
AFOStv   iO   ^ 

CM 

a 

SEISMOLOGICAL ANALYSES OF VELA ARRAY DATA 

Final Report 
Period Covered: 1 February 1966 - 31 July 1970 

30 August 1970 

i ^ jftn $*' 

Work Sponsored By Advanced Re-earch Projects Agency 
ARPA Order No. 292 Amendment 72 

Contract No.: 
Project Code No.: 
Date of Contract: 
Amount of Contract: 
Contract Termination Date; 
Project Scientist: 

AF 49(638)-1687 
8652 
1 Februarv 1966 
$104,522 
31 July 1970 
Robert L. Kovach 

(415) 321-2300 x 4827 

} 

SO D C 

JAN 20   «TI 

c 

NATIONAL'TECHNICAL 
INFORMATION SERVICE 



BEST 
AVAILABLE COPY 



Department of Geophysics 
Stanford Uni"e/sity 
Stanford, California 

SEISMOLOGICAL ANALYSES OF VELA ARRAY DATA 

Final Report 
Period Covered: 1 February 1966 - 31 July 1970 

30 August 1970 

Work Sponsored By Advanced Research Projects Agency 
ARPA Order No. 292 Amendment 72 

Contract No.: AF 49 (638)-1687 
Project Code No.: 8652 
Date of Contract: 1 February 1966 
Amount of Contract: $104,522 
Contract Termination Date: 31 July 1970 
Project Scientist: Robert I.. Kovacn 

(415) 321-2300 x 4827 



Table of Contends 

Introduction and Summary  1 

Abstracts v£  published papers and papers presented 

at scient i fie meetings  4 

Structure of the earth using seismic body waves......... 16 

Epicenter location in laterally inhomogeneous regions... 21 

Application to the San Andreas fault  21 

Application to hypocenter location in island arcs.. 22 

References o  27 

Appendix A:  Seismic ray computations in laterally 

inhomogeneous crustal models 

Appendix B:  PKKP and the fine structure of the 

earth's core 



l'l 

Introduction and Sunanary 

This is a final report summarizing research accomplished 

under contract no. AF49(638)-1687.  This research utilized 

seismic data recorded by Vi^LA arrays, such as LASA and those 

formed by individual LRSM stations to 1) investigate the ve- 

locity structure of the earth's mantle and core; 2)   examine the 

attenuation characteristics of seismic waves; and 3) study the 

propagation of seismic waves across large seismic arrays. Ab- 

stracts of published scientific papers and papers presented at 

scientific meetings are given in the following section and 

significant research accomplishments are summarized below. 

The velocity structure of the earth's core is an important 

baseline for routine determinations of the epicenter and focal 

depths of earthquakes. Once the velocity structure is accurate- 

ly known observations of core phases, such as PKP, provide con- 

trol on origin time and focal depth determinations because of 

the small gradient of the travel time curve with respect to 

distance. A novel approach used in this research contract to- 

wards deciphering the velocity structure of the core was to 

utilize velocity filtering of the seismic phase PKKP as recorded 

at LASA.  Because of the large percentage of the total ray path 

spent in the core PKKP amplifies details of the core velocity 

structure. The velocity structure of the core was demonstrated 

to possess a complex tripartite structure but it is clear that 

more work yet needs to be done, particularly analyses of the 
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phase SKS to study the outer core. 

One important development revealed in this study, pertin- 

ent to the propagation of seismic waves across large arrays, 

particularly LAS?,   was the need to correct for the dipping 

M-discontinuity.  A clever empirical technique was discovered 

to correct for the apparent velocities of seismic waves moving 

across the array.  Further details can be found in Zengeni 

(1970). 

Determination of the shear velocity structure of the earth's 

mantle continues to be an important parameter in geophysics. 

Digital processing techniques were develo"-<? to study the propa- 

gation of shear waves across large arrays and the velocity 

structure determined for western North America is demonstrated 

to be as complex as that revealed from detailed P-wave studies. 

A further implication of these studies is that regional differ- 

ences beneath shields, tectonic areas, and oceans extend to depths 

of at least 650 km in the mantle; it is clear that regional 

travel tinre tables are needed for precision epicenter locations. 

Significant progress towards epicenter location in later- 

ally inhomogeneous regions was made through development of a 

finite difference, time integration scheme (Wesson, 1970). 

Exploitation of this technique to the precision location of 

events is clear-cut and a possible approach to the problem of 

hypocenter location in ialand arcs, such as the Aleutian arc 

and the Kurile-Xamchatka arc is described in the section entitled 



Epicenter Location in Laterally Inhomogeneous Regions. 

The attenuation of seismic energy in the earth's mantle 

and core is an important parameter in discussions of source 

mechanisms, earthquake magnitude and the range of detectability 

of seismic signals.  Studies initiated under the aegis of 

Project VELA and continued under this contract have demonstrated 

that the average Q for shear throughout the mantle is about 6 00 

and is an order of magnitude less in the upper mantle than the 

rest of the mantle.  The average Q for compressional waves ap- 

pears to be at least 2.5 times that for shear waves (Kovach, 

1967). 
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Abstracts of Published Papers and Papers Presented at 
~~~   Scientific Meetings  ~ 

Anderson, 0. L. and R. L. Kovach, Universal Disper&ion Tables 

III. Free Oscillation Variational Parameters, Bull. Seism. 

Soc. Amer., 59, 1667 - 1693, 1969. 

The effect of a small change in any parameter of a 

realistic Earth model on the periods of free oscillation 

is computed for both spheroidal and torsional modes. The 

normalized partial derivatives, or variational parameters, 

are given as a function of order number and depth in the 

Earth.  For a given mode it can immediately be seen which 

regions of the Earth are controlling the period of free 

oscillation.  Except for 0So and its overtones the low- 

order free oscillations are relatively insensitive to prop- 

erties of the core. The shear velocity of the mantle is 

the dominant parameter controlling the periods of free os- 

cillation and density can be determined from free oscil- 

lation data only ii the shear velocity is known very accur- 

ately.  Once the velocity structure is well known free oscil- 

lation data can be used to modify the average density of the 

upper mantle. The mass and moment of inertia are then the 

main constraints on how the mass must be redistributed in 

the lower mantle and core. 

Kovach, R. L., Relative Attenuation of Compressional Wave Energy 

in the Mantle, Geophysical Journ. 13, 371, 1967. 
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The attenuation of compressional energy relative to 

shear energy in the mantle is determined by spectral ampli- 

tude comparison of the seismic phases SKS and SKP with 

common paths in the mantle and core. Assuming that the 

average Q, for shear in the mantle is 500, the average Q 

for compressional wavei is at least twice that for shear 

in the frequency range 0.2 - 0.6 cps. 

Kovach, R. L., Attenuation of Seismic Body Waves in the Mantle, 

Geophysical Journal,14, 165 - 170, 1967. 

The attenuation of seismic body waves is a direct mea- 

sure of the absorption due to nonelastic processes within 

the Earth. Accurate amplitude decrement data for seismic 

body waves require the measurement of the spatial decay rate 

along a given ray, but measurements are restricted to the 

surface of the Earth.  Recent studies have shown that the 

average Q, for shear, throughout the mantle is about 600 

and that the average Q for the upper 600 km of the mantle 

is an order of magnitude less than the rest of the mantle. 

Spectral amplitude comparison of the seismic phases SKS and 

SKP with common paths in the mantle and core allows the Q, 

for compression, in the mantle to be estimated. Prelimin- 

ary results indicate that the Q for compression is at least 

2*5 times that for shear. 

Kovach, R. L., Travel Times and Attenuation of Seismic Waves 

in the Earth's Core, presented at the XlVth General Assembly, 
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International Union of Geodesy and Geophysicsy Zurichf 1967. 

A statistical treatment of about 500 observations of 

PKP in the range 115° f. A ^ 140° yields for the DE branch 

(PKIKP) the empirical relation 

t = 909.25s + 1.876A (s) 

later by 1.8 to 1.0 seconds from the corresponding Jeffreys- 

Bullen times. The mean residual of all PKIKP observations 

fvom nuclear explosions against the empirical times is 

nearly zero emphasizing that average PKIKP times for a refer- 

ence earth are now satisfactorily known.  Observations of 

precursors to PKIKP satisfy the relation 

t ■ 853.4s ♦ 2.2b   (s) 

with a large standard error; these observations probably 

correspond to one or more precursor branches. 

Knowledge of the attenuation function for P-waves in 

the earth's core is pertinent to understanding mechanisms 

of energy dissipation in the earth. The attenuation of P- 

waves in the core has been measured by spectral amplitude 

comparison of the seismic phases ScS and SKS which have 

left the source at nearly identical azimuths and vertical 

> takeoff angles. Assuming that the core can be treated as 

a viscous liquid a value for the viscosity of 2.6 x 10 

poise is obtained.  Since the core behaves as a fluid Q is 

dependent on frequency.  For a 20 second period wave a Q 

equalling 750 is compatible with the observed data. 
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Kovach, R. L., and P. Glover, Travel Times of PKP in the 

Range 115° £ A <^ 140°, Geophysical Journal, 15, 367-376, 1968. 

Approximately 500 observations of PKP in the range 

115° ^ i <, 140° have been statistically examined to yield 

a set of empirical travel times. Observations fox the OE 

branch (PKIKP) fit the form t = 909.2 5 s + 1«876A later 

by 1*8 to 1*0 s than the corresponding times given by 

Jeffreys and Bullen. The mean residual of all observations 

of PKIKP from nuclear explosions, including recent data 

from Longshot, against, the empirical times does not signif- 

icantly differ from zero emphasizing that average PKIKP 

times for a reference Earth are now satisfactorily known. 

In the interval 125° <, 4 i, 140° observations preceding the 

DE branch satisfy the relation t = 1145«0 + 2'2U-132»50) 

with a large standard error; these observations probably 

correspond to one or more precursor branches to the DE 

branch. 1 

Kovach, R. L. and D. L. Anderson, Study of the Energy of the 

Free Oscillations of the Earth, J. Geophys. Research, 71, 

2155 - 2188, 1967. 

The energies of the radial, torsional, and spheroidal 

free oscillations for a Gutenberg model earth were studied. 

Each mode of oscillation has a characteristic radial dis- 

tribution of elastic and kinetic energy that fixes the 

■ 
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parts of the earth that contribute most heavily in deter- 

mining a particular resonant frequency. An examination of 

the partitioning of energy among compressional, shear, and 

gravitational energy as a function of mode number atid 

depth immediately explains the persistence of the purely 

radial mode compared with the other normal modes of the 

earth. Only the first few spheroidal modes are sensitive 

to the density of the inner core; they are particularly 

sensitive to the density of the outer p>"rt of the core. 

The low-order spheroidal modes also exhibit a rapid rise 

of potential energy near the base of the mantle; this rise 

will permit improved estimates of the velocity to be obtained 

in this region, which is difficult to examine with body 

waves. The tabulated results allow estimates to be made 

of the previously neglected energy contained in the free 

oscillations excited by large earthquakes. An estimate of 

the energy in the low-order spheroidal oscillations excited 

23 by the great Alaskan shock suggests a v&lue of 10  ergs 

over the period range from 450 to 830 sec, implying that 

the energy density increases towards high frequencies if the 

24 total energy in the earthquake was of the order of 10  - 

1025 ergs. 

Kovach, R. L., and R. Robinson, Upper Mantle Structure in the 

Basin and Range Province, Western North America from the 

Apparent Velocities of S Waves, Bull. Seism. Soc. Amer., 59 
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1654 - 1665, 1969. 

The variation of shear velocity with depth in the 

upper mantle for the Basin and Range province of western 

North America has been studied with direct measurements 

of dT/dA for S waves in the distance range 14° < A < 40°. 

Three orthogonal components of digital data were used and 

onset times were determined using the product of the hori- 

ontal radial and vertical components of motion and particle 

motion diagrams. A linear LRSM array in Arizona was used 

for the measurement of dT/dA. 

An S-wave velocity distribution is derived, compatible 

with P-wave velocity models for the same region. The de- 

rived model consists of a thin lid zone of shear velocity 

4.5 km/sec overlying a low-velocity zone and a change; in 

velocity gradient at a depth of 160 km. Two regions of 

high-velocity gradient are located at depths beginning at 

360 km and 620 km. 

Robinson, R., and R. L. ICovach, Shear Wave Velocity Structure 

in the Western United States, Geophysical Journal, 20, 

1-9   , 1970. 

Direct measurements of dT/dA for S-waves over the dis- 

tance range 14° <- A < 93° are used to derive a shear wave 

velocity model for the mantle beneath western North America. 

A network of seismograph stations in Arizona operated as an 
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array was used for the measurement of dT/dA.  The use of 

later arrivals is necessary to define the dT/dA-A curve 

for distances less than 55°.  Distinctive features of the 

derived model ÜRC-3, are a low velocity zone centered at 

100 km depth and zones of high velocity gradient beginning 

at 400, 650, 900 and 1180 km depth. 

Wesson, R. L., Amplitudes of Body Phases in a Spherically Lay- 

ered Earth, presented at 1969 Annual Meeting of the Seisrao- 

logical Society of America, St. Louis, 

Velocity laws commonly used (such as v=ar ) for the 

evaluation of familiar ray theory integrals have proven 

satisfactory for the calculation of travel-time versus dis- 

tance but are unsatisfactory for computation of the dis- 

tance derivative dA/dp, required for the calculation of 

intensity and amplitude.  Specifically, false caustic? and 

regions of low intensity are introduced and real caustics 

are omitted. The spurious discontinuities in curves of 

dA/dp versus distance, calculated from the laws which con- 

tain two or fewer free parameters, stem from the inability 

of the laws to maintain continuity of dv/dr and higher der- 

ivatives across layer boundaries.  However, satisfactory 

results may be obtained by integration using the variable n 

(defined as r/v) and expressing the radius, r as a function 

of n, using as many free parameters as required to fit the 

desired number of derivatives at the layer boundaries. 
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Functions which reduce to the form: 

1 dr 2 

r Jn" ' ao + ain + a2ri + 

facilitate the evaluation of the integrals by a simple 

recursion. Examples are given that demonstrate the im- 

provement obtained in amplitude-distance curves over 

those calculated using the law v=ar , particularly in the 

vicinity of true discontinuities and caustics. 

Wesson, R. L., A Time Integration Method for Computation of 

the Intensities of Seismic Waves, Bull. Seism. Soc. Amer., 

60, 307-316, 1970. 

A finite-difference time integration method for the 

calculation of seismic ray intensity is developed. Dis- 

continuities in the depth derivative of the velocity-depth 

function at layer boundaries cause anomalies in the intensity 

distance curves calculated using the standard integral form- 

ulation. The time integration method overcomes these dif- 

ficulties. Calculations for a simple analytic case and a 

Gutenberg earth model demonstrate the difficulties with the 

standard integral method and the superior performance of 

the time integration scheme. The method may also be applied 

to laterally inhomogeneous earth models. 

Wesson, R. L., Seismic Ray Computations in Laterally Inhomo- 

geneous Crastal Models, Ph.D. thesis, Stanford University, 1970. 
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The realistic interpretation of seismic travel-time 

data from structurally complex areas, and the accurate 

location of earthquake hypocenters in such areas, require 

seismic ray computations for laterally inhomogeneous velocity 

models.  Numerical simulation of the ray differential equa- 

tions provides a practical means of performing the neces- 

sary calculations.  In addition to the calculation of travel- 

time, the ray intensity and the partial derivatives of travel- 

time with respect to the parameters of the model may be cal- 

culated. Results from such numerical simulations are in 

excellent agreement with those analytically obtainable for 

a simple constant gradient velocity model. An algorithm 

for the direct solution of ray boundary value problems, 

based on the iterative solution of a tridiagonal set of si- 

multaneous equations, allows for the input of geophysical 

intuition in finding the rays between a source and a station. 

A model fitting procedure is described for laterally 

inhomogeneous models which is based on the description of 

a velocity model by combinations of simple continuous func- 

tions which are chosen to reflect the available geologic 

data. A least squares scheme is used to obtain models 

which fit the travel-time data and are consistent with geo- 

logic data. Laterally inhomogeneous velocity models are 

obtained for travel-time data from explosions for two areas 

in California: the Bear Valley area, 25 miles southeast of 

Hoilister, and the Borrego Mountain area, 100 miles northeast 
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of San Diego.  Both regions are characterized by a substan- 

tial lateral variation of seismic velocity and the derived 

models exhibit most of the significant structural features 

of the areas.  The Bear Valley explosion is relocated in 

the velocity model as a test for the validity of the model 

and of a computational procedure for the location of hypo- 

centers in structurally complex areas.  [This report is 

attached as Appendix A]. 

Zengeni,  T. G.,  PKKP and the Earth * s Core, presented at 1969 

Annual meeting of the Seiamological Society of America, St. 

Louis. 

Much of the information concerning the velocity struc- 

tvare of the earth's core is based on studies of the seismic 

waves PKP and SKS.  Detailed observations of the core phase 

PKKP are a previously unexploited tool for studying the fine 

structure of the core.  Because of the large percentage 

of the total ray path which is spent in the core PKKP ampli- 

fies details of the core velocity structure. Direct mea- 

surements of dT/dA for PKKP in the distance range from 85° 

to 150° have been made at the Montana LASA for a number of 

earthquakes and the data inverted to extract a velocity 

model for the core.  The model is discussed in the light 

of other velocity models which have been proposed for the 

core. 
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Zengeni, T. G., A Note on Azimuthal Correction for dT/dA for 

a Single Dipping Plane Interface, Bull. Seism. Soc. Amer,, 60, 

299-306, 1970. 

A relation is derived for correcting dT/dA for a single 

dipping interface under seismic array: 

/ 

1-0)') dT ■ (&T\  3fn LSIMJ 
da   ^6A i sin (n-üi) 

The formula depends on the azimuth angles: u and u* are the 

computed and observed azimuths, u  is the azimuth of the 

normal to the tilted interface, and (6T/6A)'  is the obser- 

ved quantity. The relation is explicitly independent of 

the dip .ind the velocities of the media on either side of 

the interface. 

Zengeni, T., PKKP and the Fine Structure of the Earth's Core, 

Ph.D. thesis, Stanford University, 1970, 

The slowness factor dT/dA for the core phase PKKP was 

measured at the Large Aperture Seismic Array (LASA), Mon- 

tana, in the epicentral distance range 75° < A < 125°. 

Due to the high phase velocities involved, or equivalently, 

low slowness factor, corrections for simple geologic struc- 

tures under the array were imperative. A method was de- 

rived to correct for the dipping M-discontinuity under 

LASA. 

A velocity model for the earth's core was computed 

from the dT/dA observations, together with PKP travel 
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times, using the Wiechexfe-Herglotz integration method. 

The PKKP core velocity model derived is essentially tri- 

partite, but differs from other proposed models in im- 

portant details. 

The major part of the outer core exhibits no striking 

differences from the standard Jeffreys' model:  fairly con- 

stant velocity gradients in the SKS and ABC (Bullen 'E') 

region.  However, at a radius of 1654 km there is a dis- 

continuity in the velocity gradient and the next 250 km 

in depth is a distinct region of slightly higher velocity. 

The transition zone into the inner core is only 200 km in 

thickness and is characterized by a gentle negative velo- 

city gradient  This zone has an average velocity of 10.45 

km/sec. The inner core starts at radius 1217 km with an 

average velocity of about 11.20 km/sec and possesses a 

slight negative velocity gradient towards the center of 

the earth. A slight drop in compressional velocity in the 

mantle at the core-mantle boundary is also inferred. 

It is conjectured that the transition zone (liquid or 

viscous) and the inner core (solid) are of the same chem- 

ical composition, but differ from that of the outer core. 

[This paper is attached in toto as Appendix B]. 
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Structure of the Earth Using Seismic Body Waves 

The ability to locate natural and artificial seismic 

sources depends on the precise knowledge of the travel 

times of seismic waves.  Work towards the determination 

of earth structure from seismic body waves was pursued 

using arrays such as LASA and arrays formed from LRSM 

stations. Considerable effort was devoted towards de- 

ciphering the velocity structure of the earth's core. 

Accurate travel times for the earth's core are required 

because observations of core phases provide control on 

origin time and focal depth observations. 

One of the most promising techniques for studying 

the velocity structure of the core was to measure dT/dA 

for various core phases directly using large seismic 

arrays, such as LASA.  Analyses of the core phase PKKP 

in the distance range 75° < A < 125° was particularly 

fruitful in delineating the somewhat surprising complex- 

ity indicated for the velocity structure of the core. 

The advantageous use of the core phase PKKP is illustrated 

by the amplification of various travel time branches. 

The clustering of the branches of the core phase PKP at 

the crucial distances around the caustic B make it diffi- 

cult to discern such a structure.  PKKP branches are 

spread out more conveniently such that branch terminal 
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points A, C, I, J and the caustic B are less obscure 

than In corresponding PKP points. 

The core model derived Is essentially tripartite, 

differing from existing tripartite models mainly In fine 

structure. The Inner core fine structure Is not resolv- 

able, and the velocity distribution Is thus fairly arbi- 

trary.  The structure derived Is constrained solely to 

give the observed PKIKP (DF branch) travel times. 

The greater part of the outer core exhibits no new 

or major features — fairly constant velocity gradients 

In the SKS and ABC regions, slightly higher In the former, 

and lower In the latter.  The gradient diminishes to near 

zero In the subreglon CI.  However, the next 250 km show 

a distinct region (IJ) characterized by a humped velocity 

distribution. 

The transition zone is found to be rather narrower 

than existing tripartite models, only about 200 km thick, 

and has a slight negative velocity gradient (with depth). 

Further details concerning the velocity structure of the 

core can be found in Appendix B, Kovach and Glover (1968) 

and Zengeni (1970). 

Even though the velocity structure of the earth's core 

has been demonstrated to be more complex than heretofore 

believed it is clear that more work yet needs to be done. 
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particularly studies of the outer core using the seismic 

phase SKS. 

Determination of the shear wave velocity structure 

of the earth's mantle continues to be an important problem 

in geophysics.  During this research effort work was 

directed towards analysis of the shear velocity structure 

through direct measurements of dT/dA for S waves in 

the distance range 14° < A < 90°. A linear LRSM array 

in Arizona was used for the measurement of dT/dA. 

S-wave data collected to date are summarized in 

Figure 1, Kovach and Robinson (1969) and Robinson and 

Kovach (1970a) The shear wave velocity structure has 

been demonstrated to be as complex as that revealed by 

array studies of P-wavjes. In the Basin and Range province 

of western North America the derived velocity model pos- 

sesses a thin 'lid* of velocity i,4S km/sec overlying a 

broad low velocity zone and pronounced regions of high 

velocity gradient centered at depths of 410 km and 650 km. 

A lesser zone of high velocity gradient has been detected 

at a depth of 1225 km. 

The shear wave velocity structure in the upper mantle 

(above 650 km or so) has been shown from surface wave 

dispersion studies (particularly Love waves) to be strongly 

dependent on the particular province traversed — mountain- 

tectonic, shield or oceanic (Toksöz and Anderson, 1966; 
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Kanamori, 1970).  This fact in turn dictates that consid- 

erable care must be exercised in extracting a shear wave 

velocity structure for the lower mantle, since inversion 

by the Wiechert-Herglotz technique is dependent on the 

velocity structure assumed in the upper mantle.  Converse- 

ly, free oscillation inversions which purport to determine 

details of the upper mantle are strongly dependent on 

the shear velocity structure assumed for the lower mantle. 

The ujt^er mantle structure determined from the in- 

version of dT/dA for S-waves during this research effort 

is applicable for the Basin and Range province of western 

North America.  In order to determine a velocity structure 

for the lower mantle compatible with travel time and free 

oscillation observations it was necessary to 'strip4 the 

velocity structure to depths exceeding 650 km and fit the 

upper mantle with an 'average* structure before inverting 

the lower mantle dt/dA versus  A data. 

The implication that regional heterogeneities exist 

■o  such depths in the earth's mantle, particularly for 

S-waves, is important and argues that regional travel 

time tables are needed for precision epicenter locations. 

Further details of the S-wave inversion problem can be 

found in Robinson and Kovach (1970b). 
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Epicenter Location in Laterally Inhomogeneous Regions 

Application to the San Andreas Fault 

The precision location of epicenters is particularly 

difficult in regions of lateral inhomogeneities. A fi- 

nite difference, time integration technique has been 

developed to determine three-dimensional velocity models 

for laterally inhomogeneous regions from seismic data. 

The essence of the method is as follows, and exploita- 

tion of this technique to the precision location of 

events is clear-cut. 

Velocity models are specified as a function of the 

space coordinates £ through a set of parameters p., 

C(X, p.) where C is the velocity. Travel times 

between the source and the stations ire calculated using 

a finite-difference, time integration procedure. The 

appropriate ray from the source which passes through 

the station is obtained using an iterative algorithm. 

Partial derivatives of the travel time with respect 

to the model parameters p. are also calculated. 

Starting with an initial guess p., a least squares 

iteration is used to minimize the sum of the squares 

of the differences between the observed travel times 

and the travel times calculated using the new model. 

A detailed explanation of the technique and application 



22-/ 

to the problem of epicenter location on the San Andreas 

fault is described in detail in Appendix A. 

Application to Hypocenter Location in Island Arc 

Lateral inhomogeneities of seismic velocity in the 

earth's crust and upper mantle introduce bias into the 

location of earthquakes and explosions by seismic methods. 

This bias is most severe for events occuring in geographic 

areas characterized by substantial lateral velocity 

variations, such as island arcs. The magnitude of this 

bias was perhaps most clearly indicated by the detonation 

of the nuclear explosion LONGSHOT on Amchitka Island in 

the Aleutian Arc. Attempts to relocate this shot by 

standard means indicated an epicenter approximately 20 km 

north of the true location and a depth 60-80 km deeper 

than the actual event (Lambert et_al., 1970). This dis- 

crepancy has been extensively studied by Douglas (1967), 

Douglas and Lilwall (1968), Lilwall and Douglas (1969, 

1970), Herrin and Taggart (1968), Chiburis and Ahner 

(1969), and Lambert et al. (1970). 

Evidence for both network bias (resulting from global 

velocity variations and the position of the event within 

the station network) and source bias (resulting from the 

velocity structure in the immediate vicinity of the event) 

has also been found for an event in Hc.waii (Herrin and 
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Taggart, 1968), although this is argued by Douglas and 

Lilwall (1968).  Evidence for network bias is extensive. 

In addition to the papers cited above for LONGSHOT, 

bias for regional events in North America has been found 

by Herrin and Taggart (1962, 1966) .  The method of joint 

epicenter determination of Douglas (1967) (see also 

Bolt and Freedman, 1968) has yielded promising results 

in the elimination of network bias. On the other hand, 

it has only been possible to eliminate source bias for 

events of known origin time and position (e.g. LONGSHOT). 

The calculation of travel-times for laterally inhomo- 

geneous velocity models may be simply accomplished by 

numerical simulation of the ray differential equation. 

Briefly, the initial value problem of finding the ray 

emanating from a given point in a given direction may be 

solved by a simple Runge-Kutta or similar integration 

scheme. The more difficult boundary value problem, which 

must be solved in the hypocenter location problem for 

the rays from the trial source position to the stations, 

may be solved, either by a succession of initial value 

problems, or by a direct iterative algorithm developed 

for this purpose based on the solution of a tridiagonal 

set of equations. 

Several possible inputs exist to the process of 

finding three-dimensional velocity models of island arc 
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structures.  The first is the seisraicity data summarized 

by Isacks et al. (1968), and others which indicates the 

geometric shape of the structures and suggests that the 

dominant feature is a downgoing slab of lithosphere. 

This geometric picture, assumption as to the general rock 

types present, and temperature distribution calculations 

such as those of Minear and Toksöz (1970) may be combined 

and used to calculate velocity models.  Seismic refrac- 

tion data (e.g. Murdock (1967)) can also be used for the 

uppermost mantle.  Minear and Toksöz, for example, give 

two-dimensional plots of the temperature distribution 

in a downgoing slab of lithosphere under a broad range 

of assumptions.  Using available laboratory data on the 

partial derivatives of seismic velocity with temperature 

(e.g. Birch, 1966), it is a simple matter to calculate 

two-dimensional velocity models.  In fact, Minear and 

Toksöz obtain the velocities in selected regions of the 

slab in just this way in order to calculate the travel- 

time anomalies for the simple cases of rays arriving 

parallel and perpendicular to the faces of the slab. 

For ray calculations of the sort discussed above, 

the velocity models may be specified in either of two 

ways. For the maximum flexibility in describing the 

velocity distribution, a two- or three-dimensional grid 

may be used.  This would necessitate a table lookup 
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interpolation scheme to define the velocity at intermediate 

points. The other approach is to find a simple analytic 

function or combination of functions which describe in a 

general way the desired distribution. 

Travel-time data from earthquakes may al^o be useful 

in a general way. Of course the best single restraint 

on velocity models in addition to the overall geometric 

shape is travel-time data from events with known location 

and origin time. 

In order to very accurately locate events in island 

arc structures two avenues of attack are possible. The 

first is to model a sufficient portion of the globe, and 

to use the finite difference integration approach exclu- 

sively. A more practical approach is to model the struc- 

ture in the vicinity of the source and perform the inte- 

gration by the finite difference technique in this region, 

and use a standard one-dimensional earth model, specified 

by travel-time tables and supplemented with station correc- 

tions . 

In summary, the following seems to be a promising 

approach for precision epicentral locations in island 

arc regions: 

1)  obtain through a synthesis of techniques three- 

dimensional velocity models of a few island arc 

areas (the Aleutian arc and the Kurile-Kamchatka 

arc); 
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2) develop computer programs coupling our finite differ- 

ence technique with standard table lookup and station 

correction procedures to calculate the travel-times 

from events located on these structures to world 

wide stations; 

3) use these programs to locate events in these struc- 

tures and compare the results with those obtained 

from other techniques; in particular, the method of 

joint epicenter determination; 

4) finally, determine if it is possible to eliminate 

source bias in event location without a priori 

knowledge of the location of the events. 
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ABSTRACT 

The realistic interpretation of seismic travel-time 

data from structurally complex areas, and the accurate loca- 

tion of earthquake hypocenters in such areas, require seis- 

mic ray computations for laterally inhomogeneous velocity 

models. Numerical simulation of the ray differential equa- 

tions provides a practical means of performing the neces- 

sary calculations.  In addition to the calculation of travel- 

time, the ray intensity and the partial derivatives of travel- 

time with respect to the parameters of the model may be cal- 

culated. Results from such numerical simulations are in 

excellent agreement with those analytically obtainable for 

a simple constant gradient velocity model. An algorithm 

for the direct solution of ray boundary value problems, 

based on the iterative solution of a tridiagonal set of simul- 

taneous equations, allows for the input of geophysical intu- 

ition in finding the rays between a source and a station. 

A model fitting procedure is described for laterally 

inhomogeneous models which is based on the description of a 

velocity model by combinations of simple continuous functions 

which are chosen to reflect the available geologic data. A 

least squares scheme is used to obtain models which fit the 

travel-time data and are consistent with geologic data. 

Laterally inhomogeneous velocity models are obtained for 

111 



travel-time data from explosions for two areas in Cali- 

fornia:, the Bear Valley area, 25 miles southeast of Hol- 

lister, and the Borrego Mountain area, 100 miles north- 

east of San Diego.  Both regions are characterized by a 

substantial lateral variation of seismic velocity and the 

derived models exhibit most of the significant structural 

features of the areas. The Bear Valley explosion is 

relocated in the velocity model as a test for the validity 

of the model and of a computational procedure for the loca- 

tion of hypocenters in structurally complex areas. 
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I.  INTRODUCTION 

Seismologists have in the past relied almost exclusively 

on layered models of earth structure, either flat or spher- 

ical, for the interpretation of seismic data for several 

reasons: 1) to first order the earth is a layered sphere; 

2) adequate data to detail the deviations from the layered 

case were not available and 3) useful theoretical and com- 

putational tools did not exist for the interpretation of 

such data.  Recently, however, the existence of important 

lateral variations has become increasingly obvious and dig- 

ital computers have made it possible to escape from the nar- 

row confines of analytically obtainable solutions and util- 

ize numerical solutions. 

Various numerical approaches present themselves for the 

solution of the wave propagation problems of seismology. 

Alterman and Karal (1968) and Boore (1970) have used direct 

numerical integration of the wave equation to obtain solu- 

tions to surface wave problems, Boore for laterally inhomo- 

geneous situations. Claerbout (1970) has described tech- 

niques whereby trial solutions are inserted into the wave 

equation to obtain difference equations which raay be inte- 

grated to obtain amplitude and phase maps for laterally in- 

homogeneous structures. This thesis is directed to numerical 

techniques based on ray theory and their applications in 

seismology.  Ray theory for inhomogeneous media has been 

studied extensively for electromagnetic waves (Kline and 



Kay, 1965).  Karal and Keller (Jn59) and Vlaar (1969) have 

studied ray theory for elastic solids.  Ugincius (1QS9) has 

made both theoretical and numerical computational studies 

of ray theory in laterally inhomogeneous media in regard 

to underwater sound propagation. Russian investigators 

(Burmakov 6  Oblogina, 1968; Belonosova, et al. 1967) have 

made limited attempts at the numerical integration of ray 

equations for application to seismology. 

The history of the application of ray theory to seismol- 

ogy is intimately tied to the history of seismology itself. 

The fundamental inferences about the structure of the earth 

are based on ray theory through the Wiechert-Herglotz in- 

version procedure. Classical seismological ray theory based 

on the assumption of radial symmetry, i.e.,  velocity & func- 

tion of one coordinate only, converts the differential equa- 

tions for rays to integrals usually involving radius or depth 

as a variable of integration. Such methods have been de- 

tailed by Bullen (1963), Jeffreys (1362),Sli/hter (1932) and 

others and have proven immensely useful in understanding the 

structure of the earth, but such methods are not easily mod- 

ified to account for lateral inhomogeneities. A notable ex- 

ception is the method of time-term analysis originally due 

to Scheidigger & Willmore (1957) and expanded by Berry and 

West (1966 a & b). This method has proven quite successful 

in the treatment of the case of a constant velocity medium, 

or flat lying layers resting on an undulating basement of rela- 

tively fast velocity, provided the dips involved are small. 



The laterally inhomogeneous nature of the earth's crust 

is obvious to anyone possessing a rudimentary knowledge of 

geology.  This observation is born out, in terms of seis- 

mology, by the multitude of crustal refraction profiles to 

date.  Sedimentary basins, large scale faults, intrusions 

and mountain ranges all are examples of laterally inhomo- 

geneous structures of interest to seismologists. Documen- 

tation for the laterally inhomogeneous nature of the earth's 

mantle is less abundant, but still difficult to refute. 

Seismological observations include those by Bolt and Nuttli 

(1966), Otsuka (1966 a & b), Hales, et al.(1968), Oliver and 

Isacks  (1967) and others. The definition of velocity in- 

homogeneities in the upper mantle is extremely difficult for 

at least three reasons. First, we see the mantle only 

through the crust, which because of its complex structure 

tends to blur and confuse our observations. Secondly, the 

amount of data available is insufficient to resolve detail 

in the mantle. Thirdly, our knowledge of the Inter-rela- 

tionship between crust and mantle is not yet at a point 

where we can use surficial geology as an unambiguous guide 

to mantle structure.  In other words, in attempting to de- 

fine velocity variations in the crust, we can use surficial 

geology as a constraint. At the present time this can only 

be done in the most general way for the mantle. 

This thesis briefly reviews the bases for ray theory 

in an appendix.  The body of the thesis describes briefly 



how these results may be used to calculate'travel-times, 

apparent velocities, ray intensities (or amplitudes) and 

their partial derivatives with respect to model parameters. 

The application of these calculations to the seismological 

problems of finding velocity models and hypocenter location 

are explored. 

These techniques are then applied to seimic data obtained 

in two regions in California: Bear Valley, 25 miles south- 

east of Hollister along the trace of the San Andreas fault 

and the Borrego Mountain area 100 miles northeast of San Diego 

in the San Jacinto fault zone. Both of these areas are 

characterized by complex geologic structure and possess large 

lateral variations in seismic velocity.  Each of these areas 

was also the scene of a large aftershock sequence. Three- 

dimensional velocity models are constructed for each of these 

areas based on seismic refraction data and the use of these 

models to locate earthquakes is demonstrated. 



II. THEORY 

The calculation of seismic rays for laterally inhomo- 

cjeneous media rests on the numerical solution of the equation 

d  1 dr 
— -•—  = V(l/c) 
ds c ds 

where s is arc length along the ray, r(s) is the space curve 

defining the ray and c = c(x) is the seismic velocity (com- 

pressional or shear) as a function ci position. The solution 

of this differential equation for r yields the geometry of 

the ray and sufficient information to calculate the travel 

time and apparent velocity. The derivation of this equation 

can be found in Appendix A. This chapter discusses two 

questions of fundamental geophysical interest: 1) How to de- 

termine a velocity model from a set of travel-time data for 

a laterally inhomogeneous region and 2) How to use a velocity 

model derived for such a region to locate explosions or earth- 

quakes . 

Derivation of a velocity model 

For an assumed one-dimensional velocity function, the 

Wiechert-Herglotz inversion procedure provides a unique con- 

struction of a velocity model given a curve of apparent vel- 

ocity versus distance (Bullen, 1963).  This construction re- 

quires that no discontinuities exist in the velocity function 



and that it is a monotonically increasing function, except for 

small reversals less than a critical amount. When discontin- 

uities or low velocity zones are present the method becomes 

formally non-unique although in practice it is possible to 

use geophysical intuition and auxiliary data to reduce the 

ambiguity. At the present time there is no analogous method 

for obtaining a two-or three-dimensional velocity distribution, 

It is unlikely that such a method will be found because the 

Wiechert-Herglotz method relies on an integral formulation 

of ray theory which does not lend itself to generalization 

to more than one  dimension. 

Lacking such & constructive method, we are faced with 

the prospect of "model fitting," i.e. an iterative process, 

based either on trial-and-error or a systematic perturbation 

of the trial model until the calculated quantities agree with 

the observations. Once agreement is obtained the question 

of whether the model is unique remains. This problem is a 

special case of the so-called "geophysical inverse problem" 

which has been discussed by many authors, notably by Backus 

and Gilbert (1967, 1968, 1969) and Backus (1970). These 

authors have attacked the general problem of the inversion 

of geophysical data in a very general and elegant manner. 

Although formally most of their results apply only to a 

spherical, one-dimensional earth, their idea.* may be applied 

in an intuitive way to the three-dimensional velocity 



distribution problem.  Because the set of possible models 

is continuous, the number of possible models is infinite. 

Because we can only hope for a finite number of observations, 

the resolvin9 power of these observations is also limited 

and gives rise to non-uniqueness. This problem is not usually 

severe because normally the limited resolving power gives to 

a set of relatively similar models. More problematical. 

Backus and Gilbert (1967) demonstrate that for each model 

wnich fits the data exactly, there exists a family of models 

which satisfy the data.  The most severe difficulty, however, 

is that substantially different families of models may exist. 

The object of the present work is to determine velocity 

models which in some sense satisfy travel time data in addi- 

tion to constraints in posed by other data,, in particular 

surface geology. Four methods have been used for obtaining 

models which fit  travel time data: 1) trial-and-error; 2) 

Monte Carlo; 3) iteration with an underdetermined system 

used as a constraint to fit the data exactly and least squares 

used to minimize something like the difference between the 

old and new models (cf. Backus and Gilbert, 1969); and 4) 

iteration with least squares used on an overdetermined system. 

The first three methods have been widely applied to analyses 

of mantle travel time data.  The fourth method has the dis- 

advantage that it requires more observations i:han unknown 

parameters.  This is unrealistic in that the real earth is 



sufficiently complicated to require an infinite, continuous 

distribution of parameters for an accurate description.  On 

the other hand, certain general features of the velocity   * 

distribution in the earth may be inferred from other geologic 

and geophysical data to suggest the form of a relatively 

simple function or combination of simple functions.  Such a 

function or functions would not form a "complete" set in 

the sense of orthogonal functions, but they can provide a 

relatively accurate description of the average structure 

with a vastly reduced number of parameters. 

For example, suppose we wish to describe a velocity 

model in a cube of side L.  Suppose that the dimension of 

the smallest structural detail which we wish to appear in 

the model is i.     Then the number of points required on an 

evenly spaced grid, or the number of coefficients of orth- 

ogonal functions, required for an adequate description is of 

the order of (L/£)3.  On the other hand, if we use simple 

functions to describe the individual geologic features of 

interest there is no such relationship.  The number of para- 

meters required depends more or less linearly on the number 

of features described.  The philosophical question which 

arises is whether the description of the model should include 

many more unknowns than observations or should geological 

evidence be used to limit the number of unknowns. 



Partial derivatives of travel time with respect to model 
parameters " .,--.-..     „ 

For purposes of deriving a velocity model from a set 

of observational data it is useful to calculate the change 

in travel-time between the observation points with respect 

to perturbations in the velocity model.  It is thus use- 

ful to consider velocity as a function of the space coordin- 

ates through a set of N parameters p.. A particular model 

may, therefore, be represented as a point in parameter space, 

and a set of similar models may be represented by a cluster 

of points in parameter space. Define a velocity c 

c = c(x;p) 

where x is a three-dimensional position vector and p is an 

N-dimensional vector of parameters.  The desired result is 

a set of partial derivatives of the travel-time between each 

source-station pair with respect to the parameters p.. The 

time required to move along a ray is 

T = 
ds 
— 2.1 
c 

along the 
ray 

A slight perturbation in the velocity c will change the 

integral in 2.1 in two ways. First, the path of the ray 

will be changed slightly.  Secondly, the time required to 

C 
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traverse each segment of the ray will be perturbed.  To 

first order, Backus and Gilbert (1969) have argued that 

the change in the path may be neglected and the integration 

of the velocity perturbation may be narried out along the 

unperturbed path.  Formally, this amounts to differentiating 

with respect to the parameter thcough which the model is 

perturbed 

3T 

3P. 

1  3C 
  ds 2.2 

C2 3p. 

along the 
ray 

This integration may be carried out numerically once the 

path of the ray is known. 

Many investigators have obtained expressions for partial 

derivatives of travel time with respect to model parameters 

for application to one-dimensional velocity functions in- 

cluding Jeffreys (1966), Julian and Anderson (1968),Archambeau 

et al. (1969) and Backus and Gilbert (1969). 

Least Squares Model Fitting 

Consider a vector of M observations of travel-time T . obs 

and calculate a vector of travel-times T i  for corresponding 

points for a trial velocity model together with a matrix of 

partial derivatives of the travel-time between the i  source 

station pair with respect to the j  parameter of the velocity 

10 
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model.  Also define a vector of residuals 

obs 

obs 

obs m 

, T calc 

T calci 

T calc m 

R = 

T    - T obsi   calci 

T    - T obs„   calc_ m      m 

3T 

t  = 

calci 

3Pl 

calc in 

3Pi 

3T calci 

Sp n 

ST calc m 

3P n 2.3 

We seek to perturb the initial velocity model (with parameters 

p0) by a small vector 6p so as to reduce the sum of squares 

of the residuals. Write the time calculated with the per- 

turbed model T ,     as a first order Taylor series in 

parameter space about p., 

Tcalc " Tcalc + ^ 6P 2.4 

new old 
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We hope to minimize the sum of squares of the new residual 

vector 

R   = T .  - T , 2.5 new   obs   calc new 

Making use of equations 2.3 - 2.5 we obtain for the sum of 

the squared error 

S.S.E. - R"new Rnew = C^^ . J,6p) T ^^ . ts?) 

2.6 

Differentiating with respect to 6p , setting the partial 

derivative of the error equal to zero and solving for öp 

we obtain the standard least squares result 

öp =  p1?     p* Rold 2.7 

Because the problem is non-linear, the convergence procedure 

is iterative. 

This procedure seeks a minimum of error.  In fact, 

there may be more than one minimum. If there exist multiple 

minima, there is no way except comparison of the associated 

error values to distinguish the global minimum.  If two or 

more minima corresponding to different models yield similar 

12 
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values of the sum squared error, the selection between them 

must be based on other data.  It thus may be desirable to 

include a weighting scheme to reduce biases due to data 

quality and distribution. 

Hypocenter location 

The Taylor series expansion of the travel-time about 

the source location is 

3T      3T 3T 
— 6x + — 6y + — 

, .   3x      9y 3z new    old          J 

Tcalc = Tcalc +  " 6x + ~ ^ +  - ** 2.8 

where x, y, z are the coordinates of the trial focus and 

x+öx, y+6y, z+6z will be the coordinates of the new 

trial focus.  Once we obtain the partial derivatives 9T/3x 

etc., the solution to the location problem proceeds in a 

fashion analogous to the travel time problem. 

We seek to obtain the partial derivatives of the travel- 

time along the path between the source and the station with 

respect to the coordinate of the source. The rate of change 

travel-time with respect to arc length along the ray is 

dT  1 
— = - 2.9 
ds  c 

The quantity dT/ds  is the directional derivative along the 

ray 

dT  .       1   . 13 
— t = - t 2.10 
ds c 
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where t is the unit tangent vector along the ray.  The right 

hand side of 2.10 is just the slowness vector L.  The com- 

ponents of the left hand side represent the projections of 

dT/ds onto ,the coordinate axes, dT/dx, dT/dy and dT/dz. 

The result is that the vector of partial derivatives is 

3T/9x 

9T/:3y 

dT/dz 

=  L 2.11 

From Figure A.2 it may be seen that if the ray is traced from 

the source to the station the vector -LQ will yield the de- 

sired partial derivatives. 

1h 
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III. COMPUTATIONAL METHOD 

Ra^S 

Two methods of integrating the ray equations have been 

explored, each useful in different circumstances.  The more 

straightforward method, simple Runge-Kutta integration, treats 

a ray as an initial value problem; that is a ray is traced 

from a given starting point in a given direction.  Frequently, 

however, the particular ray between an event and a station 

is required. This constitutes a two-point boundary value 

problem.  If close approximations to the starting values 

for the corresponding initial value problem are known, it 

is often possible to iterate such initial value problems to 

find the solution to the desxred boundary value problem. Un- 

fortunately it is not generally possible to make sufficiently 

accurate guesses at the starting values for the initial value 

problem a priori for this method to be of universal application, 

A direct method for the solution of the boundary value prob- 

lem by means of tridiagonal matrices is more appropriate. 

Initial value problem 

A second-order Runge-Kutta scheme was selected for the 

initial value problem. This scheme provides an improvement 

in speed and accuracy over simple point slope methods, but 

requires more evaluations of the velocity function and its 

spatial derivatives. The basic equations used which relate 

15 
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the values of position vector r , slowness vector L and n n 

time t to their respective values at t ., = t +  6t  are n r n-fl   n 

(simulating Equations A.15 and A.17) 

where 

^nfl = *n + -  (^+ ^3) 

Ln+1 = 
Ln + J (k2 + ^ 3.1 

j^.c^, in&t 

1 u2   = Vc(r ) 6t 

c(rn) 

ica = c2(rn + Jci){Ln + J^} 6t 

1 -.   t klt   m _ vc(r  + k,) fit 
c(r + JCi)    n   i 

The truncation error for this simulation is of order   (6t)3 

(Hildebrand,  1968). 

Given the initial values of position vector ro and 

slowness vector LQ,  the ray "shoots" out integrating in 
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time. Curves of travel time, partial derivatives of travel 

time with respect to model parameters and intensity versus 

distance for a simple velocity model, c = 5.0 + ,lz, are 

shown in Figures 3.1 and 3.2. All these quantities were 

calculated using the second-order Runge-Kutta scheme. Cal- 

culations for this simple model permit comparison with the 

analytic results found in Officer (1957) . The agreement 

of the values obtained numerically with analytical values is 

exact within the accuracy of the plots, except very near x = 0 

where the total travel time is the order of a few time steps. 

Agreement here could be obtained by reducing the time step. 

In practice, where no analytic solutions are available for 

comparison, the most practical test for convergence to the 

true value is simply to repeat the calculation with a reduced 

time step. If the resulting value is the same as the calcu- 

lated with the full ..ime step, convergence may be assumed. 

In most realistic examples attempted, a time step of between 

0.25 seconds and 0.05 seconds was found to give good conver- 

gence. The smaller values were cnly required for models con- 

taining very steep velocity gradients. 

Boundary Value Problem 

Runge-Kutta integration may be used to solve the problem 

of finding the ray between two points by iteration using the 

partial derivatives of position with respect to the initial 

take-off angles and estimating the requ-.red perturbations 

7 
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in these angles.  These derivatives may be calculated directly 

by integrating equations A.26 or estimated by tracing several 

rays. 

The alternate approach is to solve the boundary value 

problem directly.  So-called "two-point" boundary value 

problems for second order differential equations have been 

studied from the point of view of numerical solution; such 

methods are described in Fox (1957), Hildebrand (1968) , and 

Henrici (1962).  Such methods require equations of the form 

d2y 
  + G(x/ y) = 0 3.2 
dx2 

where the solution y(x) is sought on an interval (a, b) and 

the values of y are specified at the end points 

y(a) = A 

y(b) = B 3.3 

In terms of rays, this approach changes the method of attach 

from "tracing" a ray to"finding" a ray. Instead of shooting 

rays out, hoping that one will intersect the desired point, 

we construct a curve between the event and the station and 

then distort the trial curve until it satisfies the differ- 

ential equation and, therefore, becomes a ray.  The require- 

ment that the solution be sought on a known interval with 

18 
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specified values at the end points, forces us to abandon 

the parametric description of a ray by means of time or 

arc length. We must eliminate the parameter so that the 

interval over which the solution is sought will be pre- 

determined. In other words, in a parametric de&cript'.on 

of the ray, x(t), y(t), z(t), the value of the parameter 

t is k.iO/»*. at tho initial end but not at the final end 

until the ray is found. On the other hand, if one of the 

space coordinates may be used as the independent variable, 

say y(x), z{x), then the values of x are known at both ends 

of the ray and the boundary value problem is well posed. 

Consider a transformation of coordinates with a new 

origin so placed that the source lies on the z axis and 

the station also lies in the x-z plane (Fig. 3.3). Then 

the known y and z coordinates of the source and station 

will be the values of the solution at the two end points 

of the known interval in x. Vie  seek to transform the dif- 

ferential equation for the ray (equation A.19) 

d  1 dr 
—  v(l/c) 
ds c ds 

into an equation with x as the independent variable con- 

sidering only the geometric properties of the ray. Con- 

sider the angle, t), between the ray at each point and the 

19 
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x-axis.  This angle is defijied  by the direction cosine 

between the ray and the axis 

dx 
cos 0 ■ — 3,4 

ds 

where dx is an increment along the x-axis corresponding 

to an increment of arc length ds. The differential equa- 

tion for the unknown coordinates of the ray in the inde- 

pendent variable x then becomes 

d   cosG du v 
cos 0  —/   —)= V(l/c)      3.5 

dx V  c   dx ' 

where u is the vector of y and z components u - (y, z). 

Imagine the line segment along the x-axis corresponding 

to the ray divided into equal segments of length h. Then 

we may sinulate equation 3.5 with a difference equation. 

Taking a central difference for the interior derivative, 

associating a coso with each term and then taking another 

central difference for the derivative outside the paren- 

thesis we obtain 

cos 0. cos Vi/z -> ^    (cosGi-l/2   ,   cosQi+l/2\5 

ci-l/2 ci-l/2 ci+l/2 

+ f£!Ji±iZ2. s 
i+1 

i+l/2 
Vd/c^ 3.6 

2Q 
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To obtain an expression for cos 0. we use a finite ap- 

proximation to 3.4 

cos G . ■  
1 .., 

where h is the internal between successive values of x and 

's. = (h^ -. iyi+1/2-y^1/2)2 + ^i+l/2-2i.l/2)2, 1/2 

Since equation 3.6 is non-linear it must be solved 

iteratively; therefore the apparently cumbersome form of 

äs. is no disadvantage. For the initial guess at the solu- 

tion it will be necessary to compute the square roots, but 

in successive iterations the changes to ös. will normally 

be small and it is possible to use the first few  terms of 

a binomial series expansion for their calculation. 

Writing an equation of the form 3,^ for each point on 

the ray, we obtain 

Av = g 3.7 

where 

bi = (6si+l/2 ci+l/2,  , a. = -b. ,-b. 
'   '  i    i-l i 
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The boundary conditions 

(a) -(:};.. -ö 
have been included in the definition of g.  Note that the 

two equations for y and z decouple at this stage, but the 

iterative algorithm used to solve this non-linear system 

will introduce coupling. 

Denoting the trial solution at some stage with a super- 

script, v ■, the error at this stage will be 

JO) = X<J)$(J)-g(J) 3.8 

We use an adaptation of Newton's method for finding roots 

described by Henrici (1962) to find a new trial solution 

^J+D . -(J) + 6-(J) 3.9 

chosen so as to attempt to make the new error e ^  ' equal 

to zero, i.e. 

0 = X'J+1' v<3+" - tfi*» 3.10 

Using 3.9 to expand g ^   in Taylor series about v 3 and 
% f v+1) ^ o* (i) assuming A ^   ^ A J we have 

23 
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0 »^^ tW   *%l#   0^^ -aW   - $& 

where 

«V 3.11 

^ = 

3g   dg 
yyi yyi 

ay  3z 

3g   3g 

3y  3z 

^ 

^ 

yn-l  yn-l 

Sy    3z 

2n-l  zn-l 

3y    3z 

Making use of 3.8 and the fact that A and ^ are conformable 

we have 

- tw . ä'W aw 3.12 

where 

^•(j) = ^(j) + ^(J) 

2k 
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-+( i) % M) 
Equation 3.12 may be easily solved for 6v "    because A' J 

is a block tridiagona matrix, composed of 2x2 blocks. 

Such systems may be solved very rapidly using a variation 

of Gaussian elimination described by Richtmeyer and Morton 

(1967). The iterative procedure is repeated until either 

the r.m.s. error is less than some value 

-♦■T->- e e 
  < e 3.13 
N 

or until the change in the integral of time along the ray 

is very small. 

Once the geometry of the ray is described by the set 

of coordinates, it is straightforward to calculate the 

travel time and other desired ray quantities by summing 

the appropriate quantities along the ray. For example, 

for travel time, this amounts to Fermat's principle 

f 

T 
ds 'v   ds. 
 J —i 3.14 
c  i=l ci 

i 

along 
the 
ray 

Choice of Method 

Whether the Runge-Kutta integration or the tridiagonal 

25 
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matrix technique is used for a particular ray problem de- 

pends on 1) whether the problem at hand is an initial 

value problem or a boundary value problem and 2) the com- 

plexity of the velocity model and the manner in which it 

is specified. 

The advantages of the Runge-Kutta technique are 1) only 

the first derivatives of the velocity model are required and 

2)  the traced curve is certain to be a ray (provided a small 

enough time increment is used).  The disadvantages of the 

method occur in the solution of boundary value problems. 

Only crude estimates of the initial values (take-off angles) 

required to solve a given boundary value problem are pos- 

sible and the ray is quite sensitive to these parameters. 

The primary advantages of the tridiagonsl matrix technique 

are, on the other hand, the ease with which reasonable 

trial rays for boundary-value problems are selected and 

the relative insensitivity of the solution to a trial guess 

slightly in error.  These advantages arise from the fact 

that the first trial guess is actually a space curve con- 

nectino the source and station which is chosen to bo a 

good guess at the final ray shape based on geophysical 

experience. For example, consider a simple continuous 

velocity model consisting of a relatively low velocity 

region near the surface, increasing rapidly at some depth 

to a higher velocity. Experience suggests that for some 

distance range there will be a triplication of the travel 

26 
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time curve, corresponding to three rays: 1) a direct ray 

through the low velocity region 2) a ray refracted from 

the zone of rapid increase and 3) a ray refracted from 

slightly deeper in the zone of increase.  Given the added 

complexity of any lateral variation the selection of take- 

off angles corresponding to the different arrivals is very 

difficult. On the other hand the selection of trial ray 

curves which go through the regions known to be required 

for a particular arrival is relatively straightforward. 

The two disadvantages of the tridiagonal matrix method 

are 1) second derivatives of the velocity model are required 

and 2) frequently convergence of the solution is slow. 

The second disadvantage is not severe, however, because 

once the ray is approximately found (after a few iterations) 

the travel-time is relatively insensitive to further refine- 

ment. 

The conclusions are 1) for initial value problems use 

the Runge-Ki tta method, 2) for boundary value problems in 

velocity models for which the second derivatives are diffi- 

cult or impossible to obtain use the Runge-Kutta method 

with iteration of initial values, 3) for boundary value 

problems in models for which the second derivatives are ob- 

tainable use the tridiagonal matrix method. 

Description of Velocity Model 

Theory places comparatively few restrictions on the way 

in which the velocity model is specified.  The restrictions 

27 
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imposed by practicality are more severe. For all purposes 

except the calculation of partial derivatives with respect 

to model parameters, a tabular or three-dimensional g*id 

specification would be adequate, provided that the inter- 

polation scheme maintained continuity of the first deriva- 

tives, and preferably the second, except at specified dis- 

continuities.  The importance of continuity of derivatives 

is discussed by Wesson (1970) but a feeling for this sensi- 

tivity may be obtained from observation of the ray differ- 

ential equation .i.19. The explicit dependence of this 

equation on v(l/c) demonstrates that artificially induced 

discontinuities in this quantity will produce spurious results. 

An interpolation scheme which guarantees continuity of the 

first derivative is not unduly difficult, however, and may 

be executed using the technique of Snyder (1961).  The 

central difficulty of using the velocity specified on a 

three-dimensional grid is the awkwardly large amount of 

storage required.  Satisfactory solution of this problem 

requires clever use of computer storage. 

Combinations of simple analytic functions were chosen 

for the description of models in this work» The essential 

criterion for these functions is that they be well behaved 

away from the region of immediate interest. For this reason, 

rational functions are particularly appealing. A function 

found useful for abrupt one-dimensional velocity changes 

is: 28 
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to divergence of the successive iterations. A more prudent 

approach is to adopt the algorithm proposed by Marquardt 

(1963).  In essence this algorithm proposes the solution of 

the alternate system: 

(^ + Xl)    6p = 2TR 

where I is the identity matrix and A is a scalar to be deter- 

mined.  Note that as A-*0 the new system returns to ordinary 

least squares. This will be appropriato near the minimum 

where, hopefully, the problem is nearly linear. As A-*« 

the direction of 6p will approach that of the right hand 

üT— side of aquation 3.17, P R.  This vector is, to a scale 

factor, the negative gradient of the sum squared error. 

This may be shown simply by calculating the gradient. The 

definition of sum squared error is 

S.S.E. = I   (T .   - T ,  )2. 
old i  obsi   calci 

Diferentiating with respect to p. and making use of the 

definition of R (Equation 2.3) yieius 

3T as.S.E. calc. 
= - 2 I R. — i 

9PJ i   9PJ 

Again using the definitions of equation 2.3, we have 
30 
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grad (S.S.E.) * - 2P1'K. Q.E.D, 

As >>-*■<*   however |6p| >Ü, so v/e have shorter and 

shorter steps closer to the negative gradient.  The strategy 

of this technique is as follows:  If for some value of A, 

the correction 6p reduces the error, decrease K.     If it in- 

creases the error, increase \,     Unless a minimum is currently 

occupied, a small enough step in the direction of the gradient 

must always reduce the error. 

A simple test of the solution of the model improvement 

equations is illustrated in Figure 3.4.  Travel-times were 

calculated to an arbitrary array of 13 stations distributed 

ii an area of about 50 km. diameter about a point approx- 

imately in the center. The travel-timas were calculated for 

a simple constant gradient velocity model c = 5.0 + .lz. 

Using these calculated times as data the least squares al- 

gorithm started from an initial model of c - 4.0 + .02z. 

After eight iterations the r.m.s, residual at the 13 sta- 

tions was .0002 seconds and the model was 5.000 + .1008z. 

As a further test of stability, a random error selected from 

a population with zero mean and standard deviation, o =; .05, 

was added to each of the calculated tiroes.  The convergence 

for this data with simulated reading error is shown in 

Figure 3.5.  The r.m.s. residual after seven iterations was 

.058 seconds and the resulting model c = 4.961 + .1355z. 

Tne difference between the noise-free and noisy models gives 

?i 
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some idea of the resolving power of travel-time data. 
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IV. GEOLOGIC APPLICATION 

Bear Valley Area 

The Bear Valley Area lies 25 miles southeast of Holiister 

in the Coast Ranges of California, astride the trace of the 

San Andreas Fault (Figure 4.1). The fault zone forms the 

contact between two very different types of basement rock. 

Figure 4.2 is a generalized geologic map of the area.  South- 

west of the northwest-southeast trending fault, granite of 

Mesozoic age forming a "granitic-metamorphic core complex" is 

topographically expressed as the Gabilan Range.  JTithln the 

Gabilan Range, separated from the granite by north-south 

trending faults are rhyolites and pyroclastic deposits of 

Miocene age. Topographically, these deposits form the familiar 

Pinnacles. The Salinas Valley forms the western margin of the 

Gabilan Range. Towara the southern end of the range the gran- 

ite is covered with an increasingly thick mantle of sedimentary 

rocks. Northeast of the fault zone the "Franciscan eugeosynclinal 

core complex" of Jurassic-Cretaceous age forms the basement. 

Greywackes predominate, but the complex includes shales, green- 

stones, and ultramafic rocks. The internal structure of the 

Franciscan is complicated and discontinuous. Some of the rocks 

have been subjected to high pressure-low temperature metamer- 

ism- These rocks rise in a broad anticline to form the core 

of the Diablo Range. 

The fault zone ocupies a broad structural trough, trend- 

ing subparallel to the fault zone, bounded on the southwest 
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by the San Andreas and Bear Valley faults and to the northeast 

by the anticlinal structure of the Diable Range. Located in 

this truncated synclinal structure, which overlies the Fran- 

ciscan formation, are Upper Cretaceous marine sediments and 

Tertiary sediments.  The fault zone itself is approximately 

five km wide in which slivers of the various rock groups are 

juxtaposed, although they are predominately Tertiary in age. 
\ 

Interspersed in the fault zone are pods of ultrabasics, usual- 

ly serpentine.  Some distinct fault strands have been mapped: 

the San Andreas, Bear Valley, Paicines and San Benito faults. 

A recent and detailed review of the geology of the Coast 

Ranges has been given by Page (1966).  More specific descrip- 

tions of the geology of the Bear Valley area have been given 

by Andrews (1936) and Wilson (1943). A synthesis of the geol- 

ogy and geophysics of the region may be found in Smith (197C) . 

Motivated by a desire to test for bias in the routine 

location of earthquakes in this region, the National Center 

for Earthquake Research set up a temporary seismometer array 

in this area during the summer of 1967.  To derive a velocity 

model and station corrections for hypocenter location two 

shots were detonated in the general area.  For this work the 

shot in Bickmore Canyon, about three kilometers southeast of 

Bear Valley was used.  The other shot was located about 50 km 

to the northeast, somewhat north of the termination of the 

Gabilan Range. 

The station locations and travel-time data for this shot 

are given in Table 4.1.  A plot of the travel-time duw« reduced 
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to 6.0 km/sec is shown in Figure 4.3.  The lower group of 

stations and the shot were located southwest of the fault 

on granite or on sediments presumably underlain by granite. 

The upper group of stations (except HP8) lie northeast of the 

fault on sedimentary rocks underlain by the Franciscan form- 

ation or on the Franciscan formation directly.  HP8 was lo- 

cated directly in the fault zone and is apparently underlain 

by a large thickness of sediments.  It was excluded from the 

subsequent analysis for computational convenience.  The wide 

separation of the two groups of stations readily indicates 

tnat a one-dimensional velocity model cannot explain the data 

with an nn& error of less than about 0.4 seconds. 

To facilitate the mod«! fitting a cartesian coordinate 

system was laid out based on Richter*s method of calculation 

of short distances (1958). The coordinates were then trans- 

lated and rotated so that one of the axes was coincident with 

the average strike of the San Andreas fault zone. The re- 

sulting coordinate system is centered 16.30 km due north of 

36o30'  north latitude ^l^S' west longitude with the y axis 

striking N48.40 W (Figure 4.2). 

The first attempt to fit the data was made with a simple 

vertical fault model with a constant velocity gradient in the 

z-direction 

A(x-x0) 
c = CQ + Cjz +   4.1 

e2 + |x-Xo| 

>.•• v 
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In this model Xy is the position of the fault, x is the dis- 

tance away from the fault, c0 + A and CQ - A are the maximum 

and minimum velocities on opposite sides of the fault in the 

plane z-ü, 2 ^ is the bandwidth of the change in velocity 

across the fault and c is the velocity gradient with depth 

z. 

The best fitting model of Ulis analytic form. Model I, 

yields an r.m.s. residual of slightly less than Q.l sec. A 

SW-NE cross section, A-A', representative of this model is 

shown in the top half of Figure 4.4.  As might be expected 

the model is characterized by faster velocities to the south- 

west ard slower velocities to the northeast. Th^ residuals 

between the observed travel-times and those predicted on the 

basis of the model are given in Table 4.1; the values of the 

parameters in Table 4.2. A systematic pattern may be observed. 

The predicted travel-times to the stations relatively close to 

the fault on the northeast side are fast relative to the ob- 

served times.  This can be explained by the presence of the 

synclinal basin in this vicinity. 

In an attempt to explain this additional complexity a 

model which includes a low velocity basin along the fault was 

formulated: 
36 

A(X-Xo) 
c = Co + cjz + — ;  4.2 

e2 + |x-Xo| 

c 

1 + a(x-xo)2 + b(y-y0)
2 + d(z-Zo)2 



37 

where c  (in this case negative) is the maximum amplitude of 

the low-velocity material and a, b, d control the decay along 

the x, y, z directions away from the point XQ* YQ,   Z0; respec- 

tively. 

The parameters of the best fitting model of this form 

(Model II) are given in Table 4.2 and, the residuals in Table 

4.1. A vertical section through Model II at the location of 

Bear Valley is plotted in the lower half of Figure 4.4. This 

model is an improvement in that its general features, high 

velocities southwest of the fault, lower velocities northeast 

of the fault and a low velocity trough slightly northeast of 

the fault zone are in agreement with the known geology.  It 

also yields an r.m.s. residual of 0.084 sec compared to the 

estimated reading error of 0.05 sec. The high velocities 

reached at the bottom of the model may be somewhat unrealistic, 

but this depth is not sampled by the data used. The model 

for the Gabilans (southwest of the fault zone) is in general 

agreement with the results presented by Stewart (1968) which 

indicate velocities increasing with depth from about 4.8 km/sec 

to 6.1 or perhaps as high as 6.35 km/sec in the upper few kilo- 

meters of crust. 

As a test both of Model II and of the technique discussed 

in Chapter 2 to locate earthquakes, the shot was relocated as 

if it were an earthquake, using the data of Table 4.1. The 

initial guess at the location was more than 8 km from the true 

location. The calculated epicenter after five iterations 

37 
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ccnverged to within 0.2 km of the true location.  The error in 

depth is somewhat larger, .49 km.  This depth error may be the 

result of the relatively large model residual at the closest 

station A1BV (Table 4.1).  The convergence of the location is 

illustrated in Table 4.3.  This location was done disregarding 

the model residuals completely.  Accuracy would probably im- 

prove if they were used as station corrections. 

Borrego Mountain Area 

The Borrego Mountain area lies about 100 miles northeast 

of San Diego, along the San Jacinto fault zone (Figure 4.1). 

The surface geology of this area is shown in Figure 4.5.  Base- 

ment in this area is composed of highly faulted pre-Cenozoic 

granitic and luetamorphic rocks. The fault zone strikes through 

a trough filled with predominantly Tertiary sediments and 

alluvium and this trough deepens to the southeast to join the 

Imperial Valley.  Coyote Mountain, Borrego Mountain, and 

Superstition Mountain are slivers of basement rock uplifted 

along faults. The principal mapped faults in the area are 

the San Jacinto, the Coyote Creok, the Superstition Hills and 

the Superstition Mountain Faults. 

A more detailed geologic description of this area may be 

found in Dibblee (1954).  Geophysical interpretation of the 

regional structure may be found in Kovach et al. (1962) and 

Biehler et al. (1964) . 
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The travel-time data for the central shot (shot 2) lo- 

cated approximately 3 km southeast of Borrego Mountain (Figure 

4.5), were usad to derive a velocity model consistent with the 

geologic structure.  These data are tabulated in Table 4.3. 

Figure 4.5 is a reduced plot of the travel-time data. The 

wide scatter indicates the complexity of the area. A coordin- 

ate system was established with the origin 2.62 km due east 

of 33° 9* north latitude, lie*^' west: longitude vith the y-axis 

striking N49<>W (See Figure 4.5). The first model attempted 

consists of a constant velocity with depth with two superim- 

posed low velocity basins, one oriented along the trough 

containing the fault zone and the other to the southeast repre- 

senting the margin of the Imperial Valley: 

c = co + I        * 4.3 
i 1. + a(x-xo)2 + b(y-yo)2 + d(z-zo)2 

The parameters of this model. Model I, are specified in Table 

4.5; the resulting residuals are given in Table 4.4.  The 

residuals reveal what this model does not contain sufficient 

detail to explain the early arrivals observed at Coyote 

Mountain, and the Fish Creek Mountains. Therefore, in an at- 

tempt to more accurately represent the velocity structure near 

Coyote Mountain and the Fish Creek Mountains, two more functions 

of the same type were added to the description given by equation 

4.3.  Since only one station, BM15, was situated on Superstition 

^2 
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Mountain/ insufficient data existed to define this velocity 

anomaly and this observation was not used. 

The parameters of the derived model are given in Table 

4.5; travel-time residuals are given in Table 4.4. Velocity 

contours for northeast-southwest vertical sections (see Figure 

4.5 for locations) through the model are plotted in Figure 

4.7. The model gives a satisfactory picture of the average 

geologic structure of the region. Section Nl is located to 

the north of the sedimentary trough and generally high vel- 

ocities prevail throughout. Moving southeastward the sections 

show a thickening of low velocity sediments within the trough. 

This is interrupted at profile N3 by the high velocities as- 

sociated with Coyote Mountain. Farther to the southeast 

«urficial velocities in the eastern half diminish reflecting 

the thickening sedimentary cover at the southern end of the 

Santa Rosa Mountains. In sections S1-S4 the protrusion of 

high velocity material to the east from the western margin 

reflects the position of the Fish Creek Mountains. Still 

farther to the southeast low velocity material dominates as 

the sections move into the Imperial Valley. 

The average structure of the model is in general agree- 

ment with the layered model given by Hamilton (Figure 4.7). 

The travel-time residuals are compared with Hamilton's time 

terms in Figure 4. The smaller scatter of the residuals in- 

dicates that the laterally inhomogeneous model is a signifi- 

cantly more accurate description of the structure than the 

i;7 
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layered model, even though it may lack the empirical pre- 

cision of the time terms. 
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V. CONCLUSIONS 

This thesis discusses ray theory computations for the 

solution of seismolo/ical problems in laterally inhomo- 

geneous regions.  These methods are in excellent agreement 

with analytical solutions for tractable cases. Laterally 

inhomogeneous crustal velocity models are obtained from 

real travel-time data.  Inherent in the models are most of 

the significant geologic structures of the regions. A 

procedure is demonstrated whereby events may be located in 

such models. 

Insight into the actual mechanisms of earthquakes re- 

quires knowledge of where earthquakes occur in relation to 

geologic structure. The techniques discussed in this thesis 

apply both to the deciphering of the velocity structure of 

geologically complex regions and to the location of earth- 

quakes in such regions once the structure is known. The 

problem of bias in the location of 'ocal earthquakes is 

ripe for attack by these methods and will be the subject of 

future work. 
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APPENDIX A 

RAY THEORY 

Foundations 

Ray theory, despite certain fundamental limitations, 

presents a foundation for computational techniques of 

great usefulness in the study of the structure of the 

earth, particularly the study of laterally inhomogeneous 

regions.  Karal and Keller (1959) showed that elastic ray 

theory could be thought of as resulting from the first 

terms of an asymptotic expansion solution of the wave equa- 

tion in powers of reciprocal frequency. 

Consider the linearized, elastic wave equation for an 

infinite inhomogeneous medium: 

32u ■♦ 
p   ■ (X+ii)V(V'a) + uV2Ü + 7X(7'U) + Vp x(V X u) + 2(Vy7)u 

at2 

A.l 

where u is particle displacement, p is density, and X and u 

are the Lame constants,  p, \  and u  are assured to be con- 

tinuous, differentiable functions of the space coordinates. 

Attempt a solution of this equation in the form 

3.Xai«(s-t) At2 

where S and X are space functions to be determined and u 

50 
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is angular frequency. Assume that S is independent of fre- 

quency, but that A depends on frequency in the form 

K =  l     (iü))"n Xn A. 3 
n=0 

Under certain conditions of the spatial variation of p, X 

and u, the first few terms of A.3 (hopefully just AQ) will 

provide an adequate representation of the solution for most 

frequencies of interest.  Inserting A.2 and A.3 into A.l 

Karal and Keller obtain a recursive relation for the A 's. n 

For A0 their results are identical with those that would be 

obtained from the homogeneous wave equation, namely 

Case I A0«7S = 0 

(7S)2 = p/y A.4 

Case II ÄQXVS ■ 0 

(7S)2 - p/(X+ 2y) Am5 

but in contrast to the homogeneous case p,  X and p are 

functions of the space coordinates.  In Case I the particle 

motion given by XQ is perpendicular to the ray and the right 

hand side of A.4 is the reciprocal of the square of the 

velocity of shear waves.  In Case II the particle motion is 

PI 
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parallel to the ray and the right hand side of A.5 is the 

reciprocal of the square of the compressional wave vel- 

ocity. The important result is that under the appropriate 

conditions namely continuous gradients of relatively small 

magnitude i.e. no step discontinuities,  XQ is an adequate 

representation of the solution and the compressional and 

shear waves uncouple and both A.4 and A.5 may be written in 

the form 

(VS)2 = 1/c2 A.6 

where c is the wave velocity. 

Undjr what conditions will only one term in the expansion 

A.3 be sufficient? Since all terms are fractions of previous 

terms one term should be adequate when the ratio of the mag- 

nitude of the second term to the first is 

iXil/ltol   « 1 A.7 

Using the results of Karal and Keller, Archambeau et al. 

(1969) obtained an approximate expression for compressional 

waves for this ratio 

V'An    7V. i0   vv    VA 
+ —t + 

|Ao|    Vp   \-i-2u A+2ujy 
A.8 

r 2 



. 

f 

53 

where k is the wave number   u/v , and v =( (X+2VJ)/P) 1/2, 
P P      P 

This ratio will, of course, be large near a focus of rays 

where VAQ is very large and also in regions where the gradients 

of the elastic parameters are large. Archambeau et al. argue 

that this ratio is small enough to be tolerable even for 

rays which approximate head waves ( such as ?_)• 

Derivation of Ray Tracing Equations 

Assuming that the use of just one tezm in the asymptotic 

expansion is justified, the problem of finding seismic rays 

is simply a matter of interpreting 

(VS)2 = 1/c2 A.9 

This is the so called "eikonal equation" of geometrical 

optics.  We desire a description of the surfaces of con- 

stant phase, S ■ constant, the wavefrents; this can be done 

by finding the set of curves orthogonal to the level sur- 

faces of S, i.e., the set of curves defined by VS: the rays 

(see Figure A.l). The directional derivative along these 

curves is 

dS 
— = |VS| = 1/c A.10 
ds 

Z3 
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where s is the arc length along the path.  Applying the 

operator V to both sides of A.10 and interchanging the 

order of integration on the left hand side, we obtain 

d VS    1 
  = Vc A.11 

ds    c 2 

The element, of arc length along the ray may be rewritten 

ds = cdt A.12 

which gives the result 

d 7S     1 
  = Vc A.13 

dt      c 

Define the slowness vector L 

£ =  VS. A.14 

Note that by this definition L is parallel to the ray at 

each point and has the magnitude 1/c.  This gives the first 

ray tracing equation 

dL    1 
— = r.c A.15 
dt    c 

5U 
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The rate of change of the position vector r along the ray 

may be simply obtained from the definition of the velocity 

vector 

— = V A.16 
dt 

v is along the ray and therefore parallel to L, but has the 

magnitude c.  Substitution yields 

— » C2L A.17 
dt 

Equations A.15 and A.17 may be integrated from some starting 

values to  and r0 to yield £(t)and r(t)providing a complete 

description of the ray. These relationships are depicted 

in Figure A.2. 

For some purposes, such as the solution of boundary 

value problems, it is more convenient to combine A.15 and 

A.17 into one second order differential equation 

d   1 dr     1 
—  _ — ■ vc A.18 
dt  c2 dt     c 

or more familiarly, using ds = cdt 

55 
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d   1 dr 
— = vd/c) A.19 
ds  c ds 

Commonly the index of refraction, n = CQ/C, replaces 

1/c in this equation.  Equation A.19 may be derived from 

Fermat's principle of least time by the calculus of var- 

iations (Officer, 1958). 

The results which have been derived to this point are 

applicable to a medium in which the velocity is a continuous 

function. This is not a fundamental restriction for they 

apply equally well in a piecewise continuous medium, using 

Snell's Law at the discontinuity. This law may be simply 

stated (Zengeni, 1970) 

t      3 L' = L + - n A.20 

where L is the slowness vector incident on the discontinuity, 

L* is the refracted slowness vector, n is a unit normal to 

the discontinuity, c is the velocity at the point where the 

incident slowness vector impinges  on the discontinuity. 

The scalar 8 may be found from 

$ - - coso + [cos2a + (c/c1)2 - 1] '        A.21 

where a is the angle between the incident slowness vector 

EG 
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and the normal and c' is the velocity at the point where 

the refracted ray leaves the discontinuity. The plus sign 

is chosen if a is obtuse, the minus sign if a is acute. 

Calculation of intensity and Amplitude 

To calculate the amplitude A0 we shall first calculate 

the intensity along the ray. To obtain the intensity con- 

sider a family of rays defined by r(a,ß,t) and t  (a,ß,t) 

where a and ß are the take-off angles of the initial slow- 

ness vector to   (Figure A.2). For a and 6 fixed, with t 

varying, the functions r and t,  will describe one ray, but 

for t fixed as a and 0 vary, r and t describe a wavefront. 

In other words, a and 0 are the parameterization of a sur- 

face (the wavefront) defined by the function r. An element 

of area on the wavefront is then 

dA 
3r  3r 

dot   3 0 
da de A.22 

Neglecting scattering and attenuation, we may assume that 

the intensity of the disturbance associated with the wave- 

front is inversely proportional to the area of the wavefront 

dtt 
I/Io - — 

dA 
A.23 

r' 



58 

where IQ is the initial intensity associated with the unit 

solid angle dtt  and I is the intensity associated with the 

element of area dA.  Therefore, if we can calculate tr/da 

and Br/aß, we can calculate dA and hence the intensity (and 

amplitude). ^ 
" d 3r     d 3r 

Expressions for and may be simply obtained 
dt 9o     dt 3ß       ^ 

by considering two rays, one, described by r and £ started 

with some initial slowness vector L0 and another ray described 

by r* and L' which began with some slightly different initial 

slowness vector £j.  We may then write the ray tracing equa- 

tion for two rays 

dr 

dt — = c» £• 
dt 

dL           1 dL'           1 
— ■ vc   = -  _ vc' 
dt           c dt             c« 

where c* is the slightly different velocity encountered by 

the primed ray.  If we define 

«r - r- - r |t . con8t 

58 
st-t'  -t  \t=  const 

then we may expand c' (r + 6r) in a Taylor series about the 
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point r, 

2 
c" (r + 6r) = c(r) + 6r«vc + 0(|6r| ) 

Using this expansion expressions correct to first order in 

|6r| may be ob^airsc1 re:; cl2, J./c' -n^ 7c'. The resulting 

ray tracing equations are 

dr' 

at 
c-L  + 2c ;VC'3r}L -i c^ö 2 A? A. 24 

df'    .1 
  = vc -i- l/c2C 6r 
dt     c 

where C is a symmetric matrix of partial derivatives 

Ö - 

c 2 - cc X       XX 
c c - cc     c c - cc 
x y    xy    x  z xz 

c z - cc 
y    yy 

c c - cc 
y z   yz 

c ' - cc 
z     zz 

A.25 

32C 8C 

3X        3x' 

Substrcicting the unprimed oquations in A. 15 & A. 17 from the 

where c ■ —, c  =»   etc. 
X   %„   XX   ^„2 

orimed sei: in A.24 we obtein expeeisions for die time 

59 
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derivatives of ör and 6L. Dividing these expressions 

through by 6a and 6ß -> 0 we obtain 

d 9r 

dt 3a 
: 2c(7c-|£)2 + c2 |^ 

3a' da 

d  3r 
 = 2c(7c-|f) l  + 
dt 3 6 30' 

3ß 
A.26 

d  3£  1 ^ 8r 

dt 3a   c2   3a 

d  3£  1 ^ 3r 

dt 3ß   c2   3ß 

These may be integrated from the starting values 

-> 
3r 

3a t=0 

3r 

36 t=0 

3£; 

3a t=0 

it. 

3a 

it 

36 t=0 

3^0 

36 

In the geometry of Figure A.2 

LQ = —-—  ( cos* a sin 6 i + sin a sin 6 j + cos 6 k) 
c(r0) 
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so the differentiation is straightforward. 

Knowing ^— and —- at any tima we can then calculate the 

intensity at that time by A.23 (using a vector identity to 

expand A.22 and dn ■ sine dadß) 

sin S 
I     

lo     /   /3r      3rW 3r      3r\      77i      3r \ 2 

W      \3a        3a/\36        3ß/       \3a        3ß/ 

Formulas given by Karal and Keller may be used to calcu- 

late the magnitude of the first term in the asymptotic ex- 

pansion, %.0,  in terms of its initial value a*: ro and the 

relative intensity, for compressional waves: 

.*       *      /vo(?o) P(ro)  I  \ 1/2 |X0(t)| - |X0(t0)| f-i-- ;  
j vp(r) p(r)   lo J 

for shear waves 

-►   -»•     v V2 

iXoCtJhlXoCto)1 '    s 

vg(ro)   y(r)     I( 

At discontinuities, including the free surface, reflected 

waves must also be considered (Ewing, etal, 1957). 
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APPENDIX E 

DESCRIPTION OF COMPUTER PROGRAM 

Listings and decks of the FORTRAN programs used in 

this study are on file at the Department of Geophysics, 

Stanford University.  The intent of this appendix is to 

describe briefly the model fitting program and the proce- 

dures for its use.  The basic program takes a set of travel- 

time data, calculates the corresponding travel-times for a 

given velocity model and perturbs the parameters of the 

model so as to obtain a least squares best fit with the 

observations.  Only minor modifications are required to use 

the program to locate event hypocenters in a given model. 

The MAIN program functions as follows: 

1) sets up a cartesian coordinate system centered 

at some point in the area of interest; 

2) reads the station locations and obtains their 

coordinates in the new system, using subroutines 

TRANS and TRAROT; 

3) reads the velocity model and parameters per- 

taining to its refinement; 

4) optionally, plots the velocity model as maps 

at different depths (MDLPLT) or as vertical 

sections (MDPLT2); 

5) reads the event location and origin time and 

obtains the coordinates in the cartesian sys- 
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tem, using TRANS and TRAROT; 

6) reads a list of stations and arrival times, cal- 

culates the travel-times, and assigns them to 

the proper sets of station coordinates; 

7) repeats 5 and 6 for all the events to be con- 

sidered; 

8) finds the rays and calculates the travel-times 

and partial derivatives of travel-time with 

respect to model parameters, using TIMCAL; 

9) solves for a new set of model parameters using 

MAINE and MULT; 

10) repeats steps 8 and 9 as desired. 

The functions of the subroutines are as follows: 

TIMCAL   1) initializes the model improvement equations; 

2) finds the rays (using RAY) and calculates the 

travel-time residuals; 

3) prints ray information; 

4) builds least squares normal equations. 

i RAY      Subroutine RAY finds the ray between a source and 

a station using the tridiagonal matrix algorithm 

discussed in detail in Chapter 3. Specifically RAY 

1) determines the rotation necessary to get the 

source and station in the x-z plane; 

2) obtains an initial guess at the shape of the 

ray either from the stored shape of the ray from 

a previous iteration or by fitting arcs of 
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circles through the endpoints and the max- 

imum estimated excursions in the y and z 

directions; 

3) sets up the equations 3.7 (using subroutines 

VELO and QUKVEL to calculate the velocity 

and derivatives at each point); 

4) calculates the error for the current ray estimate 

using TRIMLT; 

5) if the error is less than or equal to the toler- 

able level, calculates the travel-time, partial 

derivatives, etc. and returns control; 

6) if the error has increased from the previous 

iteration, the corrections to the coordinates 

from the previous iteration are reduced by a 

scale factor and control is returned to step 3; 

7) if the error has decreased, but is still greater 

than tolerable, the matrix system of equation 

3.7 is solved for the corrections using BLKTRI; 

8) the coordinate corrections are added to the cur- 

rent coordinates to obtain the new ray; 

9) calculates the travel-time for the new ray; 

10) if the difference between the new travel- 

time and the previous iteration is less than 

some tolerance, the additional quantities are 

calculated and control is returned as in step 5; 

11) steps 3-10 are repeated until one or the other 
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of the convergence criteria are satisfied or 

until the number of iterations exceeds the 

limito 

QUKVEL   calculates the velocity, first and second spatial 

derivatives, partial derivatives with respect to 

model parameters, and the elements of the matrix 

P in equation 3.12 for a point using subroutines 

BLOB and JUMP.  Subroutine VELO is an entry which 

provides for a return after the calculation of 

velocity only.  It will be necessary to alter this 

subroutine if the combination of functions used 

is not an adequate description of the velocity 

structure of the area of interest, 

multiplies a tridiagonal matrix times a vector to 

give a vector. 

solves the 2x2 block tridiagonal system of equation 

3.12, making use of special properties of this 

system. 

evaluates the function of equation 3.15 and 

performs the spatial derivatives and derivatives 

with respect to model parameters. 

BLOB     evaluates the function of equation 3.16 and per- 

forms the spatial derivatives aid derivatives 

with respect to model parameters. 

TRANS    converts latitude and longitude to cartesian 

system using Richter*s method of short distances 

TRIMLT 

BLKTRI 

JUMP 
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(Richter, 1958) . 

TRAROT   translates and rotates cartesian system. 

MDLPLT   uses VELO to calculate velocity at points on 

horizontal rectangular grid and plots result. 

MDPLT2   uses VELO to calculate velocity at points on 

vertical rectangular grid and plots result. 

MAINE    inverts n x n matrix (written by J.F. Claerbout). 

MULT     multiplies n x n matrix times vector to give 

vector. 

Input Parameters 

CARD 1   Center of coordinate system and conversion factors 

LTDO, LTMO, LGDO, LGMO, AA, BB  (6F10.4) 

Latitude (degrees), latitude (minutes), longitude 
(degrees), longitude (minutes), latitude conversion 
factor, longitude conversion factor. 

CARD 2   Coordinate translation and rotation to line up 
with structural "grain." 

XF, YF, PHI  (3F10.4) 

X-coordinate, y-coordinate, rotation angle (in radians, 
positive counter-clockwise from the x-axis). 

CARD 3   Parameters for ray calculation 

NTRYS, H, TOLER, TOLT, FACST, FACFAC  (12, 5F10.4) 

Maximum number of iterations to obtain ray convergence 
(10), nominal grid spacing (1km), r.m.s, error tolerance 
(E-4), travel-time tolerance (E-3), initial ray con- 
vergence factor (2.), adjustment to ray convergence 
factor (2.)  (See description of RAY for discussion). 

CARDS 4-N1 Station list and coordinates 

STA (I), LAD (I), LAM (I), LOD (I), LOM (I), ELEV (I) 
(2X, A4, F2.0, F5.2, IX, F3.0, F5.2, IX, F4.0) 
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Station designation, latitude (degrees), latitude 
(minutes), longitude (degrees), longitude (minutes), 
elevation (m). 

CARD Nl+1 BLANK  (Indicates end of station list.) 

CARD Nl+2 Model improvement parameters 

NIMPRV, DELTAX, LAMDA, NU      (12, 3F10.4) 

Number of times to repeat model improvement process, 
cutoff distance (observations from stations at dis- 
tances greater than cutoff will be discarded), initial 
value of model improvement factor (10.), adjustment 
to model improvement factor (5.)  (See section on 
model improvement in Chapter 3 or Marquardt [1963].). 

CARD Nl+3 Number of parameters in velocity model 

NVEL   (12) 

CARD N1+4-N2  Parameters of velocity model 

VEL(l), VEL(2) ,...VEMNVEL)    (7F10.4) 

Order will be changed depending on functions chosen to 
represent structure. Must conform with designation 
in subroutine QUKVEL. 

CARD N2+1 Number of parameters to be perturbed in model 
improvement 

NVARI   (12) 

CARD N2+2 Array position in VEL of parameters to be varied 

IVAR (1), IVAR (2),...IVAR (NVARI)    (3612) 

CARD N2+3 Plot parameters 

NZWIT, NSEC, DELZ, YGRID, YMAX, DELY    (212, 4F10.4) 

Number of horizontal grids to be plotted (if 0, ver- 
tical sections along y=constant will be plotted; if 
negative, no plots), number of vertical sections, ver- 
tical increment for horizontal grids, maximum y-dimen- 
sion of horizontal grid, maximum value of y for vertical 
section, increment of y between vertical sections. 

CARD N2+4 Event description 
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EV, ELAD, ELAM, ELOD, ELOM, ELEL, OT    (2X, A4, F2.0f 
F5.2, IX, F3.0, F4.0, F10.4) 

Event designation, latitude (degrees), latitude (min- 
utes) , longitude (degrees), longitude (minutes), 
elevation (m), origin time (seconds past most recent 
minute). 

CARDS N2+5-N3    Travel-time observations 

ST,   Q,   ARTIM,   ZEST,   YEST (2X,   A4,   A3,   10X,   F5.2, 
2F10.4) 

Station designation (must be identical, including posi- 
tioning of blanks, with designation on station list), 
quality description (not used), arrival time (seconds 
past most recent minute; arrival time minus origin 
time is assumed to be less than one minute), maximum 
estimated vertical departure from line segment con- 
necting source and station, maximum estimated hori- 
zontal departure from line segment (standing at 
source, looking toward station, right is positive, 
left is negative). 

CARD N3+1 BLANK (indicates end of travel-time observation 
list) 

CARD N3+2 If additional events, same as N2+4. CARDS N2+4- 
N3+1 repeated for each event. 
If no additional events, BLANK 

The inputs to the hypocenter location version of the 

program are the same, except that some parameters have 

different meanings: 

CARD Nl+2 

NIMPRV, number of iterations for hypocenter 
LAMDA, NU, hypocenter improvement conversion factors 
(2.,2.) 

CARD N2+1 

NVARI, =3, depth fixed; =4, depth free. 

CARD N2+2 read, but not usad 

CARD N2+4 trial hypocenter location and origin time 
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If the program is to be used for any runs longer than 

1-2 minutes, it is advisable to compile the program once 

under the ,,0PT=2" compiler option and create a load module, 

For instructions on how to do this see the User's Manual, 

Stanford University Computation Center. 
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FIGURE CAPTIONS 

Fig. 3.1 Travel-time and 3T/3co calculated for constant 
gradient velocity model, c = Co + c\zf   using 
second-order Runge-Kutta integration agree with 
analytic values within thickness of curve. 

Fig. 3.2 Relative intensity and dT/3ci calculated for 
constant gradient velocity model, c ■ Co + CiZf 
using second-order Runge-Kutta integration agree 
with analytic values within thickness of curve. 

Fig. 3.3 Geometry of tridiagonal matrix formulation of 
ray boundary value problem. The primed axes 
are translated so as to include the source and 
station in the x' - z' plane. The line seg- 
ment on the x'-axis corresponding to the ray 
is subdivided into equal segments, h.  The y* 
and z* coordinates at these discrete points are 
the unknown variables. 

Fig. 3.4 Function used to represent one-dimensional velo- 
city change, f(x) = A(x - Xo)/(e2 + |x - Xo|). 
As x-»- X0+00, f (x) ♦ +A; at x » xo+e2, f(x) ■ ±A/2. 

Fig. 3.5 Test of model improvement scheme. See text for 
discussion. 

Fig. 4.1 Index map showing location of Bear Valley and 
Borrego Mountain areas and major faults of Cali- 
fornia. 

Fig. 4.2 Generalized geologic map of Bear Valley area 
showing shot and station locations, origin of 
cartesian coordinate system and section line 
A-A'. 

Fig. 4.3 Reduced travel-time plot of data from Bear Val- 
ley shot. 

Fig. 4.4 Contour plots of velocity for Bear Valley models 
along vertical section A-A*. Model I above, 
Model II, below. 

Fig. 4.5 Generalized geologic map of Borrego Mountain area 
showing shot and station locations.  The ends 
of the SW-NE section lines, N1-N8 and S1-S8 are 
indicated.  The triangles and numbers designate 
portable stations.  The line segments and letters 
indicate refraction spreads. The readings at 
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each end of the refraction spreads were used 
as independent observations.  The origin of 
the cartesian coordinate system is also shown. 
The basement outcrop between stations 5 and 12 
is Coyote Mountain; that beneath station 15 
is Superstition Mountain. 

Fig. 4.6 Reduced travel-time plot of data from Shot 2 
southeast of Borrego Mountain. 

Pig. 4.7 Contour plots of velocity for Borrego Mountain 
area. Model II, along vertical sections N1-N8 
and S1-S8 indicated in Figure 4.5.  See text for 
discussion. 

Fig. 4.8 Above: time-terms calculated by Hamilton (1970). 
Below: residuals between observed travel-times 
and those calculated for Model II. The residuals 
hc-ye less scatter than the time-terms, indicating 
that significant lateral variations have been 
included in the model. 

Fig. A.l Wavefrents are surfaces of constant phase, S» 
constant.  Rays are orthogonal curves, parallel 
to VS. 

Fig. A.2 Geometry of ray. The two take-off angles a 
and ß, ang the value of the velocity, c, at 
the point ro, determine the initial slowness 
vector, Lo. 
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ABSTRACT 

The slowness factor  dT/dA for the core phase PKKP 

was measured at the Large Aperture Seismic Array (LASA), 

Montana, in the epicentral Jistance range 75° < A < 125s. 

Due to the high phase velocities involved, or equlvalently, 

low slowness factor, corrections for simple geologic struc- 

tures under the array were imperative.  A method was de- 

rived to correct for the dipping M-discontinuity under 

LASA. 

A velocity model for the earth's core was computed 

from the dT/dA observations, together with PKP travel 

times, U8inö the Wiechert-Herglotz integration method. 

The PKKP core velocity model derived is essentially tripar- 

tite, but differs from other proposed models in important 

details. 

The major part of the outer core exhibits no striking 

differences from the standard J^ffrevs' model:  fairly con- 

stant velocity gradients in the SKS and ABC (Bullen 'E') 

regions.  However, at a radius of 1654 km there is a dis- 

continuity in the velocity gradient and the next 250 km 

in depth is a distinct region of slightly higher velocity. 

The transition zone into the inner core is only 200 km in 

thickness and is characterized by a gentle negative velo- 

city gradient.  This zone has an average velocity of 10.45 

O 
ill 



km/sec.  The inner core starts at radius 1217 km with 

an average velocity of about 11.20 km/sec and possesses 

a slight negative velocity gradient towards the center 

of Che earth.  A slight drop in compressional velocity in 

Che mantle at the core-mantle boundary is also inferred. 

It is conjectured that the transition zone (liquid 

or viscous) and the inner core (solid) are of Che same 

chemical composition, buC differ from ChaC of Che ouCer 

core. 
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(Ji I.  INTRODUCTION 

The existence of Che core in the darth was postulated 

in   ihe   1890V by Wiechert, and subsequently subdivided into 

a fluid outer core, and an inner core (most likely solid) 

by Lehmann in 1936.  With only a few exceptions, most of 

the velocity models of the earth's core are derived from 

travel time data from the seismic core phases PKP and PKIKP 

In conjunction with scanty SKS observations.  The classical 

velocity models are those of Jeffreys (1939) and Gutenberg 

(1958). 

As more high quality data have accumulated these 

models have been continually modified.  The list of pro- 

posed models for the core is sizeable.  Bolt (1964) con- 

structed a tripartite core model to explain the PKIKP (DF 

branch) forerunners that had previously been explained by 

diffraction at the caustic  B.  Adams and Randall (1963, 1964) 

have also proposed a tripartite core.  Ergin (1967) postu- 

lated a more complex layered core model   Engdal (1968) 

constructed a series of models modified from those of 

Jeffreys, Bolt, and Adams and Randall.  All of these models 

were based on detailed observations of the core phase PKP. 

Other investigators, although not proposing new models, 

have studied PKP data to refine their travel times (Hal, 

1961, 1963; Kovach and Glover, 1968: Subita and Bath, 1964; 

and others).  The models of Jeffreys, Gutenberg, Bolt, and 

ICO 



Adams and Randall are illustrated in Fig. 1. 

The use of the free oscillations of the earth to de- 

termine the structure of the deep interior deserves brief 

mention.  Although normal modes have been successfully 

accurate at determining, or setting limits to, the seismic 

parameters In the earth's mantle (Press,1968; Bullen and 

Haddon,1967, 1969) the method is nut sufficiently sensitive 

to the deeper core structures (Anderson and Kovach, 1969) 

and hence cannot be used to determine the fine structure 

of the earth's core. 

Most of the core models are essentially triai-and- 

error models which are adjusted to fit the observed travel 

time data.  As a result they are not unique, as emphasised 

by the large number of Monte Carlo random models Press 

(1968) generated to satisfy given travel times.  However, 

given sufficient data and as long as dV/dr < V/r the direct 

use of dT/dA reduces considerably the number of possible 

models. 

Travel time analyses for velocity determination even 

though carefully carried out are hampered by having lower 

resolution than direct dT/dA measurements using arrays. 

Extensive use of array data has resulted in the proposed 

refinement of the velocity distribution in the lower and 

upper mantle (Nlazi and Anderson, 1965; Otsuka, 1966 a, b; 

McEvilly, 1966; Johnson, 1967, 1969; Chinnery and Toksöz, 

1967; Fairborn, 1968; Kovach and Robinson, 1969). 

i 



Use of arrays for core phases has not been exploited 

and analyses of the.   slowness factor dT/dA have been limited- 

Prior to chc installaCion of LASA,Hannon and Kovach (1966) 

used velocity filtering with a network of portable stations 

in Arizona to identify the various branches of the core 

phase PtCf in the   distance range 125o-160*. 

Because of Che very high apparent phase velocities 

(greater cha.i 25 km/sec) or equivalently, low slowness 

factor (dT/dA less than 4.5 sec/deg) arrays with large 

apertures are required if observational errors are to be 
M 

small relative to the small time delays.  Husebye and Toksoz 

(1968) circumvented the difficulty by using the WVSSN and 

LRSM stations in North America as a continental size array 

to study the PKP core phase.  Of course, if the array gets 

too large the coherence between stations decreases and the 

problem of correct identification of the  «ricuo travel 

time  branches again arises.  The core model deduced by 

Husebye and Toksoz is outlined in the caption to Fig. 1. 

The slowness factor for the core phase PKKP was deter- 

mined using the Lage Aperture Seismic Array (LASA), Montana, 

which has an aperture of 2° (or a diameter of about 200 km). 

A dT/dA vs A curve was used to determine the P wave velocity 

distribution in the core using the Wiechert-Herglotz tech- 

nique . 

The reason for the choice of the core phase PKKP to 

study the core velocity structure is two-fold.  First, LASA 



is strategically situated with respect to the high selsmlclty 

areas of the world, which lie within the epicental distance 

range for the observation of PKKP.  Fig. 2. shows the loca- 

tion of the events used in this study.  Second, the phase 

PKKP traverses a distance in the core twice as long as the 

phase PKP, and thus the observed-branches are stretched out 

and less crowded, giving better resolution. 

The core model derived in this thesis is essentially 

tripartite, similar to those of Bolt (1964) and Adams and 

Randall (1964), although differing in fine structure and 

the size of the transition zone between the outer and inner 

cores. 
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II.  A BRIEF REVIEW OF THE THEORY 0/ dT/dA 

The theory of Che use of the slowness factor (slope 

of the travel time curve) in studying the velocity dis- 

tribution in the earth is classical (Bullen, 1963).  For 

Che sake of continuity and Che establishment of notatio", 

a brief outline of Che Cheory is presenCed. 

In a spherically symmecric earth a ray is characterized 

by the parameter p, an invariant of the ray, 

r sin 1 

V(r) (1) 

where r Is the radius coordinate from the center of the earth, 

i is the angle of Incidence between the ray and the radius, 

and V(r) is the seismic velocity at radius r. 

The seismic ray parameter is In turn related to the 

slope of the travel time curve through the slowness factor 

dT/dA: 

r sin i   ro sin IQ 
p =   -  = dT/dA 

V(r)       V(ro) (2) 

Fig. 3. illustrates the geometry considered. 

If A is the epicentral distance from a surface focus 

to the observation point on the surface, then a functional 

relationship oetween the velocity and the radius can be 

10* 
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derived (Bullen, 1961) to give the famous Wiechert-Kerglotz 

relation 

a 
n £n {—) 

P(A) 
ire cosh ( —} dA 

nCrO (3) 

where 

n(r1) - VCrO/r! =  pi^O (O 

and a Is the radius of the earth. 

For the determination of the velocity depth function, 

dT/dA measurements are superior to travel time in many 

aspects.  First, application of dT/dA dispenses with accur- 

ate knov''edge of the origin time of the event.  Certain 

significant corrections imperative when using travel time 

data are less crucial in dT/dA measurements.  Elevation 

and ellipticlty corrections can be ignored, and small 

errors in epicentral location are tolerable especially 

when using teleseismic observations.  Even corrections 

for focal depth become less important since they do not 

affect the seismic ray parameter itself except that the 

ray must be projected back to the surface.  In the case 

of core phases with steep angles of Incidence (less than 

15* from the vertical) focal depth corrections are neg- 

ligible. 
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Planar structures In Che earth's crust  and uniform 

lateral gradic.its can be easily corrected for in array 

measurements of JT/dA (Zcngeni, 1969).  Also, identiflca- 

rion of the various branches of a phase is less ambigu- 

ous using seismic array data. 



III. DATA COLLECTION, SELECTION AND REDUCTION 

1. LASA. MONTANA 

The configuration of the LASA is shown in Fig. 4» 

and details of the seismometers used in this study are 

listed in Table 1.  Because of the low slowness factor 

involved, only the center seismometers of the AO sul rray 

and the outer E and F rings were used.  These seismometers 

are buried to a depth of 500 ft to reduce meteorological 

noise.  Details concerning other aspects of the LASA are 

given by Forbes et. al. (1965). 

2. MEASUREMENT OF TIME DELAYS 

Readings of the relative arrival times were picked 

on copies of LASA short period film, obtained from the 

Teledyne Seismic Data Labs, Alexandria, Virginia.  Only 

events of large magnitude (about 6 or larger) produced 

usable observations of the phase PKKP.  Table 2  lists the 

earthquakes used. 

Relative arrival times were picked to 0.05 sec by 

visual alignment of each channel with a reference seismo- 

gram.  Since absolute time is immaterial, times were read 

on any suitable point on the wave packet comprising the 

phase, and not necessarily on the actual onset which might 

not be as clear. 

IC7 



SUBAIvRAY CENTER COORDINATES CENTER ELEVATION 

LATITUDE (N) LONGITUDE (W)    (METERS) 

AO     46° '.J  19" 106° 13' 20"      896.8 

El     47° C9'   46" 106° 03' 22"      837.9 

E2     46° 30' 46" 10!)° 21' 53"      762.2 

E3     46° ü^' 58" 106° 20' 03"      913.7 

E4     46° 45' 39" 106° 55' 00"      955.3 

Fl     47° 22' 15" 105* 11' 15"      892.5 

P2     45° 54' 34" 105* 21' 53"      906.7 

F3     45° 58' 22" 107° 04» 54"      989.7 

F4     47° 24' 40" 106° 56' 37"      859.8 

Table 1.  Center seismometers of the AO subarray and the 

E and F rings.  Seismometers are placed at depth of 500 

ft % 153 meters. 
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A least square procedure, described in Appendix A 

was applied to determine the parameters of the apparent 

| wavefront traversing the array. 
■ 

! 
3. OBSERVATIONS . 

The observed azimuth of approach u' was found to dif- 

fer from the expected great circle azimuth u by an amount 

unwarranted by the standard deviations of the measurements. 

The observed slowness factor (ÖT/ÖA)' exhibited (for the 

same epicentral distance) widely different values depending 

upon azimuth.  Chinnery and ToXsoz (1967) and Falrborn 

(196 ^ encountered the same problem while studying teleseis- 
( 

uic mantle P waves.  The former avoided the problem by con- 

sidering only a narrow azimuth window, while the latter 

estimated local station corrections to eliminate the azimuth 

dependence.  The azimuth anomaly $ = OJ-W' plotted against w 
i 

(Fig. 5) forms a pattern similar to that produced by a dip- 

ping interface e.g. the sloping M-discontinulty, or equival- 

ently, anomalies produced by fairly gentle lateral velocity 
I 

gradients in the crust or upper mantle.  Because of the abun- 

dance of mantle P events detectable at the LASA, subdivision 

of the data into azimuth windows does not present a serious 

problem.  However, observations of the core phase PKKP are 

more limited and such a method is not feasible. 
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A. CORRECTION FOR A SINGLE DIPPING INTERFACE 

A method for correcting the observed PKKP values of 

(61/64)' for a tilted Interface was developed (Zengeni, 

1969).  A detailed derivation of the relations can be found 

In Appendix B. 

The interface is defined by the unit normal vector n: 

n "(sin D cos ft, sin D sin 0, cos D) 

where D is the dip, and a  is   the direction of dip (i.e. 

azimuth of n).  The observed azimuth is u', the eplcentral 

great circle azimuth is w, the velocity below the inter- 

face is V, and above is V*. 

Two complementary correction formulas are used, each 

useful for a particular azimuth window. 

(1)       dT/dA - (6T/6A) 
•In (U - u') 

■in (fl - w) 
(5) 

(11)      dT/dA - («T/ÖA)' F+ (fi>tttM*,p*(BvVvV*)      (6) 

where F+ are the roots of the quadratic equation 

F COS(Q-ü>) - /Pz/p2-F2 tan   D - cos(fi-u) )-/P,2/p,z.i tan D 

(7) 

The two relations are mathematically equivalent, but 

when dealing with experimental data the two are appropriate 
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in different azimuth segments.  Equation (5) is used in 

the windows 

-150° < Q-ui < - 30° and 30° < fi-u < 150° 

and equation (6) is used in the remaining sections: 

F^ for 0 < Q-u < 30°  and 150° < ß-w <. 180' 

F  for -30c< 0-« < 0  and 180° <. JJ-u < 210* 

Equation (5) is simple and depends on only one un- 

known, Q.  The rest of the parameters are either observed 

or computed.  Q can however be easily determined from a 

fir* cl the azimuth anomaly $ vs u.  [see Flg. 5, and also 

Niazi (196 6), Otsuka (1966), McEvilly (1966) and Greenfield 

and Sheppard (1969)].  The envelope of Che data points 

crosses the u-axis at u ■ fi, Q + 180°. 

I Equation (6) depends on all the interface parameters. 

I 
By a trial-and-error method in conjunction with dT/dA values 

already corrected by the first relation, D, V, V* can hm 

easily estimated.  The following values were used for the 

analysis of PKKP data observed at LASA: 

D - 5°, 0 - N20oW, V » 6.0 km/sec, V - 8.0 km/sec 

Fig. 6 shows the r.aw and corrected dT/dA values for PKKP. 
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As It turned out, the slowness separation 6p between 

branches CI, IJ and the lower portion of BC Is not much 

larger than the correction terms.  Without the azimuth cor- 

rection it would not be possible to separate the branches. 

i 

1 

b. SOURCES OF ERROR 

The theory of dT/dA, as already pointed out, assumes 

perfect spherical symmetry and consequently azlmuthal symmetry 

as well.  For convenience deviations from such symmetry are 

treated together with all other sources of error.  Because 

we assume plane wave fronts, near surface planar structures 

under the array should not (strictly) distort the plane wave 

front except merely to rotate it. 

In reality, the LASA is gently curved and not planar, 

and wave fronts from teleseismic events are not truly planar 

but somewhat quadratic.  These so called 'global* distor- 

tions are distinct fron the * local'distortions that arise 

from (1) near surface geological inhomogeneities under in- 

dividual seismometers and (il) the relative elevation of 

the seismometers above some datum level.  All these local 

errors are imbedded in the time residuals 6T  ■ T  - ?<' • 

where T  and T * are the expected and observed relative ar- 

rival times at the i-th seismometer.  61. also contains ran- 

dom experimental reading errors.  Possible sources of global 

errors would be distortions due to deep inhomogeneities In 

the core and lower mantle. 
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IV. THE PKKP CORE MODEL 

I. DERIVATION OF THE CORE MODEL 

The construction of the core model from the dT/dA ob- 

servations consisted of the following four steps: 

(i) The mantlewas stripped off using the Herrin (1968) P 

wave velocities. 

(11) Initially the Jeffreys SKS (Bullen 'E') region was 

assumed and later adjusted to link up continuously with the 

observed dT/dA data.  The dT/dA curve for the stripped core 

is shown in Fig. 7.  It should be pointed out here that since 

the caustic B is a consequence of the spherical geometry, the 

velocity structure of the mantle and the abrupt velocity drop 

at the core-mantle boundary (CMB), it is highly Improbable 

that B should also represent a core phenomenon.  Hence B is 

constrained to lie on a smooth curve ABC. 

(ill) Using the Wiechert-Herglotz inversion method the vel- 

ocity distribution in the core was computed down to point J, 

and continued to G by means of total reflection. 

(Iv) The remainder of the dT/dA curve and velocities were 

computed using the abundant PKP data available (Jeffreys, 

1939; Bullen and Burke-Gaffney, 1958; Hal, 1961, 1963; Bolt, 

1964, 1968; Adams and Randall, 1964; Hannon and Kovach, 1966; 

Shurbet, 1967; Kovach and Glover, 1968; Husebye and Toksoz, 

1966; Engdal, 1968; Gogna, 1968). 
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2. DETAILS OF TUE PKKP CORE MODEL 

Except for fine details, the PKKP model is essentially 

tripartite, i.e. the outer and inner cores are separated by 

a transition zone.     A summary of the numerical details of 

the derived core model is listed in Table 3.  The velocity 

distribution is illustrated in Fig. 8.  The subregions in 

the core are designated by the corresponding lettering of 

the travel time branched that scan (i.e. 'bottom* in) these 

sections. 

The Interfaces between the three regions of the core 

were constrained to have sharp velocity discontinuities for 

two reasons: 

(I) Sharp velocity jumps produce the desired receding branches 

to link up with the succeeding refraction branches. 

(II) Very high velocity gradients give rise to unnecessary 

computational problems, especially when using the Mohorovlclc 

velocity law (ar ). 

When a velocity discontinuity wad reached, the shell 

above the interface was stripped off in order to compute the 

velocity distribution of   the next region.  These discontin- 

uities are located at radii 1426 km and 1217 km marking the 

outer radius of the transition zone and the radius of the 

Inner core respectively. 

The Outer Core 

The outer core comprises the SKS, ABC, CI, IJ subregions. 

Details of the SKS region are fairly arbitrary (without ac- 

curate SKS data) since there are not enough constraints (from 
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SUMMAKY OF THE TKKP CORE VELOCITY MODEL 

r/r 

1.00 

,96 

.92 

.88 

.84 

.80 

.76 

.72 

.68 

.64 

.60 

.56 

.52 

.48 

.476 

.44 

.410 

.40 

.36 

.350 

.32 

.28 

.20 

.10 

0 

r 
km 

3476 

3337 

3198 

3059 

2920 

2781 

2642 

2503 

2364 

2225 

2086 

1947 

1808 

1668 

1654 

1529 

1426 

1390 

1251 

1217 

1112 

973 

695 

348 

0 

v 
km/sec 

8.10 

8.26 

8.44 

8.63 

8.85 

9.04 

9.23 

9.41 

9.57 

9.66 

9.75 

9.84 

9.93 

9.98 

10.025 

10.08 

10.078 

10.47 

10.47 

10.38 

10.36 

11.30 

11.26 

11.23 

11.20 

11.20 

11.20 

J 

G 

H 

D 

Table 3.  The letters are used to designate the discontinu- 
ities corresponding to the branches of the travel tine curve. 
The radii are given to nearest whole km and the velocities 
are interpolated to at least two decimal places. 

118 



20 

P wave observations above) apart from the demand that the 

AB branch should produce the correct travel times.  Except 

for a slight compensating increase in velocity, the SKS 

region is similar to that of Jeffreys. 

The region ABC1 has a fairly steady velocity gradient 

which diminishes towards I.  The velocities derived in this 

section are lower than most core mcdels derived from PKP 

observations by about 0.05 km/sec; hence the velocity in- 

crease in the SKS region. 

The subregion 1J has a humped velocity distribution 

with a very slight negative velocity gradient towards J. 

The Transition Zone (GH Region) 

The velocities in the transition region are intermedi- 

ate between those in the outer and inner cores.  The derived 

shell is narrower, only a little over 200 km, than the 

400 km or so of Bolt, and Adams and Randall.  This zone Is 

characterized by a negative velocity gradient of about 0.5 

km/sec/103 km. 

The Inner Core (DF Region) 

The velocity distribution in the inner core is fairly 

arbitrary.  Analogous to the SKS region it is constrained 

mainly to satisfy the OF branch travel times of the core 

phase PKIKP.  Thi model derived has a negative velocity 

gradient (with depth).  The nature of the velocity distribu- 

tion depends on the assumed velocity at the transition inter- 

face into the inner core, which in turn depends on the 

* 4 19 
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location of Che limiting point D.  The position of O(PKP) 

was taken at 110° , fixing the velocity at the transition 

Interface to 11.30 km/sec.  If A   (D) Is increased well 

beyond 110°, the velocity at the interface decreases, and 

the velocity gradient in the inner core Increases and could 

possibly become positive. 

3. TRAVEL TIME AND SLOWNESS FACTOR 

The travel time and dT/dA curves for the phases PKP 

and PKKP are shown in Figs. 9 and 10; receding branches are 

omitted for clarity.   The letter designation of the branches 

is chosen to be as compatible as possible with that of ex- 

isting core models, in particular those of Bolt (1964, 1968) 

and Adams and Randall (1964).  The salient features of the 

curves are given in Table 4. 

Phase PKP 

The PKKP core model predicts a PKP travel time curve 

that comprises six refraction branches (AB, BC, CI, IJ, GH, 

DF) and two receding (reflection) branches (JG, HD).  B, 

located at A ■ 146°, is the only observable high amplitude 

caustic.  C and I are due to discontinuitiej in velocity 

gradient in the outer core at radii 1682 and 1654 km re- 

spectively.  Thus the relatively high amplitudes observed 

in the neighborhood of A ^ 145° - 146° (Shurbet, 1967; 

Shahidi, 1953) can be identified with the caustic at B.  The 

large amplitudes around 143° can be explained in this model 

as the coherent superposition of the DF branch and the JG 
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and GH branches; a conclusion independently reached by 

Shurbet (1967, p877). 

In the distance range 145° ^ 150° there is a clustering 

of different branches of the travel time curve, making it 

very difficult (if not  impossible) to resolve them using 

PKP observations only.  For example, around 148° there are 

as many as eight possible arrivals (two of which are reflec- 

tions) separated by only fractions of a second. It is thus 

not Improbable that in PKP observations the branches BC and 

IJ have not been identified separately.  The PKKP data studied 

show no evidence for the extension of the IJ branch below the 

DF branch as postulated by Adams and Randall. 

Branches GH and DF are similar to those of Bolt (1968) 

and most of the other tripartite models. However, the Bolt 

GH branch preceeds the GH branch derived here by as much as 

10 sec around 125°. This discrepancy is in the right direc 

tion to reduce the observed residuals to Bolt's GH branch 

(Kovach and Glover, 1968). 

Phase PKKP 

Theoretically, for each PKP branch there is a corres- 

ponding branch for the PKKP phase.  However, there is one 

very significant except; the cusps B do not belong to the 

same ray parameter, and thus they do not scan the same depth 

(sec Table 4).  This point was raised earlier when the caustic 

B was ruled out as representing some outer core structure. 

Travel time data for the core phase PKKP are not as 
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extensive as those for PKP.  However, Gutenberg (1951, 1959) 

and Engdal (1968a, b) provide some data for comparison and 

discussion. 

Branches AB and BC arc well observed and clearly identi- 

fied by their dl/dA values.  Branch AB will be discussed 

;       later in the section dealing with the core-mantle boundary. 
i 

; The most significant advantage of using PKKF observa- 
i 

tions is the clear separation of the branches BC and U.  A 

,       cursory glance at Engdal's (1968b) data [reproduced in Fig. 

i 
t       11] might give the impression that the BC branch should be 
i 

extended beyond 95° down to 79° (c.f. Gutenberg, 1951 p 385). 
i 

However, the detailed study of array data shows a definite 

bi?ak in slope at 94°, as also noted by Engdal (1968a, p 52). 

This break in slope is actually caused by the formation of 

a new branch IJ (100° » 79°) linked to the BC branch by a 

short Intermediate branch CI Chat extends for only 6s from 

94° to 100°.  (An array of aperture 6° or larger would not 

be able to resolve a branch of this small extent) .  Also to 

project BC to include IJ does not give a plausible PKP branch. 

The GH branch extends from about 140° down to 69°, separ- 

ated from the IJ branch on the travel time curve by less than 

2 sec at 95° and only 7 sec at 80°.  Attempting to identify 

IJ with GH as one and the same branch encounters a serious 

difficulty that requires explanation beyond geometrical ray 

theory.  As a whole, the PKKP GH branch contains compari- 

tively very low seismic energy.  The presence of the 

1?3 
1 
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Intermediate branch CI, IJ forces the GH branch to have a 

lower slowness factor than those of most core models. 

The DF branch extends from   160° to 0°.  One Intu- 

itively expects only meagre observations because of the 

large distances traversed in the core and the depletion of 

the energy during partial reflections at the many reflecting 

Interfaces.  This accounts for the fact that the DF branch 

was not observed for PKKP phase. 

4. THE CORE-MANTLE BOUNDARY (CMB) 

The velocity distribution a' the base of the mantle and 

thi CMB are still an issue of controversy.  The branch AB 

of the core phases and, in particular, the location of the 

terminal point A are a useful tool In determining, the para- 

meters of the CMB.  Intrinsic to the argument's validity is 

the following assumption:  It is highly Improbable that the 

limiting point A, a consequence of the abrupt velocity drop 

at the CMB, should also coincide with a velocity peculiarity 

in the outer core. 

Since the section BC (Fig. 7) and the lower part of AB 

or the dT/dA curve for the stripped core are well established 

from the PKKP array observations, and are not critically in- 

fluenced by the velocity distribution at the base of the 

mantle, it is reasonable to project the curve back into the 

SKS region continuously and smoothly to join the Jeffreys 

SKS curve.  This portion of the curve (the insert. Fig. 7) 

provides superior cont-.ol ot the p - A relationship near A 

12k 
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than do the phases P, PcP, PKP or PKKP.  Of the two core 

phases PKP is the less convenient to use because of the 

possible overlap of arrivals from either side of the globe 

If A Is beyond 180°.  Besides, PKKP advantageously doubles 

both the travel time and distance traversed In the core. 

For all p 

&K (P) '-  {APKKP(P> " APCP (P)} (8) 

and in particular at point A.  For an n-multlply reflected 

core phase, equation (8) can be generalized to 

Apcp(A) - ApKnp(A) - n AK(A) (8a) 

J 

Unfortunately, the limiting values A(A) and p(A) for both 

PcP and the core phases are debatable.  In this study 

ApKKp(A) is estimated to be 260°; c.f. 262* by Engdal (1968a, 

p 56).  It is very unlikely that any short period wave dif- 

fraction mechanisms could account for the relatively good 

observations near 260° and beyond. 

Equation (8) or (8a) is shown schematically in Fig. 12a 

by sketching iso-A    (A) curves on a p-&p p(A) plot. Reason- 

able bounds can be imposed on the variables, as indicated. 

From the data studied here together with data from Engdal 

(1968a, b), Johnson (1969), Fairborn (1968) and Herrin (1968), 

the following values were adopted: 

•25 
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p(A) 'v 4 . 45 sec/deg 

A« «(A) > 109o(marking the edge of the P shadow) 

AK(A) % 77° 

Using the Herrin Tables, the jT/dA values for the Mantle 

P arrivals beyond 90° were adjusted and projected to the 

above limiting values.  Fig. 12b shows the section under 

discussion.  Th«; velocities at the base of the mantle were 

recomputed, and are shown in Fig. 12c together with tho 

Herrin (1968) P velocities. 

The negative velocity gradient at the base of the 

mantle was proposed earlier by Gutenberg (1959, p 95) and 

other investigators, in particular those studying primarily 

core phases (e.g. Ergin, 1967; Husebye and Toksoz, 1968). 

The location of the edge of the shadow zone has varied as 

the number of investigators, for example 105* by Jeffreys 

(1939), 103.5° by Gutenberg and Richter (1934), 90° by 

Macelwane (1949), 96.5° by Sachs (1966), 100* by Johnson 

(1969), and on the average (Herrin 1968 Tables) 100*.  Ob- 

servations beyond this limit have been ascribed to diffrac- 

tion around the CMS.  Theoretical studies, notably by 

Sholte (1956), Alexander and Phinney (1966), Phlnney and 

Alexander (1966), Phlnney and Cathles (1969), and Richardson 

and Teng (1969) have been carried out to quantify the ob- 

servations.  When reduced to the stage of numerical evalua- 

tion by asymptotic or other methods, the diffraction theory 

128 
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becomes (strictly) valid only for waves of longer periods 

than la observed in core phases (Msec).  As suggested 

earlier, the amount of energy of core phases in the 

'shadow* is more than can be attributed to diffraction 

alone. 

The negative velocity gradient proposed here leads to 

the following results: 

(i) The edge of the shadow zone is farther than 100°, and 

in this thesis it is located at 109*. 

(ii) The depletion of amplitude beyond 100° is due to the 

focussing of rays away from the mantle into the core. 

(Hi) As a consequence of (ii), observations preceeding A 

(as previously located) on branch AB of the core phases be- 

come true refractions, thus point A is relocated at 186* 

for PKP. 

A change in velocity near the CMB alao necessitates a 

reevaluatlon of the radius of the core.  The radium r «3477 
c 

km was used as a guide although r  - 3476 km was finally 

adopted as the radius of the core. 
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V. DISCUSSION OF THE CORE VELOCITY MODEL 

A complete geophysical study of the Earth's Interior 

consists of the determination of the existing physical 

conditions (temperature, pressure, etc.)» the physical 

properties (density, Incompresslblllty,  rigidity, phase 

or state, etc.) and ultimately the composition and Identif- 

ication of the atomic and molecular constituents of the 

Earth's deep interior.  In the case of seismic velocities, 

the model must also be consistent with a plausible distrib- 

ution of density, Incompresslblllty and rigidity. 

In determining gross features of the earth, these con- 

siderations may not be critical. However, when inferring 

fine structure involving rapid or abrupt variations in seis- 

mic velocity, or ultimately changes in the fundamental vari- 

ables (density, incompresslblllty and rigidity) it is essen- 

tial that the model be checked against other experimental or 

theoretical evidence. 

The velocity distribution derived here was obtained 

from dT/dA observations of the core phase PKKP, and PKP 

travel time data where PKKP data were insufficient or 

lacking.  It is important to discuss some of the implica- 

tions of the PKKP velocity model. 

That the outer core (SKS, ABCIJ) is fluid is seismo- 

logically indisputable.  The outer core velocity distribu- 

tion derived here presents no difficulty because of the 

^28 
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absence of any drastic variations.  The steady velocity 

gradients in these regions can be attributed to the in- 

fluence of pressure and temperature.  The velocity devi- 

ations in the region CIJ might be due to either a phase 

change or a slight chemical inhomogeneity in the deeper- 

most parts of the outer core. 

It has been postulated (Bullen, 1946, 1958) that the 

inner core material is in the solid state and therefore 

should transmit both dilatatJonal and shear waves.  The 

existence of the transition zone is widely accepted by most 

seismologists, and its complexity is also well recognized 
0 

(Sublza and Bath, 1964).  Gutenberg (1957, 1958) postulated 

a dispersive frequency-dependent region to explain the PKIKP 

or DF branch forerunner.  Bolt (1964) used ordinary ray 

theory to explain these precursors by constructing a new 

refraction branch (GH) without recourse to diffraction 

or dispersion.  Adams and Randall proposed a transition 

zone comprising two shells to explain their observations of 

the triplication of the PKP branch. 

Although not observed in the PKKP core phase, PKP waves 

associated with the transition zone are peculiar and dif- 

ferent from those whose ray paths scan the other regions. 

They are generally of shorter period (Gutenberg, 19S8;Subiza 

and Bath, 1964).  Husebye and Toksöz (1968, p8) describe 

the precursors as "in general long oscillatory trains sim- 

ilar to guided waves"; they further speculate them as such. 
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originating from the core-mantle boundary. 

The presence of the transition zone, the negative vel- 

ocity gradient deduced here, and the presence of the vel- 

ocity structure IJ (Fig. 8) at the base of the outer core 

require explanation.  It is conjectured that the transition 

zone is in the liquid or viscous state but is of the tame 

chemical composition as the inner core.  The inference that 

inner and outer cores are chemically different was postu- 

lated earlier by Bullen (1954). 

The velocity discontinuity at the interface between the 

outer core and the transition zone follows as a consequence 

of the compositional change.  The velocity Jumps at the 

inner core interface is due mainly to the abrupt contribu- 

tion of the rigidity to the wave velocity as a result of 

sudden solidity.  The negative velocity gradient into the 

inner core could be accounted for in the following manner: 

both the density (p) and the incompressibility (k) increase 

with depth (varying with temperature and pressure) but k 

(in the absence of rigidity) changes more slowly over the 

extent of the transition zone such that k/p is a slowly de- 

creasing function of depth. 

It is not inconceivable that the liquid-liquid inter- 

face between the outer core and the transition zone permits 

the diffusion across It of the molten materials from either 

side. In particular, from the transition zone into the outer 

core giving rise to the structure IJ (Fig.8 ). 
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The slight decrease of the mantle P velocity at the 

CMB is physically not unrealistic; possible softening of 

the material would result in a corresponding drop in ri- 

gidity. The S wave velocities at the CMB would reflect 

better such a diminution in shear modulus (y), thus pro- 

viding a simple (though difficult to achieve) check on the 

postulated velocity distribution. 
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VI .  SUMMARY AND CONCLUSIONS 

From observations of the seismic core phase PKKP, as 

recorded at LASA, a new velocity distribution in the earth's 

core has been derived.  The velocity model for the core is 

essentially tripartite, but differs in several significant 

points from other proposed models (Fig. 1 and 8): 

(i) The velocity gradient in the SKS region is higher, 

and in the ABC region lower, than the standard 

Jeffreys model. 

(ii) The well defined travel time branch (IJ) observed 

for the core phase PKKP leads to a new slightly 

humped velocity structure at the base of the outer 

core between radii of 1^54 and 1426 km. 

(ill) The transition zone is found to be narrower (about 

200 km) than most existing tripartite core models 

and it is characterized by a slight negative vel- 

ocity gradient. 

(Iv) The P wave velocities at the base of the mantle 

are deduced to possess a small negative gradient 

at the core-mantle boundary. 

It is further postulated that the transition zone (liquid 

or viscous) and the inner core (solid) have the same chem- 

ical composition. 

Besides the results summarized above, several other 
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important points can be made: 

(i) dT/dA observations at LASA require azimuthal cor- 

rections to account for (possibly) the dipping 

Moho discontinuity, especially in the case of low 

wave slownesses, 

(ii) Because of the convenient location, with respect 

Co epicentral distance, of the relevant branches, 

observations of the core phase PKKP surpass PKP 

in deciphering the structure of the outer core. 

However, PKP observations provide better data for 

the study of the transition zone and the inner 

core, 

(ill) The core phase PKKP can be used to discern the 

structure at the core-mantle boundary. 

Further refinements in deciphering the fine structure 

of the earth's core, in particular details of the transi- 

tion zone and Che inner core must await detailed analyses 

of arrivals from the GH and DF branches of the PKP core 

phase, possibly using continental sized arrays. 
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APPENDIX A 

LEAST SQUARES METHOD FOR DETERMINING THE SLOWNESS VECTOR 

Refer to Fig. Al. 

(a) Let r.(r ,6 )/r . (x . , y,) be the polar/cartesian coordin- 

ates of the seismometer S , and the origin of the coordinate 

system is arbitrarily fixed near the center of the array, 

all coordinates measured in the tangent plane at the origin. 

In our case the center seismometer of the AO subarray was 

used as the origin. 

(b) Assume that the plane wave front approximation is valid, 

and characterize the apparent wave front by 

(i) T the arrival time (actual or relative) of the wave 

front at the origin 

(11) the slowness vector L = (dT/dA,u) where dT/dA«p 

is the slowness factor, and ui the azimuth of approach 

(c) Let T  be the computed time (i.e. expected under the 

assumed conditions of plane wave front approximation) and 

T ' be the observed (measured) time at S.. 

The procedure is easily accomplished by minimizing o, 

defined by 

n 
o(p,ü).T) - E  (T1 - T^)

2 

1-1 
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Now, T1 - T + L'R1 ; R1 - vj* 

or T  - T + pR. cosCw-e.) 

where a is introduced to account for the units of L or p 

(sec/deg).  T, p, u are obtained in the standard way by 

setting the partial derivatives of o equal to zero, where 

o is explicitly given by 

n 
(p,ü.,T) - E  {T + pR  cos (u»-e ) - T M2 

i-1        ■■ ii 

Although the resulting equations are not linear in 

p,u,T they are easily solved C« yield p,T as functions of 

u), and tu is obtained from a cubic in tan at.  The choice 

of the required root is obviated bythe fact that two of the 

three roots are always complex conjugates with finite im- 

aginary parts; these solutions are discarded as unphysical. 

The uniqueness of the physical solution can easily be dem- 

onstrated by using the more commonly ustd cartesian coordin- 

ates L - (L ,L ) as variables instead of the polar L ■ (p,u) x  y 

Hence 

o(Lx,Ly,T) - E^T + LxX1 + L^ - T^)2; X^-Xj/a .y^a 

It is interesting to note the difference between the 

139 



41 

method described above and other methods in common use, 

e.g. Otsuka (1966), in which T - (E T ')/n by choice of 

Che origin at the 'center of gravity* of the array such 

that ^.x  - 0 ■ ^iVi'     For an stray where one or more 

seismometers may be out of order (or unreadable) at the 

time of arrival of an event, such method (e.g. Otsuka) 

demands the computation of a new origin each time.  The 

method used in this thesis maintains the origin at the 

center seismometer of the AO subarray. 

A computer program was written to find p,a>,T as well 

as 6T. ■ T. - T.' from which the standard errorsa_,o ,a 
111 T  p  U 

are estimated.  Note, the errors are determined without 

reference to any particular earth model.  These errors re- 

flect, first, the accuracy of the' measurements (experimental 

errors), and second, local and global distortions of the 

assumed plane wave front.  In the data analyzed errors in 

6T/6A are of the order of + 0.10  sec/deg or less, and in 

u + 1.5 deg. 

The method of least squares, i.e. minimization of the 

delay time residuals, is not r.he only one available for de- 

termining (l6^/6tl)),   and u * .  Another method  is to use digital 

data together with beam steering. 

Let S,(t) be the finite time series of the i th seis- 

mometer [series terminated to contain only the branch of 

the phase being studied].  The array is steered in a partic- 

ular direction by delaying each channel by an amount related 
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to the slowness vector, and the traces summed to give the 

beam S(L,t): 

y 
n 

S(L.t) - I     S   (t   -T ) 
1-1  * 

T. - L* R - pR  cosCu-e,). 

The desired slowness vector Is that which gives maximum 

energy e 

£(£) - £|S(t,t)|2 

t 

such Chat 7  e(L) • 0 

9 9 9 19 
where ? = ( ,  ) or (—, ) 

9L 9L 9p p 9(i) X     y r r 

This method Is similar to velocity filtering (Hannon and 

Kovach, 1966) in which the beam S(L, t) is used as the in- 

dicator of phase velocity. 
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APPENDIX B 

AZIMUTHAL CORRECTION FOR dT/dA FOR A SINGLE DIPPING PLANE 
INTERFACE 

When observing telcseimlc events by means of an array 

(using the method of plane wave front), the objective is to 

measure the slowness vector L, defined 

L = (dT/dA,w) 

i.e., the vector of magnitude dT/dA (the slowness factor) 

and direction ui (the azimuth).  We know in the case of a 

spherically symmetric earth dT/dA is equal to the seismic 

ray parameter p: 

r sin i 
P =   

V 

However, in the presence of near surface planar stru- 

tures under the array, the observed slowness vector L* is 

different from that expected of the spherical symmetry.  By 

use of the least square method on the time delays of the 

array seismometers, L' can be obtained: 

L' s {(fiT/iA)', »•) 

Note: (ÖT/ÖA)' is used to denote the observed slowness factor 

to avoid confusion with the dT/dA used in the case of perfect 
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spherical symmetry.  ui' Is the observed azimuth. 

It Is the purpose of this appendix to derive a con- 

venient ielation between L and L1, and since u can be com- 

puted from the epicentral azimuth, all we need is the re- 

lationship between dT/dA and (6T/6A) ' . 

DERIVATION OF FORMULA 

Flg. Bl shows the geometry considered.  The dipping 

interface separating the two media of velocities V, V' is 

defined by the unit normal vector n: 

n ■ (sin D cos (2, sin D sin ft, cos D) 

where D is the dip, and 0 Is the azimuth of the normal. 

Cartesian axes are chosen to form a right-handed system 

with the z-axis vertical (up) and the x-axis pointing East 

The Incident and refracted plane wave beams are defined 

by their unit wave vectors k and k* respectively 

k - (sin 1 cos u, sin 1 sin ut, cos 1) 

k* - (sin 1* cos u', sin 1* sin w1, cos i') 

where the angles 1, 1'; u, u' are analogous to 0 and ft. 

Snail's law of refraction is conveniently written: 
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k + ßn 
k' - — (1) 

1 +20n'k + ß2 

where ß is defined by the condition 

sin a'   sin a 

V 
(2) 

a, a1 are the angles the incident and refracted rays make 

with the normal: 

A    A A   A 

cos a ■ n»k, cos a* ■ n^k1 (3) 

A       A A 

Equation (1) implies k, k', n all lie in the same plane, and 

equation (2) is the usual condition of proportionality of 

sines and velocities in the two media. 
A 

Multiplying (1) by n and squaring gives 

cos2 a + 2ß cos a + ß2 

cos2 a' - ■■ ■        (4) 
1 + ß2 + 2ß cos o 

Using (2) to eliminate a* gives 

1 + ß2 + 2ß cos a - (V/V)2        (5) 

" """ iM 
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- cosa  + (cos2 a + (V/V)2-   1] 1/2 

For the purposes of correcting dT/dA the distinction be- 

tween ß  and ß_ Is immaterial.  However, ß  is valid for 
A   A      «>   A* 

n*k, n'k* s^ 0, and ß_ otherwise.  Also observe that ß can 

be complex if cos2 a + (V/V1)2 -1 < 0; this occurs wher; 

orltlcsl refraction is exceeded. 

Using equation (5), equation (1) can be rewritten as 

V  V     V 
(6) 

or In cartesian components 

sin 1 cos OJ  sin 1* cos oi'    sin D cos ü 
 e (7) 

V V' V 

sin 1 sin u  sin 1' sin u)'    sin D sin Q 
 .   -3   

(8) 

cos 1   cos 1'    cos D 
  - ß   

V      V       V 
(9) 

It should be pointed out that equations (7)-(9) are not 

independent; only two are, the third follows from the 

IW 



kl 

normalization condition of equation (1).  Thus, at most 

we can solve for only two variables.  Normally one solves 

for either u and 1 given u' arj i* or vice versa, for 

known V, V1, H, and D.  Hence we can use the three equations 

to extract two linearly Independent equations appropriate 

for our use.  Two different combinations of (7) and (8) give 

sin i sin 1* 
  sin (fl - w) -   sin (0 - n*)    (10) 

V 

sin 1 sin 1' sin D 
  cos (0 - u) -   cos (fi - w^-S  

V V 
(11) 

Using (9) 3 can be eliminated from equation (11) to give 

sin 1 sin i* cos i   cos i' 
  cos(n-ü)) -   co8(n-u,) + {  -  }tan D 

V 
(12) 

We know 

and 

r sin 1 
- p - dT/dA 

r sin 1 

V 
(6T/ÖA)1 - p' 

1AG 
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^ 

where p' will be used interchangeably with CöT/öa)' to 

facilitate writing.  Also, define P = r/V, P* - r/V' 

(r is the radius from center). 

Now we can reduct equations (10) and (12) to 

p sin (fl - u) » p' sin (ß - u')       (13) 

p cos (fi-u)-/p2 - p2 tan D - p' cos (.n-u* )-/?* 2   -   p^tan D 

(14) 

Equation (13) can also be written 

sin (fl - u') 
dT/dA - (öT/fiA)'   (15) 

sin (fi - u) 

Equation (15) depends only on the azimuth angles Q, 

fa), u*.  It is remarkable that it does not depend on the dip 

D or the velocities V and V explicitly.  This is a great 

advantage for investigations of the earth's deep interior 

not directly concerned with the immediate geology under the 

array.  Thus from the knowledge of ft, dT/dA is easily cor- 

rected from the observed (6T/6A)' and u*, and the computed 

azimuth u. 

Equation (15) has one apparent set back.  For real 

(numerical) data the formula is inappropriate for azimuth 
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u> in the neighborhood of Ü, I.e. for waves arriving per- 

pendicular to the strike of the dipping interface.  There 

is, however, no singularity at CJ « fi because as w -*■ Q so does 

u)'.  Hence, by L'Hospital's rule, as w ->• fi 

dT/dA =(6T/ÖA)' 
d{sin (J2 - a)') ) 

d{sin (fi - a))} 
a), ü)' -♦• ß 

(6T/6A) ' (dto'/duj) 

0), ü)1 -*• n 

where du'/dw does not equal unity at u» ■ u' ^ fi.  Thus 

(dT/dA) )< (ÖT/6A)' at to = fi as one might suspect at first 

glance of equation (15).  The evaluation of du'/du is awk- 

ward but can be  circumvented by using equation (14) and 

letting (o, a)' ■*  Q. 

Another and simpler way of illustrating what happens 

as w ->■ Ü,   or il  + 180 is the following.  Define the azimuth 

anomaly 0 ■ u - u', ,ind rewrite (15) or (13) 

p = p1 {cos (fi + sin $   cot (fi - uj)} (16) 

In   the   neighborhood   of   fi   -   u   =   0   or   180°,      (>   is   very   small 

and   (16)   becomes 

p   'v  p'   {1   «•  ((i   cot   (fi  -   UJ)};   (|>[rad]   <<   1 (17) 

1^8 
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It can easily be seen Chat the correction term $ cot 

(u   - u) gets very large for a small error  £$  because 

cot (0 - w) ■* •  even though in the theoretical (analyt- 

ical) case 

limit (sin $ cot (fi - u)} ■*•  finite, 
♦ -»■0, ü)-»-fi 

Thus if  $ -► $ + 6$  (finite error), then 

p 2: P* (I + <l> cot (0 - to)} + p1«^ cot (fi - u)      (18) 

For finite error 6$     it is clear the error in  p  is 

intolerable as  ft - u> -*■ 0  or 180°. 

In these bad azimuth windows the use of equation 

(14) is recommended.  Equation (14) is a quadratic in  p. 

An estimate of the size of the window can be easily ob- 

tained from equation (16).  We demand the following in- 

equality 

I«* cot (fi - Ü)) I << 1 

In the data studied.   6* ^  0.0A rad or 2°.  Hence \ü   - U) 

>> 0.04 rad or 2°.  Thus it is reasonable not to use (15) 

in the ranges  -30° < fl - u < 30 or 150° <   n-u   < 210°, 

but instead use equation (14), which has solutions 
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p = p' F+0), u», a,1, D, V, V1) (19) 

where:  F  ■  B +  ß  - C 

cos (Q   - m)[cos (Q - a)') - Y tan D] 
2 2 

cos  (fi - a)) + tan  D 

, (V,/V)2(P'/P
,)2 - fcos (SI   - to') - v tan Pi2 

2 2 
cos  (fi - w) + tan D 

Y = { (P'/p')2 - 1 }1/2 

F+ holds for  0 < S2 - u < 180°, and F_ for -180° < fi - 

w < 0  although In their actual application in the reduc- 

tion of array data they are more restricted to narrower 

windows.  In these windows, errors in  ^  do not give 

excessively large errors in  p  or  dT/dA  unlike equation 

(15).  Equation (19) requires knowledge of both the dip 

D  and the velocity contrast  V, V.  If unknown, esti- 

mates of  D, V, V* can be obtained by trial and error 

noting the shift in  dT/dA  values relative to those 

values already corrected for using the first correction 

formula. 
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LIMITATIONS AND CONDITIONS OF USE 

It should be emphasized Chat when using an array to 

determine  dT/dA, a fundamental assumption is made: 

that the medium above the depth of penetration,  H,  of 

the array (see Fig. B2) is homogeneous and uniform or 

as nearly close as the accuvary of the measurements de- 

mands.  The relation 

jmyJ »     - r sin i dT/dA - p =  y  

holds strictly only for  V  sufficiently uniform above 

a depth  H, where 

H ■ r6A sin 1 cos i 

V2 -fA p (F2 - pV''2 

where  £A  [radians] is the aperture of the array.  This 

condition implies that measurements of  dT/dA by plane 

wave approximation cannot resolve structures above a 

depth  H.  For the phase PKK? H t 30 - 40 km and there- 

fore the plane interface corrected for is probably the 

M discontinuity at depth 40 km or deeper.  It is worth 

emphasizing that the method described in this appendix 

is essentially for correcting r.rray  dT/dA observations 

only, and not to discern exact nes-r surface structures. 
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FIGURE CAPTIONS 

Fig. i  Kxisting core velocity models of the Earth (after 
Hannon and Kovach, 1966).  The core model deduced 
by Huscbye and Toksöz has a velocity gradient in 
the SKS region steeper than that of Jeffreys, a low 
velocity zone in the AB zone (r - 2000-2530 km), 
and a negative velocity gradient in the transition 
zone . 

Fig. 2  Location of events with respect to LASA.  Solid lines 
show azimuth directions to LASA. 

Fig, 3  Geometry for the theory and array determination of 
dT/dA.  It is approximated that the array lies on 
she tangent plane rather than the curved surface. 

Fig. A  The L?™6 Aperture Seismic Array (LASA), Montana. 
Only the subarrays used in this study are shown. 

Fig. 5  Plot of azimuth «nomaly versus eplcentral azimuth. 
Ü  - N20W is the estimated horizontal direction of 
normal to the dipping interface.  Azimuth windows 
labelled-F+ are the ranges over which the second 
correction formula p ■ p'F+ is used. 

Fig. 6  dT/dA observations determinad at LASA.  The solid 
line is the best fit curve (by eye)» the dashed 
line is that for the Bolt's model.  loint labelled 
'X* was ignored in the curve fitting because of its 
isolation and possible misidentification.  Points 
'Y' were also Ignored because of the requirement 
that dT/dA should be a piece-wise monotonlcally 
decreasing function of A, and also because of their 
azimuth proximity to the direction of the normal to 
the dipping interface where the first correction 
formula is inapplicable.  Where two distinct arrivals 
are measured in tue vicinity of 01, the two points 
are Joined by a thin line. 

Fig. 7  dT/dA curve for the stripped core.  The insert is 
a magnification of the curve in the vicinity of 
the limiting point A. 

Fig. 8  The PKKP core velocity model together with the 
Jeffreys model and the Herrin P velocities at the 
base of the model for comparison. 
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Fig. 9  PKP slowness factor and travel time curves.  Re- 
flection branches arc not shown on the travel 
time curves. 

Fig. 10 PKKP slowness factor and travel time curves.  Re- 
flection branches have been omitted. 

Fig. 11 Travel time observations of multiply reflected 
core phases (Engdal, 1969).  The figure was kindly 
provided by Dr. E. Engdal.  Only the phases PKKP 
and PKKKP are reproduced. 

Fig. 12 (a) Schematic representation of the equation 

APcP (A) " APKKP (A) " 2Ak(A) 

for various assumed A     and A». 

(b) Reconstruction of the dT/dA curve for the mantle 
P waves at the base of the mantle. 
(c) Resulting velocity model (thick curve) compared 
with the Herrin P wave velocities. 

Fig. Al Planar geometry considered for the least squares de- 
termination of the slowness vector. 

Fig. Bl Geometry of the incident and refracted beams with 
respect to the dipping interface. Note, vectors are 
actually in 3-d and not necessarily in the plane of 
the paper. 

Fig. B2 Definition of H, the depth of penetration of the 
array. Diagram is drawn in the plane of L and the 
radius from the Earth's center. 
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