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Introduction and Summary

This is a final report summarizing research accomplished
under contract no. AF49(638)-1687. This research utilized
seismic data recorded by VELA arrays, such as LASA and those
formed by individual LRSM stations to 1) investigate the ve-
locity structure of the earth's mantle and core; 2) examine the
attentation characteristics of seismic waves; and 3) study the
propagation of seismic waves across large seismic arrays. Ab-
stracts of published scientific papers and papers presented at
scientific meetings are given in the following section and
significant research accomplishments are summarized below.

The velocity structure of the earth's core is an important
baseline for routine determinations of the epicenter and focal
depths of earthquakes. Once the velocity structure is accurate-
ly known observetions of core phases, such as PKP, provide con-

trol on origin time and focal depth determinations because of

the small gradient of the travel time curve with respect to
distance. A novel approach used in this research contract tc-
wards deciphering the velocity structure of the core was to

utilize velocity filtering of the seismic phase PKKP as recorded

at LASA. Because of the large percentage of the total ray path
spent in the core PKKP amplifies details of the core velocity

structure. The velocity structure of the core was demonstrated
to possess a complex tripartite structure but it is clear that

more work yet needs to be done, particularly analyses of the
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phase SKS to study the cuter core.

One impcrtant development revealed in this study, pertin-
ent to the propagation of seismic waves across large arrays,
particulariy LAS?, was the need to correct for the dipping
M-discontinuity. A clever empirical technique was discovered
to correct for the apparent velocities of seismic waves moving
across the array. Further detaiis can be fourd in Zengeni
(1970).

Determination of the shear velucity structure of the earth's
mantle continues to be an important parameter in geoﬁhysics.
Digital processing techniques were develo,'~d to study the propa-
gation of shear waves across large arrays and the velocity
structure determined for western North America is demonstrated
to be as complex as that revealed from detailed P-wave studies.

A further implication of these studies is that regional differ-
ences beneath shields, tectonic areas, and oceans extend to depths
of at least 650 km in the mantle; it is clear that regional

travel time tables are needed for precision epicenter locations.

Significant progress towards epicenter location in later-

ally inhomogeneous regions was made through deveiojment of a

finite difference, time integration scheme (Wesson, 1970).
Exploitation of ;his technique to the precision location of
events is clear-cut and a possible approach to the problem of
hypocenter location in island arcs, such as the Aleutian arc

and the Kurile-XKamchatka arc is described in the section entitled
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Epicenter Location in Lateraily Inhomogeneous Regions.
The attenuation of seismic energy in the earth's mantle
and core is an important parameter in discussions of source

mechanisms, earthquake magnitude and the range of detectability

of seismic signals. Studies initiated under the aegis of

Project VELA and continued under this contract have demonstrated
that the averayge Q for shear throughout the mantle is about €00
and is an crder of magnitude less in the upper mantle than the
rest of the mantle. The average Q for compressional waves ap-

pears to be at least 2.5 times that for shear waves (Kovach,

1967) .



Abstracts of Published Papers and Papers Presented at
Scientific Meetings

Anderson, D. L. and R. L. Kovach, Universal Dispersion Tables

III. Free Oscillation Variational Parameters, Bull. Seism.

Soc. Amer., 59, 1667 - 1693, 1969.

The effect of a small change in any parameter of a
realistic Earth model on.ﬁhe periods of free oscillation
is computed for both spheroidal and torsional modes. The
normalized partial derivatives, or variational parameters,
are given as a function of order number and depth in the
Earth. For a given mode it can immediately be seen which
regions of the Earth are controlling the period of free
oscillation. Except for ;S; and its overtones the low-
order free oscillations are relatively insensitive to prop-
erties of the core. The shear velocity of the mantle is
the dominant parameter controlling the periods of free os-
cillation and density can be determined from free oscil-
lation data only if thie shear velocity is known very accur-
ately. Once the velocity structure is well known free oscil-
laticn data can be used to modify the average density of the
upper mantle. The mass and moment of inertia are then the
main constraints on how the mass must be redistributed in

the lower mantle and core.,

Kovach, R. L., Relative Attenuation of Compressional Wave Energy

in the Mantle, Geophysical Journ. 13, 371, 1967.
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The attenuation of compressional energy relative to
shear energy in the mantle is determined by spectral ampli-
tude comparison of the seismic phases SKS and SKP with
common paths in the mantle and core. Z2ssuming that the
average Q, for shear in the mantle is 500, the average
for compressional waves is at least twice that for shear

in the frequency range 0.2 - 0.6 cps.

Kovach, R. L., Attenuation of Seismic Body Waves in the Mantle,
Geophysical Journal,li, 165 - 170, 1967.

The attenuation of seismic body waves is a direct mea-
sure of the absorption due to nonelastic processes within
the Earth. Accurate'amplitudé decrement data for seismic
body waves reguire the measurement of the spatial decay rate
along a given ray, but measurements are restricted to the
surface of the Earth. Recent studies have shown that the
average Q, for shear, throughout the mantle is about 600
and that the average Q for the upper 600 km of the mantle
is an order of magnitude less than the rest of the mantle.
Spectral amplitude comparison of the seismic phases SKS and
SKP with common paths in the maqtle and core allows the Q,
for compression, in the mantle to be estimated. Prelimin-
ary results indicate that the Q for compression is at least -

2+5 times that for shear.

Kovach, R. L., Travel Times and Attenuation of Seismic Waves

in the Earth's Core, presented at the XIVth General Assembly,
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International Union of Geodesy and Geophysics, Zurich, 1967.

A statistical treatment of about 500 observations of
PKP in the range 115° < A < 140° yields for the DE branch
(PKIKP) the empirical relation

t = 909.25s + 1.876A (s)
later by 1.8 to 1.0 seconds from the corresponding Jeffreys-
Bullen times. The mean residual of all PKIKP observations
f om nuclear explosions against the empirical times is
nearly zero emphasizing that average PKIKP times for a refer-
ence earth are now satisfactorily known. Observations of
precursors to PKIKP sétisfy the relation
t = 853.458 + 2.24 (s)

with a large standard error;rthese obscrvations probably
correspond to one or more precursor branches.

Knowledge of the attenuation function for P-waves in
the earth's core is pertinent to understanding mechanisms
of energy dissipation in the eartl. The attenuation of P-
waves in the core has been measured by spectral amplitude
comparison of the seismic phases ScS and SKS which have
left the source at nearly identical azimuths and vertical
takeoff angles. Assuming that the core can be treated as
a viscous liquié a value for the viscosity of 2.6 x 1010
poise is obtained. Since the core behaves as a fluid Q is
dependent on frequency. For a 20 second period wave a Q

equalling 750 is compatible with the observed data.
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Kovach, R. L., and P. Glover, Travel Times of PKP in the

Range 115° < A < 140°, Geophysical Journal, 15, 367-376, 1968.

Approximately 500 observations of PKP in the range
115° < A < 1490° have been statistically examined to yield
a set of empirical travel times. Observations for the DE )
branch (PKIKP) fit the form t = 909.25 s + 1-876A later
by 18 to 10 s than the corresponding times given by
Jeffreys and Bullen. The mean residual of all observations
of PKIKP from nuclear explosions, including recent data
from Longshot, against the empirical times does not signif-
icantly differ from zero emphasizing that average PKIKP
times for a reference Earth are now satisfactorily known.
In the interval 125° < A < 140° observations preceding the
DE branch satisfy the relation t = 1145:0 + 2:2(4~132+5°)
with a large standard error; these observations probably

correspond to one or more precursor branches to the DE

branch.

Kovach, R. L. and D. L. Anderson, Study of the Energy of the

Free Oscillations of the Earth, J. Geophys. Research, 71,

2155 - 2188, 1967.
The energirs of the radial, torsional, and spﬁeroidal
free oscillations for a Gutenberg model earth were studied.
Each mode of oscillation has a characteristic radial dis-

tribution of elastic and kinetic energy that fixes the
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parts of the earth that contribute most heavily in deter-
nmining a particular resonant frequency. An examination of
the partitioning of energy among'compressional, shear, and
gravitational energy as a function of mode number aud
depth immediately explains the persistence of the purely
radial mode compared with the other normal modes of the
earth. Only the first few spheroidal modes are sensitive
to the density of the inner core; they are pé:ticularly
sensitive to the density of the outer pirt of the core.
The low-order spheroidal modes also exhibit a rapid rise

of potenc.ial energy near the base of the mantle; this rise
will permit improved estimates of the velocity to be obtained
in this region, which is difficult to examine with body
waves. The tabulated results allow estimates to be made

of the previously neglected energy contained in the free
oscillations excited by large earthquakes. An estimate of
the energy in the low-order spheroidal oscillations excited
by the great Alaskan shock suggests a vaiue of 1023 ergs

over the period range from 450 to 830 sec, implying that

the energy density increases towards high frequencies if the

total energy in the earthquake was of the order of 1024 -

1025 ergs.

Kovach, R. L., and R. Robinson, Upper Mantle Structure in the
Basin and Range Province, Western North America from the

Apparent Velocities of S Waves, Bull. Seism. Soc. Amer., 59




1654 - 1665, 1969.

The variation of shear velocity with deptl in the
upper mantle for the Basin ard Range province of western
North America has heen studied with direct measurements
of dT/dA for S waves in the distance range 14° < A < 40°,
Three orthogonal components of digital data were used and
onset times were determined using the product of the hori-
ontal radial and vertical components of motion and particle
motion diagrams. A linear LRSM array in Arizona was used
for the measurement of d1/da.

An S-wave velocity distxibution is derived, compatible
with P-wave velocity models for the same region. The de-
rived model consists of a thin 1lid zone of shear velocity
4.5 km/sec overlying a low-velocity zone and a change in
velocity gradient at a depth of 160 km. Two regions of
high-velocity gradient are located at depths beginning at
360 km and 620 km.

Robinson, R., and R. L. Lovach, Shear Wave Velocity Structure

in the Westerr United States, Geophysical Journal, 20,

1-9 , 1970,
Direct measurements of dT/dA for S-waves over the dis-
tance range 14° < A < 93° are used to derive a shear wave
velocity model for the mantle beneath western North America.

A network of seismograph stations in Arizona operated as an
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array was used for the measurement of dT/da. The use of
later arrivals is necessary to define the dT/dA-A curve
for distances less than 55°. Distinctive features of the
derivad model ORC-3, are a low velocity zone centered at
100 km depth and zones of high velocity yradient beginning
at 400, 650, 900 and 1180 km depth.

Wesson, R. L., Amplitudes of Body Phases in a Spherically Lay-

ered Earth, presented at 1969 Annual Meeting of the Seismo-

logical Society of America, St. Louis.

Velocity laws commonly used (such as v=arb) for the
evaluation of familiar ray theory integrals have proven
satisfactory for the calculation of travel-time versus dis-
tance but are unsatisfactory for computation of the dis-
tance derivative dA/dp, required for the calculatiun of
intensity and amplitude. Specifically, false caustic: and
regions of low intensity are introduced and real caustics
are omitted. The spurious discontinuities in curves of
da/dp versus distance, calculated from the laws which con-
tain two or fewer free parameters, stem from the inability
of the laws to maintain continuity of dv/dr and higher dec-
ivatives across layer boundaries. However, satisfactory
results may be obtained by integration using the variable n
(defined as r/v) and expressing the radius, r as a function
of n, using as many free oarameters as required to fit the

desired number of derivatives at the layer boundaries.
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Functions which reduce to the form:

1l dr 2
facilitate the evaluation of the integrals by a simple
recursion. Examples are given that demonstrate the im-
provement obtained in amplitude-distance curves over
those calculated using the law vsarb, particularly in the

vicinity of true discontinuities and caustics.

Wesson, R. L., A Time Integration Method for Computation of

the Intensities of Seismic Waves, Bull. Seism. Soc. Amer.,

60, 307-316, 1970.

A finite-difference time integration method for the
calculation of seismic ray intensity is developed. Dis-
continuities in the depth derivative of the velocity-depth
function at layer boundaries cause anomalies in the intensity
distance curves calculated using the standard integral form-
ulation. The time integration method overcomes these dif-
ficulties. Calculations for a simple analytic case and a
Gutenberg earth model demonstrate the difficulties with the
standard integral method and the superior performance of
the time integration scheme. The method may also be applied

to laterally inhomogeneous earth models.

Wesson, R. L., Seismic Ray Computations in Laterally Inhomo-

geneous Crustal Models, Ph.D. thesis, Stanford University, 1970.
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The realistic interpretation of seismic travel-time
data from structurally complex areas, and the accurate
location of earthquake hypocenters in such areas, require
seisinic ray computations for laterally inhomogeneous velocity
models. Numerical simulation of the ray differential equa-
tions provides a practical means of performing the neces-
sary calculations. In addition to the calculation of travel-
time, the ray intensity and the partial derivatives of travel-
time with respect to the parameters of the model may be cal-
culated. Results from such numerical simulations are in
excellent agreement with those analytically obtainable for
a simple constant gradient velocity model. An algorithm
for the direct solution of ray boundary value problems,
based on the iterative solution of a tridiagonal set of si-
multaneous equations, allows for the input of geophysical
intuition in finding the rays between a source and a station.

A model fitting procedure is described for laterally
inhomogeneous models which is based on the description of
a velocity model by combinations of simple continuous func-
tions which are chosen to reflect the available geologic
data. A least squares scheme is used to obtain models
which fit the travel-time data and are consistent with geo-
logic data. Laterally inhomogeneous velocity models are
obtained for travel-time data from explosions for two areas
in California: the Bear Valley area, 25 miles southeast of

Hollister, and the Borrego Mcuntain area, 100 miles northeast
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of San Diego. Both regions are characterized by a substan-
tial lateral variation of seismic velocity and the derived
models exhibit most of the significant structural features
of the areas. The Bear Valley explosion is relocated in

the velocity model as a test for the validity of the model
and of a computational procedure for the location of hypo-
centers in structurally complex areas. [This report is

attached as Appendix A].

Zengeni, T. G., PKKP and the Earth's Core, presented at 1969

Annual meeting of the Seismological Society of America, St.

Louis.

Much of the information concerning the velocity struc-
ture of the earth's core is based on studies of the seismic
waves PKP and SKS. Detailed observations of the core phase
PKKP are a previously unexploited tool for studying the fine
structure of the core. Because of the large percentage
of the total ray path which is spent in the core PKKP ampli-
fies details of the core velocity structure. Direct mea-
surements of dT/dA for PKKP in the distance range from 85°
to 150° have been made at the Montana LASA for a number of
earthquakes and the data inverted to extract a velocity
model for the core. The model is discussed in the light
of other velocity models which have been proposed for the

core.
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Zengeni, T. G., A Note on Azimuthal Correction for dT/da for

a Single Dipping Plane Iaterface, Bull. Seism. Soc. Amer., 60,

299-306, 1970.
A relation is derived for correcting dT/ds for a single

dipping interface under seismic array:

4

dr _ (gg) sin (Q-w')

da ~ \&a ) sin (a-w)

The formula depends on the azimuth angles: w and w' are the
computed and observed azimuths, @ is the azimuth of the
normal to the tilted interface, and (§T/54)' is the obser-
ved quantity. The relation is explicitly independent of
the dip and the velocities of the media on either side of

the interface.

Zengeni, T., PKKP and the Fine Structure of the Earth's Core,

Ph.D. thesis, Stanford University, 1970.

The slowness factor dT/da for the core phase PKKP was

measured at the Large Aperture Seismic Array (LASA), Mon-
tana, in the epicentral distance range 75° < A < 125°,
Due to the high phase velocities involved, or equivalently,
low slowness factor, corrections for simple geologic struc-
tures under the array were imperative. A method was de-
rived to correct for the dipping M-discontinuity under
LASA.

A velocity model for the earth's core was computed

from the dT/da observations, together with PKP travel



times, using the Wiechem~Herglotz integration method.
The PKKP core velocity model derived is essentially tri-
partite, but differs from other propcsed modeis in im-
portant details.

The major part of the outer core exhibits no striking
differences from the standard Jeffreys' model: fairly con-
stant velocity gradients in the SKS and ABC (Bullen 'E')
region. However, at a radius of 1654 km there is a dis-
continuity in the velocity gradient and the next 250 km
in depth is a distinct region of slightly higher velocity.
The transition zone into the inner core is only 200 km in
thickness and is characterized by a gentle negative velo-
city gradient This zone has an average velocity of 10.45
km/sec. The inner core starts at radius 1217 km with an
average velocity of about 11.20 km/sec and possesses a
slight negative velocity gradient towards the center of
the earth. A slight drop in compressional velocity in the
mantle at the core-mantle boundary is also inferred.

It is conjectured that the transiticn zone (liquid or
viscous) and ti.e inner core (solid) are of the same chem-
ical composition, but differ firom that of the outer core.

[This paper is attached in toto as Appendix B].

15./



Structure of the Earth Using Seismic Body Waves

The ability to locate natural and artificial seismic
sources depends on the precise knowledge of the travel
times of seismic waves. Work towar.s the determination
of earth structure from seismic body waves was pursued
using arrays such as LASA and arrays formed from LRSM
stations. Considerable effort was devoted towards de-
ciphering the velocity structure of the earth's core.
Accurate travel times for the earth's core are required
because observations of core phases provide control on
origin time and focal depth observations.

One of the most promising techniques for studying
the velocity structure of the core was to measure dT/da
for various core phases directly using large seismic
arrays, such as LASA. Analyses of the core phase PKKP
in the distance range 75° < A < 125° was particularly
fruitful in delineating the somewhat surprising complex-

ity indicated for the velocity structure of the core.

The advantageous use of the core phase PKKP is illustrated

by the amplification of various travel time brancles.

The clustering of the branches of the core phuse PKP at

the crucial distances around the gaustic B make it diffi-

cult to discern such a structure. PKKP branches are

spread out more conveniently such that branch terminal

16|
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points A, C, I, J and the caustic B are less obscure
than in corresponding PKP points.

The core model derived is essentially tripartite,
differing from existing tripartite models mainly in fine
structure. The inner core fine structure is not resolv-
able, and the velocity distribution is thus fairly arbi-
trary. The structure derived is constrained solely to
give the observed PKIKP (DF branch) travel times.

The greater part of the outer core exhibits no new
or major features -- fairly constant velocity gradients
in the SKS and aBC regions, slightly higher in the former,
and lower in the lattér. The gradient diminishes to near
zero in the subregion CI. However, the next 250 km show
a distinct region (IJ) characterized by a humped velocity
distribution.

The transition zone is found to be rather narrower
than existing tripartite models, only about 200 km thick,
and has a slight negative velocity gradient (with depth). -
Further details concerning the velocity structure of the
core can be found in Appendix B, Kovach and Glover (1968)
and Zengeni (1970).

Even though the velocity structure of the earth's core
has been demonc*+rated to be more complex than heretofore

believed it is clear that more work yet needs to be done,




particularly studies of the outer core using the seismic

Ehase SKS.

Determination of the shear wave velocity structure
of the earth's mantle continues to be an important problem
in geophysics. During this research effort work was .
directed towards analysis of the shear velocity structure
through direct measurements of dT/dA for S waves in
the distance range 14° < 4 < 90°., A linear LRSM array
in Arizona was used for the measurement of dT/da.

S-wave data collected to date are summarized in
Figure 1, Kovach and Robinson (1969) and Robinson and
Kovach (1970a) The shear wave velocity structure has
been demonstrated to be as complex as that revealed by
array studies of P-waves. In the Basin and Range province
of western No:th America the derived velocity model pos-
sesses a thin '1id' of velocity 4.4F km/sec overlying a
broad low velocity 2zone and pronounced regions of high
velocity gradient centered at depths of 410 km and 650 km.

A lesser zone of high velocity gradient has been detected

at a depth of 1225 km.

The shear wave velocity structure in the upper mantle
{above 650 km or so) has been shown from surface wave
dispersion studies (particularly Love waves) to be strongly
dependent on the particular province traversed -- mountain-

tectonic, shield or oceanic (Toksoz and Anderson, 1966;

18-/
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Kanamori, 1970). This fact in turn dictates that consid-
erable care must be exercised in extracting a shear wave
velocity structure for the lower mantle, since inversion
by the Wiechert-Herglotz technique is dependent on the
velocity structure assumed in the upper mantle. Converse-
ly, free oscillation inversions which purport to determine
details of the upper mantle are strongly dependent on
the shear velocity structure assumed for the lower mantle.

The upper mantle structure determined from the in-
version of dT/da for S-waves during this research effort
is applicable for the Basin and Range provirice of western
North America. In order to determine a velocity structure
for the lower mantle compatible with travel time and free
oscillation observations it was necessary to 'strip’ the
velocity structure to deptiis exceeding 650 km and fit the
upper mantle with an 'average' structure before inverting
the lower mantle dt/ds versus 4 data.

The implication that regional heterogeneities exist
:©o such depths in the earth's mantle, particularly for

S-waves, is important and argues that regional travel

time tables are needed for precision epicenter locations.

Further details of the S-wave inversion problem can be

found in Robinson and Kovach (1970b).



Epicenter Location in Laterally Inhomogeneous Regions

Application to the San Andreas Fault

The precision location of epicenters is particularly
difficult in regions of lateral inhomogeneities. A fi-
nite difference, time integration technique has been
developed to ‘determine three-dimensional velocity models
for laterally inhomogeneous regions from seismic data.
The essence of the method is as follows, and exploita-
tion of this technique to the precision location of
events is clear-cut.

Velocity models are specified as a function of the
space coordinates X through a set of parameters pj,
C(i, pj) where C is the velocity. Travel times
between the source and the stations are calculated using
a finite-difference, time integration procedure. The
appropriate ray from the source which passes through
the station is obtained using an iterative algorithm.
Partial derivatives of the travel time with respect
to the model parameters pj are also calculated.
Starting with an initial guess pj, a least squares
iteraticn is used to minimize the sum of the squares
of the differcnces between the observed travel times
and the travel times calculated using the new model.

A detailed explanation of the technique and application

21- |
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to the problem of epicenter location on the San Andreas

fault is described in detail in Appendix A.

Application to Hypocenter Location in Island Arc-

Lateral inhomogeneities of seismic velocity iﬁ the
earth's crust and upper mantle introduce bias into the
location of earthquakes and explosions by seismic methods.
This bias is most severe for events occuring in geographic
areas characterized by substantial lateral velocity
variations, such as islarnd arcs. The magnitude of this
bias was éerhaps most clearly indicated by the detonation
of the nuclear explosion LONGSHOT on Amchitka Island in
the Aleutian Arc. Attempts to relocate this shot by
standard means indicated an epicenter approximately 20 km
north of the true location and a depth 60-80 km deeper
than the actual event (Lambert et al., 1970). This dis-
crepancy has been extensively studied by Douglas (1967),
Douglas and Lilwall (1968), Lilwall and Douglas (1969,
1970), Herrin and Taggart (1968), Chiburis and Ahner
(1969), and Lambert et al. (1970).

Evidence for both network bias (resulting from global
velocity variations and the position of the event within
the station network) and source bias (resulting from the
velocity structure in the immediate vivinity of the event)

has also been found for an event in Hewaii (Herrin and
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Taggart, 1968), although this is argued by Douglas and
Lilwall (1968). Evidence for network bias is extencive.
In addition to the papers cited above for LONGSHOT,
bias for regional events in North America has been found
by Herrin and Taggart (1962, 1966). The method of joint
epicenter determination of Douglas (1967) (see also
Bolt and Freedman, 1968) has yielded promising results
in the elimination of network bias. On the other hand,
it has only been possible to eliminate source bias for
events of known origin time and position (e.g. LONGSHOT).
The calculation of travel-times for laterally inhomo-
geneous velocity models may be simply accomplished by
numerical simulation of the ray differential equation.
Briefly, the initial value problem of finding the ray
emanating from a given point in a given direction may be
solved by a simple Runge-Kutta or similar integraticn
scheme. The more difficult boundary value problem, which
must be solved in the hypocenter location problem for
the rays from the trial source position to the stations,
may be solved, either by a succession of initial value
problems, or by a direct iterative &lgorithm developed
for this purpose based on the solution of a tridiagonal
set of equations.
Several possible inputs exist to the process of

finding three-dimensional velocity models of island arc

23/



structures. The first is the seismicity data summarized
by Isacks et al. (1968), and others which indicates the
geometric shape of the structures and suggests that the
dominant feature is a downgoing slab of lithosphere.

This geometric picture, assumption as to the general rock
types present, and temperature distribution calculations
such as those of Minear and Toksoz (1970) may be combined
and used to calculate velocity models. Seismic refrac-
tion data (e.g. Murdock (1967)) can also be used for the
uppermost mantle. Minear and Toksdz, for example, give
two-dimensional plots of the temperature distribution

in a downgoing slab of lithosphere under a broad range

of assumptions. Using available laboratory data on the
partial derivatives of seismic velocity with temperature
(e.g. Birch, 1966), it is a simple matter to calculate
two-dimensional velocity models. Ih fact, Minear and
Tokso0z obtain the velocities in selected regions of the
slab in just this way in order to calculate the travel-
time anomalies for the simple cases of rays arriving
parallel and perpendicular to the faces of the slab.

For ray calculations of the sort discussed above,
the velocity models may be specified in either of two
ways. For the maximum flexibility in describing the
velocity distribution, a two- or three-dimensional grid

may be used. This would necessitate a table lookup

24-|



interpolation scheme to define the velocity at intermediate
points. The otﬁer approach is to find a simple analytic
function or combination of functions which describe in a
general way the desired distribution.

Travel-time data from earthquakes may alsc be useful
in a general way. Of course the best single restraint
on velocity models in addition to the overall geometric
shape is travel-time data from events with known location
and origin time.

In order to very accurately locate events in island
arc structures two avenues of attack are possible. The
first is to model a sufficient portion of the globe, and
to use the finite difference integration approach exclu-
sively. A more practical approach is to model the struc-
ture in the vicinity of the source and perform the inte-
gration by the finite difference technique in this region,
and use a standard one-dimensional earth model, specified
by travel-time tables and supplemented with station correc-
tions,

In summary, the following seems to be a promising
approach for precision epicentral locations in island
arc regions:

1) obtain through a synthesis of techniques three-
dimensional velccity models of a few island arc

areas (the Aleutian arc and the Kurile-Kamchatka

arc);
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2)

3)

4)

26 -/

develop computer programs coupling our finite differ;
ence technique with standard table lookup and station
correction procedures to caiculate the travel-times
from events located on these structures to world

wide stations;

use these programs to locate events in these struc-
tures and compare the results with those obtained
from other techniques; in particular, the method of
joint epicenter determination;

finally, determine if it is possible to eliminate

source bias in event location without a priori

knowledge of the location of the events.
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ABSTRACT

The realistic interpretation of seismic travel-time
data from structurally complex areas, and the accurate loca-
tion of earthquake hypocenters in such areas, require seis-
mic ray computations for laterally inhomcgeneoﬁs velocity
models. Numerical simulation of the ray differential equa-
tions provides a practical means of performing the neces-
sary calculations. 1In addition to the calculation of travel-
time, the ray intensity and the partial derivatives of travel-
time with respect to the parameters of the model may be cal-
culated. Results from such numerical simulations are in
excellent agreement with those analytically obtainable for
a simple constant gradient velocity model. An algorithm
for the direct solution of ray bocundary value problems,
based on the iterative solution of a tridiagonal set of simul-
taneous equations, allows for the input of geophysical intu-
ition in finding the rays between a source and a station.

A model fitting procedure is described for laterally
inhomogeneous models which is based on the description of a
velocity model by combirnations of simple continuous functions
which are chosen to reflect the available geologic data. A
least squares scheme is used to obtain models which fit the
travel-time data and are consistent with geologic data.

Laterally inhomogeneous velocity models are obtained for

iii
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I. INTRODUCTION

Seismqlogists have in the past relied almost exclusively
on layered models of earth structure, either flat or spher-
ical, for the interpretation of seismic data for several
reasons: 1) to first order the earth is a layered sphere;

2) adequate data to detail the deviations from the layered
case were not available and 3) useful theoretical and com-
putational tools did not exist for the interpretation of
such data. Recently, however, the existence of important
lateral variations has become increasingly obvious and dig-
ital computers have made it possible to escape from the nar-
row confines of analytically obtainable solutions and util-
ize numerical solutions.

Various numerical approaches present themselves for the
solution of the wave propagation problems of seismology.
Alterman and Karal (1968) and Boore (1970) have used direct
numerical integration of the wave equation to obtain solu-
tions to surface wave problems, Boore for laterally inhomo-
geneous situations. Claerbout (1970) has described tech-
nigques whereby trial solutions are inserted into the wave
equation to obtain difference equations which may be inte-
grated to obtain amplitude and phase maps for laterally in-
homogeneous structures. This thesis is directed to numervrical
techniques based on ray theory and their applications in
seismology. Ray theory for inhomogeneous media has been

studied extensively for electromagnetic waves (Kline and



Kay, 1965). Karal and Keller (1959) and Vlaar (1969) hava
studied ray theory for elastic solids. Ugincius (19%53) has
made both tlreoretical and numerical computational studies
of ray thecry in iaterally inhomogeneous media in regard
to underwater sound propagation. Russian investigators
(Burmakov & Oblogina, 1968; Belonosova, et al. 1967) have
made limited attempts at the numerical integration of ray
equations for application to seismology.

The history of the application of ray theory to seismol-
ogy is intimately tied to the history of seismology itself.

The fundamental inferences about the structure of the earth

are based on ray theory through the Wiechert-Herglotz in-
version procedure. Classical seismological ray theory based
on the assumption of radial symmetry, i.e., velocity 2 func-
tion of one coordinate only, converts the differential equa-
tions for rays to integrals usually involving radius or depth
as a variable of integration. Such methods have been de-
tailed by Bullen (1963), Jeffreys (1962),Sliéhter (1932) and
others and have proven immensely useful in understanding the
structure of the earth, but such methods are not easily mod-
ified to account for lateral inhomogeneities. A notable ex-
ception is the method of time-term analysis originally due

to Scheidigger & Willmore (1957) and expanded by Berry and
West (1966 a & b). This method has proven quite successful
in the treatment of the case of a constant velocity medium,
or flat lying layers resting on an undulating basement of rela-

tively fast velocity, provided the dips involved are small.



The laterally inQomogeneous nature of the earth's crust
is obvious to anyone éossessing a rudimentary knowledge of
geology. This observation is born out, in terms of seis-
mology, by thke multitude of crustai refraction profiles to
date. Sedimentary basins, large scale faults, intrusions.
and mountain ranges all are examples of laterally inhomo-
geneous structures of interest to seismologists. Documen-
tation for the laterally inhomogeneous nature of the earth's
mantle is less abundant, but still difficult to refute;
Seismological observations include those by Bolt and Nuttli
{1966), Otsuka (1966 a & b), Hales, et al.(1968), Oliver and
Isacks (1967) and others. The definition of velocity in-
homogeneities in the upper mantle is extremely difficult for
at least three reasons. First, we see the mantle only
through the crust, which because of its complex structure
tends to blur ard confuse our observations. Secondly, the
amount of data available is insufficient to resolve detail
in the mantle. Thirdly, our knowledge of the inter-rela-
tionship between crust and mantle is not yet at a point
where we can use surficial geology as an unambiguous guide
to mantle structure. 1In other words, in attempting to de-
fine velocity variations in the crust, we can use surficial
geology as a constraint. At the present time this can only
be done in the most general way for the mantle.

This thesis briefly reviews the bases for ray theory

in an appendix. The body of the thesis describes briefly
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how these results may be used to calculate'travel-times,
apparent velocities, ray intensities (or amplitudes) and
their partial derivatives with respect to model parameters.
The application of these calculations to the seismological
problems of finding velocity models and hypocenter location
are explored.

These techniques are then applied to seimic data obtained
in two regions in California: Bear Valley, 25 miles south~-
east of Hollister along the trace of the San Andreas fault
and the Borrego Mountain area 100 miles northeast of San Diego
in the San Jacinto fault zone. Both of these areas.are
characterizea by complex geologic structure and possess large
lateral variations in seismic velocity. Each of these areas
was also the scene of a large aftershock sequence. Three-
dimensional velocity models are constructed for each of these
areas based on seismic refraction data and the use of these

models to locate earthquakes is demonstrated.



II. THEORY
The calculatiorn of seismic rays for laterally inhomo-
geneous media rests on the numerical solution of the equation
a. 1 ar

—_— = = V(1l/c)
ds c¢ ds

where s is arc length along the ray, r(s) is the space curve
defining the ray and c = c(X) is the seismic velocity (com-
pressional or shear) as a function ¢’ position. The wsolution
of this differential equation for r yields the geometry of
the ray and sufficient information to calculate the travel
time and apparent velocity. The derivation of this equation
can be found in Appendix A. This chapter discusses two
questions of fundamental geophysical interest: 1) How to de-
termine a velocity model from a set of travel-time data for

a laterally inhomogeneous regior and 2) How to use a velocity
model derived for such a region to locate explosions or earth-
quakes.

Derivation of a velocity model

For an assumed one-dimensional velocity function, the
Wiechert-Herglotz inversion procedure provides a unique con-
struction of a velocity model given a curve of apparent vel-
ocity versus distance (Bullen, 1963). This construction re-

quires that no discontinuities exist in the velocity function

5



and that it is a monotonically increasing function, except for
smali reversals less than a critical amount. When discontin-
uities or low velocity zones are present the method becomes
formally non-unique although in practice it is possible to
use geophysiéal intuition andwauxiliary data to reduce the
ambiguity. At the present time there is no analogous method
for obtaining a two-or three-dimensional velocity distribution.
It is unlikely that such a wmethod will be found because the
Wiechert-Herglotz method ;elies on an integral formulation

of ray theory which does.not lend itself to generalization

to more than one dimension.

Lacking such % constructive method, we are faced with
the prospect of "model fitting," i.e. an iterative process,
based either on trial-and-error or a systematic perturbation
of the trial model until the calculated quantities agree with
the observations. Once agreement is obtained the question
of whether the model is unique remains. This probler is a
special case of the so-called "geophysical inverse proklem"
which has been discussed by many authors, notably by Backus
and Gilbert (1967, 1968, 1969) and Backus (1970). These
authors have attacked the general problem of the inversion
of geophysical data in a very general and elegant manner.
Although formally most of their results apply cnly to a
spherical, one-dimensional earth, their ideas may be applied

in an intuitive way to the three-dimensional velocity

6



distribution problem. Because the set of possible models
is continuous, the number of possible models i3 infinite.
Because we can only hope for a finite number of observations,
the resolving power of these observations is also limited
and gives rise to non-uniqueness. This problem is rot usually
severe Lecause normally the limited resolving power gives to
a set of relatively similar models. More problematical,
Backus and Gilbert (1967) demonstrate that for each model
which fits the data exactly, there exists a family of models
which satisfy the data. The most severe difficulty, however,
is that substantially different families of models may exist.
The object of the present work is to determine velocity
models which in some scnse satisfy travel time data in addi-
tion to constraints inposed by other data, in particular
surface geology. Four methods have been used for obtaining
models which fit travel time data: 1) trial-and-error; 2)
Monte Carlo; 3) itcration with an underdetermined system
used as a constraint to fit the data exactly and least squares
used to minimize something like the difference between the
old and new models (cf. Backus and Gilbert, 1969); and 4)
iteration with least squares used on an overdetermined system.
The first three methods have been widely applied to analyses
Of mantle travel time data. +The fourth method has the dis-
advantage that it requires more oLservations than unknown

parameters. This is unr=alistic in that the real earth is

-



sufficiently complicated to require an infinite, continuous
distribution of parameters for an accurate description. On
the other hand, certain general features of the velocity ‘-
distribution in the earth may be inferred from other geologic
and geophysical data to suggest the form of a relatively
simple function or combination of simple functions. Such a
function or functions would not form a "complete" set in

the sense of orthogonal functions, but they can provide a
relatively accurate description of the average structure

with a vastly reduced number of parameters.

For example, suppose we wish to describe a velocity
model in a cube of side L. Suppose that the dimension of
the smallest structural detail which we wish to appear in
the model is 2. Then the number of points required on an
evenly spaced grid, or the number of coefficients of orth--
ogonal functions, required for an adequate description is of
the order of (L/%)3. On the other hand, if we use simple
functions to describe the individual geologic features of
interest there is no such relationship. The number of para-
meters required depends more or less linearly on the number
of features described. The philosophical question which
arises is whether the description of the model should include
many more unknowns than observations or should geological

evidence be used to limit the number of unknowns.
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Partial derivatives of travel time with respect to model
parameters

For purposes of deriving a velocity model from a set

of observational data it is useful to calculate the chauge

in travel-time hetween the observation points with respect
to perturbations in the velocity model. It is thus use-

ful to consider velocity as a function of the space coordin-
ates through a set of N parameters p; - A particular model
may, therefore, be represented as a point in parameter space,
and a set of similar models may be represented by a cluster

of points in parameter space. Define a velocity c

c = c(§;§)

where X is a three-dimensional position vector and p is an
N-dimensional vector of parameters. The desired result is

a set of partial derivatives of the travel-time between each
source-station pair with respect to the parameters Py The

time required to move along a ray is

ds

T = — 2.1
c

along the

ray
A slight perturbation in the velocity ¢ will change the
integral in 2.1 in two ways. First, the path of the ray

will be changed slightly. Secondly, the time reguired to

Q
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traverse each segment of the ray will be perturbed. To
first order, Backus and Gilbert (1969) have argued that

the change in the path may be neglected and the integration
of the velocity perturbation may be carried out along the
unperﬁurbed path. Formally, this amounts to differentiating
with respect to the parameter through which the model is

perturbed

oT 1 3ac
V  — = —-——-ds 2.2
2 .
api C api
along the
ray

This integration may be carried out numerically once the
path of the ray is krown.

Many investigators have obtained expressions for partial
derivatives of travel time with respect to model parameters
for application to one-dimensional velocity functions in-
cluding Jeffreys (1966), Julian and Anderson (1968) ,Archambeau
et al. (1969) and Backus and Gilbert (1969).

Least Squares Model Fitting

Consider a vector of M observations of travel-time T;bs

and calculate a vector of travel-times TE for corresponding

alc
points for a trial velocity model together with a matrix of

partial derivatives of the travel-time between the ith source

h

station pair with respect to the jt parameter of the velocity

10



model.

Also define a vector of residuals

11

Tobsl Tcalcl Tob51 Tcalc1
Tobs = r Ycale R =

T T =

obsm calcm obsm calcm
aTca1c1 . v e aTcalc1

9p) 3P

B = . .
aT
calcm calcm
9P1 9Py 2.3

We seek to perturb the initial velocity model (with parameters

Eo) by a small vector ép so as to reduce the sum of squares

of the residuals. Write the time calculated with the per-

turbed model T alc-new

parameter space about 50'

as a first order Taylor series in

Tcalc = Tcalc
new old

+ B sp 2.4

'35
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We hope to minimize the sum of squares of the new residual

vector

R =T -T 2.5

Making use of equations 2.3 ~ 2.5 we obtain for the sum of

the squarea error

= R R = R 1 T =)
8:8.B. = Ry, Fnew = (R4 - MP) (Rold - Bep)
2.6
Differentiating with respect to GET, setting the partial
derivative of the error equal to zero and solving for §p
we obtain the standard least syuares result

- NP =l AT e
ép = pr P Rold 2,7

Because the problem is non~linear, the convergence procedure
is iterative.

This procedure seeks a minimum of error. 1In fact,
there may be more than one minimum. If there exist multiple
minima, there is no way except comparison of the associated
error values to distinguish the global minimum. If two or

more minima corresponding to different models yield similar

p 2
’
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values of the sum squared error, the selection between them
must be based on other data. It thus may be desirable to
include a weighting scheme to reduce biases due to data
quality and distribution.

Hypocenter location

The Taylor series expansion of the travel-time about
the source location is
aT aT oT

+ — 8x + — 8y + — bz 2.8
90X oy 02

Tcalc = Tcalc

new old

where x, y, 2z are the coordinates of the trial focus and
X + 6x, y+ 8y, 2z + 6z will be the coordinates of the new
trial focus. Once we obtain the partial derivatives 3T/8x
etc., the solution to the location problem proceeds in a
fashion analogous to the travel time problem.

We seek to obtain the partial derivatives of the travel-
time along the path between the source and the station with
respect to the coordinate of the source. The rate of change

travel-time with respect to arc length along the ray is

ar

ds

2.9

Q]

The quantity dT/ds is the directional derivative along the

ray

1 &

ar .
2.10

I

o

I
Q| -

('f)

ds
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where % is the unit tangent vector along the rav. The right
hand side of 2.10 is just the slowness vector f.. The com-
ponents of the left hand side represent the projections of
dT/ds onto ,the coordinate axes, dT/dx, dT/dy and 4T/dz.

The result is that the vector of partial derivatives is

3T/9x

]
v

AT/ Dy 2.11

3T/dz

From Figure A.2 it may be seen that if the ray is traced from
the source to the station the vector -ﬁo will yield the de-

sired partial derivatives.

t-a
e
-
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III. COMPUTATIONAL METHOD

Rays

Two methods of integrating the ray equations have been
explored, each useful in different circumstances. The more
straightforward method, simple Runge-Kutta integration, treats
a ray as an initial value problem; that is a ray is traced
from a given starting pcint in a given direction. Frequently,
however, the particular ray between an event and a station
is required. This constitutes a two-point boundary value
problem. If close approximations to the starting values
for the corresponding initial value problem are known, it
is often possible to iterate such initial value problems to
find the solution to the desired boundary value problem. Un-
fortunately it is not generally possible to make sufficiently
accurate guesses at the starting values for the initial value
problem a priori for this method to be of universal application.
A direct method for the solution of the boundary value prob-

lem by means of tridiagonal matrices is more appropriate,

Initial value problem

A second-order Runge-Kutta scheme was selected for the
initial value problem. This scheme provides an improvement
in speed and accuracy over simple point slope methods, but
requires more evaluations of the velocity function and its

spatial derivatives. The basic equations used which relate

=5
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the values of position vector ;n’ slowness vector ﬁn and
time t_ to their respective values at t_., = t_ + &t are

n n+l n
(simulating Equations A.l15 and A.l17)

1

> > >
el =T, t ; (k1+ k3)

¥

t

1
> > >
n+l - Ip t ; (ky + ky) 3.1

' where

N
il
]

The truncation error for this simulation is of order (st)3
(Hildebrand, 1968).
Given the initial values of position vector ;0 and

slowness vector io, the ray "shoots" out integrating in

.6
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time. Curves of travel time, partial derivatives of travel
time with respect to model parameters and intensity versus
distance for a simple velocity model, ¢ = 5.0 + .1z, are
shown in Figures 3.1 and 3.2. All these quantities were
calculated using the second-order Runge-Kutta scheme. Cal-
culations for this simple model permit comparison with the
analyt;c results found in Officer (1957). The agreement

of the values obtained numerically with analytical values is
exact within the accuracy of the plots, except very near x = 0
where the total travel time is the order of a few time steps.
Agreement here could be obtained by reducing the time step.
In praciice, where no analytic solutions are available for
comparison, the most practical test for convergence to the
true value is simply to repeat the calculation with a reduced
time step. If the resulting value is the same as the calcu-
lated with the full cime step, convergence may be assumed.

In most realistic examples attempted, a time step of between
0.25 seconds and 0.05 seconds was found to give good conver-
gence. The smaller values were c¢nly required for models con-
taining very steep velocity gradients.

Boundary Value Problem

Runge~-Kutta integration may be used to solve the problem
of finding the ray between two points by iteration using the
partial derivatives of position with respect to the initial

take-off angles and estimating the requ‘red perturbations
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in these angles. These derivatives may be calculated directly
by integrating equations A.26 or estimated by tracing several
rays.

The alternate approach is to soive the boundary value
problem directly. So-called "two-point" boundary value
problems for second order differential equations have been
studied from the point of view of numerical solutiscn; such
methods are described in Fox (1957), Hildebrand (1968), and
Henrici (1962). Such methods regquire equations of the form

d?y

E—; + G(x, y) =0 3.2
X

where the solution y(x) is sought on an interval (a, b) and

the values of y are specified at the end points

]
>

y(a)

y(b) 3.3

"
w

In terms of raye, this approach changes the method of attach
from "tracing” a ray to"finding" a ray. Instead of shooting
rays out, hoping that one will intersect the desired point,
we construct a curve between the event and the station and
then distort the trial curve until it satisfies the differ-
ential equatior. and, therefore, becomes a ray. The require-

ment that the solution be sought on a known interval with

28
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specified values at the end points, forces us to abgndon
the parametric description of a ray by means of time or
arc length. We must eliminate the parameter so that the
interval over which the solution is sought will be pre-
determined. In other words, in a parametric description
of the ray, x(t), y(t), z(t), the value of the parameter
t is Lhaowi at the initial end but not at the final end
until the ray is found. On the other hand, if one of the
space coordinates may be used as the independent variable,
say y(x), z¢x), then the values of x are known at both ends
of the ray and the boundary value prcblem is well posed.
Consider a transformation of coordinates with a new
origin so placed that the source lies on the z axis an-<
the station also lies in the x-z plane (Fig. 3.3). Then
the known y and z coordinates of the source and station
will be the values of the sclution at the two end points
of the known interval in x. We seek to transform the dif-

ferential equation for the ray (equation A.19)

d 1 dr
— - — =9(1/c)
ds c¢ ds

into an equation with x as the independent variable con-
sidering only the geometric properties of the ray. Con-

sider the angle, ©, between the ray at each point and the

13
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x-axis. This angle is defined by the direction cosine

between the ray and the axis

Cos § = — 3.4

where dx is an increment along the x-axis corresponding
to an increment of arc length ds. The differential equa-
tion for the unknown coordinates of the ray in the inde-
pendent variable x then becomes

d coso au

cos © d—x( - -d—x)=vu/c) 3.5

where U is the vector of y and z components u = (y, 2).
Imagine the line segment along the x-axis corresponding
to the ray divided into equal segments of length h. Then
we may sirulate equation 3.5 with a difference equation.
Taking a certral difference for the interior derivative,
associating a coso® with each term and then taking another
central difference for the derivative outside the paren-

thesis we obtain

cos 0,1 cos 0;_; X
e i-1

cos0., cOso,
( i-1/2 itl/2) 3
Ci-1/2 €i-1/2 Ci+1/2

3
b
-

, o8 Oi41/2

i1l = /ey 3.6
Ci+1/2 ?2¢



21

To obtain an expression for cos 0, we use a finite ap-

- proximation to 3.4

where h is the interval between successive values of x and

o ) i 1/2
08y = (0% v (¥51,57¥501/9) " (254097250120 )

Since equation 3.6 is non-linear it must be solved
iteratively; therefore the apparently cumbersome form of
dsi is no disadvantage. For the initial guess at the solu-
tion it will be necessary to compute the square roots, but
in successive iterations the changes to Gsi will normally
be small and it is possible to use the first few terms of
a binomial series expansion for their calculation.

Writing an equation of the form 3.f for each point on

the ray, we obtain

3.7

e
<

]
Q+

where

1

i 7 %5412 Cia12) T, e = -b_ -b,
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The boundary conditions
|vo . '
v (a) -—-lz], v(b) =[ “]
0 Zn

have been included in the definition of 3. Note that the
two equations for y and z deccuple at this stage, but the
iterative algorithm used to solve this non-linear system
will introduce coupling.

Denoting the trial solution at some stage with a super-
(3)

script, v , the error at this stage will be

\
e(3) - x5 _g(3) 3.8

We use an adaptation of Newton's method for finding roots

described by Henrici (1962) to find a new trial solution

g+ _ (3 (5 (39) 3.9
chosen so as to attempt to make the new error 3(j+1) equal
Lo zero, i.e.

0 = x(j+1) v(j+1) = §(j+1) 3.10
Using 3.9 to expand §(J+1) in Taylor series about G(j)and

assuming K(y+1) X K(J) we have

23
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j),_.;(j) - 53

>

where
] ]
Iy °9y,
oy 0z
"9, %9, Q
Yy 0Z
B = .
g g
Yp-1 Yn-l
) 9y 9z
9g g
zn-l zn-l
oy 0Z _J

Making use of 3.8 and the fact that X and B are conformable

we have

2 x93 | 3.12
where

X (3) _ g, §(3)

2k
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(1) (3)

Equation 3.12 may be easily solved for &V because X'
is a block tridiagona. matrix, composed of 2x2 blocks.
Such systems may be solved very rapidly using a variation
of Gaussian elimination described by Richtmeyer and Morton
(1967). The iterative procedure is repeated until either

the r.m.s. error is less than some value

< € 3013

or until the change in the integral of time along the ray
is very small.

Once the geometry of the ray is described by the set
of conrdiaates, it is straightforward to calculate the
travel time and other desired ray quantities by summing
the appropriate quantities along the ray. For example,
for travel time, this amounts to Fermat's principle

ds » ds.

lr —— S Z -——l 3.14
c i=l ci

along
the
ray

Choice of Method

Whether the Runge-Kutta integration or the tridiagonal
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matrix technique is used for a particular ray problem de-
pends on 1) whether the problem at hand is an initial
value probleﬁ or a bocundary value problem and 2) the com~
plexity of the velocity model and the manner in which it
is specified.

The advantages of the Runge-Kutta technique are 1) only
the first derivatives of the veloc;ty model are required and
2) the traced curve is certain to be a ray (provided a small
enough time increment is used). The disadvantages of the
method occur in the solution of boundary value problems.
Only crude estimates of the initial values (take-off angles)
required to solve a given boundary value problem are pos-
sible and the ray is quite sensitive to these parameters.
The primary advantages of the tridiagonzl matrix technique
afe, on the other hand, the ease with which reasonable
trial rays for boundary-value problems are selected and
the relative insensitivity of the solution to a trial guess
slightly in error. These advantages arise from the fact
that.the first trial guess is actually a space curve con-~
necting the source and station which is chosen to b2 a
good guess at the final ray shape based on geophysical
experience. For example, consider a simple continuous
velocitf model consisting of a reiatively low velocity
region near the surface, increasing rapidly at some depth
to a higher velocity. Experience suggests that for some

distance range there will be a triplication of the travel

26
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time curve, corresponding to three rays: 1) a direct ray
through the low velocity region ’2) a ray refracteﬂ from

the zone of rapid increase and 3) a ray refracted from
slightly deeper in the zone of increase. Given the added
complexity of any lateral variation the selection of take-
off angles cor}esponding to the different arrivals is very
difficult. On the other hand the selection of trial ray
curves which go through the regions known to be required

for a particular arrival is relatively straightforward.

The two disadvantages of the tridiagonal matrix ﬁethod

are 1) second derivatives of the velocity model are required
and 2) frequeni:ly convergence of the solution is slow.

The second disadvantage is not severe, however, because

once the ray is approximately found (after a few iterations)
the travel-time is relatively insensitive to further refine-
ment.

The conclusions are 1) for initial value problems use
the Runge-Kutta method, 2) for boundary value problems in
velocity models for which the second derivatives are diffi-
cult or impussible to obtain use the Runge-Kutta method
with iteration of initial values, 3) for boundary value
problems in models for which the second derivatives are ob-
tainable use the tridiagonal matrix method.

Description of Velocity Model

Theory places comparatively few restrictions on the way

in which the velocity model is specified. The restrictions

21
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imposed by practicality are more severe. For all purposes
except the calculation of partial derivatives with respect
to model parameters, a tabular or three-dimensional gcid
specification would be adequéte, provided’that the inter-
polation scheme maintained cqntinuity of the first deriva-
tives, and preferably the second, except at specifiedidis-
continuities.. The importance of continuity of dééivatives
ig discussed by Vesson (1970) but a feeling for this sensi-
tivity may be obtained from observation of the ray differ-
ential equation .1.19. The explicit dependence of. this

equation on v(1l/c) demonstrates that artificially’ induced

discontinuities in this quantity will produce spurious results.

An interpolation scheme which guarantees continuity of the
first derivative is not unduly difficult, however, -and may
be executed using the technigue of Snyder (1961).  The
central difficulty of using the velocity specified on a
three-dimensional grid is the awkwardly large amount of
storage required. Satisfactory solution of this problem
requires clever use of computer storage.

Combinations of simple analytic functions were chosen
for the description of models in this work., The essential
criterion for these functions is that they be well behaved
away from the region of immediate interest. For this reason,
rational functions are particularly appealing. A function

found useful for abrupt one-dimensional velocity changes

is: 28
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toc divergence of the successive iterations. A more prudent
approach is to adopt the algorithm propused by Marquardt
(1963). 1In essence this algorithm propouses the solution of

the alternate system:
378 + 1Y) sp = BTR

where T is the identity matrix and A is a scalar to be deter-
mined. Note that as A-+0 the new system returns to ordinary
least squares. This will be appropriate near the minimum
where, hopefully, - the problem is nearly linear. As A-w

the direction of ép will approach that of the right hand

side of equation 3.17, BTR. This vector is, to a scale
factor, the negative gradient of the sum squared error.

This may be shown simply by calculating the gradient. The

definition of sum squared error is

-7

= )2.
old i i  caleg

Diferentiating with respect to pj and making use of the

definition of R (Equation 2.3) yieids

oT

3S.S.E. ,calci
IpJ i IpJ

Again using the Jdefinitions of equation 2.3, we have
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TR, Q.E.D.

grad (S.S.E.) = - 2P
As .+« however |sp]~»0, so we have shorter and
shorter steps closer to the negative gradient. The strategy
of this technique is as follouws: If for some value of ),
the correction ép reduces the error, decrease rA. If it in-
creases the error, increas¢ iA. Unless a wminimum is currently
occupied, a small enough step in the direction of the gradient
must always reduce the error.

A simple test of the solution ou{ the model improvement
equations is illustrated in Figure 3.4. Travel-times were
calculated to an arbitrary array of 13 stations distributed
i1 an area cf about 50 km. diameter about a point approx-
imately in the center. The travel-timas were calculated for
a simple constant gradient velocity model ¢ = 5.0 + .lz.
Using these calculated times as data the least squares al-
gorithm started from an initial wodel of ¢ = 4.0 + .02z.
After cight icerations tiie r.m.s. residual at the 13 sta-
tions was .0002 is5econds and the model was 5.000 + ,.1008z.

As a further test of stability, a random error selected from
a population wich zero mean and standard deviation, o = .05,
was added to each of the calculated times. The convergernce
for this data with simulated reading error is shown in
Figure 3.5. The r.m.s. rasiduual z2fter seven iterations was
.058 seconds and the resulting model ¢ = 4.961 + .1355z.

The difference betwcen th:2 noise-free and noisy models gives

21
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some idea of the resolving power of travel-time data.
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IV. GEOLOGIC APPLICATION

Bear Valley Area

The Bear Valley Area lies 25 miles southeast of Hollister
in the Coast Ranges of California, astride the trace of the
San Andreas Fault (Figure 4.1). The fault zone forms the
contact between two very different types of basement rock.
Figure 4.2 is a generalized geologic map of the area. South-
west of the northwest-southeast trending fault, granite of
Mesozoic age forming a "granitic-metamorphic core complex" is
topographically expressed as the Gabilan Range. WNithin the
Gabilan Range, separated from the granite by north-south
trending faults are rhyolites and pyroclastic deposits of
Miocene age. Topographically, these deposits form the familiar
Pinnacles. The Salinas Valley forms the western margin of the
Gabilan Range. Toward the southern end of the range the gran-
ite is covered with an increasingly thick mantie of sedimentary
rocks. Northeast of the fault zone the "Franciscan eugeosynclinal
core complex" of Jurassic-Cretaceous age forms the basement.
Greywackes predominate, but the complex includes shales, green-
stones, and ultramafic rocks. The internal structure of the
Franciscan is complicated and discontinuous. Some of the rocks
have been subjected to high pressure-low temperature metamor-
ism. These rocks rise in a broad anticline to form the core
of the Diablo Range.

The fault zone ocupies a broad structural trough, trend-

ing subparallel to the fault zone, boqﬂged on the southwest
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by the San Andreas and Bear Valley faults and to the northeast
by the anticlinal structure of the Diable Range. Located in
this truncated synclinal structure, which overlies the Fran-
ciscan formation, are Upper Cretacecus marine sediments and
Tertiary sediments. The fault zone itself is approximately
five km wide in which slivers of the various rock groups are
juxtaposed, although they are predominately Tertiary in age.
Interspersed in the fault zone are pods of ultrabasics, usual-
ly serpentine. Some distinct fault strands have been mapped:
the San Andreas, Bear Valley, Paicines and San Benito faults.

A receiat and detailed review of the geology of the Coast
Ranges has heen given by Page (1966). More specific descrip-
tions of the geology of the Bear Valley area have been given
by Andrews (1936) and Wilson (1943). A synthesis of the geol-
ogy and geophysics of the region may be found in Smith (197GC).

Motivated by a desire to test for bias in the routine
location of earthquakes in this region, the National Center
for Earthquake Research set up a temporary seismometer array
in this area during the summer of 1967. To derive a velocity
model and station corrections for hypocenter location two
shots were detonated in the general area. For this work the
shot in Bickmore Canyon, about three kilometers southeast of
Bear Valley was used. The other shot was lccated about 5C km
to the northeast, somewhat north of the termination of the
Gabilan Range.

The station locations and travel-time data for this shot

are given in Table 4.1. A plot of the travel-time da.a reduced

I
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to 6.0 km/sec 1s shown in Figure 4.3. The lower group of
stations and the shot were located southwest of the fault

on granite or on sediments presumably underlain by granite.
The upper group of stations (except HP8) lie northeas+* of the
fault on sedimentary rocks underlain by the Franciscan form-
ation or on the Franciscan formation directly. HP8 was lo-
cated directly in the fault zone and is apparently underlain
by a large thickness of sediments. It was excluded from the
subsequent analysis for computational convenience. The wide
separation of the two groups of stations readily indicates
tiiat a one-dimensional velocity model cannot explain the data
with an rma error of less than about 0.4 seconds.

To facilitate the mod=l fitting a cartesian coordinate
system was laid out based on Richter's method of calculation
of short distances (1958). The coordinates were then trans-
lated and rotated so that one of the axes was coinciden: with
the average strike of the San Andreas fault zone. The re-
sulting coordinate system is centered 16.30 km due north of
36°30' north latitude 121°15' west longitude with the y axis
striking N48.4° W (Figure 4.2).

The first attempt to fit the data was made with a simple
vertical fault model with a constant velocity gradient in the
2-direction

A(x-xq)

c=c¢cp +cCc2z + 4.1
e? + |x-xq

5
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In this model x; is the position of the fault, x is the dis-
tance away from the fault,cy + A and cp - A are the maximum
and minimum velocities on opposite sides of the fault in the
plane z=0, 2 ¢ is the bandwidth of the change in velocity
acruss the fault and . is the velocity gradient with depth
z.

The best fitting model of this analytic form, Model I,
yields an r.m.s. residual of slightly less than 0.1 sec. A
‘SW-NE cross section, A-A', representative of this model is
shown in the top half of Figure 4.4. As might be expected
the model is characterized by faster veiocities to the south-
west ard slower velocities tc the northeast. The residuals
between the observed travel-times and those predicted on the
basis of the model are given in Table 4.1; the values of the
parameters in Table 4.2. A systematic pattern may be observed.
The predicted travel-times to the stations relatively close to
the fault on the northeast side are fast relative to the ob-
served times. This can be explained by the presence of the
synclinal basin in this vicinity.

In an attempt to explain this additional complexity a
model which includes a low velocity basin along the fault.was

A(x-xg)
c=c¢cg +cyz + 4.2
€2 + IX-XOI

C
+ P

1 + a(x-xg9)2 + b(y-yo)? + d(z-2()?

it Sl s
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where cp (in this case negative) is the maximum amplitude of
the low-velocity material and a, b, d control the decay along
the x, y, z directions away from the point x3, Yy, 29, respec-
tively.

The parametefs of the best fitting model of this form
(Model II) are given in Table 4.2 and the residuals in Table
4.1. A vertical section through Model II at the location of
Bear Valley is plotted in the lower half of Figure 4.4. This
model is an improvement in that its general features, high
velocities southwest of the fault, lower velocities northeast
of the fault and a low velocity trough slightly northeast of
the fault zone are in agreement with the known geology. It
also yields an r.m.s. residual of 0.084 sec compared to the
estimated reading error of 0.05 sec. The high velocities
reached at the bottom of the model may be somewhat unrealistic,
but this depth is not sampled by the data used. The model
for the Gabilans (southwest of the fault zone) is in general
agreement with the results presented by Stewart (1968) which
indicate velocities increasing with depth from about 4.8 km/sec
to 6.1 or perhaps as high as 6.35 km/sec in the upper few kilo-
meters of crust.

As a test both of Model II and of the technigue discussed
in Chapter 2 to locate earthquakes, the shot was relocated as
if it were an earthquake, using the data of Table 4.1l. The
initial guess at the location was more than 8 km from the true

location. The calculated epicenter after five iterations

37
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converged to within 0.2 km of the true location. The error in
depth is somewhat larger, .49 km. This depth error may be the
result of the relatively large model residual at the closest
station AlBV (Table 4.1). The convergence of the location is
illustrated in Table 4.3. This location was done disregarding
the model residuals completely. Accuracy would probably im-

prove if they were used as station corrections.

Borreqo Mountain Area

The Borrego Mountain area lies about 100 miles northeast
of San Diego, along the San Jacinto fault zone (Figure 4.1).
The surface geology of this area is shown in Figure 4.5. Base-
ment in this area is composed of highly faulted pre-Cenozoic
granitic and metamorphic rocks. The fault zone strikes through
a trough filled with predominantly Tertiary sediments and
alluvium and this trough deepens to the southeast to join the
Imperial Valley. Coyote Mountain, Borrego Mountain, and
Superstition Mountain are slivers of basement rock uplifted
along faults. The principal mapped faults in the area are
the San Jacinto, the Coyote Creek, the Superstition Hills and
the Superstition Mountain Faults.

A nore detailed geologic description of this area may be
found in Dibblee (1954). Geophysical interpretation of the
regional structure may be found in Kovach et al. (1962) and

Biehler et al. (1964).
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The travel-time data for the central shot (shot 2) lo-
cated approximately 3 km southeast of Borrego Mountain (Figure
4.5), were used to derive a velocity model consistent with the
geologic structure. These data are tabuvlated in Table 4.3.
Figure 4.5 is a reduced plot of the travel-time data. The
wide scatter indicates the complexity of the area. A coordin-
ate system was established with the origin 2.62 km due east
of 33° 9' north latitude, 116°8' wes* longitude w~ith the y-axis
striking N49°W (See Figure 4.5). The first model attempted
consists of a constant velocity with depth with two superim-
posed low velocity basins, one orienéed along the trough
containing the fault zone and the other to the southeast repre-
senting the margin of the Imperial Valley:

c

C=C0+Z P 4.3
il. + a(x-x9)2 + b(y-yg)? + d(z-2zp)?

The parameters of this model, Model I, are specified in Table
4.5; the resulting residuals a?e given in Table 4.4. The
residuals reveal that this model does not contain sufficient
detail to explain the early arrivals observed at Coyote
Mountain, and the Fish Creek Mountains. Therefore, in an at-
tempt to more accurately rcpresent the velocity structure near
Coyote Mountain and the Fish Creek Mountains, two more functions
of the same type were added to the description given by equation

4.3. Since only one station, BM15, was situated on Superstition

:.:2



43

L3

€1°0 01" - L L z6°0¥ 622 ¥T°6SoSTT €V °8BVolE vt
9C°0- 1€°- TL'S SE°62 T2ZZ 48T°6To9TT V0°ZToEE et
z0°0- 10° 8S°€ TZ°ST G9Z  (LE°909TT 0G°LT.EE 11
9€°0- 8E"° - €LY (/I ¥ 4 A 1G2°8S6oSTT  LB°6S0Z€ 0T
0T1°0 €60° 18°T zz's (34 10L°So9TT LT LoEE 6
80°0 AN 86°0 99°2 19 122°609TT 46T 0ToEE 8
61°0- L0 - 19°€ VLYl €V 16€°85053TT ST OToEE L
Z0°0- 8z° 00°¥ Ly*S1 TVE T6°ETo9TT 486°SToEE 9
yE°0- 81°- S9°¥ | 2 ek £ 4 VYT  WSL°LTo9TT ¥6°LToEE S
LT 0- ot* 8z°'s 00°22 62~ «¥9°¥S5oSTT  +£0°So€E€ v
LO°0- 90°- zes 05°9¢2 162 48T VZo9TT LO°EToEE €
| Z A1) se* 6°€ 89°Li T0¥ 26°8To9TT  (0E°LoEE 4
0T°0 60° 89°€ TV LT T6S  9L°TT69T1 06°0o€€ T
6 128 °Lo9TT  (9€°60EE HZIS-IOHS
II TSPOHW I TOPOHW Aowmv Uty %“nuuu—wuwwn— %ﬂOn.V.nHMer.HN wmuﬂu.w@GO.H apniTie] uoT3lels
(o9s8) Tenprsay T92A®ay
BAIY UTE3jUNOW Obaxxog I0J STRNPTISay pue evaeq

Vv °1qel



44

8C°0
£C°0
9Z°0
LZ°0
LT°0-
0c°o-
vo°0-
v0°0
$0°0
90°0
¢¢°0-
£€Cc°0-
9T°0-
00°0-
S0°0
¢z o-
9Z°0
LZ°0-

00°
00°
6c”
9t "°
Lt -
0Z° -
41
60°
1t°
(A
vo° -
60° -
1¢°-
o0c*
1t°
LT
8T°
18 M
16° -

v9°€
ST°€
1€°¥
89°¥
98°§
vy°S
6V°L
€1°L
LT°6
98°8
LE"T
68°T
pe“€
8E°L
vp €
z0°¢
L€
85°L
Lz L

88° 1T
66°6

£8°91
0Z°6T
9Z°8¢
¥8°Ss¢
06°S¢t
6v°tt
0C sy
TE°EY
S6°€

ST°9

9v°St
o8-zt
8G°¢T
S8°L

Ly el
£6°0V
15°9¢

0°0
1 4°14
cee
9¢
8T
| X4
1 X4
(A |
0T
oL
£0T
c6
Le-
ve
SOT

£1¢C
YA

s TP T 91T
+€G°Co91T
0E°ETLITT
1 CETPTOITT
1 L6°GSoSTT
1 EL°9G6STT
8T °TSoSTT
GG°CSeSTT
LO°9PoSTT
LT LYoSTT
+€0°609TT
1CP°669TT
0S°€09TT
18G5 LPoSTT
1650°To9TT
1 C8TT9TT
1 L9°To9TT
wC8°CTe9TT
186°8FoSTT

198°Gott
+6Z° 905t
+TT°LTotLE
+6T°8TotE
WLL°LSoCE
156°8SoC¢E
106°5S0Ct
186°9S0C¢
B AR XTYA
P9°€SoCE
V2 °TTetE
0P CTotEE
€8°Tott
IV Vott
100°¥TotEE
166°TTotE
1ET°Vott
10T TEoEE
WA RNATYAS

LT
9T
ST

Ly



45

90°0
0T°0
ST°0
00°0-
8T°0-
6T°0-
9Z°0
60°0

(AN
Lo-
LT*
80° -
LT -
ST"-
LT
ST~

80°6
oe-s
6T°S
6C°S
8L°T
0L°T
SZ°S
£0°S

6S° V¥
8s°ve
] 2 X 4
9€°s¢
0s°s

¥°s

s0°02
ST°6T

69T
69T
69T
te

9¥

LT~
t£g-

1€V °9P.STT
1CE°LTOITT
195°9To09TT
1 LLTLTO9TT
107 Po9TT
180°G,9TT
18P °LS6STT
1 TC°LS6STT

162°€G02€
166°6ToE€
1€9°6ToEE
1€2°02o€€
'+ TT°0ToE€
19T °TToE€
188°Z.€¢€
10T PoEE

LS

t£ds
1ds
9L
&
9s
T8
9y
Y



46

F0I1I8 pue TeTII Aq PIYSTIqEIS® I0/pUe POxXII PTaY

-~

9¢e "¢ Se¢9T” 6S 6~ 9LTo0" ¢T°sT 8600° L/8Z°T
18° - 8EET" s0-¢ce- 9¢00° 8S"ET- 8E00° 6880°p-
€T - £€986° 89°LT 000" ZzZSE°T- 8Z90° 95ZL €-

»°0 x0C° »00°0¢€ *1° «00°€- «000Z° »000G°¢ cC6T1"9 IT T3Iaow
Li-- VLET® vg-ze- ¥86200° ST°TZT- LYS00° LT8S°€-

A 118" §6°6- ¥96100° £€8° - S$90L0° 0S9T°y- 062¢°9 _I TIAOW
won P ﬂom q wox Te ﬂmu 05

ST9poW Aa11ea aeag 103 sIoj9weaeq

S°y 9rqey



T, S

47

Mountain, insufficient data existed to define this wazlocity
anomaly and this observation was not used.

The parameters of the derived mcdel are given in Table
4.5; travel-time residuals are given in Table 4.4. Velocity
contours for northeast-southwest vertical sections (see Figure
4.5 for locations) through the model are plotted in Figure
4.7. The model gives a satisfactory picture of the average
geologic structure of the region. Section N1 is located to
the north of the sedimentary trough and generally high vel-
ocities prevail throughout. Moving southeastward the sections
show a thickening of low velocity sediments within the trough.
This is interrupted at profile N3 by the high velocities as-
sociated with Coyote Mountain. Farther to the southeast
surficial velocities in the eastern half diminish reflecting
the thickening sedimentary cover at the southern end of the
Santa Rosa Mountains. In sections S1-S4 the protrusion of
high velocity material to the east from the western margin
reflects the position of the Fish Creek Mountains. Still
farther to the southeast low velocity material dominates as
the sections move into the Imperial Valley.

The average structure of the model is in general agree-
ment with the layered model given by Hamilton (Figure 4.7).
The travel-time residuals are compared with Hamilton's time
terms in Figure 4. The smaller scatter of the residuals in-
dicates that the laterally inhomogeneous model is a signifi-

cantly more accurate description of the structure than the

L7
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layered model, even though it may lack the empirical pre-

cision of the time terms.
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V. CONCLUSICNS

This thesis discusses ray theory computations for the
solution of seismolojyical problems in laterally inhomo-
geneous regions. These methods are in excellent agreement
with analytical solutions for tractable cases. Laterally
inhomogeneous crustal velocity models are obtained from
real travel-time data. 1Inherent in the models are most of
the significant geologic structures of the regions. A
procedure is demonstrated whereby events may be located in
such models.

Ineight into the actual mechanisms of earthquakes re-
quires knowledge of where earthquakes occur in relation to
geologic structure. The techniques discussed in this thesis
apply both to the deciphering of the velocity structure of
geologically complex regions and to the location of earth-
quakes in such regions once the structure is known. The
problem of bias in the location of local earthquakes is
ripe for attack by these methods and will be the subject of

future work.

LS
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APPENDIX A

RAY THEORY

Foundations

Ray theory, despite certain fundamental limitations,
presents a foundation for computational techniques of
great usefulness in the study of the structure of the
earth, particularly the study of laterally inhomogeneous
regions. Karal and Keller (1959) showed that elastic ray
theory could be thought of as resulting from the first
terms of an asymptotic expansion solution of the wave equa-
tion in powersof reciprocal frecuency.

Consider the linearized, elastic wave equation for an
infinite inhomogeneous medium:

320 >

b —— = (A+u)V(v-u) + UV20 + UA(VeR) + Vp x(V x ) + 2(Vpev)u

°t A.l
where U is particle displacement, o is density, and A and u
are the Lamé constants. p, A and u are assumed to be con-
tinuous, differentiable functions of the space coordinates.

Attempt a solution of this equation in the form
3 = R etu(s-t) A.2

where S and 3 are space functions to be determined and u

50
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is angular frequency. Assume that S is independent of fre-

guency, but that R depends on frequency in the form

R = f (iw)™™ & A.3

n=0

Under certain conditions of the spatial variation of p, A
and ¥, the first few terms of A.3 (hopefully just Ko) will
provide an adequate representation of the solution for most
frequencies of interest. Inserting A.2 and A.3 into A.l
Karal and Keller obtain a recursive relation for the Kn's.
For Ko their results are identical withvthose that would be

obtained from the homogeneous wave equation, namely

Case 1 Ko-vs =0
(v8)2 = p/u A.4
Case II Koxvs = 0
2 o
(v8)2 = o/ (A+ 2u) ALS

but in contrast to the homogeneous case p, A and u are
functions of the space coordinates. In Case I the particle

notion given by X, is perpendicular to the ray and the right

hand side of A.4 is the recinrocal of the square of the

velocity of shear waves. In Case II the particle motion is

Gl
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parallel to the ray and the right hand side of A.5 is the
reciprocal of the square of the compressional wave vel-
ocity. The important result is that uﬁder the appropriate
conditions namely continuous gradients of relatively small
magnitude i.e. no step discontinuities, Ko is an adequate
representation of the solution and the compressional and

shear waves uncouple and both A.4 and A.5 may be written in

the form

(v8)2 = 1/c? A.6

where ¢ is the wave velocity.

Undar what conditions will only one term in the expansion
A.3 be sufficient? Since all terms are fractions of previous
terms one term should be ¢dequate when the ratio of +the mag-

nitude of the second term to the first is

1Ry |/1Ro| << 1 A7

Using the results of Karal and Keller, Archambeau et al.

(1969) obtained an approximate expression for compressional

waves for this ratio

IKII 1 V’Ko va va

— S s +
w|Ro| K |Ro | vy x+2d

A.8

B i o i it &
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where kp is the wave number w/vp, and vp =((A+2u)/p)1/2.

This ratio will, of course, be large near a focus of rays
where VKO is very large and also in regions where the gradients
of the elastic parameters are large. Archambeau et al. argue
that this ratio is small enough to be tolerable even for

rays which approximate head waves ( such as Pn)’

Derivation of Ray Tracing Equations

Assuming that the use of just one term in the asymptotic
expansion is justified, the problem of finding seismic rays

is simply a matter of interpreting

(v8)?2 = 1/c? A.9

This is the so called "eikonal equation" of geometrical
optics. We desire a description of the surfaces of con-
stant phase, S = constant, the wavefronts; this can be done
by finding the set of curves orthogonal to the level sur-
faces of S, i.e., the set of curves defined by VS: the rays
(see Figure A.l). The directional derivative along these

curves is

ds
— |VS| = 1/c A.10
ds
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where s is the arc length along the path. Applying the
operator V to both sides of A.1l0 and interchanging the

order of integration on the left hand side, we obtain

d vs 1l
= = — VcC A.ll
ds c?

The element of arc length along the ray may be rewritten

ds cdt A.l2

which gives the result

= = = V¢ A013

Define the slowness vector i

T = vs. A.14

Note that by this definition I is parallel to the ray at
each point and has the magnitude 1/c. This gives the first

ray tracing equation

%C A.1l5

Sk
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The rate of change of the position vector z along the ray
may be simply obtained from the definition of the velocity

vector

—_—z v A.16

v is along the ray and therefore parallel to f, but has the
magnitude c. Substitution yields
ar

— = ¢?%, A.17
dt

Equaticns A.15 and A.17 may be integrated from some starting
values fo and ;o to yield .(t)and }(t)providing a complete
description of the ray. These relationships are depicted

in Figure A.2.

For some purposes, such as the solution of boundary
value proklems, it is more convenient to combine A.15 and

A.l17 into one second order differential equation

d 1 ar 1
— - — =-=7Yc A.18
dt c? 4t c

or more familiarly, using ds = cdt
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d 1 dr
ds c ds

Commonly the index of refracticn, n = cy/c, replaces
1/c in this equation. Equation A.l19 may be derived from
Fermat's principle of least time by the calculus of var-
iations (Officer, 1958).

The results which nave been derived to this point are
applicable to a medium in which the velocity is a continuous
function. This is not a fundamental restriction for they
apply equally well in a piecewise continuous medium, using

Snell's Law at the discontinuity. This law may be simply
stated (Zengeni, 1970)

L' =T + =n A.20

where I is the slowness vector incident on the discontinuity,
L' is the refracted slowness vector, ﬁ is a unit normal to
the discontinuity, c is the velocity at the point where the
incident slowness vector impinges on the discontinuity.

The scalar 8 may be found from

1,2
B = - cosa + [cos2a + (c/c)2 - 1] / A.21

where a is the angle between the incident slowness vector

&6
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and the normal and c' is the velocity at the point where
the refracted ray leaves the discontinuity. The plus sign

is chosen if o is obtuse, the minus sign if o is acute.

Calculation of rntengity and Am»litude

To calculate the amplitude Ko we shall first calculate
the intensity along the ray. To obtain the intensity con-
sider a family cf rays defined by ;(a,e,t) and T (a,B,t)
where a and B are the take-off anglesof the initial slow-
ness vector fo (Figure A.2). For o and 8 fixed, with t
varying, the functions T and L will describe one ray, but
for t fixed as o and B vary, r and I describe a wavefront.
In other words, o and 8 are the parameterization of a sur-
face (the wavefront) defined by the function . An element

of area on the wavefront is then

> >
ar ar
d%a 98

Neglecting scattering and attenuation, we may assume that
the intensity of the disturbance associated with the wave-
front is inversely proportional to the area of the wavefront

dq
I/Ig = — A.23
da
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where I, is the initial intensity associated with the unit
solid angle d@ and I is the intensity associated with the
element of area dA. Therefore, if we can calculate 3r/aa
and aE/ae, we can calculate dA and hence the intensity (and
amplitude).
" ar a ar
Expressions for — -— and — — may be simply obtained
dt da dt 38 R
by considering two rays, one, described by r and I started
with some initial slowness vector ﬁo and another ray described
by r' and I.' which began with some slightly different initial

slowness vector fb. We may then write the ray tracing equa-

tion for two rays

d_r = czf, d;. . I
at —=c I

at |

|

-+ >
dL 1 aL’ 1
—_— = = -JC —_— = - - Vc'
dt c dt c'

where c' is the slightly different velocity encountered by

the primed ray. If we define

(a4
"

const
and

-
sL = L 1*,|t

const

then we may expand c' (r + 6r) in a Taylor series about the
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point ;,

2
c' (f + %) = c(T) + 6r-ve + 0(|sz| )

Using this expansion expressions correct to first order in
g s . ? . .
|sr| may be obtairad ic: ¢'?, L/¢' uind Yc¢'. Tie resulting

ray tracing equetinns are

-’

dr' > - =i 5 o=

—— = 2L + 2¢ (Veedr)L 4 c?en a,24
at

at* X S

—_— = - V¢ 4 1/c2C éx

dt c

of partial derivatives

2 _ - cc -
c, cc, . CyCy = CCyy c.c, = ©c,,
¢ = . c.? - cc c.c_ - cc
: y Yy y 2 yz
. e e ? - cc
<, zz
Y -t
A. 25
3c 32c
where ¢. = —, C = etc.
2 ax X ax?

Substracting the unprimed eguations in A.15 & A.17 from the
primed seit in A.Z4 we obtein exprezsions fox the time
£9
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derivatives of ér and 6L. Dividing these expressions

through by éa and 68 » 0 we obtain

=
d or >
— 3 2c(Vc-%§)i + ¢? %%
dt sa
=
d 3r _ 95 > ) oL
—_ — = 2c(v¢-3§) + C¢% — , A.26
dt 38 9B
d oL 1 , ar
———:—C—
dt da c? da

d 3% 1 . ar

dt 38 c? 9B

These may be integrated from the starting values

axr axr
— = 0 — =0
% |e=0 98 |t=0
oL Rty oL YA
—— =——' — = e
3a |40 Q0 38 |eog OB
In the geometry of Figure A,2
-> 1 ~ ~ ~
Ly = — ( cos a sin B i + sin a 8in B j + cos B k)
cl(ry)

60
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so the differentiation is straightforward.
+> +>
Knowing %% and %% at axy time we can then calculate the
intensity at that time by A.23 (using a vector identity to

expand A.22 and dQ = sing dads)

sin B8
I
—tn W A.27
T 3 a?) 3r  Ir 3T a}) 2
da 2a 9B 98 da 98

Formulas given by Karal and Keller may be used to calcu-
late the magnitude of the first term in the asymptotic ex-
pansion, Ko, in terms of its initial value a“ ?0 and the

relative intensity, for compressional waves:

F) oZg) 1\
vV Xy P Xy
1Ko (0) | = |Rq(tg)| B o !
v_(r) p(x) I
P
for shear waves
1/2

v _(¥) u(ry) I
[Ro (£) |=]Rq (tg) | | -2

v (o) u(®) 1o

At discontinuities, including the free surface, reflected

waves must also be considered (Ewing, et al, 1957).

61
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APPENDIX B

DESCRIPTION OF COMPUTER PROGRAM

Listings and decks of the FORTRAN programs used in
this study are on file at the Department of Geophysics,
Stanford University. The intent of this appendix is to
describe briefly the model fitting program and the proce-
dures for its use. The basic program takes a set of travel-
time data, calculates the corresponding travel-times for a
given veiocity model and perturbs the parameters of the
model so as to obtain a least squares best fit with the
observations. Only minor modifications are required to use
the program to locate event hypocenters in a given model.

The MAIN program functions as follows:

l) sets up a cartesian coordinate system centered
at some point in the area of interest;

2) reads the station locations and obtains their
coordinates in the new system, using subroutines
TRANS and TRAROT;

3) reads the velocity model and parameters per-
taining to its refinement;

4) optionally, plots the velocity model as maps
at different depths (MDLPLT) or as vertical
sections (MDPLT2);

5) reads the event location and origin time and

obtains the coordinates in the cartesian sys-

€2



6)

7)

8)

9)

10)
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tem, using TRANS and TRAROT;

reads a list of stations and arrival times, cal-
culates the travel-times, and assigns them to
the proper sets of station coordinates;

repeats 5 and 6 for all the events to be con-
sidered;

finds the rays and calculates the travel-t.mes

and partial derivatives of travel-time with

respect to model parameters, using TIMCAL;

solves for a new set of model parameters using
MAINE and MULT;

repeats steps 8 and 9 as desired.

The functions of the subroutines are as follows:

TIMCAL

1)
2)

3)
4)

initializes the model improvement equations;
finds the rays (using RAY) and calculates the
travel-time residuals;

prints ray information;

builds least squares normal eguations.

Subroutine RAY finds the ray between a source and

a station using the tridiagonal matrix algorithm

discussed in detail in Chapter 3. Specifically RAY

1)

2)

determines the rotation necessary to get the
source and station in the x-z plane;

obtains an initial guess at the shape of the

ray either from the stored shape of the ray from

a previous iteration or by fitting arcs of

a3



3)

4)

5)

6)

7)

8)

9)
10)

11)
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circles through the endpoints and the max-

imum estimated excursions in the y and z
directions;

sets up the equations 3.7 (using subroutines
VELO and QUKVEL to calculate the velocity

and derivatives at each point):

calculates the error for the current ray estimate
using TRIMLT;

if the error is less than or equal to the toler-
able level, calculates the travel-time, partial
derivatives, etc. and returns control;

if the error has increased from the previous
iteration, the corrections to the cooxrdinates
from the previous iteration are reduced by a
scale factor and control is returned to step 3;
if the error has decreased, but is still greater
than toulerable, the matrix system of equation
3.7 is solved for the corrections using BLKTRI;
the coordinate corrections are added to the cur-
rent coordinates to obtain the new ray;
calculates the travel~time for the new ray:

if the difference between the new travel-

time and the previous iteration is less than
some tolerance, the additional quantities are
calculated and control is returned as in step 5;

steps 3-10 are repeated until one or the other

€L



QUKVEL

TRIMLT

BLKTRI

JUMP

BLOB

TRANS

of the convergence criteria are satisfied or
until the number of iterations exceeds the
limit,
calculates the velocity, first and second spatial
derivatives, partial derivatives with respect to
model parameters, and the elements of the matrix
B in equation 3.12 for a point using subroutines
BLOB and JUMP. Subroutine VELO is an entry which
provides for a return after the calculation of
velocity only. It will be necessary to alter this
subroutine if the combination of functions used
is not an adequate description of the velocity
structure of the area of interest.
multiplies a tridiagonal matrix times a vector to
give a vector.
solves the 2x2 block tridiagonal system of equation
3.12, making use of special properties of this
system.
evaluates the function of equation 3.15 and
performs the spatial derivatives and derivatives
with respect to model parameters.
evaluates the function of equation 3.16 and per-
forms the spatial derivatives ard derivatives
with respect to model parameters.
converts latitude and longitude to cartesian

system using Richter's method of short distances

e5
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(Richter, 1958).

TRAROT translates and rotates cartesian system.

MDLPLT uses VELO to calculate velocity at points on

horizontal rectanqular grid and plots result.

MDPLT2 uses VELO to calculate velocity at points on

MAINE

MULT

vertical rectangular grid and plots result.
inverts n x n matrix (written by J.F. Claerbout).
multiplies n X n matrix times vector to give

vector.

Input Parameters

CARD

CARD

CARD

1 Center of coordinate system and conversion factors
LTDO, LTMO, LGDO, LGMO, AA, BB (6F10.4)

Latitude (degrees), latitude (minutes), longitude
(degrees), longitude (minutes), latitude conversion
factor, longitude conversion factor.

2 Coordinate translation and rotation to line up
with structural "grain."

XF, YF, PHI (3F10.4)

X-coordinate, y-coordinate, sotation angle (in radians,
positive counter-clockwise from the x-axis).

3 Parameters for ray calculation
NTRYS, H, TOLER, TOLT, FACST, FACFAC (I2, 5F10.4)

Maximum number of iterations to obtain ray convergence
(10) , nominal grid spacing (lkm), r.m.s. error tolerance
(E-4), travel-time tolerance (E~3), initial ray con-
vergence factor (2.), adjustment to ray convergence
factor (2.) (See description of RAY for discussion).

CARDS 4-N1 Station list and coordinates

STA (I), LAD (I), LAM (I), LOD (I), LOM (I), ELEV (I)
(2x, A4, F2.0, F5.2, 1X, F3.0, F5.2, 1X, F4.0)

€6



CARD

CARD

CARD

CARD

CARD

CARD

CARD
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Station designation, latitude (degrees), latitude
(minutes), longitude (degrees), longitude (minutes),
elevation (m).

N1+l BLANK (Indicates end of station list.)
N1+2 Model improvement parameters
NIMPRV, DELTAX, LAMDA, NU (12, 3Fl0.4)

Number of times to repeat model improvement process,
cutoff distance (observations from stations at dis-
cances greater than cutoff will be discarded), initial
value of model improvement factor (10.), adjustment

to model improvement factor (5.) (See section on
model improvement in Chapter 3 or Marquardt [1963].).

N1+3 Number of parameters in velocity model

NVEL (I2)

N1+4-N2 Parameters of velocity modéi

VEL(1), VEL(2),...VEL(NVEL) (7F10.4)

Order will be changed depending on functions chosen to
represent structure. Must conform with designation

in subroutine QUKVEL.

N2+1 Number of parameters to be perturbed in model
improvement

NVARI (12)

N2+2 Array position in VEL of parameters to be varied
IVAR (1), IVAR (2),...IVAR (NVARI) (36I12)

N2+3 Plot parameters

NZWIT, NSEC, DELZ, YGRID, YMAX, DELY (212, 4F10.4)
Number of horizontal grids to be plotted (if 0, ver-
tical sections along y=constant will be plotted; if
negative, no plots), number of vertical sections, ver-
tical increment for horizontal grids, maximum y-dimen-

sion of horizontal yrid, maximum value of y for vertical
section, increment of y between vertical sections.

CARD N2+4 Event description

CT
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Ev, ELAD, ELAM, ELOD, ELOM, ELEL, OT (2X, A4, F2.0,
F5.2, 1X, F3.0, F4.0, F10.4)

Event designation, latitude (degrees), latitude (min-
utes), longitude (degrees), longitude (minutes),
elevation (m), origin time (seconds past most recent
minute).

CARDS N2+5-N3 Travel-time observations.

ST, Q, ARTIM, ZEST, YEST (2X, A4, A3, 10X, F5.2,
2F10.4)

Station designation (must be identical, including posi-
tioning of blanks, with designation on station list),
quality description (not used), arrival time (seconds
past most recent minute; arrival time minus origin

time is assumed to be lass than one minute), maximum
estimated vertical departure from line segment con-
necting source and station, maximum estimated hori-
zontal departure from line seogment (standing at

source, looking toward station, right is positive,

left is negative).

CARD N3+1 BLANK (indicates end of travel-time observation

list)

CARD N3+2 If additional events, same as N2+4. CARDS N2+4-

N3+1 repeated for each event.
If no additional events, BLANK

The inputs to the hypocenter location version of the

program are the same, except that some parameters have
different meanings:

CARD

CARD

CARD

CARD

N1l+2

NIMPRV, number of iterations for hypocenter

?AMDA, NU, hypocenter improvement conversion factors
20’2.)

N2+1
NVARI, =3, depth fixed; =4, depth free.
N2+2 read, but not used

N2+4 trial hypocenter location and origin time

c8
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If the program is to be used for any runs longer than
1-2 minutes, it is advisable to compile the program once
under the "OPT=2" compiler option and create a load module.
For instructions on how to do this see the User's Manual,

Stanford University Computation Center.
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FIGURE CAPTIONS

Travel~-time and 9T/93cy calculated for constant
gradient velocity model, ¢ = ¢y + c12, using
second-order Runge-Kutta integration agree with
analytic values within thickness of curve.

Relative intensity and 3T/3dc; calculated for
constant gradient velocity model, ¢ = ¢y + c,2,
using second-order Runge-Kutta integration agree
with analytic values within thickness of curve.

Geometry of tridiagonal matrix formulation of
ray boundary vaiue problem. The primed axes
are translated so as to include the source and
station in the x' - z' plane. The line seg-
ment on the x'-axis corresponding to the ray

is subdivided into equal segments, h. The y'
and 2z' coordinates at these discrete points are
the unknown variables.

Function used to represent one-dimensional velo-
city change, f(x) A(x - xo)/(€? * |x = %o]).
As X+ Xot», £(x) » +A- at x = xo+e , £(x) = $A/2,

Test of model improvement scheme. See text for
discussion.

Index map showing location of Bear Valley and
Borrego Mountain areas and major faults of Cali-
fornia.

Generalized geologic map of Bear Valley area
showing shot and station locations, origin of
cartesian coordinate system and section line
A-A' .

Reduced travel-time plot of data from Bear Val-
ley shot.

Contour plots of velocity for Bear Valley models
along vertical section A—A' Model I above,
Model II, below.

Generalized geologic map of Borrego Mountain area
showing shot and station locations. The ends

of the SW-NE section lines, N1-N8 and S1-S8 are
indicated. The triangles and numbers designate
portable stations. The line segments and letters
indicate refraction spreads. The readings at
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each end of the refraction spreads were used
as independent observations. The origin of
the cartesian conrdinate system is also shown.
The basement outcrop between stations 5 and 12
is Coyote Mountain; that beneath station 15

is Superstition Mountain.

Reduced travel-time plot of data from Shot 2
southeast of Borrego Mountain.

Contour plots of velocity for Borrego Mountain
area, Model II, along vertical sections N1-N8
and S1-S8 indicated in Figure 4.5. See text for
discussion.

Above: time-terms calculated by Hamilton (1970).
Below: residuals between observed travel-times
and those calculated for Model II. The residuals
have less scatter than the time-terms, indicating
that significant lateral variations have been
included in the model.

Wavefronts are surfaces of constant phase, S=
constant. Rays are orthogonal curves, parallel
to VS.

Geometry of ray. The two take-off angles a
and B, angd the value of the velocity, c, at
the poini ro, determine the initial slowness
vector, Lo.
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ABSTRACT

The slowness factor dT/dA for the core phase PKKP
was measured at the Larﬁe Aperture Seismic Array (LASA),
Montana, in the epicentral Jistance range 75° < 4 < 125°.
Due to the high phase velocitles involved, or equivalently,
low slowness factor, corrections for simple geclogic struc-
tures under the array were imperative. A method was de-
rived to correct for the dipping M-discontinuity under
LASA.

A velocity model for the earth's core was computed
from the dT/dA observations, together with PKP travel
times, usin, the Wiechert-Herglotz integration method.

The PKKP core velocity model derived is essentially tripar-
tite, but differs from other proposed models in important
details.

The major part of the outer core exhibits no striking
differences from the standard J«ifre;s' model: fairly con-
stant velocity gradients in the SKS and ABC (Bullen ‘'E')
regions. However, at a radius of 1654 km there is a dis-
continuity in the velocity gradient and the next 250 km
in depth is a distinct region of slightly higher velocity.
The transition zone into the inner core is only 200 km in
thickness and is characterized by a gentle negative velo-
city gradient. This zone has an average velocity of 10.45

33
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km/sec. The inner core starts at radius 1217 km with

an average velocity of about 11.20 km/sec and possesses

a slight negative velocity gradient towards the center

of the earth. A slight drop in compressional velocity in

the mantle at the core-mantle boundary is also inferred.
It is conjectured that the transition zone (liquid

or viscous) and the inner core (solid) are of the same

chemical composition, but differ from that of the outer

core.
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I. INT&ODUCTION

The existence of the core Iin the garth was postulated
in cthe 1890'+ by Wiechert, and subsequently subdivided into
a fluid outer core, and an inner core (most likely solid)
by Lebmann In 1936. With only a few exceptions, most of
the velocity models of the earth's core are derived from
travel time data from the seismic core:phases PKP and PKIKP
in conjunction with scanty SKS observations. The classical
velocity models are those of Jeffreys (1939) and Gutenberg
(1958).

As more hig& quality data have accumulcted these
models have been continually modified. The list of pro-
posed models for the core is sizeable. Bolt (1964) con-
structed a tripartite core model tc explain the PKIKP (DF
branch) forerunners that had previously-been explained by
diffraction at the caustic B. Adams and Randall (1963, 1964)
bave also proposed a tripartite core. :Ergin (1967) postu-
lated a more complex layered core model Engdal (1968)
constructed a series of modeis modified ¥from those of
Jeffreys, Bolt, and Adams and Randall. °'All of these models
were based on detailed observations of the core phase PKP.
Other investigators, although not proposing new models,
have studied PKP data to refine their travel times (Hai,
1961, 1963; Kovach and Glover, 1968: Subiza and Bath, 1964;

and others). The models of Jeffreys, Gutenberg, Bolt, and



Adams ‘and Randall are illustrated in Fig. 1.

The use of the free oscillations of the earth to de-~
termine the structure of the deep interior deserves brief
mention. Although normal modes have been succesefully
accurate at determining, or setting limits to, the seismic
parameters in the earth's mantle (Press,1968; Bullen and
Haddon,1967, 1969) the method is nut sufficiently sensitive
to the deeper core structures (Anderson and Kovach, 1969)
and hence cannot be used to determine the fine structure
of the earth's core.

Most of the core models are essentislly trial-and-
error models which are adjusted to fit the observed travel
time data. As a result they are not unique, as emphasized
by the large number of Monte Carlo random models Press
(1968) generated to satisfy given travel times. However,
given sufficient data and as long as dV/dr < V/r the direct
use of dT/dA reduces considerably the number of possible
models.

Travel time analyses for velocity determination even
though carefully carrled out are hampered by having lower
resolution than direct dT/dA measurements using arrays.
Extensive use 0% array data has resultéd in the proposed
refinement of the velocity distribution in the lower and
upper mantle (Niazi and Anderson, 1965; Otsuka, 1966 a, b;
McEvilly, 1966; Johnson, 1967, 1969; Chinnery and Toksaz,

1967; Fairborn, 1968; Kovach and Robinson, 1969).



Use of arcays for core phases has not been exploited
and analyses of the slowness factor dT/dA have been limited.
Prior to the installation of LASA, Hannon and Kovach (1966)
used vclocity filtering with a network of portable stations
in Arizona to identify the various branches of the core
phase PXF in the distance range 125°-160°,

Because of the very high apparent phase velocities
(greater tha. 25 km/sec) or equivalently, low slowness
factor (dT/d4 less than 4.5 sec/deg) arrays with large
apertures are required if observational errors are to be
small relative to the small time delays. Husebye and Toks;z
(1968) circumvented the difficulty by using the WWSSN and
LRSM stations in North America as a continental size array
to study the PKP core phase. Of course, if the array gets
too large the coherence between stations decreases and the
problem of correct identification of the -aricuc travel
time branches again arises. The core model deduced by
Husebye and Toks;z is outlined in the caption to Fig. 1.

The slowness factor for the core phase PKKP was deter-
tiined using the La.ge Aperture Seismic Array (LASA), Moutana,
which has an aperture of 2° (or a diameter of about 200 km).
A dT/dA vs A curve was used to determine the P wave velocity
distribution in the core using the Wiechert-Herglotz tech- |
aique.

The reason for the choice of the core phase PKKP to ]
study the core velocity structure is two-fold. First, LASA

19
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is strategically situated with respect to the high seismicity

areas of the world, which lie within the epicental distance
range for the observation of PKKP. Fig. 2. shows the loca-
tion of tlie events used in this study. Second, the phase
PKKP traverses a distance in the core twice as long as the
phase PKP, and thus the observed-branches are stretched out
and less crowded, giving better resolution.

The core model derived in this thesis is essentially
tripartite, siﬁilar to those of Bolt (1964) and Adams and
Randail (1964), although differing in fine st ucture and
the size of the transition zone between the outer and inner

cores.
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11. A BRIEF REVIEW OF THE THEORY Oy dT/da

The theory of the use cf the slowness factor (slope
of the travel time curve) in studying the velocity dis-
tribution in the earth is classical (Bullen, 1963). For
the sake of co;tinuity and the establishment of notation,
a brief outline of the theory is presented.
In a spherically symmetric earth a ray i3 characterized

by the parameter p, an invariant of the ray,

r sin {

TS (1)

where r is the radius coordinate from the center of the earth,
i is the angle of incidence between the ray and the radius,
and V(r) is the seismic velccity at radius r,

The seismic ray parametex is in turn related to the
slope of the travel time curve through the slowness factor
dT/da:

r sin 1 ro sin ij

p = - : dT/da
V(r) V(rg) (2)

Fig. 3. illustrates the geometry considered.
If A is the epicentral distance from a surface focus
to the observation point on the surface, then a functional

relationship vetween the velocity and the radius can be
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derived (Bullen, 1961) to give the famous Wiechert-Ferglotz2

relation
4
a p(a)
" tn {—) = arc cosh { } da
T 3 0 n(r1) (3)
where
n(ry) = V(r1)/r; = p(8)) (&)

and a is the radius of the earth.

For the determination of the velccity depth function,
dT/dA measurements are superior to travel time in many
aspects. First, application of dT/dA dispenses with accur~
ate knoviedge of the origin time of the event. Certain
significant corrections imperative when using travel time
data are less crucial in dT/dA measurements. Elevation
and ellipticity corrections can be ignored, and small
errors in epicentral location are tolerable espeiially
when using teleseismic observations. Even corrections
for focal depth become less important since they do not
affect the seismic ray parameter itself except that the
ray must be projected back to the surface. 1In the case
of core phases with steep angles of incidznce (less than
15° from the vertical) focal depth corrections are neg-

ligible.



Planar structures in the carth's crust and uniform
lateral gradicats can be easily corrected for in array
mcasurcments of dT/dA (Zengeni, 1969). Also, identifica-
rtion of the various branches of a phase is less ambigu-

ous using seismic array data.
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IT1I. DATA COLLECTION, SELECTIGN AND REDUCTION

1. LASA, MONTANA

The configuration of the LASA is shown in Fig. 4,
and details of the seismometers used in this study are
listed in Table 1. Because of the low slowness factor
involved, only the center seismometers of the AO suburray
and the outer E and F rings were used. These seismometers
are buried to a depth of 500 ft to redure meteorological
noise. Details concerning other aspects of the LASA are

given by Forbes et. al. (1965).

2. MEASUREMENT OF TIME DELAYS

Readings of the relative arrival times were picked
on copies of LASA short period film, obtained from the
Teledyne Seismic Data Labs, Alexandria, Virginia. Only
events of large magnitude (about 6 or larger) produced
usable observations of the phase PKKP. Table 2 1lists the
earthquakes used.

Relative arrival times were picked to 0.05 sec by
visual alignment of each channel with a reference seismo-
gram. Since absolute time is immaterial, times were read
on any suitable point on the wave packet comprising the
phase, and not necessarily on the actual onset which might

not be as clear.
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SUBAKRAY CENTER COORDINATES CENTER ELEVATION

LATITUDE (N) LONGITUDE (W) (METERS)
AO 46° 4)° 19" 106° 13' 20" 896.8
El 47° 09' 46" 106° 03' 22" 837.9
E2 46° 30 46" 105° 21' 53" 762.2
E3 46° 0R' 58" 106° 20' 03" 913.7
E4 46° 45' 39" 106° 55' 00" 955.3
F1 47° 22' 15" 105° 11' 15"  892.5
F2 45° 54°' 34" 105° 21' 53" 906.7
F3 45° 58°' 22" 107° 04' 54" 989.7
F4 47° 24° 40" 106° 56' 37" 859.8

Table 1. Center seismometers of the A0 subarray and the
E and F rings. Seismometers are placed at depth of 500

ft ~ 153 meters.
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A least square procedure, described in Appendix A
was applied to determine the parameters of the apparent

wavefront traversing the array.

3. OBSLRVATIONS .
The observed azimuth of approach w' was found to dif;
fer from the expected great circle azimuth w by an amount
unwarranted by‘the cstandard deviations of the measurements.
The observed slowness factor (8T/84)' exhibited (for the
same epicentral distance) widely different values depending
upon azimuth., Chinnery and Toks;z (1967) and Fairborn
(196:) encountered the same problem while studying teleseis-
wic mantle P waves. The former avoided the problem by con-
gidering only a narrow azimuth window, while the latter
estimated local station corrections to eliminate the azimuth
dependence., The azimuth anomaly ¢ = w-w' plotted against w
(Fig. 5) forms a pattern similar to that produced by a dip-
ping interface e.g. the sloping M-discontinuity, or equival-
ently, anomalies produced by fairly gentle lateral velocity
gradients in the crust or upper mantle. Because of the abun-
dance of mantle P events detectable at the LASA, subdivision
of the data into azimuth windows does not present a serious
problem. However, observations of the core phase PKKP are

more limited and such a method is not feasible.
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4. CORRECTION FOR A SINGLE DIPPING INTERFACE
A method for correcting the observed PKKP values of
(6T/64)' for a tilted interface was deveioped (Zengeni,

1969). A detailed derivation of the relations can be found

in Appendix B.

a

The interface is defined by the unit normal vector n:
n =(sin D cos Q, sin D sin 9, cos D)

where D is the dip, and Q is the direction of dip (i.e.
azimuth of ;). The observed azimuth is w', the epicentral
great circle azimuth is w, the velocity below the inter-
face is V, and above is V',
Two complementary correction formulas are used, each
useful for a particular azimuth window.
sin (8 - w')

(1) dT/dA = (8T/64)" (5)
sin (8 - w)

(11) dT/dA = (8T/64a)' F, (,w,w',p',D,V, V") (6)

where F+ are the roots of the quadratic equation

F cos(Q-w) - /PZ/p2-F2 tau D = cos(fQ-uw )~V "2/p'2-1 tan D
(7)
The two relations are mathematically equivalent, but

when dealing with experimental data the two are appropriate
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in different azimuth segments. Equation (5) is used in

the windows

~150° < Q-w ¢ - 30° and 30° < f-w g 150°

and equation (6) is used in the remaining sections:

F, for 0 < @-w ¢ 30° and 150° < Q-w < 180°

F_ for -30°< Q-0 < O and 180° < @-w < 210°

SA

Equation (5) is simple and depends on only one un-
known, Q2. The rest of the parameters are either observed
or computed. f can however be easily determined from a
rlr+t ¢; the azimuth anomaly ¢ vs w. [see Fig. 5, and also
Niazi (1966), Otsuka (1966), McEvilly (1966) and Greenfield
and Sheppard (1969)). The envelope of the data points
crosses the w-axis at w = 2, Q + 180°.

Equation (6) depends on all the interface parameters.
By a trial-and-error method in conjunction with dT/dA values
already corrected by the first relation, D, V, V' can he
easily estimated. The following values were used for the

analysis of PKKP data observed at LASA:
D= 5° Q = N20°W, V' = 6.0 km/sec, V = 8,0 km/sec

Fig. 6 shows the raw and corrected dT/dA values for PKKP.
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As it turned out, the slowness separation §p between
branches CI, 1IJ and the lower portion of BC is not much
larger than Ehe correction terms. Without the azimuth cor-

rection it would not be possible to separate the branches.

5. SOURCES OF ERROR

The theory of dT/dA, as already pointed out, assumes

perfect spherical symmetry and consequently azimuthal symmetry

as well., For convenience deviations from such symmetry are
treated together with all other sources of error. Bacause
ve assume plane wave fronts, near surface planar structures
under the array should not (strictly) distort the plane wave
front except merely to rotate it.

In reality, the LASA is gently curved and not planar,
and wave fronts from teleseismic events are not truly planar
but somewhat quadratic. These so called 'global' distor-
tions are distinct from the 'local'distortions that arise
from (i) near surface geological inhomogeneities under in-
dividual seismometers and (ii) the relative elevation of
the seismometers above some datum level. All these local
errors are imbedded in the time residuals 611 = Ti - Ti"
where Ti and Ti' are the expected and observed relative ar-
rival times at the i-th seismometer. 6T1 also contains ran-
dom experimental reading errors. Possible sources of global

errors would be distortions due to deep inhomogeneities in

the core and lower mantle.,
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IV. THE PKKP CORE MODEL

1. DERIVATION OF THE CORE MODEL

The construction of the core model from the dT/dA ob-
servations consisted of the following four steps:
(1) The mantlewas stripped off using the Herrin (1968) P
wave velocities.
(i1) Initially the Jeffreys SKS (Bullen 'E') region was
assumed and later adjusted to link up continuously with the
observed dT/dA data. The dT/dA curve for thestripped core
is shown in Fig. 7. It should be pointed out here that since
the caustic B is a consequence of the spherical geometry, the
velocity structure of the mantle and the abrupt velocity drop
at the core-mantle boundary (CMB), it is highly improbable
that B should also represent a core phenomenon. Hence B is
constrained to lie on a smooth curve ABC.
(1i1) Using the Wiechert-Herglotz inversion method the vel-
ocity distribution in the core was computed down to point J,
and continued to G by means of total reflection.
(iv) The remainder of the dT/dA curve and velocities were
computed using the abundant PKP data available (Jeffreys,
1939; Bullen and Burke-Gaffney, 1958; Hai, 1961, 1963; Bolt,
1964, 1968; Adams and Randall, 1964; Hannon and Kovach, 1966;
Shurbet, 1967; Kovach and Glover, 1968; Husebye and Toks;z,

1968; Engdal, 1968; Gogna, 1968).
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2, DETAILS OF THE_ PKKP CORE MODEL

Except for fine details, the PKKP model is essentially
tripartite, i.e. the outer and inner cocres are separated by
a transition zone, A summary of the numerical details of
the derived core model is listed in Table 3. The velocity
distribution is illustrated in Fig. 8. The subregions in
the core are designated by the corresponding lettering of
the travel time branched that scan (i.e. 'bottom' in) these
sections.

The interfaces between the three regions of the core
were constrained to have sharp velocity discontinuities for
two reasons:

(1) Sharp velocity jumps produce the desired receding branches
to link up with the succeeding refraction branches.

(11) Very high velocity gradients give rise to unnecessary
computational problems, especialiy when using the Mohorovicic
velocity law (atb);

When a velocity discontinuity was reached, the shell
above the interface was stripped off in order to compute the
velocity distribution of the next region. These discontin-
uities are located at radii 1426 km and 1217 km marking the
outer radius of the transition zone and the tadiua of the
inner core respectively.

The OQuter Core

The outer core comprises the SKS, ABC, CI, IJ subregions.
Details of the SKS region are fairly arbitrary (without ac-

curate SKS data) since there are not enough constraints (from

UL
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SUMMARY OF THE PKKP CORE VELOCITY MODEL

t/rc r v
km km/sec
1.00 3476 8.10
.96 3337 8.26
.92 3198 8.44
.88 3059 8.63
.84 2920 8.85
.80 "2781 9.04
.76 2642 9.23
.72 2503 9.41
.68 2364 9.57
.64 2225 9.66
.60 2086 9.75
.56 1947 9.84
52 1808 9.93
.48 1668 9.98
476 1654 10.025 1
b4 1529 10.08
410 1426 10.078 J
10.47 ¢
.40 1390 10.47
.36 1251 10.38
.350 1217 10.36 H
11.30 D
.32 1112 11.26
.28 973 11.23
.20 695 11.20
.10 348 11.20
0 0 11.20 F

Table 3. The letters are used to designate the discontinu-
ities corresponding to the branches of the travel time curve.
The radii are given to nearest whole km and the velocities
are interpolated to at least two decimal places.
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P wave observations above) apart from the demand that the
AB branch should produce the correct travel times. Except
for a slight compensating increase in velociéy, the SKS
region is similar to that of .effreys.

The region ABCI has a fairly steady velocity gradient
which diminishes towards I. The velocities derived in this
section are lower than most core mcdels derived from PKP
observations by about 0.05 km/sec; hence the velocity in-
crease in the SKS region.

The subregion IJ has a humped velocity distribution
with a very slight negative velocity gradient towards J.

The Transition Zone (GH Region)

The velocities in the transition region are intermedi-
ate between those in the outer and inner cores. The derived
shell is narrower, only a little over 200 km, than the
400 km or so of Bolt, and Adams and Randall. This zone is
characterized by a negative velocity gradient of about 0.5
km/sec/103 km.

The Inner Core (DF Region)

The velocity distribution in the inner core is fairly
arbitrary. Analogous to the SKS region it is constrainec
mainly to satisfy the DF branch travel times of the core
phase PKIKP. Th:2 model derived has a negative velocity
gradient (with depth). The nature of the velocity distribu-
tion depends on the assumed velocity at the transition inter-

face into the inner core, which in turn depends on the
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location of the limiting point D. The position of D(PKP)
was taken at 110° , fixing the velocity at the transition

interface to 11.30 km/sec. 1If (D) is increased well

Spxp
beyond 110°, the velocity at the interface decreases, and
the velocity gradient in the inner core increases and could

possibly become positive.

3. TRAVEL TIME AND SLOWNESS FACTOR

The travel time and dT/dA curves for the phases PKP
and PKKP are shown in Figs. 9 and 10; receding branches are
omitted for clarity. The letter designation of the branches
is chosen to be as compatible as possible with that of ex-
isting core models, in particular those of Bolt (1964, 1968)
and Adams and Randall (1964). The salient features of the
curves are given in Table 4.

Phase PKP

The PKKP core model predicts a PKP travel time curve
that comprises six refraction branches (AB, BC, CI, 1J, GH,
DF) and two receding (reflection) branches (JG, HD). B,
located at 4 = 146°, is the only observable high amplitude
caustic., C and I are due to discontinuities in velocity
gradient in the outer core at radii 1682 and 1654 km re-
spectively., Thus the relatively high - amplitudes observed
in the neighborhood of A ~ 145° - 146° (Shurbet, 1967;
Shahidi, 1953) can be identified with the caustic at B. The
large amplitudes around 143° carn be explained in this model

as the coherent superposition of the DF branch and the JG
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and GH branches; a conclusion independently reached by
Shurbet (1967, p877).

In the distance range 145° ~ 150° there is a clustering
of different branches of the travel time curve, making it
very difficult (if not 1impossible) to resolve them using
PKP observations only. For example, around 148° there are
as many as eight possible arrivals (two of which are reflec-
tions) separated by only fractions of a second. It is thus
not improbable that in PKP observations the branches BC and
IJ have not been identified separately. The PKKP data studied
show no evidence for the extension of the IJ branch below the
DF branch as postuliated by Adams and Randall.

Branches GH and DF are similar to those of Bolt (1968)
and most of the other tripartite models. However, the Bolt
GH branch preceeds the GH branch derived here by as much as
10 sec around 125°, This discrepency is in the right direc
tion to reduce the observed residuals to Bolt's GH branch
(Kovach and Glover, 1968).

Phase PKKP

Theoretically, for each PKP branch there is a corres-
ponding branch for the PKKP phase. However, there is one
very significant except; the cusps B do not belong to the
game ray parameter, and thugs they do not scan the same depth
(see Table 4). This point was raised earlier when the caustic
B was ruled out as represcenting some outer core structure.

Travel time data for the core phase PKKP are not as
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extensive as those for PKP. However, Gutenberg (1951, 1959)
and Engdal (1968a, b) provide some data for comparison and
discussion.

Branches AB and BC are well observed and clearly identi-
fied by their dT/dA values. Branch AB will be discussed
later in the section dealing with the core-mantle boundary.

The most significant advantage of using PKKP observa-
tions {8 the clear separation of the branches BC and 1J. A
cursory glance at Engdal's (1968b) data [reproduced in Tig.
11] might give the impression that the BC branch should be
extended beyond 95° down to 79° (c.f. Gutenberg, 1951 p 385).
However, the detailed study of array data shows a definite
bresak in slope at 94°, as also noted by Engdal (1968a, p 52).
This break in slope is actually caused by the formation of
a new branch IJ (100° =~ 79°) linked to the BC branch by a
short intermediate branch CI that extends for only 6° from
34° to 190°, (An array of aperture 6° or larger would not
be able to resolve a branch of this small extent). Also to
project BC to include IJ does not give a plausible PKP branch.

The GH branch extends from about 140° down to 69°, separ-
ated from the 1IJ branch on the travel time curve by less than
2 sec at 95° and only 7 sec at 80°., Attempting to identify
IJ with GH as one and the same branch encounters a serious
difficulty that requires explanation beyond geometrical ray
theory. As a whole, the PKKP GH branch contains compari-

tively very low seismic energy. The presence of the
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intermediate branch CI, 1J forces the GH branch to have a
lower slowness factor than those of most core models,

The DF braunch extends from 160° to 0°., One intu-
itively expects only meagre observations because of the
large distances traversed in the core and the depletion of
the energy during partial reflections at the many reflecting
interfaces. This accounts for the fact that the DF branch
was not observed for PKKP phase,

4, THE CORE-MANTLE BOUNDARY (CMB)

The velocity distribution a~ the base of the mant}e and
the CMB are still an issue of controversy. The branch AB
of the core phases and, in particular, the location of the
terminal point A are a useful tool in determining the para-
meters of the CMB., Intrinsic to the argument's validity is
the following assumption: It is highly improbable that the
limiting point A, a consequence of the abrupt velocity drop
at the CMB, should also coincide with a velocity peculiarity
in the outer core.

Since the section BC (Fig. 7) and the lower part of AB
or the dT/dA curve for the stripped core are well established
from the PKKP array observations, and are not critically in-
fluenced by the velocity distribution at the base of the
mantle, it is reasonable to project the curve back into the
SKS region continuously and smoothly to join the Jeffreys
SKS curve. This portion of the curve (the insert, Fig. 7)

provides superior cont-.ol of the p - A relationship near A
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than do the phases P, PcP, PKP or PKKP. Of the two core
phases PKP is the less c0nvenient-to use because of the
possible overlap of arrivals from either side of the globe
if A is beyond 180°. Besides, PKKP advantageously doubles
both the travel time and distance traversed in the core.
For all p
1

by (@) = ; {APKKP(p) = bpep (p)} (8)

and in particular at point A, For an n-multiply reflected

core phase, equation (8) can be generalized to

BpepA) = Bpgnp(A) = n 8, (A) (8a)

Unfortunately, the limiting values A(A) and p(A) for both
PcP and the core phases are debatable. In this study
APKKP(A) is estimated to be 260°; c.f. 262° by Engdal (1968a,
p 56). It is very unlikely that any short period wave dif-
fraction mechanisms could account for the relatively good
observations near 260° and beyond.

Equation (8) or (8a) is shown schematically in Fig. 12a

by sketching iso-4 (A) curves on a p-APcP(A) plot. Reason-

PKKP
able bounds can be imposed on the variableg, as indicated.
From the data studied here together with data from Engdal
(1968a, b), Johnson (1969), Fairborn (1968) and Herrin (1968),

the following values were adopted:

[ 19
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P(A) ~ 4.45 sec/deg

A (A) 109°(marking the edge of the P shadow)

PcP
AK(A)

ee

77°

ee

Using the Herrin Tables, the dT/dA values for the Mantle

P arrivals beyond 90° were adjusted and projected to the
above limiting values. Fig. 12b shows the section under
discussion. The velocities at the base of the mantle were
recomputed, and are shown in Fig. 12c together with the
Herrin (1968) P velocities.

The negative velocity gradi=nt at the base of the
mantle was proposed earlier by Gutenbe;g (1959, p 95) and
other investigators, in particular those studying primarily
core phases (e.g. Ergin, 1967; Husebye and Toks;z, 1968).
The location of the edge of the shadow zone has varied as
the number of investigators, for example 105° by Jeffreys
(1939), 103.5° by Gutenberg and Richter (1934), 90° by
Macelwane (1949), 96.5° by Sachs (1966), 100° by Johnson
(1969), and on the average (Herrin 1968 Tables) 100°. Ob-
servations beyond this limit have been ascribed to diffrac-
tion around the CMB. Theoretical studies, notably by
Sholte (1956), Alexander and Phinney (1966), Phinney and
Alexander (1966), Phinney and Cathles (1969), and Richardson
and Teng (1969) have been carried out to quantify the ob-
servations. When reduced to the stage of numerical evalua-

tion by asymptotic or other methods, the diffraction theory
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becomes (strictly) valid only for waves of longer periods
than is observed in core phases (vlsec). As suggested
earlier, the amount of energy of core phases in the
'shadow' is more than can be attributed to diffraction
alone.

Tlie negative velocity gradient proposed here leads to
the following results:
(1) The edge of the shadow zone is farther than 100°, and
in thig thesis it is located at 109°.
(11) The depletion of amplitude beyond 100° is due to the
focussing of rays away from the mantle into the core.
(111) As a consequence of (ii1), observations preceeding A
(as previously located) on branch AB of the core phases be-
come true refractions, thus point A is relocated at 186°
for PKP.

A change in velocity near the CMB also necessitates a
reevaluation of the radius of the core. The radius rc-3477
km was used as a guide although r, = 3476 km was finally

adopted as the radius of the core.
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V. DISCUSSION OF THE CORE VELOCITY MODEL

A complete geophysical study of the Earth's interior
consists of the determination of the existing physical
conditions (temperature, pressure, etc.), the physical
properties (density, incompressibility, rigidity, phase
or state, etc.) and ultimately the composition and identif-
ication of the atomic and molecular constituents of the
Earth's deep interior. 1In the case of seismic velocities,
the model must also be consistent with a plausible distrib-
ution of density, incompressibility and rigidity.

In determining gross features of the earth, these con-
siderations may not be critical. However, when ianferring
fine structure involving rapid or abrupt variations in seis-
mic velocity, or ultimately changes in the fundamental vari-

ables (density, incompressibility and rigidity) it is essen-

"tial that the model be checked against other experimental or

theoretical evidence.

The velocity distribution derived here was obtained
from dT/dA observations of the core phase PKKP, and PKP
travel time data where PKKP data were insufficient or
lacking. It is important to discuss some of the implica-
tions of the PKKP velocity model.

That the outer core (SKS, ABCIJ) is fluid is seismo-
logically indisputable. The outer core velocity distribu-

tion derived here presents no difficulty because of the
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absencc of any drastic variations. The steady velocity
gradients in these regions can be attributed to the in-
fluence of pressure and temperature. The velocity devi-
ations in the region CIJ might be due to zituer a phase
change cr a slight chemical inhomogeneity in the deeper-
most parts of the outer core.

It has been postulated (Bullen, 1946, 1958) that the
inner core material is in the solid state and therefore
should transmit both dilatational and shear waves. The
existence of the transition zone is widely accepted by most
seismologists, and its complexity is also well recognized
(Subiza and B;th, 1964). Gutenberg (1957, 1958) postulated
a dispersive frequency~dependent region to explain the PKIKP
or DF branch forerunner. Bolt (1964) used ordinary ray
theory to explain these precursors by constructing a new
refraction branch (GH) without recourse to diffraction
or dispersion. Adams and Randall proposed a transition
zone comprising two shells to explain their observations of
the triplication of the PKP branch.

Although not observed iu the PKKP core phase, PKP waves
associated with the transition zone are peculiar and dif-
ferent from those whose ray paths scan the other regions.
They are generally of shorter period (Gutenberg, 1958;Subiza
and B;th. 1964) . Husebye and Toks8z (1968, p8) describe
the precursors as "in general long oscillatory trains sim-

ilar to guided waves"; they further speculate them as such,
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originating from the core-mantle boundary.

The presence of the transition 2zone, the negative vel-
ocity gradient deduced here, and the presence of the vel-
ocity structure IJ (Fig. 8) at the base of the outer core
require explanation. It is conjectured that the tranrsition
zone is in the liquid or viscous state but is of the same
chemical composition as the inner core. The .nference that
inner and outer cores are chemically different was postu-
lated earlier by Bullen (1954).

The velocity discontinuity at the interface between the
outer corec and the transition zone follows as a consequence
of the compositional change. The velocity jumps at the
inner core interface is due mainly to the abrupt contribu-
tion of the rigidity to the wave velocity as a result of
sudden solidity. The negative velocity gradient into the
inner core could be accounted for in the following manner:
both the density (p) and the incompressibility (k) increase
with depth (varying with temperature and pressure) but k
(in the absence of rigidity) changes more slowly over the
extent of the transition zone such that k/p is a slowly de-
creasing function of depth.

It is not inconceivable that the liquid-liquid inter-
face between the outer core and the transition ‘zone permits
the diffusion across it of the molten materials from either
side, in particular, from the transition zone into the outer

core giving rise to the structure 1J (Fig.8 ).
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The slight decrcase of the mantle P velocity at the
CMB is physically not unrealistic; possible softening of
the material would result in a corresponding drop in ri-
gidity. The S wave velocities at the CMB would reflect
better such a diminution in shear modulus (u), thus pro-
viding a simple (though difficult to achieve) check on the

postulated velocity distribution.
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VI. SUMMARY AND CONCLUSIOCNS

From observations of the seismic core phase PKKP, as
reccorded at LASA, a new v~,locity distribution in the earth's
core has been derived. The velocity model for the core is
essentially tripartite, but differs in several significant
points from other proposed models (Fig. 1 and 8):

(i) The velocity gradient in the SKS region is higher,
and in the ABC region lower, than the standard
Jeffreys model.

(i1i) The well defined travel time branch (IJ) observed
for the core phase PKKP leads to a new slightly
humped velocity structure at the base of the outer
core between radii of 1654 and 1426 km.

(1i11i) The transition zone is found to be narrower (about
200 km) than most existing tripartite core models
and it is characterized by a slight negative vel-
ocity gradient.

(iv) The P wave velocities at the base of the mantle
are deduced to possess a small negative gradient
at the core-mantle boundary.

It is further postulated that the transition zone (liquid
or viscous) and the inner core (solid) have the same chem-
ical composition.

Besides the results summarized above, several other
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important points can be made:
(1) dT/dA observations at LASA require azimuthal cor-
rections to account for (possibly) the dipping
Moho discontinuity, especially in the case of low
wave slownesses.
(i1) Because of the convenient location, with respect
to epicentral distance, of the relevant branches,
f observations of the core phase PKKP surpass PKP
in deciphering the structure of the outer coté.
However, PKP observations provide better data for
the study of the transition zone and the inner
core.
(i1i) The core phase PKKP can be used to discern the
structure at the core~-mantle boundary.

Further refinements in deciphering the fine structure

f of the earth's core, in particular details of the transi-
tion zone and the inner core must await detailed analyses
of arrivals from the GH and DF branches of the PKP core

' phase, possibly using continental sized arrays.

s e —— ———— 2o
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APPENDIX A

LEAST SQUARES METHOD FOR DETERMINING THE SLOWNESS VECTOR

Refer to Fig. Al.
(a) Let ;1('1'91)/;1(x1'y4) be the polar/cartesian coordin-

ates of the seismometer S and the origin of the coordinate

i!
system is arbitrarily fixed near the center of the array,
all coordinates measured in the tangent plane at the origin.

In our case the center seismometer of the AO subarray was

used as the origin.

(b) Assume that the plane wave front approximation is valid,
and characterize the apparent wave front by
(i) T the arrival time (actual or relative) of the wave
front at the origin |
(ii) the slowness vector.f z (dT/db,w) where dT/dA=p
is the slowness factor, and w the azimuth of approach

(c) Let T, be the computed time (i.e. expected under the

i
assumed conditions of plane wave front approximation) and

Ti' be the observed (measured) time at Si.
The procedure is easily accomplished by minimizing o,
defined by
n

a(p,u,T) = I (T, - Ti')2
i=]
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Now, T, = T + f~§

or T, = T + pR

N cos(w-ei)

i
where a is introduced to account for the units of L or P
{sec/deg). T, p, w are obtained in the standard way by

setting the partial derivatives of o equal to zero, where

o is explicitly given by

n
o{pyw,T) = & (T + pR

cos (w-ei) - T,6')}2
i=]

i i

Although the resulting equations are not linear in
P,w,T they are easily solved ¢uo yield p,T as functions of
w, and w is obtained from a cubic in tan w. The choice
of the required root is obviated bythe fact that two of the
three roots are always complex conjugaetes with finite im-
aginary parts; these solutions are discarded as unphysical.
The uniqueness of the physical solution can easily be dem-~
onstrated by using the more commonly use¢d cartesian coordin-

ates f = (Lx’Ly) as variables instead of the polar 1= (pyw).

Hence

= - 1y2, =
o(Lx.Ly.T) Zi(T + Lxx1 + Lin T1 N Xin *i/a,yi/a

It is interesting to note the difference between the
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method described above and other methods in common use,
e.g. Otsuka (1966), in which T = (ZiTi')/n by choice of
the origin at the 'center of gravity' of the array such
that Zixi =0 = tiyi. For an array where one or more
seismometers may be out of order (or unreadable) at the
time of arrival of an event, such method (e.g. Otsuka)
demands the computation of a new origin each time. The
method used in this thesis maintains the origin at the
center seismometer of the A0 subarray.

A computer program was written to find p,w,T as well
as 611 - Ti - Ti' from which the standarderrorear,ap,ow
are estimated. Note, the errors are determined without
reference to any particular earth model. These errors re-
flect, first, the accuracy of the measurements (experimental
errors), and second, local and global distortions of the
assumed plane wave front. In the data analyzed errors in
§T/84 are of the order of + 0.10 sec/deg or less, and in
w + 1.5 deg.

The method of least squares, i.e. minimization of the
delay time residuals, is not the only one available for de-
termining (§T/8w)' and w'. Another method 4is to use digital
data together with beam steering.

Let Si(t) be the finite time series of the i th seis-
mometer [series terminated to contain only the branch of

the phase being studied]. The array is steered in a partic-

ular direction by delaying each channel by an amount related
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to the slowness vector, and the traces summed to give the
beam S(i,t):
n

S(-I:,t) = I S,(t -1,)
1=] i i

+

>
T, L Ri - pR1 cos(m-ei).

The desired slowness vector is that which gives maximum

energy ¢
e() = z|s(i,e)|2
t

such that [ e(f) = 0

L
] ] ] 19
where VL g (=, =) or (=, = —)
aLx BLy ap p

This method is similar to velocity filtering (Hannon and
Kovach, 1966) in which the beam S(f, t) is used as the in-

dicator of phase velocity.
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APPENDIX B

AZIMUTHAL CORRECTION FOR dT/dA FOR A SINGLE DIPPING PLANE
INTERFACE

When observing teleseimic events by means of an array
(usiug the method of plane wave front), the objective is to

measure the slowness vector f. defined
L = (dT/db,w)

i.e., the vector of magnitude dT/dA (the slowness factor)
and direction w (the azimuth). We know in the case of a
spherically symmetric earth dT/dA is equal to the seismic

ray parameter p:

r sin {

However, in the presence of near surface planar stru-
tures under the array, the observed slowness vector L is
different from that expected of the spherical symmetry. By
use of the least square method on the time delays of the

-’l
array seismometers, L' can be obtained:

L' = ((6T/68)", w'}

Note: (S8T/6A)' is used to denote the observed slowness factor

to avoid confusion with the dT/dA used in the case of perfect

1L2
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spherical symmetry. w' is the observed azimuth.

It is .the purpose of this appendix to derive a con-
venient 1elation between L and t', and since w can be com-
puted from the epicentral azimuth, all we need is the re-

lationship between dT/dA and (8T/62)°'.

DERIVATION OF FORMULA
Fig. Bl shows the geometry considered. The dipping
interface separating the two media of velocities V, V' is

-~

defined by the unit normal ve:ztor n:
n = (sin D cos R, sin D sin Q, cos D)

where D is the dip, and 0 is the azimuth of the normal.
Cartesian axes are chosen to form a right-handed system
with the z-axis vertical (up) and the x-axis pointing East.
The incident and refracted plane wave beams are defined

by their unit wave vectors k and k' respectively

k = (sin { cos w, sin 1 sin w, cos 1)

-~

k' = (sin 1i' cos w', sin i' sin w', cos 1i')

where the angles i, i'; w, w' are analogous to D and Q.

Snell's law of refraction is conveniently written:
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) k + Bn
k' = . (1)
1 +28n+k + B2

where 8 is defined by the condition

gin a' sin a

- (2)
v' v

a, a' are the angles the incident and refracted rays make

with the normal:

~ -

cos a = n*k, cos a' = ;~k' (3)

Equation (1) implies k, k', n all lie in the same plane, and
equation (2) is the usual condition of proportionality of
sines and velocities in the two media.
Multiplying (1) by n and squaring gives
cos? a + 2B cos a + B2

cos? a' = (4)
1 + 82 + 28 cos a

Using (2) to eliminate a' gives

1 + 82 + 2B cos a = (V/V')?2 (5)

or that
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]
B, = - cosa % [cos? a + (V/V')2- 1]1/’
For the purposes of correcting dT/dA the distinction be-

tween 8+,and B_ is immaterial. However, B, is valid for

+

n*k, ﬁ-k' > 0, and B_ otherwise. Also observe that B can
be complex if cos? a + (V/V')2 -1< 0; this occurs wher
critical refraction is exceeded.

Using equation (5), equation (1) can be rewritten as

'

k k' a
-—=—-8- (6)
\) v! v

or in cartesian components

sin 1 cos w sin 1' cos w' sin D cos 0
= ' -8 (7)
v v! v
sin 1 sin w sin 1' sin w' sin D sin Q
- -8
v v' v
(8)
cos {1 cos 1! cos D
- -B (9)
v v! v

It should be pointed out that equations (7)-(9) are not

independent; only two are, the third follows from the

L%
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normalization condition of equation (1). Thus, at most

we can sclve for only two variables. Normally one solves
for either w and 1 given w' ard i' or vice versa, for

known V, V', @, and D. Hence we can use the three equations
to extract two linearly independent equations appropriate

for our use. Two different combinations of (7) and (8) give

sgin 1 sin 1°
gin (0 - w) = = gin (Q - w') (10)
v v ]
sin 1 gin 1' sin D
cos (0 - w) = ——— cos (0 - w')-8
Vv v! Vv

(11)

Using (9) 6 can be eliminated from equation (11) to give

sin 1 gin 1° cos 1 cos {1
cos(R~w) = =—————— cos8(R~w')+( - }tan D
v v' ]
v v (12)

We know

r sin 1
= p = dT/da
v

and

r sin {'
————— = (§T/58)' = p'
vl

1.6
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where p' will be used interchangcably with (§T/§4a)' to
facilitate writing. Also, define P = r/V, P' = ¢/V'
(r is the radius from center).

Now we can reduce equations (10) and (12) to
p sin (@ - w) = p' sin (Q - w') (13)

p cos (R-w)-/P2 - 6? tan D = p' cos (Q-w')-/P'2 ;_377tan D
(14)
Equation (13) can also be written

gin (2 - w'")
dT/da = (8T/64)"

' (15)
sin (Q - w)

Equation (15) depends only on the azimuth angles Q,
w, w'. It is remarkable that it does not depend on the dip
D or the velocities V and V' explicitly. This is a great
advantage for investigations of the earth's deep interior
not directly concerned with the immediate geology urder the
array. Thus from the knowledge of @, dT/dA is easily cor-
rected from the observed (8T/84)' and w', and the computed
azimuth w.

Equation (15) has one apparent set back. For real

(numerical) data the formula is inappropriate for azimuth
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w in the neighborhood of 2, 1.e. for waves arriving per-
pendicular to the strike of the dipping interface. There
is, however, no singularity at w = Q because as w +»  so does

w'., Hence, by L'Hospital's rule, as w + @

di{sin (@ - w')}
dT/da = (8T/84A)"

d{sin (2 - w)} o w' -+ Q

=(8T/64) "' (dw'/dw)

where dw'/dw does not equal unity at w = w' = Q, Thus
(dT/db) ¢ (8T/S84)' at w = Q as one might suspect at first
glance of equation (15). The evaluation of du'/dw is awk-
ward but can be circumvented by using equation (1l4) and
letting w, w' -+ Q.

Another and simpler way of illustrating what happens
as w *> 2, or 2 + 180 is the following. Define the azimuth
anomaly ¢ = w - w', and rewrite (15) or {(12)

p=p' {cos ¢ + sin ¢ cot (2 - w)} (16)

In the neighborhood of 2 - w = 0 or 180°, ¢ is very small

and (16) becomes

P p' {1 + ¢ cot (2 - w)}; ¢[rad] << 1 (17)

1.8
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It can easily be seen that the correction term ¢ cot
(% - w) gets very large for a small error 6¢ because
cot { - w) » » even though in the theoretical (analyt-

ical) case

limit {sin ¢ cot (Q - w)}+ finite.
¢2+0, w>Q

Thus if ¢ + ¢ + &¢ (finite error), then
prp' {1+ ¢ cot (2 -w)} + p'éy cot (0 - w) (18)

For finite error §¢ 1t is clear the error in p 1is
intolerable as 2 - w + 0 or 180°.

In these bad azimuth windows the use of equation
(14) is recommended. Equation (14) is a quadratic in p.
An estimate of the size of the window can be easily ob-
tained from equation (18). We demand the following in-

equality
[6§¢ cot (R - w)| << 1

In the data studied, 6¢ ~ 0,04 rad or 2°, Hence |Q - w|
>> 0,04 rad or 2°, Thus it is reasonable not to use (15)

in the ranges -30° £Q-w 30 or 150° < 9 -w §210°,

<
N N

but instead use equation (14), which has solutiors

1L3
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p = P' F+(Qo Wy w'o b, v, 'AD) (19)

wherc¢ F, = -B + 8~ = C

B = - cos (2 - w)[cos (& - w') - y tan D}
2

cos2 (8 - w) + tan”" D

W 2etyp)? - fcos (2 = ") - y tan p)?

cos2 (R - w) + tanz D

vy ={(e'/pn? - 131/

F, holds for 0 < 2 - u < 180°, and F_ for -180° < 9 -

w < 0 although in their actual application in the reduc-
tion of array data they are more restricted to narrower
windows. In these windowes, errors in ¢ do not give
excessively large errors in p or dT/dA unlike equation
(15). Equation (19) requires knowledge of both the dip

D and the velocity contrast V, V', 1If unknown, esti-
mates of D, V, V' can be obtained by trial and error
noting the shift in dT/dA values relative to those
values already corrected for using the first correction

formula.
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LIMITATIONS AND CONDITIONS OF USE

It should be emphasized that when using an array to
determine dT/dA, a fundamental assumption is made:
that the medium above the depth of penetration, H, of
the array (see Fig., B2) is homogeneous and uniform or
as nearly close as the accuracy of the measurements de-

mands. The relation

dT/da = p = I sin i

holds strictly only for V sufficiently uniform above

a depth H, where

H = r§A sin 1 cos 1

2 ¢
v P (P

2 2,1/
o

where 64 [radians] is the aperture of the array. This
condition implies that measurements of dT/dA by plane
wave approximation cannot resolve structures above a
depth H. For the phase PKKP H A~ 30 - 40 km and there-
fore the plane{interface corrected for is probably the
M discontinuity at depth 40 km or deeper. It is worth
emphasizing that the method described in this appendix
is essentially for corvrecting ~rray dJdT/dA observations

only, and not to discern exact near surface structures.
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FIGURE CAPTIONS

ILxisting core velocity models of the Earth (after
Hannon and Kovach, 1966). The core model deduced
by Husebye and Tokstz has a velocity gradient in
the SKS region steeper than that of Jeffreys, a low
velocity zone in the AB zone (r = 2000-2530 km),
and a negative velocity gradient in the transition
zone.

Location of events with respect to LASA. Solid lines
show azimuth directions to LASA.

Geometry for the theory and array determination of
AT/dAa. 1t is approximated that the array lies on
the tangent plane rather than the curved surface.

The Larece Aperture Seismic Array (LASA), Montana.
Only the subarrays used in this study are shown.

Pl.ot of azimuth snomaly versus epicentral azimuth.
2 = N20W is the estimated horizontal direction of
normal to the dipping interface. Azimuth windows
labelled-F+ are the ranges over which the second
correction formula p = p'F+ is used.

dT/dA observations determinad at LASA. The solid
line is the best fit curve (by eye), the dashed
line is that for the Bolt's model. Foint labelled
'X' was ignored in the curve fitting because of its
isolation and possible misidentification. Points
'Y' were also ignored because of the requirement
that dT/dA should be a piece~wvise monotonically
decreasing function of A, and also because of their
azimuth proximity to the direction of the normal to
the dipping interface where the first correction
formula is inapplicable. Where two distinct arrivals
are measured in tne vicinity of CI, the two points
ere joined by a thin line.

dT/dA curve for the stripped core. The insert is
a magnification of the curve in the vicinity of
the limiting point A.

The PKKP core velocity model together with the

Jeffreys model and the Herrin P velocities at the
base of the model for comparison.
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PKP slowness factor and travel time curves. Re-
flection branches are not shown on the travel
time curves.

PKKP slowness factor and travel time curves. Re-
flection branches have been omitted.

Travel time observations of multiply reflected
core phases (Engdal, 1969). The figure was kindly
provided by Dr. E. Engdal. Only the phases PKKP
and PKKKP are reproduced.

(a) Schematic representation of the equation

Bpep (A) = Bpykp

for verious assumed APKKP and AK'

(b) Reconstruction of the dT/dA curve for the mantle
P waves at the base of the mantle.

(¢) Resvlting velocity model (thick curve) compared
with the Herrin P wave velocities.

(A) - 24, (A)

Planar geometry considered for the least squares de-
termination of the slowness vector,

Geometry of the incid-nt and refracted beams with
respect to the dipping interface. Note, vectors are
actually in 3-d and not necessarily in the plane of
the paper.

Definition of H, the depth of penetration of the

array. Diagram is drawn in the plane of L and the
radius from the Earth's center.
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TANGENT  ARRAY EXTENT

“1,8A (km)—
PLANE) A 0 ‘ (km) .

ACTUAL o
EARTH'S ToEarth's
SURFACE Center

assume a plane wave
front arriving at array

\
}Velocity Vp fairly

{°uniform in this area
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== Unit vector normol to interface

L"“URH wave vector of
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Dipping interface
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