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ABSTRACT A buried oil pipeline in permafrost will thaw the frozen

soil around it, and will settle as the thawed soil consolidates. Because

the amount of ice in the soil varies from point to point along the pipe

alignment, the settlement will be uneven, and will induce bending in the

pipe. Thaw settlement estimates from single boreholes give no information

about the possible magnitude of differential settlements, and instead

statistical measures of the 'intensity of fluctuations in thaw settlement

have to be used. Alternative sources of the required data are suggested,

and two different ways of estimating the effects on the pipe are described,

one way being based on random process theory and the other on statistical

simulation. The flexural stiffness of the pipe modifies the settlement,

and methods of taking this effect into account are explained.



INTRODUCTION

Some sections of the projected oil pipeline across Alaska are to be

built on permafrost. In frozen ground of this kind an active layer, typically

two or three feet deep, which thaws every summer, covers soil which remains

frozen through the summer and whose depth may extend to several hundred feet 3 .

This frozen soil remains frozen so long as the climate remains unaltered, but

may be disturbed by a successsion of unusually warm summers, or by human

intervention which alters the ground cover or the drainage pattern. The

permanently frozen ground contains segregated ice, and this may rather

arbitrarily be classified into ice lenses and ice veins,(whose greatest dimension

is horizontal) and ice wedges (whose greatest dimension is vertical). The

14 7mechanism of ice segregation has been discussed by Taber , Leffingwell

5 10
Lachenbruch , Palmer and others.

Consider the effect of a buried pipeline whose 6temperature is held

above O°C. In time the permafrost beneath and on either side of the pipe

will thaw, together with the embedded segregated ice. A thermal diffusion

analysis by Lachenbruch6 shows that the projected Alaskan pipeline will

produce thawing to a depth of about 15 feet after two years and 30 feet after

twenty years. As the frozen soil and the segregated ice thaw, and the thaw

water drains away, the pipe will settle vertically. If the thaw settlement were

the same at all points along the pipe, the pipe would settle uniformly and no

bending stresses would be induced in it. In fact borehole observations show

that the amount of ice within the soil can vary substantially over horizontal

distances of the order of 100 feet, so that thaw settlement varies from point

to point. This differential settlement induces significant bending moments

in the pipe. The intention of this paper is to examine how differential

settlements and the resulting bending moments and curvatures can be

estimated.

Imagine a trench cut in the frozen soil to the depth at which the

bottom of the pipe is to be buried, so that the trench bottom is strpight and
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level (Figure la). Let some external agency thaw the soil to a thaw depth h

below the pipe. As the soil thaws, free water is produced by the melting of

ice within the soil, and drains to the surface, if the soil is permeable

and the thawing process sufficiently slow. When drainage is complete, the trench

bottom will have settled into a new thawed profile (Figure lb). The height

difference between the frozen and thawed trench bottom profiles will be called

the thaw settlement and denoted z. Since the amount of ice in the soil

varies from point to point, z will vary with distance along the pipe alignment

(measured from an arbitrary datum) and will also depend on the thaw depth h.

The thaw settlement can be estimated from field borehole samples by making

thaw consolidation tests on representative samples taken from different

depths. In such a test the frozen soil is allowed to thaw in a consolidometer

while under a compressive stress equal to that imposed by the overburden, so

that the reduction in thickness following drained thawing of the sample can

be observed. Theindividual settlements. for the samples can thenbe summed to

determine the thaw settlement over the whole thaw depth.

The thaw settlement, then, determines the trench bottom profile

if the pipe is absent but the soil nevertheless thaws. Variations in

deflection of the pipe must clearly be related to variations in thaw settlement.

how they are related depends on the relative stiffness of pipe and soil.

Three different cases can be distinguished

model I : infinitely stiff soil / infinitely flexible pipe

Here the soil is so incompressibe that the thaw settlement is

unaffected by the loads applied to the soil by the pipe, which conforms

perfectly to the fluctuations in the thaw settlement profile

Equivalently, suppose the pipe to be light and infinitely flexible in bending,

so that it follows the settlement profile just as might a piece of string

resting on the trench bottom.

model II : infinitely flexible soil / infinitely stiff pipe

This is the other extreme case. The pipe is so stiff in bending that



it remains straight even though the thaw settlement profile is not straight.

It does this either by modifying the profile through the forces it exerts on

the soil or by lifting off the 'valleys' in the profile, leaving

cavities beneath

model III : intermediate between I and II

Here the pipe is sufficiently stiff not to conform perfectly to

the thaw settlement profile, but not so stiff that it does not bend atall.

It can bridge pronounced valleys in the settlement profile(Figure 2d).

One cannot arbitrarily assert that any single one of these models

correctly represents the behaviour of a real pipe. Such a pipe will

conform to long smooth fluctuations in the settlement profile, as in model I,

but will bridge short sharp fluctuations, as in model II. Model I will be

considered first, and then the effects 'of lift-off and of finite soil stiffness

will be examined.

MODEL I : FLEXIBLE PIPE

Think first of an ideal hypothetical situation in which boreholes have

been made at some short interval L along a proposed alignment for the

pipeline, and that the thaw settlement z has been estimated at each hole.

Assume that the weight of the pipe is sufficiently large, and its flexibility

sufficiently small, that it can conform to the thaw settlement profile. Then

the curvature of the pipe is the second derivative of z with respect to x,

distance along the pipe. It can be estimated graphically or by numerical

differentiation. If the boreholes at intervals L are numbered consecutively,

a second order estimate of the curvature K = d 2z/dx2 at point i is

K = (z_ - 2zi + z i+)/L 2  .. (1)

and a fourth-order estimate is
+ + 2

S- (-zi2 +16z i--30zi +16zi+l-Zi+2)/12L (2)

Once the curvature has been found, the greatest strain in the

wall of the pipe is simply
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S= K(pipe radius)

assuming that there is no bending in the horizontal plane.

In reality, of course, it is wholly impracticable to make boreholes

at very frequent intervals along the whole length of the pipeline. Estimates

of pipe curvature have somehow to be made from estimates of thaw settlements

at boreholes which are comparitively widely spaced, at intervals of the

order of a thousand feet. One cannot hope to predict what the curvature will

be at any given point, but it may nonetheless be possible to learn something

about the statistical properties of the variations of curvature. Such a

statistical approach could, for example, indicate how frequently we might

expect a certain curvature to be exceeded, in terms of an expected number of

events per mile, but could not predict the exact location of these events.

Suppose that in the field geologic units can be identified, over which

geology and surface topography are reasonably uniform, so that we can expect

the nature of the statistical variation of thaw settlement to be the same at

all points within a unit. From the thaw settlement estimates from

boreholes within a unit we can construct a probability distribution for

thaw settlement, which plots the proprtion of boreholes indicating a thaw

settlement less than z against the thaw settlement z. Figure 2 shows such

a probability distribution, constructed from thaw settlement estimates

at some 21 boreholes in part of the Copper River Basin of Alaska. The

assumed thaw depth is 20 feet below the design position of the bottom

of the pipe, and corrections have been made for the reduction in thaw settlement

due to arching. As far as the bending of the pipe is concern ed, what

is important is the horizontal scale of variations in z. Al most certainly

there is a strong correlation between settlements measured from boreholes

only 5 feet apart ; equally certainly, there is little corelation between

boreholes 1000 feet apart. One way of estimating the horizontal scale is

to observe the surface profile developed by ground which was once frozen

* The author is deeply indebted to the TransAlaska Pipeline System for
permission to quote this and other data mentioned in the paper.



but has since thawed. Highways, railroads, and airstrips which were

originally constructed on frozen ground with straight and level profiles

are often seen to develop waviness and bumps in their surfaces as a result

of thaw-induced settlement. The wavelengths observed are of the order

of 100 feet, although there are shorter fluctuations. If it is possible

to make close boreholes at regular intervals over a small part of the

whole alignment, and thence to estimate z at a number of equally-spaced

points, a more definite mathematical description can be used. The

appropriate mathematical description is through an autocorrelation function.

Imagine a sequence of n boreholes at uniformintervals L along a line, and

let z. be the thaw settlement at borehole i (i - 1,2,...,n) and z the1

mean thaw settlement, so that

The autocorrelation function R(k) is defined by

1 n-k
R(k) - n-k [ (zi+k-z)(Z i-i)

and expresses the way in which the correlation between zi and zi+k , averaged

over the whole record from n boreholes, depends on the spacing kL between

boreholes i and i+k. Two boreholes separated by a long distance can be expected

to have unrelated settlement values, so that if a large number of pairs of widely

separated holes are taken, and their settlement deviations from the mean

multiplied together, the product can be expected to be as often negative as

positive, and the expected value of the sum of these products will be zero.

Accordingly, R(k) tends to zero as k becomes large, and the value of kL at

which R(k) effectively falls to zero indicates the horizontal scale over which

thaw settlements are correlated.

Figure 3 gives thaw settlements estimated at each of a sequence of 14

boreholes in the Copper River Basin, made at 100 foot intervals along a straight

line. Figure 4 illustrates the autocorrelationfunction determined from the

data of Figure 3. The correlation is almost zero for a 100 foot interval

(k - 1) and negative for larger intervals (k - 2,3,4). However, plots of
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autocorrelation against k are notoriously difficult to interpret correctly 1 3 ' 1

and a long sequence is required before one can be confident that an

autocorrelation is smallI. All that can properly be said is that this

autocorrelation calculation does not produce a result inconsistent with the

observations of differential settlements of railroads and airstrips. It

suggests .;that thaw settlements are only weakly correlated at distances larger

than 50 to 100 feet.

Two lines of attack on the problem present themselves. One is more

mathematical, making use of the theory of random processes, and is

unfortunately only useful if, first, sufficient data is available to make

a reasonably accurate estimate of the autocorrelation function, and, second,

the probability distribution for z is closely Gaussian. The second uses

a simulation method, and is less precise, but requires less drastic

assumptions.

DIFFERENTIAL SETTLEMENT AS A RANDOM PROCESS

Imagine a large area of frozen ground over which geologic conditions

are uniform, and suppose a line drawn across this terrain. Along the line

the thaw settlement z will be a function of position x, measured along the

line from some arbitrary datum. At least in principle, this function, denoted

zfx), could be determined with arbitrary accuracy by making a large enough

number of boreholes at close intervals along the line. If the same measurements

were made along a second line the record of z(x) would be different; denote

this second record z 2(x). Along a third line z 3(x) would be different again,

and so on. Although they will be different in detail, atl the records z (X),

z 2 (x),z 3 (x) and so on can be expected to have some statistical properties

in common ; on each line, for instance, the mean thaw settlement i will have

roughly the same value. The ensemble of such records is called a random

process, denoted -(x)}, and meaningful statistical statements can be made

about such a process, although they will not of course enable us to predict
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the thaw settlement at a particular point on (say) a fourth line. The

theory of random processes has an extensive literature, and has been applied

12 8 8
to widely diverse problems; Robson , Lin and Crandall 2 , for example, have

described its application to structural and mechanical problems. Standard

results from the theory will be quoted without proof, and no attempt will

be made to be mathematically rigorous.

Indicate the average value of a quantity over a long distance x by

angular brackets '<>, so that, for instance, the mean value of x is

= <z(x)> .

and its variance a 2.is

a 2 <(z(x) - z(x) }2 >

Neither of these describes the horizontal extent of fluctuations

in z, but it is naturally they that determine the intensity of flexural

deformations of the pipe. Define now an autocorrelation function

R(u) - <fz(x) - i}{z(x+u) - -} >

obtained by multiplying the thaw settlement z(x) at x by the thaw settlement

•z(x+u) at another point a distance u further on, both settlements being

measured from the mean z, and then averaging for all x. It can be

interpreted in the same way as the autocorelation R(k) defined earlier for

a function only defined at isolated regularly-spaced points. If u is large,

settlements at x and x+u are uncorrelated, and R(u) approaches Zero.

Settlements at points close together are likely to be almost the same, and

so for small u R(u) is positive. By definition, R(O) = a2. If only

a finite record is available, say of length a, R(u) can be approximated

by the mean value of {z(x) - i}{z(x+u) - V}over that record, but the

estimate is likely to be unreliable for values of u which are not small by

comparison with a. Finally, define the spectral density of z, S z(f), by

Sz(f) f 2 R(u) exp(-27rifu) du

- - - - = i i I I i i I I I i i-w
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If the probability distribution of z is Gaussian , the random

process is completely described by its spectral density, and from it one

can calculate the spectral densities of its derivatives (which are then also

Gaussian random processes) and in particular the spectral density Sz,,(f)

2 2of the profile curvature d z/dx . Once the spectral density of a Gaussian

random process is known, the expected frequency of peaks can be calculated,

under fairly wide conditions8,12 . The number of peaks in unit distance

which are greater than m times the r.m.s. curvature can be shown to be

S f 2 S,,(f) df 1/2

exp(- m_2 /2)

[7 S z(f) df

Unfortunately very little work has been done on non-Gaussian

random processes. If the observed probability distribution for z described

in Figure 2 is plotted on probability paper, on which a Gaussian distribution

plots as a straight line, the result is that illustrated in Figure 5.

Because about 30 per cent of the thaw settlements are zero, the distribution

is !'clipped" at z - 0. Otherwise the distribution is closely Gaussian,

althought there are slightly too many large settlements for a precise fit.

A complete Gaussian distribution with the same mean and variance would have

some negative settlements, which of course do not occur. However, if the

actual -distribution were idealised as the Gaussian distribution represented

by the straight line, the effect would be to overestimate the frequency of

curvature peaks, and the idealisation would in that sense be conservative.

It is more difficult to estimate the spectral density. If the

terrain in question can be assumed to be geologically uniform, boreholes

could be made at frequent intervals along a line, the autocorrelation could

be calculated from thaw settlements estimated at each borehole, and the

spectral density could be found from the autocorrelation function. There is
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however no point in doing this unless the terrain can reasonably be assumed

uniform over a much longer distance than the length of the line of test

borings, for otherwise one might just as well try to determine z(x) by

interpolation along the test line and find its curvature d 2z/dx2 directly.

An alternative method is to examine the surface topography of ground which

was formerly frozen but has since thawed. Although no published data seems

to be available, human intervention has left behind it features which might

easily and economically be investigated, such as the undulating road profiles

common in Alaska, and the undulating abandoned railroad strikingly

4
illustrated in a recent paper by Ferrians et al . Thawing also produces

the complex surface topography known as thermokarst I, but published

descriptions of this phenomenon lack sufficient quantitative information for

any attempt to determine an autocorrelation function. So, unfortunately,

do detailed studies of ice lens exposures (see, for example, Leffingwell 7),

which concentrate on unusually large single lenses.
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SIMULATION OF DIFFERENTIAL SETTLEMENT

In practice it will often be impossible either to derive a spectral

density for thaw settlement or to assume that the probability distribution

is Gaussian. In that case a statistical simulation of the process can be

used instead.

The argument that follows rests on two assumptions, whose validity

is further examined later. It is first of all assumed that the thaw settlement

.z. at a point i is completely independent of the thaw settlement at

neighbouring points i+l and i-I which are separated from point i by a

characteristic distance L. Secondly, it is assumed that the probability

distribution for z derived from a hypothetical sequence of boreholes,

regularly spaced at a distance L apart, is identical to that derived from

the actual series of boreholes made in a certain geologic unit, which

are irregularly spaced a perhaps several thousand feet apart. The investigations

described earlier suggest that thaw settlements are uncorrelated at

separations of the order of 50 to 100 feet, and the smaller of these values

is a conservative estimate for L.

If these assumptions can be made, a simulation process can be used to

construct a model pipe profile which has the same statistical properties as

the actual profile. Imagine the p axis of the probability distribution of

Figure to be divided into 100 equal segments (Figure 6) and number them

0 through 99. Choose at random an integer from the 100 integers 0 through 99.

Suppose the first integer is 67 ; the corresponding thaw settlement is 1.12,

and this value is assigned to zI, the thaw settlement at the first point in

the simulated settlement profile. The next random number is 28, the

corresponding settlement is 0, and this value is assigned to z 2 , the thaw

settlement at the second point. The third number is 96, z3 is therefore

3.39, and so on. Given the probability distribution of z, and a means of

generating random numbers, an arbitrarily long pipe profile can be constructed.

It will not, of course, be a real profile, but it will - if it is long enough -

have the same statistical properties. In particular, the curvature at each



point i can be estimated by numerical differentiation, and in addition the

extreme values of the curvature within each interval L can be found by fitting

a polynomial through points on the simulated profile and finding the extreme

values of its curvature. Once the extreme curvature K has been calculated
m

for each of a large number of intervals of length L, a probability distribution
for K can be calculated : it tells us in what proportion of intervals any

m

given curvature is exceeded. Figure 7 illustrates such a distribution, not
--3 •

constructed from real data, in which a sagging curvature of 10 is reached

in 2% of the intervale L. If L is 50 feet, this implies that a sagging curvature

of 10-3 can be expected to occur on the average once every 2500 feet, or about

twice a mile.

A simulation analysis of this kind can be carried out by band, using

a table of random numbers. A computer program hasbeenwritten to implement it,

and works in essentially the same way, the only difference being that a

continuously distributed random variable in the interval (0,I) is generated

instead of a random integer.-

What objections are there to such an analysis ? It requires the

identification of regions within which the geology can be regarded as uniform,

and then assumes that within such a region the probability distribution from

which the sample borehole thaw settlement estimates are taken is the same at

any point on the pipe alignment. This is the hardest assumption to justify.

Some such judgement is inescapable, and for it reliance must be placed on

advice from engineering geologists, aided by air photo interpretation and

borehole evidence. There are hazards in making such judgements on borehole

evidence alone, for one might be misled by a group of boreholes with small

ice contents into thinking that the background geology had changed. Exactly

the same effect is obaerved in roulette : runs of five consecutive reds occur

quite often, and yet this does not mean that the wheel has suddenly become

biassed.
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Another difficulty is that the results are quite sensitive to the

choice of L. Sometimes, however, a rational choice of L is made easier

by taking into account the ability of the pipe to bridge short regions in

which the thaw settlement is large. A loaded pipe, subjected to axial force,

can bridge a certain free span without any support over the gap, and the

length of this free span can be determined by an analysis which treats

the pipe as a laterally-loaded beam column (though some assumption has to

be made about suitable end conditions). A reasonable conservative assumption

is to equate L to half the greatest free span that the pipe can bridge without

exceeding the curvature limit, so that the pipe can safely be assumed to

bridge "valleys" shorter than 2L and to conform to valleys longer than 2L.



-13-

EFFECTS OF SOIL]PIPE INTERACTION AND LIFT-OFF

In model I it was assumed that the pipe remains in contact with

the thawed trench bottom profile, and that loads applied to the soil by the

pipe do not modify the profile. If this is not so, then the vertical deflection

of the pipe during the thaw process, denoted y, is distinct from the thaw

settlement z. If y is greater than z, forces exerted by the pipe have

deflected the trench bottom downward by y-z. In general, the upward force

exerted by the soil on unit length of pipe will be a function of y-z and x

denote this function ý(y-z,x). In addition, let w be the weight of unit

length of pipe, P be the axial force its transmits, and c be its flexural

rigidity. Then, by elementary beam theory, the equation

d4 d 2

c + P + *(y-z,x) - w

governs the deflection y of the pipe.

Suppose the effective stiffness of the soil to be uniform, so that

f is not a function of x itself. If z were uniform along the pipe alignment,

the pipe would settle uniformly until

O(y-z) - w 0 1.)

Let the corresponding value of y-z be s, and expand d(y-z) as a

Taylor series about s -

O(y-z) - w + (y-z-s) V (s) + I (y-z-s) 2"(s) +
.(12)

If the fluctuations are small, 4(y-z) can be linearised by

neglecting the quadratic and higher-order terms in this expansion, so

*(y-z) = w + K(y-z-s) (13)

where K is a ground stiffness modulus, the increase in ground reaction on

unit length of the pipe for unit additional vertical deflection. Investigate

first what happens if, going along the alignment, z fluctuates sinusoidally

about its mean z, so that
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z - a sin(2Trx/X) + .. (14)

where 2a is the peak-to-peak amplitude and X the wavelength. Substituting

for f and z into the governing differential equation, and solving for the

deflection y
a sin(2wx/X)

y - -+B+ 2 c 4..(15)

Hee'{l-2 4 -1

Here {I - P(21r/X) /K + c(2/X) /K1- , henceforth denoted v , is

a damping factor indicating how soil stiffness K and axial force P moderate

the fluctuations in'z. If P - 1, as it is for very long wavelengths, the

pipe follows the fluctuations in z. If v is small, as it is for small X

the fluctuations in pipe deflection are very much smaller than the

fluctuations in pipe settlement. If K and c are small, and P is large, the

influence of the P(2/A) 2/K term can make P greater than 1, but this will not

occur unless P approaches the value which would produce lateral buckling of

the pipe. The wavelength for which these interaction factors become

important can be estimated by finding a critical value of X at which p - 0.5.

This is

S= 27 {(P + 7P2 + 4Kc)/2c}-1/ 2  .. (16)cr

Consider, for example, a 48 in. diameter 0.5 in wall thickness

steel pipe responding elastically to bending (so that c = 6.5 x 10 1 lb.in )

and subjected to an axial force of 2 X 106 lb. It is comparitively difficult

to estimate K, which will depend on the soil type and on its water content, as

well as on the dimensions of the thaw bulb. It can be found experimentally,

by field or model tests, by a finite-element analysis of consolidation and

plastic deformation of the thawed soil beneath the pipe, or (less reliably)

by an estimate of the effective modulus of subgrade reaction. In Figure 8

the critical wavelength X is plotted against X for the pipe whose
cr

dimensions and loads are quoted above. Clearly X is relatively insensitive
er

to the precise value of K. "Figure 9 shows the variation of ii with X for



-15-

K - 1000 lb/in 2, and indicates a sharp cut-off in wavelength below which

is very small. Short wavelength high-frequency components of the spectral

density of z theregore have negligible effects, and need not be considered.

How can this kind of soil-pipe interaction be taken into account when

finding the response to more complex variations of z ?

In the random- process approach to the problem, it can be shown that

if S (f) is the spectral density of z then the spectral density S y(f)

of y is given by

Sy (f) - 2..(17)

where U is as defined above, setting N-= fl. The spectral density S (f)z

is a function of X of the general form indicated in Figure lOa, while
2
p has the form shown in Figure 10b. Multiplying these two functions

together, S (f) has the form shown in Figure lOc, and its peak intensity
y

depends critically on the extent of the overlap between S (f) and p , or,
z

in other words, on whether wavelengths at or longer than X make any
cr

significant contribution to S z(f).

A computer program has been written to bring interaction and lift-off

effects into the simulation process described earlier. Its intention is to

determine how often the curvature in the pipe will exceed some specified

value. It does this by examining in more detail those simulated points at

which the simple analysis procedure indicates large curvatures. The revised

method takes as its input the simulated soil profile generated by the random-

number process, and uses fourth-order interpolation to fill in the profile

between five simulated points spaced at equal intervals L. If the pipe can conform

without bending beyond a previously-assigned limiting curvature, the program

moves on through a distance L to examine the next group of five points. If

the pipe cannot conform in this way, the program calls a subprogram, due to
9

Matlock and Haliburton , which carries out an analysis of that section of the

pipe, using a finite-element formulation of the problem of an axially-loaded

beam-column on an elastic foundation. In the analysis it is assumed that the
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pipe lifts off the trench bottom if the force that would be necessary to

keep it in contact with the trench bottom profile is greater than the

estimated greatest upward load intensity which the pipe could sustain

without lifting upward agaainst its own weight and the additional break-out

resistance provided by the backfill. It is also assumed that large downward

forces exerted by the pipe can deflect the soil, and a soil stiffness

parameter k has to be provided. The stiffness can if necessary be nonlinear,

depending on the soil deflection. The stiffness cannot be set infinite because

of convergence difficulties.

This finite-element subprogram locates evaluates and records the

maximum curvature of the pipe if it still exceeds the preassigned limit

even after the more refined analysis. When the number of points examined

is large enough for statistically reliable estimdtestobe obtained, a count

can be made to determine the frequency with which the limit curvature is

exceeded.
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CONCLUSIONS

The average spacing between points at which differential settlement

will induce a pipeline curvature beyond a prescribed limit can be predicted

either by treating thaw settlement as a random process or by a simulation

procedure. In either case, analysis requires an estimate of the intensity

of correlation between thaw settlements at different points. This can either

be gained from measurements from a sequence of test borings at close regular

intervals or by observation and interpretation of surface features produced

by permafrost thawing. Considerable analytic simplification is possible

if the distribution is Gaussian.
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APPENDIX - NOTATION

The following symbols are used in this paper

a - amplitude of sinusoidal variation in thaw settlement

c - flexural rigidity of pipeline

f - inverse wavelength X-1

h - thaw depth

i - borehole number

k - interval between regularly spaced boreholes- measured in
number of boreholes

K - ground stiffness defined by equation

L - distance between boreholes

m - ratio between curvature and root-mean-square curvature

n - number of boreholes in a sequence

P - axial force in pipeline

R - autocorrelation function

a - thaw settlement when upward force exerted by ground balances the
weight of the pipe

S z(f) - spectral density function of thaw settlement z

:y (f) - spectral density function of pipe deflection y

u - distance along pipe

w - weight of unit length of pipe

x - distance along pipe, measured from a fixed datum

y - vertical deflection of pipe

z - thaw settlement

=- mean thaw settlement

c - strain

S- curvature

A= wavelength

X - critical wavelength, defined by equation

= damping factor
2

o = variance

- upward force exterted by ground on unit length of pipe

Differentiation with respect to x is indicated by a superscript prime,

thus : z'
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Figure 2 CUMULATIVE PROBABILITY DISTRIBUTION OF THAW SETTLEMENT

Data estimated from samples taken from 21 boreholes in part of
the Copper River Basin, S. Central Alaska ; assumed depth of
thaw 20 ft.
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Figure 3 OBSERVED THAW SETTLEMENTS AT 100 FT INTERVALS ALONG A LINE

Data from the Copper River Basin, S. Central Alaska
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Figure 4 AUTOCORRELATION FUNCTION FOR THAW SETTLEMENT

Data from Figure 3.
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Figure 5 CUMULATIVE PROBABILITY DISTRIBUTION OF THAW SETTLEMENT

Data from Figure 2 replotted.
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Figure 6 CUMULATIVE PROBABILITY DISTRIBUTION OF THAW SETTLEMENT
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Figure 8 DEPENDENCE OF CRITICAL WAVELENGTH X ON GROUND STIFFNESS
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Figure lOa THAW SETTLEMENT SPECTRAL DENSITY AS A FUNCTION OF WAVELENGTH
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Figure lOb DAMPING FACTOR V AS A FUNCTION OF WAVELENGTH
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Figure 10c PIPE DEFLECTION SPECTRAL DENSITY AS A FUNCTION OF WAVELENGTH


