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ORBIT DETERMINATION AT THE ROYAL AIRCRAFT ESTABLISHMENT 

by 

R.  H. Gooding 

SUMMARY 

This paper describes the development of a series of computer programs 

for the orbit determination of earth satellites.    The paper is based on the 

first of two lectures given at the ESRO summer school on Spacecraft 

Operations held at Gravenbruch, near Frankfurt, West Germany, in August 1970. 

The second lecture is available as Technical Memorandum Space 157. 
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1    INTRODUCTION 

This, the first of my two lectures, covers three related topics:- 

(1) survey of OD (orbit determination) programs at RAE; 

(2) general principles of OD; 

(3) orbital parameters and their perturbations. 

The third topic provides a natural link with my second lecture. 

In this lecture I use the words 'orbit' and 'determination' in a special 

way.  I regard an 'orbit' as a set of mathematical parameters - usually not 

more than ten - which are equivalent to complete knowledge (of limited, but 

adequate, accuracy) of a satellite's motion during a given period, e.g. a week. 

(Sometimes I use the word in this sense, but sometimes in the more conventional 

sense.) By the 'determination' of such an orbit I mean the refinement of 

initial estimates of the parameters, where these estimates must be good enough 

for a linear, iterative, 'differential-correction' method of refinement to 

converge.  (If sufficiently accurate initial estimates are not available, then 

the problem is irretrievably non-linear, and special methods of solution have 

to be used.) The basis for an OD is the existence of observations of the 

satellite over the given period - e.g. 100 observations over a week - to 

which the orbit can be fitted. Since it is essential to have good geographical 

coverage, if a complete set of parameters is to be refined, observations will 

normally be required from at least two stations, but there is a special 

situation when observations from a single station will suffice;  this occurs 

when two distinct arcs of the orbital path of the satellite can be tracked, 

one when it is near the station's -latitude moving north, and the other when 

it is near the station's latitude moving south - the situation is equivalent 

to the existence of two separated stations. 

2    SURVEY OF OD PROGRAMS AT RAE 

Four computer programs have been developed at the RAE. The first two 

of these were written in machine orders for a particular computer, Pegasus, 

while the other two have been written in Standard Fortran IV and will work 

(in principle) on any large computer (with minimum storage of about 

700 000 bits). 

1 2 The first program '    was a particularly simple program, written very 

quickly,  immediately after the launching of the first earth satellite in 1957. 

It was  limited to directional observations  from a single transit at a single 
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station . This meant , as alrE:ady remar ked, that a complete orbit could not be 

fitted to the observations : the s ize and shape had to be held fixed at initial 

values and only four orbi t a l pa rameters were actually refined. The program was 

in operation for about t wo year s , and was used i n particular1• 2 for t he deter

mination f the orbit of Sputnik 2. It wa s f rom the Sputnik 2 resul ~ s, which 

sh wed that the orbital plane of t he sat e l li te was precessing less apidly 

than exp cted , that it fi r st became clear1•2•3 - as I will explain in my 

second lecture -that the then accepted value f or the ear th's flattening was 

about 0.3% too lar ge . 

4 5 6 The second program • • was a fully-fledged OD program with most of the 

f cilities of the t wo subsequent progr ams . I t was begun in 1960 and applied 

to a number of satellites during the per iod 1962 to 1968. It was only 

b cause of the demise of the Pegasus computer tha t it was eventually abandoned. 

On of its limitations was that observat ions had t o ~~ of the directional type, 

th ugh azimuth/elevation, right-ascensi n/d ec l i~~tion and direction cosines 

were all permitted. Among the orbits ana lys ed was that fo r the An~lo-American 

satellite Ariel 2 - the orbit of Ariel 1 was analysed by NASA - throughout the~ 

fi r st ye r f its lifetim 7•8 , definitive orb i ts be i ng determined at 50-nnde 

int rvals. 

Th 9 
third program , started late in 1965 and planned for indefinite 

evolution, is the most important of the four RAI: programs for OD. Known a s 

PROP (Program for Refinement of Orbital Par ameter s ), i t has, apart from 

progra in language,a very simi lar form to i t s predecessor; both were 

design d round an analyti c perturbation model10 or ' or bit generator' -

i . . b th w r based on 'gen ral perturbations ' as i t is known i n the jargon 

of celestial mechanics - and the differential- correct ion method has been the 

same for both . Pe rhaps the most important i nnovat i on i n PROP has been the 

wide extension of the permitted types of observation, so that range and 

range rate, in particular, may now be used . Among ot her satellites, PROP 

has b en used for the definitive orbita l ana lysis of Ar iel 3; an orbit was 

d . d 11 h d f 27 . 1967) etermLne every t ree ays, or months f rom launch {May • 

Th 12 fourth program , known as POD (Program f or Orb i tal Determination), 

is complementa r y t o PROP in that the orbit generator i s a nwner i cal - integration 

model - i.e . it is a 'special perturbation' model i n the language of celestial 

mechanics. In most other respects it is identical wi th PROP, and employs many 

of t he ame Fortran subprograms. It was start ed i n 1967 wi th the proposed UK 

mil itary sat llite Skyne t specifically in mind. Thi s satellite was launched 
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in November 1969 into a synchronous (and virtually geostationary) orbit,   for 

which the gravitational  attractions of the sun and moon are of much more 

importance than for close-earth satellites - it was for this reason that  the 

integration model was deemed to be necessary.    Though POD has so  far only 

been used for the Skynet orbit,  it is  in no way limited to synchronous orbits. 

Its main limitations - and this relates to  its  role of complementing PROP - 

is that (at  least  in the present version)   there  is no provision for  including 

air-drag terms among the perturbing forces. 

3 GENERAL  PRINCIPLES OF OP 

Fig.l  illustrates  the input and output for a program such as PROP or POD. 

Here 'constants'   refers to a set of standard values of,  for example,  the 

earth's equatorial  radius,  that are held with the program in a Fortran comnon 

block;    thus   each constant is numerically defined at a single point,  no matter 

in how many statements of how many different subroutines there is a reference 

to that constant,  and hence there is no difficulty in changing standard values 

when desired.    The control card specifies,  among other things, the number of 

parameters  in the orbital model,   the maximum number of iterations to be 

allowed before the program gives up hope of convergence and stops,  and the 

minimum number of observations with which  it  is worthwhile to continue  at 

any stage - the number of observations being used may change from one 

iteration    to the next,  as a different subset of observations is rejected. 

The epoch card specifies the date/time to which the orbit refers.    The 

remainder of the input comprises the initial orbit,  station data (reference 

numbers and coordinates, one card per station)  and the observations themselves 

(two cards for a pair of direction cosines,  but a single card for other types 

of observation).    Output consists  firstly of the final orbital parameters 

(assuming that  convergence has taken place)  which are both printed  and punched 

on cards,  and secondly of  information derived from the covariance matrix of 

these parameters - standard deviations and  correlations are printed,  while 

the matrix itself is punched on cards. 

It is useful, befc  e proceeding with the mathematics of the differential- 

correction process,   to  distinguish between  'observations'  and  'observed 

quantities';     an  'observation'  consists of data obtained from a given station 

at a particular time,  being composed of one or more  'observed quantities'. 

Thus directional observations consist of pairs of observed quantities,  and a 

simultaneous observation of range,  range rate and direction cosines would 

comprise four observed quantities. 



6 

L t us s uppose we have a set of q observations of a satellite, com

pri sin a lt oge t her n (usually greater than q) observed quantities, and 

1 t t h o rb i~which is to be corrected using these observations, consist of 

th p·1r am t r s pi , i = 1, 2 , ... , N. If there were no errors in either 

th bs rv,t i ns o r the orbit generator, a typical observed quantity would 

b r l a t ed t o t he true values of the parameters by a model function 

(p.. t) 
1 

(1) 

\{ on ti nue t i n r e e rrors i n the orbit generator, but now take into account 

th fact that t h r e a r e erro rs in the available values of the pi' and also 

1n t h b e r va tions. Thus we distinguish between e , which represents a 

fun c tion of t he pi and t, as above, and eobs' which denotes the numerical 

v lu of a n ac tua l obser ved quantity; the error in e 
obs 

is assumed to be 

random, n rmally distributed, and uncorrelated with the error in any other 

bs r v d quan t ity . The d ifference e - e is a residual R, which would obs 
b ze r o if t he true va lue s of the p. we e available and if the random error 

1 

,.. obs was ze ro . (We assume that the correct time t is known, l>ut in 

pr actic error s i n t ime shoL•ld also be conside red.) 

L t t ge the r with R, correspond to es t imates p. of the orbital 
1 

par m ters t the beginn i ng of an iteration of the differential-correction 

At th end of t he iteration the parameters are incremented by 

and it is our obj ct to obtain expressions for the 

qu ntiti s . 

t!p . 
1 

in terms of known 

th n 

p ~ • p . + t!p. 
1 1 1 

+ 
i 
-- t!o. p. • 1 

1 

+ 

and e • • e(p!, t) 
1. 

0 (terms like ( t!p.) ( t!p.)) 
1. J 

Thu if th ·.p. a r s mall , t he residuals R' • which will be obtained 
l 

durin th n xt it r tion , are given by 

R' R L- t!p. 
i pi 1. 

Id 11y , v ry R' would be ze r o , so that one iteration would suffice; 

h n qu ti n ( ) co u d be written 

i 
p. 

1 
• R 

t!p .• 
1 

(2) 

(3) 

(4) 
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and solution of equations of typ« (4) would be trivial if there were the aaTie 

number of equations as unknowns, i.e. if n was equal to N.  In practice, of 

course, n is much greater than N; also the (Ap.) (Ap.) terms are not 

negligible, so that one iteration does not suffice. 

The fact that n > N is dealt with by the application of the method of 

least squares. We start by expressing all the equations, typified by (3), in 

matrix form. If 

/ae.     ae. se' 
M7^r ^2 "" % 

\3e      ae             ae 
n       n  n 

Y - / R-X      and    Z 'M 
\ fj 

then the given equations reduce to 

Y'    -    Y - M Z  , (5) 

where    Y    is known  (in terms of the current    p.) and it is assumed that    M    is 

likewise known.    The least-squares refinement to minimize    £ R'       leads to 

ap. 0        for        i - 1,  2,..., N  , 

where T denotes transposition, and this reduces fairly easily to 

T       T 
M MZ - MY . (6) 

It is worth noting that equation (4)   leads to    MZ ■ Y,    so that  the effect of 
T 'rectangularity*  is allowed for simply by pre-multiplication by    M      on both 

sides of this equation. 

Thus the  solution for the    Ap.     in any iteration is given by the simple 

matrix formula 

T    -1     T 
Z    -    (MM)       MY    . (7) 

  
 ■  



SP 
156 

7 T 
Although ehe sum of squares    ), R  ,    or   Y Y    in matrix notation,  is not requirad 

in this formula,  it is of vital  importance that this quantity should be computed. 
T For    Y Y    is precisely the quantity which is undergoing minimization,  and hanca 

it   is  used as a criterion for the convergence of the  iterative process;    if it 

increases  from one iteration to the next,  due to non-linearity,  the process is 

diverging;     it  it decreases,  the process is converging, and if it decreases by 

loss   than some conventional  amount  (taken in PROP and POD to be IX of the 

current value),  Che convergence is regarded as complete.     It is important to 
T 

realise  that  Che value of    Y Y    which becomes available at  the end of an 

iteration  is the value associated with the    p.    derived at the end of the 

previous  iteration;    this  is obvious,  since Che residuals associated with the 

new      p.     cannot be formed until   the    next iteration,  but since    Z    (and hence 
1 T 

p.   +  Ap.)  and    Y Y    become known at the same time it is easy to be misled. 

T      .     . 
The quantity    Y Y    is  important, apart from the question of convergence. 

If  '.he observations have been weighted correctly (where I now ascume that the 

matrices    M    and    Y    include appropriate weighting factors,  though I am 

omitting Che details, which are straightforward),     then the final value of    Y Y 

at convergence should be approximately equal  to the number of degrees of 

freedom of  the process,  viz.     n - N.    Putting this another way,  if    &   denotes 

statistical expectation and    e    is defined by 

T 
Y Y 

n - N (8) 

then 

fi(0 1.0 

after the completion of convergence.    If Che final value of    c    significantly 

exceeds   1.0,   as  is often the  case,   then,  unless Chis  is  due  Co errors  in the 

orbit   generator or the  statistical  assumptions,   it must be because Che 

observations are  less accurate  than had been assumed. 

This  mathematical  section of  the  lecture  is completed by the deriva- 

tion of  the  formula  for  the  covariance matrix of the  final  parameters 

yielded by the differential-correction process.    The  derivation should be 

easily  understood  if  the  following notation is  introduced.     Let    Y    be  the 

true  vector of residuals at   the  start of the  last  iteration;     i.e.    Y    is 

based  on residuals    ^  -  0,     where    9     is the observed  quanticy minus ics 

 ---—i— ■Mi mmm mm 
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random error «nd    6 • e(p.,  t)    as usual.    Let    Z   be the vector of    Ap.    that 

would then result from the computation 

T    -I    T- 
Z    -     (MM)       MY     . 

Thus    Z,    assuming linearity, would lead to the true values of the parameters, 

though in practice   Z    can never be known since the    6    can never be known. 

Then the covariance matrix of the orbital parameters,  considering the 

population of all possible sets of errors in the    6      ,     is given by 

cov (Z)    -    8 ((Z - Z)   (Z - Z)T| 

-     (MTM)'1  MT & I(Y  - Y)   (Y - Y)T1  M  (M^)'1     . (9) 

* T 
But if the observations have been consistently weighted, 8 ((Y - Y) (Y - Y) ), 

i.e. cov (Y), is a scalar matrix. In fact 

cov (Y) - o2 I , 

where I is the unit matrix of order n and a would be unity if the 

weighting was correct and not merely < 

factors in (9) cancels out and we get 

T -1 
weighting was correct and not merely consistent. Then one of the (M M) 

cov (Z)  - o2 (M^)"1 . (10) 

T     -1 .      • The matrix (M M)      is already known of course,  and all the statistics are con- 
2 2  . . .2 tained in the scalar factor o   . An estimate of a    is available at once,  viz.  e    as 

given by equation (8).    (If the weighting of the observations is altered in a 

consistent manner, so that vectors    Y    and    M   are multiplied by some scalar, 

then not only    Z    at each stage,  as given by (7), but also    cov (Z),    as 

given by  (10),   is unaltered;     for if    Y    and   M   are multiplied by    X,    say, 
T    -1 -2 2 2 then    (M M) is multiplied by    X    ,    but    o ,    as estimated by    e      in (8), 

2 is multiplied by    X  .    Thus the results of an orbit determination, other than 

the final  value of    c,    are independent of absolute weighting, and this 

effectively means  that if all observations are from instruments of the same 

accuracy it does not matter what actual accuracy is assumed.) 

Fig.2 summarizes the flow for a program such as PROP or POD.    After 

input  the observations undergo some preliminary processing before the 
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differential-correction process is started.    The most  important part of the 

processing consists of the incorporation of station coordinates, rotated from 

earth-fixed to standard  (geocentric)  sidereal axes,  into the appropriate 

'observation block', but certain small corrections to the observed quantities 

themselves,  for example for refraction, are also made.    After the processing 

of all  the observations there are    q    of these 'blocks', one associated with 

each observation,  and I have already remarked that    q    is usually less than 

n,     the  total number of observed quantities.    The quantities in a block 

are  indicated in Fig.2:-    here the  'rejection state* word is set to zero, and 

the way in which this word changes is considered later;     'type*  is a code, 

e.g.   7 for range,   right ascension and declination;    date/time specifies the 

MJD (modified Julian day number), held as a Fortran integer quantity,  and 

fractioa-of-a-day past the MJD midr^jht, held as a Fortran real quantity; 

station position contains 7 items of information (cartesian coordinates, 

together with sine and cosine of geodetic latitude and longitude);    the 

number of observed quantities    depends on the type;    and the sigmas are the 

accuracies  (used for weighting)  associated with the observed quantities. 

Fig.3 summarizes the flow during differential correction.    During each 

iteration the observations are  introduced one at a time and the matrices 

MTM,  MTY    and    YTY    are built up.    The matrix   MTM    is of order    N x N, 

where    N    is usually much less than    n    (e.g. N - 7 and n ■ 100)  and    M 

itself, of order   n x N,    never has to be stored.    Actually the matrices 

are accumulated at four different  'levels',  according to the size of the 

weighted residuals.    This is done to facilitate rejection.    Once all the    q 

observations have been dealt with (in a given irtreration),   the number of 

observations associated with each level is considered.    A special subroutine 

is called in and decides how many of the levels,  starting at the top level, 

will be rejected.    From the accepted level the basic operations,  leading to 
T    -1       T T 

(M M)       (M Y)    and    Y Y,    are carried out and the orbit improved.    There is 

then a convergence test, after which there is a further iteration or else 

the final output occurs.     'Final output* may consist of the desired results, 

or of a statement that the process has been discontinued without convergence, 

for example because it has reached the maximum number of iterations permitted. 

Further understanding of PROP can best be obtained by reference to the 

output of a typical  run.    Figs.4  to 11 illustrate such output, edited into a 

more compact form than the standard computer output.     (POD output, apart from 

the printing of the parameters, which are defined quite differently,  is 

very similar.) 

SP 
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Fig.4 illustrates the initial printing which occurs after the control 

and epoch cards have been read. The satellite was Ariel 3, and this was 

the first possible orbit determination, with an epoch only six hours after 

injection. 

Fig.5 shows how, for reference, the values of the initial elements are 

printed immediately after being read in.  I shall be explaining the layout of 

elements later;  for the present it is worth noting that the initial estimate 

of orbital inclination is 80.1903 degrees, changing at the rate of -0.00015 

degrees per day. On the principle that information about all input data 

cards should be included in the printed output, it is usual to obtain a 

listing (actually before the initial elements) of all the station and 

observation data, but here this listing has been suppressed (by means of the 

zero vai ies of the control parameters ISENSR and I0BSNS). 

The observations used for the Ariel 3 0D were all from the interfero- 

meters of the NASA Minitrack network. Each observation consists of a pair of 

direction cosines, classified by PROP as Type 3, as seen in Fig.6. The 

residuals for the first observation, as obtained during the first iteration - 

i.e. from the initial elements - were 0.00098 and -0.00546, equivalent to 

weighted values (since the a priori  sigma is 0.00029) of 3 and -19. PROP 

always prints both weighted and unweighted residuals, and those for 14 of the 

40 observations of the specimen run are given in Fig.6. 

Fig.7 illustrates the output which occurs at the end of each PROP 

iteration. Since, returning to our earlier notation, N - 7 and n » 2q « 80, 

there are 73 degrees of freedom available during the first iteration, and at 

the end of that iteration the inclination has increased by 0.0027 degrees to 

80.1930 degrees. I will ignore the footnote, though it is claimed to be 

'important', but full details of this (and PROP generally) are available from 
9 

the program's operating manual . Note, however, that e,  the quantity I have 

said should ideally decrease to a limit near to unity, has changed from 200.000 

(an arbitrary value corresponding to 'iteration zero') to 19.928, which is 

essentially an rms value of the weighted residuals from Fig.7, and that e 

(as I have already remarked) is always an iteration behind, since the 

residuals of Fig.6 are associated with the elements of Fig.5, not Fig.7. 

Fig.8 indicates the behaviour during the next two iterations. The new 

factor present is that observations are being rejected - 3 on the second 

iteration and 4 on the third - and that there are therefore fewer degrees of 

freedom. Referring to the third iteration, it may be seen that there are now 
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observations at three different levels - the no-star, one-star and two-star 

levels - but as yet none at the highest possible (or three-star) level; 

corresponding to these three levels, the rejection-state words which I 

referred to earlier, are set to 1, 2 and 3, respectively. At the end of the 

iteration PROP, through its special rejection subroutine, decides to accept 

only Che lowest level and hence prints '* REJECT 4 OBS ...'.  (Had the next 

lowest level also been accepted the printing would have been 

'** REJECT 2 OBS ...'. 

Fig.9 shows that convergence is proceeding nicely during iterations 4, 5 

and 6.  It is clear from the first six iterations, however, that it is often 

the continual change in the set of observations being accepted, rather than 

the importance of neglected second-order effects in the process, which 

causes the program to go on for many iterations. 

This run finally converged after two more iterations, with final 

= 1.864 and no further change in the rejections, but details of these are 

omitted.  The final elements are as shown in Fig.10, where the orbital 

inclination has converged to 80.1791 degrees. 

Finally, Fig.11 gives standard deviations, in the same layout as the 

elements themselves.  (Zeros occur for elements which are not being fitted, 

i.e. which are not 'parameters of the orbit'- I elaborate on this a little 

later.)  It is seen that the standard deviation of inclination is 0.0015 degrees, 

and from the matrix of correlations it is also possible to read off, for 

example, the correlation coefficient between eccentricity and inclination - 

this is 0.168. 

4    ORBITAL PARAMETERS AND PERTURBATIONS 

I will consider the parameters and perturbations of the POD model first, 

both because the model is conceptually simpler and because an account of the 

PROP model, which will conclude this first lecture, will then provide a 

natural link with the second lecture. 

POD, as I have said, has a numerical-integration model, and the 

parameters of the orbit are simply the epoch components of position and 

velocity, denoted by x,y,z,x,^,i;  thus there are always exactly 

six parameters. Epoch has to be chosen as some time instant which occurred 

prior to all the observations (or after all of them if the integration is 

specified to proceed backwards) and is normally at a midnight, though it 

does not have to be.  (PROP epochs, in contrast, have to be at midnights, but 

are usually taken somewhere near the centre of the period spanned by 
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observations.)    At  the beginning   of each iteration of a POD run,  a table of 

values of    x,  y,  z,  x,  y,  z,  X,  y,   2    is set up,  by integration of the  standard 

equations of motion in an (almost)   inertial cartesian axis  system,   i.e.   the 

equations expressed in Cowell's form.    The integration starts from   x      etc. 

at epoch, operating initially in a fourth-order Runge-Kutta mode but switching 

to an eighth-order Gauss-Jackson process as soon as  this   is possible.     The 

integration proceeds  until  the period spanned by the observations has been 

completely covered.    The step length  (for the Gauss-Jackson process)   is 

typically 30 min for Skynet, but is actually a control parameter of the 

program.    The interval of the table set up by the integration is a multiple 

of the step length,  typically 60 min for Skynet. 

The POD orbital model consists simply of interpolation (fifth-order for 

x, y,  z;    fourth-order for    x, y,   z)  in the table just described,  combined of 

course with the appropriate geometrical calculations necessary to derive 

topocentric range, declination, or whatever is required,   from geocentric    x 

etc. 

At the beginning of certa'n iterations,  simultaneously with the setting 

up of the table of    x    etc,  a table of partial  derivatives  is also set up in a 

similar way.    The derivatives involved are those of    x, y,   z,  x, y,  z,  X, y,  2, 

with respect to the orbital parameters - i.e.   they occur in sets of 54 - and 
13 they are generated by the method of Goodyear    .    I have already explained why 

partial derivatives are required in a differential correction process.    Since 

their accuracy does not have to be as good as  that required for    x    etc., 

they are stored at a wider time interval and not always re-generated after 

every iteration. 

Perturbations - i.e.  effects due to forces on the satellite other than 

the inverse square law force towards  the centre of the earth - are incorporated 

in POD very simply, by inclusion of the perturbing accelerations directly in 

the equations to be integrated.    The perturbations which are covered in the 

present version of the program are luni-solar perturbations,  using stored 

ephemerides of the sun and moon,  and five of the gravitational harmonics of 

the earth,  viz.    J-, J-,  J ,  C.  _    and    S. -    (all of which I will be defining 

in my second lecture);  perturbations due to air drag are not covered. 

Before describing the parameters of the PROP model  I must  introduce  the 

six standard elements of an elliptic  (unperturbed)  orbit.     Five of these 

define  the orbit  itself and are  illustrated in Fig.12;     in  a standard notation 

L 
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these are a  (semi-major axis),    e    (eccentricity),     i    (inclination),    Ü 

(right ascension of the node)  and    u    (argument of perigee).    The sixth element 

permits  the distinction of one satellite from all other possible satellites 

moving in  the  samo orbit;     this element is  the mean anomaly at the epoch of 

reference, and is denoted sometimes by    a    and sometimes by    M  .    For a 
o 

circular orbit  it   is   simply the angle by which the satellite,  at epoch,   is 

ahead of perigee.     The significance of the zero-suffix notation is  that, 

though semi-major axis etc.  are constant for an elliptic orbit,  mean anomaly 

increases  linearly with time and is given by the formula 

M    =    M    + M.   t     , 
o 1 

where    t    is time  from epoch and    M ,     the   'mean motion',   is related directly 

to    a    by (Kepler's  third law) 

< 
3 2        2 

a      ■    const.     (= 398 602 km /sec    for the earth). 

For a perturbed orbit it is no longer true that    a,  e    etc.  are constant, 

but   'osculating'   values may be defined precisely,  at any instant of time,  by 

considering the hypothetical  removal of all perturbations;     then the osculating 

a,  e    etc.  are  six functions of time,   instantaneous position and instantaneous 

velocity,  which change only slowly with time - therein lies their use.     The 

variation of an element with  time usually consists of a secular  (or monotonic) 

component,   together with periodic components of various frequencies.     Fig.13, 

for example,  shows  the variation of the eccentricity of Ariel 2.    Here  the 

osculating eccentricity does not appear at all,   since  'short-periodic' 

components have been removed;     these components have amplitude of order 0.001 

and periods about 90 min  (the orbital period  in fact)  and 30 min (1/3 of the 

orbital period).     It  is clear that short-periodic terms are unplottable and it 

is  standard practice   to define  'mean elements'  which are free of such terms. 

The continuous  curve in Fig.13 is  the mean eccentricity, as  found at RAE 

from 210 separate orbit determinations,  and it  is clear that there are still 

two major components present.    One of these  is a   'long-periodic'  component of 

amplitude similar to  the short-periodic terms and period about 120 days   (the 

period of  the  rotation of perigee in   fact).     The other component is a secular 

decrease of about 0.006 over a year,  due  to air drag. 
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Before leaving Fig.13,   I have some further remarks on the long-periodic 

perturbations.    It is clear that the values of eccentricity retained by NASA, 

shown as circles, have had long-periodic, as well as short-periodic,   terms 

removed.    This  removal of long-periodic terms,  leading to  'mean mean1 

elements,   is common to the orbit determination programs of a number of 

organizations, but at RAE we think it is not a good idea.    There are two 

reasons for this:    one is  that the expressions used for the long-periodic 

perturbations are,  unlike those for short-periodic perturbations,  unbounded, 

and become infinite at the so-called 'critical inclination', when the motion 

of perigee disappears;    the other reason is that removal of these terms  tends 

to hide the true evolution of the orbit, while the explicit retention of 

long-periodic amplitudes may be very useful, as will  appear in my second 

lecture.    Thus in Fig.13 it seemed preferable to compare RAE and NASA values 

of eccentricity by adding long-periodic terms back into the NASA values, 

rather than by removing them from the RAE values. 

The PROP model can now be described.    Each of the parameters    e,  i, 

Q,  u    and    M    is represented as a polynomial - the degree,    n,    may be chosen 

in the range    0 < n < 5    for    e,   i, fi    and    CD, and in the range    1 < n < 5    for 

M;    however the usual choice is    n - 1    for    e,  i,  Q and u    and    n » 2 or 3 for 

M.    Then    e - e    + e.   t,    for example, and the complete set of coefficients 

e  ,  e1, etc. is considered as a set of 'orbital elements'.    The 'orbital o'    1 
parameters' are defined as a subset of the set of elements,  such that if 

M      is a parameter,  for example,  then   M.    must also be a parameter if    j < s, s j 
but need not be if    j > s. 

The usual parameter model is illustrated by Fig.14, which relates to the 

printed layout of elements  illustrated earlier.    Here    a      is of course a 

derived element, and    e ,  i  ,  0      and   OJ      are parameters, while    e.,  i. , Q,     w, 
o'oo      o     r       '       I'l'll 

are not;  the M elements are all parameters. The reason for this is that e. 

etc. represent perturbations that can be calculated - as functions of the 

parameters - to sufficient accuracy, while H.  etc. cannot.  (M« etc. are 

essentially empirical drag parameters which represent the unknown state of the 

atmosphere, whereas e. etc. represent second-order drag effects, which can be 

expressed as known functions of M., and the effects of zonal harmonics, the 

values of these harmonics being sufficiently well known.) 

Thus the secular perturbations of the basic PROP element are represented 

through the extended set of elements. Periodic perturbations, representing the 



16 SP 
156 

non-secular zonal-harmonic effects and further second-order drag effects, are 

also represented, but  this representation is by internal formulae, with no 

direct evidence available in the printed output provided by the program. 

The perturbations explicitly covered by PROP are the following:- 

zonal  harmonics,   as many as desired up  to    J 16 (by recurrence relations,  the 

only limitation being due to storage);     the sectorial  harmonics    C. „    and 

S„ .;    and drag.    Thus,  in particular,  luni-solar perturbations are not 

covered. 

I will end this lecture by remarking briefly on one of the theoretical 

methods by which the formulae expressing satellite perturbations are developed. 

In the absence of perturbing forces the potential function (equal  to the nega- 

tive of the  satellite's potential energy divided by its mass)  is simply    y/r. 

Let us write  the potential in the general case  (so long as  the force field is 

still conservative)  as    u/r + U.    Then the variation of the osculating 

elements    a,  e,  i,  si,  to    and    0    arises purely from U.    If    U    can be expressed 

as a function of the satellite's elements  together with time,  instead of its 

position,   then the rates of changes of the elements can be expressed in terns 

of the partial derivatives of this function.    Fig.15 gives the explicit 

formulae - Lagrange's planetary equations  - which are exact.    Now the zero- 

order approximation to    a, e etc.  issimplythat they are all constant.    Hence 

a first-order approximation is obtained by assuming   a,  e etc.  constant on the 

right-hand sides of the planetary equations and integrating, just quadratures 

being involved.   A second-order approximation can then be obtained by sub- 

stituting the  first-order solutions into the right-hand sides of the 

equations, etc.,  but the mathematics rapidly becomes unmanageable.    I have 
14 followed this technique myself      in studying the perturbations due to the 

zonal  harmonics. 
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