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NOTATION
. dpe
Density gracdient in surrounding fluid, a = EL-—EE
e
Initial buoyancy parameter (theory), Equation [44]
Vorticity mixing coefficient, Equation [9]
Half distance between cores of vortex-pair
Stratification parameter (theory), Equation [45]
Constant

Energy dissipation coefficient

Energy dissipation parameter, Equation [46]

Total energy of convected mass

Experimental buoyancy parameter, Equution [44]
Geometrical parameter, J = O for planar geometry,

J = 1 for axial symmetry

Virtual potential energy coefficient, Equation [38)

Virtual mass coefficient

Virtual kinetic er.ergy coefficient, Equation |37]

Vertical component of total momentum

Parameter defined by Equation (47)

Radial distance from center of rising mass, r® = £%4n?42%
Mean radius of rising mass

Non-dimensional mean radius of rising mass, R = R/R,
Experimental density stratification parameter,

Equation (53]

Time

Non-dimensional time, t = Hot/zo

Time at which the maximum height of rise is reached
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Subscripts
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(),
(),
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Velocity components, see Figure 14
Vertical velocity of rising mass

Non-dimensional vertical velocity of rising mass,
W=W/Wo

Vertical velocity of ideal vortex-pair

Helght of rising mass center above 1ts virtual origin
Non-dimensional height of rising mass center, z = z/'z°
Maximum height reached by rising mass

Modified entrainment coefficient

Local vorticity, Equation [7]

Total circulation about a single vortex

Coordinate system, see Figure 14

Local density inside convected mass

Density of surrounding fluid

Average density of convected mass, Equation [43)
Density difference, Ap = Py~ Pe

Velocity ratio, wi/wp

Initial conditions
Internal

External 5
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ABSTRACT

A theory for the motion of two-dimensional turbulent vortex
pairs in homogeneous media has been developed based on separate
veloclity scaling of the internal and external flow filclds in-
volved in the motion and taking into account variations in
volume, circulation, momentum, and energy. Based on the results
obtained from this theory (I) a simplified theory (II) is de-
rived to deal with the rising motion of turbulent vcrtex pairs
in stratified media. The theoretical results are compared with

systematic experimental observations.

In theory (I) the ratio of internal to external velocity
scales, ¥y, 1s introduced as an important variable and the theory
is specifically derived for the two limiting cases of weak (y = 1)
and strong (¢ >> 1) circulation. The weak circulation theory
leads to results similar to those obtaired in the past using
theory based on complete similarity and momentum conservation;
i.e., z ~ t°. The strong circulatior thecry leads to results
which depend very much on the way in which vorticity from the
shear layer is ingested into the vortex pair. When ingested so
as to cause annihilation (cancellation) of the ingested vorticity,
the asymptotic trajectory i3 2z ~ t*. Under the same conditions
the velocity ratio, v, increases toward an asymptotic value, sand
the virtual momentum coefficient for the motion tends to zero.

As a result, the asymptotic motion (assuming vorticity annihila-
tion) corresponds to 8 motion with complete similarity and with

energy conservation.
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A comparison of experimental observations of rise versus
time and radius versus height with theory (I) lend strong support
to the strong circulation theory and suggest that ingested vor-

ticity may be largely annihilated.

Based on these finding for homogeneous flows, a simplified
theory (II) for stratified media was developed upon the assump-
tions: (i) the motion is determined by conservation of volume,
mass, and energy (neglecting vorticity and momentum); (ii) com-
plete similarity (dR/dz = 8, a constant). Good agreement was
found between the predictions of this theory and the results of
systematic experiments, and particularly for the maximum rise of
helght.

I. INTRODUCTION

Ideal Vortex-Pairs. Flow visualization studlies carried out by
Scorer (1957), Woodward (1959) and Richards (1965), indicate that

the shear layer which is formed between a moving isolated mass

of fiuld and the statlonary surrounding medium tends to roll up
and create a flow field which resembles (in two dimensions) the
one asscciated with two line vortices of equal strength but op-
posite sign, separated by a distance 2b, so-called "vortex-pairs."
The possibility of vortex-palr motions in an inviscid fluid was
considered and analyzed over 100 years ago by Sir. W. Thomson
(1867). His analysis applies only to an idealized vortex-pair
in which each vortex has a highly concentrated core which is set
into motion only by the influence cf the other vortex. Such an
ideal vortex-palr moves througt the surrounding fluid in a di-
rection perpendicular to the plane Jjoining the vortex cores and
with a velocity W* determined only by the pair separation, 2b,
and the circulation about a single vortex, I', according to the

relation

AL v p it e A a b

A1k el A e
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W = — (1]

A unique feature of this idealized vortex-pair motion 1is
the existence of a closed streamline and a finite captured mass,
as indicated by the oval in Figure 2a. Thomson (1867) calculated
the semi-axes of the oval-shaped captured mass to be 2.09b and
E 1.73b so that the cross-sectional area 1is approximately 3.62'rrb2
3 and the ratio of width to thiekness is 1.21.

Under certain circumstances it is entirely possible that
carefully balanced vortex-pairs, approximating Thomson's ideali-
zation, can be formed. The motion around the vortex centers must
be affected by viscosity in a real fluid, but as long as the vis-
cous cores do not extend close to the bounding closed stream-

‘ line, the flow within and without this streamline may be so
ﬁ closely matched that no large shearing motions or accompanying
| drag are associated with the motion of the captured mass. 1In

fact, nearly 1deal vortex-palrs are sometimes found in the wakes

of lifting surfaces, Figure la, and are known as "contrails"”,
see Scorer (1958) and Spreiter and Sachs (1951). Of course, the
concentrated vorticity in the vortex cores tends to diffuse, and

does so rapldly when the flow 1n the core is turbulent.

Turbulent Vortex-Pairs. The probable short lifetime of ideal

vortex-palrs under turbulent conditions gives special importance
to vortex-palrs whose behavior is governed by turbulent entrain-
ment; 1lndeed, 1t 1s these kinds of motions which are most com-
monly observed in nature, as in the case of a mass of fluild
forced out rapidly through an aperture, Figure 1lb, or in the
convection of isolated masses in nature, Figure lc, or in the

bent-over and rising chimney plume,.




HYDRONAUTICS, Incorporated

4

Turbulent vortex-pairs are characterized by the fact that
the interior mo:ion does not match the outer flow at the boundary .
of the captured mass, sc that a region of high shear exists there,
accompanied by the production of vorticity and by turbulent en-
trainment. In other words, these vortex-pairs move with a ve-
locity W not equal to the velocity W* derived from Thomson's
model, Equation [1].

We may, in principle, generalize Thomson's model to con-
sider those cases where the velocity of translation, W, has a
more general relation to the velocilty W" which characterizes the
internal, rotational motions of the vortex-palr. Two distinct
cases suggest themselves, in theory. In one case, W > W*, and
the convected mass loses volume to the surrounding fluld and
continually shrinks in size; we denote this vortex-palr as
"underdeveloped", see Figure 2b. In the other case, W < w*, and
the "overdeveloped" vortex-pair gains mass through the entrain-
ment of exterior fluid, Figure 2c¢., Of these 1t 1s the latter
motion which is most commonly observed in nature and forms the

main subject of thls work.

Within an overdevelored motion, the velocity at the boundary
inside the vortex-pair, as seen by an observer moving with it,
will be larger than the velocity of the surrounding fluid Just
outside the boundary of the pair. Accompanying the veloclty
gradients thus created across this boundary, shear stresses are
exerted by the vortex-palr on the surrounding fluld, resulting
in the entrainment of outer fluid and a general increase in the
volume of che convected mass, see Figure 3. Within the high

_shear zones at the boundary on elther side vortlcity of sign
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opposite to that within the respective interior is created, and
is pulled down arcund the bottom of the rising mass toward the
plane of symmetry. To the extent that the ingested vorticity
remains on its own side of this plane, the vorticlity within the
interior will be steadily reduced; of course, ingested vorticity
of opposite sign does have a chance to mix and thus to annul 1t-
self, depending on the efficiency of mixing. Should effective
annihilation of ingested vorticity occur, then the initial total

vorticity within one side of the palr would be conserved in time,

As for the kinetic energy implicit in the motion of the
vortex pair, it must be continuously reduced with time due to
turbulent dissi-ation.

Self-Similarity in Vortex-Pair Motions. It is a striking char-

acteristic of free turbulent flows in homogeneous media at suf-
ficiently high Reynolds numbers that, under similar circumstances,
the flows at different points in space or time can usually be
reduced from one to another upon normalization by an appropriate
length and velocity scale (self-similarity). This is true, for
example, of the flow at different downstream sec .ons of turbulent
jets and wakes. It 1s therefore natural to expect that a turbu-
lent vortex-pair exhibits complete self-similarity during 1ts
life time, and this assumption has been made in all theoretical
treatments of the subject, starting with Morton, Taylor, and
Turner (1956). Two important consequences of this complete simi-
larity are: (1) conservation of the ratio of internal and ex-
ternal velocity scales, W/W'} during the motion; (2) linearity

of the length scale of the convected mass with the distance
traveled frofh a virtual origin.




HYDRONAUTICS, Incorporated
-6-

This latter result, predicting that the traces of tre side
boundaries of the convected mass form a wedge, is independent
of the dynamics of the motion and serves to provide a check on
self-similarity. In fact, a number of previous experiments on
self-convecting masses claim to confirm this behaviour to a rea-
sonable approximation, see, e.g., Scorer (1958), Woodward (1959)
and Richards (1965).

It is obvious to ask whether a'hnatural" value of the ve-
locity ratio WMWY, ur the same thing, of the constant B = dR/dz
is observed, independent of the original circumstances giving
rise to the convected mass. The answer seems to be no. In the
present experiments, two distinctly different ranges of value of
dR/dz differing by a factor 2, have been repeatedly measured;
these correspond to two different stroke lengths in the ap-
paratus used to originate the vortex motions. Furthermore, al-
though the present data may be claimed to correspond "in a reason-
able approximation" to a constant value of dR/dz, yet quite
consistent deviations from linearity evist between the traces of
part radius and distance traveled, see Figure 4, These deviations
are such that dR/dz seems actually to increase throughout the ob-

served motlons.

In view of these facts, and for other reasons, it seems
desirable to “ttempt a2 more general theory of the motion of tur-
bulent vortex pairs, based on the assumption of separate veloclty
scaling of the internal and external motilons; i.e. allowing W/W*
to vary continuously. Afterwards, a simplified theory pertaining
to motions in stratified media will be developed and the results

compared to experimental observations.

et bk e b b St A Rl o T P s e L
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ITI. THEORY (HOMOGENEQUS FLOWS)

Separate Similarity of Internal and External Flows. We visualize

the vortex-pair motion to be divided into internal and external
flow flelds, separated by a thin region of high shear, which also
forms the boundary of the captured mass, see Fig. 3. We assume
that each flow field is itself self-similar.

Internal.

e
n

X
wi(x:Y:t) = wi(t) Wi ﬁ ’

External.

H
=
—
ct
~r

£z

X
we(x,y,t) e K e |R H % (3]

and similarly for the other velocity components.

We let ¢ = Wi/We, where ¢ is, in general, not constant in
time as 1t is in the case of complete similarity.

We choose W1 as the circumferental veloclity averaged over
the inner boundary of one-half of the vortex pair and we the
same except averaged over the outer boundary. (The inner and

outer boundaries are separated by a thin shear layer).

Volume Changes. The volume of fluld comprising the vortex pair

increases continuously with time due to entrainment into it. Be-

cause of the similarity assumed, the rate of entrainment of
volume must (in two dimensions) be proportional to a character-
istlic velocity and a characteristic length. We take for the

former, the velocity difference W -we

i

AUrR%) . amr(W, - W) a(v) [4)
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or, 4R W

% = (-1)ely) = (3-1)a' (¥) [5)

Note that the dependence of the proportionality constant a' on
the velocity ratio y has been left unspecified.

Circulation Changes. The circulation I' about one half of the

vortex pair is, on account of the inner similarity, proportional
to the length scale and inner velocity scale. On account of the

way in which W, was defined,

i

I « RW, (6]

The fluid entrained into the vortex pair from the surround-
ing high shear layer carries vorticlty of opposite sign to that
already within the interior, see Fig. 3 and thus reduces it to
the extent it 1s not annihilated through mixing with vorticity

being entrained in the opposite lobe. The strength of entrained

vorticity must, on account of similarity, be proportional to the

ratis of a pertinent veloclty and length scale. In particular:

(- W,)

v(entrained) « — (7]

The flux c¢f entrained vorticity takes the form:

Vorticity Flux « Volume Flux . y(entrained)

We- Wi
« [21rR(W1- we)-a(w)l R (8]

N PRSI N SRR
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A s - AT T A B

Finally, the change in circulation may be related to the flux
of vorticity:

§ ac = “Au-ema(y)- (W - W )? [9]
or,
a(W,R)
: gy = Ry at-(W,- W ) (y-1) [10]

The value of the parameter A; will depend in part upon the
extent to which entrained vorticity from each side mixes to-
_ gether causing annihilation. In the case of complete annihila-
& tion, Ay = O.

Momentum Conservation. _ The momentum, Mz, of the vortex pair

is conserved in motion through a homogeneous medium. It may on

account of similarity be expressed in the form,

M
“Z _ . 2 _
o Km(w) W_R® = const. [11]

e g T CHp WIS SV NURDY L S D e

where K(y) 1s a momentum coefficlent. Its form may be deduced
through use of the identity, Lamb (1945), pg. 229,

M
o = If vtaat (12]

The latter integral can be taken separately over the interior
and shear layer of the vortex pair, which ylelds terms upon
making use of similarity,

s I] vgatdg « WR® [13]
int.
I YLdedg « (W_- W, )R® [14)

shear layer
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As a result, the form of!ﬁéw) consistent with our assumptions,
is seen to be,

K () = Ki- Koy [15]

m

where Ky and K> are undetermined constants.

Energy. The total kinetic energy in the vortex pair motion,
taking account of similarity, may be expressed as the sum of two
terms,

K.E. _ 2p2 22

—5—— = Kiw1 R® + Kewe R [16]

whlle the dissipation takes the form,

q K&
—P . 3p .
>— = - ¥R - Cp(v) (17)

where for large values of y, CD must approach some limiting
e

s
value C_', while for small values of y(y = 1), C.=C_ (1) |[z—] .
D D D Wi

Laws of Motion. Limitinz Cases; Weak Circulation (y = 1). In
this case the inner and outer flows are almost matched and the

deviation from the ideal vortex motion is small. The laws of
motion in their appropriate form become,

Volume. %% = (y-1)- a'(1) (52])
) d(W_R)
Vorticity. d: - - Aat (1) (v-1)2 W, (10e)

Momentum. Km(l)'WeR2 = const. (11a)
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2n2
d(WeR) e

W
Energy. K(1) —g = - (T) wezmcD(l) [17a]

Combining [5a) and [10a] leads to the result,

1
W, = TR A, #0 (18]
1 $
Whereas, [1la] requires we « = org« t (19]
R

so that the presumed motion can take place only if A = 0 or
A; = (y-1)-'. Combining [17a) and [10a] leads to the require-

ment that the velocity ratio be constant and have the value
Cp(1)
v=1*1zEmen (2]

At the same time, dR/dz 1s required to be constant and to have
the value,

az ™ | W) =) (21]

We leave till later a discussion of comparison with experiment,
but we may note now that the prediction [19]) is similar to that
of the previous theory based on complete similarity.

Strong Circulation (y >> 1). In this case the interior cir-

culation 1s very strong relative to the ideal value and the
deviation from the ideal vortex motion is large. The appropriate

laws of motion are,

Volume. dR . .
az = va'(v) (5b]
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d(W,R)
Vorticity. i .. Ara' (§)-W, ¥ [10b]
dz i
Momentum. (K, - sz)-wiaa - w-(mz/b) {11b)
Energy. K W g%»(win)a = - W>R-Cy' [17v)

Combining (10b] and {17b] leads to the requirement that a(y) be
constant and equal to,
]
2Ke~A;

a ra1]

Since similarity requires that we/ﬂ be constant, we may here-
after take o' constant in [5b] and [10v). Combining [Sb] and
[10b[ leads to the result
1+A,
W, « — or WM, «|-=2 [22])
i R 147, b LA | R
o
and, substituting {22] and [5b] into [11b] leads to the dif-

ferential relation,

=1 _(1-a) ®
K- 2R R -3 . (23]
dz dz
which has the solution,
n'K, -2 = R . KeR + const. (Ar# 0) {24)

>

i

st K e ke et B e e

Lren b i e s
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and a'Kiz = £n R + KaR + const. (A = 0)
or, (Z-ZO) -
a'Ky R =4n R+ K (R - 1) [24a)]
o]

Substituting dR/dz derived from [23] into [5b] yields a relation
between ¥y and R,

K
V= _(Al_ﬁ) (25]

R + Ka

and, finally, it may be shown that,

s e . w - . e . e

W, _2A _(1+Ay) (26]
o R + K2R

The type of motions which ensue from this theory in the
case of strong circulation are seen to depend very much on the
value of A, the constant appearing in the relatic - for circula-
tion change, and which depends in part on the way in which
vorticity is ingested into the vortex pair. In fact, the asymp-
totic behaviour of the vortex pair changes radically as A, varies

around the value unity. This is demonstrated in the table below.
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Asymptotic Behaviour (¥ >> 1)
z ] We/wi z
o
A
R 1 _ -A _ =2A _}
Ay > 1 m Ki R Ki R ~ t
Ay = 1 Rlithike Ky /1+K W E ¢3
1 = - Ala'Kl 1 2 1 ~
1l
_ _=(1+Ay) TR
Ay < 1 R (Ko/a'Ky) | Ki/Ke Ki /K2R ~ g2t
— — -1 %
A, =0 R (KQ/G'K],) Kl/Ka Kl/Kz'R ~ t

The values of Ay > 0, the velocity ratio 1s seen to decline,
so that the strong circulation assumption must eventually be-
come invalid. The case A1 = 1 ylelds results qualitatively
similar to the weak circulaticn case. In the case where A; < I,
however, the velocity ratio increases the asymptotic value shown
and, most interesting, the added momentum coefficient (Ki-Kazy)
vanishes asymptoticaily, so that the motion becomes determined by
volume, vortlcity, and energy balances alone. Finally, 1in the
case where A; << 1 (effective annihilation of ingested vorticity),
then asymptotically the motion becomes determined by volume and

energy balances alone, ylelding z ~ t%'

Fdorln et
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I1I. COMPARISON WITH EXPERIMENT (HOMOGENEOUS MEDIA )

In Figures 5 and 6 are shown data from actual experiments
on two-dimensional vortex pair motions 1n homogeneous fluids.
Most of the data shown were obtained in experiments carried out
in our own laboratory. Suffice it here to show a schematic of
the facility which was used, Fig. 7, and to show Table 1, in
which the properties and characteristics of the experimental

vortex pairs are listed.

Most significant, we found in our experiments and from the
data of Richards (1965) that the measured variation of verticel
velocity and pair radius (two-dimensions) conformed more closely
to the law W~ R~ or z ~ t% than to the law derived in the past
by others and which 1s based on complete similarity and momentum
conservation; i.e. W~ R™% or z ~ t%. A test of the simple con-
servation of momentum, W ~ R‘a, using a typical tralectory is
illustrated in Fig. 5 and, similarly, in Fig. 6 it 1s shown that

the trajectories, so far as they have been observed experimentally,

conform more closely to the asymptotic law derived earlier for
the case of strong circulation, utilizing a small value of A;
(0 < Ay < 2).

In the case of strong circulation, the radius grows in a
linear fashion asymptotically, but the theory predicts that
during the initial phases of the motion the quantity dR/dz is
less than 1ts asymptotic value. A similar behaviour was observed
in our experiments, see Fig. 4. The matching-up of these ob-
served traJjectories with the theory offers an opportunity to de-

termine some of the constants of the theory. For this purpose

; - T - " - RRTTOPN " . addibe
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we assume to begin with that Ay = O, since the comparison be-
tween observed and theoretical trajectorlies suggests a small
value. In thls case,

z-Z

0

R
o

(x'K1)

=irn R + Ko [R-1) [24a]

The trajectory according to Eq. [24a] with K2 = 1/2 and a'Ky = .38
i1s shown in Fig. 4. A fair fit with the experiments has been
achieved, and noticeably better than is possible with any linear

tra jectory.

The strong circulation theory thus explains the two impor-
tant features of vortex pair behaviour which cannot be explained
by the usual theory of complete similarity. These features are:
(1) t-e tendency for forced vortex trajectories (homogeneous
flow) to more nearly follow the law 2 ~ t€ rather than z ~ t°,
and (11i) the tendency for the entrainment coefficient (dR/dz) to
grow during the initlial phase of the motion. These results sug-
gest that in vortex motions in homogeneous flows the internal
veloclty scale grows steadlly relative to the translational
(external) velocity, the ratio approaching a value considerably
larger than unity, while at the same time, the virtual momentum

coefficient associated with the vortex motion approaches the

value zero. The data also suggest that vorticity ingested from
around one half of the vortex palr is almost annihilated through

mixing with vorticity ingested from the opposite side.

e A . o ST Ko T i P e £ b
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IV. SIMPLIFIED THEORY (VORTEX PAIR MOTION IN STRATIFIED MEDIA)

Convected masses 1n nature are often rising or falling in a
medium of varying density, as in the case of a chimney plume pro-
Jected upwards into a stable atmosphere. The latter may be char-

acterized by a characteristic time (the Vaissala period), 1/ 1\ ag,
1 dpe

where a = - E— 3z and Pe is the potential density of the atmo-

e

sphere. The same definition can be used to characterize any

~density stratified media.

The motion of the convecting mass may also be characterized
at any instant by the time, R/W. It is almost apparent that when
the latter time 1s long in comparison to the Vaissala period that
the effect of stratification will dominate, and conversely. That

is,

Effect of W/"“ Stratification
Stratification decreasing (B—Wéﬂ increasing Dominates
Vanishes e —

Quite clearly, too, as the motion proceeds in time, the ratio R/W
Increases continuously, so that stratification must eventually
dominate. When this happens, the vertical motion of vortex-pairs
may become oscillatory, and 1s accompanied by the collapse and
horizontal spreading of the convected mass, as illustrated in Fig-
ure 8. This behavior is, of course, not consistent with similarity

either complete or of the kind assumed in the preceding section.

It 1s sometimes desirable ., be able to estimate the tra-
Jectory of a vortex palr while 1t 1s rising in a stratified medila
and particularly to predict the maximum helght of rise and the time

T TP
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required to reach the maximum. For this purpose, we adopt here

a simplified theory based essentially on the assumption of strong
circulation and annihilation of ingested vorticity. In fact, the
particular assumptions adopted would apply if the velocity ratio,
¥, had already closely approached its limiting value. These as-
sumptions are: (1) the motion is determined by conservation of
volume, mass, and energy (neglecting vorticity and momentum);
(11) complete similarity (dR/dz = B, a constant). For .further
Justification of these assumptlions we shall depend finally upon

a comparison between theoretical predictions and the results of
systematic experiments.

The energy balance 1s expressed as follows,

g—% = —agf [g— (WP+v2+w?) + (p-p.) gc] dédnd¢ = - (Rate of Dis-
e
sipation of
Energy)
[27]

See Figure 14 for nomenclature.

For a self-similar, self-convecting flow, the dissipation
of kinetic energy per unit volume which occurs due to the action
of turbulent shear stresses must for dimensional reasons be of
the form,

Dissipation pW>
Unit Volume * R (28]

As a result, the energy balance, Equation [27], for a self-
convecting mass in a homogeneous medium of the same density takes
the form,

2+
K d(W3R% ) W 24
5 T3t =-C |R [29)

P
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where

0 (two-dimensions)

1 (axisymmetric)

and K is a constant of virtual energy, defined by the identity,
2+ v¥+ W K 2.2+
J[’E'""XE__E' dganat = 3 w2R"" [30]

and where CD i1s a dissipation coefficient.

Making use of [29], together with the relationship R = Bz,
1t may be shown that the height of rise follows the law,

,(2+3/2 + Cp/BK) _ o [31]

in a medium of uniform density with Ap = 0. The dissipation
coefficient in nature, D = CD/BK, may be determined by a com-
parison between theoretical trajectories such as given by [31]
and observations of vortex pair rise in homogeneous media. As
shown in Fig. 6, such a comparison leads to the conclusion that
D is quite small (D < 0.2).

The trajectory given by [31) may be compared to the law
which would apply if momentum were conserved,
3+
z « t [32]
which coincides with [31] only if D = 1. The variance of ob-

served trajectories from the momentum law [32] is clearly seen
in Figs. 5 and 6.
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Volume conservation 1in a self-similar flow leads to a

linear relation between the nominal radius of the mass and the

height of rise from the virtual origin z = O:

R = gz [33]

Conservation of mass takes the form

J
d 4 2
|5 = %J = 27 2 p i (3]

where P is the density of the surrounding fluid at any given
height z and pi is the average density within the rising mass,
defined by

J
%) ™2 to,(2) - py(2)) = 1 (o-p,) atlan)lar,  (35]

where the integration is taken over the entire volume of the

rising mass.

The formulation of conservation of energy is based upon
(27] and [28]

4 | K 2p2+d 2+ | . woopeH
at |z P1WRT T+ kley- pplezR ] Cpey ® R [36]

where W and R are the observed and measured gross properties of
the rising mass while K and k are the coefficients of the virtual
kinetic and potential energies, respectively, defined in two di-

mensions, e.g., by
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2n
Ko, "= [ £ (uF+ w?) atat [37)
and
k(p,- o) zR® = [ (p-p ) (z+¢) dkat [38)

In most practical instances where one is dealing with a
mass of fluld convected through a homogeneous or stratifiled
medium such as the ocean or the atmosphere, the difference be-
tween the densities of the convected and surrounding masses is
very small; thatis Ap/pe << 1, being usually of the order of
10'3, and therefore pi/pe can be taken as 1. This assumption,
frequently referred to as the Boussinesq approximation, see
Phillips (1966), will be used throughout the analysis presented
herein.

Using the Boussinesq approximation and the identity dz = wdt,
the three conservation statements, Equations [33], [34] and [36],

may be reduced to the following form in the case of a planar

motion:
R = Bz | [39]
dp 3\
1,28 0, or
dz z
> [40]
Q_(éa) +2(é&) - .
dg e z pe )
2 C
oW D\ 4o, 2k (o0 ]
2 =5 + 2 (1 * 3K } W+ P o +az| z =0 [41]
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where a = - — —— and Ap = (pi- pe).
e

Finally, explicit general solutions of [40] and [41] may

be found. They are:

A az az
] (_2 -S| e R [42]

where
z g
AE‘%{) ¢ and Gs—°2-(éﬂ [44)
W e
(o]
z 2ag
B_(%‘;—) S and §= -2 [45])
(o]
c
DEB% (46)
n = 2(1+D) (47]
and
z = 2/2 (48)
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The parameter G is a measure of the initial buoyancy of the
convected mass relative to its initial momentum. G is taken as
positive when a net buoyancy force 1s acting on the mass, i.e.
Ap < 0. S 1is a measure of the added buoyancy which would result
from moving the convected mass a vertical distance z0 through a
stratified medium. Since VY ag is the frequency with which a
finite volume of fluid of given density would oscillate in a
stratified medium, often referred to as the Vaisala frequency,
the parameter S can alsc be considered as the square of the ratio
of the characteristic time of the convected motion, zo/wo, and

the reciprocal of the Vaisala frequency.

The maximum height of the rising mass, reached at the point
where W = 0, is according to [43], given by the solution of the

following:
] 2+n . 141
B max _ A+ B . max P A
(1 + D/2) z 1+ 2D z, 1+ 2D
1 1
*BlTTom T en) =0 [49)

It is of interest to consider certain special cases:

1. A mass rising in s homogeneous medium with the
same density as itself; 1.e., A = Q and B = Q. Then,

-n/2
(sL) - (fL (50)
e} 0
or, 1+n/2 Wt
A n 0
by e fieg) 5 51]
0 o}
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This result suggests how to estimate the dimensionless quantity

n (cr D) through the analysis of the trajectories of rising masses

in this special case.

2. A mass with initial density difference rising in

a homogeneous medium; i.e., B = O, Then,

2
E_ _ _ A = =N A =-1
(wo) = [1 1+ 2D$] z ¢ [(1 ¥ 2D$] z [52]
If A > 0, then no maximum heilght is reached, but if A < O,
1
Zl+2DS
z 1+ 2D + |a]
o - [53]
o] 'Al

The predicted rise of the mass as a function of time and the
maximum rise of the mass for a range of values of A(<O) and D, as
obtained from Equations [52] and [53]), are presented in Figures
9 and 10. These figures demonstrate clearly the effect of the
(negative) initial buoyancy and energy dissipation parameters on
the time history of an impulsively started rising mass moving
through a uniform surrounding fluid of smaller density.

2a. The same case as sbove but for "o = 0 and A > O,
First of ali, [(43] may be rewritten:
n n

zo) 2kgzo a )
?2) (?? " T1 + 2D)K (Ei .

Zo ]
??J * T o0NK l

- 2
w2 W

efo
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or in this case
n-1
2 -2kg Ap 2 (RO)
W2 z = ( * R 1 -1=— [51*]
g2(1 + 2D)K | ' Pe ° Rz

3. A mass with no initial buoyancy rising in a strati-
fied medi.m, i.e., A = 0. Then,

and the maximum rise of the mass, as a function of B, is obtained
from Equation [55] by setting W = O.

Approximate integrated solution for the height of the con-
vected mass, z, as a function of time can be readily obtained
from Equation [55] whenever D << 1 and B << '. When these two

requirements are satisfied, Eguation [5%] can he rewritten as

4
‘....) -3 _ p3? [56)

and upon integration we obtain

\féia = s5in [sin‘l \[E + 2 \[EE] {57}

where we have normalized the time t according to

Wt
t s — (58]

A
o
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Equation [57] is particularly useful for the approximate
determination of the maximum rise of a mass convectad in a strati-
fied medium and the time at which this maximum height is reached,

tmax‘ For the maximum height we find

0
- 1
: - (B) [59]
and the time required to reach this height is given by

tmax B 4-1:/_13- % L60]
This last result 1s especially interesting. In experiments

on convected masses of fluild moving through a density stratified

medium 1t was frequently observed that tie time 1t takes the

mass to reach its maximum height 1s inversely proportional to

the Vaisala frequency of the stratified medium, i.e.,

tmax\[EE = const. Equation [60] 1s Just a statement of this same

fact for small values of B (as usually exist in nature), since

£ VB = Ve (¢, Vag).

max

V. COMPARISON OF EXPERIMENTAL AND THEORETICAL
RESULTS (STRATIFIED MEDIA)

In our experimental inves:igation we have studied the motion
of impulsively started rising masses (or vortex-pairs) in both
uniform and density-stratified surroundings. According to the
theoretical considerations presented in the previous section,
the time-histories of these motions, expressed in appropriate
non-dimensional terms, are determined by three parameters, A, B

and D; i.e., for given values of these parameters the rise and

]
H
<
£

ittt i SR wr S it




sy i g, 2

|

HYDRONAUTICS, Incorporated

-27-

growth of the convected mass as a function of time can be pre-
dicted. A and B are determined by G and S and by a third param-
eter which is the ratio of the virtual kinetic and potential
energy coefficients, K/k, according to Equations [44] and [45].

While the parameters G and S are determined in each case by
the initial conditions of the rising vortex-pair, there is no
practical way for determining a priori the values of D and K/k.
These latter parameters can be determined only by comparing cer-

tain sets of experimental results with corresponding theory.

A series of experiments on the motion of vortex-pairs in
a homogeneous medium of the same density, Series III (see Table 1),
where the parameters G and 3 (and therefore also A and B) are
identically equal zero, may be used for determining the dissipa-
tion parameter D. The rise of the vortex-pairs in this case is
predicted by Equation [51] and is graphically depicted in Fig-
ure 9 (with A = 0). The actual predicted rise of the convected

mass depends on the numerical value of the parameter D (or n).

In Figure 6 are shown a comparison between experimental and
theoretical results on the rise of impulsively started masses in
a uniform medium of the same density. In a log-log plo%t, the
slope of the trajectory for large vaiues of (Wot/zo) should be
equal, according to our analysis, to 1/2 + D, and it can be used
therefore for determining the value of the dissipation parameter
D associated with the motion of the rising mass. Included in
Figure 6 are the experimental results of Richards (1965), on the
rise of two-dimenslonal puffs in homogeneous surroundings. The
best agreement with all experimental results is obtained when

we choose D = 0.2.




HYDRONAUTICS, Incorporated

-28-

The numerical value of K/k enters into the analysis only
when there is an initial difference between the rising and sur-
rounding fluid densities or when the surrounding fluild is strati-
fied. This value wili be also determined from a comparison of
some experimental and theoretical results. For a vortex-pair
convected in a density-stratified medium we found'earlier that,
for sufficiently small values of the parameters A, B and D, the
time it takes the mass to reach its maximum height is inversely

proportional to the Vaisala frequency and is given by
r—— ‘-.
Vae| =\/ &L :
(tmax ag) =\ &1 [61]

This value decreases only very gradually as the value of B (or
S) sc that Eq. [61] is very useful for the experimental deter-
mination of K/k.

In Figure 11 the value of the product (tmax3f3§), as mea-
sured in the experiments of Series I and II, is presented as a
function of the stratification parameters S; the initial condi-
tions for each experiment presented in the Figure are included
in Table 1. There are certain inherent inaccuracies in the ex-
perimental determination of tmax which explain the scatter. Also
shown in Figure 11 are the asymptotic solution for the maximum
rise time, Equation [60], and the exact solution, according to
Equation [43], with D = 0.2 and G/S = -0.715. Close agreement
between theoretical and experimental results was obtained when
we used 3K/2K = 6 or K/k = 4. We have included in the same fig-
ure the experimental results from Series III which had a markedly
different value of B; these too were found to agree very closely
with the theoretical prediction based on D = 0.2 and K/k = 4,

SN
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indicating that the dependence of these latter two parameters on
B is probably very weak. We have used these values of D and

K/k for all subsequent comparisons of experimental and theoreti-
cal results. The coefficient of virtual potential energy cannot
be much different from unity, according to its definition in
Equation [38]. The total kinetic energy of a rising vortex-pair
was thus found to be about four times larger than the kinetic
energy associated with its linear convectlion alone, an indication
of the intensity of motion inside the vortex-pair, which con-
tributes to its total kinetic energy. This finding lends im-

portant support to the strong circulation assumption.

A comparison between the predicted and actual maximum heights
of rise of a vortex-pair convected in a linearly density-strati-
fied medium is shown as Figure 12. The figure includes a pre-
diction based on the simplified asymptotic solution for small B
(or S), Equation [59), and a _rediction obtained from the exact
solution of Equation [49] for émax' Generally there is good
agreement between the experimentally measured maximum height of

vortex-pairs and the exact theoretical sclution.

Finally, in Figure 13, we compare the measured traJjectories
(height versus time) of vortex-pairs with their theoretically
predicted trajectories. The vortex-pailrs incliuded in the Fig-
ure all had different starting conditions and they were moving
through media with different density-stratifications. However,
thelr trajectories, as deplcted in the figure are shown to de-
pend only on the values of the two lumped parameters G and S
which combine thelir starting conditions with the properties of

the surrounding medium,
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The fact that trajectories of different vortex-pairs are
grouped according .to their G and S values confirms the validity
of the scaling laws and scaling parameters used herein, while
the agreement obtained between the experimental and theoretical
tra jectories iends further support to the validity of the simpli-
fied theory presented here for the motion of vortex-pairs in
stratified media.

VI. SUMMARY AND CONCLUSIONS

A theory for the motion of two-dimensional turbulent vortex-
pairs in homogeneous media has been developed based on separate
velocity scaling of the internal and external flow fields in-
volved in the motion. These two flow fields are depicted to be
separated by a thin region of high shear, which also forms the
boundary of the captured mass. The theory takes into considera-
tion variations in volume, circulation, momentum, and energy in
the flow field. The ratio of internal to external velocity
scales, ¢, 1s introduced as an important variable. The virtual
momentum coefficlent is shown to be linear in ¢, of the form
K1 -Kay.

The theory is specifically derived for the two limiting
cases of weak and strong circulation. In the former case,
¥ = 1 and the entrainment is weak; the asymptotic behavior of
the trajectory is z ~ ti Just as predicted by the usual theory

based on complete similarity and momentum conservation.

In the case of strong circulation, ¢ >> 1, the asymptotic
behavior of the trajectory depends very much on the way in which

vorticity from the shear layer 1s ingested into the vortex pair.

1 e e £ 8T e e d L aeant e e e 2L s
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1
In the case where the shear ldyer from opposite sides 1is in-~
gested 1n such a way as to cause annihilation of the ingested
vorticlty, then the asymptovic trajectory is z ~ t%. Under the
same condltions, the velocity ratio, ¥, increases toward the
asymptotic value K;/Ko so that the virtual momentum coefficient
tends to zero. As a result, the asymptotic motion assuming
vorticlty annihilation corresponds te a motion with complete
similarity and with energy conservation. The ratio of growth
of the pair radius with helght is shown to increase, approaching
a linear relation asymptoticalily.

Systematic experiments have been carried out, and the re-
sults for rise versus time and radius versus height are compared
with the theory. They lend strong support to the strong circu-
lation theory and further suggest that ingested vorticity is to

a large degree annihilated.

Based on these findings for the case of homogeneous flows,
a simplified theory is derived for the rising mction of vortex
pairs in stratified media. The assumptlons of the theory are:
(1) the motion is determined by conservatior. of volume, mass,
and energy (negiecting vorticity arnd momentur); (i1) complete
similarity (dR/dz = B, a constant). Generai laws of motion ir

stratified media have been derived and soiutions given; particu-

i e e N e Bty + et s e e me e .

larly interesting cases are discussed in detall.

Motions 1n stratified media were shown to depend on four

non-dimensional parameters. Two of these depend upon the initial
conditions of the motion and the stratification of the media.

The other two are inherent in the detalls of the motion and had

o~

to be determined from experiments; one of tnese, the dissipatlon
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parameter D = CD/ﬁK was found to be 0.2 while the other, the
ratio of virtual kinetic and potential energy coefficients K/k
was found to be 4. On the basis of these numbers it may be
concluded that the dissipation rate is small and that the con-
tribu’ ion of internal motions to the overall kinetic energy 1is

large.

The experiments confirmed the environmental scaling param-
eters, which were used to collapse data taken under differing
conditions. Good agreement was found between predicted and ob-
served trajectories. Particularly good agreement was found for
the maximum height of rise. The time required to reach maximum
height was found to be inversely proportional to the Vaisala
frequency, \[EEL and was given approximately by tmaxwfgg = 1.8,
in good agreement with the theory. In general the experiments
confirmed the utility of the simplified theory for predictions
of the motion of vortex pairs in stratified media. This theory
has been utilized elsewhere for the prediction of the behavior
of chimney plumes rising into a stable atmosphere, with very
good agreement between the theory and full scale observations,
Tulin and Shwartz (197C), and also with excellent correlation
with experiments to the penetration of a density discontlnuity

by a turbulent vortex-pair, Birkhead, Shwartz, and Tulin (1969).
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o

SHEAR AMD ENTRAINMENT

' 1N

tNGESTED VORTICITY
MIXES HERE

FIGURE 3 - ENTRAINING VORTEX PAIR (W, >W,).
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6
/ l
! | /Eq.[26a] Ky = 1/2,0'K) = 0.38
0
!
]
5
di|
dRlz _, o
4
[
< SYM. ﬁg
R :
. 0 301
N
- O | 3m
T 3 _
o O 303
o o) 304
w A 305
= 7 | 306
2
1
0
' 0 i 2 3 4 5

RADIUS, R/R

FIGURE 4 -~ THE VARIATION OF VORTEX-PAIR RADIUS WITH HEIGHT IN A HOMOGENEOUS

MEDIUM, EXPERIMENT 39
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0 TYPICAL
EXPERIMENT

(o]

VERTICAL VELOCITY, W /W

RADIUS, R/R,

FIGURE 5 - THE VERTICAL VELOCITY VS. RADIUS OF A VORTEX-PAIR MOVING
IN A HOMOGENEOUS FLUID
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. THEORY: EXPERIMENTS:
24D -1 O RUN 301 7
8 ——— (2/z,) =1+ (2+D) (W,t/z,) — 0 RUN 302 -
o 0  RUN 304
77— NOTE: D MAY BE REPLACED -—t -
Y BE REPLACED BY A, O  RICHARDS (1965)
é
5
4

RISE HEIGHT, z/z,

D =1 CORRESPONDS TO CONSERVATION OF MOMENTUM SOLUTION

D =0 CORRESPONDS TO CONSERVATION OF ENERGY SOLUTION
WITH ZERO DISSIPATION

: | ] 1 | | | ] L]
] 1.5 2 3 4 5 6 7 8 9 10
TIME, Wot/zo

FIGURE 6 - THE RISE OF VORTEX-PAIRS IN A HOMOGENEOUS MEDIUM; COMPARISON
OF EXPERIMENT AND THEORY
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S6"
F _ ———?
AV
A 4
HOMOGENEQUS OR LINEARLY
DENSITY-STRATIFIED FLUID
48"
APERTURE 0.75" WIDE
_

PISTON DISPLACEMENT, L

FIGURE 7 - EXPERIMENTAL FACILITY FOR STUDYING VORTEX PAIR MOTION.
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THEORY
ENERGY BALANCE Ea. [43]
WITH D = 0.2
3} B = /6 5 43.5
A/B = -2.145 A
§=0
2.5¢ 43
¢
o o
0]
.ol a-a
24 T 2.5
\No 1.5¢4 T2
N
-
e o
o
w EXPERIMENTAL RESULTS
w 1 +1.5
a RUN
SYM. | Vo, | © S
O | 0 0
302 0 0
1.5 0 T
A ¢ | 304 0 0
W | 406 [-0.061]0.078
$ =0.52 O | 40 |[-0.051]0.086
. A | 2 {-0.21]0.159 s
® | «5 |-0.17]0.145
& | 205 |-0.374]0.509
v | 502 |-0.408}0.554
O | 206 |-0.595]|0.920 4
® | 4« |-0.612]0.904
¥ | s03 }-0.528{0.814
0 ) 2 3 4 5 6 7
TIME Wt /2,

FIGURE 13 - THE TRAJECTORY OF VORTEX-PAIRS {N STRATIFIED MEDIA; COMPARISON
OF EXPERIMENT AND THEORY.
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C, n, § - CARTESIAN COORDINATES

v, v, w - CORRESPONDING VELOCITIES

CENTER OF RISING MASS AT TIME ¢

ACTUAL ORIGIN OF MOTION

NN

VRTUAL ORIGIN OF MOTION

FIGURE 14 - NOMENCLATURE
ed4
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St et o 8 o i b b 1 0 et
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Corrigenda to Technical Report 231-15

"THE MOTION OF TURBULENT VORTEX-PAIRS IN
HOMOGENECUS AND DENSITY STRATIFIED MEDIA"

By
M.P. Tulin and J. Shwartz
April 1971

(1) Eq. 21, p. 12 should be renamed Eqg. 2la.
In this equation, in the left-hand side, a should
be replaced by a', and a(y) in the preceeding

sentence should be replaced by a'.

(2) Eq. 23, p. 12, Right-hand side should be multiplied

by u, where y = (Mz/p)/(wi Rg), i.e., Eq. 23 should now

o)
read

pil-h) _u R [23)
dz

=
]
I

&1 15

(3) Eq. 24, p. 12, should be replaced by
' —
Q—gLi _ R E:B + const. (A # 0) fol]
And the followlng equation, on p. 13, by

=4

' _ -
E—EL: = 4n R + 5&5 + const. (A = 0)

R uc
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151
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(4) Eq. 25, p. 13, should read

o 'K, (z-z)
M R,

= 4n R + gl (R - 1) [25]
(5) Eq. 26, p. 13, should read

Kl
L ey rae]

uR +K°

(6) Eq. 27, p. 13, should read

w' .
£ = S [27]
i _ o (1 +4)
R + KgR
F (7) The table on p. 14 should be replaced by the following:

Asymptotic Behaviour (¢ >> 1)

,‘ z ¥ We/wi z
3 0
E,
| uR _(=A+1) = -2 l+é/A
‘ _ = 1
| A > 1 I K, R K, R ~t
‘ = W'+A K = -2 1/3
Ay =1 R332 K /{u+tKy) K, R ~
3 - _o~(1+4) §%K—
A <1 R(Ky/0'X,) X /K, K, /KgR ~t 1
-1 1
2

A, =0 TR(Ky/a'K,) K, /Kg (K, /Ka )R ~t

U e el AL
[P NTeR o “\“\,‘ml{f‘.
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(8) Egq. 25a, p. 16, should be replaced by .

: Z-2 _
g’-ﬁ—_— -2 =LnR+&-[R-lj
M R, M

[25a)




