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The thesis is based on an experimental study of the amplitude

fluctuation in underwater acoustic pulses and its dependence on range,

ac.ustiz freque-ncy, and pulselength. The fluctuation is assumed to be

a result of spatial variation in the refractive index field. The

coefficient of variation, a measure of the relative amplitude

fluctuation, is used to compare experimental results with theoretical.

For large values of the wave parameter, the thecratical

coefficient of variation has a first power dependence on the acoustic

frequency and a one-half power dependence on the range. Experimentally,

this quantity was found to display a seven-tenths power relation and a

one-half power relation with the acoustic frequency and range,

respectively, which is rcasonably good agreement with theory. The

variance of the signal portion of a correlator output 's shown to be

proportional to the mean-square value of the signal amplitude

fluctuation, which, according t3 theory, is proportional to the square

of the acoustic frequency and the first power of the range. The

observation that no significant difference in the coefficient of

variation occurred with the two pulselengths used demonstrated another

aspect of the theory. Because the effective scatterers are highly

directional, the major contribution of scattered energy comes from

the region of a cone whose axis lies along a line joining the source

and receiver and whose apex is located at the receiver. It is reasoned



that thne incre~ent irt pulselength served to iasonify scatterersIotsidf* tie c~ire, the~reby pro~ucing scattere energy not directed to

he receiver.

The experimenc has dt-a.szrated several aspects of -3 theory

which can be useful in determtining the effects of therma.

inhouiogevieities in tne performance of underwater acoustic systems

used in navigation and communications.
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- CHAPTER 1

INTRODUCTION

iackground and Problem

Underwater communication by acoustic means presents complex

problems in both theory and practice. One of concern here arises as a

consequence of fluctuations in an acoustic signal that has propagated

through a random complex medium. This phenomenon of signal fluctuation

is commonly experienced in other fields of science, also; for example,

in optics, it is demonstrated by the "twinkling" of stars when viewed

through the earth's atmosphere or by the "shimmering" of objects when

viewed over a hot surface. It is also demonstrated in electromagnetics

as any ham radio operator will attest. The acoustic signal fluctuations

affect an important branch of communications called telemetry where, in

particular, an encoded message, after propagating through the ocean,

undergoes various degrees of distortion by an aggregate of inter4Cerence

processes. The signal variability, in addition to the superposition of

noise, leads to error in decoding the message or quite often renders the

message unintelligible. These interference processes place performance

limitations on communications systems, but a knowledge of their

frequency and range properties may provide aid to the communications

engineer in selecting system parameters which would enable the system

to perform optimally. One aspect of the general interference problem



treated in this thesis is the effect of small scale amplitude fluctua-

tions on the error in decoding when an ideal correlator is used as a

detector in the receiving system. Described herein are the results of

an experimental study of the frequency and range dependence of these

fluctuations and a discussion of the results in the light of several

theories of weak scattering The study was directed to investigating

the frequency and range dependence of amplitude fluctuations in the

direct arrival; essentially ignoring the signal effects of other

phenomena such as Doppler frequency shift, boundary reflections, and

refraction. The basic assumption in the study is that the small scale

fluctuations result from inhomogenities in the sound refractive index

field which itself is essentially affected by small variations in the

water temperature field.

A survey of the literature on the subject of small scaie sound

fluctuations revealed the existence of several deficiencies in the store

of acoustic scattering data. First of all, the body of statistical data

is sparse and usually has large variances associated with it. Secondly,

the effects of several interference processes are usually inherent in

the data without any means of distinguishing the effects )t eazh, and

thirdly, which is in part a consequence of the other two, there is

scant data available relevant to telemetry which can be validly compared

to theory. As an example of the first and second, Sagar (8) has pointed

out several potential sources of equipment-associated fluct :ations that

may be inherent in measurements made at sea. In view of this, it is
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questionable whether one can validly apply Sheely's measurements (9) to

weak scattering theory as Mintzer did in 1953 (5), for this data quite

likely includes the effects of such processes as surface motion and

multipath interference. Although Sheehy's data is suitable for rough

estimates of propagation loss (its original intention), it is not

suitable for small scale fluctuations which are of interest here.

Later, however, Mintzer, Stone, and LaCase (3) did conduct laboratory

experiments in a water tank and generated their own thermal inhomogene-

ities in order to study its effects on the frequency and range

dependence of the acoustic fluctuations. The frequencies investigated,

however, were above 100 kHz due to the scaling considerations of the

experiment. The results of their experiments are an example of valid

application, but such high frequencies suffer severe propagation loss

in water and should prove to be impractical in underwater acoustic

telemetry. To apply their results to iower frequencies needs verifica-

tion and to what extent they can be extrapolated is uncertain. The

point is, in short, that further inves ttgation into the phenomenon of

underwater acoustic scattering is needed.

In order to conduct an investigation of signal fluctuations using

frequencies relevant to underwater telemetry and yet z;till exercise

control over the experimental parameters, a large water-filled quarry

was used. By having used the proper signal parameters (i.e., pulsewidth,

pulse repetition rate, depth, etc.) in the qua;:y, it is assumed that

the idealized assumptions in the scattering theory have been reasonably

approximated. Emphasis in the data analysis procedures was placed in
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testing and removing data records containing obvious time trends or

strong time periodicities. These variations in the data are not

believed to be medium induced, but rather to be introduced electronic-

ally or by relative transducer motion. Procedures such as correlation

techniques helped to ensure that the resulting measurements pertained

to the scattering process of the medium only and not to a conglomerate

of interference processes.

Thesis Organization

The thesis itself is organized into essentially two parts.

Chapters II and IV present a description and a discussion of the

results of an experiment designed to study the amplitude fluctuations

in the direct arrivals of sinusoidal pulses at frequencies of 60 kHz,

70 kHz, and 80 kHz over ranges of 50 feet to 500 feet. Two pulselengths

were used to see whether an increase in this parameter affected the

statistics of the fluctuations. The experimental results are reported

in the form of graphs which include cumulative distributions, correlo-

grams, and coefficients of variation of the peak received pulse levels.

The frequency and range dependence of the coefficient of variation--a

measure of the magnitude of the fluctuations expressed as a ratio of

the standard deviation to the mean of the observed levels--are shown to

be in good agreement with theory.

Chapter V considers the influence of these fluctuations on

decoding error at the output of an ideal correlator, used to detect

binary encoded signals propagated through a medium exhibiting weak

scattering. Several forms of modulation are considered; i.e., amplitude

and phase modulation and frequency shift keying.



CIIAPTER II

EXPERIMENT

General Description

The rudiments of an experimental telemetry link were set up and

operated at a large water-filled quarry located in Myerstown,

Pennsylvania. The approximate depths and dimensions are shown in

Figure 1. A 12-foot fiber-glass boat and a powered 15-foot pontoon

boat were used to transport personnel and equipment between a boarding

dock and a large floating platform anchored approximately 1,000 feet

away. Figure 2 presents three photographic views of the experimental

site.

During an operation, the platform was used as a receiving tation

and the pontoon boat was used as a transmitting station. The received

pulses, transmitted over prescribed ranges, were peak detected and

recorded on magnetic tape. 70 kHz tones, 57 microseconds (ps) in width

were pulsed at a repetition rate of 14.6 milliseconds (ms) in the

initial data runs. The pulsewidth and repetition rate of these were

fixed by logic circuitry in the pattern generator at 4 cycles and

1024 cycles, respectiveiy, of the clock frequency. In later runs, two

pulsewidths, 4 cycles and 8 cycles of the clock frequency, were used

during the data runs. The use of a single internal oscillator to drive

the pattern generator provided uniformity in the transmitted pulses and

was a decided improvement over an earlier scheme that used two
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Figure 2. Photographic Views of Site



8

oscillators. A random phase difference in the dual-oscillator setup

caused the number of cycles generated to vary from pulse to pulse.

Th2 modification also permitted the use of a single external oscillator

to generate pulses at 60 kHz, 70 kHz, and 80 kHz conveniently. The

task of station-keeping during the transmissions was facilitated by

tying onto a wire line fixed to the platform at one end and to a land

point near the dock at the other. Orange styrofoam floats, strung along

the line every 50 feet, served as range indicators. Approximately 1200

consecutive pulses were stored on magnetic tape per run.

Bathythermograph measurements were obtained at the quarry with a

calibrated thermistor for various times of the year. Two bathythermo-

graphs taken in October, 1966, are shown in Figure 3. A ray plot

diagram and velocity profile calculated from Wilson's equailor. (12) are

shown in Figure 4 and depict summer observations at the quarry For

comparison, a ray plot diagram and velocity profile for an October day

are shown in Figure 5. The sound velocity profile exhibits two

iso-velocity layers and a transitional region between. The upper layer

appears sensitive to short term meteorological changes and the slower-

responding lower layer seems to be sensitive to the longer trends in

weather conditions.

Transmitting and Receiving Equipment

A block diagram of the transmitting system is shown in Figure 6.

Essentially, the transmitting assembly consists of an external

oscillator and a pattern generator which permits several patterns. The

mode primarily used provided a carrier frequency pulse, 4 arrier -yCles
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long every 1024 cycles, e.g., a 70 kliz pulse 57 ps long, every 14.6 ms.

A power amplifier having a frequency response that is flat from 100 iz

to 100 kilz amplifies the signal generator output and drives the

transmitting transducer. The transmitting and receiving transducers

are identical in design and have a broad resonance (Q = 5) with a center

frequency of 70 kflz. Each transducer consists of three thin-walled

lead zirconate titanate cylinders separated by thin corprene discs.

The cylinders are mechanically held together by a tie-bolt and encased

in a tight thin-walled rubber boot. This assembly is bolted to an

anodized, water-tight aluminum shell which houses a low noise 40 dB

broadband preamplifier in the receiving unit and contains a package of

lead shot for weight in the transmitting unit. The transmitting sound

pressure level at 70 kHz is 47 dB above a reference of 1 vB pe: 1 rms

volt of signal in. The horizontal beam pattern measured at 50 kHz,

70 kHz, and 100 kHz shows a maximum variation of 3 dB; the vertical

beamwidth is approximately 40 degrees at the 3 dB down points at 70 kHz.

A block diagram of the receiver assembly is shown in Figure 7.

The receiving package consists of a lead zirconate titanate transducer

as described above and a 40 dB, low noise, wide band preamplifier which

has a flat response in the band 10 Hz to 120 kHz. The preamplifier

output is cabled through approximately 65 feet of RG-58 coaxial cable

to a terminal point located on one of the rack-mounted panels in the

receiving assembly. The signal is amplified in two stages by two

general purpose, low-noise amplifiers each capable of providing 80 dB

gain in 1 dB steps. The output of amplifier 2 is fed to a sample and
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hoLd circuit which senses and holds the peak received level until it

receives a dump command signal. This technique was used to make the

data sampling rates compatible with the frequency responses of the

recording and analyzing equipment. The output of the sample and hold

circuit is then amplified for recording and monitoring. The essential

processing of the data takes place in the sample and hold unit which is

also rack-mounted in the receiving assembly. The associated dump

command circuit is a dual-gate integrated circuit used as a single shot

vibrator and is triggered by the incoming pulse. After shaping, the

resultant dump command signal, rectangular in waveform, is synchronized

with the received pulses so that a period corresponding to their

repetition rate is obtained. An oscilloscope picture of the dump

command signal is shown in Figure 8. rue dump signal is amplified and

fed to point B of the sample and hold circuit shown in the simplified

schematic in Figure 9. The signal entering point A will normally go to

point B held at ground by the dump circuit. The dump circuit switches

state which places a positive blocking voltage at point B. This causes

the signal to charge the capacitor located at point C where the

resulting voltage Increase is sensed by the field effezt transistor.

The capacitance and the input impedance of the field ettect transistor

(1 5 meg-ohms) gives the circuit an approximate time constant of 40 ms.

The blocking voltage is designed to be "on" for approximately 8 ms or

1/5th the circuit time constant of 40 ms. This "on" period is short

enough relative to the circuit time constant for the capacitor voltage

to be essentially "held". In effect, then, the sample and hold senses



16

m4

Figure 8. Oscilloscope Picture - Dump Circuit Output

1 - Dump Output 50 us/cm
2 - Sync Input 50 us/cm
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the peak received voltage and holds it for 8 ms. An oscilloscope

photograph of the sample and hold response to a 70 kHz pulse is shown

in Figure 10. The data analysis, although tedious, was simplified

somewhat by the sample and hold technique. An oscilloscope photograph

of the sample and hold output and its played back version from a tape

recorder are shown in Figure 11.

Experimental Design Considerations

The idealized conditions underlying the theory of sound

propagation in a random inhomogeneous medium impose limitations on the

parameters of an experiment and are considered here. A basic assumption

on the theoretical medium is that the index of refraction n is such

that

n = + '

where lp'I << 1. A natural estimate of p'max ' the maximum variation

in the sound velocity, would be the difference between the upper and

lower bounds of the sound velocity profile. An inspection of the

velocity profiles in Figures 4 and 5 indicate that the sound velocity

fluctuations should be between 4700 ft/sec and 5000 ft/sec. If

4700 ft/sec is used as the reference sound velocity, then

-.' 5000o - 4700 -
IP l 4700 = 0.07 <, 1

and the assuaed condition is observed to hold for the actual medium.

Another assumption to be considered relates to the type of inhomogeneity

involved. Chernov (1) distinguishes between two types of
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2

Figure 10. Oscilloscope Picture - Sample and Hold Response

Upper Curve S and H output
Lower Curve 70 kHz pulse at S and H input
Scope: 50 ms/cm Sweep

0.5 v/cm Sensitivity
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Figure 11. Oscilloscope Picture - Tape Recorder Output

FM Recording of Sample and Hold Output
Upper Curve Tape Recorder Output,

7-1/2 ips F.M.
Lower Curve S and H Output
Scope: 5 ms/cm Sweep

0.2 v/cm

1..
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inhomogeneities, one called regular, which refers to spatial variations

in the mean characteristics of a medium, and the other called random,

which refers to deviations of the characteristics from a mean value.

Although the two influence the propagation of sound, the effects due to

random inhomogeneities are of interest here. Consequently, to realize

this assumption in practice, the insonified region in the quarry did

not include regions that contained velocity gradients; i.e., the depth

of the transmitting and receiving transducers and the duration of the

acoustic pulse were selected so as not to permit refracted energy from

the surface layers to reach the receiver during the observation period

of the received (direct) pulse. Adjustment of these parameters along

with the repetition rate also resolved the direct and reflected

arrivals. The use of short pulsewidths (57 ps) is also assumed to meet

the condition that the medium is stationary or slowly varying during

the passage of the pulse and only changes from pulse to pulse; i.e., it

is the "frozen" picture that is essential to weak scattering and not the

temporal picture. Furthermore, the fresh water of the quarry more

closely approximates the idealized medium in the theory since the

effects of density fluctuations are ignored in the theory when compared

to the effects of the refractive index fluctuations. To summarize, the

-xperimental parameters of depth, pulsewidth, and repetition rare were

adjusted to approximate the idealizations and assumptions in weak

scattering theory.



CXAPTER III

THEORY

Introductory Remarks

Amplitude and phase fluctuations introduce ambiguities in a

telemetered message and lead to error in interpreting the message;

however, knowledge of the frequency and range properties of these

fluctuations can be of value to the communications engineer in

determining operational parameters that can minimize the message

errors. Unfortunately, a study of the nth order statistics of the

fluctuations was not feasible, but a study of first- and second-order

statistical parameters sufficed, particularly ii the case of small

fluctuations. A useful second-order statistic is the coefficient of

variation defined as the ratio of the standard deviation of the signal

amplitude to the mean amplitude. If we let V denote the square root

of the coefficient of variation and A to denote the signal amplitude,

then,

V 2  <(A - <A>) 2>

<A>
2

where < > denotes an ensemble average.

Theoretical studies of the coefficient of variation have been

made by Mintzer (5), Skudrzyk (10), and Chernov (1)[Skudrzyk and Chernov

list comprehensive bibliographies] and the highpoints of their



23

developments will be discussed before presenting the experimental

results. The basic premise common to their theories is the assumption

that slight deviations about a mean value occur in the refractive

index field n ; i.e.,

n = 1+ p

where a 2 is the variance of the refractive index, n has a mean

value of unity, p is the normalized fluctuation in n , and

<< 1

A starting point for these theories is the time independent inhomogeneous

wave equation given as

V2P + k2 = -2cxP , (1)

where P is the acoustic pressure and k is the mean spatial wave

number of the acoustic wave.

Perturbation Methods

If one assumes that

P ' Pi sc

where IPscl << jP , then a solution to Equation (1) is

4- k 2 a ik I_ I

P(r) - Pi(r) + 2T j P(rl)(r II) dv'

V Ir- '
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where P is a solution to the homogeneous wave equation:

V2P i + k2P i = 0

r is the position vector to the point of observation from a

conveniently chosen origin, and r' is a position vector to a

differential element of volume dv' within the scattering region,

The term of interest is the scattered pressure term,

k 2 ikJr-r') I
Psc (r) 27--', Peir) (r dv . (2)

V Ir-r

One approach to evaluating Equation (2)--Skudrzyk (10), for instance--

is to consider the case where the dimensions of the scattering region

are small compared to the distance between the observation point and

the scattering region. The exponent or phase is expanded in a Taylor

series of which second and higher order terms are assumed negligible

and thus ignored. The quantity jr-r'l in the denominator of the

integrand does not change appreciably over the volume of integration,

i.e., the region of inhomogeneities, and is approximately equal to r

the distance from the origin (in this case, located within the scatter-

ing region) to the point of observation. Assuming that PI is a plane

wave with amplitude P , the integral in Equation (2) simplifies to

k2ae e j k r ( ikr'.-A

2'c(r) 27Tr (r ')e dv' (3)

V
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where A - nI - 1 , n1  is a unit vector in the direction of
.

propagation of the plane wave, and n is a unit vector in the direction

of the point of observation. Note, also, that

0

JI1- 2 sin 1-

where 0 is the angle between the two unit vectors n1  and n , and

A is a fixed vector over the volume of integration. If a spatial

frequency vector K (K1 9 K 2, K 3 ) is introduced as

K kA

then Equation (3) can be interpreted as a three-dimensional Fourier

transformation of the refractive index change p(r) ; i.e., Equation (3)

becomes

2 ikrk al e )
sc (r) e(r')e dv' (4)

V

The coefficient of variation is obtained from Equation (4) by

calculating <!P 2> From Equation (4), we haveSc

<jI [2> - (p p ,>

k P 22 i ('-r")

o 2 - p(r') '(") e dv'dv"
42r2 j
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The medium is assumed to be statistically homogeneous so that, after

interchanging the expectation and integral operations, one can use the

relation

-B P(r ri~"

where B is the correlation function of the random variable

Equation (4) becomes

4P 20 2 ikA.('-r")

<IP2sci> 41 2r2 f J (r r )e dv'dv"

(5)

Af>er introducing the relative coordinates s - ' , Equation (5)

car' be written as

42 2 Ti
<IP 12>' kP 0  a B e ikAS d ds

Sc 212 247T r J
(6)

where T is the volume of the scattering region and results from the

dv" integration and where

S (SIS 2,S 3) = (x' - x", y' - y"1', z' - z")

The limits of integration are usually extended to infinity since the

correlation function is assumed to have negligible values at the finite

limits of integration. Then, the coefficient of variation of the

pressure at the point of observation is

r r

2  'p 12 >/p 2 k4 a 2 T I dSlds ds
sc o 4.J1. 2 j BJ2O 123

(7)
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When the medium is isotropic, one may transform the integral in

Equation (7) to spherical coordinates (S, 0, 4) where S ISI

B (S) becomes B P(S) , and Equation (7) becomes

V2 k 2 Ot2 Ti

- 2 B P (S)Ss inkASds , (8)

0

where
0

kA - 2k sin -

Mintzer (5) formulated an expression for the square of the

coefficient of variation V2 of the cotal field pressure by considering

the next order of approximation and assuming single scattering of an

incident spherical wave. By repeated transformation of the scattering

integral [Equation (2)] between rectangular and spheroidal coordinates,

he derived the following expression for V2 for a weak inhomogeneous

medium that is characterized by an isotropic correlation function:

V2  . 2 2 k 2 r B (p)dp , (9)

0
2

where a is the mean-sq,are value of the refractive index field,

k is the acoustic wave number, r is the distance between the source

and receiver, and B (p) is the correlation function of the variations

in the refractive index field along the direct path from the source to

the receiver. Equation (9) is valid for kr >> 1 and ka >- 1 , where

a is the correlation length. The upper limit of integration has been

extended to infinity because the integrand is assumed negligible for
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values of p greater than the correlation length. It is noted that

.2
Mintzer's expression for V in Equation (9), except for a numerical

2 2

factor, is identical in form to the expressions for <S 2 and <x >

obtained by Chernov in Equation (35). Mintzer also approximated V2

for the case ka << 1 and r large, relative to the correlation

distance, as

27 Tr0

V 2 2 const a2 k3r # sinede dKFB( K ,
0 0

where x, k, and r are the physical quantities defined as in Equation

(9), and FB(K, 0, 4) is the Fourier transform of the correlation

function of p , the refractive index variation, expressed in spherical

coordinates.

Rytov Methods

Chernov (1) also considered the next order of approximation to

the scattering integral, but used a different approach. In obtaining

the scattering integral, the acoustic pressure P at a point in the

inhomogeneous medium is assumed to have the form

P - A exp [-i(wt - s)] , (10)

where A is the pressure amplitude, S is the phase, and w/2n is

the acoustic frequency. Both A and S are real-valued functions of

space. When inhomogeneities are absent, P has the form

P - A exp [-i(wt - S )I
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In particular, let this wave be planar; i.e.,

P 0 A exp[-i(wt - kx)I0 o

where A is constant. Using the Rytov method, P in Equation (10)o

may be put in the form

P - A exp[in(A/A ) + iSj exp (-iwt)

WJe introduce a complex-valued function of space as

y - S- itn(A/Aa) , (II)

and Equation (11) can be written as

P = A exp[lW] expl-iLat . (12)
0

If the time dependence in Equatioq (12) is dropped, the remaining

expressioc, vhen substituted into the wave equation (Equation (1)],

results in a new equation in terns of ' . To do %his, we first obtain

I, i.,j- ( '- - i;, A

Then, Equation (1) bccoee

LA ei A e(. + A ek -A eZ2"a.k0 0 0 C

tpon cawcelling -i e "row this expressiom, we havz

-Z 2
+.,



10

In the homogeneous case, we have

,72 (," o)2 2 _ 0

Subtracting these two equacions, we have

((V 122+Cp 2 2
y _ , 1 = -2,,ik (13)

Letting

- + kx+

and substituting for into Equation (13), we have

i2,- ('A,12 - 2kx "  m -2cuk 2

2 ax k

2 2The term (V p) is assumed to be of order A2/k and is neglected to

obtain

2kx 1k. "' ",22 (14)

Equation (14) can be transformed to an ordinary inhvmgeneouE equ.iosL

by introducing a new function 1. given as

" -'kxV C,'51

The physical interpretation of '4.1 be app'rent :ran e :luion

of tie trznsforned equation. Equation (13) is transferned xntc ordinary

form, given here as,

-2..2'
W +k V- aUiik e'
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which has solution

iW ~ 2 m. ,, )e Lk E d~ddr
rr

where r - (x )2 + (y -M)2 + (z - )2 and (, a, ) are the

coordinates of the refractive index inhomogeneity. From Equation (15)

• becomes

Z, t [ I e ik[r - (x - )] i(( m, ) dv . (16)

V

It is apparent that W is the contribution of secondary waves, each

having phast proportional to the distance r + & . Multiplying W by
-ikx

the factor e gives the phase difference due to the difference in

path lengths k[r - (x - C)] , between the secondary wave and the

incident plane wave (the unscattered wave) at the point of observation

x . Comparing Equations (16) and (11), we have

S' - Re{-.,:'j - S-kx

rk2 i
k I

2w rsn k[r- (x- ) a, ) dv

(17)

and

X" = I .A, A - A/A
0

Im I

k2a 1
- cos kitr - U - 1,;.-, . r) dv

(18)

Fquatior.s (17) and (18) are the fundamental equations in this approach

to t:e st ttering pr&blez. 7he physi.al maanings of S and X' are
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evident, S' is a phase correction to the homogeneous wave solution,

the primary wave, and X' is an amplitude correction to the primaiy

wave. In the perturbation method, the resulting pressure in interpreted

as the superposition of a primary wave with secondary waves arising

from the refractive inuex inhomogenei.ies. In Equation (12), rewritten

a8

P e- i ( t- kx )  = A e e , (19)o o

the resultant pressure is expressed in terms of the phase and amplitude

correction to the incident wave. With X' and S' small,

Equation (19) becomes

P = A e-i(wt-kX)(l + iy') - P + iPo' '

which now has a form identical to that in the perturbation method. The

point here is that, for small fluctuations in the pressure amplitude

and phase, the perturbation and Rytov methods yield the same results

Because the Rytov method offers a more general approach, the second-

order approxiaations will be applied to the integrals in Equations (W!

and (18)-the perturbation results can then be obtained by caking

IV! << 1 . The square of the distance between the inhomegeneity and
2

the point of observation r can be written as

r 2  P 2 + (x - .2 ,

2 2 2where 0 2 2 + . The point of observation X is a;sued to lie

outz:Sde the region of inhomogeneities, such that
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_ 2t< 1

for any point (E, m, y) lying in the region of inhomogenetties. Under

this condi ion,

212 2

r [p 2 + (x - ) 11/2 (x - )+

2 (x-~

Then

2
r- (x- ) ( (20)

2(x-

and

!I

1 1,(21
r (x- )

The approxirations given i. Equations (20) and (21), substituted into

Equations (i7) and (18) lead to the equations

SI= I _
2o k CL sin dv (22)

V
and

If 2
1 Cos m. *,)dv .(23)

X' = . (x )cs2(x-)

For convenience, the functions 1(a,P) and 02 (a,p) , defined as in

Cherncv (1) to be
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€1(a) = sn2

sin-
and2wa 2a

and

21 p_
(aP -Cos -- 9

2(a
'p) 2-a c a

and the dimensionless quantities

xI M kx , y' - ky , z' P Iz , k

ml- m : 4, an '2 '2)1/2M1 M km , : - kC , and p' (m' + 2 1/

are introduced (the primes on S' and X' will be buppressed) in

Equations (22) and (23), resulting in the equations

S(x', y', z') -a C, 0
1(x' - m' ')z( ', m', 4') dv

V

and

I
X(x', y', z') - c I *,(*' -f', p')p( U, m', 4') dv

VIf the receiver is located at the point (L',O,O) , the mean-square

statistics of S and X are expressed in the following six-fold

Integrals:

LV Ls

<S2 -I(L2 [ r [)IL -0 1.0 (rl )AW

j I! "1 -12 -2

0 0

d "d,92'dl da2 'd1 d 2)



L' [' '

"r-~ - ' '1 )O,(L" - . .:)1I (r'J

d:

where 5 (r') is the noraliz d correlation faectios of the fefracl!wIIvez vartation . (for the isotropic case),

122

and 2 is the mean-square value of the refractive index variatiom.

introducings the transformations

-, -1 "2 ' w - m 2 " ' 2

and

2l 1

= + ;2

one can integrate with respect :o , and z |CnWroVm .

Appe-endix 11 (!,J to obtain

8 - ," (lI + 1-26)

ad

I
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where

2
I = L' sin B (r')ddmd4
I 21T~ 21T J

OD

12 f JJ _ 1 si r) B (r')ddmd4

2 2 2

and
0a

si - f sinqdq
j q

t

Going over to polar coordinates

and using the property that B (r) is an even function in , we have
00 O

(i2
I, 2L' d sin B (r')pdp (28)

o 0

and
00 CO

12~ ~ 2 -It ±[ -
d fs J B,(r')pdp (29)

0 0

By an order of magnitude argument, I1  can be reduced to
00

-2L' f B W (C$0,0) dC (30)

0
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Ay inLr.,ducing te varlablv v .= /41.' , the integral 1,, reducs to

S - .' d. si ,jB,(r')dv (31)

0 0
The step:; in going from expressions (28) and (29) to (30) and (31),

respectively, are shown in Chernov (1). Finally, the working formulas

ior obtatining the mean-squarv statisLiO. of the phase and log-amplitude

fluctuations for the case ka >, 1 and L -> a , ave, from Equations

(2o), (27), (30), and (31),

22 ,. E, [B

<>  t2 0 d [B( ,0,O) - f si v B Pr') dv] (32)

and o

<X2 > A 2 L' dF, [B (F,,0,0) + si v B(r')dvl]

o 0 (33)

wtiere
2

P
4L'

The form of the solutions to Equations (32) and (33) depend upon a

dimensionless parameter 1) defined as

41.

ka

called the wave parameter, and for 1) -, I or 1) >, i , the solutions

can oe studiCd without specifying the foim of B (r') For these

special cases, the solutions of <S 2 > and X 2> depend upon the

integral I
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si V B (r')dv , (34)

0

which is common to both. For values of D 1 , the values of the

integrand in Equation (34) ar: assumed negligible for values of r'

greater than the correlation length a' . Then, for these values of

r', the argument v does not exceed the value ka 2/4L ' or l/D ; i.e.,

1
V '~

D

For D >> 1 , v is very small and

Go

si V - 2 dt 7Tt 2

Equation (34) then is approximately

I 7rC B(r')dv

Integrating I by parts yields

I - -- [B(r')V j d
IK- B- v dv2 3V•

o
0

The first term in the brackets makes no contribution to the value of

since B (r) is assumed to be zero for v > (or equivalently, forP' D
large values of r' ). The maximum value of B (r') occurs at

v - 0 (m - 0, - 0), i.e., BL (,O,O) , and falls off to zero in a

distance v which is of the order I/D so that
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'\- B (F,O,O)/D = D B (i,O,O)

and we have that lID

1 11, D Bp (WO,O) v dv *B W(,OO)/D
J
0

Since D >> I , the integral I can be neglected compared to B (C,O,O)

and Equations (32) and (33) become

<S 2> = a2 L' B ( ,O,O)d&

0

and

<X2 >  2 t L' {B I(,O,O)dC
0

Going over to dimensional variables, L and C* &/k , we have that

O

<S 2> - <X2> 2 k2L B (C*,O,O)dc* (35)

for D - 4L/ka 2 >> 1 . For D << 1 , the relevant values of v

extend to large values ( >> 1). Chernov developed an asymptotic

expression for the integral I for large values of v to obtain
00

<S2> a .2L'I B (&,O,O)dC

J

0

or upon introducing the dimensional variables L and &* as before,



40

<S>= 2a2k2L'f B (C*,OO)d * (36)

J

0
After a lengthy development, based on order of magnitude arguments,

Chernov arrived at an expression for the mean-square fluctuatuions of

X , stated here as

2 12 3 VVB]
<X2> L' 2 2 p m=O d

0

or upon substituting L and * , we have

<X2> - L j [V2V2B]m*.,.odC* (37)

0
where

[ 2 21
V2 1 L

V m*2  C2k J

The evaluation of Equations (32) and (33) for intermediate values of D

depend upon the explicit form of the correlation function B (r')

The calculation of the coefficient of variation will be deferred to

discuss another approach to the scattering problem.

From the several developments presented, it is evident that the

coefficient of variation and the mean square statistics of the phase

and amplitude fluctuations depend on the form of the correlation

function of the refractive index variation. However, none of these

presents a physical basis for determining the form of the correlation

function. Most prevalent in the literature are correlation functions
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of the refractive index variations or water temperature variations with

the forms

B (r') = exp(- r'2/a 2) Gaussian

and

B (r) = exp(- r'/a) Exponential

These functions render the mathematics tractable but may be quite

artificial in this application. In fact, in some instance, they have

been shown to lead to poor agreement with measurement of the mean-square

difference in water temperature between two points in space. For

example, Whitmarsh et al. (13) reported experimental measurements of

the structure function of the water temperature DT(p) , defined as

DT(p) - <[T(r) - T(r 2)] 2>

where p = Ir1 - r2 1 , which showed a p
2/3  dependence. For a

statistically isotropic temperature field with T(r I  and T(r 2

expressed as

T(rI) < 'T> + AT1

and

T(r) - <T> + AT
"2

the structure function becomes
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DT(p) - <A2T1> + <A2T2> - 2<AT1 AT2>

- 2<A 2 T>[1 - BAT(p)] . (38)

Substitution of a Gaussian or exponential correlation function, i.e.,

DT(p) - 2<A 2T> [1 - exp(-p 2/a 2)]

or

DT(p) - 2<A 2T> [1 - exp(-p/a)]

2/3

leads to poor agreement with the empirical curve of p

Skudrzyk (10) has asserted that the refractive index field or the

temperature field follows a Kolmogorov-type law (7), i.e., that just

as in homogeneous turbulence theory, where there exists a spatial

region for which the structure function of the water velocity field
2/3

has a p dependence, so, too, does there exist a spatial region

for which the structure function of the refractive index or temperature

has a p2/ 3 dependence. The limits on the spatial region, for which

the 2/3's power relation holds is a function of the heat conductivity

and the boundaries of the medium. The heat conductivity limits the

inner scale of the inhomogeneities by preventing the existence of

temperature gradients over small distances; the boundaries of the medium

place physical limits on the outer scale. Tatarski (11) obtained an

expression for the mean-square amplitude and phase fluctuations of a

scalar wave for the case rX>> L ; and is given here as
O
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of the refractive index variations or water temperature variations with

the forms

B (r') = exp(- r'2/a 2 ) Gaussian

and

B (r) = exp(- r'/a) Exponential

These functions render the mathematics tractable but may be quite

artificial in this application. In fact, in some instance, they have

been shown to lead to poor agreement with measurement of the mean-square

difference in water temperature between two points in space. For

example, Whitmarsh et al. (13) reported experimental measurements of

the structure function of the water temperature DT(p) , defined as

DT(p) = <[T(rl) - T(r2)] 2>

S ,I a2/3

where p =1I _ r2, which showed a dependence. For a

statistically isotropic temperature field with T( 1) and T(r2

expressed as

T(rI) = <T> + AT

and

T(r2) 2 <T> + AT2

the structure function becomes
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DT(p) -<A 2 TI> + <A2T2> - 2<AT1 AT2 >

- 2<A 2T>[l - B AT(P) ]  (38)

Substitution of a Gaussian or exponential correlation function, i.e.,

DT(p) - 2<A 2T> [1 - exp(-p 2/a 2)]

or

D T(p) - 2<A 2T> Ei - exp(-pia)]

2/3leads to poor agreement with the empirical curve of p

Skudrzyk (10) has asserted that the refractive index field or the

temperature field follows a Kolmogorov-type law (7), i.e., that just

as in homogeneous turbulence theory, where there exists a spatial

region for which the structure function of the water velocity field
2/3

has a p dependence, so, too, does there exist a spatial region

for which the structure function of the refractive index or temperature

has a p2/3 dependence. The limits on the spatial region, for which

the 2/3's power relation holds is a function of the heat conductivity

and the boundaries of the medium. The heat conductivity limits the

inner scale of the inhomogeneities by preventing the existence of

temperature gradients over small distances; the boundaries of the medium

place physical limits on the outer scale. Tatarski (11) obtained an

expression for the mean-square amplitude and phase fluctuations of a

scalar wave for the case YrXT>..- L ; and is given here as0



43

<X' = <Y2>k2L B (X)dx , (39)
n

0

where 1. is the distance between the origin, which is located on the

boundary of the inhomogeneities, and the point of observation, and L0

is the outer scale of the refractive index inhomogeneities. This

result is identical with Chernov's result for the case D >> . Since

the underlying development is associated with turbulence phenomena, this

approach offers a clue to the form of the structure or correlation

function of the refractive index field. For the case k Y< ¢ << L0 0

the form of the structure or correlation function must be specified and

Tatarski used a structure function of the refractive index field given

as

D (p) = C 2p 2/3 . (40)n n

This form is in good agreement with actual measurements of mean-square

temperature differences made at sea. In Equation (40), p is the

2
separation between two points and C , which is a function of then

mean-square fluctuation of the refractive index, has units that make

D (p) dimensionless. For this intermediate case, k <k < ,n 0

Tatarski has shown that

'7/6 1/6X, 2 ;. = 0.31 C 2k L 6
n

where k is the acoustic wave number, and L is the range between

source and receiver. It can also be shown for this case that the

mean-square phase fluctuation <S,2> is equal to <X,2; .
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Coefficient of Variation - Relation to Amplitude and Phase Fluctuations

Since some of the theoretical results are given in terms of the

mean-square values of the amplitude and phase fluctuations, the relation

of these to the coefficient of variation should be obtained. For this,

we assume that the total acoustic pressure in the medium containing weak

inhomogeneities can be expressed as in Equation (19), i.e.,

XI

P = A e exp[- i(wt - kx - S'] . (19)0

We note that this is a complex representation of the acoustic signal

and it is the real part of Equation (19) that is the observable. Let

P represent the real part of P , then the coefficient of variationr

of P isr

<P 2> - <p 2>

VPr <p 2> (1
r

For convenience, let W = t - kx then, from Equation (19), we have

Xl
P = A e cos( - S') (42)r o

and

Xl
<P > = A <e cos( - S')>r o

A Rete <e >

where Re{ } denotes "real part of". The random variables X' and S'

are assumed to be jointly Gaussian with zero means. Then, the

expression <exp(x' - is')> is recognized as the bi-variate character-

istic function of a Jointly Gaussian random vector (6) , i.e.,
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<CixT + isr (4
,' ' ,(I ) = <e 1  

->" (44)

where M denotes the characteristic function of the random vector

(x',s') The form of the characteristic function M ,, for the

zero-mean Gaussian case can be written as

,(T exp[ I( 2< 2>

',s' ,Cr _~ )=x >+ VT 2 <X'S'>

+ T 22<S,2>)] (45)

On comparing Equation (44) with the expression <exp(x'-is')> , it is

seen that they are identical if

T 1 = - i and T - 1

Using these values of T1 and T2  in Equation (45) results in

M I ,(-i, -1) - exp [- j-(- <x"> + 2i<x's'> + <s'2]X 'S2

(46)

Then, from Equations (43) and (46), we have

<P > A Re{exp[i/2<x' 2 > - 1/2<s'2>] . exp[(o _r o

or

<P > A exp(i/2<x'2> - 1/2<s 2> )cos(4 - <x's'>)r o

(47)
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Chernuov has shown that the correlation between the amplitude and phase

.fluctuations vanishes at largc distances; i.e., D >> I , so, for this

case, we have

>2 = 2 2> -2

<3 >2 = A 2ex:p(<x' 2> 'i2)cos . (48)
r o

Referring back to Equation (41), we have, alteL squaring,
2

2=A9 2x' 2 A
P re os 2 s') - e2 x [I + cos 2(p - s')]
r 0

(49)

and A 2

<2> o e2x ,<P 2e > <1 + cos 2(- s')> . (50)
r 2

We note here that the ensemble averages are factorable since x' and

s' are assumed uncorrelated Gaussian random variables and, hence,

independent. Equation (50) becomes

2

= 0 <e2x' (1 + Relei2( <e-i2s' >}) (51)r 2

Again, using the properties of the chatacteristic function, we have

2
A 22> 0 2-x' > ei2e-2,sr > -e (1 + Re{e ) (52)

r2

Equation (52) becomes

A2 ,

22 x '2 >  -2,s' >
<P > = -- e (1 + e cos 2 ) (53)r 2
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Substituting Equations (48) and (53) into Equation (41) yields

<x2 2> + <s' 2> -2<s' 2>
Vp 2 . e (1 + e cos 2 )_ 1 . (54)
ri + cos 24

Equation (54) expresses the coefficient of variation of the observed

harmonic signal in terms of the mean-square statistics of the amplitude

and phase fluctuations when they are zero-mean, uncorrelated, Gaussian

random variables. The assumptions that the amplitude and phase

fluctuations are Gaussian are not undue since they are the sum of

contributions of many random inhomogeneities. We consider V for
r

the three cases depicted in Figure 12, which represent three oscillo-

scope views of the received signal as expressed by Equation (42) and

where the intersection of the vertical line and signal trace marks the

point of interest. A further restriction i3 that the fluctuations' are

small enough so that the exponentials may be expanded to the first

power with sufficient accuracy.

Case I:

For Case I, as shown in Figure 19, r ' i or cos 20 1 then

Equation (54) becomes

2 e<X,2> + <s,2> (I + e- <'2>) 2

P2
r

(i + <x' 2> 2 < 22 2>)(2 -2<s'2>) -2]
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or

Vp 2 <x, 2>

r

where second-order terms in <x' 2> and <s'2> have been ignored

compared to first-order terms. This means that, for observations of

the peak signal, the coefficient of variation is a measure of the

mean-square amplitude fluctuations.

Case II:

For this case, 7r/4 or cos 20 '\, 0

then,

2 <x' 2> + <s'2>Vp e -lI

r

or

V p 2 <x,2> + <s,2>

r

In this case, the coefficient of variation is influenced by the

mean-square statistics of both the amplitude and phase fluctuations.

Case III:

This case considers 0 to be of order Tr/2 or cos 2 % -1 .

The coefficient of variation blows up and has no meaning, but the

variance of Pr may be calculated. We have, from Equations (48) and

(53),
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Var P <p 2> <p >2 <p 2>r r r r
A2
Au  2<x' 2> -2<s'2>
S e (l-e

or that

A2

Var P -- (1 + 2<x' 2>)(2<s 2>)

A 2<s,2>
0

Thus, the variance of the signal, when observed at a point in the

vicinity of the zero-crossing, as indicated in Case III of Figure 19,

is proportional to the mean-square fluctuation of the phase.

Having touched on several theoretical results and having related

the mean-square statistics of the signal amplitude and phase to the

coefficient of variation for the case of small fluctuations, the

experimental results will now be discussed.



CHAPTER IV

EXPERIMENTAL RESULTS

Data Analysis

The data analysis began with a screening procedure for the

purpose of sorting out data records which exhibited time trends and

strong periodicities. Acceptable data were further reduced and put into

comprehensible form for study. It was intended to remove, as much as

possible, the fluctuations in the data not directly attributable to the

medium. Inasmuch as the coefficient of variation is the most important

quantity studied in this analysis, the results pertaining to it are

covered in a separate section.

Correlation techniques were used to detect the presence of

periodic components in the data. For example, 60 Hz interference, if

present in the receiving equipment, could influence the data. The

sample and hold operation would sample the "noisy" data at a rate equal

to the repetition rate of the received pulses, i.e., 68.8 times a second

and the interference, if large enough, would manifest itself as an

"alias" frequency component (8 or 9 Hz) in a correlogram obtained from

these data. Such data would not be included in further analysis. A

standard formula for the correlation coefficient was used and is given

here as
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N
Rxy = (xi -X) (y y)/(Ox a y N)

where N is the number of samples in a group,

N
x i xI/N

i-I

is the sample mean, and

N
2 (x-x) /N

2is the sample variance of one group. The symbols y and a havey
2similar formulas as x and a , respectively, and are the sample meanx

and variance of the other group. A sequence of :orrelation coefficients

was obtained by keeping the X group constant and updating the Y group

by one sample for each calculation (this was equivalent to calculating

the correlation between X and Y every 14.6 ms for 70 kHz data). The

resulting correlograms of the data records were studied directly Dr with

the aid of Fourier analysis to detect strong periodic components.

Correlograms of accepted data have correlation values which decrease

60% to 90% within 2 lags or 29 ms. Figures 13 through 16 show some of

the typical correlograms obtained. A composite of first zero-crossings

ErL.m the correlograms shows no apparent relationship between zero-

crossings and range (Figure 17), a result which was theoretically

obtained by Mintzer (5).

The data records were checked for time trends and slow

periodicities, also, for it was possible for surface motion to impart

slow quasi-periodic movements to the transducer by way of the support
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cable and introduce low-frequency fluctuations in the data. One

observed motion while on station was a rotational movement of the

receiving platform. This could have imparted a pendulum-like motion

to the receiving transducer producing an effect equivalent to that of

changing the bearing of the source. Consequently, the received signal

would have been subject to the relative variation in the horizontal

beam patterns of the transducers. Although this platform movement was

not always present, it was present on moderately windy days and its

effect, if any, should be eliminated. To screen against this, each

data record was partitioned into 20 groups of 50 pulses each. The

group means and variances were calculated, plotted, and studied for

trends and low-frequency components, however, no strong time trends or

slow periodicities were observed.

It was also desirous to exclude data which had been affected by

multi-path interference. The presence of sharp sound-velocity gradients

in the upper water layers in the quarry posed the problem of multi-

arrivals particularly at the longer ranges (see ray diagrams in

Figures 4 and 5), To check for this, average levels were plotted as a

function of range and compared to a curve which would occur if spherical

spreading alone were present. Since attenuation losses are small over

the ranges involved, any marked difference occurring between the data

curves and the spherical loss curves was considered due to multipath

interference and these data were not processed further.

Cumulative distributions of the amplitudes were obtained from

acceptable data records and plotted on logarithmic probability paper.

Distributions of amplitudes received at distances of 300 feet and
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i~~rt :-4'r pel ezg0-.Cts C~rrespoodift to S cycles of

!= iz:Att-4 g:'-eqtqacw a Figure 19 presents JistrzbuLim for

palerit P ri-.z'rces eigraiion. Zoo Dalscis5a indcates the

per-Iat-ig oi *-ples Il" than or equal to the value of the ordiniate

of jOterest. . Gaussiau distrbacion plotted on this type of

prok-ability paper apFears as a straight line and serves as a quick

referewe for spotting empirical distributions that are poor

approximations to Gaussian. The distribution of amplitudes at 70 kliz

appear Gausatan, parcicularly at the longer ranges. The amplitude

distributions of the 60 kHz and 80 kHz pulses closely approximate

Gaussian distributions, also. Some systematic differences between

Gaussian and empirical distributions were observed for the amplitudes

received ever short ranges; however, it is believed that these were

caused by human error. It is very possible that the data reader, after

critically viewing and recording several hundred pulses that showed

negligible variation, became less critical through tedium and began

favoring the lower readings. The effect of this would be to bias the

distribution of levels in the direction of lower values and make it

appear stochastically lower than a Gaussian distribution. Despite the

skewness, the Gaussian hypothesis could not be rejected by Chi-square

tests at the 0.1 level. It is assumed that if the bias had not occurred,

the empirical d'striburions tor these ranges would be approximated very

well by Gaussian distributions.
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MUiCid. Coe f'IcinMt of Vartatige

Eacb data record (en, contalned Msproxleaely lo0 comse--Itive

pk-amlitude eauremts) was partitioned i-ato 20 groupe. A

coefficient of variation was calculated i. each group and the result-

ant 20 coefficients were "sed to calculate an average coefficient of

variation ! , and a standard deviation ror the record. The quantity

V was plotted on log-log paper for the range and frequency parameters

of interest. A straight line fit was obtained in order to estimate the

assumed power relations among the variables of interest. The coeffic-

ients of variation of data records obtained during the summer, fall,

and winter months of 1968 were calculated, expressed as percentages,

and plotted on a log-log scale as a function of range. A straight line

curve was obtained by first averaging the values at each range, then

fitting a least-square line through the averaged points. In Figure 20,

a resultant line curve is shown superimposed on a plot of values from

data taken in December. The slope of the fitted line is 0.53 which

would be in agreement -iith the 0.5 slope predLcted by theory for the

case D >> 1 . Examples of coefficients, plotted as a function of

frequency, are presented in Fig:res 21 and 22, where V is in percent

and frequency in kHz. The source-receiver range for these figures is

350 feet and the pulsewidths are 4 and 8 cycles of the carrier frequency

as indicated. The least-squares line obtained from each set of points

is also presented in each figure. Because the time duration of the

pulse varied with transmitter frequency (consequently, changing the

volume of the insonified medium), it was thought that the statistics of
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the data odght be dependent on this prawter. This would be a

conclusion drawn from Equation (8), wbere the vozim of inhwogeneirties

i eaters as a ccefficzent of tLe zntegral for V, . However, for any

glien frequency and range, the experisental results show no significant

change in the coefficient of vartation for the two pulselengths used

(see Figures 21 and 22, for example). This e~perinental result veighs

aga*.st the application of the simplified theory for "se in studying

the effects of Fcattering, but most important, eliminates the need for

a correction to the dati when comparing the results as a function Df

frequency.

The observed data are peak amplitude measurements of the direct

arrival. Theoretically, the coefficient of variation of these levels

was shown to be proportional to the mean-square value of the amplitude

fluctuation (Case I) when the fluctuations are small. The result in

Case I also depends on the assumptions that X and S are independent

Gaussian random variables. The distributions of amplitude levels found

experimentally lend support to the Gaussian amplitude assumption and

one could appeal to the central limit theote-m for support of the

Gaussian phase assumption. Chernov has shown that for D >> 1 , X and

S have a correlation that goes to zero and hence become independent.

Consequently, applying the result of Case I to the data, we see that the

experimental coefficient of variation relates primarily to the frequency

and range dependence of the mean-square fluctuations of the signal

amplitude. The theoretical results expressed in Equation (33) for the

root-mean-square amplitude (equivalently, the coefficient of variation)
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ine :P-, pr _;tsa ftrst poer depeneence on che acoustic

f.requency rtn .a oe-halt pawr dependence un the range. The experi-

2oental resuits sssg&est a power dependence on r4age of the order

one-half and a power lepeadt-nce omt frequency of the order one. For

D -I . E4uation (j5) states that the root-aeaa-suare amplitude

fluctuatlon, theoretically, is independent of acoustic frequency md

has a three-halves power dependence on the range. !his result is

inconsistent with tne experimental data. The consistency between

experimental and theoretical resulLs for the case D >> 1 , however,

seems quite good. The question is whether D >> I describes the

experiment on hand. A detailed study of the water temperature field

was not conducted and only temperature measurements for mean sound

velocity calculations were made. Because of this lack of information,

an experimental estimate of the wave parameter D could not be made,

but perhaps we can conjecture about the order of magnitude of D .

Calculations of AT for values of L between 300 and 350 feet are

of the order of 5 feet. For 0 to be such that D >> 1 requires that

4L,'ka 2  >> 1 (54)

where a is interpreted as the correlation length of the variations in

the refractive index or water temperature field. With the value of

tI in the order of 5 feet, we have from the inequality in

Equation (54),

a << 5 feet
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Ideally, thes., if the median in the quarry were statistically isetropic,

the spatial correlation functzit of the temperature variations should

only he significant for values of r - a <, 5 feet. to assm that

a > 5 feet, I.e., that D <1 I , i*iht be less enale than assuedg

that a < 5 feet, for the former CA*e implies thzt the flirctuations in

temperature are significantly corr--1 ted over a distnce of 10 feet

(tvice the correlarion length). Significant correlation of this

ragnitude mig:-t be found nesr the surface, for example, where sbadows

c3ut on the surface by clouds, or Ohere the cooling effect of ireezes

night affect "patches" of the water te perature fleld of this size, but

it seem unlikely that these processes would have any Inediate effect

on the acoustical properties of the medium in the region below the

thermocline (below 50 feet) of the quarry. The suggestion here is that

large "patches" of temperature fluctuations are not present belev the

thermocline. It may be relevant, here to refer to measurecents of the

correlation function of fluctuations in the water temperature field

made at sea by Liebermann (4), who found that an exponential correlation

function with a correlation length of 60 cm (2 feet) gave a reasonable

fit to the experimental curve. The point is that if it is presumed that

D >> 1 , solutions for X and S as obtained by thoe Rytov method an(

modified by the Fresnel approximation lead to consistent results between

theory and experiment.

Skudrzyk (10) has argued against the use of exponential correla-

tion functions in this applicatton and regards the reference to a single
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Presumdg D >> 1 , the otiter scale of inb-mmogeneities, from this

vle.iolat, plan a analogous role as the correlation length does in

the previcam set-up. It is interesting to note chat the turbulence

apreach does not preclude the existence of an expmeteial correlation

fwotim oi tb variations in rfractive index. In the case of a

atazsticaUy Isoctropir tubalent sediun, the strbcture function D o0)

is assued to bae the form

0

but

or

abe b W~) Is the marmaalzed cervelaztas finctio of the refrarcive

imsm vaL. a -e !et

D (a) -

the m w ham

b () I- ! 0~27 - ~

Ii€
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Equation (55) becomes

b () expi- D (-)/2ct2 I

for

D (0)12:4- , (56)

That is,

b? (c) exp[- C " 12- o << 0.

and

b, exp(- C 2 /2a2< p << L. .0 0

(57)

Then, for values of C such that the inequality in Equation (56) holds,

the normalized correlation tunZtion may appear empirically as an

exponential function [Equation (57)). Under these circumstances, dn

exponentiai zorrelation funtion of the reiractive index fluctuations

would give batisfactory agreement between theoretical and experimental

results for the mean-square statistics. In this Loncext, however, the

coefficient 'f C in the exponential votld be related to the mean-square

value of the refractive index fluctuations and not as an equivalent

"patch size"



CHAPTER V

EFFECT OF SCATTERING ON TIE PROBABILITY OF ERROR

Introduction

The transmission of a bandlimited signal is a common problem

dealt with in communication theory. The signal is usually sampled at

a rate of at least 2W samples per second, where W is the frequency

bandwidth of the signal, These samples are multiplied by samples of

the known signal and summed or integrated cver the duration of the

signal T . The integrator output is fed to a threshold device where,

subsequently, a decision is made about the input signal. The signal,

however, having been subjected to additive noise, may be erroneously

interpreted in the decision making process. We will consider, in this

case, the transmission of a single frequency carr.er that is received

and correlated with a replica of the transmitted signal, It is assumed

that the correlating takes place over a time interval in which the

signal is fully present. In particular, we deal with a binary-encoded

acoustic signal that is transmitted through a weakly inhomogeneous and

statistically isotropic medium The signal is aftected not only by the

ambient noise present in the medium, but also by the scattering effects

of the inhomogeneities. The ambient noise is idealized to be an

ergodic, zero-mean, Gaussian process which has variance N and uniform

power spectrbm ("white" noise). The signal is encoded by either
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modulating the amplitude or phase of the carrier or by transmitting one

of two frequency carriers (frequency shift keying). One or two

correlators, depending on which encoding technique is used, are

employed at the receiving end of the acoustic link. The acoustic link

is further idealized so that effects of Doppler frequency shift,

reverberation, and multipath arrivals are not present. The signal at

the output of the correlator is subject to error due to the effects of

scattering and by the superp'sition of ambient noise. The noise has

been idealized to permit a qualitative discussion of the effect of

scattering on the probability of error at the output of the correlator,

where the error referred to in this context is the mistaking of one

symbol for another, i.e., the decoding error when the signal is present.

We assume, also, that the mean-square statistics of the received

harmonic signal have a frequency and range dependence that are described

adequately by the product k2L , where k is the acoustic wave number

and L is the range between the source and receiver.

Amplitude Modulated Signal

Let

P = A exp[- i(wt - kz)]0

represent the complex electrical signal corresponding to the received

acoustic signal when the medium is homogeneous (this will be the replica

signal, also) and let

P = A0 exp[X - i(wt - kz - s)] (58)
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represent the complex electrical signal when tne medium concains weak

inhomogeneities (the received signal). The observed signal trace is

the real part of Equation (58). ie ,

P = A eXcos(wt - kz s) (59)

r o

For iixed source and receiver locations, kz becomes fixed and we let

K - wt - kz . The signal P , observed on an oscilloscope display,r

will be a sample waveform from an ensemble of waveforms {P (XS)} ,r

where X is a random variable which determines the amplitude of the

sample waveform and S is a random vaziable which determines its phase.

If P is time-correlated with a replica pulse P' , over a period T ,r

where

P' - A cos(wt - kz) - A cos K
o o

and where the delay , between the received signal and the replica

signal is zero, we have as the signal contribution to the correlation

output

T

A e cos(K - S)A cis K dtr T 0 0

0
T

A
2

-e [cos K cos S + sin K sin S] cos K dtT

0

or

A2

A 0 2X
PrP' = -,--e os S (60)
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An ensemble average of Equation (60) yields

<P rp'--> A 0 2/2 <ex co5 S>
r o

Assuming that X and S are independent Gaussian random variables,

we have

<P-P'-> - A 2/2 <eX> <cos S>r o

30 A 2/2 exp[1/2(<X 2> - S2>)]
0

For values of the wave parameter D >> 1 , <X2> + <2>, and we have

2> A /2
r o

We note that A 2/2 is the average power of the carrier frequency.0

The mean-square value of the signal portion of the output is

S 2x 2

<-24 2x> <A /4 e cos2S>

1A /4 <e ><Cos S>o

= A 4/8 <e 2x><l + cos 2S-
0

4 2<x 2 ->S
ff A 4/8 e (i +

0
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or

-- 48<PP' "-" a I4 2' )!+ * - 2"-)

<Fx A/8 1 Z'- A 1 +' 'S)
r o

4 2" 2,A /8 (2 - 2 S2 -- -
0

4 2
= A /4 (1- S + 2- -

0

Terms involving <X2><S2; and higher orders of <X2  and "$ have

been ignored compared to first-order terms in <X, and -S2 The

variance of the correlator output term P P isr

Var P P' <P P 2 .>- 2

r r r

4 2 2A /4 (1 - S + 2-X
0

- A 474 (1 + -
2 $-S

0

A 4/4 <X 2  (61)
0

Thus, we have as the mean and varian:e of the 3utpat of the correlator

<P P' = A 2/2 (1 + 112(-X"' - S )] 2 A *202
I o C,

and

" 4
Var P ' A '4 21r o

respectively. The probability density or the .)uLput is required to

discuss the probaoility ot ertro in a quantLiatlve way By E-quation (60),
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the output of the correlatar when the input is given by Equation (59)

and when the delay T 0 is

X

PP' 2/? e cos Sr O

x
The output is the product of two independent random variables e and

cos S , where X and S are independent Gaussian Random variables

Assuming that the means and variances of the random variables X and S
X

are known, the joint probability density of e and cos S can be

approximated for small s . The mean and varian:e of the correlator

output, however, will suffice to qualitatively discuss the correlator

performance for the binary encoded signals.

In the absence of the signal, i.e., the "0" event, the outcome

is based on the probability density of the ambient noise. The mean of

the correlator output would be 0 and its variance would be

proportional to the variance of the noise N , but less than the

variance of the "1" event.

Phase Modulated Signal

We assume that the possible signals are either P or -Pr r

where P is given as in the amplitude modulation case to be

CX

P = A e cos(K - S)
r o

A single correlator is used and the replica signal is given by

P' = A cos K
0
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Figure 23 presents the correlatir oorpurs 'or 'he given Anpucr aling

with their corresponding means and riances. The mean oi the

correlator output for the signalb P Of -P is A 0 2 o -Ao 2,r o 0

respectively, and the variance )t the o.utpuc is the same in either

case: A 4/4 <X 2>
0

Frequency Shift Keying

In this case, one of two diife-ent I:equenzies is present at the

receiver. Two correlators are employed in the receiuing system, one

that correlates the incoming signal wlrh a teplica signal of frequency

f and one that correlates with a replica signal of frequency f2 * To

further simplify cal-ulativns, it is assumed that the integration time

is long enough for the cross'cctelation ot the jnliik signais to go to

zero. Let f be the lower frequen-y t the two, then Figure 24

presents the correlatc. outputs with the c3'cesponding means and

variances for the given signal inputs,. We haje in this system a

comparator which senses the ditfereae between rhanneis A And B; i.e.,

A - B . The mean of the czmpardto[ ourpt iE the difference in means

of the channel outputs (correlato: outpirs) and the varian,.e is the sum

of the variances of the channel outpu s zorrefato' outputs) A

negative mean value at the compa:atc .utput impLies frequency fI is

present, while a positive value implies trequency f is present. The

magnitudes of the means are the same, but the variance or the output is

greater when f2 is present beca-se :,t the incteased signal tluctuation

due to scattering at the highcr f.equenc
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Comparison of Correlator Outputs

It is assumed that the total variance jf the _orrelator output

is the sum of two variances: one from the tluctuations in the signal

due to ambient noise, and the 2ther from the fluctuations in the signal

due to the refractive index variations. These tluctuations are

considered statistically independent. If we assume that the noise is a

zero-mean Gaussian process with a flat power spectral density ("white"

Gaussian noise), the mean of the correlat3r output due to noise is zero

and the variance of the output due to the no)i.e alone (the in-phase

noise power) is proportional to N , the varianr.e of the zero-mean noise

process. Because the noise is "white", the noise contribution to the

total output variance is the same independent of the frequency of the

replica signal. With these simplifying assumptions, the total variance

of the correlator output can be compared readily for the three forms of

encoded signal. Under these conditions, on]y the eifects of scattering

on the encoded signals need be considered.

Let a zero, "0", symbolize one state ot the b"-nary encoded signal

and a one, "1", symbolize the other, for example, if the signal were

amplitude modulated, let "0" represent the "no-61gnai" state and "1"

represent the "signal-on" state. For convenience, let AM and PM be

shorthand for amplitude and phase modulation, respectively, and let FSK

be short for frequency shift keying. Using a threshold device to

determine whether a "0" or a "1" is present, we prescribe the probability

of mistaking a "0" for "" to be B , i.e., P("l"/"O") - B , whether

the operation is AM, PM or FSK. For the ccr elator-threshold system and
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for a fixed 8, we compare the probability of mistaking a "I" for a

"0", P(""/"I"), for each mode of operation. This is done qualita-

tively by comparing the means and variances of the system output

distributions. In the AM case, the means of the "0" and "I"

distributions are not as resolved (separated) as in the PM and FSK

modes. Let us assume that P("M"/"l") = n for the AM case. In the PM

mode, the means of the "0" and "I" distributions have a separation that

is double the separation found in the AM case. The variances of the

distributions are equal to the variance of the "1" distribution of the

AM case. In the FSK mode, the means of the "0" and "I" distributions

at the output of the comparator have the same separation as in the PM

case; however, unlike the PM case, the variance of "1", the higner

signal distribution, being a function of <X2 , is proportional to k2

and, hence, greater than the variance of the "0", the lower frequen:y

distribution. For a fixed threshold level, such that P("l"/"0") - 8 ,

the increase in variance of the "I" distributt.on increases the

probability of missing the "I"; thus, we have

P(" l"/"O") FSK = P("l"/"0" PM - 8

and

P("O"/"I") FSK P("0"/"l") PM m

or that the total number of errors is greater in the FSK operation than

in the PM operation. The AM case leads to the greatest total error of

the three indicated modes. Figure 25 illustrates the difference in the
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Figure 25. Effect of Scattering on the Probability of Error
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probability densities at the output of an ideal correlator for the three

encoding techniques. The densities are sketched as symmetrical and near

Gaussian for discussion purposes to show the change in their variances

for the different modes. The density of the "I" distribution for the

FSK mode is shown broader than the others to illustrate the increase in

variance at the higher frequency f2

If the received signal contained a fixed but unknown phase, i.e.,

P - A eX cos(K - S +)

and the replica signal were

P' - A cos K0

the variance of the output distribution would be the same, but the mean

would be A 2/2 cos 4 . This implies less resolution of the means

which in effect would increase the total error for each mode.



CIIA!'TER VI

SUMIARY AND COMIENTS

Summary

The general problem of concern is to determine the performance

of an underwater dcoustic system when rhe received signal has been

transmitted througi a weakly inhomogeneous medium and superimposed with

ambient noise. The analysis of the problem draws from the disciplines

of both statistical communications and underwater acoustics. In this

thesis, the problem has been considerably restricted to determine the

effects on the output of an ideal correlator due to small amplitude

fluctuations in the direct arrival or the signal. Other effects due to

frequency dispersion, reverberation, and mulcipath interference have

been ignored. The Rytav solution to the scala-. wave equation, modified

by the Fresnel approximations, serves as the mathematical model for the

comparison of experiment with theory. This solution, restricted to th

plane wave case and for small fluctuations, has the feature of describing

the received signal in a form convenient for systems analysis, i.e., the

solution is in a form exactly analogous to an electrical sinusoidal

signal having random amplitude and phase.

The emphasis of this thesis is on an experimentaL study of the

frequency and range dependence of the signal amplitude tluctuations.

One important aspect of the study is that many of the inherent problems

normally connected with measurements made at sea are believed to have

been circumvented by having conducted the measLrement program in a
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relatively protected quarry which ehbibits the signal effects of

micro-fluctuations in the refractive index field. The effect of the

essential parameters k , the acoustic wave number, and 1. , the ringe

between source and receiver, are compared tu theory through the

coefficient of variation. Te experimental data is felt to represent

the phenomenon of signal fluctuations due t. the thermal inhomogeneities

in the water medium. The measurements were made under conditions which

are believed to reasonably approximate the underlying assumptions made

in the theory of sound propagation in an inhomogeneous medium. The

dqendence of the coefficient of amplitude variation on range and

frequency was found experimentally to be k' 7LO.5 , which agrees

particularly well with theory for the range and to a lesser extent with

frequency; namely, kLI  . The comparison betwecn experiment and

theory was based on the premise that the wave parameter D is much

greater than unity and, consequently, does not depend on the explicit

form of the isotropic correlation function of the refractive index

variations. The theoretical coefficient ot variation of the observed

(real) signal as applied to a sinusold was obtained based on the

assumption that the amplitude and phase fluctuations of the signal are

zero-mean, Gaussian random variables--usudliy ;n the literature, the

coefficient of variation of either the complex-valued pressure or its

modulus are discussed. From this result, it was determined that the

square of the coefficient of variation of the peal received levels is a

measure of the mean-square amplitude fluotiatins and may be compared to

the theoretical mean-square amplitude flu~tuatuions
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No significant change in the coefficient of variation was

observed for the two pulselengths used in the experiment. The reason

for this is believed to lie in the assumption that ka >> 1 . Under

this condition, the contribution of the scattered sound to the sound

field at the point of observation comes from a region within a cone

whose apex is at the point of observation aed whose angular aperature

has half-angle 0 , where

S - 1<< i
ka

The effect of increasing the pulselength is to insonify the scatterers

outside this cone and produces no appreciable change in the pressure

fluctuations.

The output of a correlator is looked at under very idealized

conditions and is shown to vary with <X 2> which, for large values of

the wave parameter D , is proportional to k L . In this ideal set-up,

the system that appears to give the greatest total error is the one

employing amplitude modulation and the least, phase modulation; however,

to extend this result to any real set-up would be very tenuous.

Comments

It is recognized that, in practice, the wajor problers in

communications are not caused by such small percentage fluctuations,

but usually result from noise, reverberation, or multipath interference;

however, it has been brought out that even this small effect can

markedly reduce the theoretical upper bound on the information rate of
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an underwater communications system [for example, Rowlands and Quinn

(1967), and Marsh (1967)1. These scattering effects also have

theoretical significance in studying the limitations placed on systems

utilizing arrays of hydrophones for detection, communications, or

navigation; for example, in navigation, phase fluctuations at each

array element contributes to the anbiguit'' in the direction of the

source. On a purely scientific note, the study of this phenomenon adds

to our understanding of propagation of underwater sound in a complex

random medium. It would be well tc investigate signal fluctuations in

the case where the mean sound velocity is a function of space; for

example, when a sound velocity gradient is present, or to extend the

theory to cover larger fluctuations in the pressure amplitude and phase.

It is apparec that much work remains to be done in expansion of the

theory and in controlled experimentation in support of theory.
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