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DYNAMICS 

FURTHER COMPARISON OF CONSISTENT MASS MATRIX SCHEMES 

R. M. Mains 
Professor of Civil and Environaer.t&l Engineering 

Washington Uni/ersity 
St. Louis, Missouri 

The work presented by the author at the 39th Symposium ' has been 
extended and carried through to comparisons of stresses. An exponent 
error in generating the flexibility matrix has been found and corrected, 
"hich led to approximately 8? increase in the frequencies affected. Three 
more comparative solutions have bee . included: the different mass formu- 
lations, as before, but with a linear-coordinate stiffness derived from 
the full linear-plus-rotational stiffness. This lines- stiffness produced 
stresses about 6Jf different from the stresses calcula^ i from the stiff- 
ness matrix obtained by inversion of the flexibility matrix. 

The shear and bending stresses in mode 1 for the various solutions 
are compared first. Then the square roots of the sums of the squares of 
the bending stresses across the modes are compared for the first six modes. 
The algebraic suns of the bending stresses across the modes are also com- 
pared for the first six modes. The results show that the maximum stresses, 
upon which design decisions would be based, are essentially the same for 
all ten of the different solutions, with the range of values about 5%.    For 
any one coordinate station away from the maximum areas, larger differences 
did occur as would be expected. The simple sum of the stresses across the 
modes was interesting to observe in that it was consistent between the 
various solutions and followed the same pattern as the square roots of the 
sums of the squares. (All of the calculations and comparisons were carried 
through for 12 modes in each solution, and the material presented herein 
has been selected to show the general character of the results in condensed 
format. The full data are available on request Cross the author.) 

(2) 
The solution to the Timoshenko   beam problem, published by T. C. 

Huang^3) for the beam with rotatory inertia and shear effects, has been 
calculated for numerical values of frequency for the beam discussed herein. 
The results are included in the comparison of the various frequencies 
obtained from the lumped parameter solutions. ^^ 

I. SUMMARY AND COliCLUSIOHS 

The responses of a cantilever beam to step- 
velocity shock, with shear flexibility and 
rotatory inertia effects included, have been 
calculated for ten different formulations of 
the problem: three different forms of stiffness 
and three different forms of mass in various 
combinations. The solutions were carried 
through to the calculation of stress amplitudes 
in the lowest 12 modes, the accumulated sums cf 
stresses across the modes, and the square roots 
of the accumulated sums of squares across the 
modes. Through mode 6, the agreement between 
the various solutions was generally better than 
±5 percent on the average, and was frequently 
better than ±2 percent. No one solution or 

* Superscripts refer to items in the list of references. 

group of solutions stood out as more consistent 
or more correct than any other. For design 
decisions, any one of the solutions would pro- 
duce the same result. The double problem size 
required by the inclusion of rotational coordi- 
nates was not worth the extra computing cost, 
and the additional eigenvalue calculation re- 
quired by the "consistent mass" schemes was not 
worth the extra cost. Twenty linear degrees of 
freedom with pro-rated diagonal mass was Just 
as good as forty degrees of freedom with con- 
sistent mass, at less than half the cost. 



II.  C0BRFCTIG8 TO DEFLECTION INFLUENCE 
COEFFICIEK? MATRIX 

In working further on the cantilever beam 
problem previously reported,'1' additional data 
and infcrnation have been developed which are 
discussed below. (The essential data on the 
problem and a sketch of the system are repro- 
duced in the appendix for convenient reference.) 
First, an exponent mispur.ch in the generation 
of the deflection influence coefficient matrix 
(Table 7, reference 1) was discovered end cor- 
rected. The error was in the shear flexibility 
term, making that contribution too large, so 
that the corrected flexibility is smaller. The 
corrected flexibility matrix is shown in Table 
1, with the 20-20 element about U  percent small- 
er than before. 

IV. THEORETICAL SOLUTION 

III. 
FROM SYSTEM STIFFNESS 

The rotational coordinates were eliminated 
from the system stiffness to leave a reduced 
stiffness matrix with linear coordinates only, 
by means of the equation: 

* -1 
Kll ~  Kll - K12K22K21 (1) 

in which Ku = reduced stiffness matrix 

Kn contains coordinates to be retained 

K22 contains coordinates to be 
eliminated 

^12<K21 »** tae coupling matrices 

In this computation, the inverse of K22 v*8 

multiplied against K22, and the result was an 
identity matrix with off-diagonal elements n:> 
larger than 10' ■16 An excerpt fron the system 
stiffness matrix is shown in Table 2, and the 
reduced system stiffness is shown in Table 3. 

The reduced system stiffness and the de- 
flection influence coefficient matrix are theo- 
retically inverses of each other, so the two 
were multiplied to see how good they were. The 
largest off-diagonal element was O.78 x 10~ . 
When the flexibility matrix was conditioned, 
inverted, and multiplied against itself, the 
largest off-diagonal eleuent was 0.U x 10 , or 
a factor of 2 better. The reduction of the sys- 
tem stiffness was done by a lb-digit computation 
on the IBM 360 and fed into the other computa- 
tions at the IBM 7072 limit of 9 digits. Even 
with this kind of computation and careful cross 
checking, the reduced system stiffness, KLIN1, 
and the stiffness resulting from the inversion 
of the flexibility matrix, KLIH2, were differ- 
ent. In order to evaluate this difference, the 
rest of the computations were carried through 
for KLIN1 and KLIN2 separately. 

During the presentation of the previous 
work, the author's attention was called to a 
solution in closed form of the Timoshenko'2' 
beam problem by T. C. Huang^) That solution 
has been checked, and numerical results have 
been calculated for the lowest 12 modes. The 
frequency equation according to Huang is: 

2 ♦ * 2] cosh ba cosbB 

b(r2 ♦ s2) 

(l-bVs2)* 

in which 

b2«=£ <-2 
El 

'   At2 

, . 2(l+u) I 
Atz 

sinh ba slnbB « 0 (2) 

(3) 

(U) 

(5) 

*2 " 2 {" (r2+82) * Ur2_82)2 + U/b2j1} 
(6) 

a « mess per unit length 
t = total length 
I = uoment of inertia of cross-section 
A ■ area of cross-section 
u ■ Poisson's ratio 
k = shear for» factor 
E * Young's modulus 
ID * frequency in radians/sec. 

An examination of eq. (2) shows that it is highly 
transcendental, and no direct calculation for b 
is possible. Consequently, an iterative solu- 
tion was set up and carried through on the IBM 
7072 after some hand computations shoved that 
7-place log tables would not be adequate. The 
solution is very touchy, and depends on tun 
small difference of large numbers because of the 
dominance of the hyperbolic functions after the 
third or fourth mode. 

V. COMPABISQH OF FREQUENCIES 

The frequencies are compared for tvo theo- 
retical and ten lumped-parameter solutions as 
follows: 

1. THEORY 1 - 

2. THEORY 2 - 

3» HrW        ™ 

U. ARCH 

5. MCCY 

theoretical solution without 
shear or rotatory inertia 

theoretical solution with shear 
and rotatory inertia 

lumped parameter by the author's 
usual way 

lumped^parameter with Archer's 
mass S) 
lumped parameter with McCalleys 

s(5) 



6. RMOP 

7. RMM LIB 1 "^ 

8. ARCH UN 1 

9. MCCY LIB 1 

10. RIM LIN 2 

11. ARCH LIB 2 

12. MCCY LIB 2 

lumped parameter by author modi- 
fied to match MCCY higher fre- 
quencies 

lumped parameter with KLIN 1 

from reduced system stiffness 

lumped parameter with KLIN 2 

from inverse of flexibility 

Table U shows the frequencies in the column 
order given above for the lowest 12 modes. If 
one compares the lumped parameter values with 
the theoretical values in column 2, the differ- 
ences range from - 3.3* to + U.3* in mode 1, 
-1.9* to + 6.9* in mode 6, and - 12.1* to +16.8* 
in mode 12. If one looks at these lowest 
twelve modes, it is difficult to argue that any 
set of frequencies is better than column 3, 
which is far the simplest to obtain. 

VI. CALCULATIOB OF RESPONSES TO 100 la/SEC. 
STEP VELOCITY 

Since the object of many dynamic analysts 
is to produce some numbers representing stresses, 
the calculations were carried through for the 
stresses produced by a step-velocity shock of 
100 in/sec. The modal response amplitudes were 
calculated by: 

These effective forces were then used to calcu- 
late shears and moments in standard fashion. 
Stresses, of course, result directly from shears 
and moments. 

Table 5 shows the bending stresses in mode 
1, and Table 6 shows the shear stresses in the 
same mode. 

VII. COMBINATION OF MODAL STRESSES 

One of the most difficult problems to re- 
solve in a dynamic analysis is how to combine 
the stress amplitudes obtained from ti.e various 
modes since they are amplitudes of sinusoidal 
functions, each mode at a different frequency. 
The most probable value of the combined func- 
tions is the square root of the sums of the 
of the squares of the amplitudes, ana half the 
values will exceed this value. This most prob- 
able value was computed for the successively 
increasing n-imbers of modes through the lowest 
12. The results for the bending stresses 
through mode 6 are shown in Table 7. 

For comparison, the simple sum of stress 
amplitudes through successively increasing 
modes was also calculated, using whatever alge- 
graic sign camethrough the computation. This 
is Justifiable because the X^ M product deter- 
mines the sign R, regardless of whether X0 is 
multiplied by (-1) or not. The later multipJi- 
cation by X0 with its (-1) would cancel out the 
sign multiplier on x£. The simple sums of the 
b mding stresses through mode 6 are shown in 
Table 3. 

R « X [-   »X1»!»« 100] (7) 
o u   o 

o 
in which R « modal response amplitudes 

X » modal matrix by columns 
o 

M = mass matrix 

In this equation, X has been normalized such 
that ° 

XT MX « I (8) 
o  o 

T 
Also, the X0 H multiplication was done as a 
matrix times vector computation, and the result- 
ing vector was diagonalized before completing 
the computation. In this way, the modes were 
kept separate until the end. 

Once the response amplitudes had been cal- 
culated, they were applied directly to the 
unassembled stirfness matrix to get the shears 
and moments on each end of each beam segment. 
This was easy for the UO x U0 matrices, since 
they contained both moment and shear. The 
20 x 20 linear matrices could not be handled 
this way, and the effective force at each mass 
point had to be calculated as: 

F >HR«2 

e (9) 

It is worth noting that the simple sums do 
produce the same result in the various solu- 
tions, even though about half of the eigenvec- 
tors we*» .negative in comparison to any one 
selectr-.d as standard. It is also worth noting 
that the simple sum stress for the first few 
coordinates is consistently about 1.6 times the 
square root or sum of squares values. 

XIII. HOW MANY MODES TO USE 

The modal effective mass is frequently 
used to determine how many modes are needed for 
an adequate solution. With the normalization 
on X. shcwr. in eq. (8), it follows that 

M X X H = M 
o o 

(XT M) = K 
c 

(10) 

(11) 

(xW, If the modal effective mass is defined as 
then all of the effective masses must add 
to the total mass. On this basis it is argued 
that enough modes must be taken for the effec- 
tive masses to sum to 95 percent of the total 
mass, or some other percentage. 

The author prefers to consider that, how- 
ever the problem is laid out, a loop in a mode 
needs about 3 coordinate stations in order for 
it to be properly represented in the analysis, 
Just as in a Fourier analysis of a signal. So 



with i'O nocrdinate stations, 6 or 7 loops are 
the maximum r...it can be well represented. An 
examination of trie mode shapes showed that the 
6th modes all had 3 coordinates per loop, while 
6 of the 10 solutions for the 7th mode had loops 
with only 2 stat.iors. 

Table 9 onows the accumulated sum down the 
modes of t!,e modal effective mass divided by 
the total mass. All tit" the solutions show an 
accumulation of effective mass in excess of 96 
percent of the total mass in the lowest six 
modes. This observation, plus the mode shape 
observation cited in the previous paragraph, 
plus the observation that after mode six the 
various solutions show increasing divergence, 
leads to the conclusion that six modes are an 
adequate number to represent the solution to 
the problem. 

It is interesting to observe that the var- 
ious consistent mass schemes 3um to more than 
100 percent of the total mass after mode 5 or 
10, as the case may be. Whether this observa- 
tion is significant or not is not yet determined. 
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TABLE 5 

COMPARISON OF   BENDING  STRESSES,   PSI,   MODE 

RMM ARCH MCCY RMOD RMMLIN 

I 0.21365E 05 0.20941E 05 C.21392k 05 0.21382E 05 0.22553E 05 
2 0.19787E 05 0.1945 7E 05 0.19B12E 05 0.19804E 05 0.20892E 05 
3 0.18216E 05 0.17952E 05 0.18237E 05 0.19230E 05 0.19235E 05 
* 0.16649E 05 0.16449E 05 0.16666E 05 0.16661E 05 0.17585E 05 
5 0.15104E 05 0.14963E 05 0.15109E 05 0.15103E 05 0.15949E 05 
6 0.13551E C5 0.13470E 05 0.13577E 05 0.13568E 05 0.14333E 05 
7 0.12065E 05 0.U992E 05 0.12068E 05 C.12077E 05 0.12746E 05 
e 0.10573E 05 C.10585E 05 0.10584E 05 0.10593E 05 0.11196E 05 
9 0.91746E 04 0.92152E 04 0.91719E 04 0.91607E 04 0.96947E 04 

10 0.77982E 04 0.78727E 04 Ü.77815E 04 0.78129E 04 0.82526E 04 
11 0.65007E 04 0.65549E 04 0.65118E 04 0.64951E 04 0.68819E 04 
12 0.527696 04 0.53606E 04 0.52594E 04 0.52853E 04 0.55952»; 04 
13 0.41588E 04 0.42453E 04 0.41607E 04 0.41532E 04 0.44056E 04 
14 0.31447E 04 0.32209E 04 0.31105E 04 0.31539E 04 0.33276E 04 
15 0.22491E 04 0.23217E 04 0.22482E 04 0.22371E 04 0.23746E 04 
16 0.15433E 04 0.15770E 04 0.14639E 04 0.14128E 04 0.15613E 04 
17 0.85698E 03 0.94899E 03 0.88590E 03 0.94874E 03 0.90238E 03 
10 0.31291E 03 0.43385E 03 0.33985E 03 0.41933E 03 0.41262E 03 
19 0.15636E 03 -0.31766E 01 0.21225E 02 0.102686 03 0.10687E 03 
20 -0.77169E 02 0.13765E 02 0.63516E 02 -0.10987E 03 O.OOOOOE 00 

ARCHUN1 MCCYLIN1 RMMLIN2 ARCHLIN2 MCCYLIN2 
1 0.22434E 05 0.22418E Ü5 0.21150E 05 0.21054E 05 0.21029E 05 
2 0.207 8 2E 05 0.20767E 05 0.19589E 05 0.19501E 05 0.19477E 05 
3 0. 19133E 05 0.19120E 05 0.18032E 05 0.17950E 05 0.17929E 05 
4 0.174-13E 05 0.174B1E 05 0.16482E 05 0.16407E 05 0.1638BE 05 
5 0.158656 05 0.15854E 05 Ö.1494SE 05 0.14877E 05 0.14860E 05 
6 0.142S8E 05 0.14248E 05 0.13427E 05 0.13366E 05 0.13351E 05 
7 0.12679E 05 0.12671E 05 0.U936E 05 0..11883E 05 0.11869E 05 
8 0.1U36E 05 0.U130E 05 0.10482E 05 0..10435E 05 0.10423E 05 
9 0.96442E 04 0.96381E 04 0.90730E 04 0.90322E 04 0.90221E 04 

10 0.B2097E 04 C.82046E 04 0.77206E 04 0.76859E 04 0.76774E 04 
11 0.68462E 04 0.68420E 04 0.64358E 04 0.64069E 04 0.63998E 04 
12 0.55663E 04 0.5 563 OE 04 0.52305E 04 0.52070E 04 0.52013E 04 
13 0.M831E 04 0.43806E 04 0.41170. 04 0.40985E 04 0.40941E 04 
14 0.33104E 04 0.33086E 04 0.31082E 04 0.30942E 04 0.30910E 04 
15 0.23624E 04 0.23611E 04 C.22171E 04 0.22072E 04 0.22049E 04 
16 0.15533E 04 0.15525E 04 0.14572E 04 0.14506E 04 0.14492E 04 
17 0.89776E 03 0.89730E 03 0.84186E 03 0.83809E 03 0.83724E 03 
18 0.41052E 03 0.41031E 03 0.38478E 03 0.38306E 03 0.38267E 03 
19 0.10633E 03 0.10628E 03 0.99609E 02 0.99163E 02 0.99066E 02 
20 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 



TABLE 6 

C0*PA«1$JN  OF   SHEAR   STRESSES,    PSI,      ««ODE 

RMM ARCI; MCCY RMOD RMMLIH1 

1 0.725HE 03 C.674Ü7E 03 0.72701E 03 0.72676E 03 0.76455E 03 
2 0.72574E 03 0.685476 03 0.72714E 03 0.72663E 03 0.T64UE  03 
3 0.72305F 03 0.6 9071E 03 0.72458E 0 3 0.72356E 03 0.7624>1E 03 
4 0.7206?E 03 0.69B92E 33 0.72216E 03 0.72229E 03 0.75892E 03 
5 0.7Ü7-J6F 03 0.684836 03 0.71640E 03 0.71960E 03 0.7527*c  03 
6 0.71461E 03 Q.68266E 03 O.70464E Ü3 0. 70745E 03 0.74343): 03 
7 0.6850% 03 U.683816 03 0.69148E 03 P.68381E 03 0.730316 03 
a C.68637E 03 0.65569E 03 0.67614E 03 0.67742E 03 0.71291E  03 
9 0.65059E 03 0.63271P 03 0.65313E 03 0.66336E 03 0.690776 03 

10 0.62373E 03 0.61348E 03 0.63907E 03 0.61995E 03 0.663476 03 
li 0.60200E 03 0.60075E 03 0.59178E 03 0.60712E 03 0.630646  03 
12 0.56113E C3 0.55217E 03 0.56751E 03 0.55345E 03 0.59197E  03 
13 0.52023E 03 0.50874t 03 0.50874E 03 0.525306 03 ü.547186  03 
14 0.46141E 03 C.46907E 03 0.4P316E 03 0.46269E 03 0.496076  03 
15 0.41032E 03 0.41160E 03 0.4P132E 03 0.41158E 03 0.43844E  03 
16 0.29142E 03 0.32848E 03 0.34514E 03 0.41156E 03 0.374176 03 
17 0.28119E 03 0.264616 03 0-23518E 03 0.19685E 03 0.30315E 03 
18 0.27610E 03 0.21343E 03 0.24159E 03 0.18789E 03 0.225326  03 
19 0.89481E 02 0.25563E 03 0.19430E 03 0.12910E 03 0.140676 03 
20 0.10992E 03 0.16665E 02 -Ü.29384E 02 0.14956E 03 0.49169E  02 

ARCHLIN1 MCCYLIN1 RMMLIN2 ARCHLIN2 MCCYUN2 
1 C.76044E 03 0.75984E 03 0.71849E 03 0.71522E 03 0.71431E 03 
2 0.76001E 03 C.75942E 03 0.71807E 03 0.71480E 03 0.71390E 03 
3 0.75839E 03 0.75779E 03 0.71650E 03 0.71324E 03 0.712346 03 
4 0.75486E 03 0.75426E 03 0.71309E 03 0.70985E 03 0.708966  03 
5 0.74875E C3 0.74817E 03 0.70721E 03 0.70400E 03 0.70312E 03 
6 0.73946E 03 0.73889E 03 0.69828E 03 0.695HE 03 0*694246 03 
7 0.72642E 03 0.72587E 03 0.68576E 03 0.68265E 03 0.68181E  03 
8 0.70912E 03 0.70859E 03 0.66919E 03 0.66616E 03 0.665346  03 
9 0.68711E 03 0.68660E 03 0.64813E 03 0.64520E 03 0.644426  03 

10 0.65996E 03 0.65949E 03 0.62221E 03 C.61940E 03 0.618666  03 
11 0.62732E 03 0.62688E 03 0.59110E 03 0.58844E 03 0.58775E 03 
12 0.58886E 03 0.58847E 03 0.55454E 03 0.55204E 03 0.551406 03 
13 0.54433E 03 0.54398E 03 0.51227E 03 0.50997E 03 0.50939E 03 
1* 0.49350E 03 0.49319E 03 0.46413E 03 0.46204E 03 0.46153E  03 
15 0.43618E 03 0.43591E 03 0.40995E 03 0.40810E 03 0.40766E  03 
16 0.37224E 03 0.37202E 03 0.34963E 03 0.34806E 03 0.347696  03 
17 0.30159E C3 0.30142E 03 0.28309E 03 0.28182E 03 0.28152E 03 
18 0.22416E 03 0.22405E 03 0.21029E 03 0.20934E 03 0.209136 03 
19 0.13995E 03 0.13988E 03 0.13120E 03 0.13061E 03 0.130486  03 
20 0.48918E 02 0.48894E 02 0.45627E 02 0.45622E 02 0.45577E 0? 
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TABLE 7 

SQUARE ROOT OF ACCUMULATED SUM OF SQUARES OF BENDING STRESS, HOOE 1 TO 6 

RNM ARCH MCCY RMOD RMMLIN1 

0.23B45E 05 9.234756 05 0.238896 05 0.238616 05 0.251836 05 
0.209876 05 0.20657E 05 0.20985E 05 0.210056 05 0.222176 05 
0.18990E 05 0.187646 05 0.19037E 05 0.19003E 05 0.200676 05 
0,173926 05 0.172426 05 0.174566 05 0.17402E 05 0.183146 05 
0.161496 05 0.16044E 05 0.16175E 05 0.161S2E 05 0.169236 05 
0.152*26 05 0.152176 05 0.15301E 05 0.152626 05 0.15895E 05 
0.1*5036 05 0.14S16E 05 0.145806 05 0.145166 05 0.150156 05 
0.137766 05 0.138386 05 0.138416 05 0.137946 05 0.142116 OS 
0.13221E 05 0.13256E 05 0.132296 05 0.13217E 05 0.13563E 05 

10 0.12670E 05 0.127066 05 0.12658E 05 0.126826 05 0.12946E 05 
11 0.120026 05 0.120486 05 0.12029E OS 0.12000E 05 0.122246 05 
12 0.113176 05 0.114126 05 0.113636 05 0.113266 05 0.115036 05 
13 0.106506 05 0.10749E 05 0.107206 05 0.10649E 05 0.107866  05 
1* 0.97810E 04 0.983126 04 0.981736 04 0.97811E 04 0.986486 04 
15 0.875576 0* 0.878856 04 0.878256 04 0.874916 0* 0.88089E 04 
16 0.78012E 04 0.784306 04 0.784246 04 0.777046 04 0.780846 04 
17 0.652636 0* 0.648266 04 0.658056 04 0.650206 04 0.6456IE  04 
18 0.439656 04 0.41232E 04 0.433676 0* 0.432326 04 0.422536 04 
19 0.177336 04 0.131536 0* 0.156726 04 0.167426 04 0.1558 36  04 
20 0.129196 03 0.213206 03 0.12441E 03 0.123566 03 0.000006 00 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

ARCHLIN1 
0.25079E 05 
0.22157E 05 
0.20049E 05 
0.182926 05 
0.169106 05 
0.159296 05 
0.15087E 05 
0.14323E 05 
0.13731E 05 
0.131346 05 
0.123856 05 
0.116676 05 
0.110006 05 
0.101426 05 
0.920136 04 
0.836186 04 
0.70487E 04 
0.46464E 04 
0.17107E 04 
0.000006  00 

MCCYLIN1 
0.250746 05 
0.221636 05 
0.200656 05 
0.183016 05 
0.1691BE 05 
0.159476 05 
0.15115E 05 
0.14360E 05 
0.13783E 05 
0.131896 05 
0.124296 05 
0.117096 05 
0.110566 05 
0.102156 05 
0.930816 04 
0.85160E 04 
0.721406 04 
0.476316 04 
0.175266 04 
0.000006 00 

RMMLIN2 
0.237346 05 
0.20854E 05 
0.188376 05 
0.17233E 05 
0.159986 05 
0.151266 05 
0.14386E 05 
0.13704E 05 
0.13161E 05 
0.12633E 05 
0.11983E 05 
0.113246 05 
0.10660E 05 
0.978206 04 
0.876056 04 
0.778536 04 
0.644756 04 
0.42231E 04 
0.155806 04 
O.OOOOOE 00 

ARCHLIN2 
0.236476 05 
0.208176 05 
0.188446 05 
0.172346 05 
0.160076 05 
0.151816 05 
0.144786 05 
0.138336 05 
0.133446 05 
0.128336 05 
0.121536 05 
0.114946 05 
0.108796 05 
0.100646 05 
0.915646 04 
0.834136 04 
0.704156 04 
0.46447E 04 
0.171066 04 
O.OOOOOE 00 

MCCYLIN2 
0.236276 05 
0.20812E 05 
0.18852E 05 
0.172386 05 
0.160126 05 
0.151996 05 
0.145056 05 
0.138716 05 
0.133986 05 
0.128896 05 
0.121976 05 
0.115366 05 
0.109346 05 
0.10136E 05 
0.92633E 04 
0.84956E 04 
0.720706 04 
0.476156 04 
0.175256 04 
O.OOOOOE 00 
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AC CUMULATE!)  SUH OF   BENOING  STRESSES, 

TABLE 8 

MODE 1   TO 6 

IW 

1 
2 
3 

5 
6 
7 
8 
9 

10 
11 
12 
1) 
14 
15 
16 
17 
18 
19 
20 

05 
05 
05 
04 
04 
04 

0.T7959E 
0.24245E 
0.14093E 
0.B3895E 
0.63839E 
0.6141RE 
0.58344E   04 
0.44345E   04 
0.23112E   04 
0.36898F   03 

-0.50040E  03 
-0.21922E  03 

0.58291E  03 
0.10322E  04 
0.67412E  03 

-0.17830E  03 
-0.1O225E  04 
-0.12020E  04 
-0.51955E  03 
-0.11T21E  — 03 

ARCH 

0.37920E  05 
0.241296  05 
0.13515E 05 
0.77698E  04 
0.60034E  04 
0.610596   04 
0.59979E  04 
0.46B39E  04 
D.244896  04 
0.38795E  03 

-0.553306  03 
-0.15454E  03 

0.78758E  03 
0.13142E  04 
0.975196  03 
0.82700E 02 

-0.700516  03 
-0.82355E 03 
-0.451166  03 

0.82139E  02 

MCCY 

Ü.3B583C 05 
0.24734E  05 
0.13832E 05 
0.78i66E  04 
0.592776 04 
0.60620E 04 
0.60652E  04 
0.47B73E   04 
0.25172E  04 
0.332456 03 

-0.65750E 03 
-0.3B146E 03 

0.59509E 03 
0.11*676 04 
0.94171E  03 
0.11800E 02 

-0.77500E 03 
-0.10053E 04 
-0.53739E 03 

0.94995E  02 

RMOD 

0.37929E 05 
0.24204E 05 
0.14089E  05 
0.84376E 04 
0.64391E  04 
0.620126 04 
0.58505E 04 
0.*4255E 04 
0.22619E 04 
0.37186E 03 

-0.485206 03 
-0.16999E 03 

0.61182E 03 
0.10439E 04 
0.63<69c 03 

-0.33320E 03 
-0.93496E 03 
-0.10707E 04 
-0.53910E 03 
-0.12835E 03 

RMHLIN1 

0.396956 05 
0.25785E 05 
0.15552E  05 
0.97900E 04 
0.76Ü78E 04 
0.72404E 04 
0.66754E 04 
0.50851E 04 
0.279686 04 
0.80099E 03 

-0.97000E 02 
0.145306 03 
0.85022E 03 
0.117056 04 
0.707946 03 

-0.247106 03 
-0.100596 04 
-0.105546 04 
-0.48929E  03 

O.OOOOOE 00 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

ARCHLIN1 
0.39176E  05 
0.24840E   05 
0.14526E  05 
0.90144E  04 
0.72767E  04 
0.71672E  04 
0.66776E  04 
0.49525E   04 
0.246626  04 
0.37454E   03 

-0.45150E  03 
-0.31880E  02 

0.B2099E  03 
0.11588E  04 
0.58802E  03 

-0.50320E  03 
-0.13114E   04 
-0.12825E  04 
-0.57318E  03 

O.OOOOOE  00 

MCCYUN1 
0.390606 05 
0.2 460 BE  05 
0.14275E  05 
0.88328E 04 
0.72017c 04 
0.71711E  04 
0.669536  04 
0.49246E  04 
0.23801E 04 
0.26005E 03 

-0.54540E  03 
-0.76820E 02 

0.81549E  03 
0.11551E  04 
0.55075E  03 

-0.57960E 03 
-0.14011E 04 
-0.13482E  04 
-0.59709E 03 

O.OOOOOE  00 

RMML1N2 
0.37848E 05 
0.240936 05 
0.14016E  05 
0.84093E 04 
0.643056 0'. 
0.616376 04 
0.574386 04 
0.42937E  -4 
0.21359E  04 
0.26049E 03 

-0.52910E 03 
-0.19046E  03 

0.59796E  03 
0.98868E 03 
0.58464E  03 

-0.32400E  03 
-0.10478E  04 
-0.-0733E  04 
-0.49355E  03 

O.OOOOOE  00 

AKCHLIN2 
0.37342E 05 
0.23161E 05 
0.13001E  05 
0.76435E  04 
0.60596E  04 
0.60997E 04 
0.57562E 04 
0.41694E 04 
0.18135E 04 

-0.158656 03 
-0.87650E 03 
-0.36140E  03 
0.574236 03 
0.981876 03 
0.46803E 03 

-0.57810E 03 
-0.135256 04 
-0.13002E 04 
-0.57747E  03 

0.00000c 00 

MCCYUN2 
0.37196E 05 
0.229026 05 
0.12727E 05 
0.74414E 04 
0.5967 IE 04 
0.60B91E 04 
0.57604E 04 
0.41320E 04 
0.171906 04 

-0.279166 03 
-0.97520E 03 
-0.409686 03 
0,566356  03 
0.97679E 03 
0.43031E 03 

-0.65450E 03 
-0.14420E 04 
-0.13656E 04 
-0.601216 03 

O.OOOOOE 00 
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TAbLE 9 

ACCUMULATED SUM OF   MASS «ATIOS   t   DOWN  THE COLUMNS 

RMM ARCH MCCY RMOD RMMLiNl 

1 0.62883E 00 0.629886 00 G.63036E 00 0.62921t 00 0.624B9E 00 
2 0.82*75? 00 Q.82436F 00 0.82472E 00 0.82526E  00 0.82599E 00 
3 0.89296E 00 0.89503E 00 0.89479E 00 J.89',65E 00 0.R9461E Oii 
4 0.92839E 00 0.92964E 00 0.92919c 00 0.9292UE 00 0.93024E 00 
5 0.9499BE 00 0.953H4E 00 0.95334E 00 0.95095E 00 0.95195E 00 
6 0.96434E 00 Q.96847E 00 0.96799E 00 0.96521E  00 0.96630E 00 
7 0.97437E 00 0.98253E 00 0.982336 00 0.97519E 00 0.97622E 00 
8 0.981566 00 0.99204E 00 0.99205E 00 0.98231E 00 0.98323E 00 
9 0.98679E 00 U.100*15 01 0.10048E 01 0.98744E  00 0.98825E  00 

10 0.99062£ 00 0.10142E 01 0.10153E 01 0.99116E 00 0.99186E 00 
11 0.99341E 00 0.10305E 01 0.10354E 01 0.99386E 00 0.99445E 00 
12 0.99543E 00 0.10429E Cl 0.10593E 01 0.99580E  00 0.99631E 00 

ARCHUN1 MCCYLIN1 RMMLIN2 ARCHUN2 MCCYLIN2 
1 0.62569E 00 0.62581F 00 0.62839E 00 0.62928E 00 0.62937E 00 
2 0.82752E 00 0.82796E 00 0.82578E 00 0.62729E  30 0.R2759E 00 
3 3.89687E 00 0.89745E 00 0.89455E 00 0.89681E 00 0.89726E OC 
4 0.93318E 00 0.93394E 00 0.93024E 00 0.93318E 00 0.93381E 00 
5 0.95557E 00 0.95650E oc 0.95197E 00 0.95557E 00 0.95637E 00 
6 0.97054E CO 0.97165E 00 0.96631E 00 0.97054E   00 0.97152E 00 
7 0.99103? 00 0.98231E oc 0.97623E 00 0.981046  00 0.98218E 00 
8 0.98BD6E 00 0.99000E 00 0.98324E 00 0.96857b 00 0.98987E 00 
9 0.99405E 00 C.99564E 00 0.98826E 00 Q.99-V05E  00 0.99551E 00 

10 0.99807E 00 0. 99980E 00 0.99187E 00 0.99807E 00 0.99968E 00 
11 0.10019E 01 0.10029E 01 0.99446E 00 0.10010E  01 0.10028E 01 
12 0.10032E 01 0.10052E 01 0.99632E 00 0.10032E  01 Ü.10051E 01 
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Appendix 

The essential data on the problem and a sketch of the system 
are copied here from the previous work, so that less reference 
to it is required. 

TABLE I. 

STIFFNESS FOR  ELEMENT LBS.  INS.  RAD. 

0.28B61E 07 
0.B65S3E 0.7 
-0.28861E 07 
0.865B3E 07 

0.86583E 07 
0.91850E 08 

-0.S6583E 07 
-0.39900E OB 

-0.28861E 07 
-0.&65B3E 07 
0.28861E 07 

-0.865B3E 07 

0.86583E 07y, 
-0.39900E 08«, 
-0.86583E 07 7, 
0.91850E 08«, 

A. NASS ACCORDING  TO RMN 

TABLE 2. 

AS USUALLLY DONE 

1 2 3 4 
1 0.63788E- •02 0.00000E 00 O.OOOOOE 00 O.OOOOOE 00 
2 0.00000E 00 0.24319E-01 O.OOOOOE 00 O.OOOOOE 00 
3 O.OOOOOE 00 0.00000E 00 0.6378BE-02 O.OOOOOE 00 
4 0.00000E 00 O.OOOOOE 00 O.OOOOOE 00 0.2431SE-01 

B.MASS  ACCORDING TO  ARCHER 

1 2 3 4 
1 0.47385E-02 0.40095E-02 0.16403E-02 -0.23693E-02 
2 0.40095E-02 0.43740E-02 0.23693E-02 -0.3280SE-02 
3 0.16403E-02 0.23693E-02 0.47385E-02 -0.40095E-02 
4 -0.23693E-02 -0.32805E-02 -0.40095E-02 0.43740E-02 

C.MASS  ACCORDING  TO  RMM  MODIFIED  TO  NATCH  NCCALLEY'S 

1 2 3 4 
1 0.63788E-02 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 
2 0.OOOOOE 00 Q.13176E-Q1 O.OOOOOE 00 O.OOOOOE 00 
3 O.OOOOOE 00 0. OOOOOE 00 0.63788E-02 O.OOOOOE 00 
4 O.OOOOOE 00 O.OOOOOE 00 O.OOOOOE 00 0.13176E-01 

14 



(Table It continued) 

O.MASS    ACCORDING    TO    NCCALLEY LINEAR    ONLY 

1 
2 
3 
4 

0.430956-02 
0.327646-02 
0.206936-02 

-0.31024E-02 

0.3276*6-02 
0.383676-02 
0.3102*6-02 

-0.381786-02 

0.206936-02 
0.3102*6-02 
0.430956-02 

-3.327646-02 

-0.3102*6-02 
-0.38178E-02 
-0.3276*6-02 
0.363676-02 

6. NASS     ACCORDING    TO    MCCALLEY    -     ROTATIONAL     ONLY 

1 2 3 4 
1 0.28008E-04 -0.448716-03 -0.280086-04 -Ü.44871E-03 
2 -0.448716-03 0.132686-01 0.448716-03 0.516216-02 
3 -0.28008E-0* 0.448716-03 0.28008E-04 0.448716-03 
4 -0.44871E-03 0.516216-02 0.44871E-03 0.132686-01 

F.HASS     ACCORDING    TO    NCCALLEY    -     LINEAR     ♦     ROTATION 

1 2 3 * 
1 0.433756-02 0.282776-02 0.20*136-02 -0.355116-02 
2 0.28277E-02 0.171056-01 0.355116-02 0.13**26-02 
3 0.204136-02 0.355116-02 0.*33756-02 -0.23277E-02 
4 -0.35511E-02 0.134426-02 -0.282776-02 0.171056-01 

Fixed end 

.IT ./a ■>}&  

AL. tube 6" O.D. x 1/2" wall x 10 ft. 

20 stations along length 

y and * coordinates 

Fig. 1 

CANTILEVER BEAM SYSTEM 
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DISCUSSION 

Mr. Verga (Hjueltlne Corp.): It was en- 
lightening to see that for the first mode, and 
possibly up to the sixtn mode, In a cantilever 
beam we could neglect the rotary mass and the 
shear. 

Mr. Mains:   I do not advocate this in 
general. 

Mr. Verga; In the case of shear, you did 
not discuss the effect of the ratio of the length 
to moment of inertia. If the moment of inertia 
becomes quite large, then the shear might have 
greater effect 

Mr. Mains: The shear flexibility was the 
order of 2/3 of the bending flexibility because 
the length of the element was equal to its 
diameter. 

Mr. Verga: The length of the cantilever? 

Mr. Mains: Yes, 10 foot cantilever, 20 
stations, 6 inches outside diameter. The 
length of the segment was the same as its 
diameter. 
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SHOCK SPECTRA FOR STATISTICALLY MODELLED STRUCTURES 

Richard H. Lyon 
Bolt Beranek and Newman Inc. 

Cambridge, Massachusetts 02138 

Shock sensitive equipments used In aerospace and marine struc- 
tures are exposed to complex transient loadings. The tran- 
sient at an equipment mounting has phase and amplitude spectra 
that fluctuate. If the equipment has several important modes 
of vibration, there arises a question of how to combine the 
transient responses of the several modes of oscillation Into 
a single maximum expected response. The amplitude and phase 
spectra of the exciting transient are statistically modelled. 
The slope of the phase spectrum at the resonance frequency of 
a mode determines the time of the response maximum for that 
mode, giving a distribution of times of maximum response. 
This distribution, along with the amplitude spectrum, governs 
the distribution for maximum of the summed response of modes. 

INTRODUCTION 

The extreme displacement attained 
by any portion of the surface of a flex- 
ible structure when Its attachments 
(edges, base, etc.) undergo a prescribed 
transient motion is probably not solvable 
In a deterministic way, except for quite 
elementary cases. If calculations of 
such responses are to include the possi- 
bility of irregularities in boundary con- 
ditions, uncertainties in resonance fre- 
quencies, and variations in the amplitude 
and phase spectra of the applied transient, 
then a statistical approach may be most 
appropriate. 

The purpose of this article is to 
suggest a starting point fcr statistical 
analysis of the transient response of 
multi-dof systems. The emphasis there- 
fore is on developing an approach rather 
than getting detailed answers. The prac- 
ticality of this approach will have to 
be tested in future applications. 

THE TRANSIENT VIBRATION OF 
MULTI-OOF SYSTEMS 

We consider the system sketched in 
Fig. 1. The structural frame undergoes 
a transient motion y(t). -The structure 
deforms due to its inertial tendency to 

F1g. 1 - Flexible structure 
excited by frame motion 

remain in place. In Fig. 2, we show how 
the "rigid translation" and surface de- 
formation can be combined to be equiva- 
lent to this frame excitation. Thus, 
the total displacement of the surface is 

n(P,t) - y(t) + n^P.t) (1) 

where the induced displacement n.j(p,t) 
is the solution of 

32rn   an, 
p* 7t*     ^+ Ps* °* ^ * "PsS?s * 

(2) 

The motion 1i is decomposed into 
eigenfunctions of the V* operator that 
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y«0 

f,=0 V.y 
+ 

V-A» 

Fig, 2 - Decomposition of frame excitation Into 
rigid body and deformation components 

individually satisfy tue boundary condi- 
tions and are normalized: 

approximate procedure that may be more 
useful and economical of effort. 

V"* (o) » k1** (p) *mvw'   nrnr^ 

/♦■<«•>♦„<*>*<» *  6mn 

^(P.t) - I  Nm(t>* (p) 
m 

Nm * I  d* ^(p.tJ^Cp) 

(3) 

(*) 

The time dependence is expressed 
through the Fourier transform pairs 

F{Nm(t)} - Nm(u,)=/;oodt e
iwtNm(t) 

F-llNm(a,)} -Nn(t) -£ £d. e-lutNm(«) 

(5) 

Similarly, the Fourier transform of the 
excitation y(t) is the complex function 
Y(w). If we use Eqs. (4) and (5) in 
Eq. (?), and apply Eq. (3), we get 

{-W*(l-in) +«m}Um(cü) 
=«2ys(«)Ap<Vp 

(6) 

where io^"k^iczcJ, n-fj/w, Ap is the sur- 
face area of the plate, and <- "p means 
a spatial average over the surface. 

The straightforward way of solving 
Eq. (6) is to consider a particular dis- 
placement y(t) - a rectangular pulse, 
for example - and a particular structure 
with known eigenfunctions — a supported 
plate, for example — and calculate the 
Nm's term by term, add them up and find 
the time history of vibration at any. de- 
sired position. However, if the struc- 
ture is not so ideal, and if the fixture 
motion y(t) is not so simple, then the 
straightforward approach may riot be a 
practical procedure. In the remainder 
of this paper, we shall explore an 

TRANSIENT NOTION OF A 
SINGLE RESONATOR 

The modal displacement is given by 

Nm(t) * 57 VV 

ii)*Y((tf)   e-iwt 
(u-Uj)(u-waT 

(7) 

where u1«um(-l-in/2), u2»=<i>3i(l-in/2). 
The range of integration in Eq. (7) 
covers three regions of different dynam- 
ical behavior: stiffness controlled, 
|u)|<wm; mass controlled, |w|><um: and 
resonant or damping controlled jcul««,,,. 

The stiffness controlled term is 

k C ^ e"iwtd*5 
m 

57 ^(«■r 
(8) 

This is the deformation of the mode due 
to inertial reaction to fixture accel- 
eration frequency components less than 
the modal resonance frequency. 

The mass controlled term is 

57 J|w|>o 
du e~lwtY(w) -y<+)(t) 

(9) 

These components represent the "limp" 
behavior of the structure. The inertia 
of the panel causes the motion at fre- 
quency components above wm to be the 
negative of the fixture motion. At 
these frequencies, the mode "stands 
still". 

The damping controlled motion is 
that most often calculated in transient 
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response problems: 

1  r'Y(»)e4rt . 
2*"' vu-wl)((i)-u2) 

l 
27 near u. 

-Mml^('-n,)|e"iut+U(w) 
m'      m ' 

(W-Wj/(«,-w2} 

n(c,t) • [ VV*m(5) 

8   KJY(Vle 
-V»t/2 

x slnt«at-*(«ii)]u.l(t-T11I) 

+ yi'^t)) . do) 

+ 27      /     du 
near ID, 

-<|Y(u.m)|e-iwt+l*(u) 

(w2-(i),)(w-w2) 

where 4> Is the phase spectrum of Y.    We 
expand <j>(w) about u=-u)m for the first 
integral 

<Kw) * ♦(~wm) + ♦'(<0 * (w+wm) 

and about ui= for the second 

4»(u>) i ()i(um) + *• (um>C«-wm) . 

Since y(t) is real, $(») is an odd 
function gw and ♦' is an even function. 
Vftien these are placed into the integral, 
the result is 

, -w_nt/2 

2rJ—-«mly<Vle 

x sin[wmt-«(*)ni)]u_i(t-Tm) 

where the time delay tm is the deriva- 
tive of the excitation phase spectrum, 
Tm**'(*»m)» and u_i(t) is the unit step 
function at t"0. 

The total displacement is found, 
according to Eq. (1) by adding y(t) to 
n^ which yields 

n(P,t) - I  A<*m>*m(p) 

-u)_nt/2 
* UJ*(Ol« m 

x sln[«mt-$(ii)ta)]u_1(t-.TB) 

+ yi'ht)  - sl'ht)^}   . 

and noting that uz«w& for |w|<Um. we 
can neglect a'"Vw!, and write 

Comparing expressions for a: 
.2 *•*-,..£ 

■A"   and 
|w|<ü)m, 

Equation (10) forms the basis cf 
our discussion. It says that the struc- 
tural motion hes two components - a 
quasistatic inertial deflection of each 
mode due to excitatiot. frequency compo- 
nents below the modal fvequescy and a 
resonant oscillation, 'ine amplitude of 
the resonant component is proportional 
to the magnitude of the excitation spec- 
trum at the resonance frequency. The 
phase of the oscillation is governed by 
the phase of the excitation spectrum. 
In addition, there is a time delay be- 
fore onset of the oscillation which is 
equal to the frequency derivative of the 
excitation phase st un,. 

As mentioned above, the parameters 
<»m and $m nay be regarded as random pa- 
rameters, drawn frcm a statistical popu- 
lation of structures. Similarly, we 
might also treat ♦(w!n) and tm as random 
variables describing a set of possible 
transients. In Fig. 3, we indicate an- 
other way this might be done. The mag- 
nitude and phase spectra of a pulse are 
drawn, and their values as well as the 
slope ♦*(») at <*■(% are noted. These 
become parameters for the summation of 
modal transient responses. Whether the 
populations are formed ad hoe,  or wheth- 
er they are random samples of a pre- 
scribed function, the extreme value cf 
the motion will be a random variable. 
Thus, a proper expression for the shock 
spectra will be the confidence coeffi- 
cient that the extreme value of response 
does not exceed a certain amplitude. A 
family of shock spectra will then be 
generated for each case, and "equivalent" 
transients (sine pulse, ramp, etc.) 
would be designated by the confidence 
coefficient corresponding to the extreme 
values of response they generate. 

In the rtnainder of this paper, we 
shall briefly examine two cases - the 
extreme transient response of a one-dof 
system to a rectangular pulse - and the 
space average transient response of a 
two dimensional plate to the same input. 
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SLOPE «<f>'(u>m> 

•»W 
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Fig. 3 - Saap'Hng of excitation Magnitude 
and phase spectra by structural resonances 

A TEST CASE-RESPONSE OF RESONATOR 
TO SQUARE PULSE 

. Suppose that y(t) i3 the function 
shown in Pig. 4. Its phase and ampli- 
tude spectra are shown in Pig. 5. The 
time delay of resonant motion is 
♦ •■t»/2. If u,t,«l, then t, is small 
compared to the oscillation period and 
Y(wm)"y,t,. The resonant motion is 

■*• t 

'to 

'■mm 
♦o Zw     4T  6T 8* 10v 

«to 

Fig. 4 - Rectangular displacement 
pulse at base of resonator 

F1g. 5 - Magnitude «H phase spectra 
of rectangular pulse 



nres(t) - s.«.t, e-"«^
2 

* slnu((t-tt/2)u_,(t-t(/2) , 

(11) 

which has the approximate maximum value 
yiu,t( as long as the damping loss fac- 
tor n Is small. The stiffness control- 
led motion is 

sinw0(t-t0/2) 
*m (t> " ?y.-.t,  M,('t.t,/2) (12) 

controlled response, and high-frequency 
modes that move with the base or fix- 
ture . Thus 

+ y(t) JL  W*m m>M 

where 

-u„nt/2 
h„(t) - «o:1 e m 

where we have assumed 
y(w) ■ y»t, exp[ib)t0/2]. If we combine 
Eqs. (11) and (12), we get the composite 
motion shown in Fig. 6a. At the other 
extreme, when u(t( is large, |Y(u)| is 
small, and the mass controlled motion 
will dominate. The displacement will 
then be 

n(t) - y(t) , 

as shown in Fig. 6b. Clearly, in this 
case 

'max 

x sin{w t-$(w  )}u_i(t-T   ) 

However, since      Jj      <*m>,''mAD ' 1' 

n(p,t)-y(t) - JM Ap<VS 

x <<lv(<»m>inm(t)-y(t)1 • 
The space average displacement relative 
to the base is 

<n(P,t)>p-y(t) - JM Ap<V* 

THE AVERAGE RESPONSE OF A SET OF 
NODES TC A RECTANGULAR PULSE 

Taking guidance from our preceding 
example, we can generally consider two 
classes of modes — low-frequency modes 
of order less than M that have damping 

* <<om|y(u.w)|hm(t)-y(t)> • 

(13) 

If the structure is a two dimen- 
sional plate, then the <|im*s are two di- 
mensional sinusoids with an average 

i?(t) y0wo*o 
yo 

COMPOSITE 
MOTION 

DAMPING 
CONTROLLED 
MOTION 

MASS 
CONTROLLED 
MOTION 

e-<V)t/2 

(a)    «oto«i (b)   wot0»i 

Fig. 6 -Modal  displacement when oscillation period 1s  (a) much 
larger than and  (b) much less than the pulse length 
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value of the order of 

<* > » (k2A3/2)-» . *m   v m p J 

Noting that km^Um/Kce, and that the «m's 
are spaced along the frequency axis with 
an average spacing Au^picc^/Ap, we can 
estimate the second sum in Eq. (13) to 
be 

y(t) l A
P 

km"V i""'y<*) • m<M       r 

Since this is only 1J of y(t), we ne- 
glect it and get 

K
2
C» 

<n(p,t)>-y(t) . —-i l  |y(ü.m)|hm(t) . 
A'   m<M   m  m 

(11) 

We can think of Eq. (lM as a ran- 
dom sampling of |y| by the resonance fre- 
quencies ium.  The calculation can be 
carried out deterministically for a known 
pulse shape, or by a Monte Carlo simula- 
tion if a more complex form of Y(w) is 
chosen. In any case, Eq. (13) or (14) 
appears to be a useful starting point for 
a calculation of the statistics of the 
transient response of a multidegree of 
freedom system. 



DISCUSSION 

Mr. Pakstys (General Dynamics Corp.): 
Could you explain again how you got the aver- 
age mode shape for the structure you were 
considering? 

Mr. Lyon: The average mode shape for 
this structure was calculated on the basis of a 
simply supported plate, so that the average 
value of the mode shape goes as one over K 
squared times the area. That K squared is 

proportional to frequency and, since you have 
the average squared, you get a one over fre- 
quency squared in the multiplier on the modal 
response. This cancels out the other omega 
squared which was upstairs. It turns out for 
clamped plates and other kinds of boundary 
conditions that, for the higher modes in which 
this kind of analysis would be most applicable, 
the average value is still very close even 
though the mode shape is not exactly sinusoidal 
at the boundaries. 
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REVIEW OF MODAL SYNTHESIS TECHNIQUES 

AND A NEW APPROACH 

Shou-nien Hou 

Bellcomm, Inc. 
Washington, D. C. 

Modal synthesis is a technique of determining mode 
shapes and frequencies of a large discrete mass dynamic 
system by breaking the system into parts, analyzing the 
parts, and then re-assembling the total system using 
selected modal information from the parts. This paper 
provides an interpretive review of the state-of-art in 
both research and aerospace applications. Comments on 
each technique are presented. Based on these studies, 
a new approach is proposed. 

The new approach emphasizes ease of interpretation, 
mathematical simplicity, accuracy of results, and computer 
capability. This method can yield a spectrum of system 
normal frequencies in the range of interest and their 
associated mode shapes. Actual boundaries are imposed 
between parts, using either rigid body and free-free 
elastic modes, or only constrained elastic modes of the 
parts. Both compatibility and equilibrium at boundaries 
are satisfied for modal coupling. A simple error con- 
trol scheme based on convergence of eigenvalues of the 
total system is used to ensure adequate selection of 
modes from the parts. 

I.  INTRODUCTION 

Modal information is essential for 
performing vibration analysis of a 
structural system. When a structural 
system is very big, the following diffi- 
culties may be encountered: 

A. The number of degrees-of-free- 
dom (DOF) may exceed the avail- 
able computer capability for 
eigensolutions. 

B. The structural systems may be 
too large for modal vibration 
testing, especially when free- 
free boundary conditions must 
be simulated. 

C. A large system, such as a space 
vehicle, is generally built in 
parts and each part may be 
associated with different 

contractors in various distant 
locations. An assemblage of 
all parts for modal testing 
is costly, time consuming, and 
difficult to handle. 

Thus, modal synthesis techniques 
provide the following advantages: 

A. Computer capability is ex- 
tended to large systems by 
reducing the size of matrices 
through partitioning and 
partial modal coupling. 

B. Modal information may be ob- 
tained by analysis or testing 
of subsystems. The subsystems 
are easier to handle than the 
total system, and their analysis 
or testing may be performed by 
different sources. 
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II. 

Actual boundary conditions 
may be introduced in the 
synthesis scheme. 

A design change in one part 
need only modify the modal 
data of the changed part. 
The changed modal data can 
then be coupled with the re- 
maining unchanged parts. 

REVIEW OF THE STATE-OF-ART 

The concepts of modal synthesis 
were introduced by W. C. Hurty in a 

(6-91 
series of papers    , the first ap- 
pearing in 1960. However, no known ap- 
plication was made in the aerospace ir>- 

(2) 
dustry until the mid 60's.  Bamford 
completed a computer program using 
Hurty's method with modification, while 

(3 4) 
Goldman '  introduced a fresh approach. 
Since then, modal synthesis has become a 
popular topic in both research and in- 
dustrial fields. The key point of modal 
synthesis is to impose a successful 
coupling scheme between subsystem modes, 
such that compatibility and equilibrium 
can be restored at the interfaces. The 
main contributors and their techniques 
are briefly summarized as follows: 

(6—9) 
A. Hurty'    - This technique 

contains the following main 
steps: 

l*li '  I*ri*c!»e1i "  mode 

shape matrix, 

[m]^ ■ mass matrix, 

[x]. ■ stiffness matrix, 

[c]-  = damping matrix, 

{f}. = load matrix, 

the generalized subsystem 
matrices are computed-as 

[mG]    -  Ult  im]i  [♦]1. 

[kG]    =  1*1*   [k].   [*li, 

[cG]   = mj lc]i [♦ii, 

{fG>i - mj mr 

3.  Set up system equations: 

[»]{?} + tc]{p} + [k]{p) 

1. Partition a system to several 
subsystems (parts). 

2. For each part "iM, set con- 
straints at interfaces and 
compute mode shape matrices 
as follows: 

H  ]  = fixed constraint 
i  elastic normal modes, 

[♦_]  * constraint modes, 
c i 

[m] = 

where 

[m„] 

ImG]. 

(f(t)}, 

, [k] 

[k„] 

lkG]. 

[*rl 

where 

■ rigid body modes, 

'♦c1 are shapes of 

static displacements when 
each of the constraints i3 
independently given a unit 
displacement, and [* ]  may 

e i 
contain either all normal 
mode shapes or the shapes of 
only the few lowest modes. 

Then by defining: 

[c] = 

<
C
G>. 

[0G]. 

{f^> 

,{f> -v<V 

V. 

>  , 

and {p} is an assemblage of 
generalized coordinates of all 
subsystems. 
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4. Set up transformation matrix 
[S] for modal coupling by 
restoring geometric com- 
patibility at the interfaces. 
Thus (p) can be expressed 
by its independent coordi- 
nates, {q}, as 

{p} - 181 (q>. 

Wotice that [8] depends 
entirely upon the geometric 
configuration of the inter- 
faces. 

5. Hence the synthesized total 
system equations are de- 
veloped using the trans- 
formation matrix [8]: 

[M]{q) + [C]{q} + [K]{q}={F), 

where 

[m] 

and obtain its mode shapes 
as 

t*L l*J*J > c % 

where [♦ J contains all 
c i 

constraint modes and [* ] 
e i 

contains all elastic modes 
with fixed interfaces. 

Subsystem matrices are 
assembled as 

lm], 

W. [Kl 

Ik], 

Ik], 

IM] - IB]* [m] [8], 

[K] - [3]1 [k] [81, 

[C] - 161T lc] 18], 

{F} - 18]T {f>. 

B. Bamford* ' - A computer program 
based on Hurty's techniques was 
developed. In its subsystem 
processing, "attachment modes" 
are added for describing the 
shapes of motion caused by con- 
centrated loads at unconstrain- 
ed points. Thus for any sub- 
system "i", the mode shape 
matrix is defined as 

C. 

mi" [*ri*cj*ai*e1i 

where [4 ] contains all attach- 

ment mode shapes. 

,(D Bajan, Feng, and Jaszlics 
Technique involves modal coupling 
and modal substitution. The 
former couples the subsystem 
modes to obtain the total system 
modes, while the latter provides 
an iteration scheme for improving 
accuracy through error analysis. 
Key steps are as follows: 

1. Perform modal analysis on 
each subsyotem i, which 
has known mass matrix [m]. 

£*] 

[*]■ 

U). 

and stiffness matrix [k] i' 

3. Define matrix [c], such that 

{us> = IcHu}, 

where {u ) is an assemblage s 
of displacement vectors 
(u } of all subsystems, 

s i 
and {u} is the displace- 
ment vector of the system 
as a whole. 

4. A matrix can be generated as 

[Tlt = U][c] = lTc!Tr!Tdl. 

Where [T ] contains all 

constraint modes, and [T ] 

contains subsystem elastic 
modes retained for modal 
coupling, while remainders 
[T,] are deleted.  Thus 

the partial modal couping 
is done by solving 

[MHq} + [K]{q} = {0}, 
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where [tl] = [T]1 [m] {T], 

IK] = [T]T [k] [T], 

IT] • ITC TrJ, 

Solutions give 

(q) = [QH*>, 

interfaces from equations of 
notion through the compatibility 
relations. Key steps are as 
follows: 

1. Modal equations of motion 
of all subsystems are 
assembled as: 

<pe> + t^J{pe> - [♦eblT{Fo}, 

where [Q] and {*} are the 
participation matrix and the 
vector of generalized co- 
ordinated, respectively. 
Hence 

(P_> * [MrJ"
1[*rb]

T{Pe}, 

where 

{us> ([T] [Q])U} = [*){*}, (Pe) Generalized coordinates 
for elastic motions, 

5. 

where [i|>] contains approxi- 
mate mode shapes of the 
system through such partial 
coupling. 

Set a new [T] by retaining 
certain modes from [iH and 
certain unused modes of 
[Tj], which are defined as 

objective modes l<liQ]  and re- 

placement modes [T  ], 

respectively: 

[T] l*0JW' 
Then go through modal 
analysis as shown in step 4, 
and get a new [T]. Such a 
process, which is called 
"modal substitution" will 
be repeated until satis- 
factory eigenvalues are ob- 
tained. 

Replacement modes may also 
be obtained from deleted 
modes in [*] of previous 
cycles when all modes in 
[T.J are used. Selection 

of replacement modes are 
based on their individual 
contribution of error to 
the eigensolution, which 
is automatized through a 
"modal selection algorithm". 

(3 4) 
Goldman '  - Use rigid body 
modes and free-free elastic 
modes of parts for synthesis. 
Modal couplings are performed 
by eliminating the terms of 
internal forces at connection 

(Pr> 

t-Jj 

'♦eb> 

■♦*» 

tPc5 

2. 

Generalized coordinates 
for rigid body motions. 

Frequencies of elastic 
modes in subsystems. 

Elastic mode shapes at 
interfaces of subsystems 
with unit generalized mass, 

Rigid body mode shapes at 
interfaces of subsystems, 

All internal forces at 
connection interfaces. 

The geometric compatibility 
regarding displacements at 
the connection interfaces 
provides relations as 

l*ebHpe} +  [*rb]{pr} = {0K 

3. Multiplying the first 
equation of motion by 
[$ . ] and the second one 

by !♦_!,]» the sum of these 
two equations gives 

{Fc> *  [E]'1[*eb]tu.24{pe}, 

where  IB]  =  I^H^]' 

+     [♦rb][Mr]-
1[*rb]T. 

4. Thus, replacing {F } by 
c 

the above expression, the 
first equation of motion 
becomes 
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{pj + U.](pJ - {0}, 

where [L) - h)aj((l] 

Ulla gives the form of 
eigensolution for the whole 
system. 

E. Martin Marietta Co., Denver, 
(51 Colorado ' - Empirical coupling 

techniques are developed for 
computing modal data of a space 
vehicle which contains a main 
structure and several branch 
structures. Key steps are as 
follows: 

1. Each branch "i" is treated as 
a cantilever by fixing it 
at its attaching point to 
the main structure, and 
then performing a modal 
analysis for each branch 
through the following 
equations of motions: 

(u) 

Assume that motion in any 
branch "i" is given by (ub) 

plus the rigid body motion 
fT]. {u} caused by the 

motion at the attaching 
point. Thus 

m 

!♦ 1 

lT2> 1* J 

<v3 

"i*i»*J   i«b». 

t*bi„ 

J 

W 

[Pb> 

tPbJ; 2 

l>=[8Hp> 

l%\{%\ +   lkb\lut\ (0), 

where [m^l, [k.0J, and iv^) 
are the mass matrix, stiff- 
ness matrix, and displace- 
ments of branch "i". The mode 
shapes so obtained are de- 
fined as [<kj i  and the 

ö i 
generalized coordinates are 
{Pb> ' 

2. Then perform modal analysis 
for the main structure by 
treating all branches as 
rigid appendages: 

[%><%> +  tkmHum> =  t0>, 

where [it^], [kml and {u } 

are the mass matrix, stiff- 
ness matrix, and displace- 
ments for the main structure. 
The mode shapes so obtained 
are defined as U_l, and 

the generalized coordinates 
are {pm}. 

4. Thus the system equation 
for eigensolution after 
modal coupling is 

[MHp) + [Kj{p} - (0), 

where 

[M] = [B]J 

m 

l\l 

'■bl 

[K] = 181" 

l*J 
'V. 

tV. 

[8] , 

[8] 



III.  COMMENTS OH  EXISTING TECHNIQUES 

A.  I'.urty and Bamford were con- 
cerned with determining re- 
sponse after obtaining modal 
information by synthesis. 
However, solving for modal 
information alone, the load- 
ing and damping terms intro- 
ducoc by Uurty and the 
attachment modes introduced 
by 3amford need not be in- 
cluded in the synthesis scheme. 
The reasons are: 

(1) Only the homogeneous 
solutions are needed 
from the equations of 
motion. 

(2) Damping effects to nor- 
mal frequencies are 
negligible if the system 
is lightly damped.  For 
heavily damped cases, 
the equations of motion 
will be coupled and 
solutions will be diffi- 
cult to obtain. 

However, if modal information 
of parts are obtained by 
testing, and such testing 
must introduce constraints 
which may not be at the 
interface between parts, 
Bamford's techniques will 
provide data for synthesis 
and a check of testing. 

D. 

the method always leads to 
an eigensolution of a single 
matrix [L] (see Section II 
E.4.). Thus the eigensolu- 
tion for the synthesized 
total system equations are 
easy to handle. Since 
Goldman's system equation 
of elastic motions after 
coupling has a number of 
DOP equal to the sum of 
elastic DOF of the sub- 
systems, the total DOF of 
the fully coupled system is 
not the same as the actual 
DOF of the system. This 
may introduce error. 

Techniques used by Martin 
Marietta Company are empiri- 
cal in nature and may yield 
close solutions when the 
branch systems are of far 
less effect to the main 
system in terms of mass 
and frequency range. In 
addition, since no relative 
motions are allowed among 
DOF's at the interface 
(constraint modes are not 
used), the number of mass 
points at the connection 
interface should be as few 
as possible; the best is one. 

c. 

Bajan, Feng, and Jaszlics 
have laid out a clear scheme 
for obtaining constraint modes. 
Their ideas for automatic 
modal selection by error 
analysis and substitution 
scheme are impressive.  How- 
ever, formulations are com- 
plicated and involve a lot 
of computations. The number 
of objective modes and re- 
placement modes used for 
each cycle remains arbitrary. 
In addition, the matrix [c] 
is based on relations in 
cartesian coordinates be- 
tween the whole system 
and subsystems and is not 
the coupling between sub- 
system modal vectors. 

The most attractive point of 
Goldman's technique is the 
use of free-free subsystem 
modes.  Thus constraint modes 
as used by other techniques 
are not needed.  In addition, 

IV.  THE NEW APPROACH 

Based on previous studies, a new 
approach emphasizing ease of interpre- 
tation, mathematical simplicity, ac- 
curacy of results, and potential com- 
puter capability is presented. This new 
approach is guided by the following con- 
siderations: 

Whenever eigensolution routines 
are capable of handling free- 
free systems, subsystems should 
be unconstrained, unless con- 
straints physically exist at 
the boundary. Thus, computation 
for constraint modes may be 
eliminated if free-free elastic 
modes are introduced from the 
parts. 
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The main goal of the approach 
is to yield nodal information, 
and thus forcing functions and 
damping need not be considered. 
Concentrating on undamped free 
vibration will simplify the 
formulation and the computation 
scheme. 

Connection interfaces between 
parts should be simple with as 
few 00? involved as possible. 

Rigid body modes of subsystems 
are included since they have 
significant effect on the lowest 
elastic modes obtained through 
modal coupling. However, the 
effects on the higher modes are 
negligible. 

The computation scheme should 
include a method for selecting 
proper modes, and in an adequate 
number from each subsystem for 
partial modal coupling. The 
method uses a simple error 
analysis technique, the main 
purpose of which is to insure 
convergence of results. 

A. Subsystem Analysis 

Partition a structural system in 
parts. Bach part is considered as free- 
free unless it is physically constrained. 
Then perform modal analysis of each part 
(say part i) to obtain its normal fre- 

2 
quencies fu.J and mode shapes [$•]. The 

portion of [*.] at interfaces is desig- 

nated as t#. 1. Rigid body modes are 

treated as free-free elastic modes 
having zero frequencies. All mode 
shapes are normalized to unit general- 
ized mass. For convenience of expla- 
nation, suppose a system is partitioned 
into two parts, A and B, which have n. 

.-...vi nB modes participating in the syn- 

thesis, respectively. Let n be the 

number of degrees-of-freedom at the con- 
nection interface. 

For part A, we have 

2. 
{Pä} + f<4Hpa) = uACrtFA> 

and 

where 

<UA> UAHPA> 

(l) 

(2) 

(p,/ ■ Vector of generalized 
coordinates 

{u,) - Vector of displacemerts 
in physical coordinates 

{F,} = Internal forces acting 
on the connection inter- 
face between parts. 

Let {'.».„} be the portion of (u.) on the 
AC « 

connection interface, and the remaining 
portion be {u-^ 

partitioned as 

portion be tu.), equation (2> can be 

IM * l>J <PA> (3) 

Using the same expressions for part B, 
we have 

<PR} *  N&{P„> - [♦ppl^V' <«> "B*,*'BJ »BC ' B' 

<V - l»a1{Pa} ' 

and 

{»Bcj " [♦BCJ (PB> 

(5) 

(6) 

B. Compatibility Conditions 

The required conditions for 
geometric compatibility at the connec- 
tion interface provide n equations as 
follows: * 

{UAC} = {UBC}  ' 
(7) 

or 

[
*AC

]{
PA

}
 - **BC1{PB} •   <8) 

Letting nft > n , l*ACl can be parti- 

tioned as 

'♦AC1 ■ "IcMc' '    (9) 

g 
where [♦«-] is a square matrix, and 

[♦ACJ contains the remainders.  Thus, 
from equation (8), we have 
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'•ACi-AC1 "^   tt^Itp^r   . (10) 

*J 
and 

^V    =   ''»AC1      UAC|lpA} 

♦      I »AC1      [»BCHPB}   • (11) 

By substituting compatibility equation 
(12) and then restoring symmetry, we 
have 

tT]T[THq>  ♦   IT]1 A"ft5 I tTl|fl} 

=   IT1 

m 
Lf|"tdft}   • (16) 

This gives ar. expression for ('»»♦flu) 
generalized coordinates (p) in terms of 
(n.+n -n ) independent coordinates (q): 

Since the term on the right hand side of 
equation (16) is equal to zero (see next 
section), we get <n&+nn~nr) coupled 

system equations as: 

(p> = tTKq) (12) I«) (q) + IfeJ (q) - (0) ,      (17) 

where 
where 

tq) = , (13) 
[ml = Pseudo mass matrix 

= mTm, 

IT] = 

"I**/1 l*AC> 

[I] 

10] 

"♦Sc> 
-1 

[01 

[II 

l*BC» 

(14) 

[fe] = Pseudo stiffness matrix 

>«T fö-U" 
L  I "a. 

[T], 

Performing a modal analysis of equation 
(17), we obtain normal frequencies of 
the system and shape vectors [*]. 
Hence, the mode shapes of the total 
system are 

C.  System Equations by Modal 
Coupling 

The uncoupled modal information 
of the parts can be assembled as follows: 

2 
"A 
Ö 

'.A.C.. 
0 

"BC 

fö} 

ft} 

(15) 

[♦] [Vr-:-„] mw (18) 

D.  Equilibrium Check 

Since {F.} and {Fß} are equal and 

opposite internal forces acting at the 
connection interface, and since there 
are no external forces imposed on the 
system, the system must be in equilib- 
rium at the interface if the right hand 
side of equation (17) is truly a zero 
vector. From the right hand side of 
equation (16), we have 
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IT]' Re L.o-lH 
i 

r T   -i,t ;    i 

r 
l*AC] 

L*kL - 
toi 

10] 

toi 

[*BC1 

T  c  -l'T  S ,    r.r ,T S '    U^l  + l^fl .L*icLW. .AC  'AC
1 

l 
[0] 

»BC1 "AC 

J  
1     ,T 

»BCJ 

1 
[o]      : 

♦BClTtFA} + ^BC^Vj "  I 07 

(19) 

(NOTE:  {FA} + (Fß) = (0) at interface) 

Thus both compatibility and 
equilibrium conditions are satisfied at 
the connection interface. 

E. Selection of Subsystem Modes 
Using Error Index 

As we know, the real advantage of 
modal synthesis can only be achieved by 
partial modal coupling, that is using a 
small number of selected subsystem modes. 
However, the accuracy of the results is 
also decreased when fewer modes are used. 
Thus, a proper selection scheme is 
essential. 

It has been found that the low 
(or high) frequency modes of subsystems 
have only dominant effect on the low (or 
high) frequency modes of the overall 
system, and the sum of all frequency 
squares (eigenvalues) of a system is an 
invariant. Thus a simple selection 
scheme can be set up as follows: 

1. First, rearrange mode 
shapes and frequencies 
of each subsystem into 
an ascending order of 
their frequencies.  Then 
divide the modes in each 
subsystem into an equal 
number of groups. 
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Start synthesis by using 
modes in the first group 
of all subsystems. Then 
sum up first n eigenvalues 
V. (k=l,2,...,n) obtained 

from synthesis and call it 
C,: 

2. Both geometric compati- 
bilities and force equili- 
brium are satisfied at 
i iterfaces between parts. 

3. Mode shapes and normal 
frequencies from parts are 
the only input. Constraint 
modes from parts are not 
needed. 

_  V 
Ik 

k=l 

3.  More modes are used by 
taking successive grorp 
of modes from all sub- 
systems.  In each cycle, 
compute 

n 

l   i—      ik 
k=l 

4. Thus the "Index of 
Convergence" is defined 
as 

Ei = 

Ci+1 - 
Ci 

Ci*l 
f 

(20) 4. The use of free-free or 
constrained elastic modes 
from the parts depends on 
whether physical constraints 
actually exist at the inter- 
face. 

5. A spectrum of system normal 
frequencies in the range of 
interest and their associated 
mode shapes can be computed. 

6. Rigid body modes are auto- 
matically included and are 
treated as if they are the 
first few free-free elastic 
modes with zero frequencies. 
They can be included or 
omitted for partial modal 
synthesis. 

(21) 

(22) 

which will eventually go 
below a predefined tolerance 
level when a sufficient 
number of modes are in- 
volved.  Since all frequen- 
cies in each subsystem have 
been rearranged, the magni- 
tude change in each syn- 
thesized frequency is in 
a monotonic fashion.  Thus 
such an index will indicate 
the relative rat« of im- 
provement in frequencies 
when additional groups of 
modes are used. 

Three numerical examples are 
given in the Appendix. The first 
example uses total coupling for veri- 
fying the theory of the new approach. 
The second example demonstrates the 
selection of subsystem modes for partial 
coupling, such that modes of the total 
system in the frequency range of inter- 
est can be synthesized efficiently. The 
third example demonstrates the synthesis 
scheme for obtaining higher frequency 
modes. 

F.  Conclusions 

In summary, this new approach 
offers the following advantages and 
special features: 

1.  It is easy to interpret 
mathematically and physi- 
cally. Such simplicity 
makes computer programming 
easier. 
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APPENDIX 

Numerical Examples 

EXAMPLE 1 

This example is intended to 
demonstrate the simplicity of the 
synthesis technique using the new 
approach, and also to show the accu- 
racy of the results through total 
coupling. A comparison of synthesized 
results with direct solution of the 
total systen. is presented. 

Given an elastic, uniform 
section, homogeneous, free-free beam, 
where: 

L = total length = 40 in., 

r = radius of cross section = 1 in., 

p - weight density = 2 lbs. per cu. 
in., 

4 
E = elastic modulus = 1 x 10 psi, 

v = Poisson ratio =0.3, 

A « area of cross section • 3.1416 
= sq. in., 

I = sectional moment of inertia 
14 4 
j irr* - 0.7854 in. 

To compute the dynamic properties 
through modal synthesis, partition the 
beam into two identical parts, and each 
part into ten identical segments having 
a length t  = 2 in. The mass of each 
segment is lumped into its two ends, 
which are considered as nodes. 
Consider each node to have only two 
degrees of freedom, lateral transla- 
tion and rotation. Thus each part has 
22 OOF and 11 nodal points as shown in 
Figure 1. 

40" 

Total System 

1 2"- 
I I I I I L. 

=I1U @ 2" = 

11 

20" I + 
3ZI 

1 2'" 
I I I 1 I I ' ■ ' 

11 
■j 

10 @ 2" = 20" 

Computing frequencies and wodes shapes 
of the parts, we have 

r0 
0 
1,380 

9,765 UAJ - [**! 

6,154,535 

l*AJ " UBJ 

0.2995 -2.9947 3.3432..1.6239 -1.6140 

0 0.2995 -0.7934..6.7683 -6.7255 

0.2995  -2.3955  1.7703..0.3842  0.3795 

0.2995  2.9947  3.3432..1.6245  1.6142 

0    0.2995 0.7934..6.7709 -6.7266 

Notice that there are two rigid body 
modes in each part. The interface 
compatibility conditions set by 
Equation (7) are that the displacement 
and rotation at node 11 of part A 
should be equal to the displacement and 
rotation at node 1 of part B. Thus the 
total system after synthesis has 42 DOF. 
According to Equations (8) and (9), 
li  _] contains the last *-.wo rows of 

[$ ] and [♦BCJ contains the first two 
rows of UB1. The U»CJ is further 

partitioned into a square sub-matrix 
S r 

[♦aeJ and the remainder [0_c]: 

{*AC] 

2995 2.9947|3.3432..1.6245  1.6142 

0  0.2995!o.7934..6.7709 -6.7266. 

[*AC S ♦ACJ 
[*BC] 

0.2995 -2.9947  3.3432. 

L  0   0.2995 -0.7934. 

,1.6239 -1.6140 

,6.7683 -6.7255 

Part A Part B 

FIGURE 1 
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The 44 x 42 transformation matrix IT) 
for total coupling can be computed by 
Equation (14) as 

TABLE 1 

m = II] 

[0] 

'»AC1  l*BC! 

101 

[II 

15.33 34.01 51.85..-220.59 219.12 

-2.65 -4.44 -6.12..  22.60 -22.46 

1 
1 

1 • • .  1 
1 

Than compute 42 x 42 pseudo mass and 
stiffness matrices as 

[m] = [T1MTJ 

2 ; 
[fe] = try • 2 

:
B
BJ 

[T] 

and perform modal analysis for this 
synthesized pseudo system as shown in 
Equations (17) and (IS). 

Table 1 gives a comparison of 
frequencies between synthesis results 
and the results directly obtained from 
analysis of 42 DOF discretized and 
slopes in the first elastic mode shape 

(the 3— mode). Mode shapes given by 
Reference (12) are also listed for 
comparison. 

Mode 
No. 

Direct 
Solution 

Synthesis 
Results 

1 0.00 0.00 

2 0.00 0.00 

3 1.53 1.54 

4 4.17 4.18 

5 8.09 8.09 

6 13.21 13.22 

7 19.48 19.48 

8 26.83 26.84 

9 35.20 3S.20 

10 44.51 44.52 

15 103.0 103.0 

20 172.8 172.8 

25 252.6 252.6 

30 315.5 315.5 

35 361.1 361.1 

40 382.3 382.3 

42 394.8 

TABLE 2 

394.8 

COMPARISON OF MODE SHAPES 

(First Elastic Mode) 

(A) TRANSLATIONS 

l-ooa 
of 

ition 
Node 

0L 

Direct Synthesis 
Solution Results 

2.001   2.000 

References 
(12) 

0. 2.000 

0. 1L 1.071   1.072 1.074 

0. 2L 0.190   0.192 0.196 

0. 3L -0.549  -0.546 -0.544 

0. 4L -1.045  -1.040 -1.041 

0. 5L -1.220  -1.216 -1.216 

0 6L -1.046  -1.042 -1.041 

0. 7L -0.550  -0.552 -0.544 

0 8L 0.189   0.184 0.196 

0 9L 1.069   1.058 1.074 

1 0L 1.999   1.982 2.000 
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TABLE 2 - Continued 

COMPARISON OF MODE SHAPES 

(First Elastic Node) 

(B)  ROTATIONS 

Location 
of Node 

Direct 
Solution 

-1.965 

Synthesis 
Results 

-1.973 

Reference 
(12) 

0.0L -1.965 

0.1L -1.929 -1.939 -1.934 

0.2L -1.714 -1.737 -1.748 

0.3L -1.332 -1.332 -1.341 

0.4L -0.725 -0.725 -0.730 

O.SL 0.001 0 0 

0.6L 0.723 0.725 0.730 

0.7L 1.331 1.332 1.341 

0.8L 1.739 1.737 1.748 

0.9L 1.929 1.923 1.934 

1.0L 1.965 1.95 1.965 

EXAMPLE 2 

This example is intended to 
show how to select sufficient nodes 
fron parts for partial nodal coupling, 
such that total system modes in the 
range of interest can be efficiently 
computed. 

Given the same free-free beam 
as in Example 1 except for a hinge at 
midspan, if we partition the bean 
through this hinge and discretize the 
two parts the sane way as Example 1, 
each part will also have 11 nodes and 
22 DOP. The only difference is  that 
there is only one DOP (the translation) 
instead of two at the interface for 
compatibility requirements. Since 
rotation of two parts at the interface 
may be different, the total system has 
43 DOF instead of 42. 

Suppose that we are 
interested in the lowest seven modes. 
The first step is to arrange modes of 
the two parts individually in ascending 
order, according to the magnitude of 
their frequencies. Then break the 22 
modes (including 2 rigid body modes) of 
each part into groups: 

Group No. 

1 

2 

3 

4 

5 

6 

7 

Kodes 

1. 2, 3, 4 

5, 6, 7 
8, 9, 10 

11, 12, 13 

14, 15, 16 

17, 18, 19 

20, 21, 22 

Take group 1 modes from both parts for 
synthesis. Results will yield the 7 
lowest modes of the total system. Their 
eigenvalues (*1K) ere: 

0, 0, 0, 697, 1380, 7108, 9765. 

The three zeros yield three rigid body 
modes as shown in Figure 2. 

Hence 

h-l 
7 

MS 

k-1 

FIGURE 2 

Alk*° + ° + ° + 697 + 1380 + 

7108 + 9765 18950 

Thei. add group 2 modes to group 1 for 
both parts, and synthesize again. 
Results yield the lowest 13 modes of 
th- total system. However, we only 
tak the same lowest 7 eigenvalues 
fx_. ) and sum them: 

C2 - > \2k *  18745 

k-1 

Thus the first "index of convergence" 
is 

C2"C1 18745-18950 
 18745 109x10 
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If additional groups of modes in both 
parts participate in the synthesis, we 
have 

C3 - 18739.625 Ej = 5.252 x 10 

and 

C. ■ 18739.730 E- 
4 2 

0.050 X 10 
-4 

Notice that an increase of the same 
number of modes from parts yields less 
accuracy improvement of the synthesis 
results, and at the same time the size 
of the coupled system gets larger and 
larger.  For this particular case, 
since E. is already small enough, we 

may stop adding subsystem modes right 
after computing E.. This means using 

the lowest 7 modes (about one third of 
22) from each part for synthesis. 
Frequencies (cps) so obtained are com- 
pared with total coupling results (22 
modes from each part) as shown in 
Table 3. 

Total 
Coupling 

0. 

0. 

0. 

4.183 

5.914 

13.223 

15.727 

For the same beam as example 
2, if all the modes of the total system 
are required, we can perform several 
shifts in the synthesis. Example 2 
shows that 7 modes from each part will 
yield satisfactory results, and since 
we know that n. modes from part A and 

n„ modes from part B with n * 1 at the 
D r 

interface will yield (n.+n_-n ) modes 
A 0 r 

of the total system after synthesis, 
three shifts of synthesis should be 
sufficient, as shown in Table 4. 

TABLE 3 

Mode 7 Modes From 
NO. Each Part 

1 0. 

2 0. 

3 0. 

4 4.183 

5 5.913 

6 13.229 

7 15.727 

EXAMPLE 3 

TABLE 4 

Synthesis 
Shift 
No. 

Modes  Iteuea 
From   From 
Fart A Part B 

No. of 
Modes 

Synthesized 

1 1-7  1-8 14 

2 6-15 8-14 14 

3 15 - 22 15 - 22 15 

Total * 43 

Frequencies (cps) so obtained are 
compared with total coupling results 
as shown in Table 5. 

TABLE 5 

(A) First Shift: 

Mode 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Partial 
Coupling 

0. 

0. 

0. 

4.183 

5.913 

13.227 

15.727 

26.855 

29.712 

44.556 

47.304 

65.820 

68.089 

90.836 

(B) Second Shift: 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

91.683 

109.220 

117.613 

141.034 

145.171 

171.596 

172.917 

221.105 

221.105 

238.746 

239.388 

263.263 

Total 
Coupling 

0. 

0. 

0. 

4.183 

5.914 

13.223 

15.727 

26.840 

29.713 

44.520 

47.304 

65.739 

68.090 

89.956 

91.683 

116.537 

117.613 

144.646 

145.171 

172.764 

172.917 

221.105 

221.105 

239.333 

23S.388 

266.025 
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TABLE 5 - Continued 

(B) Second Shift - Continued 

Mode 
Nc. 

Partial 
Coupling 

Total 
Coupling 

27 266.304 206.304 

28 289.750 291.879 

(C) Third Shift: 

29 292.520 292.520 

30 295.087 315.529 

31 316.616 316.616 

32 319.742 336.304 

33 337.862 337.862 

34 341.014 353.738 

35 355.725 355.725 

36 358.416 367.466 

37 369.736 369.736 

38 371.549 377.147 

39 379.287 379.287 

40 389.971 382.303 

41 394.780 394.780 

42 394.808 394.808 

43 394.836 394.836 
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ROTATING ELEMENTS IN THE DIRECT STIFFNESS METHOD OF DYNAMIC 
ANALYSIS WITH EXTENSIONS IO COMPUTER GRAPHICS 

Meivin E.Novak 
Dynamics Engine«, Fuaalage Methods 
The Boeing Company, Vertol Division 

Philadelphia, Pennsylvania 

A technique has been developed to include rotating 
elements in a direct stiffness analysis to evaluate the vibration 
levels of a complex structure such as a helicopter fuselage. 
Aerodynamic and coupled motions of the rotating elements 
can be included in the analysis as illustrated in an application 
to a tandem rotor helicopter. Vibration levels from the 
analysis agree with inflight test results. 

A total-systems concept analysis which employs this 
technique and, in addition, which could utilize computer 
graphics is explained in this paper. This analysis combined 
with man-machine interaction using the scope could generate 
an optimum vibratory structure. 

INTRODUCTION 

The stiffness method of dynamic analysis has been used 
with confidence at the Boeing Company for ten years [1]. 
Complex frames have been idealized using the direct stiffness 
method, and good correlation has been obtained with 
dynamic tests [2]. Difficulty arises, however, when the 
structure contains routing appendages. Structural compo- 
nents such as propellers and rotors on the aircraft fuselage 
have a significant effect on structural modes and natural 
frequencies, but they do not fit the general algorithms which 
employ me direct stiffness method. 

Rotating beam vibration analysis, using methods such as 
Myklestad's, has developed to a point where the results 
obtained agree with dynamic tests. However, combining 
direct-stiffness analysis and beam analysis has been difficult 
since the vibration at the point of attachment is a function of 
the structure-beam interaction. 

I 
This paper considers a complex structure in three- 

dimensions to which rotating appendages are attached. 
Concentrated vibratory loads are applied at a number of 
structural nodes, and also, vibratory aerodynamic forces are 
acting along the length of the rotating elements. 

DIRECT STIFFNESS METHODOLOGY 

Apart from the rotating elements, the complex structure 
can be analyzed by the finite element-direct stiffness method 
described in Ref. [1]. First, the structure must be idealized 
as a mathematical model. Junctions or node points must be 
selected where structural members meet. These members may 
be axial-load elements, in-plane-shear elements, or bending 

elements which transmit moment and shear. Each of these 
members contributes stiffness to the nodes to which they are 
attached. Each node point can have six degrees of freedom. 
The stiffness matrix of each structural element is determined. 
Then, the stiffness contributions to each degree of freedom 
of the structure are added together. Each degree of freedom 
comprises one row of a large matrix called a stiffness matrix 
or [K], the order of which could be higher than 2000 by 
2000. 

In general, 

JFJ=[K3J6J (1) 

where [FJ is the column matrix of forces or moments at all 
the degrees of freedom, and [fi] is the matrix of deflections 
or rotations. If the masses and mass moments of inertia are 
lumped at only a portion of the degrees of freedom, then the 
inertial forces and torques at all the other degrees of freedom 
become zero. This allows partitioning of equation (1) 

(2) 

and through a process called reduction [1] an effective 
stiffness matrix of the order 300 by 300 or less is generated. 

H= MH = [Kl1" K12 K22 K2l] (5lJ (3) 

In order to include rotating elements, degrees of freedom to 
which the rotating elements are attached must be retained in 
the reduction process. 
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Assuming a harmonic solution, equation (3) gives 

[iMp1   Keff • xj[sj= 0. (4) 

where | M | is a diagonal mass matrix, X is a natural frequency 
squared (eigenvalue) and |s| is the matrix of modal 
displacements or rotations (eigenvector). 

The collection of eigenvectors arranged together 
columnwise is called the modal matrix 0. It may be shown 
analytically that, if the eigenvalues are different from each 
other, <t> M0 is a diagonal matrix where 4> is the transpose of 
the modal matrix. This diagonal matrix is called the 
effective mass matrix. 

Once the natural frequencies and mode shapes have 
been obtained, the damped forced response of the structure 
may be determined. As described in Kef. 3, the basic matrix 
equation is 

[*TM*][AJ+ (*TCpi |A] + 1#TK#][A}=[«>TF].    (5) 

where C is a damping matrix obtained by assuming modal 
damping, F is the external oscillatory exciting-loads column 
matrix, and jAJ is a modal amplitude such that JXJ = [4>] 
fa). ^4 » the column matrix of displacements (in inches) 

or of rotations (in radians). Eq. (5) is completely general in 
that it includes a form of structural damping, has the 
capability of using an external loading with sine and cosine 
components, and can accommodate any combination of 
nodal excitation. The matrix solution of Eq. (5) which is 
described in Ref. [31, gives the sine and cosine components 
of the displacements and rotations, jx], at every retained 
degree of freedom due to forces, F , with sine and cosine 
components. 

ADDITION OF ROTATING ELEMENTS 

By the use of a structural mobility matrix [H], the 
damped forced response of a complex structure may be 
expressed as 

[X)=[HJ{F). (6) 

Grouping all degrees of freedom to which rotating elements 
are attached, Eq. (6) is partitioned as follows: 

Eq. (7) then yields, for the degrees of freedom where rotating 
dements are attached, 

H11'H12 
H21!H22 » (7) 

where X i is a column matrix of displacements and rotations 
generated in their sine and cosine components, where the 
rotating elements are attached. The X2 represents all other 
motions. Fj is a column matrix of forces and moments with 
their sine and cosine components acting in degrees of 
freedom where the rotating elements are attached, and F2 

r*pj*jents aM other vibratory loads applied to the structure. 

N'[H»]W*[Q1- (8) 

where [Hjj) is a square matrix of the mobilities in these 
degrees of freedom due to loads in these degrees of freedom, 
and |Q] is a column matrix of constant vibratory motions 
equal to [Hj2] (F^ . 

Eq. (8) expresses the damped force-displacement 
reJa; onship at the boundaries between the rotating append- 
ages and the complex structure. This relationship is defined 
by the properties of the structure. A similar relationship can 
be expressed by the aerodynamic and dynamic properties of 
the rotating elements per se. In matrix notation this is 
written as 

(f)= [Aj[x}+[c], (9) 

where |f} is a column matrix of sine and cosine components 
of loads at the nodes where all rotating elements are acting, 
and |x} is a column matrix of phased motions of the nodes. 
\f\ and (x) are in a coordinate system convenient to the 
rotating elements. [A] is a receptive matrix expressing the 
change in shaft forces due to vibratory shaft motions, and 
{c} is a column matrix of phased vibratory shaft forces, 
assuming zero vibratory motion at the point of attachment 
to the complex structure. 

Let [TJ be a transformation matrix relating the coordin- 
ate systems of the rotating elements and the complex 
structure such that 

Fj}=[T][f) 
i}= m {x} - 

then 

{F1]=[T][A][T]-1|X1|+ m{cj. 

When Eq. (8) is substituted for Xj, Eq. (11) becomes: 

{Fij'ITJlAlITl-^HulfpJ 

♦ mtAim^JQJ+mfc}. 

Finally, the boundary forces are expressed as 

[FJ]= [I-TAT1 Hu]"1 [TA^Q + TCJ . 

(10) 

(11) 

(12) 

(13) 

Thsse boundary forces, which are the sine and cosine 
components of all forces and moments in degrees of freedom 
to which rotating elements are attached, along with any other 
exciting forces, are applied in the damped forced response 
analysis of the complex structure. 
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The effective maa and the effective damping of tht 
routing system, «t well as tfc e ccvpled force-d«pb«m«it 
reUttorahipa between orthogoiutl degrees of freedom in tat 
rotating system, are all considered 'n the analysis because the 
matrix [A] is square .snd contain:, sine and cosine compo- 
nents which express tho correct phasing. 

APPLICATION TO A TANDEM ROTOR HELICOPTER 

The stiffness method of dynamic analysts as described 
has been programmed for the IBM-360 Mod 65 at Vertol 
Division for the analysis of fuselage vibration levels of single- 
and tandem-rotor helicopters in flight. 

The eigenvalues and eigenvectors of a helicopter fuselage 
model, as illustrated in Fig. 1, are calculated by the D-46 
Unified Structural Analysis Computer Program described in 
Ref. [1]. The final presentation of each eigenvector is the 
orthonormal form. This collection of eigenvectors, known as 
the modal matrix, is stored on tape for use as generalised 
coordinates in obtaining the damped forced response of the 
fuselage. A Total Systems Analysis Computer Program D-65 
combines the Damped Forced Response Analysis of a 
Complex Structure Computer Program D-96 with as Aero- 
elastic Rotor Analysis Computer Program D-95 to calculate 
the inflight vibration levels of the aircraft. 

In the analysis, a system of matrices transfers load from one 
mass station to the next inboard station. Complexity m these 
transfer matrices is reduced by comidering lag separate from 
flap and pitch. Since airloads are a funcbcn of blade position, 
iteration» between die airloads and blade deflections an 
performed until convergence occurs. Shears and moments are 
transferred inboard to the point of attachment for ail blades 
and are summed in a fixed-rotor shaft-disc plane system to 
supply the phased forcing loads for trie fuselage. Hub motion 
is included in the analysis. 

GENERATION OF REQUIRED MATRICES 

As illustrated by Fig. 2, the D-65 Computer Program 
loops on the component analyses to generate the (A], jCj, 
and [H] matrices. The {c| matrix is obtained by running a 
forward and, if needed, an aft rotor analysis win zero hub 
motion and extracting the desired harmonic of the vibratory 
shaft loads. The resulting ic} matrix is a column matrix of 
the order 24 by 1 (12 by 1 for a sinqle-rotor helicopter) 
containing the sine and cosine components of fences and 
moments in six degrees of freedom at each hub. The [A] 
matrix is generated by looping on the rotor analysis and by 
inducing a vibratory shaft motion of the desired harmonic in 
die sine and cosine component of each available degree of 
freedom. 

Figure 1. Structural Idealization of a Tandem-Rotor 
Helicopter Including a Lumped Mass-Elastic Bay 
Representation of the Rotor Systems 

The method of rotor analysis employed in the system 
combines the results of an aircraft trim analysis, computer 
program A97, and a blade property analysis with basic flight 
parameters in a non-linear coupled aerodynamic system to 
calculate the forces and moments on the hubs of the aircraft 
[2]. A lumped mass system, with discrete masses and elastic 
bays as shown in Fig. 1, is used to idealize a rotor blade. On 
the blade model, airfoils are positioned at mass points for 
consideration of aerodynamic forces, The air velocity relative 
to each of these airfoils is obtained by summing contribu- 
tions from wind, forward speed, vortex velocities, and the 
rotating, pi: ving, and lagging motions of the blade. The 
airloads are ca'culated using two-dimensional airfoil tables to 
determine lift, drag, and moment aerodynamic coefficients. 
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-»STRUCTURAL 

RESPONSE 

FINAL SHAFT 
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Figure ?.. Flow   Diagram   of 
Computer Program 

Total   Systems   Analysis 

One column of the [A] is filled for each analysis by 
subtracting the [c] matrix loads from the respective shaft 
loads resulting from each hub motion case, 

W-{c]=lA](x} (14) 
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The )A| r.uthx takes the following form for a tandem rotor 
helicopter 

r        i 
forward     '      Q I 

12x12     | 

o I Aafl 
!     12x12 

The [ H j matrix, or mobility matrix, for the hubs of the 
fuselage is a full symmetric matrix. This matrix is obtained 
by looping on ti>< Damped Forced Response Analysis 
Computer Program, inputting unit forces in every hub degree 
of freedom and extracting the resulting phased hub notions 
to fill the respective columns of the |H] matrix. JQl is 
calculated by an additional damped forced response case in 
which all external vibratory loads are applied. 

The fcrces and moments from the rotor analysis are 
calculated in the rotor shaft-disc plane coordinate system. 
The idealization of the fuselage and thus the resulting model 
displacements are given in a coordinate system which has the 
rotor shafts tilted in the x-z plane. Therefore, an appropriate 
transformation matrix is generated which corrects for this 
shaft tiit. It also provides fc *V phase difference between 
the two rotor systems. 

Using the data which has been generated, the Total 
Systems Analysis Comp- ter Program evaluates Eq. (13) for 
the phased vibratory rotor loads. These forces and moments 
are then applied in the hub degrees of freedom in the D-96 
Damped Forced Response analysis Computer Program to 
calculate the inflight vibratory displacements and g levels of 
the helicopter. 

Excellent agreement with flight test results has been 
obtained using this procedure. Some results of the analysis 
for a medium size-tandem rotor transport helicopter in high 
speed-level flijht are illustrated »long with test data in Fig. 3. 
Twenty mode shapes were use- including six rigid body 
modes. The running time for the program was about 
seventeen minutes. Approximately sixteen minutes were used 
in the generation of matrix data and the solution of Eq. (13), 
and one minute was used for the final stiffness method 
portion of the program. 

MATCHBOX STUDIES OF THE NEW APPROACH 

TEST 

JU. 

RUiHT HAND SIDE 

FOHWARO FUSELAGE 

LEFT HAND SIDE 

FORWARD FUSELAGE AFT 

Figure 3.    In-Flight Vibration Correlation 

Using the "Matchbox" model concept, the new 
technique presented in this paper was compared with an 
effective mass method, another means of including rotating 
elements in the direct stiffness method of dynamic analysis. 
Identical results were obtained with the two methods when 
all of the off-diagonal terms in the [A] matrix in Eq. 13 were 
set equal to zero. The reason for this phenomenon is that the 
effective mass techniques does not consider the effective 
damping and the force-displacement relationships between 
orthogonal degrees of freedom in the rotor system. Damping 
and coupling are expressed by the off-diagonal terms in the 
matrix [A]. In some cases, the consideration of these effects 
can make a significant difference in the calculation of the 
vibration levels of a complex structure. Fig. 4 shows this 
effect on longitudinal, lateral, and vertical vibration levels of 
a "Matchbox" model of a tandem-rotor helicopter at 140 
knots. 

Recent studies in the area of preliminary design illus- 
trate the benefit gained from idealizing helicopter fuselages as 
an assemblage of rectangular boxes having the general 
dimensions and mass distribution of the more complex model 
[4]. These simplified or "Matchbox" models can be designed 
to have their lower natural frequencies and mode shapes very 
near the exact f.equencies and mode shapes.of the actual 
aircraft. Required computer running time can be greatly 
reduced while gross structural modifications can be studied 
with adequate insight into the engineering problem. 

APPLICATION TO COMPUTER GRAPHICS 

The demand for rapid man-machine interaction and tor 
pictorial presentation of computer results has led to wide- 
spread utilization of computer hardware such as the IBM- 
22S0 Graphics Display Unit. Graphics programs have 
increased visibility into engineering problems anJ facilitated 
more rapid studies of structural modifications. 
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FORWAf.1   FUSELAGE  AFT FORWARD   Fu«LAGE     AFT 

Figure 4. The Effect of Coupled Motion and Damping on 
the Vibration Levels of a "Matohbox" Model of a 
Tandem Rotor Helicopter 

The foreseeable goal ot computer graphics application is 
a total systems analysis for structural optimization. An 
improved version of the existing v'bration analyses computer 
graphics program would provide this capability. Tiie general- 
ized coordinate fuselage analysis discussed in Ref. |5J would 
be iinkea with a rotor blade analysis and trim analysis for a 
tandem rotor helicopter. The technique presented in this 
paper would be used to assure compatibility at boundaries 
between component systems. For example, in the piogram 
illustrated in Fig. 6, the fuselage is first trimmed for a $iven 
flight condition. Then from a rotor blade-hub load analysis 
program, the exciting forces and moments at the blade roots 
jre calculated. The [AJ, [Cj, [H], and {Q) matrices art 
generated, and the equation for compatible boundary condi- 
tions is solved. The damped, forces response of the fuselage is 
then found u<ng previously determined mode shapes. A 
decision can then be made at the scope as to whether or not a 
vibration reduction device is to be added, or if rotor blade or 
fuselage structure or parameters are to be changed. Recalcula- 
tion can then be made to tn optimum dynamic design. 

A computer program linking the graphics display unit to 
a direct stiffness analysis program [5] has been in operation 
at Vertol Division for more than a year. It has been used as 
described in Ref. [6] for cabin vibration reduction, for 
evaluation of self-tuning vibration absorber effectiveness, for 
proposal preparation, and tor studies of growth versions of 
existing craft. A more recent application of the graphics 
system has been made in the area of preliminary design of 
new models. Fig. 5 illustrates the animated scope presenta- 
tion of the CH-46A fuselage. 
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Figure b.     IBM 2250 Scope Display of the 
CH-46A Fuselage 

Figure 6.    Optimal     Design    Total    Systems    Concept 
Computer Graphics Program 

45 



CONCLUSION 

An accurate means of including rotating elements in the 
direct stiffness method for dynamic analysis is important in 
correlating and predicting vibration levels of certain complex 
structures. The method described provides this capability by 
considering the total rotating element-complex structure 
interaction. Initial efforts using this method to correlate 
in-flight vibration levels of a tandem-rotor helicopter have 
given good results. 

Finally, the technique may be useful when linking large 
computer programs together for a total systems type- 
dynamic analysis program utilizing man-machine interaction 
graphics. 

REFERENCES 

J. J. Sciarra, "Dynamic Unified Structural Analysis 
Method Using Stiffness Matrices," AIAA/ASME, April 
18,1966. 

6. 

R. Gabel, "Avid Program, Advanced Vibration Develop- 
ment," Boeing-Vertol Report 107M-D-09, April 1965. 

J. J. Sciarra, "Application of Combined Direct Stiffness 
and Mobility Met'.iod to Vibration Absorber Studies," 
ASME/MDD, Vibration Conference, Paper 67-VIBR-65, 
March, 1967. 

J. J. Sciarra, "Helicopter Fuselage Vibration Prediction 
by Stiffness/Mobility Methods," 37th Shock and Vibra- 
tion Symposium, Orlando, Florida, October, 1967. 

J. J. Sciarra, "Helicopter Fuselage Vibration Analysis in 
Three Dimensions Using Computer Graphics," The 
Second University of Illinois Computer Graphics Con- 
ference, Urbana, Illinois, April, 1969. 

R. R. Vlaminck, "Dynamic Structural Analysis Using a 
Computer Graphics Display," Aero-Space Structural 
Design Report, Seattle, Washington, August, 1969. 

DISCUSSION 

Mr. Pakstys (General Dynamics Corp.): 
I was interested in the eigenvalue program 
which was used for the IBM 360-65 computer. 
You modeled this with 300 dynamic degrees of 
freedom.  How many modes were calculated, 
and what techniques were used? 

Mr. Novak:    Until very recently our cap- 
abilities were limited to approximately 140 
degrees of freedom, where we used a QR 
transformation.  We have a new technique 
which is available in the SSP package offered 
by IBM.  They have routines called Eigen and 
Enroute which allow the use of single pre- 

cision in some parts of the analysis.  We have 
obtained a comparable correlation with 139- 
140 degree-of-freedom problems, using less 
core, and we have solved problems up to 250 
degrees of freedom.  Reasonable results are 
obtained, but we cannot compare with another 
method except at a lower number of degrees 
of freedom.  These methods yield a little bit 
higher degree-of-freedom capability. Once 
we calculate approximately 30 modes, which 
requires nearly 37 seconds per mode, we can 
adjust the running time on the basis of the 
number of desired modes.  We are always in- 
terested in the lowest modes. 
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DYNAMIC RESPONSE OF BEAMS TO MOVING PRESSURE LOADS 

AS RELATED TO TRACKED AIR CUSHION VEHICLES 

Jaiiies F. Wilson 
Duke University 

Durham, North Carolina 

A mathematical model is formulated to simulate the dynamic inter- 
action of guideway spans with tracked air cushion vehicles.  This 
model is the Bernoulli-Euler bea». equation subjected to segments 
of uniform, moving pressures. Closed form series solutions are 
found by the normal mode method.  Results show that, for a given 
span and total load, the maximum dynamic span deflexions for 
distributed and concentrated moving loads are nearly identical, 
although the velocities at which these deflections occur are dif- 
ferent. Beyond certain critical velocities (100 to 300 mph) the 
mean values of dynamic deflections under the pressure segments 
begin to decrease at increasing speed. Although the vehicle may 
"outrun" the static span deflection, it can never outrun its ver- 
tical accelerations during traverse. The mean value of these 
pressure segment accelerations always increases with increasing 
speed. These accelerations which may exceed 3 g's should be re- 
duced by some means if the passengers are to travel comfortably 
in tracked air cushion vehicles. 

INTRODUCTION 

The dynamic response of structures 
to loads moving over them is of particu- 
lar importance in high speed ground 
transportation. For example, elevated 
spans of 50 to 150 feet are currently 
being considered as guideways for 
tracked air cushioned vehicles (TACV's) 
cruising at 300 mph.  At such speeds, 
these vehicles impart disturbances to 
the guideways which may result in span 
deflections which are relatively large 
compared to the static deflections for 
stationary vehicles. The purpose of 
this paper is to analyze the response of 
a guideway, represented as a beam, to 
moving pressure loads of the type asso- 
ciated with high speed TACV's.  In addi- 
tion to the deflection response, the 
vertical acceleration respense of the 
moving pressure is examined since it is 
related to the riding comfort of the 
passengers. 

The vibrations of elastic struc- 
tures in response to moving loads has a 
rich history, extending over more than a 
century.  Serious studies began in Eng- 
land motivated by the spectacular col- 
lapse of the Chester Bridge near London 
in 1847. In the early studies, these 

structures were modeled as simply sup- 
ported, slender beams with a point io-id 
moving along them at constant velocity. 
Willis [1] and Stokes [2] assumed that 
the mass of the structure was negligible 
in comparison to the moving mass. Stokes 
found an approximate expression for the 
ratio of the dynamic to static deflec- 
tion of the beam, which was later im- 
proved upon by Timoshenko [3],  In 1905, 
Kryloff [4] found the dynamic deflec- 
tions of a beam where its inertia was 
included but where the moving point load 
was assumed to be a constant force, 
without mass. 

Jeffcott [5] and Inglis [6] ex- 
tended all of these results to include 
both the mass of the moving point load 
and the mass of the beam.  The most com- 
plete analysis, however, was done by 
Schallenkamp [7].  Ayre, et al, [8], [9] 
have further extended this work to in- 
clude the two-span beam.  They also re- 
ported some experimental results which 
check the results of Schallenkamp [10]. 
Harmonically varying point forces on 
simple beams have been studied by Timo- 
shenko [11], Lowan [12], Pyazanovi [13], 
and Schlak [14].  Romualdi [15] and 
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Vellozzi $16] considered the response of 
more complex models of bridges t" moving 
forces.  Much unpublished work has also 
been done at HIT in the 1950*s 117:. 
Vellozzi includes an excellent biblio- 
graphy on suspension bridge dynamics. 
Recently, Stanisic and Hardin [18] con- 
sidered the response of a beam to many 
moving masses, but since their basic 
differential equation omits a component 
of acceleration, correctly included by 
Schallenkamp [7], some of their results 
contain errors of unknown magnitude. 
The dynamics of the simply-supported, 
curved beam have also been a subject of 
recent interest [19, 20]. The dynamics 
of a beam on an elastic foundation, with 
and without damping, subjected to moving 
and pulsating point rorces of various 
types, have been extensively investiga- 
ted, [21-26]. 

In the work cited so far, the beam 
models have been "classical" or based on 
the Bernoulli-Euler theory. As the ve- 
locity of the moving load approaches the 
sonic speed for the beam material, the 
Bernoulli-Euler theory is no longer 
valid, and more refxned beam models are 
needed.  Such models considered by Cran- 
dall [27], Florence [28), Achenbach and 
Sun [29], and Steele [30-32], are espe- 
cially useful when the loading is fast, 
as from explosions. 

The purpose of this paper is to 
find the dynamic response of a simple 
beam to both a single patch and a double 
patch of uniform pressure, traveling 
along a beam at speeds much below the 
sonic speed of the bean* material. Both 
the constant velocity and constant ac- 
celeration cases are discussed. The 
Bernoulli-Euler beam model is used, 
where uniform end tensions and elastic 
foundation effects are included. Maxi- 
mum dynamic and static beam deflections 
are compared. Results are compared to 
those given by Bresse [33,34] for the 
response of an infinitely long band of 
moving pressure, and to those of Timo- 
shenko [11] for a point force, all rov- 
ing at constant velocity.  The critical 
conditions under which large dynamic de- 
flections and vertical accelerations may 
occur are discussed for two numerical 
examples chosen to approximate the tra- 
verse of a single tracked air cushioned 
vehicle over identical simple spans. 

THE BEAM MODEL 

The dynamic model of the beam is 
shown in Figure 1. The usual assumptions 
of elementary beam theory are made. Ro- 
tatory inertia, longitudinal vibrations, 
and shear deformations are neglected so 
that only the transverse modes of vibra- 
tion are admitted.  These assumptions 

pfx.fl 

Figure 1. The bean model with moving, 
transverse pressure. 

are consistent with the usual Bernoulli- 
Euler theory of beam vibrations [35]. 
All damping is neglected, including vis- 
cous material damping and external fluid 
damping. However, the effects of an in- 
ertia-less, elastic foundation and of a 
uniform longitudinal tension, are in- 
cluded in the equation of motion of the 
beam. 

Neutral Axis 

v+xrAx a«— £*AAX 

Figure 2. 

KyAx |    ax 

t—A»—-I 

Forces and moments on a small 
element of the deflected beam. 

The forces acting on a differen- 
tial beam element of length Ax are shown 
in Figure 2. The equation of motion for 
small vertical displacements y of this 
element, subjected to a transverse pres- 
sure, or force per unit length p=p(x,t), 
is found oy applying Newton's second law 
in the vertical direction - When prod- 
ucts of differential quantities above 
the first order are neglected, the re- 
sult is 

■pi-i Ax + |^ Ax - ky Ax + pAx 
3xs 

pA Ax &- 
3t2 

(1) 

where T is the longitudinal tension, V 
is the vertical shear force, k is the 
elastic constant of the foundation, and 
p and A are the mass density and the 
cross sectional area of the beam, respec- 
tively. From elementary beam theory, 
the bending moment M is related to the 
curvature by 

M ■ El 
3x2 
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where ZI is the stiffness. Also, for mo- 
ment equilibrium, V * 3M/3x. When these 
moment and she«.r relations are differen- 
tiated and combined with Equation (1), 
the governing differential equation for 
constant El becomes: 

where 

3x* 
T 2-* + ky 

3x2 
+ pA 

3t2 
p (2) 

In this analysis, it is assumed 
that the velocity v of any external 

disturbances moving along the beam is 
always much less than the sonic velocity 
c of the longitudinal stress waves. 
Since c2 = E/p for a long, thin elastic 
beam, an important restriction of Equa- 
tion (2) it. that 

v  « \/£ 
P   VP 

(3) 

The vertical beam velocity, 3y/3t must 
also be less than c. In the case where 
p{x,t) is caused by an explosion, for 
instance, 3y/3t may be of the order of c 
and more refined beam models must be 
used [27-32]. 

Mien p is known, solutions y=y(x,t) 
to Equation (2) can be found by specify- 
ing that deflections and moments vanish 
at each end, or 

y(o,t) = y(£,t) = »'Hort» 
3x2 

- a yU,t; 
3x2 

(4) 

Also, initial conditions at time t=t 
must be specified in order to have a 
unique solution to Equation (2). These 
conditions are expressed as 

y(x,tQ) 

3y(x,tQ) 

at 

y0
(x) 

v U) 

(5a) 

(5b) 

which represent the initial disolacement 
and initial velocity, respect-  ly, at 
every point along the beam. 

FREE VIBRATIONS 

For free vibrations, the pressure 
p«0. For free harmonic vibrations, the 
nth solution to Equation (2) is assumed 
in product form: 

yn(x,t) Y (x)sinw t n     n (6) 

un is a real cumber. The functic * 

Yn - Y|;(x) is determined by substituting 

Equation (6) into Equat on (2) or 

,1V T v« 
FT *n 

(pAu^2-)-) 

El Y„ ■ 0  (7) 

where the prim« denotes differentiation 
with respect to x. It is not difficult 
to show that the only class of solutions 
of Equations (7) consistent with Equa- 
tion (6) and the boundary conditions of 
Equation (4), are given by 

Yn(x) = sin 2|*-        (8) 

With Equation  (8), Equation  (7)  gives 
the result 

fEI   fnirl -  A   T    fnr]2   .    k "I*       ,0, wn "   |pÄ  [TJ     
+ pX  [-]     + ^ÄJ (9) 

where n * 1,2,3,.... 

The natural frequencies of the sim- 
ply supported beam under uniform tension 
and fixed to an elastic foundation, are 
thus given by Equation (9). If T = k = 0, 
these frequencies depend only on the 
beam stiffness.  IfEl=k=0 the fre- 
quencies are simply those of a flexible 
string under uniform tension T. It is 
also interesting to note that the criti- 
cal buckling loads for this beam can be 
found from Equation (9), corresponding 
to io =0 and a compressive load N - -T. 

These critical compressive loads are 

n2ir2EI iM" (10) 

which correspond to the Euler buckling 
loads when the elastic foundation is ab- 
sent.  If the critical compressive load 
at n = 1 is ever exceeded, u becomes an 

imaginary number, and harmonic motion 
ceases to exist. 

T a results just obtained will be 
utilized to find solutions y(x,t) of 
Equation (2) with boundary and initial 
conditions given by Equations (4) and 
(5), where p is a known function of time 
and position along the beam. 

NORMAL MODE SOLUTION FOR 
ARBITRARY FORCES 

Although the normal mode method is 
discussed by several writers, [35, 36] 
and these ideas will be outlined now for 
the sake of completeness in solving the 
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present problem.  First, it is assumed 
that ine solution to Fun-tion (2) can be 
expanded in terms of t:..-  normal modes 
Y (x) given by Equation (8) or 

y(x,t) =   £ 
n=l,2,... 

^n   n 

qn(t)sin 
nwx 

I (11) 

n=l 

where the time varying coefficients 
q (t) have yet to be determined.  Equa- 

tion (11) satisfies the boundary condi- 
tions given by Equation (4) for all in- 
teger values of n. When Equation (11) 
is substituted into Equation (2), and 
Equation (7) is used to eliminate the 

quantity (El Y*V - TYn" + kYn) from the 

result, it follows 

E K+ < «J \ - ft   <i2> 
r.=l 

Pn(t) 2 
dp A f\ sin as dx    (16) 

Solutions to Equation (15) repre- 
sent the responses of n forced harmonic 
oscillators, one for each mode shape 
Y (x). The function F (t) which excites n n 
each mode is the weighted integral of 
the applied pressure p over the length 
of the beam. The total solution, given 
by Equation (11), is then a linear sum 
of the response of each mode. 

To obtain a unique solution to Equa- 
tion (15), the initial values of q_(t ) ^n o 
and q (t ) must be specified at a time 

t = t . Tiese initial values are rela- 
o 

ted to the beam deflection through Equa- 
tions (5) and (11). 

n=l 
(17a) 

where (*) denotes differentiation with 
respect to time. Each side of Equation 
(12) is multiplied by Y (x) , «1=1,2,..., 

and the results are then integrated over 
the range 0 £ x <_ I. 

/•* ■co. 

/ Z («a + <%}  Vmdx 
n-1 

pA /  xm 
p dx (13) 

The order of integration and summation 
are interchanged in Equation (13), assum- 
ing that q and its derivatives are 

"well behaved." When use is made of 
Equation (8) and the orthogonal condi- 
tions 

/ 
Y Y dx = 
n m 

0 when m f  n 

when m ■ n 
(14) 

the result is an ordinary, second order 
differential equation. 

q + w2q = F (t) Hn   n*n   nv ' (15) 

3yU,to) 

3t Z W sin TT ' Vx) 

n-1 (17b) 

Thus, the initial values for Equation 
(15) are coefficients of a Fourier sine 
series, [37J, given by 

«n<V ■if yo(x)sin S^idx 

(18a) 

*n(to>  "ij     v0(x)sin2|Sdx 
o 

(18b) 

The total solution to Equation (15) 
is most easily obtained by method of 
Laplace transforms, [38]. That is, 

q (t) = -=- q (t ) sinu (t-t ) Mn '   (i) ^n o ""»n»* w
0' n 

+qB(to)0M«n(t-to) 

%   J        n 
(T) • 3inun(t-T)dT (19) 

where 

where the first two terms on the right 
represent the transient solution, and 
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the integral term is the particular so- 
lution» Thus» if p « p(x.t) is known 
for the bean, and the initial bean de- 
flection y_(x) and the initial vertical 

velocity v(x) are known for all 0<x<2, 

FR{t) can be found from Equation (16); 

qfl(t ) and qn(t ) can be found from 

Equations (18); q_(t) can be found from 

Equation (19); and finally, the deflec- 
tions are found from Equation (11). This 
procedure will now be illustrated by two 
examples. 

h 
p*w i"1 

i 

i»2 

i-3 

Figure 3. A single, moving patch of 
uniform pressure in the three 
loading intervals. 

EXAMPLE A - BEAM RESPONSE TO A SINGLE, 
MOVING PATCH OF UNIFORM PRESSURE 

Consider that a pressure patch of 
constant magnitude p ■ w, and of con- 
stant length t  ,  moves across the beam 
as shown in Figure 3. The position of 
the right end of this pressure patch, 
measured from point x ■ 0, is taken as a 
second degree polynomial in time, or 

at + bts (20) 

where a and b are constants. The veloc- 
ity of the moving pressure is a + 2bt 
and the acceleration is 2b. Thus, the 
case of constant velocity is the case 
where b = 0. The case of constant ac- 
celeration is also included, when b f  0. 
The three intervals of pressure loading 
shown in Figure 3 are now classified. 

In the entrance region, where the 
beam has not yet received the full 
length of the pressure patch, p is given 
bys 

w , 0 £ x <_ z 

0 ,  z < x <  i 

(21) 

where 0 < z < t^. The time interval in 
region 1 is defined as t , and is giv>n 
by Equation (20), when z ■» I ,  or 

t = i 
i 

t 
a , b = 0 

a . G 
15 + I W-+- 

by: 

b>0,G *  1 

b<0,G » -1 

(22) 

In the middle region, p is given 

P ■ 

0 < x < (z - i ) 
3 

3        ~ 

Z < X < I 

(23) 

where t3 s. & s. I.    The time required for 
the right end c€ the pressure patch to 
reach the right beam support is given by 
Equation (20) for z - i,  or 

a . G , Ha}2   .  A% 
IE + 7 V \B\    + "F ' 

b>0,G ■  1 

b<0,G = -1 

(2.4) 

In the exit region, :   is given by: 

f0  , 

P = 

0 < x < iz - I ) 
i 

(z - I )   <  x < I     (25) 
i 

where i <. z <, (I  + i,3). The time re- 
quired for the whole pressure patch tc 
exit is given by Equation (20) for 
z ■ % + £ , or 
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{J+C 
, b = 0 

v 
I' 2F + I VIS 

a\j   4'i+f. ) 
n h 

b>0, G= J 

b<0, G=-l 

(26) 

The values of F .;t), where 

i = 1, 2, 3 designates the interval, can 
now be calculated from Equation (16) us- 
ing Equations (21), (23), and (25), re- 
spectively.  The results are 

p  (t) = 2w 1 - cos 2JL 2 (27) 

ii2  i   ^nj  j 

(31) 

Likewise, t..e continuity conditions be- 
tween time regions 2 and 3 must match at 
t = t , or 

*n,(V =9n2(t2) 

(32) 

The values of qni(t) of Equations (31) 

and (32) can be calculated explicitly 
from Equation (30) using Leibnitz's rule, 
(38). The result is 

where 0 < t < t ; q .(t) »a .(t.) cosu (t V 
■%%t(t.)  sina,n(t - tj) 

(28) 

where t  < t <  t ; 
l 2 

Fn3(t> "pK? [cos^-cosn,] (29) 

where t  < t <. t . 
2 3 

The values of "Jn^t)» designed in 

the same way as E-jft)/ can now be cal- 

culated from Equation (19).  In all 
three intervals, 

%i^ 

+ qnj<tj)cosan(t - t..) 

+1T  j     Fn.(T)sinw (t - T)dt 
n •£ 

(30) 

where j = i - 1.  For i = 1, the initial 
values q (t ) and q (t„) are specified ^no o     ^no o      r 

by Equations (18).  For convenience, 
take t =0, the time at which the pres- 

sure patch begins its entrance at the 
left end of the beam.  For i = 2 the 
initial values needed to calculate q„„(t) ^n2 
are found from the continuity conditions, 
where the beam deflection and velocity 
must match in each time region at t = t . 
These conditions are expressed by 

c + I  F„*(T) COSUI (t - T) dt ni      n 

(33) 

where j ■ i -1. In Equations (30) and 
(33), the upper limit is a variable, and 
the lower limits are always constant, 
defined as (0, t,, t2) for i = 1,2,3 re- 
spectively. Thus, qn^(t) is calculated 

from Equations (30) and (33) where the 
initial values for each successive value 
of i are based on the previously calcu- 
lated values, at (i - 1). 

In the special case when the pres- 
sure patch moves at constant velocity, 
b = 0 in Equation (20), and the integra- 
tions of Equations (30) and (33) can be 
carried out explicitly using trigonomet- 
ric identities, where F.(t) is given by 

Equations (27) - (29). Numerical re- 
sults will be illustrated presently. 
When <Jni(t) is known, the dynamic de- 

flections of the beam in each time re- 
gion are given by Equation (11) , or 

yA(x,t) H %i (t)sin n,7X (34) 

n=l 

where the series can generally be trun- 
cated after just a few terms because of 
its rapid convergence. 
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Figure 4. Double, moving patches of 

uniform pressure in the seven 
loading intervals. 

EXAMPLE E - BEAM RESPONSF TO rw'-rr, 
MOVING PATCHES OF UNT 

Consider a double patch of pressure, 
each of magnitude p ■ %,, each of length 
It,  and separated by a constant distance 
lt.    Suppose that this ensemble moves 
across the beam as shown in Figure 4, 
where the total dimension, 21    + l  , is 
less than the beam length, i.    As For 
Example- A, the position z of the right 
end of the ensemble is taken in the form 
of Equation (20). 

In this example, it is convenient 
for the purposes of analysis to describe 
the pressure distribution in seven dif- 
ferent time intervals. The time t. at 

the end of the ith interval, when the 
right end of the pressure ensemble is at 
the location z = s., is given by Equa- 

b = 0 

tion [20), or 

a 

t. -■ 

a . G 
" IB * 1 m 4s.. b 0,G = 1 

b 0,G ■ -1 

(35) 

TABLE 1.  PRESSURE DISTRIBUTIONS FOR THE SEVEN INTERVALS OF EXAMPLE B 

Interval, 
i 

Maximum pressure 
front distance, 

8i 

Range of the 
pressure front 
distance, z 

Value of 
pressure, p 

Range of x 

1 8. - *, 0 i.  z < t, 
w 

0 

0 <. x <. z 

z < x <, I 

2 s, ■ l +i z      l   2 
s < z < s 

1 ~    ~   2 

0 

w 

0 

0 < x < z-s 
i 

z-s s  x < z 
l 
Z < X £ I 

3 s -21+1 
3       1   2 

s < z < s 
2       ~"  3 

w 

0 

w 

0 

0 < x <. z-s 2 
z-s2 < X < Z-Sj 

Z-S  £ X <. Z 

Z < X < t 

4 s, = I 
1* 

s  < Z < s 
3 —   —      k 

0 

w 

0 

w 

0 

0 <. x < z-Sj 

z-s3 <, X *.. z-s 

Z-S  < X < z-s, 
2              1 

z-s, <. x < z 

z < X <. % 
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TABLE 1.  continued 

Interval, 
i 

Maximum pressure 
front distance, 

s. 
l 

Range of the 
pressure front 
distance, z 

Value of 
pressure, p 

Range of x 

5 s5 ■ m s <. z < s. 

0 

w 

0 

w 

0 <. x <: z-Sj 

z-s, £ x £ x-s2 
Z-S. < X < Z-S,   ' 

2              1 

Z-S, <. X <. 1 

6 sc = l+i,+t, 6         1   * »si'is, 

0 

w 

0 

0 < x < z-s3 
Z-S  < X <. Z-S 

z-s2 < X <. 1 

7 s ■ 1+21  +i 
7          I   2 

s < z < s? 
0 
w 

0 < x < z-s3 
Z-Sj <   X <. 1 

The values of s, for each i, and the 

values oi p within those intervals con- 
sistent with Figure 4, are summarized in 
Table 1; the values of Fni(t) were cal- 

culated from Equation (16). The upper 
and lower limits on the integral in 
Equation (16) correspond to the extreme 
values of x of the inequalities given in 
Table 1. The results for F„<(t) are 
summarized in Table 2. ni 

TABLE 2.  INTEGRATIONS OF EQUATION (16) 
FOR EXAMPLE B, BASED ON THE PRESSURE 

DISTRIBUTIONS OF TABLE 1. 

Interval, 
i 

Values of fag*] • Fni(t), 

where Xn = "^ 

1 1 - cosX_z n 

2 cosX_(z-s ) - cosX_z n   i      n 

3 1 - cosX (z-s) n   : 

+ cosX (z-s,) - cosX_z n   i      n 

4 cosXn(z-s3) - cosXn(z-a ) 

+ cosX„(z-s.) - cosX z n   i      n 

5 coaXn(z-s3) - cosXn(z-s ) 

+ cosX (z-s.) - cosnrt n   l 

6 cosX„(z-s,) - cosX (z-s ) n   3      n   2 

7 cosX_(z-s.) - eosnir n   s 

The beam deflection response for 
this example is given by Equation (34) 
where q„i(t) is calculated from Equation 

(30). As in Example A, the initial val- 
ues q„(t) and q„0<t) needed to calcu- 

late qni<t) are found from Equation (18) 

where y„(x) and v (x) are given. For ■*o       o 
the special case when the beam is ini- 
tially in static equilibrium, qno<t) * 

q (t) = 0, as implied by Equations (18). 

Succeeding values of q .(t) are based on 

the preceeding initial value qna(t) and 

its derivative 4^4^) found from Equa- 

tion (33), where j = i-1. In this way, 
the conditions for continuity of the 
beam's deflection and its vertical 
velocity are preserved during the tra- 
verse time of the pressure ensemble. 
These continuity conditions, analogous 
to Equations (31) and (32) of.Example A, 
are simply 

*ni(V - W     (36a) 

Sni(V = qnj(tjl     (36b) 

where i - 1, 2, ... 7 and j ■ i - 1. 

KINEMATICS 

The vertical acceleration of a 
fixed point x on the beam at a given in- 
stant is 32y/3t2. This is not the total 
vertical acceleration of an element of 
pressure crossing point x with velocity 
v. As shown in Appendix I, this total 
vertical acceleration is given by  .,_. 

Uli 
dt2 

Ü* + 2v £L- + 
at' 3x3t 

ily. + 3v 3y_ 

3x2  3t 3x 

54 



^swras^p—TM— 
™**m T^W*W*±V. .U'JWRWUWHJM 

Thus, the vertical acceleration of a 
pressure element moving along a vibrat- 
ing beam is equal to the vertical accel- 
eration of the beam at the pressure 
point only in the limiting case of van- 
ishing velocity of traverse. If the 
pressure point were on a relatively 
heavy air cushion vehicle, then a pas- 
senger on this vehicle would experience 
the total vertical acceleration given by 
Equation (37). Further implications of 
this observation will be discussed pres- 
ently. 

STATIC DEFLECTIONS 

Suppose that the beam does not vi- 
brate at all as a known pressure distri- 
bution traverses it. The resulting sta- 
tic beam deflection, y (x,t), can be 

calculated as a function of any pressure 
distribution by using energy methods. 
The methods and results of Langhaar [39] 
are extended to include the effects of 
the elastic foundation. 

The static deflection is represen- 
ted by the series 

00 

ys ** y8(*'t) * E bn(t)sin TT (38) 
n-1 

which is of the same form as Equation 
(11) in the dynamic analysis, and also 
satisfies the boundary conditions given 
by Equation (4). The total energy, V, 
of the static system is expressed by: 

flp + ftT + ÜB + Uk (39) 

u El (y£)* dx » ir*EI Z. "%>S 
n-1 

(40c) 

The "spring" energy per unit length of 
the linear elastic foundation is given 
by kys

2/2. This total energy, summed 
over the length of the beam, is evalua- 
ted using Equation (38) 

/ 
yBdx 

n-1 

(40d) 

When Equations (40) are substitu- 
ted into Equation (39), the generalized 
coordinates b can be evaluated by the n 
principle of stationary potential energy. 
That is, the condition for the beam to 
be in static equilibrium is 

3V 
357 (41) 

where n = 1, 2, ..., i, .... When this 
derivative is evaluated, and i is then 
replaced by n, the result is 

/ 
p sin £y2L dx 

T^lL» . ir*T 2 A ka 

2V- 

(42) 

n* + 2T" +X 

where JJ and Q^ are the potential ener- 

gies of the pressure and end load, re- 
spectively; UB and 0k are the strain en- 

ergies of the beam and the elastic foun- 
dation, respectively. The first three 
Of these energy terms have been evalua- 
ted by Langhaar [39], using the assump- 
tions of classical beam theory and Equa- 
tion (38). The results are: 

- / p y8 
o 

so 

-IX / 
(40a) 

_ _j_ mrx j„ p sin —j— ax 

/  <*s>2dx-TrI> 
o n-1 

*b2 n 

(40b) 

The numerator of Equation (42) 
differs from Equation (16) only by a 

Thus, b can be written in constant, 
terms of Fn(t) or 

pAH* Fn(t) 

EKim)" + T(7mS,)2 + kl" 
(43) 

The results are summarized. In 
Example A, Equation (43) is used, where 
Fn(t) is given by Equations (27) - (29), 

the time intervals by Equations (22), 
(24) , and (26) , and the position of the 
pressure in time by Equation (20).  In 
Example B, the coefficients for the sta- 
tic deflections are also evaluated using 
Equations (38) and (43), with the cor- 
responding values of F (t) listed in 

Table 2 for each of the seven time inter- 
vals. 

These results can be applied to 
the design of guideway systems for 
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tracked air cushioned vehicles, where 
these vehicles are represented by moving 
pressure loads.  From the viewpoint of 
beam or guideway design, the maximum 
ratio of the dynamic to static deflec- 
tion at the bean's center is an impor- 
tant design parameter.  Prom the view- 
point of ride comfort for the passengers, 
the vertical acceleration of the moving 
pressure is an important design param- 
eter. With the aid of a computer pro- 
gram, these two design parameters can be 
studied as a function of the beam vari- 
ables: El, pA, I;  the beam constraints: 
T, k; the vehicle weight and length pa- 
rameters: w, I  ; and the vehicle motion 
parameters: a, b.  For the numerical ex- 
amples tried, values for dynamic and 
static deflections and accelerations 
usually differed by less than 1% when 
results for n = 4 and n ■ 6 were com- 
pared. Wider discrepancies occurred in 
the immediate neighborhood of the end 
supports, a result which can be expected 
from such series solutions. For most 
engineering examples, it appears that 
the inclusion of six normal modes, or 
n = 6 adequately represents solutions to 
this problem. 

constant over the whole vehicle length 
of 32 feet. Every span is assumed to 
be simply supported between piers. Xn 
this typical examples 

(44) 

(45) 

Et - 2.52 x 1011  lb-in* 

pA =• 0.188 lb-secVin2 

w a 65.1 lb/in. 

I    ■ 384 in (32 ft pressure length) 

%  = 900 in (75 ft span length) 

SPAN FREQUENCIES 

A study of guideway frequencies 
was first made using the example just 
cited as a reference case. For the 75 
ft. span, for instance, if there are no 
end tensions (T = 0) and no foundation 
effects (k = 0), w ■ 14.11 and u> ■ 

1 2 
56.4 radians/sec for the first (n * 1) 
and the second (n = 2) mode frequency, 
respectively. These results are shown 
in Figures 6 and 7 as the circled points, 

45 -L 

29 

H 9 M2H 9 

CROSS-SECTION 

DIMENSIONS IN INCHES 

Figure 5. A typical reinformed concrete guideway for a tracked air 
cushion vehicle. Side guide rails not shown. Cross- 
section properties: I = 63,000 in1», A « 837 in2. For 
concrete: pg « 150 lb/ft3; E = 4 x 10* psi. 

NUMERICAL EXAMPLES 

A typical guideway span of rein- 
forced concrete is shown in Figure 5. 
Dimensions are shown for one of the two 
identical inverted "U" sections which 
together carry one 50.000 lb. air cush- 
ion vehicle. Side-rails, which are nec- 
essary for vehicle stability under wind 
loads, are not included. As a first ap- 
proximation, it is assumed that the ve- 
hicle weight is equally distributed be- 
tween the two parallel spans, and fr.hr.' 
the air cushion pressure is unifoi  > j. 

where pA =0.188. These figures show 
that, while <D varies inversely as the 

square root of pA, the span length has 
the dominant effect on the frequencies 
for a span of a given stiffness. Also, 
an increase in stiffness has more effect 
in increasing the mode frequencies for 
short spans than for long spans. Finally, 
end tensions as high as T = 10' lbs. 
have little effect or wn. However, if T 

is an increasing negative force, u de- 

creases until T reaches the critical 
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Figure 6. First mode frequency for a 
simply supported span with- 
out a foundation, showing 
effects of end tension, stiff- 
ness and span length. 

Euler buckling load for the span. Then 
wi is zero, and the span is unstable at 
all frequencies. This occurs for in- 
stance for El = 8.22 x 1010 lb-in2, 
I  = 75 ft. and T = -106 lb., as shown 
in Figure 6. 

If a given span rests on a soil 
foundation between piers, the beam fre- 
quencies are always increased.  This is 
shown in Figure 8, where the soil is 
approximated as an elastic material. The 
value of k = 5000 lb/in2 approximates a 
moderate value for a "strong" soil, as 
listed by Richart and Whitman [40].  The 
effects of end tensions on to are negli- 

gible for k of this order of magnitude. 

SPAN DEFLECTIONS 

Static and dynamic deflections of 
two single spans with properties given 
by Equation (44) were calculated using 
the computer program. A 50 feet and a 
75 feet span were considered, each sub- 
jected to a force w£3 = 25,000 lbs. 
moving at constant velocities up to 500 
mph.  End tension and foundation effects 
were neglected in these calculations. 
For each span, two pressure patch 

■ 1 "T  r 
T                             T 

T T" 

12Q -    ""  Ä            '^^~—-sgft——' - 
n«2 jr 

IOO- ,j£sT*-r*. 
T=1(# %r 

Li*> 
8O-                                     ^ - 

*# *» ** 
0* 

#/ 
6C-                    */ — 

T=p 

#                   2^ 40 &^£-KP    . 

*f             ^^^^ 
*          ^^^^ 

H        ^P 
20/     j^r . 

"   JT  /*50ft 

iff __J«75ft 

O P111 1                 1 Ul 
W     ~Ö 2 A 6 8 IO 

GUIDEWAY STIFFNESS, El (Ib-in'xIO"! 

Figure 7.  Second mode frequency for a 
simply supported span without 
a foundation, showing effects 
of end tension, stiffness and 
span length. 

lengths were assumed: i% -  384 in. to 
simulate the passage of an air cushion 
vehicle, and l3  = 5 in. to simulate the 
passage of a point force.  In all of 
these cases, the maximum dynamic span 
deflections occurred at the midspan, or 
within 20 inches of it for the wider 
loading cases.  Unlike the static de- 
flections which reach their maximum val- 
ues when the beams are symmetrically 
loaded about the midspans, the maximum 
dynamic deflections occurred as the 
pressure loads were unloading at the 
exit end.  Timoshenko [11] observed this 
also for the point load case, which 
agrees favorably with the present caser> 
for I. 5 in. 

The dynamic deflection factors, or 
the ratio at midspan of the maximum dy- 
namic deflections tc- maximum static de- 
flections, were calculated at several 
constant velocities.  These results are 
shown in Figure 9.  For these spans and 
the two lengths of pressure leadings in- 
dicated, the dynamic deflection ratios 
reached peaks of about 1.8 at speeds be- 
tween 100 and 250 mph.  The interesting 
fact here is that this factor of 1.8 is 
almost independent of the length of the 
pressure loading, although the veloci- 
ties at which these peaks occurred does 
change with i%.     It is also noted that, 
if the pressure traverses fast enough 
the maximum dynamic deflection is 
actually less than the maximum static 
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Figure 8. Lowest two mode frequencies 
for a simply supported span 
on a typically strong soil 
foundation, showing effects 
of end tension, stiffness, 
and span length. 
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Figure 9. Dynamic deflections at mid- 
span for a single, constant 
pressure load moving at con- 
stant speed: EI=2.52 x 10" 
lb-in2, pA-0.188 lb secVin2, 
wH »25,000 lbs, T -k*0. 

deflection. This occurs for the 75 feet 
span, for instance, when v exceeds 400 
mph. 

The result that a pressure loading 
is capable of "outrunning" the static 
deflection capability of these spans is 
again illustrated by Figures 10 and 11. 
Here, the numerical results of the com- 
puter program for a pressure traverse 
across a single span were superimposed 
to simulate passage across identical, 
simple spans, all of which are initially 
at rest. The mean vertical displace- 
ments under a pressure load 384 in. in 
length are plotted as a function of the 
pressure front distance z shown in the 
inserted sketches on Figures 10 and 11. 
The mean vertical displacements y are 
based on the arithmetic average of beam 
deflection at 20 evenly spaced points 
under the pressure. Values of 7 ar® 
identical at z ■ 0 and at z - 900 in. 
This is because z ■ 0 for the right span 
corresponds to z« 900 for the identical 
left span shown in Figure 10. Thus, 
Figures 10 and 11 represent one cycle of 
mean deflection, which is repeated again 
every span length. In these Figures 
there is a definite trend toward smaller 
mean values of dynamic deflection under 
the air cushion vehicle at the higher 
constant speeds. 

200      400      eoo 
PRESSURE FRONT DISTANCE. I OnchM) 

Figure 10, Mean vertical displacements 
of a single pressure load 
traversing identical, simple 
spans: EI-2.52 x 1011 lbs-in2, 
pA-0.188 lb-sec2/in2, w-65.1 
lb/in, I »900 in, I »384 in., 
T»k=0. * 

LOAD ACCELERATIONS 

The total acceleration d2y/dt2 of 
the pressure load at a given instant of 
time (or for a fixed z) varies along the 
length of the loading. Average values 
for this acceleration, d27/dt2, were 
calculated in the same way as for 7 of 
Figures 10 and 11, where a pressure 384 
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Figure 11. Mean vertical displacements 
of a single pressure load 
traversing identical simple 
spans: EI=2.52 x 10u lbs-in2, 
pA«0.188 lb-sec2/in2, w»65.1 
lb/in, Ä-600 in, I  «384 in, 
T-k-0. ' 

«ou  1  !     '      ■■"■  ■     1 

•-—"is \ 

■ i 

\   ,s 

V 

c 

-4O0 

-eoc 
'  / / 
- / / y i 
.   1 
\   1 

< 

v,mph 

—  200 

-woo 
— 

1 

% 
* 

I 

Figure 12. 

aOO 4GO 600 
PRESSURE FRONT DISTANCE,£ (nch«ft) 

Mean vertical accelerations 
of a single pressure load 
traversing identical, simple 
spans: EI*2.52 x 10" lb-in2, 
pA-0.188 lb-sec2/in2, w=65.1 
lb/in, Ä-900 in, 
T*k=0. 

As=384 in, 

inches in length traverses identical 
spans at constant velocity. Figures 12 
and 13 show how these average vertical 
accelerations vary with the pressure 
front distance measured from the end of 
one typical span. Again, there Figures 
represent one cycle of mean acceleration 
of the pressure which is repeated every 
span length. 

Several observations can be made. 
First, at higher constant speeds, the 
mean vertical acceleration continues to 
increase. These increases always occur 
as the air cushion vehicle enters and 
exits a typical span. When the pressure 

tOO 2O0 300 400 500 
PRESSURE FRONT DISTANCE, 7 (inches) 

6O0 

Figure 13. Mean vertical accelerations 
of a single pressure load 
traversing identical, simple 
spans: EI=2.52 x 1011 lb/in2, 
pA=G.188 lb-sec2/in2, w=65.1 
lb/in, H=600 in, A =384 in, 
T=k=0. 

patch is near the midspan, vehicle speed 
has less effect on the mean vertical ac- 
celerations. In these Figures, the ve- 
locity is constant, so that the acceler- 
ation term in Equation (37) involving 
3v/3t is zero.  For values of v above 
200 mph, numerical results show that the 
remaining three terms of Equation (37) 
which comprises d2y/dt2 are all of the 
same order of magnitude. Thus, the term 
32y/3t2, the vertical acceleration of 
the guideway alone, is not a good indi- 
cation of the vertical acceleration of 
the moving vehicle. 

When the results of Figures 12 and 
13 are compared, it is concluded that, 
for the same vehicle speed, the mean ac- 
celerations can be reduced by decreasing 
the span length, where all of the other 
design variables remain fixed. The ef- 
fect of a span length reduction is to 
increase w , the span's natural fre- 

quency given by Equation (9). 

CONCLUSIONS 

Classical theory has been used to 
study the dynamic interactions of beams 
to segments of uniform, moving pressure. 
Uniform end tensions and elastic foun- 
dation effects were included in the 
Bernoulli-Euler beam model.  Results 
show that for a given span and total 
load, the maximum dynamic span deflec- 
tions for distributed and concentrated 
moving loads are nearly identical, al- 
though the velocity at which these de- 
flections occur are different.  Examples, 
utilizing anticipated TACV parameters, 
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indicate that beyond certain  velocities 
the mean value of the dynamic  deflection 
under a pressure segment decreases  with 
increasing speed.    Although the vehicle 
may "outrun" the static span deflections, 
it can never outrun the vertical accel- 
erations during traverse.    These accel- 
erations increased with  increasing   speed 
and approached 4 g's in  the examples 
considered.    In the case of a   simply 
supported span,  vertical accelerations 
can be decreased somewhat by  decreasing 
span length and/or applying end tension. 
The effect of end tension en   accelera- 
tion, however,  is relatively  small   and 
probably not a practical method fcr im- 
proving ride.    The high accelerations 
suggest the need for advanced  vehicle 
suspensions or control systems to insure 
passenger safety and comfort. 

It should be reiterated  that   these 
results are based on a simple mathemati- 
cal model of the vehicle/guideway system. 
Additional work is needed for detailed 
analysis of multiple pressure patches, 
multiple spans,  and trains o£ vehicles. 
Furthermore,  the effects of vehicle mass, 
suspension systems and air cushion  dy- 
namics must be considered.    As Bresse 
[33]   first pointed out in 1859, the de- 
flections of simple spans subjected to 
long flexible masses moving at constant 
velocity can become unbounded. 
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APPENDIX  - KINEMATICS 

^-x 

The position of  a mass less element 
of pressure at point   (x,y)   is specified 
by z - z(t)   and the magnitude of  its 
velocity by z ■ v » v(t).    The direction 
of v is always tangent to its trajectory, 
shown above by thfe dashed curves.     The 
y-directed velocity of this   pressure 
element is given by 

where the first term on the right is the 
component due to the moving trajectory 
(the vibrating beam). The second term 
is the y-component of the velocity v as 
shown above, where it is assumed that 

the slops of the trajectory, |£, is al- 

ways small compared to unity. When the 
"chain rules" are applied in the time 
differentiation of the total vertical 
velocity, the total y-directed accelera- 
tion is given by 

^..ÜZ+2vÜ + v^ if* + 21 & 
dt" at* 3x3t 3x2 3t 3x 

The partial derivatives involving 
y on the right side of this equation are 
evaluated from Equation (34), where 
three of the coefficients of these de- 
rivatives depend on velocity v. For the 
special case in which the position z of 
an element of pressure is given in the 
form of Equation (20), v -  a + 2bt and 
3v/3t = 2b. In this derivation, the 
points z and x are coincident. 
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DISCUSSION 

Mr. Naylor (Defense Research Establish- 
ment, Suffield): Is it correct that at 400 mph 
those 3 i accelerations only last for approxi- 
mately 10 milliseconds? If so, they would be 
hardly noticeable. 

Mr. Wilson: That is correct. Probably 
with damping they might be reduced.  For in- 
stance, at 300 mph, a 75 ft. span is passed in a 
second or less, so you are probably right. 
They do not last very long, and they only repre- 
sent the average under the vehicle. One end 
might be higher than the other, and I have 
already averaged this and tried to make it as 
low as possible. However, they could be twice 
as large because of the distribution under- 
neath the vehicle.  I do not know how good this 
model is because it is the very first model of 
moving pressures of a finite length, over a 
beam of finite length, that anyone has ever 
attempted to analyze. 

Mr. Michel (NASA Headquarters): Your 
analysis is for one span which I assume means 
that your initial condition had the vehicle 
traveling in a horizontal direction. When it 
leaves one span and enters the next one, the 
vehicle is no longer traveling in a hori"-)ntal 
direction.  Have you performed a multi-span 
analysis? 

Mr. Wilson: No.  This model consists of 
many simple spans end to end, and the aver- 

age accelerations represent those accelera- 
tions where part of the pressure wave is on the 
previous span and the other part of it is on the 
following span. 

Mr. Addonizlo (Gibbs & Cox): The ratio of 
the dynamic deflection to static deflection is 
unity at approximately 350 mph.  Is your de- 
sign based on the static condition for that 
particular case? 

Mr. Wilson: It just happens for this 
particular problem that this is true. One could 
work some other problem and shift these curves 
so that some other velocity would yield a dy- 
namic deflection factor higher than this. This 
is a particular sample problem.  I know that 
this deflection is higher after ihe vehicle 
leaves the span. The results that I showed 
only applied to the vehicle when it traversed 
a span. 

Voice:   In that case    .y are not values to 
be used for design purposes? 

Mr. Wilson:   Recent calculations show that 
the maximum occurs while the vehicle is on the 
span. One never obtains a higher value than at 
one of the speeds as it accelerates to the maxi- 
mum.  For Instance, if the vehicle accelerates 
from 0 to 400 mph, one would design fcr that 
speed inbetween those limits that yields the 
maximum dynamic deflection factor. 
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The design of a computer program system for determining the static, sta- 
bility, and dynamic response of structural members 1s described.   The 
programs are Intended to be man-machine Interactive with engineering 
user-oriented Input languages and suitable for use on time-sharing, re- 
mote batch, or standard batch computers Including certain limited ca- 
pacity machines used by some small design firms.   Such desirable design 
features as the capability to perform variation of parameter studies, 
to modify the problem statement as soon as a solution appears, and to 
couple the rapid analysis portion with optimization or sensitivity 
schemes are Incorporated In the system. 

INTRODUCTION 

Typically a structural designer wishes to 
efficiently evaluate the relative merits of can- 
didate design configurations.   This 1s accom- 
plished by coupling an analysis capability to a 
trial and error scheme or to the logic of formal 
optimization or sensitivity procedures.   A new 
dimension to the design process 1s made avail- 
able by the emerging development of rapid ac- 
cess computers.   Thj philosophy underlying a 
f.imputer code system for Interactive machines 
1s discussed here to Illustrate the potential 
exploitation of this dimension.   Particular 
attention is devoted to a system oriented to 
the engineer concerned with structural members 
or mechanical elements. 

Although usually involving specific prob- 
lems, there has been a steady increase 1n the 
use of the computer es a tool for the engineer. 
Among the many computer programs available to- 
day are few that are useful to the majority of 
engineers in any given discipline and fewer 
still that are readily accessible to the engi- 
neer associated with small concerns.   This sit- 
uation stems as much from the lack of general- 
ized solutions to broad classes of problems as 
it does from the heretofore unavailability of 
universally accessible, large capacity, re- 
liable computer systems.   With contemporary im- 
provement in analysis and design methodologies 

and computer hardware technology we can antici- 
pate rather astounding changes in the role the 
computer plays in the activities of the engi- 
neer.   Not only will the mundane tasks of hand- 
book engineering be expedited but a renaissance 
of the design process Itself can be expected. 
Continue» progress should signal a high degree 
of transparancy of the computer for the prac- 
ticing engineer in that he will be virtually 
unaware that a computer is being used to gain 
desired information.   The discussion here con- 
cerns the design of structural member analysis 
computer programs which are developed with this 
theory of the future engineer in mind.   Full 
advantage is taken of new structural analysis 
techniques and rapid access computers, in par- 
ticular time-sharing systems. 

A brief discourse on time-sharing computing 
is 1n order.   Time-sharing is somewhat of a mis- 
nomer and is better called computer-sharing. 
It 1s a technique which takes advantage of the 
difference 1n speed between the electronics sec- 
tion of the computer, commonly known as the cen- 
tral processing unit, and the more mechanically 
dependent peripheral devices which serve as the 
input/output units.   The central processor is 
literally thousands of times faster than the 
input/output terminals and therefore is capable 
of servicing more than one terminal if properly 
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programmed.    In fact it 1s quite common for 
these computer-sharing systems to service about 
50 terminals simultaneously.   An individual at 
a terminal feels that he is using the computer 
exclusively. 

These computer-sharing systems can be ac- 
cessed from anywhere that a telephone connection 
can be made between the locations of the user 
and the computer.   The terminal device Is an 
ordinary 100 word per minute teletype unit which 
uses the normal voice grade telephone system as 
a communications network.   The terminal unit 1s 
small enough to be placed on a desk, durable 
enough to be transported In the trunk of a car, 
and light enough to be carried in a suitcase by 
a man of average physical stature.   Recent ad- 
vances are leading to still lighter, smaller, 
and more reliable terminals.   The user of this 
system simply makes an ordinary telephone call. 
He dials a standard length telephone number and 
is "answered" by a computer.   He Is connected 
to a communications device «iiich is electron- 
ically Interfaced with the computer.   When the 
phone call is made and the connection estab- 
lished the computer sends a message to the term- 
inal requesting the user to identify himself by 
typing a previously assigned identification 
number.   If this 1s done In the prescribed man- 
ner the user may proceed to use the computer in 
whatever manner he desires. 

ORGANIZATION OF THE PROGRAMS 

The type of computer program system con- 
sidered here is logically comprised of an ex- 
tensive input routine, an analysis package, and 
an output code.   The input package utilizes a 
user-oriented vocabulary (thesaurus) and numeri- 
cal information to construct a file of raw data 
which describes the user's problem and his out- 
put specifications. 

The analysis package accesses the raw data 
files, performs the required computations, and 
generates output files.   COM/CODE Corporation 
has developed a computer program system (LINK) 
of the type described here, which executes anal- 
yses using a generalized 11ne-so1ut1on technol- 
ogy.   This analysis applies to bars, spring-mass 
systems, torsional bar systems, beams, rotating 
shafts, thin-walled beams, strings, arches, mem- 
branes, plates, grillages, thick shells, thin 
shells, and simple frameworks.   Acceptable re- 
sponses are static, stability, free and forced 
dynamics. 

The output routine accesses all appropriate 
output files and prints solutions in the graphi- 
cal or tabular format specified by the user. 
Its task completed, the output package returns 
the control to the Input package to permit the 
user to modify the problem or introduce a new 
problem. 

INPUT 

The heart of an effective Interactive re- 

relationship between the designer and the com- 
puter 1s an Input language which permits the 
user to describe his problem in his own terms 
and an input logic which assists the user in 
establishing a well-posed problem. This lang- 
uage and the concomitant logic should be such 
that the user need possess minimal knowledge of 
the mechanics of the time-sharing computer and 
no knowledge of the analysis routine. Should 
the user request a solution which is beyond the 
capability of the analysis, he should be so in- 
formed. 

Input logic checks should monitor both the 
physics of the problem and the adequacy of the 
information given. Thus a (dramatically un- 
stable member should be noted, just as certain 
geometric and/or material properties should be 
prescribed for each section of the member and 
the sum of the lengths of the sections should 
equal the total length. 

The Input language itself should be con- 
structed of alphanumerlcs since the engineer 
thinks In such terms, e.g., "a force of 100 lbs. 
Is located at 10 ft. from the left end." The 
input compiler must recognize the engineer's 
vocabulary and upon sorting through the given 
data and checking the logic, place the input In- 
formation in a form acceptable to the analysis 
package. The type of language appropriate to 
describe an analysis problem can be illustrated 
with the beam of Fig. 1. Suppose the first two 
natural frequencies are desired, then the com- 
plete Input could be: 

BEAM 

FREE DYNAMICS 

LENGTH»30,LEFT=PIN,RIGHT=FREE 

EeO»3OE6,ieO».7854,SUPP0RT925 

MASS@0=.002300 

CMASS010=.05176020».05176830-.05176 

FREQUENCIES^ 

The Ingredients of this problem description are 
almost self-evident.   It is assumed that all 
distances are measured from the left end of the 
beam. 

The desire to study the sensitivity of a 
response to a variation 1n a parameter can be 
indicated by the addition of a simple Input 
statement.   For example, if 1n the problem of 
F1g. 1 the effect on the frequencies of 10 In- 
crement changes of 0.5 in moment of Inertia Is 
sought, then the following command would be 
initiated: 

VARY,I,0.o.lö?0 

ANALYSIS 

It 1s essential that a universal yet rapid 
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Steel shaft . 
* 0.7854 in* 

, - 1.0 In 
mass ■ 0.0023 lb-sec fin/In 2.t 

Concentrated weights (3) 
r   » 3.35 in 

mass - 0.05176 lb-sec2/1n 

FIG. 1    STEEL SHAFT 

analysis be available as the analysis portion 
of the program.   In the case of the line-solu- 
tion (Initial parameter, transition, or trans- 
fer matrix) method [1], which 1s essentially a 
technique for converting a boundary value prob- 
lem Into an Initial value problem, appropriate 
structural members or mechanical elements are 
those that exhibit either naturally or artifi- 
cially a chain-like topology.   The desired re- 
sponse data and necessary descriptive Input in- 
formation for this class of members are usually 
small; consequently, problems involving such 
members are Ideal for treatment with computer 
systems with relatively slow input/output capa- 
bilities.   The line-solution technique can be 
Implemented on computer systems of moderate 
capacity and can be fully systematized In that 
all physical, geometric, material, and loading 
occurrences can be automatically taken into 
account. 

OUTPUT 

As long as a comprehensive analysis package 
1s usej, the output portion of the computer 
program is simply a data processing device which 
prints out the requested Information In a use- 
ful, attractive format. Output options should 
Include any or all of the displacements, slopes, 
moments, forces, or stresses printed or dis- 
played in tabular or graphical form at specified 
increments along the member. Upon request the 
reactions and maximum values of variables 
should be given. Critical axial forces and 
frequencies should be available with or without 
mode shapes. The designer should be permitted 
to graphically observe the effect on the re- 

sponse of a member of varying a parameter by re- 
questing a plot of a particular response as a 
parameter varies over a specified Increment, 
e.g., a plot of critical axial load vs. a range 
of values of a spring constant may be desired. 
Output for the problem of Fig. 1 could simply 
be: 

FREE DYNAMICS PROBLEM 

NAT 
MJ»DE_ FREg.  

1 .78013E 03 
2 .19665E 04 

REPETITIVE ACCESS TO THE PROGRAM 

A VARY option permits the designer to observe 
how a response is affected by a variation in 
parameters. Although this type of sensitivity 
study may be adequate to fulfill the designer's 
needs, frequently the trial and error designer 
wishes to analyze one design configuration at a 
time and adjust the configuration on the basis 
of the response of the first design. This can 
be accomplished in some cases by permitting the 
user to continue with a problem by supplementing 
the data already supplied and store».. For ex- 
ample, in the case of the beam of F1«j. 1, we 
could continue to include additional effects 
with the sequence: 

D0 Y0U WISH T0 C0NTINUE WITH THE SAME 
PROBLEM. TYPE YES 0R NU. 
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programmed.    In fact It is quite common for 
these computer-sharing systens to service about 
50 terminals simultaneously.    An individual at 
a terminal feels that he is using the computer 
exclusively. 

These computer-sharing systems can be ac- 
cessed from anywhere that a telephone connection 
can be made between the 'ocations of the user 
and the computer.   The terminal device is an 
ordinary 100 word per minute teletype unit which 
uses the normal voice grade telephone system as 
a communications network.    The terminal unit is 
small enough to be placed on a desk, durable 
enough to be transported in the trunk of a car, 
and light enough to be carried in a suitcase by 
a man of average physical stature.   Recent ad- 
vances are leading to still lighter, smaller, 
and more reliable terminals.   The user of this 
system simply makes an ordinary telephone call. 
He dials a standard length telephone number and 
is "answered" by a computer.   He is connected 
to a communications device which 1s electron- 
ically interfaced with the computer.    When the 
phone call is made and the connection estab- 
lished the computer sends a message to the term- 
inal requesting the user to identify himself by 
typing a previously assigned identification 
number.    If this is done in the prescribed man- 
ner the user may p^ceed to use the computer In 
whatever manner he desires. 

ORGANIZATION OF THE PROGRAMS 

The type of computer program system con- 
sidered here is logically comprised of an ex- 
tensive input routine, an analysis package, and 
an output code.   The input package utilizes a 
user-oriented vocabulary (thesaurus) and numeri- 
cal Information to construct a file of raw data 
which describes the user's problem and his out- 
put specifications. 

The analysis package accesses the raw data 
files, performs the required computations, and 
generates output files.   COM/CODE Corporation 
has developed a computer program system (LINK) 
of the type described here, which executes anal- 
yses using a generalized i1ne-?olution technol- 
ogy.   This analysis applies tc bars, spring-mass 
systems, torsional bar systems, beams, rotating 
shafts, thin-walled beams, strings, arches, mem- 
branes, plates, grillages, thick shells, thin 
shells, and simple frameworks.   Acceptable re- 
sponses are static, stability, free and forced 
dynamics. 

The output routine accesses all appropriate 
output files and prints solutions In the graphi- 
cal or tabular format specified by the user. 
Its task completed, the output package returns 
the control to the Input package to permit the 
user to modify the problem or introduce a new 
problem. 

INPUT 

The heart of an effective Interactive re- 

relationship between the designer and the com- 
puter is an input language which permits the 
user to describe his problem in his own terms 
and an input logic which assists the user in 
establishing a well-posed problem.   This lang- 
uage and the concomitant logic should be such 
that the user need possess minimal knowledge of 
the mechanics of the time-sharing computer and 
no knowledge of the analysis routine.   Should 
the user request a solution which 1s beyond the 
capability of the analysis, he should be so In- 
formed. 

Input logic checks should monitor both the 
physics of the problem and the adequacy of the 
Information given.   Thus a kfne;.iatically un- 
stable member should be noted, just as certain 
geometric and/or material properties should be 
prescribed for each section of the member and 
the sum of the lengths of the sections should 
equal the total length. 

The Input language itself should be con- 
stricted of alphanumerics since the engineer 
thinks in such terms, e.g., "a force of 100 lbs. 
1s located at 10 ft. from the left end."   The 
input compiler must recognize the engineer's 
vocabulary and upon sorting through the given 
data and checking the logic, place the input In- 
formation in a form acceptable to the analysis 
package.   The type of language appropriate to 
describe an analysis problem can be Illustrated 
with the beam of Fig. 1.   Suppose the first two 
natural frequencies are desired, then the com- 
plete input could be: 

BEAM 

FREE DYNAMICS 

LENGTH=30,LEFT=PIN,RIGHT=FREE 

E90=30E6,190=.7854,SUPP0RT025 

MASS90=.002300 

CMASS910».05176920=.05176930".05176 

FREQUENCIES»2 

G0 

The Ingredients of this problem description are 
almost self-evident.   It 1s assumed that all 
distances are measured from the left end of the 
beam. 

The desire to study the sensitivity of a 
response to a variation In a parameter can be 
Indicated by the addition of a simple Input 
statement.   For example, if In the problem of 
Fig. 1 the effect on the frequencies of 10 In- 
crement changes of 0.5 1n moment of Inertia Is 
sought, then the following command would be 
Initiated: 

VARY,1,0.5.1090 

ANALYSIS 

It is essential that a universal yet rapid 
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Steel shaft . 
I   * 0.7854 1rT 
r, = 1.0 in 

z 2 
mass ■ 0.0023 lb-sec /in/in 

Concentrated weights (3) 
rz = 3.35 in 
rnass ■ 0.05176 lb-sec /in 

FIG. 1    STEEL SHAFT 

analysis be available as the analysis portion 
of the program.   In the case of the line-solu- 
tion (Initial parameter, transition, or trans- 
fer matrix) method [1], which is essentially a 
technique for converting a boundary value prob- 
lem into an Initial value problem, appropriate 
structural members or mechanical elements are 
those that exhibit either naturally or artifi- 
cially a chain-like topology.   The desired re- 
sponse data and necessary descriptive Input in- 
formation for this class cf members are usually 
small; consequently, problems involving such 
members are Ideal for treatment with computer 
systems with relatively slow input/output capa- 
bilities.   The line-solution technique can be 
Implemented on computer systems of moderate 
capacity and can be fully systematized In that 
all physical, geometric, material, and loading 
occurrences can be automatically taken into 
account. 

OUTPUT 

As long as a comprehensive analysis package 
1s used, the output portion of the computer 
program 1s simply a data processing device which 
prints out the requested Information In a use- 
ful, attractive format. Output options should 
Include any or all of the displacements, slopes, 
moments, forces, or stresses printed or dis- 
played in tabular or graphical form at specified 
increments along the member.  Upon request the 
reactions and maximum values of variables 
should be given. Critical axial forces and 
frequencies should be available with or without 
mode shapes. The designer should be permitted 
to graphically observe the effect on the re- 

sponse of a member of varying a parameter by re- 
questing a plot of a particular response as a 
parameter varies over a specified Increment, 
e.g., a plot of critical axial load vs. a range 
of values of a spring constant may be desired. 
Output for the problem of Fig. 1 could simply 
be: 

FREE DYNAMICS PROBLEM 

NAT 
MgDE_ FREQ  

1 .78018E 03 
2 .19665E 04 

REPETITIVE ACCESS TO THE PROGRAM 

A VARY option permits the designer to ob«3rve 
how a response Is affected by a variation In 
parameters. Although this type of sensitivity 
study may be adequate to fulfill the designer's 
needs, frequently the trial and error designer 
wishes to analyze one design configuration at a 
time and adjust the configuration on the basis 
of the response of the first design. This can 
be accomplished in some cases by permitting the 
user to continue with a problem by supplementing 
the data already supplied and stored. For ex- 
ample, in the case of the beam of F1g. 1, we 
could continue to include additional effects 
with the sequence: 

00 Y0U WISH T0 CONTINUE WITH THE SAME 
PROBLEM. TYPE YES 0R N0. 
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YES 

RINERTIAP0=1.0 

CR0TARY01O--*. 35020=3.35030=3.35 

GO 

FREE DYNAMICS PROBLEM 

NAT 
MgDE_ FR§g_  

1 .71725E 03 
2 .16622E 04 

00 Y0U WISH TO CONTINUE WITH THE SÄHE 
PROBLEM. TYPE YES OR N0. 

YES 

FORWARD WHIRL 

GO 

SOLUTIONS 

FREE DYNAMICS PROBLEM 

MODE 
NAT 
FREQ 

1 
2 

.85265E 03 

.24005E 04 

A MODIFY command can be included to permit 
the user to reenter the program upon the com- 
pletion of a solution to change the magnitude 
or location of any geometrical or material 
parameter or occurrence. No other Input or out- 
put alteration need be made; the response Is 
automatically computed for the new configura- 
tion. Since a common modification is to remove 
some force or support, a valuable command 1s 
that of DELETE, which will effectively remove a 
prescribed variable. 

Frequently a design or analysis problem 1s 
not completed at one sitting and the user would 
like to begin again where he left off, perhaps 
the previous day. This desire can be taken in- 
to account by storing input data until the next 
terminal connection. A REDO command given by 
the user would provide the option of activating 
the previous data. Without this Instruction, 
it would be assumed that the problem at hand is 
new and all old data would be cleared from the 
files. 

A truly viable system should permit the 
rapid analysis program to be used in conjunction 
with automated optimization and sensitivity 
schemes. That 1s, there should be the option 
of letting the logic of an optimization or sen- 
sitivity computer program determine and regulate 
modifications in parameters. Preferably this 
should be accomplished so that only a portion 

of the response computation need be repeated at 
each iteration. If this is not feasible, then 
as a minimum the relatively Inefficient regen- 
eration of a new input data file and the logic 
associated with placing this data 1n the form 
acceptable to the analysis package must be 
avoided at each Iteration. This latter goal 
is achieved simply by circumventing the Input 
package after the first analysis. 

SUMMARY AND CONCLUSIONS 

A possible logic behind the development of 
a design engineer oriented computer program sys- 
tem for the analysis of structural members has 
been explained. It was Intended to take ad- 
vantage of contemporary and near-future computer 
hardware by providing '.he engineer with an ac- 
cessible, versatile, easy to use design and 
analysis tool. Because of the mobility of input 
terminals, this system 1s best Implemented on 
computers with true time-sharing or remote 
batch, options. However, the type of Input com- 
piler required to accept user-oriented Input can 
be developed for pure batch computers. In such 
cases the degree of Interactivity between the 
user and the machine 1s usually severely re- 
stricted relative to the time-sharing version. 
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DYNAMIC RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM 

ELASTIC-PLASTIC SYSTEM SUBJECTED TO A HALF SINE PULSE 

Martin Wohltraann 
Structures and Mechanics Department 

Martin Manetta Corporation 
Orlando, Florida 

The dynamic response of a single-degree-of-freedom system subjected to 
a half sine pulse, where the resistance function is elastic-plastic, has been 
analyzed. Maximum displacement, time to maximum displacement, and 
work done are the response quantities computed. Results are presented 
in design charts in non dimensional form as a function of two parametric 
ratios. A numerical example is included. 

INTRODUCTION MATHEMATICAL FORMULATION 

Much analytical work has been done in determining the 
dynamic response of a single-degree-of-freedom(SDOF) system 
subjected to various types of pulse loadings where the restoring 

force or resistance is one of the following: 

_1_   Linear with displacement (elastic) 

_2_   Constant with displacement (rigid-plastic) 

3_    Linear with displacement followed by constant 
"      with displacement (elastic-plastic) 

4_   Nonlinear with displacement. 

Figure 1 illustrates these resistance functions. The analysis 
most often presented in textbooks and handbooks is the one 
involving linear elasticity (Figure la). Reference I presents 
a treatment of systems involving the first three categories, 
subjected to rectangular and triangular pulse loadings. Cate- 
gory 2 (rigid-plastic) was extended to include response to 
sawtooth and parabolic pulse loadings, the results of which 
were presented in reference 2. Reference 3 extends category 
3 to include response to a sawtooth pulse. The present work 
analyzes the category 3 (elastic-plastic) SDOF system subjected 
to a half sine pulse loading. 
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FIGURE 1.  RESISTANCE FUNCTIONS 

Symbols. 

a,b 
R 
A.C 

A j^2« 
B,32, 
B3 
K 
R 

Km 
M 

«t) 
W 

X 

XT 

*e 

Xm 
t 

«e 

«m 
T 

TN 
wm 

constants of integration 

amplitude of loading pulse (lb) 
constants 

equal to various mathematical expressions 

stiffness (lbs/in) 

resistance Ob) 

maximum resistance (lb) 
mass (lb-sec2/in) 

forcing function (lb) 

weight (lb) 

displacement (in) 

displacement at t - T 

displacement at t = te (peak elastic displacement) 

maximum displacement (in) 

time (sec) 

time to elastic displacement (sec) 

time to maximum displacement (sec) 

pulsewidth (sec) 

system natural period (sec) 

maximum work done by loading pulse (in-lb) 

maximum possible work done by loading pulse 
(in-lb) 

impulse 

first derivative with respect to time 

second derivative with respect to time 

67 



The system analyzed is illustrated below. 

SYSTEM 

777777 

There are two distinct cases to be solved. Case I is for the 
condition where the time (te) to reach the end of the elastic 
deflection (Xe) occurs before the end of the loading pulse (T) 
and Case II where tg is greater than T. The equations of mo- 
tions and the regions in which they are applicable for each of 
the cases are: 

(LkS) 

Case I f8 
V T 

<i.o] 

LOADING 
FUNCTION 

RESISTANCE 
FUNCTION 

SYSTEM 
»«PLACEMENT 

A Km 
* 

X 
«Nil 

7  ! 
yi i JiSr '• 

f ■* :»\, (LkS) 
/*! MSM< yth'.u?,*'. 

t»     T X«    XT   »m ' t«   T    1»" 
TIME (SECS) X(IW TIME(SECS) 

Region        Equations of Motion 

IB MX = f (tMCX (KX<XT<Xe 

Ktao, 
2B MX = -KX XT<X<Xe<Xm 

T<Kte 
3B MX = -Rn V«<Xn. 

«e<««m 
Case I Solution 

The equation of motion for region IA is: 

MX* f(t)-KX. 

with f (t) = B sin(ir—(equation (1) may be written as: 

MX+ KX =Bsin(*4) 

The forced solution of equation (2) is: 

B/K X(t) 

W ] 
in(»>p 

(I) 

(2) 

(3) 

while the complementary solution is: 

2» 2» 
X(t) = Asin(~t) + C cos(—t) (4) 

Xm = maximum displacement 

Xe   = maximum elastic displacement 
tg    = time to maximum elastic displacement 
tm   = time to maximum displacement 

where A and C are constants determined from initial condi- 
tions. 

The general solution is then: 

X(t)-Asin(^t) + Ccos(^-t) 

Region Equation of Motion 
IA MX = f(t)-KX 

2A MX = f(t)-Rm 

3A MX  = -Rm 

Case IIQ?    >l.o) 

LOADING 
FUNCTION 

0OKXe 

XeOi<KT<Km 

te<t<T 
Xx<X<Xm 

SYSTEM 
DISPLACEMENT 

(IN.) 

TIME (SECS.) 

Xf Xi     Xm 

X (IN.) 

* H<?>2] 
B/K .     .       i 

21   «"(»^p- (5) 

Applying the initial conditions X = 0 and X = 0 at t = 0, the 
constants are: 

C = 0 

and 

A = 
B/K 

T     r    1   TN 21 2(™> L'T'T* J 
Thus region IA solution is: 

B/K 
X(t) = 

,i(. T] l®n(*y) 

W] 
(6) 
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which may be written in nondimensional fonn as: with 

W) 
B/K 

sin(*—) m2) 
(7) 

The velocity for region IA is: 

(B/KT)w 
X(t) = 

--BH) 

eos(w—) 

(8) 

or in nondimensional form: 

X(t)        t_ 

(B/KT)" 

- [«»*] 1 

COS(*y) 

(9) 

The next step is to determine the displacement and veloc- 
ity, when the displacement reaches the elastic displacement 
(\). These quantities are the initial conditions for region 
2A. 

Referring to the resistance function shown in an earlier 
illustration, the elastic displacement is: 

Xe-^ps^Ml). (10) 

Substituting equation (10) into equation (6), we have: 

,Rm .  r    I   TN 2"|        .  ,  »e 4 

I   TO    .   r.2tT /el 

(11) 
Equation (II) was solved for (te/T), for various combina- 

tions of the parameters: (Rm/B) and (2»T/TN) with the aid 
of the IBM 1130 computer. Results are plotted in Figure 6 
and tabulated in Table HI. 

In region 2A the loading pulse has not been completed 
(te < t < T), and the resistance is constant (X > Xe). The 
equation of motion is: 

MX = f(t)-Rn (12) 

«t) = Bsin(*d 

MX = Bsin(» 

Integrating equation (14) twice gives: 

•        BT t      Rm 
X = -(—-)cos(tf--)--— t + a 

Mr T       M 

(13) 

(14) 

(15) 

(16) 

The initial conditions for region 2A are obtained from the 
end conditions in region I A. Substituting t = te into equa- 
tions (6) and (8), the initial displacement and velocity are: 

X(te) = 
B/K 

sin (*_£.) 

Km   B B 
= (_><_> ä A, (T) 

X(te) = (—)    r    , TN21   «»(*Y) 

(17) 

-cos ■'<£>• (18) 

Setting the LHS of equations (IS) and (16) equal to equa- 
tions (18) and (17), respectively, and setting t = tg in the 
RHSof(15)and(16),gies: 

B BT 
*\& = -(—)<=os(ir—) 

KT 

B 

Mir 

Nn    B 

M 
tj + a (i9) 

B T 
A« (K> - T (T) = -uV **¥> 

Rm    i 
-^V+ate + b. (20) 

Solving for a and b (the integration constants) in equations 
(19) and (20) yields: 

V   Rm 
■•■.«B^B^-'frf^T* (21) 



B     B T2 *-e    *m   ■> 

B   *e    B T ^   Rm   -, 
"■i§¥-iiV^-fr^-T^ (22) 

Substituting equations (21) and (22) into equations (IS) and 
(16), and after some rearrangement, the displacement and 
velocity in region 2A become: 

B   ! t   V     |   Rm   2»T2rt 

x(t)=(^iA1+B1eF-T)--(-r)(W) |cp 

«el2 T 2 r       ' *el 

^^'H]8"^!   (23) 

B    ( T 2 r        t «el 
X(t) - (^) J B, -4»(~)   [COS(*-)-CO.(*Y)| 

The initial conditions for region 3A are obtained from the 
end conditions in region 2A. Substituting t ■ T into equa- 
tions (23) and (24) gives: 

X(D«<|) A, + B,(l-—) 

-T(y)(T?r) Ll T J 

T 2     h 

T 2 r    C! *e 

-A2(|) 

In region 3A the equation of motion is: 

(25) 

(26) 

MX > -R 'm 

or 

X « - 3 
M 

(27) 

(28) 

Integrating equation (28) twice gives: 

X-~-t + . 

X - 3jl t2 ♦ at + b. 

(29) 

(30) 

Making use of the initial conditions at t * T from equations 
(25) and (26) and setting t = T in (29) and (30), we have: 

w-Aa(f)"'TH T2+,T+b 

Rm 
X(t) - B2 W" T+ a. 

(31) 

(32) 

Solving for a and b in equations (31) and (32) gives: 

T (33) '*2 (If)   +  -M 

(34) 

Substituting equations (33) and (34) into (29) and (30), 
the displacement and velocity in region 3A are: 

»■©^-■»[■•THGF) 

rar.» - -il (35) 

The time to maximum displacement is found by setting 
equation (36) equal to zero and t = t,,,: 

X<W ■ ° B2 + 

or 

Thus time to maximum displacement is: 

(37) 

(38) 

tm      ,  , 
T &m (39) 
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Maximum displacement it obtained by substituting equation 
(39) into equation (35). After tome rearrangement tin; maxi- 
mum displacement it: 

«.-f ^Hfife (40) 

■ B- 09 
For design purposes it is convenient to work with the 

ratio of the maximum displacement (Xm) to the peak elastic 
displacement (Xj). With: 

m 
this ratio becomes: 

Xm 
Xe 

B3 
Rm/B 

(41) 

(42) 

An IBM 1130 program was written to compute values \j' 
Bj, Bj, and B3 and thus evaluate the ratio Xin/Xe and tm/T 
at a function of the parameters (Rm/B) and (T/TN). 

The maximum work done by the pulse on the mass is 
given by the expression: 

xm 
*m- / f(t)dx (43) 

which may be written as: 

T 
wm * fmiX)it. (44) 

For regions 1A and M equation (44) becomes: 

te T 

«0 (X) dt + 

O te 

wm - A') <x> dt + J   «0(X)dfc (45) 

With fit) = B sin (n~) and substituting equations (8) and 
(24) into equation (45) gives: 

*ra cos(»—) 

•~Ps>*])> 

te 

•cos (* 

(46) 

Integration of equation (46) provides: 

B2 

W)     \     Wji ^   ' 
1 -2 

(47) (' 

®]Hf)]-*Ö*2(-f) 

As shown in reference 1 the maximum possible work done 
by the pulse occurs when the resistance is zero and is given by: 

W„ 
H2 

P     2M 

The impulse H is obtained as follows: 

T T 

H - f f(t) dt * j Asin(iri) dt » —Bt. 

148) 

(49) 

Substituting equation (49) into equation (48) and after 
some manipulation, the maximum possible work done becomes: 
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v©&- (50) 
The initial conditions for region 2B are taken from the end 

condition* of region IB by setting t ■ T in equations (6) and 
(8), namely: 

It is convenient to divi.k' equation (47) by (SO) to form 
the nondimensional work done ratio: 

*m     .     fraV F.-rWl \.2f jA 
     "—      I —=r!     •—r<"5T» I  <smz/»-It-l wp      :«.   iTJL  4'TJJ     [  TJ 

iS 
fe")filSP1 *fflm ITN 

T 

1 + CO» 

1 (B/K) 

(55) 

F5)    (-¥]i 

(56) 

Setting equations (55) and (56) equal to LHS of equations 
(53) and (54), respectively, again setting t = T on ih: RHS, 
the equations for calculating the integration constant* A and 
C are ..Stained: 

A.llrr- A + Ccosl (57) 

(51) 

Solution for A and C in equations (57) and (58) provide: 

A-¥ X- 

This concludes the Case 1 analysis. The pertinent mathe- 
matical relations are summarized in Table I. Maximum displace- 
ment, time to maximum displacement, time to elastic peak 
displacement, and the work done ratios are presented in 
Figures 2,3,4, and 6 as functions of the parameters (Rm/B) 
and T/TN). A portion of the computer program output from 
which the figures were drawn is presented in Table Ml. 

CASE II SOLUTION 

The equations of motion and its solution for region IB are 
the same as region 1A. Proceeding to region 2E", the equation 
of motion is: 

and 

C ■ 

i  (TN\ 

(60) 

Substituting equations (59) and (60) into equations (53) and 
(54), the displacement and velocity in region 2B become: 

X(t) 4— 

MX + KX - 0 

for which the solution is: 

+ Ccos (TNJ 

(52) 

(53) 

%^j#j I H^M^XT)] 

(If) *[^(T)}*W -cos 

The velocity in region 2B is obtained by taking the deriva- 
tive of equation (53): 

(61) 

t-T^    i 
HS?XT)] 
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+ C08(T55")CO* KMJH^-M 
(62) 

The next step is to determine the time (te) to reach the peak 
elastic deflection (X,,). This is accomplished by setting t = te 

in equation (61) and equating this to equation (10) as follows: 

w-w® 

^<mm<mm 
(63) 

Equation (63) has been solved for te/T > 1.0 on the IBM 
1130 computer for various values of the parameters (\ 
and 

tt 
'{¥) 

The displacement and velocity in region 3B are the same as 
in region 3A, namely: 

**m     f 
X(0- = -—   t2 +  at + b 

X(t) = -■—  t   +  a. 
M 

(64) 

(65) 

Solution for a and b in equations (68) and (69) provides: 

B      Rm B 
a = B,(—»+— t. * Bi (-—» 2 w    u   *      2 Trr 'KT' 

and 

Rm   B   2»T 2 le   I 
+ (—-)(-)(-—) (—) — 

b = A2(|)-B2(y)(^ 

I   Rm    2»T2  «e2 B 
-2-(T-HTN^   V (KJ 

(70) 

(71) 

Substituting equations (70) and (71) into equations (64) and 
(65) the displacement and velocity in region 3B become, after 
some rearrangement: 

X(t) = (-) A-> + B" 

2   B       TO7 

LT " T J 

LT~*f"J (72) 

and 

The time to reach maximum displacement is obtained by 
setting t = ^ and «".juation (73) equal to zero: 

B 
X(tm) = ° = <F?) KT 

„      Kin   2»T,2 He    •ml) 

(74) 

Integration constants a and b are determined from the initial 
conditions in region 3B or end conditions in region 2B. These 
end conditions are obtained by setting t = te in equations 
(61) and (62) and for convenience setting the results in braces 
as follows: 

X (te) 

and 

X(te)' M & ■ 

(66) 

(67) 

Setting t = tg in equations (64) and (65) and equating these 
to equations (66) and (67), respectively, we have: 

f    1   B       "in      -« 
JA-,! (--) = t>+ aU + b. | 2j T      2M     e ^ 
f„ l , B ,       Rm 

|B2l(KT) = -¥-^ . + a. 

(68) 

(69) 

Solving for ^/T in equation (74) gives: 

T       T      R„ 

Bi 

2»T. 
(75) 

(T-)(-TN 

Setting t = tjß in equation (72), the maximum displacement is 
obtained: 

Xm^F* Ai + 2T°2 

2    B   MTN' 

Pm     VI 
LT    " T J 

r>tf -B3(I) 

(76) 

Again, for design purposes, it is convenient to work with the 
ratio of the maximum displacement (Xm) to the peak elastic 
deflection (Xe). With: 
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Km      B 

this ratio becomes: 

Bi 

V 

(77) 

(78) 

An IBM 1130 computer program was written to compute 
values of AT, BI, and B3 and thus evaluate the ratios (Xm/Xe) 
and (tm/T) as a function of the parameters (Rm/B) and (T/TN). 

The maximum work done by the pulse, acting on the mas, 
is given by the expression: 

Wm=y   f(t)(X)dt, 
O 

(79) 

With f (t) = B sin Or t/T) and the velocity being given by equa- 
tion (8) (region I A/ IB velocity), equation (79) becomes 

Wm=y  [Bsinüri)] 

-cos 

D 

W   i     ,   t 
cos(«-y) 

(80) 

Integration of equation (80) gives: 

B2 

w„ = 

■ t-i^lt-^ 
,2«T% 
(TN 

(81) 

With the use of equation (SO) the work done ratio becomes: 

W, 
,2*TV l + cos(-) 

-r   4 f     2 
32 (™>    -1M-)    + 2.0 

(82) 

This concludes the Case II analysis. Pertinent mathematical 
relations are summarized in Table II. Displacement, time, and 
work ratios are included in Figures 2,3,4, and 6. A partial 
listing of the computer output is presented in Table III. 

NUMERICAL EXAMPLE 

It is desired to find the maximum displacement, time to 
maximum displacement, and maximum work done on the sys- 
tem enumerated below. 

A half sine pulse of amplitude 14,375 pounds and width 
0.006 second acts on a weight of ISO pounds The weight is 
supported on crushable honeycomb, the characteristics of 
which are illustrated in Figure 5. Maximum resistance is 
10,060 pounds, the stiffness (K) is 520,000 lb/in. and the 
elastic deflection (Xg) is 0.01935 inch. 

Parameters given are: 

Rm = 10,060 pounds 

B    = 14,375 pounds 

W    = 150 pounds 

T     = 0.006s 

K    * 520,000 lb/in 

X,.   = 0.01935 inch 

The natural period (TN) is: 

TN WS 
™      6-28l386in/.2*5.2xl05 lb/in 

TN = 0.0054 second 

»mpv te« i quantities are as follows: 

B s 0.7 

T 

TN 
K 1.11 

B 

K 
= 0.027605 inch 

From figures 2,3, and 4 the following ratios r - obtained: 

\n *m W, 
— «8.6       — • 1.15 
Xe T 

m 
W„ 

0.405 

Thus the maximum displacement is: 

X,,, * 8.6 (\) * 8.6 (0.01935 in) - 0.16641 in 

and time to maximum displacement is: 

t,„ = 1.15 (T) = 1.15(0.006s) - 0.0069s. 

To compute work done, the maximum possible work (Wp) is: 

B2      T 2 

WP = 8(T)(-) 

W„ 
8x(l.4375xl04lb) (1.11)2 

5.2 x10s lb/in 
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Wp - 3917 in-lb . 

Thus maximum work done is: 

Wm » 0.40S (Wp) ■ 0.405 (3917 in-lb) 

Wm - lS86in-lb. 

A time history of the displacement is given in figure 7. The 
value of te/T is obtained from figure 6 and is 0.34. Thus 
tj ■ 0.34 (T) ■ 0.34 (0.006s) = 0.00204s. 

Asymptotes for Work Done Ratio 

AsT/TN -» «• orTN/T -» 0equation (SI), the work 
done ratio, for tg/T <  1.0 reduces to the following: 

i.[±„(,iHf<fe)(^[„„^] 

+ ^cos(»^)J   . (83) 

i addition, from equation (11) as T/TN -» «• 

"«•(»—) fm 
B 

Thus 

cos(4)«Vl-(^D: 

(84) 

(85) 

Substituting equations (84) and (85) into equation (83) the 
work done ratio for large values of T/TN becomes: 

*m 1    I TIL 

ir"(?(Tr><f-|""7VT) 

♦i^F7 
(86) 

The work done asymptotes computed from equation (86) are 
plotted in Figure 4. It can be seen that for T/TN values > 4.0. 
the work done ratio is essentially independent of the T/TN ratio. 
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TABLE I.   SUMMARY OF EQUATIONS FOR REGIONS 1A, 2A, 3A 

SYSTEM LOA0IN0 
FUNCTION 

ASSISTANCE 
FUNCTION 

SYSTEM 
DISPLACEMENT 

I*    T 
TIMEISECS1 

X«l «MAXIMUM DISPLACEMENT 
X« «MAXIMUM ELASTIC DISPLACEMENT 

X«    XT    X« t«   T    »«. 
X{IN4 TIME(SECS) 

t« «TIME  TO MAXIMUM ELASTIC DISPLACEMENT 
t« «TIME TO MAXIMUM DISPLACEMENT 

DISPLACEMENT 
<IA) «■p4rp]{-H)—GP-[«B (T)]| 

VELOCITY 
(I A) iÄfc-pa|p]{«»H)-«» [CW> (*>]} 

TIME TO ELASTIC 
DEFLECTION SIN  (.«!/) - •„  (?) SIN [(*#) (*)] - ft) [1-1/4 © «]. 0 

DISPLACEMENT 
(2A) 

-' <£? c«» C-T)—(•$>"©'[(*)- «a« MP 
VELOCITY 

(»A) is,- -*-& T« «)— (-V*)]- (?) <SP '[©-<$] 
DISPLACEMENT 

ISA! 
X(t) 
■71T <•* +>"« <£><?£>'B-T 

VELOCITY 
(3A) (BTKT) B2+ U J V75V   Li  TJ 

TIME TO 
MAXIMUM 

DEFLECTION 

tm 
■ I ♦ 

»2* 

<%)<&)* 

MAXIMUM 
DISPLACEMENT 

X"     « AJ*+ 1/2    "i  -B.* 
(S/KT)     "t * "8 /Rj«\   /2»T\2     B3 

DISPLACEMENT 
RATIO 

Xiw 

X* 

S,» 

Rm/B 

Ä2  . mcf
TW>)2r      !       1 UII.2 fa»*>, c°s g0-»TW^ TJ, cosbrd»2TSUT 

w?   ""H?;    I-./4/TNN2 {8IN VT,+      7    fT       +:     7\ 

WORK 
RATIO 

V       TN' ^    TN' 

* THESE QUANTITIES ARE ENO CONDITIONS FROM PREVIOUS REGIONS 
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TABLE II   SUMMARY Of EQUATIONS FOX REGIONS 11. 28, » 

SYSTEM LOADING 
FUNCTION 

RESISTANCE 
FUNCTION 

*(!> 

/   .8    \       (IM    / \       | 

TIME ISECS.) 

KT X«    Km 

XON.) 

X 
N.) 

DISPLACEMENT 
^"iXm 

5/1 i 
T M 

TIMERS.) 

Xm •   MAXIMUM DISPLACEMENT 

X*   •  MAXIMUM ELASTIC DISPLACEMENT 

»« *  TIME TO MAXIMUM EL*»TIC DISPLACEMENT 

»m •  TIME TO MAXIMUM MSPlACfcttCNT 

OISPLACEMENT 
II» 

VELOCITY 
IIBI 

(B/K) *■ [zj*f]h w -M&~ [*)(»]} 
XII) 

(B/KT) 1-1/4 ^]{*W)—[»)»)]} 

_xji) 
(B/K) 

OISPLACEMENT 
(28) 

—<W>«[ («W)]—I(Sf)(«]} 
xdi 

(8/KT) 

VELOCITY 
(28) 

[ 1-1/4 ^jijHKWXO] 

-cos  ((f) «fflpX»J — (W) "■[(*)«)]} 

TIME TO 
ELASTIC 

DEFLECTION »»[(SO (■-«] -»fCff) (?) J - (?) [■(*) -«ff )j.o 

OISPLACEMENT 
(38) ji8-^*i/[H]-« »)(*)[♦-«' 

VELOCITY 
(33) 

X  (t) 
(B/KT)     °«    +^B ^ WN /    IT     f J 

TIME TO 
MAXIMUM 

DEFLECTION 
IS ,il   + 
T        T (?)(W)2 

MAXIMUM 
DEFLECTION 

Xm 
(B/K) *2*+B2*fi?-TlJ-^(T!)(^E)2fT-7J2"3* 

OISPLACEMENT 
RATIO 

Xm   ,       83* 
X«        (Rm/B) 

WORK RATIO 

Wp • 8 (| )(T/TN)2 

Wm ' * «OS (ig.) 
Wp      32(T/TN)4 -l«(T TN)2+2.0 

* THESE QUANTITIES ARE END CONDITIONS FROM PREVIOUS REGIONS 
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TABLE III TABLE HI (Cont) 

Partial Lifting of Computer Program Output Rm      T k tm Xm Wra 
T    TR T T XT w 

*m      T k tm Xm *m 
B      TN T T X« wp 0.5      0.25 0.852619 1.874 2.278 0.889 

0.4 0.586849 1.700 4.469 0.775 
0.1      0.1 0.905293 7.009 8.352 0.981 0.6 0.440696 1.594 8.224 0.670 

0.3 0.390669 6.656 67.2 0.927 1.0 0.313240 1.502 18.28 0.556 
0.6 0.243532 6.547 259.0 0.898 2.0 0.205442 1.42G 56.94 0.441 
1 0.173396 6.49S 706.0 0.883 4.2 0.140838 1.369 205.0 0.363 
2 0.110252 6.448 2774.0 0.868 6.2 0.194845 1.355 421.0 0.342 
4 0.070836 6.418 10999.0 0.859 8.0 0.177311 1.359 711.0 0.347 
6 0.055088 6.406 24640.0 - 9.8 0.159286 1.357 1062.0 0.345 
8 0.046324 6.400 43698.0 — 12.0 0.178083 1.354 1571.0 0.341 
10 0.040673 6.395 68169.0 0.852 
IS 0.032593 6.389 153024.0 0.850 0.6      0.25 0.938933 1.711 1.735 0.888 

0.4 0.634421 1.517 3.206 0.761 
0.2      0.1 1.341987 4.064 2.463 0.98 0.6 0.474657 1.405 5.579 0.635 

0.3 0.503876 3.5S3 16.51 - 1.0 0.338702 1.306 11.45 0.493 
0.6 0.311654 3.414 59.78 0.823 2.0 0.223195 1.219 31.49 0.349 
I 0.222016 3.347 1S7.0 0.786 4.0 0.162691 1.168 91.9 0.257 
2 0.142108 3.288 601.0 0.751 6.0 0.228157 1.164 199.0 0.248 
4 0.092785 3.250 2330.0 0.728 7.0 0.209535 1.165 272.0 0.249 
6 0.073491 3.236 5175.0 - 8.0 0.194935 1.162 352.0 0.247 
8 0.063163 3.227 9135.0 - 9.4 0.183723 1.160 475.0 0.242 
10 0.057016 3.222 14208.0 0.710 
IS 0.053929 3.215 31774.0 0.706 0.7      0.3 0.862110 1.510 1.740 0.844 

0.4 0.680001 1.394 2.462 0.751 
0.3      0.1 1.866806 3.240 1.372 0.98 0.6 0.506599 1.274 4.055 0.605 

0.3 0.589658 2.552 7.44 0.868 0.8 0.417464 1.210 5.783 0.506 
0.6 0.361826 2.388 24.91 0.763 1.0 0.361623 1.170 7.606 0.435 
1 0.257880 2.312 62.84 0.701 2.0 0.240561 1.078 17.57 0.261 
2 0.166143 2.243 228.0 0.641 4.4 0.294923 1.028 49.8 0.156 
4.2 0.107521 2.199 942.0 0.600 6.0 0.247700 1.032 96.0 0.163 
6 0.089703 2.184 1879.0 0.587 8.4 0.272495 1.027 176.0 0.153 
8 0.080395 2.175 3294.0 0.579 10.0 0.248348 1.028 254.0 0.155 
10 0.081562 2.170 5105.0 0.574 
12 0.109634 2.172 7367.0 0.576 0.8      0.3 0.930517 1.434 1.449 0.844 

0.4 0.724744 1.307 1.989 0.745 
0.4      0.2 0.934092 2.244 2.355 0.928 0.7 0.483483 1.142 5.667 0.517 

0.3 0.663530 2.071 4.349 0.855 0.8 0.442506 1.113 4.219 0.465 
0.6 0.403669 1.887 13.33 0.713 0.9 0.410052 1.089 4.758 0.421 
1.0 0.287824 1.802 31.75 0.625 1.0 0.383618 1.070 5.284 0.383 
2.0 0.186713 1.727 108.0 0.538 1.2 0.343004 1.040 6.285 0.321 
4.0 0.126832 1.680 386.0 0.482 
6.0 0.107507 1.663 830.0 0.461 0.9      0.4 0.769718 1.245 1.670 0.741 
8.0 0.151984 1.657 1450.0 0.453 0.6 0.567113 1.110 2.486 0.559 
10.0 0.140482 1.659 2281.0 0.456 0.7 0.510087 1.070 2.861 0.488 
15.0 0.119835 1.656 5090.0 0.452 0.8 0.466849 1.040 3.209 0.429 

0.9 0.432749 1.015 3.516 0.378 
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SUMMARY REFERENCES 

The enclosed charts (figures 2 through 4) permit rapid cal- 
culation of maximum displacements, time to maximum dis- 
placements, and work done on SDOF systems subjected to a 
half sine pulse when the resistive force may be classed as 
elastic-plastic. 

Figure 6 and Table III present values of te/T fov various 
values of (Rm/B) and (T/TN). These values are necessary to 
compute displacement time histories. 
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p. 1, December 1968 
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PROPAGATION OF YIELDING IH A BILINEAR HYSTERETIC BEAM 

AND DISTRIBUTED FOUNDATION UNDER DYNAMIC PULSE LOADING 

John R.   Mays 

University of Colorado 
Denver, Colorado 

Effects of system parameter variation on propagation of yielding in 
both a finite beam and in its supporting distributed foundation when 
loaded by a dynamic pulse are presented. 

INTRODUCTION 

This paper presents the study of propaga- 
tion of yielding in a finite beam and a distri- 
buted foundation subjected to a transverse 
force pulse applied at the cwnter of the beam. 
The pulse shape is a sine function of time hav- 
ing half-cycle duration.    The beam and foun- 
dation have separate yielding bilinear   hys- 
teretic force-deformation characteristics.    The 
effects of varying stiffnesses, applied force, 
yield values, pulse duration,  and system fre- 
quency are presented.    A finite difference 
technique is used to solve the nonlinear differ- 
ential equations. 

Propagation of yielding in the system is 
shown by space-time plots.    The effects  of para- 
meter variation is pictured by use  of families 
of curves, and results are shown in dimension- 
less form. 

PROBLEM STATEMENT AND ANALYSIS 

A yielding beam of uniform properties sup- 
ported by a yielding foundation of uniform pro- 
perties is shown in Fig. 1. The symmetric beam 
of length i, and mass ufcis loaded at its  center 

Y 

rrrrrrrrTTTTTTTTi 
M X/^ J^ x/2 »- 

H^X 

by a sinusoidal shock load of amplitude F. , du- 
ration t1, and circular frequency u.  See Fig.  2. 

The moment-curvature function for a yield- 
ing beam has been approximated by the bilinear 
hysteretic function shown in Fig.  3.    A posi- 
tive hinge will be considered to have formed at 
a section along the beam when the values of 
moment (M) and curvature (K) at that section 
correspond to a point on the line AB.    Values 
of moment and curvature corresponding to points 
along CD indicate the presence of a negative 
hinge.    No yielding is present at a section 
when tne M - K coordinate lies along a line 
with slope k1. 

A similar bilinear hysteretic function 
(Fig. ■*) describes the yielding properties of 
the distributed foundation.    Again positive 
yielding is denoted by values of foundation re- 
action (R) and beam displacement (y)  corre- 
sponding to a point along the line AB.  Similar- 
ly, negative yielding relates to line CD, and 
no yielding is considered present along any 
line of slope q.. 

F=Esincut 

Fig.   1 - Yielding beam on yielding support 

To» 

Fig.  2 - Force pulse 

81 



The centrally located concentrated static load 
necessary to cause the bending moment at aid- 
span to equal My will be referred to as Fu».  In 
similar notation, Fgy is the value of staue 
load which will cause the reaction intensity at 
the center of the foundation to equal Ry. 

The second order partial differential e- 
quation for tit is system can be written: 

(2) 

where the concentrated load has been replaced ?<> 
a distributed load of intensity f. 

The differential equation was cast into di- 
mensionless form by defining ncndimensional 
time T and nondimensional displacement Z as: 

Vt, (3) 

Fig. 3 - Beam moment-curvature relation Z = 

Hg. t - Foundation reaction 
relation 

displacement 

A value of zero for the ratio   2AX or 
q2/q, indicates the elastic-perfectly plastic 
condition.    When both the ratios k2/k, and ^2/qj 
become unity, the system degenerates into the 
limiting linear case of an elastic beam sup- 
ported by an elastic foundation.The fundamental 
period T..  for this system is found to be [1], 

(1) 

'I/*!* 
<<0 

The resulting nondimensional nonlinear partial 
differential equation was solved numerically by 
dividing the system into thirty-three equal 
length elements and employing a finite differ- 
ence technique.    The computer program contained 
a subroutine for each of the hysteretlc func- 
tions.    These routines were capable of detecting 
the state of yield in both the beam and foun- 
dation at each of the nodes and for each inter- 
val of time. 

The solution of Z vs T [2] and the result- 
ing yield propagation depends upon six  liraen- 
sionless parameters.    These are listed in Table 
1 along with the symbol by which each v ill be 
represented. 

TABI£ 1 

DEFINITION OF SYSTEM PARAMETERS 

STANDARD 
RATIO SYMBOL TERMINOLOGY VALUE 

k2A1 a Beam Stiffness Ratio 0.5 

%qx B Foundation Stiffness Ratio 0.75 

^ YR 
Yield Reaction Ratio 1.5 

Fl'rMv YM 
Yield Moment Ratio 3.0 

qll S Component Stiffness Ratio 1000 
El/&3 

tl/T1 Y Pulse Duration Ratio 0.75 
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PRESENTATION OF RESULTS 

Space-time plots are presented to indicate 
propagation of yielding throughout the system 
(figs. 5 through 11).    Because the system is 
symmetric, complete information for space pro- 
pagation can be shown by indicating beam yield 
from the center line to the left end of the beam 
and indicating foundation yield from the system 
center-line to the right end.Regions of positive 
hinges in the beam (concave upward) are noted 
by the symbol P, negative beam hinge by N.posi- 
tive foundation yielding (upward) by +, and 
negative foundation yielding by -. 

A set of standard values for the six system 
parameters have been assumed on the basis of a 
typical beam-foundation system and are tabulated 
in Table 1. Figure 5 presents yield propagation 
in space and time for this "standard case." 
Damping due to hysteresis energy loss is clearly 
shown.    No yielding in the beam occurs after a 
time of five times the pulse duration (T = 5). 
The entire system has again become linear before 
a time t equal to fourteen. 

In order to show the effect of parameter 
variation, families of space-time yielding 
regions are shown in Figs. 6 through 11. In each 
cf these figures, the family parameter has been 
taken as one of the system's parameters.    In all 
figures the "standard case" is shown so that 
comparison between figures is possible. 

CONCLUSIONS 

The yield propagation in both the beam and 
foundation indicate consistent variation as the 
parameters are altered. The qualitative behavior 
of yield spreading can be understood by observ- 
ing that the mathematical model of the system 
requires that a point in the founcation acting 
alone does not effect the state of its neighbor- 
ing point.    Therefore, propagation of force in 
the system from the load outward is accomplished 
chiefly by the load carrying capability of the 
beam.    It then follows that increased propaga- 
tion in space of yielding in the beam and in the 
foundation will be a direct function of the 
stiffness of the beam relative to the stiffness 
of the foundation.    Increased relative stiffness 
and therefore increased propagation of yielding 
should be accomplished by an increase in a or 
YR and a decrease in YH, 8, or S.    The one ap- 
parent anomalie, found in Fig.  7, i.e., a de- 
crease in Y    causing a noticeable decrease in 
yield propagation can be justified easily by ob- 
serving that a decrease in Y„ is indicative of 
increased M , causing fewer local hinges in the 
beam. y 

Beam    Length 

Zones of 
Beam 
Yielding 

120 

.ones of 
foundation 
yielding 

I    I 

t <r+ 

The effect of varying Y is to alter the 
system modes which are excited. The case of 
Y = 0.2 has clearly excited the third mode. 

This study is part of a series of related 
studies of the response of nonlinear structural 
components to transient loadings [2, 3, 4, 5, 

Fig.  5 - Space-time zones of yielding 
Standard parameter values 
o = 0.5, 3 = 0.75, Y    = 1.5, 
Y„ = 3.0, S  = 1000, Y = 0.75 

83 



(x) auutx jDuoisuauiiQ-uoN 

o 
m 

tnko   2E| 
§1? 
N0Q>- 

01 
c 
_J 

■ I • 

N|00 

rOl^r 

" 11 ji 

Ö 8 8 

S3 

mloo 

E 
8 

CD 

—HCM  
f HCM- 

o o 

c ü o 

H        11 
0)   V) 
M   0) c/) 

*p - •n * o 
O <H    • 

•A m 
n -w 
mm 11 

coloo 

._!,(■ 

(1) dUlll   IDUOISUdUUlQ-UON 

84 



(1) 9UJl±  |DUO!SU3UJ!0-UON 

rok 

m|oo 

5 

E 
8. 
m 

U-lcsi- 
—ICM--, 

■ro|oo 

hr=tt_ 

o 

(*     o 
GOO 

13  +3  H 

<i> 05 » 
•H 
>I4J   </) 

IH   S     • °h 
S3 " 
NUB; 

»H >• 
«X     . 

•H   b»l/5 
*i c t» 
I   .H     . 

8&° 
a > 
I    O    ' 

01 +J     • 
o o • «) 

601-1   II 

U. (J   o 

o   • 
bO-rt O c t! ° •H ns o 

•o a. H 
H 
«IBM 

•H   O 

«no» 
0 <B O 

«• _ 
§3" 
(4   V     E 

g^  . 
•H Win 
v c t» 

1 •*   • 

§^° id fij ii 
a > 

I   o   « 
l/i 

00  +J     * 
O   O 

•   0) 
60 4*   II 

(1) 3UU!J_   IDUOjSUSUUIQ-UON 

85 



(1) dUUlJ.   |DUOISU9UII(]-UOM 

4» S 

cn 
c 
■6 

NCD> 

■HOO 

9£ °J 
u 9 ° 

z^ nil ^p 

(z) aojji |Duoisuaai!Q-uoN 

86 



6]. The results contribute to the general un- 
derstanding of the inelastic behavior of bean- 
foundation problems. 

Ry * foundation intensity at the yield 
point in the foundation force-intensity 
displacement function 
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nondimensional component stiffness 
ratio, i.e., ratio of foundation stiff- 
ness to bean stiffness 

S = El/, 3 

NOTATION 

El = flexural rigidity of the beam 

fundamental natural period of the 
limiting linear case of an elastic 
beam on an elastic foundation 

time 

F = force magnitude of the one-half-cycle 
sinusoidal shock pulse F - F. sin ut 

F   = amplitude of F 

F„   * static load at the center of the limit- 
^      ing elastic beam-foundation system 

necessary to produce maximum bending 
moment equal to My 

F     = static load at the center of the limit- 
^      ing elastic beau-foundation system 

necessary to produce maximum foundation 
reaction intensity equal to Ry 

f = intensity of the distributed load on 
the beam 

K = curvature of the beam 

k,, k-  = slopes of the bilinear hysteretic 
moment-curvature function for the beam 

I = length of the beam 

H ■ bending moment in the beam 

H    - bending moment at the yield point in 
y      the moment-curvature function 

N  = symbol used on space-time plots to 
indicate regions of negative yielding 

P  = symbol used on space-time plots to 
indicate regions of positive yielding 
in the beam 

q., q„   = slopes of the bilinear hysteretic 
force intensity-displac'jmsnt function 
for the foundation 

R = intensity of the foundation reaction 

YM = 

pulse duration for the one-half cycle 
sinusoidal shock-loaQ, t.  - */u 

coordinate along the beau measured 
from the left end 

nondimensional yield moment ratio for 
the beam, F, 

V 
1/FMy 

nondimensional yield reaction ratio 
for the foundation, F. 

1/F, Ry 

y ■ deflection coordinate for tho bean 

Z = r. on dimensional deflection coordinate 
for the beam, Z = 

'1/q^ 

Y   = 

nondimensional beam stiffness ratio 
k2Ax 

nondimensional foundation stiffness 
ratio q„. H2/qx 

nondimensional ratio of pulse period to 
limiting beam fundamental period, 

Y = tl/T1 

T ■ nondimensional time, T = t/t. 

|i = mass per unit length of beam 

u - circular frequency of the sinusoidal 
load F, u = it/tj^ 

* - symbol used on space-time plots to 
indicate regions of positive yielding 
in the foundation 

- = symbol used on space-time plots to 
indicate regions of negative yielding 
in the foundation 
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PLASTIC MODELS FOR DYNAMIC STRUCTURAL ANALYSIS 

W. A. Elliott 
Chevrolet Division, General Motors Corporation 

Detroit, Michigan 

Scaled plastic models can be used to predict the dynamic response of complex structures, 
particularly critical frequencies and mode shapes. The basic advantage in model design 
analysis is the flexibility in altering initial concepts at early stages of design which can be 
accomplished quickly, simply and at lower costs than would probably be encountered if 
the structure was fabricated in the prototype material. This paper presents the use of 
plastic models as a design tool for stamped, welded steel automotive structures and 
subsequent engineering tests. 

INTRODUCTION 

The use of plastic models for structural analysis was 
developed by engineers at the Westinghouse Research 
Laboratories in the early 1950's for use in the design of large 
turbo-electric installations. In the late 'SO's, plastic models 
were first used for static testing of automotive vehicle 
structures and components by Chrysler Corporation (1 )*. 

With increased customer sensitivity to unpleasant ride 
conditions, vibrational testing has become essential in proper 
vehicle development. Chevrolet has advanced the use of 
plastic models in dynamic testing to the point where reliable 
data can be experimentally obtained and accurately 
correlated with steel' prototypes through the careful 
manipulation of the mechanical and dynamic properties jf 
plastic, fiberglass, steel, and aluminum. 

Chevrolet has utilized the technique by static testing in 
early design stages for several years with good success in 
predicting high stress aieas and buckling modes. Until 
recently, however, the use of plastic models for dynamic 
testing was infeaäUe because of the variation in Ute dynamic 
mechanical properties of plastic compared to prototype 
metals. Characteristics such as viscoelasticity, structural 
damping, and fabricating techniques make correlation 
between plastic models and steel prototypes difficult. 

By using established theory to develop the requirements 
of dimensional analysis, suitable scaling factors for the 
investigation of vibrational characteristics of model structures 
can be demonstrated. Because examination of complex 
structural characteristics by computer mathematical models 
is tedious and time consuming, the plastic model lends itself 
well to automotive testing an-J elastic range. 

Experience indicates that there is insufficient knowledge 
ot internal structural damping and coulomb damping to 
adequately correlate analytical systems at early stages of 
design. In addition, full-scale experimental techniques are 
undesirable due to high fabrication cost of pretest and 
prototype structures which limit the number of design 
proposals that can be tested within a given time frame. 

•See bibliography. 

THEORETICAL BACKGROUND 

Using Buckingham's Pi Theory, a set of dimensionless 
ratios shown in Fig. 1 can be determined to establish a 
relationship between the model and prototype 

(pii 

(pi) . 

■ = Df FttCTlON CU! 10 tOADING IN 

I = CHARACTERIiTIC IENGTH OF THE MODtl 

IN GEOMETRIC DIMENSION IN 

P -  DENSITY OF THE MATERIAtS. »/IN 3 

9  =  ACCELERATION OF GRAVITY IN/SEt ! 

E = M0DIHUS0F ELASTICITY. »/IN 2 

I ■■ AREA MOMENT OF INERTIA IN * 

K  ■ SPRING «ATE. »/IN 

Uli 
F 

(PII 

T -- TIViE. SEC 

•      FORCE.» 

C =  DAMPING » SEC/IN 

Fig. I - Dimensionless ratios 

AREA IN ' 

, ! 6 =  STRESS. »/IN ' 

• -   STRAIN IN/IN 

V -   POISSON S RATIO 
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This can be developed into the following equation 
that  relates  the basic vibration*] characteristics 

between the model and prototype. 

The stress-strain behavior of wcoeias tic material can be 
represented by one of four basic models or a combination 
shown in Fig. 2. 

, _, M. v   (.-vnj)rp 

im   r~rP 
si IF F^TJ 

Where: 
m° 

P ' 
I ■ 
E = 

f = 

Model subscript 
Prototype subscript 
Length 
Modulus 
Density 
Poisson's Ratio 
Frequency 

By determining the dynamic mechanical properties of 
the materials involved within the environmental and 
frequency domain, the natural frequency and mode shape of 
the prototype can be predicted from the model by 
incorporating those values into the basic equation. 

In order to correlate the essential first and second 
bending and torsional frequencies of plastic model vehicle 
structures and steel prototypes, the dynamic properties of 
the material must be determined, with shear and bending 
modulus being the most critical. 

Planished polyvinylchloride-acettte (PVC-A) or dear, 
rigid vinyl was chosen as the model material for the following 
reasons: 

1. Transparent 

2. Poisson's Ratio approximates that of steel over the 
frequency range of interest, 0-150 HZ. (Hertz) 

3. Isotropie in X-Y Plane. 

4. Can  be  fabricated  by simulated spot and seam 
welding. 

5. Has been used extensively in static testing. 

The basic disadvantage of this material is its pronounced 
viscoelastic properties that are demonstrated by Voigt Models 
which can be used to illustrate their effects on the dynamic 
correlation of the plastic and steel. 

SIMM SIMM 

mi smss SIMM IIWWIO« of sinnt »mm «i wo SKIDS ot IISTMC 
itjtl* i »2   * IK, 

Fig. 2 - The stress-strain behavior of simple models 

A purely elastic material may be modeled by a spring 
shown in (2a), while a viscous substance is represented by a 
damper in (2b). A viscoelastk material is modeled by a spring 
damper in parallel or series or a combination that will 
reproduce its specific strain rates shown in (2c) and (2d). 

PVC-A, unlike steel, is represented by a spring constant 
E, structural damping C, and a series of parallel 
spring-dampers, while steel has very little damping as shown 
in Fig. 3. 

roiimn   LA*AJ    L/UUJ    LUA/J UAA/J 

IM*I I * '» > 

-AM/WWWvV- 

—]— 

Fig. 3 - Approximate viscoelastic models for "/C and steel 
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Each of these components ate temperature sensitive in 
Oat they are either mobile or are frozen into an inactive 
•late. At very low temperatures, the model consists entirely 
of E and may be considered a purely elastic body, while at 
Mali temperatures, the parameter C is dominant and the 
model demonstrates varying degrees of viscoelasticity, which 
causes variation in its physical properties. Thus, the internal 
damping of the plastic makes the model frequency sensitive 
and is an important consideration in the dimensional analysis. 

Hence, Young's modulus must be considered a complex 
value; a real part produced by material elasticity and an 
imaginary part created by the mechanical loss due to 
damping, both of which are affected by temperature and 
frequency. The vector representation is included in Fig. 3: 

where: E" ■ real pttt of complex .modulus. 
E" ■ imaginary part of complex modulus. 

1.000 

o 

li      In     »2 
FREQUENCY 

W„ = 3.52 flT WHERE    El * STIFFNESS 

M = MASS/LENGTH 

Fig. S - Free and clamped end amplitude 
response vibrating reed test 

The ratio of the imaginary to real part of complex 
modulus is defined as the mathematical loss dissipation factor 
E"/E' and is a term that relates th* effects of temperature 
and frequency on damping. E" is considered a function of 
that energy dissipated per cycle. This figure shows the response curve and equations from 

which the dynamic properties are calculated and plotted in 
Fig. 6. 

Similarly, the characteristics of die shear properties and 
Poisson's ratio are described by a complex value and must be 
investigated for their reaction to dynamic excitation and 
ambient conditions. 

Using the vibrating reed test (2, 3)* shown 
schematically in Fig. 4. the effects of frequency and 
temperature are determined from the frequency response 
curve illustrated in Fig. 5. 
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Fig. 6 - Temperature vs. dynamic module, PVC-A 

The sensitivity of dynamic modulus to temperature in 
normal ambient conditions is shown by this descending 
curve. 

♦See bibliography. 
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Fig. 7 illustrates the temperature versus dissipation 
factor between 20 to I00°F and varies among the four 
samples with different lengths, widths, and thicknesses. 

S o* 
*•    •  » 

s °5 r-\ 
*     »V* < ft. 

S 04 • \i. 
a ^.          V 

•  ^""v.» • 
%/s ■ ^^^ » •          •        * 
2 03 SAMPIE SIH (IN.)            *"- 

• 2 45   1038    098              . 
_           .    .         »^ 

< 
:  •■■.■ •  3 92   1026    095 

< 02 •  2 98   1037 • .096 
*  2 45   1036    048 

s . 
20 30 40 50        60        70 

TEMPERATURE *f 
90       100 

F«g. 7 - Temperature vs. dissipation factor, PVC-A 

The effect of frequency on dynamic modulus and 
dissipation factor is illustrated in Figs. 8 and 9. 

Dynamic Poisson's ratio is obtained with similar 
methods shown schematically in Fig. 10. Using a strain gage 
rossette, samples of varying dimensions were examined and 
plotted using instrumentation similar to the vibrating reed 
test. 

55 

50 
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FK 10 - Schematic dynamic Poisson's ratio test 

Shown in Fig. 11 is the variation of Poisson's ratio with 
frequency. 

By applying die appropriate values to the basic equation 
in the propt- frequency and temperature domain, a constant 
mat relates the natural frequency between the model and 
prototype is established. 

Fig. 8 - Real part of the complex Young's modulus 
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Fig. 9 - Dissipation factor of Young's modulus Fig. 11 - Dynamic Poisson's ratio 
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MODEL - PROTOTYPE COMPARISON 

In constructing the plastic model vehicle structure. 3/8 
scale was chosen because of its relatively small size without 
loss of too much detail. 

The actual full scale prototype layout drawings were 
reduced to 3/8 scale by a photographic process. From these 
drawings, wooden patterns were made which were used to 
vacuum form and fabricate plastic parts. Shown in Fig. 12 are 
the front end component parts consisting of the stub frame, 
fenders and scaled body mounts of a plastic model. 

The plastic model also underwent dynamic testing on 
electrodynamic shakers as shown in Fig. 14. 

Fig. 14 - Dynamic test of plastic model 

Fig. 12 - Plastic model, front end construction 

By utilizing an optical tracker for dynamic displacement 
measurements, a phase coherent signal is used to plot the 
frequency response and mode shape of the vehicle utilizing 
electronic conditioning equipment shown in Fig. IS. 

Fig. 13 is the body-in-white plastic model showing rear 
structural detail. 

Fig. 13 - Body construction 
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Fig. IS - General purpose instrumentation 
console, schematic 

Similar tests were conducted on the steel prototype as 
shown in Fig. 16. 
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Fig. 16 - Dynamic test of metal prototype 

Fig. 17 shows a representative bending response of die 
model in terms of peak to peak displacement while Fig. 18 
illustrates a similar prototype response in terms of 
acceleration. 
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Fig. 17 - Bending frequency responses (model) 

Figs. 19 and 20 illustrate the comparative torckmal 
responses. 
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Fig. 19 - Torsions! frequency responses (model) 

Fig. 20 - Torsional frequency responses (prototype) 

Fig. 21 shows the first bending mode shapes with inputs 
applied to the rear of the structure as demonstrated in 
Figures  14 and 16. This particular mode shape shows 

30 40 
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\ IMGTH M IKCHfS,*-' 

F'ig. 18 - Bending frequency responses (prototype) Fig. 21 - Model prototype first bending mode shape 
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absolute values, however, the normalized curvet are very 
similar including the proximity of the nodal point». Figs. 22 
and 23 «how similar mode chape companion* for second 
mode bending and first mode torsion. In addition, prototype 
excitation frequencies are within 10% of the model 
frequencies. 

CONCLUSION 

Data indicates that correlation of natural frequencies 
and model shapes is well wimin experimental error and that 
most vehicle dynamic studies can be easily investigated 
through the use of these models. Power spectral density 
analysis of random road inputs has been successfully related 
to the plastic model. This allows a great deal of development 
work to be accomplished on the vehicle before the first 
prototype is available. 

Fig. 22 - Model prototype second bending mode shape 

The use of plastic models is being extended by 
Chevrolet Engineering to dynamic stress studies, engine 
mounting systems, analysis of the effect of glass on 
structures, acoustical studies, and fluid flow evaluation, to 
mention a few. 

In addition, the use of holography and fa.'igue testing 
have been found feasible in expanding the utilization of 
modeling techniques. By running parallel design pre grams 
with analytical programs, a closed loop design system shown 
in Fig. 24 can easily reduce design time. In short, the use of 
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Fig. 23 - Model prototype first torsional mode shape 

Fig. 24 - Vehicle design sequence 

plastic models is limited only by the ingenuity of the project 
engineer and his ability to manipulate the dimensionless 
ratios and apply them to the model in a manner that will 
simulate actual conditions. 
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DISCUSSION 

Mr. Fritz (General Electric Co.)-  What is 
the cost of that plastic model that you showed 
us?  Also, what is the criterion of acceptabil- 
ity for the vibration limits? 

Mr. Elliott: The cost of this particular 
model, because of the care we took in dupli- 
cating the prototype, was approximately 
$100,000.  The problem there is the detail that 
is required.  We cut that down to $25,000 in the 
past year, eliminating things which we think 
are unnecessary.  Concerning acceptability 
criteria, we do not really know until we get a 
car on the road.  There are so many opinions 
involved in this that management has difficulty 
deciding what is acceptable and what is not. 
For instance, the people who like Corvettes 
like a hard ride, no roll, and like to lay a patch 
100 feet.  With another fellow who buys a 
Cadillac, it is entirely different. 

Mr. Verga (Hazeltine Corp.):  My question 
is very much inline with the last one.  I was 
thinking in terms of what is an optimum re- 
sponse ?  If you cannot tell us what is an 

acceptable response, can ycu tell us what is 
unacceptable ? 

Mr. Elliott:   We know, for instance, that 
strength-to-weight ratio in our case is very 
important.  We have to compromise because 
of the ride motions of the suspension, so we 
simply designed the car to separate and in- 
crease the mechanical impedance between the 
suspension and the body. We want all these 
things separated and the amplitudes as low as 
possible. I think the Air Force has published 
considerable data on what is acceptable re- 
sponse and what is not.  We tried to use some 
of this data.  If that answers your question. 

Mr. Simon (General Electric Co.): 
is the design life of an automobile? 

What 

Mr. Elliott:   The design life of an auto- 
mobile? I prefer not to answer that. It is 
very strange.  I am originally from Virginia. 
I come down here and see 1950 automobiles 
running around.  I live in Detroit and have not 
seen a 1950 automobile in 10 years. 
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FATIGUE DESIGN OF 
ELECTRONIC EQUIPMENT 

la Verne Root 
Collins Radio Company 
Cedar Rapids, Iowa 

This paper reviews portions of fatigue theory applicable to design of 
electronic equipment.  The basic approach to fatigue design should 
include: (1) definition of loads, (2) detailed stress analysis, and 
(3) consideration of statistical variations in foads and material 
properties. 

Several aspects of detailed design are discussed to assist designer in 
obtaining a suitable fatigue design.   Testing and experimental tech- 
niques are the designer's primary tools. 

INTRODUCTION 

The trend in the mechanical design of electronic 
equipment is toward lighter equipment while the 
environmental stresses have remained constant or 
have increased.  In the case of the dynamic environ- 
ments, the probability of fatigue failures has been 
increased by the requirements for lighter weight 
and more highly stressed equipment structures. 

The purpose of this paper is to review some of 
the techniques which the mechanical designer can use 
in improving the fatigue design of electronic equip- 
ment.   Fatigue design techniques are well docu- 
mented in the literature [1, 2]. However, it is neces- 
sary to adapt published results to the specialized 
problems of the electronic equipment designer, since 
much of published information deals with flight vehi- 
cle fatigue problems. 

It should be recognized that fatigue design is 
inherently more difficult than design for static loads. 
Fatigue failures usually originate at stress risers 
and are therefore dependent on localized stress con- 
ditions.   Since fatigue stresses are usually too low 
to cause local yielding and the associated redistribu- 
tion of stresses, it is necessary to perform a 

detailed stress analysis which accounts for both the 
gross stress pattern and the high localized stresses 
due to the stress concentrations.   In contrast, static 
stress analysis only requires the definition of the 
gross stress field with high localized stresses being 
redistributed by local yielding. 

DESIGN PHILOSOPHY 

Three basic steps are involved in any fatigue 
design.   These are:  (1) load definition, (2) detailed 
stress analysis, and (3) consideration of statistical 
variability in loads and material properties.   If these 
basic steps are given adequate attention, the detailed 
design becomes relatively straightforward. 

Load definition for fatigue design must be quite 
detailed. Fatigue damage is strongly dependent on 
the following parameters of the load history: 
(1) oscillatory components of load, (2) static com- 
ponents of load, and (3) order of application of vari- 
ous loads.   The damage is dependent to a lesser 
degree on:  (1) frequency of oscillatory loads and 
(2) rest periods between loads.   Again, this strongly 
contrasts to the load definition required for static 
design, where the peak amplitude is usually the only 
parameter of interest. 

97 



Since it is generally impractical tc define fatigue 
load» to the decree suggested above, the order of 
load application, frequency, -ind rest periods are 
usually neglected.   This allows loads to be defined by 
the static components of load and probability distri- 
bution functions for the amplitudes of the oscillatory 
components. 

Design loads for electronic equipment consist 
«\ two types:   di complex loading due to transporta- 
tion, handling, and usage and (2) relatively simple 
loading representing various required laboratory 
vibration tests.   In general, the designer will base 
his design on the laboratory tests since these tests 
are supposed to be representative of field usage and 
the simpler loading is much easier to handle in the 
design analysis,   in addition, the loads representing 
laboratory tests have a very small statistical varia- 
tion (standard deviation about one-sixth of the toler- 
ance range) which further simplifies the design 
analysis. 

In a number of cases, no laboratory tests are 
required, so the designer must consider the more 
complex loading representing the usage.   Two exam- 
ples of such systems are equipment to be qualified at 
Munson Road and one of a kind systems which require 
a minimal qualification program.   The loading should 
be defined in sufficient detail so that static loads, 
oscillatory lojds, and statistical variation of loads 
can be defined. 

The second step of the basic fatigue design con- 
sists of performing a detailed stress analysis of the 
equipment.   Since fatigue failure is strongly depen- 
dent on localized stresses, the strength of materials 
type analysis used for static loading is insufficient 
except for the simplest of structures.   Plate and shell 
theory and elasticity and experimental stress analy- 
sis are required for analysis of the typical electronic 
equipment.   Theoretical analysis will in most cases 
require the use of the digital computer to carry out 
the numerical computations.  The theoretical analysis 
is useful during preliminary design to tentatively size 
structural components. 

Experimental stress techniques are useful during 
later stages of design.   Measured stressed on hard- 
ware built to fabrication drawings are more accurate 
than computed stresses.   The use of models [3] dur- 
ing early phases of design allo'"* rp*; nfation of the 
structure and verification of dj lamic response calcu- 
lations.   Plexiglas models of quite complex equipment 
are easily fabricated in the laboratory and are rela- 
tively easy to modify as tests proceed.   Stress coat 
can be used with the plexiglas models to obtain the 
complete stress field and to determine locations for 
strain gauges. 

Stress coat may also be usefu' on the actual 
hardware to verify conclusions Lased on the plastic 
models.   The final fatigue analysis should be based on 
strain gauge readings since stress coat readings are 
of limited accuracy. 

The final step in the basic fatigue design consists 
of considering the statistical variation in the loads 
and material properties.   Each equipment of a given 
type will be subjected to a different load history due 

to differences in history of transportation and usage. 
In addition, differences between "identical" flight 
vehicles alters loading for identical transportation 
and u#age histories.   Compiling the various possible 
load histories will lead to a probability distribution 
function (pdi) of loads, which may be represented by 
a typical (mean) load history and a measure of the 
scatter (standard deviation) between the load 
histories. 

In a similar manner the pdf of material proper- 
ties must be obtained.   The material properties in 
the form of S-N curves represent a median life fail- 
ure curve; that is, fifty percent of specimens would 
be expected to fail at lives less than that given by the 
S-N curve  Typically the scatter in fatigue lives at 
a given stress may be 10 to 1.  As in the case of loads, 
the fatigue lives may be represented by a mean life 
and a standard deviation. 

Alternately we may look at scatter in stresses 
for a given life.   Again we can define a mean stress 
and a standard deviation.   This viewpoint is more 
useful in our fatigue design.   The design problem 
new reduces to selecting a material whose pdf of 
strength has some small but acceptable overlap with 
the pdf of loads.   Figure 1 shows typical pdf of load 
and strength. 

FAILURE REGION 

Figure 1.   Typical Probability Distribution Functions 
for Load and Strength. 

As can be seen from the figure, the failure region 
can be reduced by:  (1) reducing mean load while 
holding mean strength and standard deviations con- 
stant, (2) reducing load standard deviation while 
holding mean load, mean strength, and strength 
standard deviation constant, (3) increasing mean 
strength while holding mean load and standard devia- 
tions constant, (4) reducing strength standard devia- 
tion while holding mean load, mean strength, and 
load standard deviation constant, and (5) changes in 
two or more parameters simultaneously.   The elec- 
tronics designer seldom has any control over the 
load pdf so he must work with the strength pdf. 

The selection of the safely factor determines 
the spacing between the mean load and mean strength, 
while process controls and tolerance ranges are 
primary variables in the control of the standard 
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deviation of strength,  in actual practice the designer 
will have only limited knowledge of the pdf of 
strength and load; but an understanding of the princi- 
ples involved will allow the designer to properly use 
his engineering judgment. 

Once the basic steps in the fatigue design are 
complete, the detailed design becomes relatively 
straightforward. 

DETAILED DESIGN 

The fatigue data for superimposed mean stress 
may be presented in many ways.   Two common ways 
are: (1) a family of S-N curves at various mean 
stresses and (2) the modified Goodman (constant life) 
diagram which is the more- useful diagram.   Figure 3 
presents a typical modified Goodman diagram from 
MIL-HDBK-S.   It should be noted that MlL-HDBK-5 
is an excellent source of both fatigue and static 
mechanical properties for materials used in aero- 
space structures. 

The most important phase of detailed design is 
the reduction of stress risers.   Fatigue cracks 
start at high localized stresses which are usually 
associated with stress risers; such as, abrupt 
changes of dimension, holes, notches, machining 
marks, dents and scratches introduced by mishan- 
dling, poor attachments, and change of modulus. 
Many of the stress risers are necessary features of 
the design, but the designer can reduce stress con- 
centration factors by using generous radii and 
gradual transitions in dimensional changes.   Shifting 
the location of stress riser to lower tensile stress 
region or to compressive stress region will extend 
fatigue life. 

The fatigue notch factor (Kf) is related to the 
static stress concentration factor (Kt) and the notch 
sensitivity factor (q). 

Kf = q(Kt -1) + 1 

The notch sensitivity is nearly zero for large Kt and 
approaches unify as Kj decreases.   Figure 2 is a 
typical plot of q versus notch radius.   The published 
q curves for various materials can be used with Kj 
curves for various geometries to estimate Kf.   A 
conservative estimate for Kf would be to use K{, 

NOTCH RADIUS 

Figure 2.  Typical Plot of q Versus Notch Radius. 

Another area which must be considered is the 
effect of a mean stress superimposed on the alter- 
nating stresses.   Increasing the mean stress (except 
mean torsion or mean simple shear) for given alter- 
nating stress will reduce the fatigue life.   In the 
cases of torsion or simple shear, the fatigue life is 
unaffected by the mean stress.   Most electronic 
equipment has a zero mean stress.   Two possible 
exceptions would be structures v.'Uh residual stresses 
or preloaded devices within equipment. 

M.T»HWATIMO »TttSS 
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Figure 3.   Typical Modified Goodman Diagram. 

The mean stress effect applies to residual 
stresses since structure cannot recognize whether 
mean stress is due to applied load or residual stress. 
The designer must guard against high tensile resi- 
dual stresses being introduced at critical areas. 
Residual stresses can be introduced during heat 
treating and fabrication operations. 

The designer can intentionally introduce com- 
pressive stresses at critical regions to increase 
fatigue life.   This might be done by shot peening the 
surface to obtain a compressive surface layer or 
intentionally overstressing in bending where expected 
loadings are not completely reversed. 

The fatigue life of a part can be changed dras- 
tically by the simultaneous application of the fatigue 
loading and on« of the other environments.   Corro- 
sive environments greatly accelerate fatigue failure. 
The fatigue strength is reduced by elevated tempera- 
ture and creep can become a problem if the elevated 
temperature is combined with a static load.   Reduced 
temperatures increase the fatigue life of all metals. 

Fatigue design for complex load histories 
requires the designer to use one of the fatigue damage 
accumulation hypotheses.   Kaechele [4], and 
Crichlow |5], et a! review a number of these hypothe- 
sis and conclude that the Palmgren-Miner hypothesis 
| 6,7] is the most correct in an average sense.   The 
hypothesis as formulated by Miner ie given as 

Vni D   / R" wnere ni is the aPPlied cycles, N. is the 

cycles to failure from the S-N curve, and D is com- 
puted damage.   Failure is assumed to occur when the 
computed damage is equal to unity. 
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Numerous studies have shown that computed 
damage ear. tie greatly different from unity at failure. 
If a high stress blue!; (many cycles at co.ista'it ampli- 
tude» is followed by a low strsss block the computed 
damage tends to be less than unity.   Conversely, if a 
low stress bIo.:k is followed by ^ high stress block 
the computed damage tends: to be greater than unity. 
In the extreme case (coaxing) where many small 
blocks of stresses are ap;.<iied, with the stress ampli- 
tude of each block slightly higher than the preceding 
block, the computed damage can exceed 100.   If the 
stress blocks are well mixed without any ordering by 
amplitude, the computed damage normally lies in the 
range u. 3 to 3.   This allows the designer to select a 
computed damage less than one to obtain conservative 
estimates of mean lives. 

TESTING 

The designer should recognize that analytically 
predicted fatigue lives are open to question due to 
many simplifying assumptions required in any practi- 
cal fatigue analysis.   Therefore, testing plays a pri- 
mary role in fatigue design. 

Testing under representative load spectrums 
allows accurate determination cf failure locations 
and the associated stresses.   Alternate design details 
can be evaluated under actual or closely simulated 
load spectrums.   A considerable improvement in 
detailed design can be expected from properly 
designed tests. 

Measured stresses, failure locations, lives, and 
dynamic responses can be used to improve analysis 
procedures and to evaluate effects of the various sim- 
plifying assumptions required in the analysis. 

CURRENT RESEARCH 

Much of the current research is aimed primarily 
at understanding basic fatigue phenomena and is of 
little direct interest to the designer.   An additional 
large block of research involves ad hoc testing o* 
specific equipment and the studies of crack propaga- 
tion in airframe materials and assemblies.   A few 
areas with more potential for electronic equipment, 
design application include:  (1) prediction of fatigue 
curves from static properties, (2) fatigue damage 
accumulation hypothesis based on theoretical knowl- 
edge of fatigue rather than empirical observations, 
and (3) theoretical explanations of the effects of mean 
stress and alternating stress on fatigue !ife. 

The prediction of S-N curves from the static pro- 
perties is useful in estimating fatigue curves for new 
materials and for extrapolating the S-N curve outside 
the "-ar.ge of measured data.   Manson T8] presents two 
such techniques giving curves asymp' ..tic to the log 
strain versus log life at both short and long lives. 

The first technique (4-point correlation method) 
is shown in figure 4, 

CYCLES TO FAILURE 

Figure 4.   Asymptotic Curves for 4-Point 
Correlation Method. 

wjere D 1 RA is reduction in area in percent, 1 - RA' 
E is Young's modulus, »f is true fracture stress, 
<el is elastic strain range at 104 cycles, and ffuit 
is ultimate tensile strength.   The second technique 
(universal slope method) is shown in figure 5. 

CYCLES TO FAILURE 

Figure 5.   Asymptotic Curves for Universal 
Slope Method. 

The two techniques give comparable results for 28 
out of 29 materials reported in Manson's paper. 

Most of the fatigue damage accumulation 
hypotheses are based on empirical observations and 
as such make no attempt to relate fatigue damage to 
the microstructural phenomena.   Valluri's [9] 
hypothesis is one of the exceptions as it is based on 
dislocation theory and strain hardening theory. 
Unfortunately this more complex hypothesis yields 
no better predictions than the more familiar 
Palmgren-Miner hypothesis. 
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CONCLUSIONS REFERENCES 

Fatigue design of electronics is more difficult 
than static design.   The load history must be defined 
in much greater detail and stress analysis must 
account for localized stresses.   Since fatigue fail- 
ures originate at high localized stresses, the 
detailed design becomes much more important. 

Testing and experimental stress analysis are 
the designer's most powerful tools in increasing 
fatigue lives of electronic equipment.   Analytic 
techniques can be used in arriving at initial design 
but complexity of electronic equipment precludes 
complete reliance on analysis. 

Many of the techniques suggested for the design 
of electronic equipment are the same ones used by 
the designer of aerospace structures.   In some cases 
it is necessary to modify techniques to account for 
basic differences between the electronic equipment 
and aerospace structures.   A final idea that might be 
taken from the fatigue design of aerospace structures 
is the cataloging of design details which have a 
demonstrated superiority in fatigue.   These design 
details can be applied to future designs. 
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DISCUSSION 

Mr. Stein (Arizona State Univ.):  This is in 
the nature of a question and a comment, per- 
haps for both of the first speakers, because 
they both advocate and use strain gages on 
plastic materials.  This is an operation frought 
with a considerable amount of danger because 
of the selfheating effects, that is, strain gages 
on poor heat conductors. I wondered if you 
might have some comments on this?  Also, you 
have a statement that you feel that strain gages 
are more accurate than stress coat for fatigue 
design. If there were more time I would like 

to discuss this with you but perhaps you have 
some comments on that statement. 

Mr. Root: On the first one, we are aware 
of the problems.  I am not sure that I can say 
much more than that. We use care in using 
the strain gages on plastic.  And the second, 
we use stress coat strictly under noncontrolled 
laboratory ambient conditions, so we use it 
only as a qualitative tool.  We use it more for 
deciding locations for strain gages rather than 
to attempt to get quantitative measurements. 
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MODEL STUDIES TO DETERMINE 
LOW-FREQUENCY NOISE REDUCTION OF SPACECRAFT 

Arnold W. Mueller 
NASA Langley Research Center 

Hampton, Virginia 

A specially designed model has been used to study the low-frequency 
(below SO Hz) noise reduction of large spacecraft.  The model was 
cor structed of a thin-walled double shell and was a full-scale repre- 
sentation of the Apollo Command Module class of spacecraft.  The 
noise reduction contributions of component structures were measured 
and compared with predicted values based on a quasi-static pressure 
theory.  The measured results were found to be in general agreement 
with the predicted noise reduction values. 

INTRODUCTION 

The intense noise to which a large space- 
craft is exposed during launch is of concern 
because it may, in some cases, create a detri- 
mental inside environment for the crew and 
equipment.  Figure 1 indicates the nature of the 
outside acoustic environment of a spacecraft 
such as the Apollo Command Module due to the 
noise of the rocket engines (from unpublished 
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Fig. 1 - Measured one-third octave band noise 
spectrum near a large manned spacecraft 
during launch 

data).   The spectrum is seen to peak at about 
100 Hz and to include intense noise components 
at frequencies down to a few hertz.   Some of 
the wavelengths are thus long compared to the 
dimensions of the spacecraft and completely 

L-6955 

engulf it.  The effects of such intense low- 
frequency components on the spacecraft 
structure and the associated transmission of 
noise into the spacecraft are of particular 
concern.  Conventional methods of predicting 
noise reduction at higher frequencies are not 
pertinent in this low-frequency range.   The 
material of this paper relates to a research 
program designed specifically to explore the 
problem of predicting noise reduction at low 
frequencies. 

The NASA has had a program to investi- 
gate the low-frequency noise reduction of 
large spacecraft structures of the Apollo 
Command Module type.   This investigation 
included a theoretical study based on static 
pressure vessel principles by Dr. Richard H. 
Lyon, et al., of Bolt Beranek and Newman, 
Inc., and an associated model study in the 
Langley low-frequency noise facility.  The 
basis for the above model design is described 
in Refs. [1] and [2].   This paper contains 
results of the model tests at Langley along 
with calculations using the theoretical methods 
developed bv Dr. Lyon.   Validations are given 
for both the low-frequency noise reduction 
theory and the modeling technique. 

NOISE TRANSMISSION CONCEPTS 

Some factors in noise reduction are identi- 
fied for purposes of review in Fig. 2. Although 
the data of Fig. 2 apply directly to flat panels, 
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A Vi = A Pi i(ir^)=Apic (i) 
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where  C«   is defined as the acoustic com- 
pliance ofthe enclosed volume.   For an elastic 
shell, the volume change is given by 

A Vj = Cs (A Pe - A Pj) (2) 

where  Cs   is defined as the overall compli- 
ance of the shell.   The overall shell compli- 
ance is equal to the arithmetic sum of the 
compliances of each of the shell components. 

Fig. 2 - Schematic representation of transmis- 
sion loss for a flat panel 

the concepts involved are valid for spacecraft 
which have surfaces of complex curvature. 
Shown is a transmission loss curve which 
included both stiffness controlled and mass 
controlled segments.   The stiffness controlled 
region covers the frequency range below the 
first natural vibration frequency, whereas the 
mass controlled region includes the higher 
frequencies.   Because of the size and shape of 
manned spacecraft and their types of construc- 
tion, the stiffness controlled region is impor- 
tant relative to noise transmission for a 
substantial portion of the spectrum of Fig. 1. 
This was the motivation for a research pro- 
gram involving a theoretical method for the 
prediction of low-frequency noise reduction 
and an experimental pi ogram involving a 
unique acoustic model of the Apollo spacecraft. 

The theoretical method of Refs. [1] and 
[2] is based on the concept that below the 
fundamental structural and acoustic resonances 
of a .spacecraft, the low-frequency acoustic 
waves, acting as a quasi-static pressure, 
would slowly squeeze the structure which 
responds as an elastic pressure vessel.   Thus, 
in the theory, mechanical and acoustical com- 
pliances of the structure and its enclosed 
volume are considered as significant factors 
in its response.   Other phenomena such as 
structural damping, modal responses, and the 
acoustic characteristics of the interior are 
not accounted for in the quasi-static theory. 

Figure 3 presents some of the basic 
equations which are used in the prediction of 
low-frequency noise reduction.   A slowly 
varying or quasi-static external pressure   Pe 
applied to an airtight elastic container of 
volume   Vj   and at an internal pressure   Pi 
will cause a change in the internal volume by 
an amount 

NOISE REDUCTION 

Av. 
WHERE:  C 

a    ap 

AND: P_ IS * QUASISTATIC PRESSURE 

Fig. 3 - Basic equations used to predict low- 
frequency noise reduction values for 
spacecraft 

Therefore, combining Eqs. (1) and (2) we 
obtain 

*pe    cs + ca 
AP, 

AP« 
where   . p    gives the pressure or noise 

reduction.   In terms of dB this is 

A P 
NR = 201og10_S 

20 1og10'
Cs+Ca 

MODEL EXPERIMENTS 

In order to validate the low-frequency 
nose reduction concepts and the modeling 
techniques described in Refs. [1] and [2], 

(3) 
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a model of the Apollo spacecraft was fabricated 
for tests in the low-frequency noise facility at 
Langley. Figure 4 contains schematic repre- 
sentations of the model, in three different test 
configurations.   It consists of three main ele- 
ments indicated in the figure.   These are: an 
inner shell, an outer shell, and a filler mate- 
rial between the two.  Overall dimensions of 

OUTER SHELL 

INNER SHta 

FOAM FILLER 

Figure 5 is a photograph of the model in 
test position at the low-frequency noise facility. 

OUTER SHELL 

Fig. 4 - Sketches of model test configurations 
used for low-frequency noise reduction 
studies 

the model are the same as those of the Apollo 
Command Module, the height and diameter 
being approximately 11 feet.   Thicknesses of 
the model vary from 0.002 inch for the inner 
shell cylinder to 0.750 inch for the cylinder 
cap plate.   The truncated cone of the outer 
shell was 0.051 inch thick.   The inner shell was 
rigidly connected to the outer shell, at 12 points 
around its base perimeter. 

The model was designed to simulate the 
acoustical and structural compliances of the 
spacecraft in the low-frequency range.   This 
involved a 1:1 scaling of the overall interior 
dimensions whereas the shell material thick- 
nesses were scaled according to either mem- 
brane or flexural considerations, depending on 
the geometry of the particular components. 
The designs of the curved surfaces were domi- 
nated by membrane considerations.   The 
designs of the flat surfaces, on the other hand, 
were dominated by flexural considerations. 
This accounts for the wide range of material 
thicknesses of the model. 

Because of the manner in which the model 
is designed, !t should represent the noise 
reduction behavior of the Apollo spacecraft at 
low frequencies but does not necessarily 
represent it at the higher frequencies where 
structural vibration modes occur. 

■'■% 00* *■»**• 

Fig. 5 - Model in test position at the low- 
frequency noise facility 

The test chamber of this facility is 22 feet in 
length and 24 feet in diameter.   The facility 
has a hydraulically operated piston which 
moves a 14-foot-diameter honeycomb speaker 
cone siiaisoidally in the frequency range 1 Hz 
to 50 Hz.   The end wall as seen in Fig. 5 is 
free to move and may be positioned within the 
test chamber to tune it over its operating 
frequency range.   For the data presented in 
this paper, the facility was operated between 
the frequencies of 2.5 Hz to 50 Hz and sound 
pressure levels were measured on the inside 
and on the outside of the model.   The arith- 
metic differences between these two levels 
were used to give the measured noise reduc- 
tion values of Figs. 6 through 8. 

RESULTS AND DISCUSSIONS 

Figure 6 presents a comparison of the 
predicted and measured noise reduction data, 
over the frequency range of 2.5 Hz to 50 Hz, 
for the inner shell.   The predicted value of 
17.2 dB was calculated from Eq. (3) using the 
appropriate compliance values.   It can be seen 
that the predicted and measured data are in 
good agreement at low frequencies.   In the 
range of frequencies of the plate and shell 
vibrations, however, marked discrepancies 
occur.   These discrepancies are believed to be 
due to dynamic response considerations. 

The measured noise reductions for the 
outer shell are compared to the predicted 
value of 49.4 dB in Fig. 7.   The measurements 
generally follow the trend of the theory up to 
the frequency range in which dynamic 

105 



responses may be important,   The measured 
noise reduction values are generally lower 
than the predicted value.   Thes.» lower values 
may be due to local inh&m^eer cities of the 
shell structure and imperfect pressure seals 
at the joints. 

predicted value.   The foam material minimized 
the amplitudes of the air cavity acoustic reso- 
nances between the shells and the shells' 
vibration responses.   It is believed that this 
filler material also provided some local 
stiffening. 

MJISl 
•ttDSiCflOY 

(LAI v 

CURVED MfASURtD 

0- ILA! PLATE        ., 

VISMTIUNS -V jX5u 
I I     I» VU'AIIONS" 

.»L.   L_             -         i.                           I 4.  
2.5              5               10 A 

FREQUENCY, H; 

wist 
REDUCTION, jo 

/AIM WITH row 

_PR£0ICTED7 
MEASURED 

FREQUENCY. Hi 

Fig. 6 - Comparison of measured and predicted 
noise reductions for inner shell 

Fig. 8 - Comparison of measured and predicted 
noise reductions of assembled model with 
and without foam filler material 
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Fig. 7 - Comparison of measured and predicted 
noise r auction for outer shell 

Similar data for the fully assembled model 
are given in Fig. 8.   Figure 8(a) contains 
results for both the inner and outer shells in 
combination.   The trends of these measured 
data are similar to those of Figs. 6 and 7 and 
the noise reduction values are generally lower 
than the predicted value.   Figure 8(b) contains 
results for the inner and outer shells in com- 
bination with a foam-type filler material to 
block the intervening air volume.   These latter 
results indicate greater noise reductions than 
for Fig. 8(a) and a better agreement with 

CONCLUDING REMARKS 

A specially designed node! has been used 
to study the low-frequency nois-.-: reduction of 
large spacecraft of double she.'! construction. 
In this study, the noise reduction contributions 
of component structures were measured and 
were compared with the predicted values 
based on quasi-static pressure theory.   The 
results indicate general agreement in the 
noise reduction values and in the trends of the 
data for the frequency range where dynamic 
responses are not significant. 
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DISCUSSION 

Mr. Verga (Hazeltine Corp.): You said that 
the noise at the spacecraft is mainly due to 
blastoff and then you proceeded to try to elim- 
inate or minimize the low frequency noise. 
What is the purpose of wanting to do that if the 
noise is limited to blastoff? Ear muffs or 
something mechanical like that perhaps could 
solve the problem. 

Mr. Mueller:  Ear devices really would 
not solve the problems.  We are in a low fre- 
quency range from 2 Hz to around 50 Hz or so, 
where ear muffs or ear attenuators of some 
sort give very little protection. They are 
effective only at higher frequencies. The 
equipment would respond at these low fre- 
quencies if there were a sufficient sound 
pressure level within the capsule. It is possi- 
ble to have sound pressure levels at these low 
frequencies in that your body cavity or eyes 
would jump or vibrate and create difficulty in 
either breathing or communication. 

Mr. Dorland (NASA Manned Spacecraft 
Ctr.): Did you make any attempt to correlate 
any of the results of your study with any flight 
data which may have become available over the 
last half dozen flights? 

Mr. Mueller: Yes.  I contacted some 
people at Houston. What I learned was that 
there were very meager data taken within the 
spacecraft on the noise or sound pressure 
levels in the low frequency range.  I did find, 
as I indicated, some data from around 20 Hz 
and higher.  In that instance we find that the 
spacecraft does, in fact, attenuate the noises 
at 20 Hz to 50 Hz pretty well in agreement 
with the theory.  If you have any additional 
data which might be of some interest to me, 
I would like to have it. 

Mr. Dorland:  I do not know what you were 
able to find.  I am only grossly familiar with 
the flight measurement program so I do not 
know what they might have produced for you. 
I have another comment.  I noticed oy looking 
at the dimensions of your model that it is a 
little differently scaled than the actual com- 
mand module.  Is this done for some specific 
purpose? 

Mr. Mueller: No.  I was out in California 
and obtained the dimensions from the people 
at North American, Downey, and these are the 
dimensions which they gave me.  If there is a 
difference, I cannot explain why. 

Mr. Edge (NASA Langley Research Ctr.): 
I might comment with regard to dimensions. 
The fact was that some compromises were made 
to economize, to just reduce the cost of 
fabrication. 

Mr. Ungar (Bolt Beranek & Newman):  As 
you probably recall, we did some measure- 
ments on a very small model.  As I recall, we 
had a hard time coming up with models that 
behave like the theory, mainly because any 
small crinkle in the surface would destroy the 
stiffness and reduce the noise reduction.   I am 
not surprised to see that your noise reduction 
was not quite up to predictions because you may 
well have had crinkles in the skin. 

Mr. Mueller:  We feel very proud, actually, 
of the measurements.  We think that the mea- 
surements tended to confirm very well the calc- 
ulations or methods for which you people were 
responsible. 

Mr. Forkois (Naval Research Lab.): Were 
you satisfied with your simulation ?  It seems to 
me that the missile itself was in a free field and 
then you generated a pressure wave with a re- 
flecting wall. Was there good correlation be- 
tween your test and the actual flight conditions ? 

Mr. Mueller: Certainly we did not run a 
statistical correlation on that.  For the partic- 
ular cases which we had, we do feel that we 
pretty well simulated the pressure field.  You 
are right, we did have a reflecting wall and we 
did have some varying sound pressure levels 
around the spacecraft.  This, in turn, I feel 
did add to the reduced values of the measured 
data as compared to the theory.  It was prob- 
ably the best we could do at the time, and we 
think that our test is pretty good. 
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COMBUSTION  INSTABI1ITY TESTS 

OF THE SATURN  IB FIRST STAGE 

W. S. Parker 
Chrysler Corporation 

New Orleans, Louisiana 

i ssrifesof combustion instability tests were conducted on 
the S-rB Stage (booster stage) of the Saturn IB launch ve- 
hicle. During these tests, the liquid rocket engines were 
intentionally drivan into combustion instability for short 
periods "to determine if there was any tendency of the stage 
structure and propellant feedlines to couple with and sus- 
tain the pressure and structural oscillation resulting from 
the temporarily induced unstable combustion. Data racorded 
during the instability periods showed no excitation of the 
natural frequency of the stage or the rocket engines and no 
evidence of coupling or reinforcing of the vibrations from 
the instability. The tests increased the confidence in the 
stage design and suggested a criterion for the stability 
rating of manned mission launch vehicles. 

INTRODUCTION 

A series of engine combustion in- 
stability te3ts were conducted by 
Chrysler Corporation Space Division on 
the S-IB Stage of the Saturn IB launch 
vehicle stage number S-IB-11. The tests 
were under the technical direction of 
National Aeronautics and Space Adminis- 
tration at the Marshall Space Flight 
Center (MSFC) in Huntsville, Alabama. 
They were made to determine the influ- 
ence of the £-age structure and the pro- 
pellant feed systems on engine combus- 
tion stability when the engines were 
driven unstable. These tests were sig- 
nificant because they marked the first 
time that a stage was subjected to such 
combustion instability. The benefits 
to be derived from the tests included 
increased confidence in the flight re- 
liability of'the stage and an improved 
math model of the stage; the possibil- 
ity of incurring damage to the stage as 
a result of the tests was considered 
minimal. 

BACKGROUND 

The S-IB Stage is a multitjank, 
multiengine booster. Eight H-l model 
engines, rated at 205,000 pounds thrust 
each, sire positioned ar. the base of the 
stage as shown in figure 1. The four 
inboard engines (5, 6, 7, and 3) and 

the four outboard engines (1, 2, 3, and 
4) are the same except the outboard en- 
gines can be gimballed for thrust vector 
control (not a consideration in these 
tests); and the routing of the propel- 
lant feedlines differs slightly. 

IBS??: 

Fig. 1 - Engine position (from aft) 

The engine is turbopump fed with 
liquid oxygen (LOX) and kerosene type 
RP-1 fuel. These propellants are mixed 
and atomized before burning in the 
thrust chamber. Figure 2 provides a 
schematic representation of the thrust 
chamber. 
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During the normal production sam- 
ple testing of the injector by the en- 
gine contractor (Rocketdyne), isolated 
cases of self-triggered, sustained in- 
stability were encountered. The initi- 
ation and sustention of the potentially 
damaging instability was thought to re- 
sult from a sympathetic coupling of the 
engine test stand structure and propel- 
lant system with the instability fre- 
quency. This cause was confirmed by 41 
tests that were conducted during which 
the engine was purposely driven into 
instability by detonating a 50 grain 
bomb placed several inches below the in- 
jector face. See figure U  for a picture 
of the bomb. The bomb was detonated by 
the heat of combustion about 2 ;o 3 
seconds after engine start. 

Fig. 2 - Thrust chamoer 

NYLON EXPLOSIVE 
METAL 
CAP 

The injector is the focal point of 
the combustion process. .Early injectors 
had a flat face design but as thrust up- 
ratings of the engine occurred, combus- 
tion instability was occasionally en- 
countered. The injector design was, 
therefore, modified to reduce the like- 
lihood of such instability occurring. 
At the same time, it tended to dampen 
any instability pressure oscillations if 
instability should occur. The modifica- 
tion consisted of adding 3-inch-long 
copper baffles, or vanes, to the face of 
the injector. (See figure 3.) The six 
radial and- one cylindrical baffle di- 
vides the combustion zone irto small 
compartments and discourage tangential 
and radial modes of instability. 

Fig. 3 - Baffled injector 

Fig. h  - Explosive device 

Because of the complexities and un- 
certainties of the structural dynamics 
in an analytical solution of the prob- 
lem, it was decided that similar tests 
should be conducted during a full scale 
flight stage test to determine the char- 
acteristics of the engine-stage combi- 
nation when the engine is driven into an 
unstable combustion condition. 

STAGE DESCRIPTION 

The S-IB Stage consists of nine 
propellant tanks and eight engines. 
Four Lox tanks and four fuel tanks are 
arranged alternately around a center Lox 
tank. The four outer Lox tanks are 70 
inches in diameter and are intercon- 
nected at the bottom through sumps witn 
the 105-inch diameter center tank sump. 
The four fuel tanks are also intercon- 
nected at the bottom through a similar 
manifold arrangement. Figure 5 depicts 
the tank interconnecting system. The 
eight engines are arranged in a manner 
shown earlier in figure 1. 
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LOX SUMP 

FUEL SUMP 

Fig. 5 - Propellant Tank 
interchange system 

TO OTHER 
ENGINES 

ROCKET ENGINES 
Fig. 6 - Engine, feedline, 

and tank relationship 

The nine propellant tanks are 
mounted between a lower radial structure 
called the thru3t structure and an upper 
radial structure called the spider beam. 
The five Lox tanks transmit the thrust 
loads between the thrust structure and 
the spider beam. Because of the unequal 
expansion and contraction extremes be- 
tween the cryogenic Lox tanks and the 
fuel tanks, the fuel tanks are attached 
to the spider beam through sliding pins 
which precludes the use of these tanks 
as vertical load bearing members. 

The four outer Lox and four fuel 
tank3 supply the engines with propellant 
from sumps at the tank bottoms. Each 
outer tank furnishes Lox or fuel direct- 
ly to one inboard and one outboard en- 
gine. The center Lox tank feeds all en- 
gines indirectly through the intercon- 
nection system. Figure 6 shows the 
feedlines for only one propellant, but 
is typical of both. During operation, 
near equal propellant levels are main- 
tained between each Lox tank and be- 
tween each fuel tank. The interchange 
between tanks at the bottom also fur- 
nishes a path for pressure disturbances 
to travel from engine to engine. Be- 
sides the objective of determining the 
3tructural-propellant system-engine vi- 
bration frequency relationship, it was 
also desirable to see if a pressure dis- 
turbance, a3 would be caused by a burst 
of instability, could propagate to an- 
other engine through the feed system. 

TEST PLAN 

The tests were conducted on stage 
number S-IB-11 in the static test tower 
at the Marshall Space Flight Center in 
Huntsville, Alabama. The plan called 
for two engines to be bombed. The en- 
gines in positions 1 and 7 were select- 
ed. These were chosen because 1) they 
represent both an inboard and an out- 
board engine configuration ana 2) have 
the maximum physical separation; 3) they 
are not fed from the same propellant 
tanks; and, since the S-IB uses a stag- 
gered pairs engine start sequence, 4) 
they have the greatest time separation 
in the staggered engine startup sequence. 
As a precaution, and to facilitate the 
special measurements and the explosive 
device installation, test engines re- 
placed the two production engines nor- 
mally in positions 1 and 7; however, 
this substitution in no way compromised 
any of the data or test program conclu- 
sions. 

The plan further called for tests 
of approximately 15 saconds duration 
with a normal start sequence. Steady- 
state operation is realized in approx- 
imately 3 seconds so the 15 second dur- 
ation gave adequate- test time without 
adding excessive running time to the 
stage components. The propellant loads 
predicted for flight were loaded to ob- 
tain normal stage fluid dynamic response. 

The explosive device used to create 
the instability comprises a 50-grain 
mixture of PSTN, composition C, and 
Plast-T-Cap all encased in a nylon tube. 
A threaded metal cap at the top of the 
explosive device screws into the face of 
the specially modified thrust chamber 
injec.or. The same bomb design was used 
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as was employed in i! ' single engine 
tests (Dentioned earlier) when the coup- 
ling phenomenon was initially discovered. 
This assured comparable initiation of 
combustion instability. Detonation of 
the device is simple and requires no ex- 
ternal controls or electrical connec- 
tions. When the heat of combustion be- 
coms great enough to melt the nylon en- 
capsulating the explosive mixture, de- 
tonation occurs. The detonation time 
proved very repeatable, varying between 
2.4 and 2.o seconds after ignition sig- 
nal. 

Previous single engine bomb tests 
showed thrust increases of as much as 
100 percent above the nominal 205,000 
pound level of the H-l engine. A con- 
puter analysis of the thrust structure 
response to the shock wa3 made before 
the test series. This analysis indi- 
cated some fasteners in the inboard en- 
gine thru3t beams would be subject to 
failure from this overthrust. Accord- 
ingly, the fasteners were replaced with 
larger, stronger ones before the test 
series started. As with the other 
changes, the stage dynamic characteris- 
tics were retained without jeopardizing 
the hardware safety. 

TEST INSTRUMENTATION 

The measurements taken to detect 
the effects of the combustion instabil- 
ity can be divided into two categories: 
propulsion and strucure. 

The engines used for the bomb tests 
contained ports and fittings to measure 
much more than the standard instrumen- 
tation program. Because the pressure 
oscillations generated by the instabil- 
ity are transient, special instruments 
were used which were capable of sensing 
very high frequency disturbances. 
Water-cooled capacitance gauge and 
strain gauge type pressure transducers 
were used. Instruments to measure the 
pressure wave propagation were placed at 
various points in the oxidizer and fuel 
feed system of the engine. Also, pres- 
sure transducers were located upstream 
of the engine turbopump inlet in the 
feedlines between the tank and the en- 
gine. Similar measurements were placed 
in the propellant feedlines of adjacent 
engines to determine if pressure inter- 
change through the tank bottoms occurred. 
Crystal oscillator vibration instruments 
were placed on the engine thrust chamber 
to measure vibration levels in the ver- 
tical (thrust application) direction and 
the horizontal direction. The same type 
of vibration measurements were located 
in the feedlines, turbopump inlets, and 
thrust chamber exits. No special vibra- 

tion instruments were placed on the ad- 
jacent engines. There were already 
several acceleroraeters required by the 
standard stage measurement program. To 
correlate the single engine test data 
with the clustered engine stage data, 
measurement location and transducer type 
were consistent. 

Recorders U3ed to store the trans- 
ducer output-3 included Beckman Digital 
Recorders, oscillographs, direct inking 
graphic recorders, and magnetic tape 
units. These devices satisfactorily 
covered the frequency spectrum encoun- 
tered. 

The structural measurements comple- 
mented those on the propulsion system. 
They consisted of strain gauges and vi- 
bration acceleroraeters to monitor and 
record the response of the stage struc- 
ture. A combination of axial and ves- 
sette gauges were used on the base re- 
gion of the thrust support beams to 
measure the increased thrust levels and 
thrust oscillation frequency. For re- 
cording abnormal vibration, a total of 
fifty-five accelerometers were used in 
an area below the tanks and lower thrust 
structure. 

TEST RESULTS 

Four tests were conducted; one test 
during which the engine In position 7 
was disturbed and three tests where both 
positions 1 and 7 engines were bombed. 
This yielded seven sets of data. In all 
cases, the pressure oscillations gene- 
rated by the explosion of the bomb were 
damped within the 100 milliseconc time 
criteria established before the series. 
An automatic device would have termi- 
nated the test had it taken longer than 
100 milliseconds to subside. Structural 
and engine mounted measurements taken 
during the instability tests are sum- 
marized below: 

TABLE 1. MEASURED DATA COMPARISON 

INDICATOR STRUCTURE ENGINE 

MAXIMUM THRUST INCREASE (PERCENT» 

INSTABILITY PERIOD iMSECi 

DISTURBANCE FREQUENCY (CPSi 

31-51 

15-31 

133-154 

43-66 

27-48 

145-155 

The structural response to the 
shock was very localized and limited to 
the member attaching directly to the en- 
gine. No structural failures occurred 
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nor were structural limits ex.eedsd. 
The vibration Induced *n the feed sys- 
tem propagates to the e.:tent that it was 
felt by'all prarrure and vibration meas- 
urements on enirii.es 1 and ?. There was 
no evid-snce tr -•; the fluid pressure wave 
contained sufficient energy to be trans- 
mitted to other engines. No vibration 
coupling of the feed aystem-structure- 
engine was detected as evidenced by the 
very short damping time. A typical 
thruat and structural disturbance is 
shown in figure 7. The structural curve 
shows the initial response was compres- 
sion. However, some -.structural members 
underwent tension first, followed by 
compression. 

stage structure and feedlines which was 
not obtainable in the dynamic phake 
teats. They nerved to, verify and im- 
prove the structural oath model. 

Because the stage response to en- 
gine instability was quite different 
than the single engine test stand con- 
figuration, the practice of requiring 
that engines be inherently stable, as a 
design criteria, should be exteuded to 
include the stage design as well. The 
stage structure must be capable of ac- 
cepting the thrust and frequency of the 
combustion instability produced by the 
engine without coupling or otherwise 
supporting the instability. 
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GENERAL CONCLUSIONS 

The practice of stability rating 
an injector or engine configuration is 
not new and has become an accepted part 
of engine development testing. However, 
the test series described in the prev- 
ious pages marks the first time an en- 
tire flight stage was tested for its 
combustion instability characteristics. 
Additionally, the flight worthiness of 
the stage was unaltered by this non- 
destructive means of testing. 

The previous mathematical computer 
model of the S-IB Stage was formulated 
from analytical studies supplemented by 
non-firing dynamic shake te3ts of the 
stage. The instability tests afforded 
a ireans of »nergy input to excite the 
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DYNAMIC ANALYSIS OF A HIGH-SPEED 

LINKLESS AMMUNITION CONVEYOR SYSTEM 

C. B. Basye and B. R. Scheller 
Electronics and Space Division 

Emerson Electric Company 
St. Louis, Missouri 

A dynamic analysis of the XM-53 conveyor feed system 
for the AH-56A Cheyenne helicopter has been completed. 
This feed system is required to transport ammunition 
through flexible chutes at a variety of chosen firing 
rates. Distributed friction along the conveyor was 
considered by utilizing an equation which related the 
load buildup resulting from the conveyor being pulled 
around a curved surface ("capstan" effect). Distributed 
mass along the conveyor was neglected, but appropriate 
mass was lumped with sprocket moments of inertia to 
account for conveyor mass. Results of the analysis 
cenpare favorably with available experimental informa- 
tion. Dynamic conveyor loads and power requirements 
were determined from the analysis. Effects of dif- 
ferent coefficients of friction were evaluated. 
Effects of torsional flex shaft stiffness on natural 
frequencies and on dynamic response were also eval- 
uated. 

INTRODUCTION 

The XM-53 nose mounted subsystem 
for the AH-56A Cheyenno helicopter pro- 
vides installation and aiming means for 
the rotating six barrel 7.62mm machine 
gun. Linkless ammunition is stored in 
a vertically disposed magazine approxi- 
mately 15 feet aft of the turret. The 
"linkless" conveyor system which trans- 
ports ammunition to the gun is an inte- 
gral part of the total weapon system. 
The conveyor is thus used for succeeding 
complements of ammunition, in contrast 
to "linked" ammunition systems where 
conveyor elements are discarded as 
rounds are fired. Travel limits for 
the gun are +120° in azimuth, 18° in 
elevation, and 70s in depression. Qua- 
druple firing rates of 7*50, 1500, 3000, 
and 6000 shots per minute are provided 
for the weapon. Thus the conveyor feed 
system is required to transport the 
ammunition through flexible chutes at 
a variety of chosen firing rates. 

Developmental progress relative to 
reliable performance regarding rate of 
fire and time to reach rate was slower 

than desired. To accelerate this pro- 
gress, and to increase the knowledge of 
dynamic subsystem behavior, an analysis 
of the conveyor feed system was per- 
formed. 

Fig. 1 is a photograph of the AH- 
56A Cheyenne helicopter in flight.  The 
XM-53 weapon is seen protruding from 
the nose of the aircraft. 

Fig. 2 illustrates some of the com- 
ponent parts of the XM-53 subsystem. 
The vertical cylindrical ammunition drum 
is at the rear of the photo with the gun 
at the left foreground. The gun feeder 
is immediately under the gun. The long 
fixed polycarbonate conveyor chute is 
visible in the right foreground. 

Fig. 3 is similar to Fig. 2.  The 
streamlined cover is on the turret in 
Fig. 3, and the double sprocket (J2 of 
Fig. 6) is visible at the bottom of the 
ammunition drum. The forward part of 
the polycarbonate conveyor chute has 
been removed in Fig. 3. Both the feed 
and return sides of the conveyor are 
enclosed in this polycarbonate chute. 
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Fig. 1 - AH-56A Cheyenne 

Fig. 2 - XM-53 subsystem 
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Fig. 3 - XM-53 subsystem with turret cover installed 

! 

Fig. 4 - XM-53 subsystem, left side view 
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Fig. 4 is a left side view of the 
XM-53 subsystem. Tl<e main power trans- 
mission shaft is visible in the l"it 
foreground.  Power to drive the gu? is 
transmitted through this main shaft and 
through the flexible shaft which is in 
the upper center of the photograph. 
The subsystem is driven by a sin.j^e 
electric motor mounted inside the 
ammunition drum. 

Fig. 5 - Forward flexible chute 

Fig. 5 is a view looking down on 
the top of the turret. The complicated 
geometrical paths which the conveyor 
has to assume as the weapon is tra- 
versed through azimuth and elevation 
chang.s are . 1lustrated here. Pictured 
are the flexible forward conveyor feed 
and return chu.es when the weapon is 
rotated 120° left in azimuth. Also 
shown is the shaft housing enclosing 
the flexible shaft which provides power 
for fie weapon-feeder combination. 

ANALYSIS 

Fig. 6 is a schematic of the XM- 
53 conveyor feed system. This sche- 
matic was used in deriving the equa- 
tions of motion of the system. The 
descriptions in Table 1 apply to the 
schematic and to the analysis. 

The driving torque TQ> on Fig. 6 
shown acting on inertia jj., is fur- 
nished by the drive motor which powers 
thfc complete system. This motor is 
inside the ammunition drum of Fig. 2. 
The inertia Ji includes the motor 
inertia, gearing, and the inertia of 
the ammunition and rotating drum com- 

Fig. 6 - XM-53 
conveyor feed system schematic 

ponents. Thus the angular position 
function 8j gives the angular position 
of the motor, drum, gearing, and con- 
veyor sprocket adjacent to the drum. 

The inertia Ji is much larger than 
the other three inertias, Jo, J3» and 
J4. The shaft k* is a flexible shaft 
connecting inertias Jj and J2, and the 
aft loop of the conveyor (kj area) 
connects these same two inertias. 

The double sprocket, J? of Fig. 6, 
is visible at the aft end of the poly- 
carbonate chute in Fig. 3. The long 
conveyor saction enclosed in the poly- 
carbonate chute of Figs. 2 and 3 is 
designated k2 in Fig. 6. The conveyor 
section designated k? in Fig. 6 is 
enclosed in the flexible feed and return 
chutes of Fig. 5. The flexible shaft 
visible in Figs. 4 and 5 is designated 
as kg of Fig. 6. The shaft designated 
as k5 of Fig. 6 consists of a flexible 
shaft adjacent to the drive motor in 
series with the long main power trans- 
mission shaft shown in Fig. 4. 

The distributed friction along the 
conveyor was considered by utilizing 
an equation which related the load 
buildup resulting from the conveyor 
being pulled around a curved surface 
("capstan" effect). The distributed 
mass along the conveyor was neglected, 
but appropriate mase -"as lumped with 
the sprocket moments of inertia to 
account for conveyor mass. 
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TABLE 1 

Notation 

*1» *2' k3 Spring rates of the conveyor in the 
aft, polycarbonate, and forward 
flexible sections, respectively. 

k4. k5, k6 Torsional spring constants of appro- 
priate system flex and line shafts. 

Jl' J?.» J3' J4 Appropriate inertias lumped at the 
sprockets in drum conveyor transfer 
unit, double sprocket location, 
cartridge drive, and feeder-gun area, 
respectively. 

91' 62, 93, e4 Angular position functions at the 
four sprocket locations. 

vl' w2» "3 Friction coefficients between the con- 
veyor and the appropriate guidance 
surfaces. 

h' 62' 83 Angle of contact between the conveyor 
and the conveyor track in the appro- 
priate area. For instance, 82, *n the 
polycarbonate chute, is about 180", 
or it radians, when all of the angular 
bends of the polycarbonate chute are 
accounted for. 

TD Driving torque for the conveyor. 

TR1 ' TR2' TR3' TR4 Periodic resistance torques at each 
sprocket. These occur each time a con- 
veyor element contacts a sprocket. 

The equations of motion for this 
four degree of freedom system in matrix 
form are 

[M]18> + [K]{6) » {F1} ■ ► { 

where 

[M] = Jl 0 0 D 
0 J2 0 5 
0 0 J3 ) 
0 0 0 >AJ 

m = 51 
8? 

{6} = 6l 
e? 

1* 9 e* 
l!t e*. 

[K] - kl 1 ki2 kl3 1 tl4 
k2 1 k22 k23 J c24 
k1 1 k32 k33 1 «34 
k4 1 k42 k43 ' t44 

In Eq. (3), 

(2) 

and 

(3) 

kn - k4 + k5 + kia + kia e 2aPl8i 

k12 = k2i = -k4 - kxa 

k13 = k31 = " k5' 

k^V^. 

c14 

c22 

k41 = k24 = k42 = °' 

k4 + kxa
2 + k2a

2 + kjaV»*1 + 
k2a

2eu2ß2, 

k,-) = - k2a
2 - k2a

2e*J2 82i k23 = K32 = 

k33 = k5 + k6 + k2a
2 + k3a

2 + k2a
2ey2ß'- + 

k3a2*u3S3, and 

k34 = k43 k44 " ~ k6 " k3a 

k3a
2e^3ß3, 

The forcing function, (F1); of Eq. (1) 
is 

{Fi} = TD + aT (1 - eyißi) 
aT (2-e"isi-eM2) 
aT (2-eu2ß2-eM3) 
aT (l-elJ3s3) 

(4) 
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where T is the conveyer preload and Tp 
is the driving torque.  The forms of 
the matrix entries in Eqs. (3) and (4) 
were derived by drawing f-ee body dia- 
grams of the appropriate sprockets and 
applying Newt«'a Law. The static flat 
belt frictionai relationsS-.ip was uti- 
lized. A correction for the inertial 
effect of the mass of the belt as the 
belt moved around curved paths was con- 
sidered but was of small magnitude and 
thus was not used. The same preload 
was assumed to exist in all sections 
of the conveyor. The driving torque 
is the torque necessary to overcome the 
resistance of the conveyor being moved 
through the system and does not include 
the torque required to bring the system 
up to speed. 

The forcing function, {F2}, of Eq. 
(1) is 

{F2} = (1-cos 2* t) 
T 

0 
0 
0 

(5) 

where 

Jl + J2 + J3 + J4 Jss 

and t is time with 
T = the accelerating time and 
BssB steady state angular velocity 

corresponding to the particular 
firing rate. 

{F2} is considered to be zero after the 
accelerating time is over. 

The forcing function, {F3}, of Eq. 
(1) is ill, 

{F3} *  (K4 + 2.06T + 14) (1 - cos69sst) 
(- 0.82T - 5.4)(1 - cos66sst) 
- 0.97T - 5.7)(1 - cos68sst) 
(-K4-0.27T-2.9)(l-cos6§  t) 

{F3} is considered to be zero during the 
accelerating time for reasons of mathe- 
matical convenience.  (F3) consists of 
the resistance torques at each sprocket 
^TR1' TR2' TR3» an^ TR4 of F*9" ^) which 
result from the conveyor elements con- 
tacting the six-toothed sprockets. The 
magnitudes of these torques were based 
on experimental data and were functions 
of the preload, T. The factor Kj 
accounts for the torque necessary to 
drive a round through the feeder and 
weapon. 

Damping as such was not incorpo- 
rated in the analysis, but the influen- 
tial distributed friction along the con- 

veyor was utilized. 

The 'equations of motion for this 
four degree of freedom system were 
solved by normal mode matrix methods. 
See References [1], [2], or [3]. Four 
natural frequencies, one zero frequency 
and three non-zero frequencies, result. 
The solutions for the angular position 
functions during the accelerating, or 
starting, time are of the form: 

9i = Ai + cit2 + Di cos 2*t + Fi cosu2t 
T        (7) 

+Gj cos n>2t  + K^ cos i»2t 

where i takes on the values 1, 2, 3, and 
4 for the four sprockets and t is the 
acceleration time. The solutions 
following the accelerating phase are of 
the form: /„. 

6i = Ji + Ki* + Li cos ^^sst + Micos ujt 

+ N^ nin <»2t + Oj cos ujt + 

Pi sin (03t + Qi cos 014t + 
Ri sin u>4t 

where i again takes on values 1, 2, 3, 
and 4. The symbols Aj, C^,  , Ri are 
constants in these equations. 

RESULTS 

Table 2 includes analytical results 
of the XM-53 conveyor feed system 
analysis when appropriate values are 
used for the various parameters of the 
system. In other words, Table 2 is 
indicative of the system as is. It is 
important to realize, however, that the 
maximum loads predicted in the various 
sections of the conveyor are based on 
an undamped analysis. Effects of fric- 
tion have been included, but effects of 
damping associated with conveyor oscil- 
lations have not been included. It is 
certain that these predicted maximum 
loads are higher than actually occur. 
These predicted loads reflect conveyor 
loads due to preload, friction buildup 
(capstan effect), and loads due to con- 
veyor stretching as a function of 
sprocket oscillation.  It is this latter 
load component which contributes more in 
these analytical results (due to absence 
of damping in the equations) than 
actually exists in the "real world" 
conveyor. 

Table 3 illustrates predicted re- 
sults if the k4-flex shaft of Fig. 6 is 
geared up so as to rotate six times its 
present speed. The spring constant k4 
would increase from its present value of 
80 in.-lb./radian to six-squared times 
this, or 2880 in.-lb./radian. 
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TABLfc 2 

Analytical Results 

W2» Polycarbonate Chute Friction Coefficient (k2 area) 
IC4, Flex Shaft Spring Constant = 80 in.-lb./radian 

0.5 

Power 
Required 

Forcing Undamped Predicted for Con- 
Rate, Preload, Natural Frequency, Freq., Maximum Conveyor veyor and 
spm T, lb. rad/sec rad/sec 

65ss) 
Load, lb. Gun, 

HP <"1 («2 "3 kj area '«2 area k3 area 

750 10 90.3 530.1 127.2 78.5 120 136 45 0.43 
750 2 90.3 530.1 127.2 78.5 43 42 12 0.15 
900 10 90.3 530.1 127,2 94.2 195 204 45 0.51 
900 2 90.3 530.1 127.2 94.2 101 94 14 0.18 
1500 10 90.3 530.1 127.2 157.1 66 93 50 0.85 
1500 2 90.3 530.1 127.2 157.1 17 22 17 0.29 
1760 10 90.3 530.1 127.2 184.3 65 93 48 1.00 
1760 2 90.3 530.1 127.2 134.3 16 21 14 0.35 
1760 4 90.3 530.1 127.2 184.3 28 38 23 0.51 
3000 10 90.9 530.7 130.1 314.? 73 99 45 1.71 
3000 2 90.9 530.7 130.1 314.2 19 23 11 0.59 
5300 10 90.9 530.7 130.1 555.0 71 S9 47 3.26 
5300 2 90.9 530.7 130.1 555.0 18 23 12 1.04 
6000 2 90.9 530.7 130.1 628.3 18 23 11 1.17 

TABLE 3 

Analytical Results 

»2» Polycarbonate Chute Friction Coefficient (k2 area) - 0.5 
k,j, Flex Shaft Spring Constant * 2880 in.-lb./radian 

Power 
Required 

Forcing Undamped Predicted for Con- 
Rate, Preload, Natural Frequency, Freq., Maximum Conveyor veyor and 
spm T, lb. rad/sec rad/sec 

(6&ss) 
Load, lb. Gun, 

HP ul u2 ">3 k^ area k2 area k3 area 

750 10 318.8 530.1 127.1 78.5 18 55 45 0.43 
750 2 318.8 530.1 127.1 78.5 4 12 12 0.15 
1500 10 318.8 530.1 127.1 157.1 18 59 52 0.85 
1500 2 318.8 530.1 127.1 157.1 4 16 17 0.29 
3000 10 320.4 530.7 130.1 314.2 44 77 45 1.71 
3000 2 320.4 530.7 130.1 314.2 17 24 12 0.59 
6000 10 320.4 530.7 130.1 628.3 17 53 44 3.44 
6000 2 320.4 530.7 130.1 628.3 3 12 11 1.17 

Table 4 illustrates the predicted 
effects of leaving the k4 shaft as is, 
but reducing the friction coefficient 
in the polycarbonate chute (u?) from its 
presently assumed value of 0.5 to a 
value of 0.1. 

Table 5 includes analytical pre- 
dictions if both changes were incorpo- 
rated, of if the timing shaft is stiff- 
ened up to a value of 2880 in.-lb./rad- 
ian and the polycarbonate chute friction 
coefficient reduced to a value of 0.1. 
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TABLE 4 

Analytical Results 

_2, Polycarbonate Chute Friction Coefficient (k.2 area) ■ 0.1 
k4» Flex Shaft Spring Constant = 80 in.-lb./radian 

1 Power 
Required 

Forcing Undamped Predicted for Con- 
Rate, Preload, Natural Frequency Freq., Maximum Conveyor veyor ana 
spm T, lb. rad/sec rart/sec 

t«Sss) 
Load, lb. Gun, 

HP ui -2 "3 kj area k2 area k3 area 

7F9 10 84.0 529.0 126.9 78.5 150 60 42 0.26 
750 2 84.0 529.0 126.9 78.5 71 26 12 0.11 

1500 10 84.0 529.0 126.9 157.1 38 21 50 0.52 
1500 2 84.0 529.0 126.9 157.1 15 7 17 0.23 
3000 10 84.5 529.7 129.8 314.2 32 20 43 1.05 
3000 2 84.5 529.7 129. C 314.2 12 6 11 0.46 
6000 10 84.5 529.7 129.8 628.3 34 21 42 2.09 
6000 2 84.5 529.7 129.8 628.3 12 6 11 0.91 

TABLE 5 

Analytical Results 

u2» Polycarbonate Chute Friction Coefficient (k2 area) =0.1 
k4, Flex Shaft Spring Constant = 2880 in.-lb./radian 

Power 
Required 

Forcing Undamped Predicted for Con- 
Rate, Preload, Natural Frequency Freq., Maximum Conveyor veyor and 
spm T, lb. rad/sec rad/sec 

(68S8) 
Load, lb. Gun, 

HP "1 «2 10-j kj area k2 area k3 area 

750 10 317.0 529.1 126.8 78.5 15 16 43 0.26 
750 2 317.0 529.1 126.8 78.5 3 4 12 0.11 

1500 10 317.0 529.1 126.8 157.1 15 17 50 0.52 
1500 2 317.0 529.1 126.8 157.1 3 5 17 0.23 
3000 10 318.7 529.7 129.8 314.2 51 29 43 1.05 
3000 2 318.7 529.7 129.8 314.2 22 10 11 0.46 
6000 10 318.7 529.7 129.8 628.3 14 16 42 2.09 
6000 2 318.7 529.7 129.8 628.3 3 4 11 0.91 

Fig. 7 illustrates the effect of 
preload on the relative windup of the 
k. shaft.  It is noted that the lowest 
natural frequency (See Table 2) is 90.3 
divided by 2K, or 14.4 Hz.  These oscil- 
lations illustrated on Fig. 7 are pre- 
dominantly at this low natural fre- 
qui ncy. 

Fig. 8 compares the analytical 
result for a preload of 4 lb. with 
experimental data.  Firing rates for 

both the experimental and analytical 
curves were 1760 shots per minute. 

Figs. 9 and 10 include an experi- 
mental run (solid line) at the nominal 
6000 rate. The actual rate was approxi- 
mately 5300 shots per minute. Also 
shown on Figs. 9 and 10 are analytically 
predicted results (dashed lines), with 
preloads of 2 and 10 lb., at a rate of 
5300 spm. Although the analytical re- 
sult based on 2 lb. preload is closer to 
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the experimental result in the po;-t- 
accelerating time period, it is noted 
that a peak angular windup during 
acceleration occurs which is similar to 
that predicted when a 10 lb. preload is 
utilized in the analytical study. 
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Fig.  7 - Effect of preload 
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Fig. 8 - Flex shaft windup versus time 
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Fig. 10 - Fiex shaft windup 
versus time after startup 

Other experimental data were 
measured and compared with analytical 
predictions. Examples of these data 
included main power shaft torque and 
the angular velocities of inertia J3, 
the gun, drive motor, and main power 
shaft as functions of time. Although 
not included herein, comparisons of 
these data with analytical predictions 
were satisfactory. 

DISCUSSION OF RESULTS 

Primary questions in rived in this 
ammunition conveyor study include: 

1. Will the conveyor system 
operate satisfactorily without 
jamming? 

2. Are the loads sufficiently low 
so that satisfactory life will 
be realized in field operation? 
Not only must early fractures 
be guarded against, but the 
conveyor loads must be kept low 
enough to avoid fatigue fail- 
ures. 

3. Is excessive power required to 
drive the conveyor? 

In connection with 1, above, it has 
been experimentally established that the 
XM-53 conveyor operates without jamming 
when appropriate preload is utilized. 
However, large preload has disadvantages, 
as discussed herein, so conveyor 
dynamic behavior at lower preloads needs 
to be investigated. 

As far as conveyor loads are con- 
cerned, the total load is considered to 
consist of the following: 

1. Preload, 
2. Spring load (function of wind- 

up between adjacent sprockets), 
3. Friction buildup load (capstan 

effect), and 
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4. 
loads. 

Stress waves and/or inertia 

The firsi three load categories 
are the ones with which this paper is 
concerned. The latter load category 
has been considered in detail by Maier 
[4).  Dr. Maier concluded that under 
simplifying assumptions of a straight 
belt section, no friction, and fully 
synchronous sprocket motion, a force of 
approximately 5 lb. would be induced in 
the XM-53 conveyor due only to the 
stress wave phenomenon. 

Returning to the consideration cf 
conveyor loads due to preload, relative 
sprocket motion, and friction buildup, 
it is enlightening to inspect Fig. 9. 
A relative windup of approximately 28° 
occurred during the acceleration phase 
of this experimental run. For a pre- 
load of 10 lb., it is calculated that 
the force in the conveyor is just over 
70 lb. for this situation.  If 5 lb. is 
added due to the stress wave effect, it 
is apparent that the load in the con- 
veyor is close to the yield load of 85 
lb. As noted earlier, although the 
post-acceleration experimental data 
agree much more closely with the 2 lb. 
preload analytical results, the maximum 
angular windup agrees closely with the 
10 lb. preload analytical result. 

As far as power requirements are 
concerned, the entries in Tables 2, 3, 
4, and 5 illustrate the dependence of 
power on preload and friction level. 

Two other points are pertinent as 
far as discussion of the results are 
concerned. One is the tremendous 
influence of resonance effects, and the 
other is the influence of damping. 
From Table 2, it is noted that the 
lowest natural frequency is 90.3 radi- 
ans/second, or 14.4 Hz. At a firing 
rate of 750 spm, the forcing frequency 
due to conveyor elements contacting 
sprockets is 78.5 radians/second while 
at the 900 spm rate this forcing fre- 
quency is 94.2 radians/second. Note 
that the maximum predicted force in the 
aft conveyor loop at a preload of 10 
lb. increases from 120 to 195 lb. due 
to this near resonant condition as the 
firing rate changes from 750 to 900 
spm. 

Of course, the forces cannot be as 
high as predicted, since the conveyor 
yields at 85 lb., but it is again 
emphasized that these maximum predicted 
forces are based on an undamped 
analysis as far as oscillations of the 
conveyor are concerned. However, 
examination of Figs. 8, 9, and 10 
illustrates that this undamped analysis 

givee reasonable qualitative results 
when compared with experimental results. 
It is observed that the analytical re- 
sults for a 10 lb. preload indicate a 
larger periodic excursion than actually 
occurs. Further analytical investiga- 
tion, with damping considered and there- 
fore more technically involved, would 
lead to closer agreement between theory 
and experiment. 

CONCLUDING REMARKS 

1. The maximum conveyor loads in- 
crease as conveyor preload 
increases. To illustrate this 
point, the maximum loads in 
various sections of the conveyor 
at 10 lb. preload are calculated 
to be from 2 to 4 times the com- 
parable maximum loads at 2 lb. 
preload. 

2. Approximately three times as 
much power is required to run 
the conveyor system at 10 lb. 
preload as at 2 lb. preload un- 
less friction levels are low. 
When friction levels are low, 
the effect of preload on power 
requirement is less pronounced, 
but power requirement still in- 
creases with preload. 

3. Replacement of the k4 flex 
shaft by a shaft 36 times as 
stiff would decrease the maxi- 
mum loads in the conveyor from 
their present value to lower 
levels. See Tables 2 and 3. 
However, large loads would still 
exist primarily at the 3000 spm 
rate because of the proximity 
of the oil natural frequency and 
the forcing frequency at the 
3000 spm rate.  (320 versus 314 
radians/second.) 

4. Replacement of the polycarbonate 
chute by a chute with lower 
friction would also reduce the 
maximum conveyor loads. See 
Tables 2 and 4. However, if 
this action were taken without 
also stiffening up the k4 shaft, 
large loads would still exist 
at the 750 spm rate, again due 
to the proximity of a forcing 
frequency and a natural fre- 
quency . 

5. It is apparent that low preload 
is desirable as far as keeping 
conveyor loads down is con- 
cerned . 

6. Utmost care must be exercised 
to keep friction levels low in 
all parts of the conveyor 
system. 

7. Early determination of com- 
ponent dynamic behavior is 
important for future analyses. 
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Torque™time characteristics of 
power sources during accelera- 
tion should be known in some 
detail. Investigation of 
various analytical damping 
simulations is definitely 
desirable. 
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STRESS WAVES IN MULTILAYERED CYLINDERS 

AND CONICAL FRUSTRUMS 

Jackson C. S. Yang and A. E. Seigel 
U. S. Naval Ordnance Laboratory 

White Oak, Maryland 

The purpose of this paper is to report on an Investigation of 
the spallation problem of multilayered conical structures by 
analyzing the propagation of elastic stress waves In multi- 
layered cylinders and conical frustrums using the method of 
characteristics. Two approaches were utilized In the analysis 
of the propagation of elastic stress waves. The conical 
frustrum was first analyzed as a multilayered cylinder with 
step changes in area and varying impedances and then a 
numerical method was utilized to solve the characteristic 
equation as the area of the conical frustrum is changing 
continuously. Both approaches were effected by use of 
electronic computer programs. 

The programs were verified as being correct and functioning 
properly by a comparison with experimental strain-time 
results in truncated cones impacted by spheres observed by 
V. Kenner and W. Goldsmith [1J. 

LIST OF SYMBOLS 

h± cross-sectional area of (i)th 
layer 

a Lagrangian coordinate 

g shift rate 

It impedance of (l)th layer 

Lt length of (l)th layer 

t time 

T applied pulse length 

E modulus of elasticity 

X Eulerian coordinate 

u particle velocity 

e engineering strain 

P mass density 

o engineering stress 

(°T^max maximum tensile stress 

<JQ applied stress 

«P      impact function 

F      force 

INTRODUCTION 

A laboratory facility which has 
proved useful in the study of the 
aerodynamic behavior of vehicles Is the 
ballistics range. In this type of 
facility small-scaled models of the 
vehicles of Interest are shot from a 
gun Into the range tube where their 
flight behavior may be observed. In 
recent years engineers have been 
required to design ballistics rango 
models which are capable of being 
launched at hypersonic velocities for 
aerodynamic tests of ballistic missiles 
and spacecraft. At such velocities the 
designer is confronted with the dual 
problem of using materials which are 
structurally strong enough to withstand 
the severe loading conditions and 
materials which minimize the ablation of 
the missile nose due to aerodynamic 
heating. The spallation of many poten- 
tial nose materials in developmental 
tests indicates that the analytical 
design tools presently in use are 
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inadequate; this spallation is evident 
in Fig. lj which is an X-ray photo- 
graph taken of a cone model and sabot 
Just after launch from the gun. The 
purpose of this paper is to report on 
an investigation of the spallation 
problem of multilayered conical 
structures by analyzing the propagation 
of elastic stress waves in multilayered 
cylinders and conical frustrums using 
the method of characteristics. 

g2 -i-S£, 6   PQ de 

Defining the impact function <p as 

dtp = gde 

(3) 

(*) 

it follows that 

TECHNICAL DISCUSSION 

The stress wave propagation theory 
used in this analysis was developed 
independently by T. von Karman [2] and 
G. I. Taylor [3J in 1942. It is a one- 
dimensional elastic-plastic theory us^d 
to determine the transient properties 
of solid materials under Impulsive 
loading. 

dtp = L.*l 
poS 

(5) 

Prom the above equations the charac- 
teristic equations may be written as 
follows. 

3(u ±9) -  3(u ±<P) _ „    (6) 
at       da 

From calculus 

\»— a—»| da j<— 

i   i i 
«X l^dx^da 

| |«rA0^j        }—I7Ä1 

iidt-l 
at    ~ 

l 

♦ U^ida 
»a 

t * o 

t = t 

t = t + dt 

-    — da + — dt 
<      da at 

t ■ 0 unstrained 
t = t strained 
t = t + dt 

The response of materials is 
governed by the equations of continuity 
and momentum which are given in the 
Lagrangian coordinate system as follows. 

d(u + (p)  a(u + <p)  afu + qp) da 
 z = 3-— + zz (7) 

dt      at      aa   dt 

since the quantity (u + <p) is a function 
of (a,t). Thus, Eq. (&") is a one- 
dimensional elastic-plastic equation 
which indicates that the quantity (u+cp) 
is constant when da/dt = + g. This 
property can be used to evaluate u and 
<P for the propagation of stress waves 
in solids, and the numerical technique 
has been illustrated by the example in 
Appendix A. 

Multilayered Cylinders 
(Impedance Change) 

In the case of multilayered 
cylinders interfaces exist where 
materials of different impedances are 
joined. The two assumptions used to 
solve for the properties across such 
interfaces are as follows. 

UA (8) 

au . 
da 

= 8£ 

at 

au = 

at 
. 1_ da 

P0 da 

(1) 

(2) 

The shift rate g, or speed of the 
disturbance is given by 

and 

where 

FA = FB (9) 

Pi " ViSiAi (10) 

in the elastic region. Thus 
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The equation of continuity rsmains the 
same as the bars with constant cross 
section. The momentum equation takes 
into account the varying cross section. 

I 

Fig. 1 X-ray photo of cone model and 
sabot Just after launch 

3u _ 3£ 
3a  at 

(12) 

8u _ l_ 3(0A0) 

at poAo da (13) 

The characteristic equations may be 
written as follows. 

a(ujy) _  a(u+tp)   „  SA 
+ g —-=_ = -2__ ™£   (14) 

P«A* 3a      ' at da 

The following notations were used to 
transform this equation into dimension- 
less form. 

VA VB (11) 
ü = H_ , ä = £_ , <p* 

cp* a* poSe 

Figure 2 shows a typical ballis- 
tic model which may be analyzed using 
the above equations. The model has two 
interfaces with step impedance changes 
and three regions of continuously 
changing impedance. The regions of 
continuously changing area can be 
approximated by multilayered cylinders 
with step changes in area. 

H-a-| L-da 

—I f^(fr)- 

t = 0 
t = t 
t = t + dt 

17f) dt « udt 

t = 0 

t = t 

t = t + dt 

<P*     ao 

*a     ao 

where a* = cryleld 

aQ = initial length of bar 

Therefore 

Fig 2 Conical ballistic model and 
impedance diagram 
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M"5) _ a  »(UK _ - 9A0 

St    °  3a ~ A0 3a f- T&     (15) 

For the elastic case 

I = 1, 5 = — = a 
a* 

a(u-Kp) a(u+5T) - aA 

••    at da Ao aä 

D (Ü+Ö) 

Dt 

-    3A _ £__  o 
A0" 8ä 

£&- + l 
Dt 

(16) 

The nondimensional characteristic 
equation for changing area may be writ- 
ten as follows;: 

The solution of this problem was 
also obtained by the continuous change 
in area method. Twenty points were 
used. The result was compared with the 
impedance change method; agreement was 
excellent and the two solutions were 
indistinguishable when plotted. 

A drawing of the 5.38-degree 
truncated cone which Kenner and Goldsmith 
impacted with steel spheres is shown in 
Fig. 4. The cylindrical portion at the 
larger end wae used to transmit and 
measure the input pulse. The sections 
where the strain-time histories were 
observed are indicated by the station 
numbers. The input strain pulse was 
approximated as 

e = 0.320 x 10-3 sin2(nt/35) 

where 

D (u+ö")    — DA v — ' _  + 0   o 
Da A0 Da 

The numerical technique to evaluate u 
and cp for the propagation of stress 
waves in cones has been illustrated 
by the example in Appendix B. 

DISCUSSION OP RESULTS 

A remote terminal multi-access 
computer was used in this analysis due 
to its availability and ease of opera- 
tion. However, this system lacks the 
capacity for a thorough investigation 
for many of the problems capable of 
being solved by the program. A listing 
of the programs used in this analysis 
is given in Appendix C for the impedanca 
approach and Appendix D for the con- 
tinuous changing area approach. The 
programs were written in general, and 
they can give the complete stress-time 
history of multilayered conical 
frustrums for designated applied pulses. 

Figure 3 gives the stress-time 
history for the midsection of a 
truncated cone experiencing an infi- 
nitely long unit input pulse. The 
specimen was approximated by twenty 
cylindrical layers of a homogeneous 
material with step changes in area 
(impedance change method). The 
response shows that the midsection 
experiences tension as the first 
reflection approaches the midsection. 
Also stress reversals occur as the 
first and second reflections pass the 
midsection. 

0 < t < 35. 

The comparison of the approximated 
input strain with the experimental is 
also given in Fig. 4. The two methods 
of calculation were used; the truncated 
cone was approximated by 72 cylindrical 
layers with step changes in area, and 
for the second method a continuous 
change in area with 80 points. Again, 
the two analytical methods were in 
excellent agreement. The comparison of 
experimental to theoretical strain-time 
responses for Stations 1, 2, 3» 4, are 
fiven, respectively, by Figs. 5, 6, 7, 

. These figures show that the theoret- 
ical responses are in good agreement 
with the experimental responses. 

CONCLUSION 

The method of characteristics can 
be used to analyze the problem of 
spallation of multilayered cylinders 
and conical frustrums. Two electronic 
computer programs were developed to 
analyze the propagation of the elastic 
stress waves using two different 
approaches. Excellent agreement was 
achieved in the comparison of the 
theoretical to the experimental strain- 
time results observed by Kenner and 
Goldsmith in truncated cones. This 
comparison provides evidence that the 
programs are correct and functioning 
properly. However, the limited capac- 
ity of the computer system dictates 
the necessity of converting the programs 
to a larger computer prior to any 
extensive analysis of multilayered 
conical frustrums. 
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A preliminary analysis was made on 
a one-layered conical frustrum to gain 
some Insight Into Its wave propagation 
properties. As mentioned previously, 
the structure goes Into tension as the 
first reflection approaches the mid- 
section, and stress reversals occur as 
the first and second reflections pass 
the mldsection. A thorough considera- 
tion of such an Investigation would be 
a significant contribution to the 
stats of the art of the design analysis 
of ballistic models. 
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APPENDIX A 

Example of Solution Technique Using 
Method of Characteristics 
(Constant Cross Section) 

The characteristic equation given 
by Eq. (6) indicates that the quantity 
(lH<p) is constant when da = T g. In 

at 
the elastic case the shift rate, g, is 
a constant. Thus the slope of the (+) 
g-lines in the a-t plane are constants 
as shown in the sketch below. If the 
properties in regions 1 and 2 are 
known, the properties in region 3 are 
determined as follows. 

Along the (+) g-line    (A-l) 
(ui - cpj.) = (U3 - CP3) 

Along the   (-) g-line (A-2) 
(U2 +cp2) =  (U3. + <P3) 

Solving  (A-l) and  (A-2) simultaneously 
gives 

and 

U, =  (U2 + cp2 + U-L - cp1)/2 

cp3  - (U2 + cp2 - Ux + cpx)/2 

The reiteration of this technique» 
including any appropriate boundary 
conditions, will give a complete solu- 
tion of properties in the a-t plane. 

(+) g-lines 

(-) g-lines 
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APPENDIX B 

Example of Solution Technique Using 
Method of Characteristics 
(Varying Cross Section) 

If the properties at points 1 and 
2 are known, the properties at point 3 
are determined as follows. 

Prom the characteristic equation 
given by Eq. (16). 

D(u + a) tJ DA, 
+  

D8T A0 Da 

(+) g-lines 

(-) g-lines 

wnere 

ff0 = f(ä). 

By taking averages of cr and A" , we have 
two equations applicable along T g- 
lines with the two unknowns 0*o and 7^. 
Solving simultaneously gives the 
solution at point 3. For example: 
Let 

A 
T   = -2 = a 
°  A 

°bot 

ka 

D(" +°) ~ + JL k e ka 
D5- >ka 

D(u + 0) «+KÖD» 

Along the (-) g-line from point 1 to 
point 3 

ff,+a_ 
(Ü - F)3 - (Ü - ä)x - k(-ir3.)(ä3-a-1) 

Along the (+) g-line from point 2 to 
point 3 

a_+a 
(ü + a)3 - (u + ö)2 = -k(^_J.)(ä3-ä2) 

Solving simultaneously gives the solu- 
tion u, and a~.    The reiteration of 
this technique. Including any appropri- 
ate boundary conditions) will, give a 
complete solution of properties in the 
a-t plane. 
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APPENDIX C 

Program Listing 
Impedance Approach 

5, REM  SIC KOD  G 
10 REM  THIS PROGRAF  CALCULATES t-kOPEKTlES  FOk A CYLINDER 
20 REM  WITH  STEP  IMPEDANCE CHANGED AND  VARIOUS  HÜLSE LENGTHS. 
30 REM  IT WILL PRINT OUT PROPERTIES AT A DESIGNATED  SECTION, 
40 REM  SECTIONS EXPERIENCING  TENSION.AND LI SI   ThE MAAIMUK 
30 REM  STRESS FOR EACH SECTION. 
60 LET S<2.KM)«Stl.K+l). 
70 kEM LENGTH MUST BE AN  INTEGER* 
100 REM M»N0.  OF REGIONS.   T*PULSE LENGTh.   1=1KPEDANCE» 
110 REM L-EFFECTIVE LENGTH.   OUSECT10N  TO PRINT OUT. 
120 REM T1«N0.  OF ROWS'ANALYZED. 
ISO DIM  UC1.75>»SC2,75>»J<75> 
1S2 DIM DC75>»E<7S>.A(75>»N<75> 
1SS DIM  T<75>.M<75> 
160 READ M.01 
170 LET Nl«0 
180 FOR I«l  TO M 
190 READ KI).L(l) 
200  IF  1>1   THEN 22*0 
210 LET L9*L<1> 
220  IF LU)»L9  THEN 240 
230 LET L9«L<I> 
JMO NEXT  I 
250 GOSOB  1500 
275 LETT1»2*N1 
290 PI<INT "TV* 
290  INPUT T 
300 LET J«l 
310 FOR I«l   TO NT 
330 LET S(O.I>*0 
33S LET S<2»I>*0 
340 NEXT I 
34S LET S(l.l)*l 
350 GO TO  360 
355 LET  S<!.1)*0 
360 LET  UU»l>«lK0»2> + $(0,2>-SU,l> 
380 LET L=l 
390  FOR  Ul   T0 Nl/2 
400 LET K*2*I 
430 in N*N(I> 
490 LET S<!.K)*{U(O.K*2)*S(0.K*8)-g<l.K-l)*S(t»K-l>>*N/CN*n 
500 LET U<1*K)BÜ<1.K-1>-S<1.K-1**S<1.K> 
510 LET T<K>«S<1.K>*M<K> 
530  IF S.C1.KXSC2.K)   THEN  550 
540 LET S<2*K>cS(T.K> 
S45 LET J(K)*J 
550 LET S(l.K«r>*S(l.K>/N 
555 LET T<K+1>«SU»K>1>*M<K+I> 
S60 LET Utl»K*l)»U(l»K> 
590  IF S<i.K+l)<S<2.K*l)   THEN  610 
610   IF K»SI   THEN   640 
620 PRINT K»T<K> 
630  GO TO  670 
640  IF K+l   <>Q1   THEN  670 
660 PRINT K*1*T<K>1> 
670   IF Nl«K+e  THEN   690 
680 NEXT  I 
690 LET  S<1.N1>«0 
700 LET UCl.N))>Uil.Nl-l>-S(ltNl-l> 
710 LET J«J*1 
720   IF.J«fl+l   THEN  780 
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73C  FOR   1*1   T0  Nl 
740 LEI   S<0*I>»S(|*1> 
75Ü LET  U<0,I)»U<LI> 
760 NEXT 1 
765   IF J<T  THEN   775 
770  GO  TO   355 
775  GO  TO   345 
760 PRINT 
790  PRINT 
800  PRINT  "CALCULATION  COMPLETED" 
810   G0  TO X?0 
820 PRINT "ROfc","COLUMN"«"MAX  STRESS" 
830 PRINT 
840  FOR  1=1   TO Nl 
650 PRINT   I»J(l>»S<2,I> 
855 NEXT  1 
860 PRINT 
870 PRINT  "NEXT  TIME PULSE" 
880   GO   TO  280 
900  DATA   I,2 
910  DATA   1,2 
999   GO   TO  9999 
1500  REM  THIS  SUBROUTINE CALCULATES THE  TOTAL   IMPEDANCE RATI0 
1510  REM   F0R EACH.DIVISION  RESULTING  FROM   UNIFORM  STEP CHANGES 
1520  REM   IN  DIA.   TO APPROSIMATE A  CONICAL  FRUSTKUM. 
1550  REM  N9=N0.   DIVISIONS FOR  SMALLEST REGION 
1560  REM P<I>=N0.   DIVISIONS  FOR  <I>TH  REGION 
1570  REM  D0=BAS£ DIA.   ,D1*FREE  SURFACE DIA. 
1580  REM  DCI>*T0P  DIA.   OF  (I)TH  DIVISION 
1590  REM 1.8 = TOTAL  LENGTh,   N<l)s<I>Th  DIV.   IMPEDANCE RATIO 
1610  REM N8=T0TAL NO.OF DIVISIONS 
1620  REM F<I>»AVG.   DIA.   OF   (I)TH  DIVISION 
1630  REM AiDeAVG.   AREA OF  (1>TH  DIVISION 
1650  PRINT   'ENTER   THE  FOLLO-JNG" 
1660 PRir't   "DIV.   FOR SMALLEST REGION«   BASE DIA.,   FREE  SURFACE DIA." 
1670   INPUT N9,D0.D1 
1675 LET N8=0 
1680  LET  L8=0 
1690  FOR   1=1   TO  M 
1700  LET L8*L6*LU> 
1710  LET P<I)=N9*L»I)/L9 
1720  LET  KCI)=2*P(I> 
1730  LET  N1=N1+K<I) 
1740  LET   C<I)=C(I-1)*K<I> 
1760  NEXT   1 
1770  LET  N8=Nl/2 
1775 LET L=l 
1760  FOR   I=1'T0  N6*l 
1800  LET  D<I)=(D0-D1)*(N8*1-I)/N8*D1 
1805  NEXT   I 
1607  FOR   1=1   TO  N8 
1810  LET  E<I>=(D<I)+Ü(I+l))/2 
1620  LET  ACI>=3.l4l6*CE(I)'2)/4 
1630  NEXT   I 
1840   FOR   1=1   TO N8 
1850  LET  K=2*I 
1860   IF K<CCL>   THEN   1890 
1870  LET NC1 )=AU + 1 >*I (L+l >/CA< I >*KL > > 
1872  LET   M<K)=KL) 
1674 LET  M<K+1)=I(L+1) 
1675 LET L=L+1 
I860   (50   TO   1910 
1690   LET  NU)sA<I + l >/A<I) 
189?   LEI   M(K)=I(L) 
1694  LET   l*(K+! > = HL) 
1910   NEXT   1 
1960  RETURN 
2260  HfcINT   "STATEMENT  260" 
9999L*.'D 
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APPENDIX D 

Progräm Listing 
Continuous Changing Area Approach 

1 REM  THIS PROGRAM  CALCULATES  THE  STRESS  VS  TIKE  IN A   TRUNCATED 
2 REt*  C0N-E ASSUMING THE STRESS AT  THE  T0P   IS ZE>0  0N   THE  t   VAVE. 
3 REM   THE   IKPULSE  IS 0F  THE F0RM   SINE   SQUARED AND  ThE STRESS 
4 REM ALL ALONG THE FIRST  VAVE IS ZERO. 
10 DIM  U(1,220)   ,   S<1,220>   ,   A(220) 
15 PRINT "WHAT ARE K,C,T,S1.L"J 
20   INPUT K,C.T,S1»L 
30   F0R   1=0  TO  K-l 
35 LET A«I>   =   I/K 
40 LET S<0,I>=0 
50 LET U<0, 13   =   -S<0,I) 
60 NEXT  I 
62 LET A<K>   =   1 
64 LET  S<0,K)   =  0 
66 LEI   U<0,K>*   UC0,K-1)   -   S<0,K-1> 
68  PRINT *■J•,»,'S(l,0),'*"S<l,K/45*^,'S<l#10*K/24)••,•,S<^#21*K/^4)•• 
70  FOR J=J   TO L 
76  IF J >   T  ThEN 85 
80 LET S<1,0)«   Sl*UN<3.l4!7*J/T>»2 
81 CO   TO   90 
65 LET  S<1,0)   =  0 
90 LET  UC1,0)   =   lK0,l)   +   S<0,1).-S«.1,0) 
95 LET  U<1»0)   =   U<1,0)   +(S<1,0)+S<0,1))*(A(0)-AC1)>/<C-<ACO)*A<1>)/2) 
IOC  FOR   I   =   1   TO  K-l 
105 LET X   =   (A<I>-A(I*l))/<C-<A(I)+A(I+l))/2) 
106 LET Irs   <AU>-ACI-l))/<C-lA(I)*AU-l))/2> 
110 LET S(1,1)=X*S<0,I+l>+t*SClil-l> + UCO, I+D + SCO, 1 + 1 >-U< 1,1-1) 
111 LET   SCI ,1)   =   (S(l,I)*S(l,l-l))/C2->-'Y) 
120 LET  lHi,I)«£(l,l)+un   :-l)-S<l,I-l)-Y*«S<l»I-n + S(l,l)) 
130 NEXT   I      . 
230 LET   S('1,K)   =   0 
P40L.E1   iJU.K)   = U<l»K-l>-tY + l )*£.(!,K-l > 
250 PRINT  J,Ml,0>»SCl,K/4)»SCl»ia*K/24>»£<l,21*K/243 
260  FOR   I   =' 0  TO  K 
270 LET  S(0,I>   =   S(l»i> 
280 LET  UiO.I)   =   LKS.I) 
290 NEXT   1 
300  NEXT  J 
1000  END 
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DISCUSSION 

Mr. Mains (Washington Univ.):  What 
material did you use for the model tests? 

Mr. Yang: We used steel and aluminum. 

Mr. Mains: Are you familiar with the work 
that Carlos Riparabelli did at Cornell in the 
late 40's with plaster models? 

Mr. Yang: No. 

Mr. Mains: He showed this phenomenon 
and discussed it, I think, in the Journal of 
Applied Mechanics in 1948 or 1949. He went 
one :tep further and curved the models back 
on •hemselves. He hit the bar on one end and 
had it shoot back at him. 

Mr. Yang: Yes, there are some problems 
with strain rate effects. As a matter of fact, 
this has been studied quite a bit. The theory 
of the characteristic method proposed by Von 
Karman and G. L Taylor is for strain rate in- 
dependence. In our particular case, the steel 
that we used was impacted at various strain 
rates. We examined the stress-strain curves 
and found that they are strain rate Independent. 
Now, if spalling occurs, it is probably caused 
by the reflection from tip of the conical 
frustum which meets the unloading wave and in- 
creases the tensile stress. At that particular 
spot our material spalls. 

Mr. Yang: We did the same thing. We 
looked at the waves as they bounced back and 
forth in our conical frustum. Someone at NOL 
actually performed some tests on plastic ma- 
terials, setting off explosives at the base of a 
polycarbonate cone.  Many other tests have 
also been performed. 

Mr. Fritz (General Electric Co.): Did you 
have a criterion to predict spalling? Do you 
have some engineering correlation to predict 
when you would expect spalling to occur? 

Mr. Yang: Yes, from the theory one can 
calculate a stress-time history of the entire 
conical frustum. By doing this, you are able 
to know the stress at any time. If you go 
through the calculation, look at the stress, and 
find a time at a place where the tensile stress 
exceeds the tensile strength of the material, 
you probably will get spallation. 

Mr. Fritz:   Spalling is a surface fracture, 
and the maximum strain that you showed only 
went up to about 0.7 percent, It is my under- 
standing that the materials that you were work- 
ing with would have strains in fracture much 
in excess of 0.7 percent. If spalling or sur- 
face fracture occurred, some kind of strain 
rate effect must have been associated with it. 
One cannot mention a stress to cause fracture 
without considering the associated strain; but 
when the stress and the strain are both corre- 
lated possibly with the strain rate effect, 
there is an engineering or scientific basis for 
predicting when spalling would occur. 
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CAVITY EFFECT ON PANEL 
FLUTTER - JUST HOW SIGNIFICANT? 

N.H. Zimmerman and C.E. Lemley 
McDonnell Aircraft Company 

St. Louis, Missouri 

A cavity that is enclosed behind a skin panel may alter the panel dynamics and hence, the 
panel flutter boundaries. The changes in dynamics, both in modeshapes and frequencies, 
are due to the introduction of effective stiffness and mass by the entrapped air volume. 
Analytical methods using assumed modes (Galerkin or Rayleigh-Ritz) have been used 
previously to study the cavity effect on vibration and flutter. This paper presents an 
exact solution of the cavity problem that was recently performed to check the validity 
of the modal analyses. The results to date indicate that the modal approach shows 
good agreement with the exact solution for zero airspeed frequency and modeshape 
changes; however, the reduction in flutter speeds indicated by the approximate methods 
appear to be overly conservative. 

INTRODUCTION 

Panel flutter is a troublesome offspring of supersede 
flight that has raised many questions about the dynamic 
aeraelastic behavior of thin plates. Efforts to answer these 
questions have resulted in a large number of experimental 
and theoretical studies designed to improve our under- 
standing of panel flutter. Difficulties that have been en- 
countered in predicting the flutter speeds of panels have 
usually been attributed to the large number of parameters 
that significantly affect panel behavior; these include 
not only the geometry and material properties of the 
panel itself but also the panel's environment. A dis- 
cussion of these factors is presented in Reference (1) 
together with guidelines for assessing their effects. 
The present paper deals with one such factor, a cavity 
enclosed behind a panel, and presents theoretical 

results based on an exact solution technique indicating 
that cavity effect may be less destabilizing than previously 
indicated. References (2) and (3) are considered repre- 
sentative of previous efforts to assess the effects of a 
cavity. Modal representations ptesented in these refer- 
ences had been used as the basis for four-mode flutter 
studies that were made for Reference (1) but flutter 
boundaries thus obtained were suspected of being overly 
conservative. The present authors later found a more 
descriptive, exact flutter solution that could be applied 
to a two-dimensional (i.e., infinite width) panel. The 
initial studies are reported here and present a better ana- 
lytical assessment of the effect of an enclosed cavity 
on panel flutter boundaries. In addition, vibration data 
obtained as a by-product of the flutter studies are dis- 
cussed. 
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SYMBOLS LIST 

D Eh3/12 (1 - »*), panel bending sUifness 

E modulus oi elasticity 

h panel thickness 

L panel span 

M Mach number 

Pi pressure on lower panel surface 

Po initial pressure in cavity 

Pu pressure on upper panel surface 

p. free airstream static pressure 

« 
1       0 = y p«*, dynamic pressure 

T time function 

s complex frequency parameter 

t time 

v«, initial cavity volume 

V airflow velocity 

w gross panel loading per unit area 

X modal displacement function 

X distance downstream from forward panel support 

y 

8 

cr 

deflection of panel from initial position, posi- 
tive downward 

«/M23 1 

polytropic exponent 

cavity depth 

= x/L fraction of ponel length aft of forward 
support 

eigenvalue 

P0L4 

- 7- D5 
■, cavity parameter 

panel mass per unit panel area 

Poisson's ratio 

mass density of air 

- ■ •   , dynamic pressure parameter 

value of o at flutter onset 

frequency of oscillation 

reference frequency 

PHYSICAL PROBLEM 

The influence of an enclosed cavity on the dynamics of 
a panel is due to the interaction between panel displacement 
and the entrapped air. Fig. 1 shows a side view of cm in- 
finitely wide panel enclosing a cavity. Assume that when 
the panel is in its neutral (undeftected) position, the pres- 
sure and volume of the enclosed air are p0 and V0 respective- 
ly. When the panel is deflected inward, as indicated in the 
lower sketch of Fig. 2, then the air pressure is increased to 
p0 ♦ Ap in response to a decrease in volume represent«! by 
V0- AV. For a "second-mode" deflection, represented for 
example by a full sine wave, the net volume change would 
be zero hence there would be no pressure change. The only 
cavity effect in this case would be due to a redistribution of 
the air to accommodate the new cavity shape. The presence 
of the enclosure therefore can be treated as (1) a "stiffen- 
ing" effect as the entrapped air pressure varies in response 
to volume change and (2) an "inertia" effect as the air mass 
is redistributed during panel deformation. For panel and 
cavity sizes of practical interest, the stiffness effect alone 
is expected to give an accurate assessment of the cavity 
influence (2). The analyses presented here account for the 
cavity by assuming that a perturbation cavity pressure Ap 
Is exerted everywhere on the cavity side of the panel in 
instantaneous response to panel displacement. 

MATHEMATICAL DEVELOPMENT 

We present here the salient features of the mathematical 
development. For the two dimensional plate problem consider 
a strip of unit width perpendicular to the paper in Fig. 1. The 
gross panel loading pressure w consists of the air pressure 
Py on the upper surface, thu air pressure p( on the lower 
surface, and inertia loading 

Fig. 1 - The Problem: Determine the Effect of an Enclosed 
Cavity on Panel Dynamics, Including Its Influence 
on Panel Flutter 
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The panel deflection z is related to the loading by the 
relation 

U) 

(See Ref. (4), for example). The pressure py arises from the 
external airflow over the upper surface of the panel while the 
pressure p, arises from the pressure within the enclosed 
cavity, see Fig. 2. 

2idz 

OamCtrity 

Fit. 2 - Air Loading on Panel 

Assuming the adiabatic gas law (pVy • constant) holds 
in the cavity the pressure may be expressed 

P,-Po+ * AV-p-t 2kf   zdx Hf     HO      Vo Fo       yJo 
(2) 

The pressure pu, based on the Ackeret theory of supersonic 
flow, is given by 

Pu-P- 
2q    dz 

~~ß     *T (3) 

which in essence states that the pressure perturbations from 
freestream p.. are proportional to the local panel slope. With 
these expressions for the pressures the governing differential 
equation is 

_ A    2q <fc     A   7p0 rL ,   .        ... 

where we neglect any effect due to static differential pressure, 
P~ ~ Po' across the panel. 

We assume the solution of Eq. (4) to have the form 

*(x,t)-XT (5) 

in which X is a function only of the lengthwise coordinate x 
and T 13 a function only of time. Substitute equation (5) in 
equation (4), substitute x - tjL and multiply through by L4/D 
tog?t 

a^C        2qL3 dX _       L4 d*T v     yp0L5   1 

0       (6) 

After making the substitutions 

V0-L5 

OS 
(cavity parameter) 

and 

2qL3    . . . v a m ~—     ( dynamic pressure parameter) 

We divide each term in Eq. (6) by XT. The T inside the 
integral in the st term cancels because it is not a function 
of i|. This operation ^ arates the variables so that we can 
then write 

1  d<X     «_ dX    *  I* A* d2T 
xd,4 + xd7+¥je "'-of tf        (7) 

The separated functions can only be equal to one another 
if they each equal a constant which we call 9. Therefore, 
Eq. (7) becomes 

d4* «      „v f'vj —~ + o —-6X--XI    Xdti 
d,4 d,> 4 

and 

L4   d2T 
,__+.T-0 

(8) 

(9! 

As a consequence of the definite limits of integration, i'.e 
term on the right side of Eq. (8) does not vary with IJ. To 
emphasize this fact we define 

K..-A  f 
Ja 

Xdi>. 

For the time function, we assume the 
form 

T-e: st 

(10) 

(11) 
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in which we can think of s as a panel complex frequency 
parameter {for example, the solution s - it, gives the familiar 
undamped free vibration solution).  Substituting Eq. (11) into 
(3) gives 

and 9 becomes clearly defined as the problem eigenvalue. 

The solution (X) of the fourth-order, non-homogeneous, 
ordinary differential equation (8) is expressed as the sum 
of particular (X.) -ind complementary (Xc) solutions, i.e., 

X - 0 at n - 0 and n - 1 

X - Xp ♦ Xc (12) 

The particular solution A sinply the constant 

Xp - -YJ6 - k (13) 

The complementary solution, which is the solution for the 
homogeneous equation obtained by equating the left-hand 
side of Eq. (8) to zero, can be expressed as /. ,\ 

Xp - e-"1 (A'sinhti) + B' cosh««) + e'"' (C'cos <IJ + D' sin ft) 

in which (see Ref. (5)) the following relationships hold: 

.2)* 

it ' °2) ,2\* (15) 

16a- 
8.-^-2   -4a4 

At this point, the unique form of Eq. (8), particularly the fact 
that the integral equation has finite limits, allows us to 
express X_ interms of Xc. We combine Eqns. (10), (12) and 
(13) to obtain 

K - -9Xp - -\J (Xp + Xcj d, - -A Xp - \f Xc d,. 

''\ 

-*Jb 

Since Xp - k, 

Xcd,. (16) 

The complete solution then is 

X-e '"'(A'sinhjij + B'coshtif) + 

e'V (C' cos ft + D' sin ft) + k        (17) 

Using the boundary conditions for the pinned ends 

and 

djx 
dx2 

• 0 at i) - U and >j - 1 

gives four simultaneous equations in the four constants, A', 
B* C'and D". The determinant of the coefficient matrix of 
these constants is set equal to zero to yield a transcendental 
equation whose solutions give the eigenvalues as well as the 
values for a, < and C required for Eq. (14). After specifying 
values for a (the dynamic pressure parameter), and A (the 
cavity parameter) we used an iterative solution technique that 
is described in Reference (5). The panel stability is indi- 
cated by the form of s, as follows: 

If sis: 

Pure imaginary 

Positive real 

Complex 

The panel notion is: 

Natural free vibrations 

Static divergence instability 

Oscillatory instability (flutter) 

CAVITY EFFECT ON PANEL VIBRATION 

The magnitude of the non-dimensional cavity param- 
eter determines the extent of the cavity effect on the panel. 
Figure 3 shows how the natural Vibration frequencies of 
the panel (normalized to the fundamental frequency ob- 
tained for A - 0) vary with the cavity parameter. Note that 
A - 0 indicates a "no cavity" condition that could be 

caused by a vacuum (po - 0) or an infinite cavity depth 
[t - -). Increasing values of the cavity parameter then indi- 
cate increasingly severe interaction between panel motion 
and the enclosed air. Of special note are the following: 

• The panel deflection shape designated as the first 
mode (at A - 0) undergoes a drastic increase in fre- 
quency, asymptotically approaching that of the "nc 
cavity" third mode. 

• The third mode (at A - 0) experiences a more gradual 
increase in frequency, asymptotically approaching 
that of the "no cavity" fifth mode. 

• The frequencies of the second and fourth modes (as 
well as all still air even modes) are not changed at all. 

These frequency trends, which however do not tell the 
story of modeshape change, can be anticipated by knowing 
the nature of the volumetric change induced in the cavity 
by each modeshape at A • 0. The first such mode is a half 
sine wave which causes the largest volumetric change of 
any mode. The second and fourth such modes are i full 
sine wave and two full sine waves, respectively, and 
cause no volume change at all. Finully, the third mode 
(one and one-half sine waves at A « 0) revises a net 
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Cavity Parameter (Exact Solution) 

volume change, but of a lesser amount than for the first 
mode. The plot shows another very interesting feature; it 

is possible to "lose" the fundamental mode still air de- 
flection shape when testing a panel that encloses a cavity. 

The variation of the fundamental modeshape with A 
is indicated in Fig. 4. Note that the mode shape, as A 
increases, takes on the character of the "no cavity" 
third mode. It is indeed found that as A * - both 
frequency and panel deflection shape approach 

those of the "no cavity" third mode condition. 
Similarly, the mode that starts as the third at A - 0 
eventually approaches the "no cavity" 5th mode fre- 
quency. These effects are due to coupling through the 
enclosed air of the odd vibration modes. 
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(Exact Solution) 

CAVITY EFFECT ON PANEL FLUTTER 

Because of the pronounced cavity effect noted 
in ih* previous section we expected to find a corres- 
pt; dinaly significant effect on panel flutter. The most 
criUsal configuration usually occurs when the frequency 
ratio between still air vibration modes is near unity, tfo 
were therefore especially thorough in examining flutter 
boundaries near A - 1800 which Fig. 5 shows to be the 
crossover point of the two lowest still air vibration 
frequencies.  In particular we were interested in the vari- 
ation of panel dynamics with increase in the dynamic 
pressure parameter a. 

The variation in panel dynamics with a is reflected by 
the three plots of modal frequency trends shown in Fig. 6. 
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Fi(. 5 -Effect of Cavity on Panel Flutter 
(Exact Solution) 

Here we show plots of the lowest four frequency eigenvalues 
as a function of a, and we indicate in each case the critical 
value aa that is used to define the flutter boundary. Fig. 6(a), 
for A - 0, shows the dynamic aeroelastic characteristics of 
the two dimensional panel without cavity effect. As air- 
speed (a) is increased, the notable change is that the two 
Lwest "natural frequencies,'' which are coupled aerodynam- 
ically, coalesce at the value a > oa (about 320 in this case.) 
Mathematically, all frequencies are real for a > oa; for 

"cr , the lowest two frequencies become a complex con- 
jugate pair indicating oscillatory instability (flutter). 
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Moving on to Fig. 6(b), we we very near the value of a 
at which the still-air frequency crossover occurs; the 
interesting feature here is that the modal frequencies 
initially separate with increasing o until a value of 
about 110, before starting to converge and coalesce at 
oa - 185. Fig. 6(c) shows the behavior of the fre- 
quencies at a value of A above the frequency crossover, 
and the overall plot is very similar to Fig. 6(a). Although 
not shown, we obtained flutter solutions for other values 
of A near 1800 and verified the flutter boundary curve 
shown in Fig. 5. 

COMPARISON OF RESULTS WITH THOSE BASED ON 
MODAL APPROACH 

Prior theoretical studies investigating the effect of an 
enclosed cavity on panel flutter employed modal approach 

approximation techniques. A cursory comparison of results 
obtained in those studies with the present exact solution 
results suggested that the cavity effect was not as destabi- 
lizing as previously thought 

In oider to reach more valid conclusions, we have 
applied the modal approach solution to the identical prob- 
lem analyzed herein by the exact solution technique. 
Problem definition and all assumptions employed were 
identical; the only difference was in the solution tech- 
nique. Rayleigh-Ritz assumed mode solutions were used 

°cr in the present studies employing two, four, and eight modes. 
These modes correspond to the zero airspeed "no cavity" 
vibration modes (sinusoidal mode shapes and corresponding 
frequencies). The comparisons are discussed below. 

Zero Airspeed Vibrations 

Results of the modal approximation solution using four 
assumed modes agreed quite well with the exact solution 
.-suits. Only minor deviations from the results presented 
in Fig. 3. (for the first four frequencies) cculd be detected. 
The same applies with regard to change in fundamental mode 
shape with cavity, i.e., very nearly the same as that shown 
in Fig. 4. 

.J Panel Flutter Speed 

Figure 7 compares flutter speeds obtained from the 
exact solution with those obtained using the modal approach. 
In general, poor agreement is noted with the modal approxi- 
mation technique showing a drastically more severe cavity 
effect than does the exact solution technique. Only in the 
range of small cavity effect (A < 300) is there reasonable 
agreement. The greatest discrepancy occurs at A * 1800 
which is in the vicinity of the zero airspeed frequency 
crossover point of the first and second modes (see Fig. 3). 
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CONCLUSIONS REFERENCES 

1. Modal and exact solutions yield the same frequency and 
mode shape trends with cavity effect at zero airspeed. 

2. Ti. - exact solution indicates that cavity effect is not as 
'Jestabilizing as previously thought. 

'.'. These results are only a beginning. Further assessment 
of the cavity effect would be desirable, such as: 
a) The exact solution should be extended to account 

ior finite panel width perpendicular to the airflow. 
b) The modal solution to panel flutter employing 

zero-airspeed, cavity-affected modes and frequencies 
should be carried out and compared to the exact 
solution to see if better agreement can thereby be 
achieved. 

c) Actual severity of cavity effect should be ascertained 
through experimentation and compared will the theo- 
retical studies. 
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DISCUSSION 

Mr. Michel (NASA Headquarters):  When 
you had the dynamic characteristics of the plate 
with a cavity behind it, it appeared that you did 
not take into account the traveling wave.  When 
you deflect the plate I think you are assuming 
that the pressure instantaneously changes over 
the whole cavity.  Are you not? 

Mr. Lemley:  Yes. 

Mr. Michel: Do you think, that could be an 
effect"!? you considered a traveling wave in the 
gas? 

Mr. Lemley:   We think there would be an 
effect and that there would be some influence on 
that minimum point of the flutter curve.  B I had 
to guess, I would say maybe 5 or 10 percent.  I 
do not think it would come anywhere near con- 
solidating these curves. 

Mr. Shore: The same thing happens when 
you have in-plane stress in the panel. You get 
these anomalous zero Q flutter points which 
can be removed by the addition of both struc- 
tural and aerodynamic damping in the analysis. 
Did you consider any damping in your work? 

Mr. Lemley:   We tried to isolate this 
problem and treat it for the Ingredients that we 
feel we need to understand better. We have 
made simplifications and assumptions on the 
problem, but the modal answers hr.ve the same 
ingredients and the same simplifying assump- 
tions that the exact solution has. That is what 
puzzles us. B is not the membrane dilemma 
exactly, but it looks close. 

Mr. Michel:  It would depend on whether you 
get a resonance there or not, wouldn't it? 

Mr. Lemley: Yes, it would depend on it. If 
there were a cavity resonance, that would show 
up very drastically in the behavior of the panel. 

Mr. Shore (NASA Langtey Research Ctr.): 
I have a question regarding your last slide, 
where you show the modal results in comparison 
with your exact results.  At the point where zero 
Q flutter is predicted from the modal solution, 
does the modal solution say that there are two 
frequencies that are equal at this value of the 
cavity parameter? 

Mr. Lemley:   Yes. We used a frequency 
coalescence criterion. There is a figure in the 
paper that I did not show here that shows how 
that coalescence occurs. 

Mr. Shore:  Could not this coalescence be 
due to the cavity parameter without the pres- 
ence of the air flow? Is this what the figure is 
saying? 

Mr. Lemley:   It could, if you were just 
looking at equal frequencies as indicating 
flutter.  We go beyond that point. We get com- 
plex conjugate pairs. So just the existence of a 
pair of frequencies that are equal would not tell 
us that this is flutter.  That is not coalescence; 
it would just be a cross over. 
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AN EIGENVALUE PROBLEM SOLUTION OF 

A THREE DIMENSIONAL PIPING SYSTEM 

Paul Bezler 
Brookhaven National Laboratory 

Upton L. I.,  New York 

and 

J.R. Curreri 
Polytechnic Institute of Brooklyn 

333 Jay Street 
Brooklyn,  New York 

The eigenvalue problem solution of a three dimensional piping 
system is studied.    The structure investigated consists of 
three mutually perpendicular legs, having fixed ends.    The 
stiffness matrix and the mass matrix for the system are com- 
bined to establish the eigenvalue problem.    Higher natural 
frequencies and corresponding normal modes are determined. 
The ratio of span lengths is ai.ered over a wide range to show 
transitions and to check boundry cases.    The results are 
normalized and plotted for the first modes.    The three dimen- 
sional normal modes are plotted for some ratios of span lengths. 

INTRODUCTION 

There is a long history as sociated with the 
design and analysis of three dimensional piping 
systems. Advanced techniques are routinely 
used in the static design that consider thermal 
effects, pressure stresses and gravity loads. 

The response of these systems to dy- 
namic inputs, however, presents a more in- 
volved problem.   Some sophisticated programs 
have been written regarding the response of 
such systems to dynamic inputs.    These are 
complex, not easy to use and not widely known. 

Very little information is available for 
guidance in the literature.    The Design of Pip- 
ing Systems, compiled by the M. W. Kellogg 
Company (1) discusses the vibration of piping 
systems.    The treatment uses a Rayleigh type 
approximation for the fundamental mode for the 
case of a pipe bend with two legs.   No informa- 
tion or guidance is given for the occurrence of 
higher modes. 

This paper is intended to expand on the 
dynamic properties on a three legged, three di- 
mensional piping system.   Higher natural fre- 
quencies and corresponding normal modes, as 
well as the fundamental,  are included.    This is 
done by setting up the stiffness matrix which 
when combined with the mass matrix defines an 
eigenvalue problem.    The various system force 
deflection routines were supplied as deflection 
routines to serve as inputs to obtain the stiff- 
ness matrix.   From the eigenval   >. problem, the 
natural frequencies and associat     normal 
modes were obtained. 

The computerized solution uses a cor- 
rected and expanded version of an available 
general matrix manipulation code "GEM" (3). 
As compiled, it will determine the stiffness 
matrix, natural frequencies and mode shapes of 
a linear, conservative,  spring-mass system. 
The most important operation included in the 
program is the vibration eigenvalue routine. 
The routine will determine the natural frequen- 
cies and mode shapes of a spring-mass system 
if supplied with the system mass and stiffness 
matrices as input.   The eigenvalue-eigenvector 
determination is made by application of the 
Jacobi Method (4),  a numerical determination 
of the systems principal coordinates. 

For the three dimensional piping system, 
the relative span lengths were varied over a 
wide range.   Sufficient range is included to per- 
mit boundry cases to be checked.   In particular, 
the three legged system can appear as a two 
legged system or even as a single span system. 
This can be viewed in several stages which per- 
mits the transitional effects to be studied.   The 
results are normalized and plotted for the first 
three natural frequencies, as shown in the ac- 
companying Fig.  2.    The three dimensional 
normal modes are also plotted for some ratios 
of span lengths. 

ANALYSIS 

The differential equations describing an 
n degree of freedom,  conservative,  linear 
spring-mass system are represented in matrix 
form as 
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the square mass 
matrix 

the square stiff- 
ness matrix 

X-   {x,,x„,...x }   deflection coordinate 
'    £ n vector 

The symmetry characteristics of both 
the mass and stiffness matrices is dependent on 
the deflection coordinates chosen to describe 
the system. 

There are n solutions to equation (1) of 
the form: 

iut iblt :<<>i .. 2 mil 
{xf}={vr}e   r   and   {Xf} = -»r {vr} e   r 

2 
where u     is the rth eigenvalue, or natural fre- 
quency squared of the system, and v   is the 
corresponding eigenvector, or mode shape 
vector.    Each solution satisfies equation (1), 
therefore, the total solution can be expressed 
as n equations of the form: 

-W*[M]{VJ+[K]{V_}   =0 (2) 

1/ the n eigenvalues are arranged as the 
diagonal spectral matrix 

A = 

and the corresponding eigenvectors are arranged 
intc the square modal matrix 

V = 

the  n equations describing the entire solution 
v?) can be expressed as the single matrix equa- 
tion 

-[MHVHA] +{KHVJ =o (3) 
or on rearranging 

[M][V][A] =[V] (4) 

The determination of the modal and 
spectral matrices is effected by a transforma- 
tion of the chosen system descriptive co-ordi- 
nates to the systems' principal co-ordinates. 
Multiplication of equation (4) by the inverse of 
the mass matrix yields 

[V][A] =[M]M[KJ[V] (5) 

Expressing this equation in principal co-ordi- 
nates results in the matrix product [ M] " ' [ R] 
appearing as a diagonal matrix.   Conversely, 
operations which result in the diagonalizatiou 
of this product also effect the transformation to 
principal co-ordinates.    The Jacobi Method 
achieves diagonalizaticn by applying to the co- 
ordinate vector of the subject matrix a series 
of rotation transformations,  each transforma- 
tion resulting in the elimination of one off diag- 
onal element pair.    The applied transforms are 
of the form: 

V 

a.., a... a., are 
ij      "     JJ 

elements of row 
order i and column 
order j 

and any one transform can be interpreted as a 
rotation of the plane represented by the ith and 
jth co-ordinates through an angle of 6 degrees. 

The symmetry restriction imposed by 
the Jacobi Method necessitates various matrix 
manipulations of the system equations prior to 
diagonalization.   Expressing the equation as in 
(5) is not sufficient as the matrix product M~ *K 
is not necessarily symmetric.    The required 
formulation is as follows: 

i     i 
M = M2 M2 

equation (4) may be represented as 
I     i 

KV= M2 M2 VA (6) 

next using the identity 
.1     1 

M  2 M2 = I 

and inserting this relation between K and V, 
equation (6) becomes 
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l„i K M * M* V s M2 M* VA iu$ 

finally, multiplying by M 

*• K M   *l   IM* 

yields 
X 

(M * K M"*)  (M1 V) = (M* V)A (7) 
.4        i 

Now if the matrix product (M 'KM1) can be 
shown to be symmetric, equation (7) is in a 
form suitable for solution by the Jacobi Method. 
Note that the spectral matrix has not be«sn 
affected. 

Since M is symmetric, it can be shown 
that M 'KM * is also symmetric, or 

-i .i .1 .A T 
(M * K M 2) = (M 2 K M *) 

The matrix then actually diagonalized by the 
Jacobi Method has a spectral matrix identical 
to the original and a modal matrix related to 
the original by 

M2 V (orig) "     (diagonalized) (8) 

Application of the above technique re- 
quires the determination of the inverse square 
root of the mass matrix (M~2).    This is easily 
done if the mass matrix is diagonal.   If the 
mass matrix is symmetric but nondiagonal, the 
Jacobi Method is used to determine its modal 
and spectral matrices.    The modal matrix is 
normalized, this being possible because the 
eigenvectors are orthogonal, and the inverse 
square root is given by 

.1 
M 2 = T 

.1    T r * TT 

where T is the normalized mass modal matrix 
T (T T    = I), and T is the mass spectral matrix. 

It should be noted that r  * is easily formed 
since V is diagonal. 

The presentation to this point has dealt 
with the formulation and solution of the vibra- 
tion problem given the mass and stiffness ma- 
trices.   The development of the mass matrix is 
normally of little difficulty, the mass locations 
and their respective degrees of freedom being 
either obvious or at the analysts discretion. 
The development of the stiffness matrix on the 
other hand, can be quite arduous for anything 
but the simplest of structures. 

The stiffness matrix may be obtained by 
inversion of the flexibility matrix or by direct 
derivation,  starting with the principle of virtual 
work.    The forces and deflections are related 
by 

or 
W   =[k]  {d} 
Ir]{£}  ={d} 

(9) 

where [ F] is the flexibility matrix. 

For the elastic system, the forces f are 
associated with the deflections d.    The system 
may be subdivided into basic elements, the di- 
vision being such that each element is statically 
determinate.   Application of th« force group f 
generates forces within th« basic elements. 
Let the column vectors p and v respectively 
represent the generated internal forces and de- 
formations.    There exists a relation of the 
form (9) between the internal forces and defor- 
mations of each element.   Assembling these 
into one matrix equation results in 

{V}  =[FV]  {p} (10) 

where F   is a symmetric, diagonally partitioned 

array of the basic element flexibility matrices. 
The body is also acted on by the support reac- 
tions, let the column vector X represent those 
reactions which are redundant.   Now viewing 
the body as a statically determinate structure 
acted upon by two force groups X and f, the 
relationship between applied forces and internal 
forces may be expressed as 

{p}  ■   f B0]  {f>  + [ B?]  {X} (ID 

B- is a matrix of the coefficients relating the 

internal forces of the statically determinate 
structure to the external forces.    The ith 
column of this matrix may be determined by 
subjecting the structure to the fore«: f., the 

other forces being taken as zero, and solving 
for all internal forces. A similar interpreta- 
tion applies to B, . 

In accordance with the principle of work, 
the work done by the external forces must equal 
that stored in the structure, or 

T T 
fxd = p  v (12) 

Substituting the various quantities into 
equation (12), and solving for the flexibility 
matrix (i) gives: 

F = BJ" F Bft-(BTF  B.)(B^F  B.)*1(BTF  EJ 0     v  0 '   0   v   1"   1   v   1'    '   1  v  v 
(13) 

By following an analogous procedure,the 
stiffness matrix may be found to be (2) : 

K = A0K
P

Ao'(AoKpAl)(AXAl)"1(A:SKpAo) 

(14) 

where K   is a diagonally partitioned array of 
the element stiffness matrices and A   and A, 

o 1 
relate the element deflections to the kine- 
matically determinate structure deflections. 

RESULTS 

The structure investigated consists of 
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thr^e mutually perpendicular legs having fixed 
ends, as shown in Figure 1.   A three mass 
point representation is taken, with the mass 
acting at the center of each span.    Torsional 
and longitudinal degrees of freedom.are neglect- 
ed,  resulting in a seven degree of freedom 
system. 

In accordance with the procedure pre- 
viously described, the structure is broken up 
into basic elements, in this case six cantilever 
beams. 

The problem was non-dimensionalized 
for general usage.    The resulting natural fre- 
quencies and associated normal modes are 
listed in Table 1.   It should be noted that the 

eigenvectors are interpreted as deflections in 
the applied force line directions, positive if in 
the positive force direction.    The non-dimen- 
sional frequency coefficients a, from Table 1, 
appear in the equation 

-'& 
cps (151 

where m = mass of one span (slugs) 
L = length of one span (in.) 

A plot of Table 1 appears in Figure 2 
for the first three natural frequencies only.   A 
graphical representation of the first three 
eigenvectors is shown in Figures 3-5. 

TABLE   1 

frequency Orler i 2 3 » 5 6 7 

Natural Frequency* rad/sac .839 2.87 3.27 13.91 16.69 23.99 27,60 

red/sec .916 1.69 1.81 3.73 1.09 ».89 5.26 

cps .1*6 .270 .288 .59» .650 .779 .837 

normalised Eigenvectors»» 
1 .357 - .606 - .219 .263 1.000 -1.000 1.000 

2 .211 .588 - .780 1.000 - .68» -1.000 - ,172 

3 1.000 - .79» - .001 - .138 - .0002 .000 - .962 

* .WO 1.000 1.000 - .»82 - .316 -1.000 .326 

5 .wo 1.000 -1.000 - .«82 .316 1.000 .326 

6 .357 - .606 .219 .263 -1.000 1.000 1.000 

7 .211 .588 .780 1.000 .68» 1.000 - .172 

Hoadi—nslonal Frequency 
Coefficients 

—IST- .»1» .765 .816 1.680 1.8*0 2.200 2.370 

♦ Values apply to systea where L_j_ ■ 6 in., «_„ a 3 slugs, El ■ 1 
++ Listed in order of applied sass loadings (Ref. Fig. 1), positive value Indicating a positive 

deflection in the applied force line direction. 
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DISCUSSION 

Mr. Monroe (Babcock k Wilcox Co.): Was 
the system that you modeled a uniformly lumped 
mass system? 

Mr. Begier: Yes. 

Mr. Monroe: What guidelines were used to 
lump the masses and develop the mass matrix? 

Mr. Bezler: I lumped the total mass of 
each leg at its center point. 

Mr. Monroe: Did you apply the total mass 
in the middle of the span? 

Mr. Beater: Yes. 

Mr. Monroe: Did you make any para- 
metric studies on moving that mass to any 
other place? 

Mr. Bezler: No. I might add that I have 
run later problems where I have used more 
mass points, and obtained virtually the same 
results. I find that if I put mass at the junc- 
tion points, the results tend to change. I do not 
know if they are more correct. There was no 
parameter study. 
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DESIGN MODEL BASED ON OBSERVED MODES OF VIBRATION OF 

AUSTRALIAN CSIRO 210-FT RADIO TELESCOPE 

J.A. Macinante 

Division of Applied Physics, National Standards Laboratory, CSIRO 

Sydney, II.S.W. 2008, Australia 

This paper describes qualitatively the simplest design model that is 
capable of representing the modes of vibration observed in an experi- 
mental vibration study [1] of the Australian CSIRO 210-ft Radio Tele- 
scope. The model is presented as three separate mass-spring systems. 
In the azimuth system the three observed torsicnal modes are repre- 
sented by those of a series arrangement of three inertias connected 
by three springs. In the elevation system the three observed 'rocking 
modes' are represented by the first three flexural modes of a canti- 
lever having non-uniform mass and stiffness. This cantilever is 
coupled to another representing the master column to provide a model 
for investigating the influence, on the pointing accuracy of the tele- 
scope, of unintentional coupling of the master column to the telescope 
structure. The observed 'walking' mode in elevation cau be studied 
with a model based on a series arrangement of four inertias connected 
by three springs. The justification for making the considerable 
simplifications described in this paper is discussed in relation to 
the actual hardware. 

INTRODUCTION 

In the design of a radio telescope employ- 
ing a servo-controlled driving system the 
designer must know the values of the natural 
frequencies that the structure will have, 
because it is desirable to arrange for these 
frequencies to lie outside the pass band of the 
control system. If it is intended that the 
serve pass band should lie below all the struc- 
tural resonance frequencies, obviously it is 
the fundamental frequency in each manner of 
oscillation (e.g. torsion about azimuth axis, 
flexure in elevation plane, etc.) that Is 
important. With increase in the size of a 
telescope of a particular type, the fundamental 
frequencies decrease and this Increases the 
importance of making a reliable estimate of 
their values. 

The mathematical model which is used for 
the calculation of natural frequencies is in- 
tended to separate the essential from the ir- 
relevant or unimportant - it involves the use 
of simplifying assumptions which reduce the 
number of parameters that determine the dynamic 
behaviour of the system being studied. The 
greater the simplification, of course, the less 
information the model will yield. The art in 
deriving a design model is to know how far to 
carry the simplification. 

In devising the model presented in this 
paper the author has the advantage of having 
observed experimentally the actual dynamic 
behaviour of the structure which the model is 
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! I SERVO 
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FIGURE 1.  Nomenclature 
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TABLE I 

Observed Structural Resonance Frequencies 

Node 
Resonance 
Frequency 

(Hz) 

Part of Structure 
Primarily Involved 

Torsional modes about 
azimuth axis OZ 

Cantilever modes in 
elevation plane YOZ 

Cantilever modes in 
lateral plane XOZ 

Cantilever mode 

Walking mode 

1.2 

1.7 

8.6 

1.6 

3.0 

3.4 

1.5 

2.5 

6.5 

0.4 

Whole structure 

Tripod/aerial cabin 
assembly 

Lower structure 

Whole structure 

Whole structure 

Whole structure 

Whole structure 

Upper structure 

Master column 

Counterweight assembly 
and elevation drive 

to represent. The model derived is the simplest 
that would be capable of representing the modes 
of vibration observed in tests made on the 
CSIBO 210-ft radio telescope at Parkes, 
Australia. Such a model may be of interest to 
designers of other radio telescopes of the same 
general type, that is an alt-azimuth steerable 
paraboloid on a cylindrical base tower. 

Thr structural natural frequencies of this 
telescope were found by making resonance and 
free vibration tests for which excitation was 
provided through the driving system of the 
telescope Itself. The results of the experi- 
mental study have been published elsewhere [1]. 

OBSERVED MODES OF VIBRATION OF CSIRO 210-FT 
RADIO TELESCOPE 

The radio telescope has been described in 
detail by Bowen and Minnett [2, 3]. For con- 
venience of reference the nomenclature used in 
the present paper is given in Fig. 1. The 
210-ft parabolic dish is pointed in the re- 
quired direction by being tilted about an ele- 
vation axis OX in a turret which is rotated 
about an azimuth axis OZ. These movements are 
produced by servo-controlled driving systems 
[4]. The pointing direction is nominated by 
a master equatorial instrument which is sup- 
ported on the master column. Further descrip- 
tive matter is given later in context as re- 
quired. 

The results of the experimental vibration 
study which are relevant to the present paper 
are summarized in Table 1, and the observed 
modes of the structure as a whole are illus- 
trated in Fig. 2. All the numerical values 

are rounded to 0.1 Hz. The detailed obser- 
vations were made with the dish at 0° z.a. 
(zenith angle ZOZ' in Fig. 1). Some obser- 
vations made at 30° and 45* z.a. Indicated 
that the resonance frequency in a given mode 
differed by less than 10Z from the 0* z.a. 
value. Full details of the experimental pro- 
cedures by which these results were obtained 
will be found In [1]. 

BASIS OF DERIVATION OF THE DESIGN MODEL 

The model described in this paper has been 
derived on the following basis: 

1. The term 'design model' refers to that part 
of the complete model of the telescope and 
its control system which represents the 
mechanical and structural elements whose 
properties determine the natural frequen- 
cies. The relationship of this part to the 
complete model of the driving and control 
system can be seen in [4]. 

2. The treatment is purely qualitative. No 
attempt is made to allocate to the model 
numerical values of its parameters based 
on calculated properties of the actual 
structure. 

3. In the experimental study transient res- 
ponses in elevation usually followed brak- 
ing in azimuth, and transient responses in 
azimuth resulted from braking in elevation: 
these were attributed to uneven braking 
[see 1, p. 12-13, 22]. Steady-state excit- 
ation in azimuth or in elevation did pro- 
duce a coupled response in the lateral 
plane, but for the purposes of the present 
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FIGURE 2.  Diagrammatic Summary of Observed Modes 

paper it is assumed that these systems are 
not coupled and hence may be represented 
by independent models. 

4. The model is devised to represent only 
modes actually observed. Certain minor 
ones, e.g. flexural mode of tripod leg, are 
ignored. The model does not attempt to re- 
present the dish modes: direct excitation 
of the dish for experimental study of its 
modes was not permitted [1, p. 6] because 
it would have involved risk of distortion 
of the dish surface. 

AZIMUTH MODEL 

First referring to Fig. 3, the complete 
dish assembly is represented by the equivalent 
system In, kn. The experimental results indi- 
cate that the stiffness kn of the dish itself 
about the azimuth axis is comparatively high. 
The aerial cabin/tripod assembly is shown as 
the separate system IA., k^ attached to the dish 
system. 

The turret stiffness is represented by the 
spring kT. The experiments showed that the 
turret contributes the major compliance in 
azimuth. The turret inertia is shown partly 
as Ijj at the top of the turret, combined with 
lc the inertia of the counterweight assembly, 
and the 
turret. 

remainder as IT2 at the base of the 

The telescope is driven In azimuth by two 
motor-gearbox units, one of which is shown dia- 
grammatlcally In Fig. A. The effective inertia 

VI, 

FIGURE 3.  Azimuth System 

AZIMUTH AXIS TURRET 

«U  WUVE 
'    RATIO N 

FIGURE 4.      Azimuth Drive 
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of the azimuth drive l^p, referred to the 
azimuth axis is 

I*i> - aiMVNdj/d,)2 (I) 

where I» » the moment of i.iertia at me  motor 
shaft; 

K » gear ratio motor rpm/roller rpm; 

d. « effective diameter of roller; 

d2 ■ effective diameter of track. 

Because the reduction ratio Nd2/d, has 
a very high value the total moment of inertia 
of  the azimuth drive referred to the azimuth 
axis is about eight times greater than the 
total moment of inertia of the complete assembly 
that rotates on the azimuth track. Therefore 
the motor shafts can be assumed to be locked. 

The supporting structure, comprising the 
base tower and azimuth track, Is shown in 
Fig. 3 as the Ig, kg system. Some response was 
observed experimentally at the ground level 
(see 1, p. 13]; the stiffness of the ground or 
site is represented by kg. 

In the vibration study the azimuth modes 
recognized in addition to the fundamental were 
a mode associated with the aerial cabin/trlpod 
and one associated with the base tower.  (Sec 
Fig. 2(a)). This suggests that the model could 
be reduced to a three-inertia system as shown 
in Fig. 5 by ignoring the Inertia of the turret 
and counterweights, a total of about one-tenth 
that of the complete dish assembly above the 
counterweights. Consequently the stiffness of 
dish, turret and azimuth drive can be 
represented by that of a single spring denoted 
by   k.,. 

Thus, Fig. 5 is presented as the simplest 
system that Is capable of representing the 
three azimuth modes that were found experi- 
mentally. 

ELEVATION AMD LATERAL ROCKING MODEL 

The model for the elevation system is 
required to represent the following features 
of the observed behaviour of the telescope: 

(i) Oscillation of the structure as a whole. 
Three rocking (flexural) modes were 
observed in the elevation plane YOZ and 
two in the lateral plane XOZ as shown 
in Figs 2(b) and 2(c) and Table 1. 

(il) Oscillation of the master column result- 
ing from some unintentional coupling to 
the telescope, as discussed in Section 2 
below. 

(iii)  'Walking' oscillation of the counter- 
weight assembly as discussed in 
Section 3 below. 

t /'. 

*77T777? 

FIGURE 5.  Azimuth Model 

1.  Flexural Oscillation or the Telescope 
Structure 

The system involved in flexural oscill- 
ation In the elev >':lon plane Is shown dia- 
grammatlcally in Fig. 6(a). This Is first 
converted ti Fig. 6(b) In which the model 
suggested Is basically a cantilever. The 
suitability of this is obvious In relation to 
the flexure of the lower part of the structure 
from the ground to the base of the turret, and 
the upper part of the structure above the 
elevation bearings. The behaviour of the 
intermediate part comprising the turret, the 
counterweight assembly and the elevation drive 
requires some discussion. 

The dish Is represented by a lumped mass 
ran and a flexure spring kD. Superposed on mn 
Is ail;, k^ system representing the aerial 
cabin/tripod assembly. 

The counterweight assembly Is treated as 
a lumped mass mc on a flexural element kr;. 
The rack on the counterweight is connected 
through gearing to a motor attached near the 
base of the turret. Because of the very high 
drive ratio the total moment of Inertia of the 
elevation driving system, referred to the 
elevation axis, is over JO times greater than 
the moment of inertia of Che complete elev- 
ation assembly about the elevation axis. 
Therefore the motor shaft can be regarded as 
locked. The torsional stiffness of the elev- 
ation drive is represented as that of a spring 
kgn. Displacement of the counterweight mass 
•a- is opposed by springs kc and kgn acting in 
the configuration shown In relation to the 
turret kT. 
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FIGURE 6.  Elevation System FIGURE 7.  Development of Elevation Model 

Referring now to Fig. 7(a) the elevation 
system ABC, which has just been discussed, is 
supported at the elevation bearings B by a 
system BD. For clarity the two systems are 
shown separated at the common point B. The 
system BD can be regarded as a cantilever 
having non-uniform stiffness, and also non- 
uniform mass distribution which might involve 
the use of lumped masses such as mT, and mT2 
for the upper and lower parts respectively of 
the turret, and tnB for the upper part of the 
base tower, and so on. The flexural stiffness 
is that associated with the ground or site 
(kg), the base tower (kg), the azimuth track 
and roller system (kg), and the turret (kj)• 

The model can be simplified to that shown 
in Fig. 7(b), if the stiffness kED Is relat- 
ively high, for mQ and mj2 can then be com- 
bined, also kT and kg  can be combined, as 
shown. 

Therefore the model suggested for the 
rocking modes in elevation is a cantilever 
having non-uniform mass and stiffness as shown 
in Fig. 7(b). The three observed rocking modes 
can be represented by the first three modes of 
such a cantiilevrr. 

For flex'-r< 1 oscillations in the lateral 
plane the elevation drive stiffness is not 
involved and the hinge at B is irrelevant. 
Hence lateral modes can be represented by a 
system basically similar to that in Fig. 7(b). 

2. Coupling of the Master Column with the 
Telescope Structure 

Ideally the master column is completely 
isolated structurally from the surrounding 

telescope. However, the experiments showed 
that the master column was not uncoupled: it. 
responded as a vertical cantilever to excit- 
ation applied to the surrounding telescope 
structure, in the manner illustrated in Fig. 8 
[see also 1, p. 17]. Such a coupled response 
of the master column in a telescope of this 
type could have an important influence on the 
pointing accuracy as discussed in 1, Part 4. 

Therefore the design model might with 
advantage be extended to permit a study of the 
influence of structural resonances on the error 
detection system, for even though there may be 
no physical contact where the master column 
passes thrcugh the structure, some degree of 
coupling through the foundations is probably 
unavoidable. In such a study obviously the 
mode shapes as well as frequencies should be 
investigated. 

The master column may be represented in 
the model by a cantilever which is weakly 
coupled to ti.at representing the telescope 
structure as shown In Fig. 9. Direct coupling 
could be represented by a spring kjj and 
coupling through the ground by the spring ks- 
The cantilever representing the column may have 
non-uniform stiffness and mass, or lumped 
masses, as appropriate. 

Thus the model of the complete telescope 
in elevation is simply a pair of cantilevers 
with a small degree of coupling. Such a model 
is capable of representing ieatures (1) and 
(ii) of the observed behaviour noted at the 
beginning of this Section. The third feature 
is now discussed. 
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3. Walking Oscillation 

The phenomenon observed experimentally is 
as follows. At a certain angular velocity u of 
rotation in elevation, the two counterweights 
oscillated in phase about the elevation axis 
with the displacement of the right about twice 
that of the left. The frequency fy of this 
oscillation is the walking frequency. In the 
C5IR0 radio telescope fy - 0.42 Hz was the low- 
est of the observed frequencies. At submultiple 
rates ui/n (n • 1, 2, ...) the counterweights 
oscillated in a similar manner with the same 
frequency fy but with smaller displacement. 

At these particular rates at which walk- 
ing occurred, the period TR of the rack-tooth 
meshing cycle in the counterweights drive was 
observed to be an integral multiple of the 
period Ty of the walking cycle. 

That is 

TR » >V j,  or  fy • nfjt      (2) 

where fR ■ frequency of rack-tooth meshing 
cycle. 

Dynamic load observations at the turret 
base throughout the range of elevation speed 
showed appreciable load fluctuations at the 
tooth meshing frequency. 

The mechanism of the excitation of the 
walking motion is not fully understood; it is 
thought that non-uniformity of the velocity 
ratio may provide the excitation and that the 
control system, which applies to both sides 

a correction based on the error detected at 
one side, may tend to maintain a walking 
oscillation. 

Although there is no experimental evidence 
of Interaction between the walking oscillation 
and the servo-control system, the possibility 
of such an interaction should be considered in 
the design of any alt-azimuth mounted telescope 
which attains equatorial control through the 
use of a master Instrument on a central column. 
With such an arrangement a walking oscillation 
is inherently possible because the counter- 
weight assembly must be In the form of two 
separate counterweights that can be joined 
together at only one end (Fig. 10(a)). 

For the design model, all that can be 
suggested on the basis of the experimental re- 
sults is that the walking mode could be studied 
with a model having as its basic element the 
system shown in Fig. 10(b) in which the excit- 
ation originates. To this it would be 
necessary to add the other elements which 
participate In the walking mode, notably the 
turret, and possibly also the dish. 

The system in Fig. 10(b) treats separately 
the two counterweights and their drives which 
were lumped together in the elevation model. 
The left counterweight I2 is joined to the 
right I, by a spring k2 having the stiffness of 
the counterweight assembly in torsion about the 
elevation axis. The inertias I,- and I,, are the 
drive inertias referred to the elevation axis, 
and kj and k, are the drive stiffnesses. 
Excitation representing that resulting from 
non-uniformity of the gear drive velocity ratio 
could be applied to I2 and I,. 
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FIGURE 10.      Walking Mode 

CONCLUDING REMARKS 

A simple design model has been derived 
which would be capable of representing qualit- 
atively the observed modes of vibration of the 
Australian CSIRO 210-ft radio telescope.    The 
model comprises three separate spring-mass 
systems, one for the azimuth system, one for 
the elevation system and a supplementary system 
to represent the walking mode that occurs in 
elevation motion. 

Although in these days of high speed 
computers the inclusion in any design model of 
a few more degrees of freedom than necessary 
'just to be on the safe side' may not be un- 
reasonable, the very simple model described in 
this paper may be of some interest if only to 
suggest a limit to the degree of simplific- 
ation that may be contemplated in the design 
model fot  a telescope of this type. 
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DISCUSSION 

Mr. Michel (NASA Headquarters):  Since Mr. Macinante:  In our own laboratory we 
they did not iet you shake the full scale tele- have CDC 3200 and 3600 digital computers, 
scope, did they have any plans for a model that We also have a large analog computer avail - 
you could shake? able in another part of the CVSRO on which one 

could have done this work. 
Mr. Macinante:  No.  At no time was there 

any discussion of the use of a scale model. Mr. Mains:   Had you desired to use several 
more degrees of freedom you could have, be- 

Mr. Mains (Washington Univ.):  What kind cause you had the computer capability, 
of computers are available in Australia for 
doing this kind of work? Mr. Macinante:  Yes. 
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UPPER AND LOWER BOUNDS TO TORSIONAL FREQUENCIES OF 
NONUNIPORM SHAFTS AND APPLICATIONS TO MISSILES 

N. Rubinstein, V. G. SlgiUito, J. T. Städter 
Applied Physics Laboratory, The Johns Hopkins University 

Silver Spring, Maryland 

In this paper we compute upper and lower bounds to torslonal frequencies of 
nonuniform shafts. The torslonal rigidity and mass moment of inertia per 
unit length are approximated by plecewlse constant functions. Nonuniform 
free shafts often serve as models for the study of missile torslonal vibra- 
tions. The upper bounds are obtained from the Raylelgh-Ritz method; the 
lower bounds result froj an application of recently developed procedures 
of Barley and Fox. A brief theoretical description of the lower bound 
methods is Included along with several illustrative examples. 

INTRODUCTION 

In missile development It is important to 
know precisely the frequencies of free vibra- 
tion of elastic structures and structural 
elements. For a missile as a whole the 
frequencies and mode shapes In bending and 
torsion have a strong Influence on the per- 
formance of the control system. The frequen- 
cies and mode shapes of such other structural 
components as wings, fins, and panels are 
crucial In their aeroelastic behavior in 
flight. 

The nonuniform free shaft often serves 
as a model for the study of missile torslonal 
vibrations; In this paper we assume the shaft 
to have plecewlse constant torslonal rigidity 
and mass moment of inertia per unit length, 
both of which are distributed rather than 
lumped. 

Although In principle this problem can 
be solved exactly, it is generally impractical 
to do so. In order to obtain the exact fre- 
quencies of a shaft with only a few non- 
uniformities it is necessary to find the roots 
of a large order determinant with non-linear 
entries. Methods are available for finding 
these roots, however their use leads to many 
computational problems: they are quite 
sensitive to round-off error and usually 
require much computation time. Other 
existing methods, such as those which concen- 
trate the mass and stiffness at points or 
apply difference techniques, give approxima- 
tions of the frequencies but they do not 
provide error estimates. Consequently, one 
cannot be certain of how accurate these 
approximations are. The methods presented 
here, however, give upper and lower bounds 

which bracket the true frequencies of the 
missile model, are computattonally fast and 
accurate, can handle a large number of non- 
uniformities and can be extended easily to 
handle shafts with more complicated variations 
of stiffness and mass. 

The well known Raylelgh-Ritz procedure is 
used to obtain the upper bounds. The problem 
of computing lower bounds is much more dif- 
ficult, but recent work of Bazley and Fox has 
provided useful lower-bound procedures that 
are applicable to a wide variety of vibration 
problems [Refs. 1,2]. More recently the 
authors were able to apply these theoretical 
results to obtain lower bounds to frequencies 
of various beams and shafts [Refs. 3-7]. 

THEORETICAL BACKGROUND 

The differential equation of the frs« 
torslonal vibration of a free shaft is given 
by 

k[ GJ(x) 
du 
dx 

4 rf?\iM  u - 0, 

0 £ x £ L 

u'(0) - u'(L) - 0, 

where 

GJ(x) is the torslonal rigidity, 
,i(x)  is the mass moment of inertia per 

unit length (we will sometimes 
abbreviate this as the mass moment 
of inertia), 

L is the length of the shaft} 
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f Is the circular frequency of tor- 
sions 1 vibration. 

We assume the CJ(x) and n(x) are plecewise 
constant. Physical considerations dictate 
that the solution u and GJ(x)u' be continuous 
over the length of the shaft. 

Because the theoretical methods are 
naturally expressed in terms of operators in 
Hllbert space, we treat the missile as a free 
shaft of unit length whose torslonal vibra- 
tions can then be described in the real 
Hilbert space P2 (0,1)* with inner product 

rl 
(u,v) "!  u v dx . 

J   0 

Lower Bounds 

The lower bounds are obtained using the 
method of intermediate problems [Reft.  7-91 
with special choice developed by Barley and 
Fox [11. 

The quadratic form associated with the 
elastic  (or strain) energy and the kinetic 
energy are given by 

JA(u) «J     hW    |u'(x)|s dx 

JB(u) -J    B(x)   |u(x)|a    dx , 

Let 

and 

h(x) - GJ(x) 

B(x) -u(x) . 

Then the above eigenvalue problem becomes 

d_ 
dx [*<*> t]   ■ X B(x)u - 0 

(1) 

u' (0) - u' (1) - 0, 

where the eigenvalue X is related to the 
frequency f by t 

X - 4 n8  f8   . 

respectively. 

As required by the method J. can be 
decomposed as 

JA(u) » JAo(u) + (Tm.Tiu) 

-  f   h°|u*(x)l8  dx 
o 
l 

+   f   (h(x)  - h°) |u'(x)|" dx . 

* 0 

Therefore the operator Tj is given by 

Tltt(x) - (h(x) - h°)% g , 

(2) 

The stiffness and mass moment of inertia 
functions are chosen to be plecewise constant 
and to satisfy 

0 < h° < h(x) s H 

0 s m < B(x) < M , 

where h° , H, m, and M are constants. 

We now describe the methods used to 
compute upper and lower bounds to the 
eigenvalues of Eq. (1). 

* We denote Ö8(0,1) the space of all square 
lntegrable functions on the interval (0,1). 

t The frequency for a beam of length L can be 
obtained from the equation 

X - 4 n8  L8   f   . 

and its adjoint Tj   in given by 

tf v(x) - jj[(h(x) - h°)% v(x)l 

with domain of definitiont> 4 given by 
Y 

»T*   ■ { v,  (h(x) 

- h°)% v  «ßs (0,1) I v(0) - v(l) ■ 0 , 

[(h(x) - h0)* v(x)1?1 - 0, 

1-1,2 n}. 

Here [*1, denotes the jump in the function at 

the point 5  . 
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Alto as required by the nethod, the 
quadratic form J_ can be decomposed ae 

- f   M|u(x)|sdx 
* o 

1 

- f (M - B(x» | u(x)|a dx 
■*  0 

(3) 

It therefore follows that the operator To  Is 
given by 

la u(x) - [M - B(x)1* u(x) 

and Its adjoint Ta  la given by 

Tj* v(x) - [M - B(x)1* v(x) 

with domain of definition 

*>T*   -^(O.l) . 
a 

The varlational problem 

6 
r V (u) I 

for variations taken In 5).     gives rise to the 
JA° 

eigenvalue problem 

A°u - X B°u - 0 

which in our case is given by 

u"(x) + X 3r u(x) - 0 , 
H 

u'   (0) - u'   (1)      - 0 

(4) 

This eigenvalue problem, referred to as a 
base problem,  is resolvable as it corresponds 
to the problem of torslonal vibrations of a 
uniform shaft with constant stiffness h°and 
constant mass moment of inertia per unit 
length M.    Its eigenvalues X^, and correspond- 
ing normalized eigenvectors, u° , are given by 

*v 

v-1 

< 

Sr (V-I)»«" . 

i 
V5 

v- 2,3,. 

v - 1 

"\/| cos  (v-1) iTx,       v-2,3,. 

The eigenvalues X°  satisfy 

0 « X? s X§ s 

Since the quadratic form J.o is obtained from 

J by dropping the positive term (Tju.Tiu) , 

and the quadratic form 3j>  is obtained from 

J by substractlng the positive term 

(Tau.Tau) , the eigenvalues X° give crude 

lower bounds to the eigenvalues of problem 
(1); that is, the eigenvalues satisfy 

X° s Xv,  v-1,2,. (5) 

The lower bound method described in 
detail in [1, pp.  8-111 uses the first k 

elements of a given sequence { pi ,pgy.. .J of 
linearly independent vectors belonging to 

$T*,    1"1,2, to construct intermediate quad- 

ratic forms which satisfy 

JA°  S JA*i  S JAW+1 S JA 

Jtf  * JB»» * JBK>+1 2 JB 

(6) 

Consequently, the operator eigenvalue 
problem 

A^u - X B^u - 0 (7) 
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obtained from the variatlonal equation 

4      -r ] ■ 0, has ordered eigenvalue« 

\^ ,ka which satisfy 

V V 

xk,+l,ke 
v 

i«, .kg+l 
' s X v * 

v-1,2,... 

(8) 

The operator eigenvalue equation (7)  1« given 
explicitly by 

A°u+    £^     (U,T,*p\) »\jtfPj 
i.J-1 

.jtf u - 22 (u.is*^) n^jif^l 
i     i.j-i J 

(9) 

0 , 

where the constants b\. and b*    are elements 

of the matrix Inverse to that with elements 
(p\. Pj)    and (p^fP^)    respectively. 

The method of special choice requires us 
to find vectors p1. c 3L* satisfying 

1 Tj 

kl 

T*pl"   Z_,Bia f "a ,      1-1,2,...,«,   , 
a-I 

and vectors p* c XL* satisfying        (10) 

P\- < 

. 1-1 

Vh(x) - ar sin (1-1) nx, 1-2,3 kj , 

■>!- 

VF B(x) , t-i 

,VM. Sx) co* (1"1) nx« 1"2»3 ** • 

where ^-1« 6^, 68fe » 6^ and 

n - kj + 1 - kg. The Integer n will correspond 
to the order of the matrix problem. 

Equation (9) now becomes • linear algebraic 
elgenproblem 

L \\ 
u-l 

x: v+1 ** bu •*. 
i.J-l 

(ID 

1    i.j-i        j > -o • 

or equivalently In matrix notation 

V{A° + BJ* B1 PX - X [I - Pi* *  Pal} - 0 .  (12) 

The eigenvalues *L.«» ^J.** *" ' to8ether wltn 

those determined from (12) are, when ordered 
according to magnitude, the eigenvalues 

X l' ^ that provide lower bounds according to 

(8). 

The eigenvalue X°   is the lowest persis- 

tent eigenvalue (P.E.) of the base problem, 

and the eigenvalues X^.ka which provide lower 

"^ A "   Yl Sto * u° * l " 1'2»"-»ka •      bounds are, for simplicity, written as X". We 
<j-l 

Such a set of vectors satisfying eqs. 
(10) is given by 

observe that only the eigenvalues less than 
X° . (the P.E.) give improved lower bounds. 

Upper Bounds 

The upper bounds are obtained using the 
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well-known Rayleigh-Ritz procedure In which 
we diagonal lie a symmetric matrix wich ele- 
mente R v " JAfo ,<PV) relative to the «atrix 

0     " J«^ »'v* wnere the tri*1 w•ctor• fv »w 

In ».   and eattafy (B q>, ,<pu) • V*. JA ü   v 

Here we chose modified eigenvectors of 

the base problem, u^'s, aa trial vectors tf»v> 

These are given by 

v-1 

cos (v-1) n x ,     v-2,3,. 

This leada to a symmetric matrix eigen- 
value problem of order n given by 

v-1 L 

U"l,2,...,n . 

This problem yields upper bounds Xv, i.e., 

the eigenvalues of (13) satisfy 

(13) 

V* v«  V"1'2 n 

ILLUSTRATIVE BXAMFLES AND RESULTS 

Digital programs which solve Eq. (12) for 
lower bounds and Eq. (13) for upper bounds have 
been written. The programs require only stiff- 
ness and mass moment of inertia data in stan- 
dard engineering units. All necessary conver- 
sions, tmtrlx constructions, arithmetic 
operations and inversions are done automatical- 
ly by the programs. A detailed description of 
the programs and their use is given in our 
report [Ref. 51. 

We now give the results of two sample 
problems. In both of these examples we have 
used as a model for the missile a shaft with 
plecewise constant torslonal rigidity and mass 
moment of inertia. 

The firs: example treats a simple caae 
which illustrates the type of reaulta obtain- 
able from the procedure. Figures 1 and 2 give 
the toralonal rigidity and mass moment of 
Inertia per unit length. The bounds to 
eigenvalues and to the first six frequencies 
obtained from ISth-order calculations are 
given in Tablea 1 and 2. Each of these cal- 
culations required .01 hours of running time 
on the 7094 IBM digital computer at the 
Applied Physics Laboratory. 

Our second example treats a more realistic 
missile structure. We have used a model with 
17 discontinuities in torslonal rigidity and 
IS in mass moment of inertia per unit length 
(see Figures 3 and 4). The bounds to frequen- 
cies resulting from 15th, 30th and 50th order 
calculations are given in Table 3.  Notice 

Station Number 

Fig. 1 T0RSI0NAL RIGIDITY OF A MISSILE 
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Maes Moment of Inertia Per Inch 
of Base Problem 
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20 
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Station Number 
300" 

380 
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Pig. 2 MaSS MOMENT OF INERTIA PER INCH 

TABLE    1 

T0RSI0NAL VIBRATION OF A MISSILE WITH 

PIECFWISE CONSTANT STIFFNESS AND MASS 

EBounds to Eigenvalues ] 

15th onfer 15th order 
V Lower Bounds 

V 

Upper Bounds 

1 0 0 
2 10.086870 10.206404 
3 36.843140 37.323944 
4 79.572732 80.258881 
5 148.77342 149.77740 
h 230.09118 234.53120 
7 323.11676 327.90150 
8 450.40969 453.22798 
9 593.77889 605.91167 

10 726.20745 742.04673 
11 916.55514 927.82328 
12 1101.0237 1157.1484 
13 1298.8136 1374.3641 
14 1528.9682 1760.6615 
15 1708.8686 1988.4073 

that the higher order problems give lmprc 
bounds. The theory dictates that all elge. 
values of Eq. (12) which are less than 

*n+l> the persistent eigenvalue of the base 

problem,, provide lower bounds. Thus Increas- 
ing n (which Increases *°+1) has a twofold 

TABLE   2 

TORSIONAL VIBRATION OF A MISSILE WITH 

PIECEWISE CONSTANT STIFFNESS AND MASS 

[Bounds to Frequencies  (Hz)1 

V 
15th order 

Lower Bounds 

I' 
15th order 

Upper Bounds 

1 
2 
3 
4 
5 
6 

0 
14.040929 
26.834650 
39.436627 
53.923777 
67.060628 

0 
14.123880 
27.009179 
39.606291 
54.105422 
67.704564 
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effect on the eigenvalues: 

(1) lower bounds to more eigenvalues are 
obtained, 

(ii) the lower bounds improve (see Eq. (8)). 

Station Number 

Fig. 3 T0RSI0NA1 RIGIDITY OF A MISSILE 

calculation (Eq.(13) for the upper bounds 
and Eq. (12) for lower bounds) one obtains 
Improved upper and lower bounds. This fact 
is clearly exhibited in Table 3. 

The above can be summarised by simply stating 
that by increasing the order n of the matrix 

The combined running time for the three 
cases, in Table 3, for both upper and lower 
bounds was .10 hours. 

5- 

f 4 
u 
& 
.3 3 
u 
u 

% 

Mass Moment of Inertia per inch of 
Base Problem    _ 

^ 

 site— 
Station Numbei 

IL 

"3lfe wo 

Fig. 4 MASS MOMENT OF INERTIA PER INCH 
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TABLE 3 

TORSIONAL VIBRATION OF A MISSILE WITH 

PIECEWISE CONSTANT STIFFNESS AND MASS 

[Bounds to Frequencies   (Hz)l 

15th Order 15th Order 30th Order 30th Order   II  50th Order 50th Order 
V Lover Bounda Upper Bounds Lower Bounds Upper Bounds Lower Bounds Upper Bounds 

f* «IB £r 430 t° V \> V V V                   | V V 

1 0 0 0 0 0 0 
2 42.308842 47.197705 42.961492 46.692733 43.208092 45.007649 
3 92.865038 100.42290 93.568213 99.285572 93.874986 96.454445 
4 145.70238 146.72565 145.93122 146.69077 
5 180.08932 191.69803 180.68884 186.07257 
6 231.47309 242.07325 231.81773 235.93195 
7 288.44201 291.61031 
8 320.30658 325.83021 
9 365.19466 369.46514 

10 422.12678 430.20020 
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DETERMINATION OF DYNAMIC LOADS AND RESPONSE 

OF A SPACE VEHICLE USING FLIGHT DATA 

Shou-nien Hou 
Bellcomm, Inc. 

Washington, D. C. 

An analytical method has been developed, based on 
statistical properties of power spectral density functions 
obtained from actual flight, for determining maximum in- 
tensity level of the residual thrust oscillation and dy- 
namic response of a space vehicle. 

The method yields the expected intensity, the standard 
deviation, and the distribution of the maximum intensity 
across the ensemble of either excitation or response, which 
are treated as random processes. It is found that the 
square of such maximum intensity follows a Gumbel distri- 
bution. Thus, a limited number of flight records can pro- 
vide sufficient information for structural design. 

The proposed method may offer advantages of (1) an 
analytical base for establishing the residual thrust os- 
cillation specification of space vehicle, (?) a direct 
estimate of maximum structural response level over com- 
bined loading effects, and (i) information for structural 
anomaly study as well as for structural design. 

INTRODUCTION 

An assessment of space vehicle 
structural capability under launch 
loads requires knowledge of the nom- 
inal force exerted on the vehicle, and 
the variation of this force as a func- 
tion of time during the boost phase. 
This latter quantity, which has been 
referred to as residual thrust oscil- 
lation, is a random phenomenon, and 
as such should be treated statistically. 
Structural capability should also be 
assessed by a direct statistical eval- 
uation of maximum structural response. 
Conditions can occur such that both 
excitation and response are a combi- 
nation of random and deterministic 
oscillations, (i.e., POGO). Addition- 
al considerations, which are not in- 
cluded in this text, should be given 
for the additional effects of such 
deterministic excitations to the random 
process. 

As we know, a power spectral den- 
sity function across the ensemble of 
the process can be obtained directly 

by the spectral analysis of the sample 
vibration records. It would be con- 
venient if we could associate all the 
statistical properties of the process 
with the power spectral density func- 
tion, S((D'. However, we expect that 
such a power spectral density function 
will be non-stationary, with time vari- 
ation in its overall intensity and the 
power distribution. 

In the following, analytical solu- 
tions are presented for solving the 
mean, variance, and distribution of the 
maximum oscillation of a random process, 
based on a fixed S(u>). Then, a piece- 
wise stationary approach is introduced 
for extending such solutions to the 
process with time varying S(u). The 
influence of the means, variances, and 
correlations of those dominant param- 
eters on the distribution of the pro- 
cess so solved is found in approximate 
analytical terms. 
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STATIONARY PROCESS -- 
si.; 

TIMF-INVARIANT 

A power spectral density 'unction, 
S(-), can i>e interpreted as a statisti- 
cal average of frequency decomposed 
sample functions of a random process. 
By its physical ireviing, the area under 
the curve of S(_) is equivalent to th« 

2 
mean square value, x , of the process: 

f SUJdu <1} 

where x may be considered as an aver- 
aged intensity of the process.  How- 
ever, for structural design and vibra- 
tion studies, the extreme peak which 
may occur in a finite duration of time 
should receive more attention than just 
an averaged intensity alone.  Since the 
value of x is directly associated with 
S(u) and can be obtained easily through 
equation (1), let us choose x for ex- 
pressing other statistical properties 
of the process. 

Let excitation or structural re- 
sponse be a stationary random process, 

Q(t), of zero-mean, and let Q(t) be the 
slope of Q(t) at any time.  For any 
arbitrary level of Q=a, the expected 
number of crossings per unit time with 
positive slope is designated as N , an 

ensemble average. 
(4) S. 0. Rice1 ' 

Na = 
JO 

According to 

Q p(a,Q)dQ (2) 

['    2 f"    2 I      u S(u)du) I       u S(u)du         2 
J-m  JO                                              "6 

I     SU)dui / S(u)du> 

T„   = 21 =   2w  Ifl 
0       -0 °Q 

Q 
2  ' 
Q 

(6) 

(7) 

which can be interpreted as the mean 
frequency and period of Q(t), respec- 
tively. Thus, substituting these ex- 
pressions into equation (2), we have: 

N = ^ S expl 
a  2» J.  r' (■£) 

or 

Na,Aexp(-4) 
a  T0   V 2x2' 

(8) 

(9) 

One approach for finding the ex- 
pected extreme peak value, m, in a 
specific duration S is to let the ex- 
pected number of crossings over the 
double levels, Q(t) = m and Q(t) = -m, 
equal to one: 

N|m!S (2Nm)S-|iexp(.^)-l.  (10 

Solving for m, the expected extreme 
peak in a duration S is: 

where p(a,Q) is a joint distribution of 

Q(t) and Q(t), with Q=a, and is assumed 
to be a joint Gaussian distribution ■[ »^^T- (ID 

p(Q,Q)   = 

where 

^V6exp 2U      ail 

•i -i S(u)du = x 

f    2 

Let us designate u- and 1. 

(3) 

(4) 

(5) 

Another approach, based on an 

additional assumption   that the time 

T'
3
' for a sample function q ^' (t) to 

reach the double levels q(t) » + a for 
the first time follows Poisson process 
across the ensemble, will lead to a 
similar conclusion as follows. 

. The probability distribution for n 
crossings in a duration S is: 

(N!alS) 

P(n,N, ,S) = —L3-!- n! 
"NlalS 

e |a| '   (12) 
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Then 

p#_, _ „(Extreme peak <al 
1 ' ~ [in a duration SJ 

[No crossing over 
double levels |a| 
in a duration S 

= P(0,N, ,S) 

e-
N|a|S. 

Let T = N|a|s» we 9et 

p(a)da = dF(a) 

- de*T 

= -e"Tdi. 

From equation  (9), we get 

(13) 

(14) 

T«N|a|S=  <».)S - jj Mp(-j£) (13) 

(' 
a =  12  loge ^- 2 loger)1/2x 2S 

ro 

[c -. *r -2 
logeT 

o'    (21=,. m 2S \l/2 

[o -K2  1oge|ä)1/2 + 
c  
2£\l/2 

C l»'c ij) 

i *c 

(• >•% ü)3/2 x. (17) 

where 

■f logi exp(-x)dT  = 0.5772 

= Euler's constant. 

Notice that the solution given by 
Equation (11) is equivalent to the 
first term of the solution given by 
Equation (17).  Generally, the ratio 
between S and T. is large.  Thus these 

two solutions are very close (See 
Example 1, Appendix).  Similarly, the 
mean square of "a" can be found as: 

E[a2l ■£ a p(a)da 

= ff* [2 loge fS - 2 lcV]e-dt 

iog2x 

!(2 -*e If) 2St3/2 lx •   •   •     I    A • (16) 
=[2  loge |S + 2c]xJ (18) 

Hence,  tih*t extracted extreme peak in a 
duration si: Thus, the variance, a  , of the extreme 

peak in a duration S is: 

m = E[a]  ■ |     ap(a)da 

0-/2 log T x/oK21og^r -(T^rww- eV    (2*%2i? 

^4f2 ■♦•••]•"* 

o2 - E[a2]  - m2 

iKIf-c) 
- (2 log    -=- + zc + ~~_7- 

\ e To 2  loge |S 
Is- +  2C + 

0 

2 o 
-    +  C2 

6 — + 2S 2 loge j& 
e  A0 

...)] 
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-«2[ir —: 2s * •••!•      <19> L 2   loge — J 

F(a)   = e 

=  0 

-e •a(a -w) 
for    a    >  0 

for    a    < 0, 

(24) 

and the standard deviation o£  the 
extreme peak in a duration S is 

■ t (2 -. *5) 
-1/2 

(20) 

After completing the derivation of 
m and a  in terms of x for the extreme 
peak in a specific duration S, now let 
us study the probabilistic distribution 
for such peak to occur at any arbi- 
trary lavel "a".  Let us designate 

v = -lo%  N|a|S 

From equation (15), we have: 

(21) 

y = -log fc-te)] 
a . 2S 
—y - loge Y~ 
2x~    e ro 

1 f ■2   T 2 .    2S 
—j a - 2x log T- 
2x^1 e 0 

(22) 

Substituting into equation (13), we 
get 

~2x2l- 
2      2 

a - 2x* log 

F(a) = e 

(23) 

Thus, the cumulative probability dis- 
tribution of extreme peak over any 
double levels of "+a" can be expressed 

in the form of a Gumbel distribution' ' 
as follows: 

where a = 
2x 

and u = 2x log 
2S 

e T„ 

NONSTATIONARY PROCESS — TIME-VARYING 
S(u>) 

The spectral analysis of vibration 
records from space vehicles indicates 
that the power spectral density func- 
tion across the ensemble varies with 
time. However, such variations are in 
a gradual transition fashion, which 
means that the function usually main- 
tains a certain degree of consistency 
in the overall intensity and the power 
distribution of its contained frequen- 
cies for successive time intervals. 
Such intervals may have durations 
ranging from several seconds to several 
tens of seconds. As we know, when a 
process has small intensity change in 
an interval, and such an interval is 
relatively much longer than the periods 
of its autocorrelation function, then 
"local stationarity" can be applied to 

the process.   Thus, equivalent solu- 
tions for statistical properties in 
each interval are obtained by using a 
nominal (averaged) power spectral den- 
sity function and a fixed duration. 
The feasibility and accuracy of such 
solutions can be judged by the coef- 
ficients of variation of the statisti- 
cal properties so obtained. These co- 
efficients are derived in approximate 
analytical terms as follows: 

According to the solutions of m 
and a  given in equations (11) and (20), 
their values are determined by three 
parameters: 

1. duration, S, 

2. expected intensity, x, and 

3. mean period, TQ, of the process. 

Since S is rationally fixed, only x 
and TQ remain random variables.  With 

a given time-varying power spectral 
density function (which can be ex- 
pressed in the form of a three-dimen- 
sional model), the variances of x and 

2     2 Tn, designated as o and o-, respec- 
U X        l(j 

tively, and their covariance can be 
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estimated numerically over duration S. 
Now, to find the coefficients of varia- 
tions for m and o  in terms of known 
quantities o and o_ : «Li =fe)21 .(*) ,°T 0'     0 

ü■ (2 ^ IS 
1/2 

3m x / 2 loga 

m 
X 

•1/2 

(25) 

jc2. 
T0m  ' (26) 

Ä" t (2 ^ 0 
1/2 £ 

X 

(27) 

3o ir      X   /,  . 2S\ -3/2 

"—el?) 
-1 

—     (-) 

(28) 

Thus, based on the theoretical expla- 
nation given in references (2) and (6), 
the variances for random functions m 
and a  are found in approximate ana- 
lytical terms as: 

Var 

/m\2  2 Y x2\  2 

|5 Cov[x T ], 
0      u 

(29) 

+ 2 (fiX^) CovIx To 
/or  2 ./ax2 \  2 

U> '"'to  T 

2o2x + ^-| Covfx TQ], (30) 
T0m 

The coefficients of variation are found 
as: 

vm = iVV"!^ 

•fe2 *&)"*— »)V2 

(31) 

v    = i-i/var[a]' 

-fey 
2x 

T0m 

X2c, 

T0m 

COV[X      Tg], 

where quantities of x, m, and T. are 

evaluated at the "nominal" condition. 

CONCLUSIONS AND APPLICATIONS 

The technique has applications to 
space vehicle structural design and 
anomaly studies, which depend on the 
correct prediction and maximum intensity 
level of excitation or response. Direct 
measurements of time varying engine 
thrust, acceleration, or displacement 
at any location of the vehicle should 
be used. 

Based on the theories so derived, 
two alternative ways are presented to 
get the maximum peak distribution: 
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1. Settinq data points on the 
standard Gumbel distribution 
plots (see appendix, Example 2), 
the whole distribution may 
easily be defined by drawing 
a best-fit line. 

2. Obtain power spectral density 
functions and compute the dis- 
tribution analytically (see 
Appendix, Example 1). 

Two alternative criteria for de- 
termine) dynamic loads or response for 
design are presented, which allows for 
a determination of a probabilistic os- 
cillation intensity level: 

1. A maximum intensity of oscil- 
lation which is equal to the 
expected value plus certain 
standard deviations.  Let 
a = m + 3i and use "a" for 
design. 

2. An assigned probability which 
indicates the confidence 
lavel for the occurrence of 
the maximum intensity.  Let 
F(a) ■ 0.99, which means that 
in 99 out of 100 chances the 
maximum intensity will fall 
within the design limit. Then, 
solve equation (24) for "a" 
and use "a" for design. 

Since any unusual energy concen- 
trations are reflected in the power 
spectral density functions and even- 
tually affect the result of the maximum 
intensity distribution, this technique 
will yield information for structural 
anomaly studies, as well as for struc- 
tural design.  Because the maximum re- 
sponse is analyzed by records measured 
directly from the site, distribution 
of maximum response represents a com- 
bined effect of all possible loads to 
the site.  Thus, it saves us from the 
tedious and complicated work of eval- 
uating individual loading effects. As 
such, errors caused by unrealistic 
superpositions are eliminated. 

In order to demonstrate the tech- 
nique, two numerical examples are pre- 
sented in the Appendix. Owing to a 
limited number of available flight 
records, the first example uses only 
four F-l engine thrust records from the 
Apollo 6 flight.  Their associated power 
spectral density functions are attached. 
Even though the number of samples used 
is small and some non-random excitation 
occurred during this time interval (i.e. 
"POGO"), at the 95% confidence level, 
the Komogorov-Smirnoff goodness of fit 
test indicates that the assumed distri- 
bution is acceptable.  The second 

example uses 1,000 stationary white 
noise samples generated by 

(9) 
A. G. Brady . Since a large number 
of sample simulations are not only 
costly, but also time consuming, we will 
take advantage of his work to verify 
our maximum peak distribution theory. 
Results indicate that it does indeed 
follow the Gumbel distribution. 

APPENDIX 

Numerical Examples 

Two numerical examples are pre- 
sented to illustrate the techniques so 
derived in actual engineering appli- 
cations: The first example shows the 
procedures of estimating the distri- 
bution of the maximum intensity of the 
residual thrust by either analytically 
using the power spectral density func- 
tions, or directly using oscillation 
records. Results of these two ap- 
proaches are compared. The second 
example uses extreme peak values of 
structural response from 1000 simulated 

(9) 
random excitations  , and verifies that 
the nature of the maximum intensity 
indeed follows the Gumbel distribution. 
Both examples are treated as stationary 
oscillations with finite durations. As 
explained in the main text, the non- 
stationary aspects can be dealt with 
similarly by means of piecewise sta- 
tionary procedures. 

I. Example 1: 

Residual thrust oscillations meas- 
ured from four F-l engines of Apollo 6 
at time slice +110.00 to +120.00 (10 
second duration) are used as stationary 
samples (Figures 1-4). Their corre- 
sponding power spectral density func- 
tions are shown in Figures 5-8. Certain 
properties are observed in Table 1: 

176 



TABLE 1 

Sensor 
No. 

Mean 
Pressure 
(psi) 

Maximum Pressure 
from mean 

Area Under 
PSD curve 

D8-101 1151.17 16.7 19.1 

D8-102 1154.66 14.5 27.8 

D8-104 1156.00 17.0 20.0 

D8-105 1151.33 13.3 21.6 

Thus, the mean pressure across the 
ensemble is: 

Thus, by evaluating the following 
two parameters, 

(1151.17 + 1154.66 +1156.00 + 1151.33) 

■ 1153.29 psi. (33) 

A. Analytical solutions using Power 
Spectral Density Functions: 

From equation (1), the area under 
PSD curve, S(a), is equivalent to the 
mean square intensity of the residual 
pressure. Thus the mean square inten- 
sity across the ensemble is: 

(/s<»>d«)ave. 

(19.1 + 27.8 + 20.0 + 21.6) 

22.1   (psi)   . (34) 

»    1 1 a      ^2 " 2(22.1) 

y = 2x2 log    Is- 
e *0 

0.0226, 

■>!■>■>  t\   i„„     (2) (10) 2(22.1)   loge    ö_16i 

= (44.2) (4.7) 

= 207.5 , 

(38) 

(39) 

the expected cumulative distribution of 
the maximum residual pressure "a" is 
defined from equation (24) as: 

F(a) = e 
-0.026(a* - 207.5) 

(40) 

From equations (6) and (7), the 
expected mean frequency and its corre- 
sponding period is estimated as: 

S(u)dtd 

"osl 

I   S(u)du 

1/2 

ave. 

^5.5 cps. 

* = =—=■ = 0.182 sec. 
O   5.3 

(35) 

(36) 

The duration of records is 10 seconds, 

S = 10 sec. (37) 

which is plotted in Figure 9 as a 
2    1 

straight line a = y+-. 

The mean and standard deviation of 
the maximum residual pressure are com- 
puted using equations (17) and (20) as: 

m = E[a] 

.1/2 

+ 0.5772 
172 
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v 1/2 .   2. 2S\1/Z  A       0.5772x^ 2x   loq^  —I +   YJZ + . 

K^ PJ 
1/2   .   0.5772X* 

+       .1/2 

V^TT+   (0.5772) (23.1) 
V207.5 

2) 

is the design pressure. 
From equation (40) it 
represents a confidence 
level with a probability 
of 0.86: 

(15.29 + 1.97)' = 300 

F (/30Ö) = 0.86. 

Use assigned confidence 
level. Let the proba- 
bility of occurrence be 
0.8, 

(44) 

=  14.4 + 0.885 = 15.29 psi,     (41) 

a = —Ü- ( 2 logQ a   \      e 
1/2 

F(a) = 0.80. (45) 

Using equation (40) or curve in Figure 9 
we get 

a" = 276 

a = 16.6 psi, 
(46) 

/6 k^W 
Thus the design pressure is 

1153.29 + 16.6 = 1169.9 psi,     (47) 

H      X 

/6 

1.283 1.97 psi. 

(42) 

Notice that the second term on the 
right in the computation of the mean is 
0.885, which is much smaller in compari- 
son with the iir-st term, 14.4.  Thus, 
equation (11) is BT: acceptable approxi- 
mation of equation (17). 

Based on information so computed, 
two criteria for determining maximum 
intensity level of engine thrust, which 
may be used in design are illustrated 
as follows: 

1)  Use the mean of maximum pressure 
plus certain (say 1) standard 
deviations. Thus, 

B. Direct Solutions using Data Plotted 
from Oscillation Records: 

The maximum pressures, one value 
per record and measured £ (m mean 
value, are listed in p.soen i'.ng 
order. Their cumulative proba- 
bilities are computed as shown 
in Table ?.. 

N = total number of samples. Then 
plot the data points on the special 
Gumbel paper (see Figure 9) using com- 

puted a anrt F(a). Thus, a distribution 
of the maximum pressure may be obtained 
by drawing a best fit line through these 
data points. 

1153.29 + 15.29 + 1 x 1.97 

= 1170.55 psi 

(43) 
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TABLE 2 

Order Maximum Pressure Freq. of 
Occurrence 

Cumulative 
Freq. Q 

F<*> - ih 

i a a2 

1 13.3 176 1 1 0.2 
2 14.5 210 1 2 0.4 

3 16.7 278 1 3 0.6 

4 17.0 288 1 4 0.8 

The mean and standard deviation of 
the maximum pressure can also be com- 
puted directly from oscillation records 
as: 

m = j (13.3 + 14.5 + 16.7 + 17.0) 

■ 15.4 (48) 

1 [2TT2 + ÖT9: 2 + n2 + T^2] 
= 1.53. 

1/2 

(49) 

C.  Comparison between Analytical 
Solutions and Direct Solutions: 

Even though the number of samples 
used is extremely small, the results are 
encouraging: 

m 

o 

Analytical 
Solution 

Direct from 
Data 

15.29 15.4 

1.97 1.53 

I■■■■■■•■■■«■>■■■■■!*■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 
iikiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiii 
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■ ■«■■■■■■■■■■»■■■■■■■■■■■■■■«■«■■•■paaaaBB 

*■■■•*•■■■■■■■■■■■■■•■■■■■■■■■■■■■■■■*■■■■■!■■■■■■ 
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FIGURE 9- 

The distribution of the maximum 
pressure obtained analytically is shown 
by a straight line in Figure 9. Now, 
comparing this line with the data points 
obtained directly from records, it is 
found that at 95% confidence level (or 
5% significant level), the Kolraogorov- 
Smirnoff goodness of fit test indicates 
that the computed distribution is 
acceptable. 

II.  Example 2: 

Now, let us study 1000 stationary 

samples simulated by A. G. Brady'" . 
Values in Table 3 are from Brady's re- 
sults cf the maximum response of a 
single degree-of-freedom linear struc- 
ture having a natural period of one 
second, with 2% of critical damping. 

By plotting the square value of the 
2 

maximum response "a ", and their corre- 
sponding cumulative distribution "F(a)" 
on the Gumbel paper (See Figure 10.), we 
can draw a best fit line of 

a.    = 275 + 12.34 y  , 

which gives 

V     =275  , 
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TABLE  3 

Maximum Response a2 
Freq. of 

Occurrence 
Cumulative 
Freq. a 

F<*> * ITS* 

a 

10 100 3 3 0.0029 

11 121 8 11 0.0109 
12 144 22 33 0.0329 
13 169 49 82 0.0819 
14 196 60 142 0.1418 
15 225 91 233 0.2327 
16 256 104 337 0.3366 
17 289 112 449 0.4485 

18 324 112 561 0.5604 

19 361 104 665 0.6643 

20 400 88 753 0.7522 

21 441 56 809 0.8081 
22 484 47 856 0.8551 

23 529 37 893 0.8921 

24 576 32 925 0.9240 
25 625 25 950 0.9490 

26 676 12 962 0.9610 

27 729 14 976 0.9750 

28 784 10 986 0.9850 

29 841 \ 3 989 0.9880 

30 900 ^      4 993 0.9920 
31 961 4 997 0.9960 

32 1024 2 999 0.9980 

33 1089 1 1000 0.9990 

*N = Total number of records = 1000. 

irrn 0.0081 F(a) 
-0.0081U -275) 

The reading at point A is a. ■ 275, and 
2 at point B is a_ = 345. Hence, the mean, 

standard deviation, and the distribution 
of the maximum response are: 

» =.  1/2 

At 95% confidence level (or 5% signifi- 
cant level), the Komogorov-Smirnoff 
goodness of fit te.st indicates that the 
assumed distribution is acceptable. 

= /TU  - 16.6 

= ^345 - 275 - m - 8.37 , 
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S(u) The power spectral density func- 
tion of the process Q(t). 

t    Time. 

T.   T.ie equivalent period of fre- 
quency u . 

x Root mean square of the process 
Q(t), or the averaged intensity 
of the process. 

3    A parameter in Gumbel distri- 
bution, which is defined as 

—y in the distribution of ex- 

treme peak of the process Q(t). 

w    A parameter in Gumbel distri- 
bution, which is de..ned as 

in the distribution 2x2log_ |£ 
e T0 

of extreme peak of the process 
Q(t). 

Coefficient of variation for m. 

Coefficient of variation for o. 

E[a2] 

F(a) 

FIGURE 10- 

NOTATIONS 

An arbitrary intensity level 
for the process Q(t). 

Euler's constant. 

Mean square of "a". 

Cumulative distribution of 
extreme peak up to an inten- 
sity level "a" in a duration 
S of the process Q(t). 

The expected intensity of ex- 
treme peak in a duration S of 
the process Q(t). 

The expected nuniier of 
crossings of Q(t) per unit time 
over an arbitrary intensity 
level (Q(t)=a) with positive 
slope. 

p(QrQ)  The probability density func- 
tion of Q(t) and Q(t) in joint 
distribution. 

Q(t)   A stationary random process 
with Gaussian distribution and 
zero mean. 

The standard deviation of the 
extreme peak in a duration S of 
the process Q(t). 

Standard deviation of the 
process Q(t). 

The expected number of crossings 
cf the process Q(t) with positive 
slope over double intensity 
levels (Q(t)=+a and Q(t)=-a) in 
a duration S, 

Vibration frequency. 

Mean frequency of the process Q(tl 
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STIFFNESS MATRIX OF A BEAM - COLUMN 

INCLUDING SHEAR DEFORMATION 

H. Saunders 
Re-entry and Environmental Systems Division 

General Electric Company 
Philadelphia, Pennsylvania 

This paper presents the derivation and stiffness matrices required for analyzing 
beam elements including shear deformation with in-plrne loads used in stability 
and vibration problems.   The previous published papers neglect the interaction 
between the in-plane load and the beam, thus the resulting stiffness matrices 
would be greatly in error when the axial load is an appreciable proportion of the 
compressive buckling load of the beam element.   The consistent mass matrices 
(rotational and translational) are derived and can be employed in the solution 
of vibration problems. 

INTRODUCTION 

The extensive application to the dynamic analysis 
of vibrating continuous elastic systems implies writ- 
ing the equation of motion for unrestrained modes of 
the structure as well as the support restraints. 
These equations of motion can be exhibited in matrix 
form.   A considerable amount of pertinent theory 
has been developed and published in matrix analysis 
of structure; the pioneering efforts in the develop- 
ment of stiffness and flexibility methods were con- 
ducted by Argyris W.   The predominant applications 
to the "transfer matrix" approach is due to Pestel *2' 
and his students. 

Until recent years, very little attention was paid 
to the analysis of a combined axial load-beam pro- 
blem.   Silverstein (3) investigated and published the 
first vibration pnalysis of a beam-column for a uni- 
form beam including both shear deformation and 
rotary inertia in "transfer matrix" form.   At about 
the same time, Saunders <4> published the static case 
of a beam-column in "transfer matrix" form but did 
not include shear deformation.   Saunders (*>) in a 
later publication extended Ref. (3) to a beam on 
many supports.   Pestel and Leckie *2' present the 
transfer matrix solution of a uniform beam contain- 
ing rotary inertia and shear deformation but neglect 
any reference to axial loading.   Martin <6) furnishes 
an excellent history of beam-column theory but 
slants his analysis towards the buckling solution of 
beams where the in-plane axial loads are a mere 
fraction of the buckling load.   Ross (7) considers 
the axial load as being an integral part of the beam- 
column in a direct stiffness sclution but neglects 

shear deformation.   Przemeniecki <8> examined in 
detail, the three-dimension solution of a uniform 
beam-column including shear deformation but con- 
sidered the axial loads to be extremely small and thus 
uncoupled from the general beam-column solution. 
The object of this paper is to extend the previous 
efforts by Ross and Przemeniecki by i icluding shear 
deformation and axial load for a uniform beam in the 
"direct stiffness approach" to both static and dy- 
namic problems. 

McCalley ^ and Archer'10^ have derived ex- 
pressions for the "consistent mass matrix" for the 
uniform beam by employing the deformation function 
which originates in deriving the stiffness matrix. 
In a subsequent section, the "consistent mass matrix" 
is further considered and the translational and ro- 
tational matrix comprising the total mass matrix is 
derived in the Appendices. 

The general theory of the direct stiffness method 
is first introduced.   The equations of motion are ex- 
pressed in matrix form and developed for use in 
problems of dynamics.   By applying the known rules 
of finite element analysis, beam-columns having 
various types of support restraints may be solved on 
the digital computer. 

MATHEMATICAL ANALYSIS 

Determination of the Dynamic Equation of Motion 

We consider an elastic system that is subjected 
to dynamic loading and has elastic displacements 
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which are (unctions of both coordinate« and time.   By 
proper application of d'Alembsrt's principle to the 
condition of equilibrium and upon further consider- 
ation of the inertia forces, the dynamic equation (7) 
can be expressed in matrix form 

Mu   +  Ku =  N * N.+ N d      a (1) 

where 

or in a simplified matrix notation 

|V| = |K| |y| m 
in which V|, Mj, y{, and 8j represent the shear force, 
moment deflection and rotation due to beam bending 
respectively and ky signifies no elemental force 
(moment) at the end of the cantllevered beam due to a 
unit displacement (rotation) at its free end. 

N is a column matrix of equivalent forces:   Nj 
represents the disturbing forces. Na represents 
the aerodynamic forces, M is the mass matrix, and 
K is stiffness matrix. 

For the case of free vibrations. N = 0. Eq. (1) 
becomes 

Mii  + Ku = 0 (2) 

This differential equation can be solved by assuming 
a solution of the form 

ae 
Kit 

(3) 

where a is a column matrix of the amplitudes of the 
displacement u and 0) is the circular oscillatory 
frequency. 

Substituting Eq. (3) into (2), one obtains 

(-»2M+K)a = 0 (4) 

In order for Eq. (4) to have a non-trivial solution, 
it is necessary that 

iK-t^Ml = 0. 

!,. ,1 b 
v 

Fig. 1 - Idealized Element of a Uniform 
Beam-Column 

at any point x 

El      "x 

(5) 

The total bending angle is expressed by 

y"   =«   + y 
*x X X 

where Yx is rotation due to shearing strain and 

0) 

(8) 

Tn*s equation is commonly denoted as the fre- 
quency determinant from which the natural frequen- 
cies may be obtained.   For e more detailed discus- 
sion, see Ref. 8. 

Development of the Element Stiffness Matrix 

Consider an idealized element of a uniform beam- 
column as shown in Figure 1.   Development of an 
elemental stiffness matrix of the following form is 
desired: 

M. 

M„ 

11 

21 

31 

41 

k12 k13 

k22 k23 

k23 k33 

k24 k34 

14 

24 

34 

44 

(6a) 

7x= "KAG (») 

Sx is the total shear at point x on the beam-column 
and 

thus 

S    = V   - P & 
x        I       dx 

V  -PA 

'x          KAG 

Vl    +    ük 
KAG       KAG + 

P8 x 
KAG 

(10) 

(lla) 

(lib) 

yx =   "  KAG (1 - P/KAG)+ [(KAG/P) -l]      (Uc) 
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Differentating Eq. (11c) and substituting into Eq. (8) 

Ine moment it any point x la expressed by 

Mx = V"Mi + P(yi-V <13> 

The boundary conditions for tue alope and deflection 
as tbown in Figure 2 are: 

a   - 0 

y     s   y , 0   s 0   a A 
X 1      X        1 

X     - * 

Substituting Eq, (IS) into Eq. (7) and simplifying 

py_ 
y. + 

Vtx -Mt + Py1 

x       EI(1-P/KAG)  "  H(1-P/KAG) 

5 jet 

EI(1 -P/KAG)       EIR 

where 

R = * " KAG 

Equation (14) simplifies to 

y   + (Tv = 0* 
Mi^    vi^* 

The solution for Eq. (16) is 

(1*) 

(15a) 

<15b> 

,16) 

*x        2 x      2 

Fig. 2 - Beam-column Element Cantilevered From 
Sta. 2 With Unit Deflection at Sta. 1 

Substituting the above boundary conditions for flj and 
02 into Eq. (18c), this results in 

M.    V.x 
yx = Csinj8x+DcosAt + y1- -^+-i-   (17) 6    = O=C0R + ~± (19a) 

Differentiating Eq. (17) and employing Eqs. (8) and 
(10) 

Vl 
«x = yx -yx = Cß cosftc -Dflsinfts + •£■ 

Vl P   I Vl\ + KÄG ■ i^VCßcos0x-DßsinAc+T/; 

(18a) 

= <**-i& cosfc-tfa-^ainAc 

C   = P0R (19b) 

6, = 0 = C0R cos 0t -D0R sin/Jt + -£   (20a) 

n i a -cos flt) 
D       P/3R       sinßt. (20b) 

In a similar manner, the values for yj and y. are 
(18b) substituted in Eq. (17) and yield 

= Cß RCOB ßx -DjSRsinftc + -± (18c) 

Consider the beam-column to be cantilevered from 
sta. 2 with a unit deflection yj at sta. 1 (x = 0) 

or 

Ml 
*i = D ■ T + yi 

--* 

(21a) 

(21b) 
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V =  0 = Ccos/Jt +   Dsin/9t  +   -±- 
In order to ascertain the stiffness coefficient« as- 
sociated with the rotation 8V the beam ia now sub- 
jected to the bending moments and shears (Figure 3). 

or 

(22a) 

M V 

v, 
yt  =  D(l-cos0t>- T*4   -  Csin0t    (22c) 

rx - o 

Substituting the expressions for C and D as pre- 
viously derived in Eos. (19b) and (20b) into Eq. (22c), 
we obtain 

Fig. 3 - Beam-column Element Cantilevered From 
Sta. 2 With Unit Rotation at Sta. 1 

yi  "  P0R 
,  „        Vl   (1 - cos flt)2 The iKxindary conditions are illustrated in Figure 3. 

Substituting the boundary conditions y, and y2 into 
Eq. (17) 

This can be further simplified to 

y, = 
Vl2 

P^RsiniSt 

where 

z = 2 (l-cos^)-*/SRsin/Jt 

= sin/9t(2xtany-*0R) 

(23a) 

(23b) 

(24a) 

(24b) 

Ml 

M. 
.'.    D--5? 

(28a) 

(28b) 

M      V 
y„ = 0=Csin/Jt +  D cos/St - -±+-±l 

2 P     P(28c) 

Employing Eq. (28c), we arrive at 

By definition, the expression for the stiffness coef- 
ficient kji becomes 

kn -7I-7 *»■»■*> (25) 

The moment Mj can be expressed in terms of Vj by 
utilizing Eqs. (20b) and (21b). 

Csin£t+ D(l -cos^t) = -±-t (28d) 

In a similar manner by utilizing the value of 82 at 

s = * 

0  =0= <#Rcos/8t -E0R sin # + -=*■ 

P   ~ P      1 - cos 0t (26) 

A similar expression for stiffness coefficient k2j can 
be determined by substituting Eq. (26) into Eq. (23b) 

M. 

21 
— « - (1 - cos /St) 
yi       Z 

(27) 

03Rco8/3t-D/3Rsinj8t = (29b) 

We obtain the equivalent expressions for C and D by 
solving Eqs. (28d) and (29b) simultaneously. 

i.e.,   C = 
V. 

P/8R 
[4/9R cos/it -1 + cos 0t "I 

1-cos/Jt J 
(30a) 
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and 

D = 
V 

PfiR 
sssM, z££sJ£~\ 

1 -COsflt        J 
(30b) 

The Important expresston for Sj can be obtained by 
employing Eq. (18c). 

In a similar manner, the stiffness coefficient for 
K41 becomes 

41    y, y, + y,     y. 

M2       Mi   V    "t    *2 ■7s      (38) 
'1 '1        Ji Jl '1 

Since y2 = 0. Eq. 38 can be simplified to 

•, = cte ♦ -£ (3U) k ,   = - (l-cos#) 
41 Z 

(39) 

Substituting the expression for C from Eq. (SOa) and 
simplifying, one obtains 

1        P  U-cos/Jt/ 
(31b) 

The stiffness coefficient k12 is derived from the 
above equation. 

v 

h2 
= r ■ 7(1-C08^> (32) 

This checks Eq. (27) and also follows from the well 
known Maxwell reciprocal theorem (Ref. 7).   By 
employing Eqs. (28b) and (30b), Ml can be obtained 
in terms of V,. 

M.0R _1 -   X_     r        1-cosfl       I 
P P Lsin fit -IßR cos 0tJ (33) 

Substituting Eq. (33) into Eq. (31b), the stiffness co- 
efficient k22 is 

M 

22 ~   8. 
_L =P [MsM. 

0R cos *] (34) 

The reactions for this beam-column element can be 
determined by applying equilibrium conditions to the 
force system (Ref. 12). 

or 

v2 = -vx 

-Mx -M2 + \l + Pj-X -Pyg =  0 

M2  =  "Ml + V + Pyi _Py2 

(35) 

(36a) 

(36b) 

The stiffness coefficient k,j can be obtained from 
Eq. (35). 

In a similar manner 

32 a1  - -f fl-co.*) (40) 

The stiffness expression for k^2 can be readily 
obtained by utilizing Eg. (36b) and noting that the 
derivation of 02 (Figure 3) requires that yj = yg = 0. 

Therefore: 

k 3 
42       ®2 

-M  + V * 

"           92 

m£fl sin jfc"| 
/»R (41) 

Similarly if the beam-column is cantilevered from 
Sta. 1, Figure 4, the use of the differential equations 
for y , 0X and the conditions of symmetry yield the 
following stiffness element coefficients. 

k33  =  kll  = -z-<"R8in*t> (42) 

34 
k43  "  -k21--f-a-co.flt, (43) 

•   -0 

k3i = yx " 
-«SRsinjW)        (37) Fig. 4 - Beam-column Element Cantilerered From 

Sta. 1 With Unit Deflection at Sta. 2 
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If the deflection of the left side of the beam-column 
Figure 5 is equal to zero, it is immediately ap- 
parent from condition» of symmetry that 

P /sinflt   _^ 
^"Si'tlTtf 'lcm m) (44) 

v° 

not worth the effort.   To accommodate the adherents 
of the consistent mass matrix, the translation mass 
matrix ITt) is derived in Appendix A and the rota- 
tional mass matrix (T,) is derived in Appendix B. 
The mathematical handling and substitution of the 
various forms comprising the solution of the com- 
plete matrices is left to the interested reader.   The 
total kinetic energy T for the beam-column element 
is the sum of the traiulational and rotational energy. 

T = T. + T t r (46) 

Series Expansion Technique 

For digital computer applications, it is found 
that a polynomial expansion is much simpler to apoly 
in numerical calculations.   The original stiffness 
matrix, Eq. (45), is now expressed by expanding the 
trigonometric expressions in their equivalent series. 
After much mathematical manipulation and simplifi- 
cation, the stiffness elements of Eq. (45) reduce to 

Fig. 5 - Beam-column Cantilevered From 
Sta. 1 With Unit Rotation at Sta. 2 

k„  =-   (ftlsinpt.) 

The results obtained in the preceding subsec- 
tions are now assembled into a matrix equation re- 
lating the elemental forces (moments) to their cor- 
responding displacements (rotations) for the beam- 
column. 

rv 
V filial'      1-OMtt -mmm !-«.♦» '1 

"l 

i 

1-eoa*    .O&.taajt -(l-oalt) «'I*6 
•l 

v. •iRiliJl      -(1-eoaJt) tnunß- -(!-«*»») '1 

•s 1-«**    *-«£* -fl-eoitt) V-» •l 

Martin (12> and Gerard (*3) employ different 
sign convections for the positive moments and shears 
at the end of the beam element.   This will affect 
some of the signs in the ky stiffness elements. 

Consistent Mass Matrix 

Although mass lumping at discrete points is in 
common use in depicting continuous structures for 
vibration analysis, McCalley (9) and Archer <10* 
claim that the use of the consistent mass matrix is 
more realistic.   Mains " " and a number of other 
investigators claim that the tremendous amount of 
additional work necessary in determining the terms 
of the translational and rotational mass matrices are 

f ja-»(f) --V(|) 

120    V * / 

kll  =  "k13 ="k31  =k33 

ki2 =7 <1-co«^) 

(47) 

(48) 

2 ,„2, 

*£■[*-ill 
k  = k  = -k  = -k  = k  = -k K12  K21  K32  K23 K41  K43 

= -k  = k 
34 K14 

k22 = l-[lH^-*C08/Ä] 

Ptju+R}    4R +6R-1 
R 1^2 12 

(50) 

360 (8R* -5R + 3) 

k22 =  k44 

(51) 

(52) 
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(53) 

(54) 

Dr. Ross (Ref. 7) explains at great length the 
significance of the series technique expansion for the 
beam-column element (no shear deformation).   He 
points out the dependencies between a long beam ap- 
proximation, short beam approximation, and the 
actual trigonometric stiffness relationships 

CONCLUSIONS 

A matrix solution by the discrete beam element 
analysis for the static and vibration analysis of an 
elastic beam-column system having in-plane cons- 
pre8Sive load Including shear deformation has been 
presented.   The basic stiffness elements are then 
expanded into series approximatiuns that can be 
applied in numerical calculations.  Although not 
stated herein, the buckling of a beam-column in the 
static sense can be obtained by using the stiffness 
matrix.  Since a number of analysts employ con- 
sistent mass matrix (translations! and rotational), 
the matrix expressions are derived in Iheappendicee. 
If the shear deformation is excluded, the stiffness 
matrices reduce to the well known relationship of a 
simple beam-column as detailed in the book by 
Weaver and Gere (Ref. 14). 
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NOMENCLATURE 

A 

CD 

= cross-section area (in. 2) 

= underdeterm'rud coef- 
ficients in differential 
equation (Eq. 17) 

= Young's modulus (lb/in.2) 
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K.ti. U.K. N.lj,S      matrix elements of con- 
sistent mass matrices 
(App. A & B) 

= sin ^(2 tan^ -*0R) (Eq. 24b) 

I 

K 

KAU 

M. 
l 

M 
x 

M = M + M. r      t 

M r 

Mt 

N = N. + N d      a 

planar Moment of Inertia (in."*) 

4 • -) bending and shear stiff- 
ness matrix 

=  beam shearing rigidity where 
K is numerical factor de- 
pendent on geometry of cross 
section 

=  bending moment at ends of 
beam element (in. -lb) 

-  total moment at point x of the 
beam element (in. -lb) 

=  total mass matrix 

=   rotational mass matrix 

=  translational mass matrix 

= column matrix of equivalent 
forces 

=  disturbing forces 

=  aerodynamic forces 

ß M\HH <Eq- l5a) 

6 = c.atance from neutral axis to 
point on cross-section (in.) 

6 =  rotation of cross-section at 
point x (rad) 

6 = rotation of cross-section at 
ends of beam (rad) 

p = mass density of material 

APPENDIX A - DERIVATION OF TRANSLATIONAL 
MASS MATRIX 

R. B. McCalley   (Ref. 9) has formulated a pro- 
cedure for deriving the mass matrix of a prismatic- 
beam employing the deformation function emerging in 
the formulation of the stiffness matrix.   This appendix 
extends the method by applying it to a beam-column. 

If the constant mass per unit length for a uniform 
beam-column is denoted by pA, the translational 
kinetic energy of the beam is represented by 

PA 
2 I   yx   yx * (A-l) 

P 

R 

T = T   + T 

= axial load (lb.) 

P = 1 - 
KAG 

(Eq. 15b) 

=  shear force at end of beam 
element (lb) 

= total shear at point x of the 
beam element (lb) 

=  total kinetic energy for 
vertical motion (in. -lb) 

=  rotational kinetic energy 

= translational kinetic energy 

where 

y = dt 

The linear displacement yx as previously derived in 
Eq. (17) is 

M       Vx 
Csinftc + DcosjSx + y   - -=*■ + -£- (A-2) 

Substituting the boundary condition yx = yx at x = 0 
into Eq. (A-2). 

M 

yt- D-T+ yi (A-3) 

= axial coordinate (in.) 

= absolute deflection at point x 
(in.) 

= absolute coordinate vector for 
beam ends 

M. 
D = (A-4) 

The angular displacement 6X was previously derived 
in Eq. (18c) 

V, 
9    =  C0Rcosfx -OffcsinAc + (A-5) 
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Substituting the boundary condition 8X = 0, at x = 0 
into Eq. (A-5), 

Mj        y^l - cos fit) -y2 (i - cos J8t) 

~P* =      2(1- cos fit) -*0R sin fit 

CfiR 

'   C " 0R P0R 

(A-6) 

(A-7) 

/9i Vi   \ Mi 

+ TX + yl (A-8a) 

(6l8ingM V      slnftcX 
V-ÜR— r yi+p-(x--gR~) 

M. 
(1 - cos fix) (A-8b) 

and 

8   = 8, cos fix + "j* (1 -cos 0x) 
x       1 P 

M 
- —j- jSR sin jSx (A-9) 

Employ the proper boundary conditions at x = * 1. e., 
8X = 82, yx ■ y2 and substitute into Eq. 's (A-8b) and 
(A-9).   This yields 

8 sin fit 

0R 

M. 

1 /.     slnötx + hrT{l--fiT) 

-^-(l-cos fit) (A-10) 

V 0RM 
80 = 8 cosflt + -^(l-cosj8t) -—r-^ sin/St 

2        X P P      (A-U) 

By solving Eq. 's (A-10) and (A-ll) simultaneously, 
the following expressions for V] /P and Mj/P 
emerges, 

Vx      y^R sin fit - y2/3R sin fit 

p"=   2(l-cos/9t)-AjSRaln|St 

(A-12) 

8   (1 - cos fit-) + 8 (1 - cos l&) 
+ 1 i.  

2(1 -cos£t ) -tj3Rsln/St 

e   /singt    icosjSt/) 
+    1 V OR      "    fiR      / .. „, 

2(l-cos0l)-*/JRsin0l (A"13) 

+ 2 PR 
2(1-cos 0t)-t0R sin/St 

Substituting the expressions in Eqs. (A-12) and (A-13) 
into Eq. (A-10), we obtain 

yx =  Fyx  + G81  +  Hy2 + K^ (A-14a) 

where 

F = ![(** sm*)(x-^) 

-  (1 -cos fit) (1 -cos 0x)l +   1 (A-14D) 

«- Tsr*i [•—*(«- If) sin fix 

A-14C) 

(A-14d) 

(A-14e) 

Obtain the velocity at any point on the beam by 
differentiating Eq. (A-14a) and substituting directly 
into Eq. (A-l).   The translation matrix then reduces 
to 

t 

t     2 

! 

F FG FH FK 

FG G2 GH GK 
dx 

FH GH Ha HK (A-15) 

FK GK HK H2 

By substituting the proper expressions for F, G, 
H and K into Eq. (A-1S), the translational mass 
matrix can be readily obtained. 
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APPENDIX B - DERIVATION OF ROTATIONAL 
KINETIC ENERGY 

In Appendix A, the kinetic energy affiliated with 
vertical translation of the beam-column element was 
derived.   Since moat practical beam-columns in 
practice have depths which are comparable to their 
length, the rotational kinetic energy is derived for 
this condition. 

Proceeding in a manner similar to McCatley 
(Ref. 9), consider a beam-column element of length 
dx, mass density P and slope Qx.   The volume dV = 
dAdx is at a distance 6 f rom the neutral axis and is 
measured in the same direction as the vertical de- 
flection yx.   The total rotational kinetic energy for a 
segment of length * is 

dT  » ~ PdAdx LfidJ 
r   2 (B-l) 

The total rotational kinetic energy of the cross-sec- 
tion yields 

Tr = 2   / K  *   J *** ** (B-2) 

Consider the beam-column to be of constant mass 
density, Eq. (B-2) becomes 

o 

■i-K' 

2 
e   dx 

x 

e  dx 
x 

(B-3a) 

(B-3b) 

Ei. (B-4).   After some mathematical manipulation, 
the equation reduces to 

ex = Nyx ♦ Qei Ny„ ♦ (B-5) 

where 

0R sin 01(1-cos gx)-0R(l-cosgtjslnftt 

Q 
z cos ftc + (1 -co* flt) (1 - cos ftc) 

(sin <K» -* cos j8t) sin flx 

(B-6a) 

(B-6b) 

_     (I - cosftrtd - cos fr) - (ßBf> - singt) r'.pflx 

'"' (B-6c) 

The rotational velocity 6X at any point on the beam is 
obtained by differentiating Eq. (B-5) and substituting 
into Eq. (B-3b).  After matrix multiplication, the 
rotational matrix simplifies to 

N2      NQ     -N2      MS 

T =^ 
r    2 I NQ      Q2      -NQ      QS 

-N2     -NQ       N2     -NS 

NS      QS      -NS       S2 

dx   (B-7) 

By substituting the proper expressions for N, Q and 
S into Eq. (B-7), the rotational mass matrix is 
easily acquired. 

where 

I is the planar moment of inertia and by 
definition 

■/ 
I = J   «*  dA 

A 
(B-3c) 

The appropriate slope equation derived in Eq. (A-8b) 
reduces to 

6  = 6   cos 0x + -^ (1 - cos Ac) 
x      1 P 

M,|SR 
-\-   sinfl 

P x 
(B-4) 

Substitute the expressions for Vj       .id M./P as 
previously derived in Eqs. (A-12) and (A-13) into 
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LIQUID-STRUCTURE COUPLING IM CURVED PIPES 

L. C. Davidson and J. E. Smith 
Machinery Silencing Department 

Naval Ship Research and Development Laboratory 
Annapolis, Maryland 

The coupled vibrational characteristics of a uniformly 
curved, liquid filled pipe (elbow) were investigated. 
The vibration transmission matrix (8x8) was computed 
by numerical methods, significant intermedia coupling 
among all possible terminals is indicated. Good agree- 
ment between computed and measured results was obtained 
over a useful frequency range. 

PROBLEM DEFINITION 

Liquid transfer systems in gen- 
eral are noisy, water hammer and flow 
noise being familiar examples of noise 
sources. Periodic noise in piping 
systems often results from interactions 
among the working fluid and various 
mechanical parts of a pump, the funda- 
mental frequency of the exciting forces 
being a low multiple of pump rotational 
speed. Because of the relatively low 
frequencies (typically 100-500 Hz), 
pump noise most often occurs in the 
form of plane wave pressure pulsations 
in the working fluid and beam type 
motion of the connected piping. 

Pump noise transmission in piping 
systems has generally been treated as 
separate problems of liquidborne and 
structureborne noise. Experimental 
evidence, however, indicates that 
significant intermedia coupling is 
present in most pipe configurations 
[l] . The purpose of this work is to 
establish the mechanism and quantify 
the magnitude of such coupling in the 
uniformly curved pipe, a commonly 
occurring configuration which is 
fundamental to the general problem of 
liquid-structure coupling. 

METHOD OF SOLUTION 

The uniformly curved, liquid 
filled pipe (elbow) is shown in 
Fig. 1 along with a coordinate system 
for describing motion in the plane of 
the bend. The elbow is of uniform 
wall thickness and circular cross 
section throughout.  (This would likely 
be the case for cast or forged elbows 
but not so for bent pipe). 

The differential equations des- 
cribing the elbow in the eight (8) 
degrees of freedom indicated by the 
coordinate system can be solved by 
a matrix iteration technique. Formu- 
lation of the coefficient matrix and 
a description of the computational 
method are presented in the Appendix. 

The final result of this analysis 
is the (8x8) velocity transmission 
matrix relating forces and velocities 
at coordinate point 1 to those at 
point 2. This matrix is computed at 
logarithmically spaced frequencies, 
typically 144 over the range 20-2000 Hz 
and is available on magnetic tape for 
further use in systems analysis or for 
conversion to impedai.ce or mobility 
form for experimental verification. 
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mentally. 

X,£ 

Fig. 1 - The uniformly curved, liquid 
filled pipe 

EXPERIMENTAL METHOD 

The purpose of an experimental 
program here is to verify the analyt- 
ical model of the appendix. Accord- 
ingly, one would like to measure some 
of the frequency response parameters 
which are, or can be related to, ele- 
ments of the computed transmission 
matrix. 

In determining frequency response 
parameters of mechanical components, 
tractability of the experimental appar- 
atus usually requires the application 
of mobility boundary conditions. The 
liquid terminals of the pipe elbow, 
however, introduce difficulties which 
preclude direct measurement of elements 
belonging to the total mobility matrix. 
Specifically, excitation of a liquid 
terminal cannot be accomplished without 
introducing excitation and/or con- 
straint on the corresponding mechanical 
terminals. Thus, it is necessary to 
modify the computed results to corres- 
pond to what can be achieved experi- 

An acoustic mobility/impedance 
transducer (AMIT) has been shown to 
be a well defined single terminal acous- 
tic source when operated under certain 
conditions of constraint [2]. This 
device contains a diaphragm supported 
piston which is attached to the pipe 
component under test by a concentric 
ring or flange. The piston is driven 
by an external force generator. Due to 
the transfer mobility across the dia- 
phragm, the coupling ring also has a 
free response,requiring a multi-termin- 
al representation of the device as a 
source. However, the coupling ring can 
be effectively blocked, shown schemat- 
ically in Fig. 2, in which case the 
AMIT becomes a single terminal acoustic 
source. Then, it is only necessary to 
consider the effect of infinite con- 
straint on the indicated terminals of 
the component under test. 

vso 

HD HSH 

AMIT 
(Exciter) ELBOW 

Fig. 2 - Exciter - elbow connection 
diagram 

The resulting reduced mobility 
matrix (5x5) is obtained by inversion 
of the reduced impedance matrix which 
is simply a sub-matrix of the total 
impedance matrix for the elbow alone. 

For a relatively short elbow one 
might expect both computational and 
experimental difficulties due to the 
stiffness of the structure. This was 
circumvented by including the elbow in 
a system of greater overall flexibility. 
A straight length of pipe was welded to 
each end of the elbow as shown in Fig.3. 
From the measurement viewpoint, the 
straight pipes serve to amplify respon- 
ses at the free end. Analytically, the 
structure is simple; the overall trans- 
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mis8ion matrix is computed by pre and 
post multiplication of the elbow ma- 
trix by the pipe matrix, the pipe be- 
ing treated as a mass loaded beam [31 
and liquid column without liquid- 
structure coupling. 

MEASUREMENTS 

Five (S) mobility parameters arc 
conceptually measurable with the appar- 
atus of Fig. 3 (Fig. 2, where the elbow 
now comprises the total structure). 
The driving point mobility of the liquid 
terminal x( was determined directly 
with the AMIT which contains a hydro- 
phone and accelerometer for that pur- 
pose. The AMIT also provided excita- 
tion for transfer measurements to JL*i< 
x2» Y2 and *2' 

The velocity response at SL 2  was 
determined with a hydrophone placed 
one-half inch below the free liquid 
surface. The pressure at this point 
is proportional to acceleration at the 

free surface because the one-half inch 
liquid column behaves as a simple in- 
ertance in the frequency range of 
interest. 

Response in the y2 direction 
(normal to pipe axis, in plane of bend) 
was determined directly with an accel- 
erometer on the pipewall (not shown in 
Fig. 3). The x2 response (along the 
axis of the pipe) was determined by 
summing accelerometers placed on oppo- 
site sides of the pipe, parallel to its 
axis and in the plane of the bend. 
These acceleromeometers can be seen in 
Fig. 3. The same two measurement posi- 
tions, with one accelerometer reversed, 
were also used to determine the rota- 
tional response, Y 2 * Summing for 
the Y2  ai>3 Y 2 responses was accom- 
plished with a passive adding network 
after a stage of amplification. 

Measurement and readout of the 
mobility parameters were accomplished 
with the instrumentation shown schem- 
atically in Fig. 4. 

PIPE:   70/30 CuNi, std wt 
4.5" O.D. x 36" long (2 pc) 

ELBOW:  CuNi, Forged 
4" radius of curvature 

LIQUID: 2190 TEP oil 
Combined bulk modulus 
(liquid/pipe)  determined 
experimentally:   2.38xl05 psi 

Fig. 3 - Experimental Apparatus 
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Fig. 4 - Measurement and readout instrumentat 
ion connection diagram 

RESULTS 

Computed and measured mobility 
parameters for the arrangement shown 
in Fig. 3 are presented in Figs. 5, 
6 and 7. 

The measured data were traced 
directly from analog curves obtained 
with the measurement apparatus onto 
the computer generated curves of cal- 
culated parameters. Note that the 
ordinates for measured and computed 
data are not to the same scale. For 
the transfer parameters, both computed 
mobilities were plotted (+, *). The 
breakdown in reciprocity occurring at 
about 500 Hz indicates that a smaller 
element is required in the iteration 
procedure. 

In addition to the five (5) mobil- 
ities previously mentioned, the driving 
point mobility at y2 is also presented. 
This measurement was accomplished with 
a conventional mechanical impedance 
transducer; however, the passive load 
of the AMIT on terminal i, is a depar- 
ture from the required boundary condi- 
tions. 

In general the results confirm the 
analytical model which indicates a high 
degree of coupling among all possible 
terminals. Evaluating the significance 
of this coupling in terms of noise trans- 
mission however, requires consideration 
of the system in which the elbow occurs. 
Specifically, one is interested in the 
responses which develop in coupled sys- 
tems at potential sound radiators. 
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Fig. 6 - Mobility parameters, CuNi pipe configuration 
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Fig. 7 - Mobility parameters, CuNi pipe configuration 
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Continuing work under this program 
is directed at the specific case of the 
sea connected system where responses of 
a ship's hull and of the liquid at the 
hull penetration are required. These 
responses can be computed from the 
application of known boundary condi- 
tions. Transfer factors relating these 
responses to radiated noise will then 
allow a quantitative comparison of the 
various liquid-structure paths as con- 
tributors to the total radiated sig- 
nature. 

Appendix 

COMPUTATION OF THE TRANSMISSION MATRIX 

It id required to determine the 
matrix describing, for a fluid filled 

pipe of constant radius of curvature, 
the vibration transmission properties 
from input to output stations in the 
plane of the bend. The approach to the 
problem is to find the matrix A of co- 
efficients for the system of linear 
ordinary differential equations ||> AS 
describing a differential element of 
the fluid filled pipe. The system c.' 
equations is then numerically solved fur 
the transmission matrix u by the matrix 
exponential series for eA9. 

Postulating the existence of a 
system of linear ordinary differential 
equations describing the differencial 
element shown in Fig. 8 we may write 
that the state vector change AS0 
from station (0) to station (1) is 
given by 

PIPE WALL FLUID 

Fig. 8 - Differential element, curved liquid filled pipe 
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.rU[1M Lj«ijmHn^iiujp.M fffl *    **WIW«NI MP 

ASC Si S0 - AA©  S0 (1) 

From Eq. (1) we obtain, therefore, that 

si - AAes0 + s0 - (Ade+i) s0 (2) 

or 

Si = B S. (3) 

where the matrix B is the transmission 
matrix for the differential element of 
Fig. 8 and relates the state vector at 
station (1) to that at station (0). 
This matrix can be determined by find- 
ing the images of the basis vectors 
across the matrix B, i.e. by determin- 
ing the state vectors generated at 
station (1) when each coordinate axis 
at station (0), taken individually, 
undergoes a unit magnitude sinusoidal 
displacement motion or has applied a 
unit magnitude sinusoidal force quan- 
tity and all other coordinates at sta- 
tion (0) are held tosa&co motion or force. 
Since this is a one dimensional prob- 
lem the element shown in Fig. 8 (shown 
with the fluid separated from the pipe 
wall for clarity) is treated in the 
same manner as a Timoshenko beam anal- 
ysis where, as appropriate, shear def- 
lection, rotary inertia aid material 
damping are included. Taking each co- 
ordinate axis at station (0) in turn 
the following responses at station (1) 
are generated: 

vo 
Jwt 

yi ■ y0 cos (d9) ■ e' jwt 

Jwt. Xl  = -yQ sin (d$) - -e de 

*1 = -yQ 
sin (<*«> ■ -eJwtde 

aVj 

fju>t 
e cos(de; = 

-VRde«uzeJ*tos (do) 

= -«RwV**« 

T1  = ^Rdöc^V^'sin dO = "fR^e^dO)2 

or 

Ti = 0 

Mj - 0 

PX = 0 

These results follow from using the 
small angle trigonometric formulas and 
neglecting second order and higher 
terms. Employing similar force/motion 
diagrams the remaining sets of station 
(1) responses can be immediately 
written as 

*0 = e'
wt 

yi = e^de,  xi = eJut. Yi - 0.  fi - 0 

Vi = 0,   TX =* -VRwV'fcs,   Ml  - 0 

pi -o 

yi = ReJwrde,  xi - 0.    7} = «^   fx - 0 

Vi - 0, Ti - 0, Mi - -"< iz
2RW2ej,,^ie, 

Pl = 0 

yi = 0, xi = o,    Yi = 0,  fi > aJMt 

Vj_ = 0,  Ti = 0,   Mx =0, 

PT -H" RU2eju,td9 

VQ - * _ _JwC 
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vi =■ q£~     do, x, = o, yj - o, f1= o 

j<«jf. jwt. 
Tj - -e de. Mi = -Re de 

Pi = 0 

T, = e^ 
O 

lv>< 

><clt 
vi ■ o. »i . Ml de, r, = o, fi - o 

Vj - d""fde, Tj = eJWt, M! - 0, px - 0 

M0 = e- jut 

Jwt 
yx = 0, xx = 0, 7\  «■ ££  de, fj = 0 

EJZ 
Vl = °. Tx = 0, Mx = e, Pj = 0 

-JUit 

Miut 

B'A" 
de yx = 0, xx = 0, Yx  = 0. fj, 

Vi = *"*•'», Ti = 0. UX  = 0. Pi = •/** 

The above results can be arranged to 
form the matrix B which, after removing 
the common factor eJbJt,  can be used 
with  Eq.'s (1),(2) and (3) to obtain 
the system of ordinary linear differen- 
tial equations for the element of Fig.8. 
This system of equations is as follows: 

y 

X 

Y 

d 
dB 

f 

V 

T 

M 

P 

0    0   0-^0 

0    0    0    0^/ 

0    I 

-I    0 

0   0    0 

-10    0 

TiRofO 0 0 0 I 0 I 

0-/iW0 0-1 0 0 0 

0 0-/iüRuf0 -R 0 0 0 

0   0    0>"Raf0   0    0    0 

where 

H.    -  mass per unit length of pipe 

~   = mass per unit length of fluid 

Ks - Timoshenko shear constant (.5) 

E - young's modulus (eis) 

G = Shear modulus (eis) 

B = fluid/pipe wall bulk modulus (eis) 

A' = pipe section area 

A" = fluid section area 

iz = radius of gyration 

Jz = pipe section modulus 

R - pipe radius of curvature 

The above system of differential equa- 
tion can be numerically solved by the 
COOAT computer program shown in Ref. 4 
and the technique shown in Ref. 3. 
With this method the transmission matrix 
is given by the matrix series 

y 

X 

7 
f 

V 

T 

M 

P 

R   0 -g^ 0    0    0 
0    °    ° Ä °    ° 

(4) 
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u = i + AS + h A2e2 + \  A3»3 ••• 
o 

The matrix u is the solution of Eq.'s 
(4) for any arc 0. i.e. 

Sx  = U S0 
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DISTRIBUTION OF EIGENVALUES IN CONICAL SHELLS 

D. K. Miller and F. D. Hart 
Department of Mechanical and Aerospace Engineering 

North Carolina State University 
Raleigh, North Carolina 

Expressions for the cumulative number of eigenvalues 
and the eigenvalue density of a thin circular conical 
shell are obtained. These expressions are given for 
the frequency domain below the lower ring frequency and 
above the upper ring frequency of a conical shell. The 
results are presented In both analytic and graphic form. 
They are applicable for a wide range of cone geometries 
and materials, and are presented as functions of a 
dimenslonless frequency parameter. 

I 
I 

LIST OF SYMBOLS 

C0   velocity of a longitudinal wave in n(X) 
the shell material ■ /gE'p 

D    stiffness of shell - Eh/12(1-v2) R 
E   modulus of elasticity of the shell r 

material 
g    gravitational constant w 
h    thickness of the shell 
L    length of cone, apex to base slant x 

length a 
Lt   length of cone truncation, apex to 6 

top slant length X 
m    number of circumferential waves v 
N(X) cumulative number of eigenvalues p 

up to X • 
n    number of one-half longitudinal ¥ 

waves u 

modal or eigenvalue density with 
respect to X 
radius of a circular plate 
radius of cone perpendicular to 
the cone axis 
displacement normal to shell 
surface 
coordinate along shell surface 
truncation ratio ■ L^/L 
coordinate {.round shell surface 
dimenslonless frequency 
Poisson's ratio of shell material 
density of shell material 
stress function 
one-half cone angle 
angular frequency ■ 2irf 

INTRODUCTION 

Knowledge regarding the eigenvalue 
distribution in various structural ele- 
ments is a necessary prerequisite for 
the successful application of statistic- 
al energy methods to problems involving 
structures excited by random forces. 
Specifically, the eigenvalue density is 
one of the structural parameters which 
occurs in the statistical energy formu- 

lation. Expressions for the eigenvalue 
density of such common structural geome- 
tries ac beams, circular and rectangular 
plates, and cylindrical and spherical 
shells are presently available in the 
literature |1 - 4|. In addition, some 
work has been done on the conical shell 
geometry |5|, which is applicable to the 
frequency range below the lower ring 
frequency of a thin conical shell. 
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In the paper presented here, the 
[revious work on conical shell geomet- 
ries is reinforced, and expressions are 
presented to cover the frequency range 
above the upper ring frequency of a thin 
conical shell.  Since the conical shell 
Äs a very common structural element, the 
results of this paper are felt to have 
imnediate engineering applications. 
Subsequently, as combined structures may 
also be considered |6|, the statistical 
energy method is a practical method for 
handling complex structures excited by 
broad band random loads. 

elemental displacements. This together 
with continuity considerations makes it 
possible to express the differential 
equations in terms of the normal dis- 
placement (w) and the stress function 
(«) as 

_1 V2V2* 
Eh 

>2< 
IP 

cosY  32w »  0 
r    3x2 

cosf 32* + D V2V2w phut2 w 
S 

(1) 

(2) 

FREQUENCY EQUATION FOR CONICAL SHELLS where 

In order to obtain a frequency 
equation that is applicable to a thin 
conical shell, it is first necessary to 
write the differential equations govern- 
ing the shell motion. The geometric 
parameters for the cone used in this 
analysis are illustrated in Fig. 1. The 
differential equations are obtained |7| 
by first writing the force and moment 
equilibrium equations for a typical 
shell element. The equilibrium equat- 
ions are then combined with the conven- 
tional elasticity relationships in order 
to relate the internal forces and 
moments to corresponding stresses and 
strains, and then to the respective 

(3) 
3xJ 

Fig. 1 - Conical shell geometry 

In obtaining the above differential 
equations both bending and extension of 
the middle surface are considered as 
well as transverse shear terms. The 
only body force considered is the iner- 
tia of the shell in the direction norm- 
al to the surface. It is assumed that 
the shell is of constant thickness (h), 
and that the value of the shell radius 
(r) remains much less then the shell 
thickness. The implications of this 
final assumption will be discussed later 
in this paper. 

Solution of the differential equa- 
tions (1) and (2) requires assumptions 
to be made concerning the mode shapes in 
the circumferential and longitudinal 
directions |8), in order to develop 
approximate expressions for the normal 
displacement and the stress function. 
The circumferential mode shape is assum- 
ed to be sinusoidal, and the longitud- 
inal mode shape is approximated by a 
series expression. Also, it is assumed 
that the circumferential and longitud- 
inal modes are independent. The 
Galerkin method is then used twice to 
reduce the differential equations to two 
simultaneous algebraic equations with 
the coefficients of the assumed series 
for the longitudinal variations as the 
unknowns. The condition that the 
coefficient matrix of these equations 
be equal to zero leads to the following 
approximate frequency equation for a 
thin conical shell. 
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D    ,n»»'  (l-as)        Hit      M    2m2     .nit  (1-a3) 1    (1-a)1. 
«1   EL*!»1  10    fi.ar      (1-a)   l    slnT'l 6  (1-a)     '  2m ' 

<** m PL*    rÜÜ  <l-a*)        »»      n,   2B'    wnir d"«1)J_    d-«)%  4 t-iÖ"" (l-o) (1-a)   u sinJ¥ H 6  (1-a)        2n* J 

3       (1-a2).2 ,    m* 4a2       1-a »       n»**     .1   (1-a") 
liiF? ' nF?J    2  I    * tiTF? *8  (1-a)2 __ 

,   ,    m* 4m2  .1-a,.   Kl-a»)       (l:a)2(l-aJ)   j   3(l-a)> (4 

where m is the number of circumferential 
waves (m»2,3,4,...); and n is the number 
of longitudinal waves (n*1,2,3,,..). 

The frequency equation (4) may be 
written in terms of a dimensionless 
frequency parameter as 

_D 
EL?h 

(l-a): nVL (1-a») _m_ 2»l  unir (1-a3) . J_ 
1 10  (l-a)*  (1-a) u sinzyM 6 (1-a)   2nit 

.n»*» (1-a'l    nit  '     2m2  nit (l-aa)   1 (1-a)' 
1 10 (l-»r  (1-a) u sin7?'1 6 (1-a)  " 2nn     ; 

) ♦ 

lsin*V 
4m2   1-a 2 

sin7?'  2 ' 

lsin"y 
4m 

n"^  .1 (1-a*) 
tan2* *8 (1-a)2 8nzit 

3  (1-a2) « 
TTT      ' 

sinl¥ 
lM»H_j.(l-a>) . (l-a)'(l-a') 73(1 - a) »} (5) 

10 2n2itJ 4n"if'' 

where 

oJL2 = (tüL/C0)
! (6) 

In this form the frequency equation 
(5) is independent of the material prop- 
erties of the cone, with the exception 
of small variation due to the shell 
stiffness (D).  This variation will be 
neglected since Poisson's ratio is near- 
ly constant (0.33) for most structural 
materials of interest. Frequency equa- 
tion (5) is, however, dependent on the 
three dimensionless geometric parameters 
which appear. These are the cone angle 
(V), the thickness to length ratio(h/L), 
and the truncation ratio (a). The fre- 
quency equation presented is fairly gen- 
eral, and is only limited to some extent 
by the assumption concerning the shell 
radius (r). This assumption is obvious- 
ly invalid for cones with small cone 
angles and little or no truncation. 
Hence, some care should be observed when 
applying the results of this paper to 
such geometries. 

CUMULATIVE NUMBER OF EIGENVALUES 

The frequency equation (5) is now 
used to obtain information regarding the 
eigenvalue distribution with respect to 
frequency. The usual proceedure at this 
point is to employ the k-space integra- 
tion method |2-4,5| which yields an 
integral expression for the cumulative 
number of eigenvalues as a function of 
dimensionless frequency. However, due 
to the complexity of Eq. (5) this method 
is found to be impractical from both an 
analytical and a computational point of 
view.  Therefore, a purely numerical 
proceedure is used. 

Employing a high speed digital com- 
puter, frequencies corresponding to 
integer values of m and n are calculated 
and then filtered by means of a series 
of IF statements. In this manner, the 
number of eigenvalues occurring below 
certain selected values of dimensionless 
frequency can be counted. The values of 
m and n are incremented until the count 
in each specified frequency interval has 
terminated. This proceedure is quite 
time consuming since the number of 
frequencies calculated is on the order 
of one-hundred thousand for each cone 
geometry studied. 
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r 
The effect of each of the three 

dimensionless geometric parameters pre- 
sented in the frequency equation is exam- 
ined by successively holding two of the 
parameters constant and varying the 
third. The results of this parameter 
study are shown in Fig. 2, Fig. 3, and 
Fig. 4. The cumulative number of eigen- 
values N(X} multiplied by it/sin* (1-a) 
is shown versus the dimensionless fre- 
quency. The variation in geometric 
parameters presented in the figures is 
quite extreme, and it should not be con- 
cluded that the final results are neces- 
sarily this general. 

it«+(>-•.> - 

«'«*<i-«,i 

Fig. 3 - Effect of variations in cone 
thickness to length ratio 

conical shell. In dimensionless form 
the upper ring frequency may be given 
as 

X (upper ring) - I/o sin* (7) 

Fig. 2 - Effect of variations in cone 
angle 

The lower ring frequency is defined in a 
similiar manner and may be given as 

In order to effectively examine 
these results it is necessary to divide 
the frequency domain into three regions. 
The region above the upper ring frequen- 
cy, the region below the lower ring fre- 
quency, and that between the two ring 
frequencies are considered. The upper 
ring frequency is defined as the fre- 
quency at which the longitudinal wave 
length in the shell material is equal to 
circumference of the small end of the 

X (lower ring) ■ l/sin* (8) 

Examination of the results present- 
ed in Fig. 2, Fig. 3, and Fig. 4, in the 
range above the upper ring frequency, 
leads to the following conclusions. The 
results are independent of the cone 
angle. The results vary directly with 
the thickness to length ratio, and with 
the truncation ratio as (1-a) to the 
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Fig. 4 - Effect of variations in the 
cone truncation, ratio 

one fifth. Therefore, the results may 
be normalized, and expressed in the 
following form. 

*W 1 !» (I-«)* " PCX)  (9) 
sin* (l-o) L 

where F(X) now becomes a single straight 
line above the upper ring frequency for 
all cone geometries considered. F(X) is 
determined graphically from normalized 
plots of the results shown in Fig. 2, 
Fig. 3, and Fig. 4. This leads to an 
expression for the cumulative number of 
eigenvalues as 

dlmensionless frequency above the upper 
ring frequency of a conical shell. 

Below the lower ring frequency, the 
results shown in Fig. 2, Fig. 3, and 
Fig. 4 are in excellent agreement with 
similiar curves presented in Ref. ji>|. 
A normalisation proceedure similiar to 
the one carried out above is performed 
in the reference cited, and the results 
are given as 

N(A) ■ 0.876 L sin? /tan? (l-a)T XT 
wh 

(11) 

Eq. (11) is only valid for values of 
dlmensionless frequency below the lower 
ring frequency of a conical shell. 

Between the upper and lower ring 
frequencies the effect of variations in 
the geometric parameters is not clear. 
Therefore, it is not possible to normal- 
ize the curves in this region, and to 
obtain a single curve independent of 
cone geometry. However, even if this 
had been possible the complex behavior 
of the curves in this region makes it 
doubtful that the method used above 
could be employed to obtain a single 
analytic expression for the behavior of 
the curves in this region with respect 
tj dlmensionless frequency. 

EIGENVALUE DENSITY 

The eigenvalue density is obtained 
directly from the expressions for the 
cumulative number of eigenvalues. This 
is accomplished by simple differentia- 
tion of Eq. (10) and Eq. (11) with 
respect to the dlmensionless frequency. 
Therefore, above the upper ring fre- 
quency the eigenvalue density expression 
is given as 

n(X) • 2.0 L sinV (l-a)T    (12) 
1th        , 

and below the lower ring frequency the 
eigenvalue density |5| is given as 

N(X) » 2.0 L sinT (l-g)T X . (10) 
Tth 

* 4- n(X) = 1.31 L sin* /tanf (1-a)" X2 (13) 
wh '~ ~~"~~~      . 

Eq. (10) is only valid for values of 
It should be noted that the expres- 

sion for the eigenvalue density above 
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the upper ring frequency, Eq. (12), is 
independent of the dimensionless fre- 
quency.  This implies that at high fre- 
quencies the conical shell exhibits a 
simple plate mode as would be expected. 

As a limit check on the results 
presented, Eq. (10) may be extended to 
the limiting case of a circular plate. 
In this case the cone angle becomes a 
right angle, the truncation ratio goes 
to zero, and th<s length of the cone be- 
comes the radius of a circular plate 
(R). Eq. (10) then becomes 

N(X) * 0.637 RA/h (14) 

where the dimensionless frequency may 
now be expressed as <DR/C0. Expressing 
the results in terms of the circular 
frequency (ID), and then differentiating 
with respect to the circular frequency 
leads to the eigenvalue density expres- 
sion for a circular plate as 

n(w)  0.637 R2/hC (15) 

Eq. (IS) is identical to the ex- 
pression given in Ref. |4| with the 
exception of the numerical constant. 
Due to degeneracy of eigenvalue effects 
in the formulation of the circular plate 
frequency equation, the actual value 
should be twice the value given in the 
reference cited, or 0.701. This is 
within ten percent of the *;alue given in 
Eq. (15) which is considered to be ex- 
cellent agreement. Unfortunately the 
results cannot be easily extented to the 
limiting case of a cylinder, since for 
the limiting case of the cone angle 
equal to zero, the geometry degenerates 
to a line, not a cylinder. 

CONCLUSIONS 

Expressions for the cumulative num- 
ber of eigenvaluss and the eigenvalue 
density are given in Eq. (10) and Eq. 
(12) respectively above the upper ring 
frequency, and in Eq. (11) and Eq. (13) 
respectively below the lower ring fre- 
quency. The results are also presented 
graphically in Fig. 5 and Fig. 6. Since 
the lower ring frequency is dependent 
only on the cone angle, it is shown as 

»■•L/C, 

Fig. 5 - Cumulative number of eigen- 
values for a conical shell 

a vertical dashed line in the figures. 
The upper ring frequency is dependent on 
the truncation ratio as well as the cone 
angle, and must be determined for each 
cone of interest. The results presented 
are essentially independent of cone geo- 
metry and cone material, and should find 
a wide range of application. 

There are several limitations re- 
garding the application of the results 
presented in Fig. 5 and Fig. 6. First, 
for cones with large cone angles, the 
solution valid above the upper ring 
frequency becomes applicable even before 
the lower ring frequency is reached. In 
general the minimum value of the two 
solutions should be used for such cones. 
This type of behavior is indicated in 
Fig. 2, and is shown in Fig. 5 and Fig. 
6 as a region of overlap. 

Secondly, cones which have little 
or no truncation have a very high or 
infinite upper ring frequency. This 
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Fig. 6 - Eigenvalue density for a conical shell 

type of behavior is indicated in Fig. 4. 
For computational purposes an artificial 
upper ring frequency of approximately 
ten times the lower ring frequency 
should be used in such cases. 

Finally, it should be pointed out 
that the curves as given in Fig. 5 and 
Fig. 6 do not give values in the fre- 
quency domain between the two ring fre- 
quencies. Also, for low frequencies 
near or below the fundamental frequency, 
the results have no meaning. A lower 
cutoff frequency corresponding to a 
cumulative number of eigenvalues of 
approximately two should be employed 
when using the figures or the equations. 
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DYNAMIC RESPONSE OF STRUCTURAL SHIELD 

TO A TRAVELING PRESSURE PULSE 

A. M. Rodriguez and P. N. Mathur 
The Aerospace Corporation 
San Bernardino, California 

A simplified quasi-static plate theory is presented for analyzing the dynamic 
response of an infinite plate half-space structural system subjected to a traveling 
side-on pressure pulse.   The theory is applicable to the case of finite plate 
structure, and provides a method of calculation of the attenuation characteristics 
of the plate and the time histories of the stresses and motions transmitted to the 
foundation media.   Validity of the theory has been checked against computer 
calculations based upon a more rigorous Fourier Transform solution and other 
known solutions. 

INTRODUCTION 

A concept utliz'ing a protective structural shield as 
a means of reducing the ground shock environment 
resulting from an expanding nuclear air blast pulse 
was investigated by the authors.   Basically this 
technique introduces a high impedance structural 
plate on the ground surface to attenuate to low values 
the critical environment associated with the air- 
induced ground shock (ground or foundation peak 
stresses, velocities, and accelerations). 

The general analytical problems of wave propa- 
gation In layered media have been extensively 
treated in the literature on seismology, acoustics, 
and electromagnetic wave theory [l] through [5]. 
However, there appear to be few publications deal- 
ing with the problem of traveling pressure pulse on 
a layered elastic half-space. The basic solution to 
the problem of a traveling load on a half-plane was 
introduced as early as 1904 by Lamb [6]. Sackman 
[7] treated the problem of multilayer media for the 
superseismic condition (traveling pulse velocities 
greater than the seismic velocity of both the plate 
media below) utilizing the ray-tracing technique for 
a progressively increasing number of shear and 
compressional waves. 

A series of analytical Investigations [8,9] have been 
conducted to evaluate the effectiveness of the concept 
described above for superseismic and subseismic 
regimes. This paper presents some of the results 
of these Investigations. 

NOMENCLATURE 

a acceleration 

Cp, Cs   seismic velocity, P-wave, S-wave 

Modulus of elasticity 

plate or layer thickness 

impulse 

Brode profile constants 

airblast overpressure 

steady moving load approximation 

peak overpressure 

interface pressure 

foundation plasticity index 

time 

E 

h 

I 

K 
P 

Pa 

Po 

Ps 

P* 

t 

u particle displacement in the half-space 
medium 

horizontal displacement 

vertical displacement 

air shock velocity 
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/ 
w 

X,.'. 

a 

0 

particle velocity in the half-space medium 

horizontal velocity 

vertical velocity 

vertical displacement of the plate 

plane coordinates 

L'/Cp Mach number for P-wave 

r/Cs Mach number for S-wave 

strain 

»' Poisson's ratio 

o        * density 

r direct stress 
f 

T shear stress 

0 displacement potential, P-wave 

^ displacement potential, S-wave 

Subscript 

a refers to overpressure pulse 

x refers to quantities in horizontal direction 

r. refers to quantities in vertical direction 

s refers to plate half-space interface 

p refers to plate shield 

ANALYSIS OF QUASI-STATIC PLATE THEORY 

Figure 1 illustrates an infinite plate half-spacn 
structural system subjected to a side-on pressure 
pulse p(x, t) traveling with a velocity U.   For a 
nuclear or high explosive surface burst, the air- 
blast wave expands and the magnitude of the 
pressure pulse decreases with increasing distance 

x from ground zero.   However, for a finite 
structural plate, the transit time (time for the pulse 
to engulf the plate) is negligibly small and the 
variation in the magnitude of the pulse during 
transit can be neglected.    The actual airblast pulse 
is thus replaced by the steady moving pulse 

Pa<* x/U) = p( Xp, t - x/U) 

where x_ is the location of the center of the plate 
from ground zero.   The dynamic response of the 
plate half-space structural system for this case can 
be analyzed in two steps.   First, the pressure 
p s (x ,t) transmitted by the plate to the surface of 

the ground is determined by analyzing the motion of 
the plate on the half-space foundation.   Second, the 
disturbances induced in the foundation media are 
determined by analyzing its response to the surface 
pressure loading p8. 

TRAVELING PLUSE 

T 
PLATE 

Z INTERFACE * 

(2)  / 

X        (3) 

HALF-SPACE        f'Hiwf 
FOUNDATION S'WAVE 

I 

Figure 1.    Analytical Model of Plate Half- 
Space Foundation. 

Plate Elastic Half-Space Structural System 

Equation of Motion 

The equation of motion for an elastic plate ot 
thickness h on an elastic half-space foundation, in 
terms of the vertical displacement w (x ,t) of the 
plate, is given as* 

"Ph 32w 

at2 + D 

oC    £*L = pC
P at 

ax2 at2 

pa (t-x/U) (i) 

where p    (T - x/U) is the blast pulse loading and the 
subscript p refers to the quantities associated with 
the plate.   Here, U and IQ are the flectural stiffness 
and the rotary moment of inertia of the plate 
respectively.  Other symbols appearing in the above 
and following equations are defined in the 
Nomenclature. 

This equation can be rewritten in terms of the 
time coo-dinate t, noting that d/d* = -(l/U)(d/dt): 

d2w . [    D             Jo   ' A 
a vi 

dt2 

+ - 
< 

P hU4      hU2 . 

pCp   dw_pa(t) 
>ph    dt  -pph 

dt4 

The coefficient of the second term of this equation 
is small compared to the coefficients of the other 
terms and, if this term is neglected, the equation 
of motion is simplified considerably.   An 
examination of the superseismic solution, with the 
second term included, indicated that this term 
introduces only small high frequency damped 
oscillations ahead of the ground shock.   Hence, for 
predicting the medium structure interaction 
behavior, the second term of Eq. (2) can be dropped 

♦The equation is analogous to that for the beam on 
an elastic foundation [lC, ll]. 
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without introducing a significant error. 

The vertical stress a z, or the pressure ps, 
transmitted to the surface of the elastic half-space 
media is related to the vertical particle velocity v z 
and the vertical particle displacement u z of the 
media by the relation . 

Ps = »cp v* 'CP   IF (3) 

Since the vertical displacements of the plate and 
the surface of the half-space foundation are 
continuous <w - uz >, Eq. (3) car. be rewritten in 
the form 

du 

"•-'«-'Cp     if (4) 

Based on the simplification considered above, 
Eq. (2) in conjunction with Eq. (4) reduces to the 
form 

dps 
df       + "' p* k'p(t) 

a 

where 

T = -i = 

(5) 

(6) 

is the characteristic response time of the system. 
This plate equation can be readily solved for an 
arbitary pressure pulse pa (t).   The calculations 
presented in this paper pertain to the special case 
of a decaying step pulse. 

Airblast Pulse 

Tha decaying airblast pulse for a nuclear or high 
explosive surface burst is defined by Brode [12] as 
the sum of three exponential functions 

Pa») =Po<1--r> £      " 
o      n= 1 

Ane 
(7) 

where pQ is the peak overpressure of the pulse and t0 
is the duration of the positive phase of the pulse. 
The coefficients An and t^ for nuclear blast are 
defined in Reference 12. 

A simplified form of the pressure pulse that can 
approximate the early time history (peak loading 
phase) of the Brode pulse    Eq. (7) can be defined 
as 

P(t) Po e -kt 
(8) 

where p0 is the peak overpressure, 

Plate Half-Space Interaction Pressure:   Brode 
Pulse Solution 

For the airblast overpressure pulse load described 
by Brode   Eq. (7) , Eq. (5) yields the solution: 

3 

Ps = po    £ n=l 

-k't 
(9) 

The accumulated impulse required to calculate 
the displacements at the plate half-space interface 
is given as 

««= p. £ -* 
°   S=i  kn (-*)K) 

e   ^     -P8A' 

Exponential Pulse Solution 

(10) 

For the simplified exponential pulse loading defined 
by Eq. (9), the solution of Eq. (5) yields 

-kt     -k't e      - e 
1 - (kA'l (11) 

The maximum value of the interlace pressure pg 
occurs at time t   as defined by: 

te =  (In k - In k')/(k - k') 
and has the value 

-kt. 
max Po e (12) 

It should be noted that other loading pulse shapes 
can be constructed by linear superposition of the 
exponential pulses   Eq. (8) .   For the elastic case, 
the solutions  Eq. (11) can be superimposed 
accordingly to determine the response of the system 
to other pulse shapes. 

Induced Stresses and Motions in Half-Space 
Foundation 

The stresses and motions induced in the foundation 
medium can be calculated by analyzing the response 
of the medium to the surface load p8.   For the 
elastic half-space, the following wave solutions, in 
terms of the displacement functions, can be 
employed: 

'- # 

* = * t    -   #>   - 

JL Ja 

it 
11 for P-wave (13) 

ß ■llforS-wave   (14) 

where the coordinate x, z refer to Figure 2 which also 
illustrates the case of an unprotected half-space 
(without a structural plate). 

SURFACE OF 
•»x «■ Ut 

- »ARTICLE 

«K3TI0N VECTORS 

Figure 2.   Free Field Induced in an Elastic 
Foundation with and without 
Plate Protection. 
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The field quantities (particle displacements, u; 
velocities, v; and stiesses ,a, T ) at any point in the 
half-space are defined as follows: 

d<t> 
ux = Fx 

Tz 

90 n - f U - yfH^i • A (15) 

<*\ <16) 

(17) 

") 

(18) 

z 

= P   C 

KZ K 

[('-^♦"•ji-V^*"] 

UV77* •♦■-(->■] 

(19) 

(20) 

(21) 

where the primes denote differentiation with respect 
to the arguments of the functions <f> and if • 

Equation (20) states that  ax is a linear 
comibation offf2 and vx and is obtained by virtue of 
the relation-E— » -U -ft—    for a steady moving load, 

at o* 
If <t>0 and ipQ are denoted as the value of $ and 4> 

at the surface of the half-space (z = 0), then, as a 
consequence of the boundary conditions 

T*«„ ■». \ - -p. 

<■-(■ - v) -w-p- (22) 

where 

^a2     "     1           (23) 
If the accumulated impulse is denoted as     .  

I. (t) - /■ p 
-00 

(t)  . dt and 

(24) 

then the displacement time histories at depth   % 
along the verticle lias» x ■ 0 are given as: 

(25) 

(26) 

where 

A 

B KjI^x.JjTl 
ß 

and the remaining field quantities are given as: 

/P8 <«>\       /P. <»»\ vx = A(pwj-B(finrj 

"•-AH"7   ?H"7 

(27) 

(28) 

(29) 

Txz = A 

If we set z = 0 in Eq. (28), the vertical velocity 
on the surface of the half-space becomes 

Quasi-Static Plate Theory (Inelastic Foundation) 

General Inelastic Media 

The quasi-static plate solution can be extended to 
include the inelastic behavior of the foundation, 
represented by a general stress-strain relation 

« = < K ); &- f (P8) (33) 

The relation between the vertical velocity and the 
pressure at the surface of the inelastic half-space 
for the loading phase can be derived from the 
differential equations of the characteristics of the 
disturbances in the bodograph and physical planes. 
The resulting relationship is given   9 as 

dv7 ;—T dps —- = Vf' 0 —- dt        yi  /p   dt 
(34) 

The equation of motion Eq. (5) for the inelastic 
foundation then modifies to the form 

dt ph(Pa«-P.)y7 (35) 
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The nonlinear differential equation can be solved by 
numerical integration with the initial condition 
Pa(0)-0.  The solution must, however, be 
terminated at the end of the pulse-loading phase 
since Eq. (35) is not valid for the unloading phase. 

Elastoplastic Media 

The equation of motion can be linearised if the 
stress-strain behavior of the foundation medium is 
represented by an analytical expression (elasto- 
plastic relation) 

€ = 
fe/EJ 

*(P) a- 
(1-P/P*) («• E0U-P/P*)2 

(36, 

where p* is the foundation plasticity index and E0 
is the initial modulus of the foundation material as 
defined in Figure 3. 

RESULTS AND DISCUSSION 

Comparison of the Theory with Other Solutions 

The validity and accuracy of the quasi-static plate 
theory can be checked against exact solutions 
obtained for special cases.   Figure 4 presents a 
comparison of the response (Interface pressure) of 
a liquid layer on an elastic half-space to a step wave 
based on the exact solution (superseismic case) and 
the quasi-static plate theory solution.  The liquid 
layer in this case is essentially an elastic layer of 
zero shear strength.   It is noted that the two results 
are in good agreement.   The step increments in the 
interface pressure for the exact solution represent 
the cumulative pressure increments resulting from 
the multiple reflections of the superseismic waves 
within the liquid layer (zero-shear elastic plate). 
The quasi-static solution, on the other hand, 
represents an averaged cumulative pressure 
increase. 

0.S 

I INITIATION OF STRAIN 
HARDENING 

STRAIN -C 

Figure 3. Elastoplastic Stress-Strain 
Representation for Inelastic 
Foundation. 

— EXACT SOLUTION 

• QUASI-STATIC PLATE THEORY 

Figure 4.   Comparison of Quasi-Static Plate 
Theory with Exact Solution for 
Liquid Elastic Layer Half-Space 
System, Subjected to a Non- 
decaying Step Pulse. 

Substitution of f' from Eq. (36) into Eq. (35) yields 

5*    = * fa**) (P. (t) - Pa)      07) 
which can be reduced to a linear ordinary differential 
equation if we perform the substitution 

1 
y> P = P* (i 

Equation (37) then becomes 

(38) 

(-V) &  +k,   (l _!_&_»>' 
dt       K    \ l       p * 

subject to the initial condition y (0) = 1.   The solution 
of this equation is readily obtained by quadrature [9]. 

The quasi-static plate theory was further checked, 
for the elastic case, against the computer solutions 
based upon a rigorous Fourier Transform solution. 
Figure 5 shows a typical case comparing the two 
solutions. It is noted that, except for some 
oscillatory disturbances ahead of the primary wave, 
the two solutions are in good agreement.  These 
oscillatory disturbances represent the contribution 
of the plate flexure (neglected in the plate theory). 

Typical Results 

Figures 6 through 11 present typical comparative time 
histories of the stresses and motions transmitted 
to the half-space medium for the protected (with 
structural plate shield) and the unprotected conditions. 
In all casee except where noted, the data given in 
Table 1 are used for numerical calculations. 

221 



0.» 

0.4 

o.z 

-10 
■oso t 

• FOURIER TRANSFORM SOLUTION 
.QUMI-STAT« PLATE THEORY 

10 20 
TlUt - MS 

a r 

 PROTECT» 
--- UNPROTECTED 

Figure 8.    Vertical Particle Displacements 
in the Elastic Foundation at 
Surface and at a 40-Foot Depth. 

Figure 5.    Comparison of Quasi-Static 
Plate Theory with Fourier 
Transform Solution for Interface 
Pressuri» for an Infinite Plate 
Elastic Half-Space System. 

1.0 r  PROTECTED (with plot«) 
 UNPROTECTED (without plots) 

—— PROTECTED 
... UNPROTECTED 

TIME - US 

Figure 6.    Vertical Stress Time Histories 
at the Surface of Elastic Space 
Foundation with and without 
Plate Protection. 

— PROTECTED 
  UNPROTECTED 

Figure 9.    Horizontal Particle Displace- 
ments in the Elastic Half-Space 
Foundation at the Surface and 
40-Foot Depth. 

— PROTECTED 
•- UNPROTECTED 

CHARACTERISTIC TIME.T - 1/k* 

SO 100 
TIME • ms 

Figure 7.    Horizontal Particle VelocHies 
in the Elastic Foundation at 40- 
Foot Depth (Velocity is zero at 
surface, z = 0). 

Figure 10. Interface Pressure Time Histor- 
ies for Parametric Values»of k 
for Plate Elastic Half Space Sys- 
tem. 
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Figure 11. Interface Pressure Time Histor- 
ies for Parametric Values of 
the Plasticity Index for Inelastic 
Foundation Media. 

Item Value 

Plate Thicknesses 6ft 
Plate Material 8000 fps seismic velocity 

Foundation Medium 1500 fps seismic velocity 

Plate Foundation 
Medium Density Ratio 2.0 
Plate Foundation 
Interface Not bonded; free to slip 

Pressure Pulse 1000-psi Brode pulse 

Table 1.  Structural Properties of the 
Plate on a Half-Space System. 

Figure 6 presents a comparison of the time 
histories of the vertical stress at the plate- 
foundation interface for the elastic medium for the 
protected and the unprotected cases.   It is noted 
that the peak pressure is reduced roughly by a 
factor of 2 at the interface due to the protection 
provided by the plate.   The stress time histories 
are identical at other locations in the medium below 
the interface except for the time lag.   Similar 
conclusions are derived for the vertical particle 
velocity since, for elastic media, the vertical 
velocity is directly proportional to the vertical 
stress. 

Figure 7 shows a similar attenuation in the peak 
horizontal velocity as a result of the protection 
provided by the plate.   The reversal in the 
direction of the particle velocity in this case is 
due to the contribution of the shear wave which lags 
the primary compression wave, as may be noted In 
Figure 2.   Fi gures 8 and 9 show that the plate does 
not provide any significant reduction in the peak 
particle displacements in the foundation. 

The effect of the characteristic response time T, 
defined by Eq. (6), on the attenuation of the peak 

pressure is given in Figure 10.   The attenuation of 
the peak pressure increases with increasing mass 
per unit area of the plate and decreases with increasing 
impedance of the foundation.   The interface pressure 
builds up due to transmitted impulses resulting from 
the multiple reflections of the waves in the structural 
plate.   The attenuation of peak pressure will there- 
fore be larger for shorter duration pulses. 

Figure 11 illustrates the effect of the foundation 
inelasticity on the attenuation of the peak pressure. 
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ANALYSIS OF THE RELATIVE MOTION OF THE PEM MOD-IV 

TETHERED CANISTER AND THE ATLAS BOOSTER 

Thomas L. Alley 
The Aerospace Corporation 
San Bernardino, California 

ABSTRACT 

The relative motion of the Atlas booster and a tethered PEM Mod-IV 
canister was analyzed for the period subsequent to canister deployment. 
This was accomplished by writing the equations of motion of the system 
and solving these equations on a digital computer.  The solution of numerous 
cases indicated that, if early booster/canister collision could be avoided, 
the canister tended to remain as far away as possible from the booster. 

Introduction 

The PEM Mod-TV is a particular auxiliary 
payload ejection mechanism for use on Atlas boosters. 
This device consists of an orientable launch tube 
from which a canister is ejected by means of pres- 
surized gas.   The launch tube is in a stowed con- 
figuration pointing aft on the vehicle and enclosed by 
a shroud during launch.   The shroud Is ejected and 
the launch tube Is oriented by means of its orienting 
mechanism after the booster has left the dense 
atmosphere and during the sustainer engine firing. 
The canister ejection sequence Is initiated just after 
vernier engine cutoff and primary reentry vehicle 
separation.   The canister opens after exit from the 
launch tube and releases the auxiliary payload.   The 
tether brake, by means of a steel cable connecting 
the brake and the canister, then brakes the canister 
to a stop relative to the booster.   This process Is 
Indicated schematically In Figure 1. 

It is a requirement that extraneous bodies or 
fragments not be present in such a position as to 
Interfere with radar observation of the payload 
during reentry.   Thus, It Is Important that the tether 
cable not fall and permit the canister to reenter with 
the payload.  Also, the canister should not strike the 
booster as this might cause the booster to explode, 
filling the area with fragments. 

As it is Important to avoid collision between the 
Atlas booster and the canister, any solution proce- 
dure must Incorporate the possibility of the tether 

cable being wrapped onto the surface of the booster. 
It was suspected that the cable would simply be 
wound onto the rolling booster until collision was 
inevitable.   The provision for booster wrap was one 
of the difficult aspects of the study. 

MRS RETRO 

CANISTER 

-VERNIER 

Figure 1. Schematic of Payload Deployment by 
Means of PEM Mod-TV 

Analysis 

The booster was idealized as a smooth, 
frlctlonlesB, cylindrical body of finite length. 
Various disturbing forces and moments act on this 
body.   As it was desired to permit the booster 
to move In a general manner, the booster was 
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permitted to have three rotational and three 
trarslational degrees of freedom.   Since the 
normal booster axes are nonprinclpal axes, the 
rotational equations of motion have the form 

i     •       i     •      ,     •      i   / 2      2\ 
Ixx-'x-,xyu'y"IxZ-'z-1y^K'u'7./ 

+ (V* ' VxzK '(Vy -'«) Vz ■ ^x 
/   2        2\ 

"Ixyu'x + Iyy-'y-,yz^"Ix2K"u'x) 

+ (Vz "'s " -z'xy) *y " (lzz ' XxxK -x " S 

/   2       2\ 
xz   x     yz  y     zz   z    \y\  x      y,' 

V xz  y      xyz/   z   \ xx     yy/   x"y      z    J 

►(1) 

where 

x, y, z are axes imbedded in the booster, 

I   , etc. are inertia coefficients, 

u> , etc. are angular velocity components 
' along x, y, z, and 

L , etc. are applied moment components 
along x, y, z. 

The translational equations of motion for the booster 
have the form 

X 

Y > 

Z 

(2) 

where 

m = mass of the booster, 

X, etc. are inertial accelerations, 

F , etc. are applied force components along 
x, y, z and 

A = rotation matrix to transform force com- 
ponents from the x, y, z system to the X, 
Y, Z inertial system. 

The canister was idealized as a mass particle. 
Hence, its equations of motion have the same form 
as Equation (2). 

The tether brake on which the tether cable was 
wound was modeled as a slngle-degrce-of-freedom 
flywheel so that Its equation of motion l«s of the form 

I?
e 

= -TC-TB+r2FCAB (3) 

where 

I 

"B 

= effective brake moment of inertia, 

= brake rotation, 

= brake drag torque, 

rCAB 

desired brake torque, 

brake radius, and 

tether-cable force just forward of the 
brake. 

Ul 
The specification of the parameters and forces of 
Equation (3) is rather involved; the reader is 
referred to a more complete exposition for details. 
The brake torque as a function of cable pay-out, 
X3BR' l8 lndlcated to Figure 2.  Braking of the 
canister is initiated at point A and the canister is 
braked to a stop at point B.  The brake shoes are 
then mechanically disengaged which permits 
additional cable to be payed-out before braking 
begins during the HIRS jerk, to be defined below, 
at point C.   In general, the tether cable Is pressed 
against the launch tube rim during the period that 
the cable is in tension.  As the rim is considered a 
rough friction surface, the specification of F_AB is 
particularly complex. 

I 1 
DPEM CPEM 

*3M 
DPEM 

Figure 2. Braking Torque as a Function of 
Cable Pay-Out 

There are various forces and moments which 
act on the booster and canister during the time 
period of interest.   First, the cable force results 
In forces and moments on the booster which will 
appear in the right-hand sides of Equations (1) and 
(2).   Also, the cable force will act on the canister. 
The magnitude of the cable fores Is computed by 
first computing the strain In the cable In the 
appropriate manner and then multiplying by an 
appropriate modulus. 

A second disturbance is the vernier thrust. 
Although the vernier engines are cut off just prior to 
canister ejection, the tail-oft' thrust, acting through 
the vernier control system, exerts a significant 
effect on the booster motion. 

A third disturbance Is the gas eject force 
which forces the canister out of the launch tube. 
This obviously acts on both the booster and the, 
canister. 

A fourth disturbance Is caused by the firing of 
two sets of small rocket motors mounted on the 
launcher base.   The firing of the first set Is Intended 
to counteract the roll disturbance to the booster 

111 "Analysis of the Relative Motion of the PEM Mod- 
TV Tethered Canister and the Atlas Booster," by 
T. L. Alley, SAMSO TR-68-242, May 1968. 
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caused by the gas eject force and the second set is 
intended to counteract the roil disturbance caused by 
the braking force. 

The last disturbance is the HIRS rocket firings. 
The HIRS system is intended to force Die booster to 
a different trajectory from that of the payload so that 
the booster will not interfere win observation of the 
payload.  A pitch-rocket fires, translating the 
booster upward and pitching it nose-down.   After the 
booster has pitched through a predetermined angle, 
a retro-rocket fires, forcing the booster upward to 
a new trajectory.   The tether cable has been slack 
during this period but it is suddenly drawn taut during 
the retro-rocket firing.  This is called the HIRS jerk 
and represents a critical period in the functional life 
of the tether brake system. 

Figure 3 is an end-on view of the Atlas booster 
showing the position of the muzzle and the canister. 

CANISTER 

ATLAS 

I 
8 

Figure 3. Geometry of Muzzle and Canister 
Positions 

The angle e    tracks the angular position of the 
canister.   Tmis, not only the instantaneous position 
of the canister Is known, but also the path traversed 
to reach that position.   This Is Important as the tether 
cable trails along behind the canister.  It is obvious 
from the figure that if ff" is greater than e„ , then 
the canister does not have a direct llne-of-s(ght to 
the muzzle.  A condition of "intersection" is then 
said to exist.  It is postulated that the cable always 
assumes the minimum path-length position between 
the canister and the muzzle for purposes of computing 
the cable force.   In the absence of a direct line-of - 
sight, the cable must assume a curved path, with a 
portion of the cable lying on the booster surface.   It 
was hypothesized that this curved minimum path 
consists of 

a) a straight portion from the muzzle to the 
rear contact point on the booster, 

b) a helix on the booster from the rear contact 
point to the forward contact point, and 

c) a straight portion from the forward contact 
point to the canister. 

If It is further assumed that path smi^iess exists 
at the two contact points, then sufficient Information 
Is available to find the length of this curved minimum 
path.   The path length is compared to the expended 
cable to compute cable strain.   Since the booster is 
assumed frlctlonles*, the cable force is constant 
everywhere forward of the muzzle, even though a 
portion of the cable is in contact with the booster. 

Computer Program 

The equs tlons of motion were programed for a 
digital computer and solved as an initial-value 
problem with a fourth-order Runge-Kutta integration 
procedure.   The program was written in modular 
form, with subroutines performing specialized 
functions.   Both printed and plotted output were 
obtained from the program. 

The flow chart for the subroutine that sets the 
equations oi motion for the period when the canister 
has exited the launch tube Is shown In Figure 4.   The 
equations are first set assuming zero cable force. 
Then tests for intersection are made.   If there is no 
intersection, the possibility of a cable force is in- 
vestigated.   If there is a cable fores, this force is 
added in the appropriate equations and the procedure 
Is complete.   The curved-cable path must be used In 
the case of Intersection, but the logic flow Is the 
same as the straight-cable path. 

YES 

600 

/  INTERSECT  y^5. 

NO 

NO 

COMP FORCES 
AND AUGMENT 

601 

MULTIPLY BY 
INVERSES 

Y£S       /     ENOUGH    \ 
 (        CURVED       y 

\     CABLE ?    / 

NO. 

COMP FORCES 
AND AUGMENT 

Figure 4. Logic Flow for Subroutine to Set 
Equations of Motion 
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Results 

The first flight configuratlor,   nalyzed by means 
of the developed program was a 50-pound payload 
launched at 40 ips from an Atlas D/Chalktalk 
missile.   The launch direction was chosen as upward 
and forward from the booster.   The canister weight 
was 110 pounds and the tether cable was 3/16-in. 
steel braided aircraft cable. 

The most severe cable loads are experienced 
during HIRS Jerk.   This load history is shown in 
Figure S.   The process is one repeatedly of 

a) the cable becoming taut, applying a torque 
to the brake, and 

b) the brake accelerating odd paying out cable 
so rapidly that the cable becomes slack 
for a time. 

As the failure load for this cable is about 900 pounds, 
the program predicts survival of the cable. 

300 - 

1200 - 

180 - 

S       32.8   33.0    33.2   33.4   33.«   33.S    34.0   34.2   34.4 
TNI • MC 

Figure 5.   Load in Tether Cable during HIRS 
Jerk 

booster is now starting to pitch In the HIRS maneu- 
ver.   The path is curved and offset in the head-on 
view because the booster is rolling and translating 
laterally. 

Figure 7 is a continuation of the motion of 
Figure 6.   This covers the period of retro-fire 
(the first break in the curve) and HIRS Jerk (the 
second break in the curve). 

.J^W 
TIME: 21.66 TO 40.66- MC 

Figure 7. Continuation of Initial Phase of 
Canister Motion Showing HIRS 
Jerk 

After the initial phase, the canister enters a 
somewhat stable phase of motion in which it tends to 
remain as far from the booster as possible, usually 
off the forward end or off the aft end.   Figure 8 
shows typical motion off the forward end of the 
booster.   Figure 9 shows typical motion off the aft 
end of the booster.   Figure 10 indicates a transition 
phase as the canister moves toward the forward 
end, but still remains at a large distance from the 
booster. 

Figure 6 indicates the initial phase of the 
canister motion subsequent to ejection.   The process 
is displayed in booster-fixed coordinates, so that 
the booster appears fixed and the canister is in 
motion.  A side view and bead-on view are presented 
of th<» ■•«"» "»oti^u.   The triangles denote the 
position of the canister at one-second Intervals, 
with '1" denoting the first position and "L" denoting 
the last position on a given chart.   The lf-ie merely 
connects the canister positions.   Here are displayed 
the initial rapid ejection, braking of the canister to 
a stop, and rebound toward the booster.   The canis- 
ter path in the side view is curved because the 

TIME: 1.66 TO 20.66 - MC 

Figure 6. Initial Phase of Canister Motion 
Showing Ejection and Rebound 

TIMS: 121.66 TO 140.66 - Me 

Figure 8. Intermediate Phase of Canister 
Motion Indicating Motion at Front 
of Booster 

Very little wrap-up of the cable onto the booster 
occurred in this problem.   Other runs indicated as 
much as two complete wraps before unwrapping 
began. 

It was concluded that collision would not occur 
for at least 400 seconds after deployment for the 
present problem.   This was judged a sufficient 
interval of time. 

In all of the cases investigated, it was found that 
if early collision could be avoided, the canister 
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traded to remain away from the booster.  A late- 
time collision was never obtained, to certain 
applications aa early-time collision was obtained, 
to these latter cases the launch parameters were 
altered to avoid early collision. 

\ 
TIME:»t.MTOU0.M-MC TIME: 301.MTO3Z0.M - MC 

Figured. Late Phase of Canister Motion 
Indicating Motion at Rear of 
Booster 

Figure 10.   Late Phase of Canister Motion 
Showing Transition from Rear to 
Front 

Conclusion 

A computer program was developed to analyze 
the rotative motion of the PEM Mod-IV canister and 
the Atlas booster.  The program was initially 
applied to a proposed launch configuration on an 
Atlas D booster.   The results indicated that the 
tether system would remain Intact and that If 

collision were to occur It would not take place until 
well after payload ejection.   Application of the 
program to later flights resulted in changes to launch 
parameters in order to avoid collision.   The results 
of many computer runs indicate that, if early-time 
collision can be avoided, the canister tends to remain 
at the end of the tether, as far away from the booster 
as possible. 
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