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FOREWORD

This report was prepared by Dr. Allan S. Lessem of the Mobility

Research Branch, Mobility and Environmental Division, U. S. Army Engineer

Waterways Experiment Station. The report is essentially a thesis submitted

by Dr. Lessem in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering to the Graduate Faculty of Mississippi

State University, and is a study of the application of Wiener-Bose Theory

to vehicle ride dynamics studies. The study described herein was conducted

under DA Project 1T061102B52A, "Research in Military Aspects of Terrestrial

Sciences," Task 01, "Military Aspects of Off-Road Mobility," under the

sponsorship and guidance of the Research, Development and Engineering

Directorate, U. S. Army Materiel Command. The program of tests was ac-

complished under the general direction of Messrs. A. J. Green, S. J. Knight,

and W. G. Shockley.

COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were Directors

of the Waterways Experiment Station during the period of preparation and

publication of this report. Mr. F. R. Brown was Technical Director.
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I. INTRODUCTION

Background: Wiener-Bose Theory

Wiener-Bose Theory is a theory of nonlinear systems analysis first

assembled by Norbert Wiener 11] and modified later by A. G. Bose [2].

Its purpose is to obtain a mathematical model of standard form of any

nonlinear system taken from a broad class of applicable systems. The

model is in terms of a set of "characterizing coefficients" which are

obtained through the agency of a certain testing program carried out on

the specific system. Once the coefficients have been determined they

may be used in a rational synthesis procedure to predict responses to

inputs of interest. The principal appeal of Wiener-Bose Theory is that

it requires very little knowledge of the physics of the system. No

dynamical equations need be written. In essence the physics of the

system is incorporated into the characterizing coefficients.

Wiener-Bose Theory is based upon the use of a series expansion of

orthogonal functionals. The use of expansions in series of polynomials

to represent functions that are not amenable to concise mathematical

expression is a familiar and fruitful method of analysis.[3] An exten-

sion of this technique involves the use of orthogonal polynomials.[4]

In both cases, polynomials, pi(x) , are used in some way to represent

a function, y(x) , and both p and y are "no-memory" functions of

their arguments in the sense that each entry of a value for x immedi-

ately produces corresponding values for p and for y . Algebraic

expressions are of this nature. In contrast, expressions involving

implicit derivatives or integrals are not of this kind. For example



the solution of

dy + g(x)y = f(x)
dx

is

y = e -F(X) F(E)f(E)dE + C

where

F(x) = fg(E)dd

We see that all values of x from the origin of integration to its

present value are involved in finding the present value of y In

this case y is a functional of x and may be thought of as a function

"with memory."

Much work has been done to formulate a calculus of series expan-

sions in functionals that parallels, at least conceptually, the use of

series expansions for functions.[5] One approach expands the functional,

y(x) , in a series of iterated convolution integrals (Volterra functionals)

as follows:

N i

ylfx(t)] = h 0+ f JJ. . . J h(r, '12, . .,T.) H x(t - T.)dTj

i~i i- j=l

For the case of linear systems, this series reduces to the familiar

convolution integral of linear theory. We may go further and formulate

expansions in series of orthogonal functionals as well.16] It was

Norbert Wiener's contribution to formulate a strategy for producing a
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series of orthogonal Volterra functionals when the argument, x(t) , is

white Gaussian noise. He recognized the equivalence of such a series

to a multivariate series expansion of Hermite functions having white

Gaussian arguments. He consolidated these factors into a strategy where

the Gaussian noise was used as a "probe" for the nonlinear system in the

same sense as an impulse is a probe for a linear system. The charac-

terizing coefficients referred to above are the coefficients of the

Hermite function expansion, whose orthogonality permits their separate

determination.

Wiener presented his work to a group of graduate students during a

series of summer lectures in the early 1950's. Except for a brief

monograph, Wiener's own exposition of this theory was unpublished.

Descriptions, discussions of, and additions to the theory were accom-

plished as dissertations by his students. No practical applications of

the theory were reported.

A significant modification of the theory was made by Bose.[2] The

basic idea of empirical characterization was retained but the character-

izing agent was not required to be Gaussian noise. Bose defined a multi-

variate expansion, a "gate-function" expansion, different from the

Hermite expansion used by Wiener. The Wiener expansion gives a continuous

approximation to the desired response; the Bose expansion gives a stair-

case approximation. Through a procedure analogous to Wiener's, Bose

obtained separately determinable characterizing coefficients for the

nonlinear system. Although no implementation was attempted the potential

exists for simpler realization than the original Wiener theory allows.

In recent years, Harris has attempted an application [7] of a
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truncated form of Wiener-Bose Theory with encouraging success. With

suitable restraints on the nature of the inputs that can be accommodated,

he was able to significantly reduce the number of coefficients required

for satisfactory model performance.

Wiener-Bose Theory has not seen abundant application to systems of

engineering interest because of formidable demands upon computer capacity

and because of practical difficulties of coefficient determination. The

original Wiener Theory is especially liable to difficulties of implemen-

tation but Bose's form of the theory fares better. Certain additional

modifications are suggested in this dissertation that are potentially

capable of bringing application effort within reasonable limits for many

nonlinear systems.

Background: Ride Dynamics

Ride dynamics refers to the vibratory motion of vehicles in response

to traversal of irregular terrain. For many military, commercial, and

agricultural vehicles operating in an on- and off-road environment,

overall mobility is limited by such vibratory motion. Simulation studies

of ride dynamics are used for rational design and evaluation of vehicles.

These studies are accomplished through the use of mathematical models

that reflect the structure and interaction of vehicles and terrains.

At present, ride dynamics models are constructed as required from

a common set of building blocks.[8] These are illustrated in fig. 1

with a representative coupling scheme, and reflect the fact that there

are five principal problem areas: representation of the terrain, the

vehicle, their interaction, and the identification and use of outputs.
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LAWS OF SPATIAL DETERMINISTIC Terrain
DEFORMATION PROFILE PROFILE Properties
AND SHEAR P.S.D.

PROFILE TEMPORAL
TIME PROFILE
HISTORY P.S.D.

/

YIELDING NONYIELDING Terrain-
SOIL SOIL Vehicle

Interface

POINT CONTACT EXTENDED CONTACT
SOIL-VEHICLE SOIL-VEHICLE
INTERFACE INTERFACE

TRANSFER LINEAR NONLINEAR
FUNCTION DIFFERENTIAL DIFFERENTIAL Vehicle

EQUATIONS EQUATIONS Properties

RESPONSE RESPONSE STATISTICAL
TIME P.S.D. MEASURES Output

HISTORIES

Representative Coupling

Figure 1 Elements of Ride Dynamics Models
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The central problem for ride analysis is the representation of the

vehicle. A physically motivated mathematical model that properly

accounts for significant structural flexing is too unwieldy for practical

applications. The use of rigid-body mechanics has become the standard

approach. Vehicles are represented as collections of masses, springs,

and damping elements suitably configured for the job at hand. These

give rise to sets of differential equations which describe motions

throughout the vehicle. Nonlinearities are inevitable. They arise,

for example, from the physics of suspension components, from limitations

on suspension travel, and from large pitch and roll motions. A trade-

off is required between the inclusion of these important nonlinearities

and the added complexity of analysis.

Another important problem for ride analysis is the representation

of terrain. The property of principal interest is the terrain profile--

a record of changes in elevation encountered along the path of the

vehicle. This profile is used as a displacement time history or is

converted to a power spectral density for input to the vehicle model.

Most models imagine that the soil-vehicle interface is nonyielding;

this is easy to do since no additional equations are required. It is

also reasonable because for purposes of ride analysis it represents a

worst-case situation. Some models have attempted more realism in this

respect and have included yielding interfaces. This increases the

complexity of the model, but permits a realistic and desirable coupling

of ride analysis and mobility analysis in one package. The tradeoff

between realism and complexity also influences the choice of an easily

implemented point-contact soil-vehicle interface or a more realistic
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extended-contact interface.

The generation of outputs from vehicle models is a relatively

simple task. These consist of time histories of various responses and

their counterpart power spectral densities and statistical measures.

These outputs represent dynamic inputs to drivers, passengers, and

cargo. It is the responses of these elements of the man-machine system

that usually govern the contribution of ride dynamics to vehicle

mobility.

Methods of analysis have developed along two complementary lines:

time history and frequency response. The first uses differential

equations which are "driven" by time dependent forcing functions and

produce time dependent responses. The second displays properties of

interest, typically statistical properties such as root mean square

elevation or acceleration, against a frequency parameter. An analysis

predicated on time histories can be used for frequency response at little

extra cost. Most vehicle dynamics models reflect this fact by being

set up to exercise both options. The great appeal of frequency response

analysis is that under conditions such that linearity is a reasonable

assumption, it is possible to bypass the use of differential equations

entirely (and thus the detailed workings of the vehicle) and deal

directly with input-output correspondences.

Statement of the Problem

The state of the art of current practice in mathematical modeling

for ride dynamics gives the impression that there are few problems of

concept and implementation. The vehicles appear to be assemblages of
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several mechanical subsystems, each of which appears to be amenable to

straightforward mathematical modeling through the use of structure-

oriented mass-spring-dashpot concepts.

This appearance is, however, quite deceptive. Although there are

many examples of carefully written ride dynamics models, some of which

are very elaborate and would seem to include every reasonable dynamical

contribution, the problem of correct simulation remains unsolved. When

comparing the actual motions of a vehicle measured in the field and the

motions predicted by its model, the usual result is that the model does

a poor job until it has been carefully "tuned." The tuning process

involves making changes in a priori estimates of parameters to bring

model responses into accord with the field responses. When compared

against another set of field responses the tuning process must be invoked

again. Thus the use of current vehicle dynamics models involves a

basically irrational parameter adjustment process that is accepted as a

necessary evil of the modeling strategy.

It would be of value to develop another, completely different,

strategy for ride dynamics studies. Wiener-Bose Theory can provide this

new approach. The principal difficulty with conventional ride analysis

is the (necessarily) incomplete modeling of the physics of the vehicle.

Wiener-Bose Theory requires no detailed knowledge of the vehicle. We

know the physics of the vehicle as the empirical response of the vehicle

to traversal of a special obstacle course. Once the vehicle has been

characterized its response to specific terrain profiles may be determined.

The basic problem to which this dissertation is addressed is to

learn how to bring Wiener-Bose Theory to bear upon the specific nonlinear

8



systems of interest in vehicle ride dynamics.

Purpose and Scope of This Dissertation

This dissertation has two principal goals:

a. Elucidation: to uncover and solve problems of implementation

of Wiener-Bose Theory.

b. Application: to apply Wiener-Bose Theory to a specific

ride dynamics problem.

The first goal was sought by making an extensive computer study of

the original Wiener Theory and of the modified one due to Bose. Several

additional useful modifications of the basic theory became apparent and

a practical form evolved. A series of increasingly complex examples

was studied and experience gained was summed up in a set of guidelines

for constructing Wiener-Bose models.

The second goal was sought through a field test program in which

characterizing coefficients for a wheeled vehicle were determined using

concepts developed earlier in the computer study. The test program

involved the design and construction of an obstacle course whose traversal

by the vehicle became the probing process required by the model. Once

the coefficients were obtained, comparisons of model predictions and

actual vehicle responses were made for traversals of several terrain

profiles of interest.

9



II. THE BASIC IDEAS OF WIENER-BOSE THEORY

General Considerations

We want to recognize from the outset that Wiener-Bose Theory (WBT)

is difficult to use. It is addressed to the characterization of such a

broad class of systems that we could hardly expect otherwise. In general,

systems that are independent of the remote past of their inputs are

treated. This means that responses to impulsive or step-function inputs

relax to equilibrium levels and that oscillations damp out and do not

occur spontaneously. We must make a judgement of "remoteness" in each

case.

The system parameters must remain constant. Because WBT is not

predicated on some a priori model for the system, there is no way to

account for varying parameters. If the rate of variation were slow

compared with the duration of probing, it would be possible to obtain

several ensembles of coefficient sets for system characterization. How-

ever, as shall become apparent in subsequent discussions of probing

effort, this approach would probably be unreasonable.

WBT requires no detailed insight into the physics of the nonlinear

system. This fact is at once the greatest strength and the greatest weak-

ness of the theory. On the one hand, WBT provides a possible method of

analysis in cases where the complexity of the system precludes acceptable

structure-oriented modeling. On the other, we require a copy of the

system at our disposal to bring the theory to bear. The analysis is in

terms of input-output quantities and gives no insight into the internal

workings of the system.
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The ability to define inputs and outputs is of central importance

for successful application of WBT. In many cases the determination of

what is an input and what is an output and, indeed, what is the system

will be the most difficult tasks. In what follows we will be discussing

single input-single output systems.

Wiener's Theory of Nonlinear Systems:
An Operations Point of View

Several excellent detailed discussions of Wiener's theory are in the

literature.[2,4,91 The presentation given below is not intended to

duplicate these discussions but, instead~to give the flavor of the theory,

its working formulas and an idea of the effort involved in implementation.

To get the basic point of Wiener's theory, consider the following

example: We have a function, f(x) , in the form of a graph or set of

data points for which we want an analytic expression in terms of an

expansion in a series of orthogonal polynomials. We will use normalized

Hermite polynomials defined by

T1i(x) = [2i-l(i-l),T (l _ 1)i-1 x- x =1, 3 ...
=e i 1,2,3

These have the properties of orthogonality and normality over the interval

(-c < x < -) with respect to the weighting function exp (-x 2):

S2 (0 i#j

fni(x)n1(x) e-x dx = (1)

-00 1 i=j

Our series expansion is to be

11



00 2
f(x) = E .it(x)e-X/2 (2)

and we want to find the set of coefficients, {Di} To do this we
.th

multiply both sides of equation 2 by the j Hermite function

nj (x)e-x /2

and integrate to get

0 2 0 0- 2

f f(x)(x)eX / 2 d = f ii(x) (x)ex dx (3)
-• ~i=l -

With reference to equation 1 we see that only when i=j is there a non-

zero term on the right side of equation 3 and that

S2/2d2

f J f(x)rli(x)e-x 2d (4)

This is our desired rule for finding {1i}

We may find the coefficients another way. Suppose x is a function

of time x(t) and that the function is random with Gaussian amplitude

probability density and unity variance. Then its probability density

function is

1 2

=1 -x /2p (x)=- e

We can write equation 4 as follows:

12



CO 2

V'2 7 • -f f(x)ri,(x) -X dx
-00 2T

which may be interpreted as the expected value of the random function

f(x)1.(x) . If we confine our attention to random functions that are
1

stationary and erogodic we may write

-x2/2 T

f 2 f(x)rii(x) e d im f f(x),i(x)dtli T
-000

or

vi = • avg [f(x).i(x)]

in which we are expressing the fact that each A. is obtained from the
1

time average of the product of f(x) and ri.(x) when the argument is1

the Gaussian random function x(t)

This second method for finding {fi.} illustrates the essence of

Wiener's theory. The function, f(x) , represents the response of a

certain nonlinear system to its input, x . We want to use equation 2

as a model for this system and will characterize the system by the

coefficient set, {Ki} . Wiener has shown that we may "probe" the system

with Gaussian noise, form averages of products of the response and the

Hermite polynomials, ni(x) , and thus find the {1i} Note that we are

committed to the use of the Hermite polynomials with the Gaussian probe

because the weighting function for orthogonality of the polynomials and

the probability density of the probe must be of the same form.
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The function, f(x) , in the foregoing example represented the

response of a "zero-memory" system. To each value of the input, x

corresponds a single response regardless of earlier inputs. Most systems

of interest will be of "finite memory" which means that present responses

depend upon both present and earlier inputs. Wiener's theory was intended

to characterize such finite-memory, nonlinear systems. Wiener does this

by expressing the present response as a function of the "past of the in-

put." Figure 2 illustrates this idea.

Both the past of x(t) and the function f(') are represented by

polynomial expansions. The past of the input, x(t) , is represented by

a polynomial expansion of the form

x(t-T) = i--• ui(t)ei(-C) (5)

Equation 5 expresses the idea that at a certain time, t , we can go into

the past by an amount, T , and express x at that time in terms of an

expansion in polynomials, .i(T) , with coefficients u.(t) . Figure 31 1

illustrates this idea using a finite number of terms in equation 5. As

time, t , advances the coefficients, u.(t) , change. They must be com-1

puted continuously as x(t) changes. Within the desirable constraint

that they be orthogonal, the choice of polynomials, ei(T) , is free.

When the polynomials are orthogonal, the coefficients satisfy a minimum

mean squared error criterion.[10] Wiener chose the Laguerre polynomials

O.(r) -1)i e d(i-l)()

i ( i-- 1 Td-- Ti-le-T i = 1,2,3, . .

If these polynomials are multiplied by e-T/2 they become the normalized

14



FINITE MEMORY SYSTEM -

Y(t)=f(past of x(t))

Figure 2 The Basic Idea of The Wiener Theory
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x

Sx(t-T)

7• x(t)

N

s = ui(t)ei(T)
i=1

t t

t=0 ÷T T=O

Figure 3 Representation of the Past of the Input
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Laguerre functions and amenable to straightforward implementation. [11]

Writing

h.(T) = i(T) e-T/2

our expansion of the past of the input is

W

x(t-T) = • ui(t)hi(T)
i=l 1

The coefficients, ui(t) , for this expansion may be obtained by solving

the set of equations:[7]

. Ul(t)
l(t) + x(t) (6)

u. (t) i-l
u.i(t) = i2 - I uj(t) + x(t) i = 2,3, . . (7)

j=l

Equations 6 and 7 give the method for continuously computing the coeffi-

cients, u.(t) , of the Laguerre function expansion of x(t) . The past
1

of the input now consists of a large set of time varying coefficients

which may be used to reconstruct x(t-T)

To represent the functional dependence of the present output on the

past of the input, Wiener used the Hermite polynomial expansion discussed

above. In this instance we are expanding a function of the many variables,

{u.(t)} , and Wiener's expression is the multivariate expansion
1

17



00 00 00

z n~t = i,j .kT)i (u1 Tj(u 2)

i=lj=l k=- i

2' (8)

rlk (Un) x2

y(t) lim z (t) (9)n+0n->-o

If our system is in fact independent of the past there is no need for

the Laguerre function expansion and equations 8 and 9 reduce to equation 2.

The coefficients {bj, . ,k} are calculated according to the

following rule when x(t) is Gaussian noise:

iij .,k = ( ,/2-,)n avg [Y(t)ni(uljn (u2) .. k(Un)] (10)

Bose [2] shows that equation 10 corresponds to a minimum weighted mean

square error criterion between y(t) and zn (t) as follows:

E = avg [y(t) - zn(t) exp = minimum
n i=l

Equations 8, 9, and 10 represent the main result of Wiener's theory.

Any effort to use these equations must involve a finite number of terms

so that in practice our working formula is

18



mI m2 mn
M1 M2 Mny(t) = X * •k. .

i=l j=l k= ' 'lu~J(2

(11)

n un2

'k (u. ) exp 2

where n is the number of Laguerre coefficients representing the past of

the input and m.i is the number of Hermite polynomials used to expand the
.th
i Laguerre coefficient.

To illustrate the experimental process involved in computing the

{ i,j, .,k} consider an especially simple case. Let n = 2, mI 2,

and m2 = 2 . Thus we are representing the past of the input by two

Laguerre coefficients, and each Laguerre coefficient is expanded in a

series of two Hermite polynomials. For this case equation 11 becomes

y(t) P[l•lY(U 1 )nl (U 2 ) + 1 2 n 1 (ul)) 2 (u 2 ) + ý 21T12 (U1 )nl 1 (U 2 )

uI + u 2
+ 82 2 n 2 (Ul )r12 (u 2 )] exp 2

The ý's are evaluated using equation 10

11 = 2Tr avg [y(t) 1 (ul)n1 (u 2 )]

ý12 = 2 7r avg [y(t)n 1 (Ul)n 2 (u 2 )]

(12)
B2 1 = 2 7T avg [y(t)Ti2 (u 1 )nl(u 2 )]

B2 2 = 27r avg [y(t)n2 (U1 )n 2 (u2 )]

19



Equation 12 may be implemented as illustrated in fig. 4. These ý's

are used to synthesize specific responses to specific inputs as indi-

cated in fig. 5. In terms of parallel mathematical operations, we can

see that the analysis process requires two integrations in the Laguerre

coefficient generator and four integrations to perform the averaging

process for a total of six integrations. We require four function

generations, four multiplications, and a source of Gaussian noise. The

synthesis process requires two integrations, four multiplications, and

four function generations.

In general, selections of n, mi, 2 , . . ,m will produce Nn c

coefficients where

n
N = H m.c 1i=l

Even modest selections for n and the m's produce very large N 's

c

A block diagram for the characterization process is shown in fig. 6a.

Once the coefficients have been established they are used to synthesize

responses as indicated in fig. 6b. Once again, in terms of parallel

mathematical operations, analysis requires (n + N ) integrations, N
c c

multiplications, and N function generations. Synthesis requires nc

integrations, N multiplications, and N function generations. Whenc c

we realize that the practical applications of this theory will call for

thousands of coefficients to be determined, we can appreciate the severe

demands made upon computer facilities regardless of whether they are

digital, analog, or hybrid.

Taken as a whole, we see Wiener's theory as a cleverly interlocked

compilation of ideas:
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Figure 6 General Wiener Analysis and Synthesis Procedures
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a. Nonlinear systems are viewed as a cascade of two subsystems.

One is linear, of finite memory, and represents the past of

the input. The other is nonlinear, of zero memory, and

represents the transformation that produces the present

output from the past of the input.

b. The use of Gaussian noise as the probe is an experimentally

feasible procedure. Its use requires us to use the Hermite

polynomials for expanding the past of the input.

c. The use of the Laguerre functions to represent the past of

the input is reasonable in terms of both analog or digital

simulation. It is important for the expansion in Hermite

polynomials and the generation of coefficients that the

response of each Laguerre coefficient, ui , to a Gaussian

input of given variance also be Gaussian and have the same

variance. Harris [7] shows that the Laguerre coefficients

have this property when the probe has a constant power

spectrum (white Gaussian noise).

It would seem that the only basic constraint to the practical

implementation of Wiener's theory is a limit on the number of coefficients

that can be used to model a particular system with acceptable effort.

But there are other factors which contribute to difficulties in applying

the theory:

a. The Hermite function expansion converges slowly. Represen-

tative Hermite functions are shown in figs. 7 and 8. For

small arguments they are sinusoidal in character. But their

frequencies do not increase as rapidly with the index as
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they would in a Fourier expansion, so that the Hermite

expansion cannot converge as quickly as would a Fourier

expansion. We must expect to use many coefficients to

achieve a small error. Furthermore, for large arguments,

the weighting function, exp (-x2) , is so small that

large errors in the expansion are possible even within the

context of satisfying a minimum weighted mean square error

criterion.[12]

b. Although in principle the Laguerre coefficients for the

past of the input, x(t) , are Gaussian, independent, and of

equal variance when x(t) is white Gaussian noise, in

practice this is not true. The chief difficulty is that

the variances of the coefficients are significantly dif-

ferent if the input is not exactly white and Gaussian, and

no practical input can meet these requirements sufficiently

well for proper performance of the Laguerre coefficient

generator.

The net result is that the Hermite expansion, already requiring

many coefficients to compensate for slow convergence, is further weakened

in value by the inability of the Laguerre coefficient generator to

produce inputs to the Hermite polynomials that are of the proper variance.

This means that the coefficients, {Bi,j . . ,k} cannot be obtained in

sufficient quality and quantity to properly implement Wiener's theory

of nonlinear systems.
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Bose's Contribution to the Wiener Theory

Bose [2] uses Wiener's theory to synthesize a system that is

capable of producing a desired response to a given input. The basic

idea is to build the system using hardware or computer implementations

of the Laguerre coefficient generator and Hermite polynomials once the

characterizing coefficients have been determined. Furthermore, it is

the intent of his work to determine the coefficients using a represent-

ative input-output signal pair in place of the desired system. But the

coefficients of a Wiener model must be determined through the use of a

Gaussian probe, and in the context of Bose's problem, a given input is

not likely to have the correct statistics to 'serve as the probe. Thus

Bose was compelled to abandon the Hermite expansion and to find an

expansion whose coefficients could be found regardless of the statistics

of the probe. Bose's "gate function" expansion accomplishes this

objective.

Bose's analysis and synthesis procedures are illustrated in

figs. 9a and 9b. As in Wiener's theory, Laguerre functions represent

the past of the input. Each Laguerre coefficient is expanded in a series

of gate functions as follows:
.th

a. Looking at a time history of the i Laguerre coefficient,

u.(t) , we divide the ordinate into many intervals. See

fig. 10. The number of divisions and the width and end

points of each division are free parameters.
.th

b. The j gate function, 4j(ui) , is unity whenever u.(t)-- ' 1

.th
is in the j interval and zero otherwise.
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For example, using six intervals of equal width would produce the

time histories for pj(u.)) shown in fig. 10. We must have some idea of

the anticipated variation of u.(t) and ensure that the entire range is
1

covered by the {pj

As defined above, the {4j}'s are orthogonal over time and orthog-

onal over the range of u.
1

rj u(t)* rui(t))dt=

o const., j = k

u. max (0 ,j #k

I (Uj(u)i)kk(ui)dui const., j k

u. min
1

Note that for any given value of u. only one gate function is different1

from zero. Orthogonality over u. is not altered by including any1

bounded weighting function, w(ui)

u max j k

f w(u. ) (u ik (u i)dui =

u i min const., j =k

Bose's expansion of the output, y(t) , as a function of the past of the

input is

m1 m2 mn

zn (t) I I • • I a. i .,0i (U I (U2k
i=l j=1 k=1
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y(t)=lim z (t)
n

n

There are R m. terms in this summation and at any given time only one
i=l 1

is different from zero. Each selection of values for ul, U2 , . . u

corresponds to a single term in the expansion, and that term is nonzero

only when the past of the input is such that the selected values of u.1

simultaneously occur.

Bose shows that the coefficients {a i,j, ,} may be computed

according to the rule

avg [y (t)G (x) i (Ul)u 1 (u2) .2 k(Un)](

ailj, .,k = avg[G(x)Wi(U1 )ý j(u 2 ). ".k(un)]

where G[x(t)] is a freely chosen nonnegative weighting function.

Furthermore, coefficients so computed satisfy the error criterion:

c= avg LG(x(t)) y{(t)-zn(t)}] minimum

Bose's modification of Wiener's theory of nonlinear systems is of great

importance for two reasons. First, the gate function expansion is

independent of the statistics of the signal used to generate the coeffi-

cients. Thus we are not committed to white Gaussian noise with its

attendant difficulties of processing within the Laguerre coefficient

generator. Second, we no longer have a convergence problem. At any

instant the output is not the sum of many terms in the expansion but

instead is equal to a single term only. Furthermore, the coefficient
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on that single nonzero term may be interpreted as the expected value of

the output given the past history of the input.

The net outcome is that the effectiveness of the Bose theory is

limited only by the number of coefficients used and not by the additional

factors of a practical nature that prevent the Wiener theory from being

implemented.
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III. IMPLEMENTATION OF WIENER-BOSE THEORY

Transition to a Practical Form

The principal motivation for this dissertation has been to learn

how to apply in a practical sense Wiener's theory of nonlinear systems,

whose principal appeal is the possibility for circumventing detailed

knowledge of the physics of the system. We have seen that there are

several severe obstacles that prevent practical implementation of this

theory. But Bose's form of the theory may be modified and enlarged to

accomplish the same purpose. Bose's gate function expansion can be easily

implemented, although we will have to be content with discretized step-

like responses instead of continuous responses. Although his work was

originally couched in terms of building a model for specific input-

output pairs, there is no reason why it cannot be recast in terms of

the generalized probe and specific response point of view of Wiener.

The specific input becomes a rather elaborate probe and the specific out-

put becomes the corresponding response of the system. Bose's original

statement of his model was illustrated in fig. 9. An expression of this

theory restated from the point of view of Wiener's theory is given in

fig. 11. Once coefficients are generated in this way we may find the

response to any input of interest.

At this point it should be noticed that in making a transition from

Wiener's theory to a practical form of WBT we are beginning a process of

degradation of its mathematical elegance. In adapting the gate function

expansion we have already given up the ability to model continuous

responses; furthermore, the gate functions do not possess the property
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of completeness as do Wiener's Hermite functions. This means that adding

more gate functions will not guarantee, in the limit, a zero mean square

error. As we continue we must expect more degradation of desirable

mathematical properties. But if we do not pay this price, we can expect

no practical implementation.

Having chosen gate functions for the expansion of the functional

relation between the system output and the past of the input, we want to

find other choices for elements of the model that will reduce processing

effort. A prime candidate for change is the Laguerre coefficient gener-

ator. It is reasonable to expect that most implementations will be

accomplished with a digital computer. The Laguerre network will be

seen by the computer as a set of simultaneous first-order differential

equations whose accurate numerical solution will be accomplished at the

expense of considerable processing time. We seek an element capable

of representing the past of the input but not characterized by differential

equations. A delay line satisfies these requirements; it is easily

implemented with a shift register on a digital computer. But the outputs

from the delay line taps are not related to any kind of polynomial

series expansion of the input, so we have no control over properties

such as convergence and completeness. However, we shall use a delay

line because it is easy to do and because it satisfies the requirement

for retaining some record of the immediate past of the input.

Because the gate function expansion is independent of the statistics

of the probe, we may expect that the Gaussian distribution, required

by Wiener~s Hermite function expansion, will be an unnecessary require-

ment for a WBT model. As will be discussed below, there is a particular
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sequence of input amplitudes corresponding uniquely to certain WBT model

parameters that fulfills the probing function more efficiently than white,

Gaussian noise. This probe will be referred to as Bose Noise.

The transition from the original Wiener theory to a practical form

is now potentially completed and the resultant WBT model is depicted

in figs. 12a and 12b.

Example 1. To make ideas more specific, consider the modeling

process for a nonlinear system whose output, y(t) , is independent of

the past of the input, x(t) . We want

n
y(t) = • a [x(t)]

with a. computed fromJ

avg lY (t)G (x)ý i• (x)]

a = avg[G(x)ýj (x)]

If we choose G(x) = 1 corresponding to a least mean square error

criterion we have

a avg[y(t).x]
j avg[ij(x)]

Thus, as depicted in fig. 13, while the system is being probed with some
.th

noise source we want to be continuously smoothing the j gate function

and the product of this gate function with the response of the nonlinear

system. As time passes we may expect that these two quantities and their

ratio will become substantially constant for each j and will be taken as
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the coefficient, a. . We do not have, of course, infinite time to

conduct the probe and to average the several quantities needed to

compute the characterizing coefficients. We must expect that coefficients

obtained over a finite averaging interval will produce a WBT model

having a mean square error greater than the minimum mean square error

that an infinite averaging interval would allow. Harris [7] and

Roy, Miller, and DeRusso [13] show that, in fact, the expected value of

the mean square error due to finite averaging cannot exceed twice

the mean square error due to infinite averaging. The Bose gate function

expansion, both in the context of the zero-memory system of this

example and in general, is quite tolerant of the very practical limitation

of finite processing time.

To continue, suppose that our system has the x-y characteristic

depicted in fig. 14a, and that our knowledge of the system consists of

the fact of its independence of the past and an estimation that the

excursion of inputs of future interest will range over (-3 < x < 3)

The WBT characterizing coefficients corresponding to an expansion

in six gate functions on the input line are shown in fig. 14b.

The coefficients for an expansion in forty gate functions are shown

in fig. 14c. The figures show the coefficients, a. , plotted against

the input amplitude. Thus for each input amplitude only one of these

coefficients is used to represent the output, and this coefficient

is the only one whose corresponding gate function is different from zero.

Example 2. Consider a system that displays rate-independent

hysteresis. There is a dependence on the past of the input although

no characteristic time interval is involved. We want to consider
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the specific system that may be modeled analytically as follows:

Let

d1 (t) = present input, in.

d 2(t) = most recent maximum dl(t) , in.

d 3 (t) = most recent minimum d (t) , in.

91 (t) = present output, lb

92 (t) = most recent maximum k (t) , lb

k3 (t) = most recent minimum Z i(t) , lb

The equations

Z= kldl + ( - kld ) exp (-k 3 [d 2 -dl]) , d< 0

2 2 12321 1

k 2 dl (k 2 d 3 - P3) exp (-k 3 [dl-d 3 ]) , d > 0

describe the hysteresis characteristic displayed in fig. 15. The

system of this example was suggested by the load versus deflection

characteristics exhibited by a pneumatic tire when subjected to

vertical loads on a flat, nonyielding surface. The example is carried

forward for the following selection of constants:

k1 = 10 lb/in.'2

k2 = 20 lb/in.
2

k3 = 7.5 1/in.

We want to build a WBT model for this system. We will guess that

a delay line with two taps, one for the present and the other for

the past, will suffice to characterize the past of the input. Other

selections of model parameters are listed as follows:
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Number of taps: 2

Number of gate functions: 20 on tap 1, 10 on tap 2

Number of coefficients: 200

Range of future input: 0 < d < 6 in.

Weighting function, G(x) : unity

The coefficients generated by a sustained application of a random

input are depicted in fig. 16. The d axis is divided over the

interval (0,6) into 20 equal divisions corresponding to the gate

function expansion on the first tap of the delay line (the input, in

this case). For each of these gate functions there correspond 10

gate functions on the second tap. To each combination of one gate

function on the first tap and one on the second, there corresponds

one coefficient. Thus each division of (0,6) has 10 coefficients

(some identical). When some future input amplitude falls into a

given division, the WBT model will give as an output one of the

10 coefficients for that division. Just which of the ten is given

will depend on the prior input.

The responses of this system to specific inputs may now be predicted

with the WBT model. In fig. 17 is displayed the hysteretic trajectory

of the system in response to the following input:

d 1 (t) = 3.0 in. , t < 0

d1(t) = (2.73 sin w t + 3.0) in. , >0

with the initial condition k 1(0) = 134 lb. The corresponding model
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response is shown in fig. 18. Its discontinuous nature is apparent

and is characteristic of all WBT responses. The WBT model does

not necessarily give monotonic responses even though the actual system

does. This is because the coefficient used to give the present

output corresponding to the present input is likely to have been

obtained when prior inputs were somewhat different than the specific

prior input at hand. If the same number of gate functions were

used on each delay line tap, the model would exhibit fewer and smaller

nonmonotonic jumps.

Nature and Determination of Characterizing Coefficients

An attractive feature that emerges when Bose's gate function

expansion is used is that the characterizing coefficients may be

interpreted in an appealing way. They may be regarded as "possible

states of the system." Because of the coincidence formulation of

the gate function expansion only one product of gate functions is

different from zero at any one time and the model output at this

time is the coefficient assigned to this product. The displays of

coefficients in figs. 14 and 16 may be termed "state diagrams." The

model outputs will be states taken from diagrams of this kind.

Another attractive feature appears when we confine the weighting

function, G(x), to unity.[2,7] With this condition, the rule for

obtaining the characterizing coefficients, equation 13, becomes

avg [y(t)•i(Ul)• (u 2 ). .•kU)

a. av - y (OL (u1)i( 2k( n (14)aij,. .. ,k avg Iii(u 1 )j i(u2). . .4k(U)]
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We have been assuming all along that we are dealing with random

variables whose time averages and ensemble averages may be interchanged.

If we do this for the expression in the denominator of equation 14 we

have

avg [•i•j k] = f fI _ . .i "kP(Ul'u2' "'n)

(15)
dulddu • du

where p(ulu 2 , . . ,un) is the probability density function for the

joint occurrence of the random variables, ui , in the intervals

(ui, u.* + du.) But the gate functions take only the values zero and

unity so that contributions to the integral on the right-hand side

of equation 15 can occur only when uIl is in the interval corresponding

to p , and simultaneously u2  is in the interval corresponding

to ýj , and so forth. Thus

avg [Iij . k] = f . .f f P(ulu 2 ,. .,un)du 1 du2 . *dun
uk u.j u

But this is just the probability, P(qi, ., .. k) for the joint

occurrence of the gate functions ýi'Yj, . k

Turning to the numerator of equation 14, we may say

avgyilj"" "ck] = f . . . f f YIi.j"". kPp(YulU 2 ,. .,u)

dydu1dul 2 • dun

49



where p(y,ul,u 2  u ) is the probability density function for

the joint occurrence of the random variables y and u. Once1

again, because the 4's are zero over most of the range of the

u's we may write

•g =YY jf. f f f yp(y,ulU29. ' .,u n

avg [yq.ip. u _ ,,U u. U -0

S j i

dydud2du 2  .dun

This may be written as

avg ?ii . . . k= f. • f f f yp(yuI'U2 ,"" .,un)P(UlU 2 ,. . ,un)

j 
i

dydu1du2 .dun

where p(yjul,u 2 , . ,un) is the joint conditional probability density

function for y given the u's .[14,15]

Integrating with respect to y we have

av P ? , ] f f. f f E(ylul'u2, ... ,U n)P(uU VU2, .,u navg [ iy " "$ Uku. uo"

k j i

duldu2 . du

where E(ylul,u 2 , ... ,un) is the conditional expectation of y given

the u's . Integrating again

avg yi.. *'k] = E(yju'uj," .,u k)P(uiuj.' ."'uk)
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or

avg [Y j" "k] = E(yl.,Y .". ."'k)P(i' k

which expresses the idea that the numerator of equation 14 represents

the expected value of the response, y , given that the (i,j, . . .,k)th

coincidence is satisfied onto the probability that it is satisfied.

Thus, we have

ai , .,k = E(Yi 'l j'" . "' . k)

which says that the (i,j, . .,k)th coefficient is just the mean

value of the system response over the time that the (i,j,...,k)th

coincidence is satisfied.

This property of the coefficients of Bose's gate function expansion

is of great importance for the implementation of WBT. It is an easy

task to keep track of times of coincidence and to form averages of

responses over those times.

Bose Noise

In the preceding examples, the WBT characterizing coefficients

were found during a sustained application of a random input. The

nature of this random input was not specified nor did it need to

be. This is because the gate function expansion is independent

of the statistics of the probe. The only practical requirement is

that it have an amplitude spread large enough to cover the anticipated

spread of future inputs for which the model is formulated. In addition,
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the duration of the probe was not specified. In general, the greater

the duration the better the coefficients in the sense of approaching

the least possible mean square error. In practice, we want to devote

as little time to probing as possible, especially when the WBT model

has many coefficients.

It is possible to devise a sequence of input amplitudes that

serves efficiently as a probe for coefficient determination. Suppose

the number of delay line taps is N and there are m. gate functionst 1
th

on the i tap. Select any one gate function on the first tap, any

one on the second tap, the third tap, and so forth. This particular

selection constitutes one "configuration."

N
t

There are H m. possible configurations, each of which corresponds
i=l

to the simultaneous occurrence of tap outputs within the ranges

of the selected gate functions. To each configuration there corresponds

one coefficient of the WBT model. For the purpose of coefficient

determination the probe should consist of a sequence of input amplitude

levels so arranged that each configuration occurs at least once.

This sequence will be called "Bose Noise" and has Nt H levels.

Each selection of Nt and the m's has its own unique sequence.

Bose Noise is set up to produce at least one coincidence for

each coefficient. In practice it can produce several coincidences

as configurations are shifted down the delay line, but nevertheless,

the number is small. Thus the utility of Bose Noise is the relatively
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short time required for probing. The coefficients so obtained

represent averages of system responses over one, or possibly several,

coincidences. Because the total time for averaging is so much

less than the very long averaging time implied by equation 14, we

must expect that the mean square error will be at or near its maximum

value. Just how serious this error is must be judged in each case.

However, we may expect that as the number of gate functions used

to expand each delay line output increases the error will diminish.

In practice, the need to limit probing effort will take a higher

priority than will the need to attain the minimum mean square error.

To illustrate a specific Bose Noise sequence, consider a "configuration

diagram" for example 2 shown in fig. 19. In this instance we have

Nt =2 , m= 20 , and mn2 =10 . The fact that this model was

intended for the interval (0 < x < 6) means that (0,6), designated

the "amplitude spread," s , is divided into 20 equal divisions

on the first tap and into 10 equal divisions on the second. Thus,

for the gate function numbering scheme shown in fig. 19 we have,

for example, that coefficient a1,1 corresponds to a simultaneous

occurrence of the present input in the range (0 < x < 0.3) and

the previous input in the range (0 < x < 0.6). Coefficient a1 0,7

would correspond to the simultaneous occurrence of the present input

in the range (2.7 < x < 3.0) and the previous input in the range

(3.6 < x < 4.2).

To generate the coefficients from a11 through a20,10 we

want to bring in amplitudes that fit into the ranges of the corresponding

gate functions. It is convenient (although not necessary) to pick
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amplitudes that fall into the middle of the gate function ranges.

For example, for al,1 we want the appearance, at least once, of

the combination of 0.15 on the first tap and 0.30 on the second

tap simultaneously. For a10,7 we want 2.85 and 3.90. It is convenient

(although again not necessary) to generate the coefficients by indexing

the second subscript. An excerpt from the initial part of the Bose

Noise sequence for example 2 is illustrated in fig. 20. This sequence

of amplitudes, inserted one after another into the delay line, will

systematically satisfy the gate function coincidence requirement

of each coefficient. The number of Bose Noise amplitudes for this

case is 2 x 20 x 10 = 400. The coefficients for examples 1 and

2 were obtained using Bose Noise.

System Settling Time

Example 1 described a system independent of the past and example

2, a system dependent on past amplitudes regardless of the times

of their occurrence. We are now in a position to discuss the

more realistic case of dependence on the past of the input in

terms of amplitudes and times of occurrence.

WBT requires very little knowledge of specific features of

the system under study. But we must know certain basic facts: whether

or not there is dependence on the past and, if so, a measure of

how much. That measure is conveniently expressed in terms of the

"system settling time," T . This may be thought of as the time
s

required by the system to regain equilibrium following an impulsive

disturbance. A judgement must be made in each case as to just
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when, in a practical sense, equilibrium has been regained. For

example, if there is one obviously dominant time constant, then

a time interval equal to five times this time constant can be used

as T . If the responses are oscillatory, then the time intervals

for amplitudes to diminish to one tenth their initial values might

be considered as T . Indeed, variations on this theme are sos

numerous that it is difficult to be more specific.

The settling time enters the WBT model as the total time delay

of the delay line. After T seconds the system has forgottens

what the input was and there is no need to retain a record of it

for a longer period of time. The time scale for the model is also

set by T . If we have N taps equally spaced along the delays t

line then the time interval between samples of the input is

T
A T -

N
t

In particular, the signal used to probe the system has this time

interval between samples. If Bose Noise is used for the probe,

the WBT model establishes the sequence of inputs without regard to

time and T establishes the time scale.
s

Determination of Coefficients for Bose Noise Probe

When the weighting function, G(x) , is selected as unity and

Bose Noise is used as the system probe it becomes especially easy

to determine the characterizing coefficients. Recall that the basic

idea behind the Bose Noise concept is the occurrence at least once
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of all possible configurations. We are free to choose the order in

which these configurations occur. Once the choice has been made we

know in advance when each configuration will occur during the probing

process. Because we know this in advance there is no need for the

delay line and gate function generator. It suffices to monitor the

response of the system during the probing process and mark the time

when each configuration is scheduled to appear. When the (i,j, . . .,k)th

configuration appears we determine the average value of the response during

the time of occurrence. This average value is the (i,j, . .,k)th

coefficient.

Another simplification is sometimes possible. If the response

of the system during the time of a coincidence is monotonic it will

suffice, in a practical sense, to sample the response in the middle

of the (prearranged) coincidence interval and to use that single

sample as the coefficient, eliminating the averaging process.

Examples

Examples 1 and 2 helped to introduce basic concepts. These

concepts have now been presented and some examples will now be useful

to consolidate ideas.

Example 3. We will consider a second-order nonlinear system

that has been discussed by Harris.[7] This system is illustrated

in fig. 21 and is described by the following equations:
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Yl + Yl = x

-0.5 y Yl <-0.5

sat (yl) = Y1  , -0.5 < y1 < 0.5

0.5 , 0.5 < yI

S+ Y2 = sat (yl)

We will pretend that we do not have these equations but can probe

an actual copy of the system.

We know in advance that the response of this system is dependent

on the past of the input and is stable for inputs of interest. We

can estimate its settling time as about 5 seconds. Suppose that

we are interested in future input amplitudes ranging over the interval

(-l < x < 1). We now want to select the number of delay line taps

and the number of gate functions on each tap. In general we want

these numbers as large as possible; in practice computation and

probing efforts set the limit. It would be useful at this point

for the reader to select some numbers and see the consequences in

terms of coefficient count,

N
t

N = Hm.c i=l I

and in terms of probe length,

NB = NtNc

We will pursue this example with selections made by the author as
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directed by available computer capacity and time for processing:

N =5t

mI = 20

m 2 =8

m 3 6

m 4 4

m5  2

These choices give

N = 7680
c

NB = 38400

We have estimated

s=2

The configuration diagram for these selected parameters is shown in

fig. 22. We have also estimated

T = 5.0 sec
s

This corresponds to the total delay of the delay line. Thus the

delay between the equally spaced taps is

5.0
AT =- 5.0 = 1.0 sec5.0

Corresponding to these parameter selections is a unique Bose Noise

probe. Excerpts from the beginning, middle, and end of this sequence

are illustrated in figs. 23a, 23b, and 23c, respectively. As discussed

earlier, because we know in advance when the system is to be probed
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Figure 23 Excerpts from Bose Noise Sequence, Example 3
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for a certain coefficient, we may monitor its response at that time.

The average of the response over the time of coincidence is the

coefficient.

A state diagram for this system is illustrated in fig. 24.

The abscissa of this diagram represents the amplitude of the present

input and has been divided into 20 equal intervals over the range

(-1 < x < 1). When the input falls into any one interval, the

model output is one of 384 (= 8 X 6 x 4 x 2) possible states.

We may now synthesize a response to any input, x(t) , whose

amplitude remains in the range (-l < x < 1). For example, consider

the input depicted in fig. 25a. This input runs across the amplitude

spread parameter, s , at different rates and will give insight into

model performance for inputs of different rates. The response of

the model to this input is shown in fig. 25c together with the

responses of the differential equations of the system. We see

immediately the stairstep response characteristic of WBT models.

The form of the model response compares favorably with the "actual"

response. The initial part of the input is a step function sustained

for a time equal to T . In the WBT response to this part ofs

the input, there are as many steps as delay line taps as the input

is shifted down the delay line. This part of the response represents

the poorest performance of the WBT model and makes it apparent

that responses improve with increasing Nt * The remainder of the

input consists of ramps of decreasing slope. The fastest of these
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goes from +s/2 to -s/2 in a time equal to T , and the WBT

response appears, qualitatively, to be satisfactory in this area

and remains satisfactory for the rest of the input.

To quantify this idea the input can be partitioned into intervals

as follows:

Interval Time, sec

1 0 to 1

2 1 to 6

3 6 to 11

4 11 to 21

5 21 to 36

6 36 to 56

The first interval corresponds to the equilibrium state of the

model and the second corresponds to the step-function response.

The remaining intervals correspond to the ramps of decreasing slope.

In each interval we may compute the mean square error between

the WBT and "actual" responses;

Interval MSE

1 0.0209

2 0.0614

3 0.0007

4 0.0024

5 0.0044

6 0.0073

We see that, as expected, the second interval corresponding to the

step-function response has the greatest mean square error. All

other errors are less than the step response error. This fact suggests
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that we might take the step response error as an indicator (pessimistic)

of the quality of the model. Having selected WBT model parameters,

it is easy to determine, using the configuration diagram, what specific

coefficients would be summoned by the model to predict the step

response. The system can be probed to determine just those coefficients

(N in number). The model prediction can be compared to the actualt

step response to determine the mean square error and a decision

made whether to proceed with the determination of the remainder

of the coefficients or to revise the model parameters.

The equilibrium state seen in the first interval compares poorly

with that of the actual system. This is an outcome of the fact

that our estimate of T is somewhat low (Harris computed a settlings

time of 5.4 seconds). As a result, the system had not yet come

to equilibrium during the probing process at the time when the

equilibrium coefficient was determined.

As mentioned above, this particular system was studied extensively

by Harris. We have already come to appreciate how quickly the

number of coefficients of a WBT model increases with increases

in the number of gate functions selected. Harris' contribution

was to find a way to drastically reduce the coefficient count at

the expense of certain restrictions on the nature of the input.

He studied inputs that were constrained to switching between two

constant levels, and that were limited to no more than two switches

in a time interval equal to T seconds and separated by no less
5

than T /2 seconds. These are realistic constraints for the chemical

engineering context of his work. They are not realistic for the
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ride dynamics context of this work. With inputs so restricted,

Harris was able to consider delay lines with as many as 54 taps,

not necessarily equally spaced. Furthermore, he needed only to

use two gate functions on each tap. The net outcome is that for

the specific nonlinear system of this example, Harris' WBT model

gives a much better fit for step function inputs than did the model

used above. However, his model is inherently incapable of handling

arbitrary inputs and has no way of producing responses such as shown

in fig. 25.

Example 4. In this example we will consider a mechanical system

having four degrees of freedom. The example was formulated as part

of the evolutionary process leading toward the application of WBT

to ride dynamics. The nonlinear system to be studied is illustrated

in fig. 26 and could represent a wheeled vehicle having identical

displacement inputs to the front and rear wheels. Such a collection

of masses, springs, and dashpots is representative of the current

modeling technique for simulating a mechanical system of this kind.

For the purpose of ride dynamics studies, the system of this

example is unrealistic and would not be used. Our interest in it

is as a nonlinear system in its own right, representable by a set

of differential equations. We want to apply the WBT modeling strategy

to it, using the differential equations as a stand-in for an actual

copy of the system. However, several WBT model parameters will

be selected with the knowledge that this system can be made to behave

in some ways similar to a vehicle.

Parameter selections for the mass-spring-dashpot model were
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as follows:

MI = 8.10 lb-in./sec
2

I = 2551.0 lb-in. 3/sec2

M2 = 0.94 lb-in./sec
2

M3 = 0.80 lb-in./sec
2

k 1 =64.80 in.

k2 = 47.20 in.

Nonlinear force-deflection characteristics for springs K1

K2 , K3 ; see figs 27a, b, and c.

Nonlinear force-velocity characteristics for dashpots B2

B3 ; see figs. 27d and e.

With this selection of parameters, the differential equations for

this mass-spring-dashpot model are as follows:

Deflections of compliance elements

{pz2 p z2 0

All
Al, p -z2 > 0

= p - z3 ,p - z 3 < 0

A 2
2 p - z3 > 0

A2 = z2 - z - 64.8 e

A3 = z3 - Z + 47.2 6
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Forces due to deflections of compliance elements

FK = f(A 1 1 ) See fig. 27a

FKI 2 =f(A 1 2 ) See fig. 27a

FK2  =f(A 2 ) See fig. 27b

F K f(A 3 ) See fig. 27c

F B f(A2) See fig. 27d

F = f(6 ) See fig. 27e

Dynamics

z= 0.124 K2 +FK3 F B 2+ FB3 3107.

0 = 0.000392[64.8 (FK + FB)- 4 7 .2(FK + FBj

z2 1.0638[FK - FK - F B- 367.8]

z3 = 1.25 K 12  ' FK - FB - 308.8]

We want to formulate a WBT model for this system. We will identify

the input as the displacement forcing function, p(t) , common to

both springs, K 1 The output will be the vertical displacement,

zI , of mass, M, at the center of gravity. As a consequence of

studying the response of this system to step functions of several

magnitudes, it is possible to estimate

T = 2.0 seconds.
s
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Because the system is capable of oscillatory responses we want as

large a number of delay line taps as possible for good resolution

in time. WBT model parameters were selected as follows:

N =6
t

m= 8

m = 6

m3 4

m = 4

m=5 2

m 6 =2

These choices give

N = 3072
c

NB = 18,432

AT = 0.333 sec

The range of future inputs of interest was selected as (-3 < x < 3)

or

s = 6

The configuration diagram for this model is shown in fig. 28. The

state diagram of coefficients determined by probing with the Bose

Noise sequence is shown in fig. 29.

The performance of the WBT model was studied using the same

kind of input as was used in the previous example--a step followed

by ramps of different slopes ranging over the entire spread, s ,

of the model. Model and system responses to this input are shown as

departures from equilibrium in fig. 30. We see that the basic form
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of the system response is displayed by the model, athough there are

many seemingly erratic jumps. Such jumps would be removed by using

more gate functions on each delay line tap at the expense of increased

probing effort to determine the greater number of coefficients.

We may study the mean square error by once again partitioning

the input into time intervals as follows:

Interval Time, sec

1 0 to 0.333

2 0.333 to 2.00

3 2.00 to 3.667

4 3.667 to 7.00

5 7.00 to 12.00

6 12.00 to 16.667

The mean square errors in these intervals are as follows:

Interval MSE, in. 2

1 0.189

2 0.3753

3 0.4029

4 0.1734

5 0.3871

6 0.1143

It appears at first glance that in this case the step response

error (interval 2) is not the upper bound on the other errors.

However, we must realize that this particular system can exhibit

quite different dynamics depending on whether the compliance elements

are being compressed or released from compression. Also, the system

is capable of being "launched" in the sense that it can lose contact

with the displacement forcing function, p(t) , and this is more

likely to occur during a period of release from compression than
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during a period of compression. The net outcome is that intervals

2, 4, and 6 should be regarded separately from intervals 3 and 5.

If we do this, we see that the step response error of interval 2

is indeed greater than the errors in intervals 3 and 5. In addition,

the response of the model to a downward-going step of 3-inches amplitude

2
was determined to be 1.1637 in. which is larger than the errors

of intervals 3 and 5.

This WBT model could be improved by the use of more gate functions,

especially on the first tap. That this was not done was due to the

constraint imposed on computer effort by the need to process the

several differential equations representing the nonlinear system.
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IV. APPLICATION TO RIDE DYNAMICS

General Considerations

To ascertain factors of a practical nature in the application

of Wiener-Bose Theory, and to carry out the second principal goal

of this dissertation, the empirical probing process was carried

out on a wheeled vehicle. With reference to ride dynamics, a vehicle

is a satisfactory system for Wiener-Bose characterization. It is

basically a constant-parameter system; the inputs are terrain profiles

at the wheels, and the outputs are dynamic properties of interest

such as accelerations and pitch angles at selected points on the

vehicle. Present outputs do not depend upon the remote past of the

inputs; the natural responses of most vehicles to impulsive inputs

are similar to highly damped sinusoids.

There is one basic conceptual problem in applying Wiener-Bose

Theory to a vehicle. To this point we have discussed single input-

single output systems. A four-wheeled vehicle is a four-input system.

There are several ways in which WBT can be brought to bear on this

problem. Bose shows how multiple input systems may be treated. Using

the methods of this dissertation, we would employ four delay lines,

one for each wheel, to keep track of the past of each input. Then

Bose's gate function expansion would be enlarged by using more gate

functions so that we would be looking for particular configurations

of the past of the inputs occurring simultaneously. If we have Nc

configurations for each wheel, then the total number of configurations

4
would be (N )C . A model so constructed would represent a completely
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unconstrained vehicle and be capable of predicting bounce, pitch,

and roll motions.

Although this method of extending the theory to multiple inputs

is attractive because of its conceptual clarity and represents the

correct way of accomplishing the task, its cost in probing and computing

effort would be prohibitive at the present time.

There are many instances in which profitable ride dynamics studies

may be accomplished even when roll motion is suppressed. If we constrain

our model to pitch and bounce motions then our input problem is

considerably lessened because we are saying that the right and left

sides of the vehicle are excited by the same terrain input. Thus

we are now dealing with a two-input system: front wheels and rear

wheels.

It is tempting to go further and reason that because the rear

wheel input is a time-delayed version of the front wheel input we

really have a single-input system and we may apply WBT directly.

This fails to work out, however, when we think about the meaning

of the settling time, T , in this context. The settling time becomess

dependent on the vehicle velocity and reflects the time lag between

front and rear inputs rather than the dynamic responses to those

inputs. So that we have, in effect, a time varying parameter and

cannot apply WBT in this way.

Returning to the two-input case, the analysis can be carried

forward by constructing separate models for front wheel excitation

and for rear wheel excitation and superposing the predicted responses

with the time delay between inputs taken into account. This approach
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has the advantage of being reasonable in the number of coefficients

required. The utility of using superposition in the process of

modeling a nonlinear system must be determined in each case.

Selection of the Vehicle and the Wiener-Bose Models

The vehicle selected for Wiener-Bose characterization was the

military 3/4-ton truck designated M37. This vehicle has an unloaded

weight of 6000 lb and is equipped with four-wheel drive. Several

ride dynamics studies have been conducted using it [16,17], and

much field data has been collected.

The formulation of a suitable Wiener-Bose model was influenced

by two conflicting requirements: the desire for high resolution

in amplitude and time on one hand which calls for many coefficients

and the need to limit coefficient probing effort on the other. The

model parameters finally selected are listed below:

N =4
t

mI 1 16

m2=8

m3 =4

m4 =2

N = 1024c

NB = 4096

s = 6 in.

By reviewing existing ride dynamics data for the M37, the settling

time was estimated as

T = 1.75 seconds
s
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The configuration diagram for these parameters is illustrated in

fig. 31.

The net outcome of these selections is a coefficient count

that is rather small for ride analysis requirements but not too small

to make a judgment of the overall effectiveness of the method.

The principal effort in applying WBT to this mechanical system

is obtaining the characterizing coefficients. As discussed earlier

our strategy is to use one WBT model for front wheel inputs and

a second for rear wheel inputs. Both models are the same and have

1024 coefficients. They will have the same Bose Noise sequence

for determining the coefficients. The probing process will involve

traversal of an obstacle course configured to represent the Bose

Noise sequence. In addition we must recognize that front and rear

wheels are probed alternately and that the rear wheels must be isolated

when the front wheels are being probed and the front wheels isolated

when the rear wheels are probed. This means that the Bose Noise

sequence is to be interrupted by isolation intervals.

The hardware realization of these probing requirements begins

by recognizing that the Bose Noise sequence for each coefficient

is a series of four steps (one for each delay line tap). Thus,

each obstacle is to be configured in this series of steps and is

to be impacted simultaneously by right and left sides of the vehicle.

The average of the dynamic response of the vehicle as, say, the

front wheels traverse the last step of this obstacle is interpreted

as the desired characterizing coefficient for the front wheel model.

The overall length of this obstacle is dictated by tire footprint
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geometry and desired operating velocity. The basic requirement

is that the wheels traverse this obstacle in 1.75 seconds. This

can be done at high speed with a wide obstacle or at low speed with

a narrow one. Previous experience with the M37 suggested that reasonably

constant velocity could be maintained with four-wheel drive at about

4 feet per second. For ease of assembly the total obstacle width

was set at 8 feet. An isolation interval of 8 feet between obstacles

was selected.

Now when we consider that 1024 such obstacles are required

and that each is separated by 8 feet from its neighbor we can see

the effort required to probe. The total length of such an obstacle

course would be about 2.5 miles.

Test Setup and Procedures

The 1024 coefficients required for the selected WBT models were

determined on a specially constructed obstacle course. Each obstacle

was constructed of stacks of 3/8-in. plywood cut in 2 ft by 2 ft

squares. Three such obstacles are shown in figs. 32, 33, and 34.

They differ in the heights of the individual stacks. Each obstacle

produces a different characterizing coefficient. Each coefficient was

obtained as the average response of the vehicle during the time of

traversal of the last step of an obstacle as shown in fig. 35. The

average response was approximated by sampling the instantaneous

response in the middle of the last step. Between each two obstacles

is a runway 8 ft long whose purpose is to provide the isolation interval

mentioned above. The elevation of the runway sets the reference
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level for displacements. Obstacle stack heights are both higher

and lower than this level.

Twelve such obstacles and their neighboring isolation zones

were assembled at any one time. These are shown in fig. 36. The

total length of this obstacle course was 184 ft and corresponded

to the length of preexisting hard-surface test lanes to which the

obstacles were secured. When these twelve obstacles were traversed

and analog data obtained, they were replaced by another set of twelve

obstacles. It required 86 such replacement and traversal processes

to probe the vehicle for the 1024 characterizing coefficients.

The role of the isolation intervals is illustrated in figs. 37

and 38. In fig. 37, a coefficient for the front wheel model is

about to be determined as the front wheel nears the completion of

its traverse of the obstacle. At that time there is no significant

contribution to dynamics from the rear wheels. In fig. 38 a coefficient

for the rear wheel model is about to be determined. Ideally there

should be no contribution from front wheel dynamics. In practice

we can see that the isolation is not complete. The distance of 8 ft

chosen for the isolation interval represented a compromise between

coefficient isolation on the one hand and the number of obstacles

that could be placed in the available 184-ft test lanes on the other.

The vehicle was instrumented to record analog data as follows:

Pitch angle at center of gravity

Vertical acceleration at center of gravity

Horizontal acceleration at center of gravity

Horizontal velocity.
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These analog time histories were recorded on magnetic tape and oscillograph

paper. In addition, elapsed distance was monitored and event marks

recorded to identify the instant of traversal of the middle of the

last stack in each obstacle.

The testing procedure consisted of setting up twelve obstacles

and traversing them at each of three constant speeds while recording

analog responses. Then the next twelve obstacles were set up and

the process repeated. The use of three traversal speeds was intended

to show how sensitive the characterizing coefficients were to significantly

different traversal velocities. Such fluctuations in velocity are

unavoidable. There is also some uncertainty in the estimate of

the settling time that can be simulated by traversing the fixed

obstacle length at different velocities. The velocities used are

listed as follows, where the settling time is the same as the time

to traverse 8 ft at the indicated velocity:

Velocity Settling Time
ft/sec sec

3.50 2.28

4.00 2.00

4.56 1.75

The analog tapes were processed using a computer-controlled

data acquisition system. The analog responses were sampled at instants

dictated by the recorded event marks. These sampled data points

were the desired coefficients.

Results

As mentioned earlier, the WBT model parameters selected within
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the constraints of materiel and labor available for probing the vehicle

results in a rather coarse model for purposes of ride dynamics studies.

The net outcome is that of all analog data recorded, only the pitch

motions of the vehicle were suitable for modeling; the accelerations

were too oscillatory (and noisy) for effective modeling with only

four delay line taps. Data reduction efforts were limited to determining

the coefficients for the front- and rear-wheel-input models of pitch

motion.

Because, to the author's knowledge, WBT had never been applied

to a mechanical system like a wheeled vehicle, and because it was

by no means certain that the outcome of a difficult field test program

for probing the vehicle would yield results of any value, a computer

study of the probing process was made. A mass-spring-dashpot model

for the vehicle was formulated and coefficients for front and rear

wheel WBT pitch models were determined by simulating responses for

the traversal of exactly the obstacle course proposed for the actual

vehicle. The mass-spring-dashpot model used is illustrated in fig.

39 and is clearly an enlargement of the system of example 4 that

makes use of a segmented-wheel concept [18] for realistically simulating

the transmission of forces through pneumatic tires. This model was

referred to as the "bench-mark" model. In essence, the application

of WBT to the bench-mark model produced a model of a model, a fact

of no particular virtue. Nevertheless, by pretending that the bench-

mark model was our wheeled vehicle and proceeding with the WBT probing

process, state diagrams were produced, as illustrated in fig. 40,

that identified trends and served as a guide for judging the

95



BODY

SUSPENSITON

AXLES

TIRES

Figure 39 Benchmark Model

96



2 3 __

2

_ 0

I -- 2SI _

--3

o _ - -

_2 -:

-3 0 -303
PROFILE INPUT,- IN.

o..FRONT WHEEL b. REAR WHEEL

Figure 40 Benchmark State Diagrams

97



reasonableness of the field test data.

It is interesting to note the separation of the rear wheel coefficients

into two clearly distinct groups. This is an outcome of the incomplete

isolation of the rear wheels from the front wheels during the probing process.

To study the ability of the WBT model to synthesize responses to spe-

cific inputs, two input profiles were selected for simulated traversal at

4.56 feet per second. These are shown in fig. 41. A field test was con-

ducted with the M37 in which the vehicle traversed these profiles at the

same speed. These traverses were simulated with the bench-mark model and

the model parameters "tuned," as usual for mass-spring-dashpot models, to

give good pitch responses in comparison to the field data. With the bench-

mark model optimized in this manner, the WBT probing process was carried

out as mentioned above. Once the coefficients were determined, they in

turn, were used to simulate responses to the inputs of fig. 41. The re-

sponses predicted by the WBT models are illustrated in figs. 42 and 43 and

are compared to the actual vehicle responses. Such predicted responses are

satisfactory for ride dynamics studies and suggested that it would indeed be

profitable to proceed with the test program for determining the characteriz-

ing coefficients of the M37.

The outcome of the test program was the determination of the 1024 co-

efficients shown assembled into a state diagram in fig. 44. Three diagrams,

one for each test traversal speed, are shown for the front and rear wheel

models. The coefficients were used to predict the pitch time history of

the vehicle during traversal of the input profile of fig. 41. The predicted

responses, using the three sets of coefficients, are compared to the actual

response in figs. 45 and 46. In addition, the coefficients were used to

98



.•2 4 6 8

Distance, ft

0
.r4

-5 
....

Distance, ft

Figure 41 Specific Inputs for Benchmark
and WBT Models

99



0
al)

w

Cr-I

N - 0 - N N 0 -

03CI '3SNOdS38 03C '3SN~dS38
3-10IH3A -13 0O0N

100



En
0)
0o
04
(n

w on

r u

0)

0)

P14

04J - 0 T - 0 NT N

030 3SN~S38 30 gSN~dS38

101



4 -

-2 --- -

0 4

3ý FRONT: 3.50 FT/SEC FRONT: 4.00 FT/SEC FRONT: 4.56 FT/SEC
U

(LL
I-4

2 ---. __ =_ __ -_

- - __ _

-3 03 -3 0 3 -3 0 3
PROFILE INPUT, IN.

REAR: 3.50 FT/SEC REAR: 4:00 FT/SEC REAR: 4.56 FT/SEC

Figure 44 M37 State Diagrams

102



> 2-__

0

-2

U

U

-2

UU

-I

3.50 FT/SEC COEFFICIENTS

ID
U

0
U

Jo•'

4.00 FT/SEC COEFFICIENTS

4.56 FT/SEC COEFFICIENTS

Figure 45 M37 Responses

103



z

C0n

"cr
w

-2

2

0 --L

3.50 FT/SEC COEFFICIENTS

-I)
z

-J

4.00 FT/SE•C COEFFICIENTS

Figure 46 M37 Responses

1o4



predict the RMS pitch motion of the vehicle during traversal of a profile

corresponding to one of the 12-obstacle setups of the test program. This

profile is shown in fig. 47. The predicted and actual RMS pitch responses

are also shown in fig. 47. The predicted responses were obtained by com-

puting separately the responses at the center of gravity for front wheel

inputs and rear wheel inputs with the time lag between these inputs ac-

counted for. The two separate responses were superimposed and the RMS

time history computed for the resulting response.

Discussion

It was necessary to make two corrections to the sets of coefficients

obtained during the test program. The first correction was needed to mini-

mize the effect of some drift in the gyro pitch sensor. At the beginning

and end of the obstacle course were known locations at which the vehicle

was in an attitude of zero pitch. These locations were determined on the

oscillograms of pitch motion and identified the zeroes of pitch at begin-

ning and end of the tests. The zero of pitch during the test was assumed

to vary linearly between these two points. The coefficients shown in the

state diagrams of fig. 44 were determined with reference to this zero of

pitch.

The second correction was invoked after comparisons were made of the

benchmark and M37 state diagrams (figs. 40 and 44). These diagrams are

similar with respect to their linear trend across the input axis. If each

of these state diagrams were fitted with a linear regression line, it would

be seen that, in the case of the rear wheel coefficients, the y-intercepts

of the lines would be about the same for both the benchmark and M37
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coefficients. However, for the case of the front wheel coefficients these

y-intercepts would be distinctly different. For the benchmark coefficients

the regression line would pass through the origin, but for the M37 coef-

ficients it would pass well above the origin. It was decided that in

utilizing the M37 coefficients to predict pitch responses, the front wheel

coefficients would be decremented by an amount equal to the y-intercept

of their respective regression lines. Figures 45, 46, and 47 were obtained

with the front wheel coefficients used in this way.

A comparison of the predicted and actual pitch time histories shown

in figs. 45 and 46 suggests, qualitatively, that WBT is capable of capturing

the main features of the dynamic responses of the actual vehicle. It

should be borne in mind that the coefficients used to assemble these pre-

dicted responses were obtained during traversal of an obstacle course that

bore no resemblance to the input profile corresponding to these responses.

There will be little merit in formulating quantitative measures of

model performance with respect to deterministic time histories. It is more

realistic to study the statistical performance of the model. In comparing

the predicted and observed RMS pitch responses, fig. 47, a satisfactory

match may be seen. It is this outcome that suggests that WBT is capable

of satisfactory performance for ride dynamics studies.

It is pertinent at this point to comment on some of the practical

problems encountered in determining the WBT coefficients. The test program

required four months to accomplish. Work proceeded intermittently, slowed

by weather conditions, personnel changes, and higher priority projects.

Thus, the vehicle which we tacitly assume to be invariant in its mechanical

properties is never quite the same from test to test when driven by different
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men, undergoing maintenance, and operating in the open. These facts, of

course, can be anticipated prior to doing any testing and we are interested

in knowing how sensitive the WBT coefficients are to these perturbing

factors.

As mentioned earlier, the coefficients were studied under three dif-

ferent conditions of traversal speed, knowing that an absolutely constant

speed cannot be maintained. Thus, to use three speeds separated by

approximately 15 percent exaggerates the effect of variations in test

speed and gives a clue to the sensitivity of the WBT coefficients

to this factor. In general, the obstacle course corresponding to

the Bose Noise sequence for our WBT model was rather rough on the

vehicle, even though the maximum peak-to-peak obstacle height was

never greater than 6 inches. The net outcome was that although the

overall traversal speed could fairly easily be held to the desired

value, deviations from this speed could be significant. In some

cases it was necessary to put small blocks in front of the higher

obstacles to prevent the vehicle from being stopped dead in its

tracks. Most of the coefficients were obtained with the desired

condition of traversal speed, but others were obviously in error

because of too great deviations in speed at the wrong time.

Another perturbing factor was the nonsimultaneous impacting

of obstacles by the right and left wheels. The WBT models were

predicated on the absence of any roll motion. This condition was

observed to be maintained most of the time but could become a problem

especially when traversing the rougher segments of the Bose Noise

sequence.
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Notwithstanding these problems, the WBT coefficients, as indicated

by the state diagrams in fig. 44, would seem to be fairly tolerant

of the practical aspects of probing. Moreover, the predicted responses

of figs. 45 and 46, are reasonably similar in view of the fact that

the coefficients of which they are constructed were determined at

significantly different speeds. It is interesting to note that the

greatest errors occur on the right-hand side of these figures

corresponding to the response of the rear wheel model, and the coefficients

of the rear wheel model were the ones that were obtained under the

condition of incomplete isolation from the front wheels (see fig. 38).

In retrospect, the test procedures and obstacle course construction

are capable of much refinement. For example, it required about

20 minutes to run the vehicle at three speeds over a completed obstacle

course, thereby securing another 12 coefficients. Then it required

some 2 hours to change the configuration of the obstacles prior to

another run. Because of the considerable overall expenditure of

time and effort on probing the vehicle, test procedures must be significantly

refined before WBT can easily be applied to ride dynamics problems.

These refinements can be carried out in two ways. First, effort ex-

pended in designing and constructing a quick-change obstacle course will

offset the testing slowdown incurred with the rudimentary obstacle course

employed in this study. Second, it may be possible to reduce the generality

of the model and so reduce the coefficient count significantly. This

comment is suggested by the observation that in assembling specific

responses to specific inputs, the model summons only a small number of

coefficients from the available stockpile. Thus, if it were possible to
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say that only a certain class of inputs were likely to be studied in the

future, it may be possible to decide in advance what coefficients were

likely to be used. Those coefficients that would see little use need not

be found. This approach represents a middle ground between a completely

general model like WBT provides and a completely empirical strategy for

determining vehicle responses to a few profiles of interest.
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V. CONCLUSION

Some Guidelines for Constructing WBT Models

The experience gained during this study of the implementation

of WBT is most usefully summarized in the form of guidelines for

selecting WBT model parameters. The principal utility of such guidelines

is to remind the investigator of the many options at his disposal

and to suggest priorities for his selection of parameters. Figure 48

attempts a graphic illustration of the flow of ideas to be discussed

below.

a. Although it was actually within the context of the

original Wiener theory to inject a probing signal into

the nonlinear system without any knowledge of its nature

other than its lack of spontaneous oscillation or com-

bustion, we should, in fact, know more than this. We

must be able to prod, poke, or otherwise tamper with

the system so that an estimate may be made of a settling

time, T . The settling time is an important parameter
5

in the WBT model and an effort should be made to learn

the peculiarities of the system in its different regimes

in order to make a good estimate. If the selection

of T is too small, the equilibrium states of the
s

model will be in error; if too large, too long a record

of the past of the input is retained and many coefficients

will be wasted in the expansion of unnecessary delay

line taps. A possible way to check the correctness
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of the estimate of T is to determine, using thes

configuration diagram for the WBT model, just which

configuration determines the coefficient representing

the equilibrium state (assuming, for example, only

one). The system may be probed to find this coefficient

and the mean square error between the model and system

equilibrium levels determined. A large error suggests

that T has been selected too small and, in fact,s

a very small error should alert the investigator to

the possibility of too large a value for T . It shoulds

be borne in mind that other factors contribute to equilibrium

level errors. Specifically, there are the number and

widths of the gate functions, and the spacing of the

taps along the delay line. Thus the procedure suggested

above does not completely isolate the error due to

the estimate of T but can serve as a guide.s

b. In reference, once again, to the original Weiner theory,

there was no expressed limit to the amplitude of the

probe or to the amplitude of inputs to be handled by

the model. In WBT, there is a limit to such amplitudes,

especially when Bose Noise is used as the probe. In

fact this limit is fixed by the investigator as the

amplitude spread parameter, s , and represents the

maximum peak-to-peak excursions of the input for which

the WBT model is valid. We must be able to estimate

the range of amplitudes for future inputs of interest.
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This estimate is based upon our knowledge of the nature

of the nonlinear system under study. We want to be

certain that the WBT model is not more elaborate than

necessary; too large an estimate of s will usually

result in more coefficients than needed for most future

inputs.

c. The weighting function, G(x) , is completely unspecified

in WBT except for the requirement that it be non-negative.

Throughout this dissertation we have used

G(x) = 1

Aside from the fact that this choice results in simple

formulas for coefficient determination, the selection

of unity is necessary if Bose Noise is to be used as

the probe and the coefficients are to be determined

by averaging responses over predetermined times of

coincidence. This method offers important savings in

data processing effort. In addition, the choice of

unity corresponds to the production of coefficients

capable of producing minimum mean square error model

responses, although this capability is degraded by

using short averaging times. Thus the choice of unity

for the weighting function is quite effective in its

own right and we may expect that this choice will often

be made automatically with no more thought given to

it. However, in establishing WBT model parameters
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the investigator should recall that G(x) is a free

choice and can possibly play a decisive role in dealing

with the peculiarities of his particular nonlinear

system.

d. Many theories are born clamoring for great amounts

of time, effort, and computing machinery so that they

may grow, prosper, and bring forth good results. Few

do so more loudly than WBT. We have two principal constraints

upon the implementation of WBT: the effort required

to probe the system to determine the characterizing

coefficients and the limitations on processing speed

and storage capacity of the computer that will hold

all these coefficients and assemble specific responses

from them. With regard to probing effort, nothing

can be said here as to how much will be required because

it depends completely on the nature of the system to

be modeled and upon the error requirements placed upon

the model. As mentioned above, the probing effort required

for the mechanical system studied in this dissertation

was very great and must be reduced before WBT can be

applied routinely. Furthermore, the constraint imposed

by probing effort will be just as severe in the future

as at present, in contrast to what we may expect of

the second constraint. It is entirely reasonable to

expect that the constraint imposed by speed and capacity

of computers will diminish to the point of essentially
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becoming no constraint at all and that the probing

effort to determine model coefficients will be the

only factor that fixes their number.

e. The net outcome of dealing with the factors discussed

above is the selection of values for the parameters

Ts , Nc , s , and G(x) . Two more basic parameters

are at our disposal, the number of delay line taps,

Nt , and the number of gate functions, mi , used to

expand each tap. In essence, N controls resolutiont

in time and the m's control resolution in amplitude.

Throughout this dissertation, we have used equal

spacings of delay line taps, a configuration especially

easy to implement. But we are not restricted to keeping

track of particular instants in the past of the input

and may tap the delay line at will. Harris, with his

special form of WBT, has used some unequal tap spacings

with improvement in the error performance of his models.[7]

Thus the investigator may want to consider the possibility

of strategically located taps on the delay line as suggested

by features (such as transport lag) of his nonlinear

system.

On each tap of the delay line of the models used

in this dissertation, we have used gate functions of

equal width. Once again this choice is prompted by

ease of implementation but is not a basic requirement

of WBT. As long as the partitioning of the amplitude
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of the waveform emerging from the delay line tap is

nonoverlapping, the partition intervals may be chosen

at will.

In this dissertation we have used diminishing numbers

of gate functions to expand taps positioned later and

later along the delay line. The motivation was to

reduce the total number of coefficients in comparison

to the number that would be required if all taps were

expanded with the same number of gate functions as

used on the first. This procedure was also suggested

by the nature of the nonlinear systems studied whose

dependence on the past diminishes as we go farther into

the past, and which would seem to require less detailed

knowledge of past amplitudes to determine present responses.

But we should be aware of the fact that the choice of

numbers of gate functions is free and may suit the

convenience of the investigator.

f. Having gone on to select values for N and the m's-- t

we have fixed the time interval between delay line taps,

AT , and the Bose Noise sequence for the model. We

are now ready to determine the characterizing coefficients

to complete the model. Recall that the principal advantage

in using Bose Noise is the relatively short time required

for probing. But we are by no means committed to using

it and may use any kind of probing signal, perhaps

one suggested by the nature of the system or the future

117



inputs to be studied.

Conclusions

a. The original theory of nonlinear systems suggested

by Wiener is not suitable for engineering applications

because of excessive numbers of coefficients required

and practical difficulties incurred in their determination

with a nonideal Gaussian probe.

b. The gate function expansion suggested by Bose is an

important factor in developing a practical theory. This

factor, together with the concept of Bose Noise, contributes

to a workable strategy for modeling nonlinear systems.

c. The principal constraint on the application of the

theory is the effort required to probe the system to

determine the characterizing coefficients.

d. With respect to the application of WBT to ride dynamics,

the modeling strategy gives responses that compare favorably

with those of the actual wheeled vehicle considered

in this dissertation. The probing process for coefficient

determination is extensive and better field test procedures

must be worked out before WBT can be applied in a routine

way.

Recommendations

a. Strategies for coefficient reduction based upon elimination

of coefficients unlikely to be used should be formulated.
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b. With reference to vehicle ride dynamics, quick-change

obstacle courses for probing the vehicle should be used.
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ABSTRACT

Wiener-Bose Theory is a strategy for identifying nonlinear systems

in terms of a set of "characterizing coefficients." These are obtained

through the agency of a certain probing process carried out on each

system. Once the coefficients have been determined they must be used in

a rational synthesis procedure to predict responses to inputs of interest.

The principal appeal of Wiener-Bose Theory is that it requires very

little knowledge of the physics of the system. No dynamical equations

need be written. In essence the physics of the system is incorporated

into the characterizing coefficients.

It is this property of Wiener-Bose Theory that makes its application

to vehicle ride dynamics studies attractive. The present strategy for

ride dynamics studies invokes the use of structure-oriented mass-spring-

dashpot models based on rigid body mechanics. These models are charac-

terized by the need for repeated "tuning" in which model parameters are

altered in a basically irrational way when comparisons are made to
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different sets of responses of actual vehicles.

A computer study was conducted to discern problems of implementation

of the theory. Several systems of increasing complexity were studied

and a practical form of Wiener-Bose Theory evolved. The systems studied

were as follows: (a) a zero-memory system, (b) rate-independent hyster-

esis, (c) a second-order system with saturation, and (d) a fourth-order

mechanical system with nonlinear compliances. The experience gained

during this study was summarized in a set of guidelines for the construc-

tion of Wiener-Bose models.

A program of testing was carried out to ascertain the practicality

and utility of Wiener-Bose Theory for ride dynamics studies. A military

M37, 3/4-ton truck was selected for characterization using a Wiener-Bose

model having 1024 coefficients. The characterizing coefficients were

obtained by utilizing the responses of the vehicle recorded during

traversal of a specially configured obstacle course whose total length

was 2.5 miles. Once the coefficients were obtained, they were used to

synthesize responses to specific terrain profiles. These predicted

responses compared favorably with counterpart responses of the vehicle

traversing the same profiles.

It was concluded that Wiener-Bose Theory is capable of satisfactory

performance in the analysis of many nonlinear systems. The principal

difficulty in its practical application is the extensive probing effort

required for characterizing the system.
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