T mETTTTaTEEE mey e TTTERLONEE W

TECHNICAIL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION

FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

by

Judith Irene Hirsch

Prepared for the

Office of Naval Research
Information Svstems Branch
Arlington, Virginia

Contract NC0Ni4-67-A-0216-0014

Rescarch Project NR 049-153 ' D D C
] @Pﬂﬂﬂﬁm

APR 28 1378 ';I
_JELU Lb.‘
C

UNIVERSITY CF PENNSYLVANIA
[he Moore School of Electrical Engineering
Philadeiphia, Pennsylvania 19104

Report No., 71 21

Ruproducrd by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springlie'd Va 22151

o

s

o = g K

PP T i i e R E

University of Pennsylvanis
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
Philadelphia, Pennsylvania

TECHNICAL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION
FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

by

Judith Irene Hirsch

April 1971

Submitted to the
Oftice cf Naval Research
Information Systems Brench
Arlington, Virginia

under
Contract NOOO1lL-6T7-A-0216-0014
Research Project NR 04L9-153

Reproduction in whole or in part is
permitted for any purpose of the
United States Government

Moore School Report No. T1-21

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION
FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACIL.TY

Abstract

The purpose of the Supervisor in an Fxtended Data Management i
Facility (EDMF) 1s to direct the Facility's handling of & user's request !
for service. The Supervisor fulfills its task through the use of five :
main functions: Access Control, Retrieval Initiaslization, File Search- :
ing, Record Validating and Record Formatting. The major and most

important component ri the Retrieval Initialization phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design

and implemer.tation of the Access Control snd Retrieval QOptimization

{functions. uMacro instructions are the mechanism through which a user's

program can call upon the EDMF. The Authority Item check is the EDMF's

security control over file access while the Prime Keyword Search is the

method used to optimize the retrieval strategy. The Authority Item check

and the Prime Keyword Search are two of the major concepts of the Extended

Data Management Facility.

Security Classification

DOCUMENT CONTROL DATA - R & D "]
(Security classiflication ol title, body of abstract and indexing annotation munt be enisred when the vverall repor! I claselited)
! OHIGINATING ACTIVITY (Corporate author) 20, REFORT SECURITY CLASSIFICATION
The Moore School of Electrical Engineering UNCLASSIFIED
University of Pennsylvanla 2b. GROUP
Phila., Pa. 19104

3 REPORT 1I1TLE

ACCESS CONTROL AND RETRIEVAL OPTIMIZATICON FUNCTIONS OF THE CUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

4 OUSCRIPTIVE NOTES (Type of report and, inclusive datea)

Technical Report

8. AUTHORI(S) (Firet name, middle initial, last name)

Judith I. Hirsch

§. REPORY DATE 78. TOTAL NO. OF FPAGES 7b. NO. OF REFS
April 1971 118 i1
88. CONTRACT OR GRANT NO. 24. ORIGINATOR'S REPORT NUMUER(S)

NOOO14-6T7-A-021.6-001k
b. PROJEC T NO

NR 049-153

c. . 90. OTHER REPORT NO(S) (Any other numbere that may be aseigned
this report)

Moore School Report No. 71-21

10 DISTRIBUYION STATEMENT
Reproduction in whole or in part is permitted for any purpose of the
U. £. Government.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTtVITY
Office of Naval Research
Information Systems Branch
Arlington, Virginia

13. ABSTRACT

The purpose of the Supervisor in an Extended Data Management Facility (EDMF)
is to direct the Facility's handling of a user's request for service. The
Supervisor fulfills its task through the use of five wain functions: Access
Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most important component of the Retrieval Initialization
phase is the Retrieval Optimization subfunction. This report is concerned mainly
with the design and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which & user's program
can call upon the EDMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize
the retrieval strategy. The Authority Item check and the Prime Keyword Search
are two of the wajor concepts of the Extended Data Management Facility

DD o™ 1473 (PaGE 1)

S/N 0101-807-6811

Securnity Classification A- 31400

Security Classification

KEY WORDS

LINK A

LINK B

LIN®K C

ROLEK

wT ROLE

wt

ROL &

soengs control
vontrol blocks
File wirectory
l'ile search

Flle status
(eneralized file
[nput parameters
Optimization functions
Retrieval
Otoragle
“ubroutines

DD 2™ .1473 (eacx)

S/N 0101:-907-6821

Security Classification

A-31400

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTLON

1.1
1.2

1.3

CHAPTER

2'1

2.2

2.3

2.4

2.5

The Extended Data Management Facility
The Supervisor of the EDMF

The Scope of the Thesis

2 THE OPEN FUNCYION
Definitions

2.1.1 Attribute~Value Pair
2.1.2 Record

2.1.3 Keywords

2.1.4 XKeyword Lists

2.1.5 File and Directory
2.1.6 Generalized File Structure
2.1.7 Request Description
2.1.8 Entering the EDMF
Purpose of the (pen Function
Access Control

2.3.1 Introduction

2.3.2 File Level Check
2.3.3 Partitioning the File
2.3.4 User's Authority Item
Control Blocks

2.4.1 service Status Block

2.4.2 File Status Block

Return to User -

iv

Page

ﬁ Ao I 0’\. ;= F o F

22

23
2k

TABLE OF CONTENTS (continued)

2.6 The EDMF's OPN Macro

CHAPTER 3 THE RETRIEVAL INITIALIZATION FUNCTION
3.1 Purpose
3.7 Control Blocks
3.2.1 DMS Open
3.3 Retrieval Optimization
3.3.1 Prime Keywords
3.4 1SAM Keys
3.5 Record Format Numbers
3.6 Control Passed %0 the File Searching Function

3.7 The EDMF's RETR Macro

CHAPTER 4 THE CLOSE FUNCTION
4.1 Purpose
4.2 Control Blocks
4.3 Return to User

4.4 The FDMF's CLSE Macro
CHAPTER 9 SIMMARY
BIBLIOGRATHY

APPENDIX A MACROS
A.1 Open Macro

A.1.1 (enerated Parameter List

A.2 Retrieval Macro

Page
25

26
26
26
26
27
28
29

BB Y%

35

A-1
A-1
A-2

A-L

TMBLE OF CONTENTS (continued)

Page
A.2,1 Generated Parameter List A-6
A.3 Close Macro A-T
A.3.1 Generated Parameter List A-8
APPENDIX B ROUTINES B-1
B.1 Routine OPNPROC B-1
B.1.1 Entry Points - B-1
B.1.2 Exit Points | : B-1
B.1.3 External Subroutine Calls B-1
B.1.k ZInput Parameter List B-3
B.1.5 Register Conventions B-3
B.1.6 Internal Work Area B-4
B.1.7 Internal Codes . B-6
B.1.8 Return Codes B-8
B.1.9 Flowchart B-8
B.2 Routine FIFDIRS1 B-14
B.2.1 Entry Points B-1h4
B.2.2 Exit Points B-14
B.2.3 External Subroutine Calls B-1k4
B.2.4 Input Parameter List B-15
B.2.5 Register Conventions B-16
B.2.6 Internal Work Area B-16
B.2.7 Internal Codes B-17
B.2.8 Return Codes B-17
B.2.9 Flowchart - B-18

vi

TABLE OF CONTENTS (contimied)

B.3 Routine MACPROC

B.L

U

B.3.1 Entry PRoints

B.3.2 Exit Points

B.3.3 External Subroutine Calls -
B.3.4 Input Parameter List
B.3.5 Register Conventions
B.3.6 Internal Work Avea

B.3.7 Internal Codes

B.3.8 Flowchart

Routine RETRIEVE

B.4.1 Entry Points

B.4k.2 Exit Points

B.!'.3 External Subroutine Calls
B.4.h Input Parameter List
5.4.5 Register Conventions
B.4.5 1Internal Work Area

B.4.7 Internal Codes

B.4.8 Flowchart and Supplementary Diagrams
Routine FORPROG

B.5.1 Entry Points

B.5.2 Exit Points

B.5.3 Input Parameter List
B.5.I Register Conventions
B.5.5 Interual Work Area

B.5.t Internal Codes

vii

Page
B-22
B-21
B-21
B-21
B-22
B-2h
B-2k
B-25
B-26
B-30
B-30
B-30
B-30
B-30
B-31
B-3
B- 34
B-35
B-47
B-47
B-47
B-47
B-48
B-49
B-49

TABLE OF CONTENTS (continued)

B.5.7 Flowchart

B.6 Routine CLSEPROC
B.6.1 Entry Points
B.6.2 Exit Points
B.6.3 External Subroutine Calls‘
B.6.4 Input Parameter List
B.6.5 Register Conventions
B.6.6 1Internal Work Area
B.6.7 Internal Codes
B.6.8 Return Codes

B.6.9 Flowchart and Supplementary Diagram

APPENDIX C CONTROL BLOCTKS
C.l File Status Block
C.2 Service Status Block
C.2.1 User Description Block

C.3 Record Format Block

viii

B-49
B-5k
B-5k
B-54
B-54
B-55
B-56
B-57
B-57
B-58
B-58

C-1
C-..
c-2
c-2

c-3

CHAPTER 1
INTRODUCTION
Today, there is a rapid and ever increasing growth ir the total
volume of information. This huge volume threatens to make the informa-
tion useless unless ways can be found to ~anage it. The purpose of the
Extended Data Management Facility (EDMF) is to provide a flexible,
general purpose, time-shared file management system for the or‘erly
accumulation end dissemination of information [9].

1.1 The Extended Data Management Facility

“he Extended Data Management Facility is an extension of the data
management system that presently exists at the Moore School on RCA's
Spectra 70/46 Time Sharing Operating System (TSOS). The EDMF makes use
of the services offergd under TSOS, especially the Data Management
System's Indexed Sequential Access Method (ISAM), and it also incorporates
its own routines into the operating system.

In order to encourage the use of the EDMF, it must be reldtively
simple to use. The EDMF simplifies for the user the problem of designat-
ing those records that he wishes to see. The user does not need to know
the actual addresses of the desired records but he merely must express
as a logical expression the characteristic contents of the records. The
EDMF then takes on the responsibility of determining the actual record
addresses and uses these addresses to retrieve the records. The heart
of the Facility is the implementation of the generaiized file structure
and its general retrieval algorithm as suggested by Hsiao and Harary
in [8]. For an overall description of the EDMF, the reader is referred

to [9].

1.2 'Me Supervisor of the EDMF

The purpose of the Supervisor in the EDMF 1s to direct the Facili-
ty's handling of a user's request for service. In this capac.ty, the
Supervicor assumes the roles of "doorman", "foreman", "administrator",
and "dispatcher". It is at first as a "doorman" who accepts the service
requests and initiates their request handling routines. Then as a
“foreman", the Supervisor regulates the use of the primitive storage
and retrieval routines [6] and system subroutines, and also optimizes
the storage and retrieval strategy for a time-sharing enviromeent. In
its role as an "administrator", the Supervisor controls the user's access
to files and validates the systems output of records to the user. It
is alco a "dispatcher" who returns the results of the service to the user.

In directing the handling of the user's requests, the Supervisor
performs five main functions: Access Control, Retrieval Initialization,
File Scarching, Record Validating, and Record Formatting. The major and
most important component of the Retrieval Initialization phase is the
Retricval Optimization subfunction. e five wain functions in
combination with each other satisfy the above roles which the Supervisor
mst ascume.

1.3 The Scope of the Report

Tis report 1s concerned mainly with the Access Control and
Retrieval Initialization Functions of the Su .rrisor. These functions
fulfill the role of "doorman" and partially those of "foreman" and
"adminictrator". Macro instructions are the "doonnan's" entrance into
the request handling routines. The Prime Keyword search is the "foreman's"
method of optimizing the retrieval strategy and the check of the user's

Autlority Ttem is the "adminictrator's" security control over file access.

A discussion of the macro instructions and the user's Authority Item

can be found in Chapter Two, the Open Function; while Chapter Three,

The Retrieval Initialization Function, contains a discussior of the

retrieval strategy.

CHAPTER 2

™E OPEN FUNCTION

2.1 Definitions

Before the Open Function can be discussed, the terms and concepts
which are basic to the EDMF must be given precise definitions. The
definitions used in this thesis are consistent with those in [7].
However, they will be found to be less formal and more descriptive.
2.1.1 Attribute-Value Pair

The most basic concept which must be defined is that of the
attribute-value pair. Let there be two sets, A and V. The elements
of A are those terms which are considered as "att:ibutes", and the
element of V are those terms which are considered as "values". Let
a third set D be the subset of the Cartesian product A x 'V, whose
elements are the ordered pairs of the elements of A and V. A single

elcment of D is called an attribute-value pair, and intuitively it

constitutes the basic element of information. Some examples of
attributes, values, and attribute-value pairs are shown in Example 1.
2.1.2 Record

A record R is a set of attribute-value pairs which collectively
convey some meaningful information. Often these attribute-value pairs
are referred ¢o as the fields of the record. An example of R, a subset
of the set of all attribute-value pairs, is shown in Example 2. The
attribute-value pairs in this record convey to the reader information

about a book on the subject of public education.

la:

1b:

le:

A set of attributes

A = {author, year, topic, abstract, text} .

A set of values

V = {Lieberman, 1960, public education, [the complete abstract
of a book], [the complete text of a book]}

A set D of ordered pairs which are attribute-value pairs

A x V=D = {(autior, Lieberman), (year, 1960), (topic,
public education), (abstract, [the complete abstract of a
paper]), (text, [the complete text of a paper])}

Example 1: Examples of attribute, values and
attribute-value pairs

R = {(avthor, Myron Lieberman),

(title, The Future of Public.Education),

(topic, public education),

(publisher, University of Chicago Press),

(year, 1960),

(abstract, [the complete abstract of the book]),
(text, [the complete text of the paper])]

Example 2: Record of a book on the subject
of public education

2.1.3 Keywords

A record can be characterized by any combination of the attribute-
value pairs which are in the record. Due to pragmatic considerations,
it would be desirable to have those attribute-value pairs which are
short and can be simply expressed, characterize the record. These
short attribute-value pairs are called keyworas, and will henceforth
be denoted symbolically by Ki’ i=1,2,...n. Thus we can refer to a
record R by referring only to the keywords in R. The record in Example
2 can be characterized by the set of keywords shown in Example 3. In
gencral, the set of keywords of a record R is called an index of the

record R and it 1s usually a proper subset of R.

The index of R = {(author, Myron Lieberman),
(title, T™e Future of Public Education),
(topic, public education),

(publisher, University of Chicago Press),
(year, 1960)]

Example 3: The keywords characterizing the
record in Example 2

At this point we would like to introduce a notational change
for the attribute-value pair. Hercafter an attribute-value pair will

be written in the following manner:

Attribute = Value

This 1s the actual notation used in the EDMF for specifying
attribute~-value pairs.
2.1.4 Keyword Lists

Each record is also characterized by another parameter which is
not part of the actual information conteined in the record. This unique
numher is the address of a record, which indicates the whereabouts
of the record in the computer storage. |

Each keyword K, in R may have associated with it the address of

i

another record R' which also contains the keyword X Effectively

1.
this address in R "points" to R' and for this reason it is called the

pointer of R with respect to K, or the Ki-pointer of R. If the record

i
R' is non-existent then the K1 pointer of R is known as the null pointer.
It will be assumed hereafter that every keyword has a pointer associated
with it. Thus we see that records containing a comnon kéyword Ki can
be linked by these pointers into a chain which is called a Ki-list.
Putting it wmore precisely, a Ki-list is a chain of records, each record
containing the keyword Ki’ satlisfying the following five conditions:
1) Each of the pointers in the K,-1ist are distinct.
2) Each non-null pointer is the address of a record in the
Ki-list only.
3) ‘There is one record not pointed to by any other record in
the Ki-list. This is the beginning of the Ki-list.
4) There is one record which has the null pointer; this is the
end of the Ki-list.
5) For every record in the k,-1ist at the address a_ (n>1),

there i8 a sequence of Ki-pointers

(‘1"2’ ceey an)

001 is the

HOLA - Beginning

of Ki-llat

Record
Address
001

050)

K 000 4~ Null pointer
) indicates End of
. ki-list

Figure 1: An illustration of a Ki-list

such that:

1) a, is the address of the beginning of the K,-1ist.

11) the record at tle address a, contains a K, -pointer

J

‘J'.'l fOl‘ J s 1, 2, seey n'lo
This means that for a given Ki’ a record cannot be in more than
one Ki-liat. The address of the first record in a Ki-list is known

as a Head-of-List Address or HOLA for short, and this term will be used
hereafter when referring to the beginning address of any Ki-list. In
Fioure 1, a typical Ki-list is illustrated, showing the beginning and
the end of the list and the pointers which chain the records together.
2.1.5 File and Directory

A file is a set cf records which completely contains all the
Ki-lists made up of those records. In other words, a file is a set:
vhose elements are records, which 15 the union of all the Ki~lists

vhich contain the records. The HOLA's of all the K,-lists in a given

i
file must be carefully noted and kept separate from the HOLA's of the
Ki-lists in another file because the same keyword, but with different
meanings, can occur in both these files.

This leade us to the concept of a directory feor a file. The
directory associated with & file contains the HOLA's of all the Ki-lista
in that file. For each keyword K1 used in the file, there is one entry
in the directory, the form of the entry being shown in Example L. More
precisely, a directory for a file is a sequence of m such entries vhere

m is the number of different keywords used in the file.

- 10 -

84817 PIOALIYN SYZ PUB SSTIUFT AI03O9aTd 943
aosm3ag dTYsuoT3eTay Teo180T ¥y3 Burmoys

2IN3oTI3S STTJd DPazITBIous) ® Jo ordmexy :zg oIndyd
STTd 94T
o 1
000 i 000 Ty 000 ot 000
210 10 oTO 600
T 1
210 % 110 3 oTu X 600
g00 LOO
I
500 t 10O %
780 200 160

1 A\ € [N.Hi ﬂ\\l\\\ ¢ \ﬂ,-
£30959310 YL (700 ‘€00 7 ‘9 ') (200100 ‘2 ‘9 ‘'X)

- 11 -

(Ki’ s Byj 805 855 coey aihi)

K, ~- the 1™ keyword in the file F.

n, - the number of records in F containing the
keyword Ki'

h, - the number of Ki-lists in F.

a,, - the HOLA of the o™ K -Lst in F.

Example 4: Format of a directory entry

2.1.6 Generalized File Structure

We can now define a generalized file structure as a file with

its directory. This file structure is called generalized because it can
be shown that many commonly used file structures such as inverted, index-
sequential, and multilist are actual;y_sPecial cases of the generalized
file structure [8]. An example of a generalized file structure 1is
shown in Figure 2.

As was evident in the directory form=c, there may be more than
one 1list corresponding to a particular keyword Ki’ but these lists are
mutually eXclusive because of the definition for lists presented
previously. In other words, a record containing the keyword Ki’ cannot
be in two different Ki'lists.

However, since a record mey have more than one keyword, it may be
in more than one keyword list. A record containing the keywords Ki and
KJ (vith 1 £ J), is & member of one K, -1ist and one KJ-list simultaneously.
For example, if a record contains both the keywords AUTHOR = LIEBERMAN and
YEAR = lQCﬂ, then that record would be in both an AUTHOR = LIEBERMAN 1list

and in-a YEAR = 1960 1ist. This is illus‘rated in Figure 3, where the

- 12 -

020 AUTOR = LIEBERMAN

080

080 | AUTIOR = LIEBERMAN

110
YEAR = 1960 115
110 |AUTHOR = LIEBERMAN 170
115
YEAR = 1960 000
170 | AUTHOR = LIEBERMAN 000
Figure 3: Example of intersecting K -list and K -list

Ki: AUTHOR = LIEBERMAN

KJ: YEAR = 1960

J

AUTHOR = LIEBERMAN list consists of records located at the addresses

. 020, 80, 110, and 170, and the YEAR = 1960 1ist consists of records
located at the addresses 030, 80, 115.
2.1.7 Request Description

When a person accesses a file, rarely does he want to see all

of the records in the file. Rather, he usually wants to see only that
part of the file which interests him. Such a partition can be accom-
plished by listing the addresses of the records which he wants. This,
however, is cumbersome and requires much research on the user's part
to find the addresses of the records in which he is interested. Another
way to partition the file would be to describe the records of interest

by listing their characterizing keywords in the form of a Boolean express-

? ion. This expression is called a user's requect description. Using
the propositional calculus, any Boolean expression can be uniquely written
as a disjunct of conjuncts, known as the Disjunctive Normal Form (DNF).

Some typical request descriptions could be

Lka: AUTHOR = MYRON LIEBERMAN
4b: AUTHOR = MYRON LIEBERMAN A YEAR = 1960
he: (AUTHOR = MYRON LIEBERMAN A YEAR = 1960) V (AUTHOR = HIRSCH)

Example 4: Typical request descriptions

All the request descriptions used in the EDMF will be in Disjunctive

Normal Form.

-1 -

A record sutisfies & user's request description when all the
keywords in at least one of the conjuncts of the request description
are in the record. A record containing only the keywords Kl aud K3
satisfies the request description conteining only one conjunct (Kl A K3),
but does not satisfy (K; AK, A K3). The problem ~f finding in a file,

" the addresses of records which satisfy a user's request description now
lies with the EDMF and not the user.
2.1.8 Entering the EDMF

There are two ways to enter the EDMF - either through a terminal
command or through a system macro. This thesis will discuss only the
aspect of the system macro. A discussion of the command entrance can
be found in {10].

It was decided that the best way for a non-conversational user
to enter the EDMF would be through the use of system macros. Each
macro instruction generates a group of assembly language statements.

One of the statements generated is a supervisor call. The supervisor
call instruction (SVC) enablec the program to switch from any state
to the Interrupt Control State (P3), i.e., the SVC causes an interrupt.

It is in the state P., through the use of the interrupt analyzer, that

3
the supervisor decodes the SVC number and determines which routine

should handle the interrupt. Statements that accompany the SVC in the
macro expansion supply the necessary parameters for the processing of

the user's request. Once the system knows how to respond to the interrupt,

it switches to state P, where iunterrupt responses are hundled. For a

diagramatic flow of the above process, see Figure 4.

[np————

SVC 9
» SVC 10 —» OPEN ROUTINE

SVC 11
——— P
= 3
- e S a—— —— ﬁ—-
USER PROGRAM USER PROGRAM
IN ASSEMBLY LANGUAGE WITH MACRO EXPANDED
QPEN MACRO > — P
_ MACRO
- EXPANSION SVC 10

J

Figure 4: Diagram of Interrupt Handling
Process

- 16 -

Macro instructions are extremely useful since they are located
in a macro library accessible to all users. Each time a user writes a
macro instruction, the associated statements and the SVC are generated and
incorporated into his program. The only information the: user needs to
know in using & macro 1s the proper way of calling ‘t; all the other steps,
the generation of instructions and the SVC, are done by the assembler.

Necessary background material has now been discussed and the
remaining part of the chapter will devote itself to the open function.
2.2 Purpose of the Open Function |

The purpose of the open function is to check the user's access
rights to a specifled partition of a file, to set up the necessary control
blocks for processing the various service requests, and then to return
control to the user. Since the open function assembles the necessary
system ccntrol blocks for all the avaiiable service requests, it must
be the first function called upon by the user. There are two routines
that implement the open function. They are called OPWPROC and FIFDIRS1.
(Appendix B.l and B.2)

2.3 Access Control

2.3.1 Introduction
In any data management facility, the security and integrity of

the records are as important as the ease with which processing occurs.
A good system is one in which the security precautions are reliable
enough to insure file protection while simultaneously not encumbering
any of the processing mechanisms. Insuring the integrity of the files
cncourages users to store their files in the dats management facility,
and to enlarge the deta base. Ease of using the system will encourage

frequent use of tnis data base, leading to an orderly and efficient

-17 -

utilization of information storage and dissemination.
2.3.2 File Level Check

In the Extended Data Management Facility (ELMF), the protection
mechanism operates at three levels corresponding to the logical levels
in any file structure. These are the file level, the record level, and
the field level. This thesis will discuss only the file level check;

a discussion of the other two levels of protection can be found in [4 J.

In general, and as it presently exists under the TSOS Data
Management System (DMS), a file level check is concerned with the securi-
ty of the file as a whole, and controls any access whatsoever to the
file. There are two possible types of file access ~ elther the write,
or the read option. If a file bhas the write option, then a user can
update any or all of the existing file records, create new records,
and read from the entire file. If, however, the read option is in
effect, changes may not be made in the existing file, i.e., the user
may only see the records. The present TSOS DMS protection scheme is an
"all or none" type of response; that is, either the entire file is accessi-
ble to the user, or access is completely denied and the user's request
is terminated. The important point here is that access is dependent on
the accessibility of the entire file.

But there certainly are cases when a user should have access to
certain portions of a file und not be entirely blocked out. For
example, let us suppose that we are dealing with a company's file, named
PRODUCTS IN PLANNING (PIP), which is a file of records consisting of
information on products currently in the planning stages. Possible
products could be televisions, radios, computers, etc. Let us also

suppose that a user (call him USER A) has the authority to read all

the records in this file except those pertaining to computers. Under

the current system, access to the file would be denied due to the

"all or none" phenomenon. Since USER a is not authorized to reference
any of the records pertaining to computers, he is denied access to the
entire file.

There are two possible ways to circumvent this problem. One would
be to set up a second file which would consist of a subset of the records
in the PIP FILE and would contain all the PIP records except those per-
taining to computers. Now, USER A would have a file that he could
access., But, »hat if there exists a USER B who is allowed to work with
all the records in the PIP file except those pertaining to televisions.
Do you set up another file for him? This certainly would amount to a
duplication of information and & large waste of storage space.

The other and more efficient way of avoiding the "all or none"
restriction is by devis.ng a method which would allow access only to
those partitions of a file that a user is authorized to handle, and block
him out of those that are restricted to him. It is in this way that the
Extended Date Management Facility handles the problem of file protection.
1n order to put this method into effect, there must be a way of validating
a user's author.zation and secondly, a way of partitiuning a file. First,
we will discuss the method used to partition a file.

2.3.3 Partitioning the File

The expression used to partition a file for the open function 1s
the same type of expression that will be used in requesting the retrieval
of records. It 1s a logical expression in Disjunctive Normal Form (DNF)
where each element of a conjunct is a keyword of the file. This

partitioning method is very flexible since it can be used for any file in

-19 -

RECORD 1 RECORD 2
AUTHOR = BROWN, CHRISTY AUTHOR = WEITZ, J
TITLE = DOJN ALL THE DAYS TITLE = BE VALUE OF NOTHING
PUBLISHER = STEIN AND DAY PUBLISHER = STEIN AND DAY
YEAR PUBLISHED = 1970 YEAR PUBLISHED = 1970
RECORD 3 ' _ RECORD 4
AUTIOR TRAVERS, MILTCN AUTHOR = RAND, AYN
TITE = EACH OTHER'S VICTIMS TITLE = WE T™HE LIVING
D PUBLISHER = SCRIBNER PUBLISHER = RANDOM HOUSE, INC.
YEAR PUBLISHED = 1970 YEAR PUBLISHED = 1936
}
RECORD 5

AUTHOR = RAND, AYN
TITLE = ATLAS SHRUGGED
PUBLISHER = RANDOM HQUSE, INC.

YEAR PUBLISHED = 1957

Figure 5: Library Catalogue File

the system. In addition, it does not require that the user know the
actual addresses of those records that he is interested in.

For purposes of illustration, let us say we had a lidbra-y catalogue
file with only the five records that appear in Figure 5. One partition
of this file would be those records which refer to oooks that were
publisied by Random House, Inc. in 1936. A DNF description would
appcar as:

(PUBLISHER = RANDOM HOUSE, INC. A YEAR PUBLISHED = 1936)
Only record 4 satisfies this description.

A second partition would be those books published by Stein and Day
and those published by Random House, Inc.

(PUBLISHER = STEIN AND DAY A PUBLISHER = RANDOM HOUSE, INC.)
Records 1, 2, 4, and 5 satisfy this description.
A third partition might be those books published by Stein and Day
in 1970 and books that were published in 1957
(PUBLISHER = STEIN AND DAY A YEAR PUBLISHED = 1970) V
(YEAR PUBLISHED = 1957)
The satisfactory records here are 1, 2, and 5.
2.3.4 User's Authority Item

In order to validate a user's authorization to access a file, the
system must obtain information concerning the user's access rights to
that particular file. This information could be stored in a record at
the head of each file. This type of security system would be file-
oriented.

The EDMF does not take this approach bul rather a user-oriented
one. The EDMF creates a system file which is known as the Authority

Item file. This file consists of a set 6: records with one record for

each user. Each record is an individual user's authority item (UAI).

The UAI's contain information pertaining to the user's access righte to
the files maintained by the system. Therefore, by examining & specific
user's authority item the system can determine to what degree the user
is aliowed to utilize the existing files. |

There are two advantages to this user-oriented type of protecticn.
First of all, since all authorizing information is stored in a system
file, it is better protected than if it were stored at the head of &
user file. In this case, only the system is allowed to handle the
information, thereby making the chance of user intervention very slight.
The second advantage is that updating authority information is quite
routine. The user's authority information is all stored in one place -
the User's Authority Item. Since the system file's internal format is
consistent with the internal format of the user files, the same retrieval
and updating routines may be used. Additional processing routines for
vhe authority items are uunecessary, consequently making the most
efficient use of the EDMF retrieval and updating routines.

Upon the issuance of a call to the open function, the user's
authority item 1s referenced. If access to the requested partition of
a file is granted, processing continues with the necessary system control
blocks being esteblished; if access is denied, the system returns control
to the user with an explanatory message.

2.4 Control Blocks

When access to a file is granted, the open function makes entries
into two important system control blocks. O(me is the Service Status

Block and the other is the File Status Block.

2.4,1 Service Status Block

The Service Status Block (SSB) contains status information about

every file processed by a user during a TSOS session [9)J. 1t is user-
oriented, which means that each user of the system has his own SSB,
containing information relevant to only those filezs which he is using.
The SSB 1s created when a user logs on to TSOS, remains with the user's
task throughout its existence in TS0S, #nd is destroyed when the user | é
logs off.

Te purpose of the SSB is to eliminate duplicate retrievals of
control information about the user files. It is certainly more worth-
vhile to - se a small amount of storage space to hold the control informa-
tion, than to spend processing time to re-retrieve it. The problem can
best be illustrated as follows. Suppose a user opens & file under the
system and then tries to retrieve some information. Due‘to the structure

of the TSOS system, the retrieve request, as far as the system is concerned,

is a separate entity from the previous open. This means that the pro- j
cessing routine for the retrieval must be able to check that the requested |
file has been previously opened. For security reasons, this information

is kept in the SSB in privileged system memory. The first file to be

opened by a user results in information being stored in the SSB section

created during logon. All subsequent file openings cause additional SSB
sections (onc per each file partition) to be chained to the iritial sec-

tion in a linked list. Thus, each user's SSB can grow as the number of

files or their purtitions referenced during a session grows. Consequent-

ly, there is ons SSB section for each file partition that is requested.

- 23

One important point to note is that a file need not be opened
to have an entry in the user's SSB. (See Chapter 4) What is relevant
is whether or not the file's control information is already in storage.
This could be the case if the file had been previously opened and then
closed. If the file's control information is in storage, then addresses
to this information can be found in the SSB. This procedure saves
unnecessary retrievals and the waste of duplicate processing time.
2.4.2 File Status Block

The File Status Block (FSB) contains status information about every

{ile that 1s currently being processed by any user during a TSOS session.
It is file-oriented which means that an entry is made in the FSB each
time a user opens some partition of a file. This FSB entry is established
immediately after the SSB block is created. Each file referenced during
a TSOS eession has its own linked 1ist whose eatries include the follow-
ing information; the user's Id, the type of open requested, and the
partition of the file that has been opened.

The purpose of the FSB is to establish priorities relative to the
use of the file. ‘'he problem can be illustrated as follows. Let us
suppose that two users, USER A and USER B, want to work with FILE 1.

USER A wants to read from the file while USER B waents to update it. Let
us also assume that USER A issued his open request first. Then the
system, by referencing the FSB, could establish that USER A has the
priority and permit him to read from the file, while blocking USER B from
updating it. Otherwise, USER A could possibly receive erroneour informa-

tion.

-2 -

Now let us luok ot an example wiiere partitioning plays a part.
Go.ing back to our library catalogue example (Figure 5), suppose that
USER A wants to update that partition of the file which saticfies the
DNF description

PUBLISHER = RANDOM HOUSE, INC. A YEAR PUSLISHED = 1936

Recall that record 4 is the only merber of this partition. Let us
also suppose that USER B wants to read from the partition satisfying

(PUBLISHER = STEIN AND DAY) V (PUBLISHER = RANDOM HQUSE, INC.)
The satisfactory records are 1, 2, I, and 5. Again, USER A issued his
open request first and therefore had priority. But, the only requested
record that USER A and USER B have in common is record 4. The system
references the FSB chain for the library catalogue file to determine
the position of USER A's entry. USER A's entry precedes USER B's in
the chain and therefore, A has priority. USER A is allowed to update
record 4 while USER B is blocked out.. But, USER B is allowed to read
records 1, 2, and 5.

‘he individual FSB e.tries remain in the file list until the user
closes the file. I* is at this time that the user no longer holds any
position in the priority list and therefore his FSB entry is removed.
2.5 Return to User

After both the SSB and FSB have been constructed, the system returns
control to the user. If the user entered the system via an SVC call
issucd from a program, then control is returned to the instruction follow-
ing the SVC call. If, however, entry was from a command, then control
is returned to the Terminal Command Processor which returns contrecl to
the user at the terminal. The user, now in control, is frce to continue

the execution of his program or call upon any other functions of the EDMF.

- 25 -

2.6 The EDMF's OPN Macro

One vay of initiating the open function (see Sect. 2.1.8) is
through the use of the E£DMF macro named OPN. The OPN macro has three
required parameters. One is tne requested file name. A second is the
type of open requested, i.e., either update or read. The third one
can be either the actual partitioning description or the address of
vhere this description can be found. For a more detailed discussicn

of this macro, please see Appendix A.1l .

CHAPTER 3

THE RETRIEVAL INITTIALIZATION FUNCTION

3.1 Purpose

The wain purpose of the Retrieval Initialization (RI) function

is to optimize the retrieval processing and to obtain necessary informa~
tion for the actual record retrieval. This i:formation includes prime
keywords, ISAM keys and Record Formet numbers. But, before this informa-
tion is obtained, the control blocks that were established by the open
function mu- t be checked.

3.2 Control Blocks

In order for the processing of the actual retrieval mechanism to
start, the user must have previously issued a satisfactory open request.
If this was the case, then there is an SSB entry for that partition of the
file that he wishes to reference. As the first step in the processing
of the RI function, it checks the S3B entries. If the required entry
ie found, then a TSOS DMS open macro is issued. If the SSB ehtry does
not exist, the processing of the retrieval initialization function is
terminated and an explanatory error message is returncd to the user.
3.2.1 DMS Open

The TSOS DMS open must precede any call for the primitive storage
and rctrieval routines. Without the DMS open, the primitive routines
cannot accesc the file. The primitive routines actually perform,
through the data management facilities provided by the operating system,
the input and output of records for other system components. These
routines handle the actual reading and writing of the data rccords,
the manipulation of the files' directories, and the generation and

updating of the records and directories of the files.

- 26 -

Ao 2 v 4

In processing the retrieval optimization algoritim, the RI
function needs to reference the file's directory. In order to use
the directory routines, a DMS open must be issued. This brings us to
an important point relative to the issuance of the DMS open. There
are two possible times that the DMS opern macro could be issued: either
during the processing of the EDMF's open function or during the‘RI function.
It was decided that the best time would Se during the processing of the
RI function. This decision was made for the following reason. Once a
DMS open 1s issued, entry into the opened file is blocked to other users
until a DMS close is issued. The routines that actually require a DMS
open, that is, the primitive routines that handle the requested file's
directories and/or records, are not needed until the RI phase of the EDMF.
Therefore, the issuance of a DMS open during the EDMF''s open function
would block the requested file from other users for a loﬂger period of
time than necessary.

3.3 Retrieval Optimization

In an attempt to make the retrieval system as efficient as possi-
ble, an optimizing retrieval wethod was needed to minimize the time re-
quired to process & retrieval request. The algorithm chosen for the
optimization phase was part of the General Retrieval Algorithm as suggested
by D. Hsiao and F. Harary in their paper titled "A Formal System for
Information Retrieval From Files" {8]. The first step of the algoritim
involves the selection of prime keyvords from the user's DNF description

of requested records.

- 28 -

3.3.1 Prime Keywords
As you recall, each user's DNF request description consists of
one or more conjuncts whose elements are keywords of the fila., For
example, & possible DNF description could be
(K} AKXy AK) VK
vhere the K1 are keywords of the file. For the purposes of this example
let us say that

Ky: AUTHOR = SMIT

1
Ko: YEAR = 1964
K3: TOPIC = MATH

K): AUTHOR = CCHEN
Our description would then appear as follows:
(AUTHOR = SMITH A YEAR = 1964 A TOPIC = MATH) V (AUTHOR = CCHEN)
Assoclated with each of the keywords in the file's directory is the num-
ber of records in the file in which the keyword appears. The prime
keyword is defined as that keyword of the conjunct which appears in
the least number of records in the file. Going back to our example:
let N be the number of records in which a keyword appears, and let the

following correspondence be established:

Keyword N
Ky AUTHOR = SMITH 10
X, YEAR = 1G854 15
Ky TOPIC = MATH 2
K, AUTHOR = CCHEN 15

For the first conjunct (K, A K, A K3), K3 would be the prime keyword

since only 2 records exist in the file that contain TOPIC = MATH. The

prime keyword for tne second conjunct must be Kh since it is the Bole

member of the conjunct.

Now, how does the designation of prime keywords relate to optimizing
the retrieval? First of all, we only want to retrieve those records
that satisfy each conjunet. Since a record can only satisfy a conjunct
by containing every keyword in the conjunct, all satisfactory records .
mst contain the prime keyword. Thus searching the file using the prime
keyword, i.e., actually retrieving the léast number of records that
could possibly satisfy the expression, minimizes the costly time of actﬁal
retrieval and thereby results in an optimum retrieval scheme.

The selection of the prime keywords is accomplished in a routine
called RETRIEVE. The RETRIEVE routine also picks up the ISAM keys.
3.4 I3AM Keys

In order for the primitive routines to actually retrieve records,
they must know the locations of the requested records. The address of
the record location depends on the type of access method used to store
the recorc¢ The EDMF utilizes RCA's TSOS Data Management System Indexed

Sequential access Method (ISAM) for device level input/output. In this

access method, each record of a file is assigned a key, a number froum
0 to 99,999,999. This number allows one to refer to a record by a
logical address (its ISAM key) instead of a physical disk address [6].
Once the prime keyword for a conjunct is established, the RETRIEVE
routine must pick up the corresponding ISAM keys for the actual record
retrieval. Again, the RETRIEVE routine returns to the directory.
Associated with each keyword in the directory are the head of list
addresses (HOLA). These head of list addresses are ISAM keys whose records
contain that keyword [3]. The RETRIEVE routine then makes & list of all

HOLA's that correspond to the prime keywords of the description. Ouce

this is finished, corresponding record format numbers must be establighed.

3.5 Record Format Numbers

One of the major design criteria used in determining the form of
the EIMF records and their control information is as fcllows. As wuch
information as possible should be removed from the record and stored
as file control information. This prevents duplication of information
appearing in many records, thus making files smaller. In other words,
general structural information is centralized into one file control
block rather than decentralized in the individual records.

When records are collected into a file, the usual case is that all
records have similar attributes, because they contain the same type of
information. For example, all records in & file of library books are
likely to contain the attribute "Author". Thus it is reasonable to
expect that there are only a limited number of different ;ttributes in
a file. In order to save space in the file, the attributes are removed
from the records and placed in a file control block called the Record
Format Block (RFB). Associated with each attribute in the RFB is a for-
mat number. It is this format number and not the entire attribute that
15 stored in the record [9]. A detailed specification of the RFB can be
found in Appendix C.3 .

After a record has been retrieved from disk, it is necessary for
the record validating function [4] to determine if it satisfies the user's
description. In order to do this, it must check to see if all the key- |
words of & conjunct can be found in the record. Since only the format
numbers and not the actual attributes are stored in the record, it is
necessary to determine the corresponding format numbers before the record

validating function can operate. The program that performs this service

for the RI function is called FORPROG. It checks the attributes
in the user's request description against those in the RFB and then
makes & list of corresponding format mumbers.

3.6 Control Passed to the File Searching Function

Once the lists of prime keywords, ISAM keys, and Record Format
numbers are established, the work of the Retrieval Initialization
function is finished. The lists and supervisor control is then passed
to the File Searching Function [4]. After the File Searching, Record
Validating and Record Formatting functions [4] have completely processed
the request, the system initiates a DMS close macro. The file can now
be actively accessed by other users subject to the priorities established
in the File Status Blocks.

3.7 The EDMF's RETR Macro

One entrance to the Retrieval Initialization function is through
the use of the EDMF's RETR macro. This macro has six possible parameters.
Of these six parameters at least three and not more than five may appear
in one macro call. Two of the required parameters are the file name and
the output specification. The third required parameter can be either the
user's retrieval request description or the address where this descrip-
tion can be found. The fourth parameter, which is optional, is the maxi-
mum number of satisfactory records that the user wants retrieved. If
this parameter is omitted, all the records satisfying the request descrip-
tion will be outputted to the user. The fifth parameter would be & label.

For a more detailed discussion of the RETR macro, see Appendix A.2.

Caawese -

CHAPTER A4

THE CLOSE FUNCTION

h.1 Purpose

The purpose of the close function is to remove a user's priority
hold over a specified partition of a file. A user initiates the EDMF's
close function when he no longer desires to work with the partition of
a file that he had previously opened. The close function makes necessary
changes in the control blocks, the SSB and FSB, to indicate that the
user has finished all processing of the specified partiti~n of the file.
Once this has been done, the user no longer has access to the partition.
If he wishes to work with it again, he mmut re-initiate the EDMF open
function. The close function is therefore the last EDMF function that a °
user would call upon. The routine that lmplements the close function is
called CLSEPROC. (Appendix B.6)

4.2 Control Blocks

During the processing of the open function, a Service Status Block
and a File Status Block were created (see Section 2.4). The FSB entry
established for the user a position in a priority list relative to the
use of the specified file partition. Now that the user has finished
working with that partition, he should not maintain his position in the
priority list. He no longer has the right to block out other users from
accessing the records of the partition. Therefore, the system removes
his FSB entry from the priority list and also indicates in the corres-
ponding SSB entry that the EDMF close function has been referenced and

that the partition is not open for his use.

- 32 -

- 33 -

4.3 Return to User

After both the FSB and SSB have been updated, the system returns
control to the user. The user is now free to continue processing any
other files that he had opened, initiate the EDMF open function for
another file partition or terminate his session.

4.4k Te EDMF's CLSE Macro

One entrance to the close function is through the use of the EDMF's
CLSE macro. This macro has three possible parameters. Of these three
parameters at least one, and not more thag two, may appear in one macro
call. The required parameter is the file name. The optional one can
be either the actual partitioning description or the address of where this
description can be found. If the optional parameter is omitted, the
system assumes that the user wants to close out all the partitions of the
specified file that he had opened. Otherwise, only the specified parti-
tion is closed. For a more detalled discussion of the CLSE macro, see

Aprzndix A.3 .

CHAPTER 5

SUMMARY

The Extended Data Management Facility (EDMF) was implemented to
provide a general purpose data management system for the orderly accumu-
lation and dissemination of information. The EDMF utilizes a generalized
file structure and an efficlent retrieval algoritim for efficient data
management.

It was the purpose of this thesis to discuss a portion of the
Supervisor's task in the EDMF. The task is to direct the Facility's
handling of a user's request and by so doiﬁg, the Supervisor assumes
the oles of "doorman", "foreman", "administrator", and "dispatcher”.

In order for the Supervisor to fulfill its task and satisfy its roles,

it performs five main functions: Access Control, Retrieval Initialization,
File Searching, Record Validating, and Pecord Formatting. The last three
functions, File Searching, Record Validating and Record Formatting, are
the functions which partially fulfill the roles of "foreman", "“administra-
tor" and "dispatcher". They are discussed in detaili in [4]. This thesis
has discussed the Access Control and Retrieval.Initialization Functions
with special emphasis on the Retrieval Optimization subfunction.

These functions fulfill the role of "doorman" and partially those
of "foreman" and "audministrator". As you remember, macro instructions
are used as the "doorman's" entrance into the request handling routines.
The Prime Keyword search (Retrieval Optimization subfunction) of the user's
DNF Boolean request expression is the "foreman's" method of optimizing the
retricval strategy. The "administrator's" role is fulfilled by the Access
Control function. It maintains the security control over file access by

checking, the user's authority item before processing his request.

- 3 -

-3 -

BIBLIOGRAPHY

Chen, T., et al., "Au Interim Report on the Implementation of the
Integrated Facility," Project Report, The Moore School of flectrical
Engineering, University of Pennsylvania, April, 1970.

Corwin, B., et al., "An Integrated Information Storage, Retrieval
and Dissemination Facility," Project Report, The Moore School of
Electrical Engineering, University of Pennsylvania, June, 1969.
Desiato, B., "Directory Constructing and Decoding in a Generalized
File Structure," M.Sc. Thesis, The Moore School of Electrical
Engineering, University of Pennsylvania, work in progress.

Ets, A. R., "The File Searching, Record Validating and Record For-
matting Functions of the Supervisor for an Extended Data Management
Facility," M.Sc. Thesis, The Moore School of Electrical Engineering,
University of Pennsylvania, August, 1970.

Gana, J., "A Command and Query Language Assembler for an Fxtended
Data Management System," M.Sc. Thesis, The Moore School of Flectrical
Engineering, University of Pennsylvania, work in progress.

Horton, M., "Reading, Writing, Creating and Updating Records and
Files in a Generalized File Structure," M.Sc. Thesis, 'he Moore
School of Electrical Engineering, University of Pennsylvania, work in
progress.

Hsiao, D. K., "A File System for a Problem Solving :acility,"

Ph.D. Dissertation, The Moore School of Electrical Engineering,

University of Pennsylvania, May 1968.
Hsilao, D. K. and Harary, F., "A Formal System for Information

Retrieval From Files," Cowmunications of the ACM, Vol. 13, No. 2,

February, 1970.

10.

11.

Manola, F., "An Extended Data Management Facility for a Genersal
Purpose Time Sharing System," M.Sc. Thesis, 'fme Moore School of
Electrical Engineering, University of Pennsylvania, work ‘n progress.
McDonald, J., "A Command and Query Language (nterpreter for an
Extended Data Management System," M.Sc. Thesis, The Moore School

of Electrical Ergineering, University of Pennsylvania, August, 1970.
Wexelblat, R., "The Development and Mechanization of a Problem

Solving Facility," Ph.D. Dissertation, The Moore School of Electricel

Engineering, Universisy of Pennsylvanla, December, 1965.

IS Attt i e et e At P e S

AFPENDIX A

MACROS
A.1 Open Macro

Name: OPN
Type: Keyword
Four possible keywords - miximum of three permissable
at one time - minimm of two required.
Required
1) FILENAM - name of the file (up to 54 characters)
2)*(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127
characters, due to the sys’'em's
restriction on the length of para-
wmeters). Single quotes must enclose
the expression and any internal quotes
or ompersands must be doubled. See
the examples.

*(b) DESADDR - this parameter is mnemonic for
description address and it must be
used vhen the desired DNF partition-
ing exprossion is longer than 127

characters. This necessitates the
placement of the logicul expresslon
in an area external to the macro
and it is referenced by a symbolic

address.

A-1

Optional
1) TYPE - the type of open requested

(8) READ -~ can only read from the file.
Default case.

(v) UPDATE - can read and write to the file.

Examples of Macro Calls

1) OPN FILENAM=$HORTON MULTTES3, TYPE=READ,DESCRIP='AUTHOR=
BENNET"
2) OPN FILE{IAM=MULTTES3, TYPE=UPDATE, DESADDR=LOGEXP1

LOGEXP1 DC C'MONTH=MAY && YEAR=1965 ''OR'' KEY PHRASES=INFORMATTION
STCRAGE ANT RETRIEVAL &% PUBLISHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA'

Note: * - Only one of these may be used in one macro call.

A.1.1 Generated Parameter List
The OPN macro generates a paramete: iist whose address is placed
in Register 1 and which is passed un to & handling routine via an SVC

call. The generated parameter list has the followirig format:

Bytes Content
0-1 Length of file name
2-55 I'ile rsme (left justified with spaces)
56 Code for type of open
X'"2' -- Read
X'43' -- Update

5T - 99 Address of partitioning logical expression

60 -~ 63 Length of partitioning logical expression
64 - 190 Partitioning logical expression if
included in macro
191 Code for presence of partit.oning
description

X'00' -~ No description
X'FF' -~ Description present

Retrieval Macro

RETR
Keyword
Six possible keywords - maximum of five permissable
at one time - minimum of three required.
Required
1) FILENAM - name of the file (up to 54 characters)
2) OUTSPEC - output specification (up to 10 characters)
(a) CORE - output is in special core format [L4] in
core to be used by program
(b) COUNT - the system returns with the number of
satisfactory records and not the
actual records
(¢) PRINT - output is sent to the printer
(d) TTY - output sent to teletype. Default case.
3) ¥(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127
characters, due to the system's
restriction on the length of param~

eters). Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See
the examples.

*(b) DESADDR - this parameter is mnemonic for
description address and it must be
used when the desired DNF partition-

ing expressicn 1s longer than 127

characters. This necessitates the

placement of the loglcal expression

in an area external to t.ce macro and

it is referenced by a symbolic address.
Optional
1) RECNO - the mumber of desired records satisfying

the description. If this parameter is

omitted, all the records satiefying the
request will be presented to ti : user.
2) IABEL - name associated with RETR macro will be used
in & CONTINUE [9].
Examples of Macro Calls
1) RETR FILENAM=MJLTTES1,RECNO=1{ ,DESCRIP='AUTHOR=SMITH &%

YEAR=1964 ''OR'' TOPIC=LISP', UTSPEC=PRINT

2) RETR FILENAM=MULTTES3, OUTSPEC=CORE, DESADDR=LOGEXP2, LABEL=
AGAIN
3) RETR FILENAM=MULTTES1, QUTSPEC=COUNT, DESADDR=LOGEXP2

LOGEXP2 DC C'AUTHOR=MANCLA &&.YEAR=197O && TOPIC=INFORMATION
STORAGE AND RETRIEVAL && PUBLISHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF
PENNSYLVANTA ''OR'' TOPIC=MATHEMATICS'

Note: ¥*- Only one of these may be used in one macrc call.

A.2.1 Generated Parameter List
The RETR macro generates a parameter list whose address ls placed
in Register 1 and which is passed on to a handling routine vi. an SVC

call. The generated parameter list has the following format:

Bytes Content
0-1 Number of requested records to be
retrieved

X'0000' -~ All records. Default cese.

2 -6 Output specification. CORE, COUNT, PRINT
or TIY.
T-1 Label
12 - 13 Length of file name
b - 67 File name (left justified with spaces)
638 Function code a
X'22' -- Retrieval code :
69 - 71 Address of logical expreséion |
T2 - 75 Length of logical expression

76 - 202 Logical expression if included in the macro

A.3 Close Macro
Name: CLSE
Type: Keyword
Three possible keywords - maximum of two permissable
at one time - one required.
Regquired
1) FILENAM - name of the file (up to 54 characters)
Optional
1)*(a) DESCRIP - the actual partitioning logical
expression in DNF form (up to 127
characters, due to the system's
restriction on the length of para-
meters). Single quotes must enclose
the expression and any internal quotes
or empersands mu.st be doubled. See
the examples.

() DESADDR - this parameter is mnemonic for
description address and it must be
used when the desired DNF partition-
ing expression is longer than 127
characters. This necessitates the
placement of the logical expression
in an area external to the macro
and it is referenced by a symbolic

address.

A-8

Examples of Macro Calls

1) CLSE FILENAM=$HORTON.MULTTES3
2) CLSE FILENAM=$HORTON.MJLTTES3,DESCRIP='AUTHOR=BT NNEL"
3) CLSE FILENAM=MULTIES3,DESADDR=LOGEXP3

LOGEXP3 DC C'MONTH=MAY &% YFAR=1965 ''OR'' KEY PHRASES=INFORMATION
STORAGE AND RETRIEVAL &% PUBLTSHER=THE MOORE SCHOOL
OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA'

Note: * - Only one of these may be used in one macro call.

A.3.1 Generated Parameter List
The CLSE macro generates a parameter list whose address is placed
in Register 1 and which is passed on to & handling routine via an SVC

call. The generated parameter list has the following format:

Bytes Content
0 -1 Length of file name
2-55 File name (left justified with spaces)
56 Code for type of close
X'48' -- Close all partitions of the
file
X'49' -- Close only the specified
partition
57 - 59 Address of nartitioning logical expression
60 - 63 Length of partitioning logical expression
64 - 109 Fartitioning logical expression if

included in the macro

APPENDIX B

ROUTINES

B.1l Routine OPNPROC

The OPNPROC routine is the first of two routines that implement the
Open Function of the EDMF. This routine checks tne user's access rights
to the specified partition of a file and sets up the SSB and FSB control '
blocks.,
B.1.1 Entry Points

OPNPROC has three entry points. The entrance via an SVC call is at
OPNPROC while the command entrance is at COMDOPN. The FIFBLOCK entrance
is used when only the FCB for the File of Files (FIF) is neeced.
B.1.2 Exit Points

There is only ore exit point for this routine. It pegins at BRETURN
vhere control 1is returned to the calling program.
B.1.3 External Subroutine Calls

There are eight external subroutines that may be called upon by
OPNPROC. One is AIRETR which retrieves the user's authority item. A
second is AUTHCHK which checks the user's access rights to the specified
partiticn of a file. A third is to the location ExQCAT to obtain the
task number. A fourth external subroutine is FIFDIRS1. FIFDIRS1 is used
to retrieve the File Information Block (FIB) for the specified file. The
following three are entry points in the SSBOCTR routine [9. SSBACQR is
used to obtain the SSB chain for a specified user. SSBLOGON is used to
estavlish the SSB chain if it has not already been done and SSBGTWU is

used to obtain a new SSB block to link to the user's SSB chain.

B-1 -

The eighth external subroutine is FSBOPTR. This subroutine is used

to establish the I'SB entries.,

The DSECTS that are associated with the

SOBOPTR and FSBOPTR routines are the following:

Naiic
558

SHBIDR
STRUAL
SODEIT
SORNIXT

SOBINAM

H0BCTL

SObiLB
NHUAG
CORDTRT
DORDTAR
SOROREC
CUREER

conetio

Bytes
DSECT
0-1
0-3
b -7
8 - 91

63

(09)
[

ch - 67

B0 - 63
8L - &7
88

59 - 91

DoRCT
O -

oo

Content

SSB Header

Address of User's Authomity Item
Address of FCB for File Information File
S5B text

2 bytes - length of file name
5k bytes - file name

Control Information

Type of request

Indicator ~ EDMF open

Unusea

Address of File Information Block (FIB)
Address of File Control Block (FCB}
Open description indicator

Address of user description block
Addrecs of Core Format of the record
Address of 1'ile Status Block

Control Information Ifor vointer

Yointer to next 85B block

User Tdentitfication
Control Information

Address ol veer's partitioning deseription

Name Bytes Content

FSBLTBLK 16 - 19 Pointer to previous FSB block in chain
FSBCTRL 0 Control Information

FSBNTBLK 21 - 23 Pointer to next FSB block

B.l.4 Input Parameter List
The address of the input parameter lisc (PARAMOP) must be in
Register 1 and Register 13 must contain the address of the celling

routine's save area.

Name B esA antent

PARAMOP DSECT

FLNMLN 0-1 Length of file name

FLNAME 2 -55 File name (left justified with spaces)

FUNCODE 56 Code for type of open requested

LOGEXPAD 5T - 59 Address of partitioning logical expression

LNLOGEXP 60 - 63 Length of partitioning logical expression

LOGEXP 64 - 190 Partitioning logical expressioﬁ 1f ineluded
in OPN macro

DESCCDE 191 Code for precence of partitioning descrip-
tion

B.1.5 Register Conventions

The registers in OPNPROC are assigned in the following manner:

Register Utilization
0 Not used
1 Address of parameter list given to
called subroutine. Miscellaneous use.
2 Miscellaneous use.
3 Base for_pPNPROC

4 Miscellaneous use

Register Utilization
5 Address and base of SSB
6 Counter for number of charactc:s in User

Id. Miscellsneous use.

T Misce ‘laneous use

8 Address of current SSB block

9 Address and buse ¢f SSBTEXT
10 Length of requested file name
11 Address and base of OPNPROC work area
12 Address and base of input perameter list

(PARAMOP)

13 Address of OPNPROC save area
14 ‘Return address in QPNPROC

15 Subroutine call address. Error codes.

B.1.6 ‘nternal Work Area

The internal work area (OPENRQ) used by OPNPROC also contains the
parameter lists for some of the routines called by OPNPROC. The DPLISTA
lict is passed to AUTHCHK while PAROPEN is passed to FIFDIRSl. The work

area has the following format:

Name Bytes Content

OPENRQ DSECT

DPARM 0-17 P. rameter area for error messages

RETAREA 8 -11 Address of area to return to after call-
irg subroutine to check user's authority

DPLISTA 12 - 95 Parameter list passed to AUTHCHK

DADRAT 12 - 15 Address of User's Authority Item

DADKEC 16 - 19 Address of record to be checked

DI'NLEN 20 - 21 Length of file name

Name

DFILNAM

DFDADEX

DFDADDR
DFDLEN
DSERRIQ

DINCTL

DNADDR

DNAKiB

OPRQMPAR

OPSAVE
ATMODEAR

TMODEAR
USERID

FCBFIF

FIFKYARG
PAROPEN
AFCBFIF

FILEFIB

Bzges
2 <75
76
T7- 179
80 - 83
&y
85
86 - 87
88 - 91
92 - 95
96 - 9y
100 - 103
104 - 107
108 - 111
112 - 183
184 - 187
188 - 189
190 - 219
220 - 227
228 - 739
ThO - Th7
‘48 - 759
T8 - 151
152 - 7155

Content
AL

File name of file whose access is to be
checked

Code for presence of partitioning
description

Address of partitinoning logical exprestion
Length of partitioning logical expression
Code for service request
Code for checking level

Control irformation about limiting
description

Aldress of internal rorm of limiting
description

Address of Key Information Buffer (KIB)
for limiting description

Parameters for $REQM

Save area for (PNPROC

Address of area for TMQDE macro
Length of area for ™ODE macro
Area for TMODE macro

User Identification

Area for File Control Block (FCBO of
File of Files (FIF)

Parameter in FCB of FIB
Parameter 1list passed to FIFDIRS1
Address of FCB of FIF

Address of File Information Blnck for
requested file

Nalne Bytec Content
FILEI'CB 756 ~ 759 Address of FCB for requested file
STACYADR 760 - 163 Address of stack area of SVC
DNOACCES 764 - 765

766 - 768 For re-entrant error message
DMECAGL 769 - 859
"TEKNUM 860 Task number
CKCODE 861 Code for errors
SW 862 Code - found matching file name
TRMPA 863 - 913 Temporary area
Swe 91k Code for macro entrance

B.1.7 Internal Codes
The various internal codes in the OPNPROC routine are listed below
by hexadecimal digits.
Return from AUTNCHK
X'00! Access granted

X'0ol! Access denied

Return from SSBACQR

X'00! SSB exists but has not been acquired
X'oht SSB exicsts and has been acquired
X'08! SSB does not exist

Return from SSNGTHU
X'10! REQM error
Return from SSBIOGON

X'00! SSB exists but has not been acquired

T, T

DESCODE (Description code)

X'00!

X'FF'
DFDADEX

x ' FFI
FSBCTRL

X'FF'

FUNCODE (Function code)

X'ho!

X'43"
SSBCL

th?l

X'43
SSBCL+1

X'00'

X 'FF'
SSBCTL6

X'FF!'
SSBDTBIN

X'FF'
sn

X'FF!

X'FF!

B-7

Partitioning logical exprescion not present

Partitioning logical exnessini ..esent

Code that indicates partitioning logical
expressicn present

Code that indicates good pointer in FSB
block

Read type open

Update type open

Read type open

Update type open

File partition EDMF closed

File partition EDMF open

Code that indicates good pointer in SSB
block

Code that indicates user description block
present

Code that indicates matching file name
found on SSB

Entrance from a macro

B-8

B.1.8 EKeturn Codes
All rcturn rodes can be found in the right-most byte of Reglster 15
and they are listed below by hexadecimal digits.
X'00! Everything 0.K.
Othervise Error occurred
B.1.9 Flowchart

Figures B.l.a - B.l.d contain the flowchart for the CPIPROC routine.

Enter
OPNPROC

Establish
Work Ares

4 O s N

Get
User I4

1

Jet
Task Number

Check SSB !
entries
Call SSBACQR

e = g i,

-

—et s e}

g ~_Yes
QKCODE = X'0hre | 7y

-

Yes Retrieve User's Set up FCB
-] ' '
CKCODE = X'00'? "™ Authority Item [—® for FIF
v No
- No
| CKCODE = X'08'7 }— °
N— -
L Yes
Establish first
SSB block o
Call SSBLOGON
- 1

Yes - No 4
u_”<::iKCODE = X'OO:E:>__~ .i‘ Terminata

Figure B.l.a: OPNPROC Initialization.
Retrieve SSB Chain.

i

B-10

o)
¥

Set up i
parameter list
for file
level check 1
e
Check user's ;

: authority
| Call AULMCHK

JUE—— R
Access granted? Yes ’ Return to
a — instruction-

CODE = X'ON'7? ! .
CReeb R0 »I after calling
[iastruction
No

krror Mcssage:
Open request
denied for

specilied file

I

|
xit to]

[culling progran t

I igure B.1.b: Authority Item Check

P
¢

Retrieve FIF
directory and
FCB for file
Call FIFDIRS1

I
L4

Exit to
calling program

: Retrieval \\ No
accomplished?) ——
] Yes
Put FIB and FCB
addresses
into SSB
)

e 1

Put file name |
and its length
into SSB

1
File name open
SSB(I+1 «~ X'FF!'

b e e

Open descriptione Y\ Yes Establish area

present? —— e P to store
\DESCODE = X'FF'? description

No ‘

Store

descxiption
Establish FSB block
Call FSBOPTR
Exit to

calling program

Figure B.l.c: Set up SSB.
Establich FSB.

B-12

- ————— e

Gel new
8SB block
Call SSBGTNU

REQM error? <‘\\\ Yes '
CKCODE = X'10'? > Terminate

Store address of]
new SSB b ek
into poinv . of
previous block

SSBCTIG ~ X'FE!
of preceding

block
,__u._mql.___.
s/ ’\ ' Put FIF and FCB
\ 1es y addresses from
SW1l = X'FF'? >| previous SSB with

same file name into

i new SSB block
~— . .

- _

Figure B...d: Ge’ New SSB

YT TRRY R Mt o

Authority Item -
SSHUAT = x'Fr'y/’

e

B-13

No

retrieved? ~—p 5)

_/

i Yes

Length of

S

requested file No
= length of SSB Get next
file name? SSB block
\"\%.-...‘ © > o o
L y Yes
Requested file‘"\ R _
name = No «;
\ - /
| SSB file }] S
\ name? | *
——— — i+ e ,/A \)
I Yes \._/
SWl « X'FF J
7 Y -
Open description ' Yes Y 2N
present in 1] = ¢
__.ssm /

1N

SSB enﬁryA \

N

~.

" Request open
update

FUNCODE = X'%3'3/
\& Yes

(¢)

{ Yes
\ open update? }.___
\ SSBCL = X'k3'7 |

_\\YS

No <End of 8
] SSB chain? an "@

PSR - e o ¥

_ My

Get : .2t
SEB block

—

Figure B.l.e: SSB Check

B-14

B.2 Routine FIFDIRS1

The FIFDIRS1 routine is the second of twc routines that implement
the EDMF's Open Function. This routine establishes the File Cortrol
Block (FCB) for the File of Files (FIF), searches the FIF directory and
retrieves vhe File Information Block (FIB) for the requested file.
B.2.1 Entry Points ‘

TIFDIRS1 is the only entry point in this routine.

B.2.2 Exit Points

FIFDIRS1 has two exit points. The normal exit begins at QUT2 and
the error exit begins at (UMl. In both cases, program control is returned
to the calling program.

B.2.3 External Subroutine Calls

RETRREC [€] is the only external subroutiné called by FIFDIRS.
The first time RETRREC is called it retrieves the FIF directory; the
sccond time, it retrieves the FIB for the requested files. The DSECT's

that are associated with the FIF directory and the FIB are the folluvwing:

Name Bytes Content

DIRFIF DSECT

HEADERD 0 - 14 Header

LENGTHD 0-2 Length of FIF directory
COUNTD 3-14 Count of FIF directory
1XEYD 5 -9 Lowest key ir. directory
HKEYD 10 - 14 Highest key in directory
FNIRIES ~-- Individval entries

FIiB DSECT

0 -aP Beginning of FIB

Neme Bytes Corent

FCB 93 - 252 File Control Block
% . RFB 253 - Record Control Block
i B.2.4 Input Parameter Lists
There are two necessary input parameter lists for the FIFDIRS1
routine. The address of the PAROPEN input list must be in Register 1
vhile the address of the FARAMOP input l1list must be in Register 12.

Register 13 must contain the address of the calling routine's save area.

Name Bytes Ccntent
PAROPEN DSECT
(. AFCBFIF 0-3 Address of FCB of FIF

FILEFIB boT Address of FIB of the requested file

FILEFCB 8-11 Address of FCB of the requested file »

PARAMOP DSECT

FLNMLN 0-1 ~ Length of file name

FLNAME 2 - 55 File name (left justified with spaces)

FUNCODE 56 Code for type of open requested

LOGEXPAD 57 - 59 Address of partitioning lcgical expression

LNLOGEXP 60 - 63 Length of partitioning logical expression

LOGEXP 64 - 190 Partitioning logical expression if included
in OPN macro

DESCODE 191 Code for presence of partitioning
description

[

n.'d.

3

p

Register Conventlons

B-16

The registers in FIFDIRS1 are assigned in the following manner:

Regisggs
0

1

N

o =2

\0

10

11

1z

13
1h
15

B.2.6 Internal Work Area

Utilization
Not used

Address of parameter list given to called
subroutine

Length of FIF directory
Length of requested file name

Address and base of DIRFIF. Address and
base of FIB.

Base for FIFDIRS1

Length-1 of file name in FIF directory.
Miscellaneous use.

Fointer to entry in FIF divectory
=H!'Tl
Address of lact byte in FIF directory

Address and base of input parameter list
/ PARCPEN)

Address and base of FIFDIRS1 work area

Aadress and base of input parameter
list (PARAMOP)

Address of F1FDIRS1 save area
Return address in FIFDIRS1

Subroutine call address. Error codes.

Te internal work area (SUPl) used by the FIFDIRS1 routine also

contains the paramcter list (PLIST) tc be passed to RETRREC [). The

work area has the following format:

o i g

vt e A ot 0 4 ian i 2 e

Name gzzes Content

SUP1 DSECT

SAVEL 0-T1 Save area for FIFDIRS1

WKAREA 72 - 75 Temporary work area

OPPARAM 76 - 83 Parameter area for DMS open

CLT ARAM 8k - 91 Parameter area for DMS close

WFCB 92 - 603 File Control Block

KEYARG 6ol - 611 Parameter in FCB

PLIST 612 - 627 Parameter area passed to RETRREC
PFCBADDR 612 - 615 Address of FCB

PRECADDR 616 - 619 Address of area to place retrieved record
PISAM 620 - 624 ISAM key for requested record

PLREC 625 -~ 627 Length of area to place retrieved record

B.2.7 Internal Codes
The various Iinternal codes in the FIFDIRS1 routine are listed
below by hexadecimal digits.

DESCODE (Description code)

x'oo! Partitioning logical expression not present
X'FF' Partitioning logical expression present
FUNCODE (Function code)

X's2 Read type open
X'h3 Update type open
B.2.8 Return Codes
All return codes can be found in the right-most byte of Register
15 and they are listed below by hexadecimal digits.
X'00' Everything 0.K.

X'k Unable to” open FIF

B-18

X'o8! Unable to retrieve FIF or FIB of
requested file

X'oct Requested file does not exist in the
systenm

X'OF' RKEQM error

B.2.9 Flowchart
Figures B.2.a - B.2.b contain the flcwchart for the FIFDIRS1

routine.,

B-19

Enter
. FIFDIRS1

it

Establish
Work Area

L

Establish area
for FIF directory
and FIB of file

i :
rSet up parameter
lists for DMS

open and
i DMS close
DMS open

FIF
L S

Lo

() ‘. ~ Error Mese
Open accomplished? Unable T‘gg -—-»(J
Yes

open FIF

P TR

Retrieve FIF
directory
Call REIRREC

Fik‘ééineval ~ Error i{és;';gé-"’

accomplished? - Unable to —>®

S __retrieve records '
<5Yes ‘

Figure E.2.a: FIFDIRS]1 Initialization and FIF
Directory Retrieval

-

©

-
i
. FIRT S

Length of re- -
gucsted file name
= length of file
name in PFI1

Advance pointer

in FIF directory
to next entry

directory
”—j}“ Yes

Requested file™\

name = file naune

in FIF directory?
. —

No

I Yes
e Y
Set up parameter
liet for re-
trieving FIB for
requested file

o

Retrieving F1B
Call RETRREC

L

" FIB retricval \ N0 s
accomplished? |

Ve ——

* Yé;

Set up
FCB

Unable to
retrieve records

‘ FIF directory?

Frror Message: o

.
£nd of

Error Message:

File requested
not in FIF
directery

DMS cloce
FIr

e i n s mem—

&=

RN

it to
callling program

Figure B.2.u: Retrieval of File FIB and FCB

B.3 Routine MACPROC

The MACPROC routine obtains necessary information before the
retrieval optimization phase 1s entered. The main function of this
routine is to check if an EDMF open has been issued and if so, issue
a DMS open. Also, if entry is non-conversational in nature, the routine
obtains the internal form of' the user's request description. If entry
is conversational, the internal form has already been obtained.

B.3.1 Entry Points

There are three entry points. MACPROC is used when entry is from
a user program (non-conversational); COMENTER is the point & conversational
user enters. After the EDMF has processed a retrieval, it is necessary
to DMS close the specified file. This is accomplished at the CLFILE
entry point.

3.3.2 Exit Points

MACPROC has two exit points. One is the normal exit point and
the other is used when an error occurs. The normal exit 1s to the
REIRIEVE routine. The error exit is at CHKEXIT.

B.3.3 External Subroutine Calls

Two external subroutines Are called by MACPROC. The first 1s to
the location ESQCAT to obtain the task number. The secornd is to the
entry point SSBACQR of the SSBOPTR routine [9]. This is used to obtain
the SSB chain for a specific user. The DSECT that is associated with

the SSBOPTR routine is the following:

Name Bytes Content
SS5B DSECT
SSRHDR 0-17 SSB Header

SSBUAI 0-3 Address 6} User's Authority Item

B-22

Name Bytes Content
SSBF1F b -7 Address of FCB for File Information File
SSBTX'T 8 -91 SSB text
SSBFNAM 8 - 63 2 bvtes ~ length of file name
54 bytes - file name

SSBCL 64 - 67 Control Information

6l Type of reque:st

65 Indicator - EDMF open

66 - 67 Unused

GSBFIB 68 - 11 Address of File Information Block (FIB)
SSBFCB 72 -~ 75 Address of File Control Block (FCB)
SSBDTBIN 76 Open description indicator
SSBDTAB T7 - 719 Address of user description block
SSBCREC 80 - 83 Address of Core Format of the record
SSBFSB 84 - 87 Address of File Status Block
SCBCTLG 88 Control Information for pointer
SSBPTR 39 - 91 Pointer to next SSB block

B.3.4 Input Parameter List

There are two possitle input parameter lists for the MACPROC rou-
tine. MACDS is the input list used whea entrance is non-conversational.
RPARA is the conversational parameter list and it 1s also the list
that is passed to REIRIEVE. The address of *the input parameter list,
elther MACDS or RPARA, must be in Register 1 and Register 13 must

contain the addrets of the calling routine's save area.

|
;

Name

RPARA

AFCB

. USRID

RECNO

QUTSPEC
FLNMLN
FLNAME
FUNCODE

CONTROL

LILEP
LDCB
DCB

KIB

MACLS

MRECNO

MOU'TSPEC
MFLNMLEN
MFLENAME
MFUNCODE

MADLOGEP

MILOGEXP

Bytes
DSECT
0-3
-7
8 - 15
16 - 17
18 - 27
28 - 29
2 - 83
8h
85
86 - 87
88 - 89
DSECT
0-1
2-1
12 - 13
14 - 67
68
69 - T1
72 - 75
76 - 202

B~23
Content

Address of File Control Block (FCB)
Address of KLecord Format Block (RFB)
User Identification

Number of requested recorde to be
retrieved.

Output specification

Length of file name

File name (left justified with spaces)
Code for fuﬁction requested

Part of internal form of user's descrip-
tion

Length of DCB and KIB
Length of DCB
Actual Description Control Block (DCB)

Actual Key Information Buffer (KIB)

Number of requested records to be
recrieved

Output specification

Length of file name

File name (left jusiified with spaces)
Code for function requested

Address of logical expression

Length of logical expression

Logical expression if included in the
mACro. -

B-2h

B.3.5 Register Conventlons

The repisters in MACPROC are assigned in the following manner:

Register : Utilization
0 Not used
1l Address of parameter list given to called
subroutine. Miscellaneous use.
2 Miscellaneous use
3 Base for MACPROC
L Miscellaneous use
p) Not used
6 Counter for number of characters in User

Id. Miscellaneous use.

T Not used

8 Length of requested file name. Miscellaneous
use.

9 Address and base of SSBTEXT.

10 Address and base o MACPROC work area.

11 Address and base of input parameter 1list
(MACDS)

12 Address and base of input parameter list
(RPARA)

13 Address of MACPROC save area

14 Return address in MACPROC

15 Subroutine call address. ZError codes.

B.3.6 Internal Work Area

WORK is the name of the internal work area used by MACPROC and

it has the following format:

ey e AT

Name
WORK
SAVE2
DPRM
OPPARM
CLPARAM

RATMODE

RTMODE
ADSTACK
TEMPF
TEMPH
CHKCODE
TASKNUM

DNTMOPN

DML

DNOPDMS

DM2
TEMP

SW1

Bytes
DSECT
0-T1
72 - 79
80 - 87
88 - 95
% - 99
100 - 101
102 - 131
132 - 135
136 - 139
140 - 141
1ko
L51
W2 - 143\
14 - k6
147 - 2h2
243 - 24k
245 - 247
248 - 317
318 - 368
369

B.3.7 Internal Codes

The various internal codes in the MACPROC routine are listed

belov by hexadecimal digits.

CHKCODE

X'Oh'

B-25

Content

Save area for MACPROC
Parameter area for error messages
Parameter area for UMS open
Parameter area for DMS close
Address of area for TMODE mecro
Length of ares for TMODE macro
Area for TMODE macro

Address of stack of SVC
Temporary area

Temporary area

Code for errors in SSB routine

Task number

For re-entrant error message

Temporary area

Code for macro entrance

SSB exists and has been acquired

B- 26 4

FUNCODE (Iunction code)

X'z22! Code for fetrieval

MFUNCODE (Function code)

xre2! Code for retrieval
SSBCL+1
X'00! File EDMF cleosed
X'FF! File ETMF open
SSBCIL6 4
X'Fp' Code that indicates good pointer in SSB
block
SSBDTBIN
X'FF! Code that indicates user description
block present .
SWl

X'FF! Entrance from macro
B.3.8 Flowchart
Figures B.3.a ~ B.3.c contain the flowchart for the MACPROC

routine.

Enter
* MACPROC

'

Establish
parameter aieg
(RPARA)

'

Move parameter
1list into
RPARA

e

Indicate entrence

from wacro
P et o 1 ;
Enter '
COMENTER]
— |
Establish
Work Area
Get User Id
v
Get Task Number
Figure B.3.a: MACPROC Initialization

Check
SSB entries

Call SSRACQR

S Yes
CHKCODE = X'Oh';>—' (::)

....._.—._. ——

4.....' -._..--.\
Length of :
[requested file 'NO End of SSB No Get next
.name - Length of /"” chain? SSB block
‘\\Q)B file neme?
* Yes Yes
i'chueoted file "\ No
nume = -
\SSB file name? =
Yes
Has an CEDMF N\
open been 1scued9\‘— e
SSBCLA+1 —“X kT:j/
| 1;Yes
{ i Set up ?
f ‘ parameter 1lists |
S
——t
1 ///intry from \\No cet intern?l
i a command? A 4 torm of logical
; I~ expression
S SVC call ;
Yes _ +
Move
internal form
into RPARA

Figure B.3.b: SSB Check and Trarslation of
Logical Expression

Issue a DMS
Open for
specified file

/

Open No ,
accomplished? ——T UDn;glgpzz
Yes
4
Exit
Call RETRIEVE
Figure B.3.c: DMS Open

Error Message:
File not EDMF
opened

Error Merssage:

|

Return to
calling program

B.4 Routine KETRIEVE

The routine RETRIEVE is the part of the Supervisor that implements
the Retrieval Optimization function by selecting the prime keywords
and also obtaining the ISAM keys that are Head of List Addresses.
B.k.1 Entry Points

Therc are two entry points. The normal entrance is at RETRIEVE.
The second entrance is at SPCENOl; this is an error message entrance
for other routines that cannot request memory.
B.k.2 Exit voints

RETRIEVE has three exit points. One is the normal exit point
and the other two are used when an error occurs. The norma) exit point
begins at MARK and a call for the routine FORPROG is issued. The error
exits are at RWUTL and ROUT2.
B.h.3 [Ixternal Subroutine Calls

Two cxternal subroutines are called by RETRIEVE. The first is
RETRDIR which retrieves the requested file's highest level directory.
The second subroutine called is DECODE [3]. DECODE is used to decode the
dircctory to determine the prime keywords and it also passes the corres-
ponding HOLA's to RETRIEVE.
B.k.4 Tnput Poramcter List

The address of the input parameter list (RPARA) wust be in
Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name

RPARA
AYFCB
RIFBA
USRID

RECNO

WTSPEC
FLNMLN
FT.NAME
FUNCODE

CONTROL

LILEP
LDCB
LCB

KiB

B.4.5 Rogister Conventions

Bytes
DSECT
0-3
b -7
8 -15
16 - 17

18 - 27

28 - 29

30 - 83
8k
35

Content

Address of File Control Block (FCB)
Address of Record Format Block (RFB)
User Identification

Number of requested records to be
retrieved

Output cpecification

Length of file name

File name (left justified with spaces)
Code for function requested

Part of internal form of user's descrip-
tion

Length of DCB and KIB
Length of DCB
Actual Description Control Block (DCB)

Actual Key Informatio. Buffer (KIB)

The rcisters in RETRIEVE are assigned in the following manner:

Register

0

1

Utilization
Not used

Address of parameter list given to
called subroutine. Miscellaneous use.

Miscellaneous use
Length cf entire DCB

Pointer to DCB

B.h.6 Intcrnal Work Area

10
11
12
13
1k

15

Utilization
Base for RETRIEVE
Length of DCB segments (18)
Not used
Pointer to PRIMEKE: stack

Address and base of input parameter
list (RPARA)

Pointer to ADDRESS. Miscellaneout use.
Address and base of RETRIEVE wdrk area
Pointer to RQADD. Miscellaneous use.
Address of RETRIEVE save area

Return address in RETRIEVE

Subroutine call address. Error codes.

The internal work area (SUP) used by RETRIEVE also contains the

parameter lists for some of the routines called by RETRIEVE. LISTP

ic passed on to the RETRDIk and the DFCODE routine while PLFOR 1is

passed to DECODE and FORI'ROG.

Name

SUp

DNOAT

MGl

DNOVAL

DMOG2

DI'ARAM

The work area has the following format:

Content

“or re-entrant error message

Not used

Parameter-arca for error messages

B-33

Name Bytes Content

NLENG 4k - 151

N ik - 2 Smallest n* in conjunct

LENGT 148 - 151 Length of associated HOLA's

TAREA 152 - 159

AREAN 152 - 155 N of current keyword

TLING " 156 - 159 Length of associated HOLA's

ENDPRKY 160 - 163 Address of FRIMEKEY - L

RQADD 164 - 327 Pointers to ISAM keys, length of keys

PRIMEKEY 328 - 491 Pointers to beginning of conjuncts and
prime keywords

SAVE kg2 - 635 Save area for RETRIEVE

REQMPAR 636 - 639

2293 : gii.? Parameters for $REQM
O47 - 651 '

LISTY 652 - 671 Parameter list passed to DECODE and
RETRDIR

ERRCODE 652 Error code

PDCB 652 - 655 Pointer to current location in DCG

PTAREA 656 - 659 Address of TAREA

ISAMTND 660 Code for DECODE

PADDRSS 660 - 663 Address of ADDRESS

PISAM 6EL - 667 Pointer to area - where to put ISAM keys

PHDIR 668 - 671 Address of highest level directory

PLI'OR 672 - 696 Parameter 1ist passed to DECODE and FORPROC

PFCB 672 - 675 Address of FCB

PKID 676 - 679 pointer to KIB

PIIRMKY 680 - 083 Pointer To PRIMEKEY Stack

B-34
Name Bytes Content
RFBADD 684 - 687 Address of RFB
ARQADD 688 - 691 Pointer to location in PQADD
PRECNO 692 - 693 Number of requested records
FNCODE 694 Code for function requested
ATCKIBV 695y Code for level of Authority Item Check
PRCODE 696 Code for output

*n = number of records in file containing a specified keyword

B.h,7T Internal Codes
The various internal codes in the RETRIEVE routine are listed

below by hexadecimal digits.

AREAN
X '00000000 ! No records within range of GT, GE, LT,
LE or FRCM-TC relations
X'FDFFFFEFF! Attribute of specified keyword does not
exist in the file
X'FEFTFI'TF! Error in range of FROM-TO relation
X'FFYFrFFE' value of specified keyword does not exist
in the file
Other Number of records in file containing
specified keyword
FRRCODE
X'obL! Part of directory unretrlevable
xoo! Hardware error
LSAMIND
X'00" Code for DECODE to return only n¥*

X'Fr Code for DECODE to return n¥* and HOLA s

FNCODE (Function code)

X'22! Code for retrieval

PRCODE (Print code indicating method of output)

X'00' Output on Low Speed Terminal (LST)

xX'o2! Output on high speed terminal

X'0h' Output to program in core format

x'8o* No output of actual records. Only output

nuber of satisfactory records.

B.4.8 Flowchart and Supplementary Diagrams

Figures B.4.a -~ B.4.g contain the flowcnart for the RETRIEVE

routine. Figures B.h.h - B.h.j contain supplementary diagrams.

B-36

Enter
RETRIEV

_

t Establish

Work Area

e e« S — ! R)

(
" Tnitialize PRCODE
PRCCDE « X001 i

OUTSPEC = CORE? \fes -
Want core tormat ———————— PRCODE +« X'Oh'
of record? /

! No

Y
//(111‘31“-.0 = caunm \ Yes T
——————® PRCODE

Only want count T - X'80! —

of records? /

N e e e g e e
1 No

Qutput to
printer?

/ QUISPEC = PRINT? \Yes
j PRCODE « X'02' -

Figure B.h.a: RETRIEVE Initialization

Set up
parumeter
lists

Fetablish
arca for highest

level .
directory J

Call RETRDIR [
Retrieving l
|

I

highest level
directory

d

]

\\\ Yes

-~

Error Message:
Hardware error

—

ERRCODE = X'0OC'? -
o}

N

-

Yes
ERRCODE = X'O4k'?)| __ .

Error Message:
Highest level
directory
unretrievable

Return to
calling routine

figure B.4.b: Retrieve Highest Level Directory

Initialize N
N « X'FFFFTFFFF'

l

Store addr of
beginning of
conjunct in

L PRIMEKEY

AN

O v

~—

End of conjunct;\\\\ Yes

DCB entry = X'LE'? !

e

]

i No .

Determine n -
number of records
assoclated with

keyword
Call DECODL

T
|

t

|
!
_

DECODE returns
n in AREAN

A

ERRCODE = X'0C'?

No
(¢

Figure B.h.c:

e g |

Yes

]

Error Message:
Hardware error

-0

Prire Keyword Selection

-

GRRCODE = X' Obj

rem s e

directory
unretrievable
Error Nessage: '
. Tes: Attr does not ’]

Error Message:
Part of

Update DCB
b- pointer to
next entry

__._...t..m.._ ———a
AREAN = End of DCB \°°
(X 'FDFFFFYT' ? | *7 exist in file stack? wro
~ .S o
iNo No
. N ’
RN A m[. —
AREAN = Vaizr dgzsaget i md of con,junct? es .-
' FFFFFFFF" e e 8 no ;H entry = »-\.Q
X'F ? : exist in file ‘ R DC}B('hgl;'Y
!]
e e————— s " ' ! ' _
No : No
TS S T
- Yes Error Mescage: !
ARFAN = ! Error in o
X'FEFFFFFF'? > FROM-TO i
. relation | '
..._,_]_.No - g : V
i —_—
S S y Error Message:
’ ! No records
AREAN = Yes
100000000 - within range of |,
X ! GT GE, LT, LE
o [or FROM~-TO
D R L___ relation __!
l No
A
Figure B.4k.d: Prime Keyword Selection

i
(AREA
-

rd

L

Yes

\:

4

W< W2 e NLENG +

~—

TAREA

[om—
No

1

X
Put address of
; into PRIMEKEY

bomamae srvom s A -..] s e

>

-

Update DCB
pointer

- ———

app

current primekey

- ——

i~
Y

End of DCB
stack?

T

o g

Figure B.h.c: Prime Keyword Selertlon

B-k1

+

Establish area
for HOIA's =~
ISAM keys

l
!

v

|
!
|

ISAMIND « X'FF' I

I

Pick up n and
ISAM keys for
prime keyword
|._.Call DECODE

Y
Put address and
length of ISAM
keys into
RQADD

|
'

ISAMIND ~ X'00'

©

S ———r— &

B e - e

Y
Yes
N = X'FFFFFFFF’€:>~
lNo -

-

Error Message:
Relations can't
all be NE

Figure B.4.f: Obtaining ISAM Keys

B-L2

{"\")
[

I peererer iy

; 2 = X'0C'? =

ERRCODE = X'0C"2) o Hardware error ’@
—— !v'-.‘ - vr—---—f'/' T . - P R

i No

o S —— oto - —— -

/ Yes Error Message: ‘
ERRCODT == X'Oh'? e Part of
directory

~ ___unretrievable _ _,

! Mo

——— o 1t b 2 4 RS

Update pointer
to PRIMEKEY

b

3
|
{
e

!

Update DCB
pointer to next
entry

]

et w- —— ~

» wnd of DcB . Yes 7
\\ stack? e
) - s
TN } No

IR 2)
\°J -.,

Put delimeters
(X'FF') at end of
RQADD and ,
PRIMEKEY ;

o - S —

—

R B !
| Set up
L parameter lists

et l--,..... e e e &
7

T it ‘
Call IPORPROG ,
. . - J

Figure B.k.g: Return to Process Next Conjunct
and the Exit

B e PR

Key Information Buffer

Attribute ' Val

e o e e e— R

B-43

ue | Attribute & 1N
ol) Description Control Block
: /] -
Va.l H K .
S Wit N W I SN S S
Er R R R S
\ :
te | Value ' XK \ {
I PSR VR B A Cr| L L : L F,'
o | g2 Bl e, 1A 2
Y o ' k ! ' ;
e o e At i < et s+ e g Bl A3 ° ' . . ' . ; F3 J
| i !
V . . L) . l ™
b mmee e —3 : —_—
- B A ; . [L] L] F '
Pointer to 2 _h N SO RN DU -J . l‘. -
Beginning of ‘ .'
Conjunct »B 'lA . . . b '
Iieh S ../.7.-..-—... R L) ’--.—5—."—;“' -.‘—“ . . Fs
B, ‘B, Bytes 4 1 2 3 3 5 ;
. - —— [SUP—— /
/ , , Pointer /
Be ¢ 32 to ,
INUERRNY R rime -
Keyword /"
. . Fl F2 . . |
e e — - —
M . . L) / 3
R S /L
¥
y ' ' Fn Fn+l
Prime Keyword Stack F F . .
m2 4n+3)

Figure B.k.h:

Format Number Stack

Important Arcas Used in the

RETRIEVE and FORPROG Routines

Description of Control Block Areas for Figure B.4.h .

Ay

Prime

is a pointer to the beginning of tﬁe ith keyword that 1s stored
in the Key Information Buffer. The attribute and value(s) are
stored in their entirety, i.e. exactly the way the user specified
them.

is the control code that indicates the relation between the attri-

bute and the value.

is the length of the ith attribute.
is the length of the first value of the 1T keyword.
is the length of the last value of the ith keyword.

is the pointer to the beginning of a list of format numbers
associated with the attribute.

keyword Stack Areas:

is the pointer to the beginning of the ith conjunct in the
Description Control Block.

is the pointer to the prime keyword in the ith conjunct in the

Description Control Block.

F,' will appear as follows:

i
Address of beginning # of elements
of 1list in list
I vytes 1 byte

B-U5

PRIMEKEY

Bytes b k

vhere B1 : Pointer to bYeginning of conjunct in DCB

Bi': Pointer to prime keyword of conjw..t beginning with B1

Note: X'FF' ona B 1 boundary indicates the end of the stack.

Figure B.4.i: Prime Kcyword Stack

B-LG

RRADD

I]
! N L
} .
B L,
! "
! . .
L S SR —
' A L
1 1 i
LFF]

Bytes L L

where A,: Address of HOLA's (ISAM keys) that correspond to 1th
prime keyword

Total lergth of ISAM keys

Note: X'I'I' on an Ai boundary indicates the end of the stack.

Figure B.4.j: RQADD Area

-

[P Y

i W e g s e

B-47

B.5 Routine FORPROG

The FORPROG routine determines and lists the record format numbers
for cach attribute in the user's request description. The address of
each 1ist is placed in the 1hth - 1Tth bytes of the DCB entry for the
corresponding attribute. The number of assoclated format numbers is
piaced in the last byte of the DCB entry (see Figure B.l.h).

B.5.1 Fntry Points

FORPROG is the only entry puint in the routine.
B.5.2 Exit Points

FORPROG has three exit points. One is the normal exit point and
the other two are used when an error occurs. The normal exit point begins
at DONE where a call for the ESTAB entry of RETALG is issued [4]. The
error exits are at FSPCEN1 and FSPCEN2.

B.5.3 Input Parasmeter List
The address of the input paramétér list (PLFOR) must be in Register

1 and Register 13 must contain the addrecs of the calling routine's save

area.

Name Bytes Content

PLFOR DSE(T

PFCB 0-3 Address of FCB

PKIB h -7 Pointer to KIB

INDAI 8 Code for Authority Item Checking routine

PDPRKY 8-1 Pointer to PRIMEKEY Stack for Authority
Item Checking routine

PPRMKY §-1 Pointer to PRIMEKEY Stack

RFBADD 12 - 15 Address of RFB

ARQADD 16 - 19 Pointer to RQADD

TRECNO 2 - 21 Number of-requested records

Name Bytes
FNCODE 22
ATCKLEV 23

PRCODE 24

B.5.4 Rkeglster Conventions

The registers in FORPROG

Register
0

1

o

\O (o] (22NN, |

10

11

12

13

14

15

B-L8

Content
Code for function requested
Code tor level of Authority lvem Check

Code for output

are assigned in the following maaner:
Utilization
Number of possible format entries (125)

Address of parameter 1list given to called
subroutine

Addr ss of KIB

Base for FORPROG
Pointer to RFB
Counter for RFB
Length of attribute
Pointer to KIB
Pointer to PRIMEKEY
Pointer to FORMATNO
Pointer to DCB

Address and base of input parameter list
(PLFOR)

Address and base of FORPROG work area (SUP2)
Address of FORPROG save area. Number of
forwat numbers associated with a specific

attritiute

Return address in FORPROG. Miscellaneous

use

Subroutine call address

B.%.5 1nternuwl Work Area

The internal work area used by FORPROG is called SUP2.

Name Bytes Content

sup2 DSECT

ALFULL 0-3 Temporary storage

PLFRST h -7 Current address in FORMATNO

SAVE 8 -179 Save area for FORPROG

ALHALF 80 - 81 Temporary storage

TFORNUM 82 - 83 Format number that is being checked
FORMATNO 8k - 31 List of satisfactory format numbers

B.5.6 Internal Codes

The various internal codes in the FORPROG rout’ne are listed below
by hexadecimal digits.
INDAT

X'FF! Indicates entrance is from the Authority
Item Checking routine

FNCODE (Function code)

Xteo! Code for retrieval
MARKER
X'FFFF' Placed in the 6th and Tth bytes of the
DCB entry to indicate a no attribute
case

B.5.7 Flowchart
Figures B.5.a - B.5.d contain the flowchart for the FORPROG

routilne.

O

B-50

[Enter
’ FORPROG

v

| Establish

l Work Area J

|

Ol o e a e e

\] -
N
End of Yes Set up
PRIMEKEY stack? parameter list
No l
i
Y
! Update pointer oxit
to PRIMEKEY Call ESTAB
o mne] —
- B
R R
’ : \
/ End of conjunct? i Yes
DCB entry = j))
X'4E"? //
N e e e e
lNo

i Set format number !
i counter to zero i
Reg 12+ 0 |
R |

Pigure B.5.a:

FORPROG Initialization

st

B-51

¥

Yes /' No attribute '\ NO Put addr of
End of RFB? \._ case? — tornu:t list
Marker in DCB? $ | inDCB entry
No Yes
' L.
End of Put length of]
attribute format list in
1ist? DCB entry !
Y | 1 * .
Put format l Put zeros in | !
number into ! DCB place) ! Update DCB |
temp area | ‘ MARKER was inJ i pointer :
e g i 4
Length of attr'\ Yes / Usef's No ~
in user's descr=} . description attr {9
length of ! = k
RF]_S.Etf?.?V-"/ RFB attribute? -
] No l Yes
7 i
© © :
/ -
Pick up next

attr in list

Figure B.5.b: Obtaining Fcrmat Numbers

Processing a

B~52

Yes

no attribute
— case? “///

% No

Beginning of a
no attribute
case?

- e

No

) R

Yes Put MARKER
- in DCB

vy
-y

— N
Length of
attribute in | 1%
.B>101 /
— e o
| o
.

RFB attr =
list attr?

No

i Yes

I ST P

l Difference =
i (10-1ength of
RFB attr)

e
. |

Difference ~\\\Ye§
composed of “"\E/
zeros?

No’

RFB att;\:\

list attr?
\.,-——-

S

Figure B.5.c:

e Y
4 -

. k|
Update RFB
pointer to new
foruwat number

©

Processing No Attribute Case

D

-~

©

S

End of
format area

B-53

No :
?

Put format
number into
list -

. Yes

Y

___FORMATINO

Establish

~ ' Aitional ares
for FORMATNO

|

PR

Update
counter for
format number

|

- Any format Update
number already No pointer in
found for current FORMATNO
attr? 7
i Yes l
! Move all format Update RFB
numbers for _ pointer to new
current attr into format mumber

new area

Figure B.5.d4:

Establishing Additional Area
for Format Numbers

B-5k4

B.G Routine CI.SEPROC

The CLSEPROC routine is the one that implements the Tose Tunctim
of the EDMF. It indicates in the SSB chain that the specificd partition(s)
have been closed and also removes the corresponding FSB entries.

B.6.1 Entry Points

CLSEPROC has two entry points. CLSEPROC is the SVC entrance while
the command entrance is at COMDCLSE.
B.6.2 Exit Points

There is only one exit point for this routine. It begins at CKEXIT
where control is returned to the calling program.
B.6.3 External Subroutine Calls

Three external subroutines are called by CLSEPROC. The first is
to the location ESQCAT to obtain the task number. The second is to the
entry point SSBACQR of the SSBOPTR routine [9]. This is used to obtain
the SSB chain for the specified user. The third external subroutine that
is called upon is FSBOPTR [9]. It is through the use of the FSBOPTR rou-
tine that FSB entries are removed. The DSECT's that are associated with

the SSBOPTR and the FSBOPIR routines are the following:

Name Bytes Content
SSB DSECT
SSBHDR 0-17 SSB Header
SSBUAT 0-3 Address of User's Authority Item
SSBIIF L -7 Address of FCB for File Information File
SSBTXT 8 -9 SSB text
SSBFNAM 8 - 63 2 bytes - length of file name
54 bytes - file name

SSBCL 64 - 67 Control Information

an Type of request

ot o

Name

SSBFIB
SSBFCB
SSBDTBIN
SSBDTAB
SSBCREC
SSBFSB
SSBCTL6

SSEPTR

FSB
FSBUSRID
FSBCL
FSBDSADR
FSBLTBLK
FSBCTRL

FSBNTBLK

B.6.4 Input Parameter List

Bytes
65

66 - 67

68 -1

72~ 75
76

7 - 79

80 - 83

84 - 87
. .

89 - 91

DSECT
0-17
8-1

12 - 15

16 - 19

20

21 - 23

Content
Indicator ~ EDMF open
Unused
Address of File Information Block (FIB)
Address of File Control Block (FCB)
Open description indicator |
Address of user description block
Address of Core Format ot the record
Address of File Status Block
Control Information for poinver

Pointer to next SSB block

User Identification

Control Information

Addre- of user's partitioning description
Poin -~ .o previous FSB block in chain

Control Information

Pointer to next FSB block

The address of the input parameter list (CLSEPARM) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name

CLSEPARM

FLNMLN

FLNAME

Bytes
DSECT
0-1

2-55

Content

Length of file name

File name (left justified with spaces)

B-~56

Name Bytes Content

FUNCODE 56 Code for type of close requested

LOGEXPAD 57 - 59 Address of partitioning logical expression
LNLOGEXP 60 -~ 63 Length of partitioning lugical expression
LOGEXP 64 - 190 Partitioning logical expression

B.6.5 Register Conventions

The registers in CLSEPROC are assigned in the following manner:

Regicter Utilization

0 Not used

1 Address of parameter list given to called
subroutine. Miscellaneous use.

2 Miscellaneous use

3 Base for CLSEPROC

L Miscellaneous use

5 Address of partitioning description in SSB

6 Counter for number of characters in User
Id

1 Length of description in SSB

8 Length of requested file name

9 Address and base of SSBTEXT

10 Pointer to FSBLIST

11 Address and base of CLSEPROC work area

12 Address and base of input parameter 1list
(CLSEPARM)

13 Address of CLSEPROC save area

1k Return address in CLSEFROC

15 Subroutine cuall address

B-57

B.6.6 Internal Work Area

CLSEWORK is the internal work area used by the CLSEPROC rouvi ae.
It contains the parameter list (FSBLIST) vhat is passed to the FS30PTR
routine. The work arees has the following lormat:
Name Bytes Content
CLSEWORK DSECT
DPRM2 0-~T7 Parameter #rea for error messages
CLSAVE 8 - 79 Save area for CLSEPROC
ATMODFAR 8o - 83 Address of area for TMODE macro
84 ~ 85 length of area for T™ODE macro
TMODEAR 86 - 115 iree for TMODE macro
USERID 116 - 123 User Identification
FSBLIST 124 - 207 List of addresses of FSB blocks to be
| rems.ed :
ADRS'TACK 208 - 211 Address of scack area of SVC
TEMPA 212 - 262 Temporary area
TSKNUM 263 Task number
SWl 264 Code - found appropriate SSB block
E CHKCODE 265 Code for errors
I’ DNTMOPN2 266 - 267
§ 268 - 270 For re-entrant error message
E DMESS1 271 - 366
E swe 367 Code for macro entrance

B.6.7 Internal Codes

The various internal codes in the CULSEPROC routine are listed
below by hexadecimal digits.
CHKCODE

X104 SSL ex1sts and has been acquired

A W

FSBCTRL

X'FF'

FUNCODE (Function code)

Xl)+8|

X'hg!
SSBCL+1

X100!

X'Fr!
SSBCTLO

X'FF!
SSBDIBIN

X'FF!'
1

X'FF'
Sw2

X'FF!

B.6.8 Return Codes

B-58

Code that indicates good pointer in FSB
block

Close all partitionc

Close specified partition

File partition EDMF closed

Flle partition EDMF open

Code that indicates good pointer in SSB
block

Code that indicates user deseription
block present

Code that indicates f{ound appropriate
SSB block

Entrance from macro

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecimal digits.

X'00!

Xloul

Everything 0.K.

Appropriate SSB block does not exist

B.6.9 Flowchart and Supplementary Diapram

Figures B.6.a - B.6.c contain the flowchart for the CLSEPROC

routine while Figure B.6.d contains a supplementary diagram.

A W3t a7 m

Enter
CLSEPROC

—-

- e s .t.._— [

Establish
Work Area

St g i el etyre-m—. 4

Get
Task Number

-

|

_

Check SSB]
entries. !
Call SSBACQR

No

CHKCODE = X'Ob'?} -~

:Yes -
y

C A

\

Figure B.6.a:

Error Message: !
EDMF open not
issued for
file

Exit to
calling program

CLSEPROC Initialization

(<)

et SIS -
h of requested\ yeg Requested filéﬁ‘\\\ No
ile name = N name = —
length of SSB SSB file name?]
file neme:? AA/// I
ol o Mo Yoo
‘ a , ‘Ye
. " i
Yes
End of SSB cnai?i/>-p\\:)
e
; No
— Y
: Get next File EDMF opened‘7 No ! ,(8 N
, l SSB block SSBCL+1 = X'FF' _,)
i e e o e -
1
b —— ~
Yes // Close all
F""' partitions?
\\ FUNCODE = X'L8'?

l

~
~ Partitioning . No
(description '

present / T
| in SSR? /
|

! Yes

Length of
vartitioning desc. No
in SSB = length of

part. desc. in

CLSE recuest?

|
|

Yes '
(Descriptz ons equal" pO
: Yes
d)

Figure B.6.b: SSB Chack

-

Appropriate SSB ~1
found

LWl «X'¥F! |

Put addr of
FSB to

be removed ¢

(__.in FSBLIST |

SR I]
[Advance i
FSBLIST :
l__ pointer |
S

L4

Indicate file
partitior EDMF
closed
SSBCL+1 ~ X'00' |

hJ
o ¥
e Clese ali
Yes ™~

: partit:.ons? . '
"-_ FUNCODE = X'48'? / N

]

/,;\‘ h -l>l No
.) 7
SWl = X'FF'?

-mHAJ Yes a

Put delimiter
(X'FF') at
end of FSBLIST

| | ‘

Remove FSB
entries
Call FSBOPTR

No

\\\

e e

Error Message:

EDMF apen not
issued for file

Y

——

Exit to
calling program

Figure B.6.c: Clocing 58B, Setting Up FSBLIST
and Exit

B-62

FSBLIST

Bytes l

where Ai: ©ointer to a File Status Block

Note: X'IFF' oun a boundary indicates the end of the stack.

Figure B.6.4

APPENDIX C

CONTROL BLOCKS

C.1 7rile Status Block

8 bytes User Identification
4 bytes Control Information
4 bytes Control--Address of user description block
4 bytes Control--Pointer to previous FSB block
4 bytes Control--Pointer to next FSB block
X 00~~-mull pointer FFP-~good pointer
i

Notes on the File Status Block

). Unless stated explicitly, all control information is 1 byte, all

addresses are 3 bytes.

e T, - oo e e

C.2 Service Status Block (SSB)
L bytes Control--Address of User's Authority
Item HEADER
I bytes Control--Address of FCB for FIF
2 bytes Length of I'ilename
54 bytes Filename
4 bytes Control Information
L vytes Control--Address of FIB for filename
L vytes Control-~Address of FCB for filename TEX'D
L vytes Control--Address of user description
block
L bytes Control--Address of core format record
4 bytes Contrel--Address of corresponding FSB
block
4 bytes Control--Pointer to next SSB entry
00--null pointer FP--good pointer
Notes on the Service Status Block
1, Unless stated explicitly, all control information is 1 byte,

all addresses are 3 bytes.
The header appears on the first SSB block only--all subsequent SSB

entries contain only the text.

1st SSB block = 8 + 84 bytes = 92 bytes

all subsequent SSB blocks = 84 bytes

C.2.1 Uger Description Block

L bytes Length of partitioning descripticn
n bytes Partitioning description

C-3

C.3 Record Format Block (RFB)

4 bytes Control Information
2 bytes Pointer to first format
relative to first byte of RFB HEADER
2 bytes Last format number assigned
2 bytes Format number
2 bytes Control information
2 bytes Relative address of first format TABLE OF
e e CONTENTS
2 bytes Format number
2 bytes Control information
_ 2 bytes _ Relative address of secongwfgggqq_‘,
r’ 2 bytes Format number
4 bytes Type of format
2 bytes Level number
2 bytles Repetition number
3 bytes Size of value FCRMAT
1l byte Control information ENTRY
2 bytes blank
4 bytes Field protecction data
2 bytes Length ol attribute
n bytes Full attribute name
;E et pom—i——t e wv e e A e iAo v o o
I

Notes on the Record Format Block
1. All relative addresses in the Table of Contents are relative to
the first byte in the first format, hence a pointer to the first
format is placed in the header. This arrangement obviates the
need for changing relative addresses in the Table of Contents if

new formats are added to thc block.

]

Format numbers appear in the Table of Contents in order of their
appcarance in file records.
3. The Typc of Format fiecld may be used to indicate a program which

processes the formui.

L. Like the size of value entry, the repetition number will not appear

in the format if the format may repeat & variable number of times.

Variable repetition is indicated by a bit in the control information.

5. Control information in the format entry is one byte long with the

following specification:

ee:

abed ee00

0

00

10

01

11

Repetition number is variable

Repetition number is fixed

Value size 1is variable

Value size is fixed

Attribute is not in the directory
Attribute is in the directory

Attribute optionally appears in a record
Attribute appears in every record

Value is packed decimal

Value is alphabetic

Unassigned

Unassigned

