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Introduction 

The planning and manufacture of new models of weapons, the correct 
maintenance of existing systems, the working out of rules for firing 
which correspond to modern combat conditions and the tactical properties 
of the weapon, and the skillful employment of these rules are impossible 
without certain theoretical knowledge which is obtained as a result of 
the study of a number of sciences which have the overall title of 
artillery sciences. 

The basic sciences among them include: 

--Principles of the design and planning of materiel and ammunition-- 
the science of the principles of construction and planning of various 
weapons systems and the ammunition for them. 

--Theory of explosives--the science of the composition, chemical and 
physical properties of explosives and of their practical employment and 
essence of the burst phenomenon. 

--Interior ballistics--the science of phenomena which occur within 
the bore at the moment of firing and the laws of movement of a shell 
(bullet) under the effect of powder gases. 

--Exterior ballistics--the science of the laws of movement of a 
shell (bullet) in the air and methods for determining the ballistic 
characteristics of a weapon. 

--Theory of firing--a science which works out the most expedient 
rules for firing for various targets under various conditions on the 
basis of the theory of probability and the theory of errors. 

A certain minimum of knowledge which embraces basic information 
from the sciences which have been enumaterated is necessary for each 
officer regardless of the nature of his specific activity. 

In the program of the military schools, this necessary minimum 
theoretical knowledge represents one of the sections of firing training 
which has the title "Principles of Fire." 
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Thus,  "Principles of Fire" are a section of firing training 
which provides  the necessary knowledge from the field of artillery 
sciences   in a certain system and sequence and with consideration of 
the specifics of small   arms and mortars  in the construction of the 
materiel  and  in problem of ballistics  and firing. 

The appearance of more or less monotypic models of weapons in 
considerable quantity invariably entails  the working out of specific 
procedures and rules for firing.     Initially, these procedures and 
rules  for firing were transmitted orally,  then they began to formulate 
them as  individual orders and documents,  and only later did regulations 
and manuals appear in which an important place was occupied by ques- 
tions   in the use of the weapon among other questions of military skill. 

Thus,  Peter I,  in achieving the uniform armament of the Russian 
regiments,  devoted great  attention to the correct and uniform training 
of the soldiers  in mastering the weapon.    This found reflection in the 
Military Regulation    (1716). 

In the subsequent development of problems for the practical em- 
ployment of artillery and small arms and in working out the most ex- 
pedient procedures for their use,  an important role was played by the 
celebrated Russian military leaders Rumyantsev, Suvorov,  and Kutuzov. 

By the beginning of the  19th Century, the necessity became urgent 
to generalize all the achievements  of artillery practice and to 
create an artillery science which could solve the problems  connected 
with the production and employment of various types of weapons. 

The Mikhaylovskoye Artillery School which was founded in  1820 
and then the Artillery Academy was the center which was called upon 
to create a domestic artillery science and train highly qualified 
cadres of artillerymen.    The activity of the famous Russian mathe- 
matician of the  19th Century,"M.  V.  Ostrqgradskiy was connected with 
the Artillery Academy.    The most important artillerymen-scientists, 
M.  V.  Maiyevskiy, V. A.  Pashkevich, N.   A.   Zabudskiy, and others 
displayed their talents in the Artillery Academy. 

In the works of the Artillery Acadenn , a significant place was 
occupied by problems connected directly wich small arms, with the 
principles of their design, with the special features of ballistics, 
etc. 

The artillerymen-scientists and professors of the Artillery 
Academy prepared a textbook for military schools.    Such a textbook 
was written in  1872 by the young and talented artillery, N.   P.   Pototskiy 
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who subsequently was an honored professor of the Artillery General 
Staff Academies, with the consultation and participation of the famous 
artilleryman V.  N.  Shklarevich.    A considerably revised textbook by 
N.  P.  Pototskiy, Modern Hand Arms,  appeared in 1880.    The quality of 
this textbook can be judged from the fact that it underwent five 
editions in a short time, was awarded the Mikhaylovskoye Prize   (1881) , 
and received a high evaluation in the Russian and foreign presses. 
This textbook was accepted for instruction in the military schools 
of France,  Spain,  and Rumania. 

In 1890, the artilleryman and mathematician and writer of many 
textbooks, S. A.   Budayevskiy, published the Course in Artillery for 
military schools which was also awarded the Mikhaylovskoye Prize and 
underwent twelve editions up to 1916. 

Great popularity was enjoyed by the Course in Artillery written 
by V. A. Pashkevich in 1882 for military schools and for those en- 
tering the academy. 

Thus,  information on small arms or,  as they were then called, 
hand arms, were an inseparable part of the overall  artillery course. 

All these textbooks which were created by artillerymen for the 
military schools provided very good general theoretical information 
and they presented in an easily understood manner various problems 
in firing, ballistics,  and the principles of weapons design.    But 
they possessed one very important shortcoming:  they did not devote 
the required attention to the characteristic features of small arms 
ballistics and,  especially,  to rules for firing. 

Another center which created textbooks was the Officers School 
of Musketry which was  founded in 1857.    One of the reasons for the 
founding of this school was the necessity to raise the level of mus- 
ketry which was revealed in the results of the Crimean War. 

The Officers School of Musketry played a tremendous role in de- 
veloping rifle training, working out rules for firing from small arms, 
and inventing training and combat rifle instruments. 

Just as in any educational institution which has its own specific 
classification,  the necessity appeared in the School to create text- 
books, especially those on musketry.    The first such textbook was the 
Course on Hand Firearms which was prepared from the   lectures given 
in the Officers School of Musketry by Ostrove^khov and Larionov in 
1858 and 1859.    The textbook was written on a theoretical level  for 



for that time; however,   it was not adapted for the practical needs 
for the School.    Therefore,  in  1864 the School published a new text- 
book called "A Theoretical Course on Hand Arms,"    The textbook was 
written by a former teacher at  the Mikhaylovskoye Artillery School 
and Deputy Chief of the School  for Theoretical Matters,  A.  Bel'yaminov- 
Zernov.    The course was  intended for officers who are "preparing to 
be managers of armorer shops and teachers in all branches of soldiers' 
education."    The textbook described well the rules for inspecting 
weapons,  their care and storage,  the loading of cartridges, and the 
rules  for firing from rifles. 

Subsequently,  in connection with the repeated reorganization of 
the School and the change in its classification and location, no 
new textbooks appeared for a long time.    Instruction was  conducted 
primarily from Manuals for Teaching Firing.    The Manuals  represented 
brief final principles or. ballistics and the theory of firing, in- 
structions for teaching firing and a description of existing models 
of weapons. 

The preparation of the manuals and the check of the practical 
instructions presented in them were conducted directly in the School. 
Subsequently, a chest commission was created in the School, the mem- 
bers of which were involved in the work as necessary.    There was only 
one authorized worker in the Commission--a clerk.    Nikolay Mikhaylovich 
Filatov  (1862-19353 who had completed the Artillery Academy was 
assigned to this duty.    Very capable, theoretically well  prepared, 
and knowing and loving musketry,  N. M. Filatov applied much strength 
to develop musketry.    The creation of the principles of firing from 
infantry weapons and the development of a wide circle of practical 
problems for their combat use are connected with his name. 

In 1897, N.  M.  Filatov wrote Brief Notes on the Theory of Firing-- 
a textbook for the students of the Officers School of Musketry. 
This was the first textbook which pertained exclusively to small 
arms  and with consideration of all their special features.    According 
to its  intention.  Brief Notes on the Theory of Firing were to provide 
an explanation of those final principles which were presented in the 
Manual  for the Teaching of Firing; even in its organization, the book 
corresponded to the structure of the Manual.    However, thanks to the 
great  experience of the author and his profound theoretical knowledge, 
the content of the book was expanded considerably and it was the first 
textbook where theory was placed at the service of firing practice. 

N.  M.  Filatov was the organizer of the journal Herald of the 
officers School of Musketry which was founded in 1900 in which ar- 
ticles were published on all questions of the design and employment 
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of weapons and the teaching of firing and the rules of firing. 
N. M.  Filatov took an active part in this journal, sharing his 
experience and providing consultations on the most varied problems 
and was actually its first editor.     V. G.   Fedorov, the most  im- 
portant specialist on automatic small arms,  also published actively 
in the pages of the Herald. 

In 1905, at the suggestion of N. M.   Filatov, a Rifle Range was 
organized which was the first truly scientific center for the design 
and testing of small arms.    N.  M.  Filatov was the first head of this 
range and gave all his knowledge and experience to this cause. 

Subsequently, being the head of the Officers School of Musketry, 
N. M.  Filatov devoted great attention to the introduction of auto- 
matic weapons among the troops.    A machine   gun officers course was 
organized in the School and tests were conducted on creating an anti- 
aircraft machine gun mount. 

The source of the bubbling energy of N.  M.  Filatov was his de- 
votion to his people and his great and genuine patriotism.    Therefore, 
he accepted the Great October Revolution without any wavering and 
immediately began to serve the true master of the country--the people. 
In 1918, N. M.  Filatov was appointed head of the Higher Infantry 
School and then Chief of the Rifle-Tactical Committee.    N. M.   Filatov 
gave much effort to training command personnel of the young Red Army 
and equipping it with rifle armament. 

After the Great October Socialist Revolution, N. M.  Filatov 
wrote a number of articles and books on musketry and worked on his 
major work. Principles of Firing from Rifles and Machine  guns which 
was completed and published in 1926.     Finding reflection in this work 
was the entire tremendous experienced material which the author had 
available, his profound theoretical knowledge, and his great tech- 
nological experience.    This work was not intended as a textbook but 
it received wide desimination.    Subsequently,  after reduction in 
accordance with the programs of the infantry schools, it underwent 
eight editions under the title Brief Information on the Principles 
of Firing from Rifles and Machineguns  and was  the only textbook for 
the students of the infantry schools. 

At the present time, the infantry of the Soviet Army is armed 
with modern combat equipment and possesses powerful fire;  its combat 
qualities have changed significantly.    Naturally, this requires  im- 
portant work for the further study of firing matters as applicable 
to the development of new means of armament,  for deepening the theory 
of firing, and for improving its practice. 
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This textbook explains and provides the justification for those 
principles which are written in the Manual on Firing Matters-- 
the Principles of Firing from Small Arms. 
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CHAPTER  I 

GENERAL  INFORMATION ON THE MODERN WEAPONS OF A RIFLE 
P0DRA2DELENIYE 

Depending on the methods of acting against the enemy, weapons are 
divided into hand-to-hand and missile weapons. 

A hand-to-hand weapon for destroying the enemy is applied in the 
immediate proximity by puncturing, striking, etc.    A missile weapon 
is employed to inflict damage on the enemy from a distance.    The 
modern missile weapons are primarily fire arms (exceptions are hand 
grenades and aerial bombs.) 

A fire arm is a weapon with the use of which damage is inflicted 
on the enemy by projectiles which are ejected by the energy of powder 
gases.    Fire arms are divided into small arms and artillery. 

Small arms include pistols, revolvers, carbines  (individual weapons), 
and light, heavy and large-caliber machineguns (crew-served weapons). 

Small arms may be non-automatic and automatic.    In non-automatic 
weapons, the energy of the powder gases is used only to impart motion 
to the bullet.    In automatic weapons,  the energy of the powder gases 
is used, in addition, to reload.    Automatic weapons are called self- 
firing if one can fire from them in bursts and with continuous fire 
and they are called self-loading if one can fire from them with single 
shots alone. 

The basic components of small arms are the barrel, projectile, 
and charge  (powder charge.) 

The barrel (Figure 1) of a fire arm represents a strong steel 
tube. It accomplishes three functions: 1) it serves to direct the 
flight of the projectile;  2)  it represents a chamber in which the 
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combustion of the powder charge occurs;  the gases which are formed in 
this impart the required velocity of forward motion to the projectile; 
3)  it gives the projectile a rotational movement around its axis to 
assure the stability of its flight in the air.     In a rifled small arm 
the barrel performs all three functions, while in mortars,  it performs 
only the first  two and in some rocket systems—only the first  (there- 
fore,  rocket weapons may also appear without a barrel; it is replaced 
by a guide rail which does not have the shape of a tube.) 

The barrel of a small arm has a breech, middle portion,  and muzzle 
end.    The muzzle end terminates in a muzzle end face and the breech 
ends in a breech face.    The interior cavity of the barrel is called 
the bore. 

An imaginary straight line which passes through the center of the 
bore is called the axis of the bore. 

The barrel of a rifle weapon has a cartridge chamber inside which 
serves as the place for the cartridge, a bullet chamber--for the loca- 
tion of the projectile and to assure its gradual seating in the rifling, 
and a rifled portion to impart a rotational movement to the projectile. 
The walls of the rifled portion of the bore have grooves (slots) which 
go along the rifling line and are called rifling and projections be- 
tween them which are called lands.    Each groove has a bottom and two 
side faces.    One of the faces of the grooves is the leading groove and 
it experiences greater pressure on the part of the bullet.    The leading 
groove is called the active groove and the opposite one is the inactive 
face.    The barrels of all the rifled weapons with which the Soviet army 
is equipped have grooves which twist from the left upward and to the 
right   (right rifling.) 

Figure   1.     Small Arms  Barrel:   1,   Breech face; 2, 
Huzzle face;   3.  Cartridge chamber;  k.   Bullet chamber; 
5,  Grooves;  6,  Lands. 
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The speed of the rotational moment of the projectile around its 
axis depends on the angle of twist which is characterized by the 
length of the rifling turns.    The length of rifling turn is the dis- 
tance in which the groove makes one complete revolution.    The smaller 
the length of rifling turn, i.e., the greater the angle of twist, the 
greater the speed of rotational movement of the projectile around 
its axis.    In the small arms of the Soviet Army (except for large- 
caliber machineguns), the length of rifling turn is 240 mm. 

The caliber of a weapon is determined by the diameter of the 
barrel which is measured between opposite lands  (Figure 2). 

The primary caliber of small arms of the Soviet Army is 7.62 mm, 
and there also are weapons with a caliber of 9 mm, 12.7 mm,  and 
14.5 mm.    The number of grooves also depends on the caliber.    Thus, 
a weapon with a caliber of 7.62 mm has four grooves and a machinegun 
with a caliber of 14.5 mm--eight grooves.    Very often, the caliber is 
also used as a measure of length.    The length of the barrel,  length 
of the rifled portion of the barrel, length of the rifling turn, 
length of projectile, etc. is measured in calibers. 

Figure 2.    Caliber of Weapon: 
1, Groove;  2,  Land; AB, Caliber. 

The barrel of a 82-nun mortar represents a smooth-walled tube 
with a base cap screwed onto it in which the striker which serves to 
fire the round is located.    The caliber of mortars is determined by 
the internal diameter of the barrel.    Since mortars do not have grooves, 
the mortar rounds do not spin in flight; the stability of the rounds in 
flight is provided by their tail unit. 
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The projectile inflicts direct damage on the enemy with its entire 
mass or with the fragments of its body which are formed in the explo- 
sion of the explosive contained within it.    The projectiles have 
various designs depending on their purpose. 

The projectile of small arms is called a bullet.    A characteristic 
feature of a bullet which distinguishes it from an artillery shell is 
the absence of a special rotating band.    The bullet is made of three 
parts  (Figure 3):  the head of the projectile (ogival portion), the 
driving portion,  and the tail portion.    The overall length of modern 
bullets  is about  5 calibers:  the head of the projectile--2.5-3.S 
calibers,  the driving portion--l-l.5 calibers, and the tail portion-- 
0.5-1 caliber.    The bullet consists of a core, the design of which 
depends on the purpose of the bullet and a casing which, for modern 
bullets,  is made of steel or clad tombac  (i.e., it is covered by a 
layer of copper and zinc alloy.) 

According to their purpose, bullets are divided into regular and 
special-purpose bullets. 

Regular bullets are intended to destroy living targets in the open 
and which are covered behind light cover. The core of a regular bullet 
may be lead with an admixture of antimony or it may be steel. 

Figure 3. A Bullet: a. Head of 
projectile; b, Driving portion; 
c, Tail portion. 

Special purpose bullets are divided into armor-piercing, tracer, 
incendiary,  armor-piercing incendiary, ranginging-incendiary and armor- 
piercing incendiary tracer. 

The powder charge serves to impart a forward mortion to the pro- 
jectile (bullet).    The charge is made of powder.    The weight of the 
charge depends on the caliber and purpose of the projectile.    Thus, 
for the bullet for a Model 1933 pistol, the weight of the charge is 
0.6 g, for a Model  1908 rifle bullet--3.25 g, and for the bullet of a 
14.5-mm machinegun--30.0 g.    The striking compound of the primer 
(initiating explosive) serves to ignite the charge. 
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By means of the cartridge case, the projectile (bullet), powder 
charge, and primer are connected into a single unit--a unitary car- 
tridge (Figure 4).    In addition, the cartridge case protects the charge 
from the effects of external conditions and does not allow the break- 
through of gases from the bore through the breech. 

Figure A. Unitary Cartridge: 
1, Bullet; 2, Cartridge case; 
3, Powder charge; A, Primer. 

The cartridges of small arms are divided into live cartridges and 
auxiliary cartridges.    Live cartridges include cartridges with regular 
and special bullets while the auxiliary cartridges are training 
cartridges, blanks, and small-caliber cartridges. 

2 

a    € *' 6 

Figure 5.    82-mm Mortar Round: a,  Fragmentation 
round; b, Smoke round;  1,  Body; 2, Fuse;  3, Ex- 
plosive charge;  4,  Smoke-forming substance;  5, 
Fin; 6,  Base charge; 7,   Incremental charges. 
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Firing from mortars is conducted with mortar rounds. The 82-iran 
mortar has fragmentation, smoke, and other special rounds. Fragmen- 
tation rounds are intended to destroy personnel and enemy weapons with 
the fragments of the body of the round which are formed when it ex- 
plodes under the effect of the explosive charge. Smoke rounds are 
intended to blind (smoke) observation and command posts and enemy 
weapons as well as to facilitate adjustment and target indication. 

The 82-nun mortar round (Figure 5) consists of the body which is 
filled with a fragmentation explosive--the explosive charge; located 
in the body of smoke rounds in addition to the explosive charge is a 
smoke-forming substance (yellow phosphorous); an impact (quick) action 
fuse which serves to assure the bursting of the round at the target; 
a fin which is intended to assure the stability of the round in flight; 
a base charge in the form of a tail cartridge which is placed in the 
tube of the fin; incremental charges in the form of rings which are 
placed on the tube of the fin. 

The division of the charge into a base charge and incremental 
charges permits changing the amount of live charge and thereby changing 
the muzzle velocity of the mortar round. 

-12- 
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CHAPTER   I I 

EXPLOSIVES 

I.    Burst Phenomenon 

In general, a burst is an extremely rapid change in the state of a 
substance which is accompanied by just as rapid a transformation of 
its potential energy into the mechanical work of mortion or destruction. 
With a burst, a sudden and abrupt increase in pressure occurs in the 
atmosphere which surrounds the point of burst.    The external distin- 
guishing signs of a burst are: considerable sound, vibration of the 
atmosphere, and frequently a flash of light. 

The most widespread type of burst is the burst which is obtained 
as the result of a rapid chemical transformation of a substance.    How- 
ever, the initial type of energy for a burst may also be electrical, 
atomic, thermal and kinetic energy. 

Explosives  (VV)  are those chemical compounds and mixtures which 
are capable of very rapid chemical transformations under the influence 
of external effects   (a strike, a shaft of flame, friction, etc.)  and 
which are accompanied by the liberation of heat and the formation of 
a large quantity of strongly heated gases which are capable of per- 
forming the work of throwing or destruction. 

The characteristic distinguishing features of a burst are: 

1. A very high speed of transformation which is measured by inter- 
vals of from hundredths to millionths of a second.    For example, the 
explosion of 1 kg of dynamite occurs in 0.00002   sec. and the burst 
of a 400-g TNT charge occurs in 0.00001 sec.    Surh an extremely rapid 
transformation leads to a situation where the power of the explosives 
exceeds by many times the power of other source of energy  (combustible 
substances), despite the fact that the supply of energy in the 
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explosives is frequently less, for example, 1 kg of smoke powder-- 
one of the weakest explosives--would develop the power of about 20 
million hp under conditions where all the heat is converted to work, 
and 1 kg of TNT--about 55 million hp. No machines exist which are 
capable of developing such collosal power. 

2. The liberation of a large quantity of heat (the exothermic pro- 
perty) which leads to the creation of high pressure at the point of 
burst and, consequently, which causes the capability to perform 
mechanical work. Thus, 1 liter (I)  of nitroglycerine, in a burst, 
liberates 2,400 large calories, developing a temperature of gases of 
up to 3,800°. 

3. The presence of a large quantity of gaseous burst products. 
Thanks to the high temperature of the bursts and their capability for 
expansion, the thermal energy is converted to mechanical work. The 
quantity of gaseous products which are liberated in a burst can be 
judged from the following figures: from a burst, 1  I of pyroxylin pro- 
vides 994 I  of gaseous products and 1  I of  TNT--1,104 I,  i.e., on the 
average 1 Z of explosives in a burst provides 1,000 I of gaseous 
products. 

The speed of explosive transformation depends on the composition 
of the explosive, the method of inducing the explosive (mechanical, 
thermal, electrical), and on the burst conditions (quantity of ex- 
plosive, pressure, temperature). Depending on the speed of the process, 
the explosive transformations may occur in two basic forms: combustion 
and detonation. 

Combustion occurs with a speed of from fractions of a millimeter 
to several tens of meters per second; for example, smoke powder in the 
open air burns with a speed of about 10 mm per second. In open air, 
this process occurs without any significant sound effect. In a closed 
container, the speed is increased and the process is accompanied by an 
abrupt sound: combustion is characterized by a gradual increase in the 
pressure of the gases and their capability to perform mechanical work 
in displacing and throwing objects in the direction of least resistance. 
Such a process is a shot in which the ejection of a projectile takes 
place from the bore of a weapon under the pressure effect of the gases 
which are formed during the combustion of the explosive. 

Detonation proceeds with a speed which reaches several thousand 
meters per second.  It is characterized by a sudden jump in the pres- 
sure at the point of burst, as a result of which the gases which are 
formed perform work in the destruction, incandescence, and crushing 
of surrounding objects. An example of detonation is the burst of an 
explosive charge in an artillery shell. The explosive hexogen 
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detonates with a speed on the order of 8,400 m per sec. Existing 
between combustion and detonation are intermediate forms of explosive 
transformations with which occur with a variable speed (up to 
several hundreds of meters per second) which depends on the ex- 
ternal pressure. With a sufficiently high pressure, combustion may 
be transformed into detonation. All explosives can be detonated but 
only a small portion of them (initiating) detonates from a mechanical 
or thermal pulse. The majority of explosives detonate only in the 
case where the detonation of another explosive occurred in the immediate 
proximity of them. An explosive which is capable of causing the detona- 
tion of another explosive is called a detonator. 

2.  Classification of Explosives According to Their Practical Employment 

In accordance with their practical employment, all explosives are 
divided into four large groups: 

1) Initiating explosives, 
2) Crushing explosives, 
3) Throwing explosives (powder), 
4) Pyrotechnical compounds. 

Initiating Explosives 

Initiating explosives are most sensitive to external influences; 
they are easily detonated from an insignificant blow, shaft of flame, 
friction, etc. Their basic property is an initiating capability, i.e., 
the capability to induce the detonation of other explosives. Initia- 
ting explosives are used for loading flash igniters, detonating caps, 
and demolition cord. The basic representatives of initiating explosives 
are: mercuric fulminate, lead azide, lead styphnate, and others. 

For loading the flash igniters of cartridges, striking compounds 
are made consisting of a mixture of mercuric fulminate, potassium 
chlorate, and antimony in various proportions as applicable to the con- 
ditions for use. 

The faultless operation of a combat cartridge depends to a large 
degree on the quality of the flash igniter, its power, and sensitivity. 
The insufficient power of the flash igniter may lead to a situation 
where, with its ignition, only the closest layer of the power charge 
is heated and the subsequent layers receive heat from them only after 
some time interval, i.e., a hangfire occurs. 
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Crushing Explosive 

The hasic form of explosive transformation for crushing explosives 
is detonation. This group of explosives is widely used as explosive 
charges of artillery shells, mortar rounds and grenades and is also 
used in demolition work. 

Crushing explosives possess considerably less sensitivity than 
initiating explosives and usually detonate under the influence of the 
latter. 

The basic representatives of crushing explosives are: TNT, picric 
acid, tetryl, hexogen, and others. Thus, for example, the explosive 
charge of an 82-mm mortar round is made of pure TNT or an alloy of 
trotyl with other explosives (trotyl with trinitronaphthalene) and the 
explosive charge of hand grenades is made from trotyl or ammonal. 

Throwing Explosive (Powder) 

The basic form of explosive transformation for throwing explosives 
(powders) is combustion which provides the opportunity to throw objects 
in the direction of least resistance. A large part of the thermal 
energy which is formed in the combustion of the powder is converted to 
mechanical energy which is used to throw projectiles in fire arms. 

Powder is divided into smoke and smokeless powder. 

Smoke powder represents a mechanical mixture of 75% saltpeter, 10% 
sulphur, and 15% charcoal. Such a percentage composition is most ad- 
vantageous since it assures complete combustion of the charcoal. The 
charcoal is a combustible substance, the saltpeter provides oxygen during 
decomposition which is necessary for the combustion of the charcoal, and 
the sulphur assures easy combustibility and serves as the binder in the 
preparation of the powder. 

The very name "smoke" tells that these powders liberate a large 
quantity of smoke when burning, i.e., solid combustion products (up to 
50%).  In their activity, smoke powders are considerably weaker than 
modern smokeless powders. Therefore, the use of smoke powders in firing 
as a powder charge was stopped long ago.  In military affairs, smoke 
powders are used as igniters (to facilitate the ignition of smokeless 
powder) as a timer compound in fuzes, and as the combustible compound 
in a safety fuze. 

The basis of smokeless powders is pyroxylin--a crushing explosive 
which is obtained as the result of processing plant cellulose with a 
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mixture of nitric and sulphuric acids. Pyroxylin, possessing good 
explosive properties, is easily gelat'nized (converted to a jelly-like 
mass) under the influence of various solvents. Depending on the solvent 
used, pyroxylin and nitroglycerine powders are distinguished. 

To prepare pyroxylin powder, use is made of: pyroxylin No. 1 
(high-nitrigen, containing from 12.9 to 13.3% nitrogen) in mixture 
with pyroxylin No. 2 (low-nitrogen containing from 11.9 to 12.3% 
nitrogen) or nitrocellulose (12.5-12.75% nitrogen), or pyroxylin No. 2 
alone. Serving as the solvent is an alcohol ether mixture which does 
not possess explosive properties. 

Nitroglycerine powder is prepared from pyroxylin No. 2 which is 
soluble in nitroglycerine (ballistite) or from pyroxylin No. 1 which is 
soluble in nitroglycerine with an admixture of acetone (cordite). 
Manufactured nitroglycerine powder contains 25-60% nitroglycerine which 
is also a strong explosive and, consequently, a source of energy. Ni- 
trogen powders are more powerful than pyroxylin powders but, in combus- 
tion, they develop a considerably higher temperature which reduces the 
endurance of the cubes. 

The powders may lose their properties in prolonged storage. Special 
substances are added to the powders to assure stability in their pro- 
perties—stabilizers (diphenylamine), 

Depending on its purpose, the grains of smokeless powder may have 
various shapes: a cube, plate, strip, tube with one channel, tube with 
seven channels, etc, (Figure 6). 

Figure 6. Shape of Grains of Smokeless Powder: 
a, Cube; b, Plate; c, Strip; d, Tube with one 
channel; e, Tube with seven channels. 
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All  existing types of powders are designated by conventional size 
(letters,  numbers)--they are marked.    Designated in marking are: 
shape of grain, purpose,  dimensions,  lot, year of manufacture, plant 
of manufacture. 

Pyrotechnical  Compounds 

Pyrotechnical compounds represent a mixture of combustible sub- 
stances   (magnesium, phosphorous,  etc.), oxidizers  (chlorates, picrates, 
and others), and cementers  (shellac, rosin,  and others).    The explosive 
properties are very weakly expressed among the pyrotechnical compounds; 
however, under certain conditions they are capable of detonating. 
Pyrotechnical compounds are used to create required pyrotechnical 
effects.    They are divided into illumination, signalling, tracer, and 
incendiary compounds. 

Illumination and signalling pyrotechnical compounds are used as 
the charge of cartridges for the 26-nun signal pistol and other sig- 
nalling and illumination means.    Tracer and incendiary compounds are 
used to manufacture special bullets  (tracer,  incendiary,  etc.) 
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CHAPTER  I I I 

INFORMATION ON   INTERIOR  BALLISTICS 

Ballistics  is the science of the movement of a projectile.    At 
the present time ballistics are divided into two independent sciences: 
interior ballistics and external ballistics. 

The task of interior ballistics is the study of the movement of 
a projectile in the bore and the phenomena which occur in this. The 
task of external ballistics consists of the study of the flight of a 
projectile in the air. 

Interior ballistics study the amount of pressure of the powder 
gases and the change in the velocity of a projectile in the barrel 
of a weapon and determines the most advantageous characteristics of a 
bore (length of bore, volume of powder chamber) and the loading con- 
ditions  (weight of charge,  dimensions and shape of powder)  so as to 
impart to a projectile of a given weight and caliber the required 
muzzle velocity with a certain value for the greatest pressure of the 
gases. 

1.    The Powder Combustion Process 

With the effect of an external  (thermal) pulse on a grain of powder, 
it begins to burn.    The powder combustion process is divided into three 
phases:  ignition,  combustion, and the burning itself (Figure 7), 

Ignition is the start of the decomposition of a grain of powder 
at one of several points under the influence of an external impulse. 
To ignite a live charge, such an external  impulse is the effect of 
red hot gases which are formed in the combustion of the striking com- 
pound of the primer (initiating explosive)  from the striking of the 
firing pin. 

Combustion is the spreading of a flame over the surface of the 
powder grain.    Combustion proceeds at various speeds depending on the 
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properties of the powder and the external pressure.     With normal at- 
mospheric pressure,  the speed of combustion of a smoke powder is  1-3 
meters per second and with  increased pressure it increases several 
times.    Smokeless powder in the open air burns very slowly, with a 
speed of 2-5 meters per second; however, with an increase in pressure 
the speed of combustion of smokeless powder increases  sharply and, 
with a pressure of 10-20 kg/cm2 its speed of combustion can be con- 
sidered as  instantaneous. 

b) 
—3a)icxenue 

"lllMt.*** 

Figure 7.     Phases  in  the Combustion 
of  Powder:   a,   Ignition;  b,   Lighting; 
c.  Combustion. 

To assure the simultaneous combustion of the entire powder charge, 
it   is necessary that the pressure inside the cartridge case which is 
created by the combustion of the striking compound of the primer exceeds 
20 kg/cm-   which can also be accomplished in live cartridges.    When all 
grains of the powder charge do not burn simultaneously, a hangfire may 
occur.    In addition,  a portion of the powder may not burn at all until 
the moment  that the projectile flies out of the bore;   consequently, 
this portion of the powder will not participate in imparting energy to 
the projectile,  as a result of which the muzzle velocity of the projec- 
tile is reduced and the distance of its flight will be  less. 

The burning itself is  the spreading of the decomposition reaction 
deep  into the powder grain perpendicular to its surface.    Consequently, 
the speed of burning is determined by the change in the smallest dimen- 
sion  (thickness)  of the powder grain per unit of time. 

The powder burning speed is a very important ballistic characteristic. 
It  has been established experimentally that the burning speed of the powder 
depends on its composition,   the density of the powder substance, external 
pressure, and the temperature and humidity of the powder.    Let us con- 
sider the effect  of these factors on the burning speed of the powder. 
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Powder composition.    Powder of various composition, with other 
conditions being equal, possesses various speeds of burning.    Thus, 
powders with a greater content of pyroxylin No.  1 or nitroglycerine 
burn more rapidly and powder with a greater content of pyroxylin No.  2 
burn more s,Jowly.    When it is necessary to reduce the burning speed 
of the powder, flegmatizers are added to its composition  Ccamphor, 
vaseline).    The more flegmatizer in the powder, the less its speed of 
burning. 

Density of the powder substance.    The greater the density of the 
powder grain, the slower its burning speed.    To obtain fast-burning 
powders, the grains are made porous; the more pores, the easier the 
flame penetrates deep into the grain and the faster the powder burns. 
The density (specific gravity) of modern smokeless powders is 1.S6-1.63 
kg/decimeter3. 

External pressure.    The powder burning speed increases with an in- 
crease in the pressure in the surrounding atmosphere.    TTius, in the open 
air, smoke powder burns with a speed of about 10 mm/sec, and with an 
increase in pressure its burning speed increases sharply; the burning 
speed of smokeless powder in the open air is 0.8-1.5 mm/sec and, in 
a closed container with a pressure of 500 kg/cm2, it reaches 50 mm/sec 
and then increases directly proportionally to the increase in pressure. 
In firing, consequently, the burning of the charge will occur with a 
very great speed. 

The pressure of the powder gases is connected with the density of 
the loading. 

The density of loading A is the ratio of the weight of the powder 
charge OJ to the volume of the powder chamber W (cartridge case with the 
bullet inserted): 

A—J, (1) 

For small arms, the density of loading A = 0.80-0.90 kg/decimeter3. 

For mortars, the density of loading is the ratio of the weight of 
the base and incremental charges to the volume of the powder chamber; 
the volume of the breech of the barrel up to the level of the greatest 
diameter of a mortar round dropped in the barrel is taken as the volume 
of the powder chamber. For 82-mm mortars, the density of loading 
changes depending on the number of incremental charges; with a maximum 
charge, for mortars A = 0.06 kg/decimeter3. 

The change in the density of loading is permitted within very small 
limits for each type of weapon. With an increase in the density of 
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loading, the gases which are formed create greater pressure, thanks to 
which the powder speed of burning increases. An extreme increase in 
the density of loading may cause a jump in pressure which leads to 
the bulging or bursting of the barrel.  Therefore, to avoid accidents, 
in firing from small arms it is not permitted to use cartridges with the 
bullets seated too deeply. 

A reduction in the loading density leads to a slowing down of the 
powder burning. 

Powder temperature. The higher the temperature of the powder 
charge, the greater the powder burning speed since the expenditure of 
heat on heating the powder is reduced and the decomposition reaction 
itself proceeds more intensively. Accordingly, the lower the powder 
temperature, the slower its speed of burning will be.  Therefore, it 
is necessary that prior to firing the ammunition must be under uniform 
temperature conditions since a difference in the temperature of the 
powder, causing different burning speeds of the powder and, consequently, 
different muzzle velocities of the shells, will lead to an increase in 
dispersion, i.e., to a worsening in the accuracy of fire. 

Humidity of the fire. The higher the humidity, the more slowly 
the powder burns since a portion of the thermal energy is used to con- 
vert the water to vapor. With a considerable humidity, the powder 
loses its explosive properties in general.  Therefore, it is necessary 
to protect the powder charges thoroughly from moisture. This pertains 
especially to the incremental charges for the 82-mm mortar round. 

The quantity of powder gases which are liberated in the burning of 
the powder and the speed of gas formation depend on the shape and dimen- 
sions of the powder grains. 

In considering the process of powder burning in interior ballistics, 
the following assumptions are adopted: 

--All grains of the powder charge are uniform in composition, dimen- 
sions and shape; 

--Combustion of the powder charge occurs instantaneously; 

--The powder grain bums in parallel layers with the same speed from 
all sides (Figure 8). 

These conditions provide the opportunity to consider the burning 
process for one grain of powder alone and to draw conclusions for the 
entire powder charge. 
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Depending on the nature of the change in burning surface, the powders 
are subdivided in the following manner: 

a) Powder with a degressive shape—those powders, the surface of the 
grains of which is continuously reduced as they bum.    The supply of 
gases per unit of time with such powders is reduced as the grains burn. 
First,  they provide a jump in pressure and then it quickly falls as the 
projectile moves along the bore.    They include the powders whose grain 
has the form of a cube, plate, or strip (see Figure 8). 

b) Powder with a constant burning surface—those powders, the surface 
of the grains of which remain constant in burning and, consequently, 
the supply of gases does not change per unit of time.    They include 
powders having grains in the form of a tube with one channel  (see 
Figure 8).    Burning occurs simultaneously over the external and internal 
surfaces of the tube.    The outer surface is reduced and the inner surface 
is increased.    The overall surface remains practically unchanged. 

c) Powders with a progressive form—those powders, the surface of the 
grains of which is increased in burning.    They include powders having 
a grain, for example, in the form of a 7-channel tube (see Figure 8). 
In the burning of such a grain, the surface of the channels increases 
and this creates an overall increase in the surface of the powder grain. 
And this also leads to an increase in the supply of gases per unit of 
time. But the increase in the burning surface occurs only until the 
moment that the powder grain decomposes, after which the small prisms 
which are formed bum out like the powder with a degressive shape. 

The progressive quality of burning may also be achieved by jacketing 
the outer surface of the powder grains, i.e., by coating them with 
special compounds which hinder combustion from the outer surface. 
The use of progressive powders which provide a greater and greater 
supply of gases with time assures the most uniform pressure in the bore. 

The use of powders of one form or another depends on the type of 
firearm and its design features.    The shape of the powders which are 
used for small arms depends on a great degree on the length of the barrel; 
for a long-barreled weapon (carbine, machinegun) a flegmatized pyroxylin 
powder is used, the grains of which have the shape of a tube with one 
channel; for short-barreled weapons  (pistols), a pyroxylin powder is used 
which has the grains in the form of a thin plate.    The use of such a 
powder assures its rapid burning and a sudden increase in pressure. 
Plate nitroglycerine powders are used for 82-mm mortars. 
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Figure 8.     [Caption  illegible—Tr note], 

2.     The Phenomenon of a Shot 

A shot represents the process of the very rapid transformation 
of the chemical energy of the powder first to thermal energy and then 
to the kinetic energy of the movement of the weapon  (system shell- 
charge- 

Tr note--approximately five lines of text illegible. 

--high temperature of the powder gases   (2,500-3,500oC; 
--short duration of the phenomenon   (0.001-0.06 sec); 
--the burning  of a powder charge  in a rapidly changing 

Tr note--three  lines  illegible. 
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To fire a shot it is necessary to send to the [Tr note--two words 
missing] large cartridge, dependably close the bore [Tr note--three 
words missing] on the trigger. When pressing [Tr note—four words 
missing] trigger and firing mechanism [Tr note--three words missing] 
striker [Tr note--four lines of text indistinct]. 

During the burning of the powder charge, gases are formed the quan- 
tity of which increases and, consequently, the pressure increases. The 
gases are spread in all directions, and in striving to expand, they 
press against the walls [Tr note—three words missing] and on the bullet. 
The pressure [Tr note—three lines of text missing] and the pressure on 
the bullet forces it to cut into the rifling grooves [Tr note--two words 
missing]. Thus, at first the increase in the pressure of the gases pro- 
ceeds in a constant volume to a quantity which is necessary for the com- 
plete cutting of the bullet into the rifling grooves. This pressure is 
called the forcing pressure P». For small arms, it reaches 250-500 kg/cm2 

The period of the shot phenomenon in which the burning of the powder 
charge takes place in a constant volume and the pressure increases to P« 

is called the preliminary period (Figure 9), 

Next follows the first or basic period of the shot phenomenon during 
which the burning of the powder charge takes place in a rapidly changing 
volume. This period lasts from the moment when the forcing pressure is 
achieved until the complete burning of the powder charge. Under the pres- 
sure of the continuously increasing quantity of powder gases, the bullet 
begins to move in the bore. The pressure increases quickly in the first 
period, reaching a maximum of P  , since during the first time interval 

the rapid increase in the quantity of gases proceeds with a relatively 
slow increase in the volume of the space behind the bullet. For small 
arms, the maximum pressure reaches 2,500-4,000 kg/cm2. (In a rifle, the 
maximum pressure is developed when the bullet covers a path of 4-6 cm). 
However, the high pressure causes a considerably acceleration in the 
movement of the bullet in the bore, i.e., a con iderable increase in the 
space behind the bullet. Therefore, despite thj influx of new gases 
the pressure begins to fall, reaching the value P. at the end of the 

burning of the powder charge, and the speed of the bullet continuously 
increases to the value of v, . 

k 

After completion of the burning of the powder charge, the influx of 
new gases stops but, since the gases possess a large supply of energy, 
their expansion continues and, as a result of this, the speed of move- 
ment of the bullet increases. This is the second period of the shot 
phenomenon in which the bullet moves under the influence of a constant 
quantity of freely expanding gases; it lasts from the end of the burning 
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of the powder charge to the moment that  the bullet flies out of the bore 
During this period, the pressure continues to attenuate to the value P., 

and the velocity of the bullet continues to increase to vJ.    For small 
d 

arms,  Pd = 200-600 kg/cm' 

l'm/secpkg/cm2 

ferlod^ period 

Figure 9.    Periods of a Shot, Curves of Pressure 
and Speed of Movement of BuMet. 

In small arms, complete burning of the powder charge occurs by the 
moment that the bullet is close to the muzzle end face; in systems with 
short barrels   (pistols)  the complete burning of the powder charge does 
not occur in general, i.e., the second period of the shot phenomenon is 
actually absent. 

The third period, or period of the aftereffect of the gasses is 
characterized by the fact that the gases which escape from the barrel 
right behind the bullet continue to act on it. During this period, the 
pressure of the gases drops sharply and the speed of the bullet still 
increases somewhat until the pressure of the gases on the bullet equals 
the resistance of the air. At this point, the velocity of the bullet 
reaches  its maximum value v 

max 

Thus,  the pressure of the powder gases in the cube at first in- 
creases almost instantaneously to the value ?Q. then continues to in- 

crease sharply to P^,  after which its  drop to Pd begins at the moment 

that the bullet flies out of the bore and a further drop occurs during 
the period of the aftereffect of the gases.    The velocity of the bullet 
increases continuously,  first quickly and then more slowly, reaching the 
value of v       . ■> e> 

max 
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For each period of the shot, interior ballistics have established 
the exact regularities which show the dependence of the pressure of 
the gases and the velocity of the bullet on the time and the path 
covered.    These dependences permit solving completely the basic problem 
of interior ballistics: to calculate the velocity which a projectile 
of given weight receives with a given gas pressure in the barrel. 

3.     Special   Features of  Firing from a Mortar 

In comparison with firing from small arms,  firing from an 82-mm 
mortar has certain special characteristics. 

The burning of the powder first takes place in the base charge and 
then the powder gases break through the walls of the cardboard cartridge 
case opposite the holes in the cartridge container and ignite the in- 
cremental charges.    Therefore,  it is necessary to assure the rapid 
burning of the powder in the base charge to ignite the incremental 
charges as early as possible.    This is achieved by employing a strong 
flash igniter which assures the uniform burning of the base and incre- 
mental charges. 

A comparatively low speed of movement is imparted to the mortar 
round; therefore, there is no necessity to achieve a high pressure in the 
bore.    The required amount of pressure is achieved with a low density of 
loading in the area behind the mortar round which comprises 0.01-0.06 kg/dm3 

for various charges.    For the correct burning of the incremental charges 
with such an insignificant density of loading, they are prepared from a 
strong, rapidly burning nitroglycerine powder. 

The density of loading in the base charge is considerably greater 
than in the space behind the mortar round [Zaminnyy ob^6"1]  (0.50-0.60 kg/dm3) 
As a result of this, the gases which flow out into the space behind the 
mortar round expand greatly and are cooled, giving up a considerably por- 
tion of their thermal energy to heat the walls of the tube and the round. 
A large heat exchange also occurs due to the slow movement of the round 
in the bore. 

The tube of the mortar is smooth-walled; therefore,  the forcing 
pressure is practically equal to zero and there are no expenditures of 
energy for the rotational movement of the mortar round. 

As a result of the presence of a gap between the round and the walls 
of the tube, a considerably portion of the gases  (10-15%) breaks through 
into this gap and their energy does not participate in imparting speed 
to the round while in the small arms the quantity of gases which break 
through is extremely insignificant. 
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Figure  10.    Curves of   the Pressure of Gases and 
Speed of Round   In the  Bore of an 82-mm Mortar When 
Firing at Maximum Charge. 

In accordance with these special features, the phenomenon of a shot 
from a mortar is divided into three periods  (Figure 10). 

1) The period from the moment of the combustion of the base charge to 
the breaking through of the holes in the walls of the cartridge cases 
and the escape of the gases into the space behind the round; this period 
is similar to the preliminary period of the shot phenomenon from small 
arms. 

2) The first period--from the moment of the combustion of the incre- 
mental charges and start of movement of the round to complete burning 
of the entire powder charge.    In mortars, the maximum pressure sets in 
at the end of the burning of the powder charge, consequently P       = P.. 

In firing at maximum charge from an 82-mm mortar, maximum pressure 
reaches 400-450 kg/cm2 and sets in when the round has covered a path 
of about 7 cm. 

3) The second period is from the complete burning of the powder charge 
to the moment that the round leaves the bore.    During this period, the 
movement of the round occurs under the influence of a constant quantity 
of freely expanding gases, For maximum charge, P. is about 50 kg/cm2 

and v. = 200-210 m/sec. 
d 

■28- 



A.    The Special  Features of Firing from a Jet-Powered Weapon 

A jet-powered weapon is a weapon in which the projectile moves under 
the influence of jet gases which arise during the burning of a powder 
charge which is located directly in the projectile.    In order to 
clarify how a round is fired in a jet weapon,  it is necessary to estab- 
lish the essence of the reactive force. 

L tttltltltj 

Figure U. The Pressure of 
Gases in a Closed Container. 

Let us imagine a container which is hermetically sealed on all sides 
and in which gases are located under some pressure (Figure 11). Since the 
pressure is the same on all walls of the container, the container re- 
mains stationary. If a hole is made in one of the walls of the container, 
the force which operates on the wall with the hole will be less than the 
force which is operating on the opposite wall since the area of the wall 
with the hole has become less. The gases which are located in the con- 
tainer under pressure greater than atmospheric pressure will begin to 
escape, creating an additional force on the wall which does not have the 
hole (Figure 12). The force which operates in the direction which is 
opposite to the escape of the gases is called the reactive force (jet 
force). With a sufficient amount of reactive force, the vessel is put 
in motion. 

The reactive force R is composed of two components. 

The first component represents a difference in the forces which are 
operating on the wall without the hole and on the opposite wall with the 
hole. Numerically, it equals the difference in pressures inside the 
container and outside it multiplied by the area of the hole: 

where R' is the component of the reactive force; 
p is the pressure within the container; 
p is the pressure outside the container (atmospheric); 

S is the area of the hole. 
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Figure  12.     Pressure of Gases   in a 
Container Having a Hole in One of the 
Walls. 

The second component arises as a result of the escape of the gases 
from the nozzle.    Its size depends on the mass of escaping gases and the 
speed of their escape.    The value of this component can be determined 
from the equation for the amount of movement of a body. 

As is known, a change in the amount of movement of a body (the dif- 
ference in the products of the mass of the body times the final and 
ihitial velocity of its movement) equals the force impulse (the product 
of the operating force times the time of its action): 

RJ = mu — mu0, 

where R., is the operating force; 

t is the time of operation of the force; 
m is the mass of the body on which force R- is acting; 

u is the final velocity of the body; 
u. is the initial velocity of the body. 

In this case, u is the speed of escape of the gases and u. = 0 

since prior to the start of the action of the forces, the speed of escape 
was equal to zero.    Consequently: 

from which 

but 

Rj = mu, 

D ^ mu 

m--, 

where G is the weight of the escaping gases; 
g is the acceleration of the force of gravity which equals 9.81 m/sec2, 

Then: 
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We designate 

^C- 
tec. 

where G   is the weight of the gases which escape per unit of time and is 

called the per-second [sekundnyy] expenditure of gases. 

Then: 

Force R- is directed in the direction of escape of the gases.    But 

according to the third law of mechanics, with the emergence of any force, 
an equal and opposite force to it must arise.    Consequently, with the 
start of the escape of the gases a force arises which is directed in a 
direction opposite to the direction of escape and equal  in value to force 

We designate it R". 

is composed of forces R' and R" 
direction: 

TTius, the reactive force is also a force which 

Since both these forces have the same 

/?=/?-f-/?* = (/> ^) j + Cie^ 
(2) 

Let us analyze formula (2) and we see which values the reactive force 
is dependent on and how.    The amount of the reactive force depends on: 

1) The pressure inside the container p.    The greater the pressure inside 
the container,  the greater the reactive force.    Consequently, in order to 
create  [Tr note--two words missing] a greater reactive force,  it is 
necessary to select that powder charge which would provide the greatest 
possible quantity of gases with the least possible volume in the combus- 
tion chamber (container). 

2) On the external (atmospheric) pressure p .    The less the external 
a 

pressure, the greater the reactive force.    Consequently,  in airless 
space the conditions for the movement of a rocket projectile are more 
favorable than in the air.    In practical calculations for projectiles, 
it is considered that in p-p    * p,  i.e.,  the amount of external pressure 
is not considered. 

3) The area of opening small s.    The  larger the area of the opening, the 
greater the reactive force.    However, a very large opening is unsuitable 
since, with an increase in the area of the opening, the escape of the 
gases will occur more rapidly than the formation of gases from the 
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burning of the powder charge, as a result of which pressure p will be 
reduced and,  consequently,  the reactive force.     In determining the area 
of the hole, we proceed from the requirements for an increase in pres- 
sure during the period of burning of the powder charge. 

4) The per second expenditure of gases G       .    The greater the per second 

expenditure of gases,  the greater the reactive force.    In turn, the 
per second expenditure of gases is directly proportional to the pressure 
inside the combustion chamber and the area of the hole. 

5) The speed of escape of the gases u.    The greater the speed of escape 
of the gases,  the greater the reactive force.    With the escape of the 
gases into an airless space, the speed of escape is greater since the 
escaping gases do not encounter the resistance of the air.    The speed of 
escape,  in turn, depends on the pressure of the gases within the com- 
bustion chamber as well as on the dimensions and shape of the hole through 
which the gases escape.    To increase the speed of escape of the gases, it 
is advantageous to have an expanding hole.    In rocket projectiles, this 
opening is called a nozzle. 

By theory and experiment it has been established that one of the 
most advantageous nozzle shapes is  Laval's nozzle  (Figure 13). 

The smallest cross-section of the nozzle is called the critical cross- 
section. 

As a result of a series of complex transformations, formula (2)  can 
be given the following final form: 

R^fsjt, (3) 

where R is the amount of reactive force in kilograms; 
*  is the coefficient which depends primarily on the.relation of the 

diameters of the exit and critical cross-sections of the nozzle (for 
Laval's nozzle,  -p  =  1.5); 

s.   is the area of the critical cross-section in cm2; 

p is the pressure of the gases inside the reactance chamber in 
kg/cm2. 

Consequently,  the basic factor which determines the amount of the 
reactive force with a given shape and dimensions of the nozzle is the 
amount of pressure  inside the reactive chamber.    Because at first the 
increase  in the quantity of gases occurs more rapidly than their escape, 
the pressure  in the gas chamber increases and at some moment achieves 
maximum value,     lor modern rocket projectiles, the maximum pressure 
P ,     * 200 kg/cm^.    Then,  the pressure of the gases is reduced until they 
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become equal to the external pressure and the escape of the gases stops. 
Thus,  the reactive force also increases quickly at first  to maximum value 
and then is reduced to zero with a cessation of the escape of the gases. 

Figure  13.     Rocket  Projectile and 
Laval 's Nozzle. 

The amount of maximum reactive force can be determined from formula 
(3). Assume there is a rocket projectile with a Laval nozzle whose area 
of critical Ci.oss-section s,   = 3 cm2 and p        = 200 kg/cm2. max 

Then; 
/?m« = Wm..;   /?m« = l,5-3-200-900 kg. 

The reactive force which is formed imparts to the projectile a for- 
ward motion in a direction which is opposite to the escape of the gases. 
In order to give the projectile a certain direction of flight,  it is 
placed on a guide rail.    With the combustion of the powder charge, a 
reactive force is formed and the projectile begins u   move.    The speed 
of movement of the projectile increases as the powder charge burns. 
The projectile acquires its greatest velocity v        at the moment when 

the reactive force becomes equal to the force of air resistance in ab- 
solute value.    But for approximate calculations, it can be considered 
that v .„ sets in at the instant of complete burning of the powder charge. 

The velocity of the projectile at the moment of its separation from the 
guide rail is called the velocity of separation v max Neglecting the 

projectile's friction against the guide rail   and the force of air resis- 
tance, one can determine approximately the velocity of separation v0 

and the maximum velocity v max 

If we take the value of the reactive force as a constant and equal 
to its mean value, the work of the reactive force on the path which 
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equals the length of the guide rail will equal the kinetic energy of 
of the projectile at the moment of separation: 

where R  is the mean value of the reactive force; it is usually taken cr 

as  R  = 4 R cr  3 max; 
/  is the length of the guide rail in meters; 
q is the weight of the projectile in kg; 
g is the acceleration of gravity which equals 9.81 m/sec2; 
v_ is the separation velocity. 

F-rom this, it follows that: 

^=|/??S'*. C4) 

Example. Determine the velocity of separation of a rocket projectile 
the following conditions: 

Solution. We determine R 

under the following conditions: R   = 900 kg, Z = 2 m, q = 4 kg. 

cr 

/?cr==T/?m"J  /?cr = 4,9C0==600 k8- 

We determine v.; 

•   '-Wer'«     ,/ 2GO0-2.9.81     „„/... 1-0= |   —• — = y ^ as 77 m/sec. 

To determine the approximate value of v  , we use the equation for 

the quantity of motion. Since we accepted that the velocity achieves the 
value v   at the moment of complete burning of the powder charge it can 

be considered that the product of the mean value of the reactive force 
times the time for the complete burning of the powder charge (force im- 
pulse) equals the product of the weight of projectile times the velocity 
at the moment of completion of burning of the powder charge divided by 
gravity acceleration (amount of movement): 

■Vc = — W 

where t is the time for the complete burning of the powder charge in sec; 

q  is the mean weight of the projectile (between its weight at 

the start of the burning of the powder charge and at the end of the 
burning in kg; 
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v   is the maximum velocity of the projectile in m/sec. max /      r    •' 

From this it follows that: 

max 

R    t g cr c6 

icr 
(5) 

Example.    Determine the maximum velocity of a rocket projectile 
under the following conditions:  R 

Solution: 

max 

cr 

R    t g cr c6 

'cr 

600 kg,  tc = 0.1  sec, qcr = 3.75 kg. 

600'0.1'9.81 
3.75 157 m/sec. 

After attaining velocity v      , the rocket projectile moves in the 

air just as a regular projectile does, i.e., experience air resistance 
and the effect of gravity. 

5.    The Strength and Durability of the Barrel 

During the firing of a shot, a very great pressure of the powder 
gases is formed on the walls of the barrel which should withstand this 
pressure without being subjected to swelling or bursting.    Since the 
pressure on the walls of the barrel may fluctuate within certain limits 
and, sometimes, under the influence of external conditions may be in- 
creased considerably, the barrel should have a certain reserve of strength. 
Reserve of strength means the relation of the maximum allowable pressure 
at a given cross-section of the barrel to the pressure of the powder 
gases at this same cross-section which has been calculated or found by 
experiment.    Usually, the reserve of strength is established  equal to 
1.5-2 at the given cross-section.    Therefore,  in the breech end of the 
barrel where the pressure is greater, the walls of the barrel are thicker. 
However, the thickness of the barrel walls is not determined by the 
amount of pressure of the powder gases alone;  significance is also had 
by the resistance of the barrel to bending in case of chance blows; 
therefore, the walls of the barrel are also thickened at the muzzle end. 

If the pressure of the powder gases is within the limits of the 
value for which the strength of the. barrel has been calculated, the barrel 
is only subjected to elastic deformations, i.e., under the effect of the 
pressure the barrel expands along the circumference and, with cessation 
of the pressure,  it assumes its initial dimensions.    If the pressure of 
the powder gases for some reason exceed the value for which the strength 
of the barrel has been calculated, the barrel may receive residual 
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deformation, i.e., the expansion of the barrel along its circumference 
may remain after cessation of the pressure too. Such a phenomenon is 
called bulging of the barrel.  In the majority of cases, bulging is 
obtained when foreign objects land in the barrel (oakum, rag, sand, 
soil and others). In striking the foreign object, the bullet slows 
its movement.  With the slowing down in the motion of the bullet, the 
gases which are following the bullet are repelled from its base and 
receive reverse motion. With a clash of the gases which are moving in 
opposite directions, a pressure bound is created which exceed the value 
for which the strength of the barrel was intended; the bulging of the 
barrel occurs and, sometimes, its bursting (Figure 14). 

In addition, in the operating process the barrel is subject to 
erosion.  All the reasons which case barrel erosion can be divided into 
three basic groups. 

Foreign 
objects 

Figure \k.     Bulging of the Barrel. 

1. Causes of a mechanical nature. The periodic expansion of the bore 
and its return to its initial size which occurs periodically changes the 
mechanical qualities of the metal and a network of shallow cracks is 
formed on the surface of the bore which embraces a larger and larger 
surface with an increase in the number of shots. When the bullet cuts 
into the rifling grooves, erosion of the bullet chamber occurs as a 
result of the great friction. The movement of the bullet along the 
bore causes the chipping of the metal in the cracks. The stream of 
escaping powder gases has the same effect on the muzzle end of the barrel 
as does the bullet which is cutting into the bullet chamber. 

2. Causes of a thermal character. The high temperature of powder gases 
(almost twice the melting temperature of steel), because of the very 
brief time of effect, causes only a partial fusing of the surface of 
the walls of the bore. The particles of fused metal are removed from 
the bore by the stream of powdered gases.  In addition, as a result of 
the rapid and sudden change in temperature, the expansion and compression 
of the barrel occurs which leads to a deepening of the cracks which have 
been formed. 

3. Causes ot a chemical nature.  Fouling which is formed during firing 
has a great effect on barrel erosion.  The amount of fouling in the barrel 
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depends on the number of shots and the qualitative condition of the 
barrel.    The greater the number of shots fired and the worse the con- 
dition of the barrel, the more fouling that remains.    This can be seen 
from a table prepared by V. N. Podduben on the basis of tests which 
he has conducted  (Table  1). 

TABLE  1 

Number of Quantity of Fouling, mg 

shots In a barrel 
not affected 
by sealing 

In a barrel 
affected by 
sealing 

10 
25 

100 

39.9 
48.0 
60.0 

56.1 
100.4 
178.3 

The fouling consists of soluble (12-25%) and insoluble (88-75%) 
substances. The soluble substances represents salts which are formed 
during the burning of the striking compound of the primer, primarily 
potassium chloride. The insoluble substances are tombac which is torn 
from the jacket of the bullet; lead which is melted from the base of the 
bullet; tin from the melted foil which covers the striking compound of 
the primer; copper and brass from the cartridge case; iron which is 
torn from the bullet; and ashes which are formed in the burning of the 
powder charge. The soluble salts absorb moisture from the air. The 
solution which is formed causes corrosion. Thus, corrosion occurs 
primarily as a result of the products of decomposition of the striking 
compound of the primer. Moreover, in the presence of salts the copper, 
brass, and tombac form a galvanic element with the iron, as a result of 
which rust is intensified and pits are formed in the barrel. The pre- 
sence of cracks in the barrel in turn intensifies the rusting process. 

All these reasons cause a change in the surface of the bore and 
lead to an expansion of the bore, especially in the muzzle end and at 
the bullet chamber, a consequence of which is the poor centering of the 
bullet in the barrel and a drop in muzzle velocity. And this leads to 
a considerable increase in dispersion, incorrect flight of the bullet, 
and a reduction in range. 

If a 10% loss in the velocity of the bullet is obtained in firing 
from a given barrel, the barrel is considered unsuitable for further 
firing. 

In practice, an indication of such erosion of the barrel is the 
breaking away of the bullet from the grooves or the dispersion of the 
bullet which exceeds the norms established by the rules for checking 
the shooting of a weapon. 
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The number of shots after which a barrel is considered completely 
unserviceable determines the durability of the barrel. The durability 
of a rifle barrel is 10-12 thousand rounds, and of a chromed barrel-- 
up to 30 thousand rounds. 

In automatic weapons, from which prolonged intense fire is conducted, 
it is necessary to cool the barrel from time to time. For this purpose, 
spare barrels are applied to the machineguns, in which respect the 
weapon is designed in such a way that the barrel can be replaced easily. 
In automatic weapons intended for the conduct of intensive fire, the 
barrels are made massive to assure a slower raising of the temperature 
of the barrel walls in firing, the surface is increased (for example, 
the barrel is made ribbed) for the better release of heat to the outer 
atmosphere, and special cooling is also employed. 

An increase in the durability of the barrels may be achieved: 

--in manufacture--by the thorough processing of the surface of the 
walls of the bore, by making the barrels from high-quality metal, by- 
chroming to increase the hardness of the surface of the bore, by the 
employment of powders with a lower burning temperature, and by the em- 
ployment of a non-corrosive striking compound for the primer; 

--in operation--by observation ofthe correct firing regime, by thorough 
care of the weapon, by eliminating the reasons which cause the bulging of 
the barrel, and by the timely and correct cleaning and oiling of the 
weapon. 

Cleaning has the purpose of removing the fouling from the bore. 
Since the basic cause of rust is the presence of soluble salts in the 
barrel, the cleaning of the weapon should be performed immediately after 
firing; otherwise, the appearance of rust is inevitable. In an extreme 
case, if conditions are such that the weapon cannot be cleaned immediately 
after firing, it is necessary to oil the barrel so as to prevent the 
penetration of water to the surface of the bore. 

The cleaning of the barrels is performed with an alkali compound 
until the fouling is completely removed. To clear the insoluble sub- 
stances, a stiff bristly brush is used with which the fouling is loosened; 
after this, the bore is cleaned with oakum.  If the barrel is covered 
with moisture (dew) when carrying it in from the cold to a warm room, 
one should not wait until the drops of moisture dry since, during this 
time, the formation of salt solutions occurs — cleaning should be brjMin 
immediately. After cleaning, the barrel is wiped dry and then is 
1ightly oiled. 
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With the correct care of the barrel, one can avoid rusting and, 
consequently, the formation of scales and pits. 

6. Muzzle Velocity of a Projectile 

As a projectile moves along the bore, its velocity continuously 
increases, and, at the moment of separation, reaches the value v., which 

can be determined by interior ballistics methods.  If the period of the 
aftereffects of the gases was absent, then after the departure of the 
projectile from the bore its velocity would begin to decrease under the 
effect of the force of air resistance.  But, during the period of the 
aftereffect, the velocity of the projectile continues to increase some- 
what under the pressure of the gases which are escaping from the barrel, 
reaching the value v  , and then it begins to fall under the effect of 6 max 6 

the forces of resistance of the air. But, because it is difficult to 
calculate the period of aftereffects and the size of the sector on which 
the aftereffects of the gases affect the increase in velocity is insig- 
nificant (up to 50 cm for small arms) we have not yet succeeded in de- 
termining precisely v 6 r     1    max 

The question arises: what value should be taken as the muzzle 
velocity for the movement of a projectile? For great clarity, let us 
consider t).«' . . ^ram which is shown in Figure 15.  The solid line on 
this diagia.. r.ows the change in the velocity of the projectile first 
in the bore and then on the sector of aftereffects and then in the air. 
If we consider the sector of aftereffects as absent and take v. as the 

d 
muzzle velocity considering that at the moment that the projectile 
leaves the bore the air resistance force begins to act on it, the curve 
of the projectile's velocity in the air turns out to be lower than the 
actual velocity  (in the diagram,  this is shown by the broken line with 
the dots), which distorts the ballistic calculations.    Therefcre,   it 
was stipulated that we take as the muzzle velocity v^ that velocity 

at the muzzle face which, under the effects of the air resistance,  would 
coincide with the actual velocity (broken line) beyond the sector of 
aftereffects. 

Figure   15.     Principle of Selection of   the 
Muzzle Veloci ty  v.. 
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Consequently, to determine the muzzle velocity it is necessary to 
determine the amount of the projectile's velocity at any point A 
which is located beyond the sector of aftereffects but which is not 
very far from the muzzle face and then, considering the effect of air 
resistance, continue (extend) the curve to the muzzle face. The ve- 
locity which is obtained at the muzzle face is also taken as the 
muazle velocity. 

To determine the velocity of a projectile at any point in air, 
special instruments are used--chronographs. The essence of determining 
the velocity of a projectile using a chronograph consists of the 
following (Figure 16). Two target frames A and B connected with the 
chronograph X by means of an electrical circuit are set up at a certain 
distance from each other. The target represents either a wooden frame 
with wire stretched across it (for artillery systems) or a foil target 
glued on paper (for small arms). For small arms, a muzzle clamp with 
a wire interruptor is usually used in place of the first target frame. 
When the first target frame (wire interruptor) is pierced, the chrono- 
graph is automatically turned on and it is automatically turned off 
when the second is hit. 

Figure 16. Diagram of Velocity Determination 
With the Chronograph. 

The projectile's time of flight between the two target frames is 
determined from the chronograph readings. Knowing the distance be- 
tween the target frames and taking the movement on this sector as uni- 
form (since the sector which is selected is small), one can determine 
the velocity of the projectile at the middle of the distance between the 
target frames from the formula: 

^'cr^T (6) 
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where v      is the mean velocity of the projectile on the sector between 

the two target frames; 
s is the distance between the target frames; 
t is the projectile's time of flight between the target frames. 

For example,  assume that the distance s between the target frames 
equals 50 m.    The chronograph showed time t = 0.064 sec.    Then the 
velocity of a bullet 25 m from the muzzle base will be: 

vii — ~r;='o.vSi = 761  m/sec. 

Having determined the velocity of a projectile at a given point 
using formulas which consider the effect of the air resistance, we com- 
pute the amount of muzzle velocity.  It has been calculated that, for 
small arms, the muzzle velocity of a bullet is 1.025 times greater than 
its velocity 25 m from the muzzle base. 

Consequently, the value for the muzzle velocity of a bullet is de- 
termined from the formula 

fo= 1,025.»„• C7) 

Let us now determine the muzzle velocity of a bullet, considering 
that, as shown above, the muzzle velocity of a bullet 25 m from the 
muzzle face equals 781 m/sec: 

v0 = 1.025; vu = 1,025 • 781 ^ 800 m/s ec. 

When firing from mortars, where the effect of the period of after- 
effects is immaterial, we take as the muzzle velocity, the velocity 
which the mortar round acquires at the moment of departure from the 
tube. 

The value of the muzzle velocity is one of the basic ballistic 
characteristics of a weapon. When the muzzle velocity is increased, 
there is an increase in the projectile's range of fire, effectiveness 
of fire, and the penetrating and lethal force of the projectile.  For 
weapons with a low trajectory of fire, the greater v- the flatter the 

trajectory which is attained with equal angles of elevation. 

The amount of muzzle velocity depends on many factors. The basic 
factors are the following: 
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1. Weight of projectile. The amount of muzzle velocity is decreased 
with an increase in the weight of projectile with the same charge and 
is increased with a reduction in the weight of projectile. 

For example, a light bullet Model 1908 weighs 9.6 g and receives 
a muzzle velocity v = 865 m/sec with a weight of charge of 3.25 g; 

an armor-piercing bullet weighing 10.6 g with the same weight of charge 
receives a muzzle velocity v0 = 810 m/sec. A 82-mm fragmentation mortar 

round with fuze M-5 weighs 3,1 kg and a smoke round with the same fuze 
weighs 3.4 kg; therefore, the muzzle velocity of a smoke round is some- 
what less than that of a fragmentation round. 

2. Weight of charge.  The muzzle velocity increases with an increase 
in the weight of the charge with the same projectile weight. Thus, when 
firing from mortars, the muzzle velocity of the mortar round changes with 
the employment of the incremental charges. Table 2 presents the relation 
of the weight of charge, muzzle velocity, and range of fire for 82-mm 
ten-finned [desytiperyy] mortar rounds. 

TABLE 2 

1 Designation of 
1 Charge 

Weight of 
charge, g 

Muzzle ve- 
locity, m/sec 

Greatest range 
of fire, m 

1 
1 Base charge  

! Charge 1 (base 
charge + 1 in- 

■ crements  

8 

21.5 

35 

48.5 

70 

132 

175 

211 

'♦75 

1,505 

2,355 

3,040 

1 Charge 2 (base 
charge + 2 in- 
crements   

Charge 3 (base 
charge + 3 in- 
crements   

1 

3.  Length of bore. The muzzle velocity increases with an increase 
in the length of the bore since the projectile is fubjected to the 
effect of the gas pressure for a longer time. However, the increase 
in muzzle velocity with an increase in the length of the bore occurs 
up to certain limits. With a very large bore length, it may turn out 
that the force of action of the powder gases on the projectile will 
become less than the resistance to the movement of the projectile in 
the bore; in this case, the velocity of the projectile will begin to 
drop. 
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*».    Speed of burning of the powder.     The faster the speed of burning 
of the powder, the more rapidly the pressure of the gases on the pro- 
jectile increases and, consequently,  at first the velocity of the pro- 
jectile's movement in the bore increases more rapidly.    For a rapidly 
burning powder, the maximum pressure is greater and sets in earlier than 
for a slowly burning powder.    But, with the use of a slow burning powder 
the drop in pressure after the maximum occurs more slowly; therefore, 
for a weapon with a long barrel a slow burning powder may provide a 
greater muzzle velocity than a fast burning powder (Figure 17).     A fast 
burning powder is advantageous for a weapon with a short barrel   (pistols, 
machine pistols). 

P kg/cm^ 

 fast burning 
powder 
slow burning 
powder 

Figure 17.  Curves of the Pressure of Gases 
and the Change in Velocity in the Bore for 
Fast and Slow Burning Powders. 

7,  Recoil.  Formation of the Angle of Jump. 

The powder gases which are formed during firing press in all direc- 
tions with the same force1. The pressure on the walls of the barrel 
leads to the elastic deformation of the barrel and the pressure on the 
bottom of the projectile and on the bottom of the cartridge case causes 

actually, the pressure on the base of the projectile and the pressure 
on the base of the cartridge case are somewhat different. However, for 
our calculations this difference can be neglected. 
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a forward motion of the projectile and the barrel. 

The motion of the barrel and the parts connected with it (weapon) 
in a direction opposite to the movement of the projectile during the 
firing and under the effect of the pressure of the powder gases is 
called recoil (kick). 

In the recoil phenomenon, we are interested in its velocity and 
energy as well as the nature of movement of the weapon. 

Since the projectile and the weapon move in opposite directions 
under the effect of an internal force (pressure of the powder gases), 
for any moment of movement we can write on the basis of the law of the 
amount of movement 

MV =-- mv, 

where M is the mass of the weapon; 
V is the speed of recoil; 
m is the mass of the projectile; 
v is the velocity of the projectile. 

Replacing M by Q/g where Q is the weight of the weapon and m by 
q/g where q is the weight of the projectile, we determine the speed of 
recoi1: 

ir    "w _ we 
V~  M  - Qg 

and, reducing it by g, we obtain: 

V = ^-. (8) 

But this formula expresses the phenomenon imprecisely since the 
powder charge which has not been considered here participates in the 
movement.  It can be considered that half the charge displaces in the 
direction of the projectile and half in the direction of the weapon; 
but since the weight of the charge is insignificant in comparison with 
the weight of the weapon, we add half the weight of the charge only 
to the weight of the projectile. The formula takes the form: 

V     ,_ jg ± 0^5,^')v CQ-) 
recoil ~ Q        ■ ^} 

However, this formula can be used to determine the speed of recoil 
of the weapon only up to the moment where the projectile has not yet 
left the bore.  When the projectile leaves the bore, the gases which 
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are escaping from it, operating reactively on the barrel, increase the 
speed of backward movement of the weapon. This effect is considered 
with the coefficient 0 which is determined by the empirical formula. 

3=—. (10) 

With consideration of coefficient ß, the formula expresses the 
greatest speed of recoil of the weapon and has the form: 

recoil Ö • (11) 

Example.    Determine the speed of recoil of a carbine Model 1944 
when firing with a bullet Model  1908.    The weight of the bullet q = 
= 0.0096 kg; the weight of projectile u = 0.00325 kg; the weight of 
the carbine Q = 3.9 kg; the muzzle velocity of the bullet  v0 = 820 m/sec. 

Solution.    We determined the value 3: 

.  1275 .., 
' = w * 1•^5■ 

We substitute the known data in the formula 

w                        (q j- pu.) f0         (0,n00r,+1,00,00321) 820       ,,„,/.-- 
recoi 1    = Q "  3TÜ "" ^   ■ "i/sec. 

Knowing the speed of recoil, we can determine the maximum energy 
of the recoil as the kinetic energy of the weapon: 

trecoil - IT' U J 

Example. The conditions are the same as in the preceding example. 
Determine the energy of recoil of the carbine. 

So,ution-      E      ^" ^..a.i. lu, 
recoil - 2g'~  i.y.Hj'*'^ k8,n- 

If it is necessary to compute the recoil energy immediately with- 
out the preliminary determination of the speed of recoil,   its value 
from formula (11)   is substituted in formula  (12)   instead of V «. ./ . / rec 

After reduction, we obtain. 

E       (y + M't'g 
recoil -   2Qg      • (u) 
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From formulas (12) and (13), the recoil energy is determined for 
a non-automatic weapon. The determination of the recoil energy for 
automatic weapons is more complicated since it is necessary to con- 
sider additional factors.  For example, in automatic weapons which 
operate on the principle of using the energy of a portion of the gases 
which are drawn off through an opening in the bore, the recoil pheno- 
menon is made more complicated by the escape of the gases and the 
start of movement of the moving parts at different times. The recoil 
of the entire weapon begins at the moment that the projectile begins 
to move; the movement of the gas piston rod with the breech block 
carrier relative to the weapon begins with the escape of the gases 
through the opening; then the movement of the bolt with the cartridge 
begins, etc.  As a result of such a complexity of the phenomenon, the 
employment of formulas (12) and (13) for these types of weapon do not 
provide a true picture.  In automatic weapons which are operating on 
the principle of the use of recoil, the employment for formulas (12) 
and (13) is possible for the determination of the energy of the free 
recoil of the moving system (not absorbed by springs).  In this, the 
value Q should only include the weight of the moving parts of the 
weapon. The energy of the recoil which is operating against the rifle- 
men (mount) in these systems may be considerably less than in non- 
automatic weapons because, in addition, it is used for the operation 
of the mechanisms and various devices (shock absorbers) are used to 
absorb the recoil. 

When firing from a non-automatic weapon, in particular from a 
Model 1944 carbine, the recoil energy turns out to be only a harmful, 
action since it is received by the shoulder of the riflemen, and, 
naturally, fatigues him under prolonged firing. Therefore, the striving 
to reduce the amount of recoil where possible and establish limits of 
the allowable amount of recoil energy for each type of weapon is under- 
standable. Thus, the amount of recoil energy received by the shoulder 
of a rifleman should not exceed 2 kg/m. 

When firing from a mortar, the recoil is received by the base plate. 
Since the weight of the charge is insignificant not only in comparison 
with the weight of the barrel but also in comparison with the weight of 
the mortar round, it need not be considered in determining the speed 
and energy of recoil. Consequently, the determination of the speed and 
energv of recoil of the mortar may be performed using formulas (8) and 

(12).' 

Example.  Determine the speed and energy of recoil of an 82-mm 
mortar when firing at maximum charge under the following conditions: 
weight of cube Q = 19 kg, weight of mortar round q = 3.1 kg, muzzle ve- 
locity of the mortar round v = 211 m/sec. 
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Solution.     1.    We determine the speed of recoil: 

recoil   J -Q- - -jy— = 3-1,1   m/sec. 

2.    We determine the energy of recoil: 

E ^''OTI     10-34.4'     „=ft t,_ 
recoil = -ä^~ = Ty^r * lu0 kgTn- 

Such a large quantity for the energy of recoil  requires the careful 
emplacement of the base plate so that the energy received by the plate 
is distributed uniformly over the entire surface of the area beneath 
the plate. 

The question of the amount of recoil energy has great significance 
in designing a weapon.     From formula (13),  it can be seen that the re- 
coil  energy can be reduced by a reduction in the muzzle velocity of the 
projectile v_ but this  is disadvantageous since it  leads to a worsening 

in the ballistic properties of the weapon;  the recoil energy may be re- 
duced by increasing the weight of the weapon Q but this  also is dis- 
advantageous because it worsens  the maneuver properties  of the weapon; 
the change in the amount of weight of the projectile q  and the weight of 
the charge u in turn also causes a reduction in the muzzle velocitv. 
Therefore, in designing a weapon all conditions are considered and a 
combination of the values v-, Q, q and w is selected so as to obtain the 

most advantageous ballistic properties of the weapon while, at the same 
time,  not increasing the recoil energy above the allowable value. 

In addition, there are design methods for reducing the recoil energy. 
These include the employment of muzzle brakes. Muzzle brakes are de- 
vices which are connected to the muzzle end of the barrel and which 
serve to reduce the recoil energy. 

Muzzle brakes are active,  reactive,  and of combined action (Figure 18) 

A muzzle break of active action has  a forward wall with a rather 
large surface.    The gases which are escaping from the bore press against 
this wall and thereby create a force which is directed in a direction 
opposite to that of the recoil,   i.e., the speed of recoil is reduced. 

A reactive action muzzle brake is designed in such a manner that a 
portion of the gases which are escaping from the bore land in an opening, 
the edges of which are cut with an angle to the rear.    Thanks to the pre- 
sence of the: e openings,  the direction of movement of the gases is 
changed and a component of reactive action is created which is directed 
in a direction opposite to the  recoil,  i.e.,  the speed of recoil  is  re- 
duced. 
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Figure 18. Muzzle Brakes: 
a, Active action; b, Reactive 
action; c, Combined action. 

In addition, in brakes of both types described the speed of recoil 
is reduced as a result of the fact that a portion of the gases is drawn 
off through the openings to the side and does not participate in the 
reactive effect of the gases on the barrel. 

A muzzle brake of combined action combines the principle of action 
of the active and reactive brakes. 

The muzzle brakes absorb up to 30-40% of the recoil energy. They 
find wide application in artillery and in large-caliber small arms. 

The shortcomings of muzzle brakes include the following: 1) the 
flow of powder gases is deflected toward the rifleman; 2) the sharpness 
of the sound of the shot is increased; 3) the weapon is given away by 
the dust raised by the gases which strike the surface of the ground. 

The recoil leads not only to the movement of the weapon along the 
axis of the bore but also to the deflection of the axis of the bore 
from its initial direction.  In order to clarify the principle of this 
phenomenon, let us consider Figure 19. Force P. which is caused by the 

recoil of the weapon is directed along the axis of the bore in the 
weapon's direction of movement.  If two forces, P» and P_ are applied 

to the center of gravity which are equal to value to force P. and are 

directed in a mutually opposite direction, forces P, and P- form a pair 

of forces which forces the gun to be deflected with the muzzle end 
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upward while force P, gives the weapon a rectilinear movement to the rear. 

Such a situation occurs in the case where the weapon has a fastening 
point only at the center of gravity. Under actual conditions the rifle- 
man, bracing the butt against his shoulder (Figure 19b), thereby counter- 
acts force P. and, since the distance between the axis of the bore and 

the line for the application of the counteraction force P. is somewhat 

greater than the distance from the axis of the bore to the center of 
gravity, the rotational moment is also increased somewhat in this case. 

.--„v-TWL ■"'JfesJA ^-^xSc^r-Zi 

£üSä^% Hrrn r iLz-äu; 

p^e IZCMT^r. 

Figure 19.  Diagram of the Effect of Recoil 
Force: a, When fastening the weapon at the 
center of gravity; b, When bracing the weapon 
against the shoulder. 

Thus, during the shot the weapon is deflected with the muzzle end 
of the barrel upward and, at the moment of separation of the projectile, 
the direction of the axis of the bore does not coincide with the initial 
direction. The greater the arm of couple, the greater the amount of de- 
flection of the muzzle end of the barrel. 

In addition, vibration of the barrel has an effect on the amount of 
deflection of the muzzle end of the barrel from its initial position. 
The barrel represents a rod which is fastened at one end. With the move- 
ment of the projectile, the barrel accomplishes oscillating movements-- 
it vibrates. When separating from the barrel, the projectile receives 
a direction depending on the position of the muzzle end of the barrel 
and on the speed of the oscillating movement of the end of the barrel at 
the moment of separation. 

The combination of the effect of the vibration of the barrel and the 
recoil of the gun leads to the formation of the angle of jump. 
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The angle of Jump y is the angle which is formed by the line of 
direction of the axis of the bore of a gun which is aimed prior to the 
shut and the line of direction of the sane axis at the moment that the 
projectile leaves the bore.    The angle of jump is considered positive 
when the axis of the bore at the moment that the shell leaves is higher 
than its position prior to the shot and negative when it is lower. 
The value for the angle of jump which is indicated in the firing tables 
is an average value which has been obtained experimentally.    In some 
weapons systems, the value of the angle of jump fluctuates only incon- 
siderably near zero value, receiving positive as well as negative values; 
in this case, the value for the angle of jump is taken as equal to zero. 
Such a situation is observed in the carbine and the light machinegun. 

The presence of an angle of jump with weapons systems from which 
single shots are fired cannot be considered a shortcoming since the angle 
of jump does not affect the shooting of the weapon when a constant value 
is maintained.    A worsening in the results of the firing will occur in 
the case where the value of the angle of jump changes from shot to shot. 
A change in the value of the angle of jump may occur as a result of the 
non-uniform assumption of the firing position for the weapon (change in 
the arm of couple).    Therefore, one of the basic tasks in teaching 
firing  is teaching the correct and uniform assumption of firing position 
with the weapon. 

In firing continuous fire from an automatic weapon,  the very presence 
of the angle of jump leads to a disruption of the normal  firing conditions. 
If, at the moment that the first bullet leaves the barrel, the axis of 
the barrel is deflected by a certain angle from the initial position, then 
with the next shot the deflection takes place from the new position of 
the axis of the bore, etc.    Thus, when firing from a machine pistol M-1941 
which has a positive angle of jump (deflection upward),  one can notice 
how the muzzle end of the barrel rises higher and higher.    To eliminate 
this disruption,  it is necessary to create conditions under which the 
axis of the bore returns to the initial position after each shot.    Special 
constructional devices are used for this purpose--compensators.    In the 
M-1941 machine pistol, the compensator represents a continuation of the 
casing in the upper wall of which an opening has been cut out  (Figure 20). 
The gases which escape from the barrel press against all the walls of the 
compensator.    The pressure on the forward wall reduces recoil  (the prin- 
ciple of an active muzzle brake) and the difference in pressures on the 
continuous lower wall and on the upper wall with the opening leads to the 
reactive movement of the compensator and, with it, of the entire muzzle 
end of the weapon barrel downward.    Sometimes, the forward wall of the 
compensator is made inclined to increase the quantity of gases which are 
excaping into the upper opening.    Thus, the compensator brings the axis 
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of the bore after each shot closer to the initial position, as a result 
of which the close pattern of the shooting is Increased. 

Figure 20. Compensator. 
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CHAPTER IV 

INFORMATION ON EXTERNAL BALLISTICS 

External ballistics studies the movement of a projectile in the air 
after cessation of the action of the powder gases on it. As was mentioned 
above, the sector of the aftereffect of the gases on the projectile is 
very small and is difficult to compute; therefore, external ballistics 
studies the movement of a projectile in the air from the moment that it 
leaves the bore until it impacts with the target (obstacle). 

Two forces have an effect on the projectile during its flight in 
the air: gravity and air resistance. The basic task of external ballis- 
tics is the study of the movement of a projectile under the influence of 
these two forces. The movement of the projectile is calculated as the 
movement of a material point which coincides with its center of gravity, 
considering the weight of the projectile as concentrated in this point 
and that all forces which act against the projectile are applied to 
this point. Consequently, we take as the trajectory of a projectile 
a line which is described by the center of gravity of the projectile in 
flight. 

The task of external ballistics also includes consideration of the 
rotational effect of the projectile, the change in the elements of the 
trajectory depending on various factors, the compilation of firing 
tables, and a number of other special tasks. 

In order to obtain a sufficiently complete picture of the movement 
of a projectile in the air, it is necessary to consider the very large 
number of various factors, the simultaneous consideration of which is 
extremely complex. Therefore, we will begin with a consideration of 
the movement of a projectile under the simplest conditions, assuming 
that gravity alone has an effect on the projectile during flight (the 
projectile appears to fly in airless space); then we will explain the 
essence of the air resistance force and its effect on the projectile; 
next, we will consider the rotational movement of the projectile and. 
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finally, we will explain the effects, on the flight of the projectile, 
of various conditions which differ from normal conditions. 

I, The Movement of a Projectile Under the Effect of Gravity 

The Trajectory and Its Elements 

If we imagine that, after the projectile leaves the bore, no forces 
act on it the projectile will move on inertia, maintaining the speed and 
direction of movement acquired in the bore, i.e., it will accomplish 
uniform and straight-line movement. The path covered by the projectile 
in any interval of time t would be determined from the formula 

s = vJ. 

Figure 21. The Formation of a Trajectory 
In Airless Space Under the Effect of Gravity. 

We take as the point of separation 0 the center of the muzzle face 
of the barrel and we place the origin of the coordinates on it (Figure 21) 
Assume that the projectile has been ejected with muzzle velocity vn 

and, in firing, some angle 0O between the line of direction of the axis 

of the bore and axis OX is formed: then, in the absence of any effect on 
it, at some moment in time the projectile would be at point A, and 
segment OA = v-t. But since the projectile is being acted on by gravity, 

under the influence of which the projectile is lowered by the value 
H = gt2/2 relative to line OA at each moment of time (i.e.,  by the value 
of the free fall of a body under the influence of gravity), actually, 
at a given moment of time t the projectile is not at point A but at 
point C which is located beJow A by the amount of gt2/2. 
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The position of the projectile at a given moment In time can be 
determined by knowing Its distance from axis OX and how much It Is 
above this axis or, in other words, by knowing the coordinates of 
point C (x,y). 

Wo determine the desired coordinates from an examination of tri- 
angle OAB. 

or (14) 
.v^-xVcosO,,; 

y - ßC =■- BA   - CA -= CM si n 0U - CA 
or 

et* 
y — vj sin "o — V • 

2 (15) 

Thus, knowing vQ and 0« from formulas (14) and (15) we can deter- 

mine the position of the projectile for any given moment of time t. 

From formula (14), let us determine the value t: 

t = —L-r (16) 

and we substitute the obtained value in (15): 

., __ JV^jne, gx* 
' i-oCo-Bo      2i'Jco5»90" 

Performing a reduction and transformation, we obtain 

y * xtane. s^— n?"» 

Formula (17) expresses the dependence between x and y for any point 
of the trajectory and is called the equation of the trajectory in airless 
space. Knowing the equation of the trajectory and the given values 
v and 0 , we can construct a graph of the trajectory, assigning values 

for x at certain intervals. 

Example. Construct the trajectory of a 82-mm mortar round which 
)een fired ; 

air resistance) 

has been fired at 6 = 458 and v. = 70 m/sec (without consideration of 
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Solution. For convenience in computations, from formula (17) we 
determine the constant value: 

.^?" äW'W« m0m 

Then 

with Xj - 50 m:   y1  = 50*1-50 «0.002 = 45 m; 

with x2 - 100 m: y2  - 100'1-1002'0.002 = 80 m; 

etc. 

We reduce the data which have been obtained to a table; 

X,     M 50 100 ISO 200 250 300 350 •100 450 500 

y,   M 45 80 100 120 125 120 100 80 45 0 

From the values of x and y which have been obtained, we construct 
the trajectory at a certain scale (Figure 22). 

As can be seen from Figure 22, in this case the projectile's tra- 
jectory turned out to be symmetrical relative to the maximum ordinate. 
An investigation of the trajectory equation shows that, in airless 
space, the trajectory is a symmetrical curve--a parabola. Therefore, 
the theory of the projectile's movement in airless space (i.e., without 
consideration of air resistance) is called the parabolic theory. 

m    SOB 

Figure 22. The Trajectory of an 82-mm 
Mortar Round In Airless Space. 

For the further study of the trajectory, it is necessary to provide 
a definition for its basic elements (Figure 23). 
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Figure 23. The Trajectory and Its Elements. 

Point of departure 0--the center of the muzzle face of the barrel. 

Weapon horizon--the horizontal plane which passes through the point 
of departure (on drawings, the weapon horizon is designated by the hori- 
zon line). 

Summit of trajectory S — the highest point of the trajectory above 
the weapon horizon. 

Point of fall (tabular) C--the point of intersection of the trajec- 
tory with the weapon horizon. 

Ascending branch 0S--the portion of the trajectory from the point 
of departure to the summit. 

Descending branch SC--the portion of the trajectory from the summit 
to the point of fall (tabular). 

Height of trajectory MN,y--the shortest distance from any point on 
the trajectory to the weapon horizon; the maximum ordinate KS, Y is the 
greatest difference in height and the shortest distance from the summit 
of the trajectory to the weapon horizon. 

Line of elevation OV—a straight line which is a continuation of 
the axis of the bore of a gun which has been laid. 

Line of departure 0B--a straight line which is a continuation of 
the axis of the bore at the moment of the projectile's departure (the 
tangent to the trajectory at the point of departure). 

Horizontal range OM, x--the horizontal projection of the path of 
the projectile to an arbitrary point. The complete horizontal range 
OC, X--the distance from the point of departure to the point of fall 
(tabular). 
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Angle of elevation / COV, 4>--the angle formed by the weapon horizon 
and the line of elevation.    When firing from above to below, caces are 
possible where the line of elevation will pass below the weapon horizon. 
In this case, the angle of elevation is called the angle of depression, 

Angl; of slope of the tangent / FNE, ö--the angle which is formed 
by the horizontal plane and the tangent to the trajectory at an arbi- 
trary point.    At the point of departure, this angle is called the angle 
of departure [_   COV, 6---the angle formed by the weapon horizon and the 

line of departure.    At the point of fall  (tabular) this angle is called 
the angle of fall  (tabular) / OCD, 9 --the angle formed by the weapon 

horizon and the tangent to the trajectory at the point of fall  (tabular). 

Anglt of Jump £ VOB, Y--thc angle formed by the line of elevation 
and the line of departure.     If the line of departure passes above the 
line of elevation, the angle of jump is considered positive (+) and if 
below--it is considered negative (-). 

Velocity of the projectile v--the velocity at an arbitrary point. 
The muzzle velocity v0--the velocity of the projectile at the point of 

departure; the terminal velocity v --the velocity of the projectile at 

the point of fall  (tabular). 

Time of flight t--the interval of time from the moment of the 
projectile's departure to the moment of attainment of an arbitrary point; 
the complete time of flight T is the time of flight to the point of fall 
(tabular). 

Let us determine the values of the basic elements of the trajectory. 
The most important of them are: complete horizontal range, maximum Or- 
dinate, projectile velocity and complete time of flight. 

Complete horizontal  range.    The abscissa of the point of fall 
(tabular) corresponds to the value of the complete horizontal range. 
And since y = 0 at this point,  to compute the complete horizontal range 
it is necessary to solve the trajectory equation (formula 17) with 
y = 0. 

We obtain; 
xtane. 5^—=0. 

0      Zfgcos'O, 

We move x outside the brackets and solve the equation: 

0       2voC05'6o/ 
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There are two routes in this equation of which x. ■ 0, which 

corresponds to the point of departure and x« = X which corresponds to 

the complete horizontal range. 

In solving, we obtain 

-0; tan9« «* 
2t/2co»«90 

y_   -'''^'OoleBo 2t>g5ln98cot9fl 

*     "    g ' (18) 
„_ t>osln2»(, 
"  g 

Consequently, the complete horizontal range of the projectile's 
flight depends on: 1) the muzzle velocity (the greater vn, the larger 

X); 2) the angle of departure (the greatest value for X is obtained with 
sin 200 = 1, i.e., with 290 = 90°, eo = 45°). 

Thus, in airless space the greatest complete horizontal range cor- 
responds to an angle of departure 0» = 45° and is expressed by the 
formula: 

*n.« = —. (19) 

Consequently, with all angles 6. < 45° and 6. > 45°, the value for 

the complete horizontal range is less than maximum. With 6. = 0 and 
e0 = 90». 

sin 2eu = sin 0 = sin 180° -> 0, 

i.e., with angles of departure of 0 and 90° the complete horizontal range 
equals zero. 

Maximum ordinate. As indicated above, the height in airless space 
divides the trajectory into two equal parts. Consequently, in order to 
determine the maximum ordinate it is necessary to substitute in the tra- 
jectory equation the value x which equals half the complete horizontal 
range: 

v§sin280 

vli\n29a «t»Jiln«2», 
y^y --* - - -— tg "o—rtri—77 • 
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After reduction and transformation, we obtain 

K-.v^'f8'. (20) 

Having multiplied the numerator and denominator of formula (20) by 
2 cos 6. and performing simple transformations, we can also obtain another 

expression of the maximum ordinate--through the complete horizontal range: 

y=X1^. (21) 
4 

The project 1le's speed of flight. To determine the projectile's speed 
of flight at an arbitrary point, we use the theorum in accordance with 
which the gain in kinetic energy equals the work expenditure. 

At the point of departure, the kinetic energy of a projectile equals 
2 mvf./2, while at the arbitrary point the kinetic energy of the projectile 

2 2     2 
equals mv /2. Consequently, the gain in kinetic energy is mv /2 - inv0/2. 

Since the force of gravity alone is acting on the projectile, the work 
equals the product of the gravity on the path covered by the projectile 
along the direction of effect of this force. Gravity acts vertically down- 
ward; consequently, we are interested in the amount of vertical displacement 
of the projectile which is determined by the height difference of the tra- 
jectory at given point y. But since the effect of gravity is directed 
in a direction which is opposite to the displacement of the projectile, 
the amount of expended work will be a negative value. 

Consequently, in this case the theorum presented above may be written 
as follows: 

1   5    *" 

where q is the gravity (weight of projectile). 

But q - mg. 

Then 

mv*     ""'6    „_, 
-5 2~ = —mgy. 

After reduction by m and transformation we obtain: 
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v = yvl—2gy. (22) 

It can be seen from formula (22) that the velocity of the projectile 
decreases with an increase in y. Consequently, the minimum projectile 
velocity occurs at the trajectory summit. The greatest projectile ve- 
locity occurs at the points in which y = 0, i.e., at the point of departure 
and point of fall (tabular). 

Complete time of flight of the projectile. The complete time of 
flight of the projectile is determined by substituting the value X in 
(16): 

T = 
t'o sin 2% 

After transformation and reduction, we obtain; 

■r _ Zfp sin 60 

g 
(23) 

The other elements of the trajectory are determined in a similar 
manner. Table 3 indicates the values for various elements of the tra- 
jectory at an arbitrary point, at the summit of the trajectory, and at 
the point of fall (tabular), 

TABLE 3 

At an arbitrary 
point 

At point of 
fall (tabular) C 

Elements At summit 
S 

x = vj cos 80 

y = xtg% 
2vlco>n0 

i = 
Vo CO> tg 

t'= \ 4-2gy 

Vn co»10, 

_ x      ^sin280 

** - 2 - —2r~ 

** = * = 
vjjsin'eo 

, _ T      fosinö,, 

V, = Vo cos 6, 

8,=0 

xt=X = 
VQ sin 28, 

JV=0 

. _ _     2v0 sin 8, 
te.T — 

Ve=Vo 

I 8, I = 80 
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Example.    Firing is being conducted from an 82-inm mortar with an 
angle of departure 90 = 60° with a muzzle velocity v0 = 70 m/sec. 

Determine: 1) the complete horizontal range of flight of the mortar 
round; 2) complete time of flight of the mortar round; 3) maximum 
ordinate; 4) minimum velocity of the mortar round's flight; 5) the 
value of y, t, v, 9 at point x = 100 m. 

Solution.    1.    We determine the complete range X: 

vjilnO,      TCsIn I20c _   4900-0.866   B m m 
X a       i       =        9.81       "        9,81 

2. We determine the complete time of flight T: 

-  2Mn»0 _ 2-700.866 r-  j—.—p—«12,4 sec. 

3. We determine the maximum ordinate Y: 

tane0  433-1.732  ,„ 
Y - X ^ 4 «187*. 

4. We determine the velocity of the mortar round at the trajectory 
summit v : 

s 

v        t>0coso,, = 700,5 = 35 m/sec. 

5. We determine the value of the elements with x * 100 m: 

a) y . „.„e, --JiL-   .,o..,,OT-|^.13Si. 
2v2cosze0 

b) <=—^-r-=■-^i«2,86 sec; f« cot Og       700.5 ' 

C) v » |/v\-1gy - K70'-2-9.81-133 « 47,85   m/sec; 

d) tane - taneo--(^r 1.732--^1^^0,932: 

o e = 43 

If we compare the elements of the trajectory of the mortar round 
which have been obtained with the tabular elements which have been 
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computed with consideration of air resistance, the data almost coincide. 
This is explained by the fact that with low projectile velocity (less 
than the speed of sound)  the air resistance does not have a significant 
effect on the flight of the projectile and its trajectory is close to 
a parabolic form. 

Properties of the Trajectory 

From the conclusions which have been presented, the properties of 
the trajectory of a projectile may be established without consideration 
of air resistance. 

1. The trajectory is a symmetrical curve  (the axis of symmetry is the 
maximum ordinate). 

2. The velocity of the projectile decreases from the point of departure 
to the trajectory summit and increases from the summit to the point of 
fall; equal velocities correspond to equal height differences.    The 
velocity of the point of fall (tabular) equals the velocity at point of 
departure. 

3. The time of flight of the projectile from the point of departure to 
the summit of the trajectory equals the time of flight to the summit to 
the point of fall  (tabular). 

4. In its absolute value, the angle of fall   (tabular) equals the angle 
of departure. 

5. The greatest complete horizontal range of flight of the projectile 
corresponds to an angle of departure of 45°.    When firing at angles of 
departure of 0 and 90°, the complete horizontal range equals zero.    At 
angles of departure of 45° + a and 45° - a, the complete horizontal ranges 
equal each other. 

The Significance of  the Parabolic Theory 

At the initial stage of development of the science of artillery, 
the parabolic theory was the only means for perceiving the characteristics 
of the movement of a projectile in the air.    At the present time, it is 
only the first stage in the study of the regular laws of movement of a 
projectile in the air.    But, moreover, the parabolic theory also has its 
own independent significance.    When firing from a weapon for which the 
muzzle velocity is not great  (mortars), the effect of air resistance 
is  insignificant; as a result of this,  calculations using the formulas 
of parabolic theory provide results which are so close to the true re- 
sults that it is possible to use them in approximate calculations. 
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Even more accurate results are provided when using these formulas to 
compute the trajectories of antitank and hand grenades whose initial 
velocities do not exceed 50 m/sec.    The formulas of the parabolic 
theory are also used in calculating super-long-range firing since,  in 
this case, the projectile flies through a great distance in the upper 
rarified layers of the atmosphere where the air resistance has an in- 
significant effect.    And finally, a portion of the relationships which 
are obtained without consideration of air resistance may be used for 
an approximate determination of the elements of a trajectory in the 
air and for the calculation of correction data. 

2.    Movement of the Projectile  in the Air 

When a projectile flies in the air,  it is also affected by the 
air resistance as well as by gravity.    The effect of this force is ex- 
tremely significant, especially for bullets which have a small mass and 
high velocity of flight.    It is sufficient to point out that the air 
resistance which operates on a M-1908 bullet with a velocity of 865 m/sec 
is 83 times greater than the force of gravity. 

In order to explain the effect which is rendered by the air resis- 
tance,  let us first establish what air resistance causes for a moving 
body. 

Air Resistance 

The resistance of the air to the flight of a projectile is caused 
by three basic factors: the formation of a boundary layer, the detachment 
of the boundary layer with the formation of vortexes, and the formation 
of the ballistic wave.    Each of these factors is manifested either as 
a result of the difference in air pressure on the head and base of the 
projectile or as a result of the air's friction against the projectile. 

1.  Formation of the boundary layer.    The air possesses the property of 
viscosity which is caused by the presence of the internal cohesion of 
the particles.    With the projectile's movement, the air particles which 
are immediately adjacent to the projectile move with the velocity of the 
projectile as a result of the cohesion with its surface.    As a result 
of the internal cohesion, the next layer of air particles is also put 
into motion but this time with a somewhat  lesser velocity.    The movemert 
of this layer is transmitted to the next and so on until the velocity of 
the air particles equals zero.    A so-called boundary layer is formed-- 
a layer of air directly adjacent to the surface of the projectile in 
which the movement of the particles changes from the velocity of the 
projectile to zero  (Figure 24). 
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2. Detachment of  the boundary layer and the formation of vortexes. 
The detachment of the boundary layer is observed at the base of the pro- 
jectile behind the maximum transverse cross-section.    A rarified space 
is formed behind the base of the projectile to which the air particles 
rush, forming a vortex movement (see Figure 24).    As a result of the 
formation of the rarified space, the pressure on the head of the pro- 
jectile is greater than on its base (the pressure on the head of the 
projectile is greater than the atmospheric pressure and on the base it 
approximately equals  1/3,   1/4 barometric atmospheres).    Consequently, 
the projectile expends a portion of its energy on overcoming the force 
which is formed as a result of the difference in the pressures on the 
head and base of the projectile and on the formation of vortexes which 
also leads to a reduction in the velocity of the projectile. 

3. Formation of the ballistic wave.    When the projectile moves, the 
compression of the air in front of it is formed.    Depending on the speed 
of movement of the projectile, this compression either offers no addi- 
tional resistance to the movement of the projectile or it creates a so- 
called ballistic wave.    To explain the essence of the ballistic wave, 
we present the projectile in the form of a moving material point.    From 
physics, it  is known that compression of the air which is formed with 
the movement of a material point is propagated along a sphere with the 
speed of sound (with an air temperature of +15°, a » 340.8 m/sec).    Let 
us consider two cases of the movement of a material point, with a speed 
less than the speed of sound (v < a) and with a speed greater than the 
speed of sound (v >  a). 

I. v < a      Assume that at a given moment the point occupies position 
M  (Figure 25) and is moving uniformly from right to left,    t seconds ago, 
the point occupied some position M..    Consequently, M.M = vt.    The com- 

pression which is formed at point M. was propagated along a sphere with 

radius at > vt.    2t seconds ago the point occupied position NL; MJl » 

= 2 vt.    The compression formed at point M. at 2t seconds was propagated 

over a sphere with radius  2at > 2vt,  etc. 

Consequently,  the conclusion may be drawn that with the movement of 
a material point with a velocity of v < a, the compressions which are 
formed overtake the moving point, are always in front of it, and there- 
fore offer no additional resistance to the movement of the point. 

II. v > a.    In reasoning similarly, we find that vt > at; 2vt > 2at, 
etc.    Consequently,  in the case v < a, the material point moves more 
rapidly than the propagation of the compressions, i.e., it moves in a 
disturbed atmosphere  (Figure 26).    If we draw tangents from point M to 
the spheres of compressions, wc obtain the boundary which represents 
a conical surface which the compressions reach simultaneously. 
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Figure 2^».    The Boundary Layer and Formation of 
Vortexes. 

Since the actual projectile is not a point, the source of the de- 
scribed disturbances of the air atmosphere is each point on the surface 
of the projectile.    As a result of the summing of all the conical sur- 
faces,  a zone of disturbances is formed in the form of a conical en- 
velop having an extension in depth; this conical envelop is called the 
lead or ballistic wave.    Thus, the ballistic wave represents a bound of 
compressions and, consequently, a pressure bound also occurs.    According 
to available data, for projectiles having a velocity of 600-900 m/sec, 
the pressure bound is 5-9 barometric atmospheres.    The formation of the 
ballistic wave is the basic factor which causes air resistance to a pro- 
jectile which is moving at a speed greater than the speed of sound. 

Figure 25. 
wi th v < a. 

The Propagation of Air Compressions 
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Figure 26. 
wlth v > a. 

The Propagation of Air Compressions 

Figure 27. A Diagram of the Phenomena Obtained 
on a Photograph: I, Lead wave; 2, Rear wave; 3. 
Wave with drawing from the point of compression 
of the cartridge case neck; k,S,  Weak waves with 
drawing from the edge of the base; 6, Waves from 
the rough surface of the bullet; 7, Rarified 
space; 8, Vortexes. 

Using special cameras, it is possible to photograph a projectile 
in flight. The phenomena obtained on the photograph are portrayed 
schematically in Figure 27. In the drawing, it can be seen that the wave 
is formed not only ahead of the projectile but also at its tail portion 
and at several other places. 
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Air Resistance 

The total resistance force which is formed with the action of the 
indicated factors is also the air resistance. 

To determine the amount of air resistance, there are a number of 
formulas which have been obtained on the basis of theoretical investi- 
gations and experimental data. We present one of them: 

R = l£lO»H(y)F(v). (24) 

where R is the air resistance force in kilograms; 
i is the coefficient for the projectile shape; 
d is the caliber of the projectile in meters; 

H(y)  is the function which determines the dependence of air density on 
altitude; 

F(v)   is the function which determines the dependence of the amount of 
air resistance on the speed of the projectile. 

Thus, the value of the air resistance depends on the shape of the 
projectile, its caliber, the air density, and the speed of the projectile. 

Let us consider the effect of each of the indicated factors. 

1. The shape of the projectile enters the formula as the value of the 
shape coefficient i.    The shape coefficient is determined from a com- 
parison of the shape of the given projectile with the shape of a pro- 
jectile which has been taken as standard (the comparison is performed 
by calculations on the basis of special firings)1.    The more advantagous 
the shape of the projectile, the smaller is the value t and the less is 
the air resistance which is acting against the projectile. 

Depending on the flight conditions of the projectile in the air, the 
most advantagous form is: for supersonic speeds where the ballistic wave 
offers the basic resistance—a projectile with a pointed ogive up to 
3.5 calibers long and with a small angle of taper in the base to reduce 
the vortex; for subsonic speeds where no ballistic wave is formed and 
the formation of the vortexes offers the primary resistance—a projectile 
with an elongated and tapered base and a blunt ogive. 

2. Caliber of projectile d.    The air resistance changes directly pro- 
portional  to the square of the caliber of the projectile.    This means 

'in general, i is a variable value for the same projectile and changes 
with a change in speed; the values presented in Table 4 are average 
computed values (all values are given in accordance with Siachchi's 
law). 
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that   if the caliber is doubled preserving the shape of the projectile, 
under similar conditions the air resistance will increase four-fold. 

3,  The air density is considered by the function H(y) which expresses 
the relative air density at a given altitude y: 

"o.v 

where  n  is the air density at a given altitude at a given moment; 
11.     is the normal air density at the surface of the earth. 

The value H(y) may be determined,  for example, from the formula 
of Professor V.  T. Vetchinkin: 

...  .      '20000—v 
"W=Joooö+r (25) 

The  less  the air density,  the less the amount of air resistance 
acting on the projectile. 

When firing from small arms at surface targets,  in view of the 
insignificant maximum ordinate we take H(y) = 1. 

4.  Speed of projectile.    The effect of the speed of the projectile on 
the amount of air resistance is expressed in the formula by the function 
1 (v),  which is called the resistance function.    The graph  (Figure 28) 
shows  the change in F(\>) with a change in the speed of the projectile. 
On the basis of the graph, the conclusion may be drawn that the greater 
the speed of the projectile, the greater the air resistance.    In addition, 
the graph shows that as soon as the speed of the projectile exceeds the 
speed of sound, the resistance function increases sharply,  i.e., for 
formation of the ballistic wave shows up.    To determine the air resis- 
tance,  the value for r(v) may be taken from the graph.    For example, 
with a speed of bullet v, = 735 m/sec F(v) = 170 (see Figure 28). 

Example.    Determine the amount of the air resistance for a bullet 
M-1930 where v = 500 m/sec.    Data: d = 0.00762 m;  i = 0.51; H(y)  =  1. 

Solution.    F(v) = 87 (from the graph. Figure 28). 

R. *JL.o^o)H.)- ^■•'"iy-'87-ca« kg. 
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Figure 28.    Graph of F(v). 

Acceleration of Air Resistance 

The effect of the air resistance consists of the reduction in the 
speed of the projectile;  in other words, the air resistance imparts a 
negative acceleration to the projectile. 

As is known from physics, the acceleration which a body receives 
under the influence of a force equals the relation of the amount of 
the acting force to the mass of the body on which this force is acting. 
If we designate the acceleration of the air resistance by j, and the 
mass of the projectile by m, then: 

but 

/ m   ' 

*-i: 
then: 

1 (26) 

We substitute in expression (26) the value for R from formula  (24): 

-69- 



and, reducing by g, we rewrite it in the form: 

j=f\VH{y)F(v) 

We designate: 

'J'lO'-c. 

j = cH(y)F{v). 

The value c = id2/q 103 is called the I 

C27) 

then: 

(28) 

projectile since it considers  all the constant values for a given pro- 
jectile which characterize its ballistic properties.    The smaller the 
ballistic coefficient, the lower the acceleration of the air resistance. 
The size of the ballistic coefficient is inversely proportional to the 
weight of the projectile.    This means that, of two projectiles with the 
same shape and the same caliber, the one having the greatest weight is 
more advantagous baliisticilly. 

To compare the ballistic properties of projectiles of different 
weights and calibers but having the same shape coefficient, a value can 
be used which expresses the relation of the weight of the projectile to 
the area of its greatest cross-section and called the transverse load 
(q.s). 

We multiply the numerator and denominator of formula (27) by TI/4. 
Wc obtain: 

but 

(area of the cross-section). 

Then 

rnP 
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£ = ■ 
Is-W 

q.. 
• i   or t" = 

^lO»-* 

From the expression which has been obtained it can be seen that 
the larger the value of the transverse load the smaller the ballistic 
coefficient and the more slowly the projectile loses speed during 
flight in the air. 

The comparitive ballistic data of several bullets are contained in 
Table 4. 

TABLE k 

Designation of 
bullet 

Shape co- 
efficient, 
I 

Weight of 
bullet, kg, 

q 

Trans- 
verse 
kg/m2, 
q/s 

Ballistic 
coeffi- 
cient, 
c 

1 M-1930 7.62-mm bullet 
M-1908 7.62-mm bullet 
7.62-tnm pistol bullet 

0.51 
0.61 
0.90 

6.0)18 
0.0096 
0.0055 

259 
211 
121 

2.51 
3.69 
9.50 

For the 82-inm mortar round, respectively:  i = 0.60; q/s = 597 kg/m ; 
c ■ 1.27 (for charge two and 6. ■ 80°. 

Example.    Determine the acceleration of the air resistance for a 
M-1930 bullet in accordance with the conditions of the preceding example 
(p. 60 of original textj . 

Solution.    Acceleration of air resistance may be found either from 
formula (26): 

or from formula (28) : 

/«JS.-O^iUaifi m/sec2 J       q 0,0118 ö m/sec   » 

y - f//(.y)/»-2.51 • 1-87 «218   m/sec   . 

The Effect of Air Resistance on the Projectile 

We have established that the effect of air resistance reduces the 
speed of a projectile and, consequently, its range of flight. If the 
air resistance were directed exactly along the axis of the projectile, 
its effect on the projectile would be reduced only to a reduction in the 
speed of the projectile. Actually, its effect is considerably more 
complex. 
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Theoretical investigations and test data show that an angle 6 
(Figure 29) is formed between the line of direction of the axis of the 
projectile and the tangent to the trajectory as a result of the jerks 
and strikes experienced by the projectile (when leaving the muzzle face) 
from the weapon and the escaping gases immediately after departure. 
Therefore, the air resistance acts at an angle to the projectile rather 
than along its axis. 

Figure 29. The Effect of Air 
Resistance on a Projectile. 

The point of application of the air resistance, called the center 
of resistance CR, is located on the axis of the projectile close to its 

ogive. The center of gravity C of the projectile is located on the axis 
of the projectile close to its base section (Figure 29). 

For a clearer explanation of the effect of the air resistance, we 
apply two mutually equalizing forces Rj and R, to the projectile's center 

of gravity which are equal in value and parallel to the resistance force 
R, i.e., R. = R and R- = -R (Figure 30). We break down force Rj into two 

components: RT--a line of direction along the tangent to the trajectory 

in a direction which is opposite to the line of direction of velocity 
vector v" and R --perpendicular to it. 

Thus, the effect of resistance on the projectile is equivalent to 
the simultaneous effect on the projectile of forces R1, R-, R- and R . 

We will explain the effect which each of these forces has (see 
Figure 30): 

--forces R and R- form a pair of forces which strive to overturn the 

projectile with the ogive backward; the moment which is formed by this 
pair is called the overturning moment; 

--force R is called the drag; it reduces the speed of the projectile; 
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--force Rn deflects the center of gravity of the projectile in the 

direction in which its ogive is deflected (in the upper drawing- 
upward,  m the lower drawing--downward). 

v — 

Figure 30. Resolution of Air Resistance. 

but .P1"!' tJe.air/efistan" not only reduces the speed of the projectile 
an5 ILH lel ^lncrease the angle between the axis of the pro ecti e 
and the tangent to the trajectory and this leads to a situation where the 

stabmtJ'or J ^ 0Vertred With the 0*ive t0 the rear  T^assure 
11% IJ? A -l* Pro^ctile in fli8ht. it is given a fast rotating move- 
ment around its axis for which the rifling grooves in the bore se?ve 

Rotational Movement of the Projectile.  Drift. 

ran J"7 Jy,ranetrical solid body which rotates rapidly around its axis is 
called a tyroscope. A top is a simple gyroscope. If we try to place a 
non-rotating top on a table, as a resul? of the impossibility ofptacing 
it exactly vertical it falls under the influence of the force of gJavUy 
q. But if we give the top a rapid rotating motion around its axis as 
is known u does not fall while the speed of rotation remains siffi 
ciently large  However, the axis of the rotating top does not remain 
fv™"^15 ♦*♦   be8inS t0 accomPlish around the vertical axis restored 
the dirLt?^1^^^1"' 0^ the SUpp0rt 0 a slow rotating cement in the direction of rotation of the top (Figure 31). This rotational 
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movement of the axis of the top occurs very slowly in comparison with 
the rotation of the top itself and is called a slow-conical movement 
(precession movement). 

Figure 3'.  Diagram of the 
Rotation of a Top. 

A rotating projectile is also a gyroscope since it is symmetrical 
and rotates rapidly around its own axis. The pair of forces RR. have 

an effect on the projectile which is similar to the one which the force 
q has on the top. Therefore, a rotating projectile is not overturned 
with the ogive to the rear but accomplishes a slow conical movement 
around the tangent to the trajectory under the influence of the pair 
of forces RR- which also provides the stability of the projectile in 

flight. The forward movement of the center of gravity of the projec- 
tile does not effect the nature of the rotational movement. 

But, in addition to the general phenomena which are observed with 
the rotation of a top and projectile, specific conditions of flight 
of the projectile lead to new phenomena which are not observed in the 
rotation of a top. The essence of this difference consists of the 
fact that the axis of the top accomplishes a precession movement around 
an axis which remains vertical at all times while the axis of the pro- 
jectile accomplishes a precession movement around the tangent which 
changes its position in space continuously as a result of the curvi- 
linear trajectory. 

The initial section of the trajectory can be considered a straight 
line. On this section, the axis of the precession movement is the 
trajectory itself and the end of the axis of the projectile describes 
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a curve which is symmetrical relative to the plane of fire (Figure 32) 
(angle 6 is enlarged considerably in the drawing for clarity). When 
firing from small arms at small angles of elevation, the length of the 
sector which may be considered a straight line is rather considerable. 

Figure 32. The Slow Conical Movement of a 
Projectile on a Straight-Line Section of the 
Trajectory. 

CT--tangent 

CT.--dynamic axis 

Figure 33. The Slow Conical Movement of a 
Projectile on the Curvilinear Section of the 
Trajectory. 

On the curvilinear section of the trajectory, a continuous change 
occurs in the position of the tangent relative t;o its position at the 
moment of departure; this change is called the drop in the tangent. 
The drop in the tangent is equivalent to a deviation of the axis of 
the projectile in the opposite direction relative to thr stationary 
tangent. Thus, it can be considered that with the movement of a pro- 
jectile along the curvilinear section of the trajectory the axis of 
the projectile participates in two rotating movement simultaneously, 
namely: in a conical movement around the tangent and upward relative 
to the tangent. As a result of these two rotational movements, the 
slow conical movement of the axis of the projectile will not occur 
around the tangent but around some other axis which is located above 
and to the right of the tangent (with right rifling). Since this axis 
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occupies a new position in each succeeding point of the trajectory, 
dropping together with the tangent, it is called the instantaneous 
or dynamic axis. This means that on the curvilinear section of the 
trajectory the axis of the projectile accomplishes a slow conical move- 
ment around the dynamic axis rather than around the tangent (Figure 33). 

If the projectile maintained its initial position which it re- 
ceived during departure without rotating with its axis around the tan- 
gent, such a projectile would possess complete gyroscopic stability 
(Figure 34). Complete gyroscopic stability is possible: a) during 
flight in airless space--air resistance is absent, consequently, there 
is no overturning pair of forces; b) with the coincidence of the center 
of gravity and center of resistance in one [Tr note—word illegible in 
original text]--the overturning pair of forces is absent; c) with a 
very great speed for the rotational movement of the projectile around 
its axis which would eliminate the effect of the overturning pair. But 
actually, not one of these conditions occurs during firing. Consequently, 
under actual conditions the projectile does not possess complete gyro- 
scopic stability. 

Figure 3^. Flight of a Projectile 
Possessing Complete Gyroscopic Stability. 

However, complete gyroscopic stability, even if it were possible, 
is disadvantageous since, in this case, angle 6 would have increased 
quickly and, consequently, the air resistance would also have increased 
quickly, i.e., the range of flight of the projectile would be reduced 
considerably.  In addition, the projectile would hit the target with its 
side or base portion; at the same time, for the effective action of the 
projectile it is necessary that it land on the target with the ogive and 
that the range of its flight be as great as possible. 

The flight of a projectile, the axis of which would coincide with 
the tangent for the entire length of the trajectory, is called the ab- 
solutely correct flight, and such a projectile is called responsive 
(Figure 35). But absolutely correct flight may occur only in the case 
where the trajectory is a straight line and the absence of jerks and 
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strikes of the weapon and gases which give the axis of the projectile 
the angle { at the very start of the flight. Consequently, actually 
the projectile does not possess absolute correctness of flight. 

Since it is impossible to avoid the appearance of angle 6, we 
strive to see that the value of this angle is as small as possible for 
the entire length of the trajectory. To provide correctness of flight, 
each projectile is given as certain speed of rotational movement, i.e., 
a certain angle of tv,ist is created and the distance between the center 
of gravity and the center of resistance is computed. 

Figure 35. Absolutely Correct Flight 
of a Projectile. 

The speed of rotation of a projectile around its axis is determined 
from the formula: 

"'" ' ' (29) 

where n is the number of revolutions per second; 
I  is the length of the path of the rifling grooves in meters. 

Example. Determine the speed of rotation of a M-1943 bullet around 
its axis when firing from a carbine; v- = 735 m/sec; I  = 0.24 m. 

'"■■^-■ST*3062
 rev/sec. 

The distance between the center of gravity and center of resistance 
for modern bullets is about 1.5 calibers. The center of gravity of 
modern bullets is located at a distance of approximately one-third its 
length from the base section, and the center of resistance—approximately 
the same distance from the nose section. 

We have established that the rotation of the axis of a projectile 
at each given moment of time will occur around a dynamic axis which is 
deflected from the tangent to the right and upward (with right rifling). 
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th described by the end of the 
axfs of  the projectile 

Figure 36.    Slow Conical Movement on the Curvi- 
linear Section of the Trajectory.    View from the 
rear. 

If we look at a projectile from the rear  (Figure 36), the path 
described by the end of the axis of the projectile can be portrayed 
approximately in the form of a circle and the dynamic axis--in the 
form of the center of the circle T., and the tangent--in the form of 

point T which is located below and to the left of the center of the 
circle. 

If a vertical plane is drawn through the tangent, it can be seen 
that the ogive of the projectile is located more on the right than on 
the left with respect to this plane. Consequently, a force component 
of the air resistance is formed which moves the center of gravity of 
the projectile from the plane of fire to the right. Thus, the projec- 
tile deviates to the right from the plane of fire for the entire length 
of the curvilinear portion of the trajectory. 

The phenomenon of the deviation of the projectile from the plane 
of fire in the direction of its rotation is called drift. 

Thus, it is necessary to combine three conditions for the appearance 
of drift during the flight of the projectile: the rotation of the projec- 
tile around its axis, air resistance, and curvilinearity of the trajectory. 
With the absence of even one of these conditions, drift does not occur. 
In the absence of the rotational movement of the projectile around its 
axis the projectile will not be a gyroscope, and, consequently, there 
will be no conditions which lead to drift; a non-rotating mortar round 
has no drift. In the absence of air resistance, there will be no over- 
turning pair and, consequently, there will be no slow conival movement; 
drift is absent in airless space. With a straight-line trajectory, the 
axis of the projectile rotates around the trajectory and there is no 
drop in the tangent; consequently, there is no drift, either. There is 
no drift when firing strictly vertically up or down. 

For each type of projectile, the amount of drift is determined 
by a special calibration firing and using empirical formulas. One of 
the simplest formulas is: 
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2=kr. 

where z is the amount of drift in meters; 
k is a factor which is constant for the given weapons 
T is the complete time of flight of the bullet. 

ystem; 

*——Ji 

Figure 37. The Trajectory of a Rotating 
Projectile in the Air and its Projection 
to a Horizontal  and Vertical  Plane. 

Consequently, the amount of drift is proportional to the square of 
the time.    Therefore, the trajectory of rotating projectile OSC is a 
line of double curvature (Figure 37).    One can consider two projections 
of the trajectory: a vertical projection Os'c'  called the plane tra- 
jectory and a horizontal projection OsC from which one can reckon the 
amount of drift at any point. 

The amount of drift at firing ranges employed for small arms is 
insignificant; therefore, it frequently is ignored.    When it is neces- 
sary to consider the amount of drift,  it is taken from firing tables and 
applied as a correction. 

The Flight of a Mortar Round  in  the Air 

Since the speed of movement of a mortar round is less than the 
speed of sound (the maximum speed of an 82-inm mortar round is 211 m/sec), 
in the flight of a mortar round the basic factor of air resistance is 
missing--the ballistic wave.    This provides the opportunity to give the 
nose of the mortar round an almost spherical outline and the absence 
of a cartridge case permits giving the base of the mine a more suitable 
form which permits reducing vortex formation considerably. 
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Figure 38. The Effect of Air Resistance 
on a Mortar Round. 

With such a shape for the mortar round, its center of gravity is 
located closer to the nose. The giving of stability to the mortar 
round in flight is achieved by the presence of a tail having a com- 
paratively large surface instead of by a spinning movement, as a result 
of which the mortar round's center of resistance is located closer to 
the base.  The tail is called a stabilizer since it is intended to give 
the round stability. 

Let us consider the effect of forces of resistance on the mortar 
round. 

When the mortar round leaves the bore, just as in the flight of any 
projectile, an angle 6 is formed between the axis of the mortar round 
and the tangent to the trajectory as a result of the jerks and blows 
of the gases and the weapon. As a result of the formation of angle 6, 
the nose of the mortar round may be either higher or lower than the 
tangent (Figure 38). 

The pair of forces RR_ forms a stabilizing moment which tries to 

reduce the angle 5, i.e., to bring the axis of the mortar round closer 
to the tangent to the trajectory. Thus, if the nose of the round is 
higher than the tangent, it is turned downward and if lower--upward. 
This means that until the mortar round is stabilized, i.e., occupies 
some specific position relative to the tangent, its axis accomplishes 
attenuating oscillations. 

The force R- reduces the velocity of the forward movement of the round. 

Force R displaces the center of gravity of the round toward the direc- 

tion in which its nose is deflected, i.e., until the moment of stabiliza- 
tion, as a result of the effect of force R , oscillations of a different 

n 
type also occur--oscillations of the mortar round in the plane of depar- 
ture relative to the tangent. 
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Thus, the flight of the mortar round differs from the flight of an 
elongated rotating projectile by the fact that the absence of the ro- 
ta ional movement does not lead to drift and, consequently, the trajec- 
tory of the mortar round remains a plane trajectory. In addition, as 
a result of the low speed of flight and, consequently, of the consider- 
ably lesser effect of air resistance, the trajectory of the mortar 
round in the air in its shape is close to a trajectory in airless 
space while the trajectory in the air and the trajectory in airless 
space for an elongated rotating projectile differs sharply in shape, 
which can be seen from Table 5. 

TABLE 5 

Projectile Muzzle ve- 
locity, 
VQ.m/sec 

Angle of 
depar- 
ture e0 

Complete horizontal 
range, X, m 

Maximum Ordi- 
nate Y, m 

In airless 
space 

In the 
air 

In airless 
space 

In the 
air 

}2-mm mortar 
round    

7.62-mm bullet, 
M-1930  

132 

800 

45° 1.780 

33,000 

1,505 

MOO 

MS 

'»,125 

393 

i«38 

The Flight of a Rocket Projectile 

At the moment of leaving the guide rail, a rocket projectile acquires 
a speed of departure v0 and then, continuing movement under the effect 

of the reactive force, by the end of the burning of the powder charge 
it attains maximum velocity v max The trajectory of a rocket projectile 

can be divided into two sections  (Figure 39): active and passive; the 
active section of the trajectory is the flight of the projectile under 
the influence of the reactive force from the moment of the start of the 
projectile's movement until it acquires velocity v      ; the passive section r max 
is the flight of the projectile under inertia.    Considering the movement 
of the projectile on the active sector as equi-accelerating, its length 
can be determined from the following relation: 

C 0 + "m» 
»« 2      »HI (30) 

where S   is the length of the active portion of the trajectory; 

v   is the maximum velocity of a rocket projectile at the moment max ' *    •' 
of completion of the burning of the powder charge; 

t is the complete time of burning of the powder charge. c 
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Usually, the active section is considered to be a straight line 
since the projectile's time of flight on the active sector is insig- 
nificant. 

Figure 39- Trajectory of a Rocket 
Projectile: OA—the active section 
of the trajectory (it includes the 
length of guide rail 00.); AC-- 

the passive section of the trajectory 
(section CC. is usually taken as a 

straight line. 

On the passive section of the trajectory, a non-rotating rocket 
projectile flies under conditions which are similar to the flight of a 
mortar round. The calculation of the passive section of the trajectory 
is performed just as for a regular projectile. Velocity v   is taken 

InttX 

as the initial velocity on this section. 

Properties of the Trajectory in the Air 

On the basis of what has been said above concerning the nature of the 
movement of a projectile in the air, we will clarify the basic properties 
of the trajectory in the air. 

Let us consider what a change in the kinetic energy of a projectile 
on the path from point M. to M-, having the same ordinate (Figure 40) 

equals.  We designate the speed of the projectile at point M. by v. and 

we designate the speed at point M- by v^. The difference in the kinetic 

energy should equal the work performed by the forces which are acting on 
the projectile. The work of gravity on sector M.M- equals zero since 

points M. and M- are located at the same height. The work of the air 

resistance equals the product of the amount of air resistance on the path 
of the projectile measured by the arc M.SM-. Since the air resistance 

is a variable value, for computation work we take its average value R , 

and we designate path M.SM. by s. 
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Then mt%      mvj 
"2 2- ~ — "cr5 

(the sign is minus since the resistance operates in a direction which 
is inverse to the direction of the velocity of the projectile). 

From this: 0D m 

consequently, 
v,,<vyt 

i.e., for points on the trajectory having equal ordinates the velocity of 
the projectile is greater at a point on the ascending branch than on the 
descending branch. 

If we take points for which y = 0, i.e., the point of departure 0 
and point of fall (tabular) C, then obviously the initial velocity is 
greater than the terminal velocity: 

«'o>vc. 

Let us consider section MjM, on the ascending branch and M,M. on the 

descending branch.  Points M_ and M. also have the same ordinate; conse- 

quently v. > v. (see Figure 40). This means that at each point on section 

MM-, the velocity is greater than at the corresponding points on section 

M.M-, and from this it follows that the time of movement on section M.M_ 
4 2 4 2 

is greater than the time of movement on sector M.M. and the lowering of the 

projectile below the line of departure will be greater than on section 
M.M.., i.e., the section of trajectory M.M- is shorter and steeper than sec- 

tor M.M.. Such reasoning is correct for any of the two sections of the as- 

cending and descending branches which are limited by points having equal 
ordinates. Consequently, the descending branch of the trajectory is 
shorter and steeper than the ascending branch and this means that the tra- 
jectory in the air is a asymmetrical curve, the peak of the trajectory is 
located closer to the point of fall, and the angle of fall (tabular) in 
its absolute value is greater than the angle of departure: 
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Since the velocity of a projectile on the ascending branch of a 
trajectory is considerably greater than on the descending branch, the 
time of flight of the projectile from the point of departure to the 
peak is less than the time of flight of the projectile from the peak 
to the point of fall  (tabular) despite the fact that the ascending branch 
is  longer than the descending branch: 

In airless space, the smallest velocity of the projectile occurs 
at the peak of the trajectory.     In the flight of a projectile in air, 
its velocity on the Si^ending branch is reduced under the effect of 
gravity and air resistance.    On the descending branch, gravity begins to 
cause an increase in the velocity of the projectile while the resistance 
reduces  it; the reduction in velocity proceeds until the acceleration of 
the resistance in a direction opposite to the movement of the projectile 
becomes equal in absolute value to a projection of the acceleration of 
gravity on the tangent to the trajectory (Figure 41),    Then the velocity 
of the projectile begins to increase.    Consequently, the projectile has 
its least velocity during flight in the air not at the peak of the tra- 
jectory, but somewhere beyond the peak (Figure 42).    The larger the 
angle of departure, the closer to the peak is the minimum velocity of 
the projectile.    For small angles of departure (when firing from small 
arms at ground targets)  the velocity of the projectile usually decreases 
over the entire trajectory from the point of departure to the point of 
fall. 

Figure ^1.     The Moment When  the Projectile 
has Velocity v  .   :  CF--a horizontal   straight 

'    mm 
line;  CT--Tangent  to the trajectory;  8-5 
Angle of slope of the trajectory;  g,  = g sin = -j 

45° corresponds to the 

In the air, the size of 

In airless space, angle of departure eo 

greatest base of trajectory of the projectile 
this angle is different for different projectiles: it depends on the 
muzzle velocity, weight, and shape of the projectile. For a mortar, 
this angle is close to 45° and for small arms--to 35°. 
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Figure k2..    Change  in the Velocity of a 
Projectile  in the Ai r. 

The angle of elevation at which the maximum range of flight of 
projectile is obtained is called the quadrant elevation of maximum 
range trajectory (in this case, we ignore the size of the angle of de- 
parture, considering that 6- = (ji). 

Trajectories which are obtained with angles of elevation less than 
the quadrant elevation of maximum range trajectory are called flat tra- 
jectories and with angles greater than the quadrant elevation of maxi- 
mum range trajectory--plunging projectories  (Figure 43). 

Figure 43.    0C.--Flat trajectory;  OC«-- 

Plunging trajectory; OC--Trajectory ob- 
tained with quadrant elevation of maxi- 
mum range trajectory. 
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Figure kk.    Combined Trajectories, 

Consequently, each point on the horizon within the limits of the 
quadrant elevation of maximum range trajectory may be hit when firing 
at two angles of elevation of which one corresponds to a flat trajec- 
tory and the other--to a plunging trajectory. 

The flat and plunging trajectories which are obtained when firing 
from the same weapon with  the same muzzle velocity and having the same 
base of fire are called combined (Figure 44).     In firing from a mortar 
by changing the size of the charge,  one can obtain a number of plunging 
trajectories which correspond to the same base of trajectory.    Strictly 
speaking,  these trajectories are not« combined but this name has been 
given to them in practice. 

On the basis of what has been presented,  the properties of a tra- 
jectory in the air may be formulated in the following manner: 

1. The trajectory is an asymmetrical curve,  the descending branch of 
which is shorter and steeper than the ascending branch; the peak of the 
trajectory is located closer to the point of fall   (tabular). 

2. The time of flight of a projectile from the point of departure to 
the peak of the trajectory is less than the time of flight of the pro- 
jectile from the peak to the point of fall   (tabular). 

3. The velocity of a projectile at points having the same ordinate is 
greater on the ascending branch than on the descending branch; the muzzle 
velocity is greater than the terminal velocity; the minimum velocity of 
the projectile occurs at a point located beyond the peak of the trajectory. 

4. In its absolute value,   the angle of fall   (tabular)  is greater than 
the angle of departure. 

5. The quadrant elevation of maximum range trajectory is different for 
various projectiles;   its size depends on the muzzle velocity, weight,  and 
shape of the projectile. 
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6. The trajectory of a rotating projectile represents a curve of 
double curvature as a result of drift. 

3. The Influence of Meteorological Conditions on the Flight of a 
Projecti Ye 

Air Density 

As we already know from formula (24), the amount of air resistance 
acting against a projectile changes with a change in air density and, 
consequently, the range of flight of the projectile changes. The less 
the air density, the greater the range of flight and the greater the 
air density, the less the range of flight of the projectile. 

Air density depends on three factors: on the temperature, atmos- 
pheric pressure and humidity. 

Air temperature is the degree of its warming. The air is heated 
from the ground which, in turn, is heated by the sun's rays which pene- 
trate through the atmosphere; the direct heating of the air by the sun's 
rays is extremely insignificant. 

The air expands with an increase in temperature. Consequently, the 
amount of air is reduced in the same volume with an increase in tempera- 
ture. From this it follows that the greater the temperature the less 
the air density and, conversely, the lower the temperature the higher 
the air density. 

Atmospheric pressure is the weight of the atmosphere which is 
exerted on a unit of surface. 

The greater the atmospheric pressure, the larger the amount of air 
which will be in the same volume and, consequently, the density of the 
air is increased; the less the atmospheric pressure, the less the air 
density. 

The humidity of the air is characterized by the content of water 
vapors in it. Taken as a measure for measuring air humidity is a value 
called absolute humidity. Absolute humidity is the pressure of the 
water vapors which are in the air (more exactly—the vapor tension rather 
than pressure but, since these quantities are quantitatively equal, we 
use the more understandable designation). Moist air represents a mixture 
of dry air and water vapors. If, for example, the atmospheric pressure 
of the air is 740 ür\  of mercury and 734 mm represent dry air, the dif- 
ference of 6 mm (740 - 734) is the absolute humidity of the air.  But 
the quantity of water vapors in the air cannot increase infinitely since. 
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with a certain concentration of water vapors, they begin to be trans- 
formed into drops of water.    Such a quantity of water vapors is called 
a saturating quantity and the absolute humidity which corresponds to 
the limit of saturation is called maximum.    The value of the maximum 
absolute humidity differs for different temperatures.    With moist air, 
a portion of its volume is occupied by water vapors instead of dry air. 
Meanwhile, the density of the water vapors is less than the air density: 
if the air density is taken as 1, the density of the water vapors is 
0.62.    Therefore,  with an increase in the humidity of the air its density 
is reduced and,  conversely, with a reduction in the humidity of the air 
its density is  increased1. 

In artillery gunnery calculations, relative humidity is usually 
taken instead of absolute humidity.    Relative humidity is the relation 
of the quantity of water vapors contained in the air to the greatest 
quantity of water vapors which may be contained in the air at a given 
temperature.    For example, if at a given moment with a temperature of 
+ 15° the absolute humidity is 6.4 mm and the maximum absolute humidity 
for this temperature is 12.8 mm (taken from a table), the relative 
humidity equals: 

f£|-=0,5, or 50%. 

But this does not mean that S0% of all the air is made up of water 
vapors.    It means that located in the air are 50% water vapors in com- 
parison to the quantity of water vapor which saturates the air. 

For normal meteorological conditions in gunnery practice the fol- 
lowing are taken:  temperature t0N = 150C,  atmospheric pressure hnN = 

= 750 mm of mercury, and relative humidity e./e = 50%.    Under these con- 

ditions, the normal air density is 1.206 kg/m3. 

The change in air humidity has practically no effect on the change 
in the projectile's range of flight; therefore, it is not considered in 
firing. 

The effect of a change in the atmospheric pressure on the range of 
flight of a projectile under normal firing conditions is also insigni- 
ficant; therefore,  this is considered only when firing in mountains. 

^e humidity of the air depends on the quantity of water vapors con- 
tained in the air and not on the quantity of water.    Therefore, fog, 
rain, etc.  have no relation to the problem being considered. 
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The basic factor which affects the amount of air density and, con- 
sequently, the projectile's range of flight is a change in air temperature. 
Corrections to the range depending on the change in air temperature and 
atmospheric pressure are taken from the firing tables. 

Wind 

The effect of the wind on the flight of a projectile depends on its 
velocity and direction.    Wind velocity and direction are changeable but, 
to determine the effect of the wind on a flight of a projectile,  it is 
necessary to assume that the wind maintains the same velocity and direc- 
tion for the entire length of the trajectory. 

The velocity of the wind is determined by the path covered by the 
air in a unit of time and is expressed in meters per second (m/sec). 

The following are distinguished in gunnery practice: weak wind-- 
2-3 m/sec, moderate wind--4-6 m/sec,  strong wind--8-12 m/sec. 

The direction of the wind is determined as the angle at which the 
air is displaced with respect to the plane of fire.    The following winds 
are distinguished with respect to direction: range winds which blows 
along the plane of fire (the range wind may be a head wind if the wind 
blows toward the firer and a tail wind if the wind blows from the firer), 
a cross wind which blows at an angle of 90° to the plane of fire  (cross 
wind from the left and cross wind from the right), and an oblique 
(slanting wind) which blows at an acute angle to the plane of fire 
(for example, a head wind from the left at an angle of 30°, a head wind 
from the right at an angle of 60°,  a tail wind from the left at an angle 
of 45°, a tail wind from the right at an angle of 15°). 

A range wind changes the projectile's range of flight, a cross wind- 
its direction,  and an oblique wind--both range and direction. 

The effect of the wind on a projectile consists of the following. 
With a range wind the direction of the projectile's flight and the wind 
direction coincide; in this, the projectile's velocity is reduced relative 
to the air and,  consequently, the air resistance is reduced, the projec- 
tile loses its velocity more slowly, and its range of flight is increased. 
With a head range wind, the reverse phenomenon occurs and the range of 
the projectile's flight is reduced.    A cross wind applies pressure on 
the lateral surface of the projectile and deflects it from the plane of 
fire. 

To determine the effect of an oblique wind, its velocity must be 
resolved into range wind and cross wind components  (Figure 45).    If we 
designate the wind velocity by W, the range component by W  ,  the cross 
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wind component by W , and the angle between the wind direction and the 

plane of fire by a, then 

IT, = IP cos« ( 

r,= rSin« I (31) 

Example. A head wind is blowing from the right at angle ot = 35° 
with a velocity of 10 m/sec. Determine the range wind and cross wind 
components. 

Solution. W = 10 m/iecj a ~ 35°. 
W, •• ir'cosa - 10 0,819 - 8,19 « 8   m/iec; 
V, - IT sin a = 100,574 - 5,74 * 6  m/iec; 

Figure kS.    Resolution of 
Wind Velocity. 

For the velocities of the range wind and cross wind which have been 
obtained, using the firing tables we determine the corrections for the 
range and direction of firing. 

When firing from small arms, the effect of the range wind is insig- 
nificant on the range of fire and, therefore, is not considered in practice. 
The cross wind has a considerable effect on the change in the initial 
direction of flight of the bullet and is considered during firing over 
the entire range. 
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With the simultaneous consideration of the effect on the flight of 
a projectile of the factors which change the range and direction of fire, 
first the total correction for range of fire is determined and considered 
and then, on the basis of the computed range, a correction for direction 
is determined since it depends primarily on the time that the projectile 
is in the air (range cf fire). 
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CHAPTER V 

AIMING  AND  SIGHTS 

In considering the arrangement for aiming, the necessity arises 
to perform several calculations which are connected with angular values. 
We will  acquaint ourselves with the units for the measurement of angles 
which have been adopted in military affairs. 

1.     Measuring  Angles 

Units  of Measurement for Angles 

In artillery gunnery practice, the azimuth micrometer scale unit, 
the mil,  and the "natural mil" are used as units of angular measurement, 

The azimuth micrometer scale unit.     If a circle of radius R is 
divided  into 600 equal parts  and the points of division are connected 
to the center of the circle  (Figure 46),  then 6,000 identical central 
angles are obtained.    The central  angle,  the length of whose arc equals 
1/6,000th of the length of the circle is called the azimuth micrometer 
scale unit. 

Figure 46.    Angle aOb,   Equals One Azimjth Micrometer 
Scale Unit: Arc ab »  Z  =  R/955   (For clarity,   the 
azimuth micrometer scale unit   is enlarged). 
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We express the length of the arc of the circle I which is equal 
to one azimuth micrometer scale unit in fractions of the radius R: 

eooo1 

Substituting the value 3.14 in place of v, we obtain: 

Thus, one azimuth micrometer scale unit equals 0.00105 radius. 

The mil.     If we assume that n = 3  (and not 3.14), in this case the 
length of an arc which comprises l/ö.OOOth of a circle will equal 

6000 T^rraöo^0'001^ 
The unit for the measurement of angles which is obtained and which 

is somewhat smaller than the azimuth micrometer scale unit it called the 
mil. 

The mil is the central angle which subtends an arc whose length 
equals 0.001 of the radius. The mil is more convenient for calculations 
than the azimuth micrometer scale unit. 

The "natural mlJ". The azimuth micrometer scale unit and mil are 
the basic units for the measurement of angles. But sometimes the value 
of an angle (for example, the angle of fall) is expressed in "natural 
mils". In contrast to the azimuth micrometer scale unit and mil, the 
"natural mil" is the product of the natural value of the trigonometric 
function of the tangent of the angle multiplied by 1,000 (tan a'1,000). 

The mil and the azimuth micrometei" Scale unit, as measures of angles, 
differ from each other in value by approximately 5%. For example, an 
angle which equals 100 mils corresponds to an angle of 95 azimuth micro- 
meter scale units; the length of a circle is 6,000 azimuth micrometer 
scale units or about 6280 mils. But in practice, it is usually accepted 
that an azimuth micrometer scale unit equals a mil and both are called 
either a mil or an azimuth micrometer scale unit. 

The "natural mil" can be equated to an azimuth micrometer scale 
unit only with small angles. 

The rules for the recording and reading of mils are presented in 
the following table. 
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TABLE 6 

Angle in Recorded 
Pronounced as 

Mi Is as 
2391 3V91 Thirty four ninety one 
230A 3A-05 Thirty four zero five 
3000 30-00 Thirty zero 
765 7-65 Seven sixty five 
69 0-69 Zero sixty nine 
9 0-09 Zero zero nine 

From the definition of the azimuth micrometer scale unit, it is easy 
to derive the relationship between the degree system for measuring angles 
and the mil system. 

Thus, a circle contains 360° or 6000 azimuth micrometer scale units. 
Consequently: 

360° = 60-00 

180° = 30-00 

90°= 15-00 

45° = 7-50 

6^=1-00 etc. 

It is easy to calculate that one degree corresponds to 16.7 azimuth 
micrometer scale units or approximately 17 mils; one azimuth micrometer 
scale unit (0-01) corresponds to 3'.6. 

Thus, when necessary it is easy to change from the measurement of 
angles in degrees to measurement in mils and vice versa. 

In gunnery practice, when solving problems in aiming it is necessary 
to work with small angular values; therefore, all the indicated units 
of measurement can be considered as equal to each other and the same 
designation can be used for these units--the mil. We will show this in 
the table presented below (Table 7). 

Since, in firing from small arms, the angles of fall are small, 
in the firing tables they are presented in degrees and "natural mils" 
or in "natural mils alone".  In practical calculations (for example, 
in determining the depth of the danger space), we take from the tables 
the values of the angles of fall in (natural mils) and perform further 
calculations as if with mils. With angles greater than 30°, these 
angular measures become unable to be compared. 
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TABLE  7 

lln De- In Azimuth In In Natu- In  De- |    In Azimuth in In  Natu- 
grees Micrometer Mils ral Mils grees Micrometer Mils ral   Mi Is 

Scale Units i   Scale Units I 

0o30' 0-08,3 0-08,7 0-08,7 
1         1 

45° 7-50 0 7-85,4 10-00 
1° 0-10,7 0- 7,5 0-17,5 {.0° !              10-00 0 10-47,2 — 
2° 0-33,3 0-34,9 0-34,1» W 1               15-00 0 15-70,8 — 
3° 0-50,0 0-52,4 0-52,4 120° 1             20-00 0 20-94,4 — 
6° 1-00,0 1-01,7 1-05,1 , 150° 1              25-00 0 26-18,0 -- 

15° ■.!-:>(),0 2-01,8 2-07,9 270° i              45-00,0 47-12,4 — 
aoo 

[              5-00,0 5-'.3.6 5 77,4 300° 1               50-00,0 52-36,0 — 
300° 60-00 0 62-83,2 

The Practical  Use of the Mil 

The azimuth micrometer scale unit is used to calibrate various 
angle-measuring instruments: the azimuth circle, the compass ring,  the 
angle-measuring quadrant,  several sights,  the compass limb, and others. 
The mil is used to measure angles   (for example, by binoculars)  as well 
as for a simplified technique in computation when changing from angular 
values to linear and vice versa. 

Let us establish the relation between the size of an angle in mils, 
the length of the arc,  and the radius with which a given circle is 
described. 

We designace the difference between two equally distant objects 
by V, the angle between the lines of direction to them by Y,  and the 
radius with which the arc is described  (or which is the same thing,  the 
range to the object), by D (Figure 47). 

Figure ^7.     Measuring Segment AB; 

V = ZY.  or V=^Y0 
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The length of the arc which equals one mil, as is known, is de- 
termined from the formula I  =  0.001 R. Or, for the conditions of the 
example: I =  0.001 D.  But since the angle between the equidistant 
objects is Y times larger than a mil, the length of the arc V will 
also be Y times larger than arc I.    Consequently, 

V = ZY, or V = 0.001 D-Y, 

from which _ v 
V = ^- .! (52) 

1000 ^ ^ 

From this formula, we determine: 

D = *^°°; (33) 

Y = 1^00- (34) 

The formulas which have been obtained are employed widely in ar- 
tillery gunnery practice and have the name of the mil formula. We will 
show the employment of these formulas by means of examples. 

Formula (32) permits determining a linear value: the distance 
between equicUstant objects, the height of width of an object, etc. 

Example. The angle at which a section of terrain between two trees 
(Figure 48) can be seen from an observation post equals 0-25, The dis- 
tance from the observation post to the trees (range) equals 1 km. De- 
termine the length of segment AB between the trees. 

Solution.  From the conditions for the example it is known that: 
D = 1000 m, Y = 0-25. We find the unknown segment AB from formula (32): 

B    JW  1000 25 
" loco = looo " 25 •"■ 

Formula (33) permits determining distances to objects (targets, 
reference points) from their known size and from the angle of visibility. 

Example.  An enemy tank (height 2 m) can be seen from an observation 
post with an angle of 0-0S (measured by an angle-measuring instrument). 

Find the range to the tank. 

^ith small angles, it is assumed that the length of arc V is approxi- 
mately equal to the corresponding chord AB (see Figure 47). 
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Figure 48. Measurement of 
Segment AB on the Ground: 

OB « OA = 1000 m 

Solution. Given: V = 2 m; Y = 0-0S. 

From formula (33) we obtain: 

R  Ä.1000  21000  -nn „ 0 - —p— - —^— - 400 M. 

In cases of necessity, one can determine the angle at which an ob- 
ject of known height (width) will be seen or the angle between two 
equidistant objects. For this, we use formula (34). 

Example. The distance between reference point 1 and the target 
(an enemy machinegun) equals 150 m and the range to these points equals 
1000 m (measured on a map). Determine Y between the reference point 
and the target. 

Solution. Given: V = ISO m; D = 1000 m. 

From formula (34) we obtain: 

y=V_iqoo ^iso^oMl50mn5( or 1-50. 

Measuring Angles Using Instruments and Field Expedients 

For the measurement of angles in artillery gunnery practice, regular 
observation instruments are used. The binoculars, periscope, monocular 
of the aiming circle, EC scope, tank sight, and other instruments contain 
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angle-measuring grids  in mils1; therefore these instruments are not only 
observation instruments but also angle-measuring instruments  (Figure 49), 

In order to measure any angle using an angle-measuring grid (for 
example, binoculars),  it is necessary to match the cross hair with the 
base of the reference point   (local object)  and note the division of the 
grid to the right  (to the left, upward) which coincides with the target 
(or other local object).    Thus, for example,  in Figure 50 the horizontal 
angle equals 0-25 and the vertical angle equals 0-20. 

Figure A9.     Angle-Measuring 
Grid of Binoculars. 

Figure 50.    Measuring Angles 
Using  Binoculars. 

In addition to the angle-measuring grids, such instruments as the 
aiming circle and BC scope have special mechanisms for measuring angles. 
The scales of these mechanisms are graduated in azimuth micrometer scale 
units and permits measuring angles to an accuracy of 0-01. 

^he distance between adjacent lines on the angle-measuring grid is com- 
puted by the well known formula: 

f «Y 
1000 

where f is the focal length of the lens and Y is the given angle in 
mils.  In six-power binoculars, for example, it is taken that Y = 0-05 
and f = 123 mm: 

123'5 
1000 

0.6 mm. 
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In many cases, angles may be measured with an accuracy sufficient 
for practical work using field expedients, for example, the fingers of 
a hand, a matchbox, a plotting scale and others. But for this, it is 
necessary to know the angular value of one object or another. The an- 
gular size of objects may be determined either using some angle- 
measuring instrument or by computation using the formula Y = V'1000/D. 

Let us assume that it is required to determine the number of mils 
which correspond to the index finger of an outstretched arm. For this 
purpose, we proceed in the following manner: we extend the hand out 50 cm 
at eye level and bend the wrist at approximately a right angle to the 
forearm; on the ground, objects are noted, the width of the interval 
between which is covered by the finger. Using an angle-measuring instru- 
ment (aiming circle or binoculars), we measure the angle between the 
noted objects (considering the point where one is standing as the apex 
of the angle). The result which is obtained shows the angular value of 
the finger in mils. 

When it is necessary to measure an angle using the finger, the arm 
should be stretched out and objects should be noted on the terrain, 
the width of interval between which is covered by the finger. The angle 
between the lines of direction to the objects will correspond approxi- 
mately to the angular value of the finger in mils (Figure 51). 

0-36 

Flflure 51. 
Us .ng a Fii 

Measuring 
nger. 

angles 

In those cases where there is no angle measuring instrument, the 
angular value of a field expedient can be determined by calculation. 
Thus, for example, 1 cm on a plotting scale located at a distance of 
50 cm from the eye corresponds to an angle 

-99- 



Y = i^i§2£ = 20 mils or 0-20. 

It must be noted that the accuracy in measuring angles with field 
expedients depends primarily on the ability to keep the object at the 
same distance from the eye all the time (for example, 50 cm). 

The precision in the measurement of distances depends not only on 
the precision in the measurement of the angle but also on the knowledge 
of linear dimensions (winth or height) of the local objects to which the 
distance is measured. 

2.  The General Concept of Sighting 

It is known that as a result of the effect of gravity and air resis- 
tance, a rotating projectile in flight is lowered below the extended axis 
of the bore and is deflected away from the direction of firing. Conse- 
quently, in order to hit the target, it is necessary to give the axis 
of the bore a certain position in space with consideration of the ver- 
tical lowering and possible lateral deflection of the bullet (projectile) 
with a given range of firing. 

(living the axis of the bore of the weapon a certain position in the 
horizontal and vertical planes in such a way that the mean trajectory 
passes through the target (the desired point on it) is called the sighting 
or Kuing.  Giving the axis of the bore the required position in the 
horizontal plane is called horizontal laying. Giving the axis of the 
bore the required position in the vertical plane is called vertical laying, 

Horizontal and vertical laying may be performed simultaneously, 
i.e., inseparably, or else successively, i.e., separately. 

When firing from a carbine, pistol, assault rifle, light machinegun, 
and other small arms only inseparable laying is performed. When firing 
from a mortar, regardless of whether the target is or is not visible 
from the weapon, separate laying is always performed. 

Depending on the nature of the fire missions being accomplished, 
target visibility from the weapon, and the design of the sights, laying 
is divided into direct and indirect.  Direct laying is performed by the 
direct sighting on the target.  In firing from small arms, direct laying 
is always perfumed. 

Indircc' ^aying is performed by sighting on an auxiliary object 
(stake) when t.ic target cannot be seen from the weapon. 

Let us -onsider the essence of sighting.  Let us assume that a target 
is located a point Ts (Figure 52).  If we direct the axis of the bore 
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directly at the target, then under the effect of gravity the bullet 
(projectile) drops beneath the line of departure vertically downward 
and flies lower than the target (or does not fly as far as it).  In 
addition, under the effect of the wind or as a result of drift, the 
bullet (projectile) may be deflected from the target in a horizontal 
plane, too.  Consequently, for the bullet (more accurately, the mean 
trajectory) to pass through the target Ts, it is necessary to direct 
the line of elevation not at the target (point Ts) but higher--by the 
amount of the vertical lowering of the bullet H with consideration of 
the angle of departure KoK' and to the side--by the amount of lateral 
deviation TsTs* = V (see Figure 52). 

cJlunuf      a, 
qpocawn       u 

npiooHm apipm 
b 

Figure 52.    The Essence of Sighting: OTs,  Line 
of Sighting; OK,  Line of elevation; OK',  Line 
of departure; H, Drop of  the bullet; Angle a. 
(Ts'OK), Angle of sight; Angle KOK', Angle of 
departure; Angle e   (TsOM),  Angle of site to the 
target; Angle ß  (TsOTs1), The angle of  lateral 
correction; Angle <j>   (KOM), The quadrant angle. 
a,  Ts; b, Line of elevation;  c,  Line of depar- 
ture; d, Weapon horizon;  e,   Line of sight. 

As can be seen from Figure 52, during sighting rather precise geo- 
metric constructions are performed using the sights.    Sights of all 
designs have an open sight.    In the simple sights, it is made in the 
form of a rear sight and front sight. 

Let us define some of the terms which are used in considering the 
essence of sighting. 

Aiming point TTs--a point on the target or outside it at which the 
gun is aimed.    With indirect  laying,  sighting is performed on an 
auxiliary local object or on a stake which has been especially set out. 
In this case,  the local object or stake is called the aiming point 
(T.i). 
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Line of aim--a straight line which passes from the eye uf the 
shooter through the middle of the upper edge of the slit in the sight 
and the apex of the front sight (i.e., through the open sight) to the 
aiming point. 

Line of sight-"a straight line which connects the middle of the 
upper edge of the slot in the sight with the apex of the front sight. 

Since the value of the target and weapon and, what is more, the 
amount of elevation of the front sight above the axis of the bore are 
insignificant in comparison with the range of fire, usually the target 
and the weapon are taken as points (Figure 53). Then, in place of the 
line of sight we use the term gun-target line--a straight line which 
connects the point of departure with the target (OTs). 

Sighting range-"the distance from the point of departure to the 
intersection of the trajectory with the line of aim. 

Plane of fire--the vertical plane which passes through the line 
of elevation. 

Target plane — the vertical plane which passes through the gun- 
target line. 

Plane of laying—the vertical plane which passes through the line 
of aim (laying). 

Angle of elevation a  (TsOK or Tsl0K)--the angle included between 
the line of aim and the line of elevation (see Figure 52). 

Figure 53- The Relation Between the Quadrant 
Angle, Angle of Elevation, and Angle of Site: 
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Depending upon the design of the sight, the line of aim may be 
located in the plane of fire (for example, with a carbine or assault 
rifle) or in the plane of laying (for example, with a light machinegun 
with a rear sight setting which differs from zero). But the angle of 
elevation a is always considered in the plane of fire (in the second 
case, as a piojectile to this plane). The angle of lateral correction 
with direct laying is included between the plane of fire and the target 
plane. 

Angle of laying ß is considered in indirect laying as the angle 

included between the plane of fire and the plane of laying. 

Angle of site to the target e--the angle included between the gun- 
target line (or what is practically the same thing, the line of aim) 
and the weapon horizon. The angle of site of the target shows the 
amount that the target is above or below the weapon horizon and there- 
fore may be positive and negative. 

The angle of site is considered positive (♦) when the target is 
above the horizon of the weapon and negative (-) when the target is 
below the horizon of the weapon (see Figure 53). 

Usually, the angle of site to the target c is considered in the plane 
of fire. Then it turns out that the quadrant angle $  is equal to the 
algebraic sum of the angle of elevation a and the angle of site to the 
target e (see Figure 53): 

^ a + € • (35) 

In order to give the axis of the bore the required position in space, 
it is fizst necessary to determine the numerical values of the angle of 
elevation and the angle of lateral correction, This work, in essence 
consisting of the determination of the sight settings, is part of the 
preparation of initial data for firing. 

The prepared data are set on the sight so that the lines of direc- 
tion (line of sight, axis of the level) comprise the required angles 
with the axis of the bore. This work is the first stage in solving the 
aiming problem. Only the sights operate in making the setting. 

The second stage in solving the aiming problem consists of matching 
the line of sight with the aiming point when sighting using the tra- 
versing mechanism or simply using the hands without changing the angles 
which have been set on the weapon.  In this, the axis of the bore 
acquires the required position in space. 
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3. Dependence of the Angle of Elevation on the Angle of Site to the 
Target 

When firing at targets which are located considerably above or below 
the horizon of the weapon, not only does the quadrant angle change de- 
pending on the size of the angle of site to the target, but also the 
angle of elevation does not remain constant to achieve the same slant 
range. 

The change in the angle of elevation depending on the angle of site 
takes place as a result of a change in the curvature of the trajectory. 
For firing in airless space, this dependence between the value of the 
angle of elevation and the angle of site is determined by the following 
formula1 : 

sin(2« + ») = sin2a0cos
,« + 8ini, (36) 

where e is the angle of site; 
a is the angle of elevation with an angle of site equal to zero; 

a is the angle of elevation with a given angle of site e. 

When firing in air, the overall character of the relationship re- 
mains the same despite the significant effect which the action of air 
resistance has on the change in the.angle of elevation. Therefore, in 
a number of cases (with small angles of elevation) Lender's formula 
may be used with sufficient accuracy for practical work for calculating 
angles of elevation when firing in air, too. 

Example.  When firing from a light machinegun at a range of 500 m 
at a target which is disposed on the horizon on the weapon, it is 
necessary to set the angle of elevation a- ~  O^ö' (range setting S). 

Determine the angle of elevation which is necessary to hit a target 
located at the same slant range of 500 m but with an angle of site: 
a) tl  = +15° and b) e2 = -15°. 

Solution. 

a) iln {2i + i) - Mil 03J2' cos-15° + sin 15° - 0,0151 O.Oö'iO3 + O.riS«   ■■ n;iT2<S. 

j,+ 15»_ l.VSO';       2«-50';       a - 25'. 

formula (36) was derived by Professor of the Artillery Academy 
F,  F.   Lender on the basis of parabolic theory and carries his name. 

•104- 



b) sln(2.-«)-s«n0o52'-COT'{-15o) +sln(-l50) -0.0l51-0,9659'-0.2588 =-0,2447; 

ia _ 15° - - MoI0';       2a - 50';      « = 25'. 

From the example, it can be seen that to hit a target at a range 
of SOG m with an angle of site equal to 15°, the angle of elevation a 
should be less than the angle of elevation an by 1'.    This will also be 

the correction to the angle of elevation for the change in the curvature 
of the trajectory (by the angle of site) which, in its general form, is 
expressed by the equality: 

Aa, = a — a». 

With an increase in the angle of site, the angles of elevation will 
be reduced for various slant ranges and the corrections to the angle of 
elevation for the angle of site increase in their absolute value. 

For example, in firing from a light machinegun at a range of 500 m 
with angles of site a) e = +25°, b) e = +50°, c) e = -50° the angles of 
elevation a and the corrections Aa will equal: 

a) a0 = 26', a = 23'30". A«. = a - <.„ = 23'30" - 26' = - 2'30"; 

b) a, = 26', a = 1 ^SO", 4a. = a - a, = 16'30" - 26' = - 9'30"- 

c) «„ = 26', a s- 16'30", Aa. = a ^ Oj = 16'30" - 26' = - 9'30". 

When firing at a range of 700 m (a.  - 47') with the same angles of 

site, the angles of elevation a and corrections Aa   will equal res- 
pectively: 

a) a = 43', Aa, = a —a0=»43' —47' = -4'; 

b) a = 30'3O", Aa, = a — a, = 30'30" - 47' = — 16'30"; 
c) a^aC. Aa.^a-a,,«^' —47' = -17', 

Thus, when firing at targets which are located considerably above 
(below) the horizon of the weapon, to increase the effectiveness of the 
fire it is necessary to consider the correction to the angle of eleva- 
tion for the angle of site. 

Angles of elevation for firing from small arms are small and prac- 
tically do not exceed 6°.    Under these conditions, Lender's formula 
may be transformed, taking cos a,  cos a. and even cos 2a and cos 2a0 
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equal to unity.    Actually,  if a = 6°,  then cos 2o = cos  12° = 0.978, 
i.e., practically close to unity. 

We transform Lender's formula somewhat and we write: 

2sinacosacost -H cüs2asint =,2sina0■cos«o■cos,• + 8'n•• 

Considering that cos  2a =  1,  cos a = 1 and cos a. =  1, 
we obtain: 

2 sin «• cos t -H sin»■=> 2 sin «, • cos-» + sin «. 

Subtracting sin E from both parts of the equality and then reducing 
by 2 cos e, we obtain: 

sin « = sin »„• cost. (37) 

In this form, the formula is used to calculate the angle of site 
in the design of several antiaircraft sights for large-caliber machine- 
guns. 

Figure 51».    The Start of 
"Rigidity" of Trajectory. 

If firing from small arms is conducted with small angles of site 
(c < ±15°), then in formula (37)  it can practically be considered that 
cos e  =  1.    Then: 

and sin »«»«in«« 

(38) 

i.e., with small angles of site (c < ±15°), the angle of elevation does 
not depend on the angle of site. This conclusion has the name of 
start of "rigidity" of trajectory because it assumes the rotation of the 
trajectory without a change in its form (Figure 54), i.e., u = a0, 
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OTs = OTs„ and 6 = 0 . (the angle of fall equals the tabular angle of 
0    c   cO 

fall). Consequently, with the presence of a small angle of site 
(e < ±15°) firing is conducted with the same range setting with which 
firing would be conducted at a target which is located at the weapon 
horizon at the same range. 

Firing from mortars is performed with quadrant angles greater than 
45°. In this case, the angle of site will affect the quadrant angle $ 
differently. 

From Figure 55 it can be seen that when firing from mortars at 
targets which are located at one slant range (OTs.. = OTs- = OTs»), with 

the presence of angle of site it is necessary to increase the quadrant 
angle if the target is below the weapon horizon and reduce it if the 
target is above the weapon horizon ($, < ({)_ and 6,, < (t-). 

Figure 55- The Dependence of $ on c 
When Firing from 82-mm Mortars. 

h.    Sighting Mechanisms 

The sighting mechanisms of a weapon should permit accomplishing 
aiming (laying) quickly and with the required accuracy. 

Sights which are used in small arms can be divided into open, 
diopter, and optical sights. 
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Open Sights 

Open sights are made in the form of a rear sight and a front sight. 
The slot in the rear sight may have different forms: rectangular- 
semicircle, rectangular, and triangular (Figure 56a). 

In its design, the front sight may be rectangular, triangular, etc. 

Figure 56.  Forms of Slots, Sights, and Front Sights: 
a. Forms of slots; I, Rectangular-semicircular; 2, 
Semicircle; 3, Rectangle; k,  Triangle; b, Shapes of 
front sights: I, Rectangle; 2, Triangle. 

Experience has shown that the best results when firing under normal 
conditions are provided by the rectangular-semicircular slot in combi- 
nation with a rectangular front sight. Such a slot is made on the sight 
of a carbine, pistol, assault rifle, and several other types of weapons. 

The distance between the eye and the rear sight is taken as 250-300 mm 
(for heavy machineguns--less).  In this, the visible width of the front 
sight should be within limits of 2.0-2.9 mils and the slot--about 4-5 mils. 

The mechanisms for setting angles of elevation on open sights are 
formulated constructionally in various ways. The most widespread have 
curve-slide sights, leaf sights, and pole sights (Figure 57). 

The setting of the angle of elevation and the angle for lateral 
correction is performed by changing the height of the sight, i.e., the 
height of the rear sight above the peak of the front sight (angle of 
elevation) and by moving it in a lateral direction or offsetting the 
aiming point (angle of lateral correction). 

The height of the front sight L (Figure 58) is determined by the 
distance along the normal from the axis of the bore to the tip of the 
front sight. For example, the height of the front sight of a heavy 
machinegun equals 56 mm. 
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Figure 57.    Sights: a,  Curve-slide 
sight;  b, Leaf sight;  c,   Pole sight, 

Figure 58.    The Dependence of the Height 
of the Sight on  the Angle of Elevation. 
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The height of the sight h is the difference between the distance 
from the axis of the bore to the middle of the upper edge of the slot 
in the sight and the height of the front sight.     If the height of 
sight equals zero,  such a setting is called zero.    With a zero sight 
setting, the line of aim is parallel to the axis of the bore and is 
called the zero line of aim. 

The height of sight  is determined in the following relationship 
from the angle of elevation a. 

From triangle AOC  (see Figure 58)  it can be seen that the height of 
sight 

A=/otga, or h = ffä, 

where a  is the angle of elevation in degrees or a'—in mils; 
L    is the length of the line of sight with zero sight settings 

(sight base). 

For example, the height of sight of a AK assault rifle with range 
setting 4 equals approximately 2.95 mm (h = 378«7.8/l,000). 

Open sights have a range scale for angles of elevation. The value 
of one division on the sight is usually !A'   and, more rarely, 50 m. 

To construct the angle for lateral correction ß on the ground, a 
movable rear sight is sometimes built into the open sight«; (for example, 
of a light machinegun).  The scale of the rear sight is usually given 
in mils. The distance between the lines on the scale is determined 
from the formula: 

r = /otgP 
or from formula (32): 

r —1000' 

where Y is the angular value of one division on the rear sight  (usually 
Y = 0-01 and more rarely 0-02). 

In constructing the angle of lateral correction using an open sight 
which ha;, a stationary rear sight, recourse is had to offsetting the 
aiming point by the linear value of angle ß.    The amount of offset of 
the aiming point  is usually measured in visual target sizes for a given 
range   (in figures). 
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The essence of direct laying with an open sight consists of the fol- 
lowing (Figure 59). 

Let us assume that the initial data for firing from a heavy machine- 
gun at a range of 600 m are: range setting 6, rear sight left 2 (a = 
= 0-06.9 and 3 = 0-02). These data are placed on the sight. 

If we now look through the sight slot (rear sight) and the tip of 
the front sight, it turns out that the line of sight is directed below 
and to the right of the target. Operating with the traversing and 
elevating mechanisms, the line of sight is matched with the aiming 
point.  If, in this, the middle of the upper edge of the slot of the 
sight (rear sight), the tip of the front sight, and the aiming point 
lay on one straight line, the axis of the bore assumes the required 
position in space. 

e   ropu30Hm opyxuK 

Figure 59- Accomplishing Direct Laying (Aiming) 
Using an Open Sight. Key: a, Range setting 6.9; 
b, Left 2; c, Line of elevation; d. Line of aim; 
e,  Weapon horizon 

Using an open sight, one can also fire on moving targets. 

In preparing initial data for firing on moving targets, just  as when 
firing on stationary targets it  is necessary to determine the angle of 
elevation and the angle of lateral correction.    The size of these 
angles also depends,   in addition to the factors indicated earlier, on 
the so-called  lead.     Lead is the correction for the movement of the 
target.    The amount of lead depends on the speed and direction of move- 
ment of the target  and on the range to it. 
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Figure 60.    Target Course:   a,  Frontal; 
b,   Flanking;  c, Oblique. 

The direction of movement of a target is characterized by the course 
angle q   , which is formed by the line of direction of movement of tiie 

target   (target course) and the line of direction to the weapon.     The 
target course may be frontal when the course angle q    =0°,  flanking 

when the course angle q    = 90°,  and oblique when the course angle does 

not equal  a right angle (Figure 60). 

Let us consider the procedure in preparing initial data when firing 
at moving targets. 

Let us assume that it is intended to fire from a carbine at a dis- 
tance of 400 m on a target which is running along the front  (target 
speed of movement v    = 3 m/sec). 

If a shot  is  fired with range setting 4 aiming directly at the 
target   (A    (Figure 61), obviously there will no hit since during the 

bullet's time of flight the target will displace to point A   by the 

amount of linear lead. 

s =  v.t   , t v 

where t    is the bullet's time of flight for a range of 400 m. 

To hit a target under these conditions  it is necessary to offset 
the direction of firing along the target's path of movement by the 
v t    without changing the sight setting. 
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Figure 61.  Lateral Lead. 

We determine the amount of linear lead. For this, in the firing 
table we first find the time of flight of the bullet t =0.72 sec B v 
and then we substitute its value in the formula: 

s-y«. v t 
t v 

3 0.72 = 2,16 M. 

But  since it is impossible to determine the amount of lead in meters 
on the ground,  it is usually reckoned in visual target silhouettes,   i.e., 
in figures.    Taking the width of a figure as equal to 0.5 m, we find 
that we should offset the aiming point by approximately four figures 
(2.16:0.5).    Thus, the angle of lateral correction  (lateral  lead)   for 
the given range will equal 

3- :1Mi 
1      n,oi>lD 

_2'l0_ = 5 4   mils, 
0,001   J00 ' 

With the movement of the target in the plane of fire as well  as  in 
certain cases and with oblique movement   (with small  course angles or 
else with small  target speed values), range lead is considered  (lead 
for command and loading time). 

Correction for this  lead is made by changing range depending on the 
path co    red by the target during the time necessary for the  commander 
to prepare initial data and give commands and for the crew to prepare 

If we take the command and for firing  (command and loading time t ). 

loading time t    =30 sec, with a target speed of movement v 3 m/sec 
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the displacement of the target, i.e., the lead, will equal Yn = 3*30 = 

90 m [sic] or approximately one sight division.  If the target moves 
with  a speed 10 m/sec,  then Yn    =  10'30 = 300 m,  i.e. three sight 

divisions.  Therefore, in practice the sight setting is less (greater) 
than the initial (current) range when firing at dismounted targets by 
1-2 divisions and, at motorized targets—by 2-3 divisions1. 

Fire can also be conducted against aerial targets using the open 
sight.  Firing from small arms from aerial targets (airplanes, helicopters, 
parachutists) is conducted at distances up to 500 m with range setting 3. 
Thanks to the flatness of the trajectory and the large angles of site, 
range setting 3 assures the passage of the mean trajectory within the 
limits of the target for altitude at these distances. 

Correct Aiming  High front sight   Low front sight 

V7,, 

Front sight        Front sight 
held to the right   held to the left 

Figure 62. Possible Deviations of Bullets 
with Errors in Aiming. 

The determination of the amount of lateral lead is performed just as 
when firing against moving ground targets. 

When firing at ground targets using an open sight, it is very im- 
portant that the rifleman hold the tip of the front sight in the middle 
of the upper edge of the sight slot and on a level with its edges 
(holds a centered front sight) since even insignificant oscillations in 
the visible position of the front sight will be the cause for the de- 
viation of the mean trajectory from the aiming point. 

^he displacement of the target in the plane of fire during the bullet's 
time of flight is insignificant; therefore, it is not considered in 
practical calculations. 
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The most characteristic errors in aiming are the following  (Figure 
62) : 

1) The front sight is held to the right  (to the left)--the mean 
trajectory deviates to the right   (to the left); 

2) High  (low) front sight--the mean trajectory deviates upward (down- 
ward) ; 

3) Canting the weapon--the mean trajectory deviates in the direction 
of the canting and downward. 

To clarify what has been said,  let us analyze the following example. 
Fire is being conducted at a range of 400 m from an assault rifle and 
a heavy machinegun.    Let us assume that the same error is committed in 
laying:  the front sight is held 0.5 mm to the side.    We determine the 
effect which the error in sighting has in both cases on the position of 
the mean trajectory relative to the aiming point  (Figure 63) . 

Figure 63.     The  Effect of the 
Length of  the  Line of Sight on 
the Deviation of the Mean Tra- 
jectory. 

It is known that the length of the line of sight of an assault rifle 
IQ = 378 mm,  and of a heavy machinegun-- I' = 855 mm;  BV = B'V  = 0.5 mm 

(given); OV = Z» = 378 mm; OV  = I'  = 855 mm; 0P--the range of firing-- 

equals 400 m; PM' and PM are the deviations of the mean trajectories of 
the machinegun and the assault rifle. 

Triangles BOV and MOP,  B'OV  and M'GP are similar,  consequently: 

DM - BV,0P        0,5-100 000       .„„ 
PM " ■W   =—-m—~529 •"•"-  or  52,9 CM. 

PM' B'V'OP = 0^00000 
OV 85'5~ «234 MM,   or 23,4 CM 
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The example shows that the deflection of the front sight in the 
slot of the sight (non-centered front sight) causes extremely sig- 
nificant errors in firing, especially from a short-barreled weapon. 

A high (low) front sight is the reason for the deviation of the 
mean trajectory for height.  In this case, the amount of deviation will 
be the same as for the lateral direction. 

It is important to note that displacement of the line of aim rela- 
tive to the aiming point under conditions where a centered front sight 
is maintained does not have a great effect on the deviation of the mean 
trajectory and has little practical effect on the accuracy of the firing. 

Canting of the weapon has some effect on the result of the firing. 
I rom Figure 64 it can be seen that with the correct aiming the trajectory 
passes through point P.  If the weapon is canted to the right (to the 
left) by angle v, the extended line of departure will describe the arc 
DU, of a circle with radius T. .„ around point TV . . tgtD * tgt 1 Therefore, the 

point  of the intersection of the trajectory with the target  P,   is also 

located to  the right   (to the  left)   and below point P. 

As  calculations show, the amounts of deviations in a lateral direc- 
tion VP    and for height VP are insignificant at short distances.    Thus, 

for example,  in firing from an assault rifle at a range of 200 m with 
range setting 3, with an angle of cant v = 5° the mean point of fall 
deviates  approximately 10 cm in a lateral direction and,  for height, by 
0.4 cm;  when firing at 400 m,  the corresponding deviations will equal 
21 cm and   1.2 cm. 

^ 

Figure 6^.    Diagram of  the Canting of a Carbine. 
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Thus, when firing at short ranges the canting of the weapon has 
no noticeable effect on the accuracy of the firing.    But this does not 
mean that the weapon can be canted.    For example, when firing from a 
company machinegun from an uneven platform at ranges of 700-800 m, 
the lateral deviation will already achieve a noticeable value; in addi- 
tion, vith a canted position of the sight aiming is made difficult and 
errors in laying are increased, as a result of which the accuracy of 
the firing is reduced significantly. 

The open sight is the basic type of sight for small arms.    By using 
it,  one can achieve high results in firing at short and medium distances. 
The accuracy of the aiming using an open sight depends on the ability 
to keep the eye at the same distance from the slot in the sight, the 
dimensions of the target, the illumination conditions,  and the range to 
the target.    With an increase in the range of firing, the amount of the 
angle under which the target  can be seen in reduced, as a result of which 
errors in laying are increased. 

It has been established experimentally that  the maximum amount of 
error in laying with an open sight is within limits of 2 to 6'.5 or 
from 0.5 to 1.8 mils depending on the nature of the target, illumination, 
etc. 

Diopter Sights 

The striving to facilitate aiming and improve the accuracy of fire 
led to the creation of the so-called diopter sight.    In this sight, the 
rear sight is made in the form of a plate with a round hole in the center 
with a diameter of about  1.5 mm; the plate is called the diopter 
(Figure 65).    The shapes of the front sights may be most varied: rec- 
tangular, circular, rectangular with a ball at the apex, etc. 

Figure 65.    Diagram of the Construction 
of a Diopter:   1, Diopter; 2, Angle of 
elevation scale;   3,  Lateral  correction 
scale. 

•117- 



A principle schematic of the construction of the sight is pre- 
sented in Figure 66. 

The favorable properties of the diopter sight are the following. 
The tip of the front sight is viewed in the diopter at a small angle 
of vision, thanks to which the eye matches it easily, without efforts, 
with the center of the hole in the diopter, after which laying the 
weapon on the target presents no special difficulty. Oscillations of 
the tip of the front sight relative to the center of the hole in the 
diopter are unavoidable but, as a result of the small value of the field 
of view, their linear value is insignificant.  In addition, so that the 
field of vision is not reduced excessively, the diopter sight is mounted 
on the rear portion of the receiver, almost at the very eye of the rifle- 
man, and this leads to a noticeable increase in the length of the line of 
sight, and, consequently, to an improvement in the accuracy of the 
firing. 

Figure 66.  Sketch of the Design of a 
Diopter Sight. 

However, in comparison with the open sights the diopter sights also 
have shortcomings. 

The small hole in the diopter extremely limits the field of view of 
the firer, as a result of which the finding of the target and the conduct 
of fire against bobbing and moving targets is made difficult. In addi- 
tion, the sight is extremely sensitive to the plugging of the hole by 
dust, snow, etc. 

As a result of these shortcomings, diopter sights have not received 
widespread popularity in combat weapons but are used in small-caliber 
sports weapons and 7.62-mm target rifles. The diopter sights further 
the attainment of very high results in sports firings. 

Optical Sights 

Optical sights are intended for firing at small and distant targets 
which are observed at a small angle of vision as well as for firing 
under conditions of limited visibility. 
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An optical rifle sight represents a regular telescope with ai. 
optical portion  (Figure 67).    The optical portion of the sight consists 
of an objective  lens, rectifying system,  and eyepiece.    The objective 
lens provides an inverted and reduced image of the object  in its  focal 
plane which is corrected by the rectifying system.    The eyepiece is 
intended for viewing the image of the object  in a magnified and direct 
form. 

Figure 67.     Cross-Section of an Optical 
Sight:   1,  Objective  lens;  2,   Frame with 
sight cross hairs   (internally mounted); 
3,   Rectifying system;  k,  Eyepiece;  5, 
Mechanisms  for angles of elevation  and 
lateral  corrections. 

A frame with the sight cross hairs is located in the focal plane of 
the objective lens. For firing at various distances as well as for con- 
sideration of lateral corrections for wind and for drift (or for the 
movement of the target), there are special mechanisms on the sight which 
permit setting calculated angles of elevation and angles of lateral cor- 
rections by moving the sight cross hairs. 

In optical  sights,  the target image and the sight cross hairs are 
located in the same plane and can be seen simultaneously through the 
eyepiece.    When taking aim, the rifleman should combine the point  of the 
sight hemp with the target.    Therefore,  aiming using optical sights is 
performed more rapidly, more accurately,  and less fatiguingly.     It has 
been established by practice that the maximum error in aiming using the 
PU sight is within limits of 0.09-0.3 mils. 

The tactical and technical characteristics of the PU sight are the 
following: weight  270 g,   length 169 mm,  field of view 4030l, magnifica- 
tion 3.5, diameter of the entrance pupil  21 mm, diameter of the exit 
pupil 6 mm,  distance to the exit pupil  72 mm. 

It is necessary to note that the distance to the exit pupil   in op- 
tical sights  is always extremely great.    This is necessary to protect 
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the eye of the rifleman from strikes against the eyepiece as a result of 
the weapon recoil as well as for convenience in aiming. 

The sight is mounted on the weapon in such a way that with the 
correct assumption of position the eye of the rifleman is coincident 
with the exit pupil. Only in this case will all rays from all points 
which are in the field of view of the sight reach the eye. Failure to 
observe this requirement will lead to errors in aiming.  If the eye of 
the rifleman is closer or further from the exit pupil, a circular dar- 
kening is obtained in the field of view of the sight which reduces the 
field of view and makes observation and the conduct of fire difficult. 
If the eye is displaced away from the optical axis of the sight, then in 
the direction of the sight's field of view in which the eye has been 
displaced crescent-shaped shadows will appear and, in this case, the 
bullets will deviate in a direction opposite to the position of the 
shadow (Figure 68). 

d e 

Figure 68. Errors in Aiming Through an Optical Sight: 
a, Correct aiming; b, Shadow downward on the edges of 
the eyepiece-Tnean polit of fall deviates upward; c, 
Shadow upward on the edges of the eyepiece—mean point 
of fall deviates downward; d, Shadow on the left on the 
edges of the eyepiece—mean point of fall deviates to 
the right; e, Shadow on the right on the edges of the 
eyepiece--mean point of fall deviates to the left. 

Antiaircraft Sights for Small Arms 

In view of the great complexity of modern antiaircraft sights, a 
detailed illumination of the principles of their construction is pro- 
vided in special courses.  We will limit ourselves to a brief presenta- 
tion of the essence of the solution of the aiming problem and necessary 
explanations on the design of the sights. 
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In firing at airplanes, just as at moving ground targets, fire is 
conducted with a previously calculated lead. As a result of the great 
speed and the possibility of the target's movement in any direction in 
space, the successful conduct of fire against airplanes using regular 
sights of small arms is difficult and sometimes even impossible. There- 
fore, in order to raise the effectiveness of machinegun fire, primarily 
that of large caliber machineguns, they are supplied with special anti- 
aircraft sights. 

Figure 69. Coordinates (0 , c, ß) and 

the Parameters of a Target's Movement 
q, X). P--Course parameter. Key: a, 
Target course; b, Projection of target 
course to the horizon; c, Base direction 
of fire. 

After the input of initial data, modern antiaircraft sights assure 
finding in space the point of impact of the bullet and the target, i.e., 
they solve the so-called impact problem. 

Let us consider a simplified arrangement for the solution of this 
problem, for which we will first provide an explanation of the terms and 
designations which have been adopted in antiaircraft firing. 

Target coordinates. The position of a point in space, including an 
aerial target (taken as a point) is determined by three coordinates.  If 
we take the location of the weapon 0 as the origin of the coordinates, 
the slant range to the target at a given moment D . the angle of site to 

the target T.,  and the azimuth ß determine the position of the target in 
space relative to the weapon (Figure 69), i.e., these values will be the 
coordinates of the target (azimuth ß is the angle in the horizontal plane 
between the base line [reference direction] and the horizontal range). 
This sytem of coordinates is called the spherical system. 
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Parameters of target movement. The values which determine the 
speed and direction of a target'* movement are called the parameters 
of movement. The following parameters are usually accepted when 
firing from machineguns: speed of target v , course angle q, and angle 

of slope of the target course to the horizon (angle of dive or pitchup). 

The course angle q is the angle at the target in the horizontal 
plane between the line of direction to the machinegun and the projection 
of the target course to the horizon. The course angle may also be con- 
sidered in an inclined plane (q ); in this case, it is included between 

the line of direction to the machinegun (slant range) and the target 
course. Instead of the course angle q, sometimes course parameter P 
is considered which is the smallest distance from the machinegun to the 
projection of the target course to the horizon. 

The parameters of movement are determined during observation of a 
target. However, they may change after a round.  It is not possible to 
anticipate and consider the possible changes. Therefore, it is assumed 
that during the time of the bullet's flight to the predicted point 
(during the lead time), the target will move along a straight line and 
uniformly either horizontally or along an incline straight line with a 
constant slope to the horizon. These two hypothesis form the basis of 
the solution of the impact problem under modern conditions. 

The geometric meaning of the solution of the impact problem is re- 
duced to the following (Figure 70). 

Let us assume that a target moves in direction MN along a straight 
line, uniformly and horizontally, along a course determined by the angle 
q and, at a given moment, is located at point A .  If we direct the 

weapon at point A and fire a round, then during the bullet's time of 

flight the target will be at point A , i.e., it will move along the line 

MN from point A by the value 

s = v -t , 
t u' 

where v is the target's speed; 

t is the time of flight of the bullet for the distance OA . 
u 6 u 

In addition, the bullet will drop beneath the extended axis of the 
bore under the effects of gravity. Consequently, to assure the impact of 
the bullet with the target it is necessary' that, at the moment of firing, 
when the target is located at A , the weapon be directed at point C, i.e., 

that the weapon be given the angle ß + Aß in the horizontal plane and angle 
i + x,  + e  in a vertical plane where a. = a-'cos e . T   1   u 1   ü    u 
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Figure 70. Diagram of the Solution of 
the Impact Problem. 

Connecting points A . A , A', A', and C with point 0, we obtain tri- 

angles OA A , OA'A', and OA C. Triangles OA A and OA'A' are called the 

lead triangles; the first—in the incline plane of the target course and 
the second—in the horizontal plane. 

Triangle OA C in the vertical plane is called the ballistic triangle. 

In the lead triangles: 

A is the point of shot (the position of the target at the moment 

that the round is fired); 
OA is the present slant range; 

OA' is the present horizontal range; 

A is the predicted point (A* is the same thing in the horizontal plane); 

OA is the predicted slant range; 

OA' is the predicted horizontal range; 
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A A    is the path covered by the target during lead time T 

(A A    = s = vtt  ) ; v v u t IT 
t is the lead time; it is assumed that it equals the time of 

flight of the bullet over range OA ; 

AH is the angular lead (with the index n--in the inclined plane 
of the target course--Aß ); 

f  is the angle of site of the predicted point A ; 

OA , t , B ♦ Aß are the coordinates of the predicted point A . 

lor successful firing, it is first necessary to construct the lead 
and ballistic triangles using the sight. This problem is unique since, 
for its solution, it is necessary to know the coordinates of the predicted 
point A which is determined by the value and line of direction s = v 't = 

= A A ; at the same time, the value s = v^t itself depends on the coor- v u tu       r 

dinates of the predicted point. Therefore, the lead and ballistic tri- 
angles are constructed approximately with an accuracy sufficient for 
practical work.  Let us see how these triangles (OA A and OA C) are 

solved in principle. 

Lead triangle in space OA A is constructed using the so-called lead 

triangle Oa a which is similar to it and which is constructed on the 6    v u 
weapon. The construction of the lead triangle which corresponds to the 
assumed firing conditions is accomplished using the antiaircraft sights. 
The ballistic triangle is constructed in space in the same manner. 

Depending on the type of weapon and the precision for the solution 
of the impact problem which has been accepted, antiaircraft sights have 
different and often very complex devices. 

The simplest is the so-called ring course sight. As can be seen 
from Figure 71, the sight consists of a base and front and rear open 
sights. The front open sight consists of four concentric rings and a 
hub (the central ring) which is fastened on a support.  In this the 
support, it would appear, and the plane of the rings during firing should 
always be perpendicular to the line of sight OA . The rear open sight 

represents a small bead (sometimes a diopter) fastened on the support 
and parallel to the support of the front open sight. The sight is in- 
stalled in such a way that the zero line of sighting which passes through 
the bead and the central ring is in the plane of fire, or, at least, 
parallel to it. 
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The principle of the sight's design is based on the fact that the 
lead triangle is determined by the size of the radius of the ring 
(R ■ a a ) of the front open sight and the length of the line of sight 

I  which are selected in accordance with the coordinates and parameters 
of movement in the inclined plane of the target course. 

Figure 71. Antiaircraft Course Sight. 
Diagram of the solution of the impact pro- 
blem with OA ■ OA and t - t . 

v    u     u   v 

Let us consider how the lead triangle is solved in a course sight. 

Let us assume that it is intended to conduct fire from a heavy 
machinegun at a target having: coordinates OA = D = 1000 m, the angle 

of site to the target E = +60°, and azimuth 6=0°; the parameters of 
movement--target speed v = 600 km/hr, course angle q = 90°, and angle 

of dive X = 0°, i.e., the target is flying horizontally. 

Let us assume that during the bullet's time of flight the target 
moves along a straight line and uniformly in a horizontal plane. We will 
consider that the bullet's time of flight over the same slant ranges re- 
main unchanged regardless of the target altitude. 

To solve the triangle, as is seen from Figure 71, it is necessary 
to know the predicted slant range OA = D and the path covered by the 

target during the bullet's time of flight over distance D which equals 

s = v «t . But, as has already been indicated, these values are inter- 

dependent; therefore, an exact solution is impossible. 

We make the assumption that range OA = OA and time t = t ; from 

this, the path covered by the target during the bullet's time of flight 
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from which 

is also taken as equal to s = \» »t    where t    is the bullet's time of 

flight over the distance D . 

From the similarity of triangles OA A   and Oa a   we write the v u v u proportion: 
R I 

v.t        " ÜÄ~ * 
t v v 

Vf'tu OA 

In practice,  it turns out to be more convenient to express range 
OA    as the product of the mean speed of flight of the bullet v      which 

corresponds to this range times the bullet's time of flight over the 
same range OA    = v    «t  .    Replacing OA   by the new value and reducing it 

by t   , we obtain the so-called computation formulas: 

v v 
R m i  _L and z . R _iy_ 

V v 
av vtst 

The scale for the construction of the sight k is selected on the 
basis of convenience in operation.    Since the linear value of the radius 
R is proportional to the target's speed of movement v , the relationship 

R/v    = k should be constant for all rings.    Therefore R = v «k  (R is in 

millimeters,  v    is in m/sec). 

Let us set the scale of construction k = 0.479.    Then, the target 
speed of 600 km/hr (167 m/sec) will correspond to the ring with a radius 
R =  167'0.479 «» 80 nun and the rings with radii R = 60,  40 and 20 mm will 
correspond to speeds v    = 450,  300,  and 150 km/hr. 

Now we determine the base of the sight I for which we first find the 
average speed of flight of the bullet v     : 

OA,      1000      ._-     , 
^=-7,   =ÄO<r~485m/sec5 

l~R~&^kv   -= 0,479• 485:= 232 ** 
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Strictly speaking, the length of the line of sight I should he 
proportional to each range of firing.    However, to simplify the design, 
this requirement is ignored and the length of the line of sight  Z  is 
taken as some constant value. 

Thus, under the conditions of our example,  if we sight through the 
bead (diopter) and a point on the ring with a radius of 80 mm so that the 
target appears to be moving toward the center, the lead triangle will be 
constructed on the sight which corresponds to the assumed conditions 
and, using it, the similar lead triangle in space OA A .    In this case, 

the angular lead will equal: 

Ap--^-. 1000(ml Is), 
av 

In this way one part of the impact problem is solved—consideration 
of the lead. 

The ballistic triangle should be solved with consideration of the 
angle of site e from the formula ou = a- cos e.    For this example, 

a0 = 55'; cos 60° = 0.5 and o^ = 55-0.5 « 27'. 

However, in many sights, even those more complex than the ring sight, 
the angle of elevation is assumed to be constant, usually corresponding 
to a range of 1,000 m with e = 0. 

The second part of the impact problem is solved in this way.    The 
angle of elevation which is taken in the sight is considered to be 
the difference in the heights of the bead (diopter)  and central ring 
(hub)  above the axis of the bore. 

Sights with open sights disposed perpendicular to the line of sight 
are convenient in that they permit considering the lead in the very 
aiming process with course angles which not only equal 90° but also with 
course angles which differ from 90° without the preliminary setting of 
the plane of the open sight   (ring) parallel to the target course. 

Under these conditions, the target course is considered in the form 
of a projection to the so-called picture plane (the plane which is per- 
pendicular to the line of sight).    If the sighting point a   is correctly 

selected on the corresponding ring when aiming  (in such a way that the 
target moves toward the center), projection A'A   will always be parallel 

to the radius r = a'a    (Figure 72), i.e., triangles OA'A   and Oa'a   will vu vu vu 
be similar. 
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Figure 72. Diagram of the Solution of the Impact Problem 
with the Disposition of the Front Open Sight Perpendicular 
to the Line of Sight Oa' when the Course Angle is Dif- 

ferent from 90°. 

With course angles of q which differ from 90° but with all other 

conditions the same, the sighting point a' should be at a distance from 

the center of the open sight as can be seen from triangle Oa'a by the 
amount 

1 av 
n<7n, or r = /?.sin^. 

Thus, for example,  if the range to the target is D    =  1,000 m, the 

target's speed of movement v    = 600 km/hr (167 m/sec) and the course angle 

q    =50°. then 

/ ^ • sin v - 0,232 • ~ ■ 0,766 ^ 61 ^. 
av 485 

Under tho  given conditions, the sighting point should be selected at 
the ring R = 60 mm. If the course angle equals 60°, then r = 69 mm 
and the sighting point should be selected in the interval between rings 
R = 80 mm and R = 60 mm. 

Since the base of the sight I  (the length of the line of sight) 
will, as a rule, be a constant value the radius of the ring depends on 
the speed and course of the target and the distance to it. Therefore, 
these data will also be the input data. Using a special table, from the 
input data we determine the lead (for ring sights—the number of the ring) 
which is also considered in the aiming process. 
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The speed of the target is usually determined from the type of the 
airplane while the distance and course angle are determined by eye. 
In practice, it turns out to be possible to determine sin u from the 

relation of the length of the airplane fuselage which can be seen by the 
observer to its true length, i.e., from the aspect of the airplane1. 
Therefore, the target course is considered in the sight by the target 
aspect. We assume the following aspects as input data: 1/4 (150-1650) 
and 1/2 or 2/4 (30o-150o), 3/4 (50o-130o) and 4/4 (90°). The sights 
receive their name from this—aspect sights (course sights). They also 
include optical sights--collimators with one or several interchangeable 
aspect rings as well as more complex sights. 

A significant shortcoming of ring sights, in addition to the fact 
that they do not select the lead distance, is the fact that in performing 
the sighting the gunner does not have a fixed sighting point on the ring 
itself or in the interval between the rings; he must select some imaginary 
point. This leads to great errors in aiming.  In addition, much time is 
required to train the gunner. 

At the present time, automatic antiaircraft sights are used which 
do not have the shortcomings indicated above. Having a complex design 
plan, however, these sights in principle perform the same constructions 
of the lead and ballistic triangles as are solved with the aspect sights 

Mortar Sights 

For the conduct of artillery and mortar fire from indirect firing 
positions, more improved sights are used which permit accomplishing 
indirect laying. 

The essence of indirect laying is that the weapon is given the re- 
quired position in space from computed values of the angle of laying ß 

and quadrant angle $  using the sight (Figure 73). 

The angle of laying ß consists of two angles: ß,, which represents 

regular angular corrections for wind and drift (for rifled weapons), and 
6-, which is an angular value that shows the position of the target 

^t is not difficult to see that the aspect of the target is numerically 
equal to sin q if, in the triangle A A'A (Figure 72) side s is taken 

as the true side and side A'A is taken as the length of the fuselage seen 

by the observer, for A'A /s = sin q . 
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relative to the aiming point T  .    The quadrant angle $ should be set 

in the vertical plane; therefore,  a cross level is usually placed on 
the sights.    The aiming point may be at various distances and at various 
levels relative to the target;  this  causes the necessity to construct 
special  devices which permit deviating the gun-aiming point  line in the 
horizontal plane by the possible value of angles ß    and in the vertical 

plane--by the amount of the angle of site to the aiming point £_. 

The sights have an azimuth mechanism for horizontal laying.    The 
azimuth mechanisms of mortar sights may be of various designs but the 
essence of their construction is the same.    They represent a circle 
divided  into 60 divisions.    The value of a division is  1-00.    Using an 
additional device,  the accuracy in setting angles is reduced to 0-01. 
The azimuth mechanism is installed oil the mortar in such a way that the 
00-30 line is parallel to the axis of the bore.    In this,  the zero 
division of the scale is directed toward the target and the division 
"30" is directed toward the observer  (in a direction opposite to that 
of the target). 

Figure 73-    The Essence of 
Indirect Laying:   1,  Plane of 
fire;   2, Target  plane;  3, 
Laying  plane;  k, Weapon 
horizon; OTn, Gun-aiming 
point   line;  e-,  Angle of 

site  to the aiming point. 

Figure 7^. Constructing 
Lateral Angles Using the 
Azimuth Mechanism. Key: 
a, Reading. 
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The construction of angles using the azimuth mechanism is performed 
in the following manner.     Let us assume that  it is required to constru  ~ 
an angle which equals  25-00.    For this,  it  is necessary to place the 
index on division "25" and, using the turning mechanism, match the  line 
of sight with the aiming point Tn.    With the setting of a deflection of 
"25", the ray of the observer's vision will be directed to the right  and 
forward (Figure 74). 

The employment  of the azimuth mechanism facilitates in an extreme 
way the aiming problem since it permits selecting an aiming point within 
the limits of almost  360°.     In addition,  the aiming point may be at any 
distance from the mortar and at a different  level. 

Mortar sights have special quadrant angle mechanisms.    The quadrant 
mechanism of the sight consists of a rotating sector with a scale and a 
longitudinal level fastened on it (or on the housing).    The precision in 
setting quadrant angles usually equals 0-01.     The role of the  line of 
sight (line of direction)  is filled by the axis of the level. 

Because firing from mortars is performed with various charges,  the 
range scale may not be plotted with a value of divisions in meters 
(the number of scales would reach 4).    Plotted on the sector is a so- 
called angular scale or mil scale.    The basic advantage of the angular 
scale is that it is  acceptable for any charge.    Some inconvenience is 
presented by the circumstance that selection of the range setting on the 
angular scale is impossible without firing tables. 

Figure 75*    Giving the Necessary Quadrant Angle to the 
Axis of  the Bore of a Mortar: a,  Range setting; b, 
Vertical   laying;  1, Axis of the  level;  2,  Horizon. 

■131- 



Mortars are weapons for high-angle fire: the horizontal range is 
reduced with an increase in the quadrant angle and is increased with a 
decrease in the quadrant angle; the quadrant elevation of maximum range 
trajectory is approximately equal to 45°. This property of mortars must 
be kept in mind in considering the design of the sights. 

The setting of the range in accordance with the range of fire is 
performed bv rotating the sector around its axis through some angle A<|i 
(Figure 75)\ which is an increase to the initial quadrant angle $, = 45°. 

Using the elevating mechanism, the level bubble is brought to the 
center, as a result of which the summation of angles $. and &<p  relative 

to the horizon is performed (see Figure 75b). 

Upon completion of the laying, the quadrant angle (f = (K + A4> 

will be given to the axis of the bore and will correspond to the required 
firing range. When necessary, the correction for angle of site is applied 
directly to the range setting in the process of preparing data. 

The scale of quadrant angles is calculated in such a way that the 
minimum quadrant angle $  = 45° corresponds to the greatest sight division 
(10-00). 

In order to maintain the general principle of constructing scales 
and firing tables (the least range setting should correspond to the 
shortest range) it is necessary to subtract the increase A«^ in mils 
from the initial range setting of 10-00. Thus, the range setting which 
corresponds to the required distance will equal 10-00 - A4 (mils). 

Let us confirm what has been said by means of an example. 

Example.  To obtain a range of 1500 m with v» = 175 m/sec, it is 

necessary to give the mortar a quadrant angle $  = öQ*^' (obtained by 
calculation).  Determine the range setting. 

Solution. Considering the quadrant angle $ = öQ*^' as the sum of 
the initial angle 4». = 45° and the increase of &$» we find the increase 

A?"0'JoU'-J5o00"24o4«'l or 4-12. 

'lor greater clarity,  a sight of old design is shown in the drawing. 
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The range setting will be: 

1000-412 »58«, or   5-88. 

The subtraction of the angle A(J> from the constant (initial) setting 
of 10-00 is performed automatically when setting the range because the 
scale is numbered in a counterclockwise direction. 

At the present time, the following mortar sights are used: optical 
mortar sight MPM-44, collimator sights MP-41 and MP-42, and sight MPB-82. 
Despite some differences in design, the operating principle is the same 
with them. 

Thus, the aiming problem with mortar sights is solved using two 
lines of direction: horizontal laying—using the optical axis of the 
sight (00-30 line), and vertical laying—using the axis of the longitu- 
dinal level. 
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CHAPTER VI 

THE  SHAPE OF THE TRAJECTORY AND  ITS PRACTICAL  SIGNIFICANCE 

I .    The General   Concept of  the Slope of the Trajectory 

In firing at  the same range, the trajectories of bullets having 
different ballistic characteristics   (for example, muzzle velocity)  have 
different  shapes. 

In firing practice,   it is often necessary to compare the trajectories 
of bullets  fired from several models of weapons  in firing at the same 
range or from weapons of the same model at different ranges.    Under these 
conditions,  the shape of the trajectory is characterized by the amount 
that  it  is above the  line of aim.    A trajectory which rises less above 
the line of aim is called more gently sloping or flatter.    In addition, 
the flatness  of a  trajectory can be judged by the  size of the angle of 
fall.    The  flatter the  trajectory,  the smaller the angle of fall. 

As an example,   let us compare the height difference of a trajectory 
when firing from a company machinegun and from an assault rifle at  the 
same range   (Table  8). 

TABLE  8. 

Weapon 100 

Distance, m 
200   I ISO 2W 300 

Height difference of the trajectory 
above the Tine of aim, cm 

Company machine-' 
gun • ,• • . 
Assault  rifle 

810 
710 

3 7 15 19 18 13 
3 I'l 28 33 31 •M 

0 
0 
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It can be seen from the table that the trajectory of a bullet 
when firing from a machinegun is more gently sloping (flatter) than the 
trajectory of a bullet when firing from an assault rifle. 

The degree of slope of a trajectory depends on the firing range and 
on the ballistic properties of the bullet. The height difference of the 
trajectory increases with an increase in the range of fire (for flat- 
trajectory weapons)--the trajectory becomes less flat. 

The shape of the trajectory has a considerable effect on the effec- 
tiveness of the firing. 

2. Aimed Beaten Zone and Grazing Shot 

The accuracy of firing depends on many factors including on the 
extent to which the height of the sight corresponds to the true distance 
to the target. However, in some cases, thanks to the flatness of the 
trajectory, errors in measuring the distance have no practical effect 
on the results of the firing. 

ming 
point 

Figure 76.    Aimed Beaten Zone. 

Let us imagine that a rifleman is firing with the same range setting 
against targets of the same height disposed at different ranges without 
changing the aiming point.    It is not difficult to see  (Figure 76)  that, 
in this case, the target may be hit on sectors CD and BO,  i.e.,  it will 
be located within the limits of the beaten zone. 

Usually, the beaten zone is considered only at the point of fall and, 
in addition, not all its elements but only depth. 

Therefore, the following definition of the depth of aimed beaten zone 
may be given: the distance along the line of aim over the length of which 
the descending branch of the trajectory does not exceed the height of the 
target,  called the depth of the aimed beaten zone  (Ppp). 

The depth of the zimed beaten zone  (Ppp) depends on the height of 
the target and the flatness of the trajectory.    With the same firing con- 
ditions, the greater the height of the target and the flatter the tra- 
jectory the larger will the aimed beaten zone be (Figure 77). 
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Figure 77• The Dependence of the 
Depth of the Aimed Beaten Zone on the 
Height of the Target and the Flatness 
of the Trajectory. 

The depth of the aimed beaten zone can be determined by the fol- 
lowing methods. 

a) From height difference tables. The depth of the zimed beaten zone 
when firing at a separate target, is determined by comparing the height 
differences of the descending branch of the trajectory with the height 
of the target. 

Example. Fire is conducted from a company machinegun at a silhouette 
figure (height of target 0.5 m) at a range of 600 m. Determine the depth 
of aimed beaten zone. 

Solution. From the table for height differences of trajectories, we 
find that when firing with a range setting of 6 the height difference of 
trajectory at a range of 500 m equals 0.8 m. Consequently, the depth of 
the aimed beaten zone will be less than 100 m by the number of times that 
0.5 m is less than 0.8 m1. 

We make the ratio: 

100  0,8 • FM   0.8    ^ •*• 

b) From the angle of fall or the coefficient of the beaten zone.    In 
those cases where the height of the target is less than 1/3 the height 
of the trajectory with a given range setting, the depth of the aimed 
beaten zone may be determined from the size of the angle of fall or from 
the coefficient of the beaten zone.     In this, the angle of fall is con- 
sidered relative to the line of aim (or the gun-target line).    On the 
basis of the start of "rigidity" of trajectory, the size of the angle of 
fall which corresponds to a certain slant range is approximately equal 
to the tabular angle of fall with the corresponding base of trajectory 

^e end of the trajectory on a sector of 500-600 m is taken as a straight 
line. 
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if the angle of sight does not exceed 415°. 

If a part of the descending branch of the trajectory is  taken as 
the straight line BC (Figure 78), the depth of the aimed beaten zone AC 
(Ppp)  can be determined by the mil  formula (33): 

or 

AC=* AB-1000 

», 

PDD = Vt-IOOO 

9, (39) 

where V is the height of the target in meters; 

6 is the angle of fall in mils. 

Example. Firing is conducted from a company machinegun at a range of 
700 m and a target 0.S m high. Determine Ppp. 

Solution. From the firing tables, we find 6 -  0-14. Substituting 

the known values in (39), we obtain: 

Vt.iOfjO       0,5-1000      ,,, 

To simplify computations, use is made of a special table of coef- 
ficients of beaten zone.    The coefficient of the beaten zone K is an 
abstract number which is obtained from dividing by 1,000 the angle of 
fall  6    which corresponds to a certain range1: 

Coefficients of the beaten zone are presented in firing tables. 

The depth of the aimed beaten zone may be determined from the formula 

Ppp = Vt'K (40) 

^e coefficient of the beaten zone may be presented differently as the 
depth of the beaten zone for a target 1 m high. 
2The size of the beaten zone is always obtained less than the true size 
because the line BC (see Figure 78) will pass above the trajectory. 
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if the angle of sight does not  exceed +15°. 

If a part of the descending branch of the trajectory is taken as 
the straight  line BC (Figure 78),  the depth of the aimed beaten zone AC 
(Ppp)   can be determined by the mil formula (33): 

AC = ^^ 1000 

or 

p„-       VtlOOO 
Ppp = —eT-. (39) 

where V    is the height of the target in meters; 

0     is the angle of fall  in mils, c 

Example.    Firing is conducted from a company machinegun at a range of 
700 m and a target 0.5 m high.     Determine Ppp. 

Solution.     From the firing tables, we find 6    = 0-14.     Substituting 

the known values in (39), we obtain: 

Vt.iooo       0,5-1000     .„ 

To simplify computations,  use is made of a special table of coef- 
ficients of beaten zone.    The coefficient of the beaten zone K is an 
abstract  number which is obtained from dividing by 1,000 the angle of 
fall   ", which corresponds to a certain range 1. 

Coefficients of the beaten zone  are presented in firing tables. 

The depth of the aimed beaten zone may be determined from the formula2; 

Ppp = Vt-K (40) 

'The coefficient of the beaten zone may be presented differently as the 
depth of the beaten zone for a target 1 m high. 
•The size of the beaten zone is always obtained less than the true size 
because the line BC (see Figure 78) will pass above the trajectory. 
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When firing from the same weapon, the grazing range is considered 
relative to each target depending on its height;  in this the greater 
the height of the target,  the greater the grazing range. 

When firing from various models of weapons at the same target, the 
flatter the trajectory, the greater the grazing range which is obtained 
and, consequently, the better the ballistic qualities of the weapon and 
cartridges. Therefore, the grazing range for any target (usually taken 
is a silhouette figure 50 cm high) is an important characteristic of the 
combat properties of a weapon and, as a rule, is indicated in the corres- 
ponding manuals. 

The grazing range may be determined approximately from the firing 
tables.    For this,  it is necessary to compare the height of the target 
with the greatest height difference of the trajectory above the line of 
aim (maximum ordinate) when firing with a given range setting. If the 
height of the target is equal to thj maximum ordinate or greater than it, 
then consequently the grazing range will be equal to or greater than the 
sighting range. 

Example.    Determine the grazing range from a light machinegun at a 
target 1.5 m high  (running silhouette). 

Solution.    From the firing tables we find that the maximum ordinate 
when firing with range setting 5 equals 1.2 m and with range setting 6-- 
it equals 2 m.    Consequently, the grazing range to this target will be 
less than 600 m and more than 500 m.    By interpolation we find that the 
maximum ordinate when firing at a range of 550 m equals 1.6 m.    Therefore, 
we conclude that the grazing range will be about 550 m (range setting 5.5). 

A comparison of different models of weapons  (assault rifles, machine- 
guns, etc.)  for the flatness of their trajectories at short distances 
(up to 400 m)  is customarily performed for grazing range for the same 
target.    The greater the grazing range, the flatter the trajectory and 
this means that the ballistic qualities of the weapon are better. 

Knowledge and the use of the grazing range in a combat situation 
frees the rifleman from the necessity to reset the range setting under 
enemy fire at distances close to him which is especially important in 
repelling counterattacks. 

The most effective types of machinegun fire are usually employed 
with consideration of grazing range. 

Thus, for example, in organizing the system of fire in the defense, 
surprise fire at very close ranges is calculated for the grazing range 
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against a prone figure (up to 300 m) and flanking fire--against a running 
target (up to 600 m). When the machineguns are disposed on the flanks of 
the small rifle unit, a crossfire is obtained which, in combination with 
frontal fire from the assault rifles, creates a zone of continuous fire 
from small arms to the grazing range against silhouette targets (up to 
400 m). 

In selecting the range setting and aiming point, an attempt is 
usually made to match as precisely as possible the mean point of fall 
with the center of the target so that the probability of a hit is greatest, 
If the aiming point is the middle of the lower edge of the target, the 
range setting is usually set in such a way that the bullet passes through 
the center of the target or through its widest part. 

For example, fire is conducted from a company machinegun at a waist 
figure (target height 1 m) at a distance of 400 m. With what range 
setting should fire be conducted? 

Fire may be conducted with range setting 5, aiming beneath the tar- 
get since the height difference of the trajectory above the line of aim 
at a distance of 400 m will equal 0.5 m, i.e., half the target height. 

In this case, as can be seen from the firing tables, the beaten 
zone for a given target will be on the entire length of the sighting 
range, i.e., S00 m. Therefore, possible errors in measuring distance 
will have almost no effects on the result op the firing.  In addition, 
aiming at the middle of the lower edge of the target is performed more 
easily and with great accuracy.  Practice shows that when firing at a 
range of up to 400 m at targets having a relatively broad base, one 
should aim at the middle of the lower edge of the target with a range 
setting which assures the passage of the mean trajectory through the 
center. 

ABC 

Figure 80. AB and BC--Depth of Beaten 
Zone for Half the Target Height. 

When firing at high and easily visible targets, the aiming point may 
also be the center of the target; then the range settinp should correspond 
to the distance to the target since the height difference of the trajec- 
tory at the target will equal zero. 
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However, under these conditions, too, the target may be hit if the 
error in determining the distance to the greater or lesser side does 
not exceed the depth of the beaten zone (AB and BC) which corresponds 
to the upper and lower halves of the target height (Figure 80) . 

Example.  Fire is conducted from a light machinegun with range 
setting 5, aiming at the center of a running silhouette (Vt = 1.5 m) 
which is located at a distance of 500 m. Determine the depth of the 
aimed beaten zone for the upper half of the target height (0.75 m) . 

Solution. From the table for height differences of trajectories, 
we find that when firing with a range setting of 5 the depth of the 
beaten zone for the upper half of the target is 88 m. If an error was 
made in measuring the distance and the target turned out to be closer 
(at a range of 412 m) or is moving quickly toward the rifleman, then in 
this case, too, it may be hit without resetting the range setting and 
changing the aiming point. 

The target may also be hit with a range setting of 5 in the case 
where the actual distance to it turns out to be 550 m which can be seen 
from the following calculation. In aiming at the center of the target, 
the quadrant angle will be 8.7 mils (the angle of elevation a =  7.2 mils 
and the angle of site of the aiming point 

. a 0,75-1000  .,  .. v 

From the firing tables, we find that with a quadrant angle equal to 
8.7 mils the base of trajectory is about 550 m. 

Despite the fact that under such firing conditions possible errors in 
measuring distances to a greater or lesser side are covered to some degree 
by the size of the beaten zone, and is considerably more difficult to aim 
at the center of the target, especially at a range greater than 500 m, 
than at the middle of the lower edge. The reason for this is that, on 
the one hand, the rifleman (machinegunner) sees the dark front sight 
which is projected on the dark background of the target poorly and, on 
the other hand, the visible angular value of the front sight (about 
2 mils) turns out to be considerably wider than the target (twice as 
wide or more) and this hinders the selection of the aiming point. 

Therefore, when firing at a range greater than 500 m against any 
live targets, the aiming point is selected in the middle of the lower 
edge of the target; the range setting is set in accordance with the range 
to the target because one cannot select the sight height at which the 
mean trajectory would pass through the center of the target as a result 
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of the change in the degree of slope of the trajectory. However, also 
in these cases, as a rule the target will be located within the limits 
of the aimed beaten zone with errors in measuring the range in the 
lesser direction, too, because the range setting is usually determined 
by rounding off in the greater direction. 

With an increase in the firing range, the size of the errors in 
measuring distances is increased and the depth of the beaten zone is 
reduced; therefore, the effect of the beaten zone on the result of the 
firing will also be less. 

3.  The Beaten Zone on the Ground 

The degree of damage inflicted on the enemy from weapons with flat- 
trajectory fire will depend to a considerable degree on the terrain on 
which the firing is being conducted. 

When firing at a deep target as well as at an individual target 
which is moving over the terrain, depending on the relief the mean 
trajectory will pass through the target or above it (Figure 81). 

The extent of the terrain on which the trajectory does not rise 
above the target is called the depth of the beaten zone on the ground 
(Ppm). 

Figure 81. Beaten Zone on the Ground. 

It can be seen from Figure 81 that terrain sectors OB, DK, and MS 
are the beaten zone for a target with height MN. From the drawing, 
it can also be seen that the depth of the beaten zone on the ground will 
depend on the height of the target and the character of the terrain re- 
lief in the area where the target is located and at the point of impact 
of the bullet with the ground or, to put it differently, on the height 
of the target and the angle of impact. 

It is necessary to consider terrain relief at the point of fall. 
The point where the trajectory intersects the surface of the target 
(ground, obstacle) is called the point of impact P (Figure 82). 
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Figure 82.  Point of Impact P, Angle of 
Impact v  when the Bullet Impacts with an 
Obstacle and with the Ground, and Angle 
of Slope u. 

The distance from the point of departure to the point of impact is 
called the slope range. 

The angle y which is formed by the tangent to the trajectory and the 
tangent to the surface of the target (ground, obstacle) at the point of 
impact is called the angle of impact (Figure 82).  In calculations, an 
angle less than 90° is taken as the angle of impact. 

The angle which is formed by the tangent to the surface of the ground 
at the point of impact and the horizontal plane (target horizon) is called 
the angle of slope u (see Figure 82).  It is arbitrarily considered that 
if the slope faces the firer (a forward slope), the angle of slope is 
positive and if the slope faces away from the firer (reverse slope) the 
angle of slope is negative. 

When the bullet hits a target which is located directly on the surface 
of the ground, depending on the incline of the slope and the position of 
the target relative to the horizon of the weapon the size of the angle of 
impact will be different. 

We derive a general expression of the relationship between the angle 
of impact, the angle of fall, the angle of slope, and the angle of site. 
For this, let us consider various cases of firing. 

Let us assume that firing is conducted against a forward slope from 
top to bottom. If we take the end of the trajectory as a straight line, 
draw the line of aim (or gun-target line) to the point of impact P, and 
draw the line of the target horizon through this same point, we can 
graphically see the relationship between the angle of impact u, the 
angle of fall 6-, the angle of slope w, and the angle of site t 

(Figure 83): 

(i = 8(. -f « -f t (See Figure 83a), 
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Figure 83. Dependence of the Angle of Impact on the 
Angle of Fall, Angle of Slope and Angle of Site to the 
Target. Key: a, Direction of fire; b, Tangent to the 
trajectory; c, Line of aim; d, Target horizon; e, 
Weapon horizon. 

When firing from bottom to top 

Obviously, with e = 0 

ji = ef + a) —t (See Figure 83b) 

^ = 8 +«»• 

then: 
If the slope is a reverse slope (negative angle of slope) and e = 0, 

(i = 6f_-(o (See Figure 83c). 

When the target is located at the weapon horizon and on horizontal 
terrain (e = 0, w = 0): 

In all cases which have been considered, angle of slope w enters 
the expression with its sign: plus (+), if the slope is a forward slope 
and minus (-), if the slope is a reverse slope. 

The angle of site to the target e enters with a reverse sign: plus 
(+) if the target is below the weapon horizon and minus (-) if the target 
is above the weapon horizon, i.e.. 
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,x = Of i-.ü)-(±0- (41) 

Example. Determine the angle of impact if the angle of fall Qf = 

= 0-30, the angle of slope u = -0-10, and the angle of site to the target 
c = -0-20. 

Solution. Substituting available data in formula (41), we obtain: 

|i = ef± ü)-(±0-30+ (-10)-(-20)-30-10+ 20 = 40 mils. 

or 
|i = 0-40. 

Remark.  If, in the computation, it turns out that the angle of impact 
is negative or equals zero, this means that the target cannot be hit from 
the given firing position. 

Depending on the change in the height of the target, the terrain 
relief for the entire length of the trajectory, and the angle of impact, 
the overall depth of the beaten zone on the ground also changes. 

In the case coincides with the line of aim, the depth of the beaten 
zone on the ground depends only on the steepness of the trajectory (range 
of fire) and height of the target. 

Most often, in practice, it is necessary to determine the depth of 
the beaten zone on the ground in the area of the target relative to the 
descending branch of the trajectory, i.e., when firing on the slopes. 
Therefore, the length of the terrain on which the descending branch of 
the trajectory does not rise above the target is usually taken as the 
depth of the beaten zone on the ground. 

Let us consider the methods for determining the depth of the beaten 
zone on the ground Ppm when firing on the slopes. For this, we determine 
the dependence of the depth of the beaten zone on the ground on the 
height of the target and the angle of impact. 

The depth of the beaten zone on the ground when firing on slopes 
depends on the angle of impact and the size of the aimed beaten zone 
or, as will be shown below, on the angle of impact and the height of 
the target. 

Let us consider this relationship. 

The angle of site to the target e is taken as equal to zero. 
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Figure 84. Dependence of the Depth of Beaten Zone 
on the Ground on the Height of the Target and the 
Angle of impact.  Key: a, Vt (height of target); 
b, Ppm; c, Tangent to the Trajectory; d, Weapon 
horizon. 

From the triangle ACP (Figure 84), where the side AP is Ppm and 
AC is Ppp we find: 

Ppp 
sin (ISO0--!!) 

Ppm 
sin 9( 

from this we obtain: 

Ppp-sine, 
Ppma  sin(i80' - p) 

We simplify the formula by replacing (180°   - n) =^'sin |i   and sin 9,. 

by their value expressed in mils (sin** --■ KV; sin." =-,^-1 . 

Then the formula will take the form: 

fp"-^'*- (42) 

Consequently, the depth of the beaten zone on the ground is directly 
proportional to the depth of the aimed beaten zone along the line of aim 
and the angle of fall  and is inversely proportional to the angle of 
impact. 

Example.    Firing is conducted from a light machinegun at a range of 
500 m against a trunk target  (Vt = 1 m)  located on the full slope with 
a steepness of 0-25.    Determine Ppm, 
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Solution.  From the firing tables, we find the difference in the 
height differences at 3S0 and 400 m (range setting 5) which equals 
0.21 m.  The difference between the height of the target and the least 
height difference equals 0.15 m (1-0.85). 

The angle of impact 

ji = 0f + » = 12 + 25 = 37 mils. 

We determine Ppm from formula (42): 

Ppm =!PPiL = *ß-L2S44*. 

We derive the dependence of the depth of the beaten zone on the 
ground on the height of target and angle of impact for those cases where 
the height of the target is no more than one-third the height of the 
trajectory: 

Ppp =—g^—• 

Substituting the value fop Ppp in the formula previously derived, 
we obtain: 

vtiOOO 
Ppm™ ^—• (43) 

Example.    Firing is conducted from a company machinegun at a range 
of 1,000 m at a target 1.5 m high.    Determine Ppm if the angle of slope is 
a) to = 0-20; b) w = -0-20 and the angle of site to the target e equals 
zero. 

Solution.    From the firing tables, we determine the angle of fall: 

9f = 0.32. 

a) From formula (41) we find the angle of impact: 
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i» = », + •; 

(1 = 32 + 20 = 52 mils, ot 0-52. 

From formula (43) we determine the depth of the beaten zone Ppm: 

Ppn,     = ML J000= 1.5^0^^ 
l* 52       ""i   M' 

b) i* = 9f - -; i* = 32 - 20 = 12 ml 1 s ,or 0-12; 

Ppm=s 12— = 125 M. 

Thus, if the angle of site to the target equals zero, then in 
firing on forward slopes the depth of the beaten zone on the ground is 
reduced and, when firing on reverse slopes, it is increased.1 

In order to obtaine a greater depth on the beaten zone, it is 
necessary to strive in particular to reduce the angle of impact. This 
is achieved by the skillful selection of the firing positions and 
direction of fire because the size of the angle of impact also depends 
on the angle of site to the target. With all other conditions being 
equal, when firing from top to bottom (with a negative angle of site) 
the depth of the beaten zone on the ground is reduced and when firing 
from bottom to top (with a positive angle of site), it is increased 
(Figure 85). 

The practical significance of the beaten zone on the ground consists 
of the fact that it assures the hitting (when accuracy in aiming is ob- 
served) of deep group targets and individual living and motor targets 
which are moving in the plane of fire for the entire length of its 
depth without changing the range setting and without artificial dis- 
persion in depth. Therefore, it is important that, in organizing the 
system of fire, the firing positions be selected for each type of 
weapon with consideration of the relief in its disposition area as 
well as in the area of the target. In a number of cases, it is advan- 
tageous for the line of aim to pass as close as possible to the surface 
of the ground in the area where the targets appear. Proceeding from 

'Formula (43) which is obtained is correct only for those cases where the 
line of slope has the same angle of incline to the horizon for the entire 
length of the beaten zone in the vicinity of the target. With a con- 
siderable size in the beaten zone, the nature of the terrain relief may 
be as shown in Figure 81. Clearly, in this case formula (43) cannot be 
used to determine the depth of the beaten zone on the terrain. 
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these considerations, for example, in anticipation of firing at night 
it is expedient to locate the firing positions of a portion of the 
machineguns below those terrain sectors where the targets may be. 
In the selection of the firing positions on slopes, an attempt should 
be made to see that the terrain which lays in front has the same slope 
as much as pos ible which, to a considerable degree, will increase the 
depth of the beaten zone since the cone of fire will pass close to the 
surface of the ground.    This circumstance is especially important when 
firing under conditions of limited visibility. 

1 ropuioxm opymui 

i\}pu30Hm opymuH 

Figure 85. The Dependence on the Depth of the Beaten 
Zone on the Angle of Site: a, Target below the weapon 
horizon; b, Target above the weapon horizon: Key: 
1, Weapon horizon; 2, Line of aim; 3» Target horizon; 
4, Ppm. 

k.    Covered and Dead Space 

If some obstacle which cannot be penetrated by the bullet is en- 
countered in the path of the cone of the trajectory, a portion of the 
bullets will land in the cover and a portion will pass above it and 
in the immediate proximity of its peak (Figure 86). 

fl Covered space 

Beaten I 

Figure 86. 
Zone. 

Covered Space, Dead Space and Beaten 
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The space behind the cover which cannot be penetrated by the bullet, 
from its crest to the point of impact, is called the depth of the 
covered space or, simply, covered space (Pp). 

The trajectory drops beyond the cover and, over some section, does 
not pass higher than a target of a given height; this section is called 
the beaten zone (DC). 

On some section of the covered space (AD) a target of a given height 
may not be hit under the given firing conditions. 

The portion of the covered space on which the target cannot be hit 
by a given trajectory is called dead space (Mp). 

The depth of the dead space depends on the height of the cover, 
height of the target, degree of slope of the trajectory, and the terrain 
relief beyond the cover. 

From Figure 86 it can be seen that the depth of the dead space rep- 
resents the distance between the covered space and the beaten zone. 
Therefore, computation of the size of dead space is reduced to determining 
the depth of the covered space and the depth of the beaten zone. The 
latter is determined by the methods described above. 

a) We will show the determination of the depth of covered space by 
means of an example. 

Firing is conducted from a company machinegun over cover 3 m high 
which is located at a range of 600 m.  Determine the depth of the 
covered space Pp. 

In order to get the bullet across the cover, it is necessary to give 
the axis of the bore the quadrant angle $. Under the conditions of the 
example (Figure 87): 

? = » + •'■ 

where a is the angle of elevation which corresponds to the range to the 
cover; oi = 8.1 mils (from the table); 

E' is the angle of visibility of the cover (the angle of site of 
the aiming point): 

^^m «3^ 5 mil 5(0-05). 

[Tr note--Vu = height of cover] 
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Thus, the quadrant angle <p = 8.1+5: 
to the base of trajectory OC = 850 m. 

13,1 mils which correspond 

Figure 87.  Determination of the Depth of the 
Covered Space for the Angle of Elevation.  Key: 
a, Line of elevation; b, Line of aim; c, Weapon 
horizon; d, Covered space. 

The depth of the covered space is the difference between the range 
which is obtained and the range to the cover, i.e., 

PP=OC-OA; 

Pp = 850 - GOO = 250 M. 

The depth of the covered space can also be determined from the table 
for the height difference of the trajectory above the line of sight. 
For this, by means of selection we find the height difference which 
corresponds to the height of the cover and the range to it. The range 
setting for a given trajectory will indicate the base of trajectory and 
the difference between it and the range to the cover will comprise the 
depth of the covered space. 

Example. Determine the depth of the covered space when firing from 
a light machinegun if the range to the cover is 500 m and the height of 
the cover is 1.3 m. 

Solution. From the firing tables, we find that at SOG m a height 
difference equal to the height of the cover (1.3 m) has a trajectory' 
with range setting 6. Consequently: 

Pp -- 600 — MO = 100 M. 

In those cases where the height of the cover is less than one-third 
the height of the trajectory which corresponds to the rangs to  the cover, 
the depth of the covered space may be determined from the formula: 
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ppx^mt   or Pp=vu-/r. (44) 

where Vu is the height of the cover; 
ef is the angle of fall which corresponds to the range to the cover. 

Example.    Firing is conducted from a heavy machinegun with a light 
bullet with a range setting of 10 above cover with a height of 1.8 m. 
Determine the depth of the covered space. 

Solution.    We assume that the distance to the cover equals 1,000 m. 
From the firing tables, we find the angle of fall which corresponds to 
the range to the cover:   ef = 0-30. 

From formula (44) we obtain: 

_ vu-iooo       1.81000     „ 
Pp = -^ —-—.«eojf. 

We will explain the geometric significance of the value Pp which 
is determined from formula (44) because it is obvious that the actual 
depth of the covered space which is located beyond the cover cannot be 
determined from the angle of fall which corresponds to the range to the 
cover. 

Assume that AC (Figure 88) is the' height of cover which is located 
at range OA from the firer. Let us assume that a trajectory has been 
selected which passes directly above the cover and has point of fall 
C. Then the actual depth of the covered space will be expressed by 
the segment AC. Since the height of the cover is extremely small in 
comparison with the range to it, it can be considered that OC « OA. 
We extend segment AC to point B in such a way that AC = CB and we 
will move the segments CB which is obtained along the line OC until 
its upper point touches the trajectory. We take the section of the 
descending branch of the trajectory B'C as a straight line. Then, 
segment A'C can be considered as the depth of the covered space along 
the line of aim OC. From formula (44) it is this segment which is 
determined and is taken as the depth of the actual covered space since 
we cannot determine the value of AC directly using this method. However, 
in certain cases segments A'C and AC differ little from each other 
in their size. 

Let us portray the right portion of Figure 88 in the form of two 
triangles A'CB' and ACC (Figure 89). Equal in them respectively are: 
sides AC and A'B' and angles ACC and A'B'C. For the equality of the 
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triangles and, consequently, of sides A'C and AC, it is necessary 
that angles C'AC and B'A'C be equal. But angle C'AC is a right 
angle and angle B'A'C differs from a right angle by the size of the 
crest angle e'.  From this, the conclusion can be drawn that deter- 
mination of the depth of the covered space from formula (44) is pos- 
sible with ar insignificant size of the crest angle e'. The farther 
the cover is located from the point of departure and the smaller its 
height, the smaller the size of this angle. The criterion for the ap- 
plicability of formula (44) can be considered to be the condition where 
the height of the cover is less than one-third the maximum ordinate 
corresponding to the range to the cover. Thus, for example, under con- 
ditions of the preceding example, with a range to the cover of 1,000 m 
the maximum ordinate will be 5.5 m; consequently, the possible height 
of cover should be at least 1.8 m. In this case, the crest argle e' 
will be about 0-02. Obviously, in this case the values A'C; and AC 
will be approximately equal to each other. 

Thus, in determining the depth of the covered space from formula 
(44), we actually determine the segment A'C but take it as equal to 
segment AC. With an insignificant value for angle E', the error from 
such an assumption will be very small. 

b) Determining the depth of dead space.  As indicated earlier, the 
depth of the dead space is the difference between the depth of the 
covered space and the beaten zone: 

Mp = Pp - Ppp. (45) 

Example. Firing is conducted from a company machinegun over cover 
with a height of 3 m which is located at a range of 700 m and at targets 
1.5 m high. 

Determine the depth of the dead space. 

Figure 88. Determination of the Depth of the 
Covered Space from the Angle of Fill (According 
to the mi] formula). 
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Figure 89.  Determining the Depth of Covered Space. 

Solution. We determine the depth of the covered space. At a range 
of 700 m, in the table for the height difference of trajectories we look 
for the height difference which is closest to value to the height of the 
cover; this is 3.2 m which corresponds to a range setting of 9.  Con- 
sequently, the depth of the covered space is greater than 100 m. The 
difference in the height difference and the height of the cover 3.2 - 3.0 = 
= 0.2 m. We assume that this difference also remains unchanged at a range 
of 800 m (the ends of the trajectories are parallel). The height difference 
of the trajectory at a range of 800 m with a range setting of 9 equals 
2 m and the desired trajectory 2 - 0.2 = 1.8 m. 

Then, 

Pp = 100 + 
100-1,8 = 100 + 90 = 190 *. 

We determine the depth of the beaten zone. 

Taking the base of trajectory X = 700 + 190 * 900 m, from the table 
for height differences we find the depth of the beaten zone Ppp *• 75 m. 

We determine the depth of the dead space: 

Mp = Pp - Ppp = 190 m - 75 = 115 m. 

In some cases, the depth of the dead space can be determined from 
the formula 

Mr _ (vu - vt)-i.oon> 

or 

Mp = (Vu - Vt)«K. 
(46) 

From the examples it can be seen that under certain conditions 
targets which are located behind cover can be hidden with success. 

■154- 



Knowing the methods for determining the depth of covered space and deed 
space, one can envision ahead of time at what distance from the cover 
what targets may be hit by fire from a given type of weapon. 

If the terrain rises or drops beyond the cover, the size of the 
covered and dead spaces is reduced or increased. 

When firing from weapons with a flat trajectory, targets which are 
located directly behind the cover cannot be hit. The flatter the tra- 
jectory, the greater the depth of dead space.  Consequently, to hit 
targets under these firing conditions it is necessary to select firing 
positions in such a way that the angle of impact has the greatest possible 
value or to use weapons with a plunging trajectory, for example, mortars. 
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CHAPTER VII 

THE  DEFLECTION OF  PROJECTILES ON  A TARGET 

Infantry fire arms are intended primarily to destroy enemy per- 
sonnel located in the open and behind light cover.    In addition,  some 
weapons are intended for firing on tank, armored personnel carriers, 
and other armored targets.    The effect of the projectiles on the tar- 
gets differs depending on the purpose of the weapon and the design 
of the ammunition. 

I.    The Effect of Bullets on a Target 

The bullet destroys the target by the force of its shock.    When 
firing at live targets, primary significance is had by the defective- 
ness of the bullet, i.e., the effect of the bullet on the living or- 
ganism.    The effectiveness of the bullet depends on various factors 
of which the primary one is the kinetic energy of the bullet at the 
target which is determined by the formula 

*'    Hg' (47) 

where E is the kinetic energy of the bullet at the target; 

q is the weight of the bullet; 
v is the velocity of the bullet at the target; 

c 2 
g is the acceleration of gravity which equals 9.81 m/sec  . 
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To put a person out of action, it is sufficient for a bullet to 
have a kinetic energy which equals 8 kgm. 

Modem bullets retain their effectiveness at all ranges of firing 
which can be demonstrated from the following example. 

Example. Determine the kinetic energy of a bullet at a distance 
of 1,000 m, if the velocity of the bullet on this distance v = 244 

m/sec and the weight of the bullet q = 0.0079 kg. 

Solution. 

„      <lvl      0,0079-244»      „„ . 
EeS"2gSS ~  2-9.81       * 24 k9m 

Pistol bullets maintain their effectiveness at a range of up to 
500 m. In addition to the amount of the kinetic energy of the bullet, 
the effectiveness of the bullet also depends on the open "secondary 
effect," "stopping effect," and "hydrodynamic effect." 

The "secondary effect" consists of the fact that the region sub- 
jected to destruction by the hitting of the bullet is considerably 
greater than the diameter of the bullet. The "secondary effect" de- 
pends on the properties of the atmosphere in which the bullet lands as 
well as on the stability of the bullet during its movement within the 
tissues of the organism and on the capability of the bullet for defor- 
mation. Stability of the bullet in flight is provided by a rapid ro- 
tating movement. Hitting the organism—an atmosphere with great re- 
sistance—the bullet quickly losses the velocity of the rotating move- 
ment and, consequently, its stability. The greater the loss in velocity 
of rotation, the greater the "secondary effect" of the bullet. 

The "stopping effect" consists of the capability of the bullet to 
put a living organism out of action in a short time interval. The less 
the time between the moment of hit and the moment that the functions of 
theliving organism are disrupted, the stronger the "stopping effect." 
Other conditions being equal, the "stopping effect" increases with an 
increase in the caliber of the bullet. The "stopping effect" has es- 
pecially important significance for coiibüi at close distances, i.e., 
for firing from pistols and revolvers. 

The "hydrodynamic effect" consists of the destruction not only of 
the tissues which are directly contacted by the bullets, but also of the 
adjacent tissues. The "hydrodynamic effect" appears when a bullet hits 
a region which has abundant fluid at a high velocity (above 700 m/sec). 
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This phenomenon is explained by the fact that the resistance of a 
liquid atmosphere increases with an increase in velocity.    A wound 
which is accompanied by an "dynamic effect" is similar to the effect 
of explosive bullets. 

Since firing from small arms is conducted not only against per- 
sonnel in the open but also against personnel behind light cover, 
important significance is required by the piercing effect of the 
bullet,  i.e.,  the capability of the bullet to pierce various ob- 
stacles.    The piercing effect depends upon the properties of the 
obstacle,  the kinetic energy the bullet at the moment of impact 
with the obstacle,  the caliber of the bullet,  its weight, shape,  and 
design.    The increase in the velocity of the bullet and,  consequently, 
this kinetic energy leads to an increase in the piercing effect. 
Consequently,  the piercing effect is reduced with an increase in the 
range of firing.    However, a reverse phenomenon is observed at very 
close distances; with a high velocity the piercing effect not only is 
not increased but becomes less.    This is explained by the fact the 
the bullet, having a high velocity,  is deformed on impact with the 
obstacle and it is more difficult to penetrate into it.    The results 
of tests conducted with bullets M.  1908 are shown in Table 9. 

The piercing effect of a bullet M.   1908 at a range of 100 m 
against various obstacles is characterized by the data contained in 
Table 10. 

Laminated safety glass which covers the viewing slits of combat 
vehicles is not pierced by the bullets but a cracking of the first 
layers of glass occurs, as a result of which observation through the 
glass becomes impossible. 

TABLE 9 

Velocity of the 
bulleti, m/sec 

Bullet '$ depth o 

In sand 

'penetration, mm 

In wood 

865 
750 
600 
300 

140 
160 
320 
240 

300 
750 
420 
120 
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TABLE   10 

Obstacle material Depth of penetration. mm 

Steel plate 
Grave    . . 

6 
120 
150 
430 
450 
450 
500 

Brick wall 
Mrt    .... 

. . . 

Sand 
Oak wall 
Pine wall ■    •    •    • 

The armor penetrating capability of a bullet depends on the 
same three factors as does the piercing effect.    Increasing the 
armor penetrating capability depends on the quality of the mater- 
ial from which the bullet is made.    An armor piercing bullet has 
a core of hard steel inside and a soft casing on the outside to 
assure that the bullet cuts into the groove and to protect the 
nose of the core against fragmentation when impacting on the armor 
(Figure 90).    The armor piercing capability of an armor piercing 
bullet caliber 7.62 mm is characterized by the following data: 
armor 7 mm thick had a range of up to 400 m is penetrated 100% 
of the hits, at a range of 600 m--75%, at 800 m--less than 50%, 
and at a range of 1,000 m it does not pierce at all.    Great sig- 
nificance for the armor piercing capability is also had by the 
angle of impact with the obstacle.    The greater the angle of im- 
pact is to 90°, the greater the armor piercing capabilities; the 
smaller the angle of impact, the less the armor piercing capabili ty. 

Ftgurc 90. Armor Piercing 
Bullet (Longitudinal Cross 
Section):  I, Casing; 2, 
Steel Core; 3, Lead Jacket, 
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A sharp increase in the piercing and armor piercing capability 
is observed at very high velocities exceeding 1,000 m/sec; under 
these conditions,  even a soft lead bullet is capable of penetrating 
armor up to 15 mm.    This is explained by the fact an effect similar 
to the "hydrodynamic effect" takes place at such high velocities. 

Incendiary tracer, and other special bullets, in addition to 
their primary purpose, have the same effect as regular bullets on 
personnel and on an obstacle. 

2.     The Effect of 82-mm Mortar Rounds on a Target 

An 82-mm fragmentation mortar round destroys enemy personnel 
by the fragments which are formed during the explosion of the casing 
of the round.    Such an effect of the round on the target is called 
the fragmentation effect. 

if de view 

direction of fire 

Figure 91.    The Scattering of the Fragments During the 
Burst of an 82-fnm Mortar Round. 

The fragmentation effect depends on the caliber and weight of 
the round,  the mechanical properties of the case of the round, the 
composition and weight of the explosive, the angle of impact,  the 
hardness of the ground at the round's point of fall, and the sensi- 
tivity of the fuze. 
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The caliber and weight of the round determine the mass of metals 
which are converted to fragments during the explosion of the round; 
the mechanical properties of the round's casing determine the capa- 
bility of the casing to explode into a large number of fragments. 
The strength of the burst which breaks up the casing of the round into 
fragments, the distance to which the fragments are scattered and the 
effectiveness of the fragments depend on the composition and weight 
of the explosive,. The angle of impact of the round with the obstacle 
determines the shape of the carrier which is affected by the fragments; 
with small angle of impact, a large portion of the fragments scatter 
in a direction away from the direction of fire and a considerable 
number of them go into the ground and upward without having any lethal 
effect. The depth of the area affected by the fragments increases 
with an increase in the angle of impact; with angles of impact close 
to 90°, the area affected by the fragments has a shape which is almost 
a true circle and the number of fragments which go into the ground 
and upward is significant (Figure 91). The harder the ground at the 
round's point of fall the better the fragmentation effect since, with 
hard ground, the mortar round does not manage to go deeply into the 
ground and the burst occurs on the surface of the ground; in soft 
ground, a deeper crater is obtained and the fragmentation effect of 
the round is weaker (Figure 92). The sensitivity of the fuze also 
affects the depth of penetration of the round into the obstacle; the 
more sensitive the fuze, the more rapidly does the round explode, and, 
consequently, the less the penetration of the round into the obstacle. 

Figure 92. The Scattering of the Fragments When Forming 
a Shallow and Deep Crater. 
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The fragmentation effect of the round is characterized by the 
number of lethal fragments and the area of effect. 

When exploding, an 82-mm mortar round provides approximately 
350 lethal fragments. The explosion of the round occurs on the 
very surface of the ground and the depth of the crater is usually 
extremely insignificant. Since firing from mortars is conducted 
at large quadrant angles, the angles of impact with the obstacle 
are also usually gieat; when firing at forward slopes, the angles 
of impact are close to 90°. Therefore, the area of effect by the 
fragments for an 82-inm round is close to a circle in shape. A 
characteristic of the area of effect is the effective casualty 
radius.  In this regard, the effective bursting radius and the 
lethal radius are distinguished. 

The effective bursting radius is defined as the radius of a 
circle in which at least 50% of the targets desposed on a given 
area are hit with the burst of one round. For an 82-mm mortar 
round, the effective bursting radius equals 18 m for prone targets 
and 30 m for standing targets. 

The lethal radius is defined as the radius of a circle in which 
at least 90% of the targets located on a given area are hit with the 
burst of one round. The lethal radius is approximately 2.5-3 times 
less than the effective bursting radius. 

During burst, 82-mm smoke rounds provide a dense cloud of white 
smoke up to 20 - 25 m wide and up to 15 - 20 m high which creates a 
smoke screen.  In addition, during the bursting of a smoke round 
chunks of burning phosphorous scatter from the point of burst to a 
distance of 10 - 15 m and may hit enemy personnel. The fragmentation 
effect of a smoke round is 35-40% weaker than that of a fragmentation 
round. 

3. The Cumulative Effect 

One of the powerful modern means for combatting armored targets 
is the shaped charge projectiles (grenades"). The idea of the cumu- 
lative effects is based on the concentration of the energy of the 
explosive charge and giving it a specific direction. 

With the explosion of an explosive charge having a spherical 
shape, with the detonator in the center of the sphere the detonation 
reaches all points on the surface of this sphere simultaneously and the 
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burst products are scattered in all directions with the same force 
and velocity.    If we displace the detonator to some side, the effect 
of the burst is increased in the opposite direction.    In order to 
direct the basic mass of the burst products in a certain direction, 
in addition to displacing the detonator the explosive charge should 
also have a special recess in the direction opposite to the displace- 
ment of the detonator.    Such a recess has the name of a cumulative 
recess.    The presence of the cumulative recess assures the concen- 
tration and directional effect of the burst products  (Figure 93). 

7^. 

| im^.^- =• 
^a^SsL^" 

^k 

3 

Figure 93«    Diagram of the Effect of an Explosive 
Charge with a Cumulauvo. Recess: 
1,  Explosive Charge; 2,   DP UI >tor;  3,  Cumulative 
Recess;  *». Pla^e. 

When the shap      ctia-fcc    lOjectile (Figure 94)  comes in contact 
with armor, a quj       .voting fuze is triggered and the explosion is 
transmitted to th.       "onator which causes the detonation of the ex- 
plosive charge.    Nitu a considerable temperature and high pressure, 
the burst products are directed toward the cumulative recess.    During 
this time, the projectile continues its forward movement and its nose 
which is made of soft metal is destroyed. 

The directional stream of gases forms a through hole in the armor, 
in which respect,  a flow of gases which is capable of causing injury 
to people (the tank crew) and destruction to the equipment and fire 
penetrates beyond the obstacle (for example,  inside the tank). 

The hole from the effect of the shaped charge projectile has a 
cone-like shape with an exit diameter smaller than the entry diameter. 

If its velocity has very great significance for a regular armor 
piercing shell, the velocity has no significant effect on the effect 
of a shpaed charged projectile; on the contrary, a high velocity may 
even have a harmful effect since, on impacting with the armor at a 
high velocity,  the projectile may be deformed,  the shape of the ex- 
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plosive charge will change,  and the cumulative property will be lost. 
Therefore,  firing with shaped charged projectiles is conducted at low 
speeds.    The primary role in shaped charge projectiles  is played by the 
strength of the explosive charge and the shape of the cumulative recess. 
The greater the strength of the explosive charge, the greater the effect 
of the shaped charge projectile.    The shape of the cumulative recess is 
selected experimentally;  conical and spherical recesses are employed 
most often.    In addition,  the cumulative effect may be increased by the 
presence of a thin metal cone  (cap)  on the cumulative recess. 

Figure Sk.    A Shaped Charge Rocket:     I,  Casing; 
2, Explosive charge; 3,  Fuze; k. Detonator; 5, 
Central  Tube;  6,  Cumulative Recess;  7,  Metal 
Cone; 8.  Nose;  9,  Jet  Chamber;   10,  Stabilizer. 

In comparison with regular armor piercing projectiles,  shaped 
charge projectiles have a number of advantages; high armor penetrating 
effect,  low price, simplicity in manufacture, and simplicity in de- 
signing units for firing at  low speeds. 
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The shortcomings of shaped charge projectiles can include small 
ranges of fire and considerable dispersion as a result of low velo- 
cities of flight. 

-165- 



CHAPTER VIM 

INFORMATION FROM PROBABILITY THEORY 

1. Tasks of Probability Theory 

The theory firing investigates and works out methods for pre- 
paring rules for firing based on experimental data and mathemati- 
cal laws established by probability theory. 

Probability theory is a mathematical science which studies 
the regular laws which are inherent to random events of a mass 
character. 

Random events are considered to be those events which may 
occur or may not occur under certain conditions. 

Depending on the combination or an aggregate of conditions, 
a given event may be either certain, impossible, or random. 

Let us assume that firing is being conducted from a pistol 
by an expert marksman at a torso target with rings at a distance 
of 20 m. Considering the specific conditions (skill of the marks- 
man, quality of the weapon, size of the target, etc.), a hit in 
the target in general may be considered certain. But under these 
same conditions, the hitting of one point by all the bullets is an 
impossible event. The hitting of some part of the target ("ten", 
"nine", etc.) is a random event. 

-166- 



Characteristics for a considerable portion for the random events 
is the fact that the conditions under which they occur may be repro- 
duced an unlimited number of times. Such events are called random 
events of a mass character. They may include, for example, hitting 
the target, errors in measurement, and others. 

A certain regularity exists between the number of appearances 
of a random event of a mass character and the number of all tests 
which have been conducted under conditions which are as much alike 
as possible. 

The study of the regular laws which are inherent to random 
phenomena of a mass character also compriser the basic task of pro- 
bability theory. 

2. Classification of Events 

In probability theory, events are designated by capital letters 
of the Latin alphabet A, B, C, D, etc. 

Depending on the conditions of the tests (experiments) random 
events may be incompatible or compatible. 

If, during a test, the appearance of one event excludes the 
possibility of appearance of another event, such events are called 
incompatible. For example, one shot is fired from a pistol against 
a torso silhouette with rings.  In this, there may be a hit either in 
the 10 ring, or in the 9 ring, etc., or a miss. Hitting the 10 ring 
absolutely excludes the possibility of the appearance of any other 
result. Consequently, with one shot all the enumerated events are 
incompatible. 

Conditions may be created where the appearance of one event does 
not exclude the possibility of appearance of another event. Such an 
event is called compatible. 

For example, with one round from a mortar there may be an over 
and deviation to the right. The appearance of the over does not ex- 
clude the possibility of deviation of the round to the right. Con- 
sequently, the over and deviation to the right are compatible events. 

A group of incompatible events from which, during tests, one 
should occur without fail, is called a complete system of events. 
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Depending on the specific conditions, the number of incompatible 
events which comprise a complete system may differ. For example, with 
one shot from a pistol against sports target No. 4, there may be 11 
incompatible events (either a "ten" or a "nine" etc., or a miss). 

If a complete system consists of only two events, such events 
are called opposite events. 

For example, when firing one shot from a carbine against a 
silhouette target, ^here may be either a hit or a miss. These events 
will be opposite. If we designate the hit by A, the event opposite 
to it--a miss--is designated by A (read "not - A"). 

3. Frequency of Appearance of Event 

When it is necessary to compare the results of similar tests, 
we determine how frequently an event which interest us appears with 
respect to the entire number of tests which are performed under the 
identical conditions. 

The relation of the number of tests in which the event which 
interests us (m) appears to the number of al 1 independent tests which 
have been conducted (n) is called the frequency of appearance of a 
given event. 

(48) 

where    w (A)     is the frequency of the event A. 

Example.    Under the same conditions, ten shots were fired and 
six hits were obtained.   The frequency of hitting (event A) will 
equal: 

The basic properties of the frequency of an event follow from 
the very definition. 

1)    The frequency of appearance of the event is an abstract 
number; its least value is 0 and its greatest value is 1. 

0<w(^)<l. 
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If, during firing, 0 hits were obtained the frequency of hits 

would be equal to zero (w{A) =—=0] .  If there were a hit with 

with each shot, in this case m = n and the hit frequency would equal 
1. 

2) The frequency of appearance of an event changes with a change 
in the number of tests. 

Let us assume that 5 shots were fired and 4 hits were obtained. 
The frequency of hits will equal 4/5, or 0.8. If there is a hit with 
the sixth shot the frequency will increase to 5/6 and if there is a 
miss the frequency will be reduced to 4/6. 

A change in the frequency of appearance of an event during tests 
is inevitable. With a small number of tests these changes will be 
abrupt but with a large number of tests the appearance or non-appearance 
of a given event will have no great influence on the frequency. 

Thus, for example, if under the same conditions 99 shots were fired 
and 80 hits were obtained, the hit with the 100th shot will increase 
the frequency to 0.81, i.e., only by 0.002. 

Under the given specific conditions, fluctuations in frequency 
will occur near some absolutely specific number. 

Thus, for example, is a series of shots is fired against a sil- 
houette target from a carbine which has normal shooting with range 
setting 3 at a distance of 100 m and each time we record the results 
of the deviation of the hole from the center of the target for height, 
it will not be difficult to notice that the frequency of hits in the 
lower half of the target will fluctuate the number 0.5. 

Experience shows that there is a significant number of random events 
of a mass character which possess such a stable frequency. 

4. Probability of Appearance of an Event. Properties of Probability 

If, under given conditions, the frequency of appearance of a mass 
event A fluctuates near some number, this number is also the probability 
of appearance of a given event; it is designated by P(A) or p. 

Let us assume that with a large number of similar firings approxi- 
mately 81 hits have been obtained for each hundred shots (hit frequency 
w(A) = 0.81). On the basis of this it can be said that for the given 
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conditions the hit probability P(A) = 0.81. If we repeat such firings, 
on the average we can expect 4 hits for every 5 shots. 

The probability of an event is the numerical characteristic of the 
degree of objective possibility of the appearance of an event under 
givea conditions. 

Let us consider the properties of probability. 

Property I. The probability of appearance of a random event may 
assume values within the limits of from 0 to 1. This property follows 
from the fact that the probability of appearance of an event is a num- 
ber about which the frequency of appearance of a given fluctuates under 
certain conditions with an unlimited number of tests. Consequently, the 
limits of the possible values of probability should be the same as the 
limits of the frequency values. 

Property II. If the event is certain, its probability equals 1. 

Property III.  If the event is impossible, its probability equals 
zero. 

Property IV. The probability that one of two (or more) incom- 
patible events will occur, regardless of which one, equals the sum 
of the probability of these events. This property is usually called 
the rule of the summation of probabilitie's and is written as follows: 

P(or A, or B, or C.) « P(A) ♦ P(B) ♦ P(C) ♦...    (49) 

Sometimes, the recording is performed more simply: 

P=Pi+Pi+Pt + -"> (49a) 

where pi = P{A). Pt^ P(B)  etc. 

A series of consequences follows from this property (rule). 

a) If events A, B, C... comprise a complete system, the appearance 
of one of them, regardless of which one, is certain and since the prob- 

ability of a certain event equals unity, 

i.e., the sum of the probabilities of the events which comprise the 
complete system equals unity. 
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This consequence has important significance for checking the 
presence of a complete system (considering all events) which is 
necessary in operations with probabilities. 

b)    Opposite events A and TT comprises a complete system;  there- 
fore P(A)  + P(K) * 1.    The probability of an opposite event P(K)  is 
frequently designated by q; therefore p ♦ q = 1.    Thus, the sum of the 
probability of opposite events equals unity. 

From this we find that p = 1 - q.     If the probability of one of 
the opposite events is known, we can always determine the probability 
of the other event. 

Example I.    Let us assume that firing is conducted from a car- 
bine and a target having 2 rings of different diameters.    The pro- 
bability of a hit in the small ring p.  = 0.2, the probability of a 

hit in the large ring p. = 0.3, and the probability of a hit in the 

remaining portion of the target (outside the rings) p, = 0.45. 

What is the probability of hitting the target with one shot? 

Since, under the conditions, nothing has been said about which 
of these three events interests us, we will find the design of pro- 
bability from the summation rule: 

p ■ p. ♦ p« + p, = 0.2 ♦ 0.3 + 0.45 » 0.95 

because any of these events satisfies the conditions which have been 
set. 

A complete system here consists of four events: a hit in the small 
ring, a hit in thfc large ring, a hit outside the rings, and a miss. 
The probability of a miss will equal: 

q ■  1  - 0.95 « 0.05 

Example 2.    The probability of a hit in a silhouette target p - 
- 0.7.    Determine the probability of a miss. 

Since a hit and a miss are opposite events, the sum of their pro- 
babilities 

p ♦ q » 1 
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therefore the desired probability 

q = 1 - p = 1  - 0.7 = 0.3 

Property V. The probability of the compatible appearance of two 
of more independent events equals the product of the probabilities of 
appearance of these events. 

P(and A, and B, and C.) ■ P(AV P(B)'P(C) ... (50) 

This formula can be written in a shorter manner: 

P • Pi'P2,P3--- (50a) 

This property is usually called the rule for the multiplication 
of probabilities. 

Example. One shot has been fired from each of two antitank guns 
against one target. The probability of a hit from the first gun p. • 

0.7 and from the second gun p. » 0.6. Determine the probability of two 
hits. l 

A hit with a shot from the first gun does not affect the pro- 
bability of a hit when firing from the second gun; therefore these events 
will be independent. 

According to the multiplication rule, the desired probability 

P^Px p, m OJ-Ofi m 0,42. 

The events are considered dependent when the appearance of one 
affects the probability of appearance of the other, the appearance of 
the first two affects the probability of the third event, etc. 

For such cases, the rule for the multiplication of probabilities 
is formulated as follows: the probability of the joint appearance of 
two or more independent events equals the product of the probability of 
the first event times the probability of each subsequent event computed 
on the assumption of all of the proceeding events appear. 

Example. Firing is conducted from a mortar against brush on the 
area of which a target is located. The probability of the passage of 
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the mean trajectory through the brush p. = 0.7; the probability of 

hitting the target under the condition where the mean trajectory 
passes through the brush, p. = 0.4. Determine the probability of 

hitting the target. 

In this case, the probability of hitting the target depends 
on whether or not the mean trajectory will pass through the brush, 
i.e., these simple events are dependent.  If the passage of the 
mean trajectory through the brush would be a certain event (p. = 

= 1), the probability of a target hit would equal p- = 0.4. But, 

according to the condition the first probability is only p^ * 0.7 

certainty, the desired probability p will be less than 0.4. Accord- 
ing to the rule of multiplication we find 

P = PiPt = 0,7-0,4 = 0,2«. 

5. Methods for Computing Probabilities 

Depending on the conditions in which the tests are taking place 
and on the nature of the events, various methods for computing pro- 
babilities may be employed. Let us consider the basic ones. 

Statistical Method. The essence of this method is that pro- 
bability is determined on the basis of statistical data, i.e., on the 
basis cf the results of the large number of similar tests conducted 
under conditions which are as much alike as possible. Since the pro- 
bability is a number around which the frequency of appearance of the 
event fluctuates, the presence of a large number of test results pro- 
vides the opportunity to select that number with a greater or lesser 
precision around which the fluctuation of the frequency occurs. This 
number is also taken as the probability of appearance of the event. 

The Classic Method. In some cases, computation of probabilities 
may be performed by direct determination in accordance with the fol- 
lowing relation: if, as a result of the tests n incompatible and 
equally probable outcomes of the tests may be obtained, of which m 
corresponds to event A, the probability of appearance of event A 
equals m/n. 

P(A) - m/n. (51) 
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Example. A small rifle unit consisting of 30 men is formed for 
an inspection firing.  It is known that in the podrazdeleniye there 
are 9 expert marksmen, 14 good marksmen, and 7 mediocre marksmen. 
What is the probability that a marksman selected at random by the 
inspectors will be an expert marksman? 

Solution. The "random" selection of a marksman signifies that 
any of the marksmen can be selected with equal probability. In 
addition, since only one marksman is called at a time the calling 
of any of thi  marksmen is an event which is incompatible with the 
others. We designate the summoning of an expert marksman as event 
A. The number of outcomes of tests a = 30 since any of the 30 marks- 
men may be summoned. The number of outcomes corresponding to the 
event A, m = 9 since of all the outcomes of the tests only 9 will 
lead to calling an expert marksman. Consequently, the probability 
that an expert marksman will be summoned: 

P(A) = m/n = 9/30 =0.3 

This method is called the classic method since in the earlier 
(classical) theory of probability it was the basic method. At the 
present time, it has limited application and, in artillery gunner 
practice, is employed in combination with other methods. 

Method of computing probabilities from the ratio of measures. 
Sometimes problems are encountered in which the number of all possible 
outcomes of tests and the number of outcomes which correspond to a 
given event are infinitely great. 

For example, bombs are dropped from an airplane on a sector with 
an area S = 2,500 m2. The falling of a bomb at any point of the sec- 
tor is equally probable. Located on this sector is a target which 
occupies an area S. -  200 m2. It is required to determine the pro- 

bability that a bomb will hit the target.  If we take the bomb as a 
point, the number of points on which the bomb may fall within the 
limits of the target as well as within the limits of the entire sec- 
tor, i.e., the number of outcomes of the tests which correspond to a 
given event and the number of all outcomes will be infinitely great. 

In this case, the desired probability is determined as the ratio 
of the area of the target to the area of the entire sector: 

/>(/!)= ^- = -^-=0.08, or 8W. 
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In this example, we replaced the ratio of the numbers of out- 
comes of the tests by the ratio of the areas.    The ratio of the 
lengths, volumes, weights,  and other measures may be taken in a 
similar manner; from this follows the name of the method.    It has 
wide application in artillery gunnery practice. 

The method of calculating unknown probabilities through known 
probabilities.    In many cases, the direct computation of the de- 
sired probabilities is impossible and sometimes, although possible, 
inexpedient.    In such cases the desired probability is calculated 
using various formulas which provide the opportunity to calculate 
the probability of an event of interest to us with the known pro- 
bability of one of the events.    The simplest case for employment 
of this method was considered above:  computation of the probability 
of one of opposite events if the probability of the other is known; 
the computation of the probability of one of several incompatible 
events, etc. 

The formulas and relations considered below also serve for com- 
puting unknown probabilities through known probabilities. 

6.    Complete Probability.    Probability of Hypotheses After Tests 

In justifying some of the rules of firing,  it often is necessary 
to consider events relative to the appearance of which one can only 
make various assumptions (hypotheses) having one probability or an- 
other. 

Let us assume that firing is being conducted against a target 
located on a rectilinear sector which we mentally divide into three 
sectors: I, II, and III. As a result of the presence of errors in 
preparing initial data, we do not know exactly where the mean tra- 
jectory will pass--through sector I, II, or III and we only know 
the probability of its various possible positions (from the number 
of sectors),  i.e.,  the hypothesis: P, ■ 0.2, P-, « 0.5 and PJTT - 
" 0.3.   Also known are the probabilities of hitting a target which 
corresponds to one or another position of the mean trajectory: 
p. = 0.05,  p.. = 0.7,  and pj.. = 0.1. 

One can ask, what is the probability of hitting a target if 
the mean trajectory passes either through sector I, or through 
sector II, or through sector III, it makes no difference. 
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We will reason as follows. Hie target may be hit if: 

1) The mean trajectory passes within the limits of sector I; 
the probability of hitting the target as a complex event (the pas- 
sage of the mean trajectory through sector I and hitting the target 
in this connection) is determined in accordance with the multiplica- 
tion rule: 

P,/', =0,2 0,05 =0,01. 

2) The mean trajectory passes within the limits of sector II; 
the probability of hitting the target in this case will equal: 

PaVn-0.50,7-0,38. 

3) The mean trajectory will pass within the limits of sector 
III; the probability of hitting the target under these conditions: 

^mVui =0.30.1 =0,03. 

Since we need to determine the probability of hitting a tar- 
get regardless of where the mean trajectory will pass, and all these 
cases are incompatible with each other, we find in the desired pro- 
bability in accordance with the rule of additior: 

P=PiPi+Pu Pu + ^ui7»ui = 0,01 + 0,35 + 0,03-0,39. 

This will also be the complete (unconditional) probability of 
the event. 

In the general case, the formula for complete probability is 
written as follows: 

p~Pt'Px+p,pl+...+p.p,-.*2lpt.Pt. (52) 

In computing the complete probability, it is necessary to con- 
sider incompatible hypotheses which comprise a complete system; the 
sum of the probabilities of all hypotheses should always be equal to 
unity. 
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The appearance of an interesting event may significantly change 
the probability of the hypotheses which were taken into consideration 
prior to the tests. 

Let us assume that under the conditions indicated above a shot 
was fired and the target was hit. As a result Df the test, the pro- 
bability of accepted hypotheses changes significantly. 

We find the probability of the passage of the mean trajectory 
through one or another sector (probability of hypotheses) after the 
test, considering its result (hitting the target). 

We designate the probability of the hypotheses after the test 
which gave a certain result by Q,, Q., and Qxry 

The probability of hitting the target on the asumption that 
some (i-th) hypothesis took place will equal: 

PrPt = QiyiP,P,. 

from which we also obtain the formula for the probability for 
hypothesis after the test in the general form: 

Sfy/ (53) 

The probability of the hypothesis after test (Q.) equals the 

product of the probability of the hypothesis prior to tests multi- 
plied by the probability of events in accordance with the given 
hypothesis divided by the Complete probability. 

From this formula, we find the probability of the hypotheses 
which we have accepted after tests: 

Q=-^J!L-=sM=o026- 

0 - P«l'«    _. 035 ^A fifty. 

i 

O _ jWglB _o,03 _nn77 
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The sum of the probabilities for the hypotheses after test 
just as prior to the test should always be equal to unity: 

S] Q^ = 0,026 + 0,897 + 0.077 = 1. 

As can be seen from the calculation, the results of the test 
changed the probabilities of the accepted hypotheses to a consider- 
able degree.    Now, the probability that the main trajectory will pass 
within the limits of sector II almost equals certainty. 

The formula of the hypotheses provides the basis,  in accordance 
with the most probable hypotheses,  for making the most expediant de- 
cision on the order for the further continuation of the test, for 
example,  firing. 

The successive employment of the formula of complete probability 
and the formula for the hypotheses permits providing a justification 
for an expediant order of firing and expenditure of ammunition on the 
accomplishment of one task or another. 

7.     The Probability of the Appearance of an Event at Least Once in 
Repeating Tests 

The majority of firing missions accomplished from firing small 
arms are accomplished with the hitting of a single target by one 
bullet.    Therefore, in conducting fire with several rounds it is very 
important to know the probability of hitting the target with at least 
one bullet. 

Let us consider the following example.    Five shots are fired at 
a target.    The probability of a hit with one shot p = 0.5. 

With five shots  (n = 5) one of the following six combinations of 
hits and misses can be obtained:   1)  5 hits and 0 misses;  2)  4 hits 
and 1 miss; 3)  3 hits and 2 misses; 4) 2 hits and 3 misses;  5)  1 hit 
and 4 misses; 6)   0 hits and 5 misses. 

In accordance with the conditions of the example,  it makes no 
difference how many hits there will be and in what order they occur. 
It is important that with 5 shots the target be hit at least once. 
Of the six combinations considered, in the first five there is at least 
one hit in each and only in the last are there no hits.    Consequently, 
the probability of the appearance of the event at least once will equal 
the sum of the probabilities of all combinations except for the last 
one.    We designate the probability of the appearance of the event at 
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least once by P..    The probability of the last combination,   i.e. 

the probability of all misses equals q  , or  (1 - p)   . 

Since P,  + q    =  1, 

/>,=-!-*•. 

or 

C54) 

Solving our example by this formula, we obtain 

P, = I—(1-/»)" = 1-(1—0,5)«ä0(969,  or   96,9H. 

Thus, the probability of the appearance of a given event at 
least once equals unity minus the probability of the opposite event 
to the degree equal to the number of tests conducted. 

8.    Determining the Number of Tests Necessary for the Occurrence of 
an Ew   ,   At Least Once with a Given Probability 

Having logarithmed expression P   = 1  -   (1 - p)   , we determine 

the value of n: 

log O-p)  ' 
(55) 

Example. Firing is conducted from an assault rifle. The pro- 
bability of hitting the target with one round p = 0.3. Determine 
the required number of shots so that the probability of hitting the 
target with at least one bullet is at least 80%. 

Solution.  From formula (55) we find: 

logC-^r)     log (I-0.8)      £3010 _  -0,6990 
""log  (I-pi   "tog (1-0.3)  " ^51   "  -0,15-19  "^ 
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Since the number of shots may be a fraction, we select the 
closest whole number to 4.5, n = 5. This means that on the average, 
in conducting many firings in series of 5 shots each, for each 100 
firings in 80 cases there will be at least one hit and in 20 cases 
there will be misses. 

9. Random Value. The Mathematical Expectancy of a Random Value 

A quantity which takes one or another numerical value as the 
result of tests but is not precisely known ahead of time is called 
a random value in probability theory. 

For example, the number of m hits in n shots, the deviation of 
a given point of fall of a shell from the mean point of fall, and 
a random measurement error are random values. 

The use of a random value has great significance in probability 
theory. Where necessary, each event may be connected with a cer- 
tain random value. Thus, for example, a measurement error is con- 
sidered in the form of a random value--the deviation of the result 
of the measurement from the true value of the measured quantity. 

For the characteristics of a rando value, one should know all 
the numerical values which it can assume and the probability of each 
of these values or group of them. However, in practice, it is not 
always possible to characterize a random value completely. Most 
often, it is necessary to use some mean characteristics of the ran- 
dom value. 

One of these characteristics of a random value is the mean ex- 
pected value or mathematical expectancy of the random value. 

Let us first consider the question of the mean value of a random 
quantity obtained from a test. 

Let us assume that 10 firings of 5 shots in each are conducted 
under identical conditions. The result of the firings is the following; 
in three firings there are 5 hits in each; in four firings--4 hits in 
each; in two firings--3 hits in each; and in one firing—only one hit. 

The question is asked: how many hits on the average in one firing? 

We designate the mean value of this random quantity through x : 

^av^ 10 J*S h'tS- 
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The solution can be written another way: 

The numbers 5, 4, 3, and 1 are particular values of the number 
of hits, i.e., particular values of a given random value. The frac- 
tions 3/10, 4/10, 2/10, and 1/10 are the frequencies of these parti- 
cular values of the random value. 

Designating the particular values of the random value by x., x...., 

x , and by   Wt, Wt,. ..,wa—     --by corresponding frequencies of appear- 

ance of these particular values, the preceeding expression can be writ- 
ten in the general form: 

^v - xw + JfjW, + ... + jf.w,. (56) 

Thus, the mean value of a random value obtained from the tests is 
determined as the sum of the products of the particular values of the 
given random value multiplied by the frequencies which correspond to 
them. 

But, with a large number of tests the frequency fluctuates about 
the probability of a given event; therefore, it can be considered that 
the mean expected value of a random value, i.e., the mathematical ex- 
pectancy, will equal the sum of the products of the particular values 
of the random value multiplied by the probabilities corresponding to 
them. 

Designating the mathematical expectancy by M(x), we write down 
the formula: 

M(x) = XM + xlpt + ...+ xj»,,, 
(57) 

where x., x.,...  are the particular values of the random value; 

p,, ^p-»''' are t^e probabilities of the appearance of these parti- 
cular values of the random value (x). 

In determining M(x), it should be kept in mind that the sum of the 
probabilities p.  + p» +...+ p    = 1,  as the sum of the probabilities of 

the events which comprise the complete system. 
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The mathematical expectancy--always a concrete number--can be 
expressed by positive and negative numbers depending on the sign 
and dimensionality of the particular values of the random value. 

Example.    A marksman is firing from a pistol at sports target 
No.  4.    Being well trained, he does not get one bullet out of the 
black ring.    The probability of hitting in the "ten" Pj = 0.15,  in 

"nine" p2 = 0.30,   in the "eight" p_ = 0.35,  and in the "seven" p. = 

0.20. 

Determine the mathematical expectanc of the number of points 
which are scored with one shot. 

Solution.  We checked to see that all the particular values of 
the random value are considered: 

P\ + P, + Pi + P* =• W5 + 0,30 + 0,35 + 0,20 - 1. 

Now it can be said that the random value can assume the following 
particular values: x = 10 points, x7 = 9 points, x= 8 points, and 

x. = 7 points. 

Therefore 

if (A) - x,/), + *./', + x.pt  t- x./i, = 100,15 + 90,30 + 80,35 + 70.20 = 
=. 1,5 + 2,7 + IM + 1,1 =- 8.4 points . 

This means that under the given firing conditions we can expect 8.4 
points on the average for each shot. If, for example, 5 shots are fired 
under these conditions, the mean expected number of points will equal 

5 «,i -42 points 

In firing practice, great significance is had by determining the 
mathematical expectancy of the random value of opposite events. 

Let us assume that one shot is  fired against a silhouette target. 
The probability of a hit equals p.     Determine the mathematical  expec- 
tancy of the number of hits.    Obviously, with one shot the random 
value--the number of hits--can assume only two particular values: 
x.  = 1 hit,  and x    = 0 hits.    The probability of a hit equals p1  = p. 
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and the probability of a miss equals p. = q.    Consequently, 

M(x)'=xjtl+xtpt=lp + Oq=p hits, 

i.e., the mathematical expectancy of the number of occurances of one 
of the opposite-events with one test is numerically equal to the pro- 
bability of this event. 

The indication of the numerical equality is done because pro- 
bability is an abstract number and mathematical expectancy is a con- 
crete value and its dimensionality is the same as that of the parti- 
cular values of a random value. 

The mathematical expectancy is frequently designated by a.    Then, 
the preceeding expression can be recorded as:  a.  = p. 

Example.    The probability of a hit with one shot p = 0.5.    Deter- 
mine the mathematical expectancy of the number of hits with one shot. 
In accordance with what has been presented above a.  = p = 0.5 hits. 

It is necessary to note that the number of hits cannot be a frac- 
tion.    The result a.  =0.5 hits signifies the mean expected value of the 

number of hits for one shot with a large number of tests. 

With two or more tests,  the mathematical expectancy no longer equals 
the probability of occurance of a random value with one test.    Let us 
assume that the probability of a hit with one shot equals p,  and the 
probability of a miss equals q.    Determine the mathematical expectancy 
of the number of hits with two shots. 

We find the particular values of the variable value x and their 
probabilities. 

x.  = 2 hits; the probability of two hits in two shots is determined 

as a complex event in accordance with the multiplication rule: 

Pj = p.p=pl 

x- = 1 hit; but one hit in two shots can be obtained in different 

sequences: 

1)    There may be a hit with the first shot and a miss with the 
second; the probability of this sequence will equal p-q; 
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2)    There may be a miss with the first shot and a hit with the 
second;  the probability of this sequence equals q-p. 

Since it makes no difference to us which sequence o   urs, we 
find the probability of one hit  in two shots from the rule of addi- 
tion: 

Thus: 

x. = 0; the probability of this, i.e., of two misses in two shots 

equals: 

P% = lQ = q 

Substituting the obtained values in formula (57), we obtain: 

M{x) =at = Xi{fi + x%2pq + xtf* = 2p   *\'2vq -hO-v' — 
= 2p(p + g)=*2p. 

In the general case 

a, == «/> =« /ifl,. 
(58) 

Example.    The probability of a hit with one shot p = 0.7. 
Determine the mathematical expectancy of the number of hits in three 
shots. 

Solut ion: 

a,-3^-30.7=2.1    hits. 

If several random values determine the final result of a test, 
the mathematical expectancy of the sum of such values equals the sum 
of the mathematical expectancies of these values. As an example, we 
can take the firing of several mortars at one target where the mathe- 
matical expectancy of the number of hits on the target is found as the 
sum of the mathematical expectancies of the number of hits for each 
mortar. 

•184- 



CHAPTER  IX 

INFORMATION  FROM THE THEORY OF ERRORS 

1.    Measurement Errors 

In artillery gunnery practice, recourse is frequently had to the 
measurement of various values.    Most often,  it is necessary to measure 
distances to targets, angle between reference point and a target, and 
deviations in the bursts of shells (mortar rounds)  relative to the 
target. 

In measuring any value by any method, each time we obtain some 
approximate result which differs to one degree or another from the true 
value of the quantity being measured.    In other words,  each time we 
commit some error which depends on the method of measurement and the 
degree of training of the one doing the measuring. 

The difference between the obtained (approximate) result of the 
measurement and the true value of the measured quantity is called 
measurement error. 

(59) 

where x. is the true value of the measured quantity; 

x.  is the result of an individual measurement; 

A.  is the error in the result of the measurement. 
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Errors are characterized by an absolute value and a sign.    The 
smaller the absolute value of the error,  i.e., the closer an indi- 
vidual result of measurement is to the true value of the measured 
quantity, the more accurately is the given measurement performed. 
If x. > x0, the error will be positive, and if x. < x., the error 

will be negative. 

Errors may be systematic  (constant) or random. 

Systematic errors are obtained as the result of constantly oper- 
ating causes or sources  {for a given method or instrument for measure- 
ment)  and always have a constant value for quantity as well as for 
sign.    The effect of such causes may be known ahead of time; there- 
fore,  the errors which are obtained as a result of them are also 
easily eliminated.    For example,  let us assume that we know that 
a 2 m field compass has an error of 4 cm on the lesser side (the 
true value of the span of the legs is 0.04 m less than 2 m). 
Knowing this,  the results of measurement with such a compass can 
easily be corrected by reducing them by 2%. 

Random errors are obtained as a result of the interaction of 
many causes or sources of errors.    Each of these sources provides 
a so-called elementary error having a random character in a given 
measurement with respect to value as well as with respect to sign. 
With each measurement, the combinations of elementary errors may 
be extremely different; therefore, the resulting errors with a 
large number of measurements may also have extremely different 
random values.    It is not possible to consider and eliminate such 
errors ahead of time. 

Random errors are those errors which are the result of the 
interaction of many sources of errors and these and other random 
values obtained with each new measurement. 

Random errors are also a subject for our further study.    The 
section of probability theory which study.    The section of probability 
theory which studied the general r.gular laws to which the appear- 
ance and interaction of random values are subordinate is called the 
theory of random errors or simply the theory of errors. 

2.     The Normal  Law of Errors 

From probability theory it  is known that random phenomena dis- 
close some regular laws with a large number of tests.    This also 
occurs with random errors. 
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With a large number of measurements,  the appearance of random 
errors is subordinate to a certain law which expresses the relation- 
ship between the value of the error and the frequency of its appear- 
ance.    Form probability theory it is also known that with a sufficient- 
ly number of tests the frequency of an event differs very little from 
the probability of the event.    On the basis of this,  it can be said 
that a certain relationship also exists between the value and sign of 
a random error and the probability of obtaining it. 

The relationship between the absolute value and sign of a ran- 
dom error and the probability of obtaining it  is called the law of 
random errors. 

Errors may follow different laws.    Of greatest interest for us 
is the normal law of errors  (or, as it is sometimes called. Gauss's 
law), since the errors of the majority of measurements which are used 
in artillery gunnery practice are subordinate to this law. 

A liw which errors of one or another method of measurement 
follow nay be disclosed analytically and experimentally.    Presented 
subsequently is the experimental method for disclosing the law of 
errors alone--on the basis of test data. 

Let us assume that 100 measurements of the same distance have 
been performed by the method of intersection from two observation 
posts.    Assume that the true distance equals 1,000 m.    We determine 
the errors of all the results of measurement and we reduce the data 
to a table  (Table 11). 

TABLE 11 

1 'I *i I '/ */ / 'I *« 1 'I »i 1 '/ *i 

1 972 - 28 21 926 - 74 7 1053 + 53 61 980 - 20 81 1082 + 82 
2 im + 63 2J 959 — 41 42 959 - 41 r.2 1097 + 97 82 979 -21 
3 976 - 2A 23 1021 + 21 43 nor + 1^" '•-s 1038 + 38 83 1046 + 4« 
4 903 .- 37 24 886 -114 44,1025 + •   4 992 - 8 84 989 - II 
5 1089 + 89 25 914 - 86 45 | 937 -     1 937 - 63 85 1071 + 71 
6 967 - 33 26 1008 + 8 46 1093 +      1034 + 34 86 1112 + 112 
7 1103 + 105 27 986 - 14 47 1017 +      888 -112 87 983 - 17 
8 951 - 49 28 1049 + 49 48 978 944 - 56 88 1075 + 75 
9 935 - 65 29 1019 + 19 49.1007 + 1024 + 24 89 995 - 5 
10 1008 + 8 30 980 - 20 50 954 — -i  0 1005 + 5 90 1028 + 28 
11 1032 + 32 31 1018 + 18 51 947 - 5J 71 998 - 2 91 1070 + 70 
12 1121 + 124 32 930 - 70 52 990 - 10 72 1029 + 29 92 969 - 31 
13 977 - 23 33 944 - 56 53 1001 + 1 73 1072 + 72 93 988 - 12 
N 9^8 - 52 34 1013 + 13 54 1062 + 02 74 897 -103 94 1064 + 64 
IS 1059 + 59 35 994 — 6 55 1038 + 38 75 1074 + 74 95 973 -27 
16 1012 + 12 36 1036 + 36 56 879 -121 76 1044 + 44 96 1039 + 39 
17 973 - 27 37 908 - 92 57 965 - 35 77 987 - 13 97 1022 + 22 
18 1057 + 57 38 919 - 81 58 922 - 78 78 1047 + 47 98 883 -117 
19 939 - 61 39 1074 + 74 59 1039 + 39 79 995 - 5 99 1067 + 67 
20 969 - 31 40 1052 + 52 60 963 - 37 SO 1086 + 86 100 971 - 29 
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In order to establish the relationship between the value and 
sign of a random error and the frequency of its appearance, we 
group the errors which have been obtained.    We divide the negative 
as well as positive errors into groups in accrodance with their 
value for each 30 m,  after which we calculate the number of errors 
in each group.    We reduce the data from these calculations of a 
table (Table 12). 

TABLE 12 

amount of ettort negative enort (-) positive errors (+) 
m, from top to 

bottom -I» 
-130 

- 90 
-120 

-eo 
-90 

-30 
-co 

0 
-30 

0 
+30 

+30 
-H» 

+C0 
+90 

+ 90 
+1M 

+i» 

number of erruri 
frequency in ob- 
taining erronty 

1 

1 

3 

5 

9 

9 

N 

14 

21 

21 

16 

16 

15 

1.1 

13 

13 

s 

5 

1 

1 

On the basis of the data from this table, we construct a 
graph of the relationship between the sign of the error and the 
frequency of its appearance. For this, we lay off errors with 
a size of 30 m in an arbitrary scale on a horizontal axis (Fig- 
ure 95) from point 0 in both directions. Along the vertical 
axis 0Y we lay off the frequencies of appearance of these errors 
expressed in percent, also at an arbitrary scale. We obtain a 
number of rectangles, the areas of which graphically characterize 
the frequency of appearance of errors according to value and sign 
within the assigned limits. 

As an example, we took only 100 errors. This number is not 
big enough to establish completely the regular law of appearance 
of random errors. However, even in this case some conclusions can 
be drawn. Thus, for example, it can be seen from the drawing that 
the errors which have a lesser value appear more often and errors 
having a greater value appear less often. Moreover, there is a 
basis to state that the number of errors is approximately the same 
in the larger and smaller directions. 

Now, let us consider the test data of a large number of mea- 
surements of distance by eye. In the preceeding example, we took 
100 errors obtained in measuring the same distance and all the 
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errors which were obtained were expressed in meters.    Now,  let us 
take test data of the measurement of different distances.    It has 
been established by practice that errors in measuring distances by 
eye are directly proportional in their value to the distances mea- 
sured.    On this basis, the size of the errors of all measurements 
can be expressed, not in meters, but in percents with respect to 
the true values to the distances measured. 

AÄ 57. 9% lit 21% 16% ax 15% SX IX 
u»i 

-ISO   -CO   -K   -60    '30     0      *M    *W    *#    ,a>   "M* 

Figure 95. A Particular Case of the Distribution 
of Errors in Measuring a Distance. 

M  »0 -10 -t •»■•♦   -J   0   *2   •♦  't   •<» .lö .1; Vh .« 'M %   " * 

Figure 96.    Processing the Results of a Large 
Number of Measurements. 
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Wc prepare a graph to process and group the errors which have 
been obtained. A portion of this graph is shown in Figure 96. We 
will group positive errors in the right portion of the graph and 
negative errors in the left portion. We lay off the limits of the 
errors every 2% on the axis OX in both directions from points 0 at 
an arbitrary scale. We will explain the procedure for grouping 
the errors by means of examples. 

Example I.    The true distance to a target x. = 747 m (measured 

by the most precise method--measurement tape, intersections from 
several posts,  range finder, etc.).    The results of an individual 
measurement x.  = 850 m.    Consequently, the error in the given result 

of measurement 

which comprises 

^-Jf/-Jfo-850-747- +103 *, 

103100   .,„. 
—^-- » + 13,8%. 

We note the value of this error in the graph at point a. 

Example 2. The true distance to the target x_ = 685 m. The 

result of an individual measurement x. = 640 m. The error of the 
i 

given measurement result 

A, - ^ — Xo - M0 — 685 = — 45 *, 

which comprises 

«•loo 
"css-*-6,6^0' 

We note the value of this error in the graph at point b. 

Let us assume that we have succeeded in considering a sufficiently 
large number of errors and grouping their values on a graph by the 
method indicated above.  From the frequencies of the obtained errors 
which occur for each group, we construct rectangles with identical 
bases at an arbitrary scale (Figure 97). 

By considering the graph which is obtained, we can establish the 
following principle which characterizes the relationship between the 
size and sign of the error and the frequency of its occurance. 

1. The larger the error, the smaller the frequency of its 
occurance. This principle is confirmed by the fact that the heights 
of the rectangles become smaller and smaller as the errors increase. 
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2. Tho frequencies of appearance of positive and negative errors 
which are included within limits equal in value are approximately equal 
to each other. This can be seen from the fact that rectangles which 
arc equidistant from the axis OY have approximately the same heights. 

3. Each method of measurement has its own limit of errors. From 
I'igure 97, it can he seen that the rectangles which correspond to the 
frequencies of the maximum errors try to combine with the axis OX. 

In the example all the errors obtained were distributed by groups 
and by their value for every 2%  of distance, as a result of which we 
obtained a step-like graph of the frequencies of errors. The number 
of steps and their dimensions depend on which limits in the size of 
the errors we set in constructing the graph. The smaller the limits 
of the errors, the larger will be the step and the smaller will be 
their sizes (with the same scale in constructing the graph). With 
a reduction in the limits of the errors to infinity (with a sufficiently 
large number of errors) the step-like curve will gradually be smoothed 
out, transforming into the smooth curve ABC (Figure 98). 

•60% -50% -40% -30% -20% -10%  0   ♦«$ *20% *30'/, H0% *50%*M% 

Figure 98. A Curve Which Characterizes the Normal 
Law of Random Errors . 

Since all our reasonings were based on the example of a suffi- 
ciently large number of errors, curve Aik: can be considered as a 
graphical expression of the normal law of errors which is charaterized 
by the following three principles: 
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.► 1. With an increase in error, the probability of its occurance 
is reduced, and, on the contrary, the smaller the error the* greater 
its probability. 

2. Errors which are equal in absolute value but different in 
sign are equally probable--the probability of obtaining a positive 
error equals the probability of obtaining a negative errors which 
is equal to the former in absolute value. 

3. Each method of measurement has its own limit of errors; 
errors which exceed this limit in their value are so improbable 
that they are usually ignored as a practical matter. 

These three principles of the law of errors can be formulated 
briefly as follows: errors are distributed unevenly, symmetrically, 
and finitely. 

From Figure 98 it can be seen that the measurement errors do 
not go beyond the limits AB; consequently, the probability of ob- 
taining an error within these limits equals 1 (unity), or 100%. 
On the basis of this, we take the area which is bounded by the curve 
ABC as equal to 1 (unity) or 100%. 

The probability of obtaining an error within some lesser limits 
will be less than 1 (unity) or 100% by the number of times that the 
area which is bounded by the corresponding ordinates and portion of 
the curve is less than the entire area bounded by the curve ABC. On 
the basis of this, we can compare the probability of obtaining an 
error within any given limits, for which it is necessary to compare 
the areas which correspond to these limits. 

Example I (see Figure 98). The probability of obtaining an error 
within limits of from 0 to +5% is less than 1 (unity) by the number of 
times that the area abvg is less than the area bounded by the curve 
ABC. 

Example 2. The probability of obtaining errors within limits 
of from 0 to +5% is greater than the probability of obtaining an error 
within limits of from +20% to +25% by the number of times that the 
area of abvg is greater than the area of dejz. 

Example 3. Probability of obtaining an error within limits of 
from -20% to -25% equals the probability of obtaining an error within 
limits of from +20% to +25% since the area uklm equals the area dejz. 
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3.    Mean Error,     Scale of Errors 

In artillery gunnery practice,  it often is necessary to evaluate 
different measurement methods by the degree of their precision.    As 
a measure of precision in this, we employ average errors:    average 
arithmetic,  average quadratic, and mean.    Most often it  is necessary 
to use the mean error which is designated by the letter E. 

The mean error is that error which,   in its absolute value,  is 
larger than each of the errors of one half and less than each of the 
errors of the other half of all errors which are disposed in a series 
of increasing and descending order.    On the basis of this definition, 
let us  find the mean error of 100 results of measurements  (see Table 
11).    For this,  we place the absolute values of all errors obtained 
in  increasing order (Table 13).    Since we have only 100 measurements, 
the mean error will occupy a place between the 50th and 51th errors. 
The absolute value of the 50th error equals 39 m and, of the 51th 
error--41 m.    The mean error of the series of measurements being 
considered equals 

^=40 M. 

TABLE   13 

Ni A Jft A Xt A Jfi A Ml A 

1 + I 21 + 19 41 -33 61 -53 81 + 74 
i   2 22 -20 42 + 31 02 +.53 82 + 75 
3 - 5 23 -20 43 -35 C3 -56 83 - 78 
4 - 5 21 -21 44 +30 64 -56 84 - 81 
5 + 5 2.) +21 43 -37 65 +57 85 + 82 
e - 6 26 —22 4() -37 6& +59 80 - 86 
7 + 7 27 +22 •17 + 38 07 -Öl 87 + 86 
8 - 8 28 -23 48 + 38 08 +62 88 + 89 
'.) + 8 2'J -21 49 + 3'J 09 -63 89 - 92 

10 + 8 30 -21 30 +39 70 -03 90 + 93 
II -10 31 + 2) 51 -41 71 +63 91 + 97 
12 -11 32 -27 52 -41 72 +64 92 -103 
13 -12 33 -27 53 + 44 73 -65 93 + 105 
II H2 31 -28 51 -Id 74 +67 94 + 107 
15 -13 3.-1 t-28 5j + 4(5 75 -70 95 -112 
IG H3 m - 2'J JO + 17 76 + 70 96 + 112 
17 -14 37 I-2J 57 -49 77 +71 97 -114 
18 -17 38 - 31 58 + 19 78 +72 98 -117 
1<( f-17 3'.l -31 5',) -52 TJ -74 99 -121 
10 + 18 10 + 32 CO + 52 80 +74 100 + 124 
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It is larger than each error in the first half of the series 
of all errors and less than each error in the second half of this 
series. 

Now let us use the test data of a large number of errors ob- 
tained by measuring different distances and expressed in percent 
(see Figure 98). We determined the value of the mean error in 
measuring distances by eye. 

■m% -b0% -10% -30% -20% -10%   0    *I0% *20% 'W/, *40% *50% +60% 

Figure 99.    Determining the Size of the Mean Error 
by Recording the Better Half of the Errors, 

Let us assume that the number of errors is sufficiently large 
but is a finite number; therefore, we can add up all errors. 

In both directions from axis OY (Figure 99), we count off the 
numbers of errors in each which would comprise 25% of the overall 
number of all errors and we separate them by straight lines which 
are parallel to this axis.    We obtain two equal strips which, when 
summed, contain the better half of all errors.    From the drawing 
it can be seen that the value of each of these errors which are 
part of this half does not exceed 10%.    The remaining (worst) have 
of all errors is located beyond the limits of these two strips. 
Each of the errors in the worst half is greater than 10%.    Con- 
sequently, an error in the amount of 10% is the mean error in 
measuring distances by eye for a given group of people. 

■195- 



Let us perform the grouping of the worst half of all errors 
every 10% (every one mean error), for which we lay off another 
series of strips of the same width as the first in both directions 
from the axis OY (Figure 100). We calculate the number of errors 
which occur in each strip and we epxress it in percent of the en- 
tire number of errors; in this we obtain the frequency of occurance 
of the errors within limits expressed in mean errors.  If each of 
the first strips contains 25% of all errors, the remaining strips, 
as they get further from the axis, will each have 16.1%, 6.7%, 
1.8%, [one figure missing], 0.1%. 

We took a sufficiently large number of errors with which it 
could be considered that the frequency of an event equals the 
probability of the event; therefore, the graph in Figure 100 
characterizes the numerical expression of the normal law of errors; 
it shows the numerical relation between the size and sign of the 
errors and the probabilities of their occurance. Thus, for example, 
on the basis of the graph which has been obtained we can say that 
the probability of obtaining an error within limits from 0 to ±1E 

25«6 -f-25%=50»/oi 

within limits from 0 to ±2E equals 

16,1 Di +25% -H25% -f 16,1% =82,2%  etc. 

1«/* Oß?. '.ty \n 

/ 

Y 

ad 

K 
25% 

\ 

w w% 0J% ^1 
A ^ \ ß 

-60% -iOJ. -407. -30'/, -20% -10%   0   *I0% *20% *30% *<i0% *50% *60%~ 
-65   -5E -♦£   -3£ -2E  -f *t     *2t   *3E  Mf   *SE   *6£ 

Figure  100.    Numerical  Expression of the Normal  Law of Errors   (Using 
as  an Example Measurements of  Distances  by Eye Where. 

E -  10*) 
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On the basis of the data in Figure 100, it can be said that the 
errors in measurement may reach +5E and even +6E in their value. But 
from this same drawing it can be seen that the probability of obtaining 
such large errors is very small. As a matter of fact, the probability 
of obtaining an error greater than 4E equals 2- (0,3% -1-0,1%) =-0,8%. 

This means that out of 1,000 measurements, in only 8 cases (on the average 
the error may be greater than 4E). On the basis of this and for the pur- 
pose of simplifying calculations, such errors are frequently ignored and 
the normal law of errors with some rounding off numerically expresses the 
scale of the errors (Figure 101). In these cases, an error equal to 
+4E is taken as the practical limit of errors for any measurement. 

The scale of errors in Figure 101 has been prepared in whole 
fractions of the mean error E. Such a scale can be prepared with any 
precision—in any fractions of E. Figure 102 provides a scale of 
errors which permits determining the probability of obtaining an error 
within limits with a precision of up to 1/2 E or up to 1/4 E. Thus, 
for example, the probability of obtaining an error: 

Within limits of ±1/2 E equals 0.13 + 0.13 = 0.26 or 26% 

Within limits of ±1 1/4 E equals (0.25 + 0.051) 2 = 0.602, or 
60.2%; 

Within limits from -1 1/2 E to +1/4 E equals 0.09 + 0.25 + 0.0^7 = 
= 0.407 or 40.7%; 

Within limits from +1/2 E to +1 3/4 E equals .12 + 0.09 - 0.037 = 
= 0.247 or 24.7%. 

2X      n     167,    25%  I 25%    167.     7%     2% 
'   '   l I L I '   '   ' 

-*£    -X     '2E     -i      0       *E      *2f *3£     H£ 

FFgure 101.    Scale of Errors with an Accuracy to 1  E. 
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0.02 0,07 0./fl 0.25 0,25 a/0 0.07 a» 
mi WS 0,03 0,0* ao7 0,09 0'2 au au a« 0109 507 ao* aoi o.oi} ms 

laisJ ii «   «3 Ii c   q   c»   f't • 1   a  rj   g 1^ iilll 
-♦/ -Jf •2£ 'f -Zf *Jf ♦♦f 

Figure 102. Scale of Errors with a Precision of up to 0.25 E. 

With calculations which require great precision, a scale of errors 
is used which is prepared with a precision of up to 0.01 E. Such a 
scale has the form of a table (see appendix Table 2) where the probability 
of obtaining an error within limits from -A/E to +/\/E is given as the 
function of this limit. We designate the limits of the error from 
-A/E to +//E by 3. Then the overall expression of the probability of 
obtaining an error within the given limits will have the following 
form: 

/' = *(?), (60) 

where ß is the limit of the error from -A/E to +A/E or, which is the 
same thing, the limits of the error from 0 to ±A/E; 

p is the probability of obtaining this error; 
<I> (function) is the designation of the relationship which ties 

ß with p. 

We will show how the table is used by means of example. 

Let us assume that the true distance to the target equals 800 m. 
The observer measuring this distance by eye, commits a certain error. 
The mean error of measurement equals 10% which, in the given instance, 
is 80 m. 

Let us solve several examples in determining the probability of 
obtaining the error with given limits. 

Example I. Determine the probability of obtaining an error within 
limits of ±100 m (Figure 103). 

Solution: 

3-±4„±^.±,23f. 

The probability of obtaining the error 

p~<V OJ = .p (1,25 £) = o.ooi, or C0,l0/o. 
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Example 2.  Determine the probability of obtaining a negative 
error within limits of 0 to -124 m (Figure 104). 

Solution: 

P- 
124 
80 -l.SSf. 

Since we are only interested in an negative error, the probability 
of obtaining it is 

A» - y *(W " T * (1.55£) - y-O,?©! - 0.352. or 35.2%. 

*•* 

- Uii 

Figure  I03.     Limits of an Error from 0 to ±1.25 E, 

t       '2[       '31       't,l 
*.« 

Figure \Qk.     Limits of an Error from 0 to -1.55 E, 
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Example 3-    Determine the probability of obtaining an error within 
limits of from -48 m to +116 m (Figure 105). 

Figure  105.     Limits  of an Error from -0.6 E  to +1.'»5 E. 

Solution: 

p, - -^ - OßE; 

P,--l^-l.45£: 

-0,493. or IWk 

Example A.  Determine the probability of obtaining an error within 
limits of from +36 m to +96 m (Figure 106). 

Figure 106.  Limits of an Error from +0.^5 E to +1.2 E. 
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Solution: 

«0.172. or 17.2«yo. 

4. Determining the Mean Error from Results of Measurements. The Re- 
lation Between the Mean, Average Arithmetic and Average Quadratic 
Errors. 

Above, in determining the amount of errors, we assume that we knew 
the true value of the quantity being measured.    In practice,  in be- 
ginning the measurement of any quantity, we do not know its true value; 
otherwise, there would be no need for measurements.    Therefore, in 
order to determine the error of each measurement result, it is necessary 
to compare it with the true value of the measured quantity and with that 
which can be considered more suitable and closer to this value.    Taken 
as such a suitable value if the average arithmetic value of all the 
individual measurement results, i.e., the average result. 

The average result of individual measurements is determined as 
the quotient from the division of the sum of the results of the mea- 
surements by the number of measurements: 

m 

av n n    • vv J 

where Xj. X2» Xn are the results of the measurements; 
n is the number of measurements. 

Example.    Ten men measured the distance  (by angular value) to the 
same local object.    In this, the following measurement results were 
obtained: 930.  1,150,  1,071, 730, 1,050, 955,  760,  1,260, 839,  and 
1,015 m.    Determine the average result. 

Solution.    We substitute the numerical values of the obtained 
results of the measurements into the overall formula: 

930 + I ISO -h 1071 -<- 730 + 1050 + 955 + 760 + I2C0 + 833 + 1015 _ 
x«v" "~ 10 
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We take the distance of 976 m as the true value of the measured 
distance. 

We stress that the suitable value of the measured quantity is 
not identical to the true value and the smaller the number of indi- 
vidual measurements made, the more it may differ from it, and, on 
the contrary, the larger the number of measurements made the closer 
the obtained average result is to the true value. 

Taking the average result as the true value of the measured 
quantity x , we have the opportunity to determine the error of in- 

dividual measurements. 

According to the conditions of the preceeding example, we 
determine the errors in individual measurements if the mean result 

We obtain: -46, +174, +95, -246, +74, -21, -216, +284, X         = av 976 m. 

-137, +39 m. 

At the beginning of the chapter we considered the method for 
determining the amounts of mean error according to its location in 
a series of absolute values of all errors. As an example, we took 
100 measurements or 100 errors. With such a number of tests, this 
method of determining the amount of the mean error is sufficiently 
precise. But in practice, as a rule, it is necessary to work with 
a small number of measurements. In such cases, the method of deter- 
mining the size of the mean error which we have considered does not 
provide the required accuracy.  In order to be convinced of this, 
let us use the last example where, as a result of 10 measurements 
of the very same Distance, 10 errors were obtained. We arrange the 
absolute values of these errors in increasing order: 21, 39, 46, 74, 
95, 137, 174, 216, 246, and 284 m. 

The mean error of this series will be: 

Let us assume that one more measurement--the 11th has been made. 
Let us see how the judgement of the sire of the mean error can change 
depending on what the result of the last measurement will be. If the 
11th measurement provides an error greater than 137 m, the mean error 
will equal 137 m; if the Uth measurement provides an error less than 
95 m, the mean error will equal 95 m. 
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Thus, we are convinced that depending on one measurement result 
alone, the judgement of the amount of the mean error changes sharply. 
This is why, with a small number of measurements, one cannot determine 
the size of the mean error from its place in a series of absolute 
values obtained with this error. 

In such cases, the suitable value of the mean error is determined, 
as a rule, by one of the following two methods: either from the size 
of the average arithmetic error or from the size of the average square 
error.  For this, it is necessary to know how the sizes of the indicated 
errors are determined and what numerical relationships exist between 
these errors and the mean error. 

The average arithmetic error E is taken as equal to the sum of 

the absolute values of all errors divided by the number of errors: 

E  = 'A'l-H^H-.-. + |A,| ^ T _^ (62) 
1        /» ,7  . 

where A., A-,..., A   is the measurement error; 

n is the number of errors. 

According to the condition of the preceeding example where 10 
measurements were preformed and 10 errors were obtained,  the average 
arithmetic error equals: 

g __ 46 +174 + 95 + 246 + 74 -)• 21 -)• 216 + 284 + 137 + 39   ,„0O 
C-X ig  = XOi,! M. 

The following numerical relationship exists between the mean error 
error E.: 

£ = 0.8454^,^-1-^. 

E and the average arithmetic error E.: 

On the basis of this relationship, it is easy to find the size of 
the mean error if the size of the av?rage arithmetic error is known. 

According to the condition of our example, the mean error 

The average quadratic error E. is taken as equal tc the square root 

ot the sum oi  the sqiares of all errors divided by the number of errors 
minus one: 
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^/uray^, 
(63) 

where A,, A,,..., A are the measurement errors; 
1  2     n 

n is the number of errors. 

According to the condition for the preceeding example, of 10 
measurements the average quadratic error equals: 

£ — i/46' + 174;' + 95> + !jg! ± l*t + 211+ m'' + -84a ± 13"71 +~^" 

-^255142 = ^28349^168.4 M. 

The following numerical relationship exits between the mean error 
I; and the average quadratic error E.: 

On the basis of this relationship,   it  is easy to find the size of 
the mean error if the size of the average quadratic is known. 

According to the condition of our example,  the mean error 

£ = If, ^-1.168,4 5= 112 M. 

Thus, having the results of 10 measurements, we found the suitable 
value of the measured quantity and the error of each result, after which 
we determined the value of the mean error by three methods: 

--From the place in the series of absolute values of errors, 
fi = 116 m; 

--From the average arithmetic error, E = 111 m; 

--From the average quadratic error, E = 112 m. 

-204- 

. 



In considering the first method, we are convinced of its insuf- 
ficient accuracy.    Actually,  it was sufficient to add one more (11th) 
measurement and the desired value E changed sharply  (instead of 116 m 
it became 137 m or 95 m). 

In order to be convinced of the advantage of the last two methods, 
we apply to them the same tests as were applied to the first method, 
i.e., we see how the desired value E changes if we add the error of the 
11th measurement to the available errors of 10 measurements.    Assume 
that in one case this error equals  140 m (more than 137 m),  and in the 
other case 80 m (less than 95 m).    In this case, determining the size 
of the mean error by the past two methods, we obtain the following 
data: 

With 11 measurements and with the addition of an error of 140 m: 
according to the average arithmetic error E = 111.5 m and according 
to the average quadratic error E = 110.5 IP; 

With 11 measurements and the addition of an error of 80 m:  ac- 
cording to the average arithmetic E ■ 107 m and according to the 
average quadratic error E » 108 m. 

As we see, the additional measurement changes the judgement of the 
size of the mean error insignificantly if it is determined from the 
average arithmetic or from the quadratic error. 

5.    Mean Error of the Average Result 

With a limited number of measurements, taking the average result 
x      as the true value of the measured quantity x_, we commit a certain 

error which is called the error of the average result.    With the very 
same method of measurement and with the very same number of measurements 
of the very same quantity, the errors of the average result will have 
different values since each of them, being the result of the number of 
random results of individual measurements, has a random character. 

Let us assume that the same quantity is measured by the same method 
a large number of times and that all individual measurement results in 
the sequential order of obtaining them are divided into a series of 
groups of small n results of each.    For each of these groups, we find 
its average result and for each such average result--its error.    In this, 
we obtain errors of average results which are different in size and 
which will follow the normal rule, with its mean error of the average 
result. 
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The mean error of the average result equals the mean error of the 
method of measurement divided by the square root of the number of mea- 
surements: 

/?=3-^-' (64) 

where R  is  the mean error of the average results; 
H  is  the mean error of the given method of measurement; 
n is  the number of measurements. 

Example.    Sixteen marksmen measured the distance to the same local 
object by eye.    They take the average result x      = 750 m, which has 

been calculated from the results of all measurements as the suitable 
value of the measured distance.    The errors of all measurements have been 
calculated and the mean error of the method of measurement E = 80 m 
has been found from their values. 

We determine the size of the mean error of the average result R. 

Solut ion: 

Vn       |/I6 

Taking  the average result x      = 750 m as the true value of the 

measured quantity x  , we commit,  as already indicated earlier,  a cer- 

tain error  in the average results.     In considering the scale of errors, 
(Figure  107)  we can draw the following conclusions which explain the 
meaning of the result obtained in the example: 

. 2%     .   7% . 16%   ,25%    | 25%   , 16%    ,7%     ,2%     , 
■**       -3* 
•60        -60 
«70        690 

•211       -K         0          ♦*        *2R       *3tt       ♦♦* 
-♦0       -20                     *20        »40        *S0        *80M 
7/0        7J0        750        770        750        HO         H30» 

Figure   107- Scale of Errors of  the Average Result 

I. The probability that the error of the average result is 
within the limits of from 0 to +R, i.e., from 0 to +20 m, equals 
0.2S + 0.25 = 0.5 or SO"».    Consequently,  50%  is the probability that 
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the true value of the measured distance is included within limits of 
from 730 m (750 - 20) to 770 m (750 +20). The probability that the 
true value of the measured distance is included within the limits of 
from 0 to +2R, i.e., from 710 m (750 - 40) to 790 m (750 + 40) equals 

0,16 + 0,25+0,25 + 0,16 = 0.82 etc. 

2.    The limit of the error in our example is the error which is 
equal to ±4R = ±80 m.    Consequently, the true value of the measured 
distance is included within limits from 670 n (750 - 80) to 830 m 
(750 ♦ 80). 

We have considered the case where the average result was obtained 
from 16 individual measurement results.    If the mean error of each in- 
dividual measurement result in the given example E equals 80 m, the 
mean error of the average result R from 16 individual results became 
equal to 20 m. 

Thus, taking the average result as the suitable value of the 
measured quantity, we thereby increased the accuracy of the measure- 
ment, for - 

Obviously, the accuracy of the average result becomes higher 
and higher with an increase in the number of measurements.    However, 
in artillery gunnery practice it is impossible to spend much time on 
the performance of numerous measurements.    Therefore,  the necessity 
arises to determine the number of measurements to which it is expedient 
to limited so as to obtain a sufficiently precise average result in 
the shortest possible time. 

The first vertical column of Table 14 provides different values 
of the number of measurements n:    in the second column--coefficients 
which show the number of times the accuracy of the measurement is in- 
creased with various values of n in comparison with the accuracy of 
the result of one measurement  (y^=]/"/j)   .    The third column shows the 

increase in accuracy in percent in comparison with the preceeding re- 
sults  (Ak). 

TABLE ]k 

■ *=l JT *»•  M • *= iT **■« 

1 1 6 2,45 tu 
2 1,41 41 7 2,65 8,2 
3 1,73 22.7 8 2,83 6.8 
4 2 15,6 9 3 6 
5 2,24 12 10 3,16 5^ 
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From the data in the table, it can be seen that the most significant 
increase in accuracy is obtained with an increase in the number of first 
measurements.  If, with one measurement, accuracy is taken as 1, then 
with two measurements the accuracy is increased 1.41-fold or by 41%; 
with three measurements the accuracy is increased 1.73-fold in compari- 
son with the accuracy of one measurement result or by 22.7% in compari- 
son with the accuracy of the average result of two measurements; with 
four measurements, the accuracy is increased 2-fold in comparison with 
the accuracy of one measurement result or by 15.6% in comparison with 
the accuracy of the average result of three measurements, etc. 

The second and third measurements provide an especially sharp in- 
crease in accuracy. This is why, when firing from mortars, it is re- 
commended that corrections be applied to the deflection setting when 
obtaining at least two sensings. 

With an increase in the number of measurements of more than four, 
the gain in accuracy drops sharply. This situation is also considered 
in practice. Thus, when checking the shooting of a weapon with indi- 
vidual rounds to determine the position of the average point of fall 
(average measurement result), we are limited to four rounds. 

6.  Errors in Plane 

In artillery gunnery practice, most often we come up against those 
measurements, the errors of which must be considered not only for their 
size and sign, but also for direction in a plane. Thus, for example, 
overs and shorts in firing are errors in range (in height) and the 
direction of these errors coincide with the plane of fire; lateral 
deviations of bullets (shells) from the target are errors which have 
direction perpendicular to the plane of fire. 

Individual errors which have a certain value and certain direction 
in a plane are called vector errors. Such errors can be portrayed 
graphically in the form of a vector, i.e., a directional straight line, 
in other words, straight line segment, in which respect the size and 
direction of this segment should coincide to the size and direction 
of a given individual error. 

Assume that in measuring the OP distance an error has been made 
in the larger direction.  In Figure 108, this error is portrayed by the 
vector ab (for greater clarity, this vector is added below point T). 
The size of the vector characterized the size of the error which has 
been committed (by comparison with the segment OT), and the direction 
of the vector characterizes the direction of the error. 
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Figure  108.    Vector Error 

With measurements, we usually do not know the size of the individual 
errors, otherwise we could consider and eliminate them.    We only know the 
law to which the errors are subordinate,  the direction of the errors, 
and the size of the mean error.    Thus,  for example, we know that mea- 
surement of a distance by eye is accompanied by vector errors which are 
directed along the target aligned, that these errors  follow the normal 
law,  and that the mean error of a given measurement method equals 8- 
-10%.    If each individual measurement is accompanied by a vector error, 
then with repeated measurements we obtain an aggregate or system of 
vector errors. 

il  

Figure   109.    Vectorial  Error. 

The system (aggregate)  of vector errors which are directed in 
space along one straight line is called the system of vectorial errors. 

For brevity,  this system is called the vectorial system or, even 
more simply,  the vectorial error.    This arbitrary designation can be 
taken to mean the entire aggregate or errors rather than an individual 
error. 

Graphically,  the vectorial error (system of vectorial errors)  is 
portrayed in the form of a vector, i.e.,  a straight line segment would 
go along the direction of the errors and which is equal in value to the 
mean error.    Thus,  for example, vactors AC and AB (Figure 109) por- 
tray the system of vectorial errors of measurement which occur in space 
and the direction MN which coincides with the  line of direction to the 
target to which the distance is measured.    Point A serves as the origin 
for reading.    The mean error of the system is numerically equal to AC 
or AB.    In Figure 110,  the vectors AC and AB portray a system of vec- 
torial errors in the lateral aiming of the gun at the target.    The direc- 
tion of the errors  in space is perpendicular to the direction to the 
target. 
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Figure  110.    The  Vertical   Error  in a Lateral   Direction 
with Respect   to  the Plane of Fire. 

The Addition of  Errors  Directed Along One  Straight  Line 

The addition of vector errors.    Vector errors which operate in one 
direction (directed along one straight line) are made up in accordance 
with the general rule for the addition of vectors,  i.e., algebraically. 

Example  (Figure  111).     In determining the initial elevation with 
consideration of meteorolical firing conditions for firing from an 
82-mm mortar,  the following errors were committed: 

--in measuring the distance to the target, +70 m  (vector ab in 
Figure 111); 

--in considering the air temperature, +20 m  (vector cd in Fig- 
ure  111); 

--in considering the range wind, -30 m (vector ef in Figure 111). 

The total error A = + 70 + 20 - 30 = +60 m (vector gh in Figure 111) 

ay 
c'r*d 

91 "^ 

-Y—T 

Figure  111.    The Addition of Vector Errors which are Operating 
in One Direct ion. 
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The additional of vectorial errors.  Let us assume that in mea- 
suring some value several sources of error are operating. Assume that 
each of these sources provides a system of errors which follow the 
normal law and are characterized by one of their mean errors. As a 
result, the interaction of all such sources of errors will follow the 
normal law but the size of these errors will be total with some new 
total mean error. 

T' e size of the total mean error is determined by the following 
expresision: 

where      E is the total mean error; 
E., E»,.,., E are the mean errors from various sources. 

Example. Firing from a company machine gun is accompanied by a 
series of systems of errors which are the cause of the deviation of the 
average trajectory for range relative to the target. 

Find the total vectorial error (mean error, or mean deviation of 
the mean trajectory from the target) for range if: 

--The vectorial error of the measurement of the distance equals 

--The system of errors in considering meteorological conditions 
provides a vectorial error of 3%; 

--The system of errors in laying for height provides a vectorial 
error of 5%. 

Using the formula presented above we obtain: 

E = VlO» + 3* + 5' = J/13-1 « ll,5n/o. 

The Addition of Errors which have Different Directions in One Plane 

Addition of vector errors. Vector errors which have different 
directions are accumulated geometrically in accordance with the rules 
of a parallelogram. 
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Let us consider this by means of examples. 

Example I.  Firing is conducted from a light machinegun in one 
burst against a head silhouette on a panel (Figure 112). The accuracy 
of the firing is determined by matching the average point of fall with 
the center of the target. 

Fiqure 112. The Addition of Vector Errors Which are Operating in 
Two Mutually Perpendicular Directions in One Plane (for Height and 
Lateral Direction). 

Let us assume that the macnine gunner committed two errors simul- 
taneously in firing:  l--for height equal to A. (the error in the 

sight setting); the other--in a lateral direction equal to A- (error 

in considering cross wind). 

From error A., the average point of fall is displaced from point 

C to point Cj and from error A-, to point C~.    As a result of the simul- 

taneous effect of these two errors, the average point of fall is dis- 
placed from point C to point C_. 

The simultaneous appearance of individual errors (A. and A_) 

in tow different directions leads to one total or resultant error 
(A). 

Example 2. When plotting point T (target) on a map, the observer 
made two errors simultaneously (Figure 113) : l--for range equal to 
A. (error in measuring the distance), and the other--in a lateral 

direction equal to A- (error in measuring the lateral displacement 

of the target relative to the reference point). 
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■•'ith the simultaneous effect of errors A and A. a total or 

resultani. ^rror A, is obtained and the position of the target on 
the map turned out to be at point T rather than at point T. 

We have considered cases of the addition of vector errors which 
have various directions in one plane when these directions are mu- 
tually perpendicular. This is the most characteristic case for 
gunnery practice. The amount of the total (resultant) error in such 
cases is determined as the jiypotenuse of a right triangle in which 
the legs are known, i.e., in our designations for the formula: 

A^ÄfTÄ*. (66) 

The direction of the error is determined by the size of the 
angle which is formed by the direction of the total vector error 
and the direction of one of the component vector errors (see Figure 
113). 

Example.    Let A,  = 120 m and A_ 

direction of the total error. 

30 m.    Find the size and 

Figure  113.    The Addition of Vector Errors which are 
Operating   in Two Mutually Perpendicular  Directions 
(for Range and Lateral  Direction). 
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Solution: 

A = 1/120' + 30' = KI5300 « 124 .IT. 

30 
'*" ',1 = 120 = 0,25, 

which corresponds to an angle of 14°   (rounded off). 

The addition of vectorial  errors.    Let us take some reasons which 
provide vectorial systems of errors  in two mutually perpendicular 
directions.    One reason provides a system of errors for direction OX 
and the other--for direction OY (Figure 114).     In this, there may be 
various combinations of individual vector errors of two directions, 
as a result of which total (resultant) errors which are different in 
size and airection will be obtained.    Thus,  for example: 

Errors x,   and y.  provide the total error OT.; 

x_ and y» 

x3 and y3 

and y. 

OT 

OT, 

OT 

2' 

4' 

Thus,  with the simultaneous action of reasons which provide 
vectorial errors in two directions,  individual errors are obtained 
which go in all directions in a plane. 

Figure  114.     Diagram for Obtaining an Elliptical   Error. 
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The system of errors in a plane which is obtained as the result 
of the addition of two vectorial errors having different directions 
is called the error in a plane. 

In adding the vectorial errors which have different directions 
an 1 which follow the normal law, all errors which are obtained do not 
go beyond the limits of an area bounded by an ellipse (Figure 115). 
In this case, the error in a plane is called an elliptical error. 

An elliptical error is an error in a plane which is obtained 
as the result of the addition of vectorial errors having different 
directions in one plane and following the normal law. 

Figure 115. Elliptical Error. 

If vectorial errors OA and OB (see Figure 115) are mutually per- 
pendicular, they are the main semiaxes of the ellipse E. The ellipse 
of errors whose main semiaxes equal the mean errors in this direction 
is called a unit ellipse. 

The straight line which connects the center of the unit ellipse 
with any of its outer points characterizes the size of the mean error 
along the given line of direction. Thus, for example, the straight 
line OC is the size of the mean error in this direction. As a practical 
matter, the greatest possible error in any direction is 4-5 times 
larger than the mean error along the given line of direction.  In prac- 
tice, there may be cases where with the equality of mean errors along 
two mutually perpendicular lines of direction the ellipse is transformed 
into a circle. In these cases, the error is called circular. 

A circular error is an error in a plane which is obtained with 
the addition of mutually perpendicular vectorial errors which are also 
equal in value. 
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CHAPTER X 

DISPERSION OF THE TRAJECTORY 

1.  Reasons for Dispersion and the Cone of Fire 

Let us assume that a large number of aimed rounds has been fired 
from the same weapon with the same settings on the sights. Prior to 
firing and during the firing, all possible measures have been adopted 
to create identical conditions for all rounds, and namely: the weapon 
has been inspected and carefully prepared for firing; the cartridges 
have been taken from hermetically sealed packing, of one lot, and are 
of the best quality; firing is conducted by an expert marksman in 
clear, calm weather; each round is not fired hurriedly and is fired 
with careful aiming. 

At first glance it may appear that under such firing conditions, 
all the bullets which have been fired should slide along one trajectory. 
As a matter of fact, this cannot be. Despite measures which are adopted, 
each bullet describes its own trajectory which does not coincide with 
the other trajectories and will have its own point of impact with the 
targets or the ground. 

The phenomenon of the scattering of the bullets (shells) in firing 
from the same weapon under identical conditions is called the natural 
dispersion of the bullets (shells) or the dispersion of the trajectories. 

The dispersion of the trajectories is inevitable and cannot be 
eliminated since absolutely identical conditions cannot be created for all 
shots. This is prevented by a large number of unavoidable reasons which 
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can be divided into the following three groups: 

I. Reasons which cause a variety in muzzle velc ties. 

II. Reasons which cause a variety in the angle departure and 
the directions of firing. 

III. Reasons which effect the flight of the bullet (shell) in the 
air. 

We will note the most important causes of dispersion in each of the 
enumerated groups. 

I. Reasons which cause a variety in muzzle velocities. 

1. The variety in weights of the charges. The greater the weight 
of the charge, the greater the muzzle velocity of the bullet (shell). 

2. Variety in the weights of the bullets (shells). The greater 
the weight of the bullet (shell) with identical charges, the less the 
muzzle velocity. 

3. Variety of chemical properties of the powder of the charge. 

4. Variety in the temperature of the charges. The higher the 
temperature of the charge at the moment of ignition, the greater will be 
the muzzle velocity of the bullet (shell). 

5. Variety in volumes of the cartridge cases which is reflected 
in the density of the filling with various rounds and, consequently, 
in the muzzle velocity. 

II. Reasons which cause the variety in angles of departure and 
direction of firing. 

1. The variety in laying (aiming) for height and for direction. 

2. Variety in installing the sights (inaccuracy in settings in 
the process of firing from mortars and artillery systems). 

3. Variety in the leveling of the weapon (canting of the weapon). 

4. Variety in angles of departure and lateral deviations of the 
weapon at the moment of firing. When firing from a carbine (automatic 
rifle), the angle of departure have different values as a result of the 
variety in the support of the butt against the shoulder and the position 
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of the carbine's center of gravity relative to the support. When 
firing from a pistol, different angles of departure are obtained 
because of different positions of the handle in the fist. 

5. Angular oscillations of the barrel of an automatic weapon 
diring firing. 

In automatic firing, the angles of departure and lateral directions 
of the barrel will have different values since, for each shot, they 
depend on the position of the barrel after the preceeding shot. The 
limits of the angular oscillations of the barrel depend on the caliber 
and weight of the weapon. In addition, the angular oscillations of the 
barrel depend on the caliber and weight of the weapon.  In addition, 
the angular oscillations of the barrel depend on the design of the 
carriage (the presence and quality of a shock absorber), on its technical 
condition (the presence of back lash or wear on the mechanism), and 
on the setting of the weapon at the firing position (nature of the 
platform and condition of the ground). 

When firing from assualt rifles and light (company) machine guns, 
the angular oscillations of the barrel depend on the state of training 
of the assualt rifleman (gunners)--on their ability to restrain the 
weapon during automatic firing. 

III. Causes which effect the flight'of the bullet (shell) in the 
air. 

1. A change in meteorological conditions, primarily the wind in the 
intervals between shots. 

2. Variety in the weights of the bullets (shells). The greater the 
weight of the bullet (shell), the greater its transverse load and, con- 
sequently, the less the acceleration of the force of air resistance; the 
flight distance of the bullet (shell) with the same muzzle velocity will 
be greater in this case, 

V Variety in the shapes of the bullets (shells) which effect the 
acceleration of the force of air resistance. 

4. The variety in shapes of mortar rounds (asymmetrical body and 
tail) which effects the deviation of the mortar rounds in any direction. 

We have considered the basic reasons which cause dispersion of 
trajectories. None of these causes can be eliminated; therefore, dis- 
persion cannot be eliminated. However, it is possible and, in a number 
of cases, necessary to adopt all measures to reduce the variety of firing 
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conditions and thereby to reduce the dispersion limits of the tra- 
jectories. Thus, for example, dispersion depends on the variety in 
the construction of the cartridges (according to the weight of the 
bullet and charges, according to the shape of the bullet and cartridge 
case); therefore, to reduce the amount of dispersion it is necessary 
to conduct firing with cartridges of good quality, air-tight packing, 
and the one lot of manufacture. Since dispersion depends on the 
variety in preparing for firing and aiming, consequently it is 
necessary to teach the soldiers the firing procedures more thoroughly. 

Figure 116. Cone of Fire 

The aggregate of the trajectories of the bullets (shells) which are 
obtained as a result of their natural dispersion is called the cone of 
fire (Figure 116). 

When intersecting the cone of fire with any plane, a number of points 
of fall (impact) are obtained which are disposed at some distance from 
each other and which occupy an area called the dispersion area. 

The size of the dispersion area in a vertical plane is measured 
from the height and lateral direction and in a horizontal plane-- 
from the range and lateral direction (Figure 117). 

Figure 117. Dispersion Area in Vertical and Horizontal Planes 
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The position of the cone of fire relative to the gun horizon or 
the line of aim is determined from the mean trajectory. The mean tra- 
jectory is an imaginary trajectory which passes through the middle of the 
cone of fire for its entire length (see Figures 116 and 117). 

The point of intersection of the mean trajectory with the surface 
of the target (obstacle] is called the center of dispersion (mean 
point of fall). 

The amount of dispersion has different effects of the effectiveness 
of the fire. For a weapon from which firing is conducted by single 
rounds (carbine, sniper's rifle, mortar, gun), it is always advantageous 
for the dispersion to be as small as possible. In the absence of errors 
which deflect the mean trajectory from the center of the target (or when 
such errors are very small), it is advantageous to have a small dispersion 
and when firing from automatic weapons by bursts. But such conditions 
may occur only in sports firings and when accomplishing some exercises 
in training firings (against stationary targets) when the setting of the 
sights corresponds precisely to the distance to the target and the 
meteorological conditions at the moment of firing. The expediency of 
reducing dispersion on such firings is also explained by the fact that 
quality of their accomplishment is determined by the number of holes in 
the target and by their distance relative to the center of the target 
(when firing at sports targets). 

In combat firings and under conditions of a combat situation, errors 
which deflect the mean trajectory relative to the center of the target 
(errors in determining distances, considering meteorological conditions, 
aiming, and others) are inevitable. They may be so great that when firing 
a burst (with a small dispersion) the entire cone of fire passes by the 
target.  In firing under conditions of a combat situation, to destroy a 
living target the number of hits does not have decisive significance since 
even one hit is completely sufficient. Considering this, in firing from 
automatic weapons by burst it is sometimes expedient to have large disper- 
sion (to certain limits) since the probability of capturing the target by 
the cone of fire is increased with such firing. 

2. The Law of Dispersion of Trajectories 

It was established above that the dispersion of trajectories depends 
on an extremely large number of reasons. The overwhelming majority of 
these reasons are connected to one degree or another with random errors 
in various types of measurements. Thus, for example, such a reason as 
variety in laying is a result of the errors of the marksman and the variety 
in the weights of the charges is the result of errors (inaccuracies) 
committed when weighing the charges. 
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The majority of errors 
the normal law; therefore, 
center of dispersion which 
follow the same law. There 
law which differs from the 
extremely insignificant in 
we consider that the disper 
of distribution—the normal 
conclusion. 

which cause dispersion of trajectories follow 
the deviation of the points of fall from the 
is obtained because of these errors should 
may also be errors which follow some other 

normal law but the effect of such errors is 
the overall system of errors and, therefore, 
sion of trajectories follows the normal law 
law of errors. Test data confirmed this 
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Figure 118. A Particular Case of the Dispersion of Bullets in a Vertical 
Plane. 

•221- 



As applicable to firing, the normal law for the distribution of 
trajectories (points of fall) may be formulated as follows: 

1. With an increase in the deviation in an individual point of 
fall (impact) from the center of dispersion the probability of obtaining 
it is reduced and, on the contrary, the less the deviation the greater 
the probability of obtaining it. 

2. The deviations of individual points of fall (impact) from the 
center of dispersion is included within limits which are equal in absolute 
value but different in sign and equally probable. 

3. Under any firing conditions from any weapon, deviations in indi- 
vidual points of fall (impact) from the center of dispersion have their 
limit; individual deviations which exceed this limit in value are so 
unlikely that as a practical matter they are usually ignored. 

By means of an example, let us consider the nature of the disposition 
of points of fall (impact) within the limits of the dispersion area. 

Figure 118 portrays the dispersion area which includes the holes of 
400 bullets in a vertical plane (on a panel). Horizontal and vertical 
lines have been drawn across the entire dispersion area in such a way 
that each of them divides the number of all holes in half; line AB 
(horizontal) is the axis of dispersion for height and line CD (vertical) 
is the axis of dispersion for lateral direction. The point of intersection 
for these two axes is taken as the center of dispersion (mean point of 
fall). 

From Figure 118, the following can be seen: 

1. The closer to the center of dispersion, the more clustered are 
the holes located and the further from the center—the rarer; conse- 
quently, dispersion is irregular. 

2. Equal strips which are equally distant from the axis of disper- 
sion and disposed parallel to each other include approximately the same 
number of holes; consequently, dispersion is symmetrical. Thus, for ex- 
ample, strips abed and efgh each contain the same number of holes. The 
same can also be said with respect to strips iklm and nopr. 

3. The area of dispersion is bounded by certain limits. 

Thus, all three principles of the law of dispersion of trajectories 
(points of fall, impact) can be briefly formulated as: irregular dispersion, 
symmetrical dispersion, and finite. 
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3.    Measures Which Characterize the Dispersion of Trajectories 

In the theory and practice of firing, very often one must  reckon 
with the phenomenon of dispersion and consider the limits of possible 
deviations of trajectories  (points of fall)  relative to the mean tra- 
jectory (center of dispersion); therefore, the necessity arose to ha^e 
measures which characterized dispersion. 

Measures of dispersion are: mean (probable) deviation and the 
heart-shaped strip and radius of a circle which includes the better 
half of the hits or all the hits. 

The Mean  (Probable)  Deviation 

Let us consider the dispersion of trajectories depending only on one 
group of reasons which cause, for example, a variety in the murzle velo- 
cities. 

Let us assume that there is a weapon whose variety in muzzle velo- 
cities is characterized by a mean error of 5 m/sec.    Let us also assume 
that in firing at a certain distance with a change in muzzle velocity 
of 5 m/sec, the bullet receives a deviation relative to the axis of 
dispersion for height which equals 3 cm.    Knowing the law of errors, 
it is not difficult to imagine the character of the disposition of the 
holes relative to the axis of dispersion depending only in the variety 
in muzzle velocities. 

Errors in muzzle velocity for 50% of all bullets fired will 
fluctuate within limits of from 0 to i5 m/sec;  therefore, the deviations 
of this half of the bullets from the axis of dispersion for height will 
fluctuate within limits of from 0 to ±3 cm (Figure 119).    The remaining 
bullets will have different muzzle velocities with errors more than 
5 m/sec; therefore, the deviations of these bullets from the axis of 
dispersion for height will be more than 3 cm each. 

jiJi ! Vv-Jpi Figure 119.    Dispersion for Height 
X% ';      ( Depending on the Variety of Muzzle 

\ut ' „  t Velocities. «7. • VVJCM I* J. 
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Thus, we are convinced that if errors which cause dispersion of 
trajectories follow the normal law, the deviations of the trajectories 
which arise as a result of these errors will also follow the normal 
law. 

Since the measure of errors is the mean error, we take the mean 
(probable)  deviation as the measure of dispersion along the given 
(one)  direction. 

The mean  (probable)  deviation is that deviation which,  in its 
absolute value,  is greater than each of the deviations of one half 
of all deviations and less than each of the deviations of the other 
half of them. 

Dispersion of trajectories is considered for three directions: 
for height,  range, and lateral direction.    The following symbols for 
mean  (probable)  deviations have been adopted: Vv--the mean deviation 
for height; Vd--mean deviation for range; Vb--mean deviation for 
lateral direction. 

Considered above was the dispersion of trajectories depending 
only on one group of reasons which cause a variety in muzzle velocities. 
Now,  let us consider the nature of the dispersion of trajectories for 
height,  and consequently, for range with the simultaneous effect of 
all  three groups of reasons.    For this, we use the formula for the 
addition of vertical errors which are operating on one direction  (see 
page 170   of the original text).    As applicable to the dispersion of 
trajectories,  this formula can be written as follows: 

Vv=l/VvJ+Vv|+Vv|, (67) 

where Vv is the total mean deviation for height which is caused by the 
simultaneous effect of all three groups of reasons; 

Vv.   is the mean deviation for height which is caused by the variety 

in muzzle velocities; 
Vv»  is the mean deviation for height caused by the variety in angles 

of departure; 
Vv, is the mean deviation for height which is caused by the reasons 

which affect the flight of the bullet in the air. 

Example. 

Vv i =- 3 CM;   Vv> = 8 CM;   vv3 = 5 CM; 

vv = yv + 8- + P = ^98 ~ |o CM. 
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In exactly the same manner we obtain the total mean devaition for 
lateral direction Vd with the addition of the mean deviations caused by 
various reasons. 

The amounts of the mean deviations for one model of weapon or another 
are disclosed in a practical manner by test firing. 
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Figure 120.     Determining the Amounts of Deviations of Holes Relative to 
the Axis of Dispersion. 

Let us assume that 20 rounds have been fired from the same carbine 
against a vertical panel under conditions as identical as possible. 
Having looked for all holes in the panel, we draw the axis of dispersion 
for height.    We measure the amount of deviation of each hole from this 
axis (Figure 120).    The absolute values of the deviations which are ob- 
tined are recorded in a row in ascending  (or descending) order:    2,  3,  5, 
7,  8,  11,  12,  15,   16,   18,  21,  24,  26,   29,  32,   36,  41,  46,  53,  67  (cm). 
We find in the row of deviations the one which  is greater than any deviation 
of one half the row and less than any deviation of the other half of this 
row.    Obviously,  this condition is satisfied by a deviation which equals 

18 + ?1 = 19,5 CM. 
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A deviation which equals 19.5 cm is the value of the mean deviation 
for height Vv. 

In the preceeding paragraph it was shown that with a small number 
of measurements, the suitable value of the mean error E should be 
determined from the average arithmetic error E. and from the average 

quadratic error E» (see page 164 of the original text). Similar to this, 

with a small number of shots the suitable value of the mean deviation 
V should be determined either from the average arithmetic deviation V. 

or from the arithmetic quadratic deviation V». 

With a large number of shots, the size of the mean deviation can 
be determined by a simpler method and with sufficient accuracy. 

Let us assume that under conditions which are as identical as 
possible 100 shots have been fired from the same weapon. One hundred 
holes (hits) have been obtained which are disposed on a vertical panel 
as shown in Figure 121. We draw the axis of dispersion for height 
and read off in both directions from it 25 hits. We divide the hits 
which have been read off by straight lines which are parallel to the 
axis of dispersion; we obtain 2 adjacent strips. Let the height of 
each strip equal 20 cm. This is also the mean (probable) deviation 
for height Vv. With a small number of shots, the height of the two 
adjacent strips which contain 25% of the hits each may turn out to be 
different; then the mean deviation should be taken as equal to half 
[word indistinct] the sum of the heights of these two strips. 

•   •     • 
•     • 

Strip of the better 
'half of hits 

•       • 

Figure 121. Determining the Size of the Mean Deviation for Height, Vv 
by Reading Off 2$%  of all Hits Along the Axis of Dispersion. 
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The two strips which adjoin the axis of dispersion and contain 2S% 
of the hits each comprise, in total, one strip containing 50% of all 
hits.    This includes all those hits, the deviations of which relative 
to the axis of dispersion are less than the amount of mean (probable) 
deviation.    The remaining hits, the deviations of which are greater 
than the size of the mean (probable) deviation are located outside 
the limits of this strip. 

A strip which contains 50% of all hits and is disposed symmetrically 
along the axis of dispersion is called the strip of the better half of 
the hits. 

Thus, we have found that the mean deviation for height  (for a parti- 
cular case) Vv = 20 cm.    This measure characterizes the amount of dis- 
persion for height alone. 

By similar methods, having perforemd all measurements and calcula- 
tions with respect to the vertical axis of dispersion, we can determine 
the amount of the mean deviation for lateral direction Vb  (Figure 122). 
Here,  exactly the same way, we can determine the amount of mean devia- 
tion for range Vd. 

Strip of he better 
half of the hits 

Figure 122. Determining the Size of the 
Mean Deviation for Lateral Direction 7b 
by Reading Off From the Vertical Axis of 

Dispersion 2S% of All Hits. 
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Dispersion Scale. Let us consider the nature of the distri- 
bution of hits for height within the limits of the entire dispersion 
area. 

Let us assume that under the same circumstances, from the same 
weapon not 100 shots were fired but a considerably larger number which 
permits disclosing the law of dispersion more accurately. Let Vv = 
= 20 cm. We lay off a number of strips in both directions from the axis 
of dispersion which equals one Vv (20 cm) in such a way as to include 
all hits.  In this, we may obtain 4-5 strips each, and, with a suffi- 
ciently large number of shots--6 such strips in each direction from the 
axis of dispersion.  In the latter case, the numerical distribution 
of the hits by strips equal to one mean deviation will be similar to 
that shown in Figure 100. If the area of dispersion is divided into 
strips equal to 0.5 mean deviations, as such strips become distant 
from the axis of dispersion we find in them 13.2%, 11.8%, 9.4%, 6.7%, 
A.3%,  2.4%, 1.2%, 0.6%, 0.2%. C.1%, 0.07%, and 0.03% (Figure 123). 

o.tr,' 0M3'4 
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25% H.25i 
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1.8% 
',2 V. 
0.6% 

0.3% 
0.2% 
0.1% 

0.1k 
0.07% 
0.03 V, 

0.1% 

Figure  123.     Distribution of Hits 
by Strips  Equal   to  1 Vv and 0.5Vv 
With a Sufficiently  Large Number 
of Shots. 

Figure   ]2k.    Percentage of Hits 
in a Strip Equal   to ±2 Vv. 
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Figure  125.     Percentage of Hits  in 
a Strip from +l\/v  to -2Vv. 

1.8% 

0,3 X 
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Such is the nature of distribution of hits for lateral direction 
(in a vertical as well as in a horizontal plane) and for range (in a 
horizontal plane). 

Using the presented data for the numerical expression of the law of 
dispersion, we can determine the percentage of hits in any strip within 
the limits of the dispersion area.    Thus, for example,  in a strip within 
the limits of *2Vv (Figure 124)  it turns out that 2(25% ♦ 16.1%) = 82.2%; 
in the strip within limits of from +lVv to -2Vv  (Figure 125),  it turns 
out that 25% + 25% + 16.1%,  etc. 

With calculations which require great accuracy, the percentage of 
hits in strips of any dimension  (expressed in mean deviation)  can be 
found from the table for values *  (6)   (see appendix. Table 2). 

Example 1.    Determine the percentage of hits in a strip equal to 
*1.2Vv  (Figure 126). 

Solution.    From Table 2  (see appendix) we find that 

* (1,2)  - 5.582,  or 58.21. 
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Figure   126.     Percentage of Hits   in Figure   127.    Percentage of  Hits 
a Strip equal   to   M .2\/v. in a  Strip from +0.75Vv  to -1 .3\/v. 

Example 2.     Determine the percentage of hits in a strip within 
limits of from +0.75VV  to -1.3Vv   (Figurt"  127). 

Solution.     From Table 2 (see appendix) we find that *  (0.75)  = 
= 0.387,  and *   (1.30)   = 0.619.    The percentage of hits in the strip equals 

' (0,387 + 0,(il't)-■ 0,.03, OP  50,3"/». 

Irom the data of numerical of the law of dispersion (see Figure 
123J   it can be  seen that deviations of t!ie bullets from the axis of dis- 
persion which exceed 4 V  (4 mean deviations)  are not very probable. 

On this basis and  for the purpose of simplifying calculations,  it  is 
usually considered that  the entire dispersion area (for height,  for 
lateral direction,  for range)  is covered by eight strips  (4 strips each 
in both directions  from the axis of dispersion)  which equal one mean 
deviation each.     The percentage distribution of the bullets by strips  in 
this case arc rounded off, considering that as the distance from the 
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Strips increases in both directions from the axis of dispersion, they 
each contain 25%,  16%, 7%,  2% of the overall number of all hits. 

A scale which shows the percentage distribution of hits in the 
strips equal to one mean deviation or its portion is called the dis- 
persion scale (Figure 128). 

Thus, one of the dispersion measures is the mean  (probable) deviation. 
This measure is very convenient since it completely characterizes the 
law of dispersion.    Knowing the values of the mean deviations and the 
scale of dispersion,  it is easy to imagine the area of dispersion which 
consists of eight mean deviations for the given direction.    For example, 
if Vv = 20 cm and Vb = 15 cm, the entire area of dispersion can be 
considered as equal in height to 20*8 = 160 cm and for lateral direction, 
15-8 = 120 cm. 

.   *'/.   .   7%    .   16%   . 25y\x  25%  .  \6%   .  7%     ,   2%    , 
-48      -JS       -25       -0 0 *B        *2B        *J8        +40 

Figure 128.    Dispersion Scale 

Knowing the amounts of the mean deviations and the dispersion scale, 
we can draw a conclusion concerning the density of distribution of the 
holes  (points of shellbursts)  in the vicinity of the target which is 
located at any distance from the center of dispersion and, on this basis, 
can make a decision for further firing. 

Example.    Firing is conducted from a mortar; Vd = 20 m.    It has been 
established that the canter of dispersion is located 2.5 Vd closer to 
the target.    Imagining the dispersion scale, one can conclude that the 
target is located in a strip of the dispersion area which contains 7% 
of the hits.    For the more dependable destruction of the target, it is 
necessary to increase the range of fire by 50 m (2.5 Vd); then the 
target will be covered by the strip of the better half of the hits. 

Ellipse of Dispersion.    Up to now, we have considered dispersion of 
trajectories in some one direction alone.    Now,  let us consider the 
nature of dispersion of trajectories of the distribution of hits on an 
area. 
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Since the distribution of the trajectories in any direction 
follows the normal law,  the area of dispersion which is obtained as 
the result of the joint effect of the dispersion in two directions 
(in accordance with the general rule for the addition of vectorial 
errors in a plane), will have the form of an ellipse.    This can be 
seen from Figure 129 which shows the numerical distribution of hits 
(in percent) on a vertical plane  (in an accuracy of up to 0.1%). 

5Vb   4Vb jVb   2Vb Vb   ^Vb   3Vb  *Vb *Vb 

Figure  129.     Ellipse of Dispersion 
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Let us show the calculation of the distribution of hits over 
rectangles 0.5 Vv high and 0.5 Vb wide by means of an example. Thus, 
rectangle A was formed as the result of the intersection of two strips: 
a vertical strip containing 9.4% of the hits which pertain to the 
entire vertical strip, the share of rectangle A is only 11.8%, i.e., 
or 9.4% or 11.8-9.4/(100) = 1.1% of the overall number of all hits. 

Core (Heart-Shaped) Strip and the Heart of the Dispersion Zone 

Figure 130 reproduces the same hits as are on Figure 120. 

From these data, we find the size of the mean quadratic deviation 

_ > 

" CO 

o ~ 
U 

Figure 130. Determination of the Core Strip of Dispersion by Means of the 
Mean Quadratic Deviation. 

Just as the mean quadratic error, it equals the square root of the 
sum of the squares of all devaitions divided ty the number of deviations 
minus on e: 

 fl.=      
/2i44i+M+7M

:"8'4-ll,+i:''+l5'+l'''+18'-f--'l'+.'-l'+>' i1-'• T:<."+3t.= HI' Hi.'-t-M'-H?' - 

•V'- 
l/~ = V «" « 30 (CM). 

If we lay off from the axis of dispersion segments upward and down- 
ward which are equal to the mean quadratic deviation and, across the ends 
of these segments, we draw straight lines AB and CD which are equal to the 
axis of dsipersion, we obtain the strip ABCD.    As can be seen from the 
drawing this strip included 14 hits which comprises 70% of the overall 
number of hits  (14:20 = 0.70 = 70%).    The strip ABCD,  which equals  n'.,, 
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included all those hits whose deviations are less than the mean quadratic 
deviation. 

We have considered a particular case with a small number of shots. 
Let us consider this problem in the general form and determine what the 
percentage of hits should be in a strip of iV. if a sufficiently large 

number of shots are fired. 

It is known that the following relationship exists between the mean 
deviation V and the average square deviation V.: 

V - 2/3V2, or, more precisely, V - 0.67'»5 Vj. 

On the basis of this: 

V2=ä67«=-ä6745-Va::,'483V- 

From Table * (ß) (see appendix, Table 2) we find that * (1.483) = 
= 0.683, or 68.3%. 

Thus, we have found that with a sufficiently large number of shots, 
a strip which equals ±V- contains 68.3% of all the hits. This strip in- 

cludes all those hits whose deviations from the axis of dispersion are 
less than the mean quadratic deviation. Such a strip is called the core 
strip. 

In order to simplify calculations, the number of hits included in 
the core strip is rounded off to 70%. Then, 30% of all hits will be 
located outside this strip--15% in each direction from the core strip of 
dispersion. 

A    t_L;. ;„_•„„•__ B I    • 7- /. •. .   | 

t) 

Figure  13'.    Determination of  the Core Strip of Dispersion by Reading 
Off 35% of  the Hits   in  Both  Directions From the Axis of Dispersion. 
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Figure  132.     Core Strips  for Height 
and Lateral   Direction.    The Heart 

of  the Dispersion Zone. 

On the basis of this, the following definition of the core strip 
is used most often:  a dispersion strip which contains 70% of the hits 
and disposed symmetrically along the axis of dispersion is called the 
core strip.    Core strips are considered and designated as follows: 
for height Sv, for lateral direction Sb, and for range Sd. 

Figure 131 shows  100 hits obtained when firing at a vertical panel 
under conditions as identical as possible.     In order to find the core 
strip for height,   it is necessary to read off 35% of the hits up and 
down from the axis of dispersion and separate then by straight lines 
which are parallel to the axis of dispersion.    Strip ABCD, which con- 
tains 70% of the hits, will also be the core dispersion strip for 
height Sv. 

As can be seen from the drawing, the core strip comprises about 
1/3 of the entire dispersion area in a given direction.    Such a rela- 
tionship between the core strip and the entire dispersion area is often 
used in accomplishing firing missions for all types of small arms. 

The dimensions of core strips for each model of small arms when 
firing at any range is indicated in the firing tables for each 100 m. 
From these tables,  it is easy to determine the amount of complete 
dispersion in any direction. 

Example.    In firing from the heavy machine gun with a light bullet 
with a range of 800 meters,  in accordance with the firing tables the 
core zones equal:   for height 1.2m,  for lateral direction 0.92 m, and 
for range 67 m.    Therefore, the amount of complete dispersion in a 
vertical plane will equal:  for height 1.2*3 = 3.6 m, and for lateral 
direction 0.92-3 = 2.76 m; the size of the complete dispersion in a 
horizontal plane will equal:  for range 67*3 = 201 m, and for lateral 
direction 0.92*3 = 2.76 m. 

With the intersection of the core strips of two different directions, 
a rectangle is obtained which is called the heart of the dispersion zone 
(Figure 132). 
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If each core strip individually (for height, and for lateral di- 
rection) contains 70% of 70%, i.e., 70*70/100 = 49% and, when rounded 
off 50%. 

The rectangle which is formed by the intersection of two core 
strips and includes the better half (50%) of all hits is called the 
heart of the dispersion zone. 

As can be seen from Figure 132, the area of the core which comprises 
a relatively small portion of the entire dispersion area contains the 
most compactly disposed half of all hits. 

In some theoretical calculations which do not require great preci- 
sion, the assumption is made concerning uniform distribution of the 
hits within the limits of the heart of the dispersion zone. On this 
basis (with consideration of what has been stated above) we can come 
to the practical conclusion that, for the dependable hitting of a 
small target (with the corresponding expenditure of small cartridges) 
it is sufficient to bracket it by the heart of the dispersion zone. 

Thus, we have considered two measures of dispersion, the mean 
(probable) deviation and the core strip. Let us establish the rela- 
tionship between them. 

We turn to the table for values ** (ß). We find that the core strip 
which contains 70% of the hits includes all those hits whose deviations 
to both sides of the axis of dispersion (upward and downward, right and 
left) do not exceed approximately 1.54 V. Consequently, the width of 
this strip equals 1.54-2 = 3.08 V. 

On the basis of this it is considered (rounded off) that the core 
strip equals three corresponding mean deviations (1.5 deviations each 
in each direction), i.e.: 

Sv'^3Vv;  Sb=;3.Vb;  Sd^3vd. ,,.- 
(.oaj 

Example. From the table we find that, when firing from a light 
machine gun at a range of 500 m, the core strips equal: Sv = 81 cm; 
Sb = 78 cm. Consequently: Vv = 81:3 = 27 cm; Vb = 78:3 = 26 cm. 
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The Radius of a Circle Which Contains the Better Half of the Hits 

When firing from small arras at close distances, the area of the 
dispersion in a vertical plane approximates the shape of a circle. 
Under these conditions, the amount of dispersion can be judged not 
only from the core strips and the mean deviations but also from the 
radius of a circle which contains the better half of the hits R-. or 

from the radius of a circle which contains all hits R 
100. 

JWVb- 4/2 Vb J 

Figure 133. A Square Which Contains 
S0% of all Hits, in Which Respect 
the Center of Dispersion Coincides 
with the Center of the Square. 

Figure 13^. A Square and Circle 
Each Containing $0%  of all the 

Hits. 

To find the value of R50, we can proceed as follows. To find the 

center of dispersion (mean strike point), we place a leg of a divider 
in it and find the radius at which the outline of the circle will in- 
clude the better half of the hits. In the same manner, we can find 
the value for Ri00. looking for the smallest radius which includes 

all hits. This is the graphical method for determining the values 
of R50 and R,««. the accuracy of which depends on the number of hits. 

It is absolutely clear that the accuracy of determination of the size 
of the radii of dispersion is increased with an increase in the number 
of hits. 

Let us consider an analytical method for determining the value 
of Rr0, the accuracy of which is considerably greater than the graphical 

method, particularly with a small number of shots. For this, it is 
first necessary to establish the relation between R.. and the mean 

deviation (we have in mind a case where Vv = Vb). 
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Figure 133 portrays a square, the center of which coincides with 
the center of dispersion.  Let us assume that this square contains 
0.5 (50%) of all hits. We determine the side and area of the square, 
expressing them in values of V. 

If the square under consideration includes half (0.50) the hits, 
obviously it is formed by the intersection of two mutually perpendicular 
strips each of which includes / 0.50 = 0.707 hits.  From the table of 
values for * (8), we find that the strip which contains 0.707 hits con- 
tains those hits whose deviations to both sides of the axis of dispersion 
(upward and downward, right and left) do not exceed 1.56 V. Consequently, 
the width of each strip (vertical and horizontal) or the size of any 
side of the square equals 

1.56 V-2 = 3.12 V. 

2 
The area of this square equals (3.12 V) , 

In Figure 134, a circle is superimposed on the same square, the area 
of which equals the area of the square. It can be considered that under 
such conditions the equivalent areas of the square and the circle will 
contain equal numbers of hits.  If the area of the square contains 
0.50 of the hits, the same number of hits will also be on the area of 
the circle. 

Let us determine the radius of a circle, the area of which equals 
the area of a square with a side equal to 3.12 V. We constitute the 
equality: 

^ = (3.12^». 

from which 

/tfW^ajiiv    I76 
I<J>— Y    3J4    =*   1,77   "~ ,»/0 v- 

Thus,  the radius of a circle which contains 50% of the hits equals 

/?5o=>.76v. (69) 
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Using this relationship and knowing the size of the mean deviation, 
it is easy to find the value of the radius of a circle which contains the 
better half of the hits. 

Example. When firing from an assualt rifle by single rounds at a 
range of 200 m, the tabular value Vv = 7 cm and Vb = 7 cm. 

Determine the value for R_0. 

Solution: 

/?„, = 1,7CV= I,7G-7« 12,3 CM. 

The value for R_n can also be found in those cases where the mean 

deviations for height and for lateral direction are not equal to each 
other.     In such cases, the value for V is taken as equal to /VvVb. 
Then 

/?,„ = 1,76 • KvTTvT. (69a) 

Example.    When firing from a carbine at a distance of 200 m,  the 
tabular value Vv = 6 cm and Vb * 4 cm. 

Determine the value for R,.-. 

Solution: 

A'tc = l,7G yVv~Vh= 1,76 Vül = 1,76-4,9 CM » 8,6 CM. 

In the preceding example, in determining R^ we used the mean values 

for Vv and Vb taken from the tables. In order to determine the value of 
R50 in each particular case of firing, proceeding from the disposition 

of the hits we should proceed as follows: 

--Draw the axes of dispersion for height and for lateral direction; 

--Measure the deviations of the hits relative to these axes; 

--Find the value for the mean quadratic deviation V. for height and 

for lateral direction; 
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Vv; 

--Using the relationship V = 2/3 V-,  find the value for Vv and 

-From formula (69a), find the value of R--. 

Let us consider the relationship between the values Rin_ and R,.-. 

As has been established, R,.« =  1.76 V.     If we consider that the 

complete dispersion equals ±4 V, then 

/?lü0=(4:l176)/?,0^2,3/?5O: 

if we consider that complete dispersion equals ±6 V, then 

fl,uo = (6:1.76) ^0-3.4/?«, 

Usually, we consider that 

^oo^Wo-^S/?«, 

The Relationship Between the Values of Dispersion for Height and for Range 

In order to find the relationship between the values of dispersion 
for height and for range, let us consider Figure 135 which portrays two 
trajectories which pass at a distance of one mean deviation from each 
other. Consequently, the value of AB is the mean deviation for height, 
Vv, and AC is the mean deviation for range, Vd. 

Figure 135. The Relationship Between the Values of Dispersion for 
Height and for Range. 
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It can be considered without large errors that on small sectors 
of the cone of fire their ends are straight lines.    Then, the following 
relationship will exist between Vv and Vd: 

V\ 
Vv = Vb tan ^   or     Vb' -Tt£fö • 

For small arms, the angles of fall 6 are small. The value of the 

tangent of a small angle can be replaced without large errors by the 
value of this angle in azimuth micrometer scale units (in mils) divided 
by 1,000. On the basis of this, the expression which characterizes the 
relationship between Vv and Vd can be written as follows: 

Vvssimf-' (70) 

Vb^ ^J000 . (71) 

In exactly the same way: 

Sv^Vjt. (70a) 

Sds=SV•,000 

•, (71a) 

Example 1. Determine the value of Vv when firing from a heavy 
machinegun with a light bullet at a range of 800 m if Vd > 22 m and 
6 = 0-18. 
c 

Solution: 

1000   1000   ' 
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Example 2.    Determine the value of Sd when firing from a company 
negun at J 

Solution: 

machinegun at a range of 900 m if Sv = 1.7 m and 9 = 0-25 
C 

c.       SvlOOO       1.7.1000      rfi 

Tabular Values of the Characteristics of Dispersion and Dispersion of a 
Given Moment 

For each type of weapon, there are tables which indicate the values 
of the core strips and the mean deviations which characterize dispersion 
at various distances every 100 m. The values of these characteristics of 
dispersion are disclosed in a practical manner—by firing. From a large 
number of firings conducted under various conditions by the same range, 
we obtain different values for mean deviations (core strips) on the basis 
of which we find the average values of these quantities and use them as 
the true (tabular) values. 

From this it follows that in using weapons among the troops, indi- 
vidual values of the dispersion characteristics may be greater or less 
than the average (tabular) values. 

In fact, the reasons which cause dispersion of trajectories do not 
remain constant for all cases of firing; consequently, the amount of 
dispersion for a given model of weapon when firing at the same range 
may not be constant either. Thus, for example, in one case of firing 
the cartridges may be of a higher quality than in another case. There- 
fore, the dispersion when firing in the first case is less than in the 
second case. The amount of dispersion when firing at the same range 
also depends on some causes as weather conditions, conditions for visi- 
bility of the target and the aiming point, stability of the weapon 
mount (machinegun mortar), quality of the support for the carbine, etc. 
It is absolutely clear that the amount of dispersion also depends on the 
degree of training of the firer. The better the firer is trained, the 
fewer will be the errors in assuming the position and in aiming and dis- 
persion will be less. 

Dispersion which pertains to a specific time of firing is called 
the dispersion of a given moment. 

By the mean deviation (core strip) of a given moment we mean that 
mean deviation (core strip) which would characterize the distribution 
of the holes or points of impact if a large number of shots were fired 
at a given moment. Test data show that the mean deviations (core strips) 
of a given moment can be one and one half or two times greater or less 
than the tabular values. This must be considered in developing certain 
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rules for firing. Thus, for example, when justifying the safety rules 
for firing over friendly small rifle units, we consider the 
possibility of obtaining maximum dispersion Cof a given moment) for 
height taking the tabular dispersion for calculations and doubling it. 

k.     Determining the Position for the Center of Dispersion (Mean Point 
of Strike) with a Small Number of Shots 

The procedure for determining the position of the center of disper- 
sion (mean point of strike) which was considered at the beginning of 
this chapter provides a sufficiently precise result only with a large 
number of shots. 

With several shots (2-5) the position of the center of dispersion 
(mean point of strike) is determined by the method of successive divi- 
sion of segments (graphical method). The procedure for determining 
the mean point of strike by this method is similar to that described 
in the manuals on firing. 

If the number of shots is more than 5, it is convenient to find 
the center of dispersion since the mean result is found from a number 
of measurements (computation method). 

We will explain this by means of an example. Let us assume that 
10 aimed shots were fired from a carbine at a vertical panel at a dis- 
tance of 200 m; 10 holes were obtained as shown in Figure 136. It is 
required to find the position of the center of dispersion. 

We first find the axis of dispersion for height (horizontal axis), 
for which we arbitrarily draw the horizontal line AB on the panel. 
Assume that this line is below all the holes. We measure the amount of 
deviation of each hole (in centimeters) relative to AB. From the data 
on the deviations of all holes, we find the average result: 

•Sv, " 13 — 22 CM. 

From the horizontal line AB, we lay off and draw line OX parallel 
to AB 22 cm above. We take the line OX as the axis of dispersion for 
height. 

In exactly the same manner, we find the axis of dispersion for 
lateral direction (vertical axis) for which we arbitrarily draw the 
vertical line CD on the panel. Assume that this line is to the left 
of all holes. We measure the amount of deviation of each hole (in 
centimeters) for lateral direction relative to the line CD. From the 
data on the deviations of all holes, we find the mean result: 

22+10+35+H+24+3+28+I6+7+2I      |fl „„ 
tvj = jo ^ ,8 CM 
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2 i 6 8 Wn» 16 1120222*2628X323*3638*0 
0 

Figure  136.    Determining the Position of the Center of Dispersion by 
the Method of Finding the Arithmetic Average (the Computation Method); 
the Arbritrary Lines are Drawn Outside the Location of the Holes. 

From the vertical line CD. we lay off and draw line OY parallel 
to CD 18 cm to the right.    We take line OY as the axis of dispersion 
for lateral direction.    We take the intersection of the axes OX and 
OY as the center of dispersion or the mean point of strike. 

In the example under consideration, the arbritrary horizontal and 
vertical lines AB and CD were drawn outside the locations of the holes. 
It should be noted that these lines may also pass through the disposition 
of the holes.    In such cases, to find the axis of dispersion for height 
or for lateral direction it is necessary to take the algebraic sum of 
the deviations of all holes divided by the number of holes. 

Errors  in determining the position of the center of dispersion.    In 
determining the position of the center of dispersion, each time we commit 
a certain error, the size of which remains unknown.    On the basis of the 
law of errors, if the amount of the mean deviation for one direction or 
another is known we can find the mean error in determining the position 
of the center of dispersion for a given direction. 
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This problem is solved from the formula for the mean error of the 
average result  (see page 166 of the original  text) which,  as applicable 
to the dispersion of the shots, can be written as follows: 

/?-   v 

^""T^r' (72) 

where R is the mean error in determining the position of the center of 
dispersion in one direction or another; 

V is the mean deviation for the given direction; 
n is the number of observations  (holes or bursts). 

Let us return to Figure 136 where, from the disposition of 10 holes, 
the center of dispersion at point C has been found.    We can be convinced 
of this if, under the same conditions, we continue firing until the accu- 
mulation of a large number of holes. 

In accordance with the conditions of this example  (see Figure 136) 
we find the mean error in determining the position of the center of 
dispersion for height.    For this, it is first necessary to find the value 
Vv.    Having measured the deviations of the holes relative to the axis of 
dispersion for height, we obtain: +2,  -14, +11, +6,  -8,  -19, +16, +3,  -5, 
♦8 cm. 

To increase the accuracy of the calculations, we find the value 
Vv from the mean square deviation: 

Vv = y ^ (j ^j 7,3 CM. 

Now, we find the mean error in determining the position of the 
center of dispersion for height, knowing that Vv ■ 7.3 cm. 

This signifies that with a sufficiently large number of shots under 
the same conditions, the center of dispersion can be higher or lower than 
point C: within limits of ±2.3 cm with a probability equal to 50% and 
within limits of *4.6 cm with a probability of 82%, etc. 

In a similar way, we can also find the mean error in determining the 
position of the center of dispersion for lateral direction. 
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5.  Dispersion When Firing from Several Mortars or Machineguns 

When firing by mortar (machineguns) platoons at one target, added 
to all the causes of dispersion presented above is the weapon difference 
of the mortars (machineguns) which consists of the difference in the 
ranges and directions of flight of the mortar rounds (machinegun bullets) 
under the identical settings of the sights. Therefore, the amount of 
dispersion when firing from platoon will be also somewhat greater when 
firing from a single mortar (machinegun). 

> K 
A 
18% »% 2a 1t% u ̂ 

J) on 0.1 Of 4«t 1 n« U « ' Hi en v i« a» |a' -k* 
2) 91 0.3 I.I v « ' a « «,/ V u U   V 
V fl' C ) '.i V n l\25 2i HI  6.7 f.t f«J 01 ] 

Figure 137. Dispersion of Mortar Rounds for Range When Firing From Two 
Mortars When the Difference in the Mortars Equals 3 Vd. 

The basic reasons which cause the weapons difference in mortars 
(machineguns) include the following: inaccuracy in zeroing in the machine 
guns; inaccuracy in adjusting the mortar sights; the different erosion 
of the bores which is reflected differently in the difference in muzzle 
velocities. 

The weapons difference is disclosed in a practical manner, by the 
calibration firing of the mortars or machineguns in the platoon at variou: 
distances on the basis of which coreections are applied to the sight 
settings when firing at targets. However, even under such conditions 
there can be no complete elimination of weapons differences. This is 
explained by the inevitability of obtaining errors when determining 
the centers of dispersion of individual mortars (machineguns) during 
calibration firing and when considering weapons difference, i.e., 
when converting differences in ranges of flight of mortar rounds 
(bullets) to sight divisions. 

Let us consider the amount and nature of dispersion for range 
when firing with two mortars in two firing instances: the first 
instance—when the mortar difference equals 3 Vd (Figure 137), and the 
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second instance--when the mortar difference 4 Vd (Figure 138). The 
percentage distribution of the points of fall of the mortar rounds for 
range for each mortar is shown in the horizontal lines 1 and 2. Line 
3 shows the percentage distribution of the points of fall of the mor- 
tar rounds (in line 3) we draw the ordinates and their summits which 
are connected by a smooth curve which graphically characterizes the 
distribution of the mortar rounds for range when firing from two mor- 
tars. In both cases, a recalculation of the distribution of the mor- 
tar rounds for 8 new mean deviations (for mean deviations in each 
of both directions from the axis OY) is performed. The numerical 
values for the new distribution of the mortar rounds which are ob- 
tained are shown in the upper row of Figures. 

b Am 19% 

\ 

18% IdX 
7 

m K ü\ 
3).u  i 0.2 0.9 V V Z7 0.4 n* n.i i i» 0.7 V W dl uz 
2)   dl W 1.1 S.7 ISJ 25 2! w V i 0.3 Of 

') 0,1 OJ.  U V '«' ?5 23 I6J V 1.1 03 Oi 

Figure 138. Dispersfon of Mortar Rounds for Range When Firing From 
2 Mortars When the Weapons Difference of the Mortars Equals k  Vd. 

Comparing the curves as well as the numerical distribution of 
the points of fall of the mortar rounds in Figures 137 and 138, we can 
note the following. 

In the first case where the weapons difference of the mortars equals 
3 Vd, the curve and numerical distribution of the mortar rounds for range 
approximate the law of dispersion for one mortar. Consequently, the law 
of dispersion when firing by platoon with the presence of weapons difference 
of the mortars which does not exceed 3 Vd can be taken as the normal law. 

In the second case, when the weapons difference of the mortars equals 
4 Vd, the distribution of the mortar rounds for range cannot be considered 
even approximately following the normal law since the greatest clustering 
of the fall of the mortar rounds is not obtained at the center of the 
entire dispersion area. 
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The following conclusion can be drawn from this: the rules for 
firing which have been worked out on the basis of the law of disper- 
sion for one mortar (machinegun) are also applicable for fire by a 
mortar (machinegun) platoon, but only in the case where the weapons 
difference of the mortar is (machineguns) is small, within the limits 
of 3 Vd. 

6.  Dispersion Under Various Firing Conditions 

The Dependence on the Amount of Dispersion of the Range of Fire 

Causes which are taken individually and which cause dispersion 
have different effects on its amount with a change in the range of fire. 
For example, if we considered a change in the amout of dispersion for 
lateral direction depending on the difference in directions of fire 
alone (with the absence of the effect of other causes), it is easy to 
imagine that in this case the amount of dispersion for lateral direction 
would change proportionally to the range of fire.  In these cases, 
the amount of dispersion expressed in mils with respect to the range 
of fire would be a constant value. Dispersion for height would change 
in exactly the same way when changing the range of fire if it depended 
only on the difference in angles of departure. 

But there are other causes of dispersion, as a result of which 
its amount changes nonproportionally to an increase in the range of 
fire.  Such causes may include the difference in muzzle velocities 
of the bullets. 

The aggregate effect of various causes of dispersion which operate 
simultaneously leads to a situation where its amount for height and for 
lateral direction increases with a change in the range of fire, not 
proportionally to the range, but somewhat more rapidly. 

We can be corvinced of this when looking at Table 15 which presents 
the mean quantities for the amounts of complete dispersion (in mils) when 
firing from a heavy machinegun at various ranges. 

TABLE 15 

Fange of fire, m m-m 4CO-f«0 700   '.W l(KO -1200 

S Vv (in mils) 
8 Vb (in mils)          .'  '. '. '. 

3,0 
2,0 

3,4 
2,9 

3,9 
3,0 

4,4 
3,1 

-248- 



It can be seen from the table that an increase in dispersion for 
lateral direction occurs somewhat more slowly than for height. Therefore, 
with an increase in the range of fire the ellipse of dispersion gradually 
becomes more elongated for height. 

Now let us consider how the amount of dispersion for range changes 
with an increase in the range of fire. 

It is known that Sd = Sv 1000/6 . As can be seen from this expression, 

with an increase in Sv the core strip of dispersion for range is increased, 
and with an increase in 6 it decreases.  If, with an increase in the 

s 
range of fire the values of Sv and 0    or increased to an equal degree, 

the size of the core strip of dispersion for range would remain constant 
for all firing ranges.    This means that changes in the amount of dispersion 
for range would depend on what value increases more rapidly with an in- 
crease in the range of fire--Sv or 9 . 

Table 16 presents values for Sd, Sv, and es when firing from a heavy 

machinegun with a light bullet at various ranges every 500 m, 

TABLE  16 

Range of fire 
m 50(1 1000 IS00 3000 Remarks 

r meters 0,63 1,61 2,78 8,5 The value of Sd in- 
creases with an in- 
creaie in Sv 

(ls in mils 6,4 30 81 I6G The value of Sd is 
reduced with an 

Sd in meters 1)8 53 36 5J 
increase inOj 

The following can be seen from the table: 

1.    With an increase in the range of fire from a heavy machinegun 
from 500 to 1,500 m,  Sd decreases to a lesser degree than es.     If Sv 

increased only 4.4 times  (2.78:0.63 * 4.4),  then 6    increased 12.7 times 

(81:6.4 * 12.7). 
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2.    With an increase in the range of fire from a heavy machinegun 
from 1,500 to 2,000 m, Sd increases since Sv increases to a greater 
degree than 6 .     If Sv increased 3.06 times   (8.5:2.78 * 3.06), then 8 

increased 2.05 times  (166:81 * 2.05). 

Such a regularity is also characteristic of the other models of 
small arms having high muzzle velocities and a great flatness of tra- 
jectories. 

A special  feature of firing from mortars is the fact that, with 
an increase in the range of fire (with the same charge) the size of the 
angle of fall decreases rather than increases.    Therefore, the amount 
of dispersion for range continuously increases with an increase in the 
range of fire. 

When firing from small arms at close distances, when intersecting 
a horizontal plane the cone of fire which is symmetrical for height 
forms an asymmetrical area of dispersion in which the mere half of the 
points of fall are disposed at a lesser depth than the distant half of 
them.    Thus, for example, when firing from a heavy machinegun at a dis- 
tance of 4'.0 m,  the near portion of Sd (35% of the falls) is disposed 
at a depth of 30 m and the far portion of 9d  (the remaining 35% of 
the points of fall)  are at a depth of    . 

For weapons with a great flatness of trajectory, at small firing 
ranges the tabular values of the coarse strips of dispersion for range 
are customarily for a horizontal plane which passes 10 cm below the 
point of departure.    The flat trajectories which diverge from the point 
of departure intersect the horizontal plane at various distances at 
various angles of fall--the closer the trajectories are, the greater 
will be the angles of fall.    It is known that wiath an increase within 
the angle of fall the amount if disperison for range is reduced; there- 
fore, the near portion of complete dispersion which contains half of all 
points of fall will be less than the far portion for complete dispersion 
which contains the other half of all points of fall.    In exactly the 
same manner, the near portion of Sv which contains 35% of the points 
of fall will be less distant than its portion which contains the remaining 
35% of the points of fall. 

Figure 139.     Asymmetrical   Dispersion of Bullets  for Range When Firing 
at  Short Distances. 
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Let us explain this by a sketch.  Figure 139 portrays the descending 
portion of the cone of fire which is designated by three trajectories: 
average, extreme upper (far), and extreme lower (near).  It can be seen 
from the drawing that the cone of fire is symmetrical for height since 
the segments which correspond to +4 Vv and -4 Vv are the same. 

If the average trajectory intersects a horizontal plane at an angle 
of 6 , the extreme far trajectory is at an lesser angle 9' and the extreme 

near trajectory is at a greater angle 6". Angles 6" and 6' correspond 

to the same values of 4 Vv and the first angle is larger than the second; 
from this it follows that the mere half of the points of fall are dis- 
posed at a lesser depth than their far half. 

Similar reasonings are applicable for firing not only at close dis- 
tances but also at any distance; however, with an increase in distance 
the difference in the angles of fall for the extreme trajectories gradually 
loses its practical significance. Therefore, it is considered that when 
firing at long ranges the distribution of bullets for range on any plane 
is symmetrical relative to the axis of dispersion. 

The Dependence of the Amount of Dispersion for Range on the Slope of the 
Terrain 

Tabular data on the sizes of the core strips and mean deviations for 
range (Sd and Vd) characterize the dispersion for range only along the 
line of aim. The dispersion for range on the ground corresponds to the 
tabular data only in those cases where the terrain relief on which the 
bullets fall is a continuation of the line of aim, i.e., when the angle 
of impact equals the angle of fall. 

In all other cases of firing, when the angle of impact is greater 
(less) than the angle of fall, the amount of mean deviation for range 
will be lesser (greater) than the tabular value. 

We already know how the size of the angle of impact changes depending 
on the terrain relief; therefore, we can easily imagine how the mean 
deviation for range changes depending on the slope of the terrain. 

When firing on a forward slope or from top to bottom, the angle 
of impact is greater than the angle of fall; therefore, the value of 
Vd (mean deviation for range, for terrain) is less than the tabular 

value for Vd, When firing on a reverse slope or from bottom to top, 
the angle of impact is less than the angle of fall; therefore, the value 
of Vd is greater than the tabular value for Vd, 

m 

Consequently, the amount of dispersion (Vd, Sd) depends on the 
relation of the angle of fall 6 to the angle of impact v. 

-251- 



Let us establish this relationship,  for which we look at Figure 140 
on which three possible firing cases are presented. 

The first case  (Figure lAOa).    The terrain in the area of the bullet's 
fall is horizontal and the angle of site to the target equals zero.     In 
this case the angle of impact u equals the angle of fall 9    and the 

amount of the mean deviation for range Vd    equals the tabular value for 
Vd. m 

The second case  (Figure ftOb).    Firing is conducted against a forward 
slope.    The angle of impact u is  larger than the angle of fall 6    and the 

amount of the mean deviation for range Vd    is less than the tabular value 

of Vd. 

The third case   (Figure lAOc).    Firing  is conducted against a reverse 
slope.    The angle of impact u is  less than the angle of fall 6  ,  and the 

amount of the mean deviation for range Vd    is greater than the tabular m 
value for Vd. 

From triangle ACD  (Figure 140h),  according to the mil formula 

Vd _. _Vyl000 

from triangle BCE: 

vd — yv|noo 

We divide the second equality by the first by term: 

Vd M        VvlOOO _ Vv-IOOO       vd.< „i1. 
va- """ i!   "• "is " ■  vd """ i*'' 

from which: 

Vd   = Vd  "s.. 

Similarly,  we can find that 

Sd, - ^d   V. (73a) 
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Example 1.    Firing is conducted from a heavy machinegun with a light 
bullet against the forward slope with a steepness of 0-50;  the range of 
fire is 900 m; the angle of site to the target equals minus 0-10. 

Determine the size of the core strip of dispersion for range. 

Solution: 

a) From the firing tables we find: Sd = 59 m; 9 = 0-24; 

b) We compute the size of the angle of impact: 

I* = »j ± - - (±0 = 24 + 50 + 10 = 84 (0-81). 

c) We compute the size of the core strip of dispersion for range 
on the terrain: 

so   =sa -s_ s —— ss J7 M. 

1  weapon horizon 

****£- 

Figure  1^0.     The Dependence of the Amount of Dispersion for Range on the 
Terrain Relief When  Firing  from Small  Arms. 
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Example 2.     Firing is conducted from a heavy machinegun with light 
bullets against a reverse slope with a steepness of 0-30;  the range of 
fire is   1,200 m;   the angle af site to the target equals minus 0-10. 

Determine the size of the core strip of dispersion for range. 

Solut ion: 

i) Sd ~ 43 jr.    »s m 0-47; 

6) ti = 47 - 30 + 10 = 27 (0-27); 

B) Sd    = Cd- -^- = 43~ « 75 v. 
I» J7 

Krom the examples it can be seen that insignificant  irregularities 
in the terrain have an extremely large effect on the amount of range 
dispersion.     In this, the smaller the angle of fall  (trajectory more 
gently sloping),   the more the amount of dispersion changes depending 
upon the  irregularities of the terrain. 

The trajectory of a mortar round is characterized by a large 
angle of fall;  therefore, when firing from mortars at a forward slope 
the value Vd changes somewhat differently than when firing from weapons 
with a great flatness of trajectory. 

Figure   141.     Dependence of  the Amount of  the Dispersion for Range on  the 
Relief of the Terrain When  Firing From a Mortar. 
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Figure 141 shows the ends of two trajectories OA and OB which are 
distant from each other for range by the amount of the mean deviation; 
AB--the mean deviation for range on a horizontal plane  (tabular) equals 
unity; AC, AD and AE are the mean deviations for range on slopes of I 
various steepness.    The following can be seen from the drawing: 

1. With an increase in the steepness of the slope within limits 
of angle a the value of Vd is gradually reduced and will be the least 
on slope AC, the plane of which is perpendicular to the end of the 
average trajectory. 

In order to have an impression on the degree of reduction in Vd 
depending on the incline to the forward slope we solve the right tri- 
angle ACD.    Let the angle CBA  (angle of fall) equal  70°.    Then the 
angle of incline of the slope a will equal 90° -  70° = 20°.    Line AS 
is the hypothenuse and line AC is the leg opposite angles CBA.    If the 
line AB which portrays Vd on a horizontal plane equals unity,  line AC 
which portrays Vd on the slope Vd   will equal 0.94,   i.e.,  the sine of 

angle CBA which equals  70°.    Consequently, with an angle of fall of 70°, 
Vd    will have its smallest value on a slope with an incline of 20oC. m r 

In this case, the coefficient which shows the degree of reduction of Vd m 
in comparison with the tabular value of Vd will equal 0.94, or the value 
of Vd is reduced by only 6%. 

2. With an increase in the steepness of the slope within limits of 
angle 6, the size of Vd    gradually increases and,  on slope CD will again 

equal  the tabular value of Vd  (unity).    Obviously,   this will occur when 
angle ß is equal to angle a.     In our example,  the value of Vd   equals the 

tabular value of Vd on a slope with a steepness of 40''. 

3. With a steepness of slope which exceeds the sum of angles a and 
6,  the value of Vd    in all cases will be greater -than the tabular value 

of Vd.    In our example,  the value for Vd   will be greater than the tabular 

value of Vd with a steepness of slope which exceeds 40°. 

Such is the nature of the change in the value of Vd when firing from 
mortars against forward slopes. 

When firing from mortars against reverse slopes,  under any conditions 
the value of Vd   increases in comparison with the tabular value of Vd. 

It can be seen from Table 17 how many times the value of Vd   will be 

greater or less than the tabular value of Vd depending on the steepness of 
the slope when firing from 82-mm mortars. 
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TABLE 17 

£» .23 
« °^ forward slope 

n 

forward slope 

M3 steepness of slope steepness of slope 
fl - 10° 1  :uo 1   30» 1   <0° 1    50° 00° iv ■;(» ■M° 1 40° 50° CO» 

50   lo,9 0,8 0.8 0,8 0,8 0,8 50 1.2 1,5 22 42 ._ _ 
'>■''    10/J 0,(*5 0,8 0,8 0,85 0.9 55 1.15 1 1 lit a > 10,0 — 
M.I    ' 0,(1 0,( 0,i 0,'t o,y 1 (0 1,15 i;< 1 7 2,0 5,0 — 
t.j (I,1.) n,'! 0,0 0.'» 1 I.I (VS 13 HI 2,1 3.5 — 
70 II,!'«') 0,0» O/.O 1 1,08 1.21 70 \i 1 5 l.'J 2,t 5,0 
1 J 1 l 1 I.I 1.2 1,1 75 l;> 1 1 1.7 2.3 3,7 
M) 1 I 1 1, M 1.5 SO I I 1 » 1.5 ■) 2,9 
h.'. 1 l 1 1.-' IA 1.7 85 i.i l,-2 1.4 1.8 2.3 

Remarks.  In the majority of cases, the firing from mortars, the size 
of the angles of fall fluctuate around 70°. 

From the data in Table 17, the following conclusions can be drawn: 

--When firing from mortars against forward slopes, a change in the 
value of the mean deviation for range, depending on the steepness of the 
slope, is so insignificant that it can be ignored in the calculation; 

--When firing against steep reverse slopes, which is widely practiced 
form mortars, the size of Vd will be considerably greater than the tabular 

value of Vd and this must be considered in calculating the number of sight 
settings for firing on targets located on the slope. 

7.  The Beaten Zone with Dispersion of Trajectories 

The dispersion area on the ground is the beaten area since all targets 
which are located within its limits may be hit. The destruction of one 
target or another is also possible when it is somewhat closer to the beaten 
area within the limits of the beaten ground. The ground within the limits 
of which the target of a given height can be hit when firing at the same 
sight settings is called the beaten zone. 

J-bcaten ground)-»r*      for range) 
'r.    Beaten zone - 3Sd + Ppp 

Figure  142.     Beaten Zone 
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The depth of the beaten zone on a horizontal plane equals the sum 
of the value of the complete dispersion for range and the value of the 
aimed beaten ground for a given target  (Figure 142). 

The width of the beaten zone equals the value of complete  dispersion 
for lateral direction. 

Considering the dependence of the amount of dispersion for range and 
the size of the beaten ground on the slope of the terrain, we have es- 
tablished that these values depend on the ratio of the angle of fall  b 
to the angle of impact u,   i.e. 

% o 3Sd „ ^3Sd     ik- and Ppm = Ppp     —s-. 

Therefore, the depth of the beaten zone on the ground (Pzm), which 
jstnts the sum of 3! 

puted from the formula: 

represents the sum of 3Sd and Ppm (beaten ground on the ground) is com- 

« 
Pzm (3Sd + Ppp)    -*-. (-74^ 

Example.    Firing is conducted from a heavy machinegun with a  light 
bullet against running figures  (height of 1.5 m)  disposed on the forward 
slope with a steepness of 0-50.    The range of fire is 1,000 m.    The angle 
of site to the target equals minus 0-20.    Compute the depth of the beaten 
zone on the ground. 

Solution.     1)     From the firing tables we find  (for a range of 1,000 m) 
the core strip for range Sd = 53 m;  the coefficient  for the beaten ground 
K = 33; the angle of fall 6    = 0-30. 

s 

2) We compute the aimed beaten ground: 

Ppp = Vts [height of target]-K = 1.5-33 * 50 meters. 

3) We calculate the angle of impact: 

H, = ^ ± «-(ft) = 30+ 50 + 20 = 100(1-00). 

4) We compute the depth of the beaten  zone on the ground: 

| = (159+ 50)^-0..^ Pzm = (3Sd + Ppp)      -V = (159 + 50) ^ = 209- f'u- = ß3 M. 
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8.     The Special  Features of Dispersion When Firing From Automatic Weapons 

Among the causes of dispersion which are enumerated at the beginning 
of this chapter,  there are those which have an effect only in automatic 
firing. 

Let us assume that firing is conducted in short bursts with the very 
same sight settings and against the same target in which respect careful 
aiming takes place before each burst. 

The first shots of the burst take place independently from each other 
and each subsequent shot  (in each burst) depends on the preceding one since 
it   takes place in   that   direction of the gun barrel which it assumed after 
the preceding shot.    Thus,  each subsequent shot is effected by the change 
in. the position of the weapon as a result of recoil after the preceding 
shot.     In addition,  for automatic models of weapons,  the strikes of the 
moving parts effect the subsequent shots.    From this  it follows that the 
dispersion of the subsequent bullets should differ from the dispersion 
of the first bullets.    Special test firings confirm these assumptions. 
Ft has been established that by firing by bursts,  the dispersion of the 
subsequent bullets which are obtained are, as a rule, greater than the dis- 
persion of the first bullets.     In particular,  this is characteristic for 
the  lighter types of automatic weapons.    One can be convinced of this by 
considering the corresponding firing tables which indicate the dimensions 
of the characteristics of the dispersion (Sv and Sb; Vv and Vb) separately 
when firing by individual shots and when firing in bursts.     For example, 
when firing from an automatic rifle at 200 m by single shots,  Sv = 0.20 m, 
Sb  = 0.20 m, and when firing by bursts Sv = 0.35 m and Sb = 0.35 m. 

In addition, as test firings from automatic small arms of all types 
have shown, a certain gap is  obtained between the average points of strike 
of the first and subsequent bullets   (see Figure 143),   in which respect the 
distribution of the former as well  as of the latter (separately) follows 
the normal  law. 

The size of the gap between the average points of strike of the first 
and subsequent bullets and the amount of their dispersion depend not only 
on the design of the weapon but also (to a great degree) on the training 
of the machinegunners  (automatic riflemen).    As experience shows, by 
thorough training in firing one can achieve a situation where the gap 
between the average points of strike of the first and subsequent bullets 
will be small.    In such cases,  it  can be considered that the overall dis- 
persion of all bullets follows the normal law and is characterized by only 
one pair of mean deviations   (Vv and Vb).    Thus,  for example, with expertly 
trained machinegunners when  firing from a light or company machinegun the 
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gap between the average points of strike by the first and subsequent bullets 
turns out to be only 0.2-0.3 thousandths of the range which has absolutely 
no effect on the nature of overall dispersion.    With insufficient training 
of the machinegunners or automatic riflemen, the gap between the average 
points of strike has no effect on the nature of overall dispersion.    With 
insufficient training of the machinegunners or automatic riflemen,  the gap 
between the average points of strike of the first and subsequent bullets 
and the dispersion of the subsequent bullets may be considerable and this 
much must be considered when solving fire missions. 

Such are the gene, al features of the dispersion of bullets when 
firing in bursts.    Let us now consider more specifically the nature of 
dispersion when firing from various types of small arms. 

The Dispersion of Bullets When Firing  From a Heavy Machinegun 

Because of the presence of a stable mount,   the dimensions of the 
dispersion of the first and subsequent bullets when firing from a heavy 
machinegun turn out to be the same; therefore,  there is no point in 
dividing a burst  into first and subsequent bullets. 

The machinegun of the mount permits increasing dispersion frontally 
and for range artificially.    When firing with dispersion frontally,  the 
frontal distribution of the bullets within the limits of artificial dis- 
persion is considered uniform, i.e., the same number of bullets are 
found on each meter of front.    The dispersion of bullets for height 
follows the normal law.    It is completely natural that the amount of 
dispersion for height in this case will be greater than the tabular 
dispersion since the tables provide the dimensions of dispersion when 
firing from a point.     It has been established in a practical manner 
that when firing with frontal dispersion,  the dispersion for height 
is increased 1.5-2 times  (on the average 1.75 times).    This increase 
in dispersion must be considered in determining the probabilities of 
a hit in group targets when firing with frontal dispersion. 

When firing with all machanisms fastened, the dispersion of the 
bullets corresponds to the tabular norms. If we slightly loosen the 
horizontal laying machanism the dispersion is increased 1.5-2 times. 

The implacement of the machinegun in the firing position has a 
great influence on the loose grouping of the firing.    The best results 
are obtained when firing from regular turfy ground.    In this,  it is 
desirable that the place for the support of the trail spade be at the 
same level as the axis of the wheels (rollers) and that the body of the 
machinegun stand alongside the mount.    If the body of the machinegun 
stands at some angle to the axis of the mount, when firing in long bursts 
the creeping of the machinegun to the side will be observed; this must 
be considered in firing. 
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Dispersion of Bullets When Firing from the Light and Company Machinguns 

Light (company) machineguns have light mounts (bipods) to provide 
for greater maneuverability of the weapon; therefore, the dispersion of 
the bullets when firing in bursts from the light and company machineguns 
i:: always greater than the dispersion of heavy machineguns. 

STP of subsequent bullets 
of bursts 

srr t > ■■■■■ ■■■ ■"■•^tof 

strike, •■■ '.rst nn.llcts 
of burst STP of subsequent bullets 

of bursts 

STP (average point of 
strike) of first bullets 

of burst 

Figure  l^}-    Dispersion When Firing  from Light and Company Machineguns: 
a -  Dispersion of  first and subsequent bullets when firing  from a com- 
pany machinegun;   b - Dispersion of first and subsequent bullets when 

firing from a  light machinegun. 

As a result of the weapon recoil,  the work of the automatic rifle- 
men,  and the reaction of the machinegunner to the displacement of the 
weapon,   the dispersion of the subsequent bullets of the burst  exceeds the 
dispersion of the first bullets considerably. 

The picture of the total dispersion of the bullets when firing from 
company and light machineguns is shown in Figure 143.    From the drawing, 
it can be seen that the average point of strike of the subsequent bullets 
of the burst when firing from a company machinegun is higher and to the 
right of the average point of strike of the first bullets of the burst 
and, when  firing  from the light machinegun--above and to the  left. 
However,   this cannot be considered as a regular phenomenon.     For example, 
each of ten bursts, each average point of strike of the subsequent bullets 
of the bursts  in 26 firings was higher and to the right,   in 13 firings-- 
higher and to the left,   in 5 firings — lower and to the right,  and in 4 
firings--lower and to the left of the average point of strike of the first 
bullets of the burst.    When firing from light machineguns the total dis- 
persion turned out to be greater in the lateral  direction.    The amount 
of deviations of the average point of strike of subsequent bullets fluc- 
tuates with very broad  limits   (up to 3 mils in any direction)  and may 
change  from firing to firing. 
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It should be noted that many machinegunners, after long training, 
are able to achieve a significant reduction in dispersions of sub- 
sequent bullets and the matching of the average point of strike of the 
first and subsequent bullets of the bursts by holding the weapon correctly 
and by skillful preparation of it for firing. This shows that the training 
of the machinefunners has decisive significance for achieving high indices. 

Dispersion of Bullets When Firing From an Automatic Rifle 

Firing is conducted from an automatic rifle either with a support or 
offhand.  It is completely natural that the dispersion of the bullets from 
an automatic rifle is considerable than when firing from a light machine- 
gun. 

A characteristic special feature in firing from the automatic rifle 
is the abrupt break in the position of the subsequent bullets from the 
place where the first bullets hit.  In firing at short distances against 
panels, one can graphically observe the presence of two groups (ellipses) 
of hits (Figure 144). This phenomenon is explained by the fact that with 
a sufficiently powerful cartridge and a low weight of the automatic rifle, 
a large recoil of the weapon is obtained which abruptly affects the posi- 
tion of the subsequent holes when firing by bursts.  In this, the deviations 
of the subsequent bullets are different when firing from various positions. 
When firing from the prone position with a support, the subsequent ballets 
deviate primarily to the left and downward. These deviations, as a rule, 
are constant for each automatic rifleman and their size depends on the 
special features in preparing and assuming the position for firing.  In 
firing from the prone position offhand, the dispersion of the bullets is 
considerably greater than when firing with a support; the subsequent bullets, 
as a rule, deviate to the left and upward. When firing from a kneeling and 
standing position, an abrupt deviation of the subsequent bullets to the 
right and upward is observed; the amount of their dispersion depends little 
on the various procedures in assuming the position for firing. 

1 

First bullets of the groups 
and part of the following 

Grouping of following 
bullets of the group 

Figure  \kk.    A Case of Obtaining Two 
Areas of Grouping When Firing From a 
Kalashnlkov Automatic Rifle From the 
Prone Position With a Support at a 
Range of  100 Meters. 
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CHAPTER XI 

THE PROBABILITY OF A HIT WITH A GIVEN POSITION OF THE AVERAGE TRAJECTORY 
RELATIVE TO THE TARGET 

The Overall Concept of the Probability of a Hit, 
the Probability of a Hit on Various Conditions 

The Dependence of 

Knowing the values of the dispersion characteristics when firing from 
various types of weapons at a given distance, we can calculate the prob- 
ability of a hit with one shot at any target and for any position of the 
average trajectory relative to this target. 

let us assume that a large number of shots have been fired at a tar- 
get having the shape of a rectangle from any weapon under certain conditions 
which are as identical as possible. The ellipse of dispersion is obtained, 
the position of which relative to the target is shown in Figure 145 where, 
for every 100 shots, there are 75 hits and 25 misses. 

Now we can pose the problem as follows: what is the probability of 
hitting this target if we fire one shot from the same weapon and under the 
same conditions in which the ellipse of dispersion was obtained? 

Figure 1^5. The Position of the 
Ellipse of Dispersion Relative to 

the Target. 
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Obviously, with one shot the bullet may be at any point at the 
ellipse of dispersion. Consequently, as can be scon from the drawinfj, 
there may be one of two contrasting events—either a hit or a miss. 
With respect to the hits and misses, with a large number of shots wc can 
judge that the probability of a hit is greater than the probahility of u 
miss as many times as 75 is greater than 25. Since, according to the con- 
ditions of our example, there are 75 hits for each 100 shots or 3 hits for 
every 4 shots, the probability of a hit with one shot can be expressed by 
the number 0.75 or 3/4. The probability of a hit can be expressed numeri- 
cally not only by a fraction but also by percent. In our example, it will 
equal 75%. 

We can give the following definition of the probability of a hit: 
the probability of a hit is a number which characterizes the degree of 
probability of hitting a target under given firing conditions. 

If, with a large number of shots, there are 75 hits for each 100 
rounds or 3 hits for each 4 shots, this by no means signifies that when 
firing only 4 shots there will certainly be 3 hits since only with a 
sufficiently large number of tests does the frequency of the event differ 
extremely little from the probability of the e^ent. Let us assume that 
firing is conducted in series of 4 shots each and that a counting of the 
hits in the target is performed after each series. In this, the results 
of the firing will differ; there will be cases where the number of hits 
turns out to be more or less than 3 out of every 4 shots. In the general 
calculation of a large number of shots and hits, it turns out that there 
are 3 hits for every 4 shots on the average. 

Figure IA6. The Dependence of the Probability of a Hit on the Dimensions 
of the Target. 

In firing, all calculations are conducted as a rule in such a way 
that a hit is at the center of the target. Let us assume that the sight 
settings and the aiming point completely correspond to this condition and. 
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with a large number of shots, the average trajectory coincides with the 
L-cntor of the target.  But since only one shot is fired and dispersion 
is inevitable, with the most careful aiming the bullet will have a cer- 
tain deviation relative to the average trajectory and, consequently, from 
the center of the target within limits of 4 V (4 mean deviations in the 
jjivon direction),  In this, a target hit is possible and its probability 
will depend on the relationship on the area of the target and the area of 
dispersion. 

Figure 146 portrays three targets of different dimensions, the centers 
of which coincide with the centers of identical ellipses of dispersion. 
The area of the target shown in Figure 146 a contains the entire ellipse 
of dispersion. This means that a hit is certain, i.e., the probability of 
a hit equals 1 (unity) or 100?6. The area of the target shown in Figure 
14() I) is smaller than the ellipse of dispersion; the probability of a 
target hit is less than 1 (unity) or less than 100%. The area of the 
target shown in Figure 146 c is considerably smaller than the ellipse of 
dispersion; the probability of a target hit is even less than in the 
second case. 

Thus, other conditions being equal (the same dispersion, the same 
position of the center of disperion relative to the target), the larger 
the dimensions of the target the greater the probability of a hit. 

Figure 147 portrays three different ellipses of dispersion, the 
centers of which correspond with the centers of targets identical in 
size. 

Figure lAy.  The Dependence of the Probability of a Hit on the Amount of 
Dispersion. 

With small dispersion (Figure 147 a), the entire ellipse fits within 
the area of the target--a hit is certain, i.e., the probability of a target 
hit equals 1 (unity) or 100%. If the ellipse of dispersion turns out to be 
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larger than the target (Figure 147 b), the probability of a target hit is 
less than 1 (unity) or less than 100%. If the ellipse of dispersion is 
considerably larger than the target (Figure 147 c), the probability of 
a target hit is even less than in the second case. 

Consequently, other conditions being equal (identical dimensions of 
the target, identical positions of the center of dispersion relative to 
the target), the less the dispersion the greater the probability of a hit. 

Figure 148 portrays three identical targets having a large extension 
frontally and a small extension in depth. The targets are covered by 
identical ellipses of dispersion when firing from different directions, 
in which respect the centers of the ellipses of dispersion in all three 
cases coincide with the centers of the targets. With the direction of 
fire shown in Figure 148 a (frontal fire), the probability of a target 
hit will be the least in comparison with cases of firing shown in Figure 
148 b and c.  With flanking fire (Figure 148 c), the probability of a tar- 
get hit will be greatest since in this case the entire target is covered 
by the ellipse of dispersion and is located within the limits of that 
portion of it where the points of fall of the bullets (shells, mortar 
rounds) are located in the most clustered manner. 

Figure 148.  The Dependence of the Probability of a Target Hit on the 
Direction of Fire. 

Consequently, if the target has a large extension frontally and a 
small one in depth, the greatest probability of a hit will occur with 
flanking or oblique fire. It is more advantageous to conduct frontal fire 
against deep targets. 
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Wo have considered cases whore the average trajectory coincides with 
tho center of the target.    Such cases   (see Figures 146 and 147) may occur 
only when accomplishing exercises of sports and training fires   (against 
stationary targets).     In combat  firings and, what is more,  in battle, the 
average trajectory will always have a certain deviation relative to the 
target because of reasons such as the inevitability of errors in deter- 
mining distance to the target  (sight  setting),  consideration of meteoro- 
logical conditions, aiming, and others.    These errors may be so great 
that  the target  turns out to be outside the area of dispersion.     In such 
cases,  the target cannot be hit;   in others words,  the probability of a 
hit  equals   zero, 

A target hit  is possible only when all of it or a portion of it is 
within the  limits of the area of dispersion.     It  is known that the dis- 
tribution of trajectories within the  limits of this area is uneven;  there- 
füre,   the probability of a hit  in each of the targets in Figure 149 is 
different:     the probability of hitting target No.   1 is greater than hitting 
target No.   2 and the probability of hitting target No.   2 is greater than 
hitting target No.  3. 

Consequently, other conditions being equal  (identical to dispersion, 
identical  target dimensions),  the closer the location of the center of 
dispersion to the center of the target,  the greater the probability of a 
hit.     In order to increase the probability of a hit to a considerable 
degree,   it   is necessary to prepare the initial data for firing as pre- 
cisely as possible.    This  is attained by systematic drills in determining 
distances to targets and  in considering corrections for meteorological 
conditions. 

Thus,   the probaoility of a hit depends on:    the dimensions of the 
target,   the dimensions of the area of dispersion,  the direction of fire 
and the position of the center of dispersion relative to the center of 
the target. 

Subsequently, we will consider various methods for determining the 
probability of a target hit with one shot.    The overall principle for 
all  the methods  is the same and consists of the following.     In order to 
find the probability of a hit,   it  is necessary to determine the por- 
tion of the area of dispersion which covers the target and, on the basis 
of the law of dispersion,  to calculate the percentage of hits which take 
place on this area.    The sizes of the values of the characteristics of 
dispersion  in each case are taken from the firing tables which are com- 
piled on the basis of a large number of test firings. 
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Figure 149.  Dependence of the Probability of a Hit on the Position of the 
Center of the Ellipse of Dispersion Relative to the Target. 

2. Approximate Methods for Determining the Probability of a Hit 

Determining the Probability of a Hit From the Heart of the Dispersion Zone 

This method is applicable only if those cases where the area of dis- 
persion is less than the heart of the dispersion zone or equal to it and 
does not emerge beyond its limits even in one direction.  In the calculation, 
it is assumed that the dispersion of the bullets is uniform within the 
limits of the core. Then the probability of a hit can be determined by 
comparing the areas of the target and the heart of the dispersion zone. 
Since the heart of the dispersion zone contains 0.5 (50%) of all tra- 
jectories, the probability of a target hit will be less than 50% the 
number of times that the area of the target is less than the heart of the 
dispersion zone, i.e.. 

p:50% = s:(SvSb), 

where p is the probability of a target hit; 
s is the area of the target; 

Sv Sb is the area of the heart of the dispersion zone. 

On the basis of the proportion which has been obtained we find: 

50% -s 
SVSb (75) 
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Example. Determine the probability of a hit in a head-shoulders- 
-chest figure when firing from a light machinegun at 500 m under the con- 
dition where the outline of the figure does not extend beyond the limits 
of the heart of the dispersion zone. 

Solution. From the firing tables we find: Sv = 0.81 m, Sb = 0.78 m; 
from table 1 (see appendix) the area of a head-shoulders-chest figure s ■ 
= (). 18 m?. 

P= 0M-0.7H   atU'2*"  lf   0'U2- 

Determination of the Probability of a Hit From the Dispersion Scale 

In those cases where the target or a portion of it extends beyond 
the  limits of dispersion,  the probability of a hit can be determined from 
a dispersion scale. 

Let us assume that the ellipse of dispersion occupies a position 
relative to the target as shown in Figure 150. 

We calculate the probability of hitting this target using the dis- 
persion scale.    The sequence of the work  in this case should be as follows. 

I—^Z 

Figure 150. Determining the Prob- 
ability of a Hit In a Single Target. 

I. Determine the probability of a hit in an infinitely long strip 
2 y, the height of which equals the height of the target1. 

:Infinitely long strips is the name arbitrarily given to strips, the length 
of which exceeds 8 mean deviations and the ends of which are located out- 
side the limits of the ellipse of dispersion. 

■268- 



1 

2. Determine the probability of a hit in an infinitely long strip 
2 z, the width of which equals the width of the target. 

3. Determine the probability of a hit in the rectangle which is 
formed by the intersection of strips 2 y and 2 z.  It is not difficult 
to sec that' only the bullets which simultaneously enter strips 2 y and 
2 z will fall into this rectangle. Therefore, the probability of a hit 
in the rectangle equals the product of the probability of a hit in strips 
2 y and 2 z.  If the probability of a hit in strip 2 y equals p» and in 

ly 
strip 2 z equals p. ,  the probability of a hit  in the rectangle can be 

expressed as: 

P=Pt/Pu 
(76) 

4. Determine the probability of a target hit.  Let us assume that 
the dispersion of the bullets within the limits of the rectangle takes 
place uniformly; therefore, the probability of a target hit p will be 
less than the probability of a hit in the rectangle p_ • p_ the number 

of times that the area of the target s is less than the area of the 
rectangle S, i.e. 

 P__ _ J_ 
Piy-Pt,     S 

From the proportion which has been constructed we obtain: 

P=Pty-P7*--J- 

It  is customary to call the relation of the area of the target to the 
area of the rectangle described around the target s/S the coefficient of the 
shape of the target and to designate it by the letter K. Using this 
designation, the formula for determining the probability of a target hit 
can be written in the general form as follows: 

P-Pu'PwK W 
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where  p is the probability of a target hit; 
p, is the probability of a hit in an infinity long strip for the 

height of the target; 
p, is the probability of a hit in an infinity long strip for the 

width of the target; 
K is the coefficient for the shape of the target. 

By means of examples, let us consider the procedure for determining 
a target hit. 

Example I .  Firing is conducted from a heavy machinegun with a heavy 
bullet against a head figure at a range of 300 m. 

Determine the probability of hitting the target if it is known that 
the average trajectory coincides with the center of the target. 

Solution.  From the firing tables we find that for a range of 300 m, 
Vv = 0.12 m, Vb = 0.12 m. From Table 1 (see appendix) we find that: 
the height of a head figure equals 0,3 m, the width is 0.5 m, and the 
shape coefficient is 0.73. 

Bl-OJZ* 

Figure   151.     Determining the Probability of Hitting a Head Figure.    The 
average  trajectory passes through  the center of the target. 

We draw the dispersion scale for height and for lateral direction 
at an arbitrary scale  (Figure 151).    At  the same scale, we mark on the 
drawing the  infinitely long strips for the dimensions of the target 
(for height and for width).    Using the dispersion scales, we determine 
the probability of a hit  in these  strips. 
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The horizontal axis of dispersion divides strip 2y into two equal 
strips each 0.15 m high (0.30:2). Each of them includes 1.25 Vv 
(0.15:0.12), i.e., one strip which contains 25% of the hits and 0.25 
strip which contains 16% of the hits. We assume that the dispersion 
in each strip, which equals 1 mean deviation, is uniform. 

Then the probability of a hit in strip 2y is 

p2 = (25% ♦ 0.25-16%)' 2 = 58%, 

The vertical axis of dispersion divides strip 2 z into two equal 
halfs each 0.25 m wide (0.50:2). Each of them includes 2.1 Vb (0.25: 
:0.12).    The probability of a hit in strip 2 z  is 

p2z  =   (25% ♦  16% + 0.1-7%)-2 * 83%. 

The probability of a hit in a head figure is 

P =/»ty/'s2'( = 0,58 0,83 0,73 ss 
% 0,351, or 35,1%. 

Example 2. The firing conditions are the same as in example 1, 
but the average trajectory passes 0.18 m above the center of the target 
(Figure 152). 

Solution. From the dispersion scale, we determine the probability 
of a hit in strip 2y. 

-ft.'UX 
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Figure 152.  Determining the Probability of Hitting a Head Figure, 
average trajectory passes above the center of the target. 

The 
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If the horizontal axis of dispersion passes 0.18 m above the center 
of the target,  the upper edge of the target is 0.03 m below the center of 
dispersion (18 - 30/2).     It can be seen from the drawing that with such 
a position of the average trajectory relative to the target, the following 
hits may occur  in strip 2y: 

--9/1J or Ü.75 of the hits of a strip containing 25%; 

--all hits of a strip containing 16%; 

--9/12 or Ü.75 of the hits of a strip containing 7%. 

Consequently,  the probability of a hit in strip 2y: 

p,    =   (0.75-25%}  + 16% ♦   (0.75-7%J   =  40%. 

The probability of a hit in strip 2z: 

p.,^ = 83% (as in example 1) 

The probability of a hit in a head figure: 

P --/'.-y W A' = 0,J0.0,S3 0,73 = 0,2-13. or 24.2%. 

The probability of a hit in a figure target may also be found from 
the target dimensions which are presented without consideration of the 
shape coefficient.    The dimensions of targets which have been presented 
are given in Table  1 of the appendix. 

3.     Determining the Probability of a Hit From a Probability Table 

In determining the probability of a hit from the dispersion scale, 
we allow some inaccuracy in considering that dispersion within the limits 
of each strip equal  to one mean deviation is uniform. 

For precise calculations,  a more improved method for determining the 
probability of a hit  is employed--from a table of the probabilities of ob- 
taining errors within given  limits,  i.e., from a table of the values of 
.*   i3J   (see appendix. Table 2).    This method is not only more accurate but 
it   is simpler than the preceding method since the computations are reduced 
considerably with  its use. 
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Determining  the Probability of a Hit   in the Strips 

The table of values for <J> (ß) is applicable for the determination 
of the probability of a hit in strips with their symmetrical and asym- 
metrical disposition relative to the axis of dispersion. 

Let us first consider the case of the summetrical disposition of the 
strips, i.e., the case where the axis of dispersion passes along the mid- 
dle of the target strip  (Figure 153). 

Figure  153-    Determination of the Probability of a Hit   in a Strip Where 
the Axis of Dispersion Divides  it   into Two Equal  Strips. 

In order the determine the probability of a hit in a strip with its 
symmetrical distribution relative to the axis of dispersion,  it is neces- 
sary to divide half the width of the strip by the amount of the mean 
deviation of the corresponding direction and then to find the probability 
of a hit in the entire strip from the probability-table. 

We take the width of the strip as equal to 21; then half the strip, 
expressed in mean deviations, will equal 1/V.    The first column of the 
table provides the value for 1/V and the second column provides the prob- 
ability of a hit in strip 21.    Consequently,  the data in the second 
column are functions of 1/V or $ (1/V).    Then the probability of a hit 
in a strip under the condition of the matching of the axis of dispersion 
with the middle of the strip is determined by the following expression: 

Pu-*ii). (78) 

-273- 



We designate the width of the strip 21 by the expression 2y when 
it coincides with direction Vv or with expression 2z when it coincides 
with direction Vb or with expression 2x when it coincides with direction 
VJ.    Then,  depending on the direction of the width of the strip  (78) 
will have the following form: 

' (78 a) 

'"^'(i)' (78 b) 

*.--"^v (78c) 

Example  I.     Firing is conducted from an automatic rifle by single 
rounds at a range of 500 m.    Determine the probability of a hit in a 
strip 1.00 m high  if the axis of dispersion for height passes through 
the center of the  strip. 

Solution.    Fror the firing tables we find that at a range of 500 m 
Vv  = Ü.19 m. 

Jy (height of the strip) = 1.00 m, y = 1.00:2 = 0.50 m. 

From the probability table we find: 

*(2.63) = P2 = 0.924, or 92.4%. 

Example 2. Firing is conducted from an automatic rifle by bursts 
at a range of 500 m. Determine the probability of a hit in a strip 
0.90 m wide if the axis of dispersion for lateral direction passes through 
the center of the strip. 

Solution. From the firing tables we find at a range of 500 m Vv = 
= 0.30 m. 

Iz  (width of the  strip)  = 0.90m,   z = 0.90:2 = 0.45 m. 

'-*(^H(S)-*<'•»'■ 
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From the table of probabilities we  find: 

*(1.50)   = p2     =   0.688,  or 68.81. 

Example  3-     Firing is conducted from an 82-mm mortar using charge 
No.   1 with an elevation of 6-98   (D =   1,200 m)   against a  long gully  12 m 
wide.     The direction of fire  is perpendicular to the  length of the  gully 
and the axis of dispersion passes through the middle of the gully. 

Determine  the probability of a hit   in the gully. 

Solution.     From the firing tables we  find  that for a range of 
1,200 m Vd  =  17 m. 

2x  (width of gully)  = 12 m;  x =  12:2 = 6 m. 

From the probability table, we find: 

$(0.35)  = p      = 0.187,  or 18.78i. 

Now let us consider how we determine the probability of hitting in 
strips with their asymmetrical distribution relative to the axis of dis- 
persion. 

In Figure 154, the axis of dispersion coincides with the edge of the 
strip. The width of this strip can be presented as half the strip 21 
If the probability of hitting in strip 21 is determined by formula (78), 
then obviously the probabilitv of hitting in strip 1 will equal 

o^iH-i)- (79) 

Figure IS'*. Determining the Prob- 
ability of Hitting in a Strip When 
the Axis of Dispersion Coincides with 

the edge of the Strip. 
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Figures 155 and 156 present two cases of firing with different posi- 
t Lüns of the axis of dispersion relative to the middle of the strip.  In 
the first case (Figure 155) the axis of dispersion passes within the strip 
but Joes not coincide with its middle; in the second case (Figure 156) the 
.ixis of dispersion passes outside the strip.  The drawings provide desig- 
nations for the following values: 

.'■A   is the distance of the axis of dispersion from the middle of 
the strip; 

Z-, is the distance of the axis of dispersion from the far edge 
of the strip; in this and in the other case Z- = Z + AZ; 

I.   is the distance of the axis of dispersion from the near edge 
of the strip; in this and in the other case I.  = I - Ll. 

In considering Figures 155 and 156, the following conclusions may 
be drawn: 

In the first case (Figure 155) the probability of hitting strip 21 
equals the sum of the probabilities of hitting in strips I-  and Z,; 

In the second case (Figure 156) the probability of hitting strip 21 
equals the difference in the probability of hitting strips l-  and I.. 

Figure lf5.  Determining the Prob- 
ability of Hitting a Strip When the 
Axis of Dispersion Passes Inside the 
Strip But Does Not Coincide with its 

Center . 

Figure 156. Determining the Prob- 
ability of a Hit in a Strin When 
the Axis of Dispersion Passes Out- 

side the Strip. 
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In both cases, the probability of a hit in strip Z. equals 

and the probability of hitting in strip  I,  equals 

/ 

On the basis of everything which has been said it can be concluded 
that the probability of a hit in strip 21 is determined by the following 
expression: 

^IWiMi)]. (80) 

The plus (♦) sign is taken in those cases where the axis of dispersion 
passes inside the strip, and the minus (-) sign--when the axis of disper- 
sion passes outside the strip. 

Values Llj   l2  and I.  are designated respectively: Ay, y« and y. -- 

when the width of the strip coincides with direction Vv; or by Az, z» and 

z. --when the width of the strip coincides with direction Vb; or Ax, 

x- and x. --when the width of the strip coincides with direction Vd. 

Then, depending on the direction of the width of the strip, formula (80) 
will have the following form: 

(80 b) 

^-T[*(^)±*(-Ä)]- 
A/     V. (80 c) 
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Example 1.  Firing is conducted from a heavy machinegun with a light 
bullet at a range of 500 m. Determine the probability of a hit in a strip 
O.TiO  m high is the axis of dispersion passes 0.10 m above the center of the 
strip. 

Solution.  From the firing tables, we find that for a range of 500 m 
Vv = 0.21 in. 

2y = 0.30 m; y = 0.15 m; Ay = 0.10 m; 

y-, = y + Ay = 0.15 ♦ 0.10 = 0.25 m; 

y = y -  Ay = 0.15 - 0.10 = 0.05 m. 

According to the conditions of the example, the value for y (0.15 m) 
is greater than the value of Ay (0.10 m); consequently, the axis of dis- 
persion passes inside the strip.  Then the formula should have a plus 
(+J sign. 

-^ .'- l-r- (l.l'J) + <t> (0.21)1 =  f 10.578 + 0,120) s 0.3,H   or   35,4% 

Example  2.     Firing is conducted from an 82-inm mortar using charge  1 
with an elevation of 6-02  (1,000 m)  at  a  long gully with a width of  10 m. 
The direction of  fire  is perpendicular to the  length of the gully.     Deter- 
mine the probability of a hit   in the gully  if the average trajectory 
passes  7 m closer  to the center of the  gully. 

Solution.     From the firing tables we find that for a range of 1,000 m 
Vd =  15 m. 

2x =  10 m;  x =  5m;   Ax = 7 m; 

x1=x+Ax=5+7=l2m; 

x    = x -  Ax =  5  -7  =  -2 m. 

In this case, the value of x (5 m) is less than the value for Ax (7 m); 
consequently, the axis of dispersion passes outside the strip.  Then the 
fornula should have a minus (-) sign. 
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= y l* (0,80) - •!> (0.13)| = -J. 10.411 - 0.0701 = 0,1705.    or  17.05 %. 

Determination of  the  Probability of Hitting  in Rectangles and   in  Individual 
Target of Various Configurations 

In considering the method of determining the probability of a hit at 
a single target according  to the dispersion scale,   the general formula 
(77) was derived: 

P2y-P2z,K- 

Substituting in this  formula the value p.    from expression (78 a) 

and the value p-    from expression  (78 b), we obtain the formula for 

determining the probability of a hit in a single target with the 
matching of the average trajectory with the center oi" the target: 

'=*(-fe)-*(-feK (81) 

In order to obtain the formula for determinipg the probability of 
a hit in a single target when the average trajectory does not coincide 
with the target center, we substitute in formula (77) the values p? 

and p. from expressions (80 a) and (80 b). Multiplying the coefficients, 

we obtain: 

'-T[*(-^)±*(-^]-[*(^)±*(^)]^ (82) 

Similar to this, we can obtain the formulas for determining the prob- 
ability of a hit in horizontal targets having the shape of a rectangle 
(when firing from mortars) . 
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When matching the average trajectory with the center of the rectangle 
IK = 1J: 

"-H^-Hwi (81 a) 

With the non-coincidence of the average trajectory with the center of 
a rectangle (K = 1): 

"K*(-vi)t*m[*iJbh*m-    (82 a) 

Example 1. Firing is conducted from a carbine af ainst a head figure 
at a range of 300 m. Determine the probability of a hit under the condi- 
tion of the matching of the average trajectory with the center of the tar- 
get. 

Solution. From the firing tables we find: Vv = 0.09 m; Vb = 0.07 m. 

The height of target 2y = 0.30 m; then y = 0.30:2 = 0.15 m. 

The width of the target 2z  = 0.50 m; then z = 0,50:2 = 0.25 m. 

The shape coefficient of the target K = 0.73. 

- >t> Cl,fi7)'f> (.%J7)0.73 = 0,MO.O/J8.i-0.73 = O..^.', or 53,2%. 

Example 2. Firing is conducted from an 82-mm mortar using charge 
No. 1 with an elevation of 6-47 (1,100 m) against a target having the 
shape of a rectangle with dimensions 2x = 10 m, 2z = 6 m. Determine the 
probability of a hit if the average trajectory passes 8 m closer to the 
center of the target and 2 m to the right. 

Solution. From the firing tables we find: Vd = 16 m, and Vb = 5.7 m. 

x = 10:2 = 5 m; Ax = 8 m; 

t-, = x + Ax = 5 + 8 = 13 m; 
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x. =x-Ax = 5-8 = -3m; 

z = 6:2 = 3 m; Az = 2 m; 

z2=z+Az =3+2=5 m; 

Zl = Z Az 3 -2 = 1 m. 

- J-|'I'(0,81 )-<I.(0,l'J)].(<I> (0,88) +'1'(0,17)) = 

--|-|O,ll5-O,l021.(n.-IJ7 + 0,001] =0,012, or 4,2%' 

4.  The Probability of Hitting Individual Targets When Firing With Artifi- 
cial Dispersion Frontally 

In combat there are frequent cases where firing at individual targets 
must be conducted with artificial dispersion. 

Let us consider the order of determining the probability of a hit 
when firing with artificial dispersion frontally. 

Figure 157. Disposition of a Target in the Bushes Within the Limits of AB. 

Let us assume that we know that a target is camouflaged in the bushes 
on a front AB (Figure 157). The exact location of the target is unknown; 
therefore, firing must be conducted with artificial dispersion frontally 
within the limits of AB. 
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When firing with dispersion within the limits of AB, some inconsiderate 
portion of all bullets fired will be outside the indicated limits. To 
simplify the calculations, we will consider that all 100% of the bullets 
are located within the limits of the artificial dispersion and the dis- 
persion within these limits is uniform. 

Assume that in this case the dispersion for height is greater than 
the height of the target. Then, some portion of the bullets will be above 
and below the target while another portion of the bullets will be within 
limits of rectangle abed as shown in Figure 158. 

We determine the area of this rectangle and the probability of a 
hit in it. 

The area of the rectangle equals the product of the height of the 
target by the front of artificial dispersion, i.e., S = 2y^. 

TV probability of a hit in this rectangle is determined as the 
prodw jf the probabilities of a hit in the strips which form it. 
The length of the strip ab equals the frontage of artificial disper- 
sion and the probability of a hit in this strip equals 1, or 100%; 
The width of the strip ad equals the height of the target and the 
probability of a hit in this strip equals p2 . This means that the 

probability of a hit in the rectangle equals !• p  = p . 

Figure 158. Area of Possible Target Positions Within the Limits of the 
Area of Artificial Dispersion. 

The probability of hitting the target p will be less than the prob- 
ability of hitting within the rectangle p» as many times as the area oi 

the target s is less than the area of the rectangle 2y<I'p, i.e.. 

p:p2y = s:(2y$p) 
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On the basis of this proportion, we obtain: 

p=pLL (83) 

where p is the probability of hitting the target; 
p2 is the probability of hitting within the strip which equals the 
^ height of the target; 
s is the area of the target; 

2y is the height of the target; 
^p is the dispersion frontage. 

Example. The target is a head-shoulders-chest target (a sniper) in 
the bushes on a frontage of 10 m.  The distance to the target is 400 m. 
Determine the probability of hitting a target if firing is conducted from 
a heavy machinegun with a light bullet with frontal dispersion the width 
of the bushes; the axis of dispersion passes through the center of the 
target. 

Solution. From the firing tables we find that Vv = 0.16 m. When 
firing with frontal dispersion, Vv will be 1.5-2 times greater than the 
tabular value and 1.75 greater on the average. 

We determine the probability of hitting within a strip equal to the 
height of the target: 

We determine the probability of hitting the target: 

/V*  ^ 0,-1')2.0,18 
•}y<Jjp ~    0,5-10 
/jy -    .   IVI.J-'U.IO ._ .   , 

P = OVTTE; = -TRTHT « 0'01G'   or   M'«- 
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CHAPTER XII 

RELIABILITY AND EFFICIENCY IN FIRING 

In the accomplishment of firing missions in combat, the firer should 
be guided by two basis requirements which are made on any firing from any 
weapon: first, that the firing be reliable and second, that the firing be 
efficient. 

By reliability of firing we mean the following: how often the fire 
mission will be accomplished if such firing is repeated many times (by 
the same methods against the same target, at the same range, and with the 
same expenditure of ammunition) . 

By efficiency in firing we mean the accomplishment of the firing 
mission with the least possible expenditure of ammunition. 

On the basis of these requirements firing rules for firing from 
various types of weapons are worked out at calculations of the expen- 
diture of ammunition for the accomplishment of the firing missions are 
performed. 

The most correct accomplishment of these two requirements on the 
part of the firer is possible only with his firm knowledge of the rules 
of firing and his ability to use them in practice with consideration of 
the combat capabilities of a given weapon, the nature of the target, the 
conditions of the combat situation, and the availability of ammunition. 
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I.  Probability of Hitting Single Targets as a Measure of Reliability 
in Firing 

In firing from small arms, to hit a single living target it is 
usually sufficient to obtain just one target hit.  Since one hit can 
also be obtained with one shot, it follows from this that the probability 
of a hit at the same time also characterizes the probability of destroying 
the target with one shot. Thus, for example, if the probability of a 
hit p = 0.3, the probability of destroying the target with one shot also 
equals 0.3. 

If several rounds are fired against the same target, we can obtain 
either zero, or one, or several hits.  Since the firing mission will be 
accomplished with any number of hits (even one), the probability of des- 
troying the target is evaluated by the probability of hitting at least 
one time with various numbers of shots. 

If firing is conducted with several identical bursts, the procedure 
for determining the probability of destroying the target again may be 
as follows: 

1) Determine the probability of destroying the target when firing 
one burst (by the method indicated above). 

1,-C105MJ t-»-   Zj-ft^* 

Figure  159.    Determining  the Probability of Destroying the Target When 
There   is a Gap Between the  Points of Hit of  the  First and  Subsequent 

Bullets. 
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2) Determine the probability of destroying a target when firing with 
a given number of bursts in accordance with the formula: 

A = l-(1 * u  .s (85) 1    \      nrbumsv , 

where ^rru . ♦ ^ is the probability of destroying the target with one 
burst; 

s is the number of such bursts. 

Example. The mission is the same as in example 1. 

Solut ion. 

1; The probability of destroying the target with the first round of 
the bursts has been found above. 

PI(1) = p = 0.60. 

2)    The probability of destroying the target with the subsequent 
(two)  rounds of the bursts: 

pl(subs)  - I - (1 -P)n = 1 - (1-0,33)« = i_ o,ü7' ^ 0,55- 

3) The probability of destroying the target when firing with one 
burst. 

P
WK  „, = 1 - (1 - 0.60) (1 - 0.55) = 1 - 0.18 = 0.82. I (burst)      v      ' v      J 

4)    The probability of destroying the target when firing with two 
bursts: 

P    =  1  -  (1  -  PT,.        ,   J2  =  !  .   ^  . o.82)2 =  1  -  0.182 =  1  - 0.032 
I I(bursts)^ v J 

= 0.968,  or 96.8%. 
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As we see, the result which has been obtained is exactly the same 
as in the solution of this problem by the first method (see example 1). 

In practice, it is not only important to know the reliability of 
firing with one expenditure of ammunition or another, but it is also 
important to solve the inverse problem--what should the expenditure of 
ammunition be in order to assure one degree of reliability of firing 
or another. 

If the probability of a hit does not change from shot to shot (when 
firing either by single rounds or by bursts), to determine the necessary 
number of shots we use formula (55): 

n = 

log (1 - Pj) 

log (1 - p) 

where P.   is the given probability of destroying the target; 

p is the probability of a hit with one shot. 

Example.    Determine the necessary number of shots in order for 
the reliability of the firing  (the probability of at  least one hit)   to 
be equal to 0.9  (90%)  if the probability of a hit with one shot p = 0.2. 

Solution.    Substituting the values for P.  and p in formula  (55), 

we obtain: 

Ifi (1-0,9       'K0.l       1,0000       10000      ,, 
" = i TI—/riT -"- rrrs - = -.„-n- «  0 rounds. ißli-o,.') ig o.s t)<,03a  yo9 

If, in firing with identical bursts, the probability of a hit of 
each subsequent bullet differs from the probability of a hit of each 
subsequent bullet differs from the probability of a hit of the first 
bullet (in each burst), the procedure for determining the expenditure 
of ammunition which assures a given reliability (probability) of des- 
troying the target will be the following. 

1) By the method considered above, determine the probability of 
destroying the target when firing with one burst. 

2) Determine the number of bursts from the formula 

■> 

l(burst) 

S~  1,(1 -p- (W 
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where      P. is the given probability of destroying the target; 

P,,,   _ is the probability of destroying the target when firing 
I (burst)  ...... 

with one burst. 

3)  Determine the number of shots from the formula 

n = s* k, (87) 

where s is the number of bursts; 
k is the number of shots in each burst (length of burst). 

It is known that the probability of destroying the target increases 
with an increase in the number of shots (expenditure of ammunition on 
firing).  But in this, one should keep in mind the necessity to observe 
the requirements for efficiency in firing. What should the reliability 
of firing be with observation of its efficiencies? 

In order to solve this problem we construct curves of expenditure 
of rounds depending on the given probability of destroying the target 
with various values for probability of a hit. 

In I-'igure 160 along the axis OX we lay off segments in a arbitrary 
scale which correspond to the various values of the probability of des- 
troying the target (in percent) and along the axis of OY, also at an 
arbitrary scale, we lay off segments which correspond to various values 
for the number of rounds. 

y 
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Figure 160. Curves Which Charac- 
terize the Expenditure of Rounds 
for Various Given Probabilities 

of Destroying a Target. 
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We first construct a curve for the expenditure of rounds with a 
hit probability p = 0.2. 

In the example on page 231 [of the original text], we found that 
to obtain a probability of destroying the target p. = 90% with p = 

= 0.2, it is necessary to fire 10 shots. On the graph which has been 
prepared, we mark the point of intersection of the vertical line 
which corresponds to 90% with the horizontal which corresponds to 
10 shots (point small a in Figure 160). Now we determine the neces- 
sary number of shots for P1 = 98%: 

lud-0,08)      '«0,02       i.lOlO l,r«i0 
1K(1--Ü,2) I« 0,8        r,W3l        •IM«*!) ' 

On the graph, we mark the point of intersection of the vertical 
line which corresponds to 98% with the horizontal line which corresponds 
to 18 shots (point small b in Figure 160). 

After such calculations have been performed for various values 
of P. and the corresponding points of intersection of vertical and 

horizontal lines have been found, we obtain a number of points. 
Connecting all these points in a smooth curve, we obtain curve OA., 

which graphically shows the dependence on the necessary number of 
shots on the given probability of destroying the target. In Figure 
160, curve 0A? has been constructed in the same manner with a hit 

probability p = 0.1 and curve 0A_ with a hit probability p = 0, 05, 

On the basis of an analyses of the curves which have been 
obtained, the conclusion may be drawn concerning what the reliability 
of firing should be with consideration of satisfaction of the requirement 
for efficiency in the expenditure of ammunition. Obviously, the firing 
can be considered sufficiently reliable if the probability of destroying 
the target is close to 90%. It is inexpedient to set probabilities of 
destroying a target which are extremely close to 100% since, in this 
case, a very large increase in the expenditure of ammunition is required. 
Thus, for example, the curves show the following: in order to increase 
the probability of destroying a target from 90% to 98%, it is necessary 
to increase the number of rounds for firing by approximately two-fold. 
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2.  The Mdihematical Expectancy of the Number of Hits as a Measure of 
Eff ic iency in Fi ring 

It is known that with one test the mathematical expectancy of the 
occurrence number of an event is numerically equal to the probability 
of this event (.see Chapter VIII). 

As applicable to firing, we record this expression as follows: 

»j = P. 

where    p   is  the  probability of a hit; 
.1     is  the mathematical  expectancy of the number of hits with one shot, 

Ihus,   for example,   if the probability of a hit p = 0.4,  the mathe- 
matical  expectancy of the number of hits with one shot  a.   = 0.4 hits. 

If the probability of a hit p,  consequently, a, does not change 

from shot  to  shot,   the mathematical  expectancy of the number of hits 
with n shots   is determined from formula  (58): 

a    = np = n* a, ; n        r 1 

where n is the number of shots; 
a  is the mathematical expectancy of the number of hits with n shots. 

Example.  Firing will be conducted from a mortar against an adjusted 
target which occupies a certain area.  Determine the mathematical expec- 
tancy of the number of hits on the target with 10 rounds if it is known 
that a = p = 0.2 hits. 

Solut ion. 

a = n- a = 10- 0.2 = 2 hits, 
n     1 

This signifies the following: when firing in series of 10 rounds 
each, we can have a different number of hits in each series but, with 
a large number of such firings it turns out that there will be 2 hits on 
the average for each 10 rounds. 

The mathematical expectancy of the number of hits is the average 
number of hits which can be obtained if we repeat the firing a large 
number of times under identical conditions. 
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Formula (58) is applicable for determining the mathematical ex- 
pectancy of the number of target hits when firing by single rounds as 
well as by bursts (vollys) under the condition where the probability 
of a hit p does not change from round to round. 

When firing in bursts, when the probability of a hit by the first 
and subsequent bullets differs, the mathematical expectancy of the num- 
ber of hits can be determined from the formula: 

a = n 'p, ♦ n . 'p . , (88) n   1 rl   subs ^subs' v ' 

where    n. is the first bullet; 

p. is the probability of a hit by each of the first bullets; 

n ,   is the number of subsequent bullets; 

p .   is the probability of a hit for each of the subsequent bullets, 

Example. Determine the mathematical expectancy of the number of hits 
when firing in three bursts if the overall number of all rounds equals 12 
and the probability of a hit for each first bullet p. =0.2 and for each 

subseq ,.it bullet p .  =0.1. 

Solution: 

a = 3-0.2 + 9*0.1 = 0.6 + 0.9 = 1.5 hits, n 

From expression (58) we obtain: 

„ = fi = fl. (89) 
«i.     P 

From this formula, we can find the average number of rounds to ob- 
tain a given number of target hits. 

Example. Firing is conducted from a mortar against an adjusted target 
which occupies a certain area.  The hit probability p = 0.4.  Two target 
hit are required to accomplish the following mission. 

We assume that the firer has the opportunity to observe the results 
of each round (firing is conducted by deliberate fire) and to cease fire 
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immediately as soon as 2 hits are obtained.  In this case, it is necessary 
to determine the average number of rounds to obtain 2 hits. 

In solving the problem using formula (89), we obtain 

a.   2 
" = y = -jj^j = J rounds. 

I'his should be understood as follows:  when firing under the given 
conditions (with p = 0.4 and the availability of the opportunity to 
observe the result of each round), in some cases it is necessary to fire 
less than 5 rounds to obtain 2 hits and in some cases more than 5 rounds; 
in the average calculation it turns out that, on the average, 5 rounds 
are required for each 2 hits. 

let us compare two firings, the first of which is performed under 
conditions where a. = p = 0.5 and the second performed under conditions 

where a. = p = Ü.2. 

let us assume that the firer has the opportunity to observe the 
results of each round and 2 hits are required to accomplish the fire 
mission.  Then, the average number of rounds for the accomplishment of 
the firing mission in the first firing 

o,5 ~ 4 b" rsts, 

and in the  second firing 

" " " (j ^ rounds. 

Consequently, the greater the mathematical expectancy of the number of 
hits with one round, the fewer the number of rounds required for the accom- 
plishment   of the  fire mission and the more efficient will the firing be. 

lluis,   the mathematical expectancy of the number of hits permits 
judging how efficient one firing or another firing is. 

When firing from automatic weapons,   it is important to know the 
average number of bursts for the accomplishment of one firing mission 
or another. 
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Let us assume that firing is conducted in bursts of k rounds and 
the probability of destroying the target (the probability of at least 
one hit) does not change from burst to burst. The firer has the op- 
portunity to observe the results of the firing after each burst and 
to stop firing immediately as soon as the target is destroyed. 

If the probability of destroying a target when firing a burst of 
k rounds is less than 100%, instances may occur where the target will 
be destroyed with the first, second, third, etc., bursts of rounds 
but, with a large number of firings, an average of s bursts is required 
to destroy the target. 

It is known that when firing with single rounds the average number 
of shots to obtain one hit is 

where a. = p. 

Similar to this, the average number of bursts to destroy the target 
one time (with at least one bullet) equals 1 (unity) divided by the prob- 
ability of destroying the target when firing with 1 burst, i.e.: 

S =3 
1 (90) 

(burst) 

Example. The probability of a hit p = 0.2.  Firing will be conducted 
in bursts of four rounds each (k = 4). Determine the average number of 
bursts to destroy the target with at least one bullet. 

So Iu t i on. 

burst: 
1)    We determine the probability of destroying the target with one 

'rru      ,,  =  1  -   (1   -  p)     =  1  -   (1  -  0.2)    =1-0.8 I (burst) ^        r* v / 
= 0.59. 

1  - 0.41 = 

2)    We determine the average number of bursts to destroy the target 

s ~ '/>,       "ns'l ~ '^   bursts. 
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Knowing the average number of bursts to destroy the target and the 
number of rounds in each burst k,   it   is easy to determine the average 
number of rounds  from formula   (87): 

s-k. 

According  to the conditions of the preceding example,   the  average 
number of rounds 

n = s* k =  1.7« 4 = 6.8 bursts, 

The formula for the average  number of rounds when firing  in bursts 
can be generalized,  for which  it   is  necessary to substitute the value 
s  taken from expression  (90)  in expression  (87).    Then we obtain: 

' I(O'I) 

* (91) 

Example.     Firing will be conducted in bursts  (salvoes)  of 6 rounds 
each.     The probability of destroying a target when firing with one burst 
PJJ-, s   = 0.40.    Determine the average number of rounds to destroy the 

target. 

Solut ion, 

,-     * 6       ,- 
" -  'it      - - öin - '•'   rounds. 

3.     Simplified  Methods for  Determining  the  Reliability of  Firing and   the 
Necessary  Number of Rounds When   Firing  With a Given  Probability of 
Destroying   the Target. 

Let  us  assume that the  probability of a hit p does not  change from 
round  to round.     In this,   let us  consider how the probability of des- 
troying  a  target  changes depending on the  number of rounds and,   conse- 
quently,  on  the mathematical  expectancy of the number of target hits. 
lor this,   let  us  take three cases of firing with various numbers of rounds 
if the  hit  probability p  in all   three cases   is the same and equals  0.1 
or ini. 
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First case. Five shots are fired at a target. 

The mathematical expectancy of the number of target hits 

a = na. = 5* 0.1 = 0.5 hits, 
n    1 

The probability of destroying the target 

P = 1 - (1 - p)n = 1 - (1 - 0.1)5 = 1 - 0.95 = 1 - 0.59 = 0.41, or 41%. 

Second case. Ten rounds are fired against a target. 

a = 10'0.1 = 1 hit. 
n 

P = 1 - (1 - 0.1)10 = 1 - 0.910 = 1 - 0.348 = 0.652, or 65.2%. 

Third case. Twenty rounds are fired at a target, 

a = 20- 0.1 = 2 hits. 
n 

P = 1 (1 - 0.1)20 = 1 - 0.920 = 1 - 0.122 = 0.878, or 87.8%. 

From the results of the computations it can be seen that the prob- 
ability of destroying the target is increased with an increase in the 
mathematical expectancy of the number of hits. However, the probability 
of destroying the target does not change directly proportionally to the 
mathematical expectancy of the number of target hits.  As a matter of fact, 
with a = 0.5 hits, P, = 0.41; with a 2-fold increase in a , P. increases 

approximately 1.5-fold; with a 4-fold increase in a , P. increases 

approximately 2-fold. 

Now, let us consider how the probability of destroying the target 
changes depending on the hit probability p under the conditions where the 
mathematical expectancy of the number of target hits remains constant. 
For this, we take two cases of firing with different values for a but 

with various target hit probabilities. 
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First case.     Forty rounds are fired at a target.    Determine the 
probability of destroying the target if the hit probability p = 0.05. 

The mathematical expectancy of the number of target hits 

a    = 40' 0.05 = 2 hits, 
n 

The probability of destroying the target 

Pj = 1 - (1 - 0.05)40 - 1 - 0.9540 = 1 - 0.129 = 0.871. or 87.1%. 

Second case. Twenty rounds will be fired against a target. Deter- 
mine the probability of destroying the target if the hit probability p = 
= 0.1. 

P1 = i - (i - o.ir 

a = 20* 0.1 = 2 hits, 
n 

1 - 0.920 = 1 - 0.122 = 0.878, or 87. 

The results of the computations show that in the first case as well 
as in the second case, the mathematical expectancy of the number of target 
hits equals 2 hits. However, the probability of destroying the target in 
the first case equals 87.1% and in the second case 87.8%. This means that 
the probability of destroying the target also depends on the value of the 
probability of a target hit. 

For comparison. Table 18 indicates the values of probability of des- 
troying a target depending on the hit probability and on the mathematical 
expectancy on the number of target hits. 

TABLE 18 

Hit prob- 
.ibihty p 

o.DI 
iV i; 
0,0.', 
II 10 
fijil 
II„;I) 
o.H 
ii.;ii 
(1 Ml 

Mathematical expectancy of the number of target hits an 
7 - -r        j       i       ■-—r        ,       j        i 

Value of the probability of destroying the target Pj 

iMil," o,st-„s O.'.i.VJ 0,US.1 0,991 
0,), ;N OsdS O.'i'iJ 0,1)83 0,994 
IM . t'l ;    I»,*;] o,;c.;i n,'.m 0,991 
'V'- > -' MN7S 0,'l,',S 0,'.iS() 0,995 
D.ii, J n.V'.i OM;:, (V.'S8 0,990 
n ,"i. 1 1','iiW II;I;.> O.'.i'Jl 0,997 
ii/Zl 11,'iJi O.'.CS o<.m 0,998 
(',7..i) j         n.'.MS O.'.iSI (K.i'Xt 0,999 
".''.' • 

1 
0;i'ii) li,'.''.'« O,«"'" 
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It can be seen from the table that,   from the quantitative aspect, 
the difference in probabilities of destroying the target for various 
values of hit probabilities up to 0.3 is not great.    Therefore,   it makes 
sense to ignore this difference and arbitrarily consider that in all 
cases where the hit probability p is less than 0.3, the probability of 
destroying the target will depend only on the mathematical expectancy 
of the number of target hits.    Such an assumption provides the oppor- 
tunity to simplify calculations in determining the probability of 
destroying the target and the expenditure of ammunition, using the pre- 
pared table of the relationship between the probability of destroying 
the target and the mathematical expectancy of the number of target 
hits in this case.     Such a table has been calculated for a hit prob- 
ability p = 0.1   (see appendix, Table 3);  therefore, in using it we 
will commit certain errors if the hit probability p is greater or less 
than 0.1. 

Thus,  for example,  from Table 18 we find that with a hit probability 
of p = 0.3 the mathematical expectancy of the number of hits a    = 1 

corresponds to a probability of destroying the target of P    = 0.700, 

or 70%.     In solving this problem from Table 3   (see appendix), we obtain 
P.  = 0.652 or 65.2%,   in this case committing an error in the lesser 

direction which equals 4.8% which, with respect to the true result 
(to 70%) comprises 7%   (rounded off).    Such an error can be considered 
as maximum since it can be seen from Table 18 that with an increase in 
the mathematical expectancy of the number of hits the errors in values 
of P.  become less and less.    Thus,  for example,  with p = 0.3,  P.   = 0.972 

corresponds to the mathematical expectancy of the number of hits a    =3. 

In solving this same problem using Table 3   (see appendix),  we obtain 
P.  = 0.958, committing a relative error in this which equals -1.4%. 

If, under the same conditions  (p = 0.3;  a    = 3)   the inverse problem is 

solved—the determination of the required number of rounds--the relative 
error will equal  +1.4%. 

By means of specific examples,  let us solve a number of typical 
problems using Table 3   (see appendix). 

Example   I.    The probability of hitting the target p = 0.12.    Deter- 
mine the probabilicy of destroying the target  with 15 rounds. 

Solution.     1)    We determine the mathematical expectancy of the num- 
ber of target hits; 

a    = np n       r 15*0.12 =  1.8 hits. 
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2)    From Table 3,  we find that with a    = 1.8 the probability of 

destroying the target  P    =  0.850, or 85%. 

Example 2.    The probability of hitting the target p = 0.08. 
Determine the average expenditure of rounds for a probability of des- 
troying the target P.   = 0.90.  or 90%. 

Solution.    From Table 3,  we find that the probability of destroying 
the target P.   = 0.90  (0.900)  corresponds to a    = 2.18 hits.    In other 

words, to obtain a probability of destroying the target equal to 0.90, 
it   is necessary to fire a number of rounds so that the average number 
of target hits equals  2.18 hits. 

Then we determine the average expenditure of rounds: 

2.1 S 
a,  '   O.US rounds. 

Example 3-     Fire  is conducted from a company's machineguns in bursts 
of 16 rounds each.    The hit probability p = 0.03.    The firer had the 
opportunity to observe the result of each burst and to cease firing as 
soon as the target  is destroyed.    Determine the average number of bursts 
and the average number of rounds to accomplish the firing mission. 

Solution.     1)    We determine the mathematical expectancy of the num- 
ber of target hits when firing with one burst of 16 rounds: 

a    = na    = 16*0.03 = 0.48 hits, 
n 1 

2) From Table 3,  we  find that with a    = 0.48 hits the probability of 

destroying the target   P.   =  0.397. 

3) We determine the average number of bursts: 

1 1 _ TT«?? * 2>5 bursts. 
'(burst) 

0,397 

4)    Wc determine the average number of rounds; 

n - sk = 2,,i-16 = 40 rounds. 
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k.    The Basic Conditions on Which  the  Expenditure of Rounds Depends  For 
Destroying   Individual  Targets 

The overall expenditure of rounds foi  the accomplishment of firing 
missions depends on many conditions and,  first, on the opportunity to 
observe the results of the firing and to make timely necessary changes 
in the sight settings with the task of finding those settings at which 
the destruction of the target is most probable.    The better the conditions 
for observing the fall of the bullet,  the more precisely and with a  lesser 
expenditure of rounds will the required sight setting be found and the 
fewer will be the number of rounds required for fire for effect on the 
target. 

Subsequently, we will consider the expenditure of rounds to des- 
troy the targets, considering that the sight settings are correct and 
do not require change in the process of firing. 

Let us consider the expenditure of rounds which is necessary to 
destroy individual targets under conditions where the firer has the 
opportunity to observe the results of each round (or each burst)  and, 
in destroying the target, to immediately transfer fire to another target. 

Let us assume that firing is condicted with individual  rounds  (from 
a carbine)  against individual targets at the same distance.    Consequently, 
the hit probability p when firing at each target and with each round has 
the same value. 

Under this condition, the expenditure of rounds for one target  is 
calculated from formula (89)  for the average number of rounds to obtain 
one hit. 

Example.    The hit probability p = 0.2. 

a1  = p = 0.2. 

The average number of rounds to obtain one hit: 

n = 1/a. = 1/0.2 = 5 rounds. 

The correctness of such a calculation of the cartridges under given 
conditions can be justified by the following reasoning.    With a  large 
number of firings, there will be cases where it is necessary to fire 
more and less than 5 rounds to obtain 1  hit but, on the average,  we will 
obtain 1 hit from each 5 rounds.    Since,  when one hit is obtained in the 
next target firing on it is stopped,  there will be only one hit   in each 
destroyed target.     From this,  it follows that there will be one target 
destroyed on the average for each 5 rounds or, which is the same thing, 
5 rounds are required on the average to destroy one target. 
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Calculated   in this  way are the tables  in the manuals on firing which 
indicate the number of rounds required to destroy individual targets. 

Let us now assume that firing is conducted from an automatic weapon 
in bursts. The firer had the opportunity of observe the results of each 
burst and, with the destruction of the next target, to immediately shift 
tire to another target. The expenditure of rounds on one target in this 
case is calculated using formula (91) for the average number of rounds 
when firing by bursts. 

Let us investigate the dependence on the expenditure of rounds on 
the length of the bursts and let us draw some conclusions concerning what 
the length of the bursts should be with consideration of various firing 
condit ions. 

Let us solve  the following problem.     Firing  is conducted from a 
company machinegun.    The hit probability p = 0.1.    Determine the average 
number of bursts and the average number of rounds  if the length of each 
burst  k  = 3 rounds. 

The probability of destroying a target when firing one bursts of k 
rounds 

/J| (bum)1 ~ (1 -A* = 1 - (1-0,1)' - 1-.0.9' -. 1 -0,729     0.271. 

The average number of bursts 

5 — u  ■- ~ n ,-. i 3.7    bursts, 
''(burst) u'-'1 

The average  number of rounds 

n =  s'k  =  3.7'3 * 11  rounds. 

This means the following:    when firing  in bursts of 3 rounds each the 
target may be destroyed with the first,   second,  third,  fourth,  etc.,  burst 
but, with a  large  number of such firings,   there are 3.7 bursts on the aver- 
ago for each target  destroyed;  or when  firing  in bursts of 3 rounds each, 
the overall  expenditure of rounds for 1   target may be greater or less than 
11  but with a   large number of such firings there will be an average of 11 
rounds  for each  target  destroyed. 
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In a similar manner, we determine the values of s and n for other 
values of k (with p = 0.1) and we reduce them to a table (Table 19). 

TABLE 19 

average number average number of 
Lengthof burst, k   of bursts, s rounds, n 

1 
3 
5 
8 

10 
15 
20 
25 

10 10 
3.7 11 
2.4 12 
1.75 14 
1,5 15 
1,26 19 
1,14 23 
1,08 27 

The following can be seen from the data in Table 19: 

1. The average number of rounds required to destroy the target 
increases with an increase in the length of the burst.    Following from 
this is the conclusion that the longer the length of the burst, the 
less efficient will the firing be; most efficient  if firing within the 
individual rounds. 

2. The average number of bursts  is reduced with an increase in 
the length of the burst. 

Let us consider how this is reflected for the time necessary to 
accomplish firing missions.    For this, we will compare  two firings at 
which the first is conducted in bursts of 3 rounds and the second in 
bursts of 8 rounds each.    To simplify calculations,  the values obtained 
for s for the first and second firings are rounded off to the next 
highest whole number.    Then we obtain:    when firing in bursts of 3 
rounds each s = 4; n = 4,3 = 12 rounds;  when firing in butsts of 8 
rounds each s = 2;n = 2'8 = 16 rounds. 

Let us assume that the first as well as the second firings are 
conducted with intervals within the bursts which equal   2  seconds and 
the technical rate of fire equals 10 rounds per second.    Then,  7.2 
seconds are required for the first  firing  (2*3 ♦ 0.1*12 = 7.2)  and 
3.6 seconds are required for the  second firing  (2* 1  + 0.1" 16 = 3.6). 
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l-rom this,  the conclusion follows that the longer the  length of 
the burst,   the less time is required to accomplish the fire mission. 

Thus,  we come to a general conclusion:     the greater the length of 
the hurst,   the greater the number of rounds required but the less the 
amount  of time  required to accomplish the firing mission. 

What  should the  length of the burst be with consideration of the 
most expedient  satisfaction of requirements for reliability and efficiency 
of firing?     It  is difficult to provide a general answer to such a ques- 
tion since,   in actual combat,  extremely varied conditions may develop. 

There may be cases where the time  for the accomplishment of the 
firing mission has  secondary significance and the availability of ammuni- 
tion  is  limited.    Obviously,  in such cases it  is necessary to economize 
on rounds and conduct the firing  in short bursts.    But  it happens more 
often that the time for the accomplishment of the firing mission has 
decisive significance.    In such cases,   in order to assure sufficient 
reliability  in firing with the least expenditure of time it  is necessary 
to waive some  savings  in rounds and  increase the length of the bursts. 

The nature of the target also affects the length of the burst. 
Let us assume that  a target appeared close to cover and may take cover 
at  any moment.    Repeated firing at  such a target is impossible;   there- 
fore,   firing  should be conducted in one burst which assures sufficient 
reliability  in the destruction of the target. 

However varied the conditions of a combat  situation may be,   some 
general principles concerning the  length of the burst of rounds can be 
established  nevertheless. 

The  following can be seen from Table 19:     if, when firing with in- 
dividual  rounds,  an average of 10 individual  rounds are required  to des- 
troy a target   (with p = Ü.1J,  then when firing  in bursts of 3 rounds each 
the average expenditure of rounds   increases  insignificantly  (only by 1 
round)  and the average number of bursts  is reduced to 3.7,   i.e.,  almost 
3-told.     With an  increase in the length of the burst from 3 to  10 rounds, 
the average  expenditure of rounds   increases  only 1.4 times   (15:11  * 1.4), 
and  the  average number of bursts  is  reduced  2.5-fold  (3.7:1.5 * 2.5). 
I rom this,  we can draw the conclusion that with p = 0.1, firing  in bursts 
of  less  than  10 rounds  is  inexpedient  since much time is required to accom- 
plish the firing mission.    Thus,  the minimum burst under such conditions 
(with p =  0.1)   can be considered to be  10 rounds,  i.e., that burst in 
which  the mathematical expectancy of the number of hits equals   1  hit 
(a    =  10"U.l  =  1).     Such a conclusion may be spread over any firing for 

any hit probability.    Thus,  for example,   if firing is conducted from a 
light  machinegun and the hit probability p =  0.2,  then a    is equal  to  1 

hit,  will  be  3  rounds;  consequently,   the minimum burst  is  the burst  of 
;>  rounds. 
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Now, let us consider how the calculations of rounds should be per- 
formed to destroy targets under the condition where observations during 
firing is hindered.     Let us assume that firing is conducted by individual 
rounds against identical  targets and the hit probability p when firing 
at each target and with each round has the same value.    Since observation 
of the result pf each round is impossible,  the firer cannot stop firing 
immediately as soon as one next target is destroyed.    Obviously in this 
case it is necessary to fire some certain number of rounds at each target. 

In considering observed firing by individual  rounds,  we establish that 
the average expenditure of rounds on 1 target  in this case is calculated 
using formula  (89).    Thus,   for example,  if the hit  probability p = 0.2, 
to obtain one hit the average number of rounds n =  1/0.2 = 5; consequently, 
an average of 5 rounds is required for one target. 

Let us consider what happens if we fire 5 rounds at  each target during 
firing without having the opportunity to observe the results of the firing. 

With the 5 rounds at one target and with p = 0.2,  the probability of 
destroying the target 

Pj = 1  -  (1  - 0.2)     = 1 0.8    = 1  -  0.328  =  0.672,   or 67^ 

(rounded off). 

Since 5 rounds will be fired at each target,  with a large number of 
such firings it turns out that an average of only 67, or 67% will be des- 
troyed out of each 100 targets fired upon.    Obviously, under these condi- 
tions   (when observation of the result of each round  is impossible),  5 
rounds for each target does not assuie a sufficient  reliability of firing. 

It was established above that a firing should be considered sufficiently 
reliable when the probability of destroying the target  is close to 90%. 
Let us determine the number of rounds for each target which are necessary 
so that the hit probability is equal to 90%. 

From Table 3 of the appendix,  we find that the probability of destroying 
the target P.  = 0.90 corresponds to a mathematical expectancy of the number 

of tarjet hits a    =2.18 then 

_2,I8 _ ,. 
" — 02 ~ ''   rounds. 

We come to approximately the same result in solving the problem using 
formula (55), 
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This is now the calculation for the expenditure of rounds on one 
target   is performed when the firer does not have the opportunity to 
observe the results of each round and stop firing as soon as the target 
is destroyed. 

Let us compare the results of the calculations of the number of 
rounds  for one target  in the two cases considered  (with p = 0.2).    Let 
us assume that  in both cases firing is conducted on 20 identical  targets. 

In the  first case  (when observation of the result of each round 
is possible)  an average of 100 rounds are required to destroy the 20 
targets   (5* 20 =  100). 

Since a = p = 0.2, the mathematical expectancy of the number of 

hits vith 100 rounds a = 100*0.2 = 20 hits. Altogether there are 20 

targets and there will be only 1  hit in each of them. 

In the  second case  (where observation of the result of each round 
is  impossible),  220 rounds are required to destroy 18 targets  (90%) 
(11- 20 =  220). 

In this case, a.  = p = 0.2 then the mathematical expectancy of the 

number of hits with 220 rounds a = 220*0.2 ■ 44 hits, i.e., 2.2 times 
n 

greater than in the first case.    Consequently, there will be instances 
where some targets will be destroyed by 2, 3 or more bullets. 

From this comparison we can see how much more efficient firing is 
in the  first  case than in the second and the great significance which 
is had by thorough and skillful observation when firing at  individual 
targets. 

For automatic fire,  when the probability of hit does not change 
from round to round,  the number of rounds for one target  is calculated 
in the  same way as for individual  rounds with the task of destroying 
the target with a probability close to 90%.    Since observation of the 
result of the  firing is impossible,  there are no bases for conducting 
firing  in several bursts and,   if the technical capabilities for the 
given type of weapon permit,   firing should be conducted by bursts with 
the complete number of rounds required to obtain a given probability 
of destroying the target.    Such firing  is considered more reliable with 
respect  to destroying the target   (the target does not manage to get 
away under cover) and more efficient for time. 

5.     Reliability and Efficiency of  Firing With Dispersion Frontally 
Against  Broad Group Targets 

The  reliability of firing against a group target is determined 
by the number or percent of figures destroyed which make up a given 

-304- 



target.    Thus,  for example,   it is considered that the  fire to destroy 
a group target  is conducted with the mission of destroying up to 80% 
of the figures and fire for neutralization—up to 50% of the figures. 

In accomplishing a firing mission the firer should have an impres- 
sion of what the degree of destruction of a group target may be with 
the expenditure of one or another quantity of rounds and, conversely, 
having the mission of achieving one degree of destruction of the target 
or another,  the firer should know the required expenditure of rounds. 

Let us assume that a group target consists of figures which are 
identical in size and are disposed on a certain  line.     It is required 
to determine the number of figures  (in percent)   the destruction of 
which can be counted on if n rounds are fired against a given target 
with uniform artificial dispersion of the bullets along the entire 
line occupied by the figures. 

Let the probability of destroying one figure of a given target 
with n rounds equal  0.6 or 60%.    This means that   in 60 cases out of 
100 such firings,  the given figure will be destroyed by one or several 
bullets and in 40 cases this figure will not be destroyed. 

If a group target consists of 100 identical  figures and firing 
is conducted with uniform dispersion of the bullets over the entire 
group target, the probability of destroying each figure will be the 
same and will equal  60%.    Then there is justification to consider 
that with n rounds 60 figures will be destroyed and this comprises 
0.6 or 60% of the overall composition of the group target. 

Consequently,  the average expected percentage of destroyed figures 
in a group target with a given number of rounds  is numerically equal  to 
the probability of destroying one figure   (in percent)  with the same 
number of rounds. 

This means that  in order to determine the average expected percent 
of destruction of figures in a group target,   it  is  sufficient to deter- 
mine the probability of destroying one figure.    The obtained result, 
expressed in percent,  will also express the reliability of the firing. 

In order to determine the probability of destroying one figure, 
it   is first necessary to know the probability of hitting this figure. 
The probability of hitting one figure in a broad group target is deter- 
mined in a manner similar to the way the probability of hitting a single 
target is determined when firing with artificial   frontal dispersion,   i.e. 
from formula (83): 

'       2y.0p' 
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Finding p and knowing the number of rounds n for the firing, it is 
easy to determine the average expected number of hits in the figure: 

an = np. 

and then, from Table 3 (see appendix) to find which probability of des- 
troying the figure (which percent of destroyed figures) corresponds to 
the value of a which has been found.  If we substitute the value of p 

n r 

in expression a = np, we obtain the formula for determining a when 

firing with frontal dispersion: 

"» ' 2y.<t>p • (92) 

Example. Firing is conducted from a heavy machinegun with heavy 
bullet with fronal dispersion against head-shoulder-chest figure dis- 
posed on a front of 30 m. The range of fire is 500 m. 

Determine the average expected percentage of figures destroyed if 
100 rounds are expended against them and the average trajectory passes 
through the middle of the target. 

Solution. From the firing tables we find Vv (increased 1.75 times) 
=> 0.19' 1.75 * 0.33 m; 

2y = 0.50 m; y = 0.50:2 = 0.25 m;  , 
s (the area of the figure) = 0.18 m"; 
n = 100 rounds; 
fp =(dispersion frontage) = 30 m. 

We determine: 

2y- 'I'l' ",  ''••>'' 

From Table 3, we find that the probability of destroying one 
figure with a = 0.47 equals 0.39 or 39%. Consequently, the avera 

expected percentage of figures destroyed equals 39%. 
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We note that with the given method of calculating the probability 
of destroying a group target,  the relative expected number of destroyed 
figures does not depend on the density of the group target.    However,  the 
absolute expected number of destroyed figures, of course, will be different 
depending on the size of the  intervals between the figures of the group 
target along the front.    Thus,  under the conditions of the preceding example, 
with the disposition of 10 figures on a given width of front we should 
expect the destruction of 4 figures and with the disposition of 5 figures 
we should expect the destruction of 2 figures. 

We have considered a method for determining the degree of destruction 
of a group target with various expenditures of rounds.     For a theoretical 
justification of the firing rules,  it  is necessary to solve the inverse 
problem,  i.e., to determine the required expenditure of rounds to destroy 
one target or another with a given degree of destruction. 

We determine the value of n from formula  (92).    The formula to deter- 
mine the number of rounds required to destroy a group target with a given 
degree of destruction will have the following form: 

Ptrs (93) 

where a is found from Table 3 (see appendix) in accordance with the given 

degree of destruction of the group target. 

Example. Firing is conducted from a heavy machinegun with a heavy 
bullet with frontal dispersion against running figures on a frontage of 
50 m. The range of fire is 900 m. The average trajectory passes through 
the center of the target. 

Determine the number of rounds required to destroy 50% of all figures. 

Solution. We find: 

a = 0.66 (from Table 3 of the appendix); 

Vv (increased 1.75 times) = 0.35« 1.75* 0.61 m; 
2y -  1.50 m; y = 1.50:2 = 0.75 m; 

s = 0.6 m ; 
«tp = 50 m. 

We determine: 

^-l'(;v)-*Q=*(l,23)« 0.593; 

a,r2v'Pp       0,f,6.1,5-50       , ,. 
" = -%-s    ~    .U.3.0.0- = H0   rounds- 
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The methods for determining the degree of destruction of a group 
target and the number of rounds to accomplish firing missions which are 
presented above have the merit that they are exptremely simple.    However, 
they provide sufficiently precise results only under the condition where 
the distance to  the target  consisting of head  figures  is at  least  200 m, 
of head-shoulder-chest figures--at  least 300 m,  torso figures--at  least 
400 m, and running and full  length figures--at  least 500 m.    With a 
reduction in the distance to the target   (in comparison with those  in- 
dicated), the errors in sol/ing such problems by the methods considered 
above are increased and may be extremely significant. 

In such cases, we should employ another method for solving these 
problems without  the use of Table 3 and which provides a more precise 
result1. 

With the uniform artificial  frontal dispersion of the bullets, 
each subsequent  round  is  fired after the displacement of the machinegun 
barrel  in the horizontal  plane by approximately the  same angular values. 
If there was not artificial dispersion,  then in firing at a continuous 
panel we would obtain a row of holes with identical   intervals between 
them;  since natural dispersion is inevitable,  strictly speaking the 
disposition of the holes  in the panel will not be uniform.    Therefore, 
each bullet obtains a certain deviation relative to  its center of dis- 
persion. 

Figure  161.     Centers of  Dispersion of  Bullets When Firing with 
Artificial   Frontal   Dispersion. 

Figure 101  shows the centers of dispersion  (C. ,  C-, C,,   ...),  which 

correspond to the directions of the machinegun barrel  at the moment of 
the first,  second,  third etc., rounds with identical   intervals between 
them.    The area of dispersion within the limits of which the hole may 
be  found  is designated for  each round. 

As was stated above,   in order to determine the average expected 
percentage of destroyed figures in a group target,   it   is necessary to 

'This method has been suggested by Major K. Tsvetayev.    See the journal 
"Voyennyy Vestnik,"  (Mil itary Herald), No.  9,   1956. 
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calculate the probability of destroying one such figure {in  percent); 
the obtained result will also show the average expected percent of 
destroyed figures. 

Using this principle, let us solve the following problem (without 
the use of Table 3X.  Firing is conducted from a heavy machinegun with 
cartridges with a light bullet with frontal dispersion against running 
figures at a distance of 200 m. Determine the probability of destroying 
one such figure and, consequently, the average expected percentage of 
destroyed figures if 20 rounds are expended on each 10 m of front and 
the axis of dispersion passes through the middle of all figures. 

We record some of the data required for the solution of the problem, 
Vv = Vb * 0.12 m (increased 1.75 times). The height of the target 2y = 
= 1.5 m. The width of the target 2z = 0.5 m.  Since there 2 bullets for 
each meter of target front, the intervals between C., C. 

equal 0.5 m. 
'3' will 

Z,'0.7S» -* 

Figure 162. Determination of the Probability of Destroying a 
Target (Best Case). 

Figure 162 shows at an arbitrary scale the disposition of the cen- 
ters of dispersion with the first, second, third, and fourth rounds with 
intervals of 0.5 m and one of the possible positions with one figure 
when its center coincides with the center of dispersion for one of the 
rounds (C»). 

We determine the probability of destroying one figure with its 
given position. As can be seen from the drawing, the figure (target) 
may be destroyed by the first, second, and third bullets. We determine 
the probability of hitting (probability of its destruction) with the 
first and then with the second and third round.  Since the probability 
of hitting a strip in accordance with the target height p2 »1, the 

probability of hitting the figure equals the probability of hitting a 
strip equal to the width of this figure. 
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The probability of hitting with the  first bullet 

'.='^-W£) ~*m-u*im) -*©]- 
(<!• (6.25)-* (2.08)] (1,C0   0,839) =0,08. 

I'he probability of hitting with the  second bullet 

P: -Pu = * {%) = * (S^) ='"(2.08) - 0,839 ^0.84. 

The probability of hitting with the third bullet 

p,  =  0.08  (the same as with the first bullet). 

The probability of destroying the figure with at  least one bullet 
is determined: 

p~ 1-0-/»,) (1-^) (1 -/*,) = i-(i _o.08) (1-0,84) (1 -0,08) 
-- 1   - (0.02-0,16 0.92) = I -0.135 =0.805,   or    86,5%. 

Wc have taken the most advantageous case where the center of the 
figure coincides with the center of dispersion for one of the rounds. 

Figure 163 shows a case where the center of the figure was within 
the gap between the centers of dispersion for two adjacent bullets. We 
determine the probability of destroying a figure with its given position. 
Without any calculations it can be seen that the probability of hitting 
the figure with the second and third bullet? is the same and equals 
approximately 0.5. The probability of destroying the target with even 
one bullet with two rounds 

P1 = 1 - (1 - 0.5)2 = 1 - 0.25 = 0.75, or 75%. 

Thus, the probability of destroying the figure in the best case 
equals 0.865 and in the worst case, 0.750. On the average, it can be 
considered that the probability of destroying the figure 

P. = (0.865 ■•• 0.750) :2 = 0.807, or 80.7%. 
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Figure   163.    Determination of the  Probability of Destroying a 
Target   (Worst Case). 

For a comparison,   let us solve this same problem using Table 3. 

According to the conditions for the problem, there are 2 bullets 
per meter of target front; consequently, there is 1 hit on the average 
for the width of one figure (O.S m).    Since all the bullets are within 
the limits of the strip equal to the height of the target, the mathema- 
tical expectancy of the number of hits in one figure a    =1.    From 

Table 3 we find that with a    = 1 the probability of destroying one 

figure P.  = 65%. 

As can be seen from this example,  the method for determining the 
probability of destroying a target  (the average expected percentage of 
destroyed figures) provides a clearly understated result using Table 3. 
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CHAPTER XIII 

THE PROBABILITY OF HITTING AND DESTROYING TARGETS WITH CONSIDERATION OF 
POSSIBLE ERRORS WHICH ACCOMPANY FIRING 

I.  Determining the Hit Probability 

When firing under actual conditions, the average trajectory will al- 
ways have some deviation relative to the center of the target. The causes 
of this are random errors which accompany the firing. They include:  errors 
in determining the distance to the target, errors in determining corrections 
for meteorological conditions, errors in setting the sights, errors in 
aiming and others.  Some errors are the reason for deviations in the average 
trajectory relative to the target for height (for distance), others — for 
lateral direction and some of them--for both height and lateral direction 
simultaneously. 

We considered above the method for determining the probability of a 
hit which are used with the matching of the center of the trajectory with 
the center of the target as well as with any given deviation of it.  But 
most often, prior to firing we cannot know what this deviation will be 
since we cannot know the size of the errors which will be committed in 
the given firing.  In such cases, the hit probability is determined with 
consideration of the law of errors which accompany the given firing. 

The majority of errors which accompany the firing follow the normal 
law; therefore, as a result of the simultaneous action of the 2 systems 
of vectorial errors which have different directions (for height and for 
lateral direction), the deviation of the average trajectory will be 
distributed around the target in accordance with the law of elliptical 
error, i.e., irregularly, symmetrically, and bounded. 
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Let us assume that two identical targets have been set out at an 
unmeasured distance on two large panels. These targets are fired upon 
using sniper rifles with optical sights. 

Fire is conducted at the first target by one rifleman with the 
same sight settings which have been obtained as a result of the pre- 
paration of data. Altogether, 100 rounds will be fired against the 
first target and 100 holes will be obtained on the panel. 

•   ••  • * 

•     •    . . 

.1,1.   •     • 

• •.'.&$• : 
■ ••••.   . 

.    .   •    • 

first panel 
a 

second panel 
b 

Figure \6k.    Area of Dispersion: 
a, When the errors in the sight settings were constant for all rounds; 
b, When the errors had different values for each round. 

Fire is conducted at the second target by 100 riflemen, in which 
respect each of them accomplishes the firing mission independently, i.e., 
each rifleman independently detei'mines the distance to the target, con- 
siders the meteorological conditions, in accordance with this ser^  the 
sight and the drum for lateral correction, intending tw match  e   '•age 
trajectory :th the center of the target, and takes aim and  •. . J 

round. Thus, 100 rounds will be fired and 100 holes will oe  obt   ' in 
the panel for the second target, too. 
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Let us compare  the dispersion of the bullets  (holes)   in the  first 
and second panels   (Figure  164). 

The dispersion of the bullets obtained  in the first panel  is the 
result only of those causes which were presented at the start of Chapter 
X.    The deviation of the average trajectory relative to the center of the 
target  has a  random character since  it was obtained as a result of the 
interaction of random errors committed by the rifleman in determining the 
si^ht   settings.    However,  it  is a constant value for the entire given 
series of rounds. 

In firing at  the  second target,   in addition to those causes presented 
at the start of Chapter X, the dispersion of the bullets was also affected 
by other reasons — errors in determiuing the  setting the sights.     If,   in 
tiring at the first target, these errors were the same for all rounds,   in 
tiring at the second target they had different values for each round.    This 
also explains the fact that the ellipse of dispersion on the second panel 
turned out to be considerably greater than on the first panel. 

Let us assume that there are several  sources of errors which accompany 
the  firing and which cause deviations  in the average trajectory relative 
to the center of the target for height with mean errors a, b, c,  etc. 
If the tabular dispersion for height  is characterized by the value Vv, 
the amount of mean deviation for height for the total dispersion  (with con- 
sideration of the errors which accompany the firing) may be determined from 
the  formula for the addition of mean deviations of the normal  lav.    The 
mean deviation for height of the total dispersion ellipse: 

/?l = V/Vv1-|-rt2-|-b»+<:»; (94) 

i 7 

and exactly the same way the mean deviation for lateral direction: 

^i^VV^-l-^-f-b'+c». (95) 

As is known, with a large number of firings the average trajectories 
are distributed around the center of the target symmetrically. Therefore, 
in determining the probability of a hit with consideration of possible 
errors which accompany the firing, it can be considered that the center of 
the total ellipse of dispersion is always matched with the center of the 
target (see I-igure 164b). 
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In order to obtain the formula to determine the probability of a 
hit in individual targets with consideration of the errors, in formula 
(81) it is necessary to replace Vv and Vb respectively by the values R. 

and R, which have been found with consideration of the errors.    In this, 

we obtain: 

«=*/ y V*/- yvv*+'ä*+h*+c*j   [y Vb» + «*-). b* +C 
K. (96) 

Example.    Firing is conducted from a heavy machinegun with a light 
bullet against a head-shoulders-chest figure with sight setting 7. 

Determine the probability of a hit with consideration of the errors 
in determining distance, in considering the lateral wind, and aiming. 

The sizes of the errors are characterized by the following data: 

For height: 
Vv = 0.33 m. 

a is the mean error in determining the distance by eye, equal to 10% 
of the range or 70 m, which deflects the average trajectory for height 
by 0.91 m (70'es/1000 » 70'13/1000 * 0.91 m). 

b is the average error in aiming for height which equals 0,5 mils, 
which comprises 0.35 m. 

For lateral direction: 
Vb « 0.26 m. 

a, is the mean error in determining the corrections for lateral wind 

which equals the lateral deviation of the bullet under the effect of the 
wind with a velocity of 1 m/sec.    From the correction table we find:    when 
firing at 700 m the lateral correction for wind with a velocity of 2 m/sec 
equals 1.1 mils which is 0.77 m.    Then the mean error in the correction 
for lateral wind with a velocity of 1 m/sec equals 0.77:2 equals 0.38 m. 

b. is the mean error in aiming for lateral direction which equals 

0.25 mils and which is 0.18 m. 

Solution.   The height of the target 2y * 0.50 m; y = 0.50:2 = 25 m. 

The target width 2z « 0.50; z = 0.50:2 » 0.25 m. 

The shape coefficient of the target k = 0.72. 

-315- 



p=<l>  —-.-  — <1>'—         -      ].072 
ro,:l.t- + o/ji'- + o.r,-      l yo;W + 0,38- + 0,18»/ 

= * (j^) ip (crT ' ■0'72 = ^ (0.24)-*(0,51)-0.72 = 

= 0,129 ' :: ■•,   or   2,5%. 

Determining the Probability of Destroying Individual Targets, 
Effect of Errors on the Probability of Destruction 

The 

Let us consider the determination of the probability of destroying 
targets with consideration of the errors which accompany firing together 
with the question of how various errors affect the firing. 

The size of the mean error of each method of measurement or any 
action  (aiming, consideration of cross wind, and others)  is not constant 
and depends on the degree of training of the personnel.    The better 
trained of officers, sargeants and soldiers, the smaller will be the 
errors  in firing and the greater will be the reliability of firing. 

In order to establish the effect of various errors on the probability 
of destroying individual targets,  let us consider the table in which 2 
values of mean errors are presented for each measurement (action)  in 
firing:    minimum--for well trained soldiers and maximum--for those with 
little training (Table 20), 

TABLE 20 

Mean error 

Miniimim 
Maximum 

Errors which deflect the average trajectory 
For height 

iu    — 

Determin- ^ 
ation of oo" 
(Jistances 5~3 
in 5!) of I -E 
wnge    ,1  .5n 

I I   <~ 

s 
10 

o;< 
0,0 

-2S 

3Eu 
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10 

npBuei»- 
Him opy* 

WH«   K 
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iiowy rmio 
IB   tUC.) 

0,1 

0,2 

For lateral direction 

in P 
r  ■             ■ 

-2  C 

Ulli 
0,75 

1.5 

0,2 

0,-l 
0.1 
0,2 

Remarks,     it  is known that for anyone model of a weapon  the error 
in bringing  it  to normal shooting  is a systematic error (In some one 
direction by  the same amount).    Naturally, such an error (where necessary) 
can be considered ahead of time.    But  in this case, we are considering 
firing from a machinegun which was selected at random with only one 
(the first)   burst of  rounds.    With such a presentation of the  problem, 
the error  in bringing the weapon to normal  shooting can be considered a 
random value which characterizes some mean error. 
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In order to show the method of calculation,  let us investigate 
firing from a heavy machinegun at 600 m against a head-shoulders-chest 
target.    To simplify  the calculations,  we replace the area of the head- 
-shoulders-chest figure by the area of a square which is equal  in size 
to it with dimensions of 0.42  * 0.42 m,  i.e.,  we take the dimensions  of 
the target which are presented. 

Let us assume that there are no errors which reduce the possibility 
of destroying the target and the average trajectory is matched with the 
center of the target.     By methods which we know, we determine the number 
of rounds to obtain the given probability of destroying the target which 
is close to 1  (to 100%).    Let us assume that  it  is required to have a 
probability of destruction of the target P.   = 0.96  (96o<0 .     In solving 

the problem by the procedures considered earlier, we obtain the required 
number of rounds n =  15. 

Now we determine the probability of destroying the same target when 
firing a burst of 15 rounds but with consideration of the effect of all 
errors.    First,  let us consider the case where the mean error of each 
measurement is minimum. 

We find the value of the mean errors in a vertical plane for a range 
of 600 m (by the method presented earlier).    The errors for height: 

a - the mean error in determining the distance, equal to 8% D, dis- 
places the average trajectory 0.44 m above or below the center of the 
target; 

b - the mean error in aiming for height, equal to 0.3 mils, dis- 
places the average trajectory 0.18 m above or below the center of the 
target; 

c - the mean error in considering the temperature, equal to 5°, 
displaces the average trajectory 0.06 m above or oelow the center of 
the target; 

d - the mean error in bringing the machinegun to normal shooting 
equal to 0.1 mils, displaces the average trajectory 0.06 m above or 
below the center of the target. 

The total mean error for height 

t\^\/a-T6rVö2~+ 2' ^VOM- +0A!*-'\-V,lH'>-  MM.Hr =0,48   M. 
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1 
lirror in lateral direction: 

a.   -  the mean error in considering the cross wind velocity,  equal 

to 0.75 m/sec,   displaces the average  trajectory Ü.2Ü m away  from the 
center of the  target; 

b     -  the mean error in aiming  for  lateral direction,  equal  to 0.2 

mils,  displaces  the average trajectory 0.12 m away from the center of 
the target; 

c.   -  the mean error  in bringing  the machinegun to normal  shooting, 

equal  to 0.1 mils,  displaces the  average trajectory Ü.Ob m away  from 
the center of the target. 

The  total mean error for  lateral direction 

From the  results of the calculations,  ligure  lfa5 portrays  the 
target  and area of possible positions  of the average trajectory  relative 
to the center of the target with observation of scale, divided  into 04 
identical  rectangles with sides equal  to  11:    and 1L^.    We can allow 

various  assumptions  (hypotheses)   concerning which of these  rectangles 
will  contain the average trajectory,     liach hypotheses has  a certain 
probability;   in addition a certain probability of destroying  the 
target  corresponds to each of them. 

As  an example, we will  find the probability of the hypothesis 
that  the  average trajectory will  be   in rectangle A.     As can be  seen 
from the drawing,  this rectangle was  obtained as a result  of the 
intersection of two strips,  the probability of the location of the 
center of dispersion in which comprises  0.1b  in each.    Then the prob- 
ability of the hypothesis that the  average trajectory will  be  in rectangle 
A. 

P    =  0.16*0.1b  =  0.0256. 

Now,   let  us determine the probability of destroying the target. 
But  for  this we  need to know the probability of hitting with one  round. 
This problem  is  solved  in the normal manner!     The probability of hitting 
the  target  when the mean trajectory   is   in  rectangle A is  0.024  (,p  = 
= 0.024,   or  2.40o).    The probability of destroying the target with   ! ? 
rounds with  this hypothesis equals: 
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1(A) 
=   1 (1   -   Ü.Ü243 

15 1  -  ü.97blS  =   1   -  U.fa9 Ü.31 

Thus,  we have  found:     the probability of the hypothesis that  the 
average trajectory will be  in  rectangle A,  1'    =  Ü.Ü256,  and the prob- 

ability of destroying  the target  in accordance with the given hypothesis 
P1(A)   S0-31- 

Thus,  the particular values  for P and p  for the  remaining  rectangles 
of one fourth of the  area of possible positions  of the average trajectory 
relative to the center of the target  have been  calculated and  indicated 
in  Figure 166.     For the  other three fourths  of this  area,  the values  of 
P  and p will be the  same  (the  letter P designates  the probability of the 
hypothesis of the position of thf center of dispersion,  and the   letter p 
designates  the probabiliity  of destroying  the  target). 
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Figure 165. The Area of Possible 
Positions of the Average Trajectory 
Relative to the Target. 

Figure 166. The Values of P and 
p in One Fourth ot the Area. 

The overall values of the probability of destroying the target is 
determined from the formula for the complete probability of the event, 
i.e., as the sum of the paired products of the probabilities of the 
hypotheses for the probability of destroying the target in accordance 
with these hypotheses, i.e.. 

P, == P,A + R/>2 PnPn- 
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If, m this formula, uc substitute the values of P and p taken from 
Figure loo and perform the corresponding calculations and increase the 
result four times, ue obtain P 

1 
0.50   (50.), 

Such   is  the probability  of destroying the  target   (head-shoulders- 
-chest   figure) when  firing  from a heavy machinegun with  sight  setting fa 
in  a burst   of 15 rounds and under the  condition where the total mean 
error  for height li    =  0.48 m and the  total mean error for  lateral direction y 

L_   =  U.J4 m.     As was  stipulated above,  such errors  are minimum and are 

committed by well trained machinegunners. 

If,  by  the same method,  we perform the calculation of the probability 
of destroying the target with  consideration that  all  errors  are maximum 
Cli .   =   O.Ub m,   ^  = Ü.4S m)   we  obtain   P    =  0.18   {18%). 

ihe   investigation of the  effect   of the errors  on the probability of 
destroying  the target   for other  ranges within   limits  of 2ÜÜ-J00Ü m is 
performed by  this  same method.     The   results which  are  obtained are reduced 
to  a table   [Table 21).     A graph   [Figure  lb7)  which provides  a graphic 
impression of the effect  of the minimum and maximum errors  on  the probability 
of destroying the target   is  constructed on the basis  of these  tables. 

TABLE   21 

finiig I'OI iidmoiis 

Nu v-rror« 

Ail .r:.n- 
;;■ üüii.inii 

All error, 

Tiring range, in 

.in;)     ' .100 500     COO      700 (-.00      '.'"O lOuO 

Nuiuhcr of rounds i.. firing 

3    I       1 G 10 I I l 
il      ;;o   ;   IO        .'o 

Probability of dcstnu'iion, c'.< 

li'O II,  
1 

'.« '«) 

j 

! 
:,<) ■11 

/o 1,   J        : i    ,   L'1,."I      I«        IVJ '    I" 
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Figure  167.     Curves Which Characterize  the Probability of Destroying a 
Target,  Depending on  the Errors Which Accompany the Firing: 
I  - When there are no errors; 2 - With minimum mean errors; 3  " With maxi 
mum mean errors. 

For the present, we have considered only the joint effect of aJ 1 
minimum and all maximum errors on the firing.    Our main task is the 
investigation of the effect of each system of errors separately. 

We will show the method of further calculations by using an example 
of firing with sight setting 6.    Let us assume that the machinegunncrs 
have not received much training in the visual method of determining 
distances but have good training in all other questions.    Under this 
condition, to obtain the total meün error for height wc should take as 
the components the maximum mean error in determining distance and the 
minimum mean errors of all other measurements.     In this, we obtain: 

^v-^KüAS- f Ü.183 l-O.OG3  )-Ü.UÜ-'----(VJO M. 

The total mean error for lateral direction remains the same as with 
all minimum mean errors, i.e., E    = 0.24 m. 

y 
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If wc calculate the probability of destroying the target by the 
mothod considered above with consideration of the given conditions, 
we obtain: 

P.   = 0.315.  or 31,5%. 
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Figure  168.    Curves Which  Characterize the Effects of  Errors on Firing: 
1   -  Errors   in  bringing  the weapon  to normal   shooting;   2  - Errors   in 
considering  temperature;   3  "  Aiming errors;   4  -  Errors   in considering 
cross wind;   5  -  Errors   in  determining distances;   6  -  Al 1  maximum errors, 

as 
as 

1 

We arbitrarily consider firing accompanied by minimum mean errors 
normal and,   in this,  we take the probability of destroying the target 
1   (unity).    Then,  the obtained value P.  = 0.315 is 0.63 with respect to 

.   = 0.5U, which corresponds  to the normal firing conditions (0.315:0.500 = 

=  0.05). 

The investigation of the effect of each system of errors on the prob» 
ability of destroying the target  for each range within  limits of 200-1000 m 
was  performed by the  same method.    The obtained  results  have been reduced 
tc  a table  (Table 22)   and a graph  (Figure 168)  which graphically characterizes 
the effect of each system of errors on the firing at various ranges has been 
constructed. 

ün the basis of the data  from this  table  and the graph of curves   (see 
Figure  108), we can draw  a number of conclusions  having great practical 
signi ficance. 
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The maximum error in bringing the weapon to normal shooting and 
consideration of the temperature has not significant effect on the firing. 

The most significant effect on the firing is had by errors   in deter- 
mining distances,  aiming, and considering cross wind.    As the data  in 
the table and the curves of the graph  show the effect of each of these 
errors  is different for different ranges.    Thus, for example, with an 
increase  in range the effect of the error in determining distances  and 
considering cross wind increases gradually,   in which respect  at  all 
ranges errors in determining distances have tne most significant effect. 

[Approximately 5 words missing from translation]  errors  in aiming 
have the greatest effect on the firing in comparison with others.    Thus, 
for example,   [approximately 2 words missing]  at a range of 300 m,  errors 
in aiming reduce the probability of destroying the target by 0.26,  and 
errors in determining distances—by approximately 0.14  (in comparison 
with the probability of destroying the target with all minimum errors 
P.  = 83% taken as unity).    Beginning at 400 m, the curve of the effect 

of aiming errors proceeds upward,  successively crossing the curves of 
errors for the determination of distances  and consideration of cross 
wind.    This means that at ranges above 450 m, errors in determining 
distances have the greatest effect on the firing in comparison with other 
errors.     For example,  in firing at  800 m errors in determining distances 
reduce the probability of destroying the target by 0.45,  errors  in 
considering cross winds--by 0.35,  and aiming errors--only by 0.13  (in 
comparison with P,   = 32.5% taken as unity). 

On the basis of everything which has been said, the following basic 
conclusion may be drawn.    The probability of destroying targets when  firing 
under combat conditions depends not  only on the precision of aiming  (sighting 
and squeezing the trigger) but also on the ability to determine distances 
and considering cross wind.     If, when firing at ranges within  limits  of 
400 m, the precision in aiming has greatest  significance,  at ranges  above 
600 m the probability of destroying targets depends primarily on the 
precision in determining and consideration of cross wind.    Consequently, 
in teaching the personnel  of small  rifle units,  it is  necessary to devote 
great attention to these questions. 

All these conclusions also pertain to firing from other types of 
small arms since their balistic properties do not differ considerably 
from the balistic properties of a heavy machinegun. 
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APPENDIX 

TABLE 1 

TARGET DIMENSIONS 

c 

Targe t dimensions o 
Uig 

Reduced target 
dimensions 

Designation of targets Height 
M 

Width 
M 

Area 
M' 

rt u -= O 
in u 

Height 
M 

Width 
M 

Head and shoulders target (Target No. 5) 
Head-shoulders-chest target (Targe t No. 6) 

Torso target (Targe t No. 7) 
Running target (Targe t No. 8) 

Running target (Target No. 8a) 
Full length target (Targe t No. 9) 

Machinegun (Targe t No. 10)' 

0,30 
0,50 
1,00 
1,50 
1,50 
1,70 
0,55 

0,50 
0,50 
0,50 
0,50 
0,50 
0,50 
0,75 

0,11 
0,18 
0,10 
0,00 
0,10 
0,05 
0,27 

0,73 
0,72 
0,80 
0,80 
0,53 
0,7G 
0,05 

0,26 
0,42 
0,89 
1,34 
1.11 
1,48 
0,14 

0,42 
0,42 
0,45 
0,45 
0,36 
0,44 
0,61 

TABLE 2 

TABLE OF VALUES FOR 4> (g) 

3 'I' (3) 8 f (3) 3 -I>(<l) 3 •t> (?) 3 <!>(?) 

0,00 0,000 
0,01 0,005 0,21 0,113 0,41 0,218 0,61 0,319 0,81 0,415 
0,02 0,011 0,22 0,118 0.12 0,223 0,62 0.324 0,82 0,420 
0,03 0,016 0,23 0,123 0,43 0,228 0,1 VI 0,329 0,83 0,424 
0,04 0,022 0,24 0,129 0,14 0,233 0,61 0,331 0,84 0,429 
0,05 0,027 0,25 0,134 0,45 0,239 0,65 0,339 0,85 0,434 
0,06 0,032 0,26 0,139 0,46 0,214 0,66 0,311 0,86 0,438 
0,07 0,038 0,27 0,145 0,47 0,249 0,67 0,319 0,87 0,413 
0,08 0,013 0,28 0.150 0,18 0,254 0,68 0.351 0,8S 0,417 
0,09 0,018 0,29 0,155 0,19 0,259 0,69 0,358 0,89 0,452 
0,10 0,054 0,30 0,160 0,50 0,201 0,70 0,303 0,90 0,456 
0,1! 0,059 0,31 0,166 0,51 0,2('i9 0.71 0,368 0,91 0,161 
0,12 0,005 0,32 0,171 0,52 0,274 0,72 0.373 0,92 0,165 
0,13 0,070 0,33 0,176 0,53 0,279 0,73 0.3", "5 0,'J3 0,170 
0,1 1 0,075 0,31 0,1 ft I 0,54 0,281 0,71 0,38 i 0.94 0,474 
0,15 0,081 0,35 0,187 0,55 0,289 0 , i . ; 0,387 0.95 0,178 
0,10 0,086 0,36 0,192 0,56 0,291 0,76 0,392 0,96 0,483 
0,17 0,091 < ,37 0,197 0,57 0,299 0,77 o.:;: 6 0,97 0,187 
0,18 0,097 0,38 0,202 0,58 0,301 0,7* 0,1"! 0.98 0,491 
(1,19 0,102 0,39 0,207 0,59 0,309 0,79 ft, -JI •! i 0,99 0,496 
0,20 0,107 0,40 0,213 0,(30 0,311 0,80 0,111 0,1UO O.'OO 
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<r>(?) «M?) 4>(p) <i> (?) <t> (?) 

1.01 
1.02 
1,03 
1,01 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 
1,11 
1,12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.20 
1,21 
1,22 
1.23 
1.24 
1.25 
1.26 
1.27 
1.28 
1.29 
1.30 
1.31 
1.32 
1.33 
1,31 
1.35 
1.36 
1.37 
1.38 
1.39 
1,10 
l.ll 
1.12 
1.13 
1.14 
1.15 
1.16 
1,47 
1,18 
1.49 
1.50 

0,r»04 
0,509 
0,513 
0,517 
0,521 
0,525 
0,530 
0,534 
0,538 
0,542 
0,546 
0,550 
0,554 
0,558 
0,502 
0,566 
0,570 
0,574 
0,578 
0,582 
0.5S6 
0,589 
0,593 
0,597 
0,601 
0,605 
0,008 
0,612 
0,616 
0,619 
0,623 
0,627 
0,630 
0,631 
0,637 
0,641 
0,645 
0,618 
0,652 
0,655 
0,658 
0,662 
0,665 
0,669 
0,672 
0,675 
0,679 
0,682 
0,685 
0,688 

1.51 
1.52 
1.53 
1.54 
1.55 
1.56 
1.57 
1.58 
1.59 
1.60 
1,61 
1,62 
1.63 
1.64 
1.65 
1.66 
1.67 
1.68 
1.69 
1.70 
1.71 
1.72 
1.73 
1.74 
1.75 
1.76 
1.77 
1.78 
1.79 
1.80 
1.81 
1,82 
1.83 
1.84 
1.85 
1.86 
1.87 
1.88 
1.89 
1.90 
1.91 
1.92 
1.93 

l/'5 
1.96 
1.97 
1.98 
1.99 
2,00 

0,692 
0,695 
0,698 
0,701 
0,704 
0,707 
0,710 
0,713 
0,716 
0,719 
0,722 
0,725 
0,728 
0,731 
0,734 
0,737 
0,7-10 
0,7-12 
0,746 
0,748 
0,751 
0,751 
0,757 
0,759 
0,762 
0,765 
0,767 
0,770 
0,773 
0,775 
0,778 
0,780 
0,7*3 
0,785 
0,788 
0,790 
0,793 
0,795 
0,798 
0,800 
0,802 
0,805 
0,807 
0,809 
0,812 
0,81 1 
0,816 
0,818 
0,820 
0,822 

2,01 
2,02 
2.03 . 
2.04 
2.05 
2.06 
2.07 
2.08 
2.09 
2.10 
2,11 
2,12 
2.13 
2.14 
2.15 
2.16 
2.17 
2.18 
2.19 
2.20 
2,21 
2/22 
2/23 
2.24 
2.25 
2.26 
2.27 
2.28 
2,29 
£30 
2,31 
2,'Si 
2,33 
2,31 
2.35 
2.36 
2.37 
2.38 
2.39 
2.40 
2.41 
2.42 
2.43 
2,4 1 
2,4.5 
2,16 
2.47 
2.48 
2.49 
2.50 

0,825 
0,827 
0,829 
0,831 
0,833 
0,835 
0,837 
0,839 
0,841 
0,843 
0,845 
0,847 
0,849 
0,851 
0,853 
0,855 
0,857 
0,839 
0,860 
0,862 
0,864 
0,866 
0,867 
0,869 
0,871 
0,873 
0,874 
0,876 
0,878 
0,879 
0,881 
0,882 
0,881 
0,886 
0,887 

0,889 
0,890 
0,892 
0,893 
0,895 
0,896 
0,897 
0,899 
0,900 
0,902 
0,903 
0,901 
0,906 
0,907 
0.90S 

2.51 
2.52 
2.53 
2.54 
2.55 
2.56 
2.57 
2.58 
2.59 
2.60 
2,61 
2,62 
2.63 
2.64 
2.65 
2.66 
2.67 
2.68 
2.69 
2.70 
2.71 
2.72 
2.73 
2.74 
2.75 
2.76 
2.77 
2.78 
2.79 
2.80 
2,81 
2,82 
2,83 
2,81 
2.85 
2.86 
2.87 
2.88 
2.89 
2.90 
2.91 
2.92 
2.93 
2,91 
2.95 
2.96 
2.97 
2,93 
2,99 
3,00 

0,910 
0,911 
0,912 
0,913 
0,915 
0,916 
0,917 
0,918 
0,919 
0,921 
0,922 
0,923 
0,924 
0,925 
0,926 
0,927 
0,928 
0,929 
0,930 
0,931 
0,932 
0,933 
0,931 
0,935 
0,936 
0,937 
0,938 
0,939 
0,940 
0,941 
0,912 
0,913 
0,911 
0,945 
0,945 
0,916 
0,947 
0,918 
0,949 
0,950 
0,950 
0,951 
0,952 
0,953 
0,953 
0,954 
0,955 
0,'.i56 
(1,956 
0,' i.57 

3.01 
3.02 
3.03 
3,01 
3.05 
3.06 
3.07 
3.08 
3.09 
3.10 
3.11 
3.12 
3.13 
3,11 
3.15 
3.16 
3.17 
3.18 
3.19 
3.20 
3.21 
3.22 
3.23 
3,21 
3.25 
3.26 
3.27 
,3,28 
3.29 
3.30 
3,40 
3,50 
3,60 
3,70 
3,80 
3,90 
4,00 
4,10 
4,20 
4,30 
4,40 
4,50 
4,60 
4,70 
4,SO 

4,90 
5,00 
6,00 

-326-



TABLE  3 

PROBABILITY OF  DESTROYING  A TARGET  DEPENDING  ON  THE   MATHEMATICAL  EXPEC- 
TANCY  OF THE  NUMBER OF  TARGET  HITS   (IN ONE  TARGET)   WITH  p = 0.1 

"/I ^ On Py "n Px a« />, 

0,92 0,021 1,82 0,853 2,72 0,043 
0,'U 0,029 1,84 0,85() 2 74 0,944 
0,90 OS>M 1,80 0,859 2.70 0,945 
0,9« 0,044 1,88 0.802 2,78 0,946 

0,10 0,100 1,00 0,052 I.'JO 0,8')5 2,Mj 0,947 

0,12 0,11'J 1,02 0,059 1,92 0,808 2,82 0,919 
0,14 0,137 1,0« 0,000 1,94 0,871 2,81 0,950 
0,1(1 0,155 1,CH~, 0,073 1,96 0,873 V,M) 0,951 
0,18 0,173 1,08 0,0.80 1,98 0,670 2.8« 0,95> 
0,20 0,1 VO 1,10 0,087 2,00 0,879 2.90 0,953 

0,22 0,207 1,12 0,093 2,02 0,882 2.92 0,95 J 
0,21 0,221 1,14 (1,700 2,04 0,884 2.,'1 0,955 
0,2>") 0,210 1,10 0,700 2,05 0,887 2I"> 0,950 
0,2;; (t,25G MS 0,712 2,08 0^89 2.98 0,957 
0,30 (1,271 1,20 0.718 2,10 U,8'.ll 3.00 0,958 

n,:t2 0,2K(i 1 02 0,724 2,12 0,8u3 3 05 0,900 
o;u 0,3U] U2\ 0.730 2,14 0,.V'J a. 10 0,9t.2 
0,.li', 0,31(i 1,20 0,735 2,10 0,89S 3,15 0,901 
o.as 0,330 l,2S 0,711 2,18 O.'.'OI) 3,20 0/,0G 
0,10 0,311 1,30 0,7 10 2,20 0,902 3,25 0,908 

0,42 0,35S 1,32 0,752 2 22 0,901 3,30 0,970 
0,11 0,371 1,3» 0,757 2,24 O.90O 3.35 0,971 
0, 111 O.iM 1,3i. 0,702 2,2(i 0,'X(8 3.10 0.972 
0,18 0,.t'.i7 1.38 0,707 2.28 0,910 3,45 0,974 
0,50 0,110 1,40 0,772 2,30 0,912 3,50 0,975 

0,r.2 0,121 1,12 0,770 2,32 0,913 3,55 0,976 
0,54 0,131 1,41 0,781 2.31 0,915 3.1,0 0,978 
0,511 0,110 1,40 o.r.Mi 2,3b 0,917 3,i ö 0,979 
0,58 o,r.s 1,18 0,790 2,38 0,919 3,70 0,980 
0,00 0, Ih'.l 1,50 0,791 2,40 0,921 3,75 0,981 

O.iVJ 0, ISO 1,52 0.799 2,12 0,922 3,80 0,982 
0,i il n.i'.ii 1,51 O.M (3 2.11 0,92 1 :< 85 0,983 
0,C.G o, .02 1.50 0,.v,i7 2.10 0.920 3,90 0,984 
0,1 iS o,,.l2 1.58 O.Ml 2. IS 0,927 3,95 0,985 
0,70 0, '»22 1.00 0.815 2.50 0,928 4,00 0,980 

0.72 0,5,12 1.02 0,819 2,52 0,930 4.2r 0,989 
0,71 0,>12 1,01 0^2 ! 2,54 0.932 4,1) 0,990 
0,7li 0,551 1,00 0,820 2,50 0.933 1  .0 0,9''2 
0,78 0,501 1,08 O.N il) 2,58 0,931 1,80 0,991 
O.M) 0,570 1,70 0,-U 2,00 0,935 5,00 0,995 

0,8! 0,57'J 1,72 0,<»8 2,02 0.930 5,20 0,993 
0,81 O...SS 1,71 o.Ml 2!oi 0.937 5,40 0,997 
0,8)) ii, i'.iri 1,70 0,-11 2,i'iii o;...!1» .'..ro 0,998 
(t,s8 in ii'. 1,78 ||,-17 2,08 0.911 5.M1 0,999 
O/.'O IM,13 l.M) li,l-50 2,70 0,942 1,0:1 0,999 

Remarks,     a     is   the mathematical   expectancy of   the  number  of  target  hits 

P.   is   the probability  of  destroying  the  target. 
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