
TECHNICAL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION

FUNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

0 by

Judith Irene Hirsch

Prepared for the

Office of Naval Research
Information Systems Branch

Arlington, Virginia

Contract N00014-67-A-0216-0014
Rescarch Project NR 049-153 D D C

APR
iLAF 28 V

UNIVERSITY CF PENNSYLVANIA
rhe Moore School of Electrical Engineering

Phlladeip:Lia, Pennsylvania 19104

]Report No. 71 21

Ruvtdud by
NATIONAL TECHNICAL
INFORMATION SERVICE

Sp-ngQeld Ve 12•51 \c)

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Philadelphia, Pennsylvania

TECHNICAL REPORT

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION
FUNCTIONS OF THE SUPERVISOR

FOR AN EXTENDED DATA MANAGEMENT FACILITY

by

Judith Irene Hirsch

April 1971

Submitted to the
Office of Naval Research

Information Systems Branch
Arlington, Virginia

under
Contract NOOO14-67-A-0216-OOlh

Research Project NR 049-153

Reproduction in whole or in part is
permitted for any purpose of the

United States Government

Moore School Report No. 71-21

ACCESS CONTOL AND RETRIEVAL OPTIMIZATION
FUNCTIONS OF THE SUPERVISOR

FOR AN EXTENDED DAWD MANAG]EMNT FACIL-'IY

Abstract

The purpose of the Supervisor in an Extended Data Management
Facility (EDMF) is to direct the Facility's handling of a user's request
for service. The Supervisor fulfills its task through the use of five
main functions: Access Control, Retrieval Initialization, File Search-
ing, Record Validating and Record Formatting. The major and most
important component rcj the Retrieval Initializo.tion phase is the Retrieval
Optimization subfunction. This report is concerned mainly with the design
and implementation of the Access Control and Retrieval Optimization
lanctions. :vecro instructions are the mechanism through which a user's
program can call upon the EDMF. The Authority Item check is the EDNF's
security control over file access while the Prime Keyword Search is the
method used to optimize the retrieval strategy. The Authority Item check
and the Prime Keyword Search are two of the major concepts of the Extended
Data Management Facility.

Sc,,inty Classification

DOCUMENT CONTROL DATA - R & D
(Se,.rfty claesification ol title, body of abstract siud Indexing annotation niumt be en'ered when the overiII report Is claaeified)

OFI4GINA TING ACTIVITY (Corporate author) 2s. REPORT SECURITY CL.ASSiFICATION

The Moore School of Electrical Engineering UNCLASSIFIED
University of Pennsylvania 2b. GROUP

Phila., Pa. 191o4 _

2REPORT 1I11LE

ACCESS CONTROL AND RETRIEVAL OPTIMIZATION FUNCTIONS OF THE ZX1PEBVISOR
FOR AN EXTENDED DATA MANAGEMENT FACILITY

I IVL C ,RIPTVE NOTES (Ty.pe of report andlnclu •ive dates)
Technical Report

5. AU THORISI (First name, middle Initial, Ifat name)

Judith I. Hirsch

* REPORT DATE 7e. TOTAL. NO. o0" PAGES 7h, NO. OF REFS

April 1971 118 11
14. CON rRAC t OR GRANT NO. 9A. ORIGINATOR'S REPORT NUMVER(S)

"N014-67-A-0"' .6-"o14 Moore School Report No. 71-21
b. Po•Ojec I NO

NHR 0o49-153
r. 9b. OTHER REPORT NO(S) (Any other number@ that may be asesined

this report)

d.

10 DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the
U. 2. Government.

III SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Information Systems Branch
Arlington, Virginia

13. ABSTRACT

The purpose of the Supervisor in an Extended Data Management Facility (EDMF)
is to direct the Facility's handling of a user'lz request for service. The
Supervisor fulfills its t-sk throagh the use of five main functions: Access
Control, Retrieval Initialization, File Searching, Record Validating and Record
Formatting. The major and most important component of the Retrieval Initialization
phase is the Retrieval Optimization subfunction. This report is concerned mainly
with the design and implementation of the Access Control and Retrieval Optimization
functions. Macro instructions are the mechanism through which a user's program
can call upon the EDMF. The Authority Item check is the EDMF's security control
over file access while the Prime Keyword Search is the method used to optimize
the retrieval strategy. The Authority Item check and the Prime Keyword Search
are two of the major concepts of the Extended Data Management Facility

DD,.°N` 1..i473 (PAGE 1)

S/N 0101 -07-b811 Security Classification A I

Security Classification

4 LINK A LINK 0 LINK C
KEY WOROS

ROLE WT ROLE WT HOLE WT

, sr control
,u,,Lu.L blocks

File o'irectory
File search
File status
Generalized file
InTput parameters
Optimization functions
Retrieval
",torage
C/ubrout i ntes

DD 1473 (BACK)
0, 01 ol oT • 4o,--, : i Security Classification A- 3140.

%BLE OF CONTENTS

Page

CfikPTER 1 INTRODCTION I

1.1 The Extended Data Management Facility 1

1.2 The Supervisor of the EDMF 2

1.3 The Scope of the Thesis 2

CHAPTE!R 2 TME OPEN FUNCTION 4

2.1 Definitions 4

2.1.1 Attribute-Value Pair 4

2.1.2 Reco-d 4

2.1.3 Keywords 6

2.1.4 Keyword Lists 7

2.1.5 File and Directory 9

2.1.6 Generalized File Structure 11

2.1.7 Request Description 13

2.1.8 Entering the EDMF 14

2.2 Purpose of the Open Function 16

2.3 Access Control 16

2.3.1 Introduction 16

2.3.2 File Level Check 17

2.3.3 Partitioning the File 18

2.3.4 User's Authority Itcm 20

2.4 Control Blocks 21

2.4.1 Service Status Block 22

2.4.2 File Status Block 23

2.5 Return to User 24

iv

TABLE OF CONTE1S (continued)

Page

2.6 The EDMF's OPN Macro 25

CIWJ'TER 3 THE RETRIEVAL INITIALIZATION FUNCTION 26

3.1 Purpose 26

3.P Control Blocks 26

3.2.1 DMS Open 26

3.3 Retrieval Optimization 27

3.3.1 Prime Keywords 28

3.4 ISAM Keys 29

3.5 Record Format Numbers 30

3.6 Control Passed to the File Searching Function 31

3.7 The EDMF's RETR Macro 31

CHAPTER 4 ¶LE CLOSE FUNCTION
32

4.1 Pur•jose 32

4.2 Control Blocks 32

4.3 Return to User 3-3

4-4 The EDMF's MLSE Macro 33

CMTAPR 5 E1UM.kRY 34

1I BLIOGRArnfy 35

APPENDIX A MACROS A-I

A.l Open Macro A-i

A.1.I ('enerated Parameter List A-2

A.2 Retrieval Mac-ro A-4

V

2kBLE OF CONTENTS (continued)

Page

A.2.1 Generated Parameter List A-6

A.3 Close Macro A-7

A.3.1 Generated Parameter List A-8

APPENDIX B ROUTINES B-I

B.I Routine OPNPROC B-I

B.1.1 Entry Points B-I

B.l.2 Exit Points B-i

B.1.3 Externa.! Subroutine Calls B-i

B.l.4 Input Parameter List B-3

B.I.5 Register Conventions B-3

B.l.6 Internal Work Area B-4

B.1.7 Internal Codes B-6

B.1.8 Return Codes B-8

B.I.9 Flowchart B-8

B.2 Routine FIFDIRSI B-14

B.2.1 Entry Points B-14

B.2.2 Exit Points B-14

B.2.3 External Subroutine Calls B-14

B.2.4 Input Parameter List B-15

B.2.5 Register Conventions B-16

B.2.6 Internal Work Area B-16

B.2.7 Internal Codes B-17

B.2.8 Return Codes B-17

B.2.9 Flowchart B-18

vi

MBLE OF CONTENTS (continued)

Page

B. 3 Routine MACPROC B-21

B.3.1 Entry Points B-21

B.J.2 Exit Points B-21

B.3.3 External Subroutine Calls B-21

B.3.4 Liput Parameter List B-22

B.3.5 Register Conventions B-24

B.3.6 Internal Work Area B-24

B.3.7 Internal Codes B-25

B.3.8 Flowchart B-26

B.4 Routine RETRIEVE B-30

B.4.1 Entry Points B-30

B.4.2 Exit Points B-30

B. 1.3 External Subroutine Calls B-3)

B.4.4 Input Parameter List B-30

B.4.5 Register Conventions B-31

B.4.6 Internal Work Area B-32

B.4.7 Internal Codes B-34

B.4.8 Flowchart and Supplementary Diagrams B-35

B.5 Routine FORPROG B-47

B.5.1 Entry Points B-47

B.5.2 Exit Points B-47

B.5.3 Input Parameter List B-47

B.5. 11 Register Conventions B-48

B.5.5 Interial Work Area B-49

B.5.t Internal Codes B-49

vii

MBLE OF CONTENTS (continued)

Pap

B.5.7 Flowchart B-49

B.6 Routine CLSEPROC B-54

B.6.1 Entry Points B-54

B.6.2 Exit Points B-54

B.6.3 External Subroutine Calls B-54

B.6.4 Input Parameter List B-55

B.6.5 Register Conventions B-56

B.6.6 Intorral Work Area B-57

B.6.7 Internal Codes B-57

B.6.8 Return Codes B-58

B.6.9 Flowchart and Supplementary Diagram B-58

APPENDIX C CONTROL BLOCKS C-1

C.1 File Status Block C-.

C.2 Service Status Block C-2

C.2.1 User Description Block C-2

C.3 Record Format Block C-3

CHAPTER 1

INTRODUCTION

Today, there is a rapid and ever increasing growth ir the total

volume of information. This huge volume threatens to make the informa-

tion useless ,inless ways can be found to A.-nage It. The purpose of the

Extended Data Management Facility (EDNF) ia. to provide a flexible,

general purpose, time-shared file management system for the ori.erly

accumulation end dissemination of information [9].

1.1 The Extended Data Management Facility

"he Extended Data Management Facility is an extension of the data

management system that presently exists at the Moore School on RCA's

Spectra 70/46 Time Sharing Operating System (TSOS). The EDMF makes use

of the services offered under TSOS, especially the Data Management

System's Indexed Sequential Access Method (ISAM), and it also incorporates

its own routines into the operating system.

In order to encourage the use of the EDMF, it must be relatively

simple to use. The EDMF simplifies for the user the problem of designat-

ing those records that he wishes to see. The user does not need to know

the actual addresses of the desired records but he merely must express

as a logical expression the characteristic contents of the records. The

EDNF then takes on the responsibility of determining the actual record

addresses and uses these addresses to retrieve the records. The heart

of the Facility is the implementation of the generalized file structure

and its general retrieval algorithm as suggested by Hsiao and Harary

in [8). For an overall description of the EDMF, the reader is referred

to [9).

-1I-

-2-

1.2 The Supervisor of the EDMF

The purpose of the Supervisor in the EDNF is to direct the Facili-

ty's handline of a user's request for service. In this capac.Lty, the

Supervisor assumes the roles of "doorman", "foreman", "administrator",

and "dispatcher". It is at first as a "doorman" who accepts the service

requests and initiates their request handling routines. Then as a

"foreman"", the Supervisor regulates the use of the primitive storage

and retrieval routines [6) and system subroutines, and also optimizes

the storage and retrieval strategy for a time-sharing environment. In

its role as an "administrator", the Supervisor controls the user's access

to files and validates the systems output of records to the user. It

is also a "dispatcher" who returns the results of the service to the user.

In directing the handling of the user's requests, the Supervisor

performs five main functions: Access Control, Retrieval Initialization,

File Searching, Record Validating, and Record Formatting. The major and

most important component of the Retrieval Initialization phase is the

Retrieval Optimization subfunction. •2e five main functions in

combination with each other satisfy the above roles which the Supervisor

must assume.

1.3 The Scoe of the Report

This report is concerned mainly with the Access Control and

Retrieval Initialization Functions of the Su3 .risor. These functions

fulfill the role of "doorman" and partially those of "foreman" and

"adminiUtrator". Macro instructions are the "doorman's" entrance into

the requeet handline routines. The Prime Keyword search is the "foreman's"

method of optimizine the retrieval strategy and the check of the user's

Authority Item is the "adminirstrator's" security control over file access.

A discassion of the macro instructions and the user's Authority Item

can be found in Chapter Two, the Open Function; whilo Chapter Three,

The Retrieval Initialization Function, contains a discussion of the

retrieval strategy.

CHAPTER 2

ME OPEN FUNCTION

2.1 Definitions

Before the Open Function can be discussed, the terms and concepts

which are basic to the DMWF must be given precise definitions. The

definitions used in this thesis are consistent with those in [73.

However, they will be found to be less formal and more descriptive.

2.1.1 Attribute-Value Pair

The most basic concept which must be defined is that of the

attribute-value pair. Let there be two sets, A and V. The elements

of A are those terms which are considered as "attributes", and the

element of V are those termu which are considered as "values". Let

a third set D be the subset of the Cartesian product A x V, whose

elements are the ordered pairs of the elements of A and V. A single

element of D is called an attribute-value pair, and intuitively it

constitutes the basic element of information. Some examples of

attributes, values, and attribute-value pairs are shown in Example 1.

2.1.2 Record

A record R is a set of attribute-value pairs which collectively

convey some meaningful information. Often these attribute-value pairs

are referrod to as the fields of the record. An example of R, a subset

of the set of all attribute-value pairs, is shown in Example 2. The

attribute-value pairs in this record convey to the reader information

about a book on the subject of public education.

- ' -

-5-

la: A set of attributes

A - (author, year, topic, abstract, text)

ib: A set of values

V = (Lieberman, 1960, public education, [the complete abstract

of a book], [the complete text of a book])

lc: A set D of ordered pairs which are attribute-value pairs

A x V-.D = [(autaor, Liebermau), (year, 1960), (topic,

public education), (abstract, [the complete abstract of a

paper]), (text, [the complete text of a paper)))

Example 1: Examples of attribute, values and
attribute-value pairs

R = ((author, Myron Lieberman),

(title, The Future of Public Education),

(topic, public education),

(publisher, University of Chicago Press),

(year, 1960),

kabstract, [the complete abstract of the book)),

(text, [the complete text of the paper]))

Example 2: Record of a book on the subject
of public education

2.1.3 Keywords

A record can be characterized by any combination of the attribute-

value pairs which are in the record. Due to pragmatic considerations,

it would be desirable to have those attribute-value pairs which are

short and can be simply expressed, characterize the record. These

short attribute-value pairs are called keywords, and will henceforth

be denoted symbolically by Ki, i = 1,2,...n. Thus we can refer to a

record R by referring only to the keywords in R. The record in Example

2 can be characterized by the set of keywords shown in Example 3. In

general, the set of keywords of a record R is called an index of the

record R and it is usually a proper subset of R.

The index of R = [(author, Myron Lieberman),

(title, The Future of Public Education),

(topic, public education),

(publisher, University of Chicago Press),

(year, 1960))

Example 3: The keywords -*haracterizing the
record in Example 2

At this point we would like to introduce a notational change

for the attribute-value pair. Hereafter an attribute-value pair will

be written in the following manner:

Attribute = Value

-7-

This is the actual notation used in the i for specifying

attribute-value pairs.

2.1.4 Keyword Lists

Each record is also characterized by another parameter which is

not part of the actual information conteined in the record. This unique

number is the address of a record, which indicates the whereabouts

of the record in the computer storage.

Each keyword Ki in R may have associated with it the address of

another record R' which also contains the keyword K i. Effectively

this address in R "Points" to R' and for this reason it is called the

pointer of R with respect to Ki or the Ki-pointer of R. If the record

R' is non-existent then the K ipointer of R is known as the null pointer.

It will be assumed hereaftpr that every keyword has a pointer associated

with it. Thus we see that records containing a comnon keyword Ki can

be linked by these pointers into a chain which is called a Ki-list.

Putting it more precisely, a Ki-list is a chain of records, each record

containing the keyword Ki, satisfying the following five conditions:

1) Each of the pointers in the Ki-list are distinct.

2) Each non-null pointer is the address of a record in the

K i-list only.

3) There is one record not pointed to by any other record in

the Ki-list. This is the beginning of the Ki-list.

4) There is one record which has the null pointer; this is the

end of the Ks-list.

5) For every record in the K -list at the address an (n> 1),

there is a sequence of Ki-pointers

(all2P ") an

-8-

Record
Address

001

001 is the
HOIA - Begiming 1 K 003
of K list

003

K 1 050

050

K100

300

K 000 Null pointer
indicates End of

._ki-list

Fignure 1: An illustration of a Ki-list

-9-

such that:

i) a, is the address of the beginning of the Ki-list.

ii) the record at tLe address a contains a Ki-pointer

aJ+1 for J a l1 2, ... , n-l.

This means that for a given Ki, a record cannot be in more than

one K -list. The address of the first record in a Ki-list is known

as a Head-of-List Address or HOLA for short, and this term will be used

hereafter when referring to the beginning address of any Ki-list. In

Fi•ure 1, a typical Ki-list is illustrated, showing the beginning and

the end of the list and the pointers which chain the records together.

2.±.5 File and Directory

A file is a set of records which completely contains all the

Ki-lists made up of those records. In other words, a file is a set,

whose elements are records, which is the union of all the K i-lists

which contain the records. The HOLA's of all the Ki-lists in a given

file must be carefully noted and kept separate from the HOUA's of the

Ki-lists in another file because the same keyword, but with different

meanings, can occur in both these files.

This leads us to the concept of a directory for a file. The

directory associated with a file contains the HOLA's of all the K ±-list

in that file. For each keyword Ki used in the file, there is one entry

in t1e directory, the form of the entry being shown in Exanple 4. More

precisely, a directory for a file is a sequence of m such entries where

a is the number of different keywords used in the file.

-10-

4.'

Iil

H rz4 4
0 0 Lo

-V4

C) 0 vi

4. 4

o F 4' 4i)

6 ~~~ 4 61E)E

N 4)

-r vom

0 0

004

C

cu
rzlcf43

CC

(Ki, ni, hi; Otl, a12 , ... , aih)

Ki - the ith keyword in the file F.

n i - the number of records in F containing the

keyword Ki.

hi the number of Ki-lists in F.

aii - the HOLA of the jth Kidlist in F.

Example 4: Format of a directory entry

2.1.6 Generalized File Structure

We can new define a generalized file structure as a file with

its directory. This file structure is called generalized because it can

be shown that many commonly used file structures such as inverted, index-

siequential, and multilist are actually special cases of the generalized

file structure E8]. fn example of a generalized file structure is

shown in Figure 2.

As was evident in the directory for4.c, there may be more than

one list corresponding to a particular keyword K1, but these lists are

mutually eD(clusive because of the definition for lists presented

previously. In other words, a record containing the keyword K1 , cannot

be in two different Ki-lists.

However, since a record may have more than one keyword, it may be

in more than one keyword list. A record containing the keywords Ki and

K (with i ý J), is a member of on(Ki-list and one KJ-list simultaneously.

For example, if a record contains both the keywords AUTHOR - LIEBEMAN and

YEAR = 190., then that record would be in both an AUTOR - LIEBERMAN list

and in-a YEAR - 1960 list. This is illustrated in Figure 3, where the

- 12 -

020 AUTHOR LIEBERMAN 080

030

YEAR ,)6o 080

080 AU2IOR = LIEBERMAN 110LYEAR =1960, 115

110 AUTHOR = LIEBERMAN 170

11-5
YEAR 1960 000

"170 AUTHOR =LIEBERMAN 000

Figure 3: Example of intersecting Ki-list and K J-list
K.: AUTHOR = LIEBERMAN

K. YEAR =1960

- 13 -

JAUTHOR = LIEERMAIN list consists of records located at the addresses

020, 80, 110, and 170, and the YEAR = 1960 list consists of records

located at the addresses 03), 80, 115.

2.1.7 Request Description

When a person accesses a file, rarely does he want to see all

of the records in the file. Rather, he usually wants to see only that

part of the file which interests him. Such a partition can be accom-

plished by listing the addresses of the records which he wants. This,

however, is cumbersome and requires much research on the user's part

to find the addresses of the records in which he is interested. Another

way to partition the file would be to describe the records of interest

by listing their characterizing keywords in the form of a Boolean express-

ion. This expression is called a user's requeEt description. Using

the propositional calculus, any Boolean expression can be uniquely written

as a disjunct of conjuncts, known as the Disjunctive Normal Form (DNF).

Some typical request descriptions could be

4a- AUTHOR = MYRON LIEBERMAN

4b: AUTH0R = MYRON LIEBERMAN A YEAR = 1960

4c: (AUTHOR = MYRON LIEBERMAN A YEAR 1960) V (AUTHOR - HIRSCH)

Example 4: Typical request descriptions

All the request descriptions used in the EDMF will be in Disjunctive

Normal Form.

L1

-14-

A record satisfies a user's request description when all the

keywords in at least one of the conjuncts of the request description

are in the record. A record containing only the keywords K, t,,d K3

satisfies the request description containing only one conjunct (K1 A K3),

but does not satisfy (K1 A K2 A K 3). The problem of finding in a file,

the addresses of records which satisfy a user's request description now

lies with the EDMP and not the user.

2.1.8 Entering the EDMF

There are two ways to enter the EDMF - either through a terminal

command or through a system macro. This thesis will discuss only the

aspect of the system macro. A discussion of the command entrance can

be found in I0 I].

It was decided that the best way for a non-conversational user

to enter the EDMF would be through the use of system macros. Each

macro instruction generates a group of assembly language statements.

One of the statements generated is a supervisor call. The supervisor

call instruction (SVC) enables the program to switch from any state

to the Interrupt Control State (P 3), i.e., the SVC causes an interrupt.

It is in the state P3, through the use of the interrupt analyzer, that

the supervisor decodes the SVC number and determines which routine

should handle the interrupt. Statements that accompany the SVC in the

m:cro expansion supply the necessary parameters for the processing of

the user's request. Once the system knows how to respond to the interrupt,

it switches to state P 2 where ii•terrupt responses are handled. For a

diu-ramatic flow of the above process, see Figure 4.

-15-

CON2RCL

OP1ENERCUTINE
P

INTERRPT ANALYZER

Svc 9
SVC l9SVC 10- OPEN ROUTINE
Svc Ul

"- P3

USER PROGRAM USER PROGRAM
IN ASSEMBLY LANGUAGE WITH MACRO EXPANDED

OPEN MACRO P,MACRO
- EXPANSION SVC 10 '

Figure 4: Diagram of Interrupt Handling
Process

1 16 -

Macro instructions are extremely useful since they are located

in a macro library accessible to all users. Each time a user writes a

macro instruction, the associated statements and the SVC are generated and

incorporated into his program. The only information thi user needs to

know in using a macro is the proper way of calling 't; all the other steps,

the generation of instructions and the SVC, are done by the assembler.

Necessary background material has now been discussed and the

remaining part of the chapter will devote itself to the open function.

2.2 Purpose of the Open Function

The purpose of the open function is to check the user's access

rights to a specified partition of a file, to set up the necessary control

blocks for processing the various service requests, and then to return

conltrol to the user. Since the open function assembles the necessary

system control blocks for all the available service requests, it must

be the first function called upon by the user. There are two routines

that implement the open function. They are called OPNPROC and FIFDIRS1.

(Appendix B.1 and B.2)

2.3 Access Control

2.3.1 Introduction

In any data management facility, the security and integrity of

the records are as important as the case with which processing occurs.

A good system is one in which the security precautions are reliable

enough to insure file protection while simultaneously not encumbering

any of the processing mechanisms. Insuring the integrity of the files

encourages users to store their files in the data management facility,

and to enlarge the data base. Ease of using the system will encourage

frequent use -f tais data base, leading to an orderly and efficient

-17-

utilization of information storage and dissemination.

2.3.2 File Level Check

In the Extended Data Management Facility (EDWF), the protection

mechanism operates at three levels corresponding to the logical levels

in any file structure. These are the file level, the record level, and

the field level. This thesis will discuss only the file level check;

a discussion of the other two levels of protection can be found in [4].

In general, and as it presently exists under the TSOS Data

Management System (DMS), a file level check is concerned with the securi-

ty of the file as a whole, and controls any access whatsoever to the

file. There are two possible types of file access - either the write,

or the read option. If a file has the write option, then a user can

update any or all of the existing file records, create new records,

and read from the entire file. If, however, the read option is in

effect, changes may not be made in the existing file, i.e., the user

may only see the records. The present 71OS DMS protection scheme is an

"all or none" type of response; that is, either the entire file is accessi-

ble to the user, or access is completely denied and the user's request

is terminated. The important point here is that access is dependent on

the accessibility of the entire file.

But there certainly are cases when a user should have access to

certain portions of a file and not be entirely blocked out. For

example, let us suppose that we are dealing with a company's file, named

PROIXJCTS IN PLANNING (PIP), which is a file of records consisting of

infoemation on products currently in the planning stages. Possible

products could be televisions, radios, computers, etc. Let us also

suppose that a user (call him USER A) has the authority to read all

-18-

the records in this file except those pertaining to computers. Under

the current system, access to the file would be denied due to the

"all or none" phenomenon. Since USER a is not authorized to reference

any of the records pertaining to computers, he is denied access to the

entire file.

There are two possible ways to circumvent this problem. One would

be to set up a second file which would consist of a subset of the records

in the PIP FILE and would contain all the PIP records except those per-

taining to computers. Now, USER A would have a file that he could

access. But, .hat if there exists a USER B who is allowed to work with

all the records in the PIP file except those pertaining to televisions.

Do you set up another file for him? This certainly would amount to a

duplication of information and a large waste of storage space.

The other and more efficient way of avoiding the "all or none"

restriction is by devis.ng a method which would allow access only to

those partitions of a file that a user is authorized to handle, and block

him out of those that are restricted to him. It is in this way that the

Extended Data Management Facility handles the problem of file protection.

In order to put this method into effect, there must be a way of validating

a user's authorization and secondly, a way of partitiuning a file. First,

we will discuss the method used to partition a file.

2.3.3 Partitioning the File

The expression used to partition a file for the open function is

the same type of expression that will be used in requesting the retrieval

uf records. It is a logical expression in Disjunctive Normal Form (DNF)

where each element of a conjunct is a keyword of the file. This

partitioning method is very flexible since it can be used for any file in

- 19 -

RECORD 1 RECORD 2

AUTOR = BROWN, CHRISTY AUTHOR = WEITZ, J

TITLE = D(O'N ALL THE DAYS TITLE =TE VALUE OF NOTHING

PUBLISHER = STEIN AND DAY PUBLISHER = STIN AND DAY

YEAR PUBLISHED = 1970 YEAR PUBLISHED = 1970

RECORD 3 RECORD 4

AUTHOR TMAVERS, MILTON AUTHOR = RAND, AYN

TITLE = EACH OhER' S VICTIMS TITLE = WE THE LIVING

PUBLISHER = SCRIBNER PUBLISHER = RANDOM HOUSE, INC.

YEAR PUBLISHED = 1970 YEAR IUBLISHED = 1936

RECORD 5

AUhOR = RAND, AYN

TITLE = ATLAS SHRUGGED

PUBLISHER = RM.DOM HOUSE, INC.

YEAR PUBLISHED = 1957

Figure 5: Library Catalogue File

-20-

the system. In addition, it does not require that the user know the

actual addresses of those records that he is interested in.

For purposes of illustration, let us say we had a libra-y catalogue

file with only the five records that appear in Figure 5. One partition

of this file would be those records which refer to oooks that were

publisi~ed by Random House, Inc. in 1936. A DNF description would

appear as:

(PUBLISHER = RANDOM HOUSE, INC. A YEAR PUBLISHED = 1936)

Only record 4 satisfies this description.

A second partition would be those books published by Stein and Day

and those published by Random House, Inc.

(PUBLISHER = STIN AND DAY A PUBLISHER = RANDOM HOUSE, INC.)

Records 1, 2, 4, and 5 satisfy this description.

A third partition might be those books published by Stein and Day

in 1970 and books that were published in 1957

(IUBLISHEF = ST¶EIN AND DAY A YEAR PUBLISHED = 1970) V

(YEAR PUBLISHED = 1957)

The satisfactory records here are 1, 2, and 5.

2.3.4 User's Authority Item

In order to validate a user's authorization to access a file, the

system must obtain information concerning the user's access rights to

that particular file. This information could be stored in a record at

the head of each file. This type of security system would be file-

oriented.

The EDMF does not take this approach but rather a user-oriented

one. The EDW Qrcates a system file which is known as the Authority

Item file. This file consists of a set of records with one record for

-21-

each user. Each record is an individual user's authority item (UAI).

The UAI's contain information pertaining to the user's access rights to

i the files maintained by the system. Therefore, by examining a specific

user's authority item the system can determine to what degree the user

is aliowed to utilize tVie existing files.

There are two advantages to this user-oriented type of protecticn.

First of all, since all authorizing information is stored in a system

file, it is better protected than if it were stored at the head of a

user file. In thiu case, only the system is allowed to handle the

information, thereby making the chance of user intervention very slight.

The second advantage is that updating authority information is quite

routine. The user's authority information is all stored in one place -

the User's Authority Item. Since the system file's internal format is

consistent with the internal format of the user files, the same ret7i.eval

and updating routines may be used. Additional processing routines for

the authority items are unnecessary, consequently making the most

efficient use of the EDMF retrieval and updating routines.

Upon the issuance of a call to the open function, the user's

authority item is referenced. If access to the requested partition of

a file is granted, processing continues with the necessary system control

blocks being esteblished; if access is denied, the system returns control

to the user with an explanatory message.
2.4 Control Blocks

When access to a file is granted, the open function makes entries

into two important system control blocks. One is the Service Status

Block and the other is the File Status Block.

L.

-22-

2.4.1 Service Status Block

The Service Status Block (SSB) contains status information about

every file processed by a us.r durif1g a TSOS session [9]. It is user-

oriented, which means that each user of the system has his own SSB,

containing information relevant to onl, those filws which he is using.

The SSB is created when a user logs on to TSOS, remains with the user's

task throughout its existence in TSOS, and is destroyed when the user

logs off.

The purpose of the SSB is to eliminate duplicate retrievals of

control information about the user files. It is certainly more worth-

while to -e a small amount of storage space to hold the control informa-

tion, than to spend proce~sing time to re-retrieve it. The problem can

best be illustrated as follows. Suppose a user opens a file under the

system and then tries to retrieve some information. Due to the structure

of the TSOS system, the retrieve request, as far as the system is concerned,

is a separate entity from the previous open. This means that the pro-

ccssing routine for the retrieval mast be able to check that the requested

file has been previously opened. For security reasons, this information

is kept in the SSB in privileged system memory. The first file to be

opened by a user results in information being stored in the SSB section

created during logon. All subsequent file openings cause additional SSB

sections (one per each file partition) to be chained to the initial sec-

tion in a linked list. Thus, each user's SSB can grow as the number of

files or their pý%rtitions referenced during a session grows. Consequent-

ly, there is one SSB section for each file partition that is requested.

-23-

One important point to note is that a file need not be opened

to have an entry in the user's SSB. (See Chapter 4) What is relevant

is whether or not the file's control information is already in storage.

This could be the case if the file had been previously opened and then

closed. If the file's control information is in storage, then addresses

to this information can be found in the SSB. This procedure saves

unnecessary retrievals and the waste of duplicate processing time.

2.4.2 File Status Block

The File Status Block (FSB) contains status irniormation about every

file that is currently being processed by any user during a TSOS session.

It is file-oriented which means that an entry is made in the FSB each

time a user opens some partition of a file. This FSB entry is established

immediately after the SSB block is created. Each file referenced during

a TSOS session has its own linked list whose entries include the follow-

ing information; the user's Id, the type of open requested, and the

partition of the file that has been opened.

The purpose of the FSB is to establish priorities relative to the

use of the file. 'The problem can be illustrated as follows. Let us

suppose that two users, USER A and USER B, want to work with FILE 1.

USER A wants to read from the file while USER B wants to update it. Let

us also assume that USER A issued his open request first. Then the

system, by referencing the FSB, could establish that USER A has the

priority and permit him to read from the file, while blocking USER B from

updating it. Otherwise, USER A could possibly receive erroneous inform-

tion.

- 24 -

Now let us look at an example where partitioning plays a part.

Going back to our library catalogue example (Figure 5), suppose that

USER A uants to update that partition of the file which satibfies the

DNF description

PJBLISHER = RANDOM HOUSE, INC. A YEAR PUBLISKED = 1936

Recall that record 4 is the only merber of this partition. Let us

also suppose that USER B wants to read from the partition satisfying

(PJBLISHER = STEIN AND DAY) V (PUBLISHER = RANDOM HOUSE, INC.)

The satisfactory records are 1, 2, 4, and 5. Again, USER A issued hit

open request first and therefore had priority. But, the only requested

record that USER A and USER B have in common is record 4. The system

references the FSB chain for the library catalogue file to determine

the position of USER A's entry. USER A's entry precedes USER B's in

the chain and therefore, A has priority. USER A is allowed to update

record 4 while USER B is blocked out.. But, USER B is allowed to read

records 1, 2, and 5.

'lhe individual FSB e,,ries remain in the file list until the user

closes the file. It is at this time that the user no longer holds any

pouition in the priority list and therefore his FSB entry is removed.

2.5 Return to User

After both the SSB and FSB have been constructed, the system returns

control to the user. If the user entered the system via an SVC call

issued from a program, then control is returned to the instruction follow-

ing the SVC call. If, however, entry was from a command, then control

is returned to the Terminal Comrand Processor which returns control to

the user at thu terminal. The user, now in control, is frcj to continue

the execution of his program or call upon any other functions of the EDMF.

- 25 -

2.6 The EDMF's OPN Macro

One way of initiating the open function (see Sect. 2.1.8) is

through the use of the EUMF macro named OPN. The CPN macro has three

required parameters. One is the requested file name. A second is the

type of open requested, i.e., either update or read. The third one

can be either the actual partitioning description or the address of

where this description can be found. For a more detailed discussion

of this macro, please see Appendix A.1

CHAPTER 3

THE RETRIEVAL INITIALIZATION FUNCTION

3.1 Purpose

The main purpose of the Retrieval Initializat:1orn (RI) function

is to optimize the retrieval processing and to obtain necessary informa.

tion for the actual record retrieval. This i.]formation includes prime

keywords, ISAM keys and Record Format numbers. But, before this informa-

tion is obtained, the control blocks that were established by the open

function mu t be checked.

3.2 Control Blocks

In order for the processing of the actual retrieval mechanism to

start, the user must have previously issued a satisfactory open request.

If this was the case, then there is an SSB entry for that partition of the

file that he wishes to reference. As the first step in the processing

of the RI function, it checks the SSB entries. If the required entry

is found, then a ¶TSOS DMS open macro is issued. If the SSB entry does

not exist, the processing of the retrieval initialization function is

terminated and an explanatory error message is returned to the user.

3.2.1 DMS Open

The TSOS DM13 open must precede any call for the primitive storage

and retrieval routines. Without the DMS open, the primitive routines

cannot access the file. The primitive routines actually perform,

through the data management facilities provided by thu operating system,

the input and output of records for other system components. These

routihes handle the actual reading and writing of the data records,

the manipulation of the files' directories, and the guneration and

updatinig of the records and directories of the files.

- 26 -

-27-

In processing the retrieval optimization algorithm•, the RI

function needs to reference the file's directory. In order to use

the directory routines, a DM8 open must be issued. This brings us to

an important point relative to the issuance of the I8 open. There

are two possible times that the DMS oper, macro cojld be issued: either

during the processing of the EDMF's open function or during the RI function.

It was decided that the best time would be during the processing of the

RI function. This decision was made for the following reason. Once a

DMS open is issued, entry into the opened file is blocked to other users

until a DMS close is issued. The routines that actually require a DMS

open, that is, the primitive routines that handle the requested file's

directories and/or records, are not needed until the RI phase of the EDWF.

Therefore, the issuance of a DMS open during the EDMt's open function

would block the requested file from other users for a longer period of

time than necessary.

3.3 Retrieval Optimization

In an attempt to make the retrieval system as efficient as possi-

ble, an optimizing retrieval method was needed to minimize the time re-

quired to process a retrieval request. The algorithm chosen for the

optimization phase was part of the General Retrieval Algorithm as suggested

by D. Hsiao and F. Harary in their paper titled "A Formal System for

Information Retrieval From Files" [8 1. The first step of the ilgorithm

involves the selection of prime keyvords from the user's DNF description

of requested records.

-28-

3.3.1 Prime Keywords

As you recall, each user's DNF request description consists of

one or more conjuncts whose elements are keywords of the file.. For

example, a possible DNF description could be

(K1 A K2 A K3) V K4

where the Ki are keywords of the file. For the purposes of this example

let us say that

K AU1AUOR =SMIT

K2: YEAR =1964

K3 : TOPIC = MAT

K4 : AUTHOR = COHEN

Our description would then appear as follows:

(AUzhO = SMITH A YEAR = 1964 A TOPIC = MMII) V (AuThol COHEN)

Associated with each of the keywords- in the file's directory is the num-

ber of records in the file in which the keyword appears. The prime

keyword is defined as that keyword of the conjunct which appears in

the least number of records in the file. Going back to our example:

let N be the number of records in which a keyword appears, and let the

following correspondence be established:

Keyword _N

KI AUTHOR SMITH 10

K2 YEAR =1964 15

K3 TOPIC = MAT 2

K4 AUTHOR = COHEN 15

For the first conjunct (K1 A K2 A K3), K3 would be the prime keyword

since only 2 records exist in the file that contain TOPIC - MATH. The

prime keyword for tue second conjunct n.st be K4 since it is the sole

-29-

member of the conjunct.

Now, how does the designation of prime keywords relate to optimizing

the retrieval? First of all, we only want to retrieve those records

that satisfy each conjunct. Since a record can only satisfy a conjunct

by containing every keyword in the conjunct, all satisfactory records

must contain the prime keyword. Thus searching the file using the prime

keyword, i.e., actually retrieving the least number of records that

could possibly satisfy the expression, minimizes the costly time of actual

retrieval and thereby results in an optimum retrieval scheme.

The selection of the prime keywords is accomplished in a routine

called RETRIEVE. The RETRIEVE routine also picks up the ISAM keys.

3.4 ISAM Keys

In order for the primitive routines to actually retrieve records,

they must know the locations of the requested records. The address of

the record location depends on the type of access method used to store

the recorc' The EDMF utilizes RCA's TSOS Data Management System Indexed

Sequential Access Method (ISAM) for device level input/output. In this

access method, each record of a file is assigned a key, a number from

0 to 99,999,999. This number allows one to refer to a record by a

logical address (its ISAM key) instead of a physical disk address [6).

Once the prime keyword for a conjunct is established, the RETRIEVE

routine must pick up the corresponding ISAM keys for the actual record

retrieval. Again, the RETRIEVE routine returns to the directory.

Associated with each keyword in the directory are the head of list

addresses (HOLA). These head of list addresses are ISAM keys whose records

contain that keyword [3 1. The RETRIEVE routine then makes a list of all

HIOLA's that correspond to the prime keywords of the description. Once

-30-

this is finished, corresponding record format numbers must be established.

3.5 Record Format Numbers

One of the major design criteria used in determining the form of

the ED4 records and their control information is as follows. As much

information as possible should be removed from the record and stored

as file control information. This prevents duplication of information

appearing in many records, thus making files smaller. In other words,

general structural information is centralized into one file control

block rather than decentralized in the individual records.

When records are collected into a file, the usual case is that all

records have similar attributes, because they contain the same type of

information. For example, all records in a file of library books are

likely to contain the attribute "Author". Thus it is reasonable to

expect that there are only a limited number of different attributes in

a file. In order to save space in the file, the attributes are removed

from the records and placed in a file control block called the Record

Format Block (RFB). Associated with each attribute in the RFB is a for-

mat number. It is this format number and not the entire attribute that

is stored in the record [93. A detailed specification of the RFB can be

found in Appendix C. 3

After a record has been retrieved from disk, it is necessary for

the record validating function L4] to determi-t if it satisfies the user's

description. In order to do Lhis, it must check to see if all the key-

words of a conjunct can be found in the record. Since only the format

numbers and not the actual attributes are stored in the record, it is

nec'Cssary to determine the corresponding format numbers before the record

validating function can operate. The program that performs this service

-31-

for the RI function is called FORPROG. It checks the attributes

in the user's request description against those in the RFB and then

makes a list of corresponding format numbers.

3.6 Control Passed to the File Searching Function

Once the lists of prime keywords, ISAM keys, and Record Format

numbers are established, the work of the Retrieval Initialization

function is finished. The lists and supervisor control is then passed

to the File Searching Function [4]. After the File Searching, Record

Validating and Record Formatting functions [43 have completely processed

the request, the system initiates a DMS close macro. The file can now

be actively accessed by other users subject to the priorities established

in the File Status Blocks.

3.7 The EDMF's RETR Macro

One entrance to the Retrieval Initialization function is through

the use of the EDMF's RETR macro. This macro has six possible parameters.

Of these six parameters at least three and not more than five may appear

in one macro call. Two of the required parameters are the file name and

the output specification. The third required parameter can be either the

user's retrieval request description or the address where this descrip-

tion can be found. The fourth pars-meter, which is optional, is the maxi-

mum number of satisfactory records that the user wants retrieved. If

this parameter is omitted, all the records satisfying the request de crip-

tion will be outputted to the user. The fifth parameter would be a label.

For a more detailed discussion of the RETR macro, see Appendix A.2.

CHAPTER 4

THE CLOSE FUNCTION

4.1 Purpose

The purpose of the close function is to remove a user's priority

hold over a specified partition of a file. A user initiates the EDMF's

close function when he no longer desires to work with the partition of

a file that he had previously opened. The close function makes necessary

changes in the control blocks, the SSB and FSB, to indicate that the

user has finished all processing of the specified partiti-n of the file.

Once this has been done, the user no longer has access to the partition.

If he wishes to work with it again, he muust re-initiate the EDMF open

function. The close function is therefore the last EDMF function that a

user would call upon. The routine that implements the close function is

called CLSEPROC. (Appendix B. 6)

4.2 Control Blocks

During the processing of the open function, a Service Status Block

and a File Status Block were created (see Section 2.4). The FSB entry

established for the user a position in a priority list relative to the

use of the specified file partition. Now that the user has finished

working with that partition, he should not maintain his position in the

priority list. He no longer has the right to block out other users from

accessing the records oi. the partition. Therefore, the system removes

his FSB entry from the priority list and also indicates in the corres-

ponding SSB entry that the EDMF close function has been referenced and

that the partition is not open for his use.

-32-

- 33 -

4.3 Return to User

After both the FSB and SSB have been updated, the system returns

control to the user. The user is now free to continue processing any

other files that he had opened, initiate the EDMF open function for

another file partition or terminate his session.

4.4 The EDMF's CLSE Macro

One entrance to the close function is through the use of the EDMF's

CLSE macro. This macro has three possible parameters. Of these three

parameters at least one, and not more than two, may appear in one macro

call. The required parameter is the file name. The optional one can

be either the actual partitioning description or the address of where this

description can be found. If the optional parameter is omitted, the

system assumes that the user wants to close out all the partitions of the

specified file that he had opened. Otherwise, only the specified parti-

tion is closed. For a more detailed discussion of the CLSE macro, see

Api.2ndix A.3

CHAPTER 5

SIJMMARY

The Extended Data Management Facility (EDMF) was implemented to

provide a general purpose data management system for the orderly accumu-

lation and dissemination of information. The EDWF utilizes a generalized

file structure and an efficient retrieval algorithm for efficient data

management.

It was the purpose of this thesis to discuss a portion of the

Supervisor's task in the EDMF. The task is to direct the Facility's

handling of a user's request and by so doing, the Supervisor assumes

the oles of "doorman", "foreman", "administrator", and "dispatcher".

In order for the Supervisor to fulfill its task and satisfy its roles,

it performs five main functions: Access Control, Retrieval Initialization,

File Searching, Record Validating, and Fecord Formatting. The last three

functions, File Searching, Record Validating and Record Formatting, are

the functions which partially fulfill the roles of "foreman", "administra-

tor" and "dispatcher". They are discussed in detail in [4]. This thesis

has discussed the Access Control and Retrieval Initialization Functions

with special emphasis on the Retrieval Optimization subfunction.

These functions fulfill the role of "doorman" and partially those

of "foreman" and "administrator". As you remember, macro instructions

are used as the "doorman's" entrance into the request handling routines.

The Prime Keyword search (Retrieval Optimization subfunction) of the user's

DNF Boolean request expression is the "foreman's" method of optimizing the

retrieval strategy. The "administrator's" role is fulfilled by the Access

Control function. It maintains the security control over file access by

checkinb the user's authority item before processing his request.

34

-35-

BIBLIOGRAPHY

1. Chen, T., et al., "An Interim Report on the Implementation of the

Integrated Facility," Project Report, The Moore School of Electrical

Engineering, University of Pennsylvania, April, 1970.

2. Corwin, B., et al., "An Integrated Information Storage, Retrieval

and Dissemination Facility," Project Report, The Moore School of

Electrical Engineering, University of Pennsylvania, June, 1969.

3. Desiato, B., "Directory Constructing and Decoding in a Generalized

File Structure," M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, work in progress.

4. Ets, A. R., "The File Searching, Record Validating and Record For-

matting Functions of the Supervisor for an Extended Data Management

Facility," M.Sc. Thesis, The Moore School of Electrical Engineering,

University of Pennsylvania, August, 1970.

5. Gana, J., "A Conmnand and Query Language Assembler for an Extended

Data Management System," M.Sc. Thesis, The Moore School of EJectrical

Engineering, University of Pennsylvania, work in progress.

6. Horton, M., "Reading, Writing, Creating and Updating Records and

Files in a Generalized File Structure," M.Sc. Thesis, 11be Moore

School of Electrical Engineering, University of Pennsylvania, work in

progress.

7. Hsiao, D. K., "A File System for a Problem Solvinr .'cility,"

Ph.D. Dissertation, The Moore School of Electrical Engineering,

University of Pennsylvania, May 1968.

8. Hisao, D. K. and Harary, F., "A Formal System for Information

Retrieval From Files," Cotiunications of the ACM, Vol. 13, No. 2,

February, 1970.

-36-

9. Manola, F., "An Extended Data Management Facility for a General

Purpose Time Sharing System," M.Sc. Thesis, 'Bhe Moore School of

Electrical Engineering, University of Pennsylvania, work 4n progress.

10. McDonald, J., "A Command and Query Language [nterpreter for an

Extended Data Management System," M.Sc. Thesis, The Moore School

of Electrical Eiigineering, University of Pennsylvania, Aug-st, 1970.

11. Wexelblat, R., "The Development and Mechanization of a Problem

Solving Fazility,:' Ph.D. Dissertation, The Moore School of Electrical

EngIneering, Universiuty of Pennsylvania, December, 1965.

APPENDIX A

MACROS

A.1 Open Macro

Name: OPN

Type: Keyword

Four possible keywords maximum of three permissable

at one time - minimum of two required.

Required

1) FILENAM - name of thp file (up to 54 characters)

2)*(a) DESCRIP - the actual partitioning logical

expression in DNF form (up to 127

characters, due to the sys' em's

restriction on the length of para-

meters). Single quotes mast enclose

the expression and az'y internal quotes

or ampersands must be doubled. See

the examples.

*(b) DESADDR - this parameter is mnemonic for

description address and it must be

used when the desired DNF pnartition-

ing exr:':.ssion is longer than 127

characters. Tiis necessitates the

placement of the logical expres:lon

in an area external to the macro

and it is rEferenced by a symbolic

address.

A-1

A-2

Optional

1) TYPE - the type of open requested

(a) READ - can only read from the file.

Default case.

(b) UPLATE - can read and write to the file.

Examples of Macro Calls

1) OPN FILENAM=$HORTON 4ULTTES3, TYPE=READDESCRIP='AUTHiOR=

BENNET'

2) OPN FILEAJAM=MYULT'IES 3, TYPE=UPDATE, DESADDR=LOGEXPI

LOGEXl DC C'MON'i=MAY && YEAR=1965 "OR'' KEY PHRASES=INFORMATION

STORAGE ANP RETRIEVAL && FUBLISHER=THE MOORE SCHOOL

OF ELECTRICAL ENGINEERING OF THE UNIVERSITY OF

PENNSYLVANIA'

Note: * - Only one of these may be used in cne macro call.

A.l.1 Generated Parameter List

The OPN macro generates a parameter list whose address is placed

in Register 1 and which is passed on to a handling routine via an SVC

call. The generated parameter list has the following format:

Bytes Content

0 - 1 Length of file name

2 - 55 i'ile n•me (left justified with spaces)

56 Code for type of open
X",1-- Read
X'43' -- Update

57 - 59 Address of partitioning logical expression

A-3

6o - 63 Length of partitioning logical expression

64 - 190 Partitioning logical expression if
included in macro

191 Code for presence of partitioning
description
X'O0' -- No descri1ption
X'FF' -- Description present

A-4

A.2 Retrieval Macro

Name: RETR

Type: Keyword

Six possible keywords - maximum of five permissable

at one time - minimum of three required.

Required

1) FILENAM - name of the file (up to 54 characters)

2) WUTSPEC - output specification (up to 1O characters)

(a) CORE - output is in special core format [4] in

core to be used by program

(b) COUNT - the system returns with the number of

satisfactory records and not the

actual records

(c) PRINT - output is sent to the printer

(d) TTY - output sent to teletype. Default case.

3) *(a) DESCRIP - the actual partitioning logical

expression in DNF form (up to 127

characters, due to the system's

restriction on the length of param-

eters). Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See

the examples.

*(b) DESADDR - this parameter is mnemonic for

description address and it must be

used when the desired DNF partition-

ing expressico- is longer than 127

A-5

characters. This necessitates the

placement of the logical expression

in an area external to ti,, macro and

it is referenced by a symbolic address.

Optional

1) RECNO - the number of desired records satisfying

the description. If this parameter is

omitted, all the records satisfying the

request will be presented to tI.; user.

2) LABEL - name associated with RETR macro will be used

in a CONTINUE [9].

Examples of Macro Calls

1) RETR FILENAM=MULTLTESl,RECNO=J, ,DESCRIP='AUTHOR=SMITH &&

YEAR=1964 ''OR'' TOPIC=LISP', UTSPEC=PRINT

2) RETR FILENAM=MULTTES3, .UTSPEC=CORE, DESADDR=LOGEXP2, ABEL=

AGAIN

3) RETR FILENAM=MULTTESl, CUTSPEC=C0UNT, DESADDR=LOGEXP2

LOGEXP2 DC C'AUTHOR=MANOLA && YEAR-1970 && TOPIC=INFORMATION

STORAGE AND RETRIEVAL && PUBLISHER=THE MOORE SCHOOL

OF ELECTRICAL ENGINEERING OF 1ME UNIVERSITY OF

PENNSYLVANIA ''OR'' TOPIC=MA•HF•ATICS'

Note: *- Only one of these may be used in one macro call.

A-6

A.2.1 Generated Parameter List

The RETR macro generates a parameter list whose address is placed

in Register 1 and which is passed on to a handling routine vi.. an SVC

call. The generated parameter list has the following format:

Bytes Content

0 - 1 Number of requested records to be
retrieved
X'O000' -- All records. Default case.

2 - 6 Output specification. CORE, COUNT, PRINT
or TTY.

7 - 11 Label

12 - 13 Length of file name

14 - 67 File name (left justified with spaces)

68 Function code
X'22' -- Retrieval code

69 - 71 Address of logical expression

72 - 75 Length of logical expression

76 - 202 Logical expression if included in the macro

IP-!

A-7

A.3 Close Macro

Name: CLSE

Type: Keyword

Three possible keywords - maximum of two permissable

at one time - one required.

Required

1) FILENAM - name of the file (up to 54 characters)

Optional

l)*(a) DESCRIP - the actual partitioning logical

expression in DNF form (up to 127

characters, due to the system's

restriction on the length of para-

meters). Single quotes must enclose

the expression and any internal quotes

or ampersands must be doubled. See

the examples.

*(i•) DESADDR - this parameter is mnemonic for

description address and it must be

used when the desired DNF partition-

ing expression is longer than 127

characters. This necessitates the

placement of the logical expression

in an area external to the macro

and it is referenced by a symbolic

address.

A-8

Examples of Macro Calls

1) ULSE FILENAM--$H ORTON. MULJTES3

2) CLSE FILENAM--$HORTON. njLTIES3,DESCRIP='AUTHOR=B!NNET'

3) CLSE FILENAM=MULTTES3, DESADDR=LOGEWP3

LOGEXP3 DC C 'MON=MAY && YEAR=1965 ''OR'' KEY PHRASES=INFORMATION

STORAGE AND RETRIEVAL && FJBLTSHER=THE MOORE SCHOOL

OF ELECTRICAL ENGINEERING OF TWE UNIVERSITY OF

PENNSYLVANIA'

Note: * - Only one of these may be used in one macro call.

A.3.1 Generated Parameter List

The CLSE macro generates a parameter list whose address is placed

in Register 1 and which is passed on to a handling routine via an SVC

call. The generated parameter list has the following format:

Bytes Content

0 -] Length of file name

2 - 55 File name (left justified with spaces)

56 Code for type of close
x48,- Close all partitions of the

file
X'49' -- Close only the specified

partition

57 - 59 Address of prartitioning logical expression

60 - 63 Length of partitioning logical expression

64 - 109 Partitioning logical expression if
included in the macro

APPENDIX B

ROUTINES

B.l Routine OPNPROC

The QPNPROC routine is the first of two routines that implement the

Open Function of the EDMF. This routine checks tne user's access rights

to the specified partition of a file and sets up the SSB and FSB control

blocks.

B.l.1 Entry Points

OPNPROC has three entry points. The entrance via an SVC call is at

OPNPROC while the command entrance is at COMDOPN. The FIFBLOCK entrance

is used when only the FCB for the File of Files (FIF) is needed.

B.1.2 Exit Points

There is only one exit point for this routine. It begins at BRETuRN

where control is returned to the calling program.

B.I.3 External Subroutine Calls

There are eight external subroutines that may be called upon by

OPNPROC. One is AIRETR which retrieves the user's authority item. A

second is AUTH-CHK which checks the user's access rights to the specified

partiticn of a file. A third is to the location E&QCAT to obtain the

task number. A fourth external subroutine is FIFDIRS1. FlFDIRS1 is used

to retrieve the File Information Block (FIB) for the specified file. The

following three are entry points in the SSBO.PTR routine [9. SSBACQR is

used to obtain the SSB chain for a specified user. SSBLOGON is used to

establish the SSB chain if it has not already been done and SSBGTNU is

used to obtain a new SSB block to link to the user's SSB chain.

B-1

B-2

The eighth external subroutine is FSBOPT2R. This subroutine is used

to establish the FSB entries. The DSECTS that are associated with the

OSBOPT{ and FSBOPTR routines are the following:

Name Bytes Content

, ,B DSECT

3,BilDR 0 - 7 SSB Header

8'?PUAI 0 - 3 Address of User's Autho-ity Item

,•,3,3Ii 14 - 7 Address of FCB for File Information File

S',IVJXT 8 - 91 SSB text

SSbIINAM 8 - 63 2 bytes - leyigth of file name
54 bytes - file name

,'J,:;;• 4-6 Control Information

6h Type of request

65 Indicator - EDMF open

66 - 67 Unused

2',,B 68 - 71 Address of File Information Block (FIB)

'(, 2 - '(5 Address of File Control Block (FCBj

76 Open description indicator

:''2PW (7 - 79 Addruss of user description block

80 - 833 Addresci of Core Format of the record
* .j'f:',l~ 814 - 87 Address of P'ile Status Btock

"(L[, 88 CoZILI-ol 11donla t..lo for po-inter

:,") - 91 1'ointer to next ESSB block

1: ;I;] G};CT[

1', 0::: • - "7 User t dunt it'i,'a. ion

C- 11 (ontrol i1 ,Qrnm, in 1l

. . .1: ' p '. itiolii C dQ'-C i £pt 01:

B-3

Name Bytes Content

FSBLTBLK 16 - 19 Pointer to previous FSB block in chain

FSBCTRL 20 Control Inforaition

FSBNTBLK 21 - 23 Pointer to next FSB block

B.1.4 Input Parameter List

The address of the input parameter list (PARAMOP) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name Bytes Content

PARAMOP DSECT

FLNMLN 0 - 1 Length of file name

FLNAME 2 - 55 File name (left justified with spaces)

FLUNCODE 56 Code for type of open requested

LOGEXPAD 57 - 59 Address of partitioning logical expression

LNLOGYiP 60 - 63 Length of partitioning logical expression

LOGEXP 64 - 190 Partitioning logical expression if included
in OPN macro

DESCODE 191 Code for presence of partitioning descrip-
tion

B.1.5 Register Conventions

The registers in OPNPROC are assigned in the following manner:

Register Utilization

0 Not used

1 Address of parameter list given to
called subroutine. Miscellaneous use.

2 Miscellaneous use.

3 Base for OPNPROC

4 Miscellaneous use

B- 4

Regi ster Utilization

5 Addrebs aftd base of SSB

6 Counter for number of charactc-'s in User

Id. Miscellaneous use.

7 Misc. laneous use

8 Address of current SSB block

9 Address and buse cf SSBEXT

10 Length of requested file name

11 Address and base of OPNPROC work area

12 Address and base of input parameter list
(FAOAMQP)

13 Address of OPNPROC save area

14 Return address in CPNPROGJ

15 Subroutine call address. Error codes.

B.1.6 "nternal Work Area

The internal work area (OPENRQ) used by OPNPROC also contains the

parameter lists for some of the routines called by OPNPROC. The DPLISIY

list is passed to AU•ICHK while PAROPEN is passed to FIFDIRS1. The work

area has the following format:

Name Bytes Content

OPE0NRQ DSECT

DPARM 0 - 7 Pc rameter area for error messages

RFTAREA 8 - in Address of area to return to after call-
ing subroutine to check user's authority

DPLISTA 12 - 95 Parameter list passed to AUTICHK

DiT)AI 12 - 15 Address of User's Authority Item

I)ADRJEC 16 - 19 Address of record to be checked

DIIUN 20 - 21 Length of file name

B-5

_ame Wes Content

DFILNAM 22 - 75 File name of file whose access is to be
checked

DFDADE(76 Code for presence of partitioning

description

DF1ADDR 77 - 79 Address of rarttioning logical expresLion

DFDLEN 80 - 83 Length of partitioning logical expression

DSERRM1 84 Code for service request

85 Code for checking level

DINCTL 86 - 87 Control information about limiting
description

DNADDR 88 - 91 Adtdress of internal form of limiting
description

DNAKIB 92 - 95 Address of Key Information Buffer (KIB)
for limiting description

OP1~4WAR 96 - .,
100 - 103 Parameters for $REQM
104 - 10)7
108 - 121

OPSAVE 112 - 183 Save area for 0PNPROC

AIMODEAR 184 - 187 Address of area for TMQDE macro

188 - 189 Length of area for TMCDE macro

THODEAR 190 - 219 Area for TMAQDE macro

USERID 220 - 227 User Identification

FCBFIF 228 - 739 Area for File Control Block (FCBO of
File of Files (FIF)

FIFYARG 740 - 747 Parameter in FCB of FIB

PAROPEN Y48 - 759 Parameter list passed to FIFDIRSl

AFCBFIF 743 - 751 Address of FCB of FIF

FILEFIB 752 - 755 Address of File Information Block for
requested file

I

B-6

Name ___E Content

FInZl'CB 756 - 759 Address of FCB for requested file

LTACTADR 760 - '(63 Address of stack area of SVC

DN OACCES 764 - (65
766 - 768 For re-entranb error message

DMEVkAG1 769 - 859

TS3KNJM 860 Task number

CKCODE 861 Code for errors

862 Code - found matching file name

M74FA 863 - 913 Temporary area

SAW2 914j Code for macro entrance

B.1.7 Internal Codes

The various internal codes in the OPNPROC routine are listed below

by hexadecimal digiLs.

CKCODL

Return from AUTIhCIK

X'O0' Access granted

X'01' Access denied

Return from SSBACQJR

X1O0' SSB exists but has not been acquired

X1O111 SSB exints and has been acquired

X'08' SSB does not exist

Return fllrom 8.Gh

X'101' REQM error

Returii from SSBLOGON

X'10' SSB exists but has not been acquired

B-?

DESCODE (Description code)

X'OO' Partitioning logical exprescion not present

X'FF' Partitioning logical exDyessloj. ,:.'esent

D••ADEX

X 'FF' Code that indicates partitioning logical
expresslon present

FSBCTIL

X'FF' Code that indicates good pointer in FSB
block

FUNCODE (Function code)

X'42' Read type open

X'43' Update type open

SSBCL

X'4h2_ Read type open

X'43 Update type open

S9SBCL+I

'(O'0' File partition EDIF closed

XFF' File partition EDMF open

SSBCTL6

X'FF' Code that indicates good pointer in SSB
block

SSBDTBIN

X'FF' Code that indicates user description block
present

SWl

X'FF' Code that indicates matching file name
found on SSB

SWn

X'FF' Entranctz from a macro

B-8

11..8 Return Codes

All return rides can be found in the right-most byte of Register 15

anm! they a,'c listed below by hexadecimal digits.

X'OO' Everything O.K.

Otherwise Error occurred

13.1.9 Flowchart

Figures B.l.a - B.l.d contain the flowchart for the OPIIPROC routine.

B-9

j Enter 7
OPNPROC ..

Establish
Work Area

Get
User Id

ýet
Ttsk Number

Check SSB
entries

Call SSBACQR

Yes
CKCODE =X1041?

No

Ye0 Retrieve User's Set up FCBXCODE = X'O Authority Item for FIF

No

No
CKCOD.E =X'o8'y?

Establish first
SSB block

Call SSBLOGON

OKODE X'O'?No

Figure B.l.a: OPNPROC Initialization.
Retrieve SSB Chain.

B-10

Set up
parameter list

for file
level chleck

- Ch~eck' user' s

authori ty
Call AUI•1CHiK

Acccs., granted? Yes Return to
__L ~ instruction

COODF =: X'O ý ? after calling

/. instruction

~No -

Error Mlessage:
,)(U2 request
denied for

specil'ied file

.I

; *1
E it to AC

1 [guru B.I.b: Authority Item Check

B-If

Retrieve FIF
directory and
FCB for file
Call FIFDIRSl

Retrieval NO Noxit to
accomplished? , 'alling program

Yes

Put FIB and FCB
addresses
into SSB

Put file name
and its length

into SSB

File name open
SSB(Trl - X ' FF'

Open descriptions Yes F Establish area
present? to store

DESCODE = X'FF'? description
No -_ul

NO Store

description j
ish• FsB block

Call FSBOPTR

Exit to
calling program

Figure B.l.c: Set up SSB.
Establich FSB.

B-12

Get new
SSB block

Call 'ISBCTDU

1{iqM error" Yes

CKCODE = 10' ? Terminate

F.Store add~ress of]
into poin& - of

previous block

L SSBCTh6 - x'I'T'
of preceding

block

- Put FIF and FCB

/ ~Yes ~addresses from
SWl X FF'? previous SSB with

same file name into

L--- new SSB block

Figure B....d: Get. New SSB

B-13

y

Authority Item No/'retrieved?
SUUAI =X 'FF' 7 -"

Length of,

TYes Yes

Requested file > N
name - a ',

SSB file 1
name?

Yes ,j

lSW - X'FF

open description Yes
present in C

£SB?...o
_No

SSB entry
open update?
SSBCL = X'43'?

I, -- NLoN

(Request oen ';No End of lye

uSSB chain?.UNCODE)=-. -,SYes N o . .

, ,G e t v , ,.t

SSB block

Figure B.l-e: SSB Check

B-14

B.2 Routine FIFDIRS1

The FIFDIRSl routine is the second of two routines that implement

the EDMF's Open Function. This routine establishes the File Control

Block (FOB) for the File of Files (FIF), searches the FIF directory and

retrieves uhe File Infonmation Block (FIB) for the requested file.

B.2.1 Entry Points

FIFDIRSl is the only entry point in this routine.

B.2.2 Exit Points

FIFDIRSl has two exit points. The normal exit begins at CXJT2 and

the error exit begins at WUi1. In both cases, program control is returned

to the calling program.

B.2.3 External Subroutine Ca2.ls

RETPREC [6 3 is the only external subroutine called by FIFDIRS.

The first time RETRREC is called it retrieves the FIF directory; the

second time, it retrieves the FIB for the requested files. The DSECT's

that are associated with the FIF directory and the FIB are the following:

Name Bytes Content

DIRFIF DSECT

HeADEPD 0 - 14 Header

LENGTHD 0 - 2 Length of FIF directory

CCUNTD 3 - 4 Count of FIF directory

I.KEYD 5 - 9 Lowest key ir. directory

IKEYD 10 - 14 Highest key in directory

N--IES- Individual entries

FIB DSECT

0 - 9? Beginning of FIB

B-15

Name Bytes Cot gent

FCB 93 - 252 File Control Block

RFB 253 - Record Control Block

B.2.4 Input Parameter Lists

There are two necessary input parameter lists for the FIFDIRSI

routine. The address of the PAROPEN input list must be in Register 1

while the address of the FARAMOP input list must be in Register 12.

Register 13 must contain the address of the calling routine's save area.

Name Bytes Ccntent

PAROPEN DSECT

AFCBFIF 0 - 3 Address of FCB of FIF

FILEFIB I, 7 Address of FIB of the requested file

FILEFCB -11 Address of FCB of the requested file

PARAMOP DSECT

FLNMLN 0 - I Length of file name

F[NAE 2 - 55 File name (left Justified with spaces)

UNRCODE 56 Code for type of open requested

LOGEXPAD 57 - 59 Address of partitioning icrscal expression

LNLOGEXP 60 - 63 Length of partitioning logical expression

LOGEXP 64 - 190 Partitioning logical expression If included
in QPN macro

DESCODE 191 Code for presence of partitioning
description

B-16

B.2.5 Register Conventions

The registers in FIFDIRSl are assigned in the following wanner:

Regis3ter Utilization

0 Not used

1 Address of parameter list given to called
subroutine

2 Length of FIF directory

3 Length of requested file name

4 Address and base of DIRFIF. Address and
base of FIB.

5 Base for FIFDIRSI

6 Length-i of file name in FIF directory.
Miscellaneous use.

7 Pointer to entry in FIF directory

8 =H'71

9 Address of lar-t byrte in FIF directory

10 Address and base of input parameter list

11 Address and base of FIFDIRSi work area

12 Address and base of input parameter
list (PARAMOP)

13 Address uf F1FDIHS1 save area

14 Return address in FIFDIRSl

15 Subroutine call address. Error codes.

11.2.6 Internal Work Area

Thc internal work area (SUPl) used by the FIFDIRSI routine also

contains the parameter list (PLIST) to be passed to RET.REC E6 3. The

work area has the following format:

B-17

Name Bytes Content

SUP1 DSECT

SAVEM 0 - 71 Save area for FIFDIRSI

WKAREA 72 - 75 Temporary work area

OPPAR.kiM 76 - 83 Parameter area for DMS open

IhrAAM 84 - 91 Parameter area for DMS close

WFCB 92 - 603 File Control Block

KEYARG 604 - 631 Parameter in FCB

PLiST 612 - 627 Parameter area passed to RERREC

PFCBADDR 612 - 615 Address of FCB

PRECADDR 616 - 619 Address of area to place retrieved record

PISAM 620 - 624 ISAM key for requested record

PLREC 625 - 627 Length of area to place retrieved record

B.2.7 Internal Codes

The various internal codes in the FIFDIRSl routine are listed

below by hexadecimal digits.

DESCODE (Description code)

X'10' Partitioning logical expression not present

X'FF' Partitioning logical expression present

FUNCODE (Function code)

X' 42' Read type open

X'43' Update type open

B.2.8 Return Codes

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecimal digits.

X'O0' Everything O.K.

X'04' Unable to-open FIF

B-18

X'08' Unable to retrieve FIF or FIB of
requested file

X'OC' Requested file does not exist in the
system

XtOF' RBQM error

B.2.9 Flowchart

Figures B. 2 .a - B.2.b contain the flcwchart for the FIFDIRSl

routine.

B-19

Enter
FIFDIRSI

Establish I
Work Area

Establish are
for FIF directory

* and FIB of file

T'et up parameterLlists for DMS
open and
DM• close

SDM3 open
FIF

No Error Message:
Open accomplished? Unable to

.Yes
openFI

Retrieve FIF .
directory

Call RETEREC

retrieval No Error Messa-e.
complshed Unable t

-i accopihd retrieve records'

Figure B.2.a: FIFDIRSI Initialization and FIF
Directory Retrieval

B-20

Length ofl re- Advance pointer
quý;sted file; i~amc No inF ietoybd of 0in F3F directory le FIF

length of file to next entrydirecto
name in Fitr

-d i r e c t o r y

Y eo

ilI
Recquested file' No Error Message:

name = file name O File requested
in 11" directory?! not in FIF

Yes
directory

Set up parameter
list for re-

trieving FIB for
requested file

Retrieving FIB

Call REUIREC

"FIB retrieval• 1o - Error Message:
accomplished? I Unable to

retrieve records
: • ~~~~Ye;

Set up
FCB

DMIS cloce
FIF

Lea hcli t to
calling program

Figure B.2.b: Retrieval of File FIB and FCB

B-21

B.3 Routine MACPROC

The MACPROC routine obtains necessary information before the

retrieval optimization phase is entered. The main function of this

routine is to check if an EDMv open has been issued and if so, issue

a DMS open. Also, if entry is non-conversational `n nature, the routine

obtains the internal form of the user's request description. If entry

is conversational, the internal form has already been obtained.

B.3.1 Entry Points

There are three entry points. MACPROC is used when entry is from

a user program (non-conversational); COMENTER is the point a conversational

user enters. After the EDMF has processed a retrieval, it is necessary

to DMS close the specified file. This is accomplished at the CLFILE

entry point.

13.3.2 Exit Points

MACPROC has two exit points. One is the normal exit point and

the other is used when an error occurs. The normal exit is to the

RETRIEVE routine. The error exit is at CHKEXIT.

B.3.3 External Subroutine Calls

Two external subroutines are called by MACPROC. The first is to

the location ESQCAT to obtain the task number. The second is to the

entry point SSBACQR of the SSBOPTR routine [9). This io used to obtain

the SSB chain for a specific user. The DSECT that is associated with

the SSBOPTR routine is the following:

Name Bytes Content

SSB DSECT

SSBHDR 0 - 7 SSB Header

SSBUAI 0 - 3 Address of User's Authority Item

B-22

Name Byte.- Content

SSBF1F 4 - 7 Address of FCB for File Information File

SSBTXT 8 - 91 SSB text

SSBFNAM 8 - 63 2 bytes - length of file nav-
54 bytes - file name

SSBCL 64 - 67 Control Information

64 Type of requeL.t

65 Indicator - E]NF open

66 - 67 Unused

"SSBFIB 68 - (i Address of File Information Block (FIB)

SSBFCB 72 - 75 Address of File Control Block (FCB)

SSBDTBIN 76 Open description indicator

SSBDTAB 77 - 79 Address of user description block

SSBCREC 80 - 83 Address of Core Fomat of the record

SSBFSB 84 - 87 Address of File Status Block

•cBCTL6 88 Control Information for pointer

SSBPTR 89 - 91 Pointer to next SSB block

B.3.4 Input Parameter List

There are two possible input parameter lists for the MACPROC rou-

tine. MACDS is the input list used when entrance is non-conversational.

RPAM is the conversational parameter list and it is also the list

that is passod to RE'I'iIEVE. The address of the input par4meter list,

either MACDO or RPARA, must be in Register 1 and Register 13 must

contain the address of the calling routine's save area.

B-23

Name Bytes Content

RPARA DSECT

AFCB 0 - 3 Address of File Control Block (FCB)

RFBA 4 - 7 Address of Record Format Block (RFB)

USRID 8 - 15 User Identificationi

RECNO 16 - 17 Number of requested records to be
retrieved.

WUTSPEC 18 - 27 Output specification

FLNMLN 28 - 29 Length of file name

IMAME 30 - 83 File name (left justified with spaces)

FjNCODE 84 Code for function requested

CONTROL 85 Part of internal form of user's descrip-
tion

LILEP 86 - 87 Length of DCB and KIB

LDCB 88 - 89 Length of DCB

DCB -- Actual Description Control Block (DCB)

KIB Actual Key Information Buffer (KIB)

MACDS DSECT

MRECNO 0 - 1 Number of requested records to be

re crieved

MOUWIPEC 2 - 11 output specification

MMLM4LEN 12 - 13 Length of file name

L@A1E 14 - 67 File name (left justified with spaces)

MFUNCODE 68 Code for function requested

MADLOGEP 69 - 71 Address of logical expression

MI.ENLEP 72 - 75 Length of logical expression

MILOGEXP 76 - 202 Logical expzession if included in the
macro.-

B-24

B.3.5 Register Conventions

The resisters in MACPROC are assigned in the following manner:

Register Utilization

0 Not used

1 Address of parameter list given to called
subroutine. Miscellaneous use.

2 Miscellaneous use

3 Base for MACPROC

4 Miscellaneous use

5 Not used

6 Counter for number of characters in User
Id. Miscellaneous use.

7 Not used

8 Length of requested file rname. Miscellaneous
use.

9 Address and base of SSBTEXT.

iO Address and base oA MACPROC work area.

11 Address and base of input parameter list

(MACDS)

12 Address and base of input parameter list

(RPARA)

13 Address of MACPROC save area

14 Return address in MACPROC

15 Subroutine call address. Error codes.

B. 3.6 Internal Work Area

WORK is the imie of the internal work area used by MACPROC and

it has the following format:

B-25

Name Bytes Content

WORK DSECT

SAVE2 0 - 71 Save area for MACPROC

DPRM 72 - 79 Parameter area for error messages

OPPARM 80 - 87 Parameter area for DMS open

CLPARAM 88 - 95 Parameter area for DMS close

RAOMODE 96 - 99 Address of area for HMOfE macro

100 - 101 Length of area for TOIDE macro

RTMODE 102 - 131 Area for THODE macro

ADSTCK 132 - 135 Address of stack of SVC

TEMPF 136 - 139 Temporary area

7 MP11 140 - 141 Ttmporary urea

CHKCODE 140 Code for errors in SSB routine

¶SKNUM 141 Task number

DNZLOPN 142- 143>
144 -146

D!MO. 147 - 2442
For re-entrant error message

DNOPDMS 243 - 244
245 - 247

DM2 248 -. 317

TE4P 318 - 368 Temporary area

SWl 369 Code for macro entrance

B.3.7 Internal Codes

The various internal codes in the MACPROC routine are listed

below by hexadecimal digits.

CHKCODE

X'04' SSB exists and has been acquired

B-26

FUNCODE (Iuction code)

X'22' Code for retrieval

MFNNCODE (iunction code)

X'22' Code for retrieval

SSBCL+I

X'OO' File EDMF closed

X'FF' File EDMF open

SSBCTL6

X 'F' Code that indicates good pointer in SSB
block

SSBDTBIN

X'FF' Code that indicates user description
block present

SW'

X'FF' Entrance from macro

B.3.8 Flowchart

Figures B.3.a - B.3.c contain the flowchart for the MACPROC

routine.

B.27

Enter
MACPROC

Establish
Parameter a-tea

Move parameter
list into

RPARA

Indicate entrance
from mcro

Establish
Work Area

Get User Id

Get Task !Rumber

Figure B.3.a: MACPROC Initialization

B-28

Check
SSB entries

Call SSMACQR

CK CODE X- 'o', 0 ?-

Length of
requested file 'No End of SSB No Get next

,.,name - Lcngth of chain? SSB block

Yes I es
Requested file No

\k.• frile name?
Ye s

C Has anEM
open been is.ued? --

SS3CLr+l = X tFF3/.

Set up
parameter l sts

i~ntr fromGet internalfa cormand? fonr, of logical
expression

SVC call

Yes

oveinternal form
into RPARA

Figure B.3.b: SSB Check and Trarslation of
Logical Expression

B-29

Issue a DMS Error Message:
Open for File not EF

specified file opened

Open No Error Mer~sage: Return to

accomplished? Unable to calling programDMS Open

SYes

' Exit
Call RE•REIEVE

Figure B.3.c: DMS Open

B-30

B.4 Routine RETRTEVE

The routine RETRIEVE is the part of the Supervisor that implerients

the Retrieval Optimization function by selecting the prime keywords

and also obtaining the ISAM keys that are Head of List Addresses.

B.4.1 Entry Points

There are two entry points. The normal entrance is at RETRIEVE.

The second entrance is at SPCENO1; this is an error message entrance

for other routines that cannot request memory.

BA..2 Exit points

RETRIEVE has three exit points. One is the normal exit po.nt

and the other two are used when an error occurs. The normal exit point

begins at MAJU' and a call for the routine FORPROG is issued. The error

exits are at ROUTI and ROUT2.

B.4.3 ,IEternal Subroutine Calls

Two external subroutines are called by RETRIEVE. The first is

RETRDIh which retrieves the requested file's highest level directory.

The second subroutine called is DECODE [3']. DECODE is used to decode the

directory to determine the prime keywords and it also passes the corres-

ponding HOIA's to RETRIEVE.

B.4.4 Input Parameter List

The address of the input parameter list (RPARA) must be in

Register 1 and Register 13 must contain the address of the calling

routine'-s save area.

B- 31

Name Bytes Content

PIPARA D)SECT

AFCB 0 - 3 Address of File Control Block (FCB)

)IFBA 4 - 7 Address of Record Format Block (RFB)

USRID 8 - 15 User Identification

IECNO 16 - 17 Number of requested records to be
retrieved

WT31SPEC 18 - 27 Output bpecification

FLNMLN 28 - 29 Length of file name

FLNAME 30 - 83 File name (left justified with spaces)

FUNCODE 84 Code for function requested

CONTROL 85 Part of internal form of user's descrip-
tion

LILEP 86 - 87 Length of DCB and KIB

LDCB 88 - 89 Length of DCB

DCB -- Actual Description Control Block (DCB)

KIB -- Actual Key Informatio, Buffer (KIB)

B.4.5 Register Conventions

The reisters in RETRIEVE are assigned in the following manner:

Reglster Utilization

0 Not used

1 Address of parameter list given to
called subroutine. Miscellaneous use.

2 Miscellaneous use

3 Length cf entire DCB

4 Pointer to DCB

B- 32

Register Utilization

5 Base for RETRIEVE

6 Length of DCB segments (18)

7 Not used

8 Pointer to PRIMEKE'i stack

9 Address and base of input parameter
list (RPARA)

10 Pointer to kDDRESS. Miscellaneous use.

11 Address and base of RETRIEVE work area

12 Pointer to RQADD. Miscellaneous use.

13 Address of RETRIEVE save area

14 Return address in RETRIEVE

15 Subroutine call address. Error codes.

B.14.6 Internal Work Area

Tile internal work area (SUP) used by RETRIEVE also contains the

parameter lists for some of the routines called by RETRIEVE. LISTP

izo passed on to the HETRDIh and the DECODE routine while PLFOR is

passed to DECODE and FOFd-HOG. The work area has the following format:

Name wtes Content

SUP DSECT

DiLCYhT 0- 1

,5 59 " or re-etrant error message

DNOVAL 6o- 61

6,- - 6

DG265 - 132

133 - 135 Not used

DiA1•AM 136 - l113 Parameter-area for error messages

B- 33

name .WBLes Content

IILENG 144 - 151

N 114 - 147 Smallest n* in conjunct

LENGTI 148 - 151 Length of associated HOLA's

I.MrA 152 - 159

ARlAN 152 - 155 N of curzent keyword

TYI.NGIJ'I 156 - 159 Length of associated HOLA's

ENDH•I.Y 160 - 163 Address of PRIMEKEY - 4

RQADD 164 - 327 Pointers to ISAM keys, length of keys

PRIMEKEY 328 - 491 Pointers to beginning of conjuncts and
prime keywords

SAVE 492 - 635 Save area for RETRIEVE

IMMIX 636 - 639
640 66 613 Parameters for $REQM
643 - 647
647 -651

LIST 652. - 6Y1 Parameter list passed to DECODE and

REM1DIR

MMODE 652 Error code

PDCB 652 - 655 Pointer to current location in DCG

IDUE 656 - 659 Address of TkREA

ISAMTND 660 Code for DECODE

PADDRSS 660 - 663 Address of ADDRESS

PISAM 664 - 667 Pointer to area - where to put ISAM keys

PIDIR 668 - 671 Address of highest level directory

PLFOH 672 - 696 Parameter list passed to DECODE and FORPROC

ITM 672 - 6T5 Address of FCB

PKftI 676 - 679 Pointer to KIB

l'PI4KY 680 - 683 Pointer Vo PRIMFEKY Stack

B- 34

Name BContent

HFBADD 684 - 68'(Address of R?8

Al{QDD 688 - 691 Pointer to location in PADTf

PRIŽCNO 692 - 693 Number of requested records

FNCODE 694 Code for function requested

A W19XEV 695 Code for level of Authority Item Check

PHCODE 696 Code for output

*n =number of records in file containing a specified keyword

B.h.'(Inturnal Codes

Ilie various internal codes in the RETRIEVE routine are listed

below by hexadecimal digits.

A REAN

X'OOOO0000' No records within range of GT, GE, LT,
LE or FRCM-TO relations

X'FDFFFFFF' Attribute of specified keyword does not
exist in the file

X'FE'EI"IT' Error in range of FROM-TO relation

X'FF,1-FFFF' Value of specified keyword does not exist
in the file

Other Number of records -in file containing
specified keyword

1.2R' ODE

X1O1.1 |Part of directory unretrievable

X1'01C' Hardware error

X'OO' Code for DECODE to return only n*

X 'FF' Code for DECODE to return n* and HOIA s

B-35

FNCOM (I-xnction code)

X'22' Code for retrieval

PflCODE (Print code indicatina method of output)

X'O0' Output on Low Speed Terminal (LsT)

X' '0' Output on high speed terminal

X'0,' Output to profram in core format

X'80' No output of actual records. Only output
number of satisfactory records.

B.11.8 Flowchart and Supplementary Diagrams

Figures B.4.a - B.4.g contain the flowcnart for the RETRIEVE

routine. Figures B.4.h - B.4.j contain supplementary diagrams.

B- 36

Enter
RET TlERIE

Establish
Work Area

Initialize PRCODE 7

PRCODE '- X'O0'

E XTSPEC = CORE? Yes

Want core Vor:•at N PRCOE X'0 o'
of record? /

No

,, YUJI'5,C CC~Jl1'. es

Only want count . PRCODE . X1' 80'

Output to ~PCD '2

Ficuire r-4.a: RE!IUEVE Initialization

B-37

Set up
parameter

lists

F Establish
area for highest

directory

Call RETRDIR I
Retrieving

highest level
directory .

ERRCCDE XOC' Yes Error Message: c i Return to)Hardware error csling routine

No

Ys Error Message:
ERRCODE X'04'? Highest level

directory
unretrievable

i No

Figure 13.4.b: Retrieve Highest Level Directory

B-38

Initialize N

"N ' X ' FFFFFFFF'

A --

Store addr of
beginning of
conjunct in

PRIMtKEY

End of conjunct? Yes
CCB entry X'4E',? e ----

, -,

J No

Determine n -

number of records
associated with

keyword
Call DECODE

DECODE returns
n in AREAN

ERRCODE X'OC'? Yes Error Message:0
Hardware error

Figure B.h.c: Prime Keyword Selection

B-39

I yes Error Message: Update DCB
ERCODE = X '04' ? Part of pitrt-- jdirectory onet enryt

!••/ ~unretrievahle nx nr

~No

"Yes[Error Message: Yea..X FARFAN = Attr does not / End of I.Be)

X'FDFTFF,-T'? / exist in file stack?

jNo 0No

7Yes Error Message: YaARFAN =ro II Edo ojnt

X , F • T ,;, , F F , ? .i~ i V a l u e d o e s n o t , .• I n r y = •

exist in fRle 0':E?

No oreod

T No _

Error Message:ARFAN =Error in
X FEFFFFF7 I ? FROM- WD "

relation

F•qo

.- • , Error Message:
ARELI es' No records

ARF00000=0 within range of •
X'O000000' } T, 0E, LT, LE]
".._______ / [or FROR.- TO |

S........ [_ __r_ at.,ilon

Figure B.4.d: Prime Keyword Selection

B-~40

1,3"h

(...Yes . N G , I

No -- 7

:Put address of

current primekey

into PRfl4EKEY

S Update DCB

pointer

/"- - CB • Yes

End of DC Yes
stack?

No

F

Figure 13.l•.c: prime Keyword Sele'-tionl

B-41

Yes Error M essage

X'••I•T7F ? }.- -- Relations can't
all be NE

No

Establish area
for HOLA's -

ISAM keys

ISAMIND -X'FF' I

Pick up n and
ISAM keys for
prime keyword

[Call DECODE

t

Put address and j
length of ISAM

keys into
_ QADD

IMM4IND X'O0'I

Figure B.4.f: Obtaining ISAM Keys

B-42

_- , -- Yes
(FaROD• X'O ? • ... ['-Error'M'es~sag,•--- ly•

ERRCODB 4 H9ardware error

.No -........

(e Error MsaeYes Part of'
x04'? .directory

-. .unretrievable

No

Update pointer
to PRIMMY

Update PCB
pointer to next

entry

End of DCB " Yes

K stack?

-. No

Put del. imeters
(X'FF') at end of

RQADD and
PRIDE-•fY

Set up
parameter lists

SCall 1,'01TROG

Figure B.4.g: Return to Process Next Conjunct
and the Exit

B-43

Key Information Buffer

Attribute Val

ue j Attribute A ,
Description Control Block

)
Value Attribu ' K c- -, A.. C 1 1 L.. . a 46 V , L!

tel Value A. A c W
2 La2 La jF 2 '

SF'I. •. 1 • ' 3 1 •3t

B IV , . - ---

Pointer to 2 . F4 1
Begiruiing of -

Conjunct B•1 .. A t_

B' Bytes 4 1 2 3 3 5
B B PointerB2~ to
2 B2 ' to .. . 1.. .. h .. ime.

I • • • I F 1 e

F *1
• • . n Fn+1

Prime Keyword Stack

Format Number Stack

Figure B,4.h: Important Areas Used in the
RETRIEVE and FORPROG Routines

B-44

Description of Control Block Areas for Figure Bo4.h

th
A1 is a pointer to the begianing of the i keyword that is stored

in the Key Information Buffer. The attribute and vaJ.ue(s) are

stored in their entirety, i.e. exactly the way the user specified

them.

Ci is the control code that indicates the relation between the attri-

bute and the value.

L is the length of the ith attribute.ai

L V. is the length of the first value of the ith keyword.

Ll"is telength of the last value of the ih keyword.

1
Fi' is the pointer to the beginning of a list of format number.E

associated with the attribute.

Prime Keyword Stack Areas:

B. is the pointer to the beginning of the ith conjunct in the1

Description Control Block.

Bil is the pointer to the prime keyword in the ith conjunct in the

Description Control Block.

Fi' will appear as follows:

Address of beginning # of elements
of list in list

4 bytes 1 byte

B-45

PRIMNE

B1 B'

B2 B2 '

B B'
I.i

Bytes 4 4

where Bi: Pointer to beginntng of conjunct in DCB

Bi': Pointer to prime keyword of conjiu-. G beginning with Bi

Note: X'FF' on a Bi boundary indicates the end of the stack.

Fi6ure B.4.i: Prime Keyword Stack

B-46

A,
A L

A2 L2

A L

FF

Bytes 4 4

where Ai: Address of IOIA's (ISAM keys) that correspond to ith

prime keyword

L: Total length of ISAM keys

Note: X'I,'I" on an A boundary indicates the end of the stack.

Figure B. 14.j: RWADD Area

B-47'?

B.5 Routine FORPROG

The FORPROG routine determines and lists the record format numbers

for each attribute in the user's request description. The address of

each list is placed in the 14th - 17th bytes of the DCB entry for the

corresponding attribute. The number of associated format numbers is

placed in the last byte of the DCB entry (see Figure B.4.h).

B.5.1 Entry Points

FORPROG is the only entry point in the routine.

B.-5.2 Eit Points

FORPROG has three exit points. One is the normal exit point and

the other two are used when an error occurs. The normal exit point begins

at DONE where a call for the ESTAB entry of REMLG is issued [4]. The

error exits are at FSPCEN1 and FSPCEN2.

B.5.3 Input Parameter List

The address of the input parameter list (PLFOR) must be in Register

I and Register 13 must contain the address of the calling routine's save

area.

Name Btes Content

PLFOR DSECT

PFCB 0 - 3 Address of FCB

PKIB 4 - 7 Pointer to KIB

INDAI 8 Code for Authority Item Checking routine

PDPRKY 8 - 1i Pointer to PRfMEKEY Stack for Authority
Item Checking routine

PPRMKY 8 - iI Pointer to PRIlCKY Stack

RFBADD 12 - 15 Address of RFB

AhQADD 16 - 19 Pointer to MOADD

VRECNO 20 - 21 Number of requested records

L

B-48

Name Bytes Content

FNCODE 22 Code for function requested

ATCKEV 23 Code for level of Authority 1iem Check

PRCODE 24 Code for output

B.5.4 Rugister Conventions

The registers in FORPROG are assigned in the following maimer:

Reeister Utilization

0 Number of possible format entries (125)

1 Address of parameter list givun to called
subroutine

2 Addr ss of KIB

3 Base for FORPROG

4 Pointer to RFB

5 Counter for RFB

6 Length of attribute

7 Pointer to KIB

8 Pointer to PRIMEKEY

9 Pointer to FORMA[TN0

10 Pointer to DCB

11 Address and base of input parameter list
(PLFOR)

12 Address and base of FORPROG work area (jlP2)

13 Address of FORPROG save area. Number of
format numbers associated with a specific
attribute

14 Return address in FORPROG. Miscellanieous

use

15 Subroutine call address

B-49

B15.5 lntcrnQ2 Work Area

7he internal work area used by FORPROG is called SJP2.

Name Content

SUP2 DSECT

ALYULL 0 - 3 Temporary storage

PLFRST 4 - 7 Current address in FORMA¶NO

SAVE 8 - 79 Save area for FORPROG

ALHALF 80 - 81 Temporary storage

TFORNUM 82 - 83 Format number that is being checked

FORMUTNO 84 - 331 List of satisfactory format numbers

B.5.6 Internal Codes

The various internal codes in the FORPROG rout .ne are listed below

by hexadecimal digits.

INDAI

X'FF' Indicates entrance is from the Authority
Item Checking routine

FNCODE (Function code)

X'22' Code for retrieval

X'FFFF' Placed in the 6th and 7th bytes of the
DCB entry to indicate a no attribute
case

13.5.7 Flowchart

Figures B.5.a - B.5.d contain the flowchart for the FORPROG

routine.

B-50

Enter
FORPROG

EstablishL ork Area

End of Yes Set up
PRIMEKEY stack? parameter list

iNo

Update pointer ClExit
S to PRIM4EKEY Call ESXkB

End of conjunct? Yes
SDCBentry=

X'4E'?INo
Set format number
counter to zero IK. gReg13 BI n

Figure B.5.a: FORPROG initialization

B-51

SYes No attribute No Put addr ofEnd of RFB. -- case? format list
Marker in DCB? in DCB entry

No IFY sjT

En f No Put leng ZthoI attribute Yformat list in
listDCB entry

Y r

I Y~es

Pt forLmat Put zeros in
number into DCB place Update DCB
temp area M w in pointer

//Length Of att-•r, Yes User's
Leu ho f Itr description N

inuser's descre attr N
length of
RM attr? B/ RF attribute?

N1 o Yes

Pick up next
attr in list

Figure B.5.b: Obtaining Fcrmat Numbers

B-52

no attribute_case?ii

noo bu_ ynLength

ooff

nattribute

in
Y

Ris attr?=

hFB attrY
olist attr?6

I Yes

I Difference
=

(iO-length
of

1RFB
attr)

Difference

composed of
zeros?

- .N o.._ _ __No '

Update RFB
pointer to new

foruat number

Figure B.5.c: Processing No Attribute Case

B-53

form areA? number intoformatarealist -

itional area counter for
L or FORMATNO format numberO

Any format Update
numbers already Nopointer in

found for cuxrrent FORMA.¶]!O
attr? __

Mve all format I Update RFB
numbers for pointer to new

current attr into format number
, new area L-

Figure B.5.4: Establishing Additional Area
for Format Numbers

B-54

B.6 Routine CTSEPROC

The CLSEPROC routine is the one that implements the Close ;unctiln

of the EDMF. It indicates in the SSB chain that the specifikd partition(s)

have been closed and also removes the corresponding FSB entries.

B.6.1 Entry Points

CLSEPROC has two entry points. CLSEPROC is the SVC entrance while

the command entrance is at COMDCLSE.

B.6.2 Exit Points

There is only one exit point for this routine. It begins at CKEKIT

where control is returned to the calling program.

B.6.3 External Subroutine Calls

Three external subroutines are called by CLSEPROC. The first is

to the location ESQCAT to obtain the task number. The second is to the

entry point SSBACQR of the SSBOPTR routine [9]. This is used to obtain

the SSB chain for the specified user. The third external subroutine that

is called upon is FSBOPTR [9]. It is through the use of the FSBOPTR rou-

tine that FSB entries are removed. The DSECT's that are associated with

the SSBOPTR and the FSBOPM routines are the following:

Name Bytes Content

SSB DSECT

SSBHDR 0 - 7 SSB Header

SSBUAI 0 - 3 Address of User's Authority Item

SSBR[F 4 - 7 Address of FCB for File Information File

SSB'IXT 8 - 91 SSB text

SSBFNAM 8 - 63 2 bytEs - length of file name
54 bytes - file name

SSBCL 64 - 67 Control Information

64 Ty[e of request

S.......L

B-55

Name Bytes Content

65 Indicator - ED open

66 - 67 Unused

SSBFIB 68 - 71 Address of File Information Block (FIB)

SSBFCB 72 - 75 Address of File Control Block (FCB)

SSBDTBIN 76 Open description indicator

SSBDMB 77 - 79 Address of user description block

SSBCREC 80 - 83 Address of Core Format of the record

SSBFSB 84 - 87 Address of File Status Block

SSBCTL6 88 Control Information for pointer

SSFPTR 89 - 91 Pointer to next SSB block

FSB DSECT

FSBJSRID 0 - 7 User Identification

FSBCL 8 - 11 Control Information

FSBDSADR 12 - 15 Addre- of user's partitioning description

S'BLTBLK 16 - 19 Poin ;o previous FSB block in chain

FSBCTRL 20 Control Information

FSBNTBLK 21 - 23 Pointer to next FSB block

B.6.4 Input Parameter List

The address of the input parameter list (CLSEPARM) must be in

Register 1 and Register 13 must contain the address of the calling

routine's save area.

Name Bytes Content

CLSIPARM DSECT

FLNMLN 0 - 1 Length of file name

1LAAME 2 - 55 File name (left justified with spaces)

I .

B-56

Nai___e Bytes Content

FUNCODE 56 Code for type of close requested

LOGM•PAD 57 - 59 Address of partitioning logical. expression

LNLOGEP 6o - 63 Length of partitioning liJgieal expression

LOGEXP 64 - 19o Partitioning logical expression

B.6.5 Register Conventions

Thne registers in CLSEPROC are assigned in the following manner:

Regi ster Utilizati.on

0 Not used

1 Address of parameter list given to called
subroutine. Miscellaneous use.

2 Miscellaneous use

3 Base for CLSEPROC

4 Miscellaneous use

5 Address of partitioning description in SSB

6 Counter for number of characters in User
Id

7 Length of description in SSB

8 Length of requested file name

9 Address and base of SSBTEXT

10 Pointer to FSBLIST

11 Address and base of CLSEPROC work area

12 Address and base of input parameter list

13 Address of CISEPROC save area

14 Return address in CLSF2ROC

15 'Subroutine call address

B-57

B.6.6 Internal Work Area

CLSEWORK is the internal work area us-.! by the CLSEPROC ront.*.ae.

It contains the parameter list (FSBLIST) that is passed to the, FS3OPmR

routine. The work area has the following format:

Name Bytes Content

CLSEW•RK DSECT

DPRM2 0 - 7 Parameter area for ea :or messages

CLSAVE 8 - 79 Save area for CLSEPROC

ATMODEAR 80 - 83 Address of area for TMODE macro

84 - 85 Length of area for VMODE macro

TMODEAR 86 - 115 .ýrea for TM0DE macro

USERID 116 - 123 User Identification

FSBLIST 124 - 207 List of addresses of FSB blocks to be
remo-, ed

ADRSTACK 208 - 211 Address of s'.ack area of SVC

TEMPA 212 - 262 Temporary area

TSKNUM 263 Task number

SWi 264 Code - found appropriate SSB block

CHKCODE 265 Code for errors

DNMOPN2 266 - 267
268 270 -- For re-entrant error message

DMESS1 271 - 366

SW2 367 Code for macro entrance

B.6.7 Internal Codes

The various internal codes in the LSEPROC routine are listed

below by hexadecimal digits.

CHKCODE

x'o4' SM exists and has been acquired

B-58

FSBCTRL

X'FF' Code that indicates good pointer in FSB
block

FUNCODE (Function code)

X'48' Close all partitionc

X'49' Close specified partition

SSBCL+l

X'00' File partition EDMF closed

X'FF' File partition EDMF open

SSBCTjiL6

X'FF' Code that indicates good pointer in SSB
block

SSBDTIIN

Code that indicates user description
block present

SWl

X'FF' Code that indicates found appropriate
SSB block

SW2

X'FF' Entrance from macro

B.6.8 Return Codes

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecinal digits.

X'OO' Everything O.K.

X'04' Appropriate SSB block does not exist

B.6.9 Flowchart and Supplementary Diagram

Figures B. 6 .a - B.6.c contain the flowchart for the CLSEPROC

routine while Figtu-e B. 6 .d contains a supplementary diagram.

B-59

Enter

CLSEPROC

Establish

Work Area

Get
User Id

Get
Task Number

Check SSB
entries.

Call SSBACQR

No Error Message:
CHKCODE = X' I? E TMF open not .Exit toissued for calling program

• file

: Yes
V -

Figure B.6.a: CLSEPROC Initialization

L

B-60

/ nYth of requeste Ye Requested file No

ile name = qYe name

flength of SSB SSB file namue?

40 NO Yec

End of SSB chai Yesn-

i No

Get next File EDMF opened? N

SSB lockSSBCL+l XQFFI?
SIYes

Yes (Close all
partitions?

-- FuNCODE = x'48'?

No

Partitioning No
description

L presentS~~iL• SSu•/-

~Yes

SLength of 1'

partitioning desc. No
in SSB = length of

part. dese. in
CLSE requlest?

-Yes

Descriptions equal?.No

FigurYes

Figure B.6.b: SSB Ch.•ck

B-L-.

I. Appropriate SSB
found

Put adO r t of
Fb B to

be removed
L__ in FSBLIST

F AdvanceL FSBLI13T
pointer

Indicate file
partition ED.Wl

closed
SSBCL+ .- X'0',

Close allS parfiit:.ons? Yes

FUNCODE x'48'? Ye0,s

.Error Message:

SWI = X 'FF'? EDMF open not

issued for file

Yes

Put delimiter
(X'FF') at

end of FSBLIST

Remove FSB

entries Exit to
Call FSBOPTR calling program

Figure B. 6 .c: Clocine SSB, Setting Up FSBLIST
and Exit

B-62

FSBLIST

A2
I 1

A

FF

Bytes 4

where A.7 'Oointer to a File Status Block
1

Note: X'FF' on a boundary indicates the end of the stack.

Figure B.6.d

APPENDIX C

CONTROL BLOCKS

C.1 File Status Block

8 bytes User Identification
4 bytes Control Information
4 bytes Control--Address of user description block
4 bytes Control--Pointer to previous FSB block
4 bytes Control--Pointer to next FSB block

00--null pointer FF--good pointer

Notes on the File Status Block

1. Unless stated explicitly, all control information is 1 byte, all

addresses are 3 bytes.

C-1

C-2

C.2 Service Status Block (SSB)

4 bytes Control--Address of User's Authority
Item HEADER

I4 bytes Control--Address of FCB for FIF

2 bytes Length of Filename
54 bytes Filename

4 bytes Control Information
4 bytes Control--Address of FIB for filename
4 bytes Control--Address of FCB foz filename TEXT
4 bytes Control--Address of user description

block
4 bytes Control--Address of core format record
4 bytes Control--Address of corresponding FSB

block
4 bytes Control--Pointer to next SSB entry

00--null pointer FF--good pointer

Notes on the Service Status Block

1. Unless stated explicitly, all control information is 1 byte,

all addresses are 3 bytes.

2. The header appears on the first SSB block only--all subsequent SSB

entries contain only the text.

1st SSB block = 8 + 84 bytes = 92 bytes

all subsequent SSB blocks = 84 bytes

C.2.1 Uler Dcocription Block

4 byt.es Length of partitioning description
n bytes Partitioning description

C-3

C.3 Record Formit Block (RFB)

4 bytes Control Information
2 bytes Pointer to first format

relative to first byte of RFB

2 bytes Last format number assigned

2 bytes Format number
2 bytes Control information
2 bytes Relative address of first format MBLE OF

_.........- - . . . CONTENTS
2 bytes Format number
2 bytes Control information
2 bytes Relative address of second format

2 bytes Format number
4 bytes Type of format
P bytes Level number
2 bytes Repetition number
3 bytes Size of value FORMAT
1 byte Control information ENTRY
2 bytes blank
4 bytes Field protection data
2 bytes Length of attribute
n bytes Full attribute name

Notes on the Record Format Block

1. All relative addresses in the Table of Contents are relative to

the first byte in the first format, hence a pointer to the first

format is placed in the header. Thiis arrangement obviates the

need for changing relative addresses in the Table of Contents if

new formats are added to the block.

2. Format numbers appear in the Table of Contents in order of their

appearance in file records.

3. The '1ý,e of Format field may be used to indicate a program which

processes the format•.

c-4

4. Like the size of value entry, the repetition number will not appear

in the format if the format may repeat a variable number of times.

Variable repetition is indicated by a bit in the control information.

5. Control information in the format entry is one byte long with the

follow, ng specification:

abed eeO0

a: 0 Repetition number is variable

1 Repetition number is fixed.

b: 0 Value size is variable

1 Value size is fixed

c: 0 Attribute is not in the directory

1 Attribute is in the directory

d: 0 Attribute optionally appears in a record

1 Attribute appears in every record

ee: 00 Value is packed decimal

10 Value is alphabetic

01 Unassigned

11 UnassiGned

