are not PPL statements).

-35-

FORM means
BF means
UF means
LO means
RO means
OP means

Formula,
Binary Formula,
Unary Formula,
Left Operand,
Right Operand, and
Operator.

These definitions are made to PPL as follows:

$FORM = UF ! BF ! ATOM

§BF = [LO:FORM, OP:CHAR, RO:FORM]

$UF = [OP:CHAR, RO:FORM]

$ATOM = STRING ! CHAR ! REAL ! INT f DBL

Having made these definitions, we are now in a position to
represent formulas as follows: a variable is represented as a CHAR,
as is an operator. A numeric constant is represented in the usual way.
Some examples of legal formulas are:

F-*-BF('X, '+, 3)
G«-UF('-, BF(»X, '*, F))
F . . . F contains formula 'x+S'

[LO:X,OP:+,RO:3]
G . . .G contains formula !-(x*(x+3))'

[OP:-, RO:[LO:X, OP:-, RO, [LO:X, OP:+, RO:3]]]

We shall now present a 22-statement function that performs
differentiation on any formula containing the operators '+', '-', '* ', and
'/'. The DERIV function takes two arguments; the first is the formula
to be differentiated, and the second is the variable of differentiation
(represented by a CHAR).

1
2
3
4
5

>
7
8

„9.
[10]
[11]
[12;
[13]
[14]

$DERIV(F, X)
(F==ATOM)-->A
(F==BF)-->B
(F==UF)-->U
A: (F=X)-->%7
DERIVE 0
-->%0
DERIVE 1
-->%0
B: (F[OP]='+)->PL
(F[OP]
(F[OP
(F[OP]

= !-)-->MI
-'-)-->TI
= »/)—>DI

PL: DERIV-
—>%0

BF(DERIV(F[LO], X), '+, DERIV(F[RO], X))

-

-

-36-

[15] MI: DERIV*-BF(DERIV(F[LO],X), '-, DERIV(F[RO], X))
[16] —>%0
[17] TI: DERIV*-BF(BF(F[LO], '*, DERIV(F[RO], X)), «+,

BF(DERIV(F[LO],X), '*,F[RO]))
[18] ~>%0
[19] DI: DERIV«-BF(BF(BF(DERIV(F[LO], X), »* F[RO]), '-,

BF(F[LO], '*,DERIV(F[RO],X))), '/,BF(F[RO], '*, F[RO]))
[20] —>%0
[2 1] U: DERIV<-UF(F[OP], DERIV(F[RO], X))
[22] $

The DERIV function computes derivatives by recursive applications of
the following well-known identities:

(d/dx) const = 0
(d/dx) x = 1
(d/dx) (a+b) - da/dx + db/dx
(d/dx) (a-b) - da/dx - db/dx
(d/dx) (a-b) = a-db/dx + b*da/dx
(d/dx) (a/b) - (a*db/dx - b*da/dx)/(b*b)

We shall now use this procedure to find the derivatives of the
formulas F and G, which have already been constructed.

DERIV(F, 'X)
[LO:1,OP:+,RO:0]

DERIV(G, »X)
[OP:-, RO:[LO:[LO:X, OP:*, RO:[LO:l, OP:+, RO:0]], OP:+, RO:[LO:l, OP:*,
RO:[LO:X, OP.-+, RO:3]]]]

As is apparent by the second result, the output is quite unreadable
when printed directly by PPL.. What we need now is some way of
printing a formula in a more readable format. We shall do this by
defining a function PF, which takes as its argument a datum of type
FORM and prints its value.

We introduce at this point a system function PRINT, which offers
somewhat more flexibility in formatting. PRINT takes any number of
arguments and prints out their values, all on one line. This differs from
the implicit print command executed by PPL when the user types an
expression for immediate evaluation; in the latter case, PPL spaces
down one line after printing the value. An example of the use of PRINT is:

PRINT(3, "STRING", 93. 27E+4, »Q)
3STRING932700.Q

The following is the required definition for PF, and an example of
its use.

-37-

*

$PRINTF(F)
i; (F==UF)-->%5

[2] (F==BF)-->%7
[3; PRINT(F)
[4; -->%0
[5; PRINTCO
[6 -->%9

7] PRINTCO
8. PRINTF(F[LO])

[9: PRINT(F [OP])
[10: PRINTF(F[RO])
11 PRINT('))

[12]

$PF(F)
[1] PRINTF(F) . . . print the formula
2 Tl 11 ... go to next line

[3] ^

PF(DERIV(F, 'X))
(1+0)

PF(G)
(-(X* (X+3)))

PF(DERIV(G, 'X))
(-((X*(l+0))+(l*(X+3))))

The result is immediately much more readable. A further improvement
could be gained by a straightforward simplification of the expressions,
which will not be presented here.

Given the ability to define new data types, it is desirable to be able
to redefine common operators to perform operations on them. Some
general guidelines should be followed when doing so.

Usually what one wants to do is to extend an operator to manipulate
user-defined types, yet to have the standard meaning retained in the case
of atomic types. The required technique in writing a function to perform
this kind of operation is to make type tests on the operands. If they do
not match the user-defined types in question, then the equivalent system
function should be explicitly called on the same arguments.

In the following example, we extend the addition operator to handle
instances of type COMPLEX.

$CADD(A,B) J

[1] (A==COMPLEX)-->%7
[2] (B^COMPLEX)-->%5
[3] CADD«-ADD(A,B)
[4] -->%0
[5] CADD^COMPLEX(ADD(A, B[RP]),B[IP])

-38-

6
7
8
9

[10]
[11]

-->%0
(B = =COMPLEX)-->%10
CADD«-COMPLEX(ADD(A[RP], B), A[IP])
-->%0
CADD*-COMPLEX(ADD(A[RP],B[RP]),ADD(A[lP],B[lP]))

BINARY("+",CADD) . . . Redefine meaning of '+'.
X*-COMPLEX(8. 37, -2. 1)
Y«-COMPLEX(-l. 14E+7, -32. 85)
X+Y

[RP:-L 1 399992E7,IP:-3. 495E1]
X+3

[RP:1.137E1,IP:-2.1]
X+Y-f-1. 47

[RP:-1. 139999E7,IP:-3.495E1]
42+7

49

-39-

SECTION XIII

Miscellaneous Important Information

This section covers some information necessary for certain
advanced kinds of programming in PPL. Some system functions not
previously mentioned are also covered. The user is urged to consult
Appendix A for a complete list of built-in functions.

A. Copying and Sharing

In writing programs using many varieties of data one discovers
that sometimes one wants to copy substructures of structures and, on
other occasions, one wants to share the use of certain substructures
among several structures or variables. For example, in matrix
manipulation (and indeed in almost all kinds of arithmetic such as
formula or polynomial arithmetic) one wants to copy substructures.
Thus, if one extracts the row vector V that is the third row of the
matrix M, the value of V should be a copy of the third row of M. If V
were to share the same row vector as the third row of M, then any
assignment of new components to V would retroactively change
components of M[3], an undesirable behavior. On the other hand,
sharing is just the relationship that permits changes in components to
be transmitted to all owners of a shared substructure. If for example,
the title, author and subject cards in a library card catalog could share
common information about a book in the form of a shared substructure,
then a change in information about the book could be made once instead
of three times. This arrangement saves time and space.

In PPL, a measure of control exists over the choice between
copying and sharing of structures at the time of assignment. In
particular, expressions of the form V-«-E cause the value of the
expression E to be copied before being assigned to be the value of V,
whereas expressions of the form V-«-«-E cause the value of the expression
E to be assigned as the value of V without first copying it. This latter
form of assignment is called Non-Copy Assignment. It is used to set
up sharing relationships.

Example of copying:

V-M[3]

Example of sharing:

V«-«-M[3]

Non-copy assignment can also be used to set up data structures
containing cycles and to model pointers. For example:

-40-

$X=[1:3]GENERAL
Y-X(l,2,3)
Y[2h^Y . . . Y[2] shares value of Y.

... It does this by a pointer since that is

. . . the only way to model an infinite regress

... in a computer.

Pointers can be modeled by use of sharing as follows (note: the
use of '$X' as a dummy argument is explained below).

$PNTR=[VAL:GENERAL]

$MKREF($X)
1] MKREF«-PNTR(0) . . . makes pointer with dummy 0 as value
2] MKREF[VAL]*-^X . . . shares referent X as value of pointer
3J »

Having made these definitions, R-«-MKREF(X) creates a pointer to
a datum X, and VAL(R) acts on the reference R to recover the value X.
Thus, a PNTR is an object, usable as a component of another object,
having a value, VAL, which designates a second object X by sharing.

The issue of copying versus sharing also arises in parameter
passing when making a function call. PPL allows the user a choice of
whether or not arguments are to be copied before being passed to a
subroutine.

The normal convention is known as 'call by value', which means
that the callee is provided only with the value of the argument; no other
information about the corresponding actual parameter is passed. As
explained in section 7, the dummy arguments or 'formal parameters' are
simply initialized with the values of the calling parameters; from then
on they are treated as locals. It follows that PPL's normal convention
with regard to parameter passing is one of copying each argument before
making the call.

The other system is known as 'call by reference'. A parameter
passed by reference is not copied and retains the information necessary
to directly access the actual parameter.

The user indicates, at function definition time, which arguments
are to be passed by reference. This is done by preceding each such
dummy argument by a dollar sign in the function header line. All other
arguments will be passed by value as usual.

The following examples illustrate the behavior of call by reference
as opposed to call by value.

-41-

£CBV(A,B,C)
[1] A*-3. 4
[2] B[3]-5
[3] O-C+l
[4] $

X-l. 0
Y- [1,2, 3, 4]
Z-5
CBV(X,Y, Z)
X

1.
Y

U,2,3,4]
Z

5

Example of call by value

Note unchanged calling parameters

3.4

[1,2,5,4]

6

$CBR($A, $B,$C)
A-3. 4
B[3]«-5
O-C+l
$

CBR(X, Y, Z)
X

Y

Z

Example of call by reference

Note effect of call by reference

B. $ Identifiers

There are several functions that act on the names of other functions
given as arguments. For example, ERASE(F) erases the current
definition of the text of the function F. If F is a function of one or more
arguments, it is easy to distinguish a call of F with arguments from the
use of F to designate its own name since all calls are accompanied by
argument lists. However, for parameterless procedures, the call of F
and the use of F to denote its own name coincide. In this case, by
convention, the use of F denotes the call of the parameterless procedure
(which may deliver a value), and the special notation $F must be used to
denote the name of the function F. Thus, to erase a parameterless
procedure one would use an expression of the form ERASE($F).

C. Erasing Definitions

The definitions of functions and data may be erased from an
environment by means of the ERASE command. This is a variadic

-42-

function which given the names of functions or data definitions as
arguments will remove the definition from the environment as if it had
never been made. In addition, if ERASE is given the name of a
variable as an argument it will remove the value of that variable, as
if the variable had never been assigned, and if ERASE is called with
no arguments all variables and definitions are erased, as if PPL had
been started over. Caution must be exercised not to erase a data
definition before all instances of data created according to that
definition have been erased. Failure to observe this precaution may
lead to run time errors. As mentioned above, to erase a parameterless
procedure, an unevaluated identifier is needed of the form ERASE($F).

D. READ and WRITE

PPL. has some rudimentary file i/O mechanisms for saving and
restoring PPL programs. These work as follows:

WRITE(S), where S is a string, causes all currently-defined
functions, data definitions, and operator definitions to be written out
on the file described by S. The string S should contain standard PDP-10
file specifications; if not otherwise specified, the default output device
is DSK: and the default extension is .PPL. For example:

WRITE("FOO")
WRITE("DTA3:ZOT. XYZ")

The file is written in ASCII format which may be read by PIP, TECO,
etc.

READ(S), where S is a string file name specification as explained
above, causes the data in the named file to be read in and treated
exactly as if it were teletype input. Programs written with WRITE may
be read using READ. The user is cautioned that READ(S) should be
given only as a direct command. Also, it is the user's responsibility
to ensure that definitions in the current environment do not conflict with
those in the data file. If such an error occurs on input, the READ
operation is terminated. The statement that caused the error may be
displayed by pressing ALT-MODE. Example:

READ(' »DERIV[61,101] ■')

Note: It is recognized that these READ and WRITE procedures do
not constitute a complete, flexible i/O mechanism. Two improvements
are contemplated in future versions of PPL: (1) facilities for reading and
writing files of data, and (2) a mechanism for saving and restoring entire
working environments. For the present, the user is reminded that
WRITE saves only function, operator, and data definitions,- specifically,
values of globals and locals are not saved.

-43-

*

SECTION XIV

Advanced Debugging Facilities

To supplement PPL's extensive editing facilities and conversational
mechanics, a set of debugging features have been included,* collectively
they are known as 'Stop and Trace'.

To activate and deactivate the stop and trace features, there
exist four system functions: STOP, UNSTOP, TRACE, and UNTRACE.
Each of these functions takes a function name as its first argument, and,
optionally, some additional integer arguments which designate the
numbers of statements to be affected. If no integer arguments are
furnished, all steps of the function designated by the first argument are
affected. For example:

STOP(F,l, 3,4, 7)

STOP(G)

UNSTOP(G, 4, 5)

TRACE(G)

UNTRACE(G, 3)

Marks steps 1,3,4, and 7
of the function F to stop.

Marks all steps of the
function G to stop.

Removes the stop codes
from steps 4 and 5 of G.

Marks all steps of G for
tracing, and

Removes the trace code
from statement 3 of G.

If step N of function F is marked for tracing, then, after each
execution of that statement, PPL will print 'F[N]' followed by the value
of the expression on line N of F. Normally, all expressions in PPL.
have printable values except for non-value-returning procedure calls and
conditional go to's in which the condition evaluates to FALSE. In these
latter two cases, the value is empty and no printing is performed. In
the case of assignment statements the value of the right hand side is
printed, and in the case of go to's the number of the target statement
is printed.

When step N of the function F has its stop code set, an attempt to
execute step F[N] will cause the function to be suspended, and control
will be passed to the user in the environment of suspension after PPL
prints 'F[N]'. The suspension occurs before the execution of statement
F[N], At this point, values of variables may be examined and reset and
expressions may be computed in the environment of suspension (see
section 8). The function F may be resumed at any statement (including
N) by executing the expression '-->N'. In this case, step N will be
executed even though its stop code is set.

trace:
The following precautions should be heeded while using stop and

-44-

If the function F is a parameterless procedure, then !$F' must be
specified in place of fF! in all calls to STOP, UNSTOP, TRACE, and
UNTRACE. This is because, in the absence of a dollar sign, fF*
denotes a call of the parameterless procedure, which is not what is
desired. The dollar sign is required to indicate reference only to the
name of the function, rather than to the value returned by calling that
function. For example:

STOP($F, 5, 6)

If STOP, UNSTOP, TRACE, or UNTRACE is called with improper
second and succeeding arguments (e. g. statement numbers out of range,
or non-integers), an error will result and one cannot be assured that
the designated operation has taken place properly.

After editing a function, the stop and trace codes of every
statement of that function are reinitialized to the 'off condition. This is
because statements may have been altered, deleted, or renumbered.

In the following example, we use TRACE to trace the flow of
control through the factorial function defined in section 7.

?FACT
$FACT(N); I

1 FACT-*-L0
2" I«-N
y (I<=0)-->%0
"4" FACT*-FACT*I
b' I*-I- 1

'6i —>%3

TRACE(FACT)
FACT(3)

FACT [1] 1.
FACT 2 3
FACT 3]
FACT 4] 3.
FACT 5] 2
FACT > 3
FACT 3
FACT 4 6.
FACT ;s 1
FACT *] 3
FACT [31
FACT >1 6.
FACT 5 0
FACT > 3
FACT [3] 0
6.

Set trace codes on every statement of FACT

False conditional go to's have no value

I became 2 after execution of I*-I-l
Target of go to is value of go to statement

. . . Value of a TRUE conditional go to is the
value of the right hand side.

-45-

APPENDIX *i.

Table of Built-in Functions

This table is intended only as a handy guide. See Appendix B for details
on polymorphic type conversions.

Op Name Description

A + B
A - B

B
B
B

A
A
A {

+ A
- A

A < B
A <= B
A > B
A >= B
A = B
A # B

A &B
A ! B

A *-B
A *-«-B

A == B

--> B
A --> B

ADD(A,B)
SUB(A,B)
MUL(A, B)
DIV(A,B)
POWER(A,B)

PLUS(A)
MINUS(A)

LESS(A,B)
LESSEQ(A,B)
GR(A,B)
GREQ(A,B)
EQ(A,B)
NOTEQ(A,B)

AND(A,B)
OR(A,B)

ASSIGN(A, B)
NONCOPY(A, B)

Addition.
Subtraction.
Multiplication.
Division.
Raising to a power.

Unary plus (fairly useless).
Unary negation or logical complementation.

Less than.
Less than or equal.
Greater than.
Greater than or equal.
Equal.
Not equal.

And (logical operation).
Or.

Assign the value B to be the value of A.
Make A share the value of B.

INSTANCE(A, B) Is A an instance of type B ?

GOTO(B)
CGOTO(A,B)

Transfer control to statement B.
If A is TRUE, go to B.

-46-

Name Description

RESET:

PRINT(A,B, . .

FORMAT(A,B,

UNARY(A,B):

BINARY(A,B):

INT(A):

REAL(A):

DBL(A):

BOOL(A):

CHAR (A):

WRITE (S):

READ(S):

LENGTH(A):

L. BOUND(A):

Erase all nests of function calls. This function is
called in order to escape from environment of
suspension, usually to do editing.

): Print the values of all arguments, with no inter-
vening spaces or returns.

.): Perform formatted numeric output, using STRING
arguments as format specifications and numbers
(INT, REAL, DBL) as values to be printed.

Associate the operator A (a STRING of not more
than four characters taken from the set ! #$%&* + -. /
<=>fr\j ■*- :) with the system or user function B, in
such a way that use of the operator in a unary
context will cause the calling of the named function.

Same as UNARY, but with regard to operators used
in a binary context.

Convert the value of A to an integer, where A may
be any atomic value (INT, REAL, DBL, CHAR, or
BOOL). A CHAR is converted to its equivalent
ASCII character code (see Appendix E). A BOOL
is converted to 1 for TRUE and 0 for FALSE.

Convert the value of A to a REAL. See INT above
for conventions on BOOL and CHAR arguments.

Convert the value of A to a DBL.

Convert the value of the atomic argument A to BOOL.
A REAL, INT, or DBL is converted to TRUE if
nonzero and to FALSE if zero. A CHAR is converted
to TRUE if and only if it is the character !T.

Convert the value of the atomic argument A to a
CHAR. For INT, REAL, or DBL, the value is
truncated and used as a character code (See
Appendix E). For BOOL, a TRUE is converted to
the character 'T and a FALSE to »F.

Write all operator definitions, data definitions, and
function definitions onto the file described by the
string S. If S is omitted, type the information on
the teletype.

Accept input from the file described by the string
S as if it were coming from the teletype. Example
of a legal string: READ("DTA3:FOO. PPL").

Returns the number of components of A. If A is
atomic, LENGTH(A) is defined to be one.

Returns the lower bound of A if it is a sequence
(fixed or variadic). If A is a structure, L. BOUND(A)
is defined to be one.

-47-

Name Description

MAKE(T,N,E):

CONCAT(A,B):

TYPE(X):

NTYPE(X):

ERASE(A,B,C,

SIN(A):

COS(A):

ATAN(A):

SQRT(A):

LN(A):

EXP(A):

STOP(F,Nl,N2,

UNSTOP(F,Nl, N2, .

TRACE(F,N1,N2, . .

UNTRACE(F,N1, N2,

NOT(A):

Constructs a varia lie sequence of type T containing
N elements, each cf whose initial values is E.

Returns the result of concatenating the variadic
sequences A and B (which must be of the same type),
with A on the left and B on the right.

Returns the data type of X as a STRING (usually,
simply to be printed out).

Returns the data type of X as an INT (making it
easier to compare the types of two objects). At
any particular time, the numbers for all different
data types will be different; however, the number
for any particular type is not guaranteed to be the
same from session to session.

): Causes the meanings of the identifiers A, B, and
C to be erased from the system. If ERASE is
called with no arguments, causes everything to be
erased and PPL restarted.

Sine of A, where A is a REAL representing an
angle expressed in radians. A may also be an INT
or DBL, but is converted to a REAL internally
during calculation (thus the full precision of a DBL
is not utilized). The result is always REAL.

Cosine of A (A in radians).

Arctangent of A (result in radians).

Square root of A.

Natural logarithm of A.

Exponential of A.

.): Set stop codes. The first argument, F is the name
of the function to be affected (must be expressed as
$F if parameterless). If there are no further
arguments, all statements of F are affected. Other-
wise, integers Nl, N2, etc. designate individual
statements to be affected.

. .): Remove stop codes.

.): Set trace codes.

...): Remove trace codes.

If A is a BOOL, NOT(A) is the logical denial of A.
If A is an INT, NOT(A) is the bitwise complement of
the octal representation of A.

-48-

APPENDIX B

Automatic Type Conversion

In all PPL's built-in functions called by the execution of operators,
a certain amount of automatic type conversion takes place for operands
that are not suitable. The circumstances under which this will take place
are explained below; all other combinations will result in the execution
error message 'Illegal argument type'.

Arithmetic operators (+-*/) convert their operands as follows:
A CHAR is converted to an INT by taking its ASCII character code (see
Appendix E). A BOOL is converted to the integer value 1 if it is TRUE
and 0 if FALSE. If the two operands are now not of the same type, the
'weaker' operand is converted to the type of the 'stronger', with strength
defined on the scale INT < REAL < DBL.

The unary operator '-' allows an operand of type INT, REAL, DBL,
or BOOL. The result is always of the same type as the operand. For
INT, REAL, or DBL, the result is the arithmetic negation of the operand,
whereas for BOOL it is the logical complement.

Four of the relational operators (<, <=, >, and >=) allow only operands
of type INT, REAL, and DBL. If the two operand types are not the same,
conversion is performed as for arithmetic operations.

Two of the relational operators {- and #) allow operands of type BOOL
or CHAR if both operands are of the same type. No conversion is necessary
in these cases. Conversion for arithmetic types is the same as for the
other four relational operators.

Boolean operations (& and !) carry a somewhat more involved con-
vention. If both operands are of type BOOL, then no conversion is
necessary. Otherwise, at least one operand must be of type INT or an
error will result. A logical operation between non-BOOLs consists of
the appropriate operation performed bitwise between the operands, using
the 36-bit PDP-10 hardware representations for INT, REAL, and DBL.
If a BOOL is one of the operands, it is represented as a word containing
all zeroes (for FALSE) or all ones (for TRUE). The result of the operation
has the type of the 'stronger' of its operands, with strength defined on the
scale BOOL < CHAR < INT < REAL < DBL. For completeness, we present
the format of the internal representation for the five atomic types:

INT A 36-bit 2's complement integer (see PDP-10 System
Reference manual).

REAL A 36-bit hardware floating point number.

DBL A 72-bit hardware floating point number.

CHAR A right-justified integer 7-bit ASCII character code.

-49-

BOOL A word containing the integer 0 (for FALSE) or 1 (for
TRUE).

The --> operator requires a right operand which is an INT, REAL,
or DBL. Note that a relocatable line number, which is what is usually
used, is really an INT with special properties (which come into play
only during text editing). The left operand, if used, must have type
BOOL.

The == operator allows any value as its left operand. Its right
operand must be a valid predicate; that is, an atomic type name (INT,
REAL, DBL, BOOL, or CHAR), a user-defined type name, or a name
defined in an alternate definition (e.g. ARITH).

>

-50-

APPENDIX C

Summary of Editing Commands

To display the text of a function F:
?F

To display line 5 of the function F:
?F[5]

To open function F for editing, starting at line 3:
»F[3]

While within a function, move to line 2 for editing:
[2]

To insert a statement between 4 and 5:
[4.5]

To close the function (causing renumbering and translation):

Control characters:

Return:
Line feed:
Control-G:
Control-U:
Alt-mode:

Terminate current statement, sequence to next.
Sequence to next continuation line.
Delete current statement, sequence to next.
Abort current typein and try again.
Open (or re-open) current text for character-by-
character editing.

Control characters used only in character-by-character editing:

Control-N
Control-E
Control-T
Control-S
Control-R
Control-A

Step past Next character in old line.
Move to End of old line.
Move past Ten characters in old line.
Move to next Separator character.
Retype current line of statement.
Enter insertion mode, for insertion BEFORE the
character over the typehead when]A struck.

-51-

APPENDIX D

Summary of Data Definitions

Structure definition:

^COMPLEX = [RPrREAL, IP:REAL]

Where COMPLEX is the new type name,
RP, IP are selector names for the components, and
REAL is the element type for both components.

Sequence definition (variadic, i.e. indefinite upper bound):

^VECTOR = [1:] ARITH

Where VECTOR is the new type name,
1 is the lower bound for indexing,
the upper bound is unspecified, and
ARITH is the element type.

Sequence definition (fixed):

$ROW4 = [1:4] INT

Where ROW4 is the new type name,
1 is the lower bound,
4 is the upper bound, and
INT is the element type.

Alternate definition:

$ARITH = INT ! REAL ! DBL

Where ARITH is the new predicate, and
INT, REAL, and DBL are the types that are to be

considered instances of an ARITH.

-52-

APPENDIX E

ASCII Character Codes

C; apital lette rs Small letters Other

Decimal Octal Decimal Octal Decimal Octa

A 65 101 a 97 141 space 32 40
B 66 102 b 98 142 ! 33 41
c 67 103 c 99 143 n 34 42
D 68 104 d 100 144 « 35 43
E 69 105 e 101 145 $ 36 44
F 70 106 f 102 146 % 37 45
G 71 107 g 103 147 & 38 46
H 72 110 h 104 150 i 39 47
I 73 111 i 105 151 < 40 50
J 74 112 j 106 152) 41 51
K 75 113 k 107 153 * 42 52
L 76 114 1 108 154 + 43 53
M 77 115 m 109 155 f 44 54
N 78 116 n 110 156 45 55
O 79 117 o 111 157 • 46 56
P 80 120 P 112 160 ? 47 57
Q 81 121 q 113 161 0 48 60
R 82 122 r 114 162 1 49 61
S 83 123 s 115 163 2 50 62
T 84 124 t 116 164 3 51 63
U 85 125 u 117 165 4 52 64
V 86 126 V 118 166 5 53 65
w 87 127 w 119 167 6 54 66
X 88 130 X 120 170 7 55 67
Y 89 131 y 121 171 8 56 70
z 90 132 z 122 172 9

•
57
58

71
72

[91 133 • » 59 73
\ 92 134 < 60 74

] 93 135 — 61 75
t 94 136 > 62 76
«- 95 137 ? 63 77

bell 7 7
tab 9 11

l'feed 10 12
return 13 15
altmode 125 175

-53-

APPENDIX F

System Errors

PPL is still under development and will remain so indefinitely.
Thus, it is always possible that an internal error will occur. Further-
more, PPL is not fully 'user-proof1 in several areas; that is, the user
can do something so bad as to cause an internal error.

When a system error occurs, a message is printed and control
returns to the PDP-10 time-sharing monitor (signified by printout of a
period at the left margin). Nearly all possible errors are detected
internally, and PPL exits in such a state that recovery is generally
possible by typing the REENTER monitor command. 'Recovery' in this
sense means control returning to PPL (which does an implicit RESET in
the meantime) with functions, data definitions, operator definitions, and
global data intact.

Upon successful recovery, it is wise at this point to save the current
programs and definitions (using the WRITE procedure). This is because
internal data might have been affected by the error in such a way that a
non-recoverable error could occur later.

There are a number of ways in which a user may bring about a
system error. A few will be mentioned here to enable the user to know
what to avoid.

Erasing a data definition (using the ERASE procedure) is generally
not a good idea. If it must be done, the user should take great care that
he has first erased all instances of data constructed according to that
definition.

Using the ■■«-*- ' operator (NONCOPY assignment), it is possible to
create structures that are 'cyclic' in nature. For example:

X-[2,0,3]
X[2]«-«-X

There is nothing illegal about this. However, PPL is not, at present,
able to intelligently print out such a structure; if an attempt is made to
do so, a system pushdown-list overflow error will occur (it is always
possible to recover in this case). For example:

X
[2, [2, [2, [2, [2, [2, [2, [2, ...

. . . SYSTEM ERROR - PDL OV

Under certain circumstances it is possible for a data structure to
become so complex as to cause PPL to run out of space in certain key

-54-

internal tables. It is not possible to state the circumstances because,
at the time of writing this manual, this error has not been observed.

Finally, PPL. makes heavy demands on PDP-10 core memory
resources. In the event PPL. runs out of working space and cannot
obtain more from the time-sharing monitor, it is forced to give up
and exit to the monitor. The message 'DATA ZONE EXHAUSTED'
or 'LAPS EXHAUSTED' is printed in this case. Recovery is not
possible unless more memory can be obtained.

The designers of PPL. would appreciate reports of system errors;
only in this way can attempts be made to remove them. However, such
reports, to be useful, must be as complete as possible. Examples
should be attached.

-55-

HISTORICAL NOTE

A first design of PPL was undertaken in Mexico City at the
National University of Mexico in the summer of 1968 (see [3]). This
design evolved over the next year into the version of PPL presented
at a Working Conference on Extensible Languages held at Carnegie-
Mellon University on 2-4 Dec. 1968 and at the Extensible Language
Symposium held in Boston on 13 May 1969 (see [4], [5]). Implementation
was begun at Harvard in July 1970 by T. A. Standish and E A. Taft
and after proceeding for six months, has resulted in the present version
of PPL. E. A. Taft designed the editing features of PPL, and, recently,
R. M. Stallman has assisted in writing the numerical format routines
and certain data routines.

REFERENCES

[1] Iverson, K. E. , A Programming Language, Wiley, New York,
1962.

[2] Iverson, K. E. , Falkoff, A. D. , et al. , APL/360 Manual of
Operation, IBM, Nov. 1967.

[3] Standish, T. A. , A Preliminary Sketch of a Polymorphic
Programming Language, Centro de Calculo Electronico,
Universidad Nacional Autonoma de Mexico, July 1968.

[4] Standish, T. A. , Some Features of PPL -- A Polymorphic
Programming Language, Proc. of Extensible Language
Symposium, Christensen and Shaw (eds.), SIGPLAN
Notices, Vol. 4, Aug. 1969.

[5] Standish, T. A. , Some Compiler-Compiler Techniques for Use
in Extensible Languages, Proc. of Extensible Language
Symposium, Christensen and Shaw (eds.), SIGPLAN Notices,
Vol. 4, Aug. 1969.

-56-

IMPLEMENTATION NOTE

Several versions of PPL have be^n produced to conform to soft-
ware conventions of different PDP-10 systems and to take advantage of
special features.

In order for the control-U editing character to operate as described
in this manual, a special monitor modification is required. Versions of
PPL running on systems without this change accept control-Z as a
substitute for control-U. At the time of this writing, control-Z must be
used on all systems except Harvard and Tenex (i. e. Telcomp, TSC,
Yale, etc. all require control-Z).

The following built-in functions are available on systems with
ARDS display terminals (Harvard, TSC at present):

ARDMODE: Enter graphical output mode.

SETPOINT(X, Y): Set the beam to the given coordinates, where
(0, 0) is in the center, and useful ranges are in
the order of plus or minus 600. SETPOINT does
not intensify the beam. To draw a dot, print a
period at the given position.

SOLIDVEC(DX,DY): Draw a solid vector through the given
displacement, starting at the current beam position.

DOTTEDVEC(DX, DY): Draw a dotted vector through the given
displacement.

TTYMODE: Leave graphical output mode.

The following system function is for the Sylvania tablet and stylus
on the Harvard PDP-10 only.

READSTYLUS: Causes the Sylvania tablet to be interrogated and
the X, Y, and Z coordinates of the pen to be stored,
as values of type INT, in variablescalled XSTYLUS,
YSTYLUS, and ZSTYLUS. The X and Y coordinates
are similar to those for ARDS output; the Z
coordinate indicates height of the pen above the
tablet, where 5 to 7 indicates pen off surface, 4
indicates pen touching the tablet, and 0 indicates
pen pressed down.

-57-

*

INDEX TO PPL MANUAL

Ackerman's Function 14
ADD 9,46,49
Addition Operator 9,49

for Complex Numbers 38
Alternate Definitions 32

15,22,43,51
1, 3, 56

8,9,46,49
9,46,49

48
57
57

9, 10

33,34

ALTMODE
APL
AND
And Operator
Arc Tangent
ARDMODE
ARDS Display
Arguments to Functions

see also parameters
ARRAY
Array Notation

see Subscript Notation
ASCII 7, 53
ASSIGN 9, 10,46
Assignment Operator 6,9, 10,46

with Selection Expressions
on the left side 34

in Tracing 44
ATAN 48
Atomic Data Types 29, 30
Automatic Type Conversion 49

B

BINARY 27,47
BOOL 7,29,30

in Conditional Go To's 13
conversion function 47

Boolean 7
Breakpoints (see Stop Codes) 44
Built-in Operators 9,46

Predicates 33
Functions 46

Character 7

use in definition
of Strings 35

Character by Character
Editing 2 1,22

Comments in PPL 20
Comparison Operators 7
Complement (see NOT, MINUS)
COMPLEX 29

addition function for 38,39
CONCAT 48
Concatenation 48
Conditional Go To 13,44 ,46,50
Conflict of Names 11
Conflict of Definitions 43
Constructors 29,31
Continued Lines 21
Control A 22, 51
Control C 16
Control E 21,51
Control G 18,51
Control N 21,51
Control S 2 1, 51
Control T 21, 51
Control U 2,51

use of Control Z in place
of Control U in certain
installations 57

Control Z 57
Conversation 17
Conversion of Numbers 25,49

Loss of Precision During 25
Conversion of Type 49
Copying 40
COS 48
Cosine 48

D

Call by Reference 41
Call by Value 41
Changing Function Name 22

see ERASE
CHAR 7,29,30

conversion function 47
data type 7,29,30

D 4,25
Data Definitions 29

for Structures 29
for Sequences 30
for Alternates 32

Data Type 7,29
DBL 4,24,25

conversion function 47
in Atomic Data type 29,30

-59-

Debugging
Declarations in PPL

44
6

Definitions in PPL
of Functions 11
of Operators 27,28
of Data 29
Erasure of 42

Demand Symbol
Deletion

17
18

with Control G 18,51
DER IV 36
Desk Calculator 3
Dewey Decimal 18
Displaying Functions
Displaying Lines
DIV 9,

19
23

46,49
Division Operator % 46,49

integer division
Dollar Sign 11,

to define a Function
12,

5
51,52

11
to Close Function Def. 12, 18
to Open a Function

for Editing
in Data Definitions

18
29

in Call by Reference
Parameters 41

Dollar Identifiers 42
DOTTEDVEC 57
Double Precision Number S

see DBL
Dummy Arguments
Dummy Argument Lists

E

E

12
4,12

4,25
Editing

see Text Editing
Editing while Suspended
End of Definition of Funct

18

15
ions 12

End of Execution of Functions 13
Environment

Global 15
of Suspension

EQUAL 9,
15,44
46,49

Equality Operator 1
ERASE

',9, 46,49
42,48

Erasing Definitions 42,48
Errors in PPL 15, 54,55

Syntax Errors
Execution Errors

15
15

System Errors 17, 54,55

Error Messages 15
Syntax Error Messages 15
Execution Error Messages 15
System Error Messagesl7, 54, 55

Execution Errors 15
EXP 48
Exponentiation 46,48

see also Power

Factorial Function 11, 13, 14
FF 26
FILES, reading and writing
Fixed Upper Bounds
Floating Point
FORM
Formals

see Formal Parameters
Formal Parameters

in Environment of Suspension

.,24,

43
31
25
36

25
25

FORMAT
Formatted Printing
Formula Manipulation
Free Format (or FF)
Function Body
Function Calls

Parameterless
Function Definitions
Function Header
Function Identifier

see also Procedure Identifier
Function Name 11, 12
Function Return 13
Function Termination 13
Function Value 11, 13
Functions, Parameterless 14

12
15
47
47

'35
26
11

9,12
14
11

11, 12
11, 12

Global Environment
GOTO 12,
Go To Operator 12,

Unconditional Go To 12,
Conditional Go To 13,
used to Resume Execution
in Tracing

GR 9,
Greater Than Operator 7, 9,
GREQ 9,
Greater Than or Equal

to Operator 7, 9, 46, 49

12
46,50
46,50
46, 50
46,50
16,44

44
46,49
46,49
46,49

••

-

-60-

—

H

Harvard Version of PPL
Historical Note

57
56

Identifiers 6
used as Formal Parameters 11
used as Procedure Identifier 11
Local Identifiers 11

Implementation Note 57
Insertion 18

see also Control A 22
Instance Operator 30, 46, 55
INT 4,24,29,30

the type INT 4, 24, 29, 30
the conversion function 10,47

Integer (see TNT) 4
Integer Division 5
Iverson 1, 3, 56
Iversonian Precedence 3

Labels in PPL 22
Labelled Statements 22
L. BOUND 47
LENGTH 47
LESS 9,46,49
LESSEQ 9,46,49
Less Than Operator 7,9,46,49
Less Than or Equal

to Operator 7, 9, 46, 49
Line Continuation 2 1
Line Editing 15

see also Text Editing and
Character by Character

Editing
LINE FEED 21,22,51
Line Numbers 12, 18
Line Renumbering 19
LN 48
Locals (see Local Variables)
Local Variables 11, 12, 13

in Environment of Suspension 15
Logarithm 48
Logical Operators 7

see also NOT 48

M

Make
Marking a Function for

Stop and Trace

48

44

MINUS 9, 46,49
Minus Operator 9> 46,49

N

Name Conflicts 12
Natural Logarithm 48
Nested Function Executi on 13
Non-Copy Assignment 40,46
NONCOPY 46
Non-Value Returning

Function 13,43
NOTEQ 7, 9,24, 46,49
Not Equal Operator 7, 9,24, 46,49
NOT Operator 8,48

see also Minus
NTYPE 48
Numbers in PPL 4,24

Integers 4,24
Reals 4, 24,25
Doubles 4, 24,25
Formatted Printing 25,26
Conversion 4
Octal Numbers 24

o
Octal Numbers 24
Opening a Function 18

for Editing
Operator Definitions 27
Operator Precedence in PPL 3,4
OR 8,9, 46,49
Or Operator 8,9, 46,49

P

Parameters
Formal Parameters 11, 12
Actual Parameters 9
Call by Value 41
Call by Reference 41

Parameterless Procedures
In Recursion 14
Preventing Calls with S 42

Parentheses in PPL 3,4,9
In Expressions 3,4
In Parameter Lists 11
In Recursive Parameterless

Procedure Calls 14
Unbalanced 15

Per Cent Sign
In Relocatable Line

Numbers 12, 19,23
PLUS 9,46

-61-

Plus Operator
Pointers
POWER
Precedence in PPL
Predicates

for Atomic Types
for Structures
for Sequences
from Alternate Definitions
Built-in Predicates

PRINT
Printing in PPL,

After Assignment
After Non-Value Returning

Function Call
Conventions for Numbers
Conventions for

Structured Data
Use of Print Function
Use of Format Function

Procedure Identifier 12, 13, 14
In Environment of Suspension 15
Used to Call Parameterless

Procedures 14,42
Procedures

see Functions
Pure Procedure

see Non-Value Returning
Procedures

Question Mark
As Demand Symbol 17
To Display a Function 19, 51
To Display a Line of a Fn. 23, 51

9,46 References 56
41 see also Call by Refe rence
46 see also Pointers

3,4 Relocatable Line Numbers 12 19. ,23
30 REMAIN 27
30 Remainder Function 27
30 Reopening a Line 15
31 Replacement of Text 18
32 see Text Editing
33 RESET 15 ,47

37,47 Restoring Original Meanings
of Operators 28

10 Result of a Function
Resuming Execution

13

44 after Suspension 15, 16 ,44
25 Rounding

see also Integer Divii sion
25

33 ROW 30
37 RUBOUT 2
25

R

.R PPL
READ

Reading and Writing Files
READSTYLUS
REAL

the type REAL
the conversion function

Real
Recursion in PPL

implicit Recursion through
Operator Definitions

Redefinition of Operators
REENTER

4,24,
4,24,

2
43,47
43,47

57
29,30
29,30
10,47

4
13, 14

28
28
17

Selectors 29 ,31
on Left Hand Side

of Assignments 34
Notation 29 ,34
Compound Selection 34

Sequence Definitions . 30
Sequencing to a New Line

during Editing 18
SETPOINT 57
Sharing 40
Sharp Sign 24

see also Not Equal Operator
Sine 48
SIN 48
SOLIDVEC 57
Stallman, R. M. 56
Standish, T. A. 56
Starting PPL 4
Statements in PPL 12

Labels for Statements 22
STOP 44 ,48
Stop Codes 44
Stopping

Execution of A Function 17
Setting Stop Codes 44

Strings 7
Data Definition of 35

Structures 29
Structure Definitions 29
SUB 9,46 ,49

-62-

Subtraction Operator 9, ► 46 ,49 Unconditional Go to
Subscript Notation 29. ,34 see Go To
Summary UNSTOP 44, 48

of Editing Commands 51 UNTRACE 44, 48
of Data Definitions 52 Updating
of ASCII Character Codes 53 see Text Editing
of System Errors 54 User Defined Functions 11

Suspension I5. ,44 User Suspension 15
Sylvania Tablet 57 use of Control C
Syntax to Suspend a Fn. * 16

for TUPLES 33
for STRINGS 7 V

Syntax Errors 15
System Errors 173 54 ,55 Value of a Function

Variables
11, 13

6
T Local

Unas signed
12
15

Table VECTOR 32
of Operators 46 Versions of PPL 57
of Built-in Functions 46 ,47
of ASCII Character Codes 53 W

Taft, E. A. 56
Talkative Programs 17 WRITE 43, 47
Telcomp Version of PPL 57 writing and reading files 43, 47
Tenex Version of PPL 57 .
Termination of Function Y

Definition 12
Execution 13 ,16 Yale Version of PPL 57
with Control C 16

Testing Data Types 29 Z
see Instance Operator

Text Editing 18 Z 25, 57
While Typing In 19 Control Z 57
Insertion of Lines 18 Use of Z in Formats 26
Deletion of Lines 18 Zero Suppression 26
Opening a Function 18
Displaying a Function 19 s
Character by Character z\ ,22
of Function Header 22 s see Dollar Sign
Effect on Stop and Trace 45

TRACE 44 ,48 ?
Tracing 44
Trig Functions 48 ? see Question Mark
Truncation in Integer Division 5
TSC Version of PPL 57 #
TTYMODE 57
Tuples 33 # see Sharp Sign
TYPE 48

see also Data Type %
and Type Conversion

U
% see Per Cent Sign

UNARY 27 ,47

-63-

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report la classified)

I. ORIGINATING ACTIVITY (Corporate author)

Harvard University
Cambridge, Massachusetts

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

'

K/A

3. REPORT TITLE

PRELIMINARY PPL USER'S MANUAL
.. ...

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

None
3. AUTHOR(S) (First name, middle Initial, laat name)

E. A. Taft

«. REPORT DATE

October 1970
7a. TOTAL NO. OF PAGES rU 7b. NO. OF REFS

5
•a. CONTRACT OR GRANT NO.

FI9628-68-C-0I0I
6. PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBER<S)

ESD-TR-70-441

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

PPL is an interactive, extensible programming language incorporating
data definition facilities and operator definition facilities. This
manual introduces the various features of the language and serves as a
practical reference document for its use. The manual is indexed and
several appendices detail parts of the language in tabular form.

PPL runs under the standard 10/50 monitor series of the Digital
Equipment Corporation's PDP-10 and also under the TENEX monitor system
of the Bolt, Beranek and Newman Corporation. A library of PPL extensions
is available containing extensions for doing matrix, rational, formula,
polynomial, complex, and vector arithmetics and, in addition, for manipu-
lating lists, strings, and trees. The language is useful for manipulating
data in a wide variety of application areas. Being interpretive and con-
versational, however, it is more well adapted toward personal and edu-
cational uses of computers using interactive terminals than it is for
doing large institutional computing applications requiring lang running
times or voluminous input-output.

DD ,F°1M473 Unclassified
Security Classification

— Unclassified
Security Classification

LINK c
K EY WORDS

extensible language

programming language

data definition facilities

data structures

Unclassified

Security Classification

