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ABSTRACT

A unified network approach to the analysis of infinite regular
arrays of antennas is presented. The periodically repeated con-
stituent of the array is itself regarded as a sub-array, the sub-
array taking a variety of particular forms. With the appropriate
choice of sub-array, the same formulation yields as special cases
the uniform linear, planar, and cylindrical arrays as well as
éuch arrays c0m§rising several heterogeneous elements or multimode

elementary antennas,
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I, INTRODUCTION

A unified network approach to the analysis of infinite regular
arrays of antennas is presented. The periodically repeated con-
stituent of the array is itself regarded as a sub-array, the sub-

array taking a variety of particular forms. With the appropriate

choice of sub-array, the same formulation yields as special cases
the uniform linear, planar, and cylindrical arrays as well as such

arrays comprising several heterogeneous elements or multimode ele-

mentary antennas. Three possibilities are illustrated in Figs, la
througn lc, Figure la shows an in-line arrangement of 2-element

F : : sub-arrays; a typical sub-srray is delineatec by the dashed line.

| Similarly, Fig. 1b shows an arrangement of linear sub-arrays, each
sub-array extending in a direction orthogonal to the principal

" array axis. The planar array illustrated is finite in one dimension;
howrver, this restriction to finite sub-arrays is not essential,
Figure lc shows a cylindrical array. Each circular srray may con-
veniently be regarded as a sub-array, bringing such (glide symmetric)
cylindrical arrays within the purview of the general scheme. The
network problem for the antenna terminal quantities is formulated

as an infinite order finite-difference equation, The solution is




obtained as a3 matrix generalization to arrays of sub-array antennas

of the technique presented in Reference 1,

The finite-difference formulation is applicable to arrays of
qQuite general antennas and is not restricted to apertures in a con-
ducting plane or cylinder. It is only necessary that the network
parameters characterizing the interaction among the elementary an-
tennas be known, For minimum scattering antennas, these network
parameters may be calculated conveniently and exactly from the ele-
mentary radiation patterns, without reference to the structural type
of the elements[1],[?]. The particular sub-array chosen for pur-
poses of illustration consists of two inclined dipole radiators.
Only one dipole of each sub-array is excited; the remaining dipoles
act as passive parasitic radiators. Quite deliberately, no physi-
cal supporting structure for the dipoles is specified, However, the

parasitic dipole radiators only are interconnected in a manner to be

described. The array of fed dipoles, when excited with uniform
amplitude (linear phase taper), will be found to exhibit peaks in
the active reflection coefficient, or, equivalently, resonance nulls
or minima in the paftern of a single excited element within the ar-
ray of sub-arrays environment [2],[3),[4]. It is therefore demon-
strated that such resonances, existing purbly as circuit properties
of the array network, can in principle occur gancrally in linear,
planar or cylindrical arrays as opposed to being necessarily limit.d
to specific kinds of structural confiqurations[ﬁ]; Further, it will
be seen that these resonance minima (reflection coefficienmt maxiea)

mdy be arbitrarily placed and variable in depth, Conversely,‘cno




1 ability to control and place rapid variations in reflection coef-
ficient with scan angle holds promise with respect to matching out

variations found in any given case[8],[9].

II. DIFFERENCE EQUATION FORMULATION FOR AN ARRAY OF
SUB-ARRAY ANTENNAS

Consider an infinite, uniformly spaced linear array composed

of identical M-element sub-arrays as “hown in Fig. 1d. The terminal

voltages and currents satisfy

= L2 N (1a)

where Z,, is an MXM (open-circuit) impedance matrix coupling the mth

and the nth sub-zrrays; V, and I, are column matrices

ps q - ——y
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 The matrix Z,, has the form
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It tollows from Lorentz reciprocity that
2yn = 2,,

wherein ~ denotes the transposed matrix. The translational symmetry
of the infinite linear array implies that Z,, is, in fact, only a

function of the difference v =m - n; thus,

Zy =‘Z-v *

Let Z, be the diagonal matrix containing intémal impedances of the

driving generators, i.e.,

2, = diag [zg,z_“ .« o o z“] =R, +3 X .

Then the array may alternatively be regarded as being excited by

“incident waves a,

TNEEATE % A E (20)

Since the internal inpodancos' 2,, are, in general, complex the
reflected waves b, are given by | |

mhp =y -#L. @

Explicitly then, the currents I, produced by the incident ms'

a, satisfy

N-w

1in tn ZyLiey + 2,5 "R a, . ()
VEN "
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The solution of (1b) for I, with arbitrary excitations a, may

P ]

be obtained by recognizing that the I, and a, must be coefficients

of (matrix) Fourier series (cf. [1] for the case M = 1). Thus, sub-

stituting
1 n “3al
1 =§;/ I(g)e"i> g (3a)
T
1 m -jn§
g,=,-,;f Mg e ag | (3b)
-n

into (1) yields

L == /"{[Q(Q) + z‘]-{ zx}"( 2: 5 .i°§)3e'5“‘ &, (&
-n e

where the matrix Q(§) is given by

VE .e

Qe) = Z A (s)

When only the first chﬁnt: of each aub-ma‘y is excited (all others |
being terminated in Z,,) one sets in (4) & * [a,,00...C].
This yields . - : o
- ok, det & (D) ()¢ 1 z: a,, oJ%¢
o Ewm fe  det () a3

. ¢.'_"1--2.'. . -‘o o ' | | ' (6).»

shere the matrix Qe) is given dy
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Qe = Q) + 2, (7

and alc is the miror of ﬁ obtained by striking out the lst row and
2th column. The sub-array elements ¢ = 2,3, . . . M can be either
physical parasitic cadiators \employed, e.g., to effect .an improved
match of the array with scan [4]) or equivalent radiators corres-

ponding to higher order evanescent modes in the input transmission

line [2],[5] . 1In the following, the sub-array element ¢ = 1 will be

referred to as the driven element,

Two types of ariay excitations are of particular importance: one
in which dnly one driven element is excited (all others being terminated
in Z;), while another corresponds to the excitation of all ¢ = 1 ele-
ments by equal amplitude waves with a linear phaée taper, In the
form r case, the currents at the driven elements are proportional to
the mutual and self-coupling (scattering) coefficients. Thus, denoting

these by S,, and employing (2), one obtains

‘-\/;.:%-?;-:f-, n#m

b
ChY 38

Sﬂl (8)

ay, =0,n#m (1 VR, La
0o bR g
Setting a;,, = 0, m #n and a;,, =1 in (6) one also has

5., = ;.. -En; [ﬂ' det g“a(S) e-j(n - m) gdg . (9)
" det Q(8%)

When the array is excited with uniform amplitudes and a linear phase

6




taper one sets a, = e"i% (o the phasing constant) and (6) yields

2Ry detily(a) O DA L N I 1)
det Q(a)

IL’

i Employing (10) with ¢ =1 togethef with (2a) one obtains the input

(active) impedance looking into the typical driven element:

Z,(a) = St 2, (11)

Expanding the determinant,'yields
M

Q) det &, (a) (-1)1*%
Lz:z e ' - (12)

det G;:(a)

Zyn(a) = Quala) +

where Qu:, Oy are (scalar) elements of Q, If the array is matched

at broadside then the active reflection coefficient p(a) is

= L1 na) - Z,4(0) ‘
p(a) z-:-ﬁ-(m‘*&m’- . (13)\

In (12), the active impedance is exﬁressed as a sum of two terms:
Q.1 (@) which corresponds to the active impedance of the driven ele-
ments in the absence of parasitic radiators and a sum of terms taking

account of coupiing among the elements of a typical sub-array. Equa-

tion (12) holds quite generally and has, in fact, been derived from
pure circuit considerations, i.e., without reference to structural prop-
orties of the radiators comprising each sub-array. If one is dealing

with the special case of single mode elements, then in the range of o

7




for which no grating lobes appear in the visible region, Q1(q) will

generally not exhibit sharp resonances and if resonance phenomena
in the active reflection coefficient do appear they must necessarily
be associated with the second term in (12), In particular, the pos-
sibility of such resonances exists whenever det d;l(q) possesses
sharp minima (maxima)., This has been noted by Borgiotti‘[s] in con-

nection with a planar array of apertures where, in the present context,

the parasitic radiators correspond to evanescent modes in the feed
waveguides. The point being made here is that such resonances can

be described adequately in pure network terms., The above considera-
tions apply also to sub-array elements which are minimum-scattering
(M.S.) antennas [1],[7] since they are completely defined in terms of
their radiation patterns (without references to §hysical structufes).
For such antennas, the Qg (@) can be readily computed since the mutual
impedances entering into the definitions of Zy, eq. (1), are given
explicitly in terms of element patterns [7]. Moreover, certain single
mode elements (in particular, planar aperatures) can be rigorously
treated as M.S. antennas [7]. In the following, a 1inearrarray’of

two-element sub-arrays consisting of two M.S. (dipole-type) antennas
will be analyzed.

~

III. A LINEAR ARRAY OF DIPOLE SUB-ARRAYS

Figure 2a shows a linear array of two-element dipole sub-arrays.
The dipoles are inclined at an angle 8, = sinfi'lg with the array axis,
The active impedance for a linear array (M = 1) containing dipoles

with this particular orientation has been cémputed in [l]. The

8




active impedance has been shown to exhibit the interesting property

of having a constant real part in the visible region if the inter-
element spacing does not exceed A/2. In addition, the imaginary part
remains small throughout most of the visible region so that nearly
perfect match is' attained for a large range of scan angles, In the
following, the effect on the active impedance looking into the port

of the driven element is examined.

Employing (12) with M = 2, one obtains

Zin@) = Q) - P f;) : (14)

The coupling impedance matrix Z, for a two elemen: sub-array is

292(V)  zy5(V)

z, = , . (15)
zg1 (V) zg5(V)

Employing the results of [1] and noting that the parasitic

and driven elements are identical, one obtains

1 ;v=0
211(V) = zﬂg(\)) = ) (16)

je“ij:z vl TR

Similarly, the cross-coupling terms may be written

-3k |\D; + D

na) ® GV +0D) = S ™, )
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-3k [Py - D,

(M = (KvDy -0 = Bgpr—qpr— . G
By virtue of (5S)

Q11(a) = ng(a) = Z . 211(V) e'JVG ’ (186)
AVER_JESN

Qgla) = :E: 2,5 (V) e"iva (18b)

V= -
[ ]
Qrf) = ;ﬁ 25, (V) €74V¢ = Q,_(-q) .

Using (16), (18a) is readily summed to yield
Qila) = Qala) =
ng - E%;.ln {4 sin 152l§:;51 sin JEEL§:—91} s fa|<kD <7,
- Fg-l-ln {4 sin -IQ-L;—GJ- sin Eﬁ'—ﬁl} R lkD1|<|a.|‘< m ., (19)

Equation (19) is, of course, identical with the active impedance

in the absence of a parasitic element as given in [11.

The series for Q,,(a), i.e., eqs., (17) and (18b), cannot be
summed in closed form. By summing all the terms having a 1/y de-
pendence one obtains a representation which is more suitable for
numerical computation than the original series. This is described in

the Appendix. The result is

10
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. -jkD
Qu(a) = 091(-0,) = EEE_:‘ - cos kD, + h(Dy, Da) (20)

- j - -3k . +
1

o= kD, - @) - kD] -3 [W(kDy + @) + kijg]
(W, - D) T TN, - 5p) ] ’

where

%1 cos KD, ; la|< kD, ,

h(D, ,Dg) = %Tl sin kD, ; KD, <a <7,
1

EI—SJ'.HRD’; -T <a < -kD; .

Tn the absence of external interconnections among the parasitic

elements, Fig. 2a, Z,, in (14) is a fixed (i.e., scan independent)

terminating impedance., If the parasitic elements are interconnected
through external impedances 2, and Zy as shown in Fig. 2b, Z,; in
(14) is replaced by the equivalent impedance wﬁich depends on 7.

and Z, as well as on the phasing constant & [8]. Referring to
‘Fig. 2b, the voltage at the port of the parasitic element of the nth

sub-array satisfies the following difference equation:

Vv, - Ve on- \/ + = Vp. a4 -V )
.n.,n_z;..n..a_a. + .%:n- ) -MI—H (21)
For excitations (of the eigen-form) e~!"% one has
Voo = Vala) €3, I, o= I (a) €™, . (22)

The above together with (21) yields

11
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- Vaw o %la) - Z,%
2o (o) = B2 - S : (23)
Z, + 42, sin® &

If one assumes that Z, and Z, are pure reactances, i.e.,

2y = jXy, Z, = jX;, parallel resonance occurs for scan angles q,

satisfying
Xy + 4%, sin® $2. =0, (24)

The resonance point can be placed at any predetermined scan angle,
Figure 3 shows the variation of the magnitude of the active reflec-
tion coefficient g(g) for the array in Fig, 2 looking into sub-array
element 1 for several values of a, and X, = 1. For each q,, the array
is matched at broadside and the separation of sub-arrays is D, = )\/4
so that the visible region is|g|< n/2; D, is chosen to be D,/10.

For comparison a curve of |p(g)l in the absence of the parasitic ele-
ment is included, and is seen to vary monotonically in the visible
region, The pronounced peaks in the reflection coefficient occur at
the resonant points ¢,. Even though the reflection at g, is quite
high, it is not total, i.e.,|p(a,)| # 1. Indeed, the maximum value

attained by |p(a)l near o, may be adjusted by varying the reactance X,.
This is demonstrated in Fig. 4.

The lack of total reflection at q, is due to the general character
of Q(a), which, for each g, represents the impedance matrix of a dis-
sipative network, the dissipation being, of course, loss of energy
due to radiation, Unless the equivalent network for Q(a) degenerates

into a pure shunt structure this dissipation precludes total reflection,

12
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Although the amount of radiated power may be very small, nevertheless

it is not identically zero except in the invisible region, i.e.,

o} > KD .

The rapid variations introduced into p(q) by the parasitic element
in the present example may in other circumstances be utilized for
matching purposes, Were excited elements themselves to exhibit reso-
nant behavior (as is known to occur in the case of multi-mode elements
or an array covered by a dielectric sheet), interconnecting networks
of the type shown in Figs. 2b and 5 together with a parasitic radiator
could be employed to compensate for such resonances. In particular,

if Q;;¢q) exhibits a series resonance at g, then, by virtue of (14),

the network in Fig. 2b is appropriate which itself is parallel resonant
at p,, as is evident from (23), On the other hand, were Q;;(a) to
exhibit a parallel resonance, then the proper interconnecting net-

work is that in Fig. 5. One can readily show that in this case

Z, + 42, sin® §

Z . (a) =
se’® Asin‘g-

(25)

which is seen to be series resonant whenever the numerator vanishes.
For such compensations to be effective, the parasitic element should
not introduce additional resonances, i.e., Q.;(a) in (14) must be &
slowly varyingrfunction of a. This will usually be the case for
single mode elements, or more generally, for minimum scattering

antennas -b

13




APPENDIX

TRANSFORMATION OF THE SERIES FOR Q,4(a) INTO A
MORE RAPIDLY CONVERGENT REPRESENTATION

Employing eqs. (17) and (18b), the series representation for

Q13 (@) is

-J(ktn + Wil + W)
Qugla) = l T . (A
V= -

The above can be written in the alternate form

‘5 wWkD, + @)

Qefa) "7—;5—1 é Zl —0; +f e-jth+ (A2)

. N -IWKDy - @)
#% z e \Bl -.b; e*jknz‘.

v=1

Since the terns for large v decrease as 1/y, the series converges

slowly and is not useful for numerical computations. A more rapidly
convergent’represéncaéion'is obtained by employing the following
identity: | | |

p-1 :
1 . . §=§»’ z‘- (,n )" 1
W, 53 “Zo Wi * t D, *al » (A3)

14




which holds for arbitrary integers p.

Substituting the above into the infinite series in (A2) yields
the following:

e IVD, £8) NN /_p \Pg-iVKD %)
va1 W, 2D, \,Zl(+-\-51) D % I (a4)

- 1 * t ]

P -1 ®
Z: s: &! 2: e-:iv(ka +a)

+ .
L=0[" V=l Y

The magnitudes of the terms in the first infinite series on the right

of (A4) are seen to decay with v as J./w.ap *1 and hence improved con-
vergence is obtained by increasing p. The second term on the right
of (A4) is a sum of p infinite series which are slowly convergent,

However, for P = 1 the series has a known closed form solution which
is [10]:

2: g IV +a) o
f1(a) = = o (ASa)
vaTl Vo S

-

- -3W(KD; - @) , f |
fole) = vgl s —3 = ~ (ASb)

..j(w st g {2 an By g ] |

- sfmcatyn-n g oo i cp e o)
vhere n, m are natural numbers satisfying

‘0O<kD, +g+2en<2n , (h6)

15




0<kD, - g+ 2mr < 2m , (A7)

Employing (AS) and setting P = 1 in (A4), one obtains eq. (20),

For p > 1 one has series of the form

ej V(kD1 + G)
*5 ’

v=1 Vv

which can be generated by repeated integrations (with limits, e.g.,
between 0 and g) of the left side of (AS) with respect to g. The
right side of (AS) then yields definite integrals of the logarithmic
function which can be computed numericilly, (For p = 2 the resulting
integral, known' as Clausen's integral, has been tabulated [10].)
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