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ABRSTRACT

Dynamic tenslle tests were conducted at rapid, intermedinte, and
slow rates of strain on specimens of No. 1l reintforcing bars of Grades
GO and 79 ANG1Y billet steel, As-rolled bLars, moachined bers, btutt-welded
splices, Thermit splices, and Cadweld splices were prepared.  ‘The as-
rolled and machined specimens were tosted princoily to detemine the
tensile stirength characteristics of the vrades 2 and 79 Tars for use
len sscessing how effective the various spliced speciimens were when
tested, All tests were conducted in a 00,000-pound-cupaeitly dineuic
loader.

Under all loading rates, the breaking strength ror nll three splice
lypes was greater than *‘he 179 percent of nominal yield required 1y stani-
ards se! forth by the Americnn “Concrete Ingtitute, the feeriecan Weldin:

Society, and the Concrete Reinforcing Steel Institute. Apparently, how-
ever, the heat produced Ly the three splicing methods apyrrecinldy re-
Aduced the ductility of all gp’iced btars. The strains in ‘he bnars when
any of the splice types fajlcd were generslly less than ©4% percent of

the maximum sirair achieved by the as-rolled or rachined Lars at rupture.

Very few of the spliced bar:s met ASTM stundards for rindinus elongations

#7]

of 7 and 5 percent, respectively, for Grades €O and 79 bars. ‘ihe Lutt-
welded splices, Thermit splices, and Cadweld splices 21l perfowned

isfactorily under respid rates of loading. lowever, i' is helieved that

better quality control can be aclileved at n lesser cost ulinge eiiher 3
Thermit or Cadweld splice in lieu of a butt-welded splice. 1
The Grade £0 tars were more ductile than the drade 77 lLas and wore




—

nleo pore senaitive to the intluence of the strain rate on the dynamic

strenfth of the bars teasted,

An optaenl tracker was ased to measure postyield strains for all

the apeciron Gpes. Thils deviee made 1t possible, especially in the

rbid sfradn rate tests, Lo measure successtully the strains across the

yvirious apliced speoinens.

AL Sl
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In the design of reinforced concrete structures to resist dynsmic
forces such as those produced by earthquakes or blasts from nuclear
detonations, the loading rate influences the magnitude of the yield
st,reng',hl'5 of the steel reinforcement as well as the compressive
strength of the concrete, Hence, an increese in yield strength means
an increase in the energy-absorbing capacity, i.e. resistance, of the
reinforced concrete structural system. Economic considerations neces-
sitate designing blast-resistant structures to respond in the inelastic
range of response to take full advantage of the energy-absorbing capac-
ity of the system instead of designing a system well within the elastic
range of response as is done for conventional design. In most large
structures, it is necessary to splice reinforcing bars; hence, it is
essential that the connection be capable of transferring at least as
much load as the bar itself is able to sustain. Bars greater than size
No. 11 should be spliced either by mechanical means or by welding; codes
(ACI, AWS, and CRSI)6'9 reqQuire that these snliced joints be able to with-
stand a stregs greater than 125 percent of thc ncminal yield strength of
the grade bar being used.

From a search of the literature, it appears that only & limited num-
ber of studies (Keenan, Siess, and chell),lo_12 primarily of small-sized
bars, have been conducted to determine the increase in yield strength
of steel reinforcing bars with increases in loading rates. Only one

study examined the influence of rapid loads on the response of




reinforcing bars that had been spliced by a butt-welding technique;

no other references were found describing dynamic tests of bars spliced
by use ot other teckniques. In all these referenced studies, the main
reason Tor conducting tests on small-sized reinforcing bars was the
limited capacity of available dynamic loading equipment. Available at
the U. S. Army Engineer Waterways Experiment Station (WES) is a dynamic
rem loadert> that can apply 200,000 pounds of force within 1-1/2 msec,
thus making it possible to test large-sized steel reinforcing bars at
very rapid loading rates. Information derived from such tésts would be
very useful to designers of structures to resist dynamic loads. How-
ever, static tesbsl“ have been conducted for large-sized reinforcing
bars that were spliced by use of four different techniques, i.e. the
butt-weld, Thermit, Cadweld, and Howlett techniques.

There are essentially three type59 of steel (i.e. billet steel,
AflS; axle steel, A6L7; and rail steel, A616) used in making deformed
reinforcing bars. Of the three types, the billet-steel bars are most
commonly used, Within the billet-steel bar types are three grades,
i.e. L0, 60, and 75. The minimum tensile strength and minimum yield
point for these grades, respectively, are 70,000 and 40,000 psi;

90,000 and 60,000 psi; and 100,000 and 75,000 psi. The Grades 60 and
75 ~ars are being found more useful as a building material for strate-
gic structures designed to resist dynamic loads and, consequently, were
considered in this study. The ASTM specifications for these two grade
bars are described in References 15 and 16, respectively. The ASTM
specifications for deformation requirements and mechanical testing of

steel products are given in References 17 and 18, respectively.




1.2 OBJECTIVE

The primary objective of this study was to determine the effective-
ness of three different splicing techniques (butt-weld, Thermit, and Cad-
well techniques) for No. 1l reinforcing bars made of billet steel, AFLS,
for Grades 60 and 75 when stressed in tension at varicus lecading rates,

Secondary cbjectives included:

1. A determinavion of the dynamic strength characteristics of the
twe grades of steel used,

2. An investigation vo verify *the magnitude of loads applied to
the test aspecimens.

3. A measurement of postyield strein using an optical “tracker.

1.3. SCOPE

A total of 29 tests were conducted at three different general
rates of strain {rapié¢, interm2diate, and slow) on 2-1/2-foot-long
specimencs of No. 11 reinfcorcing bars ¢f Grades €0 and 75, both grades
being of the sawe type, ‘.e. billet steel, 015. Tae deformations on
all bars were of the barrel ribt type except for two special Cadweld
specimens that had "X" type deformations. The bars were spliced ac-
cording to specifications stipulated by the Concrete Reinforcing Steel
Institute af well as by instructions from the suppliers of the Cadweld
and Thermit splices. Manufacturers' representatives prepared the spec-
imens using btoth Cadweld and Thermit splices. Machined and as-rolled
btars were also tested 1o determine the basic te -ile strength charac-
teristics of the Grades 60 and 75 steel bars. A su.. . _e of tests for

the various types of specimens is shown in i'igure l.1l. All tests were

conducted with the WES 200-k.p-capacity loader.




All specimens were instrumented with strain gages in an attempt
te Jdetermine the state of strain at various locations on the test bars.
Accelerometers were attached to the grippers holding the bars in order
Lo Jdeternmine the acceleration-time histories of the mass at the ends
ol the bars for use in assessing the influence of inertial effects.

Two vptical ‘rackers were used tc measure strain over an 8-inch gage

lengtn for splliced bars and over a 3-inch gage length for machined
vars. ‘“he traczers were osrecially useful in determining strain across

12 tnree Sypes of splices tested. A three-degree-oi'=freedom mathe-
malical spring-mass model of the loading system was formulated by lumn-

izl the mas

m

o ti.e upper and lower grips, the test specimen, and load-
ings ram, By using this formulation, it was possible to determine the

t<rue lcad applied to the test specimens during rapid loading tests.

1.+ FREVIOUS WORK

The most recent and verhaps most pertinent work related to this
study is described in References 10, 11, 12, and 14, 1In cnly one
study”™” di2 the author atiempt to determine the influence that the
inertisi Torces of the grip and load cell would have on the load
applial tc the specimen; for these tests it appeared that such forces
were negligible. However, for ruies of strain greater than were con-
sidered, the inTluence of inertia could become significant. A brief
summary of Referenczs 10, 11, 12, and 1L follows.

1. Reference 10 (Keenan and Feldman). A total of 34 tests were

conducted using intermediate-grade (Al5) steel reinforcing bars of sizes
€, 7, ana 9. Ia most tests, the meximum stress level was reached in a
time ¢f ¢ mse~ and then held constant until yielding was complete. IT

N




the peak stress level was slightly greater than the static yleld strength,
the delay time to reach yield was long (up to several seconds), Lut if
the peak stress was much greater, the delay time was short (i.e. scveral
milliseconds). The authors beliecved that even though these tests were

not conductea at a constan' strain rate, the results were reliable. The
static yield ctrengths ranged from 40,500 to 4,322 psi, and the dymamie
yield strengths wvaried from .02 to 149 sercent ¢t the static yield value,
depending on the strain rate.

: 2. Refererce 11 (Siess). 4 total of 59 tes*ts were conducted, 35

rapid and 24 static load tests, using No. = bars o0 twe fipes of st
d ‘.e. intermediate grade (Al5) and high strengtn (4431). The main rurposa
o! this study was tc determine the effectiveness ¢t intermediate-grade

- and high-stirengin bars thas nhad besn buti welqded. Tle %tests were aloul

ecually divided vetween butt-welded and as-rclled crecirens. The iire
tc maximw: load for the high-strenpsth bars ranged r'rem C.C005 to U.CL3
sec. The time to yield for tihe irterrmediate-srade vars ranged rrow
about 0.003 to 0.00% sec. In these tests, the qynamic yield strasnghhs
were only slightly greater (up to 5 percent) than the static strengths
for both the high- and low-strength steels. Alsc, the welded bars per-
formed about the same as the 2s-rcllied bars except in the cases of

poor welds.

? 3. Reference 12 (Cowell). A total of 24 tests were conducted using

: No. 8 reinforcing steel bars of four different types, i.e., 415 (i

pes, nter-

] mediate grade), Al5 (hard zrade), AL3L (75,90C-psi mirimum yield), and

A432 (40,000-psi minimum yield). The effects of strain rate (up tc

1.7 in/in/sec) and machine testing speed (up to 30 in/sec) on the upper

e

nqueBnm T




yield streogs and tensile strength of cach steel were determined. At
Lie maxinmer strain rate, the percentage increases in upper yield stress
cver the static values were 53, 42, and 18 and the percentage increases
in lewer yield stresses were 29, 27, and 11 for the AlS intermediate,
AlY nard, and A+43” grades of steel, respectively. The increase in
vield stress was § percent at the maximum strain rate for the AL3)
steel. The yield and tensile stresses for machined bars were slightly
nighar than the values obtained rfor the as-rolled bars for all four
Lyres of steel.

L. Reference 14 (Holt). A total of 98 static tensile tests were

corlucted using No. 9, 11, 1%, and 18 reinforcing steel bars all clacsed
as intermediate-grade steel (A15). Tested were butt-welded, Thermit,
Tadweld, and Eowlett splices along with as-rolled bars to determine

the basic strength characteristics of the various bars. The static
yield sirengths for the four bar types ranged from 40,000 to 60,000
vsi. and the sta*tic tensile strengths ranged from 53,000 to 103,000 psi.
All spliced rebar specimens developed tensile strengths that were
greater than 125 percent of the nominal yield strength of 40,000 psi.
Stress-strain data for each specimen are presented in graphical and
tabular form in Reference lhk. An extensometer using a linear variable
differential transformer (LVDT) was used to measure the deflection
across the various splices during each test for the purpose of deter-
mining strain across a spliced joint.

5. References 19 through 2€. Other pertinent references dealing

primarily with the strength characteristics of steel as influenced by

strain rate and temperature effects are listed. The results from these
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studies were widely used in the studies described in the preceding

varagraphs .
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CHAPTER 2

PROCEDURES

A total of seven No. 1 bars of Grade 0 and four No. 11 bars of
Grade 75 all having bsrrcl-type detormations were procured. The origi-
nal length of all barc was approximately 20 feet. Shown in Table 2.1
are “he chemical and physical properties of the bars according to the
ni’} report provided by the manulacturer. Since ive different Lyres
oI specimens, L.e,, as-rolled vars, machined tars, buti-welded splices,
Thermit-welded splices, and Cadweld srlices, were preypared, they were
rendomly selected from the various bars sc that all of one t{ype would
rov be prepared from only cne or two bars (see Fipure 2.1). Two srecial
specimens (Tests 201 and 202} made from Grade 75 bars having "X" de-
Tormations were prepared vith Cadweld spiices. This type bar is nct
stown in Tigure 2.1 but can be seen in Figure 2.7. in inderendent
chemical analysis was made for the special bar (Test 201}, the weld
material in a butt-welded srlice, and the Grades D arnd 75 bars. Re-

sults of this analysis are summarized in Table 2.2.

2.2 TREPARATION OF SPECIMENS

The speciren selection for the various Grades <O and /5 bars, in-
cluding the numbering system used as well as the weight of each bar
with upper and lower grippers attached, is showvm in Table 2.2. The rec-
metric properties (bar diameter, deformation svecing, gap, etc.) of the
reinforcing bars used are summarized in Table 2.4, The measured diam-

cters (znd hence arcas) werc less than nominal valuez but were within

tolerable limits (CRSI and ASTM).g’ 15, 16 The measured areas were

\O
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within *te 5 pereent diffoerence allowed. The spacing and measurcments of

dufurmations met all specirtrications. The total gap thickness is the sum

o1 thicraesses of longitudinal ribs, For Grade 60 bars, there are threc

»ibe; Tor Grade 75 bars, there are four ribs. The standards do not
tipulate any minimum width for detormations.,

7.1.1 As-Rolled Bars. Thesc srecimens (Figure 2.1) were sav cut

from the reinforcing bars and were each 2-1/2 feet long. The ends were
“hreaded so that a special nut could be placed when the ends of the
bars were inseried in the wedge-type grippers used to hold the speci-
mens during a test.

2,1.2 Machined Bars. “hese bars were alsc 2-1/2 feet long but

were prepared with a double necked-down section that wes carefully
machined. A drawing showing the dimensions for these bar types is
presented in Figure 2.2. The necked-down rortions were very carefully
machined so that the diameters of the cross sections were within 00,0005
inzh for ‘hose lengths of machined section.

2.1.7 Buti-Welded Splice. Specimens 2-1/2 feet long were first

cut from the various rebvars and sawed in half at an angle of about 23
deyrees to the centerline of the bar. The bevel on one of the halves
was then saw cut so that when the bars were butt together the interior
angle that was formed ranged from 46 to 50 degrees to conform to recom-
zmendavions in Reference 7 (AWS). A cut specimen and a completed splice
of' a single-bevel groove weld are shown in Figure 2.3.

The welding techniques used conform to the practices described in
Reference 7. Fer welding both the Grades 60 and 75 bars, 5/32-inch-

diameter, low-hydrogen electrodes (E7018) were used. These electrodes
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conform to the American Welding Society Classification E70XX. Only the
Crade 75 bars were preheated to a temperature of 450 F. Preheating
was done with a torch, and the temperature was measured with a thermo-
couple. The unwelded Grade 75 bars were first positioned in a steel
angle prior to heat treating in order to maintain proper alignment.

The angle not only served as an alignment jig but also as a heat sink
that helped to maintain even preheat temperatures for the bar. Velding
was accomplished by qualified welders with a dc manual electric arc
welding unit operating at 140 amps dc. 11 welded specimens were
X-rayed by the Mid-South X-Ray Company of Jackson, Mississippi, and it
was determined that all welded butt joints were satisfactory (see
Table 2.5).

2.1.4 Thermit-Welded Splice. Used ir this preccess are various

mixtures of metal oxides and metallic reducing agents that, upon igni-
tion, react to produce heat. During welding, the reaction procduces so
much heal that it leaves the products of the reaction in a superheated
rnolten state. The Thermit mixture for welding reinforcing bars pro-
duces superheated molten welding steel of the following typical anal-
ysis: carbon (C), 0.42 percent; m;ﬁganese (Mn), 0.54 percent; phos-
phorus (P), 0.04 percent; and sulphur (S), 0.04 percent. Additional
information is presented in the manufacturer's brochure (Reference 27).
A complete splicing kit and a rebar to be spliced are shown in ¥Figure
2.4. The bars were spliced according to the tollowing step-by-step
procedure under the supervision of a representative from the manufac-

turer of the Thermit kits.

1. Step 1, Alignment of Bars. All bars to be spliced were aligned

11



in a jig made of structural steel angles so that each bar was on the
same centerline and maintained in this geometry for the entire welding
cycle. 1In all cases, the vertical gap between bars was not less than

1/2 inch nor more than 5/8 inch,

2. Step 2, Placing Molds. Half molds were attached to the bars

and temporarily held in place using a pair of spring clamps (see Fig-
ure 2.5). Bolts were then inserted through the three holes in the mold
below the bar and through the two above the bar. The bolts were
tightened, and the spring clamps removed.

2. Step 3, Positioning Molds. The molds were then moved along

the bars until the pouring gate was centered over the gap between the
bars. Holding the molds“in a vertical position, wedges were slipped
into cavities on each side of the mold between the bar and the mold to
prevent sliding or rotation (see two molds on the left in Figure 2.6).

4, Step 4, Luting the Molds. Asbestos cord approximately equal

in length to the circumference of the bar was placed around the bar

and firmly puéhed into the bell-shaped cavities on each side of the
mold. The bell-shaped cavities were next filled with a special mixture
of sand and clay (No. 2 luting material) that was very permeable. The
mixture was carefully pressed into the deepest recesses of the flare,
taking care not to slide the mold along the bar during the.process

(see two molds on the right in Figure 2.6).

5. Step 5, Placing Tapping Disk. One 10-gage steel tapping disk

l-l/h inches in diameter was then dropped into the small well, called
the tap well, at the bottom of the large cavity (see Figure 2.7). A

screwdriver was used to tap the disk firmly into place.

12
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6. Step 6, Addition of Thermit. The entire bag of Thermit was

added on top of the disk (see Figure 2.8).

7. Step 7, Ignition of Thermit Reaction. A half teaspoon of

starting Thermit, which is an exothermic mixture with a very low igni-
tion point, was placed at the top center of the Thermit mixture that
was placed in the crucible section of the mold during Step 6 (see
Figure 2.9). A long match was then used to ignite the starting Thermit,
which, in turn, ignited the main body of Thermit (see Figure 2.10).
The superheated molten metal, with slag floating on the top, melted
through the l-l/h-inch tapping disk. The molten metal then flowed
through the gap between the bars, with some of the hot fluid entering
the discharge cavity after transferring a considerable amount of heat
to the bars. By the time the discharge cavity had been filled accord-
ing to manufacturer's instructions, the bars were completely fused.

8. Step 8, Disassembling and Finishing the Weld. Disassembly of

the welding unit was begun approximately 10 min after ignition. The
mold as it appeared after the molten metal had cooled somewhat is shown
at the upper center in Figure 2,11. A view of a bar with the used mold
removed is shown at the lower left in Figure 2.11.

2.1.5 Cadweld Splice. The bars to be spliced were connected by

a loosely fitting metal sleeve. A graphite crucible was placed over
the sleeve and filled with Cadweld powdered metal. The powder was ig-
nited, and the ensuing exothermic reaction produced a molten metal that
I'lowed through an opening in the metal sleeve and filled the cavity be-
tween the outside surface of the rebar and the inside surface of the
metal sleeve. Under tension, the bar transferred load in shear to the

Cadweld metal which in turn transferred the load to the internally
13 "



prooved splice sleeve. The contents of a rebar splicing kit are shown
in Figure 2.12. Additional information about the process is presented
in a brochure published by the manufacturer (Reference 28). The Cad-
weld material produces metal having the following typical analysis:
carbon (¢), 0.43 percent:; manganese (Mn), 0.86 percent; chromium (Cr),
0.87 percent; and moliybdenum (Mo), 0.21 percent. The bars were spliced
according to the following step-by-step procedure under the supervision
of the manufacturer's representative.

1 Step 1, Alignment of Bars. All bars to be spliced were aligned

e

in a jig made of structural steel angles so that each bar was on the
same centerline and maintained in this geometry for the entire welding
cycle. Tn all cases, the vertical gap between bars was about 1/L4 inch.
The ends of the bars to bc spliced were inspected to insure that they
were clean and dry before placement of the metal sleeve.

2. Step 2, Placing Metal Sleeve., The sleeve was positioned with

the top hole directly over the gap between the bar ends. Asbestos
packing was then wrapped (two turns) around the rebar and against each
end of the sleeve (see Figure 2.13). The packing was not forced into

the siceve,

2. Step 3, End-Alignment Fittings. These fittings were placed

on the rebar at each end of the sleeve. They were then slid over the
packing and snugly locked in place over the sleceve (see Figure 2.14).

L, tep 4, Horizontal Packing Clamp. This clamp was placed in

position and tightened by turning a hand knob in order to squeeze the
end-nlipnment fittings toward the sleeve, thus wedging the packing
securely ngainst the sleeve and rebar to prevent leaking (see

P ipure 2.15).
14



5. Step 5, Guide Tube and Ceramic Insert. The guide tube (sec

Figure 2.15) was placed in the hole in the top of the sleeve and then
a ceramic insert was positioned around the guide tube (see Figure 2.6},

6. Step 6, Seating of Pouring Basin. The pouring basin was

placed over the ceramic insert and secured to the sleeve by tightening
a chain attached to the pouring basin (see Figure 2.17). The chain
was tightened just enough to keep the assembly from tipping.

7. Step 7, Crucible Attachment and Addition of Cadweld Fowder.

The graphite crucible was attached, and then a steel disk was placed
over the top hole of the pouring basin. The Cadweld powder was added,
and starting powder was placed evenly over the top surface (see Figure
2.18). The crucible extension was then placed on top of the graphite
crucible,

8. Step 8, Ignition. The starting powder was ignited with a

flint gun (Figure 2.19).

9. Step 9, Removal of Crucible and Other Fittings. Approximately

1l min after the filler metal had solidified, the crucible and other
Tittings were removed. The splice with the residue riser composed of
slag and metal can be seen in Figure 2.20.

2.1.6 Method of Gripping Specimens. Special care was given to

using a gripping system that would not slip under load or cause high
stress concentrations to the specimen. All specimens except the
machined-bar specimens were anchored in wedge-shaped holders filled
with babbitt metal. A detailed drawing of one of these holders is
shown in Figure 2.21.

A special angle jig was used to hold the grippers with a test bar

15




in place (see Figure 2.22). Molding clay was packed around the inter-
section of the bLar with the grippers. The entire assembly was raised
to a vertical position, and then molten babbitt metal was poured into
the end of the gripper to a prescribed height (see Figure 2.23). Sheet-
metal inserts were used to protect the threaded portions of the gripper
and test bar during the pouring operation. An end view of one of the
grippers showing the solidified metal in the well is shown in Figure
2.24. The end nut also shown in the figure was then attached, and the
bar was ready for testing.

The grippers for the machined-bar specimens were much simpler in
design, as the ends of the bars could be threaded and screwed into the
two grippers. A detailed drawing of this gripper is shown in Figure
2.25.

A bar in place in a poured gripper ready for testing is shown in
Figure 2.26, and a machined bar with one gripper attached is shown in
Figure 2,27. The two holes visible in the gripper on the right were
used for attaching an accelerometer. The weights for all the test

bars including the weight of the grippers are summarized in Table 2.3.

2.2 INSTRUMENTATION

The bars with end grips attached were screwed into the upper and
lower connections of the 200-kip-capacity loader. Load cells were
integral parts of the connections, the lower cell measuring the applied
load and the upper cell measuring the reactive load.

All specimens were instrumented with strain gages in an attempt
to determine the state of strain at various locations-on the test bars.

Accelerometers were attached "o the upper and lower grimpers holding

16
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the bars in order to determine the acceleration-time histories of the
mass at the ends of the bars for use in assessing the influence of in-
crtial effects. An optical tracker was used to measure strain over an
8-inch gage length for all specimens except machined bars, for which
strains were measured over a 3-inch gage length; this device was espe-
cially useful in determining strain across the threc Lypes of splices
tested. On certain machined bars, high-speed movies were taken in an
attempt to study the development of failure. The gage rocations for
the five types of specimens considered are shcwr, in Figure 2,28, and
the measuremerts made for each test are presented in Table 2.5. An
instrumented machined specimen in place end ready for testing is showm
in Figure 2.29. The two ortical treckers used tc measure primarily
rosttest yield stirain can be seen in the foreground.

2.2.1 Load. Load cells, or dynamometers, having a meximum capa-
city greater than 200 kips were attached tc the grippers at each end
of a test bar in order to measure the aprlied ard reactive forces dur-
ing a test. The cells were carefully machined from 4130 steel quenched
and tempered to produce & rminimum yield strength of 100,000 psi. Fcur
120-ohm strain gages were mounted on the surface al the midheight of
each gage. One set of two sirain gages mounted 180 degrees apart
sensed vertical strains, and two gages that formed the second set {alsc
180 degrees apart) were mounted to sense circumferential strains. The
cages were connected electrically to form a wheatstone bridge, with
strain gages in each set as opposite arms of the bridge. In this cen-
figuration, the net contribution tc the electrical imbalance of the

bridge, whether the cell is strained in tension or compression, is
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always additive. When the load cell is in tension, the vertical strain
rages elongate, resulting in an increase in gage resistance. At the
same time, the circumferential strain gages are compressed, resulting
in a decrease in gage resistance. Ideally, each strain gage of a set
contributes equally to the bridge imbalance; the circumferential set
contributes less by a factor y (Poisson's ratio for steel). Conse-
quently, the output of the cell is not four times that of a bridge con-
taining a single active gage but rather 2(1 + ) times that output. For
2ach page, the applied load versus indicated strain remained linear up
to a maximum load of 200 kips. Both load cells were calibrated before
and after the test series was completed, with no differences noted.

2.2,2 Strain. All strain gages applied to the test specimens

were 1/b-inch-long, foil-type gages with gage factors of 2.095 + 0.5
percent at 75 F. A wheatstone bridge circuit with three dummy gages was
used with each active gage. Step-by-step procedures for attaching a
typical strain gage are as follows:

1. Step 1. The surface where the gage was to be attached was
rougherned with 220 emery cloth. Then the test bar was placed in a
pair of V-cut wood blocks. A ball-point pen was used to inscribe hori-
zontal and circumferential lines to mark gage locations (see Figure
2.30).

2. Step 2. Two separate cleaning operations were performed.
Feron TF Degreaser was first used to remove ink and other foreign ma-
Lerial; however, the lines inscribed in Step 1 were still visible. A
cotton swab was then saturated with M-Prep Neutralizer 5 and rubbed

over the bar to remove all traces of grease. The treatment was
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rcpeated until nc discoloration occurred on a white paper tissue that
was rubbed over the bar.

3. Step 3. Epoxy FIY 150 made by Baldwin Lima Hamilton was pre-
pared and applied to the surfaces that were *o receive strain gages.
(If the metal is not clearn the epoxy will form heads.) Each strain
guge was placed on a strip of Mylar tape snd then pressed on the netnl
surface that was previousiy prepared with erciy (see Figure 2.21). 1lhe
Milar tape was then gently rressed witk fingers To remove alr bubd
underncath excess tape was then cut off.

L. Step 4. A strip of Teflon and a strip of Scoteh £8 electrianl
tape were then wrapred arcund the bar (see Figure 2.22). The purpcse
of the Teflon was to eliminate slippage and the possibility of pulling
as well as tc prevent the electricel tape from slioziiing to the goge
later when the tape was removed. Additional electrical tape was then
tightly wrapped around the bar to develop a clamping pressure cof 5 to

15 psi. The gages were then allowed to cure fcr at Zeast 12 hours at

1o

temperature of 75 ¥,

5. B8tep 5. The electricel taepe, Teflern strip, and Mylar tagpe
directly over the gage were then removed. Paper masking tape was then
applied to cover only the gage grid to avoid accideutal damege during
the scldering cperatlion.

6. Step 6. Resin flux was then applied to the gage tabs and
terminal strips. Solder drcps were then applied to the gage tabs {(two
on tabs) and the terminal sirip (four on slrin). Thin copper wire
having a <oating of tin was then attached between cach goge tab and

terminal strip (two wires per gage, see Figure 2.33)., The wires were
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looped to allow for movement later when the bars were tesgted.

‘. Step 7. Two braided-shield, vinyl-covered conductor lead wires
were next attached to the terminal strips (see Figure 2.34). These
wires were nlso looped tc allow for stretching. Electrical tape was
then wrapped around the wires to secure them to the reinforcing steel
bar so they would not be accidentally pulled trom tlie soldered con-
neation on the terminal.

¢. Stev &. Resin solvent was brushed on not only to make remov-

ing the maskirg tapc easier but alsc to clean the gage and leads (see

7]

igure 2.3%), Excess solvent was gently blotted off with soft paper
tissue. The electrical resistance of the gage wes then checked to
insure that it had not shorted out.

9. Step 9. An air-drying polywrethane coating (M-Coat A) was
then brushed over the gage to protect it from moisture. A water-
rosistant silicon resin (Gagekote No. 3) was next applied and allowed
to dry for 30 mirn., The assembly was then ready for testing.

2.2.3 Acceleration. Two 10,000-g, piezoresistive-type accelerom-

eters manufactured by ENDEVCO were used to measure the vertical accel-
eration on the upper and lower grippers, respectively. They were
attached to the grippers with screws; however, a Teflon sheet wes

lnced between the underside of the gage and the surface of the
grirppers.,

The accelerometers comprise a mass attached to a cantilever ele-

mer.t. When in motion, the mass exerts a force on each of the piezo-
resistive sensing elements comnected in a whealstone bridge configura-

ticu. The resulting imbalance of the bridge is prcportional to the
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acceleration sensed by the gage. These gages were calibrated using a
centrifuge up to 1,000 g's. The gages are lincar to +2 percent for Lhe
full range of 10,000 ¢'s specified by the manufacturer,

2.2.4 Optical Tracker. Two optical trackers (Physitech, Inc.,

ModeY 39A Elecirocoptical tracking system) were used to reasure the
change in axial displacement between two points on the surface of the
reinforcing bars when they were siressed in *ersion. In order for ‘he
point te be discernible when trecked, a presorited varget was painled
onn the sur’ace of the reinforcing bars. Tiie prescribed target is any”
wo color interfaces providing apuropriate contrasti. The color ccmbi-
rnation used on the %test specimens was white on tep and black on bottom,
with the referernce point lying on the interface formed by the two
ceoiors. It is this optical discontinuity that is tracked. The color
scheme can be seen on the bar in Figure 2.29. Zach target was illwmi-
nated using & 5,000-watt incendescent lamp placed at & distance of
aprroxinately 7 feet,

The electirooptical tracking system consistis of an optical head
with lens system, an optical celibrator, and a conircl it connected
by a ceble. The optical head, lens, and ortical calibrator are mounted
on a tripcd as shown in Figure 2.29. The trirod is in turn shock
mounted., The optical head nas a reflex viewer which is used tc adjust
the focus of the lens system. An oscilloscope is used in the critical
alignment of the optical head with *the target.

The optical head contains an image analyzer tube whichk converts
the light image focused on a photocathode tube inte an electron irmage

focused on en esperture plate. The electrons entering Lhe aperture are




multiplied in number by a photoelectron multiplier tube. It is the
output of this tube that provides the input to the control unit at any
‘nstant in time. The magnitude of this input is related to the posi-
tion of the image in the aperture and, therefore, the position of the
target with respect to the field of view of the optical head.

The electron image is scanned once every 40 pysec, or 25,000 times
a second. For example, if a welded bar tested dynamically broke within
3 msec, it would be possible to record 75 images with the optical
tracker. Also, if the targets displaced uniformly with time during
this interval the distance between images can be proportionately de-
termined. For instance, if the top target moved 0.263 inch, an image
would be taken approximately every 0.003 inch. If the bottom,farget
moved O0.474 inch, an image would be taken approximately every 0.006
inch.

System linearity over this range is easily checked using the
optical calibrator (Physitech Model No. CX-500). The calibrator is
capable of displacing the optical image of the target presented to
the optical head. The optical calibrator is present in the optical
path throughout the test. This device has a range of +0.5 inch. It
utilizes two prisms, one stationary and one movable. The optical
image of the target is displaced precisely the same distance that the
movable prism is displaced. The movement of the image by a precise
amount simulates the movement of the target by the same amount. The
displacement of the prism is made continuously variable by rotating a
screw mechanism which is coupled to a dial gage that indicates the

travel of the prism in marked increments of thousandths of an inch.
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2.2.5 Recording Instrumentation. The cutput of the contrcl unit

is a varying dc voltage of a magnitude great enough not to require
amplification before being fed to the frequency-modulated record elec-
tronics of the analog tape machine, which was an Ampex Model FR-100.
The outputs of the other transducers and single-element strain geges
are amplified by a factor of approximately 200 before being fed to the
tape machine. Amplification was accomplished using WES-constructed de
amplifiers. A dc excitation of 4 volts was used for all transducers
and strain sensing networkxs. The instrumentation tape recorders used
were Ampex Model FR-100 operated at 6Q in/sec. The Inter-Range Instru-
mentation Group (IRIG) specifies that the frequency response of instru-
mentation tape machines vperating at 60 in/sec be flat out to 20,000 Hz.
This is equivalent to the capability of recording rise times on the
order of 12 psec wichout distortion. This easily satisfies the re-
quirements of recording all signals generated during the tests includ-
ing loads, strains, uccelerations, and optical tracker outputs. Flay-
back of the deta f'rom magretic tape to payper was accomplished using &
Sangamo 4700 tape machine and a Consolidated Electrodymamics Data Graph
5-133 direct-write oscillograph. FPleyback of the data in digital for-
mat was achieved directly frum the magnetic tape using an analcg-to-

digital converter system.

2.3 TEST DEVICE
All tests were conducted in the WES 200-kip-capacity dymamic
loader, which is a large, hydrauwlically actuated device with a rigid

support system (see Figure 2.35). At maximum loading rates, the loader

nNY
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is capable of applying a 200-kip force to a stiff specimen within a
time span of 1.5 msec. The maximum stroke of the loading ram is
L inches.

The device is pressurized with a low-volume, high-pressure multi-
plier and is triggered by a ruptured-disk valve. Basically, the actu-
ator has three pressure chambers: one above the piston (upper chamber);
one below tle piston (lower cﬁﬁmber); and one between the two rupture
dizks. The machine is cocked by a slow buildup of pressure below and
above the piston while a slight preload on the specimen is maintained
(approximately 1 to 2 kips). Concurrently, pressure is built up in
the oil volume between the two rupture disks; the pressure between the
rupture disks is maintained at approximetely half the pressure of the
0il in the lower chamber, thereby allowing containment of half the
total pressure below the piston by the first rupture disk and the re-
méining half by the second rupture disk. To trigger the machine, the
pressure between the rupture disks is suddenly reduced, allowing the
total fluid pressure in the lower chamber to be exerted on the first
rupture disk, thus causing it to fail. When the second disk ruptures,
the pressure below the ram is rapidly exhausted, aqd the ram is rapidly
accelerated by the pressurized oil above the piston. The specimen that
is positioned above or below the ram is thus loaded. Rise times to full
load of 1.5 to approximately 100 msec can be achieved by placing the
proper orifice plate on the upstream side of the ruphture disk assembly.
Rise times from 100 msec to 1 sec are produced by replacing the rupture
disk assembly with a 1/2-inch-diameter solenoid valve to control flow
rates. Orifices are also used with the solenoid valve to produce desired

a 1 .
rise times oly



During the cocking operation, the load signal is split from the
top load cell and displayed on & highly sensitive digital voltmeter.
This voltmeter records the small preload pressure that is maintained
on the specimen to remove any slack from the load column and to seat

the ball-swivel Jjoint located at the top of the lcad colum.

2.4 LOAD ANALYSIS AND DATA RLDUCTIOR

For rapidly applied lecads, inertial forces can exist that will ine
fluence the response of the louding systom. Consequentliy, the accelera-
tion >f the rather massive lecading ram and that of the upper and lower
grippers need to be considered in order to deterrine what lcad was de-
livered to the test specimen. A cutaway view cf the loading device and
the associated lumped spring-mass model are showi in Figure 2.36.

The symbols are defined as follows:

Symbol Definition Dimension

K, The spring constant of the uprer reaction FLot
member

&N Mass of half the test specimen and all of L2
the upper gripper

x1 The displacement of Ml L

EN The acceleration of M, 1772

k2 The spring constant of the test specimen FL-l

My Mass of half the test specimen and all of the FL %72
lower gripper

X, The displacement of M2 L

%, The acceleration of M, 118

{Continued)
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Symbol Definition I'imension

ka The =uring constant of the loadinyg ram FL
“ - \ . -4 2
. Mass of the loading ram FL 7T
J
X3 The displacement of M3 L
K, The acceleration of My L77?
F(t) The applied time-dependent force F

The masses shown in the mathematical model were uncoupled, and

equations of motion and equilibrium were written.

k(- %)) = M%)+ kX f kyX, (2.1)

M .
1 } MyXy

- W = M. ¥ - - 2.2
KD(X3 ?) ¥, + k2(x2 xl) f kg(Xe Yl) (2.2)
M2 t M2xﬁ
+ k3(x3 - x2)
F(t) = Mt k3(x3 - %) f k3(x3 - %,) (2.3)
f P(t)
Substitubing Equation 2.2 into Equation 2.1,
i3(x3 - xg) - My, = ME o ko) (2.4)




2

ey -

The quantity k.((x3 - X represenis the load measured by the . wer

2)
ioad cell, and the quantity k,xl represenls the iocad measured by the

uwpper loed cell. Both 11 and MP T re2sured, and the accelera-

tions of Ml and M2 were reccerided resy-.cively by the upper and

lcwer acceleroncters. It was therefore possible to calcwlate bBguaticn

2.4 and deterrine if equilibrium was n2bieved using o

The equilibriws icad is the actuni lead &k (%, - x,0 u;riied to the
. =

test specimen and is the cre wsed in determin: of stress,

i

where occeleration values are very small or nonexisvenu, it 1s ctvicus
Vthat the icad rmeasured by the uprer lcad cell kle chouwld pe the same
as that recorded by the lower load cell k3(x; S

The analog records were dig. tized, and 2 cenputer routine wos
utilized tc determine stress-strain relaticnships wiih time. The tap-
ulated dala were then processed so that they were electronically

piotted tor rapid and intermediatc load rate tests. The slow lcad rate

data were hand-digitized and plotted.
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TARLE 2.1 MILL

REPORT FCR NO. 11 DEFORMED STEEL REINFORCING BARS

Grade
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Chemical Compesition of

Steel

Bars

Fhysical Properties
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TABLE 2.2 RESULTS JF 1NDEPENDENT CiIEMICAL ARALYSIS
Elenment Chemical Composition of Indicated Bar Types
Grade 60 Grade 75 Grade 758 Butt-Welded
Splice
pet <t pct pct
Carbon 0.k 0.Lo 0.41 0.08
Manganese 0.70 0.83 1.15 1.07
_ Phosphorus 0.019 0.017 0,07 0.013
Sulfur 0.0Lo 0.029 0.027 0,022
Silicon 0.19 0.32 O LB 0.57
Nickel 0.05 0.07 0.10 <0.C5
Chromium - 0.10 0.88 0.1h 0.05
Molybdenum <0.05 0.13 <0.05 <0.05
Copper 0.30 0.25 0.15 <0.05

& Results of Test 201, which was a test of a special specimen

having "X" deformations (see Figure 3.8) and prepared with &
Cadweld splice.
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CAn oo, SIMARY R TR LUMBERS AUD WRIGHTS FOR VARICUS SFEC NGNS
NI Laad fate™ wop dGrade Splice Totnl Weight Test  load Rate Bar Grade Splice Total Weight
. HER Tvped  of Bar and tla, to. Type of Rar and
Grippers Gripyers
pounds pounds
e et 1 ) AR L5 1ih Interrediate 1 5 B ‘;9-'0
i ! 0 25,2 174 Intermediate 1 o c s
e Harid 2 0 i 1,0 17 Intermediate 2 75 1 25.2
h pid o 0 73.5 177 intermedinte 1 75 T 69.0
15 Karid N oD 172 Intermediate 2 75 W 48.0
T vy bt i [} L 10,0 179 - Tntermediate 2 75 C 3.5
) intermedinte -0 o 8.0 180 © Intermediate 3 74 M 25.2
11 Kapld “ +0 c 73.5 181 Intermedinte 2 75 T 19,0
s Rapid L -0 M 05.2 182 Intermedinate 3 ] W 3.0
i Rarid & 0 T ©2,0 183 . Intermedinte gl Ta C 73.5
Wl Rapld 8 -0 ! &8.0 184 - Intermediate 3 75 T 19.0
‘.?‘. Ropid 1 T .‘ 25.2 185 Slow 1 s I 25.0
e Rapid 0 ¢ 73,5 185 Slow 5 ] ) 8.0
! R Ll 5 0 ¢ £9,0 87 slow 1 €0 ¢ ‘th,0
L8 Rapid 2 s M 25.2 186 slow L G0 1 25,5
1% Repid 1 -0 W 8,0 189  Slow 2 L0 T 49.0
10 Intermeldiate % Q0 < 73.5 190  Slow 3 40 W &85
i1 Trntermedinte o 0 u 25.2 191 Slew 2 50 i 25.0
o Intermedinte 1 Il T 9.0 192  Slow 3 60 C .0
° Intermediate P “0 W 8.0 192 Slow 5 (e} T £9.0
1 Interzedlate 2.0 3 25.2 94 Slow o 460 M 25.0
Ly Lubervedinte 3 0 c & 195 Slow L 60 W 8.0
Taterzedinte 3 50 T 59.0 19 Slow R ) C 74.0
fnteriedi-de -0 i 25,2 197  Slow - 2 5] I 25.0
cternedinte S -0 8.0 1% Slow 2 40 T 70.Q
Lo neeredinte -0 o TG 199 Slow 2 £] AR 48,0
D il 25,2 200  Slow 1 s 1 2l 1
cerrelinte b 7 2.0 201°  Intermediate --= 7S C 72,5
i crretinte -0 AR 0 202 Inlermediste e " T 2.0
el 1 7S PR
volsad: Tntermedilnte = arproxirately 0.5 msec to peak load:
: C]:”l!'mﬂ‘,-'.-:f.'l«lcul gplivcs T = Thernit splice: € - Cadweld splice.,
aapg with "7 deformations (see Fieure 3.8),
~
30
Best Available
est Available Copy

&




*(g°¢ 9Indtg 93S) UOTIRWIOIOP +X, U3Ta deq Te1oady

*SQTa TeUTPNITRUOT JO $9SSAU¥ITY] JO 1mg M

%60 0£ 0 gLlo°0 6¢ "0 €80°0 ¢Qo"0  -- ETH'T 096°T  SHE'T OIR'T 7 Gl 202
660 0£°0 6L0°0 T¢."0 16070 hgo'o -- SON'T 0961 QELE'T  OIf'T o Gl 102
48’0 9e2°0 890°0 6.0 #50°0 T90°0 0670 hR"T 096°T G¢E'T  OTH'T ¢ Gl ey
¢8°0 ge’o QLOTO 6LL0 gL0"0  LLO'O  GG6°D eM"T 09T  9%€°T  OIf'T & Gl 6LT
1870 92'0 880°0 2C7 ¢ 00T°0 290°0 #6670 O T 096°T AGE'T ORI T ) GLT
1.0 €20 0L0°0 9L.°0 180°0 260°0 0£6°0 69T 099°T Q9E'T OIf'T T 09 Lot
elLo 12'0 2gLoT0 060 290°0 £€90°0 #£6°0 LOW'T 09T L9E°T OIf'T ¢ 09 26T
elo e 8L00 THO°0O LLO°0  690°0 HE6°0 99t°T 09¢°'T 9% T o't ¢ 09 6ot
el:o AN Y) 8L0°0 3goT0 080°0  990°0  2£6°0 QLE°T 096°T 2lE'T OIf'1T % 0% 96T
€L'0  T12'0 6.0°0 9080°0 980°0 690°0 £€6°0 HH'T 096°T  OLE'T  OTH'I § 09 091
eL'o 12°0 9L0°0 LgL.'0 0g0°0 090°0 @26°0 SON'T 096°T 99¢°T OI{'T 9 09 691
el°o 12'0 8L0°0 T60°0 0,L0°0 2L0°0 gE6 0 LOWN"T 096°T  L9E'T ORI & 09 Lot
SOUOUT S8UDUT SayouT Saout saYout SOUOUT SIaYOuT ZUT Ncw S9YOUT SIYDJUT
oSsau o38e umw ajeIpalt wraw
=¥OTYL osef  -J3AY ~IXER -I133Ul  -TUTH
den 1e Suroedg paan TeUT  paam Teut
Teq0L YIPTM USTaH 98eIaAy -SB3y -WON =-SBOj “WOoN
*ON 9pery *oN
SUOTYeUIOIa(] BAAY J3g9ureT(q Jeqg 7199318 9S9]

QELSdL SHVE DNIDYOJINITH IWOS J0 SEIINIJO¥d JI¥YIANOZTO +°2 ITEVI

31

Ado) ejqe|leAy 1s0g




WABLE 2.9 RESULTS OF X-RAY TESTS OF BUIT-WELDED SPECIMENS i

rilm used was X-ray film No. I-V2.

Test No. Bar No. Remarks

146 2 Satisfactory

150 3 Satisfactory

15k 6 Satisfactory

159 1 Light porosity; satisfactory

152 2 Light porosity; satisfactory

158 5 Satisfactory

7k 1 Light to moderate porosity; satisfactory

178 2 Light to moderate porosity; satisfactory

182 3 Satisfactory

186 5 Light perosity

190 3 Light to moderate porosity; satisfactory

195 L Moderaﬁe porosity; satisfactory . ;
-- 7 Light porosity
- 5 Satisfactory

-- b Satisfactory
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PR

orhy

b 4,,4,,,.}9_; —_—— —q
i
o 10:5%8 2174+ 378" 3072+ 38" /g _10-58" -
b D ! .
§oi ol 1172 1.375
[ ! ‘ — = ! L‘_
I T R N I
SN |
3’8 R
UPPER I ‘\— 14" R LOWER
' : END S END
- K] dl d? d3
3 TEST NO. D'AM AREA DiIAM AREA DIAM AREA
. d, A, d2 A, d3 Al
INCHES N2 INCHES IN2 INCHES IN2
138 1.1245 0.9925 €.7495 0.4410 1.1250 0.9935
148 1.1290 1.0008 0.7505 0.4422 1.13:10 1.0040
; 152 1.1280 1.0006 ©.749C 0.4404 1.128% 0.9237
" : 161 1.1430 1.0364 0.7495 5.4410 1.1490 1.0364
164 1.1285 0.9944 57818 0.4533 1.1256 0.9%46
167 1.120C ¢.9847 G.746C 0.4369 1.1200 0.9847
188 1.1245 ¢.9926 0.7500 c.ad'e 1.1245 0.9926
- 191 1.1250 5.993% 0.751¢C c.4427 1.1280 0.9935
194 1,1250 0.9935 €.75G0 G.4a16 1.1250 6.9935
155 1,1255 C.9944 6.7549C 0.3404 1.1285 0.9944
158 1,125C 0.9958 0.729¢ C.440C4q 1.125C G.9635
170 1,1180 0.9912 0.7500 0.4418 1,1180 0.9812
i73 11,1250 0.993s 0.7500 C.4416 1.1280 0.993%
176 1.1240 0.9918 0.7395 ©.4410C 1.1240 G.9918
180 1.1235 0.9909 0.7500 C.441¢ 1.123% 0.9909
185 1.1260 0,9953 0.7510 0.5527 1,1265 C.9962
197 1.1250 0.9935 0.74980 0.34Ca 1.1280 0.993¢
200 1.1250 G.935 C.7560 0.4416 1.1250 0.9935

Figure 2.2 Scrematic¢ and dimensions for machined-bar specimens.
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Figure 2.3 Butt-welded splice.

» 1 Thermit splicing kit and rebar to be spliced.

Fiecure

36




At

T R

o

e g s ey

L TR

o

Figure 2.5 Thermit process,
placing molds.

Fipure 2.7 Thermit process,
placing tapping disk.
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Figure 2.6 Thermit process,
positioning molds.

Figure 2.8 Thermit process,
adding Thermit.
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Figure 2.9 Thermit process, Figure 2.10 Thermit
adding starting Thermit, process, ignition.

Figure 2,11 Thermit process
postignition.

38

"4




TS

"3 Burorrds

PTampe) 21°2 aandtyg

T et e




TS R AR R e

Qi Rl

N3 e
Flouve 7,14 Uadwold javiwii,
piaalng methl Rlogvy,

Pigdre 2,18 CadWald proichb,
uhdealigunent Cituingd,

3 3 Ch UYL
Fiipe 2,1y Cadwold provesd, P igure 2,10 Cadvald procuni,
) o Wl . , R
Vot soahul uheking alnmp, ngywde lnaoery,

Lt



T

Fo7

; .

£ -

£ 2

€ B

E -
: Figure 2,17 Cadwold procuid, Fleare 2,0Y  Crdwold Procens,
: gualing of pouring Lasin, aruntsia and nddition of

Cudueld pudader,

Figure 2,15 Cadweld procuas, Firure 7,20 Cadweld procces,
fenidvion, erucible nnd oLher Slutines
) renoved,

L1




3-37i¢"

. T % pAANA.
JoLREBAR L ilLH | | I I I
e }5;\ R

212 THREADSIN.
-V

[N
l
i

1.3/8"a12 THREADS/IN,
SPECIAL NUT -

Pipure 2,71 Teured-metel gripper.

Alipnment jig For pourcd=type prippers.

e

TR

ant




PP
2000t €1 (),
g rre

f‘,_"..~ ; ’ ‘,.?h‘
NN AU

AN AR Z I AT T T E R RN N 0.05:/,
't'a o . RN ’

FURCISC

Figurc 2.23 Pouring molten babbitt metal inte gripper.

L3

25




SR Ll i A DA R AT

13’8 =12 THREADS/IN,

I lpure

Enl view of puured-type gripper.

L=

3°=12 THREADYIN.
4

\\‘Q\\ N
AR

b 11 L 2l

3.3/4"

5 Gripper for machined bars.

n

1 U

"

ok,

Ll i

st

i e ]l ik

T TR Y TN

T RPRRA T RTPRTIE A §

il




e
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Figure 2.32 Pressing gages Lo bar.
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Figure 2.33 Wire attached between gage tab and terminal strip.

Figure 2.34 Lead wires attached.
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CHARACTERISTICS

PEAK DYNAMIC LOAD: 200,000 LB IN LESS THAN 2 MSEC.
RISE TIME: 1 TO 200 MSEC.

HOLD TIME: O TO 200 MSEC.

DELAY TIME: 15 TO 500 MSEC,
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Figure 2.35 200-kip-capacity dynamic loading device.
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CHAPTER 3

RESULTS

3.1 TABULATED RESULTS
Copies of the aralog records of fourteen tests that are repre-
scntative of the various specimen types tested are presented in

Appendix A. From these data, Tables 3.1 through *.5 were prepared.

Treluded in the tables ere the peax upper 2ad lower loads determined
from load cell readings, time to peaxk leoald, loading rete, yield strain
measur2ments, everage time to yield strain, average strain rate, Tirnal

total reduction in area in perconti.

¥ar the Grede 7% bars, in whiczh no definite yielid point existed, tic

wer

12]
11}

rre-

strain ra%es were not determingd until stiress-strair plot
pared and the yleld stress for a 0.2 percent offset modulus was deter-
iined, Then using the ctrain determined feor the 20fgei yield stirength,
the analor records were utilized tc determine the strain rates for

this vaiue of strair. For the Grade 7% machined tars (Jable *.&2) only

K1 b

the offget yield lozd, time to peak load, and loading rate were also
deterrined frorm the analcor records at the time dictated by the offsget

vield strain, This type of information was not included in Tables 3.3

through 3.5.

3.2 PCSTTEST IHCTOGRAFHS
Fositest photographs of all specimens are shown in Figures .1

through 3.8.

3.- GSiIRESS-STRAIN FiIOTS§

The analog records for the rapid and intermediate rates cf strain
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were digitized, electronically operated upon to take account of iner-
tial elfects, and electronically plotted. The stress-strain curves

for the slow load rate test were hand-digitized and hand-plotted. All
‘hese curves are summarized in Figures 3.9 through 3.64. The curves

arc presented in two parts for two different strain scales. The curves
are shown first for strains up to 20,000 uin/in; then each curve is
continued on the subsequent page for strains up to 200,000 uin/in. The
continued portions of the curves were plotted using optical tracker data

9

except for the elastic porticn of each curve. For cases in which the
optical tracker exceceded its calibrated range prior to rupture of the bar,
the curve was estimoted (dashed line) and continued to a strain value at
rupture that was measured after the test (see final elongation column in
Tables 3.1 through 3.5 for a summary of such values). For static tests,
stress-strain values obtained from the optical tracker (shown as open
points in the figurcs) were also plotted on the curves plotted to the
20,000 uin/in scale in order to compare tracker data with those ob-
tained from strain gage results. For the Grade 75 bars that did not
nwe a definite yield point, a 0.z percent offset modulus was drawn

and the intersection of this line with the stress-strain curve estab-
lished the offset yield strength of the specimen. Tor rapid load tests,
the method described in Section 2.4 was used to determine the true load
applied to the test specimen, which was then converted %o stress by
dividing this quantity by the cross-sectional area of the bar. Sample
calculations outlining the procedure to determine the true load for

actual tests at a particular time are discussed in Chapter k.
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CHAPTER 4

DISCUSSION OF RESULTS

The loading equipment, transducers, and electronic recording
equipment appeared to function properly. The upper and lower load
cells were recalibrated after all tests were completed, and the re-
sulting calibration curves were identical with the pretest calibration
curves. In most tension tests reviewed in the literature, only one
lcad cell was used; in the tests reported herein, a lower and upper
cell were used making it possible to compare applied forces with re-
active forces. As shown in Tables 3.1 through 3.5, the upper and lower
loads were approximately the same for iutermediate and slow strain rate
tests. However, for rapid strain rates, these loads were appreciably
different because of inertial effects. By using the procedures de-
scribed in Section 2.4, a corrected or so-called true load applied to
the specimen was determined. The strains determined from the optical
“racker data appear reasonable especially when compared with strains
determined from strain gage data, as shown in the slow rate test re-
sults presented in Figures 3.9 through 3.64. However, the tracker data
are valid within a band of approximately +1,200 pin/in of strain for a
particular stress level. A study of the static stress-strain plots
shows that in most cases the strains from tracker data are well within
1,000 pin/in of the corresponding strain determined from strain gage

data at a particular stress level.

4.1 SPLICED BARS

Shown in Figures 4.1 through 4.3 are composite stress-strain curves
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for butt-welded, Thermit, and Cadweld splices, respectively, that were
determined by averaging the appropriate curves presented in Figures 3.9
through 3.64. The breaking strengths of all the spliced bars were
greater than 125 percent of the nominal yield strengths as required by

€,7,8

codes, which are 75,000 and 94,000 psi for the Grades 60 and 75
bars, respectively; these values are also shown in Figures 4.1 through
4.3. The total areas (A2) under the various stress-strain curves for
the three general rates of strain, i.e., rapid, intermediate, and slow,
were determined using a planimeter. The area under these curves repre-
seuts the energy abscrbed by the various spliced bars. The area <Al>
under the curve bounded by 1.25 times the nomianal yield stress was de-
termined. It is believed that a ratio of the two areas (AE:Al) is a
good indication of the effectiveness of the splice, especially for
dynamic loads. Such values are presented in Table 4.1 along with ratios
of breaking stress to 125 percent of the nominal yield stress (cm:l.250y)
as well as ratios of strain at failure to 125 percent of the nominal
vield strain (em:l.25ey). A comparison of the total area (Ag) under

the stress-strain curves for the Grades 60 and 75 bars for the inter-
mediate load rates shows that apparently the energy absorbing capacity
for the Grade 60 bars is slightly greater. The Grade 60 spliced bars
seem Lo be more ductile than the Grade 75 srliced bars; however, none

of the spliced bars were as ductile as the machined or as-rolled bars.
This can be observed by studying the stress-strain curves in Chapter 3
and by ~omparing the final elongation in percent shown in Tables 3.1

through 3.9, In general, it seems that the machined bars were approxi-

mitely four times more ductile than the spliced bars. Based on this,
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it would seem rcasonable to assume that the heat produced by all three
of the splicing techniques affects the metallurgical properties of the
spliced bars, theredby reducing their ductility. The ASTM standardsls’l6
tor Grades 60 and 75 bars stipulate a minimum elongation of 7 and 5
percent, respectively, over an 8-inch gage length. Very few of the
spliced bars met this requirement (see Figures 4.1 through 4.3). It
should be noted that a 1 percent elongation represents a strain of
10,00C pin/in.

4.1.1 Butt-Welded Splices. The butt-welded splices all performed

satisfactorily strengthwise; however, most of them did not meet ASTM elon-

15,16 Only four of the nine Grade 60 spliced bars

gation requirements.
had final elongations greater than 7 percent. One out of three Grade
75 spliced bars had an elongation greater than 5 percent. The Grade 75
butt-welded splices appeared to be more ductile than the Thermit or
Cadweld splices made from Grade 75 bars. All the bars failed in the
welded joint.

4.1.2 Thermit Splices. All of the splices performed satisfac-

torily strengthwise; however, only three out of the nine Grade 60
spliced bars had final elongations greater than 7 percent. The final
elongations for the three Grade 75 spliced bars were much less than

5 percent. For the spliced Grade 60 bars, none failed in the splice
except that in Test 189, which was a slow load rate test. This bar
was in the elastic range of response when the splice failed. For the
three Grade 75 bars tested, one broke in the splice and the others
adjacent to the splice.

4.1.3 Cadweld Splices. ALl of the splices performed satisfactorily




strengthwise; however, the final elongatlons for all uine spliced
' Grade O bars were less than 7 percent, The final elongations for
three Grade 75 snilced bars with the bamboc deformation pastteran were

less than 5 percert., For the twe Grade 75 spliiced bars having "X"

dercrimavions, the rinal elonpation of cone w=ns about 5 percent, and

that of the ctiher wes greater thon § percent. All Grade €0 bars pulled

out of the metul spliecing sleeve. In Test 47, the =ar remaired elus-

tic when the spiice failed. For this test, only twe deformatinns were

within the slceve of the Cadweld splice, Since the Tedweid splice de-

er.ds upon the shearing resistance ¢f the deformebions on the rein-
a o

forcing bar, ils sirengih is dependent upoen tre totel shearing srvea of

BN

the deformstin

th

witiin the splice, The splizced Grzde 75 bars per- ) "5,

®

- - formed in the came nmanner except for those in Tests 201 ard 202, which

= were the only two bars having an "X" deformatisn pettern (see Figure

o

3.2, lMore spenr area for defeormation ver Inch of bar lencih was availi-

= able with this vattern than for ths bamboc deformsticn patiern character-

ing the "Y" deformations were more ductile and met the Tirzl elongation

16

requirement stipulated by standerdis., The width of the Jeformetion for 3
N these bars was greater thas the width of the deformation fcer the cther 3
B bars. Bused on the results of these tests, it is believed that the ASTM 3
. 15,16 . . s . . .
: standards shculd be changed to establich a minimum width for defor- 3
v mations cn reinforcing bars,

on
Y]

through 3,59 shows 2 definite bissed

TR

. diversion of strain determined {rom optical tracker data {rom that de-

termined from sirain gage data for llke siress levels. The strain cage
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data were taken on the bar 5-1/2 inches below the center of the splice,
whereas the optical tracker data were taken across the splice. The
ditfference in these curves, even taking into account the error (il,QOO
uin/in) in the optical tracker data, indicates that slippage occurred
in these splices. Slippages showing similar values of stress and strain
are discussed in References 14 (Holt) and 29 (Siess).

However, consideration should be given to tests made on a spliced bar
surrounded by air when compared tc a spliced bar tested in a reinforced

29,30 of reinforced concrete

concrete member, Tests (Siess and Sozen)
beams with and without Cadweld splices were conducted to determine the
measured load and/or moment with respect to deflection for these two cases.
Very little difference in ioad- (and moment-) deflection plots for the
heams with and without spliced bars could be observed. It was interest-
ing to note (in Reference 30) that the reinforcing bar in the beam with
the Cadweld splice ruptured (rupture occurred in bar adjacent to splice)

at a midspan deflection of about 1L inches. However, the bar in the
unspliced beam did not rupture when loaded to prcduce the same deflec-
tion. Observation of tests on butt-welded, Thermit, and Cadweld splices
in this study showed that the ductility of the parent bar was reduced
appreciably by any of the three splicing techniques. This helps to

explain why the beam with the spliced bar failed and the other did not.

L.2 DYNAMIC STRENGTH CHARACTERISTICS

An extensive series ot tests (Sanders)31 was conducted on No. 18
Grade 75 bars to determine differences in stréngth of as-rolled bars, bars
with deformations removed, machined-bar specimens having diameters of 1/2
and 3/b4 inch, and 1/2-inch-diameter specimens machined from different
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quadrants of the circular crcss section of the har, In these tests, the

average yield strengthis for both the 1/2- and 3/k-inch-diameter machined
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bars ‘were about 3 percent lower than that for the as-rclled bars. In
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tern [Test 201}, 2nd s tuti-welded splice. Feor each of the Sour speci-

seven separate rocrwelil Hardness evaluaticrs were nmzde across e

iometer» of the specimen as shown in Table 4.2, The chericzl analysis

4,

or Lhese same four srecimens 1S presented In Table 2.2. In all czses,

ithe specimens aprnear Lo be strenger awey rom tre center of the bar

except for one recading for the tutt-welded splice, which indicates that

the weld at %that lovaztion was peor. In general, however, bhased con the

rooxwell Hardness numrers, the weld material 2prears tc be as sireng

as ¢r strorger lhan the Grade 7% bvars tested., The ctress-sirain curves
for the butt-welded splices alsc support this cbservaticn., It is alsc

interesting to note that ¢
Reoxwell Hardress nwnoers for the Grades A0 and 735 hars {sncown in
Table 4.2) corresp-rds czlosely to the measured tensile strength

supplied by the manufacturer (shown in Table 2.1},

Relations of yield strength tc strain rate for all the Graics o2

i
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and 79 specimens are plotted in Figures 4.4 and 4.5, respectively.

In order Lo correlate the information on yield strength with re-
spect Lo strain rale that can be expected for typical structures,
Reflerences 32 through 35 were examined. The strain rate that a struc-
ture will undergo depends primarily on the shape of the structure, the
stiffness, and the shape of the time-dependent load.

A model aboveground structure (Kennedy)32 was subjected to the blast
effects from the detonation of a 500-ton sphere of high explosives (HE).
Bosed on the results of the model test, the prototype strain rates vary
from 0,0015 to 0.00% in/in/sec. A 1/l-scale reinforced concrete model
(Criswell)33 of a nine-panel floor system having drop panels, column cap-
itals, and four round columns was tested in the WES Blast Load Generator
Facility up to a pressure of 27 psi. Predicted prototype strain rates
based on the model results ranged from 0.05 to 0.10 in/in/sec. Deep re-
inforced concrete slabs (Albritton)3LL were subjected to high overpres-
sures from the detonation of a 100-ton HE charge detonated during the
MINE SHAFT Event. Strain rates of approximately 0.6 in/in/éec were re-
corded. A deep reinforced concrete beam (Balsara)35 was tested dynam-
ically using the WES 200-kip-capacity ram loader. Strain rates up to

0.2 in/in/sec were recorded.

L.2.1 Grade 60 Bars. For the slow load rate tests reported

hercin, the yield stresses for the as-rolled and machined Grade 60 bars
were about the same. The yield stresses for the as-rolled bars at the
intermediate and rapid strain rates appear to be 10 percent lower than

the average ctresses depicted by the curve shown in Figure 4.4, It was
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postulated early in the test series that the recorded velues of strain
for the spliced bars would be approximately the same as the results from
as-rolled bars. Consequently, for economic reasons only a minimum num-
ber of as-rolled bars were tested. The results of tests of the three
as-rolled bars fell within the scatter band for the data recorded. The
yield stress data determined for ihe spliced bars appeared to be about

5 percent greater than those for machined bars testel at slow rates of

%)

strain and about 2 percent greater for those tested 2t intermediate
strain rates. At rapid rates of strain, no differences between the
yield stresses feor machined bars and spliced bars csn be observed.

It is believed that the rapid rates of strain (vp to 5 in/in/sec)
achieved in this program extend the state-of-the-art in assessing the
increase in yield strength with increase in strain rate. The yield
stress at a strain rate of 5 in/in/sec 1s about 75 percent greater than

the static yield stress of approximately 70,000 psi.

4.2.2 Grade 75 Bars. Spliced bars were tested at only intermedi-

ate rates nf strain, whereas machined bars were tested at slow, inter-
mediate, and rapid rates of strain. The yield stresses for the ma-
chined bars fell well within the band of data for the spliced bars.
It can also be observed that the yield stresses for the Grade 75 bars
are not as sensitive to strain rate effects as those for Grade 60 bars.
At a strain rate of L in/in/sec, the yield strength is about 17 percent
greater than the static yield strength.

The chemical and physical properties of {the Grade 7% bars discussed

il Reference 8 are very similar to those of Grade 75 bars tested in this
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study: conscquently, it was possible to compare directly the strain
rate et'fects with respect to yield strength for machined test specimens
(see Figure 4.,0). The results from both these test series compare very
favorably, a fact which tends to lend validity to the results of both

test programs.

.3 LOAD ANALYSIS

Yor all rapid load rate %“esis, it was necessary to correct the
lcad applied te the test specimens to account for inertial effects.
This prozedure, however, was not necessary for the intermediate and
siow lead rate ftests. For many of the mochined bars tested, the upper
and lower necked-down sechions were instrumerted with strain gages for

the purvcse of uwbilizing these sections as load c21lls. The values of

itead thus determined were compared with the upper and lower load cell

4.3.1 Rapid Load Tests. The analog records, as shown in Appendix

A, were digitized at a sampling rate of 96 kc, which means that values
of load, strain, and acceleration were recorded approximately every
0.01 msec. The loads applied to the test specimens were corrected ac-
cording to procedures outlined in Section 2.4 at ecach time step ubiliz-
ing the WES central processor. By use of a plot routine, stress-strain
graphs were auhbomatically plotted.

Shown in Table 4.3 are uncorrected and corrected values for a
particular instant in time. The table is set up to correspond to Equa-
tion 2.4 of Section 2.4, In some instances, the corrected values for

“he upper load (Puc) and the lower load (P, ) do not compare favorably

2c

for the instant in time selected; this can be partially explained by
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examining the analog reccrds in Appendix A. For example, a study of
Figure A.5 shows that the lower =2cceleration record extends from a
finite value tc a maximum value cver & time interval so short that no
real difference can be detecied in the value fof the lower oad (Pz).
Suzh differences show up as variations in the stress-strain curves

showr in Chapter =,

4,3.2 Macrired Specimens. The uyper and lower macrined-down sec-

tions far the tests whore resulis are shown ir Tzble 4.4 were avaluated
to determine the epplied ioad. IThe average siralin was determined and
rmultiplied by the modulus of elasticity tc determine the average stress
from which load was determined. Alsc tabuieated are tke upper and lower
load cell readings. However, for rapid icad tests,>these readings were
adjusted to saccount for inept;gl effects. For the “ntermediate and
slow load rate tests, the vai;es ol uprer and iower load determined
from strzin readinés‘on the bar compmare very faverably with the load
cell reedings. For all the repid load tests ezcept Test 155, the d4if-
ferences in the upper ard igwer load velues determired from 1oad cells
were about the same as the differences in the upper and lower loead

values determired from the strain gage readings on the upper and lower

r.ecked-down sections,
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CHAPIER 9

SUMMARY OF RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

5.1 SUMMARY OF RESULTS
The resulis of the study reported herecin are summarized as follows:
1. The yield strength of the Giade 60 bars increased appreciably
as the loading rate or strain rate application was increased. Thg
vield strength of the Grade 7% bars did not increase so appreciably.
2. At st;ain rates of 4 to 5 in/in/sec, the dynamic yield strength

for the Grade 60 bars was approximately 75 vercent greater than the

static yleld strength, indicating an appreciably greater load-carrying

|4

capncity of the vars under dynamic load.

3. The Grade OO bars, which might be termed more ductile than the
Grade 75 bars, were more sensitive to strain rate increases.

L. The Grade 75 bars at high rates of strain, e.g., 4 to 5
in/in/sec, showed an approximate 17 percent increase in dynamic yield
strength over static yield strength.

5. TFor high rates of strain, i.e., 3 in/in/sec and greater, inertial
effects induced by the loading device were significant and need to be ac-
counted for in determining the true lcad applied to a specimen in crder
to determine the stress. However, for practical rates of strain asso-
ciated with most strategic structures, such inertial effects were insig-
nificant when determining the true load applied to the tensile test

specimen,

9.2 CONCLUSIONS
Based on the results of this study, the following conclusions are

velieved warranted:
140




1. All of the spliced bar types, i.e. butt-welded, Cadweld, and
Thermit splices, will function satisfactorily under static and dynamic
loading conditions for both Grades £0 and 75 billet steel bars conform-
ing to ASTM specifications for A6l5 steel.

2. 'The load-carrying capacity of all the spliced bars will in-
crease as the rate of loading increases just as do the load-carrying
capacities of the as-rolled and machined bars.

3. Tor 211 three Lypes of splice, the maximun strain achieved
is only about one-fourth as great as the strain *hat develops in the
as-rolled and machined bars.

4. The optical tracker used in this study appears to be a very
workable and useful tool for assessing the vosiyield strain for spliced

hars that have been tested to rupture.

5.3 RECOMMENDATTONS

Also based on the results of this study, the following recommenda-
tions arc made:

1. Either the Cadweld or Thermit splice should be used in +he
field in lieu of the butt-welded splice because it is believed that the
quality control for these two techniques is much better than that for
the butt-welded technique. The variation in the results of the hard-
ness test for the butt-welded splice tends to indicate an inconsistency
in strength for butt-welded splices.

2. All torch cutting and tack welding on deformed bars in the
field should be avoided if at all possible. These techniques preduce

heat that affects the ductility of the bars.

11



3. The strength characteristics of the Grade 60, and especially
the Grade 79, bars should be assessed under controlled environmental con-
ditions, it.e., such bars should be tested at clevated and subzero temper-
atwres to determine how variations in temperature affect their strength.
Tt is believed that severc temperatures could cause serious problems for
the Grade 75 bavs, which are more brittle in nature than the Grade 60
burs,

L. ASTM standards should be revised to include a minimum width for
detormablons on reinforcing bars to insure that adecuate deformation

chearing area per inch is provided.
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