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ABSTRACT

A unified network approach to the analysis of infinite regular

arrays of antennas is presented. The periodically repeated con-

stituent of the array is itself regarded as a sub-array, the sub-

array taking a variety of particular forms. With the appropriate

choice of sub-array, the same formulation yields as special cases

the uniform linear, planar, and cylindrical arrays as well as

such arrays comprising several heterogeneous elements or multimode

elementary antennas.
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I. INTRODUCTION

A unified network approach to the analysis of infinite regular

arrays of antennas is presented. The periodically repeated con-

stituent of the array is itself regarded as a sub-array, the sub-

array taking a variety of particular forms. With the appropriate

choice of sub-array, the same formulation yields as special cases

the uniform linear, planar, and cylindrical arrays as well as such

arrays comprising several heterogeneous elements or multimode ele-

mentary antennas. Three possibilities are illustrated in Figs. la

through lc. Figure la shows an in-line arrangement of 2-element

sub-arrays; a typical sub-array is delineated by the dashed line.

Similarly, Fig. lb shows an arrangement of linear sub-arrays, each

sub-array extending in a direction orthogonal to the principal

array axis. The planar array illustrated is finite in one dimension;

howiver, this restriction to finite sub-arrays is not essential.

Figure lc shows a cylindrical array. Each circular array may con-

veniently be regarded as a sub-arrays bringing such (glide symmetric)

cylindrical arrays within the purview of the general scheme. The

network problem for the antenna terminal quantities is formulated

as an infinite order finite-differenc equation,, The solution is
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obtained as a matrix generalization to arrays of sub-array antennas

of the technique presented in Reference 1.

The finite-difference formulation is applicable to arrays of

quite general antennas and is not restricted to apertures in a con-

ducting plane or cylinder. It is only necessary that the network

parameters characterizing the interaction among the elementary an-

tennas be known. For minimum scattering antennas, these network

parameters may be calculated conveniently and exactly from the ele-

mentary radiation patterns, without reference to the structural type

of the elements l] ,[71. The particular sub-array chosen for pur-

poses of illustration consists of two inclined dipole radiators.

Only one dipole of each sub-array is excited; the remaining dipoles

act as passive parasitic radiators. Quite deliberately, no physi-

cal supporting structure for the dipoles is specified. However, the

parasitic dipole radiators only are interconnected in a manner to be

described. The array of fed dipoles, when excited with uniform

amplitude (linear phase taper), will be found to exhibit peaks in

the active reflection coefficient, or, equivalently, resonance nulls

or minima in the pattern of a single excited element within the ar-

ray of sub-arrays environment 2],[3], [4]. It 1s therefore demon-

strated that such resonances, existing purely as circuit properties

of the array network, can in principle occur generally in linear,

planar or cylindrical arrays as opposed to being necessarily limited

to specific kinds of structural configurations[5]. Further, it will

be seen that these resonance minima (reflection coefficient maxima)

imy be arbitrarily placed and variable in depth. Conversely, cra

2
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ability to control and place rapid variations in reflection coef-

ficient with scan angle holds promise with respect to matching out

variations found in any given case 8] , [9).

II. DIFFERENCE EQUATION FORMULATION FOR AN ARRAY OF
SUB-ARRAY ANTENNAS

Consider an infinite, uniformly spaced linear array composed

of identical 4-element sub-arrays as hown in Fig. ld. The terminal

voltages and currents satisfy

j e XZ- (la)
71

where Z,, is an XN1 (open-circuit) impedance matrix coupling the nth

and the nth sub-arrays; a_ aid are column statrices

"V, " i,,.

V*~
* S

The matrix Ze, has the faoxz

Z31 los Zi 
S

Za,.,, Is,,.. .. *Z.s,a,,

3e, l11



It follows from Lorentz reciprocity that

Zen = Ze

wherein -- denotes the transposed matrix. The translational symmetry

of the infinite linear array implies that Z., is, in fact, only a

function of the difference v = m - n; thus,

ZV -- V

Let Z, be the diagonal matrix containing internal impedances of the

driving generators, i.e.,

Z. diag Z,. .. Z,,] =R, + j X .

Then the array may alternatively be regarded as being excited by

incident waves

Since the internal impedances Z.4 are, in general, complex the

reflected *aves , are given by

2RI/V L-~j (2b)

Explicitly then, the currents P poduced by the in=idelt WsOM

I ~,satisf y

l+o (1b)
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The solution of (ib) for with arbitrary excitations • may

be obtained by recognizing that the I and a. must be coefficients

of (matrix) Fourier series (cf. [1] for the case M 1 1). Thus, sub-

stituting

I• •I_(C~e"JR d9 (3a)

p f -A(9) ej d (3b)

into (1) yields

[ = L [Q~)+ ;]-I 2Rai( a. eM~) _-jn9 dC (4)

where the matrix Q(9) is given by

( =q Z)e-:'• . (S)

When only the firt eleoent of each sub-avay is excited (all others

being terminated In. Z, 4 ) one "to In (4) bw[(a080oo. OleC]

This yields

~ 31 ~ DT m*5 dot &i(9) (-1) '- +~ jut

f dot 4(,,

4=,2 19 2p . (6)

wre the mAtix Q() is given by

S



QM() = Q(M) + Z (7)

A A

and q, is the minor of Q obtained by striking out the lst row and

,th column The sub-arrAy elements t = 23, . . . M can be either

physical parasitic vadiators .employed, e.g., to effect an improved

match of the array with scan [4]) or equivalent radiators corres-

ponding to higher order evanescent modes in the input transmission

line .[2],[5] . In the following, the sub-array element t = 1 will be

referred to as the driven element.

Two types of array excitations are of particular importance: one

in which only one driven element is excited (all others being terminatei

in Zd), wh-ile another corresponds to the excitation of all t = 1 ele-

ments by equal amplitude waves with a linear phase taper. In the

forjr r case, the currents at the driven elements -are proportional to

the mutual and self-coupling (scattering) coefficients. Thus, denoting

these by Sa3 and employing (2), one obtains

alin

Sn, JL = (8)

Setting a1,, = 0, , n and a%,. 1 in (6) one also has

S~i
Sam dot -j() 0 i(nm) d. (9)

When the array is excited with uniform amplitudes and a linear phase
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taper one sets a%,,b e- ( the phasing constant) and (6) yields

, =2R•,1 det q1.(:) (-f)+l - . M. (10)
detQ(c)

Employing (10) with , 1 together with (2a) one obtains the input

(active) impedance looking into the typical driven element:

Z,(= :det Q(00 (11
Zdet ) =(e) -412,W)

Expanding the determinant, yields
M

ZI( =Qli Q• ) det q1•(:) ("1)1+ (2
ZIN(a) X ,..: •=2= (12)

det 4211

where 0a, 0Q4 are (scalar) elements of Q. If the array is matched

at broadside then the active reflection coefficient p(M) is

( = () "a ( (13)W,(• + ZWIN(U)"

In (12), the active impedance is expressed as a sum of two terms:

Q41(a) which corresponds to the active impedance of the driven ele-

ments in the absence of parasitic radiators and a sum of terms taking

account of coupling among the elements of a typical sub-array. Equa-

tion (12) holds quite generally and has, in fact, been derived from

pure circuit considerations, i.e., without reference to structural prop-

arties of the radiators comprising each sub-array. If one is dealing

with the special case of single mode elements, then in the range of M
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for which no grating lobes appear in the visible region, O41 (a) will

generally not exhibit sharp resonances and if resonance phenomena

in the active reflection coefficient do appear they must necessarily

be associated with the second term in (12). In particular, the pos-

sibility of such resonances exists whenever det &,,(w) possesses

sharp minima (maxima). This has been noted by Borgiotti [5] in con-

nection with a planar array of apertures where, in the present context,

the parasitic radiators correspond to evanescent modes in the feed

waveguides. The point being made here is that such resonances can

be described adequately in pure network terms. The above considera-
t tions apply also to sub-array elements which are minimum-scattering

(M.S.) antennas [1],[7] since they are completely defined in terms of

their radiation patterns (without references to physical structures).

For such antennas, the Q0 (t) can be readily computed since the mutual

impedances entering into the definitions of Zv, eq. (1), are given

explicitly in terms of element patterns [7]. Moreover, certain single

mode elements (in particular, planar aperatures) can be rigorously

treated as M.S. antennas [7]. In the following, a linear array of

two-element sub-arrays consisting of two M.S. (dipole-type) antennas

will be analyzed.

III. A LINEAR ARRAY OF DIPOLE SUB-ARRAYS

Figure 2a shows a linear array of two-element dipole sub-arrays.

The dipoles are inclined at an angle 8e = sin'17 with the array axis.

The active impedance for a linear array (M 1) containing dipoles

I with this particular orientation has been computed in [1], The
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active impedance has been shown to exhibit the interesting property

of having a constant real part in the visible region if the inter-

element spacing does not exceed X/2. In addition, the imaginary part

remains small throughout most of the visible region so that nearly

perfect match is attained for a large range of scan angles. In the

following, the effect on the active impedance looking into the port

of the driven element is examined.

Employing (12) with M = 2, one obtains

z - O(a) - 2,SLM) * (14)

The coupling impedance matrix ZV for a two element: sub-array is

Z1:L (V) C()]

Z =I " (15)
Z', I (V) Z,, v)J

Employing the results of [1] and noting that the parasitic

and driven elements are identical, one obtains

1 ;v=O

z1 1 (V) -= Z8(V) - (16)
je-JkD% IVI-D I ;V 0

Similarly, the cross-coupling terms may be written

je-jklD, + Del
zlk (v) C(k'vD ++ Del , (17a)

9



z1 1 (v) - (klv D, - D91 ) = k[VD, Dal (17b)

By virtue of (5)

(a)C6  (a) ])(v) ee"a ,,(18a)
V =.

z (v) -Jva

(zX 12() (18b)

0.(a) z31(v) e-v` = Q1 C-a)
V = -.

Using (16), (18a) is readily summed to yield

Qa I(a) = Q6 (a)

T -k n f4 sin J sin jD" " al< kDj < T,

Equation (19) is, of course, identical with the active impedance

in the absence of a parasitic element as given in [1].

The series fox %,3 (a), i.e., eqs. (17) and (18b), cannot be

summed in closed form. By summing all the terms having a 1/v de-

pendence one obtains a representation which is more suitable for

numerical computation than the original series. This is described in

the Appendix. The result is

t 10



Q12 (a) 0= (-a) = -3 Cos kD + h(D]O, D 2 ) (20)
kDk

+- -- [ snkkDD, -ei n 2 sin ,k,-, -k'' i'k'+ '

]DI e~ [e [V(kD1 - a) - 21 e -j~ [v(kD, + a) + kD1ci~V(VD -D) v(vD1 -5D=2

where
S cos kD ; Iai< kD1

h(D ,D2) = - sin kD2 ; kD1 < a < n $

S"- sin kD, ; -TT < < -kDi

In the absence of external interconnections among the parasitic

elements, Fig. 2a, Zg, in (14) is a fixed (i.e., scan independent)

terminating impedance. If the parasitic elements are interconnected

through external impedances Z, and Z, as shown in Fig. 2b, Zg, in

(14) is replaced by the equivalent impedance which depends on 7.

and Z. as well as on the phasing constant a [8]. Referring to

Fig. 2b, the voltage at the port of the parasitic element of the nth

sub-array satisfies the following difference equation:

. =.L L+. V2.,+ -+' • (21)
Z, •a

For excitations (of the eigen-form) e-Ja one has

v, = V (a) e- e-j 8  (22)

The above together with (21) yields

11



I

Z,..(a) = VLL - V = ZZ 3  (23)

ZI + 4Z2 sin2

If one assumes that Z. and Z. are pure reactances, i.e.,

Z= jX•, Z2 = jX2 , parallel resonance occurs for scan angles im

satisfying

X1 + 4X, sin2 0 .(24)

The resonance point can be placed at any predetermined scan angle.

Figure 3 shows the variation of the magnitude of the active reflec-

tion coefficient 0(%) for the array in Fig. 2 looking into sub-array

element 1 for several values of (z and X= 1. For each X,, the array

is matched at broadside and the separation of sub-arrays is D, = X/4

so that the visible region isIMI< n/2; D. is chosen to be D,/lO.

For comparison a curve of Ip(*)I in the absence of the parasitic ele-

rment is included, and is seen to vary monotonically in the visible

region. The pronounced peaks in the reflection coefficient occur at

the resonant points a,. Even though the reflection at a. is quite

high, it is not total, i.e.,Ip(a,)I,' 1. Indeed, the maximum value

attained by jp(m)l near m, may be adjusted by varying the reactance XE.

This is demonstrated in Fig. 4.

The lack of total reflection at C, is due to the general character

of Q(a), which, for each 1, represents the impedance matrix of a dis-

sipative network, the dissipation being, of course, loss of energy

due to radiation. Unless the equivalent network for Q(Q) degenerates

into 3 pure shunt structure this dissipation precludes total reflection.

12



Although the amount of radiated power may be very small, nevertheless

it is not identically zero except in the invisible region, i.e.,

The rapid variations introduced into p(a) by the parasitic element

in the present example may in other circumstances be utilized for

matching purposes. Were excited elements themselves to exhibit reso-

nant behavior (as is known to occur in the case of multi-mode elements

or an array covered by a dielectric sheet), interconnecting networks

of the type shown in Figs. 2b and 5 together with a parasitic radiator

could be employed to compensate for such resonances. In particular,

if %Ila) exhibits a series resonance at a. then, by virtue of (14),

the network in Fig. 2b is appropriate which itself is parallel resonant

at p., as is evident from (23). On the other hand, were Q4(t) to

exhibit a parallel resonance, then the proper interconnecting net-

work is that in Fig. 5. One can readily show that in this case

Z + sn(25)

4 sin2

which is seen to be series resonant whenever the numerator vanishes.

For such compensations to be effective, the pesasitic element should

not Introduce additional resonances, i.e., QC,(a) in (14) must be a

slowly varying function of s. This will usually be the case for

single mode elements, or more generally, for minimum scattering

antennas.

13



APPENDIX

TRANSFORMATION OF THE SERIES FOR %9(0) INTO A

MORE RAPIDLY CONVERGENT REPRESENTATION

Employing eqs. (17) and (18b), the series representation for

Q1,(a) is

e -j (kj D. + vD,1I+ va)

) =i, . (Al)

The above can be written in the alternate form

I *-jkD e -1 Jv<kD- + e+iL(2"

Since the terns for large v decrease as 1/v. tb'. series oenvezps

slowly and is not useful for numerical computations. A amt rapidly

convergent representation is obtained by employing the following

identity:

I 11
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which holds for arbitrary integers p.

Substituting the above into the infinite series in (A2) yields

the following:

= , D~P e + (A4)

- Jv(kD1 ,

The magnitudes of the terms in the first infinite series on the right

of (A4) are seen to decay with v as l/vp + 1 and hence Improved con-

vergence is obtained by increasing p. The second term on the right

of (A4) is a sum of p infinite series which are slowly convergent.

However, for P 1 the series has a known closed form solution which

is £io0]

**v•i e-iv(kDL + a)(.a
ft (CO, a • a MAa)

+ aj , +. (2nrk - 1) nkD, ,+ + 2a
= 1 ( - ) 1) [2 sin.

) • ....~cD~ =a (ASb)

= j ,, +(2a 1 ) .•h a• +•
- j~k~i- p 2 .16wb [2 sin

where n a are naturwal numbers satisfying

0 k1  + •+ 2mn 2c , (A6)

is



0 < kD - a + 2m < 2TT. (A7)

Employing (AS) and setting p 1 in (A4), one obtains eq. (20).

For p > 1 one has series of the form

vD1 eJV(kD, •)

which can be generated by repeated integrations (with limits, e.g.,

between 0 and C) of the left side of (AS) with respect to c. The

right side of (AS) then yields definite integrals of the logarithmic

function which can be computed numericlly. (For p = 2 the resulting

integral, known as Clausen's integral, has been tabulated (O].)

I
I

I
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