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ABSTRACT

The thesis is based on an experimental study of the amplitude
fluctuation in underwater acoustic pulses and its dependence on ranmge,
acousti- frequeacy, and pulselength. Tke fluctuation is assumed to be
a resuvlt cf spatial varfation in the refractive index field. The
coefficient of variation, a measure of the relative amplitude
fluctuation, is used to compare experimental results with theoretical.

For large values of the wave parameter, the thecratical
coefficient of variation has a first power dependence on the acoustic
frequency and a one-half power dependence on the range. Experimentally,
this quantity was found to display a seven~tenths power relation and a
one-half power relation with the acoustic frequency and range,
respectively, which is reasonably good agreement with theory. The
variance of the signal portion of a correlator output is shown to be
proportional to the mean-square value of the signal amplitude
fluctuation, which, according t> theory, is provortional to the square
of the acoustic frequency and the first power of the range. The
observation that no significant difference in the coefficient of
variation occurred with the two pulselengths used demonstrated another
aspect of the theory. Because the effective scatterers are highly
directional, the major contribution of scattered energy comes from
the region of a cone whnse axis lies along a line joining the source

and receiver and whose apex is located at the receiver. It is reasoned
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that the :iacrement in pulselength served teo insonify scatterers
outside the cone, thereby prolucing scartered energy not directed to
the receiver.

The experiment has demonsirated several aspects of 3 theory
which cin be vseful in determining the effects of therma:
inhomogeneities in tne performance of underwater accustic sysiess

used in navigation and communications.
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~ CHAPTER 1

INTRODUCTION

background and Problem

Underwater communication by acoustic means presents complex
problems in both theory and practice. One of concern here arises as a
consequence of fluctuations in an acoustic signal that has propagated
through a random complex medium. This phenomenon of signal fluctuation
is commonly experienced in other fields of science, also; for example,
in optics, it is demonstrated by the "twinkling" of stars when viewed
through the earth's atmosphere or by the '"shimmering' of objects when
viewed over a hot surface. It is alsc demonstrated in electromagnetics
as any ham radio operator will attest. The acoustic signal fluctuations
affect an important branch of communications called telemetry where, in
particular, an encoded message, after propagating through the oc=an,
undergoes various degrees of distortion by an aggregate of interierence
processes. The signal variability, in addition to the superposition of
noise, leads to error in decoding the message or quite often renders the
message unintelligible. These interference processes place performance
limitations on communications systems, but a knowledge of their
frequency and range properties may provide aid to the communications
engineer in selecting system parameters which would enable the system

to perform optimally. One aspect of the general interference problem
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treated in this qhesis is the effect of small scale amplitude fluctua-
tions on the error in decoding when an ideal correlator is used as a
detector in the receiving system. Described herein are the results of
an experimental sﬁudy of the frequency and range dependence of these
fluctuations and a discussion of the results in the light of several
theories of weak scattering The study was directed to 1nvestigating
the frequency and range dependence of amplitude fluctuations in the
direct arrival; essentially ignoring the signal effects of other
phenomena such as Doppler frequency shift, boundary reflections, and
refraction. The basic assumption in the study is that the small scale
fluctuations result from inhomogenities in the sound refractive index
field which itself 1s essentially affected by small variations in the
water temperature field.

A survey of the literature on the subject of small scaie sound
fluctuations revealed the existence of several deficiencies in the store
of acoustic scattering data. First of all, the body of statiszical data
is sparse'and usually has large variances associated with tt. Secondly,
the effects of several interference processes are usually inherent in
the data without any means of distinguishing the effects >t each, and
thirdly, which is in part a consequence of the other two, there is
scant data available relevant to telemetry which can be validly compared
to theory. As an example of the first and second, Sagar (8) has pointed
out several potential sources of equipment-asso:iated fluct-:ations that

may be inherent in measurements made at sea. In view cf this, it 1is
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questionable whethér one can validly appiy Sheely's measurements (9) to
weak scattering theory as Mintzer did in 1953 (5), for this data quite
likely includes the effects of such processes as surface motion and
multipath interference. Although Sheehy's data is suitable for rough
estimates of propagation loss (its original intention), it is not
suitable for small scale fluctuations which are of interest here.

" Later, however, Mintzer, Stone, and LaCase (3) did conduct laboratory
experiments in a water tank and generated their own thermal inhomogene-
ities in order to study its effects on the frequency and range
dependence of the acoustic fluctuations. The frequencies investigated,
however, were above 100 kHz due to the scaling considerations of the
experiment. The results of their experiments are an example of valid
application, but such high frequencies suffer severe propagation loss
in water and should prove to be impractical in underwater acoustic
telemetry. To apply their results to iower frequencies needs verifica-
.tion and to what extent they can be extrapolated is uncertain. The
point is, in short, that further investigation into the phenomenon of
underwater acoustic scattering is needed.

In order to conduct an investigation of signal fluctuztions using
freqﬁenc1es relevant to underwater telemetry and yet s5till exercise
control over the experimental parameters, a large water-filled quarry
was used. By having used the proper signal parameters (i.e., pulsewidth,
pulse repetition rate, depth, etc.) in the qua,:ry, it is assumed that
the idealized assumptions in the scattering theory have been reasonably

approximated. Emphasis in the data analysis procedures was placed in



testing and removiﬁg data records containing obvious time trznds or
strong time periodicities. These variations in the data are not
believed to be medium induced, but rather to be introduced electronic-
ally or by relative transducer motion. Procedures such as correlation
techniques helped to ensure that the resulting measurements pertained
to the scattering process of the medium only and not to a conglomerate

of interference processes.

Thesis Organization

The thesis itself is organized into essentially two parts.
Chapters II and IV present a description and a discussion of the
results of an experiment designed to study the amplitude fluctuations
in the direct arrivals of sinusoidal pulses at frequencies of 60 kHz,

70 kHz, and 80 kHz over ranges of 50 feet to 500 feet. Two pulselengths
were used to see whether an increase in this parameter affected the
statistics of the fluctuations. The experimental results are reported
in the form of graphs which include cumulative distributions, correlo-
grams, and coefficients of variation of the peak received pulse levels.
The frequency and range dependence of the coefficient of variation--a
measure of the magnitude of the fluctuations expressed as a ratio of

the standard deviation to the mean of the observed levels--are shown to
be in good agreement with theory.

Chapter V considers the influence of these fluctuations on
decoding error at the output of an ideal correlator, used to detect
binary encoded signals propagated through a medium exhibiting weak
scattering. Several forms of modulation are considered; 1.e., amplitude

and phase modulation and frequency shift keying.



CHAPTER 1I

EXPERIMENT

General Description

The rudiments of an experimental telemetry link were set up and
operated at a large water-filled quarry located in Myerstown,
Pennsylvania. The approximate depths and dimensions are shown in
Figure 1. A 12-foot fiber-glass boat and a powered 15-foot pontoon
boat were used to transport personnel and equipment between a boarding
dock and a large floating platform anchored approximately 1,000 feet
away. Figure 2 presents three photographic views of the experimental
site.

During an operation, the platform was used as a receiving =tation
and the pontoon boat was used as a transmitting station. The reccived
pulses, transmitted over prescribed ranges, were peak detected and
recorded on magnetic tape. 70 kHz tones, 57 microseconds (us) irn width
were pulsed at a repetition rate of 14.6 milliseconds (ms) in the
initial data runs. The pulsewidth and repetition rate of these wore
fixed by logic circuitry in the pattern generator at 4 cycles and
1024 cycles, respectiveliy, of the clock frequency. In later runs. two
pulsewidths, 4 cycles and 8 cycles of the clock frequency, were usad
during the data runs. The use of a single internal oscillator to drive
the pattern generator provided uniformity in the transmitted pulscs and

was a decided improvement over an earlier scheme that used two
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Photographic Views of Site

Figure 2.
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oscillators. A random phase difference in the dual-oscillator setup
caused the number of cycles generated to vary from pulse to pulse.
The modification also permitred the use of a single extermal osscillator
tc generate pulses at 60 kHz, 70 kHz, and 80 kHz conveniently. The
task of station-keeping during the transmissions was facilitated by
tying onto a wire line fixed to the platform at one end and to a land
point near the dock at the other. Orange styrofoam floats, strung along
the line every 50 feet, served as range indicators. Approximately 1200
consecutive pulses were stored on magnetic tape per run.
Bathythermograph measurements were obtained at the quarry with a
calibrated thermistor for various times of the year. Two bathythermo-
graphs taken in October, 1966, are shown in Figure 3. A ray plot
diagram and velocity profile calculated from Wilson's equatior (12) are
shown in Figure 4 and depict summer observations at the quarry For
comparison, a ray plot diagram and velocity profile for an October day
are shown in Figure 5. The sound velocity profile exhibits two
iso-velocity layers and a transitional region between. The upper layer
appears sensitive to short term meteorological changes and che slower-
responding lower layer seems to be sensitive to the longer trends 1in

weather condicions.

Transmitting and Receiving Equipment

A block diagram of the transmitting system 1s shown in Figure 6.
Essentially, the transmitting assembly consists of an external
oscillator and a pattern generator which permits several patterns. The

mode primarily used provided a carrier frequency pulse, 4 .arrier cycles




DEPTH (ft)

Oor &
10 «
a
20 |
&
30 124
oX
40} »
50f- ©
X0
60 X o
»
70 »
© © LOCATION 2
X LOCATION 7
80 X
L 1 1 ! 1 1 L
40 45 50 55 60 65 70 75
TEMP (°F)
Figure 3. Bathythermograph at Site, October 1966




10

OEPTH - FT
40
1

38
i

T T -
00k é 1] {g gL
238714 - ALIJ0TIA

i8

97730ag asumng - sweaBeyq Aey ‘4 2an31g

N
-
S

/
VAP <N

P
&

\

0 Bo-

C

$0

40
DEPTH - FT

T
H1

um.m (141 nMu aﬂu n..u nh- nh_ um. u.r n_w 244 _"
SQA - 3IINVY
YIWWAS - SHIVdA AVY ONNOS
14 04  AYYYND N3INIOHILINL - WYHOIVIQ AVY




11

DEPTH - FT
4
)

0aas a0né Qo0es
935714 = ALIICTIA

R

18

9TF303d Teuoriysuea] - swueaderd Loy g 2anByg

N

AN OO |
9

3

N,

L) T 1
0z ot st
SGA - 3INVY

SHiLVd AVY ONAGS

14 04 99/2/01 A¥¥vND

BEPTH - FT




a4

—>—

70kHz  PATTERN AMP
CLOCK  GENERATOR

Figure 6.

TRANSMITTER

Transmitter Assembly

12



- 13

long every 1024 cycies, e.g., a 70 kHz pulse 57 us long, every 14.6 ms.
A power amplifier having a frequency response that is flat from 100 lz
to 100 kHz amplifies. the signal generator output and drives the
transmitting transducer. The transmitting and receiving transducers
are identical in design and have a broad resonance (Q = 5) with a center
frequency of 70 kHz. Each transducer consists of three thin-walled
lead zirconate titanate cylinders separated by thin corprene discs.
The cylinders are mechanically held together by a tie-bolt and encased
in a tight thin-walled rubber boot. This assembly is bolted to an
anodized, water-tight aluminum shell which houses a low noise 40 dB
broadband preamplifier in the receiving unit and contains a package of
lead shot for weight in the transmitting unit. The transmitting sound
pressure level at 70 kHz is 47 dB above a reference of 1 uB pe- 1 rms
volt of signal in. The horizontal beam pattern measured at 50 kHz,
70 kHz, and 100 kHz shows a maximum variation of 3 dB; the ver:tical
beamwidth is approximately 40 degrees at the 3 dB down points at 70 kHz.
A block diagram of the receiver assembly i1s shown in Figure 7.
The receiving package consists of a iead zirconate titanate transducer
as described above and a 40 dB, low noise, wide band preamplifier which
has a flat response in the band 10 Hz to 120 kHz. The preamplifier
oﬁtput is cabled through approximately 65 feet of RG-5f coaxial cable
to a terminal point located on one of the rack-mounted panels in the
recejving assembly. The signal is amplified in two stages by two
general purpose, low-noise amplifiers each capable of providing 80 dB

gain in 1 dB steps. The output of amplifier 2 is fed to a sample and
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hold circuit which senses and holds the peak received level until 1t
receives a dump command signal. This technique was used to make the
data sampling rates compatible with the frequency responses of the
recording and analyzing equipment. The output of the sampie and hold
circuit is then amplified for recording and monitoring. The essential
processing of the data takes place in the sample and hold unit which ais
also rack-mounted in the receiving assembly. The associated dump
command circuit is a dual-gate integrated circuit used as a single shot
vibrator and is triggered by the incoming pulse. After shaping, the
resultant dump command signal, rectangular in waveform, is synchronized
with the received pulses so that a period corresponding to their
repetition rate is obtained. Ar oscilloscope picture of the dump
command signal is shown in Figure 8. The dump signal 1s amplified and
fed to point B of the sample and hold circuit shown in the simplified
schematic in Figure 9. The signal entering point A will normally go to
point B held at ground by the dump circuit. The dump circuit switches
state which places a positive blocking voltage at point B. This causes
the signal to charge the capacitor located at point C where the
resulting voltage incréase is sensed by the field effect tramsistor.
The capacitance and the input impedance of the field effect transistor
(= 5 meg-ohms) gives the circuit an approximate time constant of 40 ms.

"on'" for approximately 8 ms or

The blocking voltage is designed to be
1/5th the circuit time constant of 40 ms. This "on" period is short
enough relative to the circuit time constant for the capacitor voltage

to be essentially "held". 1In effect, then, the sample and hold senses



Figure 8.

Oscilloscope Picture - Dump Circuit Output

1 - Dump Output 50 us/cm
2 - Sync Input 50 us/cm
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the peak received voltage and holds it for 8 ms. An oscilloscope
photograph of the sample and hold response to a 70 kHz pulse is shown
in Figure 10. The data analysis, although tedious, was simplified
somewhaz by the sample and hold technique. An oscilloscope photograph
of the sample and hold output and its played back version from ua tape

recorder are shown in Figure 11.

Experimental Design Considerations

The idealized conditions underlying the theory of sound
propagation in a random inhomogeneous medium impose limitations on the
parameters of an experiment and are considered here. A basic assumption
on the theoretical medium is that the index of refraction n is such

that

n = 1+yu' ,

where Iu'l << 1 . A natural estimate of u'max , the maximum variation
in the sound velocity, would be the difference between the upper and
lower bounds of the sound velocity profile. An inspection of the
velocity profiles in Figures 4 and 5 indicate that the sound velocity
fluctuations should be between 4700 ft/sec and 5000 ft/sec. If

4700 ft/sec is used as the reference sound velocity, then

' ~ 5000 - 4700 -
] & 20004700

3700 0.07 <« 1 >

and the assuned condition is observed to hold for the actual medium.
Another assumption to be considered relates to the type of inhomogeneity

involved., Chernov (1) distinguishes between two tvpes of




Figure 10. Oscilloscope Picture -~ Sample and Hold Response

Upper Curve S and H output
Lower Curve 70 kHz pulse at S and H input
Scope: 50 ms/cm Sweep

0.5 v/em Sensitivity
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Figure 11. Oscilloscope Picture - Tape Recorder Output

FM Recording of Sample and Hold Output
Upper Curve Tape Recorder Output,
7-1/2 ips F.M.
Lower Curve S and H OQutput
Scope: 5 ms/cm Sweep
0.2 v/em
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inhomogeneities, one called regular, whizh refers to spatial variations
in the mean characteristics of a medium, and the other called random,
which refers to deviations of the characteristics from a mean value.
Although the two influence the propagation of sound, the effects due tc
random inhomogeneities are of interest here. Consequently, to realize
this assumption in practice, the insonified region in the quarry did
not include regions that contained velocity gradients; i.e., the depth
of the transmitting and receiving transducers and the duration of the
acoustic pulse were selected so as not to permit refracted energy from
the surface layers to reach the receiver during the observation period
of the received (direct) pulse. Adjustment of these parameters along
with the repetition rate also resolved the direct and reflected
arrivals. The use of short pulsewidths (57 ps) is also assumed to meet
the condition that the medium is stationary or slowly varying during
the passage cf the pulse and only changes from pulsa to pulse; i.e., it
is the "frozen" picture that is essential to weak scattering and not the
temporal picture. Furthermore, the fresh water of the quarry more
closely approximates the idealized medium in the theory since the
effeccs of density fluctuations are ignored in the theory when compared
to the effects of the refractive index fluctuations. To summarize, the
:xperimental parameters of depth, pulsewidth, and repetition rate were
adjusted to approximate the idealizations and assumptions in weak

scattering theory.

Simsts >
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CHAPTER 111

THEORY

Introductory Remarks

Amplitude and phase fluctuations introduce ambiguities in a
telemetered message and lead to error in interpreting the message;
however, knowledge of the frequency and range properties cf these
fluctuations can be of value to the communications engineer in
determining operational parameters that can minimize the message
errors. Infortunately, a study of the nth order statistics of the
fluctuations was not feasible, but a study of first- and second-order
statistical parameters sufficed, particularly in the case of small
fluctuations. A useful second-order statistic is the coefficient of
variation defined as the ratio of the standard deviation of the signal
amplitude to the mean amplitude. If we let V denote the square xoot
of the coefficient of variation and A to denote the signal amplitude,
then,

2 | <a- b

’
<A>2

where < > denotes an ensemble average.

Theoretical studies of the coefficient of variation have been

made by Mintzer (5), Skudrzyk (10), and Chernov (1) [Skudrzyk and Chernov

list comprehensive bibliographies) and the lLighpoints of their

A2
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developments will be discussed before presenting the experimental
results. The basic premise common to their theories is the assumption
that slight deviatiohs about a mean value occur in the refractive

index field n ; i.e.,
n = 1+ au ,

where az is the variance of the refractive index, n has a mean

value of unity, u is the normalized fluctuation in n , and

lou| << 1 .
A starting point for these theories is the time independent inhomogeneous

wave equation given as

v2p + kZP = =20uP . (1)

where P 1s the acoustic pressure and k 1s the mean spatial wave

number of the acoustic wave.

Perturbation Methods

If one assumes that

P = Pi + Psc ’

, then a solution to Equation (1) is

2 e
R s ko . Jik|r-r'| '
P(r) = Pi(r) + o Pi(r Yu(e') -EEEET_—_ dv R

\Y
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where Pi is a solution to the homogeneous wave equation:

2 2
v Pi + k Pi = 0 ’

-
r 1is the position vector to the point of observation from a
->
conveniently chosen origin, and r' 1is a position vector to a
differential element of volume dv' within the scattering region.

The term of interest is the scattered pressure term,

2 1k|r-t") |
-> gka >, +, e '
Psc(r) T J Pi(r Judr') -—§:§TT- dv . (2)
\Y

One approach to evaluating Equation (2)--Skudrzyk (10), for instance--
is to consider the case where the dimensions of the scattering region
are small compared to the distance between the observation point and
the scattering region. The exponent or phase is expanded in a Taylor
series of which second and higher order terms are assumed negligible
and thus ignored. The quantity [?—?'| in the denominator of the
integrand does not change appreciably over the volume of integration,
i.e., the region of inhomogeneities, and is approximately equal to r ,

the distance from the origin (in this case, located within the scatter-

"ing region) to the point of observation. Assuming that Pl is a plane

wave with amplitude Po , the integral in Equation (2) simplifies to

k2ap KT ke’ R

Psc(r) = ———E%;_—— u(;')e dv' . (3)
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where A = 61 - n . n is a unit vector in the direction of

1

- >
propagation of the plane wave, and n 1is a unit vector in the direction
of the point of observation. Note, also, that

o’y 00
I:\l = 2 sin 5 ’

' - ->
where © is the angle between the two unit vectors n, and n , and

o l

A 1is a fixed vector over the volume of integration. If a spatial

v

frequency vector K = (Kl, K., K., ) 1s introduced as

2° 73

-> ->
K = kA ,
then Equation (3) can be interpreted as a three-dimensional Fourier

->
transformation of the refractive index change u(r) ; i.e., Equation (3)

becomes

R ko e [ akep
= ——— ] t
Psc(r) e u(r'e dv . (4)
\)

The coefficient of variation is obtained from Equation (4) by

calculating <!PSC|2> . From Equation (4), we have

|2> = <P P %>

<|p
sc sc sc

f e - =d
kz’Poza2 [ . , ik (e'-r'™)
— 5" ! u(rulrMe dv'dv"
4nr ]

4
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The medium is assumed to be statistically homogeneous so that, after

interchanging the expectation and integral operations, one can us¢ the

relation

PEDUEM> = Bu(‘r"-F")

where BU is the correlation function of the random variable

Equation (4) becomes

by 2 2

X k "P “a L, AkAS(E'-E™)
<|P ] > = 22 B (r'=r'"Ye dv'dv" .
sc 4'“2}:2 u

(5)
- > > ]
Afcr introducing the relative coordinates s = r'-r'" , Equation (5)

car. be written as

-> -
-+  ikA°S
Bu(s)e dsldszds3 ,

(6)

where T 1is the volume of the scattering region and results from the

dv" integration and where
-
S = (31,52,83) = (X' - xll’ yt - yn’ 2' - Z")

The limits of integration are usually extended to infinity since the
correlation function is assumed to have negligible valuazs at the finite

limits of integration. Then, the coefficient of variation of the

pressure at the point of observation is

2 2 2 k? a1
= < > B ——
v |Psc| /P 22 J




27

When the medium is 1sotropic, one may transform the integral in
kquation (7) to spherical coordinates (S, 8, ¢) where S = |§| ,

Bu(g) becomes BU(S) » and Equation (7) becomes

[> ¢
2 2
v2 . E_a T B (S)SEEE_Eéﬁ ds , (8)
U kA
mr
o
where
eo
kA = 2k sin e .

Mintzer (5) formulated an expression for the square of the
coefficient of wvariation V2 of the cotal field pressure by considering
the next order of approximation and assuming single scattering of an
incident spherical wave. By repeated transformation of the scattering
integral [Equation (2)] between rectangular and spheroidal coordinates,
he derived the following expression for V2 for a weak inhomogeneous

medium that is characterized by an isotropic correlation function:

[+

f

v o= 2 az K2e Bu(p)dp ’ (9)
J

o

L

where aZ is the mean-square value of the refractive index field,

k 1s the acoustic wave number, r 1is the distance between the source

and receiver, and Bu(p) is the correlation function of the variations
in the refractive index field along the direct path from the source to

the receiver. Equation (9) 1is valid for kr >> i and ka »> 1 , where

a 1is the correlation length. The upper limit of integration has been

extended to infinity because the integrand is assumed negligible for
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values of p greater than the correlation length. It is noted that
‘Mintzer's expression for V2 in Equation (9), except for a numerical
factor, is identical in form to the expressions for <Sz> and <x2>
obtained by Chernov in Equation (35). Mintzer also approximated V2

for the case ka << 1 and r 1large, relative to the correlation

distance, as

27 m o

V2 = const a2 k3r d$¢ | sinbdb dKFB(K, 8, ¢) ’

J
o 0 (o)

where 0o, k, and r are the physical quantities defined as in Equation
(9), and FB(K, 6, ¢) 1is the Fourier transform of the correlation
function of u , the refractive index variation, expressed in spherical

coordinates.

Rytov Methods

Chernov (1) also considered the next order of approximation to
the scattering integral, but used a different approach. 1In obtaining
the scattering integral, the acoustic pressure P at a point in the

inhomogeneous medium is assumed to have the form
P = Aexp [-i(wt - s)] , (10)

where A is the pressure amplitude, S is the phase, and w/2m 1s
the acoustic frequency. Both A and S are real-valued functions of

space. When inhomogeneities are absent, P has the form

P = A0 exp [-1i(wt - So)]
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In particular, let this wave be planar; i.e.,
p = Ao expl-i(wt - kx)] s

o

where "o is constant. Using the Rytov method, P in Equation (10)

may be put in the form

P o= A exp(in(A/Ao) + iS] exp (~iwt) .
Ke introduce a complex-valued function of space § as

v = S - iin(:\/:\a) s (11)
and Equation (11) can be written as

P = Ao expl{iy) exp[-iut] . (12)

if the time dependence in Equation (i2) is dropped, the resaining

expressior, when substituted into the wave eguation [Equatiom (1}],

results in a new equation in terms of | . To do :this, we first obtain

> z
¥4

» ] 1. i
E = Toa2) = iae'Ty - A V(R .
Fed ] o

Ther, fguatioa (1) becomes

. i..2 i, 2 i. 2 1 4
ize " T clde (T +S5e K = -Ae "2u.k% .
(] [+ [+] Cc

Py
-

{pos cascellicg :'\oel irox this expression, we have




In the homogeneous case, we have
2. oo 2 42
1% vo (Av‘o) + k = 0 .

Subiracting these two equatrions, we have

o 42
TUSTIRS SV I O LR S P L PR (a3
Lecting
N A

and substituting for 3 into Equation (13), we have

ot
190" - (%)% - 2ke B - zgu? )

The term (W')“ is assumed to be of order =.xzik2 and is neglected to

obtain
' 2
2x B gefor = 20l (14)

Equation (14) can be transformed to an crdinary inhomogeneous equatior

by introducing a mew function ¥ given as
0w o iEXy ) (13

The physical ioterpretatiom of .’ w®ll De apparemt 2:rum zhe solut:ion
of the trensformed equaticn. Equatiom (12) is iraasicrned 1ntc oréinmary

form, givea heye as,
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which has solution

dédndr s

[4
fak®
2n

J [ k(g, m, C)eikg eikr

J' r

where r~ = (x - 5)2 + (y - m)2 + (z - ;)2 and (£, m, ) are the
coordinates of the refractive indax inhomogeneity. From Equation (15)

»' becomes

' 1x%a [.l oiklr = (x - 9)]
r

v - - 2“ j ll(fn m, c) dv . (16)
v

It is apparent that W is the contribution of secondary waves, each
having phasc proportional to the distance r + { . Multiplying W by
the factor e-ikx gives the phase difference due to the difference in
path lengths k{r - (x ~ £)] , between the secondary wave and the
incident plare wave (the unscattered wave) at the point of observation

x . Comparing Zquations (16) and (11}, we have
S' = Re{,") = S - kx

kza

1
2% 4

sin k[l’ - (x - {,)]u(io s, 7) dv

" — vy

an

X = L4 = in MA

%-cos kir - (x - 2})i(5, m, 7) dv

2, |
’ (18)
fquatiors (17) and (18) are the fundamental equations in thas approach

to the svattering protlem. The physi.zl meanings of S’ and X' are
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evident, S' 1s a phase correction to the homogeaeous wave solution,
the primary wave, and X' 1is an amplitude correction to the primay
wave. In the serturbation method, the resulting pressure in interpreted
as the superpesition of a primary wave with secondary waves arising

from the refractive index inhomogeneiries. In Equation (12), rewritten

as

- = ot X' - Ly_GCt
e i(wt-kx) ei.,) X e i{ot-kx~S")

P = A Ae » (19)
o o

the resultant pressure is expressec in terms of the phase and amplitude
corrections to the incident wave. With X' and S’ small,

Equation (19) becomes

e-i(mt-kx)

= ] = R}
P Ab 1+ iy") Po + iPog ’

which now has a form identical to that in the perturbation methed. The
point here is that, for smail fluctuations in the pressure amplitude
and phase, the perturbztion and Rytov methods yield the same results
Because the Rytsv method offers a more general approach, the secongd-
order approxiaations will be applied to the integrals in Eguations (17}
and (18)--the perturbatiop results can then be cbtained by muking

i¢'! << 1 . The square of the distance between the inkomcgeneity and

. 2
the point of observation r~ can be written as

rzspzd-(x-»;)z .

2 2 2 — .
vhere ¢~ =m + ;7 . Tne point of observation X 1s assumed teo lie

outside the region of innomogeneities, such that
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for any point (I, m, L) lying in the region of inhomogeneities. Under

this condition,

r = [02 + (x - 5)2]1/2 = (x-£)+ %'7;2:~ET .
Then
1 o®
r -~ (x - E) - -2' (x - &) (20)
and
1 1
T = ——-‘——'(x -5 . 21

The approximations given i.. Equations (20) and (21), substituted into

Equations (i7) and (18) lead to the equations

kzu

' { 1 . m_
: 2n J -5 8 30 oo W m o) dv (22)
v

and

2
x -0 cos Z(ip- ) u(é, my L) dv .(23)

k™a
X* = >

For convenierce, the functions Ql(a,cb and éz(a,p) , defined as in

Cheracy (1) to be
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and

2
I p_
¢,(a,0) 2na °°% ’

and the dimensionless quantities

= kx, .V"ky’ Z"!’z::’:

’ 1]
' = km, ' = kg, and p' ~ (m 2, 4 2)1/2

are introduced (the primes on S' and X' will be suppressed) in

Equations (22) and (23), resulting in the equations

[

S(x', y', 2') = «a °1(x' - &' pNu(', m', ') dv
v
and

X(x', y', 2') = a ¢Z(x' &' pNuiE', m*, ') dv .
J

v
If the receiver is located at the point (1',0,9) , the mean—-square

statistics of S and X are expressed in the following six~fold

integrals:
LILI o0
o[
<> = 2| j J i lel(L' T 570 N7 - 55,58 ()
1) 3 s
oo —

dgl'dgz'dnl'daz'd; ‘éz,’

(7%)




L e

KA.

«“ﬁz
L' Ll -
* » *
KT s T g gLt - il'. ;!'N,u' - T a:')s ()
P i s i s
<o O -
- dil'diz'a;'&z'al":z. .

vhere 3 (r') is the noraalized corvelation fecctiom of the refractiw
ivréex variation . (for the isctropic case),
. . 2 172
' = LR S Y L. Ty e _ .
r l(a! £, + (= B, > o+ (Ll %) )} v

and ,2 is the mear-square value of the refractive index variatien.

introducing the traasformations

A 52' s ® = ll' - -2' ., oL 0= ;l' - {2'
and

R A I R L NS

z = %(;!' 5,9,

one can integrate with respecz ¢ 2, ¥y, and 2 f[Chernov,

Appendix Il (1!} ic obtain

2 1 2 . ;
s = 3 S eIy £26)
and
e >
SN LI ICE en




where

[+ o]
1 02
= 1 4 —— . L 1 ]
Il L THE sin InE Bu(r Yd&Edmdg .
—o
00
2
- - 1 . .
IZ = [’ an si I\T] Bu(r )Yd&dmdg N
)—oo
2 2 2
P = m +C s
and
on
si = - | 8B4 40 .
q
t

Going over to polar coordinates

(2,8) — (p,9)

and using the property that Bu(r') is an even function in § , we have

2
= ' 1 P '
Il = 2L J dé [ E sin 2E Bu(r )odp

i

o) o
and o -
( ¢ 2y
= - ]
I, J dg | si |\-°——4L, J Bu(r Ypdp .
o o
By an order of magnitude argument, I can be reduced to

1

=}

I1 = 2L' J Bu(g,0,0) dg

o

(28)

(29)

(30)

36
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‘)
by introducing tne variable v = (7/4L' , the integral [, reduces to

-

ri

r {
|
1, = -2 i Jio U osioul (r')dv . (31
;o
M)

The steps in going {rom expressions (28) and (29) to (30) and (31),
respectively, are shown in Chernov (1). Finally, the working formulas
tor obtaining the nean-square statistics of the phase and log=amplitude
fluctuations for the case ka »> 1 and L >> a , ave, from Equations

(20), (27), (30), and (31),

w (¢V)

<S> = a2 L' d¢, [Bu(ﬂ,0,0) - | siv B“(r') dv] (32)
and 3 w o
2 2 r '
<X“> = " L dg [B“(g,0,0) + | si v B“(r Ydvl] ,
J
0 ) (33}
where
2
‘\) = E—- .
N

The form of the solutions to Lquatlons (32) and (33) depend upon a

dimensionless parameter D defined as

bom A

ka”
called the wave parameter, and tor D <+~ 1 or D > 1 , the solutions
can ve studied without specifying the form of Bu(r') . TFor these
special cases, the solutions of <52> and <X2>k depend upon the

integral I ,
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[+ ]

I = si v ¢ Bu(r')dv , (34)

©

which is common to both. For values of D >> 1 , the values of the
integrand in Equation (34) arc assumed negligible for values of r'
greater than the correlation length a' . Then, for these values of

r’ , the argument v does not exceed the value ka2/4L' or 1/D ; i.e.,

1
n, — o
v D

For D> 1, v 1is very small and

[+ ]
sin t 3l
siv = - —t—dt ’\;-2 .
v
Equation (34) then is approximately
7,(
-3 J (r')dv .
)
Integratiwg I by parts yields o
. ® {BBU '
= - e ' - —
I 5 ‘Bu(r )AY ( | 5 v dv .
) 4
)

The first term in the brackets makes no contribution to the value of I
since Bu(ri) is assumed to be zero for v >-% (or equivalently, for
large values of r' ). The maximum value of Bu(r') occurs at

ve0 (m=20,¢m=20), i.e., Bu(i,0,0) y and falls off to zero in a

distance Vv which is of the order 1/D so that
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1

- -1
v BE,0,0/07 = DB (£,0,0)

and we have that 1/D

[ ~ D uu(&.0,0) vdv o Bu(g,o.o)/D .

/
o

Since D >> 1 , the integral I can be neglected compared to B“(E,0,0)

and Equations (32) and (33) become

o

s? = 2L B (£,0,0)dg

and

s = of L B, (£,0,0)dE .

0

Going over to dimensional variables, L and £* = g£/k , we have that

=+

(

s? = x> = a2 k2L j Bu(s*.0.0)dg* (35)

o
for D = 4L/ka2 >> 1 . For D «<«< 1, the relevant values of v

extend to large values (v >> 1). Chernov developed an asymptotic

expression for the integral I for large values of Vv to obtain

[e <)

<32> = azL' Bp(E,0.0)dE

J
o

or upon introducing the dimensional variables L and £* as before,
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«s?> = 2a%k%L 'Bu(g*,0,0)Jg* . (36)

J
(o]

After a lengthy development, based on order of magnitude arguments,
Chernov arrived at an expression for the mean-square fluctuatuions of

X , stated here as

2 o 12,3 2.2
<X“> 5 o L (V7 Bp]m-;=0 d¢ ’
o
or upon substituting L and &% , we have

e 0]
2 1 2.3 2.2
<X®> = G o L [(V°v Bu]m*=;*-0d£* R (37)
o
where
2 2]
2 - L ———32+ 32 :
k2 am* ac'k

The evaluation of Equations (32) and (33) for intermediate values of D
depend upon the explicit form of the correlation function Bu(r') .

The calculation of the coefficient of variation will be deferred to
discuss another approach to the scattering problem.

From the several developments presented, it is evident that the
coefficient of variation and the mean square statistics of the phase
and amplitude fluctuations depend on the form of the correlation
function of the refractive index variation. However, none of these
presents a physical basis for determining the form of the correlation

function. Most prevalent in the literature are correlation functions



41

of the refractive index variations or water temperature variations with

the forms
' 2,2
B“(r ) = exp(-r'“/a") Gaussian
and
Bu(r) = exp(~ r'/a) Exponential .

These functions render the mathematics tractable but may be quite
artificial in this application. 1In fact, in some instance, they have
been §hown to lead to poor agreement with measurement of the mean-square
difference in water temperature between two points in space. For
example, Whitmarsh et al. (13) reported experimental measurements of

the structure function of the water temperature DT(p) , defined as

> > 2
D (P) <[T(r)) - T(ry)]™>
> > . 2/3
where p = Irl - rzl » which showed a p dependence. For a

statistically isotropic temperature field with T(;l) and T(¥2)

expressed as
T(rl) = <T> + ATl
and

'l‘(rz) = <> 4+ A'r2 ,

the structure function becomes
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2 2, . _
DT(p) <07Ty> + <A7T,> 2<AT1AT2>

2
2<A°T>[1 - Byr(e)] . (38)
Substitution of a Gaussian or exponential correlation function, i.e.,
Dp(p) = 2¢p%1> [1 - exp(~p>/a®)]

or

Dy(p) = 2¢a%T> [1 - exp(-p/a)]

leads to poor agreement with the empirical curve of p2/3 .

Skudrzyk (10) has asserted that the refractive index field or the
temperature field follows a Kolmogorov-type law (7), i.e., that just
as in homogeneous turbulence theory, where there exists a spatial
region for which the structure function of the water velocity field

2/3

has a p dependence, so, too, does there exist a spatial region

for which the structure function of the refractive index or temperature

2/3

has a p dependence. The limits on the spatial region, for which
the 2/3's power relation holds is a function of the heat conductivity
and the boundaries of the medium. The heat conductivity limits the
inner scale of the inhomogeneities by preventing the existence of
temperature gradients over small distances; the boundaries of the medium
place physical limits on the outer scale. Tatarski (11) obtained an

expression for the mean-square amplitude and phase fluctuations of a

scalar wave for the case /)L >> Lo s+ and is given here as
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of the refractive index variations or water temperature variations with

~the forms
' 2,2
Bu(r ) = exp(- r'"/a"%) Gaussian
and
B“(r) = exp(- r'/a) Exponential

These functions render the mathematics tractable but may be quite
artificial in this application. In fact, in some instance, they have
been shown to lead to poor agreement with measurement of the mean-square
difference in water temperature between two points in space. For
example, Whitmarsh et al. (13) reported experimental measurements of

the structure function of the water temperature DT(p) , defined as

pp(e) = <IT(E) - T(ENIP>

»> > 2/3

where p = |rl - r2| , which showed a p dependence. For a

‘statistically isotropic temperature field with T(;l) and T(;Z)

expressed as

T(rl) = <T> + ATl
and '

T(r,) = <I>+ ATZ ,

the structure function becomes
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2 2
DT(p) <A Tl> + <A°T.> - 2<AT1AT >

2 2

= 2<0%T5[1 - B, ()] : (38)
Substitution of a Gaussian or exponential correlation function, i.e.,
Di(p) = 2<a’T> [1 - exp(-p*/a®)]
or

DT(p) = 2<A2T> [1 - exp(-p/a)] ,

leads to poor agreement with the empirical curve of p2/3 .

Skudrzyk (10) has asserted that the refractive index field or the
temperature field follows a Kolmogorov-type law (7), i.e., that just

as in homogeneous turbulence theory, where there exists a spatial
region for which the structure function of the water velocity field

has a p2/3 dependence, so, too, does there exist a spatial region

for which the structure function of the refractive index or temperature

has a p2/3

dependence. The limits on the spatial region, for which
the 2/3's power relation holds is a function of the heat conductivity
and the boundaries of the medium. The heat conductivity limits the
inner scale of the inhomogeneities by preventing the existence of
temperature gradients over small distances; the boundaries of the medium
place physical limits on the outer scale. Tatarski (11) obtained an

expression for the mean-square amplitude and phase fluctuations of a

scalar wave for the case VAL »>» Lo ;3 and is given here as
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<X'2> = <Sz> = <a2>k2L Bn(x)dx . (39)
| o

where L 1s the distance between the origin, which is located on the
boundary of the inhomogeneities, and the point of observation, and Lo
is the outer scale of the refractive index inhomogeneities. This
result is identical with Chernov's result for the case D >> 1 . Since
the Qnderlying development is assoclated with turbulence phenomena, this
approach offers a clue to the form of the structure or correlation
function of the refractive index field. For the case 20 << /AL << Lo ’
the form of the structure or correlation function must be specified and

Tatarski used a structure function of the refractive index field given

as

2
..02/3

Dn(p) = Cn . (40)

This form is in goud agreement with actual measurements of mean-square
temperature differences made at sea. In Equation (40), p is the
separation between Lwo points and an , which is a function of the
mean-square fluctuation of the refractive index, has units that make

Dn(p) dimensionless. For this intermediate case, %o <¢ YAL << Lo ,

Tatarski has shown that

-
«x'? = 0.31 Cnhk7/6 (1176

where k 1s the acoustic wave number, and L 1is the range between
source and receiver. It can also be shown for this case that the

mean-square phase fluctuation <S'2> is equal to <X'2> .
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Coefficient of Variation - Relation to Amplitude and Phase Fluctuations

Since some of the theoretical results are given in terms of the
mean-square values of the amplitude and phase fluctuations, the relation
 of these to the coefficlent of variation should be obtained. For this,
we assume that the total acoustic pressure in the medium containing wealt

inhomogeneities can be expressed as in Equation (1%), i.e.,

1
P = Aoe'x exp[- i(wt - kx - S'] . (19)

We note that this is a complex representation of the acoustic signal
and it is the real part of Equation (19) that is the observable. Let
Pr represent the real part of P , then the coefficient of variation

of P is

v = . (41)

For convenience, let ¢ = wt ~ kx ; then, from Equation (19), we have

x' . ,
Pr Aoe cos (¢ s') {42)
and ‘
x'
<P.> = A<e cos(¢ - s')>
f_jqt
= A Re{ei¢<éx 18753
[o] ’
where Re{ } denotes 'real part of". The random variables X' and S'

are assumed to be jointly Gaussian with zero means. Then, the
expression <exp(x' ~ is')> is recognized as the bi-variatc character-

istic function of a jointly Gaussian random vector (6) , i.e.,



ixrl + isT,
) = <e >, (44)

where M, g denotes the characteristic function of the random vector

~ ’

(x',s') . The form of the characteristic function Mx' g for the
]

zero-mean Gaussian case can be written as

1 2.2
Mx',s'(Tl’rZ) = exp[—-g(rl <x> + 2T1,T2<x's'>

Un comparing Equation (44) with the expression <exp(x'~is')> , it is

seen that they are identical if
T, = -1 and T, = =1 .

Using these values of T, and 71, in Equation (45) results in

1 2

9 2
M‘, s,(--i, -1) = exp [- %(— <x'"> 4 2icx's'> + <s'"™>)]
X

(46)

Then, from Equations (43) and (46), we have

<P >
r

AORe{exp[l/2<x'2> - l/2<s'2>] e exp[i(¢p - <x's'>)]}

or

<p > 2

Aoexp(1/2<x' > - l/2<s'2> Yeos(d = <x's'>) .

(47)
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Chernov has shown that the correlation between the amplitude and phase
-fluctuations vanishes at large distances; i.e., D >>1 , so, for this

case, we have

2 9
<Pr>“ = Ao“exp(<x'2> - <s'2>)c052¢ . (48)

Referring back to Equation (4}), we have, afte:r squaring,

2
A
2 ' 1

Pr2 = Ao"e2x :osz(¢ -s") = g e2x (1 + cos 2(¢p - s")])

(49)
and 9
2 Ao 2x"' :
<Pr > = —<e > <1l + cos 2(¢p - s')> . (50)

We note here that the ensemble averages are factorable since x' and

)

[ are assumed uncorrelated Gaussian random variables and, hence,

independent. Equation (50) becomes

2

] )
<P 2, = o <e2x > (1 + Refe

i2¢ -i2s'
r 2 e

>}) . (51)

. Again, using the properties of the characteristic function, we have
2

A 2 o eat2,
<Pr2> = - X7 (1 4 pefet®Pe72S 7Yy : (52)
Equation (52) becomes
2
2 Ao 2ext? ~2¢s'2

<P “> = —%— e ¥ >(1 + e >cos 2¢) . (53)
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Substituting Equations (48) and (53) into Equation (41) yields

' 2 02 _ 2
2 . e<x >+ <s >(l + e

P 1 + cos 2¢

2<s > cos 20) _

1 . (54)

Equation (54) expresses the coefficient of variation of the observed
harmonic signal in terms of the mean-square statistics of the amplitude
and phase fluctuations when they are zero-mean, uncorrelated, Gaussian
random variables. The assumptions that the amplitude and phase
fluctuations are Gaussian are not undue since they are the sum of
contributions of many random inhomogeneities. We consider VP for
the three cases depicted in Figure 12, which represent three o:cillo-
scope views of the received signal as expressed by Equation (42) and
where the intersection of the vertical line and signal trace marks the
point of interest. A further restriction i3 that the fluctuations are

small enough so that the exponentials may be expanded to the first

power with sufficient accuracy.

Case I:
For Case I, as shown in Figure 19, ¢ v 7 or cos 2¢ v 1 , then

Equation (54) becomes

2
<x'“> + <g' > - <
2 e X S (1l + e S

125 4 <s'2>)(2 - 2<s'2>) ~ 2]

%-[(1 + <x
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or

VP 2 = <x'2> ,
r

where second-order terms in <x'2> and <s'2> have been ignored
compared to first-order terms. This means that, for observations of
the peak signal, the coefficient of variation is a measure of the

mean-square amplitude fluctuations.

Case II:
For this case, ¢ v 7w/4 or cos 2¢ v 0 ,
then,

2
<x!'“> < >
2 <X + <s _

or

\Y 2 <x'2> + <s'2>

P L]
r
In this case, the coefficient of variation is influenced by the

mean-square statistics of both the amplitude and phase fluctuations.

Case III:

This case considers ¢ to be of order m/2 or cos 2¢ v -1 .
The coefficient of variation blows up and has no meaning, but the
variance of Pr may be calculated. We have, from Equations (48) and

(53),



Var P -
r

or that
Var P =n
r

Thus, the variance of

<P "> - <p > = <p >
r r r
A2 2 2
o 2<x'"> -2<g'“>
5 e (1 )
2

4 2 2
5 (1 + 2<x'">)(2<s'">)

A 2<s'2> .
o

the siznal, when observed at a point in the

vicinity of the zero~crossing, as indicated in Case II1 of Figure 19,

is proportional to the mean-square fluctuation of the phase.

Having touched on several theoretical results and having related

the mean-square statistics of the signal amplitude and phase to the

coefficient of variation for the case of small fluctuatioas, the

experimental results will now be discussed.



CHAPTER 1V

EXPERIMENTAL RESULTS

Data Analysis

The data analysis began with a screening procedure for the
purpose of sorting out data records which exhibited time trends and
strong periodicities. Acceptable data were further reduced and put into
comprehensible form for study. It was intended to remove, as much as
possible, the fluctuations in the data not directly attributable to the
medium. Inasmuch as the coefficient of variation is the most important
quantity studied in this analysis, the results pertaining to it are
covered in a separate section.

Correlation techniques were used to detect the presence of
periodic components in the data. For example, 60 Hz interference, if
present in the receiving equipment, could influence the data. The
sample and hold operation would sample the '"noisy'" data at a rate equal
to the repetition rate of the received pulses, i.e., 68.8 times a second
and the interference, if large enough, would manifest itself as an

"alias" frequency component (8 or 9 Hz) in a correlogram obtained from
these data. Such data would not be included in further analysis. A
standard formula for the correlation coefficient was used and is given

here as
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N

xy ) (x1 - x)(y, - y)/(oxcyN) ’
i=1
where N 1is the number of samples in a group,

X = x,/N
%-1 i

is the sample mean, and

0x2 = § (xi - ;)Z/N‘
i=]

is the sample variance of one group. The symbols ;' and oy2 have
similar formulas as x and ze , respectively, and are’the sample mean
and variance of the other group. A sequence of :orrelation coefficients
was obtained by keeping the X group constant and updating the Y group
by one sample for each calculation (this was equivalent to calculating
the correlation between X and Y every 14.6 ms for 70 kHz data). The
resulting correlograms of the data records were studied directly or with
the aid of Fourier analysis to detect strong periodic components,
Correlograms of accepted data have correlation values which decrease
607% to 90% within 2 lags or 29 ms. Figures 13 through 16 show some of
the typical correlograms obtained. A composite of first zero-crossings
frcm the correlograms shows no apparent relationship between zero-
crossings and range (Figure 17), a result which was theoretically
obtained by Mintzer (5).

The data records were checked for time trends and slow
periodicities, also, for it was possible for surface motion to impart

slow quasi-periodic movements to the transducer by way of the support
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cable and introduce low-frequency fluctuations in the data. One
observed motion while on station was a rotational movement of the
receiving platform. This could have imparted a pendulum~like motion
to the receiving transducer producing an effect equivalent to that of
changing the bearing of the source. Consequently, the received signal
would have Leen subject to the relative variation in the horizontal
beam patterns of the transducers. Although this platform movement was
not always present, it was present on moderately windy days and its
effect, if any, should be eliminated. To screen against this, each
data record was partitioned into 20 groups of 50 pulses each. The
group means and variances were calculated, plotted, and studied for
trends and low-frequency components, however, no strong time trends or
slow periodicities were observed.

It was also desirous to exclude data which had been affected by
multi-path interference. The presence of sharp sound-velocity gradients
in the upper water layers in the quarry posed the problem of multi-
arrivals particularly at the longer ranges (see ray diagrams in
Figures 4 and 5). To check for this, average levels were plotted as a
function of range and compared to a curve which would occur if spherical
.spreading alone were present. Since attenuation losses are small over
the ranges involved, any marked difference occurring between the data
curves and the spherical loss curves was considered due to multipath
interference and these data were not processed further.

Cumulative distributions of the amplitudes were obtained from
acceptable data records and plotted on logarithmic probability paper.

Distributions of amplitudes received at distances of 300 feet and
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3R zew? e 32wz iz Figares 3 ami 19, respectively. Frgare IR
Fresents liitzivziions far pelicliengtas cocrresponding to 8 cycles of
tor inmcicated fregrenky 2m Figure 19 preseats distoibuitoms for
pziseiengilios o « cvcies Suration. Twe 2scissa indicates the
perieataze of sanples less thban or equal to the value of the ordimate
of isterest. X Caussiaa di1stribotion plotted on this type of
procabiiity paper appears as a straight line and serves as a3 quick
refereace for spotting espirical distributions that are poor
approximations to Gaussian. The distribution of amplitudes at 70 khz
appear Gaussian, particularly at the ionger ranges. The amplitude
distributions of the 6C kHz and 80 kHz pulses closely approximate
Gaussian distrioutions, alsc. Some systematic differences between
Gaussian znd empirical distributions were observed for the amplitudes
received cver short ranges; however, it is believed that these were
caused by human error. It is very possible that the data reader, after
critically viewing and recording several hundred pulses that showed
negligible variation, became less critical through tedium and began
favoring the lower readings. The effect of this would be to bias the
istribution of levels in the direction of lower values and make it
appear stochastically lower than a Gaussian distribution. Despite the
skewness, the Gaussian hypothesis could not be rejected by Chi-square
tescs at the 0.1 level. It is assumed that if the bias had not occurred,
the empirical d’stributions for these ranges would be approximated very

well by Gaussian distributions.
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Aoplitude Coef“icient of Variatiop

Each data recoré (e2:} contaiced approxainerely 1000 comse--itive
peak-amplitude orasurements) was partitioned into 20 groups. &
coefficient of variation was cialculated ivr each grouy and the resuvit-
ant 20 coefficients were used to calculaie an average coefficient of
variation ¥V , and a atandarcé deviation lor the record. Tne quantity
V was plotted on log~-log paper for the range and frequency garameters
of interest. A straight iine fit was obtained in order to estimate the
assumed power relations among tbe variables of interest. The coeffic-
ients of variation of data records obtained during the summer, fall,
ané winter months of 1968 were calculated, expressed as percentages,
and plotted on a log-log scale as a function of range. A straight line
curve was obtained by first averaging the values ar each range, then
fitting a least~square line through the averaged points. In Figure 20,
a resultant line curve is shown superimposed orn a plot of values from
data taken in December. The slope of the fitted line is 0.53 which
would be in agreement -7ith the 0.5 slope predicted by theory for the
case D >> 1 , Examples of coefficients, plotted as a function of
frequency, are presented in Fig:res 21 and 22, where V is in percent
and frequency in kHz. The source-receiver range for these figures is
350 feet and the pulsewidths are 4 and 8 cycles 5f the carrier frequency
as indicated. The least-squares line obtained from each set of points
is also presented in each figure. Because the time duration of the
pulse varied with transmitter frequency (consequently, changing the

volume of the insonified medium), it was thought that the statistics of
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the dats xight be dependent on this parareter. This would be 2
conclusion drawn from Equation (8), where the voiume of inhorogensities
1 eaters as a ccefficient of tl.e i1ntegral for Vz . However, for apy
given frequency and range, the experizental results show no sigaificant
change in the coefficient of var:iation for the two pulselengths used
(see Figures 21 and 22, for example). This experimental result weigks
aga.. st the appiication of the simplified theory for cse in studying
the effects of scattering, but most important, eliminates the need for
a correction to the dat: when comparing the results as a functiowe of
frequency.

The observed data are peak amplitude measurements of the direct
arrival. Theoretically, the coefficient of variation of these levels
was shown tc be proportional to the mean-square valué of the amplitude
fluctuation (Case I) when the fluctuations are small. The result in
Case I also depends on the assumptions that X and S are independent
Gaussian random variables. The distributions of amplitude levels found
experimentaliy lend support to the Gaussian amplitude assumption and
one could appeal to the central limit theorem for suppurt of the
Gaussian phase assumption. Chernov has shown that for D >> 1, X and
S have a correlation that goes to zero and hence become independent.
Consequently, applying the result of Case I to the data, we see that the
experimental ccefficient of variation relates primarily to the frequency
and range dependence of the mean-square fluctuations of the signal

amplitude. The theoretical results expressed in Equation (33) for the

root-mean-square amplitude fequivalently, the coefficient of variation)
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shen 2 - I prelicts 3 first power depercence om the acoustic .
frequency ané 3 vae-hal: power dependence vn the range. The experi-
sental results suggest a power dependence 9a range of the order
one-half ané 2 power dependence m frequency of the order cne. For

3 -~ 1, Equation (33) states that the root-m2aa-sjuiare asplitzie
fluctuation, theoretically, is independeat of acouszic {requency and
has a three-halves power depemdence on the ramge. This result is
inconsistent with tne experimental data. The consistency between
zxparimental and theoretical results for che case D >> 1 , however,
seems quite gcod. The question is whether D >> 1 describes the
experimeat on hand. A detailed study of the water temperature field
was not corducted and only temperature measurements for mean sound
velocity calculations were made. RBecause of this lack of informatiom,
an experimental estimate of the wave parameter D conuld not be made,
but perhaps we can conjecture about the order of magnitude of D .
Calculations of VAL for values of L between 300 and 350 feet are

of the order of 5 feet. For D to be such that D >> 1 requires that
0 2
4L,/'ka” >> 1 s (54)

where a 1is interpreted as the correlation length of the variations in
the refractive index or water temperature field. With the value of
/AL in the order of 5 feet, we have from the inequality in

Equation (54),

a << 5 feet
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ldeally, then, if the mediom in the quarry vere statistically iscrropic,
the spatial correlation fusction of the temperature variations stould
only bde significant for values of © - 3 2< 5 feet. To assume that
3a>5 feet, i.e., that D <7 1 , might be less tenaosle than assuadng
that a < 5 feet, for the forzer case inplies tnzt the flirctuations ia
temperature are significantly corrzlazed over a diszance of 10 feet
{tvice the correiacion jength). Significant correlation of this
ragnitude might be found nesr the surface, for example, where shadovs
cart on the surface by clouds, or shere the cooling effect of dreezes
might affect "patches” of the watar temperature fleld of this size, but
it seems 'nlikely that these processes would have any immediate effect
on the acoustical properties of the medium in the region below the
thermocline (below 50 feet) of the quarry. The suggestion here is that
large "patches” of temperature fluctuations are not present belcw the
thermocline. It may be relevant nere ts> refer to measurements of the
correlation function cf fluctuvations in the water temperature field
made at sea by Liebermann (4), who found that an expomential correlation
function with a correlation lengith of 60 cm (2 feet) gave a reasonable
fit to the experimental curve. The point is that if it is presumed that
D >> 1 , solutions for X and S as obtained by the Rytov method ana
modified by the Fresnel approximation lead to consistent results between
theory and experiment.

Skudrzyk (10) has argued against the use cf exponential ccrrela-

tion functions in this application and regards the reference to a zingle
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Tfel et lapgiy ot TPfedomimiml Patcd size as fictica. Ee has

IS TS 2 ez cuftrlatiza lergtiks of correlated teyeratwre fluctwations
TIrE Wit lePln. Praliex 22 4 muwe mporoptizte famtiom, the strecct=c
I afiam of e temprratlelr fucid, Sugpest LRt the mMeXa-SqQuare-

-

Lrotetenees ir chie (emperaates Y- follows 2 Xcimogorav-type law,

(21}

.,

nleie  J IS 1D SiStaeCE Melweex e pofats. if tie temperarwre or
refraxciive izlez fluctuacioss ia tar imsomified regiom of ke quarry
vere fouet o sazisiy this jaw, “hen the dats xighC be viceed in the
ligit of »omogemecus ratimlence theory. Tnder this rvegime, the
fluctuations =ave & contirewous spice distribuzion which is fsotropic
betweer the prysicarly zeaaningfcl scales of Ie and l.o - Should the

vavre parameter 2 ,
N 2
O = ASL/EL »
Do sy that 2 - 1, 1,6., s+L >~ L , Equation (38) acxuié wld amd

2 2 2
X7 = ‘§7> =z ¥71L

in tre author’s experiment, the ampl._ ode crefiic” :at cf variatios vas

siowa 0 de

wvhich agrees, to some extent, with the theoretical determination of YF -

<
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Presuxing D >> i , the oater scale of inbomogeneities, from this
viev.oint, plars an analogous role as the correlation lemgth does in
the previous set-up. It is imteresting to note that the turbulence
approack does not preciude the existence of 4n expimential correiation
fun:tiom oi thz vaciations in refractive index. 1In the case of a
statistically isozropic turbulent mediun, the structure functiom Du(o)

is assumed tc have the fora

£ ? 2
-c.col3 l <<&<‘i.
E"" ©
D) =
= E22 . *
*:’c..‘ 5‘(10
.

2(c7 = 20k o) - 3 (o))

2 (23 2z (o)1 - 2 (2)} »

where b 40) s the acrmalized correlatsios fwmxtior cof the refrartive
3

index varist.oms . . et

3 (o) = 12 .
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Equatioa (53) tecomes

b () = expl-D (c)/lazl ’
3
for
Dh(c)/23° <« 1 . (56)
That is,
~ 7 2 3
b (c) = exp[-C "p7s227 0 << £o
and
b () * expl-cC 232131202] lo < pc< L.

(57)
Then, for values of (¢ such that the inequality in Equation (56) holds,
the normalized correlation tun:tion say appear empirically as an
expormential function [Equation (57)]. Under these circusstances, an
exponential correlation funition of the refractive index fluctuatious
would give satisfactory agreement between theoretical and experimental
results for the mean-square statistics. In this context, however, the
coefficient »f § 1in the exponential wculd be relsted tc the mean-square

value of the refractive index fluctvations and not as an equivalent

“patch size”
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CHAPTER V

EFFECT OF SCATTERING OX THE PROBABILITY OF ERROR

Introduction

The transmission of a bandlimited signal is a common problem
dealt with in communication theory. The signal is usually sampled at
a rate of at least 2W samples per second, where W is rhe frequency
bandwidth of the signal. These samples are multiplied by samples of
the known signal and summed or integrated cver the duration of the
signal T . The integrator output 1s fed to a threshold device where,
subsequently, a decision is made about the input signal. The signal,
however, having been subjected to additive noise, may be erroneously
interpreted in the decision making process. Wwe will consider, in thas
case, the transmission of a single frequency carr.er that is received
and correlated with a replica of the transmirted signal. It is assumed
that the correlating takes place over a time interval in which the
signal is fully present. 1In particular, we deal with a binary-encoded
acoustic signal that 1s transmitied through a weakly inhomogeneous and
statistically 1sotropic medrum  The signal is aftected not only by the
ambient noise present in rthe medium, but alsc by the scattering etfects
of the inhomogeneities. The ambient noise 1s idealized to be an
ergodic, zero~mean, Gaussian process which has variance N and uniform

power spectrum ('white'" noise). The signal is encoded by either
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modulating the amplitude or phase of the carrier or by transmitting one
of two frequency carriers (frequency shift keying). One or two
correlators, depending on which encoding technique is used, are
employed at the receiving end of the acoustic link. The acoustic link
i3 further idealized so that effects of Doppler frequency shift,
reverberation, and multipath arrivals are not present. The signal at
the output of the correlator is subject to error due to the effects of
scattering and by the superp-sition of ambient noise. The noise has
been idealized to permit a qualitative discussion of the effect of
scattering on the probability of error at the output of the correlator,
where the error referred to in this context is the mistaking of one
symbol for another, i.e., the decoding error when the signal is present.
We assume, also, that the mean-square statistics of the received
harmonic signal have a frequency and range dependence that are described
adequately by the product kzL , where k 1is the acoustic wave number

and L 1is the range between the source and receiver.

Amplitude Modulated Signal

Let
P = Ao expi- i(wt - kz)]

represent the complex electrical signal corresponding to the receilved
acoustic signal when the medium is homogeneous (this will be the replica

signal, also) and let

P = Ao exp[X - i(wt -~ kz - s)] (58)
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represent the complex electrical signal when tne nedium contains weak
inhomogeneities (the received signal). The observed signal trace is

the real part of Equation (58), i.c ,

P = A excos(wt - kz - s) . (52)
r o

For rixed sovrce and receiver locations, kz becomes fixed and we let
K= wt - kz . The signal Pr , observed on an oscilloscope display,
will be a sample waveform from an ensemble of waveforms {Pr(X,S)} s
where X 1is a random variable which determines the amplitude of the
sample waveform and & is a random variable which determines its phase.
If Pr is time-correlated with a repiica pulse P' , over a peried T ,

where
P' = A cos{wt - kz) = A cos K
o o

and where the delay * between the received signal and the replica

signal is zero, we have as the signal contribution to the correlation

output
‘T
|
PP = L A e® cos(K - S)A_ cos K dt
r T 0 0
0
T
A 2 f
o X . .
= T e [cos K cos S+ sin K sin §] cos K dt
r
0
or
A 2
PP = 22" los S : (60)




An ensemble average of Eqguation (60) yields

<P P'> = A 2/2 <e® cos S>
r o

Assuming that X and S are independent Gaussian random variables,

we have

<F:FT> = AOZ/Z <e®> <cos §>

= Abzlz exp[1/2(<x2> - <sz>)] .
For values of the wave parameter D >> 1 , <x2> + <52> , and we have
<P P'> M A 2/2 .
r o
2

We note that A0 /2 1is the average power of the carrier frequency.

The mean-square value of the signal portion of the output is

<PrP'2> <A04/4 e2x cosz$>

= A04/4 <e2x><c0528>

= Aoa/S <e2x><1 + cos 28>

2
- Ao4/8 e-2<S >)

2
e2<x >(l +

75




6

or
4 2
PP S a8 2 e - 2087
7
T RO I LR
(6]
2 2
= At (- stor
[o]

Terms involving <X2><Sz: and higher orders of <X2/ and '52> have

been ignored compared io fiist-order terms in <X2> and zSZ— The
variance of the correlator output term 5;57 1s
Var P P' = <P P'2>- <P P';z
r Y r
N )
= A04/4 (1 - <52» +2°X7)
!, 3
-atie (1 X - 820
o)
4 2
= AO /4 <X"~ . {61)

Thus, we have as the mean and var:anze of the scutput 2f rhe correlator

Y

9] .
SR A0272 [1+ 1/20:X7 - 8%9)] < 1722

and

T 4, 2
Var P P = A 74 N7 ,
Y o

respectively. The probability density or the sutput 1s required to

discuss the probaoility ot error 1n a4 quantitative way By Equation (60},
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the output of the correlator when the i1nput 1s given by Equation (59)

and when the delay =0 1s

n ,
PrP' = Ao‘/? e)L cos S

The output is the product of two independent random variables ex and
cos S , where X and S are independent Gaussian Random variables
Assuming that the means and variances of the random variables X and §
are known, the joint probability density of ex and cos S can be
approximated for small s . 1The mean and varian:e of the correlator
output, however, will suffice to gqualitatively discuss the correlator
performance for the binary encoded signals.

In the absence of the signal, 1.e., the "0" event, the outcome
is based on the probability density of the ambient noise. The mean of
the correlator output would be 0 and its variance would be
proportional to the variance of the noise N , but less than the

variance of the "1" event.

Phase Modulated Signal

We assume that the possible signals are either Pr or —Pr s

where Pr is given as in the amplitude modularion case to be
P = A eX cocs!K = 8)
14 o

A single correiator is used and the replica signal 1s given by

P' = A cos K .
o
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Figure 23 presents the correlator oustpurs for -he gZiven inputs along
with their corresponding means and -ariances. The mean oi the

correlator output for the signals P or P is A 742 or -A T2
P 8 r r 0 o

respectively, and the varianze ot the outpur 1s the same in eithex

case: A04/4 <X2>

Frequency Shift Keying

In this case, one of two diife-rent f:equencies 1s present at the
receiver. Two correlators are employed 1n the receiving system, one
that correlates the incoming signal wirh a :replica signal of frequency
fl and one that correlates with a repiica signal of frequency fz . To
further simplify cal-ulatisns, 2t is assumed that the integration time
is long enough for the cross-crielation ot the unliks signais to go to
zero. Let f1 be che lower frequen:y »t the two, then Figure 24
presents the correlatc: outputs with the corczsponding mezns and
variances for the given signal 1inputs. We havse in this system a
comparator which senses the dirferea.e betwesn -hannels & and B; 1.e.,
A -~ B . The mean of the csmparatvi ovtput 1s the difference in means
of the channel outputs (:orrelato: outputs) and the variance 1s the sum
of the variances of the :zkannel outpu*s ‘:zorrelato: outputs) A
negative mean value at the comparat.r .utput impties frequenzy f 18

1
present, while a positive value 1mplies treguency t2 1s present. The
magnitudes of the means are the same, bu*t the variance or the output 1is

greater when f2 is present beca.se »f the increased signal tluctuation

due to scattering at the higher f-equen-y
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Comparison of Correlator Outputs

It is assumed that the total vairiance :f the _.orrelator output
is the sum of two variances: one from the tluctuations in the signal
due to ambient noise, and the other from the fluctuations 1n the signal
due to the refractive index variations. These tluctuations are
considered statistically indepzndent. If we assume that the noise 1s a
zero-mean Gaussian process with a flat power spectral density ("white"
Gaussian noise), the mean of the correlar>r output due to noise is zero
and the variance of the output due t> the noise alene (the in-phase
noise power) is proportional to N , the variance of the zero-mean noise
process. Because the noise is "white", the noise contribution to the
total output variance is the same independent of the frequency of the
replica signal. Wich these simplifying assumptions, the totral variance
of the correlator output can be compared readily for the three forms of
encoded signal. Under these conditions, only the effects of scattering
on the encoded signals need be considered.

Let a zero, "0", symbolize one state ot the binary encoded signal
and a one, "1", symbolize the other, for example, 1f the signal were
amplitude modulated, let "0" represent the '"no-signai" state and "1"
represent the "signal-on" state. For convenience, let AM and PM be
shorthand for amplitude and phase modularion, respectively, and let FSK
be short for frequency shift keying. Using a threshold device to

determine whether a "0" or a "1" is present, we prescribe the probability

of mistaking a "0" for "1" to be B8, i1.e., P{"1"/"0") = B , whether

the operation is AM, PM or FSK. For the ccrrelator-threshold system and
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for a fixed B, we compare the probability of mistaking a "1" for a
"0", P("0"/"1") , for each mode of operation. This is done qualita-
tively by comparing the means and variances of the system output
distributions. In the AM case, the means of the "0" and "1"
rdistributions are not as resolved (separated) as in the PM and FSK
modes. Let us assume that P("0"/"1") = m for the AM case. In the PM
mode, the means of the "0" and "1" distributions have a separation that
is double the separation found in the AM case. The variances of the
distributions are equal to the variance of the "1" distribution of the
AM case. In the FSK mode, the means of the "0" and "1" distributions
at the output of the comparator have the same separation as in the PM
case; however, unlike the PM case, the variance of "1", the higner
signal distribution, being a function of <X2) is proportional to k2
and, hence, greater than the variance of the '"0", the lower frequen:y
distribution. For a fixed threshold level, such chat P("1"/"0") = B ,

the increase in variance of the "1" distribution increases the

probability of missing the "1"; thus, we have
P(C''1"/"0") FSK = P("1"/"0"Y PM = B
and
P("0"/"1"™) FSK > e("0"/"1") PM = m R

or that the total number of errors is greater in the FSK operation than
in the PM operation. The AM case leads to the greatest total error of

the three indicated modes. Figure 25 illustrates the difference in the
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probability densities at the output of an ideal correlator for the three
encoding techniques. The densities are sketched as symmétrical and near
Gaussian for discussion purposes to show the change in their variances
for the different modes. The density of the "1" distribution for the
FSK mode is shown broader than the others to illustrate the increase in
variance at the higher frequency f2

If the received signal contained a fixed but unkrown phase, i.e.,

X
Pr Ao e cos(K - S + ¢)

and the replica signal were
P' = A cos K ,
o

the variance of the output distribution would be the same, but the mean
would be Ab2/2 cos ¢ . This implies less resolution of the means

which in effect would increase the total error for each mode.



CHAPTER V1

SUMIARY AND COMMENTS

Summary
B e —

The general problem of concern is to determine the performance
of an underwater acoustic svstem when the received signal has been
transmitted through a weakly inhomogeneous medium and superimposed with
ambient noise. The analysis of the problem draws from the disciplines
of both statistical communications and underwater acoustics. In this
thesis, the problem has been considerably restricted to determine the
effects on the output of an ideal correlator due to small amplitude
fiuctuations in the direct arrival ot the signal. Other effects due to
frequency dispersion, reverberation, and multipath interference have
been ignored. The Rytov solution to the scala. wave equation, modifiad
by the !resnel approximations, serves as the mathematical! model for the
comparison of experiment with theory. This solution, restricted to th
plane wave case and for small ftluctuations, has the feature of describing
the received signal in a form convenient for systems analysis, i.e., the
solution is in a form exactly analogous to an electrical sinusoidal
signal having random amplitude and phase.

The emphasis of this thesis 1s on an experimental study of the
frequency and range dependence of the signal amplitude tluctuations.
One important aspect of the study is that many of the irherent problems
normally connected with measurements made at sea are believed to have

been circumvented by having conducted the measurement program in a

g5
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relatively protected quarry which evhibits the s:gnal effects of
micro-fluctuations in the refractive index field. The effect of the
essentlal parameters k , the acoustic wave number, and 1 , the range
between source and receiver, are compared tu theory through the
coefficient of variation. The experimental data is felt *o represent
the phenomenon of signal fiuctuations due t> the thermal 1nhomogerneities
in the water medium. The measurements were made under conditions which
are believed to reasonably approximate the underlying assumptions made
in the theory of sound propagation in an inhomogeneous medium. The
dependence of the coefficient of amplitude variation on range and

%0.7L0.5

frequency was found experimentally to be k » which agrees

particularly well with theory for the range ané to a lesser extent with

172
frequency; namely, kL

. The comparison between experiment and
theory was based on the premise that the wave parameter D is much
greater than unity and, consequently, does not depend on the explicit
form of the isotropic correlation function of the refractive index
variations. The theoretical coefficient ot wvariation of the observed
{real) signal as applied to a sinusoid was obtained based on the
assumption that the amplitude and phase fluctuations of the signai are
zero-mean, Gaussian random variables--usuxlly in the literature, the
coefficient of variation of either the complex-valued pressure or its
modulus are discussed. From this result, it was determined that the
square of the coefficient of variation of the pea'. received levels is a

measure of the mean-square amplitude flu-tiaticns and may be compared to

the theoretical mean-square ampiitude fluctuatuions




87

No significant change in the coefficient of variation was
observed for the two pulselengths used in the experiment. The reason
for this is believed to lie in the assumption that ka >> 1 . Under
this condition, the contribution of the scattered sound to the sound
field at the point of observation comes from a region within a cone
whose apex is at the point of observation and whose angular aperature

has half-angle 0 , where

N
=

) << 1 .

1
ka
The effect of increasing the pulselength is to insonifyv the scatterers
outside this cone and produces no appreciable change in the pressure
fluctuations.

The output of a correlator is loocked at under very idealized
conditions and is shown to vary with <X2> which, for large values of
the wave parameter D , is propertional to k21 . 1In this ideal set-up,
the system that appears to give the greatest total error is the one

employing amplitude modulation and the least, phase modulation; however,

to axtend this result to any real set-up would be very tenuous.

Comments

It is recognized that, in practice, the wajor problems in
communications are not caused by such small percentage fluctuations,
but usually result from ncise, reverberation, or multipath interference;
however, it has been brought out that even this small effect can

markedly reduce the theoretical upper bound on the information rate of
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an underwater cormunications system [for example, Rowlands and Quinn
(1967), and Marsh (1967)}. These scattering effects also have
theoretical significance in studying the limitarions placed on systems
utilizing arrays of hydrophones for detection, communicatiocns, or
navigation; for example, in navigation, phase fluctuations at each
array element contributes to the ambiguity in the direction of the
source. On a purely scientific note, the study of this phenomenon adds
to our understanding of propagation of underwater sound in a complex
random medium. It would be well tc investigate signal fluctuations in
the case where the mean sound velocity is a function of space; for
example, when a sound velocity gradient is present, or to extend the
theory to c¢over larger fluctuations in the pressure amplitude and phase.
It is apparer.c that much work remains to be done in expansion of the

theory and in controlled experimentation in support of theory.
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