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DYNAMICS 

PARAMETRIC RESPONSE OF MONOSYMMETRIC IMPERFECT THIN-WALLED COLUMNS 

UNDER SINUSOIDAL LOADING 

Stanley G. Ebner 
USAF Academy 

USAF Academy, Colorado 

Martin L. Moody 
University of Colorado 

Denver, Colorado 

TMs investigation considers the vibrational response and dynamic 
stability of thin-walled coluims with small initial crookedness 
and twist. The coluims investigated are simply supported, of low 
torsional stiffness, and the cross sections of the columns have a 
single plane of symmetry. The columns are subjected to a constant 
plus a harmonic longitudinal load which causes parametric vibra¬ 
tions. Partial differential equations for this problem were first 
derived by Vlasov and are solved herein by separation of variables 
and an analog computer. The unstable regions in the plane of the 
loading and frequency parameters are located using a unique analog 
conputer technique. Typical amplitude time responses of the two 
transverse modes and the torsional mode are presented which clearly 
show the subharmonic, harmonic and superharmonic frequencies 
characteristic of the Mathieu equation. Amplitude response spectra 
are also included. 

INTRODUCTION 

It has been known for many years [1] that 
transverse parametric oscillations can occur 
when a longitudinal periodic load is applied to 
a coluim. Up to the present time, the majority 
of investigations of this problem have been di¬ 
rected toward vibration in a single plane. The 
purpose of this paper is to present a portion 
of the results of an unpublished study [3] of 
the nonplaner problem which investigated the 
parametric vibrations of thin-walled elastic 
columns having small initial crookedness and 
twist. The columns considered herein are singly 
supported and the cross sections have a single 
plane of symmetry, as shown in Fig. 1. An 
axial periodic load P(t) » P0 ♦ Pj cos et is as¬ 
sumed to be applied* where P0 is a static load, 
P} is the magnitude of the dynamic overload, e 
is the frequency of application and t is time. 
The resulting motion consists of the interaction 
of twisting motion with the bending motion. 

Bolotin's classic work [2] derives the e- 
quations which define the dynamic stability 
boundaries for thin-walled columns. Whereas an 
approximate method proposed by Bolotin gives ex¬ 
cellent results in certain regions, analog com¬ 
puter solutions contained herein show that the 
utility in other regions may be limited. Other 
results in this paper include amplitude time 
responses and frequency response curves. 
•Syiiibols are defined on first appearance in this 
paper. 

Typical Section with One Axis of Symmetry 

^ cos et 

Fig. 1 Sinply Supported Coluim Acted 
upon by a Periodic Axial Force 
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BASIC EQUATIONS 

Thin-walled structural columns are distin¬ 
guished by the fact that their three dimensions 
are of a different order of magnitude. Accord- 
i'tgly, the dimensions of the cross section are 
small when compared to the length of the column 
hut are large when compared to the thickness of 
the walls of the column. The theory of St. 
Venant torsion is not sufficient to analyze the 
case of twisting of a thin-walled column because 
the longitudinal fibers can also undergo ex¬ 
tension. In this case the warping of cross 
sections will vary along the length of the 
colium, and a nonuniform torsion analysis is re¬ 
quired. 

The equations of motion are obtained by ad¬ 
ding the transverse inertia forces to the two 
moment curvature equations, and adding the in¬ 
ertia moment taken about the longitudinal axis 
through the shear center to the nonuniform 
torsion equation. The resulting partial differ¬ 
ential equations were first derived by Vlasov 
[11] in connection with problems of free vi¬ 
brations. For the case of a column with small 
initial crookedness and twist loaded by a longi¬ 
tudinal force P(t), the equations have the 
following linear form: 

of elasticity, G is the shearing modulus of •- 
lasticity, C is the warping coefficient, and Ja 
is St. Venant's torsional constant for the cross 
section; u^ and uf represent the initial un¬ 
stressed crookedness in the x^x, plane and the 
x2X3 plane respectively; ♦* is the initial un¬ 
stressed twist, J0 is the polar moment of in¬ 
ertia with respect to the shear center and A 
denotes the area of the cross section; m is the 
mass per mit length of the column, and t is the 
time. 

The bomdary conditions for a column simply- 
supported at both ends are 

Uj(0) * u2(0) ■ ¢(0) » Uj(L) ■ u2(L) « ¢(1) ■ 0 

3x3 3 *3 3x3 

(2) 

»'yn . »'y» . jim. „ 
3x3 3x3 3x3 

^(Ul-up 32Uj 
El,-1 ♦ P-- 

2 ax2 

32u, 

at2 

El 
^(Uj-U*) 32U2 32 . 32U2 
,-i—L. ♦ p-£ - PC.-2-i ♦ m-- 

3x; 3x2 3x£ 3t2 

and can be satisfied by assuming solutions of 
the form 

nXj 
u^Xj.t) • Tjfjit) sin 

mC.^—£ ■ 0 
‘at2 

(l) ir X. 
u2(Xj,t) - r2f2(t) *ln T (3) 

EC. \t.Ù. 

9X3 

. GJ 32 p4 iii 

6 3x3 A 3x3 

- PC, 
32u2 

l3x2 

mJ O ^2¢ 
32u. 

3t 
- me - 

2 1 

2 

3t2 

The notation used in these equations is as 
follows: X3 is the longitudinal axis and passes 
through the centroid of the cross section, Xj 
and X, in Fig. 1 are principal axes of the cross 
section , uj and u2 are the total bending defor¬ 
mations measured from the initially straight 
configuration; C. is the coordinate distance to 
the center of rotation (shear center), and ¢ is 
the total angular displacement about the x} 
axis; and I2 are the principal moments of 
inertia of the cross section, E is the modulus 

ffX3 
^Xj,t) ■ fj(t) sin 

where L is the colum length, r} and r2 are 
radii of gyration, f^t), f2(t) and f3(t) »r« 
mknown dimensionless displacement functions 
hereafter called temporal modes, and sin(nx./L) 

is the first spatial mode. Whereas, a more 
rigorous analysis would include the contribu¬ 
tions for all the modes, experimental results 
[2, 6, 10] indicate that the elastic curve 
differs only slightly from the first spatial 
mode provided the longitudinal force does not 
greatly exceed the fundamental Euler buckling 

*lhe spatial mode is the fundamental eigen¬ 
function of the corresponding static stability 
problem. 
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load, 'lho imporfoeti on-; in tho column an , m 
general, random curves win en may no defined by 
Fourier sine series. Ihis investigation assumes 
that the first terms of the sine series ade¬ 
quately define the crookedness. According!/ 

rlUl 

e 
r,a. s i n 

1. Mi 

U3 S * " L 

in which a¿ ' s are initial midspan disy 1 acement- 
s. Certain identities are introduced at this 
point in order to put the final equations in a 
more useable form. 

P 
P 
cr 

P 
cr 

I 

Í5) 

Hie equations are expressed in nondimers lonal 
form by using tue following expressions: 

'S 3 ^ 1 as * ^1 ^ ^ a 3 

a3 = ‘'l’i1!3: + 

A4 = ‘i'd 

it 
GAJ 

a* 

As = cilrJi 

In Eqs. (5) Pcr is the buler load for the 
column (assuming Ij _> Is). 

Substituting tiqs. (3) and (4) Into Eqs. (1) 
allows separation of variables. Using the i- 
denties given in Eqs. (5) the resulting set of 
ordinary differential equations with variai)le 
coefficients can be written as follows: 

fj ♦ (1 * P Jfj 3 aj 

f2 ♦ (Ij - P*)f2 - C*(fj - P*fj) = i|a2 (b) 

where w. is the fundamental frequency of vi¬ 
bration in the plane of symmetry for a simply 
supported coluim, à is the ratio of the driving 
frequency to the natural frequency of the un¬ 
loaded column; > is one-half the ratio of the 
frequence of loading (¾) and the natural 

frequency of the loaded column (^ ^/\ - P^l, and 
will be referred to as the frequency parameter; 
¿ is the loading parameter and the values of a 
and A completely define the stability of the 
column. 

Substituting Eqs. (7) into liqs. (b) and 
eliminating f. from Eq. (bbl and f, from Eq. 
(he), gives; 

f3 ♦ (i2 - p )f3 - v/fj - p f2) 3 i2»j fj * -L-W - 2/COST] f, 
4 i' 4a' (1 - P0) 

(8a) 
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-.u'iv 1 is tiu' non Ji Mens i oaul tino and f 
J 1 
Jr 

ÜU' amplitude tino responsos t'or tlio two 
iionJiiii; vibrations and the torsional vibrations 
are obtained by solving ia|s. (.8). Iho first of 
these equations is the Mathieu equation i»itii a 
nontero ngnt side and indicates that the 
motion in the plane of symmetry is independent 
of the twisting and nons>mmetrical nending. 
Hie other two equations are coupled Mathieu 
type equations which indicate the interaction 
of the twisting and nousymmotrival bending 
mot ion. 

Stability of the column is dependent upon 
the parameters * and .-. The unstable regions 

are defined by those parameter points, i u, at 
which increasing amplitudes occur, lor the case 
of the --ingle Mathieu equation the unstable 
regions have been well defined [1, , .1, 8, '-• ] 
and for the particular form used m this paper 
are shown in I i g. 

IT.e remaining two equations (.Sb and scl de¬ 
fine two sets of unstable regions in the , , 
plane. Ihe overall stab i 1 ity of the column is 
determined by superimposing the regions defined 
ny all three equations. 

in. 1TKM1NAITON Of UNS 1 Alil.f UTAH UNS 

It has been shown in the case of a single 
Mathieu equation, that determination of the 
boundaries of the regions of instability is re¬ 
duced to finding the conditions under which the 
given differential equation has periodic so¬ 
lutions with periods of J and 4 [-’]. Accord¬ 
ingly, if the unstable regions are labeled 1, -, 
A ... starting from the primary unstable region, 
the odd numbered unstable boundaries can be de¬ 
termined by assuming solutions of the form 

Similarly, the even numbered unstable boundaries 
can be obtained by assuming solutions of the 
form 

f(tl = y (ak sin jf 

-,4,(i. . . 

k, 
cos -^-1 

(10) 

It is clear from liqs. ( 91 and (10) that the 
oscillations corresponding to the odd regions 
have a j. tod of 4" and the oscillations corre 
spending to the even regions have a period of 
2it. 

Using the principle of harmonic balance 
[7] (Rayleigh's method) infinite sets of homo¬ 
geneous algebraic equations are obtained in the 
unknowns ag and b^. The condition for the non¬ 
trivial solutions requires that the infinite 
determinants composed of the coefficients of 
the systems be identically zero. It can be 
shown [12] that these determinants belong to a 
known class of converging determinants. Thus, 
satisfactory approximations can be obtained by 
considering determinants of relatively low 
order. 

With regard to the stability boundaries 
for thin-walled columns, Bolotin asserts that 
sufficiently accurate results defining the 
boundaries of the principal* regions can be 

* These regions correspond to exponent ial ly 
growing oscillations at a frequency one-half 
that of the applied longitudinal force and 
consequently could be called one-half harmonic 
regions . 

Tig. 2 - Unstable Regions for 
Mathieu Equation 
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obtuini'd by usiii}; tbe onk'r Ui'tfnilinant 

Tbis is (.qui vaU'iit to usinji the foll<Ji\iiig :i|)- 

p i'ua i ma t i ons : 

f, = a cus 4 

f = b cus 4 

(Ill 

Suns 11 tut ing l.qs. (Ill into l.qs. (hi'l 

and equating the cue I’f'i c icn t s oi eu- 

:'.cro, gives tuu liomugi'iii'ous algebraic 

and (Sei 

I/J I to 

equal 1ons, 

Hie condition I'or the nontrivial solution yields 

a fourth degree polinomial in . which defines 

the unstable boundaries of the primary region 

in tenus of . 

(13) 

= 0 

SOI.IJ 11 ONS 

'\L 

1 • I’,’ 

A. 

Ä7 Ã7 

_o 

i-p 
0 

are generally considered less important than 

the so-called principal regions because they are 

much narrower in sine. Moreover, damping 

further decreases the sine of the higher order 

un.table regions to the point that they are not 

eiiiphasi.au in this paper, file unstable region 

vente red around . = 1 corresponds to the un- 

coupled bending motion in the plane of symmetry, 

set i ig. J. The other two region^ located (for 

" i at approximately - 1. 13 and u - u.7h 

iori' pond to the twisting motion coupled witil 

tn ('ending motion pi qiend K ui a r tu the plane of 

.■minet ry. Ibe ha mon i c region^ unit shown) are 

locat'd (for < at approximately . - d.'J, 
1. : and i - u. 3q. 

Ihc preceding results are now applied to a 

particular column. 1.quations (81 are solved on 

the TH-18 analog computer and the unstable 

boundaries defined by T.q. (13| an1 compared 

with the results of an analog computer techni¬ 

que for determining unstable regions. In tbe 

discussion which follows, standard structural 

sices and dimensions of a tee cross section 

column are used |-I |. Important parameters for 

a SI "M J1.3 which is used as an example 

f o 11 o.. : 

ij = Kills 

1* = l.bl'l 

■)J = 0.48J" 

Cj = o.r.M.i 

1111 

Investigation of other monosymmet ri v cross 

sections would proceed in esselltialh tile same 

manne r. 

ligure 3 snows only the principal unstabil 

regions for the Si '1VI J1. h column, with I’’ = 

11.3333. Mthougli solutions can aKo he ob¬ 

tained for the higher order (harmonic and 

s upe rh armón i c l unstable regions, the second, 

third and higher order unstable regions 

I i g. .3 - Primary Unstable Regions 

for Structural Ice (SI Cl.ã: 

Hu- unstable boundaries snown in I ig. 3 

were obtained by two methods; 1 q. ¡13 and an 

analog computer tecniuque, lac computer tech¬ 

nique which is cells i de red reliable .uid reason¬ 

ably accurate will now be described. 

IV,e 'boundaries of the unstable regions are 

not affected by the initial crookedness and 

twist of the column. IV.u-, wlicn ceuisulering 

t:ie question of stal ility, tile imi erfect ions 

were removed. 1:1 addition, tae initial condi¬ 

tions were set to cero. I:i such a situation, 

there exists only tae identically .aro mathe¬ 

matical solution for tiu .%ave form- of the tem¬ 

poral modes. When -Uitcueh to tile "Kebetitice 

operation'' node the analog computer yielded tae 

identically cere solution in tae stable regions 

as expected. It is s | gn l »'leant . ".owe\er, tiiat 

tae primary and higi.ei order iri-t ah le region- 

w re defined and located by tile exi-telice of 

e xtuMKMit ial ly itu rea< mg cor,pater -obution- tor 
the temporal node-. V- -tateei a e\ , the 

mat In-mat i cal formulation of ta pro - le-m dev- ne* 
pr. ehet - Uca • u 1 at i un-. ¡Vis narade-x \ 
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TABLB 1 

a 

Primary Solution for « 

Upper Boundary Lower Boundary 

Analytic Compute r Analytic Computer 

II. 10 

0.20 

0.30 

0.40 

0.50 

1.049 

1.095 

1 .140 

1. 189 

1.2 33 

1.050 

1.097 

1. 14b 

1.190 

1.233 

0.9487 

0.8944 

0.83b7 

0.7977 

0.7559 

0.9538 

0.9039 

0.8485 

0.8029 

0.7554 

plained by the existence of machine noise (less 
than 500 microvolts RMS by specification) which 
provides sufficient pertuibations to initiate 
the unstable solutions. The credibility of the 
analog computer technique is based upon a com¬ 
parison with the exact solution [8] for the 
boundaries of the unstable regions for the 
Mathieu equation. This comparison is shown in 
Table I and in Fig. 2. With confidence thus e*- 
taolished, the technique was applied to the 
coupled problem. 

As shown in Fig. 3 and in Table II, the 
analytical approximation for the unstable 
boundaries defined by Eq. (13) compares favor- 
ably to the solutions obtained from the analog 
computer except for the apparent divergence at 
the lower boundary of the lower region. The 
disparity is a consequence of the assunption 
that f2 and f, are exactly one half harmonic, 
whereas conqputer solutions near the divergent 

TABLE II 

Upper Region Solutions for * 

ä 
Upper Boundary Lower Boundary 

Analytic Conqiuter Analytic Computer 

0. 10 

0.20 

0.30 

0.40 

0.50 

1.473 
1.507 

1.539 

1.572 

1.603 

1.503 

1.539 

1.571 

1.610 

1.404 

1.368 

1.333 

1.293 

1.250 

1.376 

1.338 

1.308 

1.266 

8 

Law er Region Solutions for » 

Upper Boundary Lower Boundary 

Analytic Computer Analytic Computer 

0. 10 

0.20 

0.30 

0.40 

0.50 

0.8474 

t.9045 

0.9584 

1.009 

1.057 

0.8410 

0.8927 

0.9562 

1.005 

1.066 

0.7197 

0.6465 

0.5640 

0.4897 

0.3440 

0.7259 

0.6621 

0.5946 

0.5526 

0.5116 

yWAAAWW' 
-21- 

2? 

o /\yv-*h/\_/V/V/v iAsYY/Wv 

-i ‘ * —■->— 
0 ion 2cm 3on or 

Fig. à . Amplitude Time Response Diagrams 
for Structural Tee (ST 7NF21.5) at 

S * 0.2S and ■ ■ 0.612 

region show that the response frequencies are 
actually higher. 

Typical amplitude time responses for the 
teiqporal modes at a point below the lower pri¬ 
mary instable region are shown in Fig. 4. The 
appearance of beats is typical of solutions near 
the boundary of an unstable region. The period 
of the beats increase as the unstable region is 
approached until finally, in the unstable 
regions, the amplitudes increase exponentially. 
Near the primary unstable regions the frequency 
of the response is generally one-half harmonic 
and for points near the second unstable regions 
the frequency is generally harmonic. Observe 
the responses for ¡2 and in Fig. 4 which are 
nearly one-half harmonic. These responses are 
not exactly one-half harmonic due to the influ¬ 
ence of secondary unstable regions at a ■ 0.72 
and a ■ 0.39 (not shown in Fig. 3). It may also 
be observed in Fig. 4 that the fi response is 
closer to being harmonic due to its nearness 
to the secondary unstable region (a ■ 0.S0) 
as shown in Fig. 2. A one-half harmonic re¬ 
sponse within a primary unstable region some- 
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I'ig. 5 - Amplitude Time Response Diagrams 
for Structura 1 Tee (Si 7WT21.S) at 

• = 0.25 and > = 1.445 

times develops slowly as may Do observed in I ig. 
5 wherein twenty cycles of loading occur before 
the one-half harmonic response is observed. 

If the largest maximum response is taken 
from a series of solutions then response spectra 
diagrams can be plotted, lor example, fixing 

= 0.25 and varying j the response spectra for 
the amplitudes of fi and fj between the priman 
unstable regions as “shown in Fig. <> is obtained. 
These arc transient response spectra since only 
twenty cycles of loading have been used. During 
the investigation it was found that the phase 
angle ^ for the loading 

P = P + P, cos ( ‘it ♦ T ) f 1--11 
o 1 

Hg. o - Transient Response Spectra 
for Structural Tee (ST 7hV21.5) at = 1 

had a sign if. ;ant effect on the response dia¬ 
grams with t) ? largest maximum values dependent 
on ., -, and y. The maximum usually occurs for 
, = 0. Wit;, the addition of a very small amount 
of uncoupled viscous damping it was observed, as 
expected, that the steady state solution de¬ 
velops quickly and is independent of the phase 
angle. \ typical example of this is shown in 
I ig. -. 

’f j\f\J i/V./VvxA/WWh/WWWÍ'V 

-1 
10 IT 20IT 30m 401 

I ig. ? - Amplitude Time Response Diagrams 
, i tb Damping for St ructural Tee (Si 7WV21.5I 

at - 0.25 and . = 0.548 

CON CPUS IONS 

The analog computer is found to be a 
nradical device for locating the unstable re¬ 
gions for coupled Mathieu type equations and 
also provides a convenient means of looking at 
a large variety of solutions for this type of 
system. ! or design purposes, it may be worth¬ 
while to obtain a sufficient number of solutions 
so families of response spectra can be plotted 
by varying ., .-, and .. 
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PREDICTION OF UpSTAGE RANDOM VIBRATION 

ENVIRONMENT USING A STATISTICAL ENERGY APPROACH* 

D. E. Hines, G. R. Parker, and R. D. Hellweg 

McDonnell Douglas Astronautics Company - West 

Santa Monica, California 

Appr?,ch" (SEA) »“s used to predict the UpSTAGE 
«Í2ht«rí2!íÃnC* ¡'1br*í’°"*¡'vJron,nent- This approach allowed the analy- 

îh* h1?h loca1 ««Itatlon Induced by the con- 
the unique shape of the vehicle and the Internal conflgu- 

the^EA d11scussed «r« (D development of9 lit ** ïsed 2" dpSTAG£i (2) development of the analytical models; 

d1ct?MC«fSíhü Sí/hí í**4? p*rfonned to support the analysis; (4) pre- 
dlctlon of the flight levels for the UpSTAGE vehicle. 

INTRODUCTION 

The UpSTAGE Experiment consists of high 
performance experimental vehicles which have the 
form of elliptical cones, as depicted In Fig. 1. 
Vibration Is Induced Into the vehicle by the 
aerodynamic noise associated with the attached 
turbulent boundary layer and the separated flow 
region just forward of the point of Injection of 
the gasses used for system control. The local 
high Intensity fluctuating pressure field In the 

separated flow region and the outer geometry of 
the vehicle would result In low confidence envi¬ 
ronmental predictions If they were based on di¬ 
rect scaling of existing data. 

-inis worn nas been Jointly supported by Army 
Contract No. DAAH01-68-C-1237 and the 
"McDonnell Douglas Independent Research and 
Development Fund." 

SNiVMSIU’lll'N 
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Therefore, a "Statistical Energy Approach" 
(SEA) was chosen as the method to be used In 
predicting these environments. In order to 
varlfy that SEA was capable of predicting the 
vibration levels on a locally excited conical 
flight vehicle with an elliptical cross section, 
a model of the UpSTAGE load-carrying structure 
was constructed and tested. The test results 
were first compared to the results obtained 
using a 4S-element analysis of the test vehicle 
and were then used to refine the constants used 
In the model. The mathematical model of the 
test specimen was then expanded to a model of 
the flight vehicle for use In predicting the 
flight environments. The topics discussed are 
(1) development of the SEA as It Is to be used 
In this analysis; (2) development of the analyt¬ 
ical models; (3) discussion of the tests per¬ 
formed to support the analysis; (4) prediction 
of the flight levels for the UpSTAGE vehicle. 

STATISTICAL ENERGY APPROACH 

Two Systems 

Consider the coupling of two subsets 
(a and ¢) as shown below. These subsets belong 
to two coupled systems and cover the same fre¬ 
quency range. 

S ■ Power Introduced Into a from an out 
a side source other than s 

The development of the SEA* used on UpSTAGE 
Is based on the assumption that all of the vib¬ 
ratory energy contained In a system Is contained 
In the modes of that system. This assumes that 
the modes of the system are a complete set. 
Under this assumption, any vibrating (or acous¬ 
tical) sys'em can be described as a mode set, 
and the analysis reduces to coupling of these 
mode sets. 

In order to couple these mode sets and to 
obtain resolution In the frequency domain, each 
mode set Is divided Into subsets. Each subset 
contains all of the modes which fall Into a 
given constant percentage bandwidth. The fol¬ 
lowing assumptions are then made: 

a. The modes In a subset contain all of 
the energy In the bandwidth of that 
subset. 

b. The energy In each subset Is equally 
distributed among the modes of that 
subset. 

c. Only subsets covering the same fre¬ 
quency range are coupled. 

d. For two coupled subsets (a and s), each 
mode In the a subset Is equally coupled 
to each mode In the 3 subset. 

These assumptions can be satisfied only In 
the average sense. As In all cases where aver¬ 
aging Is used, the more samples or, In this 
case, the wider bandwidth the better the re¬ 
sults. However, bandwldths which are too wide 
may result In problems because of frequency- 
dependencies and the desired frequency resolu¬ 
tion. One-third octave bands were chosen as a 
compromise bandwidth for the UpSTAGE analysis. 

•ThTWvVl^pmVnTTrthV'SEA theory presented 
here Is consistent with that presented In the 
literature, but does not parallel that pre- 
sented In any one document. In the text, only 
specific points of Interest are referenced. 

D » Power dissipated by a In the form of 
a heat or to an outside source other 

than s 

p ■ Power transmitted from a to B and 
“ß equal to -Pßa. 

Consider one of the a modes. The energy of 
this mode Is T, and the rate at which this 
energy Is dissipated (power) by damping Is 

where 

ui ■ natural frequency of the mode 
o 
n ■ damping factor (1/0) of the mode 

T ■ energy per mode. 

The power lost by the a mode to each B mode 

Is ao Ta, and the tota1 power 1ost by the “ 
to B is Ta V 

where 

« ■ the average mode to mode coupling 
0 factor between the a and B sets 

N • the total number of modes In the 
8 3 set. 

The power gained by the a mode of Interest 
Is that directly added by an external source 
(Sa/Nn), plus that gained fron e. The power 
qa?ned from 8 must equal that gained from each 
mode (Ta *o) times the number of modes. Equa¬ 
ting the power lost and gained by an a mode 
leads to 

2 “o na Ta + *0 Ta "ß ’ \ * *0 T8 Nb (1 
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The proceeding Is the equation for one of 
the modes In □. The expression for the total i 
subset Is obtained by multiplying Equation 1 by 
Na yielding 

N. 2 T ♦ T Nß \ Np N 
Ü 'l 

If r is the only eneray source for ï, 1.e., 
= 0, then Equation 4 can be rewritten as 

or 

or 
(2a) 

2 ui n T N ♦♦ N N (T - T) 
0 a a a On«'/. 1 a ' s 

a 

'1 

(2b) 

The first term of 2b Is obviously the power 
dissipated by a (Da), and the second term is the 
net power transmitted to 8 (Pafi). In addition, 
♦o Na Nß can be redefined as giving the form 
often found In the literature [1]. 

Equation 2 can be put In terms of total 
energy of the subsets by letting Ei «Ti hi. 
Under this substitution, Equation 2 becomes 

2 “o -1. E. * *0 nb E. - ♦» Na Eb ■ Sa <3) 

Physically, #o NB E„ represents a loss of 
power from a to b which Is Indistinguishable 
from the loss of power due to damping If only 
the a set Is defined. This being the case, one 
should be able to define the ♦„ Ne Ea term In 
the same form as Is used for damping. This 
leads to 

2 *0 E. * E. - "to E.) ■ S. (4) 

where 

nB« " ♦o N«/2 “o 

This Is the form used In Reference 1. 

Examination of Equations 2, 3 and 4 leads 
to several equalities concerning the various 
energy flow parameters found In the literature. 
These are 

••• • ■ ‘o V 2 '.a ■ 2 >„ », 

and 

4 . . 2 “0 n8a 
° V Na 

Nß 
neß " nß« H 

Q 

(5) 

This form »s presented in Reference 1 and 
points out two interestino asnects of hioh fre¬ 
quency vibration. Let a represent a small por¬ 
tion of a vehicle, and f the remainder of the 
vehicle. In order to appreciably reduce the 
vibration of a by the addition of dampino to a, 
the energy dissipated by the added damping must 
be on the order of or greater than the energy 
being transmitted out of a to s. This usually 
Is difficult to achieve. In the case which usu¬ 
ally exists where nae >> na and Equation 5 re¬ 
duces to Ea/Eg =1 Na/Nß showing that the energy 
tends to be equally distributed among the modes 
of the system. 

The purpose of this discussion Is to de¬ 
velop a method for deriving a SEA model of a 
system consisting of many mode sets or sections. 
Looking ahead. It appears that the above In¬ 
equality (noS » na) may be used to define the 
minimum useful size of a section to be used In 
an analysis. Any further reduction In size will 
not alter the distribution of energy away from 
the section, It will only furnish more defini¬ 
tion of the response for that section. 

The two basic forms of defining the cou¬ 
pling between sections (♦a8) are by using either 
n«B or *0. The choice should depend on the 
problem at hand. 

For the UpSTAGE analysis, experimental data 
was available, but not In sufficient detail to 
define for each pair of mode sets. There¬ 
fore, some assumptions were required concerning 
Its value and properties. The sections of the 
load-carrying structure used In the model were 
separated by field joints, or consisted of con¬ 
tinuous skin divided Into sections for modeling. 
All of the bulkheads were connected to the load¬ 
carrying structure In basically the same way 
(the majority of components were attached di¬ 
rectly to the bulkheads). This gives three 
types of connections between sections, but the 
sizes and shapes of these sections vary widely 
resulting In a large range of modal densities. 
If the modal densities vary widely, so will the 
naR- to which should have a strong dependence 
only on the boundary, should therefore be ap¬ 
proximately described by three values. For this 
reason, ♦<> has been chosen for use In the 
UpSTAGE analysis. 
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The general form of the power balance equa 

tlon used was 

Equating these power flows leads to the 

form 

2 «i n 
O a Ea * »0 NB Ea ' *0 Na Eß “ Sa 

(6) 

MuJtiple Systems 

Now consider a structure divided into many 
systems or elements, as shown in Fig. 2. 

i *’ i 
— 

¡ 1 i 
T 

i • i 

1-2 )1 j 
1*2 

kl k k * 1 

/ 

Fig. 2 - Structure divided into systems 

The J element is only coupled to the ele 
ments having common boundaries (1. J-l. j+1« 
and k). 

The power lost by the Jth element Is the 
result of damping (2 «oN Ej) P’“* i0*1,!0 
adjacent panels Un Ej [Ni ♦ Nj.i + ^1+1 ♦ 
assuming that coupling across aach border can be 
adjacent panels Uo Ej 
assuming that coupling-- 
described by aQ- The power gained by this ele¬ 
ment will be that received from some external 
source 
panels 

(SO plus that received from adjacent 

K "j CEi * Ej-l + EjO + EkD- 

* *o Nj ^l^j-l) 

+ Ej <2 Oj ♦ [N 1 * "j-l 
♦ N 

J*1 
♦Hkl) 

- ♦o Nj (EJ*1 + Ek) - Sj 
(7) 

If the power balance equations for all of 
the sections are put Into a matrix form, then 
the above equation would represent the jw row 
>f that matrix, as shown In Fig. 3. In the 
ower balance equation for sections coupled to 
he jW element, the coefficient for Ej will be 
, times the modal density of that coupled 

panel. These terms result In the values In the 
jth column, as Indicated In Fig. 3. It Is In¬ 
teresting (and helpful in programing) to note 
that the positive value of the sum of the off 
diagonal terms In the jth column plus the damp¬ 
ing term Is equal to the diagonal term. 

TEST SPECIMEN 

As was Indicated In the Introduction, the 
UpSTAGE environment was predicted using a com¬ 
bined analysis and test approach. The tests 
were performed to verify the analytical method 
and model used as well as to establish some of 
the constants used In the model. This was done 
by modeling the test specimen and comparlno the 
results of that model with the experimental re¬ 
sults. In addition, the model used to represent 
the flight vehicle was obtained by altering the 
model of the test specimen. Therefore, a fairly 
detailed discussion of the test specimen and the 
modeling of that specimen Is required here. 

¡th 
row 

th 

column 

•♦oNi 

•+onH 
s 

✓ 2<O0V- + ' 

••-♦oNr'foNr(fo( V Vi* Vi*"») 
V ¡ ' 

♦oN¡.l 

I 
-*oNk 

Fig. 3 - Matrix form of mathematical model 

-1 

Ei*l 

Ek 
1 

SJ-1 

Vi 

Sk 
: 
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The test specimen consisted of the UpSTAGE 
load-carrying structure up to the ballast point 
(Station 14.5). This structure Included all of 
the bulkheads, frames, and field joints but did 
not Include a honeycomb section of the skin nor 
the vehicle ablative. A realistic dynamic model 
of the laser gyro was available and was the only 
component Included In the test. The location of 
the gyro Is shown In Fin. 1, and external and 
internal photographs of the specimen are pre¬ 
sented in Figs. 4 and b, respectively. 

Fig. 4 - UpSTAGE test specimen 

Fig. 5 - Internal view of UpSTAGE test specimen 

The mathematical model divided the test 
specimen Into four basic sections separated by 
the three field joints located between Stations 
14.6 and 107 (the extent of the model). The aft 
basic section was further divided Into four sub¬ 
sections to allow the mathematical description 
of the localized excitation. In addition, each 

section was assumed to have the shape of an el¬ 
liptical cylinder yielding the configuration 
shown In Fig. 6. Each elliptical subsection 
was approximated by four curved panels of con¬ 
stant radius of curvature, as shown, resulting 

IV III II 

Fig. 6 - Sections used for the mathematical 
model 

In the outer structjre of the specimen being de¬ 
fined by 28 curved panels. Additional panels 
were added to represent the forward and aft 
bulkheads, at each field joint and each of the 
remaining bulkheads. The resulting analytical 
model consisted of 45 mode sets, or sections, 
which are described In Table 1. 

The matrix form of the model previously 
given can be rewritten In the form 

(CDJ ♦ [C]) {E} - (S) (8) 

Where D describes the damping and Is a dia¬ 
gonal matrix whose elements are of the form 

d1j ‘ Z“nj 

The [C] Is the coupling matrix where 

Cjk . Kj for J H k 

cfk ' - I cjn ,or I ’ k 

c.. are zero for uncoupled panels. 
JK 

The E and S matrlcles are the energy and 
Input power, respectively. 

The parameters In this eguatlon are dis¬ 
cussed below. 

Modal Density 

The model for each bandwidth regulres cal¬ 
culation of the number of modes In each set 
contained In that bandwidth (subset). The nim¬ 
ber of modes (N) was obtained by multiplying the 
bandwidth (Aw) by the modal densities [n(<ii)j. 
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TABLE 1 

UpSTAGE - Model Elements 

Sec.” 
No. Description Sta. 

Region 
No. 

29 

30 
31 

32 

33 

Aft Bulkhead 
(B.H.) 

Forward B.H. 
Field Joint 

B.H. 
Field Joint 

B.H. 
Field Joint 

B.H. 

107.0 

14.5 
88.2 

57.6 

41.0 

1 

7 
4- 5 

5- 6 

6- 7 

34 
35 

Internal B.H. 
Internal B.H. 

97.0 
92.0 

3 
4 

36 
37 
38 

Internal B.H. 
Internal B.H. 
Internal B.H. 

83.5 1 
76.3 
68.0 

5 

39 
40 

Internal B.H. 
Internal B.H. 

51.2 
46.2 

6 

41 
42 
43 
44 
45 

Internal B.H. 
Internal B.H. 
Internal B.H. 
Internal B.H. 
Internal B.H 

36.7 
31.9 
28.0 
24.0 
19.4 

7 

Sec. 
NO. 

1 
2 
3 
4 

Description 

Skin 
Skin 
Skin 
Skin 

Region 
No. 

(uad. I 
No. 

1 
1 
1 
1 

1 1 
2 
3 
4 1 

5 
6 
7 
8 

Skin 
Skin 
Skin 
Skin 

2 
2 
2 
2 

1 I 
2 
3 

4 1 

9 
10 
11 
12 

Ssln 
Skin 
Skin 
Skin 

3 
3 
3 
3 

1 1 
2 
3 
4 1 

13 
14 
15 
16 

Skin 
Skin 
Skin 
Skin 

4 
4 
4 
4 

1 1 
2 
3 
4 1 

17 
18 
19 
20 

Skin 
Skin 
Skin 
Skin 

5 
5 
5 
5 

1 I 
2 
3 

4 A 
21 
22 
23 
24 

Skin 
Skin 
Skin 
Skin 

6 
6 
6 
6 

1 1 
2 
3 

4 J 

25 
26 
27 
28 

Skin 
Skin 
Skin 
Skin 

7 
7 
7 
7 

1 1 
2 
3 
4 I 

QUAD 4 

QUAD 1 

QUAD 3 

QUAD 2 
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The model densities for flat plates and 
cylinders are given In Reference 1 as 

Energy 

For the systems of Interest, the energy Is* 

Plate 

n„ ■ A /(4» /D/ph) 
P * 

Cylinders (9) 

n • n_ for w/in_ » 1 
c P r 

n 
c "p (y2'3 for u/“r * 1 

where 

u » ring frequency • speed of sound In 
r the materlal/radlus 

Eh 

12 (l-v‘) 

E ■ f dps 
JSystem 

< > ■ time average 

ps ■ local mass 

m - total mass ■ dp 
JSystem 

It Is assumed that each panel and Its re 
sponse Is sufficiently uniform so that 

E . <v2> dos * m <V > 
System 

■ space average 

E • Young's Modulus 

u ■ Poisson's Ratio 

h > panel thickness 

In addition, the modal density of a system 
equals (approximately) the sum of the modal den¬ 
sities of Us subsystems [2]. For the purpose 
of calculating the modal densities of the curved 
panels the converse of this will be assumed. 
That Is, If a cylinder has a modal density n(w) 
and If that cylinder Is divided circumferen¬ 
tially Into 1 equal parts then It Is 
that the modal density of each part will be 
n(u)/1. 

Therefore, the modal densities of the 
curved sections are 

n ■ Aj/4» »D/ph, w/wr > 1 

n ■ (Af/4ir «'D/ph) U/wp>2'3. «/“P * 1 

For convenience In writing, an equivalent 
area for curved panels Is defined as 

A# • Aj for w/wr > 1 

■ A, (w/wr)2'3 for w/wr < 1 

It should be noted that this assumption 
does not affect the results away from the panel 
of Interest. In addition, after the average re¬ 
sponse has been obtained under the above assump- 
tIon, local effects can be Included using good 
engineering Judgment based on mass loading ef¬ 
fects [3], the relationship between energy and 
modal density previously presented, and the gen- 

i/trattAn nf f»nerav sources. 

Since we are concerned only with relatively 
narrow bandwldths 

E 
-2 

■ m «V > • 
m «i2» 
—r~ 

Acoustic Excitation 

The acoustic excitation can be Introduced 
Into the system by one of two ways. 

The first method would be to Include the 
acoustic field as an additional mode Mt coupled 
to each exposed panel. The coupling factor 
would Include both the acceptance of acoustic 
energy and the acoustic damping. Energy could 
be Introduced Into the acoustic field, and re- 
litlv* values would be obtained between the 
acoustic field and the vibration In the struc¬ 
ture. This Is the desired «PP™«*) f®r • *y,t#m 
excited by a uniform acoustic field, but tne 
local excitation and the change In lovel as a 
function of station number for the £*9** vehi¬ 
cle make this approach difficult. (The change 
In level with station number will be discussed 
later.) Therefore an alternate approach was 
used. The modal density for any of the panels to 

be used Is 

n(w) ■ A#/4t «'D/ph 

15 
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The alternate approach consists of first 
defining the energy balance equation for the J*'* 
panel including the acoustic field as an Inde¬ 
pendent system. This results In 

- fNj I E1 + Ej (\nj ♦ ♦ 

r (10) 
+ C* Sc Nj Eac + »ac Nac Ej3 ' 0 

where 

♦ac “ averâ9e node to mode coupling between 
acoustic field and j 

Eac " ener9y In reverberation room (4] 

Substituting this Into the preceding yields 

4*2 c? N. a <p2> 
*« "iE« • —H- 

-o *J 

Putting this term on the right side of 
Equation 10 and assuming that the Nac El 
term Is Included In the damping term yields the 
form shown In Equation 8 where 

*ac NJ Eac 

o c 
0 0 

N ■ number of modes In reverberation 
room In Aw [4] 

■ u2 V Aik/2»2 c^ 0 0 

V ■ volume of reverberation chamber 

pq ■ air density 

eo ■ speed of sound In air 

Since 

ac 
“o nJac 

N.c 

then 

a ac NJ E.c 
•'Ll" 

ac J 

Mathematical Model 

Substitution of the appropriate values of 
E( S and modal density Into the previous expres¬ 
sion yields 

{<a’2>} - [m]-1 [[n] 

Aw ♦A, 

4t w_ À/3p (1-v2) 

•ii-1 

(11) 

* Cn 0 A. <P£> 

[—S—] 
-4/3p (1-v2) h' 

In this expression. Young's Modulus and 
density have been factored out of the matrlcles 
because the entire specimen was aluminum. It 
should be noted that the units are consistent In 
the given form, and that «¿z> and <(SZ> are over 
the same bandwldths. 

Constant Evaluation 

4,2 c 
0 nj«c Hj <p2> 

P_ w. Aw 
0 0 

n addition [5], 

nJ«c 
po co 

“o mJ 
0 

o ■ radiation efficiency 

nij ■ surface mass density 

The remaining constant parameters which 
must be estimated but cannot be calculated di¬ 
rectly are the system coupling factors (♦), the 
system damping (n) and the radiation efficiency 
(o). The values of 4 and a (as well as modal 
density) were altered to Improve analytical and 
experimental agreement. 

As previously discussed, there are three 
types of connections for coupled systems on the 
UpSTAGE vehicle. These are skin panels connec¬ 
ted by field joints, skin panels defined only 
for ease In calculations and not separated by 
any structured change, and bulkheads connected 
to the skin. 
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Th# Joints «re reasonably stiff to 
displacement. Therefore, the major mode of 
translating energy across the field joint will 
be pot*t1on. Since rotation Is the only mecha¬ 
nism which will transmit energy Into the bulk¬ 
head, the mechanism Is basically the same for 
the two. Since data were lacking on these 
Joints, It was assumed that their a values were 
the same. The value of a was chosen to be of 
the same order as was found In Reference 6. The 
Initial value used In this study was 

♦f Auo 

“0 [E/3p (l-vZ)]1/2 
• 5 X 10'6 

f ■ field joint 

The a values for the continuous structure 
should be greater than the value given above 
It was assumed that »c • lo «f. This value did 
give reasonable analytical results. 

The damping of the test specimen was deter¬ 
mined by exciting the structure with a hammer 
and examining the resulting time histories from 
each accelerometer. The time histories from the 
various tests were filtered Into one-third oc¬ 
tave bands, and It was determined that the damp¬ 
ing for the total system was 0.005 <n <0.01 
(n • 1/0 - 2 X percent of critical damping). 
These values were used to calculate the response 
of the test specimen. 

The radiation efficiency used in the pre¬ 
liminary calculations was taken from the experi¬ 
mental data presented In Fig. 7. These data 
were scaled by both the ring and coincidence 
freguencles prior to use. 

All that remained was to calculate area, 
thickness, etc., and to perform the required 
operations. Those constants which are Indepen¬ 
dent of frequency are presented In Table 2, and 
those which are a function of frequency are 
given in Table 3 for the 1250 Hz case. The cal¬ 
culations were made at every other third octave 
l!SLc*nter freduenc1es were 500, 800, 1250. 
2000, and 3150 Hz. 

10 
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Fig. 7 - Radiation efficiency of cylindrical shell 
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TABLE 2 

Constants fbr Mathematical Model 

Section Area (A) 
Thickness 9 

(t) (t)Z Freo (Hz) _AZi?_ _ At 

1 & 3 

2 & 4 

172.5 

70.5 
0.31 0.096 

1.025 

4.250 

1,795 

733 

557 

227 

53.5 

21.8 

5 A 7 

6 A 8 

107.0 

43.5 
0.16 0.026 

1,065 

4.425 

4,180 

1.700 

670 

272 

17.1 

6.95 

9 A 11 

10 A 12 

108.5 

44.5 
0.16 0.026 

1,100 

4,550 

4,240 

1,740 

678 

278 

17.35 

7.13 

13 A 15 

14 A 16 

250.5 

102.0 
0.16 0.026 

1,165 

4,820 

9,800 

4,000 

1,770 

638 

40.0 

16.3 

17 A 19 

18 A 20 

757.0 

309.0 
0.125 0.013 

1,530 

6,370 

57,400 

23,300 

6,150 

2,460 

94.6 

38.5 

21 A 23 

22 A 24 

269.0 

109.5 
0.125 0.013 

2,225 

9,250 

21,500 

8,250 

2,150 

875 

33.7 

13.7 

25 A 27 

26 A 28 

254.0 

103.0 
0.090 0.008 

5,000 

21,000 

31,400 

12,700 

2,820 

1,145 

22.9 

9.27 

29 

30 

733.0 

13.5 

0.25 

0.09 

0.063 

0.008 

NA 

NA 

NA 

NA 

2,940 

150 

183.2 

1.21 

31 

32 

497.0 

213.0 

0.125 

0.08 

0.013 

0.0064 

NA 

NA 

NA 

NA 

4,000 

2,660 

62.0 

17.0 

33 

34 

108.0 

573.0 

0.09 

0.09 

0.0081 

0.0081 

NA 

NA 

NA 

NA 

1,200 

6,370 

9.7 

51.3 

35 

36 

550.0 

450.0 

0.09 

0.08 

0.0081 

0.0064 

NA 

NA 

NA 

NA 

6,120 

5,520 

49.5 

36.0 

37 

38 

375.0 

298.0 

0.08 

0.08 

0.0064 

0.0064 

NA 

NA 

NA 

NA 

4,630 

3,770 

30.0 

31.8 

39 

40 

169.0 

138.0 

0.07 

0.07 

0.0049 

0.0049 

NA 

NA 

NA 

NA 

2,420 

1,970 

11.9 

9.6 

41 

42 

86.5 

65.3 

0.09 

0.07 

0.0081 

0.0049 

NA 

NA 

NA 

NA 

950 

930 

7.7 

4.2 

43 

44 

45 

50.3 

37.0 

24.2 

0.07 

0.07 

0.07 

0.0049 

0.0049 

0.0049 

NA 

NA 

NA 

NA 

NA 

NA 

720 

578 

346 

3.5 

2.6 

1.7 
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TABLE 3 

Frequency Dependent Constants 

1250 Hz Data 

Sec. 
No. 

f * 
Jr (' i'" {?F 0 

CO 
C

M
 

• 

D 

cl~
*
. 

A if 
t (?F) 

1 A 3 

2 A 4 

1.0 

0.294 

1.0 

0.441 

0.5 

0.008 
897.5 

2.59 

557 

100 

5 A 7 

6 A 8 

1.0 

0.283 

1.0 

0.43 

0.5 

0.008 

2,090 

5.86 

670 

117 

9 A 11 

10 A 12 

1.0 

0.275 

1.0 

0.422 

0.5 

0.008 
2,120 

5.87 
678 

117 

13 A 15 

14 A 16 

1.0 

0.26 

1.0 

0.4065 

0.5 

0.008 
4,900 

13 
1770 

259 

17 A 19 

18 A 20 

0.816 

0.196 

0.873 

0.338 

0.25 

0.004 
12,530 

31.5 

5370 

832 

21 A 23 

22 A 24 

0.561 

0.135 

0.67 

0.263 

0.063 

0.004 
905 

8.7 

1207 

230 

25 A 27 

26 A 28 

0.25 

0.06 

0.396 

0.152 

0.004 

0.0031 

49.8 

6.03 

1117 

174 

29 

30 

Wain** 

NA 

NA 

NA 

NA 

0.08 

0.02 
940 

33.2 

2940 

150 

TEST PROGRAM 

In the first test of Interest, the test 
specimen was suspended by bungee In the rever¬ 
beration chamber, as shown In Fig. 4. In this 
case, the outer structure was excited uniformly, 
resulting In a case where the response Is a 
strong function of damping and radiation resis¬ 
tance, and the effect of energy being transmit¬ 
ted along the structure Is minimized. 

Discussion of the second test of Interest 
where only the aft closure was excited requires 
some description of the MDAC test facility used. 
This test was performed by using adjacent rever¬ 
beration and anecholc chambers connected by a 
doorway, as shown In Fig. 8. A door was con¬ 
structed with an elliptical opening. The first 
test performed using this configuration consis¬ 
ted of Inserting the test specimen In the door 
so that only Its base was exposed to the rever¬ 
beration chamber, as shown In Fig. 9. The re¬ 
verberation chamber was excited exposing the 
base to reverberant acoustical energy. The 

transmission of energy along the specimen and, 
therefore, the energy distribution Is controlled 
by the panel-to-panel coupling (#) and damping 
while the effect of radiation efficiency Is 
minimized. 

19 



the inputs to the LTRG. In addition, acceler¬ 
ometers numbered 1,2, and 3 Mere added to moni¬ 
tor response of the base and of heavily weighted 
skin; 6 and 9 to check synmetry of response; 
5 and 12 to monitor response of the small 
radius of che ellipse; and 7, 10, 14 and 16 to 
monitor bulkhead response. The results of 1, 
2 and 3 are of no direct Interest here; 6 and 9 
did show the expected symmetry; 5 and 12 were of 
secondary Importance and were not considered In 
detail; and 7, 10, 14 and 16 showed that bulk¬ 
head response was overestimated. The 4o between 
the bulkheads and the outer structure was re¬ 
duced to one-third the original value to lower 
the prediction responses. 

The modal densities In the last two ellip¬ 
tical sections (Sections III and IV) were re¬ 
duced to one-third and one-half their original 
values at 500 and 800 Hz, respectively. This 
was done to reduce the predicted response and 
thereby Improve the agreement In the lower fre- 
guencies. This change was justified on the 
basis that the expression used could easily 
overestimate the modal densities In the low fre¬ 
quencies for the small panels considered. 

At 500 Hz and 8U0 Hz, the vibration levels 
for the reverberation test were underestimated 
In Section II (see Fig. 10) and overestimated 
In Sections III and IV. To compensate for this, 
the radiation efficiency was multiplied by 4, 
1/4, and 1/4 for the respective sections. At 
1250 Hz, the area of underestimate had moved 
forward to Section III and the estimates were 
still high ln IV. a was multiplied by 4 In 
Section III and 1/4 ln IV. At 2000 Hz, the a 
was multiplied by 4 In Section IV to correct 
the underestimate and no corrections were added 
to the 1150 Hz model. These corrections did 
not completely eliminate the observed discrep¬ 
ancies but It was not felt that further altera¬ 
tions were justified. 

• BULKHEAD-MOUNTED ACCELEROMETERS 

Fig. 10 - Accelerometer location 

RFVERBERATION 
CHAMBER 

SOUNDPROOF 
DOOR 

SOUND 

Fig. 9 - Rpvernrrant acoustic excitation of base 

The net result was three tests which were 
controlled by the three primary parameters. The 
first was a standard decay test to define damp¬ 
ing as discussed in the previous section. The 
second was a test where the total structure was 
excited acoustically and was controlled by ra¬ 
diation efficiency and damping. The third was a 
test where the energy was Introduced at the 
base, and the response was controlled by the 
coupling between sections and damping. Assuming 
the damping values were well chosen (damping, at 
best. Is a difficult parameter to estimate or 
measure), then agreement between test and mea¬ 
surement would confirm not only the approach and 
model but also the constants used In that model. 

The test specimen was Instrumented as shown 
In Fig. 10, plus several transducers located on 
the Laser Triad Rate Gyro (LTRG). The trans¬ 
ducers of primary Interest were those along the 
specimen skin (4, 8, 11, 13 and 15) as well as 

SOFT SUPPORT -n 

TFST SPECIMEN 

ANECHO 1C 
CHAMBER 
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The comparison between the measured re¬ 
sponse and the predicted response using the two 
values of damping and the final values of the 
constants are given In Figs. 11 and 12. The 
curves labeled I, II, III and IV correspond with 
the areas Indicated In Fig. 10. 

The reverberant excitation case shows good 
agreement in areas I and II. In Section III a 
peak at 1250 Hz exists that Is not predicted In 
the theory, but there appears to be a notch at 
this frequency for Section IV and the LTRG. The 
agreement between measured and predicted values 
at 2000 and 3150 Hz Is quite acceptable for Sec¬ 
tion III and the LTRG, but the measurement ex¬ 
ceeded the prediction for Section IV. It Is 
pointed out that the LTRG Is an extremely large 
component and could effect the levels In III 
and IV. 

In evaluating these data, one must keep In 
mind that the Intent Is to evaluate an approach 

and, therefore, some error In a parameter like 
damping Is acceptable since It will be different 
In the flight model. If all of the predicted 
levels were raised slightly (lower damping), the 
agreement In Sections I and II would be quite 
good, and the average value of III, IV and the 
LTRG would be acceptable. 

When just the base of the system Is ex¬ 
cited, the relative comparison becomes much more 
Important than the absolute comparison. This Is 
because the acoustic acceptance of the plate Is 
not of concern since It In no way represents 
flight hardware. It Is just a method of Intro¬ 
ducing energy Into the aft protlon of the vehi¬ 
cle. The data presented in Fla. 12 1s normal¬ 
ized by the measurement made In Section I. The 
agreement ln II Is all that can be expected, and 
In III It Is surprisingly good. In Section IV 
and on the LTRG, the environment Is again over¬ 
estimated at 1250 Hz and underestimated at 
2000 Hz. The agreement Is good at 3150 Hz. 

< HZ ( HZ 

Fig. 11 - Comparison of predicted and measured response — reverberant field excitation 

Fig. 12 - Comparison of predicted and measured response — aft closure excltatloi 
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The last test of Interest also made use of 
the two rooms separated by the door. The gen¬ 
eral setup Is shown In Fig. 13, the details are 
shown In Fig. 14, and a photograph of the setup 
Is shown In Fig. 15. In this case, the system 
Is excited over 11 Inches of one side of the 
vehicle In a wnner similar to that which will 
exist due to the separated flow condition In 
flight. In comparing prediction to test 

test 

Fla. lb - Jlrect Implnneirent test configuration 
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Fig. 16 • Comparison of predicted and measured response •• local excitation 

(Fig. 16). the general observations are the same 
as those for the aft end reverberant excitation, 
except that the measured values are less than 
predicted at 2000 Hz on the LTRG and the same 
as the high band In Section IV. The apparent 
lack of damping observed In the .reverberation 
case did not appear. This Indicates that the 
overall radiation efficiency may have been 
underestimated. 

FLIGHT CONFIGURATION 

Modeling of the flight vehicle consists 
primarily of modifying the model of the test 
specimen. This modification consisted of up¬ 
dating skin thicknesses, modeling the base 
plate, adjusting the damping and Incorporating 
the systems components. 

The damping for the outer skin was obtained 
by performing "bop" tests on the elliptical 
specimen shown In Fig. 17 which has flight abla¬ 
tive. The resulting value of the damping para¬ 
meter n was 0.02. The damping for the Internal 
components Is more difficult to define. The 
following values of damping were assigned based 
on engineering judgment. 

The electronic components were assigned an 
n value of 0.1 (5 percent of critical damping). 
These components are densely packed and are pot¬ 
ted so that a fairly high damping value Is jus¬ 
tified. The plumbing, fuel tanks and gas gener¬ 
ators were assigned values of n ■ 0.05. This 
value for the fuel tanks and gas generator is 
probably low for the early portion of flight but 
will be more realistic towards the end of 
flight. The separated flow also maximizes late 
In flight. Damping values of bulkheads or 
frames not containing components were assumed to 

be 0.05. Since the modal densities of these 
frames are small, their damping values will only 
have secondary effects. 

i* ***- . r* 

Fig. 17 - Elliptical cylinder with flloht 
Insulation 

The modal density of the components Is as 
critical as the damping. The majority of the 
components are made from Investment castings 
with skin thicknesses on the order of one-eighth 
Inch. It was assumed that the components would 
have modal densities equal to a one-eighth Inch 
aluminum plate with the same surface area as the 
component. 
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The component nodal densities and weiqhts 
were added to the appropriate bulkheads In the 
model. 

Flight Forcing Function 

The sources of random vibration during 
flight are launch acoustics and flight aerody¬ 
namic noise. The launch acoustics are of short 
duration and were treated as a launch shock. 
The aerodynamic noise results from the turbu¬ 
lent boundary layer which excites the vehicle 
throughout flight and separated flow which ex¬ 
ists during separation and maneuvers. The 
separated flow occurs only over a small portion 
of the vehicle, but the high fluctuating pres¬ 
sure levels (FPL's) result in it being a major 
source of vibration. 

Aerodynamic noise resulting from the turbu¬ 
lent boundary layer was estimated by using 
available data. The RMS fluctuating pressure 
values reported by several investigators are 
presented on Fig. 18. The line on this figure 
was used in the UpSTAGE analysis. 

Frequency spectra of the pressure fluctua¬ 
tions were normalized to a Strouhal number based 
on boundary layer momentum thickness (e), local 
free stream velocity and frequency. Fig. 19 
shows the normalized aerodynamic noise spectra. 
Fig. 20 presents the predicted environmental 
level at Station 97 for flight time of t - 1.43. 

Flq. 18 - Ratio of fluctuating pressure to 
dynamic pressure as a function of 

mich number 

Fig. 13 - iiondimensional power spectra of the 
wall pressure fluctuations 

The shift In the cutoff frequency as a 
function of e (Fig. 19) will result In lowering 
the environment as the station number Is re¬ 
duced. To account for this, the environment was 
reduced 2 dB for Sections II and III, and 4 dB 

for Section IV. 

The RMS value of the aerodynamic noise In 
the separated flow field Is amplified by an 
amount dependent on the static pressure rise, as 
shown In Flq. 21. The variation of this ampli¬ 
fication as a function of frequency Is shown In 
Fig. 22. Using these two figures, the corre- 
spending fluctuating pressure levels at t ■ 1.43 
In the separated flow were obtained and are 
>l<n thown In Fla. 20. 
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Local Loading 

It Is assumed that the power Introduced 
into a panel by an acoustic source is propor¬ 
tional to the area over which that acoustic 
field exists; that a given system (panel) can be 
divided into parts; and that the total power in¬ 
put into the system equals the sum of the power 
that would be Introduced into the system if each 
section were excited separately. This simpli¬ 
fies the modeling required to Introduce the 
local force and Is consistent with the SEA as 
used here. The basic assumption Is that the 
acoustic fields exciting the various local areas 
are statistically Independent and/or the corre¬ 
lated area Is small compared with the panel of 
Interest. Close examination of this assumption 
may limit the minimum size of panels excited by 
acoustic energy that may be used. Detailed ex¬ 
amination of this point was beyond the scope of 
this analysis. 

The extension of the separated flow area 
forward of the Injection centerline of the con¬ 
trol gases Is shown In Fig. 23 for the Indicated 
flight times. The portion of the separated flow 
aft of -1 acts over a heavy manifold area of 
the skin and therefore can be neglected 
(S « 1/t). From -1 to -2 there Is a skin dou¬ 
bler resulting In that area being half as effec¬ 
tive In accepting energy as Is free skin. The 
final area of concern Is forward of -2. The 
effective length of these combined areas Is as¬ 
sumed to be te ■ .5 + t where t ■ length under 
the separated flow forward of -2. The power 
Introduced Into the structure Is assumed to be 
proportional to this length. 

5- 10 / 
/ 

• CHYU ¢, HA'JLY V 1.6 ? 2.3 'IQi 
KISTLFR V 3.01 'll* 

• SPEAKER & All VAN V 3.45 '91 
'KISTLER V 4. 5 'AS REPORTED''111 

KI SUER M 4.5 'CORRECTED'111' 

1.0 1.5 2.0 ’.5 3,0 3.5 

Fig. 21 - Separated flow FPL amplification 
versus static pressure ratio 

U. :C-i.E -AMD EEL'«'. < C3 LL » 
Fig. 22 - Change In amplification factors as a 

function of frequency 

DISTANCE FROM INJECTOR CENTERLINE (IN.) 

Fig. 23 - Pressure distribution — control force 
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Only a portion of the system In the cir¬ 
cumferential direction Is excited by the sepa¬ 
rated flow. Consider the sketch shown below 
which shows the four panels which make UP the 
circumference of the control gas exit station. 
Fourteen nozzles are located In both se^t]on* ’ 
and 11 to furnish pitch and roll control to the 
vehicle, and « nozzles are located In Stations 
10 and 12 to furnish yaw control. Only 10 
pitch control valves can be excited at one 
time. 

The "worst case" environment condition oc¬ 
cur when 10 pitch control valves are activated 
on one side In conjunction with the 4 yaw con¬ 
trol valves on 10. 

The vibratory energy Is analytically In¬ 
troduced into the model through a 3-1nch long 
panel. The effective length of the separated 
area on this panel Is 0.7 Inch J-43 *eÇ?níî• 
The total power Introduced through 9 and 10 at 
t ■ 1.43 must be proportional to the length of 
the separated flow times the fraction of the 
valves used. This gives 

-2 s9 < 0.-14JU. X lOnoztles . 0tl65 Sq <p‘» 
TTn. TT nozzles 9 5 

s,o Hie • °'2i4 s,o -n- 

the radiation efficiency term because of the 
high Mach number of Interest. This do«* 
Imply that coincidence does not occur during 
flight, but that It would occur at a frequency 
above the range of Interest. 

F11 £ht Predict1ons 

The calcuatlons for all of the flight pre¬ 
dictions were put Into power 
of acceleration (PSD) form by dividing the 1/3 
octave mean squared values by Af. The 
PSD value for each section at 500, 800, 1250, 
2000 and 3150 Hz are presented In Table a. 

The predicted environment for the majority 
of the equipment can be obtained directly from 
this table by Identifying the section tdrtch 
“¡uin, the cowponent of ,«tere«. IKethr» 
general categories of Interest the densely 
packed electronics In the forward P«rt °f the 
vehicle, the two electronic Patkaq*s. 
88 and the valves located In the |^*a 
at Station 97. The predicted levels for these 
areas are presented In Figs. 24, 25 and 26. 

The aft flight control accelerometers are 
also of Interest and are located on the base 
plate close to the small radius. a**bown1n 
Fig. 27. The calculated response level of the 
base plate Is controlled by the power flow from 
Sections 1 and/or 3, while the «celerometer 
environment will be controlled by the power 
flow from 2 or 4 depending on the side of In 
terest. The accelerometer environment was ob- 

.-2 •1 
4 • *; x ? 

#1 

The resulting environment Is presented In 

Fig. 28. 

*pf> ■ mean squared FPL value In the 
® separated flow region. 

The response of the total system was then 
calculated by applying the attached boundary 
layer FPL's to the system and adding the re¬ 
sulting mean squared acceleration to that re¬ 
sulting from the local excitation. The envi¬ 
ronment predictions for later Infight times 
were obtained by scaling the calculated re- 
sponses to both a«ach*d and *eParatad J’°waJ 
t ■ 1.43 seconds and adding the resulting mean 
squared values. 

This approach did require some very speci¬ 
fic assumptions concerning the excitation of 
structure by aerodynamic noise. It was ““ured 
that the aerodynamic noise would exd’ta ‘he 
structure to the same levels as would reverber 
ant acoustic energy, with one ®xcap‘!°IÍ'fr„Í!e 
coincident effects have been eliminated from 

H'i. .'4 - Lnvelope of forward electronic 
equipment environment 
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Fig. 25 • Envelope of eft electronic equipment 
environment 

Fig. 28 - Envelope .'f control accelerometer 
environment 

Fig. 26 - Envelope of manifold environment 

SUMMARY AND CONCLUSIONS 

This document has presented a development 
of the method used to predict the flight envi¬ 
ronment for the UpSTAGE vehicle. This develop¬ 
ment Included a rather extensive test program 
which verified the approach, mode!, and physical 
parameters for the load-carry1 no structure. The 
method was then extended to the flight configu¬ 
ration by using assumptions based on available 
data and experience. 

The assumptions used to extend the model 
deal primarily with component modal density, 
damping and the efficiency of the boundary layer 
In exciting the structure. These assumptions 
can be evaluated by meaningful ground and flight 
tests. 

The general conclusions are as follows: 

a. The method presented Is logical and 
sound for environmental predictions. 

b. Additional experimental data are 
required before complete confidence 
can be placed In Its results. 

ACKNOWLEDGEMENT 

The authors would like to express their 
appreciation to J. R. Donahue and R. M. Blythe 
who were responsible for performing the acous¬ 
tical tests. 

Fig. 27 - Base plate configuration 
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TABLE 4 

Predicted UpSTAGE Environments 

g2/Ht 

Frequency (Hz) 

Section 

1 & 3 

2 & 4 

5 & 7 

6 & 8 

9 & 11 

10 & 12 

13 & 15 

14 & 16 

17 A 19 

18 & 20 

21 A 23 

22 A 24 

25 A 27 

26 A 28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

500 

.66 

.09 

3.24 

.55 

11.4 

2.5 

3.5 

.67 

.8 

.24 

.085 

.029 

.02 

.012 

.39 

.21 

.19 

.018 

.08 

.75 

.66 

.66 

.041 

.02 

.003 

.0036 

800 

5.8 

2.5 

11.2 
1.7 

57.3 

8.3 

20.1 
3.98 

5.6 

1.67 

.85 

.23 

.086 

.027 

4.4 

1.25 

1.22 
.155 

.90 

4.34 

4.36 

4.35 

.27 

.19 

.03 

.0035 

.014 

1250 

14.7 

6.5 

27.3 

5.1 

12.3 

19.7 

47.4 

10.5 

12.4 

3.8 

5.02 

1.8 

1.03 

.316 

11.4 

2.69 

2.59 

1.02 
1.14 

13.4 

8.7 

8.68 
.54 

1.17 

.19 

.02 

.023 

.042 

.0155 

.167 

2000 

4.27 

7.26 

7.73 

2.42 

34.7 

11.2 
13.0 

4.4 

5.43 

2.16 

4.78 

1.61 

1.44 

.468 

3.54 

.969 

1.38 

.981 

.353 

3.95 

4.25 

4.24 

.263 

1.13 

.173 

.03 

.033 

.059 

.022 

.238 

3150 

2.5 

1.74 

4.35 

3.17 

19.1 

22.7 

7.2 

4.5 

2.69 

1.51 

2.23 

.96 

1.21 
.41 

2.3 

.57 

.66 

.52 

.27 

2.6 
2.1 
2.1 

.132 

.54 

.083 

.024 

.028 

.049 

.018 

.197 
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Mr. Hinca: We used what I think was some of 
your data. At least It was BB&N data where you had 
the cylinder which was divided Into three or four sec¬ 
tions separated by stringers. As a first guess we 
took that as the coupling factor, and one of the pri¬ 
mary reasons for running the experiment was to 
determine how good these coupling factors were. I 
have to admit that either we were pretty lucky or you 
had some pretty good coupling factors because the 
agreement was quite good. 

Mr, Ungar: I clearly cannot quarrel with an 
answer like that. But I have a real nasty question, 
If you don't mind? And that is: you had the real 
vehicle, or you had a good model, and I think you 
really wanted to find the response of this model to a 
certain distribution of environments. Why did you 
not just measure what you wanted to know rather 
than going through this analysis? 

Mr. Hines: We had a real vehicle up to a point. 
This analysis was performed early in the develop¬ 
ment. The skin gauges, although they were close, 
did change as we did the loads analysis. We did 
not have any components in it. We chose not to 
dummy up the weight in the component, Ik-cause I 
felt that we would lie forced to make a correction 
for the dummy components ;uid then we would have to 
correct somehow for the real component. Basically 
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wi' usfil thf .statistical energy approach to sc.de the 
experimental data instead of taking that data directly. 
We used the experimental data to confirm the model 
and turned around ;utd used the model to predict the 
results. 

Mr, llou (Hellcom): I can see your testing con¬ 
firmed vour predictions. Hut how did you arrive at 
your predictions? 

Mr. Hines: We started out with a two degree of 
freedom system, or two systems, and expanded this 
to the 4ã systc ms that are used. We calculated the 
modal densities, and coupling factors, etc,, and 
then we used a matrix subtraction technique to solve 
the 40 degree-of-freedom or 45 panel system. 
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ON THE REDUCTION ANO PREVENTION OF THE FLUID-INDUCED 

VIBRATIONS OF CIRCULAR CYLINDERS OF FINITE LENGTH 
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The self excited vibrations which elastically suspended circuar 
cylinders will exhibit when exposed to uniform viscous fluid flow 
have received ample attention by various investigators in the past 
decade. Usually such flutter motions are highly detrimental to the 
proper functioning of the particular system or devices for a variety 
of reasons such as fatigue failures, noise production and intolerable 
secondary motions. This report discusses a method which prevents 
the unsteady pressure distribution around the cylinder and thereby 

eliminates the fluid induced vibrations. __ 

INTRODUCTION 

When a circular cylinder is exposed to 
cross flow of a viscous fluid such as air or 
water, vortex shedding will occur once the 
Reynolds number based on the cylinder diameter 
and the approach velocity exceeds the value 
of 50. The vortices are shed in an alternat¬ 
ing fashion. The relation between the fre¬ 
quency of the vortex shedding /, the fluid 
velocity U and the diameter of the cylinder D is 

/ = S -T (D 

The constant of proportionality S, the so-called 
Strouhal number is a function of the Reynolds 
number. In the range 2000 s Re s 100,000, S 
lies between 0.18 and 0.21. A summary of the 
experimentally determined values of S in the 
various Reynolds number ranges is given in 
reference I. Due to the vortex shedding an 
alternating pressure distribution acts on the 
surface of the cylinder, giving rise to per¬ 
iodically varying lift forces (ref. 2). These 
lift forces cause the fluid-induced vibrations 
which have been observed on submarine peri¬ 
scopes, submerged towed blunt bodies with 
length to width ratios larger than one (and 
equivalently, on similar, submerged moored 
bodies when currents exist) and on cables in 
fluid flow (cable strumming). The magnitude 
of the periodical lift forces may be as large 
as the drag force. It is therefore of impor¬ 
tance to neutralize these alternating lift 
forces. This may be accomplished in three, 
basically different ways: One, purely mechan¬ 
ically, by detuning or installation of proper 

damping devices. Detuning is accomplished by 
insuring that the natural frequencies of the 
vibrating system (the system which is prone to 
flutter) do not coincide or come within a cer¬ 
tain limit range of th» vortex shedding fre¬ 
quency. As is easily recognized from reference 
I, for prevention of flutter in cases where 
the vibrating body has approximately the same 
average density as the flowing medium to which 
it is exposed, it is best to insure that the 
natural frequencies of the vibrating system 
are well below the vortex shedding frequency. 
The Installation of proper damping devices is 
not always technically feasable or may create 
undesirable side effects, such as noise. Two, 
purely fluid mechanical ly. by partial or total 
prevention of the uniform vortex growth in the 
wake of the body. Three, again purely fluid 
mechanically, by the prevention of alternating 
vortex shedding. The last two methods are 
currently being investigated by the author. 
This report will discuss method three, the pre¬ 
vention of alternating vortex shedding. The 
initial theoretical considerations were already 
reported in reference 3 but will be here re¬ 
peated for completeness sake. 

POTENTIAL FLOW MODEL 

For flow velocities for which the Reynolds 
number is smaller than 50, two symmetrical 
vortices will form behind the cylinder; these 
vortices will not shed as long as the Reynolds 
number stays below 50. A simulation of flow 
around a cylinder with two symmetrical vortices 
behind the cylinder is accomplished as follows: 

Let the complex potential for two-dimen¬ 

sional flow be 
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According to Thomson's principle 

w(/) g(x,y) + i^(x,y) (2) 

Thrn thf coim^ I ex vt* It »city is 

wh t 

ünd 

dw 
d ¿ 

U - i V 

il 
3V 

(3) 

(4) 

(5) 

A closed circular stream line, with a radius 
equal to unity, representing the cylinder in 
uniform flow is formed by the complex potential 

w 
c 

U (6) 

while the potential of vortex 1 and vortex 2 is 

W| = + i K log (z - Z|) (7) 

w2 = - i K log (z - z¿) (8) 

To retain the unit circle as a stream line (see 
fig. I) when adding equations (6), (7) and (8), 
the images of vortices I and 2 (with respect to 
the circle) 

W|1 = + i K log (z - Zj|) (9) 

w22 = * K 109 " z22^ (,0) 

must be included (Thomson's theorem). Summing 
equations (6) through (IO) yields 

ZI I 
I 

z 
I 

and 

Z22 
I 

z2 

so that 

and 

X, 
i.2 

‘"’22'x 2 + y 2 
1,2 y1,2 

'I.! 

^-22 'X 2 + y 2 
X1,2 y1,2 

(12) 

(13) 

(1^) 

(15) 

By setting the propagation velocities of the 
vortices 1 and 2 equal to zero, Foppl (ref. 4) 
obtained 

t 2Y\.2 = r 1,2 '1,2 r 
1,2 

and 

where 

K- 2-Uyl,2 0 ‘7^0 

I 2 7 2 
1,2 • V X|,2 + y1,2 

(16) 

(17) 

(18) 

and 

w i K 
Z|j jZ • Zllj 

^2) “ *22^ 

(ID 
By choosing a cylinder with a unit radius all 
distances are expressed in radii. 

r, = r2 

since Xj equals x.and y. equals -y2 for the here 
assumed symmetrical case. 

Equation (16) gives the loci at which the 
two vortices must be, if they are stationary 
with respect to the cylinder (see fig. 2). 

U 

If- 

t 
Equation (17) correlates the strength K of 

such a stationary vortex with its position be¬ 
hind the circular cylinder and the free stream 
velocity U. For instance, at constant free 
stream velocity the vortex strength increases as 
the vortex pair moves away from the cylinder 
on the Foppl path. 

The flow pattern obtained from the math- 
matical model, namely equation (II) is shown 
in figure 3. 

Fig. I Nomenclature of Vortices 
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Fig. 2 Location of Vortices 

Fig. 3 Stream Lines for Potential Flow 

Depending upon the choice of the vortex strength 
or vortex position (which in turn determines 
the vortex position or the vortex strength re¬ 
spectively, according to equations (16) and(7)) 
the potential flow pattern can be made to agree 
with actual observed flow pattern quite well, 
e.g. see reference 5* 

FOPPL STABILITY ANALYSIS 

Since it is desired to keep the vortices 
from shedding it is important to determine if 
the vortices on the Foppl path, which are now 
at rest with respect to the cylinder, are in 
positions of equilibrium. To determine stabil¬ 
ity vortices 1 and 2 are displaced by a small 
distance from their position on the Foppl path; 
a return to their original location or a closed 
vortex path around its original position means 
that this position is one of equilibrium. For 
a small symmetrical disturbance of the vortices 
(the X - axis being the axis of symmetry) Foppl 
(ref. 4) obtained 

2 
■ä-f + (Y - A) MBX - AY) ° (19) 
d t 

d* d;- 
after replacing u by v by x by x ♦ 3 

and y by y + tí in the equations representing 
the propagation velocities of the vortices. 

Here 

A X, (4y2 + I) (20) 
r 

B I r^ + 2r,i + 'j (21) 
r v r ^ 

x = 8x2y T (22) 

r (r - I) 

and 

<2» 
r r ( r - I ) 

The indices on x, y and r have been omitted. 
The general solution of equation (I9) is 

C. = Cj exp (Xjt) + C2 exp (),2t) (24) 

where 

X| 2 = * (Y - A)2 - 4 (BX - AY) 

(25) 

Stability is therefore proven, since 

Y > A 

and (26) 

(BX - AY) >0 

A similar stability investigation, for the 
case for which the symmetry of the vortices with 
respect to the x - axis is not preserved, yields 
instability of the displaced vortices. The 
stability problem and in adition the motion of 
the vortices was more completely discussed by 
Howland (ref. 6) in 1925, Walton (ref. 7) in 
1928 and Vibrans (ref. 8) in 1962. 

The above considerations show that a pair 
of vortices may be at rest behind a circular 1 
cylinder in uniform flow. If this is the case, 
they will position themselves according to 
equations (16) and (17). where the latter equa¬ 
tion relates position with vortex strength and 
free stream velocity. When a small disturbance 
acts upon these vortices, the vortices will 
move on closed paths around their original posi¬ 
tion on the Foppl path, if the disturbance is of 
such a manner that it results in a displacement 
of the vortices which is symmetrical with re¬ 
spect to the x - axis. A disturbance producing 
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Fiy. 4 Spl itter Plate 

The technical reali/ation of the ¡maye 

plane it thown ;n figure 4. Naturally the 

tpl itter plate will have a finite thickness, 

a finite length (L -,1) ale .(j the x - axis 

and a fi-ite Ieny t n L along the cylirScr. For 

practical desiun purposes the optimum lengths 

(L - I) and l' are of interest, the optimum 

lengths aie the minimum dimensions of the split- 

te, Which will inhibit the fluid induced motions 

t the desired degree. These optimum dimensions 

will of course depend upon the design require- 

-»■'ts. Methods t deducing the lengths and 

L by macing plausible assumptions regarding 

the viscous fluid How pattern are discussed in 

reference 3. It should be pointed out, that due 

the down wash at the ends of the cylinder. 
'1 

. an be a I 1er than I. For a Iength to 

díamete' ratio of 5»15 experiments showed th«t 
L 0.91 is sufficient as long as the Reynolds 
number is less than the critical (see figures 
5 and 6). Experimentally it was also deter¬ 
mined that when L equals to 7 cylinder radii, 
¡.e. when the splitter plate itself is 3 cylind¬ 
er diameters long, the usual flutter due to 
voit ex »bedding was virtually non-existant. 
Preliminary calculations of the pressure gradi¬ 
ents in the y - direction at x/D - I, x/0 = 2 
x D 3 and x/0 -- 4 indicate that the splitter 
plate need not be continuous from x/0 = I to 
x 0 - 3. It seems to be more important that 
the plate exists in the neighborhood of x/0 = 3. 

Figure 5 shows the amplitudes of fluid 
induced vibrations of a bare cylinder and the 
reduction of these amplitudes due to the splitter 
plate. The cylinder had the above stated L/D 
ratio and was 1.75 ft. in diameter. The dif¬ 
ferent amplitude ranges are due to a change in 
the natural frequency of the elastically held 
cylinder. The splitter plate prevented the 
vibrations to the same degree, regardless of 
the natural frequency of the system. The 
density ratio for these cases vtas * i.78. 

Figure 6 shows just like figure 5 the 
amplitudes of the fluid induced vibrations of 
a cylinder with and without the splitter plate. 
The diameter and the L/0 ratio of the cylinder 
are the same as for the experiments presented 
in figure 5. However the density ratio was in 
this case /o * 1.91, resulting in a very wide 
amplitude range. The vibrational system was 
tested over the shown Reynolds number range 
with the three different natural frequencies, 
namely 0.047 cps, 0.037 cps, and 0.032 cps. 
The amplitude response did not change signifi¬ 
cantly when the vibrational system was changed 
to have the above natural frequencies. Again 
the splitter plate eliminated the flutter 
vibrations to the same degree, regardless of 
the natural frequency of the system. 
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5: Amplitude vs Reynolds Number 

fnat.A = °*081 CPS> fnat.B = 0*°62 "Ps. fnat.C = 0‘052 ^Ps 
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DISCUSSION 

Mr. Dodge (Southwest Hi-scarch Institut!'): If I 
followed your presentation correctly, thf main point 
which you wanted to make was that this potenti:d How 
analysis enabled you to calculate the length of the 
splitter plate. Most of us realize that a splitter plate 
will eliminate vibration? Did you vary the length of 
the splitter plate to see if it agreed with your esca¬ 
lations? 

Mr. Sallct; Yes, I did. And roughly they 
agreed. It depends on how one relates the potential 
flow to the actual flow parameters. In the presenta¬ 
tion 1 pointed out the weakness, that it is very bad to 
have a potential flow analysis for a real flow, par¬ 
ticularly if you use low Reynolds numbers. The 
analysis gives an insight as to why the vortices were 
not shed. In my paper I also stated that you do not 
have to have the plate right next to the cylinder :md 
that the plate is more important further downstream. 
I have not made an analysis of that. 

Mr. Callahan (Black and Vcatch): We had a 
similar problem in air. We were called to consult 
with the Air Force on an antenna, at Thule, that had 
some cylinders that were supported lioth at the top 
and the bottom, that had been failing regularly for 
three or four years. Our investigation indicated that 
we were having the same phenomena in air for col¬ 
umns anchored at both the top and the bottom. Of 
some hundred columns only aijout five failed and we 
noticed that the columns that were loaded axially, 
either in compression or in tension, did not fail. 
Hut the welds in the unloaded columns were cracking 
at the end of the structures. Do you care to com¬ 
ment from your studies ? 

Mr. Sallet: Yes. I must warn you to apply wind 
tunnel data to data that should hold up in water and 
vice versa, in this particular type of problem. When 
I first looked in to that I said It is very easy to 
silence or reduce the vibrations. I looked at some 
of the wind tunnel results. That does not work in 

water, particularly if the average density of your 
vibrating body, or your vibrating mass, is roughly 
e<|u;d to the density of the fluid, which is very often 
the case. We have an amplitude which is a function 
of the approach velocity or the Reynolds numljcr, if 
the density ratios arc very different, then the vibra¬ 
tion problem is similar to a one degree of freedom 
system where the critical fro<|ucncy or the Strouhal 
frc<|iioncy is suddenly excited. If this frequency is 
excited due to having this criticid approach velocity 
you obtain a critical frequency. If one has a system 
where the density is similar to. or approaches a 
density of the approach Huid the amplitude versus 
velocity ranges are similar to a very broad — 
excitation spectrum, and that is where you run into 
difficulties. We have something which is not quite 
complétele explained, I am working on it, many 
people much smarter than I have l»cen working on it, 
and they have not explained it either, 

Mr. (ialcf (TRW Systems): I would like to offer 
a few practical comments based on some experience 
designing risers for use in Cook Inlet where we have 
six knot currents and big waves. I’nfortunately, the 
currents are not kind enough to come always from 
the same direction. If the splitter plate were attached 
to a riser it would act as an airfoil. ! his will have 
a lift coefficient of times the angle of attack ;uni 
the riser will break off very soon. Of course, one 
might argue that it will stall before it breaks ;md that 
might lie true, but this is much worse. Because if 
the stall condition occurs, a galloping, which is a 
special form of stall flutter, occurs ;uul the riser 
will break. I just do not think you c;m do this sort 
of thing. 

Mr, Sallet: The problem is purely an engineering 
problem. Obviously, one has to insbdl the plate 
in such a fashion that it will swing around so that 
these lift forces do not occur, 1 have discussed a 
Huid mechanics problem, there are many ways to 
solve it. 
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The response of a mechanical assemble in a vibration environment is 
strongly dependent upon the tolerance between parts. An increase in 
the looseness In an assemble mav increase the amplitude of the response 

whicti can cause premature damage or failure. Of particular concern is 
the packaging of electronic components and fatigue of mechanical parts. 

This paper gives a numerical solution for the motion of a mass that is 
forced to vibrate between two springs which allow some free travel at 
the center. Vlscuous damping is considered. Results are presented 

in the form of amplification curves which are plotted against a dimen¬ 

sionless excitation frequence. 

INTRODUCTION 

Acceptance tests for assemblies and subas¬ 

semblies of complex systems often require forced 
vibration over a wide spectrum of frequencies. 
In the design of these assemblies it is helpful 

to predict the response analytically so that 
harmful effects can be minimized. In many in¬ 

stances tolerances occur between mating parts 
and this complicates the analysis by causing the 

response to be nonlinear. 

It is also known that the service life of an 

assembly that is subject to a dynamic environ¬ 

ment is adversely affected by tolerance buildup 
between parts [1]. Tests have shown that fail¬ 

ures of assemblies are almost always preceded by 

an increase in the looseness between parts of 

the assembly. 

This paper investigates the effect of loose¬ 

ness (tolerance) on the response of a simple 

spring mass system that is subject to a vibra¬ 
tion environment. Also included is an evalua¬ 

tion of the effect on the behavior of vlscuous 
damping which is sometimes present in a loose 

assembly—particularly those where some isola¬ 

tion from the environment may be sought. 

Numerical methods are used to solve the non¬ 
linear problem on a digital computer and for 
comparison these same results are also obtained 

using an analog computer. Results are obtained 

which show the response for different system 
parameters, different excitation frequencies 
and different initial conditions since it is 

shown that the nonlinear response can be depen¬ 
dent on initial conditions. Results are pre¬ 

sented in graphical form. 

3— “ f— 

, H ‘ K- -H * h 

|wvvi rn iA/vvj 

Fig. 1 - Spring Mass System 

FQVATIONS OF BEHAVIOR 

Figure 1 shows the problem that is consid¬ 
ered. The mass m oscillates between the two 

springs with spring constant k. The tolerance 
in the system is represented by the two gaps of 

length a. The support is subjected to an exci¬ 
tation represented by x and the mass motion is 

defined by u. A representative spring force is 

graptied against the relative displacement 
z(z = u-x) in the figure. Vlscuous or coulomb 
damping may be Included. The equation of motion 
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1,-r t ! i mas-i I-, written 
1 (7) 

mu * -f-K 

ul,i.r,. t 1-. the sprln»’. toree and 1' l* the dissi¬ 
pât Ion t oree . 

and It will depend upon the eliaracterlst les and 
detormation ot the sprinn when 7. ' a. The 
toree K mav represent anv kind of dissipation 
force . 

SOI.IT ION OK K.QKATIONS 

[lie behavior is evaluated hy two different 
methods. The first method requires that the 
springs he linear and equal, no damplnji, the 
excitation he harmonic and the response of the 
mass is suitable represented by a sine function. 
In the second method used, the equations of be¬ 
havior are solved numerically and the springs 
mav he unequal and nonlinear, damping may exist 
and there Is no requirement on the form of the 
response. The second method will, of course, 
handle mane more cases; hut, the former will 
give verv good estimations of the response even 
for svsterns with substantial nonlinearity pro¬ 
vided the conditions cited above hold. Compu¬ 
tation time for the first method is considerably 
less although tills was not an Important consid¬ 
eration when the work was done on a high speed 
third veneration computer system. 

If K is assumed to be zero and If the 
springs are linear and symmetrical then Fq. (1) 
can be written 

mu • -f(u-x) (3) 

when* 

f - 0 |u-x| < a 

f - k(u-x-a) u-x > a 

f = k(u-x+a) u-x < a 

(4) 

Equation (1) can be solved explicitly for the 
period T when x is harmonic and the response u 
is assumed to be harmonlc [21* 

•u 
du 

f(u-x)du 

(5) 

where u Is the amplitude of motion of the mass. 
The Integration In Fq. (S> is carried out for f 
as defined in Fq. (¿I and for 

X 

va* — U 

The plus and minus signs give respectively the 
in-phase and out-of-phase response of the sys¬ 
tem. For the former 

1 
4 /TTH 

J un 

a 
) 

For the latter 

+ ; ) 
uo+xo-a 2 

(8) 

If T Is replaced by its equivalent In terms 
of frequency then Fq. (7) (or Fq. (8)) Is a re¬ 
lationship between frequency, level of Input 
represented by xn and the amplitude of the out¬ 

put u0. 

Good approximation can also be obtained by 
solving the following equivalent system based on 
the method of slowly changing amplitudes (van 
der Pol method). 

mz + kz + g(z) - mw?x0sin wt 

g(z) =■ -ka z ^ a 

g(z) - -kz |z! _ a 

g(z) ” ka z ■_ -a 

(9) 

(10) 

Indeed, one term approximation has been 
shown to be sufficient If the condition 
|a/znl " 1 holds. 

The second method of solution used for 
Fq. (1) is based on numerically Integrating the 
equation. The general objective In the numeri¬ 
cal Integration will be to generate a periodic 
solution under given conditions of excitation. 

The equation is Integrated by using a 
standard Runge-Kutta method. In order to find 
the steady state response two techniques are 
employed. In one sufficient damping is intro¬ 
duced to dissipate any transients after a num¬ 
ber of cvcles and the other uses a shooting 
technique where initial conditions are system- 
matically refined to give a pure periodic or 
steady state response. 

In the first technique, referred to here 
as the damped-out method, arbitrary initial con- 
ditions are assumed and the inteRration carried 
out until the response is clearly identified to 
be periodic. This Is accomplished by recording 
conditions at intervals T which is the period 
of the excitation. When it is observed that 
conditions exactly repeat after some multiple 
of the Interval T, then it is assumed that a 
steady state condition Is readied. 

The shooting method assumes that periodic 
motion occurs with period equal to T. Starting 
conditions for the response are systemmaticallv 
varied until the solution after a time T exactly 
equals the starting conditions. Refinement of 
the starting conditions is done bv using 
Newton's method. 
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(in 
In Eq. (1) let z r- u-x, then 

z 1 f - 1 F - X 
n m 

Equation (11) is replaced hy t'.’o first order 

eq uations 

(in 

The excitation x Is assumed known and for anv 
problem the spring force f and dissipation force 
F will be known. Starting values for the posi¬ 
tion u. and the velocity û of the mass permit 

the numerical solution of Eqs. (12). 

The shooting technique is based upon se¬ 
lecting starting values for u. and û , such that 
after a period of time T the system returns to 
precisely the starting conditions, (Fig. 2), 

i .e. , 

u(T) - u- 

u(T) - ù 
(13) 

Fig. 2 - Excitation and Response 

The Newton Raphson technique is used for 
finding a solution of Eq. (12) that will satisfy 
Eq. (13). Starting conditions u0 and up are 
assumed and the integration of Eq. (12) is 
carried out. In general, the condition in Eq. 
(13) is not satisfied, and in order to satisfy 
this condition the starting values are corrected 
as follows. 

It is assumed that u(T) and u(T), denoted 
by Of and ip have appropriate continuity with 
respect to u0 and u0 so that the Taylor expan¬ 
sions in Eq. (14) and (15) will hold. 

r)U^ I 

u^+AUg, ¿0+A¿0) - uT(u0.òfl) + 

3U1 
c)U 

4“, 
0 (14) 

Au + ••• 
0 U 

Ú (u + u , ù + Û ) = U (u ,U ) + ' U. 
T 1 Û . u (15) 

-f • U 
■ u 

where the subscripts indicate time. 1 rom Eqs. 
(14) and (15) values for u and u are sought 
that will make uT and ij equal to the starting 

values , i.e., 

U..(u + ' U , Ù + u ) - (u + u ) = " (10) 

'i.,. (u+'u,u+u)-(u+'u) = n ( 1 7 ) 

Substituting for uT and uT In i.qs. (Is) and (15) 
gives two simultaneous equations in the corree- 

ti on terms u and u . 

n - —— ) u - -*-1- Ú- = u (u, ,u )-u (18) 
' U U 1 

_ _I; u + (1 - ) u. = u (u ,u )-u,(19) 
•u ’ u * 

The right hand side of Eqs. (18) and (19) is 
tlie difference between u (or u) at time 1 as 
found from the solution of Eqs. (12) and the 
starting values. The derivative terns in the 
coefficients are evaluated numericallv by making 

individual variations in u. and û . Thus, 

•u u_(u+‘u,u.) - uT(u.,u.) 
T ; T :_2_:_T—- (20) 

u (Ur+^Up.ù,) is found by making a small change 
in u-, lie., 1U" , and then computing uT from 

Eqs. (12). 

RESULTS 

Numerical results are obtained by solving 
Eqs. (12) using both the digital and analog 
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..r.i 1 1 nf 1 uenci' of d.imitmt i lino ir danplmt torn 
cu U used for K in the equation of behavior. 

F i yuro shows i sample excitation and re¬ 
sponse curve. the excitation is harmonic 
throm-hout the studv. The response mav be 
harmonic or it mav have both harmonic and sub¬ 
harmonic components that occur because of the 

non 1 ine.ir i tv of the spring force. 

Figure 3 shows the amplification factor 
J. /x , as a function of the ratio of the ex¬ 
citation to tiie natural frequency of the linear 

system ./-n(-n ’ ^') for different values of 
looseness. The effect of increased looseness 
Is to ncrease the amplification factor for the 
In-phase motion, i.e., -u/-n - 1. Whereas the 
amplitude of the oscillation goes virtually to 
zero for the out-of-phase response, w/wn - 1. 
The amplification curves show that for a gap of 
0.20" and a frequency ratio of 0.6 the amplitude 
of the response can exceed three times the am¬ 
plitude for the linear case. 

Figures 4 and 5 show the amplification fac¬ 
tor for different values of the velocity damping 
coefficient. Figure 4 is an almost linear case, 
1.6., small gap, while Fig. 5 with a gap of 0.10 
shows strong nonlinear behavior. Comparison of 
Fig. 3 and 5 show that the effect of damping 
for the nonlinear case is to reduce the ampli¬ 
tude of the response in much the same way as for 
the linear case. 

In order to determine the actual content 
of the response curves, they were found by both 
the digital (damped-out) and analog methods of 
solution. The two solutions proved to be equal 
thus giving additional validity to the numeri¬ 
cal results. An Interesting result of the study 
Is that for certain conditions the solution is 
not unique. This is demonstrated in Figs. 6 
through 9. Figs. 6 and 7 show the response for 
the same system with an input of Ig at frequency 
u, . 0.44l/îï7m. Only the initial conditions on 
u and ú are changed. In Fig. 6 the response 
contains^one or more subharmonics with frequency 
equal to nu/3. This is determined by the period 
of the response which is 3T. In Fig. 7, the 
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response is pure harmonic as can be verified by 

the period and the form of the curve. 

Fig. 7 - Harmonic Response (w/u:n “ 0.44i) 

The two different forms of the response can 

be obtained by varying the initial conditions. 

However, the harmonic response is quite sensi¬ 

tive to the initial conditions and can be ob¬ 

tained only when the starting conditions are 
carefully chosen to nearly duplicate the steady 

state harmonic conditions. 

Figures 8 and 9 show the response for the 

same system used for Figs. 6 and 7 except 
the excitation frequency is raised to w-0.496.k/m 
The third subharmonic disappears and for non¬ 

linear response a second order subharmonic 

occurs. This is verified in Fig. 8 where the 

motion clearly repeats after 2T. Figure 9 shows 

the pure harmonic response for precisely the 

same system. 

Pip, ft - Excitation and Response Curve 

for 1/2 Subharmonic 

Fig. 9 - Harmonic Response (~/-n * 0.49b) 

Results for frequencies over the spectrum 

from near zero to a value of -/~n' n ” of 
roughIv 1.2 were run for the svsten with a gap 
of 0.10". For verv low frequencies of excita¬ 

tion the response curves were dominated bv the 
pure harmonic term. The contribution due to 
subharmonics was trivial. Subharmonic response 

becomes obvious as w increases. For a value of 
u, . o.441w. the subharmonic of 1/3 order eecomes 
quite prominent and at .. *0.50 n the subharmonic 
of 1/2 order is most prominent, tor greater 
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In a problem of packaulnu a crvogenlc tank 
wetuhlnu some 14(1(1 lbs In n flexible cage, with 
an equivalent sprln« constant of about 10,00(1 
lb /in, «ups of 0.10" in the support structure were 
normal. Ihus the response curves «tven here are 
(epical of the behavior of tills system. 

There was no opportunity to measure directly 
the response of the tank under a forced vibra¬ 
tion acceptance test, but some failures which 
occurred Indicated that forces in the ranne pre¬ 
dicted bv the amplification factor probably were 

reached. 

Subharmonic response was expected for the 
nonlinear problem but the existence of all orders 
of the subharmonic is surprising. The preference 
of a particular subharmonic for a fairly narrow 
ranne of the excitation frequency was unexpected. 
In some cases the subharmonic Is a substantial 
part of total response. To verify this a least 
squares analysts of the response curves has been 
carried out bv assumlnn the curve Is the sum of 

harmonic and subharmonic parts. 

u(t> = A ,stn(wt+l„) + 
n^l 

A sln( —— + ¢ )(22) 
n m n 

where m Is the order of the subharmonic deter¬ 
mined bv the technique described earlier. A0 
and : are the amplitude and phase annle of the 
harmonic part, will le and fn (n + m) represent 
the amplitude and phase shift of the subharmonics. 
Tiie maximum amplitude of a subharmonic Is ob¬ 
served to be almost one-half the amplitude of the 
harmonic term. Thus the subharmonics are impor¬ 
tant in evaluating the total amplitude of the 

A definition of looseness would be helpful 

in a discussion of results. Here tor the lack 
of a definition the actual dimension of the «ap 
is used. A better measure mlsht be a ratio of 
the SaP to the amplitude of the forced response 

of the mass. A studv to find a significant 

measure for looseness Is underway. 

The effect of the velocitv damping assumed 
here is to reduce the amplitude of the response 
and to change the phase angle In much the same 
wav as happens In the linear case. Thus the in¬ 
troduction of light damping to eliminate the 
transients after several cvcles In both the 
damped-,’ut and analog methods appears justified 

for finding the steadv state response. 

RK.KKRKNCrS 

1. K. Rin and C. l.nuls, "Investigation of the 

Fffect of Looseness of Imperfect Points on 
Structural Tntegrltv," Fall Meeting of SESA. 

October IHbO, 

i. P. lX*n Hartog, Mechanical Vibration, 
pp. ISl-ibl. McCraw-lll 11, New York, 195(1. 
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DYNAMIC DEFLECTIONS OF MULTIPLE-SPAN GUIDEWAYS 

UNDER HIGH SPEED, AIR CUSHION VEHICLEi 

James F. Wilson 
Duke University 

Durham, North Carolina 

Series solutions are presented for dynamic responses of elevated 
auidewavs to high speed vehicles. The guidevays are modeled as 
identical end to end Bernoulli-Euler beams, each simply sup- 

^ “iviïüsrrs tí st, 

^rsrüuîpïé f- 
merical results include peak deflections and bending moments of 

at midspan approach 2.0 for long, continuous loadings, but are 
hiah as 3 2 for certain segmented loadings which overlap tv 
Scans at once? Parametric studies show that, for a given span, 
the vehicle speeds at which these peak responses occur are al ay 
qS?te S^ferSn? than the critical speed for a point load._ 

INTRODUCTION 

It is well known that a simple, 
elevated span can undergo higher maximum 
deflections and bending moments as the 
speed of the vehicle traversing the span 
increases. A reasonably complete his¬ 
torical review of this subject is given 
by Wilson [1], who further considered 
the dynamic response of simply supported 
spans to traveling constant pressure 
segments of up to one span in length. 
More recently, Wilson and Biggers [2] 
studied the dynamic response of simple, 
linearly damped spans subjected long 
pressure segments traveling at constant 
speed and concluded that the maximum 
ratios of dynamic to static span deflec¬ 
tion approach 2.0. Under certain condi¬ 
tions, these maximum dynamic deflections 
did not occur until most of the pressure 
had passed over the span--when the span 
was vibrating freely. These results, 
and those which follow for the multiple 
span cases, are applicable to the design 
of guideway spans for tracked air cush¬ 
ion vehicles provided that the total 
weight of the vehicles between two con¬ 
secutive span supports is always much 
smaller than the total weight of that 
span section. However, if the vehicle 
suspension system is somehow controlled 
so that the vehicle mass times its 

vertical acceleration during traverse is 
always much smaller than the vehicle 
weight, the span loading is nearly con¬ 
stant, and the results which follow are 
also approximately valid for high ratios 
of vehicle to span weight. 

Practically, it is necessary to 
keep vertical vehicle acceleration below 
0.04 g's for the safety and comfort of 
the passengers [3]. With this criterion 
in mind, much work is presently being 
done on the coupling effects between 
guideways and traversing vehicles 
modeled as various types of linear 
spring-mass systems [4-6]. In the final 
design stages of a guideway for a high 
speed tracked air cushion vehicle, it 
would be best to check the guideway de¬ 
flections and moments obtained from some 
of these complex models before making 
the assumption inherent in the results 
which follow here--the assumption of 
non-fluctuating pressure loading. 

FREE VIBRATIONS OF CONTINUOUS SPAN 
GUIDEWAYS 

With the assumptions of classical 
beam theory, the governing differential 
equation of motion for a span of uniform 
properties, subjected to an external 
transverse force f = f(x,t) per unit 
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length of span is [7] 

El ill + PA ^ = f(x,t) (1) 
Jx" 3t¿ 

where El is the stiffness; p and A are 
the mass density and the cross sectional 
area of the beam, respectively; (x,y) 
are the coordinates of the neutral axis 
of the span as shown in Figure 1, and t 
is time. It is assumed that the span is 

calculating Am ia presented by Saibel 

[8] for arbitrarily spaced props and by 
Miles [9] for evenly spaced props. Nu¬ 
merical results for the latter case are 
also presented by Ayre and Jacobsen [10] 
for uniform spans of total length s in 
the form 

m 1,2, see (3) 

where K is the number of span sections 
(K-l is the number of internal props), 
and a is a constant depending both on m 
K and the mode number m. Numerical val¬ 
ues of a_ as a function of K and m for 

In 
the continuous span with the ends simply 
supported are given in Table 1. It is 
noted that Equation (1) is a special 
case of Equation (3), since for K « 1 
there are no internal props, <*„, M *, and 

pr “ Ar* Fu*ther, f°r the two BPan 

case, K - 2, and the odd numbered nat¬ 
ural frequencies <n “ 1,2,...) 

coincide with the corresponding even 
numbered natural frequencies of the sim¬ 
ple beam pJn (n - 1,2,...), or 

Fig. 1 - Typical deflection influence 
functions for a single span guideway 

Ain-i “ p2n 
K - 2 

n s 1,2,... (4) 

elevated. End tensions are neglected 
since it has been shown that longitudi¬ 
nal span tensions of practical magni¬ 
tudes have small effect on the natural 
vibration frequencies of simple spans 

m. 

Also, for the three span case (two 
evenly spaced props) coincident frequen¬ 
cies are: 

A 
:n-j P in , K 

n 

3 

1,2,... (5) 

The controlling variable in the 
calculation of span frequency is the 
span length, s. For free vibrations of 
the simple span described by Equation 
(1), where f ■ 0 and the deflections and 
bending moments at the ends x ■ (0,s) 
are zero, the frequencies are given by 
[7] 

For any consistent set of units for the 
span parameters, pr has units of radians 

per unit time. For a span of the same 
length s and with the same simple sup¬ 
port conditions at each end, the addi¬ 
tion of one or more prop supports be¬ 
tween the ends will increase the vibra¬ 
tion frequencies, designated as Am. It 

is assumed that these intermediate props 
are rigid, allowing for no vertical de¬ 
flection at their points of contact, and 
that the bending moments are equal 
across them, so that span continuity is 
preserved. A general method for 

Similar frequency relations can be de¬ 
duced for higher values of K. The re¬ 
sults expressed by Equations (4) and (5) 
will be used presently. 

In free vibration, the mode shapes 
of a simple span (K-l) are 

Vx) ” Bin ^ ' m * i*2'*“ (6) 
where there is a corresponding frequency 
pm given by Equation (2) for each mode 

shape. The eigenfunctions 4m(x) form a 

complete set and satisfy the following 
properties 

Jr oA ¢,, (x) ¢,, (X) dx = 0 , m ^ n 
0 m n 

s 
oA ^(x) dx = 1 (7) 
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From the work of Lee [11] and Sai- 
bel and Lee [12], the general solution 
for free vibrations of continuous spans 
with N(-K-l) rigid props at distances 
c^ (i >■ 1,2,..., N) from the left sup¬ 

port, for time t >. t0, is implied to 
have the form 

y(x,t)* 

«rtci) •<r(x) 

mi" pJ -A 

.sinAmft-to) + 
I y 
i(m,j) Bjm ^j(x) 

(ciHr(x) 

p2-A! m 

•cosAn(t-t0) 

where $m(x) is given by Equation (6) 

when the ends at x » 0, s are simply 
supported. The symbol j affixed to the 
r summations means that the values for 
which r * j where p^ * Am are excluded 

in those sums. The symbol (m,j) on the 
sums involving the Bjm and coeffi¬ 

cients means that the sums are over only 
those modes whose frequencies are iden¬ 
tical to those of the simple span, or 
for A * p.. An example of the latter 

m j 
coincidence condition occurs in the 
three span case with two evenly spaced 
props, where, as indicated in Equation 
(5), the ordered pairs (m,j) = (1,3); 
(4,6); (7,9); .... If the internal 
props are placed so that no mode shape 
of the multiple span coincides with any 
of those of the simple span, then all of 
the coefficients B^m and B^ are zero. 

When these constants exist, they are 
calculated using Fourier analysis, where 
the initial conditions at time t = t0, 
are expanded in a Fourier sine series 
and the properties of Equation (7) are 
used. The results are 

span, must be specified at time t » t( 
to have free vibrations. With the same 
technique, it is readily shown that the 
sets of,equations which give the con¬ 
stants R’. and ft. are mi mi 

(10a) 

^y(x.t0) 
it 

tr(x) dx (10b) 

where r = 1,2,... with r = j omitted. By 
truncating the series to include only a 
finite number of modes m, values of 

and R . can be found by solving each set 
mi 

of simultaneous equations, since the 
right sides of Equations (10) can be 
calculated for known initial conditions. 

FORCED VIBRATIONS FORA MOVING POINT LOAD 

References [11] and [12] give the 
particular solution y = yp to Equation 

(1) for a point force F moving at con¬ 
stant speed V over a continuous span. 
That is 

2F 
ypix.t) = 7- JC sin*kt • £ 

Srk-Vx) 

r=! Pr^k 

(11) 

where the passage frequencies are 

never equal to any of the frequencies 
pr. These passage frequencies are de 

fined by 

= l. —( 
k s 

12) 

and Srk is given by 

Bjm = pA j[ y(x,to) * *j(xî dx (9a) 

rB ^yfx’O 
B » PA / -• «.(X) dx (9b) 
jm J0 at 3 

where y(x,t0] and 3y(x,to]/at, the ver¬ 

tical displacement and velocity, respec¬ 
tively, of each material point on the 

S 
rk Va) sin 

è 
1= ! 

. Í 
’ r ( 

c ] 
ii ki 

sin da 

(13) 

where 
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and 

H 
ki (14) 

t -r 

id the determinant 

!= !- '■ t J 1 r i ct1 
1. N. 

I 

The value of \]^ is the sano as ex¬ 

cept that the i-th column is replaced by 

i r= i 

>r(cs) 

Pr‘ 

1,2, 

It is noted tliat r = 1,2,.., where» in¬ 
tegers r = j are omitted. Equations 
(16) and (17) have been derived by Lee 
111), pacte 75, and are restricted to 
cases where n = p ^ The gene ral 

solution for resonance in which = 
m 

Pj “ j, ¡'as yet to be solved in closed 

form for multiple spans. This latter 
condition occurs in typical spans for 
vehicle velocities between 100 and 300 
mph. The significance of this resonance 
will be discussed in the section on Nu¬ 
merical Results for the special cases 
be 1ow. 

The total solution for span deflec¬ 
tion where = p^. ^ becomes 

y(x,t) = yp(x,t) + y (x,t) ;i5) 

where yp and y are given by Equations 

(11) and (8), respectively. Suppose 
that the continuous span has zero de¬ 
flection and zero velocity at time t=0, 
just before the point load begins its 
traverse. From Equations (9a) and (10a), 
using (15), (8) and (11), it can be de¬ 
duced that B= = °, 30 that the 

solution is 

y(x,t) 
s Ik«, 

sinw. t* ^ 
r= i 

SrkVx) 

pj ~w¿ ^r k 

<^j) 

SjkVx) 

Pj-k 
sinA 

m= i r*i i=i 
p;-A; 

inA_t 
in 

(16) 

Here, the symbol C) has been deleted 
from the constants Rm^ in order to avoid 

confusion later. Thus, R . can be cal- 
mi 

culated from the following simultaneous 
restraint equations, deduced from Equa¬ 
tions (16) and (10b). The series in m 
is truncated at M terms and the number 
of consecutive equations r is also equal 
to M. 

Am] Rmi »r(ci) 

Pr Pr"A¿ r m 

2F 
8 2 

k 

(17) 

Case 1. Single Span with Simple End 

Supports 

For a single, simple span, im(x) is 

given by Equation (6), = p„ for no 
m 4 m 

intermediate supports, and Equation (16), 
with (13) and (14) reduces to 

y(x,t) 

„ / PC 
2 Fs \ 

it4EI I )^i 

sin 
s 

• j^sin ajkt - ^ sin pktj j (18) 

where u;k ^ pk< This result agrees with 

Timoshenko's [7], At resonance, when 

^k = pk' let y is se®n that 

Equation (18) is an indeterminate form 
(0/0) which can be evaluated in the 
limit as wk -► pk using L1 Hospital's rula 

The result is 

yR(x,t) 
Fs3 

it 4EI 

00 
_1_ 

k4 
sin Pkt-pkt cos 

sin 
ktrx 
s (19) 

where wk * pk> 

Equations (18) and (19) are valid 
only while F is on the span, in the time 
interval 0 <. t < s/v. At time t0 - s/v, 
the simple span begins free vibrations. 
For t > tg, span deflections are given 
by Equation (8) where Am ” Pj, j ■ m * 

1,2,3,..., and the terms involving Rm^ 

and ^i do not exist since the integers 

r do not exist. When the coefficients 
Bjm and Bjm are evaluated from Equations 

(9), with the initial conditions from 
Equation (19), the result is 
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y(x,t) 
, 2Fs3 y' _i_ 

w-EI J«5u k" 

^Cksinpk vt-s/v)-Dkcospk(t-s/v)j 

I ‘ 

• sm 
kT’x 

where 
(-l)k - cos(pk s/v] 

k 
1 - — 

Pk 

sin |pk s/v 

1 - — 

Pk 

(20) 

where t ¿ s/v and uk ? pk- 

At resonance, this same procedure 
is used to determine the free vibrations, 
except that the initial conditions used 
to calculate and Bf are those of 

jm ]m 
Equation (19), evaluated at t « tc * s/v. 
The result is 

yR(x,t) sin pk(t-s/v) 

TABLE 1 
Numerical values of Jm in Equation (3), 

where K is the number of span sections 

and m is mode number. Both extreme ends 

are simply supported. Ayre and Jacobson 

(3). 

where 

sin 

m“ 1 

sin(m^x/s) 

q(2> 

■‘m 

(-1) 
m+1 »in [- 

sm-1 

(2m-l)* 1 

. 

^ 2m-1 

P^m-, 

+ Dk cos pk(t-s/v)j sin (21) 

where 

Ck « pk £ sin (pk BA) 

Bk - sin(pk s/v) - pk ï cos(pk s/v) 

where t > s/v and uk = pk. 

Case 2. Double Span with Simple End 

Supports 

For the two span case with simple 
end supports and with a central rigid 
prop, the natural frequencies Am are 

given by Equations (3) and (4), with the 
help of Equation (2) and Table 1. With 
Equation (6), Srk and Rki are first cal¬ 

culated from Equations (13) and (14), 
respectively, where i ■ N - 1. Equa¬ 
tions (16) with the series in m trun¬ 
cated at M terms, then reducec to 

5 

(-1) , + 1 sin [ (2i-l)rx/s] 

(2t-l) 
2m-1 

P2Í-. 

£ 
(2*-l) 

2 m-1 

><’) 
2m 

2 m- i 

P 2 ¢,-1 

sinÍA t] 
( 2 m-1 > 

•sin (2mrx/s ) 

(2m) 
Jjm 

>2m; 

.(-) 
mi 
F Mv) 

sin 

i+i sin [ (21-1) ttx/s] 

(21-1)- 1 - 
'2 1-1 

y(x,t) 
2Fs * 

1T-EI 

(22) 

The constants (Rmi/F) from Equation (17) 

are given by the set of simultaneous 
equations 
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f \ 
‘ ro (Rm»/F) 

U) 
¿n- i 

[P-n- i Í, Am P: n- i 

(-1) 
n+1 

-& 

^ ^n - t 

.k-.l (-l)k+l 

1 _ -’n- i 

^•'n- i 

ip-n-ij (2k-l) 

[£ —• 
i - 

.i i 
í k- i 

Píe-, 

i - ¿k-i 1 - ‘ -k-i 

p; ¿ k- i Pin-» (23) 

where n = 1,2,3,... M. The above re¬ 
sults have also been given by Lee [11) 
and by Ayre, et al. [13) in different 
mathematical form and in terms of bend¬ 
ing stresses rather than deflections. 

At time t = t0 = s/v, the force 
reaches the right end of the doable span 
and the free vibration deflections are 
described by Equation (8)^ wheçe i = N =1. 
The constants B. . B! , R_,, Rmi are jm jm mi mi 
calculated from Equations (9) and (10) 
using the initial conditions derived 
from Equation (22). In this case, the 
ordered pairs (m,j) are (1,2); (3,4); 
(5,6); ... so that only the coefficients 
B, _ , and B', _ _ , are nonzero for un,n- i ) ( zn,n-1 ) 
all positive integers n; the coeffi¬ 
cients R_ and R' exist for all m= 1,2, mi mi 
..., but are based on r - 1,3,5,... only 
when evaluating them by Equations (10). 
After lengthy calculations, the results 
are 

y(x,t) = yB + yc (24) 

where 

2Fs 
£ [COSKns/v) n=i i 2 n-1 L TT El 

- cos (•Sn-»s/v)] ' sin[,l2n-i (t_s/v)] 

[sin (Uj ns/v) - sin (AJn., s/v]] • 

cos [''■ 2 n-1 (t-5^)]} 
sin (2niTx/s) 

(2n) 

(25) 

-2Fs 3 

ti'e: 

(-1) U>gin[ (21-1)tix/s) 

(2H-1) 

rfR’ 

1W 
cosA_(t-s/v)+ m 

mi sinAm(t-s/v)J 

(26) 

are each The values offS/Fl and f ft /f] 

calculated from the following M simul¬ 
taneous equations, where r = 1,3,5,..., 
and where values of (Rmi/F) are calcula¬ 

ted from Equation (23). 

-I; V sin (nr/2? lin (wrs/vj 

1 - 
Am m 

i-^ 

-I, 

(-l)m+‘ sin(w2in_js/v) 

(201-1)1 1- 2 01- 1 

P 

sin(rïï/2) 

1- 
2 m- i 

OD 

•s 
(2Í.-1) 1 1 - 2 m-1 

P 2 i — 1 

-t 

and 

mi 
F äin(Am8/v) 

, sin(rïï/2) 

AJ2 
n2 

i-Jü 

. f y 
árt |pr lPr 

m» sin(rïï/2). 

i-jü 

cos 

(27) 

(“r8/v) 

1- 

-t 

2 m-1 
(-l)m+l cos fw _ s/v ( 2m-i J 

(2m-l)1 2 m-1 

2 m-1 

sin(rïï/2) 

1- 2 m- i 

P2m-i 
•s 

(2 -1) I1 - 
J 

2 m-1 

2 2-1 

equation continued on next page 
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COB lAm8/v) 
sin (nr/2 ) 

I, »i, 

^All values of 8- = 3,6,9,... are ex¬ 

cluded in 

The constants Grm are given by 

Case 3. Triple 

(2B) 

Span with Simple End 

Supports 

For the three span case with simple 
end supports and with a rigid prop at 
X = c = s/3 and at x = c = 2s/3, the 
natural frequencies Am aré given by 

Equations (3) and (5) with the help of 
Equation (2) and Table 1. With Equation 
(6), Srk and are first calculated 

from Equations (13) and (14), respec¬ 
tively, where N = 2 is the maximum value 
of i. Equations (16), with the series 
in m truncated at M terms then reduces 

, _ 2Fs 3 ^ in (1 ) -Q (2 ) -Q (3 ) “OÍ, 

(29) 

where 

>(>) 
m 

sinw t 
-2— sin(mTix/s) 

1- 

ÍA11 values of m = 1,2,... M included in 

Q(l)) 

,. [6^^(^/3)^5^(2^/3)] 

= p 
! - — 1-^ 

PjJ l 

sin (8--x/s) 

(amfm”‘ mi 

sin oj t 
m 

(values of m, 8 = 3,6,9,... are excluded 

,<>) 
^ am 

'3m-.J (3m) 

j_ t sin ( Sirrx/s) 

ml 
i 1 - 

l P' 

(ah values of m = 1,2,... M included in 

Q (3 ) i 

sin., t G 
m ““ 

sin ( r-x/s) 
rm . 2 -1 

' r i 

rm 
mi 
F 

sin(rr/3) + 
mi sin (2riT/3) 

(30) 

and by 2M equations in r of the form 

f/.J G 

£1¾ 

rm 

i-^ 
lPr] (x.i 

Pr1 

y í^k/Pr)[¿ksin(rV3)^t^SÍn(2rT,/3)-l 

1 - — IVk- •l'k) 
(31) 

where r / 3,6,9,- The additional 
coefficients where k, i / 3,6,9,... are 

^k “ 

j sin? ( 8tt/3) (32a) 

. = i 

J." 1 - 
I PcJ 

^ = % j sin(*-';,/3) * sin(2-."/3) 

Í 
i" 11 

l l 

j sin2 (2».T/3) 

£ f 
? 

' r 4 i i _: 

(32b) 

(32c) 

= y, sin(k^/S) - :k sin (2k*/3) 
K K 

%k = ak sin (2k~/3) - sin(k-/3) 

( 32d) 

( 32e) 

For free vibrations, the coeffi¬ 
cients of Equation (8) are evaluated 
from Equations (9) and (10) as pre¬ 
viously, except that the conditions at 
t = s/v are based on Equation (29). In 
this case, the ordered pairs (m,3) are 
(1,3); (4,6); (7,9); .... The results 

are 

y(x,t) = yB + V (33) 

where 
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V U 
'à' V ■ H 

I I» 
( t-a V) ] sin 

f, 
("m 

s/v) J 

♦ h 
. 

( t. -1¡ V) 
s in(3m X/s) 

( im) 

vlio ri 

1 m - 

( 34) 

—[cos¡. S/v! - COS I s/v]l ,m. L ) ' >m-j ■ JJ 

tí' = sin * s/v - m l im ) 

and where 

im- ¿ 
sinf.'. s/v] 

I im-; ) 

P K- •‘»['•.'«-H 

* co.^.t-s/v,]) 

e" 11 —- 

PîJ 

where 

mi 

'«.m 

R’ 
RU 

sinUit/3) + 

sinUn/3) + 
R' 
R12 

(35) 

sin (2tiT/3) 

sin (2iv/2) 

The values of (^,/^) and are 

calculated from E'm above and 2M of the 

following simultaneous equations, where 
r ^ 3,6,9,,,. 

t 
'am 

lin(wrB/v] 

1 - — 
.2 

1-^ 

in(v/v) 
m" 1 - -21 

< 
1 - — 

.hä 
sin(rTT/3) + 6_sin(2r 

m 

fa y ßJl 
( m'm mj 

*/3)] 

equation continued at top of page 

l^l;sin(r"/3) + |^|sin(2f/3) 

f 

1 

(36) 

Finally, the values of and 

ÍR-, /Pi are calculated from E. above t. ) ¿m 
and 2M of the following simultaneous 
equations where r ^ 3,6,9,.,.. 

£ á^sin (r7T/3)+emsin (2nr/3) 

(amYm ” ®m] 

cos(Ams/v) 

.[ 
mi 

sin(rir/3) + 
Rm2 

sin(2rir/3) 

1 - J2 

(37) 

It is seen that such calculations 
are more lengthy as the number of props 
increase. However, the series involved 
are rapidly convergent because of the 
factor m4 in the denominators of these 
sums. Sets of simultaneous equations for 
the unknown constants are easily solved 
on the digital computer so that numeri¬ 
cal values for y can be obtained to any 
reasonable degree of accuracy desired. 

STATIC DEFLECTIONS FOR A MOVING POINT 
LOAD 

The static deflection of a point 
force F at a distance vt from the left 
support of a continuous span, which has 
N rigid, internal props at distances c,, 
c2, c,, ... from that support, can be 
found from elententary beam theory [14] . 
The (N+2) reaction forces R^ are labeled 
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R., Kj, ..., starting at tilo left sup¬ 
port. The static equilibriuir conditions 
are 

( 38) 

acceleration of the force F, as shown in 
Ref. [I), is 

, ♦ 2v _iX_ ♦ v? XX ,43) 
dt ' ■t' ■X ’t 'X' 

ci Hi = vtr (39) 

Using double integration and theMacauley 
bracket method, the static deflection 
for the span simply supported at oacli 
end is 

vUlt) = 5¾ 
• {rox’+ ^ Ri<x-ci>3-F<x.vt>3+Dx| 

(40) 

where vt < s and where Macauley's brack¬ 
et convention is used. That is, if C is 
a real number 

<C>3 = 0 if c < 0 

<C>3 = C if C > 0 

To explicitly evaluate the N+3 unknowns 
(N+2 reactions and one integration con¬ 
stant D), Equations (28) and (39) are 
solved simultaneously with the (N+l) 
constraint equations 

y (ci»t) = 0 , i 3 1,2, ... N 

y(s,t) = 0 (41) 

Static deflections will be used as the 
reference values in dynamic calculations. 

BENDING MOMENTS, STRESSES, AND LOAD 
ACCELERATIONS 

Once the span deflection has been 
determined, either static or dynamic, 
the bending moment M(x,t) can be calcu¬ 
lated from 

M(x,t) - -El 32y(xft) (42) 
3xJ 

where y(x,t) replaces y(x,t) if 
the moments for free vibration are re¬ 
quired. The maximum flexural stress in 
any case is found by dividing M(x,t) by 
the section modulus of the span. 

As the point force travels at con¬ 
stant speed V along the span, the total 
velocity of F is directed tangent to the 
trajectory of the span at any instant. 
Although the magnitude of this velocity 
is constant, its direction is not, since 
the span does not remain horizontal. For 
this reason, the total vertical 

which can be evaluated directly when the 
deflections at the location of F are 
known. It is necessary to consider these 
"heave" accelerations when designing ve¬ 
hicle suspension systems for passenger 
comfort. 

RLtíPONSL TO PRESSURE LOADS BY SUPERPOSI¬ 
TION 

The continuous pressure loads of 
air cushion vehicles traversing multiple 
spans can be approximated by a series of 
point loads F,, F , ... moving in tandunv 
which are spaced <x apart. It is assumed 
that these loads may have different pre¬ 
scribed magnitudes (some may be zero) 
but that they are time-invarient. Con¬ 
sider time t = t where 

n 

tn = n ^ (44) 

and designate the deflection due to a 
unit load at position nAx as y(x»tn]. At 

time t = tj, let F(, the first load of 
the tandum, be at position x = Ax and 
the span deflection at all x due to F, 
will then be F,y[x,t1]. At time t?, load 

Fj will be at position x = 2Ax and its 
contribution to the span deflection will 
be Fiy^x,t2|. Also, F2 will be at posi¬ 

tion x = Ax and will cause a deflection 
Fjy^x.tjj. By superposition, the deflec¬ 

tion due to both F and F2 at time t= tj 
are additive, and this sum is designated 
as Y[x,tj]» where 

vfx.t,) . F, - y(x.t,) . F, • y(x.t,) . 

It is thus easily deduced that the total 
span deflection at any time t = t is 
given by 

1451 

where the value of i-8 t*16 

value derived for the unit point load in 
forced vibrations if tn+J_j <_ s/v. How¬ 

ever, if tn+i_j 1 s/v, the value of y 

derived for free vibrations where the 
unit load has left the span, must be 
used, or yfx.t^^) = y^.t^,^). With 

these restrictions, Equation (45) can be 
used in conjunction with the previous 
results to obtain the dynamic response 
to multiple loads of fixed magnitude 
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traversing a multiple span at constant 
velocity, where the lenqth of the load¬ 
ing compared to the span length s is un¬ 
restricted. The numerical results which 
follow illustrate these ideas. 

NUMERICAL EXAMPLES FOR SEGMENTED PRES¬ 
SURES TRAVERSING SINGLE SPANS 

Fortran IV computer programs were 
written and an IBM-360/75 digital compu¬ 
ter was utilized to study the dynamic 
deflections and bending moments of sin¬ 
gle, double, and triple-span guideways 
for multiple, constant velocity loadings. 
Extensive numerical results are pres¬ 
ently available for the single span 
guideway and those results will now be 
summarized. The critical section of this 
guideway is in the neighborhood of the 
midspan. For several types of moving 
loads, it was found that the maximum 
values of deflection and bending moment 
actually occurred at various distances 
up to about 1/30 the span length from 
the center, but that those off center 
values never exceeded 2% of those at 
midspan. For design purposes, then it 
appears that a knowledge of midspan val¬ 
ues are sufficient. 

In the numerical procedure, the dy¬ 
namic response to the point force, or 
influence function, is first calculated. 
Some typical influence functions at mid¬ 
span, based on Equations (18-22) and 
five modes (k=5), are shown in Figure 1 
for fixed ratios of the first passage 
frequency to the fundamental span fre¬ 
quency, w,/p,. For a fixed traverse 
velocity over a given span, this ratio 
is fixed. These curves depict the varia¬ 
tion of the midspan deflection with time. 
For w./P, = 0# the static response cor¬ 
responding to "crawl" velocity is shown, 
where the free vibrations are zero. The 
maximum dynamic deflection occurs for 
Wj/p = 0.5, while the force is on the 
span; but the span undergoes free vibra¬ 
tions of smaller amplitude. At resonance, 
u^/p = 1 and the maximum deflections 
are the same during passage and during 
free vibrations. For all values of 
,^/p, > 1, the deflection amplitudes, 
both in forced and free vibrations, are 
less than those of Figure 1. The bending 
moment curves show similar behavior. 

In Figure 2, the maximum values of 
deflection and bending moment at midspan 
are shown in terms of the parameter 
uij/p,. It is not difficult to show that 
both curves approach zero as u^/p, ap¬ 
proaches large numbers. For the typical 
span reported in (1] whose natural fre¬ 
quency is 2.25 cycles per second (p, ■ 
14.1 radians/sec), where the length s is 
75 ft., the absolute maximum amplifica¬ 
tion of deflection and bending moment 

Figure 2 - Maximum value« of deflection 
and bending moment at midapan for a «in¬ 

gle span guideway in response to a 
force traversing at constant speed. 

with respect to their maximum static 
values are 1.71 and 1.41, respectively, 
corresponding to u^/p, *0.5, or a pas¬ 
sage velocity of 115 mph. The maximum 
static values of deflection and bending 
moment, based on a point load at mid¬ 
span are respectively 

Ymax = WT “ Yo 
static 

M , (47) 
max 4 o 

(46) 

The span response to vehicle load¬ 
ing cases A through F, shown in Table 2, 
were next solved by superposition of the 
point load influence functions, as ex¬ 
plained previously. In all cases, the 
uniformly distributed loads were approx¬ 
imated by point loads of equal magnitude, 
at spacings of 0.02s to 0.04s. For these 
spacings, the dynamic maximum deflec¬ 
tions were within 9% of those calculated 
from the closed form solutions of the 
uniformly loaded case of Ref. [1]. The 
static deflections agreed to within It 
for these spacings. For ease of refer¬ 
ence, the maximum static values for de- 
flectione and bending moments for the 
six loading cases considered are listed 
in Table 2, all based on the point load 
reference values Y and M. of Equations 
(46) and (47). The total load was taken 
to be the same for all cases, even 
though, for cases E and F, a part of 
this load is off the reference span. 

Figure 3 shows the results for a 
vehicle which is two-thirds the length 
of the span. When the load is uniform 
under the whole length of the vehicle, 
case A, the curves for deflection and 
moment are nearly coincident and have 
only one peak. This peak occurs for 
.Uj/p, = °-8* where the deflection ampli 
fication is 1.64. This represents a 
shift to the right in the deflection vs 
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Type of Loading 

F 

max 
static 

1 

0.808 

0 723 

M ■"max 

■T 

i 

0 60b 

0 530 

H 1 B _ 

-Hè* U - 

TABLE 2 
Maximum static deflection« and bending 
momenta at midapan of a single span 
guideway« where the total load F is 

the same in each case 

u./p, curve when compared to Figure 2 
for the point load case. When the load 
is segmented as in case B, however« two 
peaks occur in both the deflection and 
moment curves. These peak amplification 
factors, and the corresponding values of 
u /p are summarized in Table 3 for all 
cases (A-F). 

Several trends are apparent when 
the results of Figures 3, 4, and 5, or 
Table 3 are compared. 

Figure 3 -Maximum deflections and bend¬ 
ing moments for a single span guideway 
where the vehicla length is two-thirds 

the span length 

LOAD 
TYPE 

peak 

Er¬ 
statte 

p7at 
Ypeak 

M . ui 
£££*_ _L atl 

Mmax P‘ 
static Mpeak 

POINT 
FORCE 

(Fig. 2) 

A 

(Fig. 3) 

B 
(Fig. 3) 

C 

(Fig. 4) 

D 

(Fig. 4) 

E 
(Fig. 5) 

F 
(Fig. 5) 

1.71 

1.64 

1.32 
1.70 

1.73 

2.31 
1.53 

1.85 

3.20 

0.50 

0.80 

0.25 
0.90 

1.00 

0.50 
0.90 

1.25 

1.63 

0.50 

0.80 

0.25 
0.75 

1.00 

0.50 
0.80 
1.20 
2.15 

1.91 1.25 

1.41 

1.65 

1.43 
1.93 

1.78 

1.98 
1.44 
1.48 
1.60* 

2.78 
1.20 

1.63 
1.78 

TABLE 3 
Peak values of dynamic deflections and 
bending moments at midspan of a single 

span guideway. (*) denotes free 
vibration 

consistent with those of Ref. (2] 
where, for uniformly loaded trains 
of air cushion vehicles longer than 
the span length, the non-damped de¬ 
flection amplifications approached 
2.0. 

(a) For increasing lengths of non-seg- 
mented, uniform loadings A, C and 
E the frequency ratios Wj/pj at 
which the peak amplifications occur 
increase from 0.8 to 1.25 and the 
amplifications increase from 1.64 
to 1.9. These results are 

(b) The amplification of deflections and 
bending moments are nearly identical 
at corresponding values of /Pt for 
non-segmented loadings. 

(c) For segmented loadings B, D and F 
where the loaded segments are all 
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Figure 4 - Maximum deflection* and bend¬ 
ing moments at midspan for a single span 
guideway where the vehicle length is 

equal to the span length 

Figure 5 - Maximum deflections and bend¬ 
ing moments at midspan where the vehicle 
length is four-thirds the span length 

one-sixth the span length, the am¬ 
plifications, which approach 3.2, 
increase as the segments are sep¬ 
arated. Although there may be more 
than one peak value of amplifica¬ 
tion, the highest of these peaks 

occur for “,/P, < 

(d) Although these amplification fac¬ 
tors seem high, it is recalled that 
they are values relative to the 
maximum values for the correspond¬ 
ing distributed static loads. As 
shown in Table 2, the actual de¬ 
flections and moments due to a dis¬ 
tributed load may be one-half that 
of the same concentrated point load. 

On this basis, then, maximum dynam¬ 
ic deflections for segmented pres¬ 
sure loads may still be less than 
twice those for the same static 
point load. 

(e) The extreme amplification peaks oc¬ 
cur in the range 0.5 cfw./p.) < 1.5, 
which corresponds to vehicle cruis¬ 
ing speeds of 100 to 300 mph and 
span frequencies of about 2 cps. 
Thus, guideways should be designed 
for these extreme peaks. However, 
since vehicles with non-segmented 
pressure distributions give lower 
peaks, cost savings on guideway 
construction might be effected by 
considering vehicles of types A, C 
and E rather than the segmented 
types B, D and F. 

(f) For distributed loads, the extreme 
peaks for deflection and bending 
moment all occur while the tail end 
of the load is leaving the span. 
The maximum peaks were found to be 
less during free vibration. 

In reaching its cruising speed, an 
air cushion vehicle needs to accelerate 
along the span. For passenger comfort, 
this horisontal acceleration, *, should 
probably not exceed 0.04 g's (g ■ 32.2 
ft/sec*) as discussed in [3]. To deter¬ 
mine the effects of horisontal vahicl# 
acceleration on guideway deflections, 
numerical results were obtained using 
the theory developed in [1]. The follow¬ 
ing results are based on a vehicle mod¬ 
eled as on* with a continuous pressure 
covering 0.427aj for values of S in the 
range 0 < S < 1.0g» and for frequency 
ratios in the range 0 < U»/P>, 
Here, w. is based on the initial vehicle 
as it enters a simply supported span. 

(a) In the frequency rang* 
0 < wj/p, < 0.5, there is a maximum 
decrease in the ratio of dynamic to 
static deflection of 16* for 4 ■ 
l.Og. 

(b) In the frequency range of interest 
for high speed vehicles, 
0.5 < w,/?, < 1.75, there is a max¬ 
imum decrease in the ratio of dy¬ 
namic to static deflection of 2* 
for * ■ l.Og. 

(c) For S in the range 0 < ï < l.Og, 
the percent decrease in dynamic de¬ 
flections were always less than 
those reported above. 

It is concluded that, for horison¬ 
tal vehicle accelerations of less than 
l.Og, guideway design based on the as¬ 
sumption of constant vehicle speed, is 
quite appropriate. 
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THE TWO-SPAN CASE 

Ayre, et al. [13] report both ex¬ 
perimental and theoretical résulta for 
the response to a moving point force of 
the two-span case with a central, rigid 
prop. The experimental results nave been 
replotted in Figure 6, where the maximum 

Figure 6 - Maximum experimental values 
of banding moment at the quarter and 
three-quartar points of a two-span 
guideway in response to a point 
force traversing at constant 

speed. Ayre, et al. [13] 

bending moments are shown as a function 
of the frequency ratio u,/A, at the 
critical points, the quarter and three- 
quarter span positions, where A, is the 
fundamental span frequency. The maximum 
static bending moment at either position 
is easily shown to be 

«max - ^024 V • (48) 
static 

Unlike the analogous dashed curve of 
Figure 2 for the single span, the peak 
responses at both critical points occur 
after the load has left the span, or 
during free vibrations. The theory de¬ 
veloped above is presently being com¬ 
pared with these experimental curves and 
results similar to those in Figures 3-5 
will soon be available. Preliminary re¬ 
sults for the influence functions give 
peak amplifications near 3.0, which are 
higher than the peak experimental values 
of 2.4 shown in Figure 6. Whether the 
experimental influence functions, which 
include the effects of free vibration 
damping, or the theoretical influence 
functions, Equations (22-28), which do 
not include damping, should be used to 
derive the response of multiple spans to 
multiple loads, is presently being eval¬ 
uated. 
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DISCUSSION 

Mr. NU'holas .Air Force Materials l.ahoratorvt: 
In vimr unulvsis. iliil you consider am interaction 
between the vehicle and tile bridge, or did you con¬ 
sider the loading to lie constant ? 

Mr. W ilson Yes. In this particular paper the 
loading w as considered constant or /ero. Since then 
wv have considered the Richardson model, which is 
spring-mass, spring-mass with damping in between 
on top of these pressure segments, and some very 
interesting results have been found. 

Mr. Nicholas: You included a term in the dif¬ 
ferential equation which considers the axial tension 
in the beam. Were you considering these to be 
pinned-plnned beams or simply supported on rollers ? 

Mr. Wilson: The civil engineers who work on 
these simple spans tell me that it is best to consider 
these bridges as simple spans with no end tension 
and without any foundation effects. I included that k 
too. I made some studies of the relative frequencies 
of the beam as the end tension Is applied, however, 
for these results the end tension was zero. It turns 
out for practical cases, if some end tension is 
placed on the beams it does not change the frequency 
very much. If too much tension is applied the beams 
will fall, because concrete can not take tension. 
This is how I rationalized taking the end tension to be 
zero. So, In essence, the answer to the question is 
that they are simply supported on rollers. 
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ANAI.YS IS OF i ll!. 'lOTIoN OF A LONG IRi- 

To'.-.'KIj FRO'! AN ORBITING AIRCRAFT* 

Dop.irtr.unt of Kn^Inecrin^ ir.ic» 
l'SAF Acader.y, Colorarlo 

.A 1 UTipL'd nass rnodtil of a lon^ trailing v/ire antenna ib ; relented and 
LaKranKe's equations of motion derived. These equations '•■■ere =■ ived 
numerically for the case of vertical aircraft oscillations in a cons¬ 
tant radius and altitude orbit. A slack condition vas round at the 
drogue for certain magnitude oscillations. The equations were also 
solved for the case of aircraft transition from orbit to straight and 
level flight, both tension at the aircraft and instantaneous positions 

of the cable are presented. 

INTRODUCTION 

Previous studies by the Cornell Aeronau¬ 
tical Laboratory and the Naval Air Development 
Center [1,2) have generated the steady state 
shape of a long wire towed from an orbiting 
aircraft. The parameters used in those studies 
and this paper are appropriate for the VLF an¬ 
tenna used by the TACAMO system. Cornell and 
NADC used a partial differential approach and a 
finite differences solution scheme to calculate 
the steady state shape. Their studies did not 
Include any transient motions. The present 
study has extended the investigations of the 
TACAMO cable to include the effect of aircraft 
oscillations on cable motion. 

The results .re presented below for the 
case of an aircraft undergoing severe vertical 
oscillations and the case of an orbiting air¬ 
craft transitioning to straight and level flight 
with the cable deployed. The analysis for the 
wind shear problem is described but no results 
are available. The analysis has also been ex¬ 
tended to studies which include the effects of 
a nuclear blast passing over the cable but the 
results are not included because of security 

restrictions. 

The results presented are merely examples 
of the types of computer experiments which can 
easily be conducted using the present analysis. 
Manv interesting operational cases remain to be 

studied. 

The previous studies assumed an inexten¬ 
sible cable attached to an aircraft flying in 
a constant altitude, speed and radius orbit. 
A conical drogue was assumed to be attached at 
the lower end of the cable. The partial dif¬ 
ferential equations were derived by assuming 
static equilibrium for a mass element. 

The present study has extended the invest¬ 
igations of the TACAMO cable to include the 
effect of aircraft oscillations and wind shear 
on cable motion. To overcome the difficulties 
associated with a numerical solution of a sys¬ 
tem of partial differential equations having 
time dependent boundary conditions (due to the 
drogue end of the cable), a lumped mass model 
of the cable was developed and ordinary differ¬ 
ential equations derived via the Lagrangian for 
the system. The discrete mass approach is e- 
qulvalent to the continuous or distributed mass 
approach in the limit as the number of mass 
points approach infinity. However, good ac¬ 
curacy can be achieved with a few mass points 
[3j. 

DERIVATION OF EQUATIONS OF MOTION 

The TACAMO cable is divided into n mass 
points connected by straight, linear elastic, 
massless spring segments. The spring segments 
must be included to allow for both transverse 
and axial wave propagation in the cable. Each 
mass point has three degrees of freedom and is 
located in the x, y, z coordinate system shown 

in Fig. 1. 

The equations of motion can be derived by 
treating the aerodynamic forces and using 
Lagrange's equation. The kinetic energy of the 

cable system is given by 

T 
n 

= ï 
i-1 

(1) 

* This research supported by the Naval Elec¬ 
tronic Systems Command through Office of 
Naval Research Contract No. N00014-66-C-0357, 

Task No. NR321-013. 
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Th« potential anargy 1« glvan by 

v • j, ^ (‘i - ’O' * j, •>*•* 
(2) 

whara 

«t * atratchad aprlng langth 

1-32.2 ft/aac2 
> aprlnga eonatant ■ 

. Atoaaactlonal «raa « «laatlc aodulua’N 

V th *1 J 
■ aasa of 1 elaaant 

* unatratchad aprlng langth. 

For any glvan maaa point« 1« tha two con¬ 
nacting aagmant langtha a^ and a^ ara glvan 

by 

*1 * [(xl+l " xl)2 + (^1+1 ’ yl)2 

+ (*1+1 - *l)2]’f 
(3) 

and 

*1-1 ■ [(-. - * (-. 
* (■. ■ ■.-Of (4) 

Tha Langranglan la glvan by L - T-V and 
Lagranga'a aquatlona of notion ara 

l-l«2«...n (5) 

whara tha ara tha ganarallaad coordlnataa 

namaly , y^, and tha Qt ara tha ganaralla¬ 

ad forcaa arlalng from tha lift and drag on tha 

1th cabla aagmant. 

ara 

and 

Tha davlatlona Indicated In aquation 
aa followa , 

«i x1 

nl ÿl 

ni *1 

1-1.2,...n 

(5) 

(6) 
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rki(ei ' si} ãir 

SL 

"ki-l(el-l " Sl-0 3 
i-1 

-ki(el-si)ïi 

{ 

zy, 
(7) 

i-i 
■J t 

_ki-iCei-i “ si-i) * 

ei 
"ki(l!i " si) 

i-i(ei-i ‘ 9i-i^ ’ mi8- c 
In addition 

3e 
“1 ("W • 111 „4 Üjti ■ í"1 ' 

3qt ■ " «! Ci-1 

where again the q^'s are x^, y^, or 

The last step is to calculate the Q1 

forces due to lift and drag on each cable seg¬ 

ment. The wind velocity vector, ^ is due to 

the cable motion and any prevailing wind and 
can be expressed as 

V - Î - «i Î - *i >< + Vi (8) 
1 P 

where is due to a prevailing wind at the 

ith ...-=. r-.— 
nuclear blast. The vectors along the seg¬ 
ment can be expressed as 

i1*1 mass point. This could also be due to a 
r blast. The vectors along the e^ 
an be expressed as 

•i “ (xi+l " "i)1 +(yi+l ' yl) ^ 

+ (*i+l - *i) k 

(9) 

'i+l i 

and a similar expression for e^. From the 

dot product, the angles of attack, 

can be found to be given by 

and S 
i-1 

-vi . ei 

and 
U Vi1 ei1J 

■vi • ei-l 

“1-1 
L|Vi' |ei-i! 

(10) 

(ID 

From the cross-products, one can find the 
vectors in the direction of lift (i.e., perpen¬ 

dicular to V1 and in the plane formed by and 

*i or “i-i^ Lettln* ni and ni-l be unlt VeC" 

tors in the lift direction, we get 

; . i i i 

11 1(^ ' ñ)' vi! 

and 

ni-l 
('■i • «i-i)’ 

ft ■ ñ-i)" 'i1 

(12) 

(13) 

the unit vectors in the drag direction are 

simply given by 

1 i-1 
■l1 

the magnitude of the lift at mass point 1 is 

given by 

and 

bi-l-iß!^CL 
1-1 

where C. and C, are functions of 3 and 
Li Li-1 

B respectively. The drag forces are similar 

except they are functions of and 

Everything needed to write the equations of 
motion is now known. 

The equations of motion are as follows: 

Vi “ ki(1 " Si/elXXi+l " xi) 

- ki-l(1 - 8i-l/ei-l)CXi * Xi-l) (H) 

+ Li\ + Li-l\.1+(Di+Di-l)’xi 

Vi " ^(1 • 8i/,i)Cyi+l _ yi) 

-ViC1 - si-i/ei-i)Cyi • yi-i) (15) 

* Ll\l * Lt-lnyl_l+ (D1 * “l-OS, 

mi2i ■ ~ *i/ei)Czi+i “ *i) 

- ViC1 - si-i/ei-iX*i • zi-i) <16) 

- mlg + 1^^ + I-i-lrZi_1 

- (“i * »i-i)'., 

i - 1,2,...n. 

In the above equations, nx<y>z and Cx>y>z are 

the direction cosines of the vectors n and C 
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respect i ve 1v . 

STKADY SrAI'i: SHAl’l ANALYSIS 

lile illitíll cellil i t ¡ens 1er i'<| u.i 11 oils (Is), 
(IY) .mil (Itj) iré t Le ceeril i n.ltes 1er tile 

ste.iJv st.ite sh.ipe cerrespeml 1 nw te the nomtn.ll 
lllplit path hetnn stiulleil. ihie umv te calcu¬ 
late these ceerhinates is te se I ve equations 
(It) - (Ih) with all acceleration terms /.eri 
ami appropriate velocitv terms. however, tills 
is not practical ani an easier mellunl exists. 

II one issumes that the annular rate of 
the erhit is known ani that the ratlins and al¬ 
titude tor the tlrenue are a I so known, then the 
forces action on the dronue can he calculated. 
Lor example; it a sphere is assumed (for sim¬ 
plicité) the litt is cero and the tiran mav 

he calculated usinn a standard dran coeffi¬ 
cient tor the size sphere equivalent to the 
actual dronue. Since it must be In static e- 
qulllhrium, the force in the attached cable 
sentient and Its direction can easily be calcu¬ 
lated. lile torce determines the amount of 
stretclilnn for the first senment of cable which 
in turn allows the x, v, z coordinates of the 
next mass point to he calculated. If one then 
Imposes static equilibrium on that mass point, 
the three components of force are determined 
tor the next cable senment which In turn de- 
tines the next mass point's location. Calcu¬ 
lations then continue on to the aircraft. In 
other words, one assumes the location of the 
dronue and calculates where the aircraft is. 
In most practical cases, the location of the 
aircraft Is known and the dronue location Is 
unknown. Hence, It Is necessary to interate 
until the desired aircraft position Is obtained. 

COMITTER CONSIDERATIONS 

The equations derived above can be numeri¬ 
cally integrated for specific initial condi¬ 
tions. In the present study, the equations 
were Integrated using a fourth order Runge- 
Kuttn technique on a CDC 6400 computer. The 
x., v, and Zj's are placed In a single sub¬ 

scripted array with x:, v. and z¡ being the 
aircraft location at any instant In time. 
These variables are calculated by a subroutine 
which defines the aircraft flight path as a 
function of time. fuis allows one to "flv" the 
airplane around as desired. 

The subscripted coordinate array and the 
corresponding velocitv arrav (I.e., x.'s, v^'s 

and Zj's) ire then operated on bv the Runge- 

Kutta subroutine. The subroutine must be modi¬ 
fied to skip over the x , v:, z; entries in the 
subscripted arravs since tliev are not governed 
bv equations of motion. 

Ihe computer program requires about 0.13 
sec/step for 13 mass points or about .01 sec/ 
step/mass point. Lor example, the plots shown 

In this report used 270 sec. of central pro¬ 
cessor time for 64 sec. of aircraft "flight" 
time yielding a 4.2:1 ratio. Because of the 
computer time Involved, It Is advantageous to 
write the Input data, Instantaneous time, posi¬ 
tions and velocity on magnetic tape for later 
processing. This allows various aspects of 
each "flight" to be examined as desired at a 
future date. Bv storing basic data on magnetic 
tape, one Is not required to foresee all possi¬ 
ble quantities of Interest such as shape, ten¬ 
sion, frequencies, vertlcallty, etc., at run 
t I me. 

RESULT OF AIRCRAFT OSCILLATIONS 

The results that follow pertain to a sys¬ 
tem like TACAMO. The drogue in the present 
study lias been assumed to be a mass point 
weighing 100 lb., having zero lift and a drag 
coefficient of 0.6. The drag term is given by 

dcone - v? (0'6)s 

where S » I'Rj)age “ 3.6 ft2. The density for 

all calculations was that for a standard atmos¬ 
phere at altitude. 

Ror the cable, a length of 24,600 ft., a 
Young's Modulus of 10.2 * 10£ psi based on 
overall diameter, a diameter of 0.21 in., and 
a density based on overall diameter of 455.5 
lb/ft3 was assumed. The aerodynamic coeffi- 
cents were assumed to be 

CL - 0.4 sin- (2.0B) 

and 

CD - 0.01 + 1.2 sin2 (2) 

These coefficients were obtained experimentally 
and have later shown to be inferior to the 
cross-flow model presented later. However, the 
tvpes of results obtained are valid for a long 
wire system. 

In the present study the aircraft was 
allowed to fly In the same orbit which was used 
for the equilibrium cable shape calculations 
but Its altitude was varied sinusoidally. The 
different cases presented show the effects of 
amplitude, frequency and airspeed on the cable 
tension at the aircraft and the drogue. 

Case I 

For this case, 15 mass points were used 
(this number gave \0Z difference between the 
static results In [2] and the present results). 
The alrcratt was oscillating vertically + 4 ft 
('ll) at 0.5 rv/sec. The equilibrium tension 
was 2/)74 II). at the aircraft. The aircraft 
was flying a 2,920 ft. radius orbit at 106 KTAS, 
As seen In Figure 2, tiie maximum tension at the 
aircraft is about 4,140 lb. This is below the 
4,840 Ih. ultimate itrength of the TACAMO cable. 
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,;ote that tliL-re Is almost 2700 lb. variation In 

tension at the maximums. 

It Is Interest Ins to note the buildup in 
tension over the first nine cycles. The Initial 
three are essentialIv constant and then an in¬ 

crease occurs. I ae time associated with these 
"flat" spots corresponds to the time required 

for a stress wave to proceed down to the dro¬ 

gue and return. The lonsitudinal wave speed 

in a solid Is given by 

y^ » — ■ 10,220 tt'sec 

where .. = mass/unit length and K = Young's 
Modulus. A stress wave initiated at the air¬ 

craft should take 2.4 sec to propagate down to 

the drogue. However, the stress wave appears 

to have returned after about 4 sec which in¬ 
dicated a wave speed of 12,300 ft/sec. fhis 

differenci is caused by lumped mass approxima¬ 

tion and relatively few number of mass points 
taken and may also be affected in a minor way 
bv the aerodynamic resistance along the cable. 

Case II 

In Case I, no provision was made for the 

possibility of the cable going slack. If it 
were to attempt to go slack, the analysis pre¬ 
sented in Section 1.2 would compute a compres¬ 

sive force in the cable segment; this is, of 
course, impossible since everyone knows "you 
can't push on a rope". To allow for this con¬ 
dition, the computer program was modified to 

let the force in any given segment equal zero 

if it tried to undergo compression. Figure 3 

shows a plot of the tension at the drogue with 

the modification included. Note that the dro¬ 
gue is undistrubed for approximately 2.1 sec 

which is close to that predicted above. Note 

also that after the first impulse of about 200 

lb., the cable force at the drogue attempts to 
go compressive. This indicates that the re¬ 

sults plotted in Figure 2 were not valid and 
the allowance for slack cable must be made. 

In Figure 4, the tension at the aircraft 

is plotted again allowing for slack cable. A 
comparison of Figures 2 and 4 reveals that the 
tension is unchanged for the first few seconds 
until the effect of the slack cable at the dro¬ 

gue has propagated back up to the aircraft. 
One can also see that the peak tension at the 
aircraft is approximately 350 lb. less when 

slack cable is allowed and the peak to peak 
values are also less. The periodicity observed 
in Figure 2 is destroyed by the discontinuous 

load-deflection relation for Figure 4 and the 

remainder of the analysis. 

Figure 5 shows the drogue altitude as a 

function of time. It is interesting to note 
that the drogue starts at 100 ft. equilibrium 

altitude but as it oscillates it "pumps" it¬ 

self up to an average altitude of about 115 ft. 

The peaks in Figure 5 fall between the spikes 

in Figure 3 as would be expected. The ratio 

of the first tension pulse .it the aircraft and 

that at the drogue is 300:188 or the wave dies 

out as it propagates. 

Case III 

In Figure 6, the aircraft is still in a 
2,920 ft. radius orbit at 106 KTAS but the air¬ 

craft is now oscillating at 1.0 cps. Tile peak 

tension In this case is 4750 lb. which is very 

near the 4,840 lb. ultimate strength of the 

cable. At approximately 24 sec., a very strong 
wave arrives at the aircraft and the tension 

almost goes to zero. 

Figure 7 shows the corresponding tension 

at the drogue. The tensions are quite severe, 

reaching levels of several thousand pounds at 

several instances. These are an order of mag¬ 

nitude higher than the steady state values. 

The ratio of the initial tension pulse at the 
aircraft to that at the drogue is 526:185 or 
the initial pulse the drogue feels is about the 

same as for Case II but the aircraft pulse is 

2/3 higher. 

Figure 8 shows the drogue altitude as a 

function of time. The drogue reaches an aver¬ 
age altitude of about 155 ft. This is 40 ft 

higher than for Case II at 0.5 cps. 

Case IV 

In this case, the aircraft is in a 4,367 

ft. radius orbit at 155 KTAS. The tensions 

shown in Figure 9 are generally not any higher 
at the aircraft, however, there is a single 

spike at about 62 sec. which exceeds the ulti¬ 

mate strength of the cable. In Figure 10, one 

can see that the tensions at the drogue are not 
significantly different from those in Case III. 

Case V 

In this case, also, the aircraft is in a 

4,367 ft. radius orbit at 155 KTAS. With the 
reduced amplitude of aircraft oscillations and 

slower frequency, the tension changes in Figure 
11 are not significant. Note also that the 

tension at the drogue in Figure 12 never 
reaches zero and the tensions in the cable 
reach a steady state value after about 35 sec 
of disturbance. There is no mechanical damping 

in the system but adequate damping exists from 
aerodynamic effects to cause transient motions 

to die out. 

RESULTS OF AIRCRAFT TRANSITION FROM ORBIT 

For the following calculations, the cable 

was 29,000 ft and cross-flow aerodynamic coef¬ 

ficients for the cable were used (see Reference 

12]) with 

CL • 1.03 sin- 6COS3 CD -.022 + 1.03 sin3r 
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Figure 6 

TKNStON AT AIRCRAFT (DKLH - 4 ft., OMEGA - 1.0 Cy/Sec) 

Figure 7 

TENSION AT DROGUE (DKLH - 4 ft., OMEGA • 1.0 Cy/Sec) 

I 
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Figure 9 

TENSION AT AIRCRAFT (DF.I.H - 4 ft., OMEGA = 1.0 Cy/Sec) 
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TENSION' AT AIRCRAFT (DELH - 2 ft., OMEGA - .25 Cy/Sec) 
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Figure 12 

TENSION AT DROGUE (DELH • 2 ft., OMEGA • .25 Cy/Sec) 

l 

71 



FIGURE ir- TENSION AT AIRCRAFT FOR TRANSITION FROM ORBIT 
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"'le aircraft at t ■ 0 was flying in a constant 
radius of altitude orbit. At t ■ 0 the air¬ 
craft begins a straight and level flight path 

which is tangent to its original orbit. Figure 
13 shows a vertical projection of the cable for 
several Instances of time as the aircraft flies 

straight and level from orbit. At t - 0, the 

cable is shown in a steady state configuration. 

Figure 14 shows a horizontal or ground projec¬ 
tion of the cable for several instances of time 

from t “ 0 to t ■ 97 sec. These two figures 

show how the cable progresses from its orbiting 

configuration to a straight and level trailing 
position. Figure 15 shows the tension at the 
aircraft. It begins at 2660 lbs and increases 

during transition to approximately 3350 lb. 

Aerodynamic damping eventually damps out the 
transient disturbances and drops toward its 

straight and level value which is less than 
the orbital value of tension. 

CONCLUSIONS 

(1) The analysis has been developed which 
allows one to calculate the motion of a 

cable towed behind an orbiting aircraft 
which is following any prescribed flight 
path. 

(2) Fifteen (15) mass points may be success¬ 
fully used to study a svstem such as 
TACAMO. 

(3) The effects of slack cable must be in¬ 

cluded in most analysis. 

(4) The tension at the drogue can be consider¬ 

ably higher than the equilibrium tension 

when the aircraft oscillates vertically. 

(5) Tension in the cable during transition 
from orbit can be considerable, even for a 

smooth transition from orbit. 
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A POSTSHOT STUDY OF THE DYNAMIC RESPONSE 

OF THE LAST MOBILE TOWER DURING THE PLIERS EVENT* 

R. E. Bachman, E. F. Smith 
Holmes 6. Narver, Inc. 

Las Vegas, Nevada 

and 

R. P. Kennedy 
Holmes & Narver. Inc. 

Los Angeles, California 

The LASL Mobile Tower, an eight-story steel space truss structure 
with a combined dead load of approximately 495 kips, was positioned 
at surface zero during the Pliers underground nuclear event. Accel¬ 
erometers measured a vertical ground shock exceeding 4 g's and sub- 
sequent tower responses exceeding 10 g’s. Measured relative displace- 
ments at points on the tower were compared with those computed 
analytically using the measured ground shock as the input motion. 
The non-linear effect of tower Jumping was included In the analysis. 
Comparisons indicated that the time history response of tower struc¬ 
tures could be- accurately predicted provided the Input motion time 
history can be reliably predetermined. The data reduction and dynamic 
analysis performed by Holmes & Narver, Inc, are described. 

INTRODUCTION 

In conducting certain underground experi¬ 
ments with nuclear devices, it Is necessary to 
"view" the initial radioactive particles pro¬ 
duced by the event without leakage of signifi¬ 
cant doses of radiation into the atmosphere. 
One method of achieving this goal is with a 
11ne-of-sight (LOS) pipe which extends verti¬ 
cally from the buried device to the ground's 
surface (surface zero). The LOS pipe contains 
various mechanical closure devices which peririit 
only the initial particle stream to reach the 
surfa e . 

For most vertical LOS pipe events, a 
multi-story tower is positioned at surface zero 
to support experiment packages, instruments, 
and equipment during the event. As the prime 
architect-engineer contractor at the Atomic 
Energy Commission's (AEC) Nevada Test Site 
(NTS), Holmes A Narver, Inc. (HAN) is respon¬ 
sible for the design and field inspection of 
all major structures constructed at the NTS, 
Including these towers. In Yucca Flat, where 
a majority of the events ot this type are con¬ 
ducted, a large subsidence crater will normally 
form at surface zero within 60 minutes after 
detonation. Therefore, key experiment packages 
which need to be recovered intact are usually 
placed on sleds and winched clear of the anti¬ 
cipated cratering area, starting approximately 

one minute after the detonation. The tower 
and remaining experiment packages have in the 
past been considered expendable. 

Los Alamos Scientific Laboratory (LASL) 
conducted the Pliers underground nuclear event 
in Yucca Flat on August 2?, 1969. A vertical 
LOS pipe extended from the device to surface 
zero. A diagnostic tower (LASL Mobile Tower) 
was positioned at surface zero during the 
event. The nuclear device was detonated at a 
depth of burial of ’B4 feet, and it had a yield 
of less than 20 kilotons. An interpretation 
of the boring logs and core samples taken in 
the vicinity of surface zero indicated that 
the site geology is comprised of alluvium to 
a depth 1,900 fee t j tuff from. 1,900 feet to 
3, «00 feet¡ and paleozoic rock at depths 
greater than 3,«00 feet. 

A GENERA! DESCRIPTION OF THE TOWER 

lhe LAS1. Mobile Tower was originally de¬ 
signed as an expendable facility but was modi¬ 
fied prior to the Pliers event to be recovered 
intact in a manner similar to the recovery of 
kev experiment packages In previous events. 
Ihe modified design made maximum, use of mate¬ 
rials and structural sections from the origi¬ 
nal design and, therefore, so-e elements were 
knowingly over-sized for anticipated loads. 

* Some of the material In this paper originally appeared In Reference 1 

75 



A |Mi ImI pilot t ) i. i ipli .it tli. tow. i 1' priMnUil 

in I- i. nr. I . 

Hu t out r ¡ 1m i. 11 I \ .1 ■ ¡ n.; 1. -Ii.int 1 , 
. i .Jittorv, lio I t. .1--11 . I pu. t ru-.-- -triu- 

t um , 111 r>- t. i t till. I In U|’|n r ■"'i fi i t of tin 

tout r ioti'1 t- of Int io li.i iim il> I ' t.'iuli'S, t.icli 

J ri ftit In tu lullt. flu l out r i.. i nulo stii by 

plvuooil 'liit tin,; uitli out'lili -t.iirs ! i ad l ny 

to i .u'li uork 1 nu pi ,i t fnm. A l’oiiii |'t Util vliw 

oi tin towi r Is sliowti in f 11, u i'i - .»tul .m i I ii'.i- 

tion vitu of tin t out r , uitli .i|i|)iox ¡in.it i loi.i- 

tions .mil utiulit' of tin ixpnriimnt p.u'k.iyfs, 

is -liown In h'iuuii flu towii' lit’lullt Is 
inti rsii tnl it 12.r)-foot inti rv.ils by workinc 
pl.it forms, flu nominal plan dimensions of each 
platform are 2(1 fut by 20 feet. Each platform 
Is composed of 1/4-inch thick steel plate deck- 
Inu and has a centi r opening of 6 feet by 6 
feet. The duklnu Is supported by a grid of 
steel structural shapes. Typical platform 
framlnu 1- presented In Figure 5, 

flu experiment packages were quite heavy 
(see Figure V) j all weighed In excess of 40 
kips. In general, the packages were positioned 
at tin center opening. The total dead load 
weight of tin tower, Including all equipment 
and experiment packages, was estimated to be 
401 kips. 

Based on experience from previous events 
conducted In Yucca Flat, a subsidence crater 
approximately 350 feet in diameter was expected 
to form at surface zero within 60 minutes after 
detonation. Therefore, a recovery system 
(Figure 21 was designed by I AST to enable the 
tower to he movid lat»rally a distance of 400 
feet. Mobility of the tower was achieved pri¬ 
marily by placing It on two large girders that 
rest on four bogles (crane wheel assemblies). 
These bogles, in turn, rested on two pair of 
rail- that led fror, surface zero to a recovery 
pad 400 feet to the northwest. Four truss 
outriggers extended from the lower part of the 
tower to provide additional lateral stability 
during the movement of the tower. If required. 
At surface zero, the rails were embedded In a 
32-foot square by 4-foot thick reinforced con¬ 
i'ri te emplacement pad. The upper end of the 
emplacement hole casing was embedded In the 
center of the concrete pad. The casing ex¬ 
tendi d downward to thi point of detonation and 
thi»' the pad received Input notion from both 
thi free -urface and thi casing. 

Bi'id on ixpiriince from previous tests, 
tin tower was expectid to experience a severe 
vertical ground -hock accompanied by some 
lateral notion. A t Ir e-de pi ndi nt pre shot 
anily-!' pc r f one d u-inc thi In-house computer 
progr i- I DYNE (Rifirinci 2), and utilizing 
ground motion data from a sImllar event, Indl- 
catid thi tower would "lu»l>." Iherefore, tie 
liars wen di s i gni d to limit vertical Jumping 
and thereby hi I p prévint dirai hunt of the 
bo.ii win < I . Thi tli bars win secured at 
thi out lib corner- of the pad with ixploslve 

Fig. 1 - Preshot view of LAST Mobile Tower 
positioned at surface zero 

pins and were attached to the tower columns 
near the second floor level. (The explosive 
pins were triggered Just after detonation to 
uncouple the toveer from the pad.) The bogle 
wheels were double-flanged such that the tower 
would have to experience a vertical separation 
of approximately 3/4-lnch from the pad before 
it could derail laterally. 

The tower remained vertically coupled to 
the emplacement pad at all times during the 
ground shock. During the compression mode of 
the tower response, coupling was directly 
through the bogles Into the tower columns. 
During the tension mode (Jumping) of response, 
coupling was through the tie bars Into the 
columns. 

After the device was detonated, the key 
experiment packages were retrieved on sleds 
starting approximately one minute after de¬ 
tonation. Sleds were still used to recover 
the key experiment packages since the recovery 
system and overall design concept had not 
proven too successful In prior events. Re¬ 
covery of the tower was accomplished by winch¬ 
ing It to the recovery pad (400 feet fron, sur¬ 
face zero) beginning about three minutes after 
detonation. The entire winching operation was 
completed successfully approximately five 
minutes after detonation. Ihe subsidence 
crater formed 20 minutes after detonation. 

A time-sequence of aerial photographs were 
takin of the tower during and Immediately fol¬ 
lowing detonation. These are presented In 
FIguris 6 through 12. 
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FIGURE 2 

CONCEPTUAL VIEW OF LA8L MOBILE TOWER 
JUST PRIOR TO DETONATION 
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FIGURE 4 

LOCATIONS OF ACCELEROMETER STATIONS 
ON LASL MOBILE TOWER 

STAT.C* 9 
• ♦p FlOCN 

STAT.ON 
9 tP Fl.cc» - 

EMPLACEMENT PAD SURFACE ZERO 

24 OF««» IB ! 

4P 3 
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..1 ** K 
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FIGURE S 

ELEVATION OF LASL MOBILE TOWER AT SURFACE ZERO 

>>n tloow PL*Trow»i amom «»i>*i.8tMtNT 

FIGURE S PLATFORM GIRDER SYSTEMS 
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Ft*. 1 - LASL Mobile Tower approximately 
3 minutes alter detonation 

Fig. 8 - LASL Mobile Tower approximately 
4 minutes after detonation 

Fig. 10 - LASL Mobile Tower approximately 
20 minutes after detonation 

Fig. II - LASL Mobile Tower approximately 
21 minutes after detonation 
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Fig. 12 - LASL Mobile- Tower approximately 
21 irilnute-i aftir detonation 

STRONG MOTION MEASUREMENTS 

As a piggy-back experiment to the Pliers 
event| strong motion accelerometers were 
placed on or near the tower at eight points 
(stations) by LASL to measure ground motions 
at surface zero and the dynamic response of 
the tower to the expected ground shock. The 
locations and orientations of the accelero¬ 
meter stations are shown in Figure U, Each 
accelerometer measured the three orthogonal 
components of acceleration (two horizontal and 
one vertical)) thus, 24 acceleration component¬ 
time histories were obtained. The accelera¬ 
tion-time histories were digitized at an inter¬ 
val of 0,000256 seconds by EGAC, Inc., 
Albuquerque, New Mexico. The records were not 
calibrated during digitization. Therefore, it 
was necessary for HAN to apply small base line 
corrections to all of the acceleration time 
histories. 

The horizontal coupling between the tower 
and the emplacement pad was weak and very com¬ 
plex. Consequently, consideration of the 
horizontal mode of response was not included 
in the computations. This omission did not 
appear to adversely affect the analytical 
results. 

The measured vertical ground motions and 
tower acceleration-time histories were pro¬ 
cessed and plotted by using computer program 
SPECANAL (Reference 3). An examination of 
preliminary plots of the acceleration-time 
records revealed that the ground at surface 
zero remained undisturbed until approximately 

M ~ t of. w..- :: :. 
¡-1 ,t ■ ■,rr. ; ,r.d 1 n» t 

Ml A ' PH- CHi'1 M' Mul ICY' 

A' c « It ro! <■ u r- wi n - t it ¡ ned to n i .rd 
Not h 11,( frit '■urfa-e (.-.talion 12- and the 
(•:.[>] ae e :.1 nt pad (Station 1 1 1 ¿round motion-. 
Ilot- of tlu me a ture d vertical acceleration- 
11::,e histories at .station- ’2 and 13 an pit- 
tented in Fi.urtt 1'ia and 1-ta, respectively. 
Each acceleration record va - inUgratid and 
doubly integrated to obtain the velocity and 
displacement time hi - tor ie.-. Ilots o. the-e 
time- histories are presentid a- Figures 13b 
and 13r and 1-b and 14c. 

Ihe free-surface ¿round motion character¬ 
istics (Figuri 13 i an < -tint ¡ally the same 
as thon- reported for many previous events 
(Reference 4). Ihe initial positive accelera¬ 
tion pulse (2.1 g’s) represents the initial 
compressive shock wave, Ihi- shock vate- ir- 
partc-d a peak upward velocity of 1. d feet per 
second to the ground surface. During this 
initial upward movement, spall separations 
opened in the rock between the point of de¬ 
tonation and the ground surface. The Initial 
pulse was followed by a period of constant 
negative acceleration corresponding to a 
period of free fall. During this period, tbe 
positive ground displacement peaked at 3.6 
inches. Upon closure of the uppermost signi¬ 
ficant spall separation, a spall closure com¬ 
pressive wave was transmitted to the surface. 
This resulted In a second positive accelera¬ 
tion pulse (4.1 g's) which was followed by a 
second period of free fall and second closure 
pulse together with minor oscillatory motion. 
The negative ground velocity peaked at -3.2 
feet/second Just prior to the arrival of the 
primary closure pulse. 

The pad acceleration time history is 
quite different in appearance from the free 
surface time history in that a high frequency 
oscillation dominates the entire record. This 
oscillation is attributed primarily to ringing 
of the embedded casing although reflections of 
shock waves off the pad may also be present. 

In general, the magnitudes of the velocity 
and displacement-time histories obtained by 
integrating the pad acceleration records are 
approximately equal to those obtained from, the 
free surface records. This would Indicate 
that although the pad acceleration has been 
disguised by the casing ringing, the amount of 
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Me. 13 - MiU'Und ('.round Motion at Station 12 Fig. lú - Measured Ground Motion at Station 13 
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energy transmitted through the pad into the 
tower does not appear to be significantly 
affected by Interactions between the casing, 
pad, and soil. 

MEASURED TOWER RESPONSE 

Pairs of accelerometers were mounted on 
the fourth, sixth, and eighth floor platforms 
to measure the acceleration response time 
histories of the tower. Typical plots of the 
vertical acceleration time histories measured 
at Station- 15, 17, and 10 are presented as 
Figures 15, 16, and 17. The basic character¬ 
istics of the acceleration records are, In 
general, similar to the characteristics of the 
free surface motion. However, in addition, 
high frequency oscillations are superimposed 
on the records. These oscillations are pri¬ 
marily attributed to ringing of the tower 
columns. The peak acceleration response was 
measured on the sixth floor (Station 16) where 
a spike of -12 g's was recorded. Little energy 
was associated with these high frequency spikes 
since, after the acceleration records were 
doubly Integrated, their Influence on the dis¬ 
placement time history was small. 

ANALYTICAL TECHNIQUE 

The advent of high speed digital computers 
has made possible the lime dependent dynamic 
response of complex structures. In the general 
technique, the structure is first replaced by 
a lumped parameter Idealization in which the 
actual distributed mass characteristics of the 
real structure are replaced by a series of 
masses lumped at a finite number of node points 
with each node having one or more degrees of 
freedom. The node points are then connected 
by a finite number of elements with each ele¬ 
ment having its own set of stiffness character¬ 
istics. The simplest element type consists of 
linearly elastic springs which contain only 
axial stiffness. This is the element type used 
in an in-house computer program, TDYNF, which 
was developed for the time dependent analysis 
of surface zero diagnostic towers (Reference 2). 

For a distributed mass structure, partial 
differential equations are required to describe 
dynamic equilibrium. By using the lumped para¬ 
meter idealization these equations are replaced 
by a finite number of coupled ordinary differ¬ 
ential equations which can be most conveniently 
written in matrix notation. In TDYNE, coupled 
differential equations are solved using the 
mode superposition method. This method can 
only be applied to structures with linear 
'tlffness properties. However, a certain 
amount of non-1 incar I ty, such as jumping and 
i rushing of the base pad, can be accounted for 
by a continual modification of the dynamic 
forcing function. In this method, the analyst 
must first solve the characteristic value prob- 
lem for the set of homogenous coupled differ- 

Fig. 15 - Measured acceleration record at 
Station 15 

Fig. 16 - Measured acceleration record at 
Station 17 

M M 

•* **' 

•• Mi 

Fig. 1" - Measured acceleration record at 
Station 
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1 he reader is reft rred to Ki fertme 2 or 

inv standard tixtbook on r oinput i r i/ed struc¬ 
tural dynaniU s for a di tailed solution of this 

ei|uat ion, 

the on IV modification to this equation In 

TDYNF. is to the term at, Wlieri non .illy at is 
simply the ground motion input into the struc¬ 
ture, in II)YNt. the tirm can he rodified If the 
base reaction exceeds crushing limits (l.e, 
yielding of column-) In tin compression mode 
or exceeds tensile limits (l.e. dead load) in 
the tension mode. The derivation of the equa¬ 
tions employed is simple but lengthy and there¬ 
fore will not bi given here, Ihe equations are 
based on the assumption that both the base and 
ground acceleration- vary linearly between time 
increments. In addition, it is consistent with 

this assumption that a change in state for the 
non-linear hase only occurs at one of the in¬ 
cremental times, that is, that crushing and 
jumping both commence and end at the i nd of a 

time increment, fhe reade r is referred to 
Reference 2 for the derivation of the equa¬ 

tion -, 

DYNANIi; MODI'! OK lili IOWKR 

ihe vertical dynamic properties of the 
tower were Ideal i/eel U'ing the mass-spring 

"ode 1 pre-ented in Figure Is. Ihe rode 1 was 
tailored to match the features and capabili¬ 

ties of computer progrur IDYM, 

Ihe dvn r ic 1 ode ! of the tov,e r i eom- 
pr 1 - i d of a non - 1 I ne i r ailing base, 1 ’ masses, 

and 20 springs. The base represents an ideal¬ 
ization of the Jumping characteristics of the 
tower, in general, the masses were lumped at 
the center and corners of each platform. Addi¬ 
tional masses were lumped at positions corres¬ 
ponding to the locations of the accelerometer 
stations. Because of symmetry, the lumped 
masses of the corners of each platform, In¬ 
cluding the supporting girders and columns, 
were represented by only one mass per floor 
(M|| - Mf,), Also, the axial stiffnesses of the 
tower legs (columns) were represented by only 
one spring per floor (K[ - K6). 

ihe design of the tower was such that the 
tower columns located between the bogles and 
the second floor were required to resist all 
lateral loads due to wind and anticipated hori¬ 
zontal ground motions. These columns were much 
larger, and therefore stlffer, than the columns 
located above the second floor. Thus, It was 
believed that lumping the masses of the corners 
of the first and second floor framing systems 
with the base mass would not significantly 
affect results of the computed response of the 
platforms where measurements were taken. 

The truss outriggers were essentially 
self-supporting and relatively light in weight. 
It was assumed that they would not signifi¬ 
cantly InPuence the vertical response of the 
tower. fhe re fore, their effect and contribu¬ 
tion to the tower response during the duration 
of the ground motion was neglected In the tower 
mode 1, 

The springs of the tower model were as¬ 
sumed to be linearly elastic. To determine 
the spring stiffnesses, design details of the 
tower were used in conjunction with an In-house 
standard static analysis computer code. The 
platforms were modeled as grids and equivalent 
substructure stiffness matrices were obtained 
through static analyses. The stiffness terms 
are Indicated in the dynamic model (Figure 18) 
as springs. 

The stiffness properties of the base were 
non-linear. The reaction-displacement proper¬ 
ties of the base are shown In Figure 18, As 
long as the sum of the dead load and dynamic 
base reactions remained compressive and did 
not exceed the compressive capacity of the 
base columns, the tower remained coupled di¬ 
rectly to the foundation. When the dynamic 
tensile reaction at the base exceeded the dead 
load base reaction, separation between the 
bogle wheels and rails occurred. This resulted 
in a relative tower jumping displacement, D], 
between the base of the tower and the founda¬ 
tion. After lumping was initiated, the tower 
response was resisted by a restoring force 
provided by the tie bar system. Figure 10 
show- the calculated (tensile) spring stiffness 
of the tie bar system to be 3,400 kips per inch 
of jumping displacement. Thus, there was an 
Imrens« In the tensile base reaction with 
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LUMPED MASSES (hips) 
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FIGURE 18 
DYNAMIC MODEL OF LASL MOBILE TOWER 
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FIGURE 19 

RELATIONSHIP BETWEEN DYNAMIC REACTION AND 
COMPRESSIVE YIELDING AND JUMPING DISPLACEMENTS 

FOR NON-LINEAR REACTION BLOCK 
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i in r> .i *■ i n c 1ui:.pln^ dl--pl.iceiüfnts, 

Iht di .id load bast' react ion for the tower 
i ( iliul.itid to be á'íb kips* Ihe total Com- 

|iri -■ i\( i ip.ic ity of tin base columns was set 
(<]uu! to tlu product of t lu vield stress and 
tin area of tlu four liase columns, or 6,060 
kips, hecuust there was an Initial compressive 
pn stri s in tlu colurms dm to tower dead load 
and payload, tlu dynamic compressive reaction, 
K, , tKCC's.iry to Initiate yielding of the base 
colut im was 6,666 ki|)s (as shown In binurt 111, 

It was assumed that the yield strength of the 
i) luíais did not Increase if yielding was 
Initiated and that deformations due to yielding 

of column- wire pi rma nent ( nonri c ove rah 1 e 1. 

ANAIVflOAI KKSms 

All I ^ natural frequencies of the tower 
model were calculated and used In the Integra¬ 
tion. Ihe natural frequencies of the tower 
model ranged from 6,3 to l70 cps. To obtain 
precision in response computations, the integ¬ 
ration [nterv 1 was set equal to the measured 
acceleration digitization Interval (0,000256 
sic,), A period of 0,25 seconds of free vibra¬ 
tion was added to the end of each acceleration 
record to ensure that peak responses of the 
tower were obtained, 

A constant viscous modal damping equal to 
1/2 percent critical was assumed for all modes 
of the tower considered. This value was possi¬ 
bly too low considering the nature of the tower 
fabrication (bolted construction for the mo t 
part) and perhaps should have been In the range 
of from 1 to 2 percent critical dar ping. Use 
of the latter values may have resulted in peak 
responses occurring earlier In time and also 
may have precluded those Instances where a com¬ 
puted peak response would occur during the free 
vibration era. 

Four separate tine-dependent modal super¬ 
position analyses were performed on the mass¬ 
spring model of the tower. The non-linear 
effects of jumping were not Included In 
Analysis No. 1, and the free-surface accelera¬ 
tion-time history was used as the Input notion. 
Analysis No. 2 was essentially identical to 
Analysis No. 1 except that the efficts of Jump¬ 
ing were Included. Analyses No, 3 and 4 were 
Identical to Analyses No, 1 and 2, respectively 
except that the emplacement pad acceleration- 
tire- history was used as the input notion. 

At each integration interval (0,000256 
sec. I, the relative displacements were com¬ 
puted (relative to ground) at all nodal points 
as well as the forces In all spring elements. 
Since the input acceleration records were each 
approximately one second long, the displace¬ 
ments and forces were evaluated approximately 
4,000 tires for each analysis. 

COMPARISON OF ANAI.YTICAI. AND MKASURF.t) RFSULTS 

The acceleration responses recorded at 
each of the stations In the tower were doubly 
Integrated to obtain the absolute displacement 
time histories. The pad displacement time 
history was then subtracted from each tower 
displacement record to obtain the relative dis¬ 
placement time history at each tower station. 
The relative displacement time histories at all 
six tower stations were all quite similar in 
shape and magnitude. The smallest response was 
at Station 16, which peaked at ,S5 inches, 
while largest response was at Station 14, which 
peaked at 1.15 inches. 

Measured and computed relative displace- 
mint time histories for Station 15 are compared 
In plots presented in Figure 20, in general, 
the computed results agree quite closely with 
the measured results for the first 0.60 seconda 
After 0.60 seconds the measured tower response 
appears to dampen much more rapidly than the 
computed response. It would therefore appear 
that perhaps the assumed value of 1/2 percent 
damping was rather low and a larger value of 1 
to 2 percent may have been more appropriate. 

In general, the analyses in which jumping 
was Included were In closer agreement with 
measured results than when It was not Included. 
Also, the analyses In which free surface motion 
was used as the input motion usually Induced 
slightly larger responses as compared to re¬ 
sponses computed using the pad motion input. 
Specific details with regard to comparison of 
analytical and measured results are provided 
in Reference 1. The peak base jumping dis¬ 
placement obtained from free surface motion 
analyses was 0.38 Inches while the peak base 
jumping displacement obtained from the pad 
motion analyses was 0.18 Inches. This suggests 
there may have been a small amount of damping 
of the Input motion due to Interaction between 
the casing, pad, and soil. 

CONCLUSION 

It Is apparent that the time dependent 
response of surface zero diagnostic towers and 
other similar types of structures subjected to 
severe ground shocks can be reasonably predict¬ 
ed provided that reliable Input ground motions 
are established. It Is recommended that In 
future analyses a larger value of damping be 
used ( a* 2 percent) for structures of this 
type. Usage of free surface ground motions In 
lieu of pad motions appears to lead to a con¬ 
servative but reasonably accurate prediction 
of structural response. This conclusion Is 
significant since free surface motions can be 
more easily predicted than pad motions. It can 
also be concluded that the Inclusion of the 
non-linear effect of tower jumping In the 
analysis significantly Improved the correlation 
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betwi'tn measured and computed results. 
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BOUNDS FOR THE RESPONSE OF A CONSERVATIVE SYSTEM 

UNDER DYNAMIC LOADING 

H. Brau«.hi 1 

The University of Alabama in Huntsville 

Huntsville, Alabama 

A method based on Liapunov theory is presented to obtain bounds for the 
energy increase in a discrete conservative system subject to time- 
dependent loading. Applications to simple systems approximating a column 
and a circular arc are given. 

INTRODUCTION 

Dynamic stability, particularly snap- 
buckling caused by dynamic loading, is a most 
Important problem of structural analysis.'■I-' 
Methods to obtain static buckling loads are 
well developed (see e.g. u2 - 5] for buckling 
of shells), but little has been done about 
dynamic buckling analysis. Most authors limit 
their analysis to small deflections (i.e. 
linearization) or to special loading functions 
(0-pulse, step load, rectangular or triangular 
load, or they depend on some kind of approxi¬ 
mation L6 - lOj. The need for a more general 
and rigorous approach has been recognized. 
Martin [ll - 14j and moat recently Wlerzbickl 
L15J obtained some results on displacement 
bounds for elastic and inelastic structures. 
Yet these apply to a restricted class of load¬ 
ing functions only, e.g. oscillating loads are 
exlcuded. 

mentioned above are not quite representative 
for the general response of the structure, 
e.g. a load amplitude oscillating around a 
limit value is much more dangerous than the 
corresponding step load. The bounds against 
dynamic buckling obtained by this method are 
rigorous but not exact: buckling under an 
admissible load amplitude is strictly excluded 
but the critical load may be higher than the 
one given by the bound. 

DESCRIPTION OF THE SYSTEM 

Let T(xk,x^) and U(xk) be the kinetic 
and potential energy function of the system, 
respectively. The differential equations of 
motion are given as the Lagrange equations 

O) 

As a first step towards a more rigorous 
approach, we present here a method based on 
Liapunov theory, applicable to nonlinear dis¬ 
crete conservative systems and arbitrary 
loading functions. We are Interested in the 
behavior near a stable equilibrium position 
corresponding to a minimum of the potential. 
The generalized force due to the external load 
is supposed to be a product of a time- 
dependent amplitude and a function of coordi¬ 
nates derivable from a potential. In addition, 
we assume the generalized force to vanish at 
the equilibrium position. Consequently, the 
initial deflections and velocities will have a 
decisive Influence on the behavior of the 
system. We prove, that the system remains 
stable if the load amplitude tends fast enough 
to a limit value smaller than the Euler load 
of the static problem. An Inequality for the 
energy Increase of the system is obtained, 
which can be used to find bounds for the load 
amplitude against snap-buckling. The results 
indicate that the special loading functions 

where stands for the generalized force 
which, except for the time-depending amplitude, 
is derl Vciblt* from the external potential 

function -W. We assume in the following, that 
all energy functions have continuous second 
derivatives and that P(t) is continuously 
differentiable. 

It is well-known that the kinetic energv 
is a quadric form in the velocities, 

_ 1 . kv . i . j 
T - 2 n'ij(x ) * x (2' 

with a symmetric and positive definite matrix 

If we assume now that the origin of 
coordinates is an equilibrium position of (li 
the potential mav he representcd--up to an 
additive constant--as 
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(3) (12) 
I (X ) 

1 , k. I J 
2 CM<X )x x 

A - dt 

with j s Ttmitrlc matrix [lb]. Furthermore, 
cij will be positive definite for small 
deflections If the origin Is stable for 
Piti = 0. Similarlv, 

JW /hi 
7k = ‘'kl^ >x ,'x 

(A) 

where q«i Is symmetric at the origin. Now 
the total energy K and Its time derivative 
are easily expressed In matrix notation, 

K(xm,x*S = ãtMx + -j x’cx, (5) 

E' « P(tlxrQx. (6) 

In a linear systme all matrices are 
constant and synmtetrlc. 

LIAPUNOV ANALYSIS 

It Is well known (Theorem of Lagrange) 
that a minimum ofthe potential of a conser- 
vatlve system corresponds to a stable equili¬ 
brium position. In this case the total 
energy (51 serves as a Liapunov function for 
stability; It Is positive definite and its 
time-derivative Is zero wl7], A dynamic load 
applied to the sytem changes Its energy 
according to (61. Now a simple choice of 
a Liapunov function is 

V(x.*,t! - e"h(t>E(x,ft) (7) 

converges, V(x,x,t) satisfies all conditions 
for a Liapunov function for stability In the 
domain X; It Is positive definite and 
decrescent and has a continuous negative 
semldeflnlte derivative. The convergence 
of (12) Implies in particular that the load 
amplitude tends to zero as t goes to Infinity. 
This condition can be relaxed by decomposing 
the load amplitude Into a static and a 
dynamic part. Assume that the limit 

P - U® P(t) (13) 
S t-tœ 

exists and define 

P. - P(t) - P- (14) 
0 8 

The static load P( may now be included In the 
energy expression. Let 

E(x,xl - E(x,*) - PgW(x) (15) 

and define 

ÿ(x,x,t) - e‘k(t)Ë(x,x) 

with 

and 

max l*TWx 
is* E(x,x) 

• :2 j I'd»' ) dt 

(16) 

(17) 

(19) 

Its derivative Is 

V'(x,k,t) ■ -e ^^(h'E - E‘) . (8) 

With 

>. » mdx Íx’qx|/E(x,x) , (9) 

h(t) - >| |P(t’) I dt' (10) 

(8) is smaller equal zero in the domain 

Î * '.x,x I L(x,x) c s} (11) 

If the integral 

The modified energy Ê Is clearly positive 
definite In 2) for small values of P». The 
smallest value of the static load P« for 
which S Is not definite Is called the Euler 
load Pi. It Is the buckling load for the 
corresponding static problem. In view of the 
Theorem of Lagrange It is natural to expect 
the system (1) to be unstable If P$ exceeds 
Pi. Assume, on the other hand, that Ft is 
smaller than Pi. It then follows from 

V(x,*,t) s S(x,*) (20) 

that the function Is decrescent. Furthermore, 
If the limit Ã Is finite, 

V(x,*,ti a e"‘E(x,*) (21) 

and V Is positive definite. Finally, 

V' (x.x.t) - -c"k(n(kl~ - Pjinx'qxi (22) 
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is negative semldeflnite in view of (17) 
and nSi. Hence, we proved the following 

(25) 

Theorem; The system (O is stable if 
the two conditions 

are met. 

This means that the system is stable under 
load amplitudes tending fast enough to a limit 
value smaller than the Euler load. In 
particular, the peak value of the load 
amplitude Is of no Influence. 

We have to expect Inetablllty if the first 
condition la violated. If the second con¬ 

dition Is violated, Instability may or may 
not occur. As an example, consider linear 
systems with periodic load amplitudes. It Is 
w-11 known that in this case stability depends 

on the frequency and amplitude of the load 

function [id]. 

BOUNDS FOR DEFLECTIONS 

Stability implies that the deflections 

and velocities of the mechanical system 
remain amaller than any preassigned bound, 
if only the initial deflections and velocities 
are small enough. With the Liapunov function 
(16) we obtain an Inequality for the energy, 

S[x(t) ,x(t)] * e't[x(o) ,*(o)]. (23) 

Thia may be used to compute the admissible 

level of Initial disturbances, 

for a given critical energy level U*. For 
small Initial dlsturbandea, the matrices 
In (24) may be considered constants. In this 
case (24) defines an elllpaold In phase space 

which la centered at the origin. 

J- 

/ |Pd(t> I dt •- In 

If the load amplitude is given except 
for an unknown factor. 

P.(t) - P r(t) 
d 

J |r(t)| dt - 1 . (26) 

o 

a safe load 

P 
safe 

(27) 

may be defined. 

COMPARISON WITH 5 - Pl'LSE RESPONSE 

As an extreme case we may consider a 
load amplitude of the form of a ¿-function, 

P(t) » P ¿(t) . (28) 

Then the velocities undergo a jump 

j* « M"1 Qxo P (29) 

at time cero, while the position remains 

unchanged. The new energy Is 

E-j (*0 + FM"lQxo),M(*o+PM"lQxo) + U(xo). (30) 

Comparison of (30) with (24) for a 6-pulse 

yields the.Inequality 

E eXp * E + *TQX P+ 4 xV M-1 Qx PS . (31) 
o o o o ¿ o o 

If we restrict the discussion to small 

Initial deflections and velocities the matrices 

In (30) and (31) are symmetric end constant. 
For thla case an algebraic derivation of (31) 

could be given. 
* 

If a critical energy U* is given, we 

obtain, instead of (24), the inequality 

SNAP-BUCKLING 

In aome systems s critical energy level 

Is naturally defined through a saddle point 
of the potential function U(x). In this case, 
we speak of snap-buckling. If we understand 

U* to be the value of the potential at the 
saddle-point, (24) gives the necessary 
rastrlctlon on the Initial dlaturbancles In 

order to avoid snap-buckling for a given 
load amplitude. Alternately, If the Initial 

dlaturbancles aro prascrlbed, we can read It 
aa an Inequality defining admissible load 

amplitudes: 

Considered as a condition on the Initial 

deflections and velocities, (32) again defines 

an ellipsoid in phase space, but not centered 
at the origin. Clearly the condition (24) Is 

more stringent than (32). 

Alternately, (32) may be used as a quadric 
equation to define a safe load. This will In 

general be bigger than (27). Numerical results 
for a typical two-degree-of-freedom system (19) 

show that the actual critical load exceeds 
the safe load obtained from (32) by at least 27.. 
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nu iNYiKTin iH'i'Hi i: ri Nim im 

i .'iisidi r .1 s\strm i .insist in« nf two liars 
oonm i ticl and sn|i|nirl< d lu liin«i's with 
i , * r s ionaI sprino s und» r a vr r t ic a 1 d» nam ica 1 
1,,.,,1. Il th» motion is ristrictid toaviTtical 
pi an»', t h»r»' ar»' two diprcos ot freedom. 
I ,.( . ami .< V dinoti the respective angular 
d. flution and F( -1 the potential function of 

t h»' sprinp, torqu»', 1'hen 

I _ —’b , ( cos \ i * (2 ♦ »cos X“ .. 
'■ (J'31 

r = F(a) + F(X> < 34) 

r» pr» s. nt the kin» tic and potential energy and 

hinges without springs at two points, under a 
dwiamlc pressure load. The configuration 
of the system Is described bv four angles 
ã^.Jr , j .¿i subject to the conditions 

F = sin + sin - sin - sin Si « 0 
(42) 

G » I / é - cos »i - cos a2 • cos 3;; * cos s j. • 0 
(4 3) 

We are dealing with a two-degree of 

freedom system, but at least three parameters 
are needed to represent Its configuration 

globally without singularities. The con¬ 
figuration space can be shown to be a regular 
and orientable differentiable manifold if 

W = 12- cos--cos(-+\) (35) 
2 < L/A < 4 , (A4) 

t h»' mg.it i vc potential of a static unit load. 

With the matrices 

M 
6 

C k 

Q = 2 

c 
c 
c 

(36) 

(37) 

(38) 

of the linearized system we find the Euler 

load 

Pt 
3wT k -ri . 3820 j (39) 

For the linearized syatem X la computed 

as the biggest root of the determinants! 

equation 

i .0. , 

X * /6mk • 2.45 /mk 

(40) 

(41) 

or 

0 < L/l < 2 . (45) 

Its genua may be determlnad--ualng, say, 

Morse theory ll6]--to be aero or four, 
respectively. Hence for (44) It Is a sphere, 
for (45) a "sphere with four handles". The 
springs have the effect that we have to con¬ 
sider the covering space of the klnematlcal 

configuration space. For (44) this will be 
a sphere again, while for (45) It will no 
longer be a closed manifold. 

A simple way to Introduce coordinates can 

be found if we restrict the discussion to the 

shallow arch, i.e. to small angles, and satisfy 

the conditions (42) and (43) up to quadric 
terms only. Let 

/jax-t + Tl+C 

/Íofc-Ç-Tl-C 

/5 ßg “ 5 + ^ £ 

/5ßi»5-^+C 

Clearly, the configuration will be 

symmetric as long as T1*0. With (46), (42) 

Is satisfied up to second order terms. 

Instead of (43) we find 

G - Í8 + Tf + Í* - R* - 0 (47) 

The area below the arch may ba written as 

t 

(46) 

Till. FIVE-HINGED ARCH UNDER DYNAMIC PRESSURE 

Consider a system of four bars connected 

by hinges and springs, and supported by 

A-/2A8(2Î+C) . (48) 

It Is maximum for 



Ça - 2V,T| - 0,§-ÏSV-R//5 (49) (57) 

We assume the springs to be undeflected Introducing local coordinates x,y In th* 

at position (49). The potential energy then vicinity of the equilibrium point A. 

is 

5 - V(2 + X) , T| . yy , C-\(1-2x-|x8-| a) 

Ü - k[(5-C-Y)a + 2Tla + 2(C-Tl)a] . (50) (l-2x... )(58) 

The critical pointa of (50) are found 

from the condition 

dU - kA dG (51) 

leading to the system 

(i-A)Ç - ; - V 

(2-A)T| . 0 (52) 

-5 + (3-A)i - y 

we find for the linearized system the matrices 

(59) 

(60) 

(61) 

Equation (40) gives in this case 

The characteristic equation \ - 22.14 (62) 

(A-2) A (Aa»8Aa + 19.6A - 13.6) » 0 (53) ACKNOWLEDGEMENT 

has six solutions. The criticei points sre 

g/V T\/y <Jy U/kV8 type 

A 
C 

B» 
B- 

D 
E 

2 0 1 
2.1462 0. -.6276 
-12 0 
-1 -2 0 
1.3014 0 1.8184 

.4476 0 -2.1908 

0. minimum 
11.6414 minimum 

14.0000 ssddle 

14.0000 ssddle 
18.3116 mexlmum 

33.6004 maximum 

Hence, there are two different minima, 

connected by two saddle points with the 

same critical energy 

U* - WkY* - 2.8 kRa . (54) 
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THREE DEGREE OF FREEDOM SPRING MASS EJECTION SYSTEM (U) 

R. MUSKAT 
AEROSPACE CORPORATION 

SA N B ER NA RDI NO , CA LI I OR NIA 

The problem of dispensing three objects by spring from a tube, subject 
to a set of optional constraints is solved. The required initial displace¬ 
ments and stiffnesses of each spring in a three spring-mass system are 
determined such that at a given instant of time a specified velocity for 
each mass is obtained. Due to the unusual boundary conditions, the 
solution is in the form of a transendental equation in two unknowns. 
Since unique boundary conditions do not exist, a family of solutions 
are obtained. The desired condition occurs when the force in the 
springs at time zero is a minimum and the initial displacements and 
final stroke are within the physical constraints. 

NOMENCLATURE 

1) A = amplitude of the i*1' mass displace- 
" ment due to the jth mode. 

2) Di = initial displacement ratio 

3) E = vector with elements E^. 

4) E. = required velocity ratio of i**1 mass 
1 to required velocity of mass 1. 

5) F(t) * forcing function (pounds). 

6) K » stiffness of spring 1 (pound/inch). 

7) Ki = stiffness of Ith spring (pound/inch). 

8) m = mass of each body (pounds - sec / 
inch). 

9) S » vector defined by equation 30. 

10) t 3 time (sec). 

tH 
14) X = spring stiffness ratio of i spring 

1 to the stiffness of spring 1. 

15) Y. = displacement of i**1 mass measured 
1 from its equilibrium position 

(inches). 

16) = the jth mode phase angle (radians). 

17) ¿i = 
1/2 

ratio of o'j to (K) 

18) = matrix relating AU to Ay. 

initial displacement of mass 1. 1?) 4 

20) f = matrix with element i 
ij* 

21) «y = value defined by equation 29B. 

22) = ratio of ffj to 

U) t 3 time at which all masses have the 
a required velocity simultaneously 

(sec). 

12) V 3 required velocity of mass 1. 

13) V. = required velocity of the ith mass 
1 (inch/sec). 

23) Vy = 

24) Ay = 

25) Pj = 

elements defined by equations 21A 
to C and 25A to C. 

value defined by equation 29C. 

vector relating to ^ • 
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2t> ) (T 

27) 

vector (Iffilled by equation 5 3. 

ith element ot the r* vector . 

2h) 0 value defined by equation 3b. 

2'*) ó - value defined by equation 2bA. 
U 

30) (^. = the jth mode frequency (1/sec). 

. .IROnUCTlON’ 

The mathematical analysis of single degree 
of freedom systems and multi-degree of 
freedom concentrated-mass systems is well 
documented in the dynamics and structural 
dynamics literature. For the vast majority 
of these cases, the boundary conditions are 
such that a unique solution can be obtained. 
The boundary conditions for the system under 
consideration do not permit a direct solution. 

Figure 1 shows a three degree of freedom 
system in which three masses are connected 
in series by means of springs. The spring 
connected to the first mass is attached to a 
fixed support. The purpose of the system is 
to eject the masses from a constraining tube 
with a required set of velocities at the Instant 
of release. (Figure 1) 

The unknowns in the problem are: 

1. The initial displacements of each 
spring. 

a. Y^O); Initial displacement of 

spring 1, 

b. Y^Oj-YjfO)! initial displace¬ 

ment of spring 2, 

c. Y3(0)-Y2(0)¡ initial displace¬ 

ment of spring 3. 

2. The stiffness of each spring. 

determined by utilizing the constraints of the 
problem which are 1) 1¾ must be less than one- 
half the shortest period, 2) the force in the 
springs at time zero must be a minimum 
(KjYjiO) = minimum) and Î) the total length of 

the system when the masses reach their final 
velocities (the compressed length of each 
spring plus the stroke of each spring plus the 
length of each mass) must be less than the 
length of the constraining tube. The solution 
is valid only for an assumed relationship 
between the initial displacements. This re¬ 
lationship must be varied to obtain the desired 
solution. A computer program was written to 
solve the transendental equation and evaluate 
the minimum non-zero solution. (Appendix 
a) 

MATHEMATICAL ANALYSIS 

Eject 3 masses out of a tube utilizing 3 
springs. The three masses must have exit 
velocities of Vj, V2 and Vj respectively. 

Boundary conditions: 
Static tsO- F(t) * F 

No acceleration or velocity. 
The total force on each mass must be the 
same. 

Dynamic t£ 0+ F(t) = 0 

Yt (t * 0) » 0 1=1,2,3 Eq IB 

Yi (t * t^) = vi in/sec 1=1,2,3 2B 

STATIC ANALYSIS |t$0'| 

VV° 
From Figure 3: Equilibrium Equations 

F(t) » F ■ Kj (Y3 - Y2) EFy®nr>»M 3 Eq 1 

K3(Y3-Y2) = K2(Y2-Yl) lFy@mass 2 2 

K2(Y2*Y1) * K1Y1 £Fy@mass 3 3 

a. Kj! stiffness of spring 1, 

b. K2; stiffness of spring 2, 

c. Kjj stiffness of spring 3. 

3. The time (t ) at which all 3 
masses are released with the 
desired velocities. 

The solution of the problem for an 
assumed relationship between the initial 
displacements, is obtained by finding the 
roots of a transe ndental equation in two 
unknowns, the time at release (t ) and the 
stiffness of spring 1 (K). The numerical 
values for these two unknowns must be 

From Equation 3: 

kj‘hM-v] Ki 4 
From Equations 4 and 2: 

•V [*,/",-v]*. 
Let Yl ■ Dt d (4 < 0) 6 

Kt » T 

and Dj » Xj ■ 1 * 

Therefore, from equations 4,6, and 7: 

X2 = 1 / <D2 - 1) 9 
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From equations 5,6 and 7: 

X3 = 1/(D3-D2) EqlO 

Unknown* K, d, , Dj 11 

DY NA MIC A NA LYSIS 11 > 0+ j 

From F'" re 3: Equation* of Motion 

mVj + KjYj- K2(Y2 - Y^ = 0 12A 

mV2+ K2(Y2 - Yj) - K3(Y3-Y2) = 0 12B 

mY*3+ Kj(Y3 - Y2) = 0 12C 

General Solution: 

Yj * Ay ^»in ('*»t + j 

Therefore: Y^ * Ay ^<Jco*(wt + °)j j 

V*3 = -Ayfw^ein(wt +® )]j 

where 1 i* the spring number 1,2 or 3 

and j is the mode number 1, 2 or 3. 

The Boundary Conditions 

Yt(0) « 0 14A 

* EiV (wh,re Ei ** v ar# known and 
tft is unknown) 14B 

Y^Ol-D^ 14C 

EVALUATION OF w^s 

Yj ■ AjSintwt + O ) 15A 

Yj ■ AjW cos(wt -fa) 15B 

Vj ■ -AjW^sin(tJt + o) * - W^Yj 15C 

substituting equations 15 into 12 and 
simplifying: 

(-mw2 + K^KjJAj -K2A2 +0A3*0 16A 

-K2A1 +(-mw2+K2+K3)A2 -K3A3*0 16B 

OAj «KjAj +(»mo>2 + KjlAj * 0 16C 

To insure non«sero displacements (l.e., 
Aj ^ 0 i ■ 1,2 1(3) the determinate of the 

coefficients in equations 16 must be 0, Thus: 

-mw2+K1+K2 -K2 0 17 

•K2 -mu2+K2+K3 “Kj s o 

0 -Kj -mu»2+Kj 

Therefore: 

(m V2 )3-(mW2)2 . K.+2K-+2K,] 
2 r l i ¿ 3J 18 

+ (mw ) 1^2+2^^+3^^ J-K^Kj = 0 

with assumed values of D2 and D3 equation 18 

can be solved for w as a function of K 

Therefore: 

ul = /»j (K) 

w2 = ^2(K) 

<^3 = /Sj(K) 

,1/2 

,1/2 

,1/2 

19A 

19B 

19C 

A relationship between the -Ay's can now be 

determined by substituting equations 19 into 

16 

20A 

20B 

20C 

Ay = y y Ay no summation 

and Fy 3 1 for all j's 

y2j 3 (-mJ*j+Kl+K2) / K2 

and Fjj 3 K3(-m(j2j+K1+K2)/^K2(-mw2j+K3^ 

^lj * AySlnl^jfK)1^2! + cij| no summation 

»72j3 AlJ/5J(Kr2cos|4J(K)1/2t + ojl 

no summation 

* -Ay^2jKsin|4j(K)1/2t + djl 

no summation 

Yi 3 ^ij "ij 

Yi 3 yiJ "2) 

Yi 3 yij ^3j 

21A 

21B 

21C 

21D 

21E 

21F 

From the boundary condition that Y3(0) 3 0 

°| yUAll^l yi2A12^2 yi3A13^3 ('CO,a’ 

0 " 

yUAll^l yi2A12^2 yi3A13^3 

y21AlA y22A12^2 y23A13^3 

y31All^l y32A12^2 y33A13^3 

22 

COSO. 

cos a. 

The determinate of the square matrix cannot 
be 0 

Therefore cos dj 3 cosd2 3 cosc>3 3 0 23 

dj 3 71 /2 
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Thus 
.1/2 

ri,. A cos /î.(K) “t no summation 25A 
■li 1.1 rj I 

= -A1./ij(K)1/2sin|y9.(K)1/2t j 25B 

no summation 

H. . - -Art . Kcos |/i.(K)1/2t 
‘>1 lj .1 I .1 

no summation 

Yi "li 

Yi : yij ^Sj 

y. = y. n 
i ij 6j 

From the boundary condition that 
Y .(0) = D.¿ 

D1 

D2 

D3 

Therefore: 

AU 

12 

k13 

11 12 '13 

21 ^22 ^23 

>31 ^32 

11 12 

'33 

13 

11 

12 

*13 

21 

Si 

y22 >23 

>32 >33 

orAlj = P.4 

Substituting 28 into 23 

Wj 

U ■ 'Wi 

\ -- -Vi 'ßf 

no summation 

no summation 

no summation 

Y. = ¿cos |^.(K)1/2t 

Yj = ii.d(K)l/2sin|/9.(K)1/2t| 

Y. X..4K cos Ifl.(K) 
‘ lj I J 

1/2 

25C 

25D 

25E 

25F 

26 

27 

28 

29A 

29B 

29C 

29D 

29E 

29F 

From the boundary condition that Yj(ta> = EjV 

= ¿(K) 
1/2 *11 *12 *13 

*21 *22 *23 

*31 *32 *33 

sinÄ(K)1/2t 
4 1 /■> « 

sin^,(K)1/2ta 

.In^lKi*'2.; 

Equation 30 represents 3 equations in 3 un¬ 
knowns A, K, tft for the assumed values of 

D's. Therefore: 

V |e| = ¿(K)1/2L<J|»| 

vH |e| a 4 (K)l/2 js| 

v|o|= 4(K)1/2|.| 

^ = 4(K)1/2sin^1 (K)1/2ta 

V<t2 =4(K)1/2sin^2(K)1/2ta 

Vo, =4(K)1/2sin/J,(K)1,fit 1/2* 

31 

32 

33 

34A 

34B 

34C 

Oj/Oj = (sinfyK)1/2ta)/<einjS’3(K)1/2ta) 35A 

<y<T3 a (sln/^(K)1/2ta)/(sin>í3(K)1/2tii) 35B 

Let * = (K)1 /2ta íja ^/Oj f2a a2/ff3 

s J sin^3^ a sln/?^ 0 

s’jSin/Sjip s sin/?20 

36 

37A 

37B 

The solution obtained from Equation 30 must be 
checked to verify that they satisfy the con¬ 
straints: 

CONSTRAINTS: F(t) a F minimum 38A 
i.e. ( KA minimum 38B 

and at t a ta mass 3 must be 

in contact with the tube. 

Assume that the compressed length of each 
spring is equal to its initial deflection, i.e., 
compressed lengthy = Dj4 

Therefore: The total length of the system at 
t a t is 39 

D.4 + (0,-0.)4 + (0--0-)4 (■ compressed 
I ' length of springs) 

+ J d4| (initial displacement of spring system) 

3- Y,(t ) 3 length of mass, t length of mass, 
40 

3- length of mass3> that is, in contact with the 

tube i tube length 

or |2D3a|3- Yjft a) 3- Length due to masses 

^ Aube 41 

30 
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DISCUSSION' 

The minimum non-zero lolution to equa¬ 
tion 37A i* the relationship required between 

(K) and ta for a given set of initial dis¬ 

placement coefficients Dj, D, & D^, This 

solution also dictates the value for the product 

of (K) ' times 4 which is directly related to 
the force F(t) at t < O". 

Utilizing the relations of t and 
1 /2 a 

4 (K) for the given Di's , with the system 
constraints, it is possible to determine a 
satisfactory solution for the problem. 

EXAMPLE 

In Figure 1, let: 

Lx = 2.7 in 

lz = 0.5 in 

/3 = 2.0 in 

s 2.0 in 

Aut. -7^1° 

The lower bound on A is determined by the 
force constraint. That is, dK < 200 lbs. 
(Given value) 

Therefore: 

[j(K)'/2 

r 1/2 
or ' 

JS200 lbs. 

200 

The numerical values for these limits 
are given in Table 2. 

The largest value of J for the lowest 

value of J(K)^2 possible is taken as the first 
trial solution. Thus, the numerical solution 

(K) ' and t can be determined using for 

this ¿1 and the values of 

ta(K,1/2. 

¿(K) 
1/2 

and 

Now, knowing the value of K, the periods 
of each spring can be evaluated and checked to 
determine if ta is sufficiently small so that no 

mass had a negative velocity at any previous 
time. Also, the initial assumption for the 
total length of the system at time t can be 

& 

checked. If a discrepancy is uncovered, tb n 
the upper limit on A can be reevaluated and 
the procedure repeated. 

Let 
Vj = 60 in/sec 

Vj = 120 in/sec 

Vj = 180 ln/sec 

The minimum values for d(K)1^2 for a 
prescribed (see Equation 6, Y2=D2d)are 

given in Table 1. Also shown in Table 1 are 

the values for Dj and ta(K)^2 which yield 

these minimums. The results are depicted 
graphically in Figures 4 and 5, 

An iterative procedure must now be em¬ 
ployed to obtain numerical values for each 
parameter. For an initial trial, assume that 
the compressed length and the length beyond 
the equilibrium position of each spring at 
time t is equal to the Initial displacement of 
each spring. Thus, the total length of the 
system at time ta is SDjd + length of the 

masses or total length = 3Dj4 + /3 + /^= 

3D,4+ 4.5. This must be less than the length 
of the constraining tube or 3Dj4 + 4.5 S 7.7. 

Therefore: 4S1.067/D3 

Thus , to continue the example , the 
first trial for 4 is - 0.118. (The largest valid 4 

for the smallest [¿(K)1^2]). Therefore: 

D2 = 7.5 

D3 = 9.0 

-4(K)1/2 = 4.85 

ta(K>1/2 = 0.534 

Thus: 

(K)1/2 = 41.1 

K = 1689.3 lbs/in 

*a = seconds 

Now, to check that ta is sufficiently 

small so as to insure that no mass will at any 
time have a negative velocity, the minimum 

value of V ÍK)1'2 such that Ÿ . = 0 is 1.973. 

Therefore: t ( » Yi = 0) =0.048 

Thus, t is less than t (t < 0.048). •• O.K. 
» a 
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C'lu'ck tin* initial ilisplncemi-nt assunption. 

V.ítítfK)17“ t ( Kt^“ - D. SÎ4) 0.525 
* a 

v((t o) n}.i i.o (-o.iin) :-i.ot:.2 

Y, ft 0) 1),.1 -- 7.5 (-0.11H) = -0.885 

Yj(t 0) PjJ = -0.118 

Assumed initial compressed length 

Kjd t /mass 1 - (K2- KjM f /mass 2 

f ^Kî"K2^ f ^ mas8 3) = Kjá ¥ /mass 1 

+ /mass 2 (- /mass 3 - 1.062 *-2 ( 2 +0.5 = 

5.562 in. 

Initial displacement 

= Yj(t = 0) = 1.062 in. 

Displacement at t = t 
a 

= Y^ft = t ) = 0.525 3 a 

Therefore: total required length = 7.149 

<7.7 Therefore: O.K. 

static force required to confim; the masses 
in the tube or a minimization of the total 
displacement at time of release. 

The release of the masses must be 
performed by means of limiting the stretched 
lengths of the springs. Each spring can be 
tied such that it will become disjoint from 
the adjacent masses at the correct time. 

All the boundary conditions are satisfied 
and therefore no iteration is necessary. 

Thus, this example problem is solved 
utilizing a three spring system with the 
following properties. 

Kj = 1689 lbs/in 

K2 = 260 lbs/in 

K} = 1126 lbs/in 

4. * (initial displacement of mass 1) 
= -0.118 inches. 

4, = (initial displacement of mass 2) 
= -0.885 inches. 

4- - (initial displacement of mass 3) 
= -1.062 

CONCLUSION AND SUMMARY 

A system consisting of three springs and 
three masses joined in series can be employed 
to dispense objects from a tube with a set of 
required initial velocities. 

The mathematical solution to the problem 
of determining the spring characteristics and 
initial displacements within the constraints is 
an optimization problem. The criterion is 
either minimization of the allowable 
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TABLE 1 

TABLE 2 

D2 D3 4(K)1/Zjy/ 200 1.067/Dj 

2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

3.5 
4.0 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11.0 
11.5 

0.338 
0.261 
0.206 
0.175 
0.159 
0.139 
0.135 
0.133 
0.124 
0.125 
0.118 
0.119 
0.116 
0.110 
0.114 
0.111 

0.305 
0.267 
0.213 
0.194 
0.178 
0.164 
0.152 
0.142 
0.133 
0.126 
0.119 
0.112 
0.107 
0.102 
0.097 
0.093 
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FIGURE 4 

FIGURE 5 
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STRUCTURAL DYNAMICS OF A 

PARABOLOIDAL ANTENNA 

Myron L. Gossard and William B. Haile, Jr. 
Lockheed Missiles & Space Company 

Sunnyvale, California 

The antenna consists of a number of flexible, parabollcally curved ribs which 
project radially from a central hub and which are interconnected by a lightweight, 
reflecting mesh. To study the dynamic behavior of such a structure, finite ele¬ 
ment methods are used to generate inertia and stiffness coefficients that form the 
basis of an eigenproblem for the natural frequencies and modes of the antenna, 
which are the objects of the analysis herein. A preliminary Fourier decomposi¬ 
tion of the problem is made in the antenna's circumferential direction. Thereby, 
two kinds of computational difficulty are avoided: (1) the large and unwieldy orig¬ 
inal problem is separated into a number of relatively small and independent prob¬ 
lems, and (2) the need is removed to copa with an R-fold redundant repetition of 
frequencies and modes that would ordinarily occur for the R-ribbed axisymmetric 
structure. 

INTRODUCTION 

The antenna under specific consideration is de¬ 
signed for deployment and use in space after being 
carried there in a compactly stowed condition. The 
structure consists typically of a circular paraboloidal 
reflector fabricated of hub, ribs, and mesh. The 
ribs and mesh are wrapped around the hub in stow¬ 
age, and the strain energy thus accumulated powers 
the deployment operation. 

This paper describes an analytical procedure 
for a digital computation program to obtain the natu¬ 
ral modes and frequencies of vibration of the antenna 
when deployed and free in space. Numerical results 
for a representative structure are given In computer- 
drawn graphical displays. 

Antennas of the flex-rib design are becoming 
increasingly popular (1-:)1. However, no dynamic 
analysis has been found which treats the structure 
in a complete manner. 

GENERAL CONSIDERATIONS 

The arrangement of the actual reflector is 
sketched in Fig. 1. The analytical model, shown in 
Figs. 2 and 3, idealizes the structure into finite 
beam and string elements. Geometric axes consist 
of an X Y Z inertial reference frame, and local 
X y z axes at analytical points on the ribs as shown. 
The small displacements Í, h, f .0. Oi v In and 
about the local x y z directions and relative to the 
Inertial frame, in natural vibration, arc the objects 
of the analysis. Fig. 1 - Deployed antenna 
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[■’jjr. :t - rk'grocs of freedom of typical rib 
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In order that the mesh remain taut undet general 
deformation, the system is put under a state of self- 
equilibrating initial stress, such that membrane type 
stress deviations during vibration are an order of 
magnitude smaller than initial values. Stiffness 
properties are linearized about the initial state. 
Consistent results under the linearization can Is- ob¬ 
tained only when the geometric stiffening (a brief but 
somewhat ambiguous term for the stiffening effect of 
pre-stress) is accounted for throughout the struc¬ 
ture - in hub, ribs, and mesh. Thus, the buckling 
tendencies of hub and ribs, which might otherwise be 
ignorable, must be incor|»orated when the counter- 
activity of mesh is present and vital, as is likely in 
very large and flexible structures. 

The difficulties of dealing with geometric stiff¬ 
ness is offset, however, by the axisymmetry of the 
configuration and the attendant ability to classify the 
natural vibrations according to circumferential wave 
numbers. Indeed, such classification is mandatory 
for avoiding two kinds of computational difficulty. ’ 
First, and most obvious, is the size of the problem 
in terms of degrees of freedom. When the ribs art- 
divided into P-1 finite elements using P analytical 
(mints cn each rib, and each (mint is allowed (i de¬ 
grees of freedom, then each rib will have 6P x OP 
mass and stiffness coefficients. The reflector with 
R ribs then constitutes a problem of size 6PRxOPR 
which can be very large. Secondly, unless special 
precautions are taken in advance, the computer 
would seek solutions having an R-fold repetition of 
frequencies and modes, t en if the computer could 
deal with such a situation, which it cannot, the in¬ 
formation thus produced would be mostly redundant. 
This multiplicity of eigensolutions and the excessive 
size of problem are both avoided by prior separation 
of the overall motion into Fourier components in the 
circumferential direction. The natural motions as¬ 
sociated with each component (or wave number) are 
uncoupled with other components, and thus a series 
of relatively small and well behaved problems re¬ 
places the large original problem. 

|<m¡ |m'.{ór.{«H 
where, for example in the ease of rib 1, 

{ó}' . 

{4 > n. f >0,0,4 },>|1 . 

Here, each |ó| is of size (jp x 1, with elements 
arranged first by |x)int and then by degree of free¬ 
dom. The mass and stiffness matrices I (m) I and 
|(k]| arc subdivided and arranged to lx- compatible- 
with ||ó|| , and are for present purposes assumed 
to lx- known, either from me-asurements or from 
com| utation similar to that described in the final 
se-ction. Their form is typified by the stiffness 
matrix, which is 

Ik)J, (ki2 

IklJ, Ikl2, Ik]2 

(k)2. ikl2, ikij 

Each submatrix [ k ] is of size 6P x 6P . The 
stiffness matrix is symmetric )by Maxwell's re¬ 
ciprocity conditions) and singular (in that its prod¬ 
uct with each of six rigid-body displacement vectors 
is zero). Moreover, because of axfsymmetrv of the 
antenna, 

THEORETICAL DEVELOPMENT 

We now out the foregoing ideas into computer- 
oriented quantitative form by surveying briefly the 
following aspects of the problem: (1) primitive dy¬ 
namic properties, (2) Fourier decomposition in the 
circumferential direction, (3) modal properties in 
each Fourier wave, and (4) generation of primitive 
mass and stiffness coefficients from basic finite 
element data. 

iki¡ iki2 [kl2 ... [k]« 

Mr M i Ikl, ... 

(< Ikl‘ [k]2 ... [k]»-1 

and similarly for the mass matrix, which is also 
symmetric. 

Primitive Dynamic Properties 

I hi- matrix equation of natural vibration, in the 
Cartesian coordinates shown in Figs, 2 and 3 maybe 
written as 

|lml||l<5l| • I [k] I |l ó 11 I I 01J . 

For brevity, damping is omitted. Here, ||0|| isthe 
displacement column vector covering all degrees of 
freedom at all analytical (mints on the antenna. The 
subvectors 16 | each pertain to a particular rib. 
Ihus, in row vector form to conserve space. 

Fourier Decomposition 

Next, the antenna displacements are expressed 
as a finite Fourier seties (finite- because the num¬ 
ber of ribs R is finite) having coefficients that are 
displacement vectors to lx- determined by the dy¬ 
namical conditions of the problem. This expansion 
is 

\\6W |[t]|Hsi| 
where the Fourier trigonometric matrix |[T]| is 
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I IT, I 

|1|, 11| ros o ! , |i| sin o j , [l| cos ^fv) , 11| sin JrVj ,..., 11, ros Nnfj, |l| sin N»^, [l| cos Ma. 

I ’ 

U’ 

sin o „ , [ l| ros 2a.,, 11J sin 2n,,.|l) ros Na,,, (ij sin Na^ , |lj cos Ma., 

sin 2a^,..., 111 cos Na^, |l] sin Na^ , [l| cos Ma^ cos 2o 
K’ ' 

with S' ami M nivrn by 

U rVrn H (Mid 

N 
U - 2 

M 

U - I 

.Misent 

and where the vector coefficients | |d 11 are des¬ 
ignated accordingly as 

|<¿}¡ |{¿}C,’.{5}C1.<3}S,.{3}C2.|í}S2 

{í}CN, {5}sn, <ó}cm 

, the equation of In the new coordinates 
natural vibration is 

J [m] I I I 5 ! I • I |k| I 11 J| I IlDI I . 

The transformed mass and stiffness matrices are 
related to the primitive values by 

mill IT |[m]| 

([*]] [[T]|'[(k|||[T] 

where the prime mark signifies the matrix trans- 
iwse. Upon use of tnc particular properties of the 
primitive mass and stiffness matrices and of the 
trigonometry of the axisymmetric antenna, the 
barred values emerge as follows; - 

1*1 

W 
co 
CO 

l*lc!’ wci 

W S1. W S1 

wherein 

wc‘ 

w 
Ci u 
Ci 

Ci H|k) \ • u|[kl2 * Ik) 2 I co® {—■) , 

for i 0, M 

fiki|.f|w;.(ki'|co.(f) ici 

f |lk|f - IklJl.ln'Ç) - mCs! 

for i 1,2,3.N 

and similarly for the mass matrix [m] |. Hence 
the natural vibrations are to be obtained by solving 
the independent sets 

W a 

lml¿i|í¡Ci 

i™]?, 

[mlgj1, [m]SI 

Wcil^ci 

obtained by solving 

|o| , i 0,M 

Si 

\'t\ 

1*1 

Ci 

Si 

0| 

o I 

|j{lCi WS1 
lK Ci’ mCi 

Ms/. WSi Si 

131 Ci 

1 Si 

i 1 ,2,3 ,..., N . 

It is now evident that the Fourier decomposition 
has supplanted the original problem of size 6PR x 

1*1 C2 ’ W?2 

WS2* WS 

lltlCN 
K C N ’ 

llt]CNT iKi gN , 

M 

W 

SN 
CN 

SN 
SN 

1*1 
CM 
CM 
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GPR with iR 2i/2 or iK li/2 cis R is rvon or 
oddi problems of size 12P \ 12P, except for wave 
numbers n and M which are of size GP x Gi'. In 
practice, only the lirst several wave lumbers are 
ordinarih of interest. It is observed that the si.x 
rigid-body modes ot the antenna will be found among 
the modes for wave numbers o and 1 : two modes 
in wave o , corresponding to rigid-body displace¬ 
ments in and about the X direction; four modes in 
wave 1, corresponding to rigid-body displacements 
in and about the V and Z directions. 

Modal Properties in Each Fourier Wave 

The final step requires solution of the eigen- 
problems that belong to the various circumferential 
waves. These eigenproblems are 

Their solutions may be expressed as 

|| 6 |1 - modal matrix, 

L JCi 

[uJcj = frequency matrix, for i 0,M 

'0*1] 
Ci 

[1*0 
Si 

= modal matrix, 

f«J « frequency matrix, 
CSi 

for i — 1,2,3,.,,,N. 

These results may be used in a final transfor- 
matlon of coordinates that yields a completely inde¬ 
pendent equation of natural vibration for each of the 
antenna modes in each wave class. Thus, if we put 

lile, = [1*0 I 
Cl 

ICI i = 0,M 

where the |q| are generalized displacement coor¬ 
dinates, then in consequence of the familiar orthog¬ 
onality properties of the cigcnsolutions, the equa¬ 
tions in the various wave classes transform to 

rMJciHc¡ ' fxJciblci ^ ’ * o,M 

r^JcSi 1'^ CSi ’ FKJcSi lq CSi 

i 1,2,3.N. 

The 
and sti fines 
by 

[Mj and ["kJ are diagonal generalized mass 
tiffness matrices related to the [m] and M 

- [i^Oc^ílti*!], 

fkí; - 

[|S|L 

i O, M 

r><i 

[|S0, 

[0¾ 

[m]£i, [m^j 

. l*t ['*'], 

['*'1, 
D*'l, 

i - 1,2,3.N . 

Of ultimate interest in this paper are the an¬ 
tenna frequencies, and the corresponding modes of 
natural vibration in terms of displacements < , b, 
f, 4, e , 0 in the local x y z directions at each of 
the analytical points 1,2,3.P on all of the 
ribs. The natural frequencies, as noted previ¬ 
ously, come from the eigensolutions as 
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. M ; 

[l J ios lu, , r ij Sin iu( 

[ 1J cos in., . T lj *¡'1 ¡“o 

fíjeos iuu.flj Sin ioK 

1, J.:i.N 
H M [ï •lij 

4ii i4l- l?l:’ 

, > t.2,:».N . 

C M 

l iu. tull nnteniui moil' S n e ohtaincil l»> appU ii'H thi* 
U inonomctnc tr.i isformation, namch . 

rmfiltll . ‘ M 
1 L J L Uci 

[His, t i-T]1 
iCSi [l^e, 

-lSi 

i l,2,:i. 

or, in somewhat expanded form. 

y ! i a t 

u 

f IJ cos io j 

f 1J eos io„ 

f lj eos iaK 

, i 0,M 

Jcsi 

f.eneration of Primitive Properties 

\8 essential part of the dynamics is the accu¬ 
rate description of primitive mass and stiffness 
properties. This task is especially demanding 
when, as in the present case, the number of free¬ 
doms must be held to a minimum because of com¬ 
puter limitations. Details of the procedure wil be 
omitted here in favor of brief remarks concerning 
the view taken in assembling the parts of the 
problem. 

The antenna structure is considered to be com¬ 
posed of finite beam and panel elements whose 
boundaries and Junctions are defined by the analy 
Si points on the ribs. The analytical points maybe 
variably spaced on a rib but are identically spaced 
on all ribs. The beam elements, covering ribs and 
hub, are prismatic with geometries, rigidities, and 
mass intensities that are averages of the actual 
values between analytical points. Elastic s^68 
relations are derived in six degrees of freedom at 
each end, including effects of stretching, torsion, 
shearing, and bending for cross sections of arbi¬ 
trary shape. Deflection shapes between analytical 
points that are associated with the clasti£ stiffness 
are used in an energy formulation to account ap¬ 
proximately for the geometric stiffnesses arising 
from the pre-stress system; in this way buckling 
loads may be known and buckling tendencies repre¬ 
sented The elastic deflection shapes are also used 
in an energy method to obtain equivalent concen¬ 
trated masses at the beam element ends, including 
rotatory inertia contributions. 

For the mesh, consider a typical panei. say 
.110 where i,i are two consecutive ribs 

^ell,V ar’e^natucal ¿¿int- on the ribs Stre.s 
in the mesh is assumed to be confined to tension in 
the l j direction, and the mesh is therefore treated 
as being made of a group of parallel, closely packed 
strings running in the i J direction. Th® “trings 
remain straight, while displacements of their ends 
are idonUcal with the rib-segment displacements. 
By use of the elastic deflection shapes in the energy 
method, sets of equivalent stifthess and masses in 
six degrees of freedom at each of the four corners 
of the mesh panel are derived, the stiffnesses being 
of both the elastic and geometric varieties. 
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The stillness ami mass coefficients just de¬ 
scribed are defined with i es|K‘ct to local :ixis sys¬ 
tems at the analytical |K>ints that are aliifncd with the 
principal directions of the individual straight rib and 
hub segments. A final step resolves all displace- 
menis and forces into directions that are normal and 
tangential at the analytical points to thi' paralK>lically 
curved ribs and their planes. 

The results of these numerous manipulations are 
the primitive stiffness and mass properties. The 
relations are of the forms 

!•’ . [m; • m¡ . [k]?' 

0li 

IH, [wj.Wl.C"’],] ! ñ 

lor stiffness 

, for inertia 

where |f|i are the load components on the analyti' 
cal (joints of mid-rib j that must accompany dis¬ 
placement or acceleration components | ô I or | <5 | 
of analytical (joints on the three consecutive ribs 
i,J,k . By virtue of the axisymmetry, these rela¬ 
tions described completely the stiffness and mass Hierties of the entire antenna. Submatrices 

, [m]| , etc. each have the common form 

[b]¡ . m; 

[B]¿ . [8¾ . [B]» 

[BÏ . [8¾ . [8¾ 

[8]^; . tB£¡ • [8]?., 

[B]?'1 . Wj 

where indices 1,2,3...., P refer, to the analytical 
(joints. Matrices [kjj and [m]j are symmetric, 

whereas Clklj] ant^ Clml}3 
are not symmetric. Submatrices Fb] are size 
0x0, and are constants that depend on the geome¬ 
try, the elasticities and densities of material, and 
the state of pre-stress. 

NUMEUCAL RESULTS 

_’l-rib antenna. Necessary calculations were done 
by computer for the analysis descriljcd herein, be- 
Hinninn with raw data in the foian of rilj, mesh, and 
hub elasticities, densities, and ucornetry. fhough 
a total of l'> modes were found for the example an¬ 
tenna, only five are shown here as being representa¬ 
tive. The\ are modes 1, 1, and :i lor wave numlx r 
it and the first mode for wave numbers 1 and :i. In 
all cases, the antenna was free in space so that six 
rigid Ixjdy modes were included in the set. Notice 
that in Figs. 7. and ii rather complex rib motion is 
taking place because each rib is of open sec tion with 
offset shear center and with the mesh connected 
along the concave edge of the rib. 
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The following five figures, nos. 4, 5, 6, 7, and 
8 are computer drawn displays of mode shapes for a 
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Fig. 4 - Antenna mode shape 
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Fig. 6 - Antenna mode shape 
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AN APPLICATION OF COMPONENT MODE SYNTHESIS 
TO ROCKET MOTOR VIBRATION ANALYSIS 

by 

F. R. Jensen 

Hercules Incorporated 

and 

Dr. H. N. Christiansen 

Brigham Young University 

Acoustic oscillations in a solid rocket combustion cavity produce ac¬ 
celerations on motor structure and attached components. The trans¬ 
mission of these loads to motor components was studied by a structural 

dynamics analysis of the aft dome for the Minuteman II Stage III motor 
Finite element models were constructed of the aft dome structure, the 

nozzle, and the nozzle control unit (NCU) and solutions were obtained 

using the SAMIS, Structural Analysis and Matrix Interpretative System, 
finite element computer program. Because of SAMIS computer program 

limitations and model complexity, it was decided to use a component 

mode synthesis technique to obtain solutions for the complete aft dome 
structure. 

Vibration tests gave natural frequencies of the NCU for the first 

lateral mode (23 Hz) and the first longitudinal mode (66 Hz) in 
reasonable agreement with calculated results, 30 and 71 Hz, respec¬ 
tively. The calculated frequency of the first lateral mode for the 

NCU was very sensitive to the fixity condition assumed. It was con¬ 

cluded that the observed pressure oscillations could be expected to 
excite major structural resonances. 

INTRODUCTION 

Oscillatory burning has been recognised as 
a problem associated with both solid and liquid 

propellant rocket motors for many years. In a 

recent investigation of causes and effects of 

oscillatory burning in a solid propellant motor, 

questions arose concerning the nature of the 
interaction between the exciting forces and the 

motor structure. The pressure oscillations and 

motor vibrations were observed to occur at fre¬ 
quencies of 300 + 100 Hz. It was therefore 

natural to question whether the pressure oscil¬ 
lations might be exciting chamber structural 
resonances and, if so, the modes in which the 
chamber responded. 

The frequency selected for the analysis 

was limited to the motor driving frequency. 
The analysis was limited to the motor aft dome 

and associated hardware since the motor response 

was greatest for this area. The mathematical 
model used in the analysis consists of the aft 

dome portion oí the chamber structure (from the 
aft tangent lines rearward), the four nozzles, 

and the nozzle control equipment. A finite 
element stiffness-lumped mass model was used 

to represent the aft dome system. The "Struc¬ 

tural Analysis and Matrix Interpretive System 
(1)," (SAMTS) computer program was used to 

obtain solutions from the mathematical model. 
The SAMIS program has the capability to form 

mass, load, and stiffness matrices for struc¬ 

tures modeled with a combination of line 

(beam) and facet (triangular-shaped plate) 

finite elements. Due to the complexity of 

the model and limitations on the problem size 
that could be economically handled by the 

SAMIS program, it was decided to employ a com¬ 

ponent mode synthesis technique. This technique 
combines complex structures using the modes of 
the structure segments. 

Several different approaches to the modal 
synthesis analysis are reported in the litera¬ 
ture. (2,3) The approach used here follows 

quite closely the detailed technical report on 
the subject by Hurty. (A) 

The math model is discussed in the next 
section followed by an outline of the modal 

synthesis method and details of application 
based on use of the SAMIS computer program. 
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Miiiiv sh.ipi'S .uni n.ituiMl ! roqui'iw loa obtained 
for tlio individual components and for the aft 
domo system are given in the "Remits" section. 

turn HO DU I. 

A sketch ol the aft dome showing the four 
nobles and the nozzle control unit (NCU) is 
presented in Figure 1. Since the dome has two 
planes ol geometric symmetry, it was necessary 
to model only one-quarter of the total struc¬ 
ture. Complete solutions could then be obtained 
by solving the one-quarter model for the natural 
frequencies and mode shapes corresponding to 
four different sets of boundary conditions. The 
aft dome system model was therefore made up of 
one-fourth of the dome structure, one-fourth of 
the NCI’ structure, and one complete nozzle. 
However, a nozzle by itself has a single plane 
of geometric symmetry and only one-half of a 
nozzle was modeled to obtain the component mode 
shapes that are used in the component mode 
synthesis solution. 

about the X • 0 plane, asymnetry about the 
V ■ 0 plane, and (4) asymnetry about the X ■ 0 
plane, asymnetry about the Y ■ 0 plane. The 
preceding boundary conditions are abbreviated 
respectively as follows: 

(1) X-S, Y-S, (2) X-A, Y-S, (3) X-S, Y-A, 
and (4) X-A, Y-A. 

In addition to the boundary conditions 
applied for symmetry considerations, boundary 
conditions were applied to the aft dome struc¬ 
ture approximately at the aft tangent line 
(the point where the dome surface becomes 
tangent to the cylindrical surface) to represent 
the connection of the aft dome to the remainder 
of the motor. The remainder of the motor was 
assumed to be infinitely stiff, and the dome 
was fixed 'n such a manner that no translation 
or rotation occurs at the aft tangent line. 
However, this assumption is not absolutely 
correct and should result in natural frequencies 
that are slightly high. 

In the finite-element models of the dome 
and nozzle, two to three layers of facet (plate) 
elements were used to represent the different 
materials present. One hundred and eighty-one 
elements were used in the nozzle model and two 
hundred and fifty-six elements were used in 
the dome model. The dome and nozzle models had 
approximately one hundred and thirty-one and 
one hundred and sixteen degrees of freedom, 
respectively. Even though it was possible to 
obtain all of the nozzle solutions by analyzing 
only one-half of the nozzle, it was later 
necessary to construct normal modes, constraint 
modes, and rigid body modes for a complete 
nozzle for use in the modal synthesis solution. 
The 36-element NCU model liad approximately 85 
degrees of freedom (the exact number of degrees 
of freedom varies slightly for different bound¬ 
ary conditions) . 

When a geometrically symmetrical structure 
is analyzed by modeling only one-half of the 
structure, it is necessary to obtain two solu¬ 
tions for the model: (1) One solution is 
obtained with boundary conditions applied at 
the plane of symmetry which allows only sym¬ 
metrical motion, and (2) a second solution is 
obtained by applying boundary conditions at the 
plane of symmetry which allows only asynmetric 
motion. Thus, all possible modes of vibration 
of the total structure may be determined by 
analyzing twice a model of one-half of the 
structure . 

The loading function of interest is the 
geometrically syimnetrlcal Internal pressure in 
the aft dome. Since a symmetrical load dis¬ 
tribution tends to excite symnetrlcal modes of 
vibration, the X-S, Y-S boundary condition is 
of prime Interest. The X-A, Y-S boundary con¬ 
dition which results in the lowest natural 
frequency for the NCU and provides results for 
comparison with available test results is also 
of interest. Thus, the major emphasis in the 
analysis was on the models'with boundary con¬ 
ditions X-S, Y-S, and X-A, Y-S. 

COMPONENT MODE SYNTHESIS THEORY 

The matrix algebra of the component mode 
synthesis method is outlined briefly (See 
Reference 4 for additional detail) . 

The equations of motion for each of the 
three components are: 

fmiji“ir ikiiKi ■ iFi(t)t 

rm24{Ü2} + “ lF2(t> * (D 

fm3] JÜ3 \ + lk3Hu3] - |F3(t) I 

where: 

JnijJ » diagonal mass matrix for the i1*1 
component, 

For the dome and the NCU models, it was 
necessary to apply four sets of boundary con¬ 
ditions to obtain a complete set of mode shapes. 
The two planes of symmetry for the aft dome 
structure are the X « 0 plane and the Y « 0 
plane (See Figure 1). The applicable four sets 
of boundary conditions are thus: (1) Symietry 
about the X = 0 plane, symmetry about the Y “ 0 
plane; (2) asymmetry about the X - t' plane, 
symmetry about the Y = 0 plane, (3) symmetry 

[ kj] » stiffness matrix for the i1*1 com¬ 
ponent , 

If (t)\ • vector of loads applied to the i1*1 
component, 

JÜ } , {u 1 • acceleration and displacement vec- 
1 1 tors, respectively, for the if'1 

component 
Subscripts » 1- NCU, 2- Nozzle, 3-Dome 
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The advantage of using component mode 
synthesis is to reduce the number of simul¬ 
taneous equations subject to standard matrix 
operations. To accomplish this, the equations 
of motion for the individual components are 
expressed in terms of modal coordinates (com¬ 
ponent generalised coordinates), {Pi}1 t*le 
independent modes for the component are re¬ 
presented by the columns of matrixJ^j], the 
required coordinate transformation is: 

luil “ l*i)(pi) <2) 

The component modal matrix[^i] may be made up 
of three different types of modes: (1) Rigid 
body modes, (2) constraint modes, and (3) fixed 
constraint normal modes. The reduction in 
degrees of freedom is brought about by Ignoring 

the contributions of the higher-frequency 
normal modes to the deflected configuration. 

Introducing the displacement transformation 
defined by Equation (2) and premultiplying bv 
the transpose of 1<M produces the equations 
of motion for the system expressed in terms of 
component generalized coordinates: 

WIp) ♦ lkllp) ’ lp(t)1 (3) 
where 
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M 

(S)' 

1(¾ 
; ¡isi 

imi] 

I piLt)l 
1/2^} 
I P3ú) I 

the component generalized 
moa* matrix 

and: 

tLi2lIíil]{pl> ” lS12nL2ll|W2j|P2) 

‘ ^13)^31) 3)( p3) 

[L23H02llp2l " lS23) lL32)l^3Hp3) 

_ f 
I kil ’(0i) rk(]r0il’ the exponent generalized 

J stiffness matrix 

|P.(t)| ■ r0,"IT jF.(t)|, the component generall- 
1 ' L I 1 1 zed force* 

Equation (3) Is then not ready for solution 
because all equations in the expression are not 
independent. A coordinate transformation of 
the form lp)-1/9) I q) , where {qj Is the 
vector of Independent coordinates, Is Intro¬ 
duced to account for the fact that certain com¬ 
ponents share conmon nodes. The transformation 
matrix, [/9]. Is developed for a three com¬ 
ponent system by writing the equations of con¬ 
straint in the form: 

1Û12| IS12 |u*2ll 

I ni3 j - [S13l|a31 I 

|a23 j - [S23]jG32 } 

where: 

or: 

L12^1 ' *S12L2l ^2 

L13*l 

0 
L23^2 

'S13L31*3 

rS23L32^3 

p2 
p3 

The above equation Is in the form, 

(A) |P| - (0) . 

which may be partitioned as follows: 

Pr 

KMlvl-M 
(4) 

where (pd) Is an arbitrary sat of dependant 
modal coordinates and |q| Is the corresponding 
set of Independent modal coordinates. Equation 
(4) may be rearranged to give: 

lpD) “ * N*1 lAlH )• 

jïï l - the set of nodal displacement co- 
' J 1 ordinates of component 1 which are 

on the common boundary with com¬ 
ponent 1. 

I S I • the direction cosine matrix that 
-1 relates the coordinate system of 

component 1 with the coordinate 
system of component j . 

The components ( Ufj ) may then be extracted from 
the total set of nodal displacement coordinates 
by the transformation: 

where: 

a transformation matrix that con¬ 
tains zeros and ones as appropriate. 

Then, since 

|Ui| 'I** |lri|- 

Pul *[ v-IHn 

ipi ItfPi 
liq i 

-IV1 i\il 

. r 1 j f 

from which we rectognlze the coefficient matrix 
to be [/9). The only restrictions on the way In 
which the fA] matrix Is partitioned are that 
[Ap] must nave an Inverse. When the [ Aj matrix 
was written out, it was seen that by selecting 
the proper columns, [Aq ) could be selected to 
be a unit diagonal matrix. Thus, with proper 
selection of [Ad] , 

[/3). h >) J 
With the use of the[0] trsnsformatlon 

matrix, the system equations of motion, (3), 
may be expressed In system generalized coordi¬ 
nates, Jq J : 

[/3)r[ ,)[/9)lq } ,[/9]r[l«]l9Hq ) -í/9lT|p(t) I 

or 

l n){q }+ I Kljq I - lw(t3} 
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The generalized forces, {q(0 I, will consist 
only of excitation from external sources. 

APPLICATION OF MODAL SYNTHESIS 

Detalle of the application of the modal 
synthesis technique based on use of the SAMIS 
computer program are discussed below. The 
steps used to obtain system natural frequencies 

and mode shapes arc listed us: 

1. Input Data Generator Program 

Data describing each finite element 
model were Input to an Input Data Generator 
program to convert the data to SAMIS format. 
Output from this program was a SAMIS element 
data deck for each component and a set of rigid 

2 . SAMIS Program - I 

I-[.k_ll]'l Ck_12jl l{u )( .JIM ( 

L[k2l]|Ck22]Jj{uc)i HReM 

where: 

)uC) * the displacement vector for all con 
strained coordinates 

{K1) » the vector of forces applied at the 
constraints to maintain either zero 

or unit displacement. 

Since the applied forces, { F) , are zero, the 
partitioned equations may be solved for { u} : 

<u>- -[kn]'1 On]^'' 
A complete constraint mode is obtained by con¬ 
sidering the total displacement vector lui and 

l»C ) 

SAMIS was programmed to create the 
component mass and stiffness matrices, [m¡l and 
£kjj, from the element data deck. Constraints 
were applied to fmjJ and £kj] and the homo¬ 
geneous component equations of mot ion were 
solved to obtain the component fixed constraint 

natural frequencies and mode shapes, The 

fixed constraints include the points that are 

common between components. 

The usual SAMIS normal mode solution 
provides only translation components of the dis¬ 
placement at each node. To obtain the corres¬ 
ponding rotation components of the normal modes, 
the force-deflection relationship for a com¬ 

ponent is written as 

<Fi)-[ki][Ui] 
(6) 

where 

{ M) ■ the applied moment vector, and 

{g} ■ the vector of angular displacements. 

Since the applied moments are zero and since 
{u ) represents the calculated translation com¬ 
ponents of the normal modes, the corresponding 

rotation components are: 

<0>’ "[“22]*1 [k2l]<U> 

The constraint modes, for each 
component are obtained by a similar matrix 
partitioning. (A single constraint mode is the 
displacement vector which results when a single 
constraint coordinate is given a unit displace¬ 
ment and all other constraints are fixed.) 
Equation (6) may be partitioned as follows: 

3 . SAMIS Program - II 

The SAMIS program is used to perform 
the matrix manipulations necessary to obtain 
the system generalized mass and stiffness 
matrices. The system dynamic matrix is then 
formed and the usual SAMIS eigenvalue routine 
is used to obtain system natural frequencies 

and mode shapes. 

RESULTS 

The fixed constraint normal modes, 

were calculated for each component for use in 
forming the modal matrix, [¢{1- Since a know¬ 
ledge of the component mode shapes and corres¬ 
ponding natural frequencies is useful in 
visualizing the system normal mode results, 
individual component natural frequencies and 

mode shapes are discussed below: 

1. NCU Component Results 

As indicated in Figure 1, the NCU 
consists of an equipment housing mounted to 
nozzle actuators which are in turn attached 
through a Z-link connection to the nozzle stack. 
The actuator push rod is connected to the 
nozzle. Thus, the NCU model is constrained at 
two points where the Z-llnk attaches to the 
nozzle stack and at one point where the actuator 
push rod attaches to the nozzle. The bolted 
connections of the Z-link contain bearings 
as shown in the sketch at the top of the next 

page . 

It was determined that the lowest 
natural mode of the NCU occurred when X-A, Y-S 
boundary conditions were used. To study the 
effect of the Z-link fixity condition on the 
natural frequency, solutions were obtained with 
ball joints modeled at each bolted connection 
on the Z-link, (4 ball Joints).and with only 
ball Joints modeled at the point of attachment 
to the nozzle stack (2 ball joints) . The two 
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TABLE I 

NOT TO SCALE 

Nati' Ll ml teil Kotdtl 
SECTION L-L t.dpabi 111 y 

b.ill joint model had a low natural frequency of 
30 Hz compared with 4.9 Hz for the four-ball 
joint model. Thus, the low natural frequency 
is apparently very sensitive to the Z-link 
fixity conditions. Vibration test results 
Indicate a low natural frequency of 23 Hz for 
the NCU. Therefore, the two-ball joint model 
was used to represent the NCU. 

The four lowest natural frequencies 
of the NCU when X-S, Y-S boundary conditions 
are used were 71, 378, 386, and 937 Hz. The 
lowest natural frequency of 71 Hz compares 
favorably with test results which indicate a 
low natu.al frequency of 66 Hz for corres¬ 
ponding boundary conditions. 

2 . Dome Component Results 

The fixed constraint normal modas and 
corresponding natural frequencies for the dome 
were determined for use in the modal synthesis 
solution. In addition, a solution for the dome 
was obtained with the internal (component 
interface) constraints free. If the effects of 
the NCU and the nozzle are small, the free con¬ 
straint solution for the dome should appioximate 
the aft dome system solution. The first five 
natural frequencies for the dome model with 
fixed and, with free constraints, are shown in 

Table I. 

Propellant is bonded to the aft dome 
between the nozzle ports and the aft closure. 
The propellant has the effect of increasing the 
mass and stiffness of the dome structure. To 
approximate the effect of the propellant on the 
dome model, the mass values of appropriate 
elements were increased to reflect the mass of 
a six-inch thickness of propellant. As shown 
in Table I, the added mass was responsible for 
a reduction in the first natural frequency 
from 627 to 436 Hz. 

NATURAL FREQUENCIES FOR THE DOME MODEL 
WITH X-S, Y-S BOUNDARY CONDITIONS 

Mode 
Number 

With 

Fixed 
Constraints 

Free 
Constraints 

Fixed 
Constraints 

1 

2 

3 

4 

5 

627 

952 

1106 

1595 

1803 

524 

888 

983 

1206 

1221 

436 

452 

507 

867 

1003 

TABLE II 

NOZZLE NATURAL FREQUENCIES 

Mode 
Number 

Naturel Frequency (Hz) 
Boundary Condition 

Symmetric Modes Asymmetric Modes 

1 

2 

3 

4 

5 

241 

455 

660 

1210 

1670 

314 

497 

559 

932 

1207 

4. Aft Dome System - Modal Synthesis 

Results 

The system model was found to have 18 
natural frequencies below 1000 Hz. As expected, 
some of the system natural modes were found to 
correspond quite closely with component natural 
frequencies. For example, the system first 
natural frequency of 69 Hz was found to consist 
almost entirely of NCU motion (corresponds to 
71 Hz component natural frequency). 

The system natural mode which corres¬ 
ponds with the dome first naturel mode occurred 
at 420 Hz (compares with 436 Hz component 
natural frequency). The second dome mode 
occurred at 438 Hz and the third at 501 Hz 
(corresponding component frequencies 452 Hz and 

507 Hz, respectively). 

CONCLUSIONS 

3 . Nozzle Component Results 

The five lowest natural frequencies 
for the nozzle for both sets of boundary condi¬ 
tions are presented in Table II. 

It was concluded that the component mode 
synthesis technique, when used in conjunction 
with a finite element end matrix interpretive 
computer program such as SAMIS, provides a 
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powerful Cool for dynamics anulysls of struc¬ 
tural models with largo numbers of degrees of 
f rcedom. 

Bused on results from the structural 
dynamic analysis, it was concluded that the 
500 + 100 Hz pressure oscillation forcing 
function could excite several major aft dome 
structural resonances. The dome could be ex¬ 
pected to respond in any of the first four 
basic dome modes. In addition, the hardware 
(nozzles, actuators, and NCU) respond in 
several different modes in the frequency range 
of interest. It would be necessary to calculate 
the system response to an internal oscillating 
pressure to determine the extent of participa¬ 
tion of a particular component in a particular 
mode , 
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COM PA H ISON OK CONSISTENT AND l.l MPKI) MASS MAT KIN 

SOLUTIONS WITH THE EXACT SOLUTION KOH A 

SIMPLY-SU PPOH TED TIMOSHENKO HEAM 

C. Uuum, J. T Hit'tu'V 

Oibbs #. Cox, Im . 
Ni 'V York, Now York 

and 

A. Jcnks 
Esso International Inc. 
New York, New York 

A wide variety of consistent mass matrix schemes have been developed 
for use in finite element analysis. The methods have been proposed in 
order to increase the accuracy of solutions without increasing the num¬ 
ber of mass points. However, in dynamic analysis the fundamental 
criterion for model complexity is the number of degrees of freedom of 
the model and not the number of mass points. In order to determine 
the comparative accuracy of lumped mass and consistent mass (using 
McCalley's formulation) matrices, a series of test problems were 
solved and the solutions compared with the exact solutions for Timo¬ 
shenko beams. The solutions were obtained for simply-supported 
beams of various L/D ratios and various levels of model complexity. 
The comparison was carried out for three criteria: frequency, mid¬ 
span bending moment due to a velocity-shock and modal mass. The 
study indicated that a lumped mass matrix is a better mathematical 
model of a simply-supported beam than a consistent mass matrix of 
the same number of degrees of freedom when frequency is the pri¬ 
mary criterion. The lumped mass matrix is less distinguishably 
better when comparing midspan bending moments. For the modal 
mass criterion the consistent mass matrix has higher accuracy. The 
implications of this study for DDAM are also discussed. 

INTRODUCTION 

The extensive use of the finite-element 
method, especially in dynamic analysis, has 
generated considerable interest in the accu¬ 
rate representation of both the stiffness and 
the mass of various structural elements. 
Beams, in particular, have been examined 
with the intent of providing a matrix formula¬ 
tion which best represents the distributed 
character of the mass in a beam. Formula¬ 
tions which have off-diagonal terms are called 
consistent mass matrices, as opposed to 
lumped mass matrices which have only diago¬ 
nal terms. Further, consi stent mass matrices 
generally assign both translational and rota¬ 
tional degrees of freedom to each end of a 
beam segment, while the usual practice with 
lumped mass matrices is to account for only 

translational degrees of freedom. It is 
generally recognized that the accuracy of the 
results of a finite-element analysis is 
directly related to the level of complexity of 
the mathematical model, but model complex¬ 
ity carries a concomitant increase in cost. 
Consistent mass matrices have therefore 
been proposed in order to increase the 
accuracy of solutions without increasing the 
number of mass points in the model of a beam. 
However, in dynamic analysis the fundamental 
criterion for model complexity is the number 
of degrees of freedom (dof) of the model and 
not the number of mass points. 

Simply-supported beam models are shown 
in Figure 1 with six degrees of freedom each 
for both the consistent and lumped mass 
matrices. The consistent mass model has 

* Mr. Jenks was with Gibbs & Cox, Inc. at 
the time this work was done. 
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Fig. 1 - Typical mass matrix models 

two nucispan mass points, each of which has 
a translational and a rotational degree of 
freedom. In addition, the end points each have 
a rotational degree of freedom since a simply- 
supported beam has rotational freedom, but 
not translational freedom, at the ends. It 
should be noted in passing that the dof of a 
consistent mass model is influenced by the 
end conditions of the beam being modelled, 
e. g. . a two mass point consistent mass model 
of a fixed-fixed beam would have only four dof. 
The lumped mass model has six mass points, 
each of which has a translational dof. The 
number of dof used in a lumped mass model is 
therefore independent of the end conditions of 
the beam being modelled. 

Degrees of freedom may be thought of as 
the analyst's coin of the realm in that they 
govern the computational size of a problem. 
With this in mind, the accuracy of a consis¬ 
tent mass matrix which requires six dof (two 
translational and four rotational) to provide a 
two mass point representation of a simply- 
supported beam should properly be compared 
with that of a six mass point lumped mass 
model which contains translational dof only. 
Such a comparison, at various levels of model 
complexity, is carried out in this paper. 

PHOHl.KM 

In order to determine the comparative 
accuracy of lumped mass and consistent mass 
models with equal numbers of dof, a series of 
test problems was set up. Kxact solutions for 

Timoshenko beams were also obtained to use 
as standards for calculating the errors in the 
lumped mass and consistent mass solutions. 
The specific problem chosen for investigation 
was that of a simply-supported beam of circu¬ 
lar cross-section with a diameter of one foot. 
This beam was then analyzed with lengths of 
3, 8 and 20 feet, providing length to diameter 
(L/D) ratios of 3, 8 and 20, respectively. The 
beam was assumed to be subject to an 
idealized base motion input and the resultant 
inertia forces and stresses were calculated in 
accord with the Navy's Dynamic Design 
Analysis Method (DDAM), as outlined in 
Reference (1). 

The choice of simply-supported beams 
was based on making the problem both 
tractable and relevant. Since the solution for 
the frequencies of a simply-supported Timo¬ 
shenko beam as contained in Flügge, Reference 
(2), is a more convenient transcendental equa¬ 
tion than any other type of support, the 
accuracy of the solution for any number of 
modes is more easily maintained. Further, 
the simply-supported beam is a frequently 
occurring primary element in the dynamic 
shock analyses with which the authors have 
been involved, e. g. . turbine shafts. Similarly, 
the range of L/D ratios chosen for the analysis 
is predicated on ratios considered typical of 
shipboard equipment. 

The material contained in Flügge was ex¬ 
tended to allow calculation of the modal mass, 
which is defined in Reference (1) as a measure 
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of the reaction force exerted on the input 
base, and the midspan bending stress. 

The particular consistent mass matrix 
formulation used for this study is the one 
developed by McCalley. Reference (:i). This 
formulation is more general than the well- 
known Archer formulation, Reference (4), in 
that it includes the effects of shear deforma¬ 
tion and rotary inertia. U is considered in 
the two papers by Mains, References (5) and (6). 
to be the most accurate consistent mass for¬ 
mulation and was also used as a standard of 
comparison in the paper by Kapur, Reference 
(7). A consistent mass matrix with four trans¬ 
lational dof at four mass points, derived by 
eliminating rotational dof from the McCalley 
formulation, was also included with the desire 
to test the accuracy of a matrix having only 
translational dof, but still retaining off- 
Jiagonal terms. The present study compares 
the lumped and consistent mass matrix solu¬ 
tions at various levels of complexity, i. e. , 
varying numbers of degrees of freedom from 
3 to 8, with the solutions for Timoshenko 
beams. Comparison is also made to the three 
degrees of freedom, lumped mass, solution 
by Harrington and Vorus, Reference (8). 

The solutions in this study involve far 
fewer dof than those of Mains and are thus 
thought to be more representative of the com¬ 
plexity level generally used for dynamic shock 
analyses of shipboard equipment. It is to be 
noted that in both the lumped and consistent 
mass solutions, as well as the Harrington and 
Vorus solutions, flexibility matrices which 
included the effect of shear deflection were 
used. 

The lumped mass matrices used in this 
study were set up by spacing the mass points 
equally along the beam. The weight at each 
mass point was equal to: 

where w * weight at each point, lbs. 
W * weight of the entire beam, 

lbs. 
n = number of mass points, i. e., 

number of degrees of 
freedom 

Then the weight fraction of the entire beam 
represented in the "n" dof model is: 

where F * weight fraction 

In the tests of the Harrington and Vorus 
formulation the spacing was one mass point at 
. 173 of the beam length from each end with 
one mass point at the center. The weight 
fractions were . 265 W for the side points and 

. 363 W for the center point. These are the 
length fractions and weight fractions recom¬ 
mended in the paper by Harrington and Vorus 
as the optima for a simply-supported beam 
represented by three lumped masses. Thus 
the Harrington and Vorus model has 89 per 
cent of the beam weight represented, whereas 
a three degree of freedom lumped mass model 
would contain only 75 per cent of the beam 
weight. The consistent mass matrices cannot 
be discussed on the same basis because of the 
off-diagonal terms. 

The many criteria by which the accuracy 
of solution to a problem can be compared were 
reduced to three; namely, frequency, modal 
mass and midspan bending stresses due to a 
velocity-shock base motion. The criterion of 
frequency is considered of primary importance 
because of the necessity of accurately calcu¬ 
lating the effects of resonances with other 
components in a complex equipment model. 
The authors have experienced instances of 
very high "g" loads where a single element 
in a model is in resonance with all or several 
of the other elements in the model in one 
particular mode as though the model were 
acting as a 2 mass system. If the single 
element is a bending element then the accuracy 
of frequency calculation may be the most 
critical aspect of the bending element model. 
The subject of resonances in DDAM is well 
discussed in References (9) and (10). The 
importance of frequency must also be con¬ 
sidered because of dependence of accelerations 
on frequency for a velocity-shock input. The 
modal mass is used to determine foundation 
forces and is therefore of importance where 
the beam element is mounted within an equip¬ 
ment or on a foundation which is itself being 
stress analyzed. Since dynamic shock 
analyses for naval equipment are used pri¬ 
marily to determine the stresses induced by 
the shock, the accuracy of midspan bending 
stress values is also examined. For this 
study a velocity-shock input of 1 inch per 
second without modal weight dependence was 
used because it was felt that modal weight 
dependence of the input as described in Refer¬ 
ence (1) might cloud the issue. 

For purposes of clarity it should be noted 
that for a simply-supported beam only the odd 
numbered modes provide a non-zero response, 
e. g. , a four dof model will provide non-zero 
midspan bending stresses only for the first 
and third modes. In this comparison no 
attempt is made to comment on the merit of 
answers in terms of conservative or noncon¬ 
servative results, i. e. . higher than correct 
or lower than correct stresses, only on the 
accuracy of a solution when compared to the 
Timoshenko beam solution. 

RF.SUI.TS 

A plot of the per cent error in frequency 
as a function of mode number for an 1,/1) of 20 
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4 OOF CONSISTENT 

4 OOF TRANSLATIONAL 
CONSISTENT 

6 OOF CONSISTENT 

8 O OF CONSISTENT 

+ 5 % ERROR 

6 O O F LUMPED 

-5% ERROR 
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1ST 2ND SRO 4TH MOOES 

Fig. 2 - Frequency error versus mode number 

is shown in Figure 2. Six different curves are 
plotted, one each for three consistent mass 
matrix solutions according to McCalley. one 
for a translational consistent mass matrix 
solution and two for lumped mass matrix solu¬ 
tions. The most obvious result to be gleaned 
from this plot is the greater accuracy of the 
lumped mass solutions for an equal number of 
dof. For example, the frequency error for 
the third mode (in a 6 dof solution) is 13 per 
cent for a consistent mass solution, while it 
is less than 1 per cent for a lumped mass 
solution. 

The grouping of the solutions, in Figure 
2, by error direction also merits considera¬ 
tion. The consistent mass matrices deviate 
on the side of positive errors. This would 
appear to be a characteristic of consistent 
mass matrices. The lumped mass matrices 
characteristically deviate to lower frequency 
values. 

A more detailed examination of the curves 
shows a useful "rule of thumb" is that the 
number of accurate modal frequencies in con¬ 
sistent mass matrix solutions is equal to the 
number of translational dof in the matrix, 

i. e., the six dof consistent mass matrix has 
two translational dof and exhibits two accurate 
frequencies. In this context, any frequency 
with an error of less than 5 per cent is con¬ 
sidered to be of acceptable accuracy. The 
consistent'mass matrix was derived by 
McCalley on the basis of energy in the 
deflected beam. It must therefore be con¬ 
cluded that there is little correlation between 
the accurate representation of energy in a 
mass matrix and the accuracy of the fre¬ 
quencies which that matrix generates. 

The work of Harrington and Vorus which 
optimises a three degree of freedom lumped 
mass matrix by varying the mass quantities 
and locations was also examined. The 
Harrington and Vorus formulation leads to 
large errors in third-mode frequency values 
and thus does not provide improvement equal 
to one dof, 1. e., is not as good as a four 
degree of freedom lumped mass solution. The 
results for this formulation are not a smooth 
function of the mode number and are not shown 
on Figure 2. 

Since the initial results of this study indi¬ 
cated a correlation between the number of 
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translational dof and the number of accurate 
frequencies, a pure translational consistent 
mass matrix was generated for the case of 
four dof with an L/D ratio of 20. The results 
for this case are plotted on Figure 2 and it 
can be seen that there is improvement over 
the four dof consistent mass matrix of 
McCalley but that the results are still not as 
good as the four dof lumped mass matrix. 
This is especially interesting because both the 
four dof lumped and the four dof translational 
consistent mass matrices have the same 
number of mass points and are therefore used 
with the same flexibility matrix. This may be 
taken as further indication of the lack of cor¬ 
relation between energy and frequency. The 
lumped mass matrices exhibited very good 
frequency accuracy for at least one half the 
number of dof. However, the translational 
consistent mass matrix did not adhere to the 
accuracy criteria of either the consistent mass 
matrices or the lumped mass matrices. 

A complete tabulation of frequencies, for 
all values of L/D, is contained in Table 1. 
An examination of Table 1 will show that the 
trends illustrated in Figure 2 are substan¬ 
tially unchanged at the L/D values of 3 and 8. 

Less pattern emerges when the midspan 
bending stress is considered, even if con¬ 
sideration is limited to an L/D ratio of 20. An 
important limitation must be observed in that 
large frequency arrors will cause midspan 
bending stress errors due the dependence of 
the input acceleration on frequency. These 
frequency induced errors in the midspan bend¬ 
ing stress may be of a compensating nature, 
e. g., the third mode frequency error for a 
four dof consistent mass is +26. 3 per cent 
with a midspan bending moment error of -7. 8 
per cent. Without the frequency error the 

midspan bending stress error would have been 
-34. 1 per cent. These compensating errors 
may not be undesirable but should be used with 
some trepidation since they would not always 
occur with an input motion more complex than 
the simple velocity-shock used in this study. 
Table 2 shows the per cent errors in midspan 
bending stress values for an L/D of 20. Table 
2 conta'-s only those values of midspan bend¬ 
ing sti<-~s for which the frequency errors were 
minimal, i. e. , no bending stress data with 
compensating errors are included. The 
advantage of the lumped versus the consistent 
mass matrix is again evident but not as 
strongly. Further, as seen in Table 2, the 
accuracy of the stresses is very much less 
than that of the frequencies. A complete 
tabulation of midspan bending stresses for all 
values of L/D is contained in Table 3. 

It is in the calculation of modal mass that 
the consistent mass matrices prove more ac¬ 
curate than the lumped mass matrices. Recall 
that the modal mass for any one mode of a 
multiple mass system can be thought of as the 
mass in a single degree of freedom system 
which has the same frequency as the one mode 
and produces the same base force for the same 
input. In calculating modal mass the authors 
found that the proper manner of dealing with 
the consistent mass matrix was not covered in 
Reference (3) but rather that McCalley's class 
notes, Reference (11), were found necessary. 
The modal mass correlation is therefore of 
special importance where the bending member 
is part of a larger system and stresses in sup¬ 
porting members are to be calculated. The 
modal mass comparison is presented in Table 
4 in which the greater accuracy of the consis¬ 
tent mass matrices particularly for an L/D 
ratio of 20 can be seen. This superiority is 
most evident when one compares values for 

TABLE 1 
Frequencies in Radians per Second 

L/D * 

Mode No, ■_1 

Matrix Type dof 

Exact 
Harrington 
4 Vorus 
Consistent 
Translational 
Consistent 
Lumped 
Consistent 
Lumped 
Consistent 

3 

4 

4 

4 

6 

6 

8 

4055 

4090 

4125 

4139 

4120 

4145 

12998 23466 

13440 17170 

17850 36320 

13150 22000 

14170 35600 

13370 23280 

4 

34300 

65930 

28000 

47100 

31870 

627,4 

625.6 

631,3 

829.9 

625.0 

630.1 

5004 

3772 

6823 

4901 

6120 

5044 

8 

1 2 3 

2387 

2537 

2783 

2402 

2435 

2415 

20 

2 3 

8197 

13590 

101.9 404.1 896.5 1564 

101.4 430.5 673.9 

102.4 452.5 1132 2098 

104.6 445.9 1084 1944 

7247 

10760 

8039 

102.0 

102.0 

102.0 

102.0 

403.9 

410.0 

404.9 

408.4 

880.8 

1014 

896,1 

919.0 

1415 

1867 

1543 

1793 
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while it ia 15. 078 for a comparable lumped 
maas solution. The value of 16. 064 is quite 
close to the exact value of 16. 103. 

only thus*- modes which have acceptable fre¬ 
quency accuracy (less than 5 per cent error) 
For example, the modal mass for mode 1 is 
16. 064 for a 4 dof consistent mass solution, 

TABLE 2 
Per Cent Errors in Bending Stress Values 

(L/D => 20) 

Matrix Type dof Mode No. 

Harrington & 
Vorus 

Consistent 

Translational 
Consistent 

Lumped 

Consistent 

Lumped 

Consistent 

4 

4 

4 

6 

6 

8 

4-11. 6 

+16. 5 

- 2. 2 

- 4. 6 

- 4.2 

- 2.2 

+ 5.1 

* 

-45. 2 

« 

-21.4 

+28. 2 

+ Not tabulated because of large frequency 
error in this mode. 

TABLE 3 
Bending Stress Values in Pounds Per Square Inch 

L/D ■ 

Mode No. 

3 8 

1 3 

20 

1 3 

Matrix Type 

Exact 

Harrington & 
Vorus 

Consistent 

Translational 
Consistent 

Lumped 

Consistent 

Lumped 

Consistent 

dof 

303. 2 52. 8 

373. 8 83. 2 

383. 6 22. 7 

321.5 38.4 

323. 3 70. 9 

330. 2 54. 2 

359. 0 96. 9 

406. 8 132. 0 

423. 3 33. 3 

347. 9 

350. 5 

356. 9 

57. 7 

85. 1 

83. 8 

369.2 118.0 

412.1 147.7 

430.2 108.7 

361.) 79.7 

352. 1 

353. 8 

361. 1 

64. 7 

88. 1 

92. 7 

388.2 151.2 
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TABLE 4 
Modal Maas Comparison 

L/D = 

Mode No. 

Matrix 

Exact 

Harrington & 
Vorua 

Conaiatent 

Translational 
Conaiatent 

Lumped 

Consistent 

Lumped 

Consistent 

dof 

4 

4 

4 

6 

6 

8 

2. 307 . 243 

2. 387 . 279 

2.280 .071 

2. 262 

2. 341 

2. 338 

. 126 

. 171 

. 192 

6. 392 

6. 384 

6. 032 

6. 452 

6. 235 

. 678 

. 725 

6.371 .811 

. 336 

. 677 

. 511 

20 

16.103 

15. 969 

1. 769 

1. 806 

16.064 2.238 

15.864 1.275 

15. 078 

16. 104 

15. 595 

16. 104 

. 840 

1. 817 

1. 277 

1. 695 

Possible future extensions of this investi¬ 
gation should be mentioned. The accuracy of 
modal mass representation by the consistent 
mass matrices leads to an interest in the 
investigation of beams flexibly supported at 
the ends, rather than rigidly supported. 
Further, it would also be of interest to extend 
the investigation of beams with a small L/D 
ratio to higher numbers of degrees of freedom 
so as to examine convergence of the solutions 
obtained with different types of matrices. 

The study of fixed-fixed beams would also 
be of interest both by itself and as a mode 
shape of a multi-span beam. Since, for a uni¬ 
form equally-spaced multi-span beam the 
modes excited by s velocity-shock input are 
those in which the separate spans are closely 
approximated by s fixed-fixed beam. Further, 
a consistent mass matrix model requires no 
dof at the end points of a fixed-fixed beam, 
1. e., a 6 dof fixed-fixed beam has 3 mass 
points compared with only 2 mass points on a 
6 dof simply-supported beam, and may there¬ 
fore evidence important differences when 
compared with a lumped mass model. 

CONCLUSIONS 

The single most important conclusion of 
the present study is the greater accuracy of 
frequencies determined by a lumped mass 
matrix when compared with a consistent mass 
matrix. The study is, of course, based on a 
simply-supported beam represented by a 
limited number of dof. The conclusion that 
lumped mass matrices are superior must be 
tempered by the less conclusive results for 
midspan bending moment and the opposite 
conclusion reached in examining modal mass. 
Each analyst should consider the relative 
importance of the various parameters for a 

particular case before deciding on a 
particular type of matrix formulation. 

Several recently developed computer 
programs have used various consistent mass 
matrix schemes to represent bending ele¬ 
ments. The present study brings the purpose¬ 
fulness of the added complexity of such com¬ 
puter programs very much into question for at 
least simply-supported beams. The entire 
dynamic analysis community must now 
evaluate each individual instance of the use 
of consistent mass matrices to insure the 
necessity for and appropriateness of the 
added complexity. 
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DISCUSSION 

Mr Werner (Aebablan Jacobsen Associates): 
I am troubled by something I saw in your first slide 
and that is in your lumped mass method, why did you 
not also look at both translational and rotational de¬ 
grees of freedom? 

Mr. Baum: We could have done that as well. 
We had a limited amount of time, and we limited 
ourselves to these models. The lumped transla¬ 
tional-only arrangement provides the largest number 
of mass points for a given number of degrees of 
freedom. Since this appeared to be working so well, 
and since we had limited amounts of time. we spent 
a little more time on the consistent mass matrix 
solutions in the hope of getting more accuracy if we 
played with various forms. 

Mr. Werner: I would think that in checking the 
two methods this would be a more reasonable way to 
do it if you are looking at the same model in both 
cases. I do not think you were looking at the same 
model for both cases. 

Mr. Baum: We were looking at the same model 
in the case of the translational consistent mass 
matrix. In that sense we were, and I also think that 
the essential thing was that we had an absolute 
standard with which to compare it and we found that 
this rather naive lumped mass matrix form com¬ 
pared extraordinarily well. We went on to improve 
on that. Also. I think that for the L, U ratio of 20 
there probably would not be much difference. For 
the shorter L/D ratios there might have been a con¬ 
siderable difference and in that case, as you will be 
able to see in the paper, some of the data are not 
quite as conclusive for an L/D ratio of 3. In that 
case I think the inclusion of the rotational inertias 
might have been quite appropriate. 

Mr. Sort (Naval Research Laboratory): One of 
the things about McCalley's mass matrix is that he 
assumes that he has a Timoshenko beam between 
each pair of mass points. It would seem to me that 
you should get the exact answer if you were using it 
to calculate the response of a Timoshenko beam. 

Mr. Daum: I think you would get the exact 
answer if you were using an infinite number of 
degrees of freedom, which in essence is what you 
are dealing with in the exact answer, is it not? 
That occupies a lot of space in the computer. 

Mr. Navlor (Canada) : What was your standard 
for comparison of errors ? 

Mr. Baum: The standard for comparison of 
errors was the exr -Mutton for a Timoshenko beam. 
Specifically we took tne work that is contained in 
Flugge's Handbook of Engineering Mechanics, with 
which you may be familiar, and we extended that to 
get the stresses and modal mass. 

Mr. Navlor: How well does that compare with 
actual life? h /ou had a natural physical specimen 
how do these various comparisons compare with the 
actual measured frequencies ? 

Mr, ftaum: We did not do any actual test work. 
However. I think that that form of the solution is often 
considered to be a good standard short of some very 
complex forms. We do not have any experimental 
facilities and we had no way of getting experimental 
data. 

Mr. Lelbowltz: (Naval Ship Research and De¬ 
velopment Center) : On a graph you presentea per- 
cenlage error; what was your standard or criterion ? 
What was your true value ? You Included in your 
analysis bending and shearing flexibility. What did 
you measure your finite element result against ? 

Mr. Baum: Against the solution for a Timoshenko 
beam. 

Mr. Leibowitr.: How was it obtained? 

Mr. Baum : It was obtained by the method con- 
tained in Flügge which provides a very simple form 
of a transcendental equation for the case of a simply 
supported beam. For other types of support the 
transcendental eouatlon becomes considerably 
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■tickler. I do not remember the exact form but 1 
think it la juat the alne form. Thia proved to be quite 
a workable form of the equation and waa one of the 
things that influenced ua to conalder a simply sup¬ 
ported beam. The transcendental equation takea 
meaaier forma for other types of end conditions. 

Mr. Lelbowllz: At the Naval Ship Research and 
Development Center some IS years ago we tackled 
thia problem and we got an exact solution to the 
Timoshenko equation Including shear and bending 
flexibility. It waa of a transcendental form. We 
found it took at least 20 modes, 20 degrees of free¬ 
dom, to gat within 1 percent of error for about 6 
modes of vibration. We tried 10, 20, 40 and 80 de¬ 
grees of freedom. We went down to 10 modes, and 
the results were not very good. I am rather sur¬ 
prised that you got such excellent results at 6 modes, 
6 degrees of freedom. 

Mr. Baum! It may be that the L/D ratio of the 
beam had ñ Influence on that. The exact accuracies 
were 2 percent or less. This is only for the first 
mode. 

Mr. Lelbowltz! You can Ignore the shear for the 
first mode but you cannot do It In your higher modes. 
We tried staggering the various properties of the 
beam. 

Mr. Baum! It Is possible that the form that we 
used was slightly different. I will continue this 
discussion later if I may. Maybe you can reference* 
the work that you were discussing. 

*Editors note. R.C. Lelbowltz and E. H. Kennard, 
Theory of Freely Vibrating Nonuniform Beams In¬ 
cluding Methods of Solution and Applications to 
Ships. TMB Report 1317, May 1961. 

131 



* BLANK PAGE 



APPLIC.wIPa OK APPROX l'U'Ii: I P„\XSM 1SSI ON MURICKS 

TO DESCRIBE TRANSVERSE BEA>' VIBRATION’S 

R. I). Rocke 
R.injit Roy 

University 01 Missouri-Rolla 
Polia, Missouri 

A study is made of the application and accuracy of using approximate trans¬ 
mission matrices to determine principal modes of uniform and nonuniform 

continuous Bemoulli-Euler beam elements. The work emphasizes three aspects 
of the approximate transmission matrices: obtaining the matrices to dif¬ 
ferent levels of accuracy, evaluation of resulting error levels in principal 
mode frequency roots obtained via these matrices, and the application to 
determining the frequency roots for several cases of nonuniform beans. 

The approximate transmission matrix is obtained by expanding the differential 

equation which defines the transmission matrix in a Maclaurin series about the 
origin of a beam segment. This method as a model to the continuum, has been 

compared to commonly used lumped parameter models. These comparisons are 
based upon the principal mode frequency root errors and indicate the affect 
of the series truncation on the convergence of the frequence roots. 

INTRODUCTION 

A transmission matrix describes the manner 
in which sinusoidal forces and motions are 

transmitted through a linear elastic element 
during steady state conditions. The use of 

transmission matrices in describing mechanical 
vibration problems in lumped parameter or con¬ 
tinuous form has been relatively recent. The 
earliest application of this method was the 

steady state description of four terminal 
electrical networks in which case the method 

is commonlv designated "four pole parameters". 
Molloy [1] was one of the first to systemati¬ 
cally apply four pole parameters to acoustical, 

mechanical, and electromechanical vibration 
problems. Pestel and Eecki* (2] have cata¬ 

logued transmission matrices, which they term 
transfer matrices, for uniform elastomechanical 
elements up to twelfth order. Rubin [3] has 
extended the application of transmission ma¬ 
trices through a completely general treatment. 

The objective herein is to present a means of 
obtaining an approximate tranamlssion matrix 

for non-uniform continuous systems where closed 
form solutions are not attainable. The method 
is applied to the particular case of trans¬ 
verse vibrations of Bernoulll-Euler beams. 

REVIEW OF TRANSMISSION MATRICES 

A general transmission element is shown 
in Fig. (1). The state vector, {V}, is a 

column vector consisting of elements which 

describe the forces (and/or moments) and dis¬ 

placements (translational or angular) at the 
point of Interest. 

Fig. 1 General Transmission Element 

A common form of the transmission matrix is 
given by: 

{V}input ■ I1* ^output 

where [T] is designated the "Forward Trans¬ 
mission Matrix". The arrows in Fig. (1) indi¬ 

cate the direction of positive forces and dis¬ 

placements. The forces in the respective state 
vectors are those applied to the input and 
those applied by the output ends. 

The transmission matrix approach is best 
suited for elements in an end-to-end arrange¬ 
ment, e.g., several elements interconnected or 

output 
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a single element subdivided Into N-l segments 

as shown In Fig. (2). 

Illustrated by considering a dx segment of a 

Bernoulli-Euler beam element as shown In Flg.(3)> 

T output 2 Input 

Likewise, one can write 

(I1,) - [T2] {Y-j} 

For a negative displacement at end B of the ele¬ 
ment the forces and moments acting on the ele¬ 
ment are as shown In Fig. (3). Taking sinusoi¬ 

dal displacements: 

{Yj} - [T3] 

^N-l* “ lTN-l' 

w » w sin wt 
o 

d w 2 
-- . - 10 W 

dt 

where the state vector at any point Is desig¬ 

nated as: 

{Yj}; 1 - 1, 2, 3,-n 

representing the state vector of the i1*1 seg¬ 

ment at the Input end. Thus, for the total 

system: 

Summing forces on the dx element for dynamic 

equilibrium gives: 

■ pA(x)w^w. (3) 
dx 

Summing moments about point A and neglecting 

terms of order (dx)2 vives: 

* [Tj] [T2] [Tj]-tTN-l]{y (2) (4) 

which Is obtained by successive substitution of 

state vectors. 

For a transverse Bernoulli-Euler beam 

element the state vector at point 1 is: 

1 

{Yj} 

where: ■ transverse shearing force at 
point 1 

Mj » bending moment at point 1 

Wj ■ transverse displacement at point 1 

i. • slope at point 1 

For continuous systems one can also form 

a differential equation which defines the state 

vector for a given type of element. This is 

'rom basic mechanics of materials: 

d^w 
EI(x) yf * - M 

dx 

d£ M 
dx " " EI(x) 

(5) 

dw . 
-j— • ¢. 
dx 

(6) 

Collecting eqs. (3) - (6) in matrix form gives: 

d_ 

dx 

0A(x)uT 

0 

0 

0 -1/EI(x) 0 

(7) 

ihich is the differential equation defining the 
itate vector consistent with Bernoulli-Euler 
jeam theory and of the form: 

d(y(x)} 
dx 

[A(x>] fffx)} (8) 
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’o O Z (x) o" 
-10 0 0 

0 0 0 1 

0 -Y(x) O 0 
• ■ 

Z(x) « nA(x)u^ 

Y(x) - 1/El (x). 

GOVERNING DIFFERENTIAL EQUATION 

where: 

[A(x)] 

APPROXIMATE TRANSMISSION MATRICES BY POWER 

SERIES EXPANSION 

For non-uniform systems where a closed 
form solution cannot he found for eq. (12) an 

approximate method would he applicable. Pestel 
and Leckle [2] have briefly described how the 
Runga-Kutta and Picard iteration methods can be 

employed to numerically integrate the state- 
vector equation, eq. (8), resulting In a trans- 

(10) mission matrix. A more direct method is to 
expand the differential equation defining the 

transmission matrix In a Maclaurin series and 
retain as many terms as necessary to provide 
the accuracy desired. 

The technique used herein to obtain the 

transmission matrix Is relatively recent, used 
by Pipes (4J, and is pertinent to the expansion 

methods to be employed to obtain approximate 
forms. The forward transmission matrix, as It 

relates the Input state vector of a continuous 

element to the state vector at any particular 
point x along the element, is given by: 

if«»} - [T(x)] CKx)} (11) 

Consider a single transmission segment and 

expand (T(x)] in a Maclaurin series about the 
origin of this continuous segment giving: 

2 
[T(x)l » [T(0)] + x[T(0)]' + —- [T(0)]" 

3 

+ Yj" [T(0)]"' +--- higher order terms(17) 

where {'/(O)} represents the state vector at the 
input end, l.e., where x ■ 0. 

Differentiating eq. (11) and eliminating 
{^(x)} which cannot be a null vector for a non¬ 
trivial solution gives: 

[T(x)] - - [T(x)J [A(x)] (12) 

which is a first order matrix differential 

equation defining the transmission matrix for 
the continuous system of interest. 

One can obtain as many initial conditions 
as required to solve eq. (12) by shrinking 
Ax -♦ 0 in eq. (11) which gives: 

(1-(0)} - [T(0)1 {1-(0)} 

[T(0)1 - [1) (13) 

Substituting this result into eq. (12) gives 

[T(0)] ' - -(T(0)][A(0)] - -(A(0)]. (14) 

Further differentiation of eq. (12) and sub¬ 

stitutions from eqs. (13) and (14) elves: 

(T(0)]" - +[A(0)]2 - [A(0)]’ (15) 

[TÍO)]"’ - -[A(0) ] 3 + [A(0) ]1 (A(0) ] + 

2 (A(0)](A(0)]1 - (A(0)]" (16) 

This process can he continued to obtain as manv 

initial conditions as required to evaluate the 
constants which arise in solving eq. (12). 

The condition for the Maclaurin series that the 
function be piecewise analytic in this case re¬ 

quires through eq. (12) that the variables in 
[A(x)] be piecewise analytic. In particular 
these functions must be analytic in the region 
between the points i and i+1 of the continuum 
for which the transmission matrix is being ap¬ 
proximated. 

If one uses the initial conditions from 

eqs. (13) through (16) and substitutes them 
into eq. (17) we obtain the approximate trans¬ 
mission matrix in terms of the system parameters 

2 

[T (x) ] - [1} - x[A(0) ] + ~ I [A(0)]2 

[A(0)]+ 3T I -lA<°>)3 + 

[A(0)]1[A(0)] + 2[A(0)](A(0)]’ - (A(0)]" | 

+-0 ( x ) "* + --. (18) 

This expression is valid for any svstera once 

the governing [A] matrix has been determined. 
The above series form of the transmission matrix 
has an infinite number of terms. The objective 
herein has been to assess the accuracy of the 

series when applied to a ilernoul 1 i-Eulcr beam 

element and truncated after the second, third, 
and fourth terms. 

EVALUATION OK Till: APPROXIMATE TRANSMISSION 
MATRIX 

To evaluate the uccuracv ol describing 
principal modes via the approximate trans¬ 
mission matrix, several classes of uniform and 
non-uniform beams were treated. Onc-d¡menslona 1 
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•; vs terns, i.e., vibration systems governed by 

tiie uue“d i mens lona 1 wave ettuatlon* have been 
previously examined |5). Kor the one-dimensional 

svstem the matrix is of second order and It has 
been found that a matrix Including the first 

tour terms describes principal modes to a level 

ot accuracy equal to or better than the best 

lumped parameter models, 

t.rror criteria chosen for the accuracy 

comparison was that of the principal mode fre¬ 

quency root error. This parallels comparisons 

made by other authors [bl, 17), [8], [9) for 
several types of lumped parameter models and 

the approach termed the consistent mass matrix. 

Frequency root errors were assessed when the 
approximate transmission matrix was applied to 

the uniform beam with fixed-fixed and fixed- 
free boundary conditions. Also, several cases 
of non-uniform beams were treated with fixed— 

pinned and fixed-free ends. 

The houndarv conditions chosen with the 

uniform beam were selected such that a compari¬ 

son could be made with commonly used lumped 
parameter models which display the following 

characterlsticsi 

(1) If neither end is free the errors are 
A 

proportional to 1/N for large N. 

(2) In cases where one or both ends are 
free the errors are proportional to 

1/N“ for large N. 

Hence, an evaluation with the chosen boundary 

conditions should provide a basis of comparison 

between the lumped parameter models and the 

present approach. 

For the uniform beam the two functions 

occurring in lA(x)l are constants; hence, 

eq. (18) reduces to: 

2 , 
(T(x) ] - II] - X(A(0)] + J- [A(0)] - 

^ [A(0)]3 +--- (19) 

In appendix A the matrix [T(x)] is expanded in¬ 

cluding the first foui- terms as shown above. 

The matrix describes one segment of a beam. 
For a beam of length L divided into N segments, 

X » L/N. Applying eq. (2) one can write: 

^r^ Input ' lT'^output 

where [T] is the product of N matrices, which 

in this case are equal, all of the form of eq. 
(19). To find the frequency roots a 2x2 fre¬ 
quency determinant, selected from the total 
transmission matrix according to the boundary 

conditions chosen, is Iteratively solved. 

This procedure was completed for the two 

boundary conditions chosen and the errors in 

the first three principal mode frequency roots 

were examined as a function of N. Figures 4 
and 5 give typical results. It was found that 
these errors behave approximately proportional 
to 1/n2 when the first two or three terms in the 

a 
series are used and as 1/N when the first four 

terms are retained in each matrix. 

An evaluation of the frequency root errors 

was also made for several non-uniform beams. 

First, a linearly tapered rectangular section 

with boundary conditions of fixed-pinned ends 

was chosen. Mabie [10] has treated this prob¬ 
lem and a closed form solution is available to 

establish frequency root errors. The trans¬ 
mission matrix was established for a general 

segment as shown in Fig. (6). 

Fig. 6 Non-Uniform Element 

For a beam element as shown in Fig. 6 where 
the depth and/or height vary linearly, the area 

and moment of inertia are polynomials of the 

form: 

A(x) - Ai(l+c1x+c2x2) I (2o) 

l(x) - l1(l+B1x+B2x3+B3x3+B4x4) I 

where subscript i refers to the input face and 
p and E have been asaumed to be constant. The 
approximate tranemiasion matrix including four 

terms in the series is presented for a segment 

of the linearly tapered beam in appendix B. 

A second non-uniform system used was a 

linearly tapered circular cross section beam. 

In this beam the diameter varies linearly. It 
can be shown that the cross sectional area and 

inertia of a typical segment for this beam sat¬ 
isfies the same order polynomial as those for 

the beam in Fig. 6, see eq. (20). The Ct and 

B1 constants for this case are also given in 

appendix C. Boundary conditions chosen for the 

circular beam were fixed-free ends. This cor¬ 
responds to a case treated by G. W. Housner [11] 

where the exact frequency roots are given. 

Two typical sets of curves are presented 

here to describe the error comparisons for the 

non-uniform systems. Figure 7 shows the error 

level In the first principal mode when N equal 
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Fig. 4 First Mode Frequency Root Errors 

For Uniform Beams with Fixed-Fixed 

Ends 

Fig. 5 First Mode Frequency Root Errors 
For Uniform Beams Vith Fixed-Free 

Ends 
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For Rectangular Section Beams With 

Fixed-Pinned Ends (H"0.5 and D*1.0) 
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length segments are used to describe a fixed- 

pinned beam which has constant width and a var¬ 
iable depth with the depth ratio (D) equal to 

0.5. Figure 8 represents the same tvpe of com¬ 
parison for a constant depth, variable width 

beam whose width ratio (H) was chosen to be 0.5. 
Note both sets of curves describe the error be¬ 

havior for approximate transmission matrices 
which retain two, three, or four terms In the 

series. Results for the second and third mode 
frequency roots were similar to those shown for 
the first mode. 

With four terms In the series for the non- 
uniform beam the frequency root errors are pro¬ 
portional to 1/NJ and when two or three terms 

are retained errors are proportional to 1/N2. 

This behavior was also found typical for the 

circular non-uniform cross section beam and the 
uniform beams. 

DIMENSIONLESS FREQUENCY ROOTS FOR NON-UNIFORM 
BEAMS OF RECTANGULAR SECTION 

Non-dimensional frequency roots have been 
calculated for wedge shaped beams as shown In 

Fig. 6 using the approximate method described 
herein. Boundary conditions of fixed-fixed and 
pinned-pinned ends were selected as data for 
these types of beams has not been found In the 
literature. 

The dimensionless parameter 3, 

has been calculated for these beams and is pre¬ 

sented in table form in Appendix D. These cal¬ 
culations were completed using the four term 
matrix and 20 segments per beam which should 

constitute no more than 1¾ error in the highest 

node (third mode) calculated. Typical constants 
were chosen in order to complete the calcula¬ 

tions and the results were put into the dimen¬ 
sionless form. The £? parameter is given for 

different depth (D) and width (H) ratios where 
D and H are defined by! 

D » ratio of depth at small end to depth 
at large end 

2. Commonly used lumped parameter models 

have principal mode frequency root 

errors which are proportional to 1/N2 

or 1/N , depending upon end conditions. 
In comparison, the four term approxi¬ 

mate transmission matrix produces 
errors proportional to 1/N3. 

3. The approximate transmission matrix 

can be applied to single, non-uniform 
beam elements more directly than lumped 

parameter models as this approach uses 
directly the variable mass and bending 
rigidity functions, and their deriva¬ 
tives, rather than equivalent cross 
sectional properties. 

4. The approximate transmission matrix 

approach can be used with higher order 
beam theories If the governing [A] 

matrix is extended to include the elas¬ 
tic or dynamic affects appropriate to 
such theories. 

5. The application of the approximate 

matrix follows that of the general 

transmission matrix theory. Hence, it 
is ideally suited for any system of 

elements in an end-to-end arrangement, 
but is not as easily applied to systems 

with a large number of branched elements. 

NOMENCLATURE 

A » Cross sectional area 

(AJ *■ Matrix which characterizes the system 

E ■ Young's Modulus of Elasticity 

I ■ Area moment of Inertia 

II] ■ Identity matrix 

M « Bending moment 

N ■ Number of segments 

[T] ■ Transmission matrix 

V ■ Transverse shear force 

H ■ ratio of width at small end to width 
at large end 

Note these results apply only to the linearly 
tapered rectangular beams. 

V * Transverse beam deflection 

0 * Slope of the beam 

(3} ■ State vector (column matrix) 

CONCLUSIONS ■ Mass density per unit volume 

On the basis of the operations performed 

and results obtained, the following conclusions 
are given! 

* Circular frequency 

* Exact frequency root 

1. The approximate transmission matrix 

gives consistent principal mode fre¬ 
quency root errors when applied to uni¬ 

form and non-uniform beam elements. 

* Approximate frequency root 

■ l(we - wA)/^c| g 100 
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APPENDIX A 

MATRIX FORMS FOR THE UNIFORM SYSTEM 

[A(0)1 Where a • pA(0)w 

b - 1/EI(0) 

[A(0)Ii - [A(O)) (A(0)] 

0 

0 

-b 

0 

0 

-a 

0 

0 

[A(0)r * [ A (0) ] ’’ [ A (0) ] - 

[T(x)l 
x3b 

x2b 

-ab 

0 

0 

0 

3 
X ab 

6 

1 

x2b 
2 

xb 

0 

0 

0 

ab 

0 

-a 

0 

0 

-xa 

2 

-x2.b 

2 
X a 

2 

3 
X a 

6 

APPENDIX B 

MATRIX FORMS FOR NON-UNIFORM SYSTEMS 

[A(0)] 

[ A ( 0 ) ] 1 ■ 

0 

-1 

0 

0 

0 

0 

n 
n 

CjZ 

V 

z 
0 

0 

0 

0 

0 

0 

0 

Z “ pAjU) 

Y - l/EIi 

[A(0)]" 

0 0 

0 0 

0 0 

2C2Z 

0 

0 

_0 (-ZBj^Y+ZBjY) 0 

[A(O)) 

n o 
n -z 

-Y o 

o n 

[A(0)]' [A(0)] 

0 

0 

0 

l-ybi 

Cj^Z 

0 

0 

0 
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[A(0)][A(0)]' 

tT(x)] 

0 0 

0 

0 YB 

o -c:z 

y* 

J *!y ■ i "S’ « - I*2-», * ¿x\,2.;. 

o 0 

0 

I*3« 

<- 4x;ï * ix\B|, 

[A(0) ] ' 

0 -ZY o 

0 0 0 

V 0 0 

0 0 ZY 

1„2„ 

0 

-Z 

0 

0 

(-XZ - ¿X2ClZ - Ix3C2Z) (jX2Z + Ix3c 

(- f z - j X^jZ) 

1 

1 
2B2) (- Ã x ZY) 

(| x3z) 

appendix c 

rectangular cross section segment 

H 

D 

ratio 

dL/do' D*Pth «tío 

■ Width at anall and, x ■ l 

«•l ■ Dapth at anall and, x - l 

«.X CX. «... ,K. =0..,..,. th. (.M „pr.„lm 20) b>c_ 

B2 • 3((1 - D)2 + (1 - H) (1 . d)}/L2 
-(2 - 2H)/L 

C2 D)/L2 ■; • -(« - ,)3 ♦ J¡1 -"«)'à VÓÍ^L5 

»1 ■ “0(1 - r» » a - h) }/L ,s . «, . (1. b3)/l» 

CIRCULAR CROSS SECTION SEGMENT 

««o - dianatar at larga and. x - O 

<>!, - dianatar at anall and, x - L 

D “ ‘‘l^o " dl«»«tar ratio 
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K>r the circular cross section case the Cj and constants have the value: 

C, --2(1- 1))/1. 

C2 - (1 - DP/l.“’ 

Bj --4(1-0)/1. 

B2 = B(1 - D)J/L-’ 

B3 = -4(1 - 0)3/L3 

B4 = (1 - I))4/!.4 

APPENDIX D 

TABLE I First mode dimensionless frequency parameter - Fixed-Fixed ends 

142 



TABLE IX Second mode dimensionlese frequency parameter - Fixed-Fixed ends 

D H-0.0 H-0.2 H-0.4 H-0.6 H-0.8 H-1.0 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

55.9354 

80.9533 

105.7369 

130.3917 

155.0867 

180.1869 

205.6858 

231.9892 

258.4458 

285.5476 

312.7712 

49.3481 

79.8806 

109.8734 

139.6342 

169.7250 

200.0252 

231.1670 

262.8064 

295.2795 

328.8042 

362.6592 

46.3026 

77.6961 

108.2370 

139.6414 

170.9336 

202.7633 

235.1737 

268.5930 

303.0215 

337.2539 

372.7219 

44.3965 

75.9671 

107.2971 

138.6374 

170.3791 

202.7633 

235.8845 

270.1128 

305.7144 

340.0947 

378.7056 

43.0316 

74.5411 

105.9666 

137.4202 

169.4234 

202.0222 

235.5290 

270.1128 

305.7144 

341.5193 

378.7056 

41.9469 

73.3301 

104.7430 

136.2691 

168.2303 

201.1182 

234.8189 

269.3523 

305.7144 

341.5193 

379.3064 

TABLE III Third mode dimensionless frequency parameter - Fixed-Fixed ends 
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TABLE IV First mode dimen.ionlee. frequency parameter - Pinnad-Pinned anda 

TABLE V Second moda dlmanslonlaaa frequency paramatar - Pinnad-Pinnad ends 
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TABLE VI Third mode dimensionless frequency parameter - Hinned-Plnned ends 

D H-0.0 h-0.2 H-0.4 H-0.6 H-0.8 H-1.0 

0. 3 

o.i 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

116.3144 

176.2207 

237.5765 

299.2776 

362.3066 

426.9329 

493.9570 

562.9319 

633.6907 

707.0974 

781.6096 

95.9875 

11.5.9484 

230.6881 

294.7495 

359.7258 

426.3750 

494.7290 

565.0398 

637.8745 

712.0308 

783.9626 

90.7677 

161.5316 

226.4393 

290.7991 

355.6392 

422.5586 

491.3020 

562.1084 

635.1487 

709.1506 

786.3640 

88.2125 

159.2456 

224.1876 

288.5549 

353.3142 

420.3804 

489.4221 

559.9150 

632.3315 

707.3025 

784.6338 

86.6850 

157.6051 

222.5943 

286.7881 

352.2271 

419.1157 

487.9719 

558.8198 

631.2649 

707.0974 

784.2014 

85.6462 

155.2500 

221 .4731 

285.8411 

351.2139 

418.1287 

487.4604 

557.5435 

630.8770 

706.4819 

784.2014 
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MEASUREMENT MOMENT-CURVATURE PELATIONSHÎR 

C0P STEEL BEAmc 

V. H. Neubert and W. Vogel 

The Pennsylvania State University 
University Park, Pa. 

The paper oresents some of the results of an exnerirental deterrinatinn 
of the moment-curvature relationship for steel beans one inch wide and 
one-eighth inch thick. Data for a fully annealed steel and a tempered 
ground tool steel are reported. Specimens consisted of three parallel 
cantilever beams carrying a common tip mass. Tests were performed on a 
drop table shock machine at the Naval Research Laboratory. Accelera¬ 
tions of the tip mass were used to compute inertia forces and the re¬ 
sulting beam moments. Curvature was obtained by measuring strain at 
various stations on the beam. 

Typical accelerometer and strain records versus time are presented 
Dynamic moment-curvature plots are comoared with static curves The 
resum with respect to Increased yield and time delay in Initiation 
of unloading are discussed. Advantages and disadvantages of this type 
of test are considered. 

INTRODUCTION 

It is presently difficult in design analy¬ 
sis of complex steel structures to predict the 
dynamic response after yielding occurs. This 
Is partly due to the fact that accounting for 
dynamic effects In constitutive relationships 
Is not completely understood. Also, much empha¬ 
sis has been placed on dynamic tension or com¬ 
pression testing, but comparatively little data 
is available for elastic-plastic bending behav¬ 
ior where the material is deformed only slight¬ 
ly into the plastic range. The theoretical de¬ 
velopment of constitutive relationships in 
terms of moment, curvature and time based on 
tensile data is complicated by the fact that, 
during bending, strain rates vary over the beam 
cross-section. It was therefore felt advisable 
to conduct dynamic bending tests in which 
sufficient Instrumentation was used so that the 
applied moment and the associated curvature 
could be directly measured as a function of 
time. The purpose of the present report Is to 
record test procedure and present some prelim¬ 
inary results of bending tests of combinations 
of steel beams. 

BACKGROUND 

No attempt will be made here to review the 
literature dealing with elastic-plastic 
response of material. In references [1], [2] 

and [3], literature surveys are given. Consti¬ 
tutive relationships for dynamic behavior have 
been proposed by Malvern[4J and others. In the 
present series of tests, Stanovsky[lJ used a bi¬ 
linear moment-curvature relationshln with in¬ 
creased yield, but without rate effects. He 
tested two steels, a high strength steel and a 
mild steel. Agreement was good for curvature¬ 
time predictions, for the high strength steel. 
However, the mild steel was relatively sluggish 
in behavior, so experimental timewise curvature 
tended to lag behind predicted curvature. Max¬ 
imum moment and maximum curvature did not 
haooen at the same time. This led to Interest 
in the following eauatlon which has been con¬ 
sidered by Plass[5]: 

where 

N 

k ■ curvature 
M ■ dynamic bending moment 

M t ■ static bending moment for 
same curvature 

El ■ elastic bending stiffness 
R and N - material constants 
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The equation applies In the elastic and 
plastic ranges during loading. In the elastic 
range M 1s practically equal to so the 

term (M-Mst) is small and the usual moment- 

curvature relationship remains, with El the 
bending stiffness. In the plastic range 
° dM 
M = Ht niay sma^ compared to the other 

term. In theoretical studies it has usually 
been assumed that (M-Mst) is greater than or 

equal to zero. Brown [6,3] conducted tests 
where he measured the moment-curvature rela¬ 
tionship by a method similar to that used in 
the present tests, but using only one canti¬ 
lever beam. He suggested some values for R 
with N*l. 

APPARATUS 

The tests reported here were conducted 
on the drop table shock machine at the Naval 
Research Laboratory. Each test run was given 
ai associated drop number. The tests performed 
are outlined In references [7] and [8]. Some 
typical results are presented here. 

The apparatus 1s shown In elevation view 
In Fig. 1 and In plan view In F1g. 2. Three 
beam specimens were used simultaneously as 
shown In Fig. 2. They were clamped at the 
base between the upper and lower clamping 
blocks, which were both 1-1/2" x 6" x 8" and 
were made of mild steel. Two hardened steel 
bearing plates 1/4" x 6" x 8" were used to 
line the jaws of the clamp. In addition, six 
hardened fillers were located between the 
bearing plates and the beam specimens. These 
were 3/16" x 1-1/4" x 6" when the 1/8" thick 
specimens were tested. The clamping blocks 
were bolted to a mild steel anvil block 3-3/4" 
x 8“ x 8" which was In tum bolted to the drop 
table of the shock machine. The arrangement 
was symmetrical with respect to the center 
line so that 6" of the specimen length was In 
the damp, with 5-3/4" protruding from each 
side. The beams carried a common tip mass, 
composed primarily of two steel bars 1-1/2" 
x 1-1/2" x 8". In order to keep the rotary 
Inertia fairly constant for different thick¬ 
ness specimens, the vertical distance between 
the faces of the two bars was kept at 1/2" by 
using hardened fillers which were 3/16" x 
1-1/4" x 1-1/2" for the 1/8" specimens. 

Accelerometers were bolted to 1" x 1" x 1" 
aluminum mounting blocks on the tip mass and to 
the upper clamping block. To keep the appara¬ 
tus completely symmetrical, accelerometers were 
placed on both tip masses [Fig. 3a]. Signals 
were recorded only from accelerometers A1 thru 
A8. Strain gauges were located only on the 
South side of the clamping blocks and were 
designated S1 thru S9. 

INSTRUMENTATION 

Some of the Initial goals In taking the 

measurements were (1) to determine whether the 
structural syitmetry would carry through to acc¬ 
eleration and strain response, (2) to measure 
base motion In terms of vertical translation 
and rotation about the two horizontal axes, 
(3) to measure strain In the three beams near 
the base, and (4) to try to deduce the shear 
force In the beam from strain measurements. 
For number (4) two strain gauges were located 
1/4“ and 5/8" respectively from the tip mass 
on each specimen. Knowing measured strain and 
the constitutive relationship for the material, 
moment could theoretically be deduced. By 
equilibrium of the segment between gauges, the 
shear force would be equal to the difference 
In moment divided by the gauge spacing, pro¬ 
vided Inertia forces of the beam segments 
could be neglected. The pair of gauges was 
located near the tip mass because this was 
the region of the beam most likely to remain 
elastic and the elastic constitutive relation¬ 
ship should be well understood. 

The accelerometers were CEC of 250 g 
capacity. Each weighed 0.23#. 

The strain gagues were Budd Meta!film 
Strain Gages, 1/8" long, C6-121-A, with 
Gage Factor« 2.06 ±0.5% and resistance ■ 120 n. 

Signals from the nine strain gauges were 
recorded using one fourteen channel FM magnetic 
tape recorder, and the eight accelerometer 
signals were recorded on a similar recorder. 
One channel of each was used for a 1000 cycle 
per second timing signal. On this timing 
signal was superimposed a spike from a special 
circuit which was completed when the drop 
table contacted the lead cone decelerator on 
the base of the shock machine. The spike 
served to cross-relate the signals on the 
two tapes. Later It was thought advantageous 
to record fewer signals, so thay could all be 
recorded on one tape. 

MATERIALS 

Three different steels were used: a 
cold-rolled steel as received, a fully anneal¬ 
ed 1020 steel, and a tempered ground tool 
steel trade-named Warplls manufactured by 
Pittsburgh Tool Steel Wire Company, Monaco, 
Pennsylvania. The approximate analysis of 
Warplls Is Carbon 0.90, Silicon 0.25, Man¬ 
ganese 1.10, Chrome 0.50, Tungsten 0.50 and 
Vanadium 0.15. 

STATIC TESTS 

Static bending tests were performed for 
all three materials. Where It was not certain 
that the bars had all come from the same 
material batch, the static tests were per¬ 
formed on the 6" section of specimen that had 
been clamped during the dynamic tests. The 
bars were clamped In a manner similar to the 
arrangement for the dynamic tests, except 
that one bar was tested at a time. The load 
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Hg. 2 Plan View of Apparatus 
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Fig. 3 Pick-up Locations 
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was applied in a controlled deformation com¬ 
pression tester arranged so the applied force 
was always vertical and passed through a point 
on the beam 5" from the base. The moment arm 
therefore decreased as the displacement of the 
tip became large. Force, tip displacement, 
moment arm and strain 3/16" from the clamp were 
recorded. Curvature k was obtained as the 
measured strain t. over the half depth of the 
beam specimen or 

DYNAMIC TEST RESULTS 

The drops discussed here are listed in 
Table 1. 

half-depth of the beam. The moment was cal¬ 
culated according to the following equation: 

nt yth + It 

where 

r. = the tip mass, including 
1 accelerometers 

yt = tip acceleration 

h = distance from c.g. of tip mass 
to strain gauge of interest 

I = mass r"oment of inertia of the 
tip mass 

Table 1. Tests Discussed 

Drop No. 

7 
8 

35 
37 

Material 

Warpl is 
Warplis 

Fully Annealed 
Warplis 

Beams 

New 
Same as 7 

New 
New 

Drop Height 

15" 
24" 

5-1/2" 
15" 

Lead Cone 
Weight (angle) 

6 oz. (901) 
12 oz. (90'') 
6 oz. <'l?.Cr) 
6 oz. (90'-) 

The drop numbers are listed in the first column 
and the specimen material in the second column. 
Several drops were made with the same speci¬ 
mens in place. In column three "new" means 
this was the first drop for a set of beams. 
Drop 8 was a higher drop than Drop 7, but the 
same beams were re-loaded. The lead cone de- 
celerators used for each drop are Identified by 
cone weight and angle. The first pulse of the 
base acceleration was nearly triangular with a 
duration of about 0.011 seconds. In Fig. 4 the 
average of the four base accelerometers 

A5+A6+A7+A8 is shown after digital filtering 
with a low pass filter having a cut-off of 
about 300 cycles per second. In Fig. 5 a typi¬ 
cal tip mass acceleration record from accelero¬ 
meter A3 is shown as plotted from digitized 
data. The time interval for digitizing was 
0.0002 seconds and the data has not been filter¬ 
ed. It was judged that the ragged nature of 
the signal was due to noise. In Fig. 6, digi¬ 
tally filtered accelerations from each of the 
four tip mass accelerometers are plotted for 
Drop 37. Generally structural symmetry exist¬ 
ed in the response except for the early time 
when A1 and A4 were not identical. Strain data 
was quite smooth without filtering, but it was 
filtered the same as accelerations so any time 
delay due to filtering would occur in all data. 
In Fig. 7 the base strain S4 on the center beam 

specimen is compared with the average S1+S4+S7. 
The difference is an indication of lack of sym¬ 
metry In the deformation of the beams. 

DATA EVALUATION AND RESULTS 

The accelerations /. = A1+A2+A3+A4 
t 5 

A^+A^+Aj+A^ 

. (A2-Ai) + (A3-A4) 

1 — 

The tip mass was chosen to be large so the 
inertia force of the specimen might be 
neglected. In Fig. 8, the moment computed in 
this manner is plotted against curvature -- 
using unfiltered data. The crosses on the 
dynamic curves are spaced at 2 millisecond 
intervals. If one filters by eye, the initial 
dynamic stiffness is about the same as the 
static. Later the dynamic moment is higher 
than the static. Maximum moment and maximum 
curvature do not happen at the same time. 
Unexpectedly, the dynamic moment drops below 
the static moment at the onset of yielding of 
the outer fibers. Unloading does not occur 
with rhe same slope as elastic loading and 
there is a Bauschinger effect. 

In Fig. 9, similar curves are shown for 
Drop 8, involving the same bars as in Drop 7, 
but from a greater drop height. There was 
some residual curvature after Drop 7, so the 
dynamic curve starts at that point. Generally 
the moment in the plastic region is above the 
static moment, and the sag occurs in the dyn¬ 
amic curve after initial yielding in Drop 7 
does not appear in Drop 8. 

Computations summarized here deal with 
simple operations to determine dynamic moment 
curvature curves. Curvature was deduced by 
dividing the measured dynamic strain by the 

In Fig. 10 static and dynamic moment- 
curvature plots are shown for Drop 37, which 
should have been Identical to Drop 7. However, 
the maximum accelerations and curvatures were 

151 



152 



Al _ A3 

A2 . A4 

Fig. 6 Tip Mass Accelerations, Al, A2, A3 and A4, Drop 37 
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(OMXnON I OK S! 11 -SYCHKOM/ATION 

I lio inolion ol m.ivs \1 in l ij;. J j\ ilcscrihcil h\ Ilk' ili>- 
I'l.KYIIk'llt Ol ils lllilss iVIltlT (V \ I lIMil h\ lilt' jn^ul.ir 
ixisition 11) i ilk' motion ol Ilk' rotors is s|vdlk'il h\ Ilk' ;in|!ii- 
l.ir |x>siiions H .nkl Hi ,is shown in ilk' tit:urc. In torimiliilc 
the prohleni in ,i si in |'k' lorm. il is assumai Huit when lhe 

system reaehes lhe sleaiK-stale eoiulilion holh rotors, w hieh 
are ilrium In iilenlieal eleetrie inolors, have the same velo- 
sil y. rotate in opposite ilireetioiis. anil mainlain a eonslunt 
phase anille I herefore. the anpular (xisition is expressed as 

Hi Hi HI 
and 

H Hl O 

w here I is the time variable and if the pilase anille. The motion 
ol the system is described by the lour |:enerah/ed coordinates 
s. y. and H. It is assumed that the angular motion of mass M 
is small and may be ncgelccted: ibis assumption is ci|uivalent 
to considering mass M as a particle. I xperimental results con- 
lirm the validity of this assumption. Conseiluently. the des- 
iTiption ot the system is reduced to three generalised coor¬ 
dinates X. y and S. The problem is to investigate the condi¬ 
tions for w hich the rotors will maintain a constant pitase 
angle. 

The «luttions of Lagrange are used in developing the 
differential equations of motion. The kinetic energy (k.h. > 
and the potential energy (P.t.lof the system may be ex¬ 
pressed as given by ti|s. t.tland (4) respectively. 

K.h. - M(XJ + y11 + 111 I (X - cÓ sin»|J +(y - ciensHl! | + 

'? m I (X - e¿i sin «h 11 +(ÿ +e¿i «)s#i )J | t.t| 

PT. = 'ik^x1 t':Kyy J + mg (y-csinOl + mgty+csin«i 1(4) 

The dots over the variables indicate derivatives with respect 
to time. 

The differential equations of motion result in the fol¬ 
lowing system. 

( M + 2m) X - in i' 5 sin H- me Ò1 cos« - m c 51 sin <*i - 

nieSi! cosHi + Kxx - 0 (J) 

(M ♦ 2nil" - ine8 cos« + me»1 sin« + m e»i cns«i - 

ni e «i1 sin »i + Kyy ♦ 2mg = 0 (6) 

m eJ » - m e X sin » - me” cos » - mg e cos 0 

meJ «i - me X sin»i ♦ m e y cos»i t mge cos»i * T(»| (7) 

where T (»13 moment of electromagnetic forces. 

The result of replacing 

M' * m + : in 

and using 

»I = iet »i * le , Si*0 

» * u't +ir. » * H' 5*0 

in Eqs. (Stand ((i)gives the following equations. 

|cos Hi + COS (U't +lT) I 

r*"yy,iWL lsin "1 ' s"1*“1+<cH- 

where u v! * 7* and ie.J *—y 
' M1 > \|i 

1«) 

(l)| 

I'he steady-state solution of l-qs. (H) and (*>) is 
given by 

e in ie-' 
X* :77-,—;—r. cos hi t cos (h i t ¡r) 

M (H'x* H' ) 

;"ul y=|si...sm,u''+ ^1 -ïïv? 

(10) 

(II) 

When the second derivatives of x and y are obtained by dif- 
terentiating Lqs. ( 10 ) and ( 11 ) with respect to time and are 
replaced in Lq. (7), it results in the following equation: 

e in 11' 

M'lu, - U-) 1' ■ Hi + siiiir sin ’ (ill 11/) I t 
M'div’ ie1 ) 

|- '7 sill H i sill rn V sill ( li'l + it) I + g cos H'l - g cos (H i +1/7 jO'l 
Ilk' 

( 12) 

Since the Ictt-liaud side of Lq. ( 12) is a function of time 

while the right-hand side is a constant, it is obvious that the 
relation is not an exact solution of Lq. (7) and is only an ap¬ 
proximate solution which may be used to obtain an average 
description of the motion over the entire cycle. To this end, 
the unfulfilled requirement that Lq. ( 12) be identically satis¬ 
fied is replaced by the less stringent condition that Lq. ( I 2) 
be satisfied on the average. 

I ne tett-iiand side ol Lq. ( 12) is some periodic function 
of time with period 2ir/n\ Accordingly, to find the mean 
value function, integrutkm is performed over the time inter¬ 
val ( 0. 2ir/w) and the result divided by the period 2ti/w. Tile 
integration of Lq. (12) results in 

c in H'4 / 2ir 
2^(^:^-) *Sm : + 2xm<r- sm 2(wt +a) | dt 

. e m u'4 /2« 
2“M''(u'yI-k'’ ,/()"nr r 2 hi - 2 »in a + sin 2 (hi +«) | dl 

+ g /#cu*Hldt-g / ’■fr CC» (Hl+<r)dt * /~lr .J,<W>dl(l3) 
SO So SO mc 

which is reduced to Lq. ( 14). 

where To 

To M1 P (u>x*-w4) (Wy’-w1) 

i’c’h'4 I“ Wy’-H-jj2 

w /211 
T (h'I dt 

(14) 

Eq. (14) may be used to determine the phase angle a. but 
it is important because it makes possible to formulate the 
condition fo’r self-synchroni/ation in the form sin <r < I 

T0 M' f(w ‘-w2) (w ’-w2)! or^r |>——J <• "5, 
To investigate further the condition of self-syiichroni/a- 

tion as shown in relation (I S). a system requiring a small 

torque T0 is considered. In this case sin a will be approxi¬ 

mately equal to zero, and self-synchronization will then occur 
for values of a'* 0° or t * 180°. Experimental results show 
that when the bracket of inequality (15) is positive, the 
motion is stable along the x direction corresponding to a 
phase angle «•* 0°. and when this bracket is negative, the 
motion occurs along the y direction which corresponds to a 
phase angle ir * 180°. 
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EXPERIMENTAL INVESTIGATION OF SELF¬ 
SYNCHRONIZATION 

Experiments on sclf-synchroni/jtion ¡ire eondiieted on u 
system eonsistinii of a trame supportmi: two eleetrie motors 
witli their axes horizontally aliened. The frame itself, which 
lusa pu ral le lo piped external shape, is mounted toa ripid 
foundation throutih air hup springs located at all four sides 
parallel to the axes of the two motors. F(|iul eccentric 
■lusses are set to the axes of the two motors which are con¬ 
nected electrically to run in opposite directions. I he system 
constructed conforms to the model represented in l ip. 2. 
except that the two motors have their axes aligned as shown 
in Fig. 3. This arrangement avoids the development of a 
couple when the rotor phase produces a horizontal motion 
and also renders the system closest to the assumption of no 
angular motion of mass M made in the analysis. 

Fia. > SVtTCM OP TWO AUONID MOTORS WITH (CCBNTHIC ROTORS. 

By changing the air pressure of the airbag springs at 
the top and bottom (Ky) or of the airbag springs at the 
sides of the frame (Kxl. it is possible to tunc the system to 
frequencies below or above the resonant condition in either 
of the two directions. 

The system constructed has the following characteristics: 
Mg = 407# (weight of supporting frame and motors), 
mge = 2.4# in (eccentricity of the rotors), 
eleetrie motors inductive type of I HP. 
airbag springs airmount type luving a total spring 
constant for two opposite pairs given by 
K ■ 2 ( 100. P♦ ‘)(i0.) #/in. (|(,) 

where P = pressure of the airbags ( p.s.i. ). 

The natural frequency of the system in radians per 
second in the x or > directions is given by the following 
relations: 

Setting the natural frequency eqtul to the nominal 
Ircqucncy of the motors (‘)00 RPMlund solving l q. ( 17) for 
the spring constant results in k = ‘MOO * in. w hich replaced 
in Eq. ( I (>) gives a value of the resonant pressure Pr = 41.70 
psi. 

A series of experiments are run at different pressures 
in the horizontal and vertical airbag springs, and the direction 
of the motion of mass M is recorded. It is observed that the 
rotors maintain a definite synchronization producing either 
a vertical or horizontal motion and that the direction depends 
on the relative values of the pressures Px> 1’ and the 
resonante pressure l*r - 41.7 psi. The experimental observa¬ 
tions are summarized in Table I. 

TABLE I 
OBSERVED SELF-SYNCHRONIZATION FOR SYSTEM 

IN EIG. .t 

(ase Relative Values lor Pressures in the 
Airbags and Resonant fressure 

Observed 
Motion 

i 

i 

3 

4 

5 

(3 

PxO’yO’l 

»Y^x^r 

•V^.^x 

‘*x<',,<Py 

'•r^x^y 

',r<Hy<^x 

llurizontal 

Vertical 

Horizontal 

Vert ical 

Horizontal 

Vertical 

From Eqs. < 1 bland ( 17i it is seen that pressures Px» 
H and Pr in the inequalities of Table I. could he replaced 
by corresponding inequalities in the natural frequencies wx> 
H'y and the resonant frequency H'r = ‘»4 rad/see. In Table 
II these inequalities are shown after dividing the expressions 
by the resonant frequency *vr. 

TABLE II. 
SELF-SYNCHRONIZATION FOR THE SYSTEM IN FIG. (3) 

IN TERMS OF REUTIVE FREQUENCIES. 

Case frequency Relations Observed 
Motion 

1 

'S 

3 

4 

5 

h 

m'x/"'t < V»', < 1 
VCy/H'r < >CX/K'r < 1 

M y/H'r < 1 < Wx/H'r 

W'x/wr < 1 < Wy Ac, 

1 < M'x/H'r < "'y/H'r 

1 < w Ac, < >cxAc, 

Horizontal 

Vertical 

Horizontal 

Vert ical 

Horizontal 

Vert ical 

The observed motion of mass M asa function of the fre¬ 
quency ratios wx/n'r and ic Ac is shown graphically in Fig. 
4 where also the corresponding values of the phase angle a 
are indicated. 
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CONO USIONS 

I he case of self-synchroni/ation of two motors with ec¬ 
centric rotating masses producing rectilinear motion has been 
presented. I he condition for self-synchroni/ation has been 
determined b> an approximate solution of the corresponding 
dillercnti.il ci)nations ol motion. Observations from experi¬ 
ments corroborate the analytical results giving also i he direc¬ 
tion of ensuing motion in terms of relative resonant frei|uen- 
eies. 

NOMINCLATURI 

Symbols are defined w here they are first introduced in 
the text and are also defined here for convenience. 

c = I ccentricit y of rotors 

g = Acceleration of gravity 

Kv = Spring constant in the x direction 

kN = Spring constant in the y direction 

k I. = Kinetic energy 

m - Mass of a rotor 

M = Mass of body in I ig. J 

M' = M + :m 

P I - Potential energy 

i = time 

•n = Average moment of electromagnetic forces 

m( = Resonant frequency 

- Natural frequency in x direction 

»'yr Natural frequency in y direction 

s = Horizontal displacement center of mass 

y ■ Vertical displacement center of mass 

</ = Phase angle 

w. Wi angular displacements of the rotors 
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PROPAGATION OK THE ERROR IN COMPETED FREQUENCIES AND MODK SHAPES 

RESL'LTING FROM A DISCRKIF. MASS REPRESENTATION OF I'NIFORM, SU'.NDER REAMS 

WITH VARYING HEIGHT-TO-EENGTH RATIOS 

Friinii.s M. Hender son 

Naval Ship Research and Development Center 

Washington, D. C. d0034 

This paper considers the question of how accurately one can 
predict the errors in frequencies and modes of transverse 

vibration (without shear or rotary inertia) resulting from an 
n-mass modeling of continuous, uniformly rectangular beams 

with free ends using a knowledge of these errors for a single 
reference beam. 

INTRODUCTION 

The dynamic analysis of long, slender 

structures often involves the calculation of 
their beam or beam-like frequencies and modes 
of vibration. This is usually accomplished 

through an idealization of the structure by an 

equivalent continuous beam which in turn is 
approximated for computational purposes by 

some type of discrete mass-elastic system. 

Certain discrete systems [1, 2] consisting 

of linear arrays of point masses connected by 

weightless elastic members have had considerable 

usage in the modeling of ships for the calcu¬ 
lation of the first few frequencies and modes. 

Reference [2] presents a detailed analysis 
of transverse vibration frequencies and modes 
obtained using this discrete model for both 

uniform and nonuniform beam representations 

of the SS Gopher Mariner. The calculations 
were made with digital and analog computers. 

The general dependence of frequency error upon 
number of masses is demonstrated for bending 
vibrations (no shear or rotary inertia) of the 

uniform model. 

This paper will illuatrate, with numerical 

results that, to a practical degree of accuracy, 
the errors in frequencies and modes resulting 

from discretizing the Euler-Bernoulllmodel of 
an arbitrary continuoua rectangular beam can 

be used to rapidly predict the corresponding 

errors for other rectangular beams. The method 
of prediction uses the simple relationships for 
the theoretical frequencies and modes of 

rectangular beams. 

SYMBOLS 

h Height of rectangular beam cross section 

in the plane of bending 

w Width of rectangular beam cross section 

G. Beam length 

E Young's modulus of elasticity 

I Area moment of inertia of the cross 

section of a beam about a principal axis 

perpendicular to the plane of bending 

A Area of beam cross section 

u Mass per unit length of the beam 

0 Density of beam material 

Y Weight of beam material per unit volume 

g Acceleration of gravity 

A. BASIS FOR PROJECTING FREQUENCIES AND 

ERRORS IN FREQUENCIES OBTAINED FOR AN 

N-MASS MODEL 

The circular frequencies of transverse 

vibration for a uniform rectangular beam with 

free ends c<an be expressed [3] , 
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id) 

ll tile corresponding model f requeue 1 es , wliicli 

sha 1 1 tu* denot ed 

n . 11 . . . . 
tj and t ( , n indicating n-masses, can be 

assumed to properly reflect the dependence 

shown iii K<|. (d), then the absolute error 
between model and theoretie frequencies for 
any two beams will be 

f - f M (f( - f"). (5) 

and the proportional error will be constant, 
since Kq. (d) and Kq. (¾) combine to give 

Mf , 
(6) 

B. BASIS FOR PKOJKCTINC MODAL DISPUCEMENTS 
AND ASSOCIATED ERRORS OBTAINED FOR AN 

N-MASS MODEL 

The analytic expression for the deflection 
mode shapes of uniform free-free beams, accord- 

1ng to Ref. II] , Is 

X ■ Cj (cos kx + cosh kx) 

+ C.J (sin kx + slnh kx) (7) 

with X equal to distance along the beam. 

i'slng the end condition equations f 3 1 to solve 
for Cj In terms of C3 and then letting Cq equal 
unity, one has 

X 
sin ki - rlnh k> 

-cos kí d- cosh ki 
(cos kx 

+ cosh kx + sin kx + sinh kx) (8) 

where the kf’s are roots of Eq. (2) 

i . PREDICTED VS. COMPETED ERRORS IN 
EKKiHKNCIKS AND MODE SHAPES OK DISCRETE 
MODEES 

Tables 2 through 9 demonstrate the 
accuracies with which frequencies and errors 

in frequencies were predicted for several 
n-nass representations of uniform rectangular 

beams using the reference beam data in Table 1, 

Tables 13, Id, and 15 illustrate the use of 

the mapping process described in B. to predict 
the deflection and errors In deflection for 

models of a test beam using computed data 

(Tables 10, 11, and 12) for models of the 

reference beam. 

The helght-to-length ratios of the beams 

for which predictions were made satisfy a 
necessary requirement for slenderness discussed 

in Appendix B. 

The procedures used to obtain computed 
results for the beam models and descriptions 

of the model configurations are given in 

Appendix A. 

Prediction of per cent error in fre¬ 
quencies in Tables 2 through 8 was accomplished 
by comparing predicted model frequencies with 

analytic frequencies rather than by using 

directly the reference beam errors as suggested 

by Eq. (6). This allowed the calculation of 

additional significant digits in some of the 
errors and thus afforded a better verification 
of Eq. (6). In Table 9 for the Gopher Mariner 

beam, however, the predicted errors in fre¬ 
quencies are more accurately taken to be the 

errors for the reference beam, because of the 
reduced significance of predicted model 

frequencies. 

The modeling of beams with height-to 
length ratios of 0.15 or greater using 12 

masses led to a general breakdown of the com¬ 
puted solutions. This is indicated in Tables 

4 through 7 by the abrupt disagreement between 
the computed and predicted frequencies and 

errors for the 12-sectlon model. 
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TABLE 1 

TABLE 2 , 
Computed vs. Predicted Frequencies (CPS) and Errors for Models of Test Beam j_ 

Beam Description 
Dimensions: h “ 1.2' t ■ 20 
Material: Same as reference beam 

Multiplying Factor: M - 2-__ 

w • 1.2' h/i. * 0.06 
ft 

Frequencies (CPS) 

51.00 
140.59 

275.61 

455.59 
680.57 

51.24 

138.44 
260.84 

405.66 
557.38 

51.07 

140.13 
272.30 

444.19 
651.82 

51.02 
140.48 

274.80 

452.82 
673.58 

2 X computed frequencies In 

51.24 

138.44 
260.84 

405.66 
557.38 

22 
Sections 

51.06 

140.12 
272.30 

444.18 

651 .82 

Sections 

51.02 

140.48 
274.80 

452.82 
673.58 

% Errors In Frequencies__ 

42 
Sections 

-0.04 
0.078 

0.29 

0.608 

1 .03 

12 
Sect Ions 

-0.47 

1.53 
5.36 

11.0 
18.1 

Predicted 

22 
Sections 

42 
Sections 

-0.1 
0.33 
1.20 
2.50 

4.22 

-0.04 
0.078 

0.29 
0.608 

1 .03 

* Ref. [7] 

165 



TABLE 3 

Computed vs. Predicted Frequencies (CPS) for Modele of Test Bean 2 

• im Des 

Dim 

Mu t 
. It iplv 

> ription 

rii'. i. 'iis : 

L-ri.il : 
i MU I .11' t. 

I hi'ory 

8 i.OO 

1.. II 
V.1». U 
/'iO. IJ 

1 I U. J4 

h = . - 20' w 
S.iiiif .is r of or once beam 

i : M - I 1/1 

2' h/l - 0.10 

a - 3 1/3 

6 - 1 
B ■ 1 
n * 1 

__Frequencies (CPS) 

Computed 

Sect Ions 

85.40 

2 10.74 

4 14.74 
b 7b.09 

928.97 

85.li 

233.54 

453.83 

740.31 

1086.37 

42 

Sections 

85.03 

234.13 

458.01 
754.71 

1122.63 

Predicted! ? * computed frequencie. 
_In Table 1 _ 

12 
Sections 

85.40 

230.73 
434.73 
676.10 

928.97 

22 
Sections 

85.10 

233.53 

453.83 
740.30 
1086.37 

42 

Sections 

85.03 

234.13 
458.00 
754.70 

1122.63 

Node Computed 

12 22 42 

Sections Sections Sections 

Predicted 

12 22 42 

Sections Sections Sections 

l 

•» 

-0.47 -0.13 -0.04 

1.52 0.33 0.077 
5.36 1.20 0.290 

10.96 2.504 0.607 

18.10 4.225 1.028 

-0.47 -0.12 -0.04 

1.53 0.33 0.077 

5.36 1.20 0.292 
10.96 2.505 0.608 

18.10 4.225 1.028 

TABLE 4 
Computed vs. Predicted Frequencies (CPS) for Models of Test Beam 3 

Ho.im Description 

Dimensions! h * 3' Í • 20' w 

Material: Same as reference beam 
[Mill t iplylng Factor: M ■ 5 

h/l - 0.15 

'Mode Theory 

Frequencies (CPS) 

Computed 

—n— 
Sections 

Predicted: 
5 X computed frequencies In 

Table 1 

127.50 

151.46 

689.00 

1138.95 
1701.40 

—n— 

Sections 

128.09 
346.10 

652.09 

1014.12 
1747.56 

127.66 

350.31 

680.73 
1110.44 

1629.52 

-Œ- 

Sections 

127.54 

351.18 

687.00 
1132.04 

1683.91 

—n— 
Sections 

128.10 
346.10 

652.10 

1014.15 
1393.45 

TT 
Sections 

127.66 
350.30 

680.75 
1110.45 

1629.55 

42 

Sections 

127.55 
351.20 

687.00 

1132.05 
1683.95 

7. Errors in Frequencies 

Mode 

— 

Computed 

12 22 42 

Sections Sections Sections 

Predicted 

12 22 42 

Sections Sections Sections 

!• 
ï 

') 

-0.46 -0.13 -0.03 

1.53 0.330 0.080 
5.36 1.20 0.290 

11.0 2.50 0.607 

-2.71 4.22 1.03 

-0.47 -0.13 -0.04 

1.53 0.330 0.074 
5.36 1.20 0.290 

11.0 2.50 0.606 
18.1 4.22 1.03 
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Computed 

tahu: i 

vs. Predicted frequencies (CPS) for Models of lest Beam 4 

IBeam Deicription 

Dimensions: h * 4' = 20' w 

".aterial: Same as reference beam 

¡Multiplying Factor: M » 6 d/3 

h/. o.d 
= fa d/3 

= 1 

= 1 
= 1 

lode 

lode 

Theorv 

170.00 

468.61 

918.67 

1518.60 

2d68.53 

Frequencies (('1’S' 

Computed 

Id 

Sections 

170.79 

4fal .47 

869.46 

1352.16 

2330.09 

Sect ions 

170.21 

467.08 

907.64 
1480.59 

2172.69 

Si 

a „ 

ctions 

170.05 

468.25 

916.00 

1509.38 

2245.22 

Predicted: 6 2/3 x computed frequencies 

in Table 1 

12 
Sect ions 

170.80 

461.47 

869.47 

1352.20 

1857.93 

Sect ions 

170.20 

467.07 

907.67 

1480.60 

2172.73 

42 

Sect ions 

170.07 

468.27 

916.00 

1509.40 

2245.27 

7 Errors in Frequencies 

12 
Sections 

Computed 

22 
Sections Sections 

-0.46 

1.52 

5.36 
11.0 
-2.71 

-0.12 
0.326 

1.20 
2.50 

4.22 

-0.03 

0.077 

0.291 

0.607 

1.03 

12 
Sections 

Predicted 

22 
Sections 

42 

Sections 

-0.47 

1.52 

5.36 

11.0 
18.1 

-0.12 
0.329 

1.20 
2.50 

4.22 

-0.04 

0.073 

0.291 

0.606 

1 .03 

Beam Description 
Dimensions: h ■ 5’ t. ■ 20' w 

Material: Same as reference beam 

Multiplying Factor: M » 8 1/3 

TABLE 6 

Computed vs. Predicted Frequencies (CPS) for Models of Test Beam 5 

5' h/1 0.25 
8 1/3 

1 

Mode Theory 

212.50 

585.78 
1148.36 

1898.29 
2835.72 

Frequencies (CPS) 

Computed 

12 
Sections 

213.49 

576.85 
1086.84 

1690.23 
2912.67 

22 
Sections 

212.77 

583.86 
1134.57 
1850.78 

2715.92 

42 

Sections 

212.57 

585.32 
1145.02 
1886.76 

2806.58 

Predicted : 
8 1/3 X computed frequencies 

in Tablel_ 

12 
Sections 

213.50 

576.83 

1086.83 
1690.25 

2322.42 

22 
Sections 

212.75 
583.83 

1134.58 
1850.75 

2715.92 

42 
Sections 

212.58 

585.33 

1145.00 
1886.75 

2806.58 

% Errors In Frequencies 

Mode 

12 
Sections 

Computed 

22 
Sections 

42 
Sections 

12 
Sections 

Predicted 

22 
Sections 

42 
Sections 

-0.47 
1.52 

5.36 
11.0 
-2.7 

-0.13 
0.328 

1.20 
2.50 

4.22 

-0.03 
0.079 
0.291 
0.607 
1.03 

-0.471 
1.53 
5.36 

11.0 
18.1 

-0.12 
0.333 

1.20 
2.50 

4.22 

-0.04 
0.077 

0.293 
0.608 
1.03 
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.i:" . vs. r i Pt i.'ti 
1 i . *si . i .ins : !i 

111 ¡ 11 : S i 

^!u 11 i p 1 V i nv' Í i. t .v : 

l'Alil.i: 7 

‘^ii y., l’r. s i j i t f.i 1 r. fj lu-n.'i t-s (CI’SJ lor .Vcuiu 1 

h/ - 0.1 
. r. l. r.ii 10 

i 

Motlc 

I rotjiifii. ios (CPS) 

input oil 

Si 
I.' 

t il St t lorn 

7V).0I 
/07 . ') I 

I 1/H.O 1 

77//.0) 

17.07.8/ 

7)0. 19 
1.9 7.77 

1 104.71 
7078.78 
149).70 

743.11 

700.0 1 
1 10 1 , 48 
7770.9 1 
1739.10 

Sentiuns 

733.09 
707. 18 
1174.07 

7704.17 
1107.89 

Predicted • 10 X coniPut:‘;d frequencies 
In Table 1 

17 

Sect Ions 

756.7 

697.7 
1304.7 

7078.3 

7786.9 

77 

Sections 

755.3 

700.6 

1361.5 
7770.9 

3759.1 

47 
Sections 

755.1 
707.4 

1374.0 
2764.1 

3367.9 

Krrors In Frequencies 

12 
Set t lulls 

Computed 

22 
Sect Ions 

-0.40 1 
I .42 
5. 10 

1 1 .0 
-2.71 

12 
Sections 

~0.Y7~ 

1.52 
5.36 

11.0 
18.1 

Predicted 

22 
Sections 

42 

Sections 

-0.1 
0.33 
1.20 
2.51 
4.23 

-0.04 

0.07 

0.29 
0.610 

1.03 

Beam Description 
Dimensions: li = 1.8' 8-001 

Material: Same as reference beam 
Multiplying Factor: M = 1/3 

TABLE 8 
Computed vs. Predicted Frequencies (CPS) for Models of Test Beam 7 

1.8' h/i 0.03 

Mode Theory 

8.50 

23.43 

45.93 
75.93 

113.43 

Mode 

Frequencies (CPS) 

Computed 

12 
Sections 

8.54 

23.07 
43.47 
67.58 
92.81 

22 
Sections 

8.51 
23.36 

45.38 

74.03 
108.63 

42 
Sections 

8.50 
23.41 
45.80 

75.47 
112.26 

Predicted: 
1/3 x computed frequencies 
in Table 1 

12 
Sections 

8.54 
23.07 

43.47 
67.61 
92.90 

22 
Sections 

8.51 
23.35 

45.38 
74.03 

108.64 

42 
Sections 

8.50 
23.41 

45.80 
75.47 

112.26 

X Errors in Frequencies 

12 
Sections 

-0.5 

1.5 
5.36 

11.0 
18.2 

Computed 

22 
Sections 

42 

Sections 

-0.1 
0.3 

1.2 
2.50 

4.23 

0 

0.09 
0.28 
0.61 

1.03 

12 
Sections 

Predicted 

22 
Sections 

42 

Sections 

-0.5 

1.5 
5.36 

11.0 
18.1 

-0.1 
0.3 
1.2 
2.50 

4.22 

0 

0.09 
0.28 
0.61 

1.03 
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Computed vs. 
TABLE 9 

Predicted Frequencies (CPM) for Models of Test Beam 8 (Gopher Mariner Beam) 
Beam Description 

Dimensions: h - 102' £ » 525' 
Material: steel 

E ■ 1.93 X 106 ton/ft2 

P* - 0.3894 -on~sec / ft3 

w » 0.08786' h/£ 0.194 

ft 
Multiplying Factor: 1, - 0.0332 

Mode 

Mode 

Theory 

50.82 
140.05 

274.67 
453.80 
677.91 

2.1875 

0.193 
14.167 

0.15338 X 10* 

Computed 

Frequencies (CPM) 

10 
Sections 

51.06 
138.00 
259.80 

404.00 
554.70 

20 

Sections 

50.89 
139.60 

271.30 
442.60 

649.50 

40 

Sections 

50.84 
140.00 
273.80 

451.20 
671.20 

Predicted : 0.0332 X computed 

frequencies in Table 1 

10 
Sections 

51.0 
138. 
260. 

404. 

555. 

20 
Sections 

50.9 
140. 
271. 

442. 

649. 

/£ Errors In Frequencies 

40 

Sections 

50.8 
140. 
274. 

451. 
671. 

12 
Sections 

Computed 

22 
Sections 

42 

Sections 

-0.47 
1.46 
5.41 

11.0 
18.2 

-0.1 
0.32 

1.23 

2.47 
4.20 

-0.04 
0.04 

0.32 

0.57 

0.990 

12 
Sections 

Predicted 

22 
Sections 

42 

Sections 

-0.47 
1.52 

5.36 
11.0 
18.1 

-0.1 
0.33 
1.20 
2.51 

4.23 

-0.04 

0.07 

0.29 

0.610 
1.03 

value of p includes the effect of the surrounding water 

TABLE 10 

Beam * 

Section 
Mode 1 (symmetric) 

Analytic Computed % Error 

» iur section Model 

Mode 2 (antl-symmetrlc) 
Analytic Computed X Error 

1 

2 
3 
4 

5 
6 

1.000 1.000 0 

0.7653 0.7710 -0.74 
0.3095 0.3180 -2.7 

-0.1014 -.09563 5.7 

-0.4160 -.4147 0.31 

-0.5872 -.5890 -0.31 

1.000 1.000 0 

0.6031 0.6316 -4.73 
-0.1226 -0.09557 22.0 

-0.5886 -0.5860 0.44 

-0.6265 -0.6397 -2.11 
-0.2633 -0.2712 -3.0 

Beam 

Section 
Mode 3 (symmetric) 

_Analytlc Computed % Error 
Mode 4 (antl-symmetrlc) 

Analytic Computed % Error 
1 
2 

3 
4 

5 

6 

1.000 1.000 0 

0.4461 0.5206 -16.7 

-.4485 -0.4215 6.02 
-.6233 -0.6673 -7.06 
-.04229 -0.07456 -76.3 

0.6116 0.6324 -3.40 

1.000 1.000 o 

0.2916 0.4340 -48.8 

-0.6345 -0.6698 -5.56 
-0.2532 -0.3612 -42.7 

0.6125 0.6520 -6.45 

0.4625 0.5279 -14.1 

Analytic 

1.000 
0.1417 

-0.6543 
0.2856 

0.6076 
-0.4641 

Computed 

1.000 
0.3696 

-0.8470 
0.2207 

0.8039 
-0.5576 

% Error 

0 
-161. 

-29.5 
22.7 

-32.3 
-20.1 

Appendix A, Fig. 1, (a) 
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Kt‘11‘rt’iH'i» lu*am 
TABLE 11 

l:rr,-r in Displacements for 22 Section Model 

Br.im A 

M » t it'll 
'loik' I (symmetric) 

An.ilvtic Computeii 
Error 

s 

ID 

I I 

Hi'.im 
Section 

S 
o 

8 
>l 

10 

I 1 

Hearn 
See tion 

I . 000 
0.8814 

0.(i44(, 

0.4211 
0.2007 

-0.005598 
-0.1911 

-0. )492 
-0.4738 
-0.5598 
-0.(,038 

1.000 
0.8821 

0.6512 
0.4231 

0.2027 

-0.003910 
-0.1899 
-0.3485 

-0.4736 

-0.5600 
-0.6041 

0 

-0.08 
-0.25 

-0.48 
-1.0 
30.2 

0.63 
0.2 
0.04 

-0.04 
-0.05 

8 
9 

10 

I 1 

Analytic 

1.000 

0.7186 
0. 1835 

-0.2740 
-0.5751 
-0.6635 

-0.5)17 

-0.2291 
0. 1494 

0.4892 
0.6888 

Mode 3 (symmetric) 
Computed f¡ Error 

1.000 
0.7298 
0.2013 

-0.2599 
-0.5696 

-0.6665 

-0.5399 
-0.2379 

0.1436 

0.4878 

0.6905 

0 

-1.56 
-9.70 
5.15 
0.96 

-0.45 
-1.5 
-3.8 

3.9 

0.29 
-0.25 

Mode 5 (symmetric) 
Analytic Computed % Error 

1.000 

0.5575 
-0.2222 
-0,6442 

-0.5309 

-0.01072 
0.5322 

0.7099 
0. 394 5 

-0.1952 
-0.6481 

1.000 

0.5988 
-0.1818 

-0.6429 

-0.5628 

-0.04512 
0.5208 

0.7232 
0.4138 

-0.1887 

-0.6562 

0 

-7.41 

18.2 

0.20 
-6.01 

-321. 

2.14 
-1.87 

-4.89 

3.3 

-1.2 

Mode 2 

Analytic 

1.000 
0.7991 

0.4099 

0.04347 
-0.2723 

-0.5082 
-0.6411 

-0.6597 
-0.5671 
-0.3815 
-0.1344 

Mode 4 
Analytic 

1.000 
0.6380 

-0.02964 
-0.5115 
-0.6645 
-0.4585 
-0.01301 
0.4489 
0.7016 
0.6218 
0.2464 

(anti-symmetric) 
Computed % Error 

1.000 
0.8030 
0.4174 
0.05125 

-0.2662 
-0.5049 
-0.6405 
-0.6611 
-0.5693 
-0.3834 
-0.1351 

(anti-symmetric) 
Computed X Error 

1.000 

0.6614 
0.0004825 

-0.4973 
-0.6714 
-0.4782 
-0.03190 
0.4404 
0.7044 
0.6293 
0.2501 

* Appendix A. Hr. 1, ((,) 
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TABLE 12 
Reference Beam - Error In Displacements for 42 Section Model 

Beam* 

Section 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 

16 
17 
18 

19 

20 
21 

Beam 

Section 

Mode 1 (symmetric) 
Analytic Computed % Error 

Mode 2 (anti-symmetrlc) 
Analytic Computed 7. Error 

1.000 

0.9395 
0.8233 
0.7073 
0.5920 
0.4777 
0.3650 
0.2547 
0.1475 
0.04429 

-0.05419 
-0.1470 
-0.2335 
-0.3126 
-0.3837 
-0.4461 

-0.4991 
-0.5421 

-0.5748 

-0.5968 
-0.6079 

1.000 
0.9396 
0.8235 
0.7077 
0.59.:4 
0.4781 
0.3655 
0.2552 
0.1480 
0.04474 

-0.05379 
-0.1467 
-0.2332 
-0.3124 
-0.3836 
-0.4460 
-0.4990 
-0.5422 

-0.5749 

-0.5969 
-0.6080 

0 
-0.01 
-0.02 
-0.06 
-0.07 
-0.08 
-0. 1 
-0.2 
-0.3 
-1 .0 
0.74 
0.2 
0.1 
0.06 
0.03 
0.02 

0.02 
-0.02 

-0.02 

-0.02 
-0.02 

1.000 
0.8975 
0.7009 
0.5060 
0.3152 
0.1315 

-0.04140 
-0.1997 
-0.3398 
-0.4581 
-0.5517 
-0.6184 
-0.6566 
-0.6659 
-0.6465 
-0.5999 
-0.5284 
-0.4351 
-0.3241 
-0.1998 
-0.06753 

1.000 
0.8980 
0.7021 
0.5077 
0.3171 
0.1335 

-0.03951 
-0.1981 
-0.3384 
-0.4570 
-0.5510 
-0.6180 
-0.6566 
-0.6660 
-0.6469 
-0.6004 
-0.5289 
-0.4356 
-0.3244 
-0.2001 
-0.06761 

0 

-0.06 
-0.17 
-0.34 
-0.60 
-1.5 
4.57 
0.80 
0.41 
0.24 
0.1 
0.06 
0.0 

-0.02 
-0.06 
-0.08 
-0.09 
-0.1 
-0.09 
-0.2 
-0.1 

Mode 3 (symmetric) | Mode 4 

Analytic Computed % Error ! Analytic 
(ant 1-symmetric ) 

Computed 7. Error 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

11 
12 
13 

14 

15 
16 
17 

18 

19 
20 
21 

1.000 
0.8563 

0.5816 
0.3130 

0.05873 
-0.1713 
-0.3668 
-0.5183 

-0.6184 
-0.6627 

-0.6502 

-0.5335 

-0.4690 

-0.3162 
-0.1372 
0.05387 
0.2424 

0.4140 
0.5555 

0.6563 
0.7086 

1.000 
0.8578 

0.5850 

0.3173 
0.06316 

-0.1673 
-0.3635 
-0.5160 

-0.6173 
-0.6627 

-0.6511 

-0.5851 

-0.4710 
-0.3183 

-0.1392 

0.05215 
0.2411 

0.4132 
0.5551 

0.6562 

0.7088 

0 
-0.18 

-0.58 
-1.4 
-7.54 

2.3 
0.90 
0.44 

0.18 
0.00 

-0.1 
-0.27 

-0.43 

-0.66 
-1.5 

3.19 
0.54 

0.2 
0.07 

0.02 
-0.03 

1.000 
0.8150 
0.4629 
0.1266 

-0.1742 
-0.4176 

-0.5843 
-0.6614 

-0.6445 
-0.5396 
-0.3620 

-0.1356 
0.1106 

0.3453 

0.5389 
0.6673 

0.7143 
0.6738 

0.5507 
0.3600 

0.1251 

1.000 
0.8182 
0.4696 
0.1344 

-0.1670 

-0.4122 
-0.5814 
-0.6610 

-0.6465 
-0.5433 
-0.3668 

-0.1405 
0.1062 

0.3419 
0.5369 

0.6665 
0.7145 
0.6747 

0.5518 

0.3608 
0.1254 

0 

-0.39 
-1.4 

-6.2 
4.1 

1.3 
0.50 
0.06 

-0.31 
-0.69 

-1.3 

-3.6 
4.0 

0.98 
0.37 
0.1 

-0.03 
-0.1 
-0.20 
-0.2 
-0.2 

* Appendix A, Fig. 1, (c) 
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TAHU: U (continued) 

Hi'.in; 
lei t ion 

H 
4 

II) 
1 1 
IJ 
I i 
U 

lr> 

16 

1 7 
1H 

19 
JO 
J1 

“'ihU' ) (symmetric) 
Aii.ilvt ii . Ci'ni|nited_J, T.rrur 

1: 

1.000 

0.7 7 16 
o. ¡.i in 

-0.0‘i 9 1 « 
-0. ¡7 J J 
- 0. ) H 6 A 
-1).6666 
-0.608I 
-0. 'i J69 
-0.160 1 
0.1 AO ! 
0. A 1 « i 
0.6J1H 
0.71 J8 
0.6742 
0.r)U9 
0.2580 

-0.04 18 1 
-0. 1175 
0.5691 

-0.6968 

1.000 

0.7795 
0. 1569 

-0.01725 
-0. 16 10 
-0.5818 

-0.6674 
-0.61 10 
-0.4 14 7 
-0.169J 
0. 1 121 

0.4126 
0.6190 
0.7129 
0.6766 
0.5164 
0.2616 

-0.04100 
-0.1359 
-0.5690 
-0.6973 

0 

-0.76 
-1.27 
24. 1 
2.5 
0.78 

-0.09 
-0.81 
-1.8 
-5.6 
5.7 
1.4 
0.4 5 

-0.01 
-0.36 
-0.68 
-1.4 

6.46 
0.47 
0.05 

-0.07 

TABLE 13 

Test Beam 7 - Computed vs. Predicted Errors in Displacements for 12 Section Model 

Beam* 

Section 

Mode 1 
Computed 

Displacement 7. 

(symmetric) 

% Error 
Error Predicted 

Mode 2 (antl-symmetrlc) 
Computed % Error 

Displacement % Error Predicted 

1.000 

0.7710 
0.3180 

-0.09563 
-0.4147 
-0.5890 

0 

-0.74 
-2.7 

5.7 
0.31 

-0.31 

0 

-0.74 
-2.7 

5.7 
0.31 
-0.31 

1.000 

0.6316 
-0.09557 
-0.5860 

-0.6397 
-0.2712 

0 
-4.73 
22.0 
0.44 

-2.11 
-3.0 

0 
-4.73 
22.0 
0.44 

-2.11 
-3.0 

Beam 

Section 

Mode 3 (symmetric) Mode 4 (antl-symmetrlc) 

Computed 

Displacement % Error 
% Error 
Predicted 

Computed 

Displacement X Error 
X Error 

Predicted 

1.000 

0.5206 

-0.4215 
-0.6673 
-0.07456 

0.6324 

0 
-16.7 

6.02 
-7.06 

-76.3 
-3.40 

0 
-16.7 

6.02 
-7.06 

-76.3 
-3.40 

1.000 

0.4340 
-0.6698 

-0.3612 
0.6520 

0.5279 

0 
-48.8 

-5.56 
-42.7 

-6.45 
-14.1 

0 

-48.8 
-5.56 

-42.7 

-6.45 
-14.1 

Beam 

Section 

1 
2 
3 
4 

5 
6 

Computed 

Displacement 

1.000 

0.3696 

-0.8470 
0.2207 

0.8039 
-0.5576 

Mode 5 (symmetric) 

X Error 

Predicted X Error 

0 

-161. 

-29.5 
22.7 

-32.3 
-20.1 

0 

-161. 

-29.5 
22.7 

-32.3 
-20.1 

* Appendix A, Fig. 2, (a) 
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TABLE 14 , i 
Test Beam 7 - Computed vs. Predicted Errors in Displacements for 22 Section Model 

Beam* 

Section 

1 

2 
3 
4 

5 
6 
7 
8 

9 
10 
11 

Beam 

Section 

1 

2 
3 

4 

5 
6 
7 

8 
9 

10 
11 

Beam 
Section 

1 

2 
3 

4 

5 
6 
7 

8 
9 

10 
11 

Mode 

Computed 

Displacement 

1 (symmetric) 

% Error 

% Error 
Predicted 

1.000 
0.8821 
0.6512 

0.4231 
0.2027 
-0.003910 

-0.1899 
-0.3485 
-0.4736 

-0.5600 
-0.6041 

0 

-0.08 
-0.25 
-0.48 

-1.0 
30.2 
0.63 

0.2 
0.04 

-0.04 
-0.05 

0 
-0.08 

-0.25 
-0.48 

-1.0 
30.2 
0.63 

0.2 
0.04 

-0.04 

-0.05 

Mode 2 
Computed 

Displacement 

(anti-symmetric) 
X Error 

% Error Predicted 

1.000 
0.8030 
0.4174 

0.05125 
-0.2662 

-0.5049 

-0.6405 
-0.6611 
-0.5693 
-0.3834 

-0.1351 

0 

-0.49 
-1.8 
-17.9 

2.2 
0.65 

0.09 

-0.21 
-0.39 
-0.50 

-0.5 

0 

-0.49 
-1.8 
-17.9 

2.2 
0.65 

0.09 
-0.21 
-0.39 

-0.50 

-0.5 

Modo 3 (symmetric) 

Computed 
Displacement 

1.000 
0.7298 
0.2013 

-0.2599 

-0.5696 
-0.6665 

-0.5399 

-0.2379 
0.1436 
0.4878 

0.6905 

% Error 

0 

-1.56 
-9.70 

5.15 

0.96 

-0.45 

-1.5 
-3.8 

3.9 
0.29 

-0.25 

% Error 
Predicted 

0 

-1.56 
-9.70 
5.15 
0.96 

-0.45 

-1.5 
-3.8 

3.9 
0.29 

-0.25 

Mode 4 (anti-symmetric) 

Computed 
Displacement % Error 

1.000 
0.6614 
0.0004825 

-0.4973 
-0.6714 

-0.4782 
-0.03190 

0.4404 
0.7044 

0.6293 
0.2501 

0 

-3.67 

102. 
2.78 

-1.0 
-4.30 

-145. 
1.9 

-0.40 

-1.2 
-1.5 

% Error 
Predicted 

0 
-3.67 

102. 
2.78 

-1.0 
-4.30 

-145. 
1.9 

-0.40 

-1.2 
-1.5 

Mode 5 (symmetric) 

Computed * Error 
Displacement X Error Predicted 

1.000 0 0 
0.5988 -7.41 -7.41 

-0.1818 18.2 18.2 

-0.6429 0.20 0.20 

-0.5628 -6.01 -6.01 
-0.04512 -321. -321. 
0.5208 2.14 2.14 

0.7232 -1.87 -1.87 

0.4138 -4.89 -4.89 
-0.1887 3.3 3.3 

-0.6562 -1.2 -1.2 

* Appendix A, Fig. 2, (b) 
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TABLE 15 
IVst Heam 7 - Computed vs. Predicted Errors In Displacements for 42 Section Model 

Beam* 
Sect Ion 

Modi 
Computed 

1' I sp 1 aeement 

1 (symmetric) 

Error 
Z Error 
Predicted 

Mode 
Computed 

Displacement 

l (anti-symmetric) 
Z Error 

Z Error Predicted 

5 
h 
7 
;t 
9 

10 
1 1 
12 
1 ) 
14 
15 
Ih 
17 
IH 
19 
20 
21 

1 .000 
0.9 190 
0.82 15 
0.7077 
0.5924 
0.4781 
0. 1055 
0.2552 
0.1480 
0.04474 

-0.05379 
-0.1407 
-0.2 312 
-0.3124 
-0.3836 
-0.4460 
-0.4990 
-0.5422 
-0.5749 
-0.5969 
-0.6080 

0 
-0.01 
-0.02 
-0.06 
-0.07 
-0.08 
-0.1 
-0.2 
-0.3 
-1 .0 
0.74 
0.2 
0.1 
0.06 
0.03 
0.02 
0.02 

-0.02 
-0.02 
-0.02 
-0.02 

0 
-0.01 
-0.02 
-0.06 
-0.07 
-0.08 
-0.1 
-0.2 
-0.3 
-1.0 
0.74 
0.2 
0.1 
0.06 
0.03 
0.02 
0.02 

-0.02 
-0.02 
-0.02 
-0.02 

1.000 
0.8980 
0.7021 
0.5077 
0.3171 
0.1335 

-0.03951 
-0.1981 
-0.3384 
-0.4570 
-0.5510 
-0.6180 
-0.6566 
-0.6660 
-0.6469 
-0.6004 
-0.5289 
-0.4356 
-0.3244 
-0.2001 
-0.06761 

0 
-0.06 
-0.17 
-0.34 
-0.60 
-1.5 
4.57 
0.80 
0.41 
0.24 
0.1 
0.06 
0.0 

-0.02 
-0.06 
-0.08 
-0.09 
-0.1 
-0.09 
-0.2 
-0.1 

0 
-0.06 
-0.17 
-0.34 
-0.60 
-1.5 
4.57 
0.80 
0.41 
0.24 
0.1 
0.06 
0.0 

-0.02 
-0.06 
-0.08 
-0.09 
-0.1 
-0.09 
-0.2 
-0.1 

Beam 
Sect ion 

Mode 
Computed 

Displacement 

3 (symmetric) 

X Error 
% Error 
Predicted 

Mode 
Computed 

Displacement 

(antl-symmetrlc) 
% Error 

Z Error Predicted 

1 
> 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1.000 0 0 
0.8578 -0.18 -0.18 
0.5850 -0.58 -0.58 
0.3173 -1.4 -1.4 
0.06316 -7.54 -7.54 
0.1673 2.3 2.3 
•0.3635 0.90 0.90 
0.5160 0.44 0.44 
•0.6173 0.18 0.18 
■0.6627 0.00 0.00 
0.6511 -0.1 -0.1 
•0.5851 -0.27 -0.27 
•0.4710 -0.43 -0.43 
•0.3183 -0.66 -0.66 
0.1392 -1.5 -1.5 
0.05215 3.19 3.19 
0.2411 0.54 0.54 
0.4132 0.2 0.2 
0.5551 0.07 0.07 
0.6562 0.02 0.02 
0.7088 -0.03 -0.03 

1.000 0 0 
0.8182 -0.39 -0.39 
0.4696 -1.4 -1.4 
0.1344 -6.2 -6.2 

-0.1670 4.1 4.1 
-0.4122 1.3 1.3 
-U.5814 0.50 0.50 
-0.6610 0.06 0.06 
-0.6465 -0.31 -0.31 
-0.5433 -0.69 -0.69 
-0.3668 -1.3 -1.3 
-0.1405 -3.6 -3.6 
0.1062 4.0 4.0 
0.3419 0.98 0.98 
0.5369 0.37 0.37 
0.6665 0.1 0.1 
0.7145 -0.03 -0.03 
0.6747 -0.1 -0.1 
0.5518 -0.20 -0.20 
0.3608 -0.2 -0.2 
0.1254 -0.2 -0.2 

* Appendix A, Fig. 2, (c) 
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TAlil.i: 1' (continued) 

APPENDIX A 

BEAM MODELING AND NUMERICAL CALCULATIONS 

Solutions for natural frequencies and 

modes of vibration of the discrete mass 
models of the reference beam and test beams 
(excepting Gopher Mariner) were obtained using 

the digital computer program described in 

Refs. [4] and [5]. For the calculation pro¬ 

cedure, which is based upon a finite- 
difference method [4, 5], the continuous 
beams were represented by discrete systems 
conaiating of 12, 22, and 42 masses connected 

by weightless members. The reference and 

test beams of Tables 1 through 10 were 
partitioned for lumping of continuous inertial 

and elastic properties as shown in Fig. 1. 

t 1 

l 

(a) 12 section model 

t y 
i 

(b) 22 section model 

Í 

71 ; 3 ; ^ 40 41 Á 

_
_
O
 

*-
 [

> 
1 

—
 X
 

1 
_ 

L 

0 3 (Ax “ 
- l/2]'\ 

40 

(c) 42 section model 

* 
X 

Fig. 1 - Reference and Test Beam Models Used in 

Tables 1 through 10 

The total mass, uAx, and bending compli¬ 

ance, Ax/EI, of each beam section are considered 
concentrated at the section midpointa (numbered 

points in Fig. 1). With this data the computer 
program calculates the natural frequencies of 

the discrete system and the normalised bending 

moment and displacement at each mass point. 
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(c) i J section model 

i X 
c/4" 

l'U. - M.ippinti of Reference Beam Models 

The compiitatl» i of displacement modes 
for the models of test beam 7 (Tables 13, 14, 

lr’> was done iislnxdi" 7ji.'"and • • 3, 

lhe model frequencies calculated by the 
proKr^m are considered accurate to within 

^ 10 radians. The calculation of mode 

shapes Yielded about four significant figures 
in displacements. 

Analytic values tor modal displacements 
'■■vre obtained with Kq. (») using the following 
v.laes tor k • * : kj - 4.7 )004074, k,. - 

• BdOiah, kj. - In.9450078, k4. - 14.1)71055 

tn Ik.. = 1 7.d 787396. 
) 

Roots ot hq. (J) obtained trom Ref. {6] 

Al’PhaDIX B 

A OKOMRIKIC CRITKRION FOR Sl.KNDKR BKAMS 

A necessary condition on the height-to- 
length ratios of beams, which might quality 
as slender in the sense of F.uler Bernoulli" 
theory, can be obtained from a criterion given 
in K*'1 • 11 )• According to this criterion a 
Slender beam is one which can be bent into 

circular form in the plane of bending as shown 
in Fig. ). 

In Fig. 3, Íq denotes the neutral axla 

of the beam and is equal to the beam length, i. 
The beam height Is denoted by h. 

From this condition one obtalna, 

*1 " 2vr (9) 

and 

‘ Q * 27i(r+l/2 h). (10) 

Substituting (9) into (10) gives 

(11) 

1 o " d 

If one assumes rsQ, then t^O and from 

V"1’ (12) 

Eq. (12) yields the limiting value on h/i 
under the criterion stated above. 

h/ ¢.-. - h/í < ¿ 
0 ïï (13) 
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Eq. (13) was the condition governi j 
the selection of h/e ratios included in this 
paper. 
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DYNAMIC STRESS ANALYSIS 

A DISCUSSION ON THK ANALYTICAL DYNAMICS, 

STRESS, AND DESIGN INTERFACES 

Irvin H. Vat/. 
Teledyne Brown Engineering 

Huntsville, Alabama 

flow path Pr P CW the StructuraI work flow path. Present practices will be evaluated relative to future 

requirements. The followmg questions are discussed: 

<n d?s!‘i¡Vrhoecees^Ct ^ tHe °UtpUt* 0" ^ ^«ciency of the 

,2) anaiyticai p— - of 

(3) aWna!ys7sthe ÍnterfaCe bctWeen dy^mics analysis and stress 

<4’ makeVT8 ^1^18 thcir dyna^cs analyses inputs ,o 
make the ultimate efficient use of the information > 

(5) What is the meaning of structural design reliability^ 

“’.7™'“',';:" *'“•”• ,he ... ««-n- tm» on the life 

(7) How do all these factors influence the determination of the static 
equivalent of the dynamic load ’ 

liSZ-TTTr r‘" bC ma"" '* ^ *— »' “^ministration ,„h en^meerin^ technology. 

INTRODUCTION 

Large aerospace design-analysis facili¬ 
ties generally have an organizational division 
that is either line-functional or project- 

oriented. The engineering analys is a reas, in 
turn, must serve one of these organizational 
systems - or both - according to the environ¬ 
ment. In any case, there is a flow of require¬ 
ments, documents, and finished work elements 
from organization to organization. These com¬ 
munication paths can be defined as organiza¬ 
tional interfaces. The manner in which these 
interfaces operate affects the efficiency of the 
design operation and the quality <,f the final 
product. 

Each interface possesses characteristics 
from the following outline. 

I. Direction 

A. One-Way Flow Path 

B, Two-Way (back and forthl 
Flow Path 

II. Route 

A. Direct to Receiver 
B. Indirect Through Reviewers 

to Receiver 
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! 11 . A<l»lrr>»-trr> 

A. Sin cl«' 
H. Finite Fev. 
t . I ,i mit e<l Distribution 
1 ). Cieñe ru 1 Di s i r : but ion 

IV. Authority 

A. Absolute Authority 
U. Stat t Autho r it y 

V. Other Functions 

A. Review and Recommend 
B. For Information Only 
C. Dist ribution Only. 

The i ha racteristics of each interface will 
influence its importance to the administrative 
system as a whole. This fact should be 
obvious and presents one of the basic theses 
of this paper. 

A mature system usually has interfaces 
that ope rati' without question in an automatic 
manner. The processes in such a system were 
born of need and modified to eliminate prob¬ 
lems that experience elicited. In an unchanging 
environment, the mature system will usually 
function in a satisfactory manner. Under the 
pressure of slowly changing requirements, a 
mature system will bend, modify, and allow 
additions in such a way that operational stress 
is relieved. 

The mature system will have become 
inflexible; that is, it will resist any gross 
change. But the mature system reduces 
visibility across interfaces and may mask 
the true nature of transmitted information. 
Thus Force is Force. The physical theorist, 
the dynamicist, the stress analyst, and the 
designer will each have his own definition 
and concept of Force. Through each interface 
Force is Force. But is all the necessary 
information transmitted across the interface? 
Has the communication been technically 
successful’ 

The success of communication across 
an interface depends on the ultimate objective 
of the system. A communication may 
adequately perform its mission relative to 
current system objectives, but a change in 
the objectives may require extensive overhaul 
of communication requirements. Some of the 
required changes are likely to be masked by 
the adequacy of past performance and the 
existence of one-way informational flow paths. 
One facet that may be masked is the factor of 
safety each division of the design process adds 

to the design requirements. As long as the 
effect of a large multi-factor of safety is 
acceptable within the system's ultimate 
objectives, there is no problem. The future 
requirements of spacecraft and reusable 
launch-boosters will put forth a more demand¬ 
ing evaluation of design criteria. An increase 
in the ratio between payload and total weight is 
probably essential. A more complete concept 
of structural reliability is needed. Neither of 
these two demands on the design process can 
afford to tolerate excessive factors of safety 
or masked information. This paper will take 
a critical look at a typical structural analysis 
work flow system relative to foreseeable 
future demands. 

A TYPICAL STRUCTURAL ANALYSIS 
WORK FLOW SYSTEM 

There are probably as many variations 
of organizational pattern as there are organi¬ 
zations. It is not the purpose herein to 
involved in organizational structure, but to 
present a dynamics analysis work flow dia¬ 
gram (Figure 1) that would be typical of a 
majority of organizations. 

The flow lines are placed to exemplify 
the flow of information to and from the Dynamics 
Analysis Organization. Other lines of com¬ 
munication are omitted from the chart. Only 
the basic lines are presented so that a lot of 
detail will not overrun the ideas to be presented. 

The chronological path starts with the 
receipt of the conceptual designs by Dynamics 
Analysis. Preliminary loads and preliminary 
qualifications are generated. The loads are 
transmitted to Stress Analysis where combined 
loads design criteria are established. The 
stress area receives and inputs loads from 
other applicable sources. These other loads 
influence the dynamics indirectly by their 
effect on the preliminary design drawings that 
will follow. Dynamics analysis may or may 
not be required for the first or first few design 
iterations. These will be stress analyzed. 
Generally, a reasonably firm design is for¬ 
warded to the Dynamics Analysis Group for the 
first iteration towards the final design analysis. 
This inner loop of Figure 1 will be repeated 
until a design satisfies both the Stress and 
Design organizations. 

Several characteristics of this flow 
diagram are worth noting. Communication 
between Dynamics and Design is indirect and 
one-way. It will also follow that Dynamics 
has basically a review and recommendation 
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function and that Dynamics has a single 
recipient for its product - Stress Analysis. 

Several other concepts may be deduced: 

(1) The influence of dynamics on 
Design is filtered by the stress 
analysis function. 

(2) Communication (Stress to 
Dynamics) is generally of a 
Go/No-Go type in terms of 
allowable static stress, 

(3) Communication (Design to 
Dynamics) is generally filtered 
by the Stress organization. 

(4) More mutual grounds generally 
exist for good communication 
between Stress and Design than 
between either of these and 
Dynamics. 

The fourth item above follows from the 
fact that designers and stress analysts com¬ 
municate with a mutually understood language. 
Going back to the statement that Force is 

Force, both Stress and Design engineers 
visualize Force as "a cause of the deformation 
of the material in bodies, (F = -k x)." This 
force is static and in axial excitation is 
related to area by F = PA, where P is pressure 
or stress and A is area. Thus PA = -kx. This 
may sound very elementary -. and its being so 
elementary is the crux of the problem; it is 
believable and unquestionable. On the other 
hand, the dynamicist sees force as derived 
from some form of F(t> = xM + (1 + jn) kx, 
which is a complex differential equation in 
which force is time dependent. The dynamicist 
sees F(t) as being transient, pulse-like, 
periodic, or random. What is the static 
equivalent of F(tl? In the author's opinion, 
there is no direct mathematical equivalence. 
The ultimate objectives and the design life 
will influence the relationship of F(k,xl to 
F(t). 

An example of the communication 
problem can be stated like this. A dynamicist 
will state that he can calculate the structural 
stresses in a dynamic system. When this is 
true, the resultant stress is time variant. 
This time variant stress does not have the 
same relation to failure as a static stress. 



A dynamic st rt■ ss , wlirn t ons id** rably below 
yudd stress, can cause failure by fatigue. 
There are design and operational criteria 
which influem <• fatiitue and schuh probably 
bypass the dynimicist and ¿o to some other 
ana ly t u a 1 a i-'a suchas Stress, Design, 
Reliability, or Test. Aitually, the role of 
R e li ab i lits relative to Structures in many 

organizations is rather vapue. There are 
also dynamic stresses (those below the 
asymptote to the S/N curve) that will have no 
effec t on failure whatsoever in the absence of 
other stresses. It may be concluded that a 
ureut deal more than mere loads, forces, or 
responses is required to expedite the efficient 
transmittal of dynamic effects on structure. 

rhe re is a vast cray area maskinH 
structural reliability. Since it is so Hray- lt 
is the author's opinion that the dynamicist 
automatically produces numbers, believing 
them to be related to Fill. The stress analyst 
receives these same numbers and believes 
them to be an additive F(k,xl function. This 
procedure may induce a positive or negative 
safety factor, depending on the situation. In 
aerospace design of short-lived hardware, the 
induced safety factor is generally grossly 
positive. As long as the total objectives of 
the design can absorb the safety margin, the 
procedure is adequate. As stated earlier, 
the criteria for the space shuttle program may 
be much more demanding. Therefore, the 
author has asked a series of questions that may 
reveal the significance of this gray area. 

(1) What Is The Effect Of The Analytical 
Outputs On The Efficiency Of The 
Design Process ? 

Both analytical design criteria and 
loads analysis affect the complexity and the 
number of iterations a design must go through. 
To increase the design process efficiency, the 
number of iterations must be reduced. Better 
initial communications in the form of more 
realistic preliminary loads can go a long way 
in reducing the need for iterations. Inadequate 
information during the concept stages is usually 
compensated by excessive safety factors. In 
many engineering circumstances this is good 
engineering practice, but future demands of 
space-design may require a more finite 
evaluation of risk. Perhaps preliminary 
design criteria should be produced that are 
marginal instead of statistically safe. Over- 
designed structure gets into the system 
because of the preliminary load requirements 
and then sets like concrete -- that is, it is 
most difficult to correct by the restraints of 

the design system. Underdesigned etructure ie 
readily correctable by the system. The design 
process efficiency would be increased by the 
critical editing of preliminary loads when close 
safety factor tolerances must be accepted in 
the final product. 

The inadequate and indirect communi¬ 
cation between Design and Dynamics and the 
related problem between Stress and Dynamics 
sponsors designs that are produced without any 
regard to dynamics. It appears that Dynamics 
Analysis, as a late comer, was added to the 
design process to overcome designed-in¬ 
failure-mechanisms. It is true that not too 
long ago it was almost always more economical 
not to design against dynamic failure. It was 
better to correct dynamics problems by test, 
correction, and retest. This philosophy has 
deeply penetrated the design system. As 
designs advance in complexity, size, and cost, 
it becomes more economical to design away 
from dynamic problems. A more meaningful 
communication between Dynamics and Design 
should improve the design process efficiency. 

The Design-Stress-Dynamics communi¬ 
cation problem leads to the misinterpretation 
of dynamic design criteria -- especially for 
transients and shocks. The efficiency of the 
design process would be increased if the F(t) 
and F(k, x) interpretations were better under¬ 
stood by all involved parties. This may be 
asking too much. Perhaps a new function should 
be created to coordinate load summation. This 
suggestion will be discussed under the last 
question. 

Better efficiency could also be achieved 
where mathematical models are well coordi¬ 
nated. Question (3) will expand this idea. 

(2) What Is The Effect Of The Analytical 
Process On The Efficiency Of The 
Finalized Design? 

The analytical process has a profound 
effect on the design criteria. The design cycle 
is tuned to prevent failure, not especially to 
produce design efficiency. The characteris¬ 
tics of the analytical interfaces do influence 
the weight versus reliability attitude of the de¬ 
signers. This is very much a part of the gray 
area in the design process. The discussion of 
the design process efficiency (Question 1) 
applies to this question also. 

(3) What Is The Ideal Interface Between 
Dynamics Analysis and Stress 
Analysis 7 
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The structural analysis process for 
large aerospace hardware is becoming more 
and more dependent on the digital computer. 
As we look to the future, communication may 
very well be best served by computer language. 
Therefore, the technical discussion under this 
question will be in matrix algebra. We will 
define [K], [M], [ Rl, and f T] as square 
matrices of stiffness, mass, damping, and 
transfer function, respectively. We will also 
define [ K] f R] f M] as elements ofj 7,], the 
impedance square matrix, and f M] f K] 
f M] 5 as the dynamics matrix f D]. fF] and 
{X} are column matrices of force and response. 
(Xl^js the transpose of th^ response matrix, 
and f$) is a function of f M]¿ and fX), 

The dynamics analysis area may work 
with the following matrix equations: 

(X]T fF] {X] T f 7] {X} ,1) 

f?) [w*] = [D] {3D . (2) 

Both these equations require the generation of 
a maee and a stiffness matrix. An {X' matrix 
may be assumed to be an input by using statis¬ 
tical data, and the resulting loads calculated; 
or a load matrix fF} can be assumed, and the 
response determined. Both of these processes 
are complicated by the mode shape summation 
requirement. The equation 

{X,} = [T] {X,} or {Xj} = [T] {X,} 

Í3) 

is quite often used to simplify response pre¬ 
diction after the natural frequencies and mode 
shapes have been determined« 

Now what part of the dynamics analysis 
process is the stress analyst interested in'3 
It is the author's opinion that a stress analyst 
wants a static equivalent of fF} or fX} and is 
really not interested in a factual fF} or {X}. 
A second part to Equation (3) may be a-sked. 
What good would the static equivalent of the 
dynamic load or response do if it could be 
given to the stress analyst0 In the author's 
opinion not much value would be received. 
Many factors would affect the continued value 
of a discrete matrix. These factors are not 
now generally reviewed by the dynamics 
analyst. In other wordr, the dynamics analyst 
is not a structures reliability expert. We are 
talking about the accumulated history effect of 
temperature, radiation, de/re gassing, vari¬ 
able static load, shock , vibration, etc., and 
how these affect structural reliability. Is the 
stress analyst a structures reliability expert '1 

To a point the answer should be yes. But does 
his expertise cover the scope of the above 
accumulated history effects0 It is the author's 
opinion that we will be extended beyond the 
state-of-the-art; additional engineering tech¬ 
nology is needed. 

After much thought and deliberation on 
Question (3), a conclusion has been reached 
that, in light of possible future requirements, 
there is no ideal interface between Stress and 
Dynamics. This conclusion will be brought up 
again later in this paper. In light of present 
and past requirements, current practices are 
reasonably practical. 

The mathematical model the dynamicist 
uses requires a stiffness matrix, fK}. Depend¬ 
ing upon the analysis objectives, many stiffness 
matrices may have to be generated. The stress 
analyst also uses stiffness matrices. His basic 
equation is 

fF} fK] fX} . (4) 

The stress requirements for stiffness matrices 
generally require more detail than is practical 
for Dynamics. Conservation and computerized 
reduction of the stress stiffness matrices would 
help efficiency and communication. Coordina¬ 
tion of node points with thermal engineering 
would also help communication. 

(4) Can The Stress Analysts Use Their 
Dynamics Analysis Inputs To Make 
The Ultimate Efficient Use Of The 
Information 0 

This is probably a bad question because 
the answer is an obvious "no. " The use of the 
word "ultimate" takes the requirement beyond 
realism. It is asked because the "ultimate" 
is our objective and any change in the design 
process should be a step towards the ultimate. 
It is possible that uncorrelated problem solu¬ 
tions to today's gray area of structural relia¬ 
bility may impede rather than help growth 
to the ultimate. 

(5) What Is The Meaning of Structural 
Design Reliability'1 

Component reliability may be defined 
as "the probability of specified performance 
for a given period of time when used in a 
specified manner." Structural reliability 
may be defined as "the scientific analysis 
of a specific structure to determine the prob¬ 
ability of successful performance considering 
the accumulated influence of its environments 
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'i iririi its rlesiL'ii lili*. I fu- word scientific" 

is ¡sed here in impK more than iust a statis- 

'1. al determination that is associated with the 

Ida. k Ho\ tlieor\ of re lialii li t v. 

Structural design reliahilit\ is really 

ti e imil of all structural designs. V e design 

to provide a satisfactorv prohahility of success- 

tul pertortiuince over the flesiyn life. Kven 

thouch ill en e i nee ran: will accept this phi- 

losophv. no separate .inri distinct engineering 

disc i pi i ne has been developed; the technology 

is dispersed throughout a number of disciplines 

md organizational elements. 

i 1 Po We lake Into Account The 

( umulat ive History Effect On The 

I ife Of A St ructu re 1 

Depending upon the design objectives, 

the answer could be a qualified yes. There 

are a great manv areas that ¿ire strong-armed 

bv the test ot the finalized design in an accel¬ 

erated environment. This is done because the 

sta te - ot - the - a rt of some of the engineering 

prediction methods is not dependable enough 

to stand on its own merit. 

We may not be able to afford empiricism 
on the large, costly, multi-environmental space 
vehicles of the future. One of the reasons for 
qualifying the yes is that some structural 
reliability areas are tested by part, not the 
ull assembly, in simulated environments not 

ideally identical with those experienced during 
design life. As the environments become more 
complicated, the effects of each influence 
become more masked by the empirical approach. 
Analytical predictions will become more 
necessary. 

(7) How Do All These Factors Influence 
The Determination Of The Static 
Equivalent Of The Dynamic Load0 

Systems analysis has a theory which 
states: 

The recognition of symptoms and 
the repetitive attempt to correct 
them will not necessarily uncover 
the basic problem and provide a 
permanent solution. " 

Symptoms do r. >t by themselves define the 
problem, isolate the strategic kernel, or 
uncover the critical path. The author must 
confess that this paper was motivated by the 
recognition of a symptom - - a communica¬ 
tion deficiency between Dynamics and Stress. 

Peter Drucker states, "Strategic decisions -- 
whatever their magnitude, complexity, or 
importance -- should never be taken through 
problem-solving."* Engineers by natural 
inclination are problem-solvers. We would 
have a better professional environment and a 
better engineered product if we sat back and did 
a little more philosophizing and rationalizing. 
The author set out to recommend a solution to 
a symptom. It was discovered that there was 
no ideal interface between Dynamics and Stress. 
If we have a symptom, what is the underlying 
problem ■ The strategic fact is that there are 
so many influences on reliability relative to the 
dynamic load that the output of the dynamicist 
has not been fully processed. Additional refine¬ 
ment is needed before it is passed to the stress 
analyst. Is this not also true of other load 
inputs0 And don't they have intra-dependence? 
Environmental conditions can add damage or 
damage-relief to a structure. 

The author proposes changes in the 
structural design and analysis work flow path. 
(Refer to Figure 2. ) Conceptual design would 
be processed to and through the presently con¬ 
strued load determination areas. But, instead 
of loads doing to Stress, they would go to the 
newly conceived group that performs analysis 
on loads relative to structural reliability. The 
processed and summarized loads are then 
passed on for stress analysis. Another new 
area receives the stressing results. It is called, 
for lack of a better name, the Analysis Review 
Committee. Experts from each of the analysis 
areas would be included. This committee would 
review the stress reports for evaluation of 
design criteria and pass their findings to any 
applicable groups in the design team. They 
would also work closely with the designers so 
that the proper technology would positively 
influence the design -- not be reviewed after 
design completion. The new structural 
reliability group would be strongly represented 
on the committee. 

Think about the improved use and defi¬ 
nition of technology, and the greater impor¬ 
tance placed on two-way communication. This 
idea is too new to be very positive on every 
advantage and disadvantage. 

ï Peter F. Drucker. The Practice of Manage¬ 
ment (New York: Harper * Row. 1^4). 
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We will close with another strategic 
kernel. The responsibility for improvements 
in structural reliability technology has never 
been centralized. It has always been in rather 
unfair competition for funding with technology 

more near and dear to specialists (in other 
fields) who have made the decisions. New 
technology is needed. Squarely placing the 
responsibility will most certainly put this 
wrong to right. 

I 
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DYNAMIC ST K K SS ANALYSIS IN A STKATII'IKD M LDH .M 

Jackson C. S. Vanu 
Ames Research Center, NASA 
Moffett rieh', California iUOIif. 

Stress waves generated in a structure consisting of alternating plane, parallel. ~| 
isotropic, and homogeneous elastic layers by the application of pressure pulses i 
of various shapes and duration are analyzed. The method of characteristics is 
employed to compute the transient stresses at various points in the structure. 
Numerical computations were made using both the ' Effective Modulus Hteon , j 
where the layered structure is replaced by a homogeneous, transversely iso- , 
tropic material, and by following the stress wave through each laver in conjune- 
tlon with appropriate procedures to satisfy the boundary conditions and interface | 
conditions. Comparisons of the results using the two approaches are presented I 
In several graphs and it is shown that the smoothness of the applied pressure | 
pulse, the rise and unloading times, has far more influence on the reliability of 
the "Effective Modulus Theory" than the generally accepted concept that it 

depends on the duration of the pressure pulse. _ 

INTRODUCTION 

In problems of Impact, such as those experienced 
by a vehicle landing on a planet, any surface, entering 
into water, being struck by a meteoroid or being sub¬ 
jected to high-rate disturbances of the external pres¬ 
sure, such as blast loads, the pressure disturbances 
may give rise to appreciable stress waves propagat¬ 
ing Into the interior of the vehicle. This may cause 
severe damage to the vehicle or to the various com¬ 
ponents within the vehicle. The usage of multilayered 
structures has been increasing in Importance, i e., 
bumper-hull structures, heat shields, etc. The pur¬ 
pose of this investigation Is to study the transient 
stresses generated in r. laminated medium by high- 
rate pressure loads in a direction normal to the 
layers. 

Ih a multilayered structure the pattern of tran¬ 
sient stress waves Is rather complicated due to the 
repeated reflections and refractions of the waves at 
the interfaces between layers of materials of differ¬ 
ent mechanical properties. The reflections and 
refractions of stress waves in a multilayered struc¬ 
ture require a careful examination because they may 
generate somewhat unexpected effects such as the 
appearance of high tensile stresses in the interior of 
the body under compressive external loads. Exces¬ 
sive dynamic tensile stresses are undesirable 

because they cause spalling of briltle elastic materials 
and delamination at the interfaces. 

With this complexity of following the waves and 
matching boundary conditions, the customary approach 
in constructing a theory to describe the mechanical 
behavior of a laminated composite consists of replac¬ 
ing the composite by a homogeneous but usually an 
isotropic medium whose material constants are 
determined in terms of the geometry and in terms of 
the material properties of the constituents of the 
composite. Theories of this type are termed effec¬ 
tive modulus theories." For a laminated medium, 
the effective elastic constants have been computed 
by Riznichenko, Postma, White and Angona, and 
Rytov, (see references 1-4) on the basis of both static 
and dynamic considerations. It appears that the 
effective modulus theory yields good results for 
static analysis. In considering dynamic problems, 
however, this theory has to be viewed with some 
suspicion especially if the wave length and the rise 
time of the input pressure pulse are small. 

In this paper the method of characteristics is 
employed to analyze the propagation of stress waves 
in a direction normal to the layering in laminated 
plates. A numerical integration of the characteristic 
equations in each layer, in conjunction with appropri¬ 
ate procedures to ensure that the conditions on the 
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t'xti*rrvi! tioiin^larii-s as well as the rontlnulU’ comii- 
li.ms al (he inti'rfacfs ari' satisflfi!, violils the stress 
m.l tlie particle velaeitv at an arbitran' lecati.m. 

In applied science and engineering the following 
contracted notation for the stresses anil the strains 
is nene rally found more convenient (see reference 5). 

As a specific example wo consider the stress 
distribution in a layered structure subjected to vari¬ 
ous ttiies of pressure loads of varying durations, rise 
and unloading times. The structure treated consists 
of alternatinu limestone and sandstone layers. This 
is the example given by Postnia (see reference 21 
where the effective modulus theory was applied based 
on the assumption that the layered medium behaves 
on the whole as a homogeneous but transversely iso¬ 
tropic continuum Numerical results for the dynamic 
stress field using Postma's effective modulus theory 
will be compared with the results obtained by following 
the wave and matching boundary conditions in every 

layer. 

i iTKr rivi: moium s thkory 

In this section the mechanical behavior of the 
laminated layers is described in an approximate man¬ 
ner by a homogeneous continuum model. The simplest 
model of that type is provided by the effective modulus 
theory, whereby the mechanical behavior is described 
by a homogeneous but anisotropic continuum. 

To make the paper reasonably self-contained, the 
salient equations governing the elasticity of aniso¬ 
tropic bodies are stated. Let Xj be a rectangular 
cartesian coordinate system with i = 1,2, 3, and let 
Uj bo the displacement vector field. The elastic 
strain tensor is then defined by 

l'kl * 2,Uk.l + Ul.k' (1) 

where 

1 t|1- ’2 22’ “ "Tn* "4 ” lT23’ "fi ’ "13* ^ 

V, "12 

el = fll' f2 1 f22* f3 = f33’ f4 = 2f23* *3 = 2f13* 

ffi = 2f|2 
<fi> 

The generalized Hooke's law then becomes 

"q = l'qr *r 

By comparison of Kqs. (3) and (7) we find 

C11 = C1111 • c12 = C1122.cin = c1112-etc- 

(8) 

In a transversely isotropic medium all directions 
which make the same angle with an axis of symmetry 
are equivalent. If we choose the xj-axls as the axis 
of symmetry, the elastic constants Cqr may be 
arranged in the following form 

C11 e12 c12 

C12 c22 c23 

Cqr = 

c12 c23 c22 

C88 ' C23 
2 

s55 

«38 

W 

u k.l (2) 

For a homogeneous, anisotropic, linearly elastic 
medium, the stress tensor oj. is related to the strain 
tensor by the generalized Hooke's law 

'riJ = cljkl *kl ( ’ 

In Eq. (31 It Is understood that the tensor summation 
convention should be invoked whenever Indices l,J,k,l 

1. 2 or 3 are repeated. The elastic coefficients 
satisfy the symmetry conditions 

cljkl = eJlkl = cijlk s ckliJ (4’ 

Thus, of the 81 coefficients cjjW. only 21 are 
independent. 

As Is evident from the array (9), the stress- 
strain relations for a transversely Isotropic medium 
assume a siqjple form if the xj-axls coincides with 
the axis of symmetry. 

We now consider a stratified medium consisting 
of a large number of homogeneous, isotropic, elastic 
materials (see figure 1). The LanU's elastic con¬ 
stants and the thicknesses of the alternating layers 
are denoted by Uf> df and |im, dm respectively. 

According to the effective nuxhdus theory, the gross 
elastic behavior of the laminated medium Is trans¬ 
versely isotropic with the xj-axls as the axU of 
symmetry, lie stress-strain relations can then be 
described by equations of the general form (3). The 
effective elastic conatsnU cu, ele., can now be 
derived in terms of the elastic constants and the 
thicknesses of the layers by a method which was 
discussed in detail by Postma. The results are 
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C11 = D ß*** + dm^2^f + 2Mf^XTn + 

c12 " d + + 2ilm) 

+ + 2>if)] 

c22 = D + dm)2^Xf + 2M0(Xm + 2ilm) 

+ - Hm)(*f + - Xm ' ^m)] 

c23 y [(^ + dm)2 ^ V 

+ 2(lfdf + Xmdm)(Mmdf + Mfdm)] 

C55 = (df + dm)*ifMm/(dfHm + dmMf) 

A numeric»! analysis of the wave propagation 
problem is conveniently carried ou* by 'he method 
of characteristics. The characteristic curves are 
those curves in the x,-t plane along which the system 
of partial differential equations can be replaced by 
differentlal expressions containing total differentials. 

We first introduce the particle velocity Vj (Xj,t) 

as 

i'U] (X],t) 

V, (x,,t) = ~t 
(15) 

In terms of the particle velocity, the equation of 
motion, equation (12),is then rewritten as 

.»t P -w, ’ 

From the strain-displacement relation, equation (1), 
for one dimension, differentiation yields 

where 

D = (df + dnOfdriX,,, + 24m) + dm(Xf + 2Pf)] 

OH 

ANALYSIS OF WAVE PROPAGATION 

In the analysis we restrict the attention to one- 
dimensional wave motions for an elastic solid (con¬ 
stant density and wave speed). For this type of wave 
motion the stress equation of motion may be written 
in the following form: 

"ij.l " püJ (,2) 

i'fj •'Vj 

¡it ' (Kj ' 

Also, defining 

pc2 
0ITj 

¡If, 
(17) 

we can show that c is the wave speed in the medium 
and equation (17) can be written in the form 

III 2^,pC2^ 
<it ^ «'t ^ ■’Xl 

(IS) 

The solutions of equations (12) may be written in the 
general form: 

uj - Uj(t - xj/c) (131 

It is known that the wave velocity c can in general 
assume three values, which are the three roots of the 
following cubic equation: 

del j cijlk " P^Jk I - 0 ■ f14' 

where <■>«, is the Kronecker delta. It can easily be 
shown that in general a normal external disturbance 
produces three waves whose wave fronts propagate 
with the wave velocities that are computed from 
equation (14). One of these waves is longitudinal. the 
other two are transverse waves. This effect does not 
occur for an Isotropic medium, where a normal sur¬ 
face disturbance produces a longitudinal wave only. 
It also does not occur for a transversely Isotropic 
medium If the axis of symmetry is normal to the 
boundary. 

It is now seen that total differentials can be obtained 

alonK îii . ic, where c is defined bv equation (17): 

d/ fit 
dt v’l * pc/ 3t 3*1 dt *vpc at pcaxj dt / 

?vi 1 a*! / av! J_ a<TA 
= at ’ p ax, * \c ax, pc at J' 

From equations (ICO, (IS) and (19) we have: 

along 
dx, 

dt 
+c 

(19) 

(20) 
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along 

In multilayered structures materials of different 
material properties are joined. Across the interfaces 
the stresses and the particle velocities are continuous 
Phe conditions at an interface between two materials 
f and m then are of the form 

'Vf = (<Vm i22) 

(vl>f = (Vlirn (23) 

The plate can be subjected to external distur¬ 
bances at either boundary, or both. The input can be 
applied suddenly or gradually in any specified time 
function for a and v. Since it is assumed that the 
body is initially at rest and undisturbed, the field 
variables vanish Identically ahead of the first wave 
front. 

NUMERICAL PROCEDURE 

Consider the grid system of the characteristic 
lines in the Xj-t plane as shown in figure 2. The 
ordinate Xj = 0 represents the boundary of the body, 
where the external disturbances are applied. A 
numerical procedure involving stepwise Integration 
along the characteristics of equations (20) and (21) 
is employed to compute the response for various 
Inputs. The stresses and the particle velocity are 
calculated at all grid points. 

When the external input has a finite rise time, 
tfjl and Vj vanish identically along and ahead of the 
wave fronts ABO . . . . D. If the external input haa 
a step discontinuity it is for computational purposes 
assumed that the step is applied over an infinitesi¬ 
mally small time, so that the magnitude la reached 
along CHM . . . . F, but the field quantities still 
vanish along ABO . . . . D. 

The grid points are divided into three groupât 
interior points, boundary points and interface points. 

BOUNDARY POINTS 

Along die boundaries Xj > 0 one of the two vari- 
bles tfjj and Vj is prescribed as a function of time. 
The remaining variable may be determined from the 
characteristic equations along the characteristic 
curves. Referring to figure 2 we note that since the 
field variables vanish at A and B, for the boundary 
Xj ■ 0, only the equation along c+(B to C) is used. 

INTERIOR POINTS 

The field v iriables vanish at B and G, and they 
have been computed at the boundary point C. The 
values of and Vj at the grid point H can then be 
computed by employing the characteristic equations 
along GH (c*) and CH (c"). The computation at 
other Interior points proceeds by a step by step 
procedure. Thus, to compute the field variables at 
S, we employ the values at P and R, which have 
previously been computed, and we use the charac¬ 
teristic equations along c~ and c+, respectively. 

INTERFACE POINTS 

To compute the field variables near an interface 
we consider the points N] and N2, which arr located 
on different sides of an interface but infinitesimally 
close to the interface, as shown in figure 3. There 
are altogether four unknown field variables at the 
points Nj and N2. Above the interface the charac¬ 
teristic equation along MNj can be utilized. Under¬ 
neath the interface we can use the characteristic 
equation along LN2. Two additional equations, 
adding to a total of four equations, are obtained from 
the interface conditions (22) and (23) which relate 
the field variables at Nj and N2. The four field 
variables at the interface can &us be computed by 
solving four algebraic equations simultaneously. 

The computations described above were carried 
out on a digital computer. It is apparent that the 
smaller the characteristic grid, the more accurate 
the numerical results will be. 

Care must be exercised to insure that the c~ 
characteristic lines reaching an interface meet up 
with the c+ characteristics from the grid points in 
ths next layer. This can be accomplished by relating 
tile increments Ax in the 1th layer (first material) 
and (t ♦ 1)0» layer (second material) by the relation 

ci A*! “ cl+l **1+1 

where q and cj+j are the dilatational wave speeds 
In tbe 1th and (1 + l)th layers. 

NUMERICAL EXAMPLES 

Eve and Keys (see reference 6) give the following 
numerical values for elastic constants of typical 
earth materials: 

Limestone: 

p-2.6S-2.72 { p « (2.1-S.0) X 10U 
K - (3.75-5.7) X 1011; v - 0.25-0.28 (c.g.S. units) 
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Sandstone: 
P 2.3 ti 0.(i] X IO11 
* - 1.25 X 10^1; i - 0.2f* (c.]í.s. units) 

<í is the hulk modulus; « ^ A + ; n is Poisson's 
ratio. 

in the middle of the ninth layer of sandstone of a few 
of the cases are presented in fibres 4-0. The 
stresses were rendered dimensionless by dividing 
by it0 where is the maximum value of the exter¬ 
nally applied pressure, i.e., 

For a demonstration of the anisotropy under 
realistic conditions, we take the df layers to be lime¬ 
stone and the dm layers sandstone, with the following 
parameters: 

Limestone: 

pf ’ 2.7; =» 2.5 X 1011; A(. ■ 3.0 x 1011; Cj > 0.273 

Sandstone: 

Pm ’ 2-3: ^n, s °-6 x i0": Am = 0.8 x 10U: . 0.280 

Let df = 1; dm = 3; and using equations (10) and (11). 
we find 

CH = 3.36 x 1011 IWiÄ c = 2.46 x lOH 
CM2 33 

c12 ^ 1>21 x lo11 c44 = 0.74 x 1011 

c13 = °-97 x 1()11 c66 = 1.08 x 1011 

P = 2.4 

¿ 1 

(¾ = 3.73km-sec-l; (^il) 

('T3') = 3-21 km-sec-1 ; (^S) 

1.76 lon-sec*1 

2.12 km-sec*1 

If each layer is considered in the laminated structure: 

Limestone: 

C1 

Sandstone: 

°2 

Four different types of input pulses are Inves¬ 
tigated In this paper: step, rectangular, triangular, 
and half sine. In all cases, five different pulse 
lengths were considered: Tj « 40, 80, 160, 320, and 
640 microseconds per kilometer of layer thickness. 
For each type of Input pulse and for each pulse l««th, 
the stresses and particle velocities were computed 
at certain specific locations In the laminated struc¬ 
ture with 18 layers of alternating limestone and 
sandstone. The results for the stresses at a point 

IT 

, t) 
(24) 

The time scale is dependent upon the thickness of 
the laminated layers: 

t = 0.2 td 

where the dimensions of t are in microsec. per 
kilometer of layer thickness and d is in kilometers. 

The effect of the rise and unloading times of the 
input pulse were investigated. Five different rise 
and unloading times for two different types of input 
pulses were considered: Fj = 0, 5, 10. 15, 20 micro- 
sec. per kilometer of layer thickness. The results 
for the trapezoidal and triangular input pulses are 
presented in figures 7 and 8. 

General plots of the effects of wave length, rise 
and unloading time with respect to the percentage of 
the deviation of the "Effective Modulus Theory" to 
the theory that takes Into account the wave propaga¬ 
tion in all the layers are presented in figures 9 
and 10. 

It is observed in figure 9 that the differences In 
the peak stress values predicted by the two theories 
are between 32% to 42Ç for various lengths of rec¬ 
tangular and step pulses. However, the comparisons 
were very good for the triangular and half-sine 
pulses, between 6% to 20$ and 2^ to 10^ respectively. 
It is also observed in figure 10 that the effect of the 
rise and unloading time of the input pulse gave an 
error difference in the peak stress values predicted 
by the two theories of about 10% (compare errors at 

t = 0 and = 4). 
5¾ ' 

CONCLUSIONS 

In this paper the propagation of stress waves in 
laminated composite structures was analyzed by 
means of the method of characteristics. A numeri¬ 
cal Integration of the characteristic equations In 
conjunction with appropriate procedures to ensure 
that the conditions on the external boundartes as 
well as the continuity conditions at the Interfaces 
are satisfied yields the stresses and the particle 
velocities at spy point In the structure as functions 
of the time for external pressure loads of arbitrary 
time variation. 
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Specific computations for a periodic structure 
consisting of alternating limestone and sandstone 
lavers usine lioth the "Kffcctive Modulus Theorv" 
and l.v folio»int; the stress »ave an-l matehtmt hound- 
ar\ conditions in everv laver resulted in a number of 
conclusions »hielt should provide ¡guidelines as to 
'he reliahilitv of the "infective Modulus Theory" and 
its dependence upon the »avelenuth, rise time, unload¬ 
ing time and the smoothness of the applied pressure 
pulse. 

lite comparisons between the two approaches 
-ave the following conclusions: 

I. Contrarv to ¡•eneral belief, the duration of the 
applied pressure pulse does not have strong influence 
on the validité of the "infective Modulus Theory." 

-. I he effect of the rise time and the unloading 
'¡me of the applied pressure pulse is far more 
dominating than the wavelength. The slower the rise 
and unloading time, the more reliable the "Effective 
Modulus llieorv." 

•I. I he Effective Modulus Theory" gives very 
reliable results for a verv smooth pressure pulse 
such as a half sine pressure pulse. 

i. I he Effective Mtxlulus Theorv" gives very 
unreliable results for zero rise time even though the 
wave length is allowed to approach infinity. 

«i 
I 

•t' 

fig I Momentary volume of stratified medium. 
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Fig. 2 Characteristic grid system. 

Fig 3 Detail of grid near interface. 
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lol 

Fír. 4 Dimensionless stresses at a point in the ninth sandstone layer of the structure for a rectangular 
pressure input with various wave lengths. 
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Fig. 5 Dimensionless stresses at a point in the ninth sandstone layer of the structure for a triangular 
pressure input with various wave lengths. 
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Kl g. G Dimensionless stresses ut a point in the ninth sandstone layer of the structure for a half-sine 
pressure input with various wave lengths. 

Fig. 7 Dimensionless stresses at a point in the ninth sandstone layer of the structure for a trapezoidal 
type pressure input with various rise times. 
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Fír. 8 Dimensionless stresses ut a point in the ninth sandstone layer of the structure for a triangular 

pressure input with various rise times. 
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DISCUSSION 

Ml Howar«t (Ar l osDatv C'<>n»or:iti(>n): How wi-ll 
din's this of foot ¡vo modulus throry work when your 
acoustic imiH'danccs reaching the mtaiia arc very 
much different than the ones that you selected? 

Mr. Y:mu; If I were to select materials that 
exhibit a ureal difference in the impedance ratio 
then probably what has l>een said about the effective 
modulus as far as the lonR duration is true. In this 
particular example, 1 chose limestone and sand¬ 
stone, and as I pointed out, the difference in the 
impedances is not great, it is about 1.4. If one 
chooses a ratio of 3 to 1 then some other results 
might be obtained. I am presently studying this. 

Mr. Howard: The other point that is not quite 
clear is the significance of the little square pulses 
on the bottom of one of your plots. What time are 
you talking about, is that one transit time through 
the medium, or is it at each interface at each lamina? 

Mr. Yang: No This is a plot ot stress versus 
tinte at a particular point in the laminated medium, 
at the middle for instance. So if you were sitting in 
the middle of this laminated medium you have a 
pressure pulse come through you. Now, if the pres¬ 
sure pulse duration is short you would see the com¬ 
plete pulse pass by you first, that is one square. 
Then if you sat there a while longer you would see 
the reflected wave coming back and it becomes a 
tensile wave. So if you sat there and let that wave 
go by then you would see a tensile wave which is the 
rectangular wave that you saw going back. If you 
sat there longer you would see waves coming back 
and forth, back and forth, back and forth. 

Mr. Howard: The question is how can one 
monitor that If one has an effective modulus versus 
each one of these reflections that one might obtain 
from each one of the Interfaces? If you were con¬ 
cerned with de-lamination between two layers, how 
could an effective modulus theory be applied? 

Mr Vang- No, the effective modulus theory 
just gives the overall effect, wheras I can study the 
interface with the other one. 

Mr. Howard: I was wondering about the re¬ 
lationship of that mitigator. Is that a separate study 
or does that have something to do with this effective 
modulus theory? 

Mr. Vang: No, that is a separate study. 

Mr. Bachman (Holmes and Narver): Why could 
you not use a finite element analysis to perform the 
same1 type of work? 

Mr. Yang: You can. I am sure a lot of people 
have done that. As a matter of fact there are a 
couple of papers out on that and on the finite difference 
method also. 

Mr. Bachman: I just was wondering whether 
there an- certain advantages to your method? 

Mr Yang; Definitely. I like my method be¬ 
cause to calculate through 18 layers I put It on a 
computer and I only need 20 statements in the pro¬ 
gram. It can be easily picked up by various people 
to read and it only took me about two seconds to go 
through the analysis for each plot. Now, I do not 
know how long it takes to do this with the finite ele¬ 
ment method. 

Mr Ripnerger OJniversitv of Texas): I suppose 
I will have to read the paper to get the answer to my 
question. Those plots that you showed for the effects 
of rise time and pulse duration and so on, I under¬ 
stand that they represent nothing but computed re¬ 
sults? 

Mr. Yang: That is right. 

Mr. Hipperger: The thing that I do not under¬ 
stand is how the rise time and duration enter into the 
computed results when you arc using the effective 
modulus. How do they get in there? 

Mr. Yang: When I used the effective modulus 
theory I looked at it as a homogenous transversely 
isotropic maU-rial, so I was able to calculate these 
coefficients which in turn gave me the wave speed. 
Now, that is one separate item. Then I used the 
wave propagation theory and the method of character¬ 
istic and watched the applied load, which could be 
any kind of pulse, travel back and forth in the homo¬ 
genous transversely isotropic material. So, what¬ 
ever pulse one has, whatever variation one has, 
there will be a difference. It will definitely give one 
a difference effect whatever stress calculation one 
has. 

Mr. Rinnerger: How did you arrive at the values 
to use for your constants in the effective modulus 
theory? 

Mr. Yang: First of all, the author of another 
paper, which I have referenced In my paper, has cal¬ 
culated these five coefficients by working them out 
in his paper as a function of the thickness of the two 
alternating layers and the two elastic constants. He 
has calculated the values for these coefficients and 
the procedure for this is shown, I think, step by step 
in his paper. I chose sandstone and limestone be¬ 
cause I was a little bit lazy for this particular Initial 
try. I will have to refer you to his paper. 

Mr. Vatz (Tcledync Brown Engineering): I used 
the finite element method in a very similar problem 
once to calculate an acoustic trmsformer where I 
wanted to match acoustic Impedances across an inU-r- 
face. 
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l'OMl'ARISU:; OK STRUCTURAL 

LO/UjS ; STATIC VLRSUS UYNAMIl 

KuuJ J. Junes atui William J. Kacena, III 
Martin Marietta Corporation 

Denver, Colorado 

A method is presented for obtaining statiu equivalent loads lor struc¬ 

tures subjected to random excitation that yields stresses consistent 
with the dynamic condition. The technique for determining equivalent 
static loads applies specltically to normal mode analyses oí lumped 

parameter systems. The governing equations art* derived and an example 

structure consisting of a simple truss is analysed to illustrate the 
developed methodology. A comparison of the derived stresses ior the 

equivalent static loads, and for other combinations ol static loads, 
is presented to show the conservatism that this method eliminates. 
The method presented for determining static equivalent loads due to ran¬ 
dom excitation appears to be readily adaptable, witli minor modifica¬ 
tions, to existing dynamic response and finite element structural analy¬ 

sis programs. 

INTRODUCTION 

Structural analysts in the aerospace indus¬ 

try are charged with the responsibility of de¬ 
signing flight hardware to withstand specified 

random excitation levels. One classical method 

employed by analysts to determine response loads 
for complex structures subjected to random forc¬ 

ing functions is the modal approach applied to 
lumped parameter models of structural systems 

[1,2], This paper expounds on this basic method 
to provide methodology for determining static 

equivalent loads that can be used to determine 
stresses consistent with the dynamic response 

condition. 

Computation of equivalent static luads that 
can then be used to determine stresses offers 

the following advantages over direct computa¬ 

tion of stresses: 

1) The number of degrees of freedom re¬ 
quired to adequately define a complex 

structure using finite element tech¬ 
niques generally exceeds the size capa¬ 
bility of dynamic programs (eigenvalue/ 

eigenvector programs, modal response 
analysis programs). In these cases, 
static reduction techniques [3] must be 

used to reduce sizes of the stiffness 
and mass matrices. To compute internal 

loads or stresses directly, the reduc¬ 
tion transformation must be applied to 

the internal loads matrix of the stress 
transformation matrix, a procedure that 

requires much computer time. Computa¬ 

tion of static equivalent loads elimi¬ 
nates the requirement for collapsing 
the internal loads or stress transfor¬ 

mation ; 

2) Computation of static equivalent loads 
by dynamic analysts, which are in turn 
provided to stress analysts, is con¬ 

sistent with responsibility assignments 

for most aerospace companies; 

3) Static equivalent loads due to random 
excitation can be superimposed with 
other simultaneous loading conditions 

such as steady state accelerations. 

The total loads matrix can then be used 

in finite element structural analysis 
computer programs to calculate total 
stresses ior the combined leading situ¬ 

ât Ion . 

ITILORLI IcAL ULVLLOl’MLNT 

The following development provides a deri¬ 

vation of the basic random response methodology 
11.2] and the static equivalent load technique. 

Consider the equations of motion of a lumped 
parameter system subjected to a specified base 

motion 
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IM1 .-, * ( 1 <• \¿) IK ] ¿ ■ - [ M ] 1 X < 1 ) 

uiiLic ¿ »ii-uutt:» t e mul.oi. .1L Liiu col loc.it ion 
points ( a tcpiusonts the ii..po *c.i ii.i.sc luotlon^ 
I'-i] one [r] lie- t:.c mois .n.e stiilnuss nuttricus, 
.ni'! i ■ is ,i . ,.i r t i a . uní 11 n Í il»; c 1 cru-nt s tor 
oil .ictiol-a oi iit-t-Joi:' consistunt witli tho Ui- 
tcotlon ol c'a^ i t.il ton. i,.o nouiul modos [;] 
ce'r i uspomi inj; to t:.c unturil i roipioiic ios 
piovldc s ooei.lin.it' 11 oils l orm.it i on to tilo nor¬ 
mo i cooreinoto i 

t'l (2) 

jnU is subject to the assumptions of a rela¬ 

tively flat PSD, small damping, and little cou¬ 

pling between modes. 1'he l**1 mean square dis¬ 

placement can be written as 

g M- 
e,r eq 

(*) 

and the mean square value of the l1*1 Internal 

load as 

ond 

¿ = M U) 

Substituting tl) ond (Ji into tli ond prumultl- 

1 iving bv [ I ) yiolds 

M1 IM] M * a ♦ UM;]1 W (;] • i 

- -it]1 [Ml It X. (4) 

Using the properties of normal coordinates, (4) 

con be further slmplilled Into 

[Meq] l«) [ Meq] 

= -l!lT [MJ (T; X (5) 

where is a matrix of equivalent masses. 

Since the normal modes uncouple the equations of 

motion, the r^ modal response can be written as 

^ + 
r 

il -*■ lg. 

-tf>* [M] (I) 
X 

“ . (6) 
eqr 

The term .f is generally referred to as the 

modal participation factor and Is a measure of 

the degree of response for a given mode. If the 

Input X is a random excitation, the Ie*1 mean 

square response acceleration can be written as 

in [1] 

Ir g M 

r-1 oqr 

(7) 

L-. iE (k.f) Ir g M- 
”r eq 

(10) 

Ihe Internal loads transformation Is represented 
In £q (10) as ky. Member stresses can be ex¬ 

pressed In a similar manner. 

(Sk,t)j[r 
fK) 

M- 

r-1 

(11) 

where S is a stress coofclnatlon sMtrix. 

The above equatlono for Internal loe.ds and 

stresses apply to direct computation of thaaa 

quantities. As previously stated, the purpose 
of the study Is to present a procedure for de¬ 
veloping equivalent static loads that can be 

used to determine Internal member loads and 
stresses In a subsequent analysis. The proce¬ 
dure consists of developing an acceleration vec¬ 

tor for each mode whose terms in the rC^ mode 

are 

it 
Ir ’ 

(12) 

This acceleration vector, whose elemente have 

signs consistent with the mode shape, can then 
be used with the mass matrix to form an applied 

force vector for each mode. For the rt^> mode 

the applied force vector Is written 

{l,4i • t»i «V <“> 

The internal loads for the rth mode are related 

to the external loads through 

U}r - [kv] [K]-1 . (14) 

where f | >i \ is the input acceleration spectral 

densltv value at m . It should be noted that Eq 
r 

(7) uses an Input PSD generated with the defini¬ 

tion. 

fU) - ¡X (a) ¡‘/21 T (8) 

However, most finite element structural analysis 

computer programs eliminate the above matrix In¬ 
version method in favor of other forms of simul¬ 
taneous equation solutions. A similar expres¬ 

sion can be written for the stresses in the rth 

mode, 
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l»M IM-1 - (15) All Joint* 
(a) 

r 

To obtain valu«« for Internal loada and atrasaos 

consistant with tha dynaadc valúas, tha nodal 
rasults mist ba root-sun-squarad as Indicated by 

and 

(16) 

(17) 

fUmrné 

Fig. 2 - Sketch of simple truss (saaqile 

problan) 

This nethod will producá Internal loads and 

atrassaa which have essentially tha sane values 
as those Indicated by tha dynanlc computations 

(10) and (11). Fisura 1 Illustrates tha Inter¬ 

change between dynanlc and finite element com¬ 

putar programs required to Implement the method¬ 

ology for determining Internal loads and stresses 

In structuras subjsctod to random excitation. 

Fig. 1 - Program usage for äquivalent static 

load method 

SAMPLE PROBLEM 

A simple truss subjected to a random base 

excitation can be used to illustrate the method¬ 

ology for determining and applying static equiv¬ 
alent loads. The truss Is shown in Fig. 2 along 
with the Input PSD, the direction of excitation, 
and the assumed damp 1ng. The mass data and the 

structural properties are presented In Tables 1 

and 2, respectively. The member loads In the 

truss will be determined by 

TABLE 1 
Mass Data and Degree-of-Freedom 

Collocation 

Point 
Number* 

Lumped Mass 

(lb-sec‘/ln. ) 

Degrees of 
Freedom 

X y 

1 

2 

3 

4 

5 

0.1295 

0.1295 

0.0026 

0.0026 

0.0026 

1 2 

3 4 

5 6 

7* 8* 

9J 10" 

«See Fig. 2 

'Degrees of freedom 7, 8, 9, 10 re¬ 

strained. 

TABLE 2 
Structural Data for Truss Members 

Member 

Number* 

Area 

(in.O 

Length 

(in.) 

Modulus of 

Elasticity 
(lb/in.2) 

1-2 

4-3 

3- 5 

4- 1 

1- 3 

3-2 

2- 5 

0.5 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

25 

25 

25 

25 

25 

25 

25 

107 

107 

107 

107 

107 

107 

107 

*See Fig. 2 

1) Direct computation of Internal loads 

using a dynamic analysis of the total 
system, which generally exceeds in site 

the capabilities oi the dynamic pro¬ 
grams (300 or more degrees-of-freedom); 

2) Direct computation of Internal loads 

using a dynamic analysis of a reduced 
system (degrees-of-freedom associated 

with the small mass at collocation 
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poilil J .irli ullulnateii) . Ihu coaputar 

t Io«; requlrt-J lo tiollapwti tha Internal 

ItiaJM ur siruiiü t ranstormatlun la gan- 
tirally proliib 11[ve; 

3) Cumputatlun oi atatlc equivalent loada 
fur flu; reduitid system which ara ln 

turn used tu calculate Internal loada. 

Ibis represents the static equivalent 
load methodology developed In tha pre¬ 
ceding section; 

4) computation of Internal loada ualng tha 

worst combination of responae accelera¬ 
tions as Inertial loads. 

Ihe following description considers calcu¬ 
lation of Internal loads; howevur, member stress 
calculations are analogous. 

Ihn mass and raatralnad itlttnaaa aatrlx 
fur tha truss ars: 

IMI 

and 

It I 

u.nts 

1.5 

-0.75 

0.1195 
0.1195 

1.5 

-2.0 
0.«}} 

1.5 

•0.7» 

0.1295 
0.0029 

-2.0 

2.5 
“0.433 

0.433 -0.25 -0.433 -0.2» 

0.0024 

-0.7» 0.433 
0.433 -0.25 

-0.7» -0.433 
•0.433 -0.2» 

1.» 
1.5 

Dtus£: 
in. 

lk_ 
In. 

101 

[Ic] 

0.5 -0.288 0.5 0.288 
-0.288 0.1M7 0.288 0.1M7 

The reduced mass, stiffness, end Internal loads 
transforaation are 

N • NT - N- 
H ■ [tJt "h N- 
M [tc]- 

For the reduced system, the normal modes sad 
natural frequencies erst 

t 
c 

end 

0.3277 

-1.936 
-0.3277 

-1.936 

1.93« 1.936 
-0.2382 0.3318 

1.939 -1.936 
0.2382 0.3318 

0.269S| 
1.967 

0.2685 
1.967J 

87.5 
116.1 
157.7 
289.8 

Ms. 

Ihs intarnal lead trsnsfaraatlen matrix i. 

0 -2.0 2.0 

Ik.) 0.5 
0.S44 0.5 

•0.5 
0.944 -0.5 

1.0 
-1.0 

-0.» 
0.» 

Maskat 

1-2 
4-3 

is ^ 
uT * 105 *-1 

3-2 
1- 3 
2- ». 

iha normal nods, and natural fraquanclas far tha 
tutal syatam ara 

m 

0.3277 1.939 
-1.934 -0.2392 
-0.3277 1.939 
-1.934 0.2392 
0 2.096 

-0.9368 0 

1.934 0.2492 
0.3319 1.947 
•1.934 0.2492 
0.3319 -1.947 
0 -0.9291 
1.023 0 

0.1112 0.1949 
-0.0454 -0.1194 
-0.1112 0.1949 
-0.0414 0.1194 

0 -19.49 
19.57 0 

and 

if r 

r 87.53’ 

116.1 
157.7 

289.8 

1212.0 
.1217.0 , 

Since the mass associated with degrees of 
freedom 5 and 6 Is small compared to the other 

masses, these degrees of freedom can be elimi¬ 
nated using reduction techniques [3]. The col¬ 
lapsing or reduction transformation for this 
process Is 

The total system modal properties .can be 
used In Eq (10) to compute the dynamic Internal 

loads that represent sn esact solution. The re¬ 
duced system nodal propertlas alao can be lined 
In Eq (10) to compute Internal loads. Tha 

static equivalent loads method consists of using 
the reduced system properties In Eq (12) and 

(13) to produce modal external load vectors 
which, In turn, can be uaad In Eq (14) to deter¬ 

mine Internal loads for each node. The final 
Internal loads can then be determined ualng tha 

root-sum-square procedure Indicated by Eq (16). 
The root mean square static äquivalent loada for 
the trues as computsd from Eq (12) and (13) ara 

Mode 1 

482.0 
-2848.0 

-482.0 

-2848.0 , 

Mode 2 

0 

0 

0 

Mode 3 

647.0 
111.0 

-647.0 

111.0 , 

Mode 4 

The fourth method uses the reduced system modal 

properties to compute response accelerations 
from Eq (7), which, when premultiplied by the 

mass mstrlx, results In the applied loads. The 
signs of these loads sre then manipulated to 
produce a maximum value of each internal load. 
This method is Included to show the conservatism 

that can result from some methods of static load 
application. 
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Table 3 presenta the resulting root mean 
square (one-slgma) internal loads for the four 

methods. The dynamic claculatlons using both 

total and reduced system modal properties pro¬ 
duce the same internal loads. Hie proposed 

static equivalent load method results In the 

identical values of Internal loads. The fourth 
method produces conservative results. 

TABU 3 

Comparison of Dynamically and Statically 
Calculated Member Loads 

Une-Stgma Member Loads (lb) 

Membe r 

Number 

Dynamic 
Solution 

Total 
System 

Dynamic 

Solution 
Reduced 
System 

Static 

F.qui valent 
Load 

Method 

Maximum 

Static 

Load 

1-2 

4-3 

3- 5 

4- 1 

3-2 

1- 3 

2- 5 

0 

3173 

3173 

2620 

3146 

3146 

2620 

0 

3144 

3144 

2615 

3146 

3146 

2615 

0 

3143 

3143 

2617 

3143 

3143 

2617 

3344 

3329 

3329 

3796 

3331 

3331 

3796 

DISCUSSION 

ber stresses whi-h are stored; 

3) Finally, the finite element program 
needs the additional capability of 

root-sum-squaring Internal effects over 
the number of modes. 

Several itens relative to the application 

of this methodology are worthy of mention. 
First, It Is not necessary to determine and ap¬ 
ply modal external loads for all the modes of 

the dynamic system; only those modes of impor¬ 
tance need be retained for these analyses. How¬ 
ever, a close look at the modal external loads 

can provide the analyst with useful Information 

regarding the relative Importance of the modes. 

As the equivalent static 1 ■ .1 method Is pre¬ 
sented here, root mean square or the one-slgma 

magnitudes are determined. These magnitudes 

must then be multiplied uy an appropriate factor 
to yield meaningful design criteria. The reader 

Is warned to calculate modal member stresses and 

then root-sum-square the results whon stresses 
are desired. The reason for this precaution is 

that the phase relationships among the Internal 
reactions can be important In determining 

stresses when combined loading exists, honad- 

herence to this precaution would defeat the pur¬ 
pose of the static equivalent load method, which 
accounts for the phase relationships as speci¬ 

fied by the mode shapes In an uffort to elimi¬ 
nate erroneous or over-conservative results. 

A method of determining equivalent static 
loads for structures subjected to random excita¬ 

tion has been developed and applied to a sample 
problem which demonstrated tnat the static 
equivalent load method does yledl results con¬ 

sistent with the dynamic response condition. 
This mehhod Is Intended for use on structures 

that can be represented by lumped parameter 
models. The general category of systems to 
which this method should be applied are those 

larga anough that static reduction techniques 
must be used to make the system size compatible 

with existing modal analysis programs and too 
large to allow reduction of Internal loads and 
stress transformation matrices without spending 

excessive amounts of computer time. 

Because of the wide variety of structural 

analysis programs In general use, It is Impos¬ 

sible to provide exact numbers for the sizes of 

systems for which this method Is optimum. An 
evaluation of the usefulness of this mehtod must 

be based on the capabilities of structural anal¬ 
ysis programs available to the reader. The mod¬ 

ifications to existing computer programs before 
this methodology can be used are rather simple! 

1) The random response program must be 

modified to generate the modal external 
load vectors; 

2) The finite element program capability 

must be expanded so that the external 
load vectors for each mode are applied 

Individually to the structure produc¬ 
ing modal Internal loads or modal mcm- 

SYMBOLS 

[M] 

[K] 

g 

Si 

■ *; 
ï; 

■T; 

(:] 

M 
X( ) 
f( ) 

Ik.] 

[SI 

mass matrix 

stiffness matrix 

structural damping coefficient 

base acceleration 

discrete displacements 

discrete accelerations 

excitation transformation vector 

modal coordinates 

normal mode matrix 

natural frequency matrix 

equivalent mass matrix 

Fourier transform of x(t) 

acceleration spectral densll\ 

modal participation vector 

Internal loads transformation matrix 

stress combination matrix 

Internal loads vector 

stress vector 

external loads vector 

.-. , th , 
index denoting r mode 

Index denoting 1 '' degree of freedom 
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EGGSHELLING AND VIBRATIONS OF A HIGH SPEED SHAFT 

WITH NASTRAN ANALYSIS 

Dtnnls J. Martin and William C. Walton, Jr. 
NASA Langley Research Center 

Hampton, Virginia 

Th« NASA recently'Initiated a research Investigation of methods of 
noise reduction In aircraft tui'bojet engines. Of particular Interest 
was a high speed multistage axial flow compressor. An Interesting 
coup11ng*shaft vibration problem was encountered In the design and 
operation of the system. The solution to the vibration problem 
revealed an "eggshelling" phenomenon, an unusual balancing procedure, 
and the corresponding analytical study of the complete system using 
NASTRAN provided excellent agreement with experiment and Indicated 
the design changes required for the system. 

INTRODUCTION 

Vibration, unbalance, or critical speed 
problean In rotating devices have existed for 
maty years. A recent Shock and Vibration 
Infenaatlon Center Monograph, SVM-4, "Dynamics 
of Rotating Shafts" by Loewy and Plarulll has 
surveyed our knowledge In this area and has 
presented an extensive bibliography of 554 
referentes. The state of the art of balancing 
high speed shafts Is quite advanced, however 
a thin wall shaft of a multistage, axial flow 
compmsor system used In a noise reduction 
research program encountered crost-sectlonal 
deformations due to the addition of balance 
weights that required the development of a new 
and unique balancing procedure. 

Analytical predictions of critical speeds 
of high speed shafts require a calculation of 
the natural frequencies of the non-rotating 
shaft on Its appropriate supports. The NASTRAN 
computer program that Is approaching full 
operational status Is suited to the computation 
of natural frequencies of very complex struct¬ 
ural systems and can be economically used for 
detailed analysis of shaft type systems. 

This paper describes the thin wall shaft, 
the compressor-shaft-motor system, the 
balancing procedure developed, and a NASTRAN 
analysis of the complete system. 

THE EXPERIMENTAL COMPRESSOR 

The experimental compressor selected for 
the noise reduction program was mounted for 
test within an anechoic chamber as shown In 
figure 1. 

Fig. 1 - Experimental compressor mounted In 
anechoic chamber 
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TEST COMPRESSOR 

in order tu mniniie noise interference the 
drive "lotor and gear tiox were '"eunted outside 
the anechoic cha'-'ber. The overall co-uressor - 
gear hex - i-otor instillation is shown suhe-’ot- 
isa 11 y in figure ¿. The connecting counling- 

AMi'ncf 

Tig. 2 - Schematic of compressor system 1n the 
anechoic chamber 

shaft had a spllned gear at each end and wûs 
designed to transmit 3,000 horsepower at 25,000 
revolutions per minute. In order to maintain 
high critical speeds within the compressor it 
was desirable to make the coupling-shaft hollow, 
and therefore light so that the loads upon the 
compressor bearings would be small. The torque 
loading on the coupling-shaft was small and the 
shaft wall thickness was reduced to .0625 Inch 
(.159 cm) still with low shear stresses. The 
coupling shaft was 22.5 Inch (57.2cm) In length 
and 4.0 Inch (10.2 cm) In diameter. The shaft 
was balanced In a dynamic balancing machine at 
1,200 rpm; however Initial test runs at 
18,000 rpm clearly Indicated that further bal¬ 
ancing was needed. 

CONVENTIONAL BALANCING METHOD 

Conventional In situ balancing procedures 
were unsuccessful. Generally the addition of 
balance weights Increased the magnitude of the 
unbalance • and In a very Inconsistant manner. 
Further study revealed an Interesting coupling- 
shaft unbalance phenomenon. 

The high-speed coupling-shaft and the 
Instrumentation are shown graphically In 
figure 3. A displacement sensor was mounted 
at the midspan of the coupling-shaft to sense 
the maximum deflection of the shaft due to 
unbalance. Balance weights were added Inter¬ 
nally and were distributed along the length of 
the coupling-shaft. Although the distortion Is 
three dimensional, It may be Illustrated with a 
two dimensional cross sectional sketch through 
the midspan of the coupling-shaft, figure 4. 
The coupling-shaft may have an Inherent unbal- 

Fig. 3 - Schematic of thln-wall coupling-shaft 

A 
DISPLACEMENT SENSOR 

Fig. 4 - Cross section of coupling-shaft 

anee due to a manufacturing Imperfection or 
tolerance. The vector Is plotted at the angular 
position of the maximum run-out. The length of 
the vector Is proportional to the magnitude of 
the run-out. The run-out vector may be measured 
directly, however, to determine the balance 
weights to be added, It Is first necessary to 
locate the effective angular position of the 
Inherent unbalance, and second, to determine 
Its magnitude. The angular position of the 
Inherent unbalance can be determined by observ¬ 
ing Its dynamic effects, the run-out, or the 
forces created on the supports at either end 
of the shaft. The supports were not easily 
accessible and the deflections of the coupling- 
shaft at Its midspan were a good Indication of 
the unbalance. 

The amount and location of the position of 
maximum deflection can be determined with a 
strobe light, a scribe, or an electronic probe 
as was used here. When the design speed Is well 
below the coupling-shaft first critical the 
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position of the unbalance and the balance 
weights may be added diametrically opposite the 
angular position of maximum run-out. for opera¬ 
tion at higher speeds or for systems with hinh 
damping, the deflection lags the force by a 
phase angle. In order to determine the correct 
place to attach balance weights it is necessary 
to determine the phase angle 

There is a standard procedure for determin¬ 
ing this phase angle and it is illustrated in 
figure 5. A small balance weight is added at 

I'.hFRP.T 
RUh out 

VECTOR CHANGE 
IN RUN OUT 

RUN OUT WITH BALANCE 
WEIGHT ADDED 

INHERENT 
UNBALANCE A 

BALANCE 
WEIGHT 

DISPLACEMENT SENSOR 

Fig. 5 • Conventional in situ balancing 

an arbitrary point and the Incremental change in 
the run-out vector is observed. The vector 
change In the location of maximum deflection is 
due to the added balance weight. The direction 
of the Incremental change in run-out, when 
compared to the direction of the force produced 
by the added weight determines the phase angle, Î\ , between the force and the response. The 

tio of the magnitude of the change in run-out 
to the magnitude of the balance weight added 
determines the dynamic compliance of the system 
at the rpm selected for balancing. The angular 
location of the Inherent unbalance is thus deter¬ 
mined as it is assumed to be the same phase 
angle, ft . »head of the Initially measured 
run-out. The magnitude of the Inherent unbalance 
is also determined by applying the dynamic com¬ 
pliance factor to the magnitude of the initial 
Inherent run-out. Balance may be achieved by 
adding the computed weight opposite the angular 
location of the inherent unbalance. Iterations 
of this procedure may be required to achieve 
final balance. 

MODIFIED BALANCING METHOD 

The conventional balancing procedure was 
used on the thln-wall coupling-shaft connecting 
the multistage axial flow compressor to the 
gear box In the noise reduction program and 
was unsuccessful. Iterations were inconsistant 

and tended to be divergent. The conventional 
balancing procedure requires only a measurement 
of magnitude and angular position of the run-out. 
The instantaneous run-out signal was recorded and 
the real time history of the run-out appeared to 
contain cons i deraLile second harmonic content. 
To further study this phenomenon a second sensor 
was installed diametrically opposite the first 
and a typical result is shown in figure 6. 

DISPLACEMENT nils 

Fig. 6 - Displacement of coupling-shaft wall 

It can be seen that if the shaft remained 
round, that lateral deflection of the shaft 
would produce time histories that would be 
similar and*exactly 180° out of phase. When 
the shaft moved toward one sensor, it would move 
an equal amount away from the opposite sensor. 
If the shaft remained round, the sum of the two 
sensor outputs would thus remain constant. It 
is also evident that the difference of the two 
outputs would indicate twice the actual dis¬ 
placement or run-out. 

The sums and differences of the outputs 
of the two sensors were determined and are 
shown in figure 7. The sum trace indicates 

Fig. 7 - Sum and difference of diametrically 
opposite transducer outputs 
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that the shaft has experienced considerable 
cross-sectional distortion. The distortion 
fluctuates at twice per revolution. The differ¬ 
ence contains some harmonic distortion but is 
principally one per revolution. 

A harmonic analysis was applied to the 
difference (run-out) trace to obtain the magni¬ 
tude and phase of the fundamental of the run¬ 
out. A trial balance weight was added as in 
the conventional procedure to determine the 
phase angle and dynamic compliance factor. The 
amount and location of balance weight was thus 
determined. These computed weights were 
attached in the proper place and again the 
individual run-out sensors indicated larger 
displacements and were at dangerous levels. 
Recording the sums and differences of the two 
sensors was very encouraging, however. These 
sums and differences are shown in figure 8. 

Fig. 8 • Sum and difference measurements with 
balance weights added 

It can be seen that the shaft Is nearly 
balanced but Is badly distorted. This Is 
Illustrated In figure 9. The centrifugal 
forces from the Inherent unbalance and the 

INHCRENT 
UNBALANCE 

added balance weights have confclned to distort 
the shaft Into an apparent elliptical section, 
since the trace Is predominantly two per revo¬ 
lution. The shaft has experienced what was 
termed an "eggshelling“ type of distortion. The 
addition of two equal weights at A and B was 
then successful In reducing the distortion 
stresses and the measured run-out was thus 
reduced to acceptable levels. 

The foregoing description treated the 
shaft as an angular ring and the coupling-shaft, 
having length, required that the balance weights 
be distributed along the length of the coupling- 
shaft. 

ANALYTICAL STUDY 

The modified balancing procedure was 
successful In allowing operation of the compres¬ 
sor at design speed with the thln-wall coupling- 
shaft. The thln-wall coupling-shaft later 
required replacement because of excessive spline 
gear wear and a thicker wall, smaller diameter 
shaft was installed. It was found, however, 
that the new system was operating uncomfortably 
close to a critical speed. Small changes In the 
system resulted In large deflections. An 
analytical study was Initiated to understand 
the compressor - coupling-shaft • gear box 
system and to Investigate methods of raising 
the critical speed of the complete system. One 
approach was to forego some of the noise 
Isolation and move the motor - gear box closer 
to the compressor, thus reducing the length of 
the coupllno-shaft. This would obviously raise 
the critical speed of the coupling-shaft alone 
but It was not known how much this would raise 
the critical speed of the complete system. 

For the analysis the NASTRAN computer pro¬ 
gram was utlllied. NASTRAN is a very large 
capability general purpose, finite element 
structural analysis program developed under 
NASA sponsorship over the past several years. 
The program Is currently operational on a trial 
basis at a number of government and private 
Installations using different computers. 
Release to the general public Is Imminent. It 
will be possible to obtain the NASTRAN program 
with detailed documentation Including an engi¬ 
neer users manual for only a nominal charge. 
Information concerning NASTRAN may be obtained 
from COSMIC.* Steps are being taken to 
establish the necessary organizations within 
NASA to continually upgrade the program, 
periodically releasing Improved versions. 

The objectives In the following part of 
the paper are to show the method and the results 
of the design study and to bring out the 
applicability of NASTRAN for design studies of 
high speed shafting. 

Fig. 9 - Illustration of elliptical (eggshelling) 
distortion mode 

* COSMIC, Barrow Hall, University of Georgia, 
Athens, Georgia 30601 
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SYSTEM DESCRIPTION 

Figur* 10 Illustrates the essential fea¬ 
tures of the shafting system of the research 

COMPtESSO* 
GEAR (OX SPINDLE SHAFT / 
PINION SHAFT IOLTED FLANGES 

GEARS 77 

THRUST 
COLLAR 

COUPLING SHAFT 

1EARINGS ^sn(Nt0£AJ,s SEARINGS- 

figure 11 the peak to peak vibratory displacement 
at the center of the coupling-shaft Is plotted 
as a function of operating speed. This dis¬ 
placement was measured during trial runs of the 
compressor system. The data of figure 11 
strongly suggest that a critical speed Is being 
approached as the operating speed Is Increased 
to 22,000 rpm. 

VIBRATION TEST PROCEDURES AND RESULTS 

It was first desired to confirm the 
critical speed by a ground vibration test. The 
non-rotating coupling-shaft was forced through¬ 
out the frequency range of Interest by a small 
electromagnetic shaker placed near the center 
of the coupling-shaft. The response was mea¬ 
sured by a roving accelerometer. The test was 
run with the compressor connected and with It 
disconnected. As figure 12 Indicates, resonant 

Fig. 10 - Schematic drawing of the shafting 
system 

compressor Installation. The gears of the 
drive motor (not shown) engage the gears on the 
gear box pinion shaft which Is seated on two 
bearings. The gear box pinion shaft Is bolted 
through a flange to the male part of a spline 
gear. The teeth of the male part of the spline 
gear mesh with the teeth In the female part of 
the spin* gear and this female part Is In turn 
bolted through flanges to the coupling-shaft. 
The other end of the coupling-shaft Is bolted 
through flanges to the female part of a second 
spline gear. The male part of this second 
sp’.ln* gear fits over the end of the compressor 
spindle shaft and butts against a heavy thrust 
collar. The gear box pinion shaft and the 
compressor spindle shaft are constructed of 
steel. The coupling-shaft Is aluminum. 

APPROACH 

RPM (THOUSANDS) 

Fig. 12 - Results of the vibration test of the 
complete shafting system 

The basic Information Initially available 
to guide an approach Is shown In figure 11. In 

Fig. 11 - Displacement at center of coupling- 
shaft as a function of operating speed. 

peaks quit* clearly are found at approximately 
24,000 rpm (400 Hertz) with the compressor 
connected and at about 27,000 rpm (450 Hertz) 
with the compressor not connected. It Is noted 
that the compressor spindle shaft Is still a 
part of the system even though the compressor 
Is not connected. Two decisions were mad* based 
upon the results shown In figure 12. First It 
was decided that the rapid Increase of deflec¬ 
tion amplitude Indicated In figure 11 was 
Indeed a classical critical condition In which 
the speed of rotation nears the fundamental 
structural frequency of the shaft. Second, It 
was decided that It would be sufficient for the 
purposes of the study to carry out the NASTRAN 
analysis for the system with the compressor 
disconnected and then to reduce the calculated 
critical speeds by about 3,000 rpm to account 
for the presence of the compressor. All results 
henceforth cited are for the case where the 
compressor Is not connected. 

The deflection mode shape of the funda- 

207 



*i
C

X
)W

A
ll/

(D
 V

O
D

A
t 

O
f K

 H
 H

O
N

 
wntjl ::ioJo «.r. »Iso "it J-» ore J with the rovinq 
d reel P rom*1 ter. 'ne results o» t iis iiedsurenent 
ire shown ih ‘i lure 11 dlonq with d calculdted 

•iode shjpe. 

Fig. 13 - Comparison of calculated and measured 
natural mode shapes for the first 
mod« of the shafting system 

NASTRAN ANALYSIS PROCEDURES 

rotary inertias of the connecting masses were 
included. Créât care was exercised to input 
the mass and bendinq stiffness correctly in 
detail. 

All aspects of the system idealization 
described were readily represented with the 
various options open to the NASTRAN user. For 
this relatively simple application it was easy 
to learn to use the program from the documen¬ 
tation accompanying the program. The design 
analysis was run after four or five trial runs 
with uniform beams to assure understanding of 
the inputing procedure. VIsunderslandings, all 
of which were of a minor nature, were cleared 
up on these trial runs. Of four runs made for 
the actual study, all ran correctly the first 
time. The computer time to calculate the first 
three frequencies and mode shapes using a 
Langley Research Center CDC 6600 computer, was 
typically about one minute. 

RESULTS OF STUDY 

Natural frequencies calculated using the 
NASTRAN program are presented In Table I along 

TABLE I. - COMPARISON OF CALCULATED AND MEASURED 
NATURAL FREQUENCIES (UNITS.rpm)FOR 
THE COMPLETE SHAFTING SYSTEM VIITH THE 

nf crnwfcirrTCn 

In the NASTRAN analysis, the shafting 
system consisting of the gear box pinion, the 
coupling-shaft, and the compressor spindle 
shaft were treated as connected beams. The 
bearings were treated as four rigid pins allow¬ 
ing free rotation but zero deflection. A basic 
beam finite element from the NASTRAN element 
library was utilized with section shearing 
stiffness set so high that shearing deformations 
were In effect excluded. Typical elements are 
shown In figure 10. The bolted flanges were 
considered to carry bending moments as though 
the material through the flange Joints was con¬ 
tinuous. This was considered reasonable since 
the bolts were highly torqued and the joints 
could therefore be expected to remain In com¬ 
pression for the small vibration amplitudes. 
Some question arose as to whether the teeth of 
the spline gears could support bending moments. 
It was decided to treat these joints first as 
p.nned joints and then as continuous joints In 
hopes of bracketing the true condition. In the 
connection between the coupling shaft and the 
compressor spindle shaft the male part of the 
spline gear was represented as attached to the 
compressor spindle shaft Inboard of the end of 
the spindle shaft allowing overhang as In the 

real structure. 

^ CALCULATED FREQUENCY MEASURED 
FREQUENCY 

NUMBER j pIN joints CONTINUOUS JOINTS 

1 26,575 
2 1 36.709 

26,877 
53,837 

26.800 

with the frequency measured for the first 
mode. It appears that the calculated frequency 
measured for the first mode Is Ijttle affected 
by the assumptions about the rigidity of the 
spline gear joints. Good agreement with the 
test result Is achieved with either the case of 
the Joints represented as pins or as continuous 
beams. This relieves the concern about correct 
representation of the spline joints. It Is 
of some Interest to note that the second mode 
frequency computed for continuous joints Is 
much higher than the second mode frequency for 
pinned joints. In the test results of figure 12 
there Is no evidence of a second mode response 
at 35,000 rpm although the analysis for pin 
joints predicts a second mode frequency of 
36,700 rpm. This suggests that the spline gears 
act more nearly as continuous joints and affect 
primarily the second mode. 

The masses were represented In the NASTRAN 
analysis as being continuously distributed with 
the exception of flange masses, the thrust 
collar, and parts of the spline gears. These 
latter pieces were represented by concentrated 
masses. In the continuously distributed part 
of the mass, rotary Inertia was Ignored, but the 

As mentioned previously, figure 13 shows 
a correlation between calculated and measured 
mode shapes for the fundamental mode. The 
calculated mode shape shown Is for the case of 
continuous joints. Because of accessablllty 
problems the mode shape was measured only oyer 
part of the shaft. The mode shape correlation 
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Is considered good and along with the good 
freguency correlation Inspires confidence In 
the analysis. The mode shape calculated for 
the case of pin joints has a very similar 
deflection curve to that for continuous joints 
and Is not shown. The calculated slopes for the 
case of pin joints, however. Indicates jumps In 
the slope at the spline joints as would be 
expected. 

Figure 14 shows the effect on critical 
speed brought about by reducing the distance 

40 (- 

U I« 

Fig. 14 - Critical speed as a function of the 
ratio of coupling-shaft length, L, 
to the original length, L0. 

between the gear box and the compressor. Calcu¬ 
lated critical speeds are plotted against the 
ratio of the reduced length of the coupling- 
shaft to Its original length. The values of 

this ratio at the data points at L/Lq of .64 
and .73 correspond to reductions of 8 Inch 
(20.3 cm) and 6 inch (15.2 cm) in the length of 
the coupling-shaft. Its original length was 
22.5 inch.(57.2 cm) As can be seen, with the 
8 inch reduction, an increase in critical speed 
to 36,500 rpm can be expected with the compressor 
disconnected. With the previously discussed 
correction for the presence of the compressor, 
a critical speed of over 33,000 rpm is indi¬ 
cated. On the basis of these calculations it 
was decided to move the motor and gear box 
8 inches closer to the compressor even though 
this requires some alteration to the motor 
foundation and some sacrifice in motor-gear box 
noise isolation from the anechoic test chamber. 

CONCLUDING REMARKS 

This paper has shown that significant 
cross sectional distortions may be found In 
high speed shafts having thin walls and that 
conventional balancing techniques require 
modifications to achieve acceptable results. 
An alternate procedure, using a combination of 
two displacement sensors 1s described. A 
harmonic analysis of the sensor signals and 
the addition of multiple balance weights Is 
seen to lead to acceptable balance with greatly 
reduced wall distortions. 

It has also been demonstrated that the 
NASTRAN computer program, which belongs to the 
nation, can be’used effectively to predict 
critical frequçncles of complicated shafting 
systems. Considering the apparent effectiveness 
of the prograiii and considering Its general 
availability, we can now economically employ 
detailed analysis In the design of shafting 
systems and we can therefore aspire to rather 
high standards.In justification of designs. 

DISCUSSION 

Mr. Pex (Untyereltv of LoutevtUe): I am aware 
that you mentioned that the problem waa three di¬ 
me nalonal but your explanation waa two dlmenaional. 
How did you locate theae corrective weights longi¬ 
tudinally along the ahaft ? 

Mr. Martin: We calculated the shape for the 
first mode of a free-free shaft and we arbitrarily 

distributed the weights in proportion to this deflection 
mode shape. 

Mr. Vat?. (Teledyne Brown Engineering): I want 
to compliment tile author In getting experimental 
results that agreed with his computer program. 
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PARAMf.TRIC STUDY OK A REAM WITH A COMPOUND SIDE- 
BRANCH RESONATOR AS A DEVICE TO EVALUATE 

PRELIMINARY DESIGN LOADS 

J. Royer K a venu i raft 
Teledyne Brown Engineering 

Huntsville. Alabama 

The object of this paper is to present modal displacement ratios of a 
simulated skin-mounted component system. The results *¡11 provide 
an understanding of the responses relative to a point on the skin, a 
point at the attachment of the component to the skin, and a point 
located at the centroid of the mounted component. This is accom¬ 
plished through a finite element model of the beam and attached com¬ 
ponent. The component centroid is sidebranched off the beam by a 
pair of springs. This support system will permit (a) three degrees 

freedom to describe the motion of the component, and (b) a stiff¬ 
ened component beam interface element between the mounting attach¬ 
ment points on the beam simulated skin. This finite element model is 
then analysed on the digital computer for various mass and stiffness 
values of the sidebranch. The parametric study of this simulated 
system is performed to sho* how the component parameter changes 
affect the modal displacement ratios. 

The beam sidebranch system was chosen because it represents: 

(1) A rather elementary model 

(2) The response of the skin to acoustic excitation 

(3) The transfer of energy from the skin to an internally mounted 
component. 

The modal density of the simulated skin mounted component is 
restricted by this concept to a simulation of the planar circumfer¬ 
ential modes represented by the beam. The resulting motions will 
help in understanding the generation of preliminary design data from 
the statistics of skin response. 

INTRODUCTION 

The design cycle of Aerospace Vehicles 
generally starts with a configuration concept. 
The preliminary design process requires the 
documentation of loads that will be used to 
generate design criteria. Since no hardware 
drawings exist, the dynamic loads can be esti¬ 
mated by statistical methods, drawing on past 
experience. 

One type of the required loads is repre¬ 
sented by equipment mounted to a shell struc¬ 
ture, The attachment is made through a 

bracket. Vibration and acoustic energy will 
excite the shell. The response of the com¬ 
ponents mounted on this shell will depend upon 
configuration and system parameters of mass, 
stiffness, and damping. 

The objective of this study is to present 
' modal displacement ratios (VDR1 obtained 
by computer solution for simulated skin 
mounted components. The modal displace¬ 
ment ratio is the quotient oi vj and vr taken 
from a mode shape of a particular system. 
In this paper \ j is always the mode shape at 
the sidebranch mass in the \ direction. The 
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mode shape on the y direction of the beam i» vr 
and will be specified at either y max (vry) or « 
the attachment location (vra). The mathemati¬ 
cal model of a shell and sidebranch is rather 
involved. Therefore, the skin and mounted 
component modes were limited to the modal 
density of a beam with an attached mass. This 
model was chosen so that the results, although 
limited in scope, would yield information suit¬ 
able to show the effects of varying the para¬ 
meters of the more complex system. These 
parameters were (a) the mass properties of the 
simulated component, and (b) the stiffness of 
the sidebranch structure. 

FINITE ELEMENT MODEL 

The finite element model used to deter¬ 
mine the eigenvector ratios presented in this 
study is shown in Figure i. 

The beam has uniform cross-section prop¬ 
erties. except at the location between the foun¬ 
dation attachment points. This location is 
assumed to be very stiff when compared with 
the basic beam. 

A mass is attached (aa shown in Figure 1) 
by a pair of parallel linear springs side- 
branched off the beam. 

TABLE 1 

MODAL DISPLACEMENT RATIOS IN THE 
FIRST MODE 

(As a Function of Sidebranch Mass !• Frequency) 

I n 
Í »•-y 

i» 

11. I« Ha ♦« Ha 
11.47 M 
17.4» *• 
41.7S 44 
44.44 140 
41.74 IS4 

4. 47 . 14 
1.44 
4.14 
4.47 
1.74 
1.41 

4. 44 4. 44 
1.14 i.n 
1.44 1.14 
1.27 #.47 
1.14 0.S4 
1.04 #.•• 

20.24 
42. 4S 
44.41 
44. IT 
44. as 
41. S* 

40 
41 
4t 
44 

I4S 
IS* 

7.7 »24 
»41 
»41 
»44 
»40 
»44 

2.44 2.04 
I. SI 1.42 
1.44 1.2 
1.22 1.01 
l.ll «.»4 
1.04 0.00 

24. 14 40 
24.04 
20.44 40 
40.14 4» 
20.0 »40 
20.0 I»» 

14.4 »24 
»II 
»40 
»44 
»4 
»14 

1.72 1.4* 
1.42 1.21 
1.22 1.02 
1.12 0.44 
1.04 0.40 
1.04 0.04 

14.4 40 
17.24 41 
21.44 40 
20.47 44 
21.00 140 
20.44 1*4 

20.0 »20 
0.11 
»14 
»44 
»12 
»12 

1.44 1.14 
1.22 1.01 
1.12 0.44 
1.04 0.40 
1.01 0.00 
1.01 0.04 

11.47 *0 
10.11 » 
12.11 40 
14.4 44 
14.14 140 
11.04 I» 

41.4 »42 
»12 
0.41 
0.12 
»17 
0.14 

1.14 0.40 
l.l 044 
1.04 0.04 
1.01 0.04 
1.01 0.04 
1.0 0.04 

DISCUSSION 

Figure I - Beam and Sidebranch Lumped 
Mass Model 

The distributed mass model retains 72 
degrees of freedom to describe the motion of 
the beam and sidebranched mass. The degrees 
of freedom include translation in the x and y 
axes and rotation about the c axis (at 23 inter¬ 
mediate locations along the pin-ended beam 
and at the center of gravity of the simulated 
component). 

After the model was selected and the scope 
of input data was resolved, the model and data 
were processed by the DACS [l] digital com¬ 
puter program. Outputs of both tabular and 
graphical mode shapes were received. Because 
of the almost overwhelming quantity, the raw 
data are not presented in this paper. Extracted 
data from modes 1 and 2 are presented in 
Tables 1 through 3. These data are consoli¬ 
dated into applicable ratios for easy compre¬ 
hension. 

Preliminary design loads for components 
mounted on structures are often required when 
the attachment hardware and the particular 
attachment location are not specified. In addi¬ 
tion, vibration and acoustic criteria are deter¬ 
mined from various statistical analyses of 
preliminary design criteria. Because of the 
uncertainties, conservative methods have been 
developed for providing preliminary loads. 
Feasible design concepts can then be initiated 
with subsequent analysis reviews to determine 
the adequacy of preliminary dynamic design 
parameters. 

[il J. R. Hackney, Dynamic Analysis of Com¬ 
plex Structures by Direct Stiffness Methods, 
Technical Note SE-291, Teledyne Brown 
Engineering, September 1969. 
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TABLE 2 

MODAL DISPLACEMENT RATIOS IN THE 
FIRST MODE 

(As a Function of Generalized Stiffness) 

K 

K . 
gb 

o. ois 

M B 

M " 
gb 

ï. ÎS 

is.fc? 0.07 
¿*.21 

3. 3S 
7.7 

i. ■iî 
o.¿: 

¿. i i 

2. 44 

17.6S a 14 
12. 4M 
24. IS 

4l.7ë 0.2« 
14. SI 
24.0) 
15. 9 

1. IS 1.24 
7.7 0.4« 

IS, 4 0. 2 9 

1. IS !.t7 
7.7 O.fc« 

IS. 4 0.11 
10.« 0.2« 

I.S4 l-l* 
l.«l *• s¿ 
1.72 

1.27 0. '♦T 

1.41 
1.42 
I. H 1 ,b 

41. 11 0. SI 
17. 17 
2«.6S 
1724 
11.57 

1.1S 2.-M 
7.7 0.77 

15.4 0.4« 
10.« 0.1) 
11.1 0.12 

LIS 0. «9 
1.22 »Ol 
1.22 1.02 
1.215 1.0) 
1.17 19* 

52.76 1. 12 
)9. «4 
10. 14 
21.45 
10. I) 

). 15 1.12 
7.7 0.70 

15.4 0.41 
10.« 0. 31 
11.6 0.12 

1.09 0. g« 

1.11 0.9) 
1.12 a94 
1.12 O 95 
l.i a 9) 

41. «2 2.24 
29.71 
20.67 
12. Il 

21.17 4.5 
21.01 
I ). 4 

20.64 9.0 
14. 15 

7.7 0.5) 
15.4 0.4 
)0.1 0. 14 
11.6 0.4) 

15. 4 0. Il 
)0.1 0. )2 
61.1 0.12 

)0. « 0. )2 
61.6 0. )7 

1.05 0.11 
1.06 0.19 
1.01 0. 90 
1.05 0.17 

1.0) 0.17 
1.01 0-«1 
1.0) 0.17 

1.01 0.11 
1.015 0.14 

11.05 11. 61.6 a 15 1.005 a 14 

Evaluation of the preliminary dynamic 

design parameters is an early task to perform 

in providing preliminary dynamic design infor¬ 

mation. The study of a model will aid in the 

evaluation of preliminary load generation by 

giving visibility to a practical situation. Beam 

sidebranch system mode shapes are investi¬ 

gated by varying the quantitative values of the 

mass and sidebranch stiffness. To reduce the 

analysis to a workable scope, three modal dis¬ 

placement ratios were selected for study. 

These ratios are based on: 

(a) The X to y modal displacement of the 

sidebranch mass (v¿x, vjy). 

(b) The y to y modal displacement between 

the sidebranch mass and beam attach¬ 

ment location (vjy, vra). 

(c) The y modal displacement of the side- 

branch mass to the point of maximum 

beam modal displacement (vjy, vry). 

Figure 2 shows the beam resonant frequen¬ 

cies and mode shapes without the sidebranch. 

Note that the lowest natural frequency is at 

152 Hz. 

The stiffness of the sidebranch spring-mass 

system was chosen so that (a) the fundamental 

TABLE 3 
Mode 1. 1 52 Hz 

MODAL DISPLACEMENT RATIOS IN THE 
SECOND MODE 

(As a Function of Sidebranch Mass fc Stiffness) 

* «V r* »r 

T— 
X 

it «. Hi 

40.« 

1). • 
14.1 
65. i 

1.1* 0.0J5 
ft 07 
a 14 
a<« 
0. H 
I. 12 

».7« »<». 0 

0.45) ).0 
0.274 2.0 

0241 14 
0. )47 I. ) 

0.7)1 1.0 

12 
2. 7 
I. • 
I. ) 
I. I 
I. I 

)6.4 
19. 
41.4 
44. 4 

41. 
44.7 

Î 
7. 7 0. 07 

0. 14 
0.2« 

0. 4« 

I. 12 
2.24 

1. 7 

l.«4 
I. )2 

I. 17 
I. I 
1.74 

2. 7 
2.6 
l.t 

I. ) 
1.14 

I. I 

11.2 
)T. I 
)4.2 

42.9 
47.2 
44.2 

14.4 0. 14 
0.2« 
0. 46 

I. 12 
2.24 

4. 4 

).06 
2.67 

I. M 
1. 94 
2. I« 
2. 44 

6. ) 
2.0 
1.4 

1.2 
I. I 
0. 9 

)). 7 

)7.6 

42 • 

)0. • 0.2« 

0. 46 
1. 12 
2. 24 

4. 4 
4. 0 

).2 
2.6« 
2 41 
2.64 

2 «2 
2 •) 

I. 9 
1.4 
I. IS 
0. 9« 

0 «4 
0. 74 

2«. 7 

)0. 4 
)0. 4 
)2 6 

)4. I 
)4. ) 

0. 46 

1. 12 
2.25 

4. 5 
9. 0 

I». 0 

1. 74 
2. «4 
2. 12 
2. 71 
2.4» 
2.6 

) 1.14 
7 •). 9« 

24 0. 9) 
16 0.74 
1 0 72 
O'- 0.6) 

Mode 2. 6 14 Hz 

T 

Mode 3. 1291 Hz 

Mod«* 4. 2417 Hz 

Figure 2 - Bean Without Sidebranch 

Frequencies and Mode Shape 
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1 requeni y i»t the seiet ted siclt'hranch systems 
would be above the combined system funda¬ 
mental frequency, and (b( it would allow a 
wide ranne of mass changes, while keeping the 
print i pa I mod«* resonant tr«*quency between 10 
ami 100 Hz. This allows a study of modal dis- 
plat ement ratios by changing th«* parameters 

til the sidebranch system. 

A t\pical first mode shape for the com¬ 
bined system is shown in Figure 1. The 
natural frequencies ranged from 10 to 50 Hr. -■ 
considerably lower than the beam by itself. 
This t > p«* of mode shape resulted for all the 
mass and spring sidebranches studied. The 
mass translational and rotational deflections 
are in phase with the beam and thus reenforce 
the combined mode without reactive cancella¬ 

tion. 
t 

« ' 

Figure i - System First Mode 

Three general types of parametric class¬ 
ifications are noted from the data presented in 
Figure 4. The data are tabulated in Tables 1 
and 2. The first can be classified as having a 

low ratio of sidebranch mass to beam mass. 
Typically, this classification will have a ratio 
of less than 10 with the sidebranch support 
structure approaching the generalised stiffness 
of the beam. The modal displacement ratios 
are mass and stiffness dependent. Although 
directly related to the ratio of the sidebranch 
mass to the beam mass, the MDR's are more 
sensitive to stiffness than to mass. 

The second can be classified as having a 
sidebranch mass greater than 10 times that of 
the beam and a sidebranch stiffness less than 
that of the beam. The MDR's are not sensitive 
to mass changes and are inversely related to 
the ratio of sidebranch to beam generalised 
stiffness. 

The third includes any sidebranch with a 
stiffness greater than twice the generalised 
stiffness of the beam. The MDR's of this class¬ 
ification were not sensitive to mass or stiffness 
changes within practical consideration. 

The second system mode is shown in 
Figure 5. The expected mode shape is exem¬ 
plified by Type A. The sidebranch mass trans¬ 
lational and rotational deflections are out-of¬ 
phase and oppose the beam first mode shape. 
The sidebranch mass reacts against the natural 
response of the beam and distorts the mode 
shape of the beam section away from a half 
sine wave pattern. When the relative rotational 
or X translational deflection of the sidebranch 
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Type B 

Figure 5 - Second System Mode 

ia large (caused by either low stiffness or high 

niaaa), the beam is forced into an apparent 
• econd mode of Type B (the data are tabulated 
in Table 3). In Figure 6 the translation from 
one mode shape to the other is in the area 
around the dashed line. The vly to vry ratios 
of the second mode are based on the maximum 
y eigenvector of the beam regardless of the 
location of that point on the beam. The viy to 
vrv ratios exhibit two classification areas. The 
low mass ratio area (up to 16) is similar to 
classification 1 of the first mode. Our com¬ 
puter program instructions did not include data 
similar to the second classification of the first 

mode. Th. ren aininii data show the trends o! 

c la s s i ; i c at ions L anrl . 

The viy/vra ratio exhibits trends of cla.?s- 

:lT( at ion 1 throughout. 

The MDP's are graphed ■ ersus the norn.al- 

1 /ed stiffness in Figures 7 through 10. Plotting 

the data in this manner < learly shows the con- 

sistency of the data to this ratio and conver¬ 

gen. y of the M DP ’s at the high stiffness ratios. 

If environmental da'a are available for the 

veh lie shell (simulated by the beam) the en¬ 

vironment of the mass in the y direction will be 

related to the shell environment as simulated 

by our model. Although our model has freedom 

in the X direct, -in, it is my opinion that the 

model is unrealistic for analysis of sidebranched 

components in the x direction. Therefore the 

only mention of x deflection is in the deflection 

ratio V ix IV i y located in Tables 1. 2 and 5. 

The reader is left to his own initiative to 
apply the displayed data. It n.ust be pointed out 
that, although many computer runs were per¬ 
formed, only one basic model configuration w»s 
used. A change in beam configuration or a 
change in the s.debranch location relative to the 

beam will alter the results. 

A true plate model would have a greater 
modal density and more degrees of freedom for 
the equivalent number of finite elements. If the 

n,»r. 6 - Modal Di.pUcm.n. Ratio. V,r.u. M... RaHo. lor ,0. Second Mod. 
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Figure 9 - Modal Displacement Ratio Versus Generalised Stiffness Ratio for the 
Second Mode - Vjy/vry 

plate is considered a lattice of crossed beams, 
the results would be a rough equivalent of the 
model as used. Since only relative displace¬ 
ments are presented in the data, the effect of 
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the crossed beam lattice should be no different 
than the single beam within the scope of the 
model data as presented. 



Figure 10 - Modal Déplacement Ratio Versus Generalized Stiffness Ratio for the 

Second Mode - vjy/vra 

CONCLUSIONS 

Three general trenda «hould be noted: 

(1) The relative y deflection of the mass 
goes down with increased sidebranch 
stiffness until an asymptote is reached 
(Figures 7 through 10). 

(2) Except for very large relative side- 
branch masses, increasing the mass 
either increases the relative deflection 
of the mass or has little effect. Only 

at the upper mass extremes of our data 
ensemble did increased mass decrease 
the relative response of the mass. 
Even here the negative slope is 

nominal. 

(3) When the mass ratio is not at the high 
extreme and the stiffness ratio is not 
at the low extreme, the MDR's are in 
an average range of 1 to 1. 5. 
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RAIL LAUNCHING DYNAMICS OF THE 

SAM-D SURFACE-TO-AIR MISSILE * 

Martin Wohltmann, Leonard A. Van Gulick, H. Carlton SutpMln 

Structure Analysis Department 

Martin Marietta Corporation 
Orlando, Florida 

This paper describes the dynamic motions of a slngle-stape, surface-to-air 
missile launched from a container-canister. The missile and canister are 
each about 17 feet in length. Missile and canister diameters are 16 Inches 
and 36 Inches, respectively. The principal Interface between the missile 

and canister la a 10 Inch wide continuous rail contoured to the missile 
circumference. No mechanical parts, such as shoes interconnect the mis¬ 

sile and the rails. The rocket motor provides the launching force. As 

the missile exits the canister, It picks up angular rate and position 

prior to the development of stabilizing aerodynamic forces. Requirements 
for the missile to fly through established target windows restrict the 

rate and position to be within specified magnitudes. The problem, usually 
called “tipoff’* and “mal launch" Is to determine for this particular 
missile the angular rate and position as It exists from the canister. 

INTRODUCTION 

SAM-D Is being developed as a highly mo¬ 
bile, tactical air dafanae system for use by the 

U.S. Army In battlefield. Tha system Is designed 
to provide defense against high-performance air¬ 
craft. It will be capable of engaging several 
targets simultaneously. A vehicle will carry 
several of the single-stage, solid propellant 
supersonic missiles In launchlng-shlpplng canis¬ 
ters. Tha missile la cradled within the canister, 
supported by a trough-llke launch rail. Missiles 
are capable of being fired singly or In close- 

sequence salvos. The weatherproof canister pro¬ 

vides protection for the missile from the time 
It Is manufactured until fired. 

Requirements for the missile to fly through 
established target windows restruct the angulsr 

rate and position of the missile as It exits the 
canister, to specified magnitudes. This problem, 
usually called "tipoff" or "mal launch" Is 
analyzed In this paper. 

Figure 1 Illustrates the basic system con¬ 
cept. The major components sre a track vehicle, 

launch platform, and six mlsslle-contalnlng canis¬ 

ters. Figure 2 Illustrates a SAM-D launching. 

Parameters that affect missile exit an¬ 

gular velocity and position are: 

1^ Weight and moment of Inertia 

2 Rail curvature or Irregularity 

Fiflere 1. SAM-D Basic System Concept 

Figure 2. SAM-D Launch 

*Work performed under contract to Raytheon Company, Lexington, Massachusetts. 
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) Krlctinn between rail and missile 

4 Thrust misalignment 

“> Missile center of gravity offset 

b Kail lengtli 

7 Kail elasticity 

H (anister and launcher flexibility 

4 Winds 

10 Hackflowing asvmmetric-motor exhaust 
pressures 

11 Launch angle. 

Two separate analyses were made taking 
into account several of the above parameters. 

Mathematical Symbols 

A,H,C,D Coefficients 

l-'k Spring force/unit length 
K radius of gyration 

L Distance from mlsslletc ,g., to missile 
aft end 

I Pitch inertia 

P,V,S Refer to Figure 6 (distances) 
N Normal force 

i)i Generalized force 
K Radius of curvature or generalized 

coordinate 
T Kinetic energy or thrust 
W Weight 
autb0 Constants for spring properties 

fk Friction force/unit length 
d Distance (refer to Figure 5) 
g Acceleration due to gravity 
h Height 
1 Rail length 
M Mass 

q¿ Generalized coordinate 
r Missile radius 

t Time 
x,y Cartesian coordinates or Integration 

variables 
f i Generalized coordinates 

Generalized coordinate or launch angle 
i,-, Thrust misalignment 

Coefficient of friction 

d/dt Total derivative 
-/‘t Partial derivative 

. First derivative with respect to time 

.. Second derivative with respect to time 

Rail Curvature Analysis 

In this analysis the following assumptions 
were made: 

3 The rail la rigid and circularly curvad 
(0.2 Inch In height per the 209 Inch 
length). 

The following factors are considered In 
the analysis of the effects of rail curvaturei 

1 Friction 

2 Thrust misalignment 

3 Canister launch angle 

4 Planar motion 

3 Canister length. 

Figure 3 Illustrates the model used to 
obtain the equations of motion during the early 
part of the launch. The two degreas*of«freedom 
are the coordinates $ and 1. Forces Included 
are missile weight, thrust, and friction. 

LaGrange equations. In the following form, era 
used to obtain the equations of motion) 

where 

T - kinetic energy 

q¿ • Independent coordinates 9 and f 
Ql - generalised forces 
X,Y « X and Y components of the forces 

x,y - Cartesian coordinates 
t - time. 

Figure 3. Dynamic Model for a Straight 
Missile on a Curved Rail 

1 The launcher and canister are both 
rigid; 

2 The missile Is straight and rigid; 

The missile kinetic energy Is 

1 .. 2 
'TB <xcg * ><:> i r 

eg 
(3) 
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where 

m = missile mass 
lc^ = missile pitch Inertia * I. 

Bv Kfometry (see Figure 1), 

XCK - -(K+r) cos T + riot : sin : (4; 

and 

yck * (K+r) sin t + rcot : cos :. (5) 

Differentiating equations (4) and (¾) 
with respect to time. 

• : !- 4r(K+r) 

cot . *4r“:“ esc cot 

Jr' 

] (12) 

Kquations (9), (10), ill), and (12) pro¬ 
vide ttie I.MS of the Laf.range Equation (1). 

Thrust Force 

The generalized force due to thrust, in* 
eluding misalignment, is determined as follows. 
Rewriting Kquation (2)t 

xCg “ (R^r) r sin t *f rr cos r cot ; 

• 2 
• r$ sin r esc $ 

VCf( “ (R+O t1 COS i • rf sin f cot î 

rif cos f csc^ ¢. 

(6) 

(7) 

Squaring Equations (6) and (7), and sub¬ 
stituting Into Equation (3) and collecting terms, 
the system kinetic energy becomes 

T “Tln [(R+O2*2 - 2r(R+r) n 

+ r ^ cot^ $ + etc*1 

2 
CSC $ 

1 ‘2 + yir . (8) 

Taking the partial derivative of Equation 
(8) with raapact to y and the time derivative 

dt (^) ■Tm[2(R+r)2 V ' 2r(R+r) V cac2 $ 

♦ 4r(R+r) i2 cac2 ♦ cot 4> + 2r2 V" 

cot2 ifi • 4r2 íi cot ♦ cac2 + iV; 

(9) 

also 

¿L. 
3» 

0. (10) 

Next, taking the pertlel derivative of 
Equation (8) with reepect to } and the time 
derivative 

dt (If)" j m[-2r(*+r) V cec2 « + 4r(ll+r) H 

2 • - 2 ... ..4 . . 2 î2 
cec* 4 cot « 4 2r‘ V cec" 4 • 8r2 4 

cec* 4 cot 4! (ID 

and next, taking the partial derivative of 
Equation (10) with reepect to 4: 

Q. 
'T 

+ Y_ 

XT- + YT-T (13) 

The X and y components of thrust are 
(refer to Figure 3): 

Xj, * T sin (:-i) = T (sin v cos u 

- cos r sin j) (14) 

» T cos (y-:) » T (cos f cos J 

+ sin y sin a). 05) 

Ageln, referring to Figure 3, the x and y dis¬ 

placements at the point of thrust application 
are 

x - xcg -L .in y (R+r) cos y 

+ rcot 4 sin y *L sin y (16) 

Y * ycg *L cos y - (R+r) sin y 

+ rcot 4 cos y -L cos Y. (I7) 

Taking the partial derivatives of Equations (16) 

and (17) with respect to the coordinates 4 and 
Ÿ, *"8 substituting these together with Equations 
(14), and (15) into Equation (13) provides the 
thrust generalised forcest 

Qy ■ T (R+r) cos a -T (rcot 4-L) sin a 
T 

(18) 

(19) Q ■ -Tr esc* 
4t 

cos a. 

Weight Force 

The generalised force due to the missile 
weight Is determined as follows. The x compo¬ 
nent of the weight Is sero and the y component 
la 

Y ■ -mg. 
w ^ (20) 

The eg displacements are given by Equations (4) 
and (5) and the partial derivatives of these 
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» and V displacements ultti respect to the co* 
ordinates r and : when substituted together 
with Fquatlon (JO) Inti' Kquatlon (2), provides 
the generalized force due to the missile weight 

0 ■ -mg (K+r: cos • • rsln r cot î] 

and 

0_ - mgr cos r esc* :. (22) 
•*w 

Friction Force 

Similarly, for friction, the generalized 
force components are determined ac follows: 

Xj, - -F sin F Yp ■ -F cos F. (23) Figure 4, Friction aa a Function 
of Coordinate $ 

The coordinates of the point of contact are Equation* of Motion 

X - *R cos F y • R sin F (24) 

2Í-. r sin F -|L- R cos F. (25) 

Then 

Q ■ -F sin F (R sin F) 
Friction 

*F cos F (R cos F) (26) 

Qy • -FR. (27) 
TFrlctlon 

With F ■ uN where u 1* the coefficient of frlc* 
tlon and N 1* the normal force: 

Q. ■ uRN. (28) 
Friction 

For preliminary analysis, the normal force N Is 

taken to be the weight component perpendicular 
to the rail surface: 

N 2. ■■cos 6. (29) 

Thus the F generalised force Is 

• -umg R cos 0. (30) 
Friction 

With the aid of Figure 4, a trlctlon generalised 
force Is developed In the $ coordinate. 

s • rcot ♦ sin F y • rcot 9 cos F (31) 

Combining Equations (9), (10), (11), (12), 
(18), (19), (21), (22), (27), and (33), the 
equations of motion become after dividing the 

V equations by m(R+r)2 and defining I*mK* 
where K - missile radius of gyration, the 

final form of the i|i equation becomes 

t ♦te) cot2 ♦♦(**)2]y 
* [(iMc'c2 ♦] ♦ • 0¾¾ “•a 

T/m 

(**r) 

+ aln F cot 9 - ulr ■ cos 8 
(R+rr 

♦2 esc2 9 cot 9 

2 
♦ 2 W esc2 9 cot 9 (3*) 

and aftar dividing the 9 aquation by nr* cae* 9 
and rearranging, the final form of the 9 equa¬ 
tion bacons a 

(-^*) aln2 9J ¥ ♦ V ■ •¡¿, sin2 9 eos a 

* -J- sin2 9 aln F + -Hi sin2 9 cos 9 

(rcot 9*L) sin a * cob y 

■ji« -rcsc2 9 sin F -rcsc2 9 cob F. 

(32) 

With the use of Equations (23), (28) and (29), 

the friction generalised force In the 9 direc¬ 
tion becomes 

2 Q. • ungr esc 9 cos 0. (33) 
’Friction 

+ 292 cot 9 * V2 aln2 9 cot 9. (33) 

Equations (34) and (33) may be written simply 
asi 

AT + # • f, (9. », 9, *), 

C» ♦ • f2 (9, », 9. »). (34) 
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Eauatlons (36) ware »olved on the CDC 6400 dlf 
5;“ í^uter u.ln, . Run.e-Kutt. iter.t on pro- 

cedure. The eolutlone were subject to the fol 

lowing Initial conditions. 

Figure 5 illustrates the geometry neces- 

sery to compute the rail radius of curvature. 

The geometrical relations ares 

- 2 and d ■ R • h* (37) 

Thus the radius of curvature becomes 

R “ 
Í 

Bh 

(38) 

The inclusive rail angle rT Is determined fro, 

the relation 

T 

(39) 

Y 

6 ^ Launch Angle 
1 ^ MU Length 
h % Maaeure of tell Curvatura 

Figura 5. Caomatry for Obtaining 
Radius of Curvatura 

T V, Thrust 

U Weight 
r Missile Radius 

.lt tl X Initial Angles 

Figure 6. Geometry for Obtaining Digital 
Program Initial Conditions 

and 

P - V-S - V * ¿an (I, + v2) 

Since ls 8m“11 

P - Rlj* 

(43) 

(66) 

Thus, 

V 
r- 

tan (Y, * Y2) 
- Ry 2 

(63) 

Making us. of a geometrical identity and assuming 

V2 small 

tan ♦ Yj 
tan (f ! ♦ *2) - ï . tanTJ" ’ 

(66) 

tefarrlng to Figura 6. Y, i. datarminad from 

y ^ 90* - 9 
(60) 

whara 9 ia tha launch angla. Equation (60) holds 
ÍÍ larga val«a of R. Tha angla tj i. datar- 
minad as follows (aquillbrium conaidarationa 

with 

S • tan 9 
r- 

tan (Y, ♦ Yj) 
(62) 

Substituting 
and ignoring 
bacons« 

Equation (66) into Equation (63) 
Yj2 as a highar ordar term Yj 

V tan Y, 

^2 * (R-r) tan^-V 
(67) 

tiens (3S), (60), and (67) ara usad to ob- 
program starting conditions for various 

metara. 

Tha aquations of motion (36)and (33) 
valid only whila tha contact point batwaan 
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t 

thf ind r.iil i--: 1) ''.•tw.-.-n tie 

r.iil .-nd-.. md J) 1-.-1 t .■ .md o*tv.* 

-.•itl.-n. .'t th.- 

It it* s.* rendition, ir.- rtt on 1 v if tin- fol- 

lowlnn stoppln« oondl t ion . or.- n.'t .-xot-.-d.-d. 

K.f.-rrlnK to Hxiir.- *, If 

•l * ’I 

.md 

, ■ o.o, 

the equal Ion-- at not valid. Al*o referring to 

figure 7 If 

-1 r 
Í tan — 

and i • 0.0, the equations are not valid. The 
missile Is tipping backwards on boattall. Sim* 

ilarlv, as shown In figure 8¡ 

If Î • 180° * tan 1 
V 

and î 0.0, the equations are not valid. The 

missile Is tipping forward on the ogive section. 

NOT! 
Moam o# raffMM eaae« 

. lMINCH ANGlf 

Figure V. Dynamic Model for Gravity Tip-Off 

(48) 

(49) 

a ■ X • R cos e » r sin -i 
C8 

v ■ v - R sin 4 -f r cos «. 
eg 

Differentiating F.quatlons (48) and (49) with 
respect to time, and squaring the resulta and 
substituting Into the system kinetic energy 

T - 1/2m (x ♦ y) ♦ 1/2IcJ 9, (50) 

Figure 7. Constraint on Coordinate ;, 
Missile Tipping Backwards 

Ogiva 
Intarfaca 

Figure S. Constraint on Coordinate 
Misaila Tipping Forwards 

Once the ? stopping conditions ara a«* 
caadad, tha aquations of notion changa. The 
naw aquations ara callad Gravity Tlpoff aqua* 
tlons. 

Gravity Tlpoff Analysis 

Figure 9 Illustrates tha dynamic modal. 
Tha two degrees*of*freedon are taken to be K 
and e. >y geonatry, tha eg dlaplacenants In 
tha Cartesian coordínala syataa are 

the kinetic energy becomes 

T - 1/2m[fc2 • 2rk9 ♦ r282 ♦ *292] 

■f 1/21 . 92. (51) 
eg 

Taking tha partial derivative of Equation (51) 
with respect to ft and ê and taking tha tine 
derivatives 

(52) 

(53) 

dt U 

dt 

s • •• 

■ mk • mr8 

(¾ " -nrff ♦ mr29 4 m»20 

♦ 2mxftê ♦ Ic| 0. 

Taking tha partial darlvatlve of Equation (31) 
with raspact to tha coordinates 9 and I, and 
substituting togathsr with Equations (52), (S3), 
Into Equation (1), tha UK of LaGranga aquations 
bacons 

ii (ft) ■ ■**’ (w 

i (Ü-) 

♦ 2nRÍÍ ♦ V. 
eg 

(33) 

Tha ganarallaad fores dua to tho nlaalla weight 
la dotarnlnod as followsi 

’S,-0 Yw--« 
(36) 

224 



and taking the partial derivativas of the xc. 

and yCg coordinates In Equation (4ê) and (49) 
with respect to R and 6 and Baking use of Equa¬ 

tion (2), 

QPy ■ -Bg sin 8 (57) 

Qey “ '■d * cos ^ "d*’ sin 

The generalized force due to the thrust force 
is deteralned as shown in the following analysis. 

The location of the thrust application point Is; 

X “ X * L cos 8 • R cos 8 • r sin 8 
T eg 

- L cos 8 (59) 

y_ ■ y - L sin 8 ■ R sin 8 + r cos 8 
'T 7 eg 

* L sin 8. 

The conponents of the thrust are 

JCj. - T cos (8 + y) 

Yt - T sin (8 ♦ y). 

(60) 

(61) 

(62) 

Taking the partial derivatives of Equations (59) 
and (60) with respect to the coordinates R and 

8, The generalized thrust force Is 

Q - T cos Y 

"t 

(63) 

and 

Q » T(R • L) sin y - Tr cos y* (64) 

fron the heavywall canister did not Include any 
elastic effects. This analysis dcteralnes the 

effect of rail alastlelty only, on tlpoff rata. 
Figure 10 Illustrates the dynaalc aodel. Prln* 

cipal elasticity Is in the rubber pad which 

overlays the bottoa foaa rail. 

Figure 10. Dynamic Model for Elastic Rail 

The equations of motion are (assualng 8 

and 3 are small)t 

IF T 
X 

f dx * mx 
‘k eg 

(67) 

T,F. -T(6+a) ♦ W / Fk dx - my (68) 

Making use of Equations (54), (55), (57), (58), 
(63), and (64){ the equations of motion become 

V - r '9 ■ *g sin 8 + cos y ♦ bR8^ (65) In 

- rH+(K2 ♦ R2 ♦ r2) 8 - -gRcos e ♦ gr sin 8 

+ X (g . d sin y *“ co* y * 2RR*8 (66) 

where 

k2-^S 

Equations (6S) and (66) were solved using the 

digital computar. The Initial conditions for 
these aquations were determined from the end 
condition results of the rail curvature equa¬ 

tions. 

This completes the rail curvature anal¬ 

ysis results are presented at the end of the paper 

Rail Elasticity Analysis 

The previous dynamic analysis to deter¬ 

mine the tlpoff rate as the SAM-D missile exits 

EMc, *T*2a / rf* 
dx 

I 

/ ♦ / * Fk d‘ - ïc, e 
(69) 

*2 
where 

T • missile thrust 
fg - friction force/unit length 

m * missile mss 
Xcg,YCg,e - missile position coordinates 

a ■ thrust misalignment angle 
U ■ missile weight 
Fg ■ spring force/unit length 
r a missile radius 
X a integration variable 

x),x2 • integration limits 
ICg • missile pitching inertia 
Meg ■ pitching moment about eg. 

The spring force per unit length Fg was 
determined through the use of the experimental 

data shown In Figure 11. A quadratic curve was 

fit through the data of the form 

F • a y + h y^ * (70) 
K o’ o' 
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Figure 11. Load Deflection Characteristic 
of Rail Rubber Fad 

The total nonaal spring force la 

a, 

dx ■h. (71) 

and with the deflection y - f(x) l.e.. 

y - ycg -xe ■ yo -xe (72) 

•/’ •o[yo 'X9]2 d* 
(73) 

Expanding Equation (73), and Integrating, the 
total spring force become 

♦ Xj) * / V* ‘ *(Vo ♦ boyo2) (*1 
**2 

( I 2\ . 2*. 3 
1*1 **2 1 2 *1 *2 

+ (ao * ^oV 9 V i~/(bo9 ) 3-* 

The total friction force Is 

*1 *1 

(74) 

uF. dx where u ■ coefficient of 
k2 friction 

/ fkdx - -u(aoyo ♦ boyo2) (X, ♦ x2) 

*2 Í 2 2\ 

<*o+ 2boyo)e V1 r~—]'vh0* 

(^) (76) 

The aximnt due to friction la 

X. 

/ rfkdx - *ru (aoyo ♦ b^2) (x, ♦ Xj) 

**2 

♦ ru (ao ♦ 2boyo) ( - ;—) 

■”V2 (^) (77) 

The aomnt due to spring force la determined as 
follows: 

J \ *d* - Ï (*oyo + boyc 
•X- w 

) xdx 

f1 • J 9<ao + 2boyo),,2ix 
•*2 

4 jr1 b0 eVdx. 

•*2 

Integrating Equation (71), 

r1 2 (^ J \ “d* ■ <Vo ♦ boyo ) {—-J 
**2 

• <ao ♦ 2boyo>9 tV-j 

(78) 

(79) 

(75) 

Substituting Equations (74), (76), (77), and 
(79) Into Equations (67), (68), and (69), the 
equations of motion become 
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(80) 

*xc« “ï"ir(Vo ♦ Vo2> <*, ♦ *2) 

‘•"ï (,o ♦ 2boy0) 6 (-/2 ■) 

YC1 ■ Y0 ■ •-=- (0.+6) c« 0 ■ 'aT0; "T'T(aoVboV> 

+ T (äo+2bo*J 8 

(81) 

" ’ ïc, X2“ ' ^ (Vo+boYo2> <*,+*2) 

♦ (• +2b y )e í-í-Jíi-1. £iL b fl2 ■e, • {—r~J -T' \> 

(-1^) ‘T^'v. * V.'> (^-r2-) 

i r*»34*»3! 
♦ f— (a ♦ 2b y )8 -J_L_| 0 00 V 3 J 

♦ ^2. 92 ("/Vi 
ICi V * / <«J 

«Ine/wî t h 1 n 11"lt, *» •nd x2 "u« b« d«t.r- ■iiiad within tha constraints Imposed. 

dlatanca^frnlTiJ!^ 18 defln*d *8 to the 
distance from the eg to the ogive-cylinder In- 
terface or as the distance from the eg to the 

Whan irOBt *"d| th* ,hort,r dl»t«"ce Is used. 

X < 
eg - 3 

«E- <1 • 

Ü 

■*£ * ‘■J- 

cgÄ- »X 

y ♦ iiiibî 

t31 
Ogive 

Rubber Pad 

When 

- -- V... past 
rail, xp becomes negative. 

displacement and rotation to be such that a 
portion of the rubber under the missile Is 
undeformeo. 

» th* rotatlon is counterclockwise and 

slle ÍÍ oniy! C" °CCUr f0rW,rd °f the 

Uncompressed 
Rubber Height 

*8 ’ Ycg cot e‘ 

Lh:.i"i:r:tlon UBitj *’• ^ -8-11» ^ lesser of xR or xE and x2 Is equal to £2. 

If X 
(R : *E 

“1 "R 

*2 - i2. 

If *R ' *E 

*1 *E 

*2 - £2. 

If the rotation Is clockwise and 6 negative. It 
can only occur aft of the eg. ' 11 

X > ¢. 
eg 3 

XE ■ S *(xc, * ‘l) 

For 9 < 0.0 

*A " *Ycg cot e- 
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The integration limits, xj and X2> are found 
as follows: 

If X. 

2 A 

‘i “ V 

If X 
A - 2 

V 

The equations of motion and the logic 
constraints were programmed for solution using 

the CIX' 6400 digital computer. 

Results and Conclusions 

Typical time histories of the angular 

position and rate of the SAM-D missile during 
exit, as obtained from the “rail curvature 

analysis“ are presented In Figures 12 and 13. 

Classification prevents actual values being 
assigned to the time ordinates. The oscilla¬ 

tion of the position and rate Is due to the 
missile rocking as a pendulum on the curved 

rail surface. About 70 percent of the total 

tlpoff rate Is obtained after the missile cen¬ 

ter of gravity passes the rail end. This por¬ 
tion of the launch process Is called “gravity 
tlpoff.“ Figure 14 presents time histories 

of the angular rate of the missile as obtained 

from the “rail elasticity analysis.“ The 
oscillation appearing here Is due to a rocking 

motion of the missile on a rubber pad located 
between the missile surface and the launch rail 

T l me 

Figure 12. Missile Attitude versus Time 

Figure 13. Missile Pitch Rate versus Time 
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PITCH RATE 
~ RAO/S 

-0.16 

-0.14 

-0.12 

-0.10 

-0.06 

-0.04 

-0.02 

NOTE: 
FRICTION COEFFICIENT = 0.2 

ELASTIC RAIL 
RIGID BODY 
ZERO DEGREE LAUNCH ANGLE 

y\ g~., L 

■L-L 

TIME ^SECONDS 

^10 TIMES STIFFEN 
(Zero Thrust Misalignment) 

1000 TIMES STIFFEN 

GRAVITY TIP-OFF 

Figure 14. Exit Tlp-Uff Rate 

Tabla I aumarlces the efferts of various 
paraawtera In the analyala on the missile tlpoff 
rate and positions. 

The conclusions reached are as follows! 

1 Tlpoff rate Increases with decrease 
In launch angle, ranging from *6.6 
deg/s at a aero degree launch angle 
to *3.4 deg/s at a 60 degree launch 
angle. 

2 Rail curvature Increases the position 
and rata values by 0.4 deg and 1.1 
deg/s. 

3 Thrust alsallgmaant plus eg offset 
producea changes In the rate and 
position values of ±0.13 deg. 

4 Friction has a negligible effect on 
rate and position. This is due to 
thrust forces being much larger than 
friction forces. 

5 A decrease In rail length by about 
20 percent increases the position 
and rate values by 0.08 deg and 0.6 
deg/s. 

6 Rail elasticity Increases rate by 
1.4 deg/s. 

Summary 

The largest single factor In the analysis 
of tlpoff rate and position Is produced during 
the “gravity tlpoff” portion of the launch 
process. For the SAM*T) missile it amounts to 
about si* degrees/second for the 30 degree 
launch angle. All other factors such as rail 
curvature, rail elasticity, friction, thrust 
misalignment, and rail length cause relatively 
small perturbations in the total tlpoff rate 
and position. The change in missile angular 
position during launch is not more than 1.0 
degree. 
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VI! 1. If.-'t- of Various Parameters on Missile Tipoff Rate 

Paramóter 

t'xt t 
Angular 
Posit ion 

( Je g ) 

Pxlt 
Angular 

Rate 
(deg/s) Remarks 

aunch angle }0 *0.27 
hO- -().20 

Rail curvature 0.4 

Tlirust misalignment 0.13 
plug eg offset 

Kriction '-0.0 

Rail length 0.08 

Rail élasticité 

-6.6 
-5.7 

-3.4 

1.1 

0.7 

:0.0 

0.6 

1.4 

Nominal results 

Curvature of 0.2 Inch in 

209 inch length 

Combined effects equivalent 

to misalignment angle of 
0.004 radians 

r » 0.0 ♦ 0.2 thrust forces 
much larger than friction 
forces 

20 percent decrease in 
length 

DISCISSION 

Mr. Upeles (Littleton Research and {engineering 
Corporation): In the testing did you make measure- 
monts and verify the tipoff angles and rates ? 

Mr. Van Gullck: Yea, we did make measure¬ 
ments and while they were within acceptable limits, 
they were higher than we had predicted. We redid 
our analysis and found that there was a contribution 
due tp the rigid body motion of the cannister. and 
when we included this we were able to match the 
measured rates much better. 

230 



PITCH RATE 
~ RAD/S 

-0.16 

-0.14 

-0.12 

-0.10 

-0.06 

-0.04 

-0.02 

NOTE: 
FRICTION COEFFICIENT = 0.2 
ELASTIC RAIL 
RIGID BODY 
ZERO DEGREE LAUNCH ANGLE 

jnza: 

TIME SECONDS 

^10 TIMES STIFFEN 
(Zero Thrust Misalignment! 

1000 TIMES STIFFEN 

GRAVITY TIP-OFF 

Figure 14. Exit Tip-Off Rate 

Tabla I auMarltea the effects of various 
parameters In the analysis on the missile tlpoff 
rate and positions. 

The conclusions reached are as follows: 

1 Tlpoff rate Increases with decrease 
In launch angle, ranging from -6.6 
deg/s at a taro degree launch angle 
to -3.4 dag/s at a 60 degree launch 
angle. 

2 Hall curvature Increases the position 
_ and rate values by 0.4 deg and 1.1 

dag/s. 

3 Thrust misalignment plus eg offset 
produces changes In the rate and 
position values of +0.13 deg. 

4 Friction has a negligible effect on 
rate and position. This in due to 
thrust forces being much largrr than 
friction forces. 

5 A decrease In rail length by about 
20 percent increases the position 
and rate values by 0.08 deg and 0.6 
deg/s. 

6 Rail elasticity Increases rate by 
1.4 deg/s. 

Summary 

The largest single factor in the analysis 
of tlpoff rate and position is produced during 
the “gravity tlpoff“ portion of the launch 
process. For the SAM-D missile It amounts to 
about six degrees/second for the 30 degree 
launch angle. All other factors such as rail 
curvature, rail elasticity, friction, thrust 
misalignment, and rail length cause relatively 
small perturbations in the total tlpoff rate 
and position. The change in missile angular 
position during launch is not more than 1.0 
degree. 
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i’ara-W. r 

Pxit 
Angular 
Pos it ion 

( de«) 

I xlt 
.Angular 

Rate 
( deg/s) Remarks 

uuno; annl> )n 
m' 

'1.27 
0.20 

-to ,6 
*5.7 
-3.4 

Nominal results 

Kail eurvature 0.4 

Thrust mi sal Ignnu’nt o.U 
plug eg offset 

Friction -0.0 

1 .1 

0.7 

.0.0 

Curvature of 0.2 inch in 
20*1 inch length 

Combined effects equivalent 
to misalignment angle of 
0.004 radians 

r ■ 0.0 • 0.2 thrust forces 
much larger than friction 
forces 

Rail length 

Kail élasticité 

0.08 0.6 

1.4 

20 percent decrease in 
length 

DISCISSION 

Mr. Upelos (l.litleton Hosoiirch ami Knglneerlng 
Corporation): In the testing did you make measure- 
monts and verify the ttpoff angles and rates ? 

Mr. Van Gullck: Ye«, we did make measure¬ 
ment« and wkile they were within acceptable limit«, 
they were higher than we had predicted. We redid 
our analyst* and found that there was a contribution 
due to the rigid body motion of the cannister, and 
when we included this we were able to match the 
measured rate« much better. 
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