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SUMMARY

This paper describes the development of a series of computer programs
for the orbit determination of earth satellites. The paper is based on the
first of two lectures given at the ESRO summer school on Spacecraft
Operations held at Gravenbruch, near Frankfurt, West Germany, in August 1970,

The second lecture is available as Technical Memorandum Space 157.




1 INTRODUCTION

This, the first of my two lectures, covers three related topics:-

(1) survey of OD (orbit determination) programs at RAE;

(2) general principles of OD;
(3) orbital parameters and their perturbations.

The third topic provides a natural link with my second lecture.

In this lecture I use the words 'orbit' and 'determination' in a special
way. I regard an 'orbit' as a set of mathematical parameters - usually not
more than ten - which are equivalent to complete knowledge (of limited, but
adequate, accuracy) of a satellite's motion during a given period, e.g. a week.
(Sometimes I use the word in this sense, but sometimes in the more conventional
sense.,) By the 'determination' of such an orbit I mean the refinement of
initial estimates of the parameters, where these estimates must be good enough
for a linear, iterative, 'differential-correction' method of refinement to
converge. (If sufficiently accurate initial estimates are not available, then
the problem is irretrievably non-linear, and special methods of solution have
to be used.) The basis for an OD is the existence of observations of the
satellite over the given period - e.g. 100 observations over a week - to
which the orbit can be fitted. Since it is essential to have good geographical
coverage, if a complete set of parameters is to be refined, observations will
normally be required from at least two stations, but there is a special
situation when observations from a single station will suffice; this occurs
when two distinct arcs of the orbital path of the satellite can be tracked,
one when it is near the station's fatitude moving north, and the other when
it is near the station's latitude moving south - the situation is equivalent

to the existence of two separated stations.

2 SURVEY OF OD PROGRAMS AT RAE

Four computer programs have been developed at the RAE. The first two
of these were written in machine orders for a particular computer, Pegasus,
while the other two have been written in Standard Fortran IV and will work
(in principle) on any large computer (with minimum storage of about
700 000 bits).

The first programl’2 was a particularly simple program, written very

quickly, immediately after the launching of the first earth satellite in 1957.

It was limited to directional observations from a single transit at a single




station. This meant, as already remarked, that a complete orbit could not be
fitted to the observations: the size and shape had to be held fixed at initial
values and only four orbital parameters were actually refined. The program was
in operation for about two years, and was used in particular ’” for the deter-
mination of the orbit of Sputnik 2. It was from the Sputnik 2 resulis, which
showed that the orbital plane of the satellite was precessing less rapidly

than expected, that it first became clear1'2'3 - as I will explain in my
second lecture - that the then accepted value for the earth's flattening was

about 0.37 too large.

The second ptogram4'5’6 was a fully-fledged OD program with most of the
facilities of the two subsequent programs. It was begun in 1960 and applied
to a number of satellites during the period 1962 to 1968. It was only
because of the demise of the Pegasus computer that it was eventually abandoned.
One of its limitations was that observations had to ke of the directional tvpe,
though azimuth/elevation, right-ascension/declination and direction cosines
were all permitted. Among the orbits analysed was that for the Anglo-American
satellite Ariel 2 - the orbit of Ariel 1 was analysed by NASA - throughout the
first year of its lifetime7'8, definitive orbits being determined at 50-node

intervals.

The third programg, started late in 1965 and planned for indefinite
evolution, is the most important of the four RAE programs for OD. Known as
PROP (Program for Refinement of Orbital Parameters), it has, apart from
programming language a very similar form to its predecessor; both were
designed around an analytic perturbation nodello or 'orbit generator' -

i.e. both were based on 'general perturbations' as it is known in the jargon
of celestial mechanics - and the differential-correction method has been the
same for both. Perhaps the most important innovation in PROP has been the
wide extension of the permitted types of observation, so that range and
range rate, in particular, may now be used. Among other satellites, PROP
has been used for the definitive orbital analysis of Ariel 3; an orbit was
detetminedll every three days, for 27 months from launch (May 1967).

The fourth programlz, known as POD (Program for Orbital Determination),
is complementary to PROP in that the orbit generator is a numerical-integration
model - i.e. it is a 'special perturbation' model in the language of celestial
mechanics. In most other respects it is identical with PROP, and employs many
of the same Fortran subprograms. It was started in 1967 with the proposed UK

military satellite Skynet specifically in mind. This satellite was launched
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in November 1969 into a synchronous (and virtually geostationary) orbit, for
which the gravitational attractions of the sun and moon are of much more
importance than for close-earth satellites - it was for this reason that the
integration model was deemed to be necessary. Though POD has so far only
been used for the Skynet orbit, it is in no way limited to synchronous orbits.
Its main limitations - and this relates to its role of complementing PROP -
is that (at least in the present version) there is no provision for including

air-drag terms among the perturbing forces.

3 GENERAL PRINCIPLES OF OD

Fig.l illustrates the input and output for a program such as PROP or POD.
Here 'constants' refers to a set of standard values of, for example, the
earth's equatorial radius, that are held with the program in a Fortran common
block; thus each constant is numerically defined at a single point, no matter
in how many statements of how many different sulbroutines there is a reference
to that constant, and hence there is no difficulty in changing standard values
when desired. The control card specifies, among other things, the number of
parameters in the orbital model, the maximum number of iterations to be
allowed before the program gives up hope of convergence and stops, and the
minimum number of observations with which it is worthwhile to continue at
any stage - the number of observations being used may change from one
iteration to the next, as a different subset of observations is rejected.
The epoch card specifies the date/time to which the orbit refers. The
remainder of the input comprises the initial orbit, station data (reference
numbers and coordinates, one card per station) and the observations themselves
(two cards for a pair of direction cosines, but a single card for other types
of observation). Output consists firstly of the final orbital parameters
(assuming that convergence has taken place) which are both printed and punched
on cards, and secondly of information derived from the covariance matrix of
these parameters - standard deviations and correlations are printed, while

the matrix itself is punched on cards.

It is useful, befc e proceeding with the mathematics of the differential-
correction process, to distinguish between 'observations' and 'observed
quantities'; an 'observation' consists of data cbtained from a given station
at a particular time, being composed of one or more 'observed quantities'.
Thus directional observations consist of pairs of observed quantities, and a
simultaneous observation of range, range rate and direction cosines would

comprise four observed quantities,




Let us suppose we have a set of q observations of a satellite, com-
prising altogether n (usually greater than q) observed quantities, and
let the orbit, which is to be corrected using these observations, consist of
the N parameters Pi» i=1, 2,..., N. If there were no errors in either
the observations or the orbit generator, a typical observed quantity would

be related to the true values of the parameters by a model function
8 = 8(p;s ) . (1)

We continue to ignore errors in the orbit generator, but now take into account
the fact that there are errors in the available values of the P;» and also
in the observations. Thus we distinguish between 6, which represents a
function of the P; and t, as above, and 6

’
value of an actual observed quantity; the errg:s in eobs is assumed to be
random, normally distributed, and uncorrelated with the error in any other
observed quantity. The difference Boia = ® is a residual R, which would
be zero if the true values of the p; were available and if the random error

in 'obs ¥as zero. (We assume that the correct time t 1is known, but in
practice errors in time should also be considered.)

Let ¢, together with R, correspond to estimates P; of the orbital
parameters at the beginning of an iteration of the differential-correction
process. At the end of the iteration the parameters are incremented by Api,
and it is our object to obtain expressions for the Api in terms of known

quantities.

If

o . = '
P 29 * Api and 6 e(pi. e
then
' = o ¢ [=—itp, + O (terms like (tp;) (tp)) (2)

i i

Thus if the 'pi are small, the residuals R', which will be obtained

during the next iteration, are given by

39 ap

R' = R - ] =
Py

. (3)

i

e

Ideally, every R' would be zero, so that one iteration would suffice;

then equation (3) could be written

Zi’—-Lp. A (4)

which denotes the numerical
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and solution of equations of type (4) would be trivial if there were the same
number of equations as unknowns, i.¢. if n was equal to N. In practice, of
course, n is much greater than N; also the (Api) (Apj) terms are not
negligible, so that one iteration does not suffice.

The fact that n > N is dealt with by the application of the method of
least squares. We start by expressing all the equations, typified by (3), in

matrix form, If

391 301 391

H - rosan v e e v » Y - R and Z = Ap »
LSRR oy ‘e L
33n 39“ 39n . .
. - s e b, H Ap
P, Py

then the given equations reduce to
Y' = Y-M2Z, (5)

where Y is known (in terms of the current pi) and it is assumed that M is

likewise known. The least-squares refinement to minimize [ R'? leads to

K
é(g—p_Y—)-o _for  i=1,2,..,N,
1

where T denotes transposition, and this reduces fairly easily to

MTMZ = MTY . (6)

It is worth noting that equation (4) leads to MZ = Y, so that the effect of
'rectangularity' is allowed for simply by pre-multiplication by MT on both

sides of this equation.
Thus the solution for the Api in any iteration is given by the simple

matrix formula

7 = ot vy . (7)




Although the sum of squares ) Rz. or YTY in matrix notation, is not required
in this formula, it is of vital importance that this quantity should be computed.
For YTY is precisely the quantity which is undergoing minimization, and hence
it is used as a criterion for the convergence of the iterative process; if it
increases from one iteration to the next, due to non-linearity, the process is
diverging; it it decreases, the process is coaverging, and if it decreases by
less than some conventional amount (taken in PROP and POD to be 1% of the
current value), the convergence is regarded as complete. It is important to
realise that the value of YTY vhich becomes available at the end of an
iteration is the value associated with the P; derived at the end of the
previous iteration; this is obvious, since the residuals associated with the
new p, cannot be formed until the next iteration, but since Z (and hence

Py * Api) and YTY become known at the same time it is easy to be misled.

The quantity YTY is important, apart from the question of convergence.
[f “he observations have been weighted correctly (where I now ascume that the
matrices M and Y include appropriate weighting factors, though I am
omitting the details, which are straightforward), then the final value of YTY
at convergence should be approximately equal to the number of degrees of
freedom of the process, viz. n - N. Putting this another way, if & denotes

statistical expectation and ¢ 1is defined by

2 Xy (8)

then

&) = 1.0

after the completion of convergence. If the final value of ¢ significantly
exceeds 1.0, as is often the case, then, unless this is due to errors in the
orbit generator or the statistical assumptions, it must be because the

observations are less accurate than had been assumed.

This mathematical section of the lecture is completed by the deriva-
tion of the formula for the covariance matrix of the final parameters
yielded by the differential-correction process. The derivation should be
easily understood if the following notation is introduced. Let Y be the
true vector of residuals at the start of the last iteration; 1i.e. Q is

based on residuals 9 - 7, where 0 is the observed quantity minus its
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random error and 0 = e(pi. t) as usual. Let Z be the vector of Api that
would then result from the computation

2 - MMy,
Thus i, assuming linearity, would lead to the true values of the parameters,

though in practice Z can never be known since the 6 can never be known.

Then the covariance matrix of the orbital parameters, considering the

population of all possible sets of errors in the eobs’ is given by

cov (Z) = &((Z-2) (z-2)7)

- MM el -y -DTI Mt 9)

But if the observations have been consistently weighted, & [(Y - Y) (Y - Q)T],

i.e. cov (Y), 1is a scalar matrix. In fact
cov (Y) = o° 1 ,

where I 1is the unit matrix of order n and o would be unity if the
weighting was correct and not merely consistent. Then one of the (MTM)-'1

factors in (9) cancels out and we get
cov (Z) = 02 (MTM)-1 . (10)

The matrix (MTM)_1 is already known of course, and all the statistics are con-
tained in the scalar factor 02. An estimate of 02 is available at once, viz. 82 as
given by equation (8). (If the weighting of the observations is altered in a
consistent manner, so that vectors Y and M are multiplied by some scalar,

then not only Z at each stage, as given by (7), but also cov (Z), as

given by (10), 1is unaltered; for if Y and M are multiplied by 1A, say,

then (MTM)-1 is multiplied by A_z, but 02, as estimated by ez in (8),

is multiplied by Az. Thus the results of an orbit determination, other than

the final value of ¢, are independent of absolute weighting, and this
effectively means that if all observations are from instruments of the same

accuracy it does not matter what actual accuracy is assumed.)

Fig.2 summarizes the flow for a program such as PROP or POD. After

input the observations undergo some preliminary processing before the
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differential-correction process is started. The most important part of the

processing consists of the incorporation of station coordinates, rotated from

earth-fixed to standard (geocentric) sidereal axes, into the appropriate

'observation block', but certain small corrections to the observed quantities
themselves, for example for refraction, are also made. After the processing
of all the observations there are q of these 'blocks', one associated with
each observation, and I have already iemarked that q is usually less than
n, the total number of observed quantities. The quantities in a block

are indicated in Fig.2:- here the 'rejection state' word is set to zero, and
the way in which this word changes is considered later; 'type' is a code,
e.g. 7 for range, right ascension and declination; date/time specifies the
MID (modified Julian day number), held as a Fortran integer quantity, and
fraction-of-a-day past the MJD midri sht, held as a Fortran real quantity;
station position contains 7 items of information (cartesian coordinates,
together with sine and cosine of geodetic latitude and longitude); the
number of observed quantities depends on the type; and the sigmas are the

accuracies (used for weighting) associated with the observed quantities.

Fig.3 summarizes the flow during differential correction. During each
iteration the observations are introduced one at a time and the matrices
MTM, MTY and YTY are built up. The matrix MTM is of order N x N,
where N 1is usually much less than n (e.g. N = 7 and n = 100, and M
itself, of order n x N, never has to be stored. Actually the matrices
are accumulated at four different 'levels', according to the size of the
weighted residuals. This is done to facilitate rejection. Once all the ¢
observations have been dealt with (in a given iteration), the numher of
observations associated with each level is considered. A special subroutine
is called in and decides how many of the levels, starting at the top level,
will be rejected. From the accepted level the basic operations, leading to
(MTM)-1 (MTY) and YTY, are carried out and the orbit improved. There is
then a convergence test, after which there is a further iteration or else

the final output occurs. 'Final output' may consist of the desired results,

or of a statement that the process has been discontinued without convergence,

for example because it has reached the maximum number of iterations permitted. i

Further understanding of PROP can best be obtained by reference to the |
output of a typical run. Figs.4 to 11 illustrate such output, edited into a '
more compact form than the standard computer output. (POD output, apart from
the printing of the parameters, which are defined quite differently, is

very similar.)

| _ —
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Fig.4 illustrates the initial printing which occurs after the control
and epoch cards have been read. The satellite was Ariel 3, and this was
the first possible orbit determination, with an epoch only six hours after
injection.

Fig.5 shows how, for reference, the values of the initial elements are
printed immediately after being read in. I shall be explaining the layout of
elements later; for the present it is worth noting that the initial estimate
of orbital inclination is 80.1903 degrees, changing at the rate of -0.00015
degrees per day. On the principle that information about all input data
cards should be included in the printed output, it is usual to obtain a
listing (actually before the initial elements) of all the station and
observation data, but here this listing has been suppressed (by mecans of the

zero valiies of the control parameters ISENSR and IOBSNS).

The observations used for the Ariel 3 OD were all from the interfero-
meters of the NASA Minitrack network. Each observation consists of a pair of
direction cosines, classified by PROP as Type 3, as seen in Fig.6. The
residuals for the first observation, as obtained during the first iteration -
i.e. from the initial elements - were 0.00098 and -0.00546, equivalent to
weighted values (since the a priori sigma is 0.00029) of 3 and -19. PROP
always prints both weighted and unweighted residuals, and those for 14 of the

40 observations of the specimen run are given in Fig.6.

Fig.7 illustrates the output which occurs at the end of each PROP
iteration. Since, returning to our earlier notation, N =7 and n = 2q = 80,
there are 73 degrees of freedom avajlable during the first iteration, and at
the end of that iteration the inclination has increased by 0.0027 degrees to
80.1930 degrees. I will ignore the footnote, though it is claimed to be
'important', but full details of this (and PROP generally) are available from
the program's operating manualg. Note, however, that ¢, the quantity I have
said should ideally decrease to a limit near to unity, has changed from 200.000
(an arbitrary value corresponding to 'iteration zero') to 19.928, which is
essentially an rms value of the weighted residuals from Fig.7, and that =«

(as I have already remarked) is always an iteration behind, since the

residuals of Fig.6 are associated with the elements of Fig.5, not Fig.7.

Fig.8 indicates the behaviour during the next two iterations. The new
factor present is that observations are being rejected - 3 on the second
iteration and 4 on the third - and that there are therefore fewer degrees of

freedom. Referring to the third iteration, it may be seen that there are now




SP
12
156

observations at three different levels - the no-star, one-star and two-star
levels - but as yet none at the highest possible (or three-star) level;
corresponding to these three levels, the rejection-state words which I
referred to earlier, are set to 1, 2 and 3, respectively. At the end of the
iteration PROP, through its special rejection subroutine, decides to accept
only the lowest level and hence prints '* REJECT 4 OBS ...'. (Had the next
lowest level also been accepted the printing would have been

'** REJECT 2 OBS ...'.

Fig.9 shows that convergence is proceeding nicely during iterations 4, 5
and 6. It is clear from the first six iterations, however, that it is often
the continual change in the set of observations being accepted, rather than
the importance of neglected second-order effects in the process, which

causes the program to go on for many iterations.

This run finally converged after two more iterations, with final
= 1.864 and no further change in the rejections, but details of these are
omitted. The final elements are as shown in Fig.l0, where the orbital

inclination has converged to 80.1791 degrees.

Finally, Fig.ll gives standard deviations, in the same layout as the
elements themselves. (Zeros occur for elements which are not being fitted,
i.e. which are not 'parameters of the orbit'- I elaborate on this a little
later.) It is seen that the standard deviation of inclination is 0.0015 degrees,
and from the matrix of correlations it is also possible to read off, for
example, the correlation coefficient between eccentricity and inclination -

this is 0.168.

4 ORBITAL PARAMETERS AND PERTURBATIONS

I will consider the parameters and perturbations of the POD model first,
both because the model is conceptually simpler and because an account of the
PROP model, which will conclude this fiist lecture, will then provide a

natural link with the second lecture.

POD, as I have said, has a numerical-integration model, and the
parameters of the orbit are simply the epoch components of position and

velocity, denoted by X Yoo Zoo io, Voo 20; thus there are always exactly
six parameters. Epoch has to be chosen as some time instant which occurred
prior to all the observations (or after all of them if the integration is
specified to proceed backwards) and is normally at a midnight, though it

does not have to be. (PROP epochs, in contrast, have to be at midnights, but

are usually taken somewhere near the centre of the period spanned by
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observations.) At the beginning of each iteration of a POD run, a table of
values of x, y, 2, X, ¥, 2, %, ¥, 2 1is set up, by integration of the standard
equations of motion in an (almost) inertial cartesian axis system, i.e. the
equations expressed in Cowell's form. The integration starts from x = etc.

at epoch, operating initially in a fourth-order Runge-Kutta mode but switching
to an eighth-order Gauss-Jackson process as soon as this is possible. The
integration proceeds until the period spanned by the observations has been
completely covered. The step length (for the Gauss-Jackson process) is
typically 30 min for Skynet, but is actually a control parameter of the
program. The interval of the table set up by the integration is a multiple

of the step length, typically 60 min for Skynet.

The POD orbital model consists simply of interpolation (fifth-order for
X, ¥, 2; fourth-order for X, y, 2) in the table just described, combined of
course with the appropriate geometrical calculations necessary to derive
topocentric range, declination, or whatever is required, from geocentric x

etc.

At the beginning of certa’'n iterations, simultaneously with the setting
up of the table of x etc, a table of partial derivatives is also set up in a
similar way. The derivatives involved are those of x, y, z, %X, y, 2, %, ¥, 2,
with respect to the orbital parameters - i.e. they occur in sets of 54 - and
they are generated by the method of Goodyearl3. I have already explained why
partial derivatives are required in a differential correction process. Since
their accuracy does not have to be as good as that required for x etc.,
they are stored at a wider time interval and not always re-generated after

every iteration.

Perturbations - i.e. effects due to forces on the satellite other than
the inverse square law force towards the centre of the earth ~ are incorporated
in POD very simply, by inclusion of the perturbing accelerations directly in
the equations to be integrated. The perturbations which are covered in the
present version of the program are luni-solar perturbations, using stored
ephemerides of the sun and moon, and five of the gravitational harmonics of
the earth, viz. JZ’ J3, Jé’ C2,2 and 82’2 (all of which I will be defining

in my second lecture); perturbations due to air drag are not covered.

Before describing the parameters of the PROP model I must introduce the
six standard elements of an elliptic (unperturbed) orbit. Five of these

define the orbit itself and are illustrated in Fig.l2; 1in a standard notation
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these are a (semi-major axis), e (eccentricity), i (inclination),

(right ascension of the node) and w (argument of perigee). The sixth element
permits the distinction of one satellite from all other possible satellites
moving in the same orbit; this element is the mean anomaly at the epoch of
reference, and is denoted sometimes by o0 and sometimes by Mo. For a
circular orbit it is simply the angle by which the satellite, at epoch, is
ahead of perigee. The significance of the zero-suffix notation is that,

though semi-major axis etc. are constant for an elliptic orbit, mean anomaly

increases linearly with time and is given by the formula

M = Mo + Ml =
where t 1is time from epoch and Ml’ the 'mean motion', is related directly

to a by (Kepler's third law)
3 2 2
a~ = const. (= 398 602 km" /sec™ for the earth).

For a perturbed orbit it is no longer true that a, e etc. are constant,
but 'osculating' values may be defined precisely, at any instant of time, by
considering the hypothetical removal of all perturbations; then the osculating
a, e etc. are six functions of time, instantaneous position and instantaneous
velocity, which change only slowly with time - therein lies their use. The
variation of an element with time usually consists of a secular (or monotonic)
component, together with periodic components of various frequencies. Fig.l3,
for example, shows the variation of the eccentricvity of Ariel 2. Here the
osculating eccentricity does not appear at all, since 'short-periodic’
components have been removed; these components have amplitude of order 0.001
and periods about 90 min (the orbital period in fact) and 30 min (1/3 of the
orbital period). It is clear that short-periodic terms are unplottable and it

is standard practice to define 'mean elzments' which are free of such terms.

The continuous curve in Fig.l3 is the mean eccentricity, as found at RAE
from 210 separate orbit determinations, and it is clear that there are still
two major components present. One of these is a 'long-periodic' component of
amplitude similar to the short-periodic terms and period about 120 days (the
period of the rotation of perigee in fact). The other component is a secular

decrease of about 0.006 over a year, due to air drag.
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Before leaving Fig.13, I have some further remarks on the long-periodic
perturbations. It is clear that the values of eccentricity retained by NASA,
shown as circles, have had long-periodic, as well as short-periodic, terms
removed. This removal of long-periodic terms, leading to 'mean mean'
elements, is common to the orbit determination programs of a number of
organizations, but at RAE we think it is not a good idea. There are two
reasons for this: one is that the expressions used for the long-periodic
perturbations are, unlike those for short-periodic perturbations, unbounded,
and become infinite at the so-called 'critical inclination', when the motion
of perigee disappears; the other reason is that removal of these terms tends
to hide the true evolution of the orbit, while the explicit retention of
long-periodic amplitudes may be very useful, as will appear in my second
lecture. Thus in Fig.13 it seemed preferable to compare RAE and NASA values
of eccentricity by adding long-periodic terms back into the NASA values,

rather than by removing them from the RAE values.

The PROP model can now be described. Each of the parameters e, i,
Q, w and M is represented as a polynomial - the degree, n, may be chosen
in the range 0 <K n<5 for e, i, @ and w, and in the range 1 <n <5 for
M; however the usual choice is n=1 for e, i, 2 and w and n = 2 or 3 for
M. Then e = e, + e t, for example, and the complete set of coefficients
e, €, etc. is considered as a set of 'orbital elements'. The 'orbital
parameters' are defined as a subset of the set of elements, such that if
Ms is a parameter, for example, then Mj must also be a parameter if j <s,

but need not be if j > s.

The usual parameter model is illustrated by Fig.1l4, which relates to the
printed layout of elements illustrated earlier. Here a is of course a
derived element, and e io’ Qo and w, ~are parameters, while € il, Ql wy
are not; the M elements are all parameters. The reason for this is that ey
etc. represent perturbations that can be calculated - as functions of the
parameters - to sufficient accuracy, while M2 etc., cannot. (M2 etc, are
essentially empirical drag parameters which represent the unknown state of the
atmosphere, whereas e, etc. represent second-order drag effects, which can be
expressed as known functions of M2, and the effects of zonal harmonics, the

values of these harmonics being sufficiently well known.)

Thus the secular perturbations of the basic PROP element are represented

through the extended set of elements. Periodic perturbations, representing the
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non-secular zonal-harmonic effects and further second-order drag effects, are
also represented, but this representation is by internal formulae, with no

direct evidence available in the printed output provided by the program.

The perturbations explicitly covered by PROP are the following:-
zonal harmonics, as many as desired up to J16 (by recurrence relations, the
only limitation being due to storage); the sectorial harmonics C2,2 and
52’2; and drag. Thus, in particular, luni-solar perturbations are not
covered.

1 will end this lecture by remarking briefly on one of the theoretical
methods by which the formulae expressing satellite perturbations are developed.

In the absence of perturbing forces the potential function (equal to the nega-

tive of the satellite's potential energy divided by its mass) is simply u/r.
Let us write the potential in the general case (8o long as the force field is
still conservative) as u/r + U. Then the variation of the osculating
elements a, e, i, Q, w and o arises purely from U. If U can be expressed
as a function of the satellite's elements together with time, instead of its
position, then the rates of changes of the elements can be expressed in terms
of the partial derivatives of this function. Fig.l5 gives the explicit
formulae - Lagrange's planetary equations - which are exact. Now the zero-
order approximation to a, e etc. is simplythat they are all constant. Hence
a first-order approximation is obtained by assuming a, e etc. constant on the
right-hand sides of the planetary equations and integrating, just quadratures
being involved. A second-order approximation can then be obtained by sub-
stituting the first-order solutions into the right-hand sides of the
equations, etc., but the mathematics rapidly becomes unmanageable. I have
followed this technique myself14 in studying the perturbations due to the

zonal harmonics.

Acknowledgement
I am grateful to D. G. King-Hele for allowing me to use a number of

illustrations from his publications.




17

SP
156
REFERENCES
No. Author(s Title, etc.
1 R. H. Merson Techuiques of analysing terrestrial radio and

optical observations of earth satellites.
Astr. Acta. 5, p.26 (1959)

2 D. G. King-Hele Satellite orbits in theory and practice.
R. H. Merson J. Brit. Interplan. Soc., 16 (8), p.446 (1958)
3 R. H. Merson Use of artificial satellites to explore the earth's

D. G. King-Hele gravitational field: results from Sputnik 2 (19578).
Nature, 182, p.640 (1958)

4 R. H. Merson A Pegasus computer programme for the improvement of
the orbital parameters of an earth satellite.
RAE Technical Note Space 16 (1962)

5 R. H. Gooding Modification to the model for satellite orbits used
in RAE orbit determination.
RAE Technical Memorandum Space 41 (1964)

6 R. H. Gooding Operation of the Pegasus programmes for determining
R. J. Tayler satellite orbits.
RAE Technical Report 66190 (1966)

7 R. H. Gooding The orbit of Ariel 2 (1964-15A) - the first twelve

months.
RAE Technical Report 65274 (1965)

8 R. H. Gooding The orbit of Ariel Z (1964-15A).
Planet. Space. Sci., 14, p.1173 (1966)
9 R. H. Gooding A PROP3 users' manual.
R. J. Tayler RAE Technical Report 68299 (1968)
10 R. H. Merson The dynamic model for PROP, a computer program for

the refinement of the orbital parameters of an
earth satellite.
RAE Technical Report 66255 (1966)

11 R. H. Gooding The orbit of Ariel 3 (1967-42A).
RAE Technical Report 69275 (1969)



18

No.

12

13

14

Author(s)
R. H. Gooding

W. H. Gocdyear

R. H. Gooding

REFERENCES (Contd)

Title, etc.
A POD1 users' manual,

RAE Technical Report (to be issued)

Completely general closed-form solution for
coordinates and partial derivatives of the two-
body problem,

Astron. J., 70 (3), p.189 (1965)

Satellite motion in an axi-symmetric field, with
an application to luni-solar perturbations.
RAE Technical Report 66018 (1966)

SP
156




NEGNOC7384 TMEMO SPACE 156

Fig.]- 6

IN
INPUY
PROGRAM
FARAME TERS
CONSTANTS
PROCE4S

( CONTROL STD BEV'S
RE JECTION STATE
TYPF
[ EPOCH CORR'NS DATE / TIMF
ST'N POS'N
0BS'D QUANTITIES
INITIAL o°s
PARAME TERS
PARAME TERS — )
| q OBSERVATIONS
STATIONS N OBSERVED QUANTITIES
OVARIANCE
MATRIX
DIFFERENTIAL
085 ‘NS CORREC TION

Fig.1 Fig.2

RHmUITE

—
ORBITAL MODEL
TOPOCENTRIC €S

PRINT RESIDUALS

[ BUILD MT M, M7y, VT

|
|
|
: BERLA?
| : FOR g ORGES kTR

@
-
o
—
m
o
S
4
5
(o}
Z
o
<
b
0
lo}
v

| —_—

CONTROL PARAMETERS ARE 22223 (T3 U S TITEY (MMMMM;,
WE JEE Fi0sy
| O (MODE), 10 (MAXITN) . 20 (MINOBS),

| O (JELTYPR), O (TENSR), O (IOBSNS)
I GEOPHYSICAL CONSTANTS ARE 398602 O (EMU). 6378 163 (ERAD
18 (EJ228 £6), etc etc et

|
MPRO YD USE IONAL HARMONICS UP 10 ¢ ONLY

Pamgay
| EPOCH 15 1967 MAY & O (MJD 396181,

SATELLITE IDENTIFICATION & 670,420 (ARIEL 3)

B CER T RGER
b Fig.4
r é_-.m_l
DT e #
—— FIRST ITERATION ITERATE IN MODE 0
Fig.3 Ty 5419 0-00098 -0 00548 DCS,
2 TRy 2 -6 000054 -0 00465 DS
3 Twees S <M 000152 0 00323 Do
4« rvegs 6 -6 0 00188 -0 0075 pcs
S Teeg s T2 -39 -0 01220 G 01147 o
6 Tregy -45 =29 -0 01306 -0 00837 pCs
INITIAL ELEMENTS ARE (e
M Tveg s 2 6 000072 9 00iIAs DCS
69300964 (DERIVED SEMI-MAJOR AXIS) e Tyeg S 8 000130 0 00247 DCS
0-007939 -0-0000032 35 Trep Y 4 -2 0 00303 -5 00070 By,
80 - 1903 -0-000I5 6 Tvpg g 42 0 00399 -0 00045 DCS
37 vyeg -66 -4 -0 01910 -0 o119} oCs
169 4424 ~1 27044 W tveg 3 S87 44 -0 01941 ¢ 0294 Des
162 3614 -3 16172 Y9 Teeg g 318 -0 00080 ¢ GOS0 DS
331 ‘8500 5419 - 17919 0~0|7649 40 Trpe - 19 00046 0 C0S4B DCS

-0
Fig.5 Fig.6

Fig.1-6




Fig.7-12

ND O DBSERVATIONS
THERE  ARE 7Y DEGREES OF FREEDOM
EPSL0N  HAS CHANGED FROM 200 000
ELEMENTS BECOME

MAGL BEEN REORCTED

T0 19 928

8930 093% DERIVED SEMI 24 10R AKIS
0 007O%2 -0 Su000%R
80 19%0 0 0001
169 4398 -1 21010
182 Y448 -3 18202
331 8ey) 5419 1827% 0 017650
IMPORTANT ~ ANY OF THE FIRST FOUR SUB-I ELEMENTS

PRESENT WAS (TS FULL VALUE, TW

€ MAIN  SECULAR

COMPONENT OF wHICH WAS BEEN COMPUTED INTERMALLY
THE EXTERANAL COMPOMENTS, AND ONLY THESE APPEAR

N PUNCHED CARD FORMAT, ARE RESPECTIVELY,
0 0000001, -0 000IS, © 00003, 0 00!I4
Fig.7
TERATIONS s ..
) ? ' N,
2 3 ° s | -3 '
) ' ° ° -1 0
. 0 [} ° '
seee @ -5 L I e L L L e L 4]
sese 4y LE T BT LR TY e ey -
" 2 ? . 2 ’ - ' SO |
‘. ] s . 3 . . ] '
18 ? 2
" H El ? 2 2
iteee a2 L L A T T Y T 1Y
R L e T O T 1 S TON
"% ° '
o0 o
®RELECT e 0BswS ® RELECT 5 OB5NS  WAEJECT & OBSHS
0 REsm ~ 2 IRESH - ~ 0 FRESH -
TR ORESDLS ABCYE W wiTe RESDLS ABOVE & WITH RESDLS ABOVES
si00¢ o0 s1D0F
o FROM S ATS TO 2348 ¢ FROM 2 Sa TOI N0 « FRAOM (998 TO 1 929
.
Fig.9
00039 (50 FOR DERIVED SEMI-MAJOR AXIS)
0 000012 0 0000000
0 0015 0 00000
0 0010 0 00000
00783 0 00000
J:0708 0 00452 0002060
1000 0188 -0 150 0503 -0500 0632
0 168 1000 -0 215 0 0% 0090 0072
0150 -0 218 | 000 -0 D4s 0 043 ~0-086
0503 0090 -0 045 1000 =1-000 o 9
-0 500 -0 090 0043 -1 000 1-000 -0-608
0 632 o072 -0-086 0 689 -0-608 1-000
-0 653 -0-074 0 087 -0 655 0653 -0 908
Fig.1l

FURTMER ITERATION - NUMBER 2

| ."'l ) " -e
2 TYRE S “«
3 TYeE S & ™
4 TYPE N 1 0
3 Ty 0 - -9
s TYREL 3 -4 -
(344
AL ERALI ) 3 n
34 TYPE S s 13
35 TYPE S " -
16 TYPE S (LI} )
3T TYPES & -e0 -33
38 TYPES R -e0 -W7
M TYeE s =13 24
40 TYPE 3 b TR -

® REJECT 3 OBSERVATION(S)
=3 FRESN -

WITH RESIDUAL ABOVE SO

THMERE ARE 67 DEGRELS OF FREEDOM

EPSILON NAS CHANGED FROM

19920 Y0 12742

ELEMENTS BECOME ETC

Fig.8

NUMBER 3

2 -3

<3 =3

0 i |

) 1 =2

| ® -e0 -3

5 * -4 -2
|

| 2 -9

g « -

| b 1

1 (]

| " =10 -0

i L 2] =104 -8

| -
| | -

| ® nesecr o oos
=1 FRESH =
| wirn nes asove 32
THERE ARE ¢300F
« FAOM 12782 TO 3478
ELEMENTS DECOME ETC

ELEMENTS BECOME
69300908 (DERIVED SEMI-MAJOR AXIS)
0-007747 -0-0000049
801791 -0:00016
169-4540 =1-27187
163- 1191 -5-16049
331-0528 541918576 0:027630

IMPORTANT -
PRESENT MAS ITS FULL VALUE,
COMPONENT OF WHICH MHAS BEEN
THE EXTERNAL

IN PUNCHED CARD FORMAT, ARE
=J-0000001, -0:00015, 0:00003,
Fig.10

= (g

ANY OF THE FIRST FOUR SUB -I

ELEMENTS
THE MAIN SECUL AR
COMPUTED INTERNALLY.

COMPONENTS ,-AND ONMLY THESE APPEAR

RESPECTIVELY,
0-00114

'EQUATOR
e o

C- EARTHS CENTRE

T+ FIRST POINT OF ARIES
“0.493 INTERSECTION
-0.074 OF ORBIT WITH
0 087 UNIT SPHERE
-0-655
0-653
-0-908
1-000

Fig.12

NEG.NO.C7385 TMEMO SPACE.156



f

rMEMO SPACE 156

»

NEG.NO.C7386

T T 1
e
€ \
core|o
o i
© .7; & "
\__, ° oo
oo i
3 -~
S e
o A
L
N
— R AL CumE bl ‘\
~ ALY 2 .
F i R o
..
© Ose \
0 08 Jeemmr e S Te50 Yoo 3358 o0 TE
NGB NomBER
.
Fig.13
%
€o ¢,
io Y
Qo Q,
(5% w,
Mo M, Mbi e o 1
.
Fig.14
Sl ERR ]
dat no do
de | au oy
R py ("""w AT
g cosec (‘”h‘_u — QU
@ fot ar e ~ aa)
a0 cosect L)
dat no' Jice' 4
e | 1 (@EF e _ o w
qat na' . oe Jie' 4
ae - -t Y v
@ " e (—. £ D)

Fig.15

Fig.13-15

Fig.13-15



