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ABSTRACT

This report documents the results of an airblast-induced ground-
shock calculation performed at the U. S. Army Engineer Waterways Ex-
periment Station (WES) for the Operation Prairie Flat 500-ton high-
explosive (HE) event. A WES-modified version of the 2D axisymmetric
LAYER Code developed by the Paul Weidlinger firm was used for the in-
vestigation. Each layer of the soil profile was mathematically mod-
eled with a nonlinear elastic-plastic-compacting type constitutive
model that provided good fits to the available material property test
data. Field airblast measurements were used to develop an airblast
routine suitable for code input. The code results, carried to 300
msec of real time, showed good gquantitative and qualitative agreement
with the field ground-motion measurements in regions outside the
crater zone.

The calculations reported herein represent initial efforts at
WES to conduct comprehensive parametric studies of the effectiveness
of contemporary mathematical constitutive models in predicting
airblast-induced ground motions for several high-explosive field
tests. The overall research program includes study of the influences
of computational details such as boundary conditions, grid size, and
time step and comparative analyses of the calculated ground motions

and those recorded during the field test events.

PRECEDING PAGE BLANK



PREFACE
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CUNVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of neasurement used in this report can be converted to
metric units as follows.,

Multiply By To Obtain
inches 2,54 centimeters
reet 0.30L8 meters
tons (2,000 pounds) 907.185 kilograms
pounds per square inch 0.070307 kilograms per square centimeter
kips per square inch 70.307 kilograms per square centimeter
pounls per cubic foot 16.0185 kilograms per cubic meter




CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

The state-of-the-art in constitutive modeling of earth materials
for free-ield ground-shock calculation purposes is continually being
upgraded to incorporate new developments both in theory and material
property evaluation. As a consequence, each new major calculation
project is usually performed with a supposedly improved model of the
pertinent site materials. However, very little research effort has
been devoted to an assessment of the degree of improvement, if any,
that the newer models actually provide. This information gap is
currently of concern to theoreticians and experimentalists alike,
since a number of serious objections have recently been raised to
the continued use of many contemporary models.

Under sponsorship of the Defense Atomic Support Agency (DASA),
the U. S. Army Engineer Waterways Experiment Station (WES) has re-
cently initiated a program to evaluate a variety of contemporary con-
stitutive models by performing parametric code calculations against
well-documented field test events. Operation Prairie Flat, a 500-tonl
high-explosive (HE) event executed 9 August 1968 (Reference 1) at the
Watching Hill Test Range, Suffield, Alberta, Canada, was the first
event chosen for study in this research progranm.

Nonlinear elastic-plastic-compacting (NEPC) models have been the
mainstay of the code community during the past few years. As implied
by their name, these models exhibit behavior defined by elasticity
and theory of perfect plasticity, as well as compaction behavior; the

s A table of factors for converting dritish units ot measurement to

metric units is presented on page 8.



latter mechanism predicts mechanical hysteresis during a cycle of vir-
gin loading and unloading through subyleld stress paths. In general,
the NEPC models are prescribed by specification of a plastic yield
criterion and flow rule, a nonlinear compacting hydrostat, and one
other elastic parameter such as Poisson's ratio v or shear modulus
G . Both vV and G have recently seen wide service formulated
either as functions of the first stress invariant or as constants. The
first model chosen for the calculation study was a mixed constant v-
constant G NEPC model. This model, called the hybrid v-G , is a re-
cent innovation resulting from WES collaboration with Applied Theory,
{nc., on a Minuteman study sponsored by the Air Force Space and Mis-
sile Systems Organization.

To date, one large two-dimensional (2D) calculation, using the
hybrid V-G model, has been carried out to a real time of 300 msec.
A mathematic.. ‘dealization of the Prairie Flat surface overpressure
history between the nominal 1500- and 4O-psi contours (range = 84 and
560 feet, respectively) was developed at WES for this purpose. The
code used tor this effort was a WES-modified version of the Weidlinger
axisymmetric LAYER Code (Reference 2) adapted for use on an accessible

GE-635 computer.

1.2 PURPOSE AND SCOPE

The primary purpose of this report is to document a code-based
analysis o: the Prairie Flat ground motions at intermediate ranges.

The material model and the mathematical fits to representative
Prairie Flat soil properties for six idealized layers are described in
Chapter 2. Details of the coded problem and the mathematical airblast
routine are contained in Chapter 3., 1In Chapter 4, the code results are
compared with field measurements at selected intermediate ground ranges
and an analysis of the event up to 300 msec from detonation is pre-

sented., Conclucions and recommendations are presented in Chapter 5.
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CHAPIER 2
CONSTITUTIVE MODEL DESCRIPTION

2.1 MATERIAL MODEL PARAMETERS
The material hydrostat is shown in Figure 2.1. Changes in dy-
namic mean normal stress den and volumetric strain ¢ are de-

kk
fined by three polynomial functions:

P + zAn(emax (1)
= Pg + z Bn(ekk - es)rl y € < € S e (2)
m
1 n
Sa zcn(ema.x) (3)
n=1

where: P, and P = total (static plus dynamic) mean normal
stresses on the loading and unloading
hydrostats, respectively
Pg = static mean normal overburden stressl
1
Z
.. v, (2 +2v/(1 - v))] dz
g 3
o
where: Yy = wet unit weight of ith layer.

\Y

i initial static Poisson's ratio of the :lth layer (not
necessarily = initial dynamic v). For the calculations
reported herein v; = 0.5 was assumed for each layer.

depth coordinate.

[aN]
n

11




= maximun volumetric strain achieved

max
S permanent set relative to a closed cycle of
dynamic mean normal stress change
A, 5B and C_ = material coefficients

When e <t P is computed from

P =P + B.le =€ L

u g l(kk S) (%)

where: Bl = slope of the unloading hydrostat at zero dynamic mean
normal stress.

Equations 1, 2, and 4 determine the slopes of the hydrostat to be

unique functions of mean normal stress. To avoid energy generation

problems, at any given mean normal stress level

sz dPu
de = de (5)
kk kk

The material is assumed to be fractured for stress states Pu <0
(soils exhibit little or no tensile strength); when this occurs,
P“I and each individual deviator stress are set equal to zero.

I'he hybrid v-G model is initially a constant Poisson's ratio
e

NEPC model during virgin loading. Therefore, the loading shear

nodulus can be obtained from the slope of the loading hydrostat by

m

3(1 - 2y,)
G = . nA
£ 231 + Vij n(emax) (6)
n=1
where: v = loading Poisson's ratio.

However, the value of G computed from Equation 6 is constrained to

have a definite upper limit Gmux . Thus, at a prescribed mean normal



stress level, virgin loading switches to a constant-G (Ge = Gma.x)
NEPC model.

The unloading shear modulus is a r~onstant for a given cycle of
unloading-reloading, but the value of the constant is a function of

the maximum mean normal stress, i.e.
G, = f(P ) (7)

Therefore, the unloading shear modulus can be determined from

3(1 = 2\)\1) - n=1
G = m ) an(emax - es) (8)
n=1

where: v = unloading Poisson's ratio (a constant).

In general, vy ;4 v, - The value of G computed from Equation 8 is
also constrained by Gmax . Thus, according to Equation 5, at any
mean normal stress level,

G, <G, <G (9)

Equations 5 and 9 state that the material can exhibit hysteresis in
shear as well as in compression for all virgin loading cycles. Equa-
tions 5, 6, 8, and 9 specify that the material cannot, under any
circumstances, generate energy.

The material description is completed by specification of a fail-
ure, or yield, surface and a flow rule. In order to realistically
match typical soil shear strength data, a modified form of the yield
function proposed by Drucker and Prager (Reference 3) was adopted.

This form, widely accepted in recent years by all major calculators, is

13



written as a polynomial function of dynamic mean normal stress (Fig-

ure 2.2)
m
/Jé = z Dn(den)n’l (10)
n=i:

«here: J! = second invariant of the stress deviator tensor.

At low st;ess levels the material exhibits Coulomb type yield be-
havior, but transitions into Von Mises behavior at higher stresses.
Beyond the point at which the slope of Equation 10 becomes zero

(

S 5.2)
b P, , Figure 2 2)

’Jé = Constant (11)

The code calculations reported in this report utilized the Von
Mises flow rule. Because the Prairie Flat soils above the groundwater
table generally exhibit Coulomb yield behavior, this rule is nonassoci-

ative in these materials.

2.2 REFPRESENTATIVE SOIL FROPERTIES AND MODEL CONSTRUCTION PROCEDURES

Laboratory material property tests and data analyses for Operation
rrairie Flat were accomplished as a separate, though related, task un-
der the DASA nuclear weapons effects research program at WES. The
outcome of this task resulted in the division of the Prairie Flat pro-
file into six idealized horizontal layers or zones. The density and
depth to bottom of each zone are listed at the top of Table 2.1. For
each zone, representative dynamic load-unload stress-strain and stress
path relations for uniaxial strain (UX), Figure 2.3, and values of v,
were made available for constitutive model analyses.

Construction of a constant Poisson's ratio NEPC model, well doc-

umented in Reference L4, is a relatively straightforward procedure.

14



This procedure was used, along with the representative UX stress-
strain relations and v, values, to construct loading and unloading
hydrostats for each of £he six zones, assuming the materials possessed
nonassociated flow rules. Then, guided by the representative unload-

ing UX stress paths, variations in G and v, were perametrically

max
studied for each zone. This effort, coordinated with the WES material
property testing and data analysis group, eventually led to the selec-

tion of representative values of G and v, These values are

listed along with all other pertinegixmodel parameters for each zone
in Table 2.1. NU in the table is v § IC = Pc 3y EFFK is the value of
the constant in Equation 11; coefficients A , AM , AU , and AY
define the polynomials for the loading hydrostat, the permanent set,
the unloading hydrostat, and the yield condition, respectively; GZ
and EMZ are the initial shear and constrained moduli, respectively;
P-VEL and S-VEL are the initial elastic compression and shear wave
speeds; EZ is the initial Young's modulusj; and KMAX and EM are

irrelevant to this report.

2.3 MODEL FITS

Figure 2.4 compares the representative Zone 1 UX stress-strain
relations with the model fits; Figure 2.5 shows the low stress-level
fits at an expanded scale. In Figures 2.6 and 2.7 the corresponding
Zone 1 stress path comparisons are presented. As an aid to the iden-
tification of the stress paths, significant stress states have been
labeled; point A defines the intersection of the representative
loading path with the yield surface, point 1 defines the model loading
path and yield surface intersection, points B and 2, respectively,
define representative and model unloading departure states, and points
C and 3, respectively, locate the states at which the representative
and model unloading paths intersect the lower yield surface.

Figures 2.4 through 2.7 indicate that in Zone 1 good quality fits



were obtained for both types of UX data over the entire stress range
considered (O to 2000 psi); however, tecause the model incorporates
strain-axis translation for the unloading hydrostat, the soft hooks

at the bottoms of the UX unloading stress-strain curves could not

no

be matched without creating energy-generation problems in the model.
Comparisons of the representative and modeled UX relations for Zones
2 through 6 are shown in Figures 2.8 through 2.16.

Material behavior within the first three zones is characterized
by very low constrained moduli during virgin loading in uniaxial
strain and large hysteretic strain energy loss upon unloading due to
very high air void contents and low densities. The relation for

Zone L4 is somewhat stiffer and less hysteretic due to increased den-
sity, increased geostatic overburden confinement, and decreased air
void content. This trend continues very sharply into Zone 5 (which
underlies the groundwater tablej) and culminates in Zone 6 with a
condition of full saturation and a constrained loading modulus approx-
imately that of water. The stiffness variations between Zone 1 and 6
differ by almost two orders of magnitude as indicated in Figure 2.17
where the initial constrained modulus has been plotted versus depth.
Shear sirength also varies significantly with depth as shown in
Figure 2.18. The saturated and nearly saturated materials in the
vicinity of the groundwater table exhibit little or no increase in

strength with increasing mean normal stress, whereas the upper, high

Use of an associated flow rule would provide improved agreement with
the UX unloading hooks. This is one of the model parameters under

onsideration for future Prairie Flat calculations.

(U]

to the Prairie Flat test, piezometer readings determined

a depth to groundwater of approximately 23 feet.

16



initial air void content materials show large increases in strength

with increasing mean normal stress.
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CHAPTER 3
COMPUTATION DETAILS

3.1 CODED PROBLEM

The coded problem is shown schematically in Figure 3.1. The
region considered for the calculation extended horizontally from
ground zero (GZ) to a range of 555 feet and vertically to a depth
of 75 feet. The bottom boundary was specified to be rigid-fixed, the
far boundary was set free of radial gradients of stress, and the sym-
metry axis was, of course, free of shear stress and able to move ver-
tically only. A mathematical air overpressure routine developed at
WES was used to prescribe the time-dependent surface boundary condi-
tion; discussed in detail in the next section, this routine smoothly
describes the actual Prairie Flat overpressure history between the
nominal 1,500- and 4O-psi contours (range = 84 and 560 feet, respec-
tively). Between ground zero and 84 feet, an artificial pulse was
applied to the surface.

A 3-foot square grid size and a time step of 0,5 msec were used
to carry the 2D finite-difference calculation to a real time (from
detonation) of 300 msec. The problem required approximately 3 hours

of computer processor time,

3.2 AIR OVERPRESSURE FUNCTION
Airblast measurements obtained during the Prairie Flat event

(Reference 5) were utilized to develop a mathematical expression for
overpressure as an exponential interpolation function of range and

time. In constructing the function, measured arrival times, peak
pressures, and impulses were preserved as closely as possible.

The functional form of the derived fit (valid for ranges be-
tween 84 and 560 feét) is patterned after that used in the Weidlinger
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calculation of Event Distant Plain 1A (Reference 2):

0, (Ret) = A(R) x (B exp { Ay (R) X [t - t (R) - tr]}

t - ta(R) - tr

+ C exp { A5 (R) X [t - t,(R) - tr] }) 2 [1 = t;(R) ]

x U[t : ta(R)] X U[ta(R) + 6 (R) + ¢t ] (12)

surface pressure (tension considered

where:s o)
ore 22

positive), kips/in2

ground range, feet
time in milliseconds
unit step functions

~ ~~r ¢t U
1l

functions related by

AL(R) = 108,(R) = ﬁfg (13)

and B and C are constants:

0.67

[vs]
1]

C =0.33

The peax amplitude A(R) , the arrival time ta(R) , and the positive

duration td(R) functions are determined from expressions of the form

(f,,.1 = £5)
SRY = r o+ i+l ot (R - R,
1 / - Ri)a 1

et R, < R<R (1k4)

i i+2

T
‘Bie



where the exponent is given by

_dn CARERIE | (15)
/zn[(Ri+1 - R/ (B, - Ri)]

o

Experimental values of arrival time, peek overpressure, and the
adjusted positive durations used in the above equations are given
in Table 3.1. A constant rise time tr = 0.25 msec was appended
to the overpressure function to provide agreement with the field
airblast measurements.,

In the region 0 S R < 84 feet, the artificial overpressure
applied to the surface was ozz(Bh, t) with

R
t (R) = t_(84) xgp (16)
The quality of the airblast fit is depicted in Figure 3.2,

where it is compared with field measurements at ground ranges of
84, 220, 330, and 560 feet.
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TARLE 3.1 SURFACE OVERFRESSURE FUNCTION PARAMETERS

Ground Range Arrival Time Peak Overpressure Positive Duration
R ta(R) -A(R) td(R)
feet msec kips/sq in msec
8L Do 1.517k 11.1
140 110 0.8103 13.9
220 2 0.495 2550
2ko 25.L 0.3966 45.0
Loo 63.5 0.1063 110.0
5 89.7 0.07Lk 13510
560 1255 0.0378 250.0
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CHAPTER 4
RESULTS

L.1 GENERAL

The field data utilized in this report were obtained from the
Project Officer in charge of the WES ground-motion measurement experi-
ment for Operation Prairie Flat., A description of the WES experiment
and portions of the measured data have been published (Reference 6).
The measurements are considered reliable; however, they are still sub-
Ject to futuré modification.

The results of the 2D calculation are compared with the field
measurements at two intermediate ground ranges, R = 220 feet (nominal
500-psi contour) and R = 330 feet (nominal 200-psi contour), where
code output was least prone to artificial boundary influences, Com-
puted waveforms at depths of 1.5, 4.5, 10.5, and 16.5 feet are com-
pared with corresponding field data obtained at depths of 1.5, 5.0,
10.0, and 17.0 feet.

L,2 PRELIMINARY CODE STUDIES

Prior to the 2D calculation, & series of one-dimensional (1D)
runs were made, using the nominal 800-psi contour overpressure pulse,
to parametrically study the effect of grid size and time step. This
study showed that time-step variations satisfying the Courant crite-
rion (Reference 7) would have negligible effect on the computed verti-
cal waveforms, However, it also showed that grid-size variations
would significantly influence computed peak stresses and particle ve-
locities in the immediate vicinity of the surface.

The results of the grid-size study are summarized in Figure 4.1
where the attenuations of computed peak vertical particle velocity are
compared for grid dimensions of 0.75, 1.5, and 3.0 feet; field data
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obtained at this range (140 feet) and the results of the 2D calcula-
tion are included in the figure for completeness sake. As grid size
increased, more and more of the high-frequency spike of the airblast
front was lost in the 1D calculations; however, little impulse was
lost as a result, and below a depth of about 5 feet, the calculated
peaks converged (as did the remainder of the waveforms). This study
indicated that a very fine grid is needed in the vicinity of the sur-
face to minimize ground shock underprediction for HE tests conducted
at the Watching Hill site.

The 2D calculation suffered an even greater loss of the high-
frequency airblast spike due to horizontal as well as vertical grid-
size effects. The surface node at this range did not experience its
mathematically predicted peak overpressure (810 psi, Table 5.1) during
the incremental sweep of the airblast function; it only saw a peak of
732 psi. This accounts for a portion of the 1D-2D discrepancy in Fig-
ure 4.1, This problem can be alleviated somewhat (if running time is
not a problem) by reducing the time step.

Another series of one-dimensional runs were made using the over-
pressure pulses pertinent to the 800- and 200-psi contours in order to
assess the influence of the rigid bottom boundary location on code
output in this region. Rigid boundaries at depths of 75, 150, and 250
feet were considered (bedrock at the site is located in the vicinity
of 250 feet). The results showed detectable quantitative, but not
qualitative, differences in the vertical motions at later times. The
differences were sufficiently minor to suggest running the first 2D
calculation of the Prairie Flat constitutive model parameter study
with the 75-foot-deep boundary. The influences of the bottom boundary
location on the late-time computed horizontal motions will be assessed

in future 2D calculations.
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4.3 VERTICAL MOTIONS
Firures 4.2 and 4.3 show comparisons of the experimental and com-

puted vertical particle-velocity waveforms at the 220- and 330-foot
ranges, respectively. The correlations are quite favorable at all lo-
cations., The oscillations in the computed waveforms are partially due
to the numerical techniques employed in the code and partially due to
real stress-wave interactions in the multilayered profile; separation
of these effects also awaits additional calculations.

As suggested by the grid-size effects study, the computed peaks
at the 1l.5-foot depth at both ranges are lower than the measured peaks
by about a fector of two. The discrepancy in the peaks at depth
17 feet, range 330 feet, is partially attributable to the fact that
the gage recorded an early-arriving outrunning signal well prior to
the arrival of the local airblast energy.

Comparisons of the computed and measured vertical displacement
waveforms at the 220- and 330-foot ranges are shown in Figures k.4
and 4.5, respectively. The measurements represent integrated
particle-velocity gage records. The agreements are generally good
although the phasing of the computed vaveforms appears to lag that of
the measurements. ‘The late-time measurement at depth 1.5 feet, range
220 feet, is suspect.

Ground shock attenuation with depth at the 220- and 330-foot
ranges is summarized in Figures 4.6 and 4.7, respectively, where com-
putcd peak vertical particle velocities and displacements are com-
pared with the measured peaks. The dashed portions of the computed
curves arc a reminder that the calculated peaks are questionable in
the vicinity of the surface (see Figure 4.1).

The combined effects of the short duration of the Prairie Flat
airblast pulse and the highly compressible and energy-absorbing nature

of the materials in the upper :oneg of the profile resulted in an
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initially extremely rapid attenuation of incident peak vertical veloc-
ity and stress with depth. As the groundwater table was approached,
furtner reductions in incident peak velocity occurred while peak
stresses were simultaneously enhanced due to reflection-refraction
phencmena at the higher impedance interfaces. Figure 4.8 shows the
~omputed attenuation of peak dynamic vertical, radial, and mean nor-
mal stresses versus depth for the 220- and 330-foot ranges.

The calculation revealed that the major upward-traveling re-
flected stress pulse generated when the incident wave impinged on the
stiff materials in the vicinity of the groundwater table was a sig-
nificant factor in arresting or reversing the downward momentum of
the materials above the water table. In its subsequent refraction
from the surface (which by then was free of positive overpressure) ,
this pulse became a tensile rarefaction that imparted new or addi-
tional upward momentum to the near-surface soils, spalling or frac-
turing them as it passed (i.e., the tension cutoff, Chapter 2, was
invoked). The spalled materials essentially behaved as groups of free
particles acted upon only by gravity with each particle having an
initial velocity vector. Eventually, after following ballistic tra-
jectories, the particles came back into contact with one another to
reconstitute the continuum., This phenomenon can be readily observed
in the velocity waveforms shown in Figures 4.2 and 4.3. Near-surface
spalling occurred in the time period 100 to 125 msec at range 220 feet
and in the period 125 to 150 msec at range 330 feet. Both the calcu-
lation and the measurements indicate that the vertical velocities de-
crease at an approximately linear rate (~32.2 ft/secg) for periods
ranging from 100 to 200 msec after spall inception. This free-fall

effect was computed at all code output ranges.



4.4 RADIAL MOTIONS

Calculated radial velocity waveforms are compared with the field
measurements at ground ranges of 220 and 330 feet in Figures 4.9 and
4,10, respectively. The peak radial velocities are smaller than the
vertical peaks by approximately one order of magnitude; this indicates
that a highly superseismic condition existed at these depths and ground
ranges. The computed motions at early times generally agree in form
and magnitude with the measurements. For example, first-arrival out-
ward velocity peaks show 1i. e or no attenuation with depth and the
consistently computed shear-wave-induced reversals immediately behind
the first peaks have detectable counterparts in the data; however, as
discussed in the previous secticn, the computed near-surface peaks are
probably low because of grid-size effects. The individual oscilla-
tions beyond the first full cycle are partially due to realistic
reflection-refraction phenomena and partially due to unrealistic nu-
merical noise. Late-time correlations at range 220 feet could be im-
proved by considering the higher energy inputs closer to ground zero.
Further calculations are required to clarify these details.

The computed radial velocities at depth 1.5 feet at both ground
ranges are constant at later times as a result of the near-surface
spall; these are the horizontal components of the ballistic trajec-
tories discussed previously.

The 10- and 17-foot-deep gages at range 330 feet, Figure 4.10,
indicated that low-amplitude outrunning signals were the first ar-
rivals at these locations; this correlates with the vertical record
for the 17-foot station, Figure k.3.

The radial displacement waveforms are compared in Figures L.11
and 4.12 for the 220- and 330-foot ranges, respectively. The late-
time computations are, of course, partially suspect since the degree

of influence of the bottom artificial boundary has yet to be
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established, but the calculation mirrors the continuous outward flow
of material recorded by the field gages.

The overpressure impulse at the 200 psi contour was greater than
that at the 500 psi contour by approximately 30 percent (Reference 5)3
in addition, the duration was much longer. Thus, peak stress attenua-
tion was less severe at the further ground range. This resulted in
higher peak stresses in Zones 5 and 6 at R = 330 feet (see Figure
4.3), which in turn resulted in more plastic flow occurring in Zone 5
at this range than at R = 220 feet . This effect, in combination
with the extra impulse, resulted in larger computed radial displace-
ment peaks at R = 330 feet than at R = 220 feet (larger by at least

a factor of two).

=

he measured peak radial displacements shown at t = 300 msec in
Figures 4,11 and 4.12 represent 50 percent or more of the total outward
displacments recorded at these locations in the Prairie Flat event due
to the direct and airblast-induced energy inputs. The results of this
calculation indicate that a significant portion of the near-surface
radial displacement maxima is attributable to airblast effects alone.
Finally, it is worth noting that the measured maximum radial displace-
ments at these locations are the same general order of magnitude as

the measured vertical maxima.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

The major conclusion derived from this Prairie Flat analysis is
that gravity effects must be included in code calculations of HE field
tests conducted at the Watching Hill test range, especially if late
real time ground motion phenomena are to be correctly computed. In
addition, refined zoning is required in the viecinity of the ground
surface to realistically predict surface peak particle velocities.
These requirements are, of course, strongly dictated by the geology
of this particular site and ilie high-intensity, short-duration nature
of the overpressure pulses produced by the conventional explosives
used for Watching Hill tests; however, they should be considered face
tors for all major ground shock calculations.,

It should be readily apparent that a great deal of both quanti-
tative and qualitative information can be extracted from a single
2D code calculation, Yet, to answer the numerous questions that came
to mind concerning the effects of calculation variables such as air-
blast simulation, boundary locations, grid size, layering, model co-
efficients, tension cutoff specifications, and gravity treatment, let
alone the influences of different types of constitutive models, a
large number of additional parametric calculations are required.
These calculations will be performed at WES as part of the ongoing
constitutive model parameter study of the Prairie Flat event. This

report represents the first step in this direction.
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