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The monograph discusbes the mathematical
principles of certain allowed variants of iner-
tial guidance of the flight of ballistic missiles,
i.e., the control without the use of any external
information (radio signals, radiation of stars
and others).

It is assumed that the providing of the
assigned flight range of the missile is produced
as a result of the well-timed switching off of
its engine by a signal entering from the computer.
Fed to the input of the latter are current read-
.no,* of sensitive element8 of the system of iner-
tial guidance, which measure the apparent accel-
eration of the missile or integrals from the
apparent time acceleration. V'he control should
be such that the deviation of the actual motion
of the missile from the rated does not have an

effect on the range of its flight. For this mea-
suring instruments of the system of inertial
navigation are placed aboard the rocket in a
quite definite manner, and, specifically, the
direction of their axes of sensitivity in a num-
ber of cases is stabilized by means of gyroscopes.

The setting of the necessary directions of axes

of sensitivity and the search of relations which
should satisfy current readings of sensing ele-
ments for the formation in the computer of the
command for the switching off of the engine, and
this is the main content of the book. Questions
of the inertial guidance of motion of the missile
i, a lateral direction are also considered.

The monograph is intended for specialists in
the field of the theory of control processes. It
can prove to be useful in the investigation of
nPw problems of this discipline and also as a
training manual.
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TIlE AUTHOR'S COMMENT

This book came about as a result of thoughts of many yearo ever

the general problems of inertial guidance systems nr moving objectm.

Soine of them are presented in my other monograph, publiahed in 1963

under the name of "Mechanics of Gyroscopic Systems," in which, in

accordance with its name, considerable space has been given also to

the theory of sensing elements of systems of inertial guidance - a

gyroscope in a gimbal suspension, gyroscopic stabilizer end gyro.ic plc

integrator of the apparent unit accelerations. In this book, on the

contrary, studied basically is the possibility of the solution of

problems of inertial guidance of ballistic missiles by means of

different combinations of gyroscopic and other mechanized sensing

elements and computers. Of course, questions examined here exhaust

by no means the whole diversity of ideas and possibilities of auto-

nomous control of ballistic missiles. In recent years in the theory

of specific inertial systems great successes have been achieved.

They have not received as yet the proper reflection in monographic

literature. It can be hoped that for the assimilation and develop-

ment of new concepts of inertial control the proposed book proves to

be useful.

The author thanks A. S. Kachanov, D. M. Klimov, D. F. Kilm,

I. S. Kovner and M. Ye. Temchenko for their valuable advice in the

editing and preparation of the manuscript for press.
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INTEODUCTION

Given in this small monograph are mathematical bases of one of

the possible aspects of the theory of flight control of ballistic

missiles without any external information (radio signals, radiation

of the stars and others). The initial data for such control are

readings of instruments located aboard the missile. They record

both the orientation of the missile with respect to fixed directions

(at. fixed stars) arid the difference in its motion from free flight

without resistance of the medium. The effect of such instruments

is based on the phenomenon of inertia. Because of this the mentione

guidance is called inertial. Besides instruments which incorporate

laws of mechanics, in systems of inertial guidance the application

of instruments founded upon other physical principles (spins of

elementary particles, standing waves of coherent radiation of lasers

and others) is possible.

Cre-ation of the variant examined in the monograph of the theory

of inertial guidance is based on the assumption that aboard the

missile there is stabilization (specifically, gyroscopic) of direc-

tioris of axes of sensitivity of meters of apparent accelerations -

n-wt-unrireters or instruments directly measuring the time integral

fr :n current values of apparent acceleration. The latter are callec

below integrators of accelerations; they can also be named impulso-

meters [Translator's note: This term is not verified]. The selec-

tion of these sensing elements was determined by the many years of

interest of the author on gyroscopic instruments and other mechanica

measuring devices.

F D-.,1IT- -292-Y0 Viii
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The instruments have a different kind of error. The effect of

the latter on the accuracy of flight of the missile requires a

special investigation, which goes beyond the limits of this monograph.

Here it is assumed that instruments of systems of inertial guidance

are ideal, i.e., they function as though without errors. The same

is referred to servodrives and reading devices and also any, which

accomplish, specifically, arithmetical operations and the integration

of current values of different palvameters.

Airborne instruments and devices should not be excessively

complex and bulky. Therefore, keeping in mind the use of simplified

schemes, with the solution of problems of inertial guidance certain

fundamental errors can be allowed. The latter, however, should not

involve great deviations in the missile from its target. The selec-

tion of an appropriate compromise (at which deviations are small,

and the system of inertial control is not too complex) constitutes

one of the basic tasks of the designer of a specific system of

inertial guidance.

Independently of the form of the guidance system, in its design

one should proceed from the fact that the same target - the end of

the free-flight section - can be hit by the ballistic missile, with-

out necessarily m6ving along the programmed trajectory but according

to an infinite set of other adjacent trajectories. Therefore, for

an accurate hitting of the target it is not necessary that at the

instant of termination of the active flight section of the missile

its coordinates and component velocities in a certain system of

coordinates, fixed relative to the earth, would be equal to the

calculated provided by the program of control. The last observation

is very important since the providing of the just mentioned equalities

places before the system of control of flight of the missile very

difficult, not always feasible tasks. The attaining, a rather

accurate determination of current values of the coordinates them-

selves of the moving missile and projections of its velocity is

considerably simpler. It is possible, therefore, to interrupt the

powered-flight section of the missile at exactly that instant when

the totality of deviations in its moving coordinates and projections

FTD-MT-24-291-70 ix



of velocity from the appropriate calculation values provides sub-

sequent motion aiong one of the trajectories leading to the target.

The determination of relationships which should be satisfied by the

mentioned deviations at instant of the switching off of the engine,

constitutes the main task of the state4 theory of inertial guidance

of flight of ballistic missiles. In this case without apparent

deterioration of the accuracy of hitting of the missile on the target,

considerable simplifications of guidance systems can be produced

because of the separate control of the range and lateral motion of

the missile and also due.to the selection of specific directions of

axes of sensitivity of Inertial instruments and the forming of

signals from them.

With gyroscopic stabilization of axes of sensitivity of newton-

meters and integrators of accelerations, it is natural to construct

calculated equations and equations of inertial guidance in the

system of coordinates not taking part in the rotation of the earth.

Let us note, however, that range of flight of the missile is deter-

mined in this case not only by values of its coordinates and com-

ponents of velocities relative to such a system at the instant of

termination of the power-flight section, but also of duration of the

latter.

In the computer of the given system of inertial guidance of.

flight range according to current readings of newtonmeters and

integrators of accelerations, there is generated a certain alternating

magnitude, uniquely connected at each instant with the magnitude

of range of the missile. Understood by the latter is that magnitude

of range which is obtained if the thrust of the engine at the instant

of time suddenly becomes zero. To provide accurate hitting of the

missile at the target, the switching off of the engine should be

produced at the instant of time of achievement by the mentioned

magnitude of assigned value. Since this magnitude is determined by

the actual course of the change in coordinates and projections of

the velocity of the missile, then it Is called functional. As it

will be shown below, it is possible to propose different forms of

functionals. With their construction in the computer, subsequently,

FTD-MT-24-291-70 x



there will not be taken into account the squares and products of

deviations in the actual coordinates and projections of the velocity

of the missile at the instant of end qf operation of the engine from

the rated. The same refers to deviations of moving coordinates and

projections of the velocity of the rocket and also to the time

interval between the necessary and calculated instants of the switch-

ing off of the engine. The assignment of the control of range is

thus solved in a linear approximation. This should not lead to

great errors in flight at the assigned range of the missile with

well-controlled thrust of the engine and with the possibility of

the switching off of the latter after the feed of the appropriate

command with a minimum delayed pulse. In the case when control of

the thrust is hampered, subsequent refinements of equations deter-

mining the termination of the power-flight section are necessary.

These problems and also the problem of inertial control without the

switching off of the engine are not considered in this monograph.

Results of investigations, given in thls monograph indicate

that in the flight of a missile over great ranges it is expedient

to have on the gyroscopic stabilizer two integrators of acceleration.

Axes of sensitivity of these integrators shoula '.e definitely oriented

in two different directions. Fed into the computer, which determines

the instant of the switching off of the engine, are the current value

of one integrator and the result of complementary integration of

readings of the other. In principle, it is possible to bypass one

integrator of acceleration if in the process of flight of the missile

properly both parameters of the integrator and direction of its axis

of' sensitivity are changed.

The use of two stabilized integrators of accelerations or one

but with alternating parameters allows constructing the so-called

complete functional most accurately resolving the problem of the

control of range of the missile. Subsequent development of the

theory leads, specifically, to the basis of the arrangement of

Integrators of accelerations directly aboard the missile under the

condition of Introduction into the guidance system of the so-called

otandard integrator of nccelerations with accurate execution !f its

F -::-and:.
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The acceleration of force of the earth's gravity depends on the

distance between the missile and the center of the earth and also

on geographical coordinates of the missile. Consequently, forces of

gravity acting on the missile in its actual and calculated motions

are nct equal. This fact can condition the error in the determining

of the necessary instant of switching off of the engine even during

accurate operation of the integrators of accelerations and of gyro-

scopes of the system of inertial control. For the complete elimina-

tion of this error the airborne computer should be supplemented by

a certain comparatively complex integrating equipment. However, a

considerable decrease in this error can be achieved also by simpler

means - because of a small change in the orientation of the integrator

of acceleration.

Deviation of the rocket from the target in a lateral direction

can be eliminated with the help of introduction into the system of

inertial guidance of the so-called lateral integrator, which controls

the mction of the rocket in the direction of the normal to assigned

programmed plane of its flight. The distinction of the actual

magnitude of duration of the free-flight section from its calculated

value leads to additional lateral deviations of the missile because

of the rotation of the earth. However, in principle it is possible

to avoid errors of such a kind if we use current values of integrators

of acceleration of system of range control.

Content of book is the following. Chapter I gives a solution

to the problem of inertial guidance of ballistic missiles in a

simplified formulation for the purpose of explaining basic ideas and

methods examined in detail in subsequent chapters. Here the earth

Js taken as being flat and not rotating. The effect of the atmosphere

is not considered and the force of gravity is considered constant in

magnitude and direction. It is natural that under such simplifying

assumptions the motion of the missile in the free-flight section of

its flight is completely described by known equations of theoretical

mechanics about the motion of a material particle in a vacuum in a

uriform field of the force of gravity. Further it is explained

F7D-!TL -24-291O xiiJ



which relationship should be satisfied by small changes in parameters

of the end of the power-flight section, i.e., coordinates of the

missile and projections of its velocity at the instant of the switch-

ing off of the engine in order that it hits the assigned target with

an error of not more than the second order of smallness. This

relationship serves as the basic point for the formation of a certain

variable, called the ballistic function. In the examined case the

value of this function at any fixed instant of time is the approximate

expression for the error in the range of the rocket, which will arise

if the engine of the missile is turned off at precisely this instant.

It is natural that for the hitting of the missile on the target the

engine should be turned off at the instant of the passage of current

values of this function through zero.

To construct a ballistic function aboard the rocket in the form

of a certain electrical or mechanical magnitude with the variant of

the inertial system selected in the monograph the presence of special

sensing tlements is proposed - newtonmeter and a computer, which
contains in its composition integrating, multiplying and summing

elements. In the example of thc simplest meter of apparent accelera-
tion is established the connection between the magnitude being mea-

sured, the real acceleration of the missile and acceleration of the

force of gravity. Concepts of apparent velocity and apparent.travel
of the missile are introduced and it is indicated, specifically, that
for the direct measurement of the apparent velocity it is necessary

that the axis of sensitivity of the integrator of accelerations be

stabilized. It turns out that the ballistic function, which is

referred to the given case of motion of the missile in a uniform
field of gravity without allowing for resistance on the side of the t

atmosphere, can be constructed aboard the missile, using only the P

integrator of acceleration with subsequent integration of its current t

readings by means of the computer. At the end of the chapter an a

analysis of this question is given both from an analytical and

geometrical point of view. It is indicated that the flight range of e

the missile will be changed by a magnitude of the second order of t

smallness if the vector of its actual velocity at the end of the

F'rJD-f4T-24;-291-70 xiii



power-flight section appears the same as that in the calculated case,

and the position of the missile will be somewhat displaced in a cer-

tain definite direction, or, on the contrary, with a fixed position

of the missile the difference between the real and calculated vectors

of its velocity at the same instant of time proves to be definitely

directed. In the examined case the mentioned directions coincide

with each other. They, specifically, are parallel to the vector of

velocity of the missile at instant of its hitting of the target with

calculated motion. In general when the curvilinearity of the form

of the earth, the effect of the atmosphere on the descending branch

of the free-flight section of the trajectory and heterogeneity of

the field of the earth's gravity are taken into account, such

directions also exist, but they are not parallel. The pqrpendicui.ars

to them, the so-called A- and p-directions can serve, as it is

indicated in more detail in Chapter III, for orientation of axes of

sensitivity of integrator3 of accelerations of the appropriate system

of autonomous control of the flight range of the missile.

Chapter II gives ballistic functions of various kind for the

general case of flight of the missile, i.e., without additional

simplifying assumptions, which took place in Chapter I. Here it is

impossible to express the magnitude of range of the missile in the

form of a definite equation, which would contain parameters of the

end of the power-flight section, for example in the starting system

of coordinates. Nevertheless, correct to smallness of the.second

order relative to differences between current parameters of the real

motion of the missile and parameters of the end of the power-flight

section of its calculated motion, it is possible (with the help of

the use of the same instruments as in Chapter I) to determine the

error in the range which would take place with the switching off of

the engine at the current IntiLant of time. The expression for such

an arbitrary error in range can be accepted as the ballistic func-

tion. Derivatives of the magnitude of flight range of the missile

entering into this function, according to parameters of the end of

the power-flight section, i.e., according to coordinates and pro-

jections of velocity, are taken at calculated values of the latter.

FTD-T-24-291-70 xiv



Thus they are constant quantities, wLich can be determined earlier

for each assigned case of flight of the missile.

With the inertial control of range the current value of the

ballistic function should be determined onboard the missile itself.

This leads to the necessity of continuous determination by means of

the computers of current coordinates of the missile and projections

of its velocity according to readings of newtonmeters or, in other

cases, integrators of apparent accelerations. The starting system

for this goal proves to be barely adequate because of the necessity

of the calculation of translational and coriolis accelerations.

Therefore, it is more expedient to pass from coordinates and pro-

jections of velocity of the missile in the starting system of

coordinates to appropriate magnitudes referring to the nonrotational

system with the origin at the center of the earth. As a result,

after the rejection of terms of the second order of smallness and

terms dependent on the motion of the missile in a direction per-

pendicular to the plane of flight, the so-called initial ballistic

function is formed, and they are linear with respect to the moving

coordinates and projections of velocity of the missile and time. The

..expression for the initial ballistic function in a nonrotating system

of coordinates contains a derivative of the magnitude of flight range

of the rocket with respect to duration of the power-flight section.

However, this derivative can be excluded from the analysis by means

of the use of some auxiliary relation. The latter follows from the

equality of the actual range to its calculated value, if coordinates

and projections of velocity of the end of the power-flight section

accurately coincide with current values of coordinates and projections

of velocity of any particles of the calculated free-flight section.

Finolly the basic ballistic equation is obtained for detc.-'.-Jon

of the necessary current time of the switching off of the engine in

flight of the missile at the assigned range. Determination of

current coordinatds and projections of velocity of the missiles,

which enter the left part of this equation, requires continuous C

integration aboard the missile f' appropriate nonlinear differential c

equations, which connect the zecond derivatives of coordinatej 
with

1-1-2 -291-70 xv



appropriate projections of the apparent acceleration and accelera-
tion of the force of gravity. However, we can substantially simplify

such a problem, if into the basic ballistic equation we substitute
expressions of coordinates and projection velocities obtained as a
result of the integration of approximate linear differential equations

in the so-called isochronal variations of coordinates of the missile.
The latter are differences between the acutal and calculated values

of appropriate coordinates of the missile, which refer to the same
instant of time. With the proper arbitrary extension of the cal-
culated'pcwer-flight section of flight of the missile during the

calculated instant of the switching off Of the engine isochronal
variations of coordinates, projections of velocity and projections
of apparent acceleration can be considered small magnitudes during
the wl.:,e interval of time which corresponds to the real power-flight

,section.

Differential equations for isochronal variations of coordinates

.re Jeri!veA in -hapter III, and their approximate integration, allow-
ing fur terms appearing as a result of the heterogeneity of the field
ef the earth's gravity, is developed in Chapter IV. In Chapter III
in. differential equations for isochronal variations of coordinates,
the mentioned terms are completely droped, whereupon variations of
projections of velocity become equal to variations of projections
of the apparent velocity of the missile, and variations of the

coordinates themselves - to variations of projections of the apparent
path. This allows converting the basic ballistic equation to one of

the forms allowing the construction of current values of its left side
directly onboard the missile according to current readings of integra-

tors of accelerations.

Different orientation of axes of sensitivity of the integrators

of a celerations are possible. Depending on this, the computing
part of the system of inertial control of the range and the number

of elemerits entering it are changed. For example, with orientation

of axes of sensitivity according to invariable A- and u-directions,
which was already mentioned above, it is possible to manage with only

,,MT-21 - 9-70
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one element of repeated integration of accelerations unlike the case

of using two such elements necessary in the arrangement of axes of

sensitivity in parallel to the axes of the nonrotating system of

coordinates.

It proves to be possible to construct a ballistic equation even

with the help of a single meter of acceleration, if we according to

the earlier assigned law change the orientation of its axis. In the

computer there should be provided in such a case the integration of

current readings of this meter, preliminarily multiplied by the

coefficient, whici also is changed with the course of time.

The problem indicated above on the creation of a ballistic

equation can be solved approximately also with the help of one

integrator of acceleration, as this is indicated at the end of the

chapter in the example of construction of the system of inertial

control of range with accurate control of the direction of thrust

of the engine according to indications of standard integrator of

acqelerations. In this case the axes of sensitivity of the standard

integrator and integrator of the system of control of the range are

located perpendicular to each other. Finally, if we consider the

deviation in the force of thrust of the engine from the longitudinal

axis of the missile to be insignificant, then for solution of the

problem of control of range one can use current readings of the

integrator, the housing of which is directly fastened to the side of

the missile, and the axis of sensitivity is parallel to its longi-

tudinal axis (so-called longitudinal integrator).

In Chapter IV there is formed the integration of the totality

of differential equations for isochronal variations of coordinates

of the missile with the approximate calculation in them of terms

which characterize changes in projections of the force of gravity

during motion of the missile according to the law different from

the calculated. Corresponding to this, the basic ballistic equation

derived out in Chapter II is converted to the form similar to that
examined in Chapter III. Because of a specific method of integration
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of the mentioned totality of equations, the problem on inertial con-

trol of the range is solved by the same means as it was earlier, i.e.,

with the help of current readings of integrators of accelerations and

computers, which contain only integrating, multiplying and summing

elements. This method is based on the preliminary replacement of

equations of the mentioned system by equivalent integral differential

and cumulative relations with the subsequent introduction into the

terms being integrated instead of the sought functions, which repre-

sent current values of coordinates of the missiles approximating

their polynomials of the second or third degree. Coefficients of

approximating polynomials of the second degree are selected so that

the polynomials would satisfy the same initial conditions as the

sought functions, and, furthermore, coincide with the latter for the

instant of termination of the power-flight section. With a more

accurate solution to the problem, one should approximate the isochronal

variations of coordinates by means of polynomials of the third degree.

In this case time derivatives are equated also to appropriate pro-

jections of velocity of the missile at the instant of termination of

the power-flight section. As a result for the determination of

variations of coordinates and projections of velocity of the missile,

algebraic equations with coefficients dependent on time are obtained.

The latter, with sufficient accuracy, can be replaced by constants

equal to values of these variations at the instant of termination of

the power-flight section of flight of the missile. Finally the

desired variation; are expressed in terms of readings of integrators

of accelerations and integrals of their time readings. Thereby, the

subsequent creation of different forms of ballistic functions similar

to those given in Chapter III, fundamental has no basic difficulties

and is reduced basically to certain changes in coefficients and

directions of axes of sensitivity of integral.ors of accelerations.

Finally, Chapter V of the book is devoted to the general

problems of inertial control of the lateral motion of ballistic

missiles. The removal of lateral deviation in the rocket from the

target requires different methods than the providing of the aszigned

range of its flight, where the required accuracy can be obtained
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because of the well-timed switching off of the engine. The duration

of the power-flight section with flight at the same range depends for

rockets of the same design on a number of random facts and, con-

sequently, is itself a random magnitude, the mean value of which is

near to the magnitude of duration of the power-flight section of the

calculated motion. Therefore it is sufficient that the control of

lateral motion of the missile would be especially accurate only during

the interval of time in which switching off of the engine can occur.

The current removal of the missile from the programmed plane is

connected with projections on the normal to this plane of its apparent

acceleration and acceleration of the force of gravity by means of a

differential equation of the second order. To control the lateral

motion of the missile, it is necessary to know current values of

this removal and its time derivative. They can be obtained by means

of the so-called lateral integrator of accelerations and simplest

computer. As a first approximation can in the mentioned differential

equation drop terms containing the projection of the force of

gravity, whereupon It is immediately integrated. The lateral depar-

ture of the rocket proves to be equal to the projection of its

apparent path on the normal to the programmed plane of flight, and

the value of velocity of this departure - respectively, to the pro-

jection of the apparent velocity. With the obtaining of more accurate

expressions for the mentioned sought magnitudes, the approximation
method of integration of differential equations given in Chapter IV

is used.

In Chapter V it is also indicated how on can use readings of

the instruments of inertial control of the range in order to remove

the additional lateral deviation in the rocket from the target because

of noticulucidence of its actual and calculaLed motions in the pro-

jection on the programmed plane.

In the appendix of the book an analytical derivation of cosines

of angles between axes of system of coordinates with a finite turn

is given. The table of cosines is used in Chapter II.
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I

C H A P 2 E R I

THEORY OF INERTIAL CONTROL OF FLIGHT RANGE OF THE
BALLISTIC MISSILE IN SIMPLIFIED FORMULATION

S 1. Equation Expressing Flight ?ange of the Missile
in Terms of the Coordinate and" Projection of

Its Velocity at the End of the
Power-Flight Section

The general formulation of the problem of control of flight

range of the ballistic missile is most convenient to exp>ir'n ". "%

following simplest example.

Let us assume that the earth is flat and does not rotate, the

atmosphere surrounding the earth is absent,,and the acceleration 3f

the force of the earth's gravity f, coinciding in this case with

gravity g, is constant in magnitude and direction. Equations of the

motion of the missile' on the free-flight section of its trajectory

under such simplifying assumptions are completely integrated, and

thereby the whole solution to the problem can be conducted in general

form up to the end.

Let the power-flight section of flight of the missile proceed

from the origin 0 of the fixed sy4t.e:-' of coordinates zxy, the x axiS

of which is horizontal, and the y axis is directed along the vertical

upward (Fig. 1). The initial velocity of the missile is considered

equal to zero.

'Here and further the term "motion of the missile" is understood
as motion of its center of mass.
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Fig. 1.

The aoulatd or programed motiqp 
of the missiles is that one

at which its coordinates ae 
changed In accurate conformity 

with their

precalculated values.

Let us designate coordinates of 
the real motion of the missile

at Instant , termination of the power-flight 
section of Its flight,

i.e., at the instant of complete swtchng 
off of the engine, by x

and , and the same coordinates in calculated 
motion - by x and Y*

(Fig. ). Let us designate by v X and v V projections on the ax s z

and 9 of the velocity of the ocket at the instant of the 
termination

of the power-flight section 
of its real motion and respectively 

by

v * and v * - their calculated values. 
The magnitude of duration 

of

the p-wer-flght section of the 
actual flight of the missile a in

gene.-aj is dstngused 
fom its calculated value 

o .

The integration of equations 
of motion of the missile In 

the

p ... . h'6 secton f moJori

Ar

immediately leads 
to the following 

expesstons fo current proec-

tions of velocity 
v of(t) and s ot):
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-1'i - -- o, ,, (t) =, dt - -St. ( 1.2. )

and its moving coordinates x(t) and y(t):

Z(t) - + VJ,, y()-Y+ - .I

Time t is read off here anew, i.e., from the instant of termination

of the power-flight section and, consequently, from the beginning of

the power-flight section of motion of the missile. Arbitrary con-

stants with integration are selected so that there would take place

the apparent equalities

v. (o)- ,.. F;(o)- '*vg. X(o) 'X. y(o)-.-Y. (1.1.4)

Considering that the free-flight section is finished at instant

t = T at point C - intersection of the trajectory of the missile

with the x axis, it is easy to determine the connection between tie

range of its flight I and appropriate parameters x, y, v X and v -

end of the power-flight section. Setting, first of all, in the

second equation (1.1.3) t = T and y(T) = 0, we obtain the following

quadratic equation for determination of the duration of the free-

flight section T:

rO-,,-2O. ( .1 . 5 )

Hence

I -O( + V,+ ,(1.1.6 )

since one takes the positive root of equation (1.1.5). Having

substituted now thu found value T into the first equatim. ]...3),

we obtain the desired expression for the range of the rocket as

f ictions of parameters x, y, vX and v - end of the power-flight

section, namely!

+ (VW,+ Tv-', 2+2-y). .i.
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§ 2. Condition of Invariability of Flight Range with
Little Distinction in Coordinates and Projections

of Velocity of the Missile from Their
Calculated Values at the Instant

of Termination of the
Power-Flight '

Section

Let us assume that the actual values of parameters of the power-

flight section of flight of the missile x, y, v and v are distin-

guished from their calculated values by small magnitude

Ax -i Ay- y-;y', AVg. ,A,=V,-VY. (1.2.1)

The flight range of the rocket Z, in accordance with that given in

§ 1, and, specifically, according to equation (1.1.7), is a function

of magnitudes x, y, v and v , i.e.,

t -t . rl -, ( 1 .2 .2 )

In accordance with equality (1.2.1), we have

L-X(z+AX, '+A, U+A V.W;+Avg). (1.2.3)

Expanding now the right side of equation (1.2.3) into Taylor series
for the function of many variables, we obtain correct to smallness

of the first order relative to magnitude Ax, Ay, Av and Av

o S;. . l ) + A l .+ A . ,a r) + * + A +NWAv. A (1.2.4)

Partial derivatives of function l(x, y, v X y) with respect to

varlables x, y, v and v are thexrz!ves functions of the same
variables. 1I, this case they can be presented in evident form as

a result of the differentiation of function (1.1.71 according to

the appropriate variable, namely:

%

N.- 7 (1.2,,+a/. ,, g t



According to rules of the composition of Taylor series, in
equation (1.2.4) arguments of aforementioned partial derivatives

should be assumed correspondingly equal to magnitudes x*', Y zVX
and v*. Thus the' are for the selected calculated motion of the

Y
missile certain constants. Taking into account, furthermore, that

expression

(,;. ;. ,p) (1.2.6)

is the calculation flight range of the missile, let us transform

equation (1.2.4) co the form

hm + (127

where the difference

A-t-r (1.2.8)

is the change in flight range of the missile because of noncoincidence

of magnitudes of parameters of the end of the power.flight section

L, ., V and v with their calculated values x*, y*, v* and v * .

The expression for AZ, allowing for equation (1.1.6), can be

represented now in the for,

A- A +kA +-e(A, + kA,,). (1.2.9)

where

WE . •I .2 ,C

Let us note, that coefficient k has a simple geometric meaning. It

is easy to show, using equations (1.1.2) and (1.1.6), that it is

equal to the" magnitude of the angular coefficient of the normal v to

the calculated trajectory of motion of the missile at point C,
its Intersection with the x axis (Fig. 1). Thus,i5



h-tee, (1.2.11)

where a - angle between the mentioned direction v and z axis (and

also between the vertical line and vector of velocity of the missile

at the instant of its incidence on the earth).

From equation (1.2.9) it follows that correct to smallness of

the first crder inclusively the range of the missile remains the

very same if changes in parameters Ax, jo, A zv and Av - end of its

power-flight section in comparison with their calculated values, will

be subordinate to the condition

I++,(&Pa+Mkv)o.

It is important that this condition is the linear relation with con-

,stant coefficients known earlier for the selected flight of the

missile.

Tht duratioz o' the power-flight section of flight a, in con-

ice trast to parameters cf its end x, y, v X and v , does not play any

role in the determination of the magnitude of range Z. Therefore,

there is no meaning tz strive with execution of the specific program

of motion of the missile for the rated value of duration c* of the

power-flight section. On the contrary, by slightly lengthening or

shortening the power-flight section, it is possible to obtain a

fulfilling of just the given condition (1.2.12) and, consequently,

provide the calculated range of the missile at not exactly an accurate

sequence of the actual coordinates to their programmed values.

§ 3. Error in Flight Range of the Missile Presented
in the Form of a Function of the Duration

of the Power-FlIght Section

Let us assume that, as also in 1 1, z(t) and y(t) are functions

which are the actual (not calculated) change in time of coordinates
.0

of the missile on the power-flight section, a v (t) and v (t), re-

s5ectively, are projections of its velocity, and the instant t a 0

at this time corresponds to the beginning of the power-flight section.



Let us substitute into equation (1.2.9) for AZ quantities Ax,

Ay, A zv and AvY respectively by differences

,(f-. v)--. ug(t)-w:. W3()--;. (1.3.1)

As a result let us obtain the time function

+eQ) -a a()- + k v(t)- I!+'(w,()- 1 +
+ W ,"l(#)- er. ( 1.3.2 )

which we call baZlistie function.

At'the instant of the switching off of the engine t - a* this

function, according to equation (1.2.9), turns into AZ and, con-

sequently, determines the error in flight range of the rocket because

of an accurate execution of the program of the power-flight section

but accurate observance of its duration. However, if we interrupt

the power-flight section at that instant when the ballistic function

c(t) turns into zero, then the error into the range proves to be a

magnitude of the second order of smallness, and the desired accuracy

of flight of the missile will be achieved. Hence it follows that

the problem of inertial control of the flight range of the missile

can be reduced to the construction of current values of the ballistic

function directly aboard the missile and to the switching off of its

engine with the passage of function c(t) through zero. For this

purpose, besides the summing and multiplying devices, the presence

aboard the missile of special instruments which measure the apparent

acceleration with subsequent integration of their current readings,

or instruments directly recording the time integral from the apparent

accelerations - integrators of accelerations is necessary. Meters

of apparent accelerations will subsequently be called newtonmetere.

§ 4. Connection Between the Acceleration of the Missile
in Its Motion Relative to the Fixed System of

Coordinates and Reading of
Newtonmeter Set on It

In the system of control of the flight range of the ballistic



missile when using newtonmeter one should keep in mind that the latter

can measure only the apparent and not the real acceleration of that

place of the misslle where they are located. The apparent accelera-

tion is usually called the difference Detween the acceleration of

any points in the fixed system of cooedinates and the acceleration

of the force of gravity. Specifically, standard uniaxial newton-

meters should measure the projection a of the apparent acceleration

on its axis of sensitivity v, i.e., magnitude

8.m.t.(1.4.1)

where w - projection on axis v of the real acceleration of the

newtonmeter relative to the fixed system of coordinates and f-

projection on the same axis of acceleration of the force of the

earth's gravity.

Let us explain equation (1.4.1) in the example of the newton-

meter, ti-e sensing element of which is a small weight of mass m

attached to the end of the spring of rigidity c (Fig. 2). The other

end of the spring iz sealed in the housing of the newtonmeter. The

small weight can be moved within the housing on straight line v,

which is the axis of sensitivity of such a meter of apparent accelera-

tion.

Fig. 2.



The equation of motion of the Small weight relative to the

huusing of the newtonmeter, if we disregard the mass of the spring

and friction of small weight about the internal cylindrical surface

of the housing, can be presented in the form

-M +,:-,,.+ (1.14.2)

Here 6 - movement of the small weight from that position E-at which

the spring has riot been stretched; we -. projection on direction v of

tra'ric-ational acceleration, i.e., acceleration with respect to the

fixed system of coordinates of that place of the housing where at the

giver . instant the small weight is located (projection of the coriolis

acceleratior. to direction v is equal to zero).

With translational movement of the housing of the r.ewtonmeter

(1.4.3)

where v - acceleration of the place of fastening of the spring to

the housing.

If, however, the housing of the newtonmeter has, furthermore,

angular motions, then equality (1.4.3) should be considered as

approximate. However, because of the iomparatively small dimensions

of newtonmeters the difference between w and w is important.'

Let us assume that the frequency p of natural oscillaticns of

the small weight, determined ty equation

p.. .(1.d..L4,

'It is possible to show that this difference is equal to the~2

'-,duct W 0 c where w0 - projection of angular velocity of the nousing

f t.e new-onr.-eter on the plane perpendici~ar tc The axis 4 and p -
sa: *. :e :ween he smaiI weight and point of attachment zf the

s e9



is sufficiently great. Then the amplitude of these oscillations,

conditioned basically by the change in acceleration of the housing

of, the newtonmeter w will be small. In this case the term - nx-
in equation (1.4.2) can be dropped, and allowing for equality (1.4.3)
we can obtain relation

nomm.+e (1.4.5)

The member c6 of equation (1.4.5) is the elastic force of the

spring. Deformation 6 (see Fig. 2) will be considered positive if

the small weight is displaced in a negative direction of axis v.

Whet, 6 = 0 the spring is not stretched, and the small weight is

located at position E (see Pig. 2). The observable shift in the

small weight from position E can be graduated so that it would
directly measure a certain magnitude a connected to the deformation

of the spring by relation

. -- .. (1.4.6)

Replacing here the magnitude of deformation of the spring 6 by its

expression, by the following from equation (1.4.5), we will arrive
at equation (1.4.1). Thus, the shift in the small weight is pro-

portional to the projection of its apparent acceleration on the

direction v, i.e., on the axis of sensitivity of the newtonmeter.

The current reading of the integrator of the apparent accelera-

tions or simply integrator of accelerations (it can also be called

impulsometer) is a time integral from the projection of the apparent

acceleration on its axis of sensitivity, i.e., magnitude

V.(8)- . (t. (1.4.7)

If the axis of sensitivity of the integrator of acceleration
retains a fixed direction with respect to the fixed system of

cncrdinates, thern

10



",'-r-.(1.11.8)

where v (t) -projection on the direction v of velocity of the hous-

ing of the integrator in the same fixed system. Therefore, sub-

stituting into equation (1.4.7) the expression for a from equation

(1.4.1) and using equality (1.4.8), we obtain the relation

VQ) - v,(Q)- w(o)- !()dt, (1.4.9)

which connects the projection of velocity v (t) with the reading of

the integrator of acceleration V (t). The latter is called in this
V

case the projection of the apparent velocity on direction v.

Function f (t) which stands under the sign of the integral in

the right side of relation (1.4.9) when the earth is not proposed to

be flat, is changed with the course of time because of a change in

the position of the missile relative to the earth.

With alternating crientation of the axis of sensitivity v, for

example, when the integrator of acceleration is located directly

aboard the missile, equations (1.4.8) and (1.4.9), of course, are

not applicable, and the reading of the integrator of acceleration is

no longer equivalent to the corresponding projection of the apparent

velocity.

5 5. Construction of a Ballistic Function by Means of
Two Integrators of Accelerations and a Computer

In this section let us examine the use in the system of Inertial

control of the flight range of two integrators of accelerations.

Let us assumne that the integrators are stabilized so that the axis

of sensitivity of one of them during the whole power-flight section

of the missile would remain parallel to the horizontal x axis, and

the axis of sensitivity of the other would be directed parallel to

the vertical y axis.

I2



In the examined case, i.e., under the assumption of a nonrotat-

ing flat earth, projections of accelerations of the force of gravity

on the x and y axes are expressed by equations

Consequently, in accordance with formula (1.4.1), projections of the

apparent acceleration on the same axis are the quantities

'.-W(t). 4,-W,(t+g. (1.5.2)

where d M o*dQ) dpv () 5 3where -. (1.5.3)

are corresponding projections of the real acceleration of the missile

in the fixed system of coordinates xy. Here x(t) and y(t), just as

earlier, are current coordinates of the missile on the power-flight

section :f its flight.

The current readings of the integrators with axes of sensitivity

parallel to axes of coordinates x and y, according to equation

(1.4.7), are quantities

which are projections of the apparent veZocity of the missile,

respectively, on the axis of the fixed orientation x and y. In

virtue of equations (1.5.2) and (1.5.3) they are connected with

projections v (t) and v y(t) of the real velocity of the missile

relative to the system of coordinates xy by relation

V.)()- .Y). VY)- v,) + St. (1.5.5)

TIto the latter ccnstants of integration are absent, since projec-

torjs of the real velocity of the missile at the initial instant

12



of the power-flight section, i.e., when t - 0, are equal to zero.
Coordinates of the missile x(t) and y(t) at this instant are also

equal to zero. Therefore, as a result of the integration with

respect to time of current indications V (t) and V (t) of corre-
xsponding integrators of accelerations will be reduced cn the basis

of equations (1.5.3) and (1.5.5) to the following relation:

5.((9z()(, S(S) - () + . (1.5.6

Tn chem time functions

.3(s)" In(#)d. 39(1) V .(1) A (l.- 5.7

can be called projections of the apparent path of the missile.

By means of relations (1.5.5) and (1.5.6) one can express,

•oordinates x(t) and y(t) in terms of functions S (t) and S3 't)

and projections v (t) and v (t) of its real velocity - in terms of

current readings of integrators of accelerations V (t) and V (t.

If further we substitute these results into equation (1.3.2)'for

the ballistic function c(t), then after the simplest conversions we
will obtain for it the following expression:

*( -(. () )+& (t) + v IV. (t)+ kVv(t)-

where the coefficient k, as before, is determined by equation
(1.2.10).

For the construction aboard the missile of a current value of

the ballistic function c(t) in the form of an alternating mechanical

or- electrical magnitude Tn the examined case the presence of two

integrators of accelerations, clocks and computer is necessary. The

composition ,f the latter, specifically, should include two elements

of additional integration of readings of integrators of accelerations

13



§ 6. Control of Flight Range of the Missile by Means
of a Single Integrator of Accelerations with

Inclined Orientation of Its Axis

An attentive examination of expression (1.5.8) for the ballistic

fu..ction c(t) leads to the conclusion that sums

V.(0 + kV,(). . ( + Up, ((1.6.1)

entering into its composition can be formed aboard the missile by

means of vnly the integrator of accelerations with subsequent addi-

tional time integration of its instant readings. The axis of

sensitivity v cf such an integrator should be inclined during the

whole time of tihe power-flight section of flight of the missile to

the horizontal axis x at a constant angle a, the magnitude of which

is connected witn coefficient k by relation (1.2.11). Thus (see § 2

of this chapter), the direction of the axis of sensitivity of the

mentioned integrator is perpendicular to the vector of velocity of
*re miss le it th< instLnt of reaching by it of the target C with

ca.culated motion (Fig. 1).

Let us note, first of all (Fig. 3), that for projections on

the direction v of the acceleration of the force of gravity and real

acceleration of the missile we have equations

i-ntna . , w.(t)cona + I(,Q)sia. (1.6.2)

Consequently, Recording to equation (1.4.1), we have

,. - w)--1(t)i - WQ)cos + w) +A si, a (1.6.3)

or, taking into account equality (1.5.2),

i.(8) - d6 (t) Moa + a, Mt sin a. (1 6

The last :elation indicates that the apparent acceleration is a

ve'or in:h.-e components are parallel to axes of coordinates x and y,

respectively equal to quantities a (t) and a (t).



A-

I

Fig. 3.

Integrating expression (1.6.4) for the projection of the

apparent acceleration on the direction v with respect to time, and

taking into account equations (1.4.7) and (1.5.4), we obtain equality

V.)- V,(9)wa +V,(t) zinc, (1.6.5)

which indicates that quantity V (t) is in this case a projection on

the direction v of a certain vector with components V Ct) and V (It

along axes x and y.

Function VV (t) is the current reading of the integrator of

acceleration whose axis of sensitivity has the direction v. Integrat-

ing this time function and taking into account equation (1.5.7), we

obtain a new relation

$ (t) -- $ (9) e . +o at ,w(t)sina , ( 1i. 6 . 6 )

in which quantity

)- V(t)dt (1.6.7)

0,on be called the projection of the vector of apparent path of the

missile on direction v.

Relations (1.6.5) and (3.6.6) can be given with the help of

equation (1.2.11) the following form:
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V. (1) CM S V.(J) + k ,(tl-(1 6.
and VVI (1.6.8)

( e a IS.(() + .V,, (s). (1.6.9)

From the obtained relations it follows that sums (1.6.1) and, con-

sequently, and expression (1.5.8) for the ballistic function e(t)

can be constructed aboard the missile by means of the use of current

readings of the single integrator of acceleration and of its time

integral. Really, on the basis of relations (1.6.8) and (1.6.9),

expression (1.5.8) is converted to the form

aS w- t S,(t) + v,(S)-(" +,")-

" (,* + -k-k -. (1.6.or)

As was already mentioned above, the duration of the power-flight

section is determined by equation c(t) - 0. In accordance with

equations (1.6.10) and (1.2.11), this equation, which will sub-

sequently be called ballistic, is reduced to the following, more

convenient form:

+ -S.(S) -r ,, o-, + (, +gS)s,. ci+

§ 7. Conversion of the Ballistic Equation by Using
a New Rectangular System of Coordinates

The ballistic equation (1.6.11) acquires a more transparent form,

if we introduce a new fixed system of coordinates En with the same

origin as that for the system xy. Axis of this system of coordi-

nates Is directed parallel to straight line v, i.e., at the same

angie a to the horizon (to the x axis) at which the axis of sensitivity

of the integrator of accelerations should be located (Fig. 4). Then

axis n will be the antiparallel to the vector of velocity of the

mi,.sile at the instant of its hitting of the target with calculated

motion (-ee Fig. 1).



El If

Fig. 4.

Coordinates of the end of the calculated power-flight section

of the trajectory of the missile in the new system or coordinates

are designated by r* and n*. They are connected with c-ordinates

xA and y* or the same points in the xy system by equations of con-

version

Let us designate projections of velocity of the missile on the axis

, and n with its calculated motion at the instant of the switching

off of the engine by v* and v*. They are connected with projections

of the same velocity on the axes x and y, with quantities v* and v*,

by similar equations

For moving coordinates of the missile in the system tn, which refers

to its rea2 motion, let us introduce designations E(t) and -(t', for

projections of its velocity on these axes - v (t) and v n(t), and,

finally, for projections of acceleration - w(t) and w n(t).

Since the axis * and direction v are para!:!l, then th.. nrc-

Jection of acceleration of the missile on the direction v is the

equati on

d() - (1.7.:)
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and, consequently, according to equations (1.4.1) and (1.6.2), we

obtain

(1.7.4I)

At the initial instant (t = 0) of the power-flight section,

coordinates of the missile &(t) and r(t) and also projections of

its velocity v (t) and v (t) are equal to zero. Therefore, succes-
sively integrating expression (1.7.4) for d2 (i)/dt2 with respect to

time, we obtain equations

I(5 - ( I.V 7.geuna)

where V (t) and S (t), as before, are projections of the apparent

velocity of the missile and its apparent path on direction v or,

which Is the same, on axis F. They are connected with the projec-

tion of the apparent acceleration 2V(r) by relations (1.4.7) and

(1.6.7).

When using equations (1.7.5), (1.7.2) and (1.7.1) the ballistic

equation (1.6.11) for determination of the instant of the switching

off of the engine is reduced to the following simple fo'm:

-r. (1.7.6)

Not entering into equation (1.7.6) is either the coordinate.of

the missile ri(t) or projection v (t) of its velocity on axis n. This

means that the small distinction in the mentioned magnitudes at the

enu of the power-flight section from their calculated values n* and

'Equation (1.7.6) can be obtained directly from the ballistic
equation U(t) 0 0, in which function c(t) is taken in the initial
firn (1.3.2). In order to be convinced of this, it is enough to sub-
stitute in expression (1.3.2) coefficient k by its value following
rrom the relation (1.2.11) and to use equations (1.7.1) and (1.7.2)
and also those similar to them for quantities &(t) and v (t).



n correct to smallness of the second order should not affect the
flight range of the missile. In essence this is explained by the

fact that for the control of the flight range of the missile it is

enough to use only the integrator of accelerations whose axis of

sensitivity is parallel to the axis t or, which is the same, as

direction v.

§ 8. Geometric Examination of the Condition of
Hitting of the Missile on the

Assigned Target

From a geometric point of view the ballistic equation (1.7.6) of

the previous section can be given the following interpretation. Let

us assume that the motion of the missile is such (Fig. 5) that at

the instant of the switching off of the engine it proves to be at

point A', shifted with respect to points A - the end of the cal-

culated trajectory of the power-flight section on a small segment
parallel of axis n. If its velocity at this instant appears the

same as that at the end of the power-flight section cf the calculated

motion, then the trajectory of the missile in the free-flight section

will have the same form as that in the calculated case. In order to

obtain this trajectory, it is enough to shift by the magnitude of
segment AA' the whole calculated trajectory forward in the directicn

of axis n or, which is the same, in the direction of the tangent to

the trajectory at point C of its intersection with axis x (see Fig. 5).

it is obvious that the point of intersection of the "shiftea" tra-
jectory with the x axis will be remote from points C, i.e., from the
calculated points of fall of the rocket, on a smallness of the

second order.

Let us assume that, on the contrary, at the end of the power-
flight section the rocket arrives accurately at the calculatcd point

:,, .t at a v locity somcwhat distinguizhcd fromn the cal:ulatcd in

magnitude and in direction (Fig. 6 and Fig. 7). The form of thd

traj,,.e.3 ' to be different, and I. genc.ral the rcvkct ""31

nQ lknger hit the assigned target.
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Fig Fig

Fig.Fig 5.7..6

Nevertheless, as follows from the ballistic equation In the

form (1.7.6), if the velocity of the missile will be different from

the calculated by a small vector parallel or' axis n (Fig. 8), then

the deviation of the rockcet from the target will also be a magnitude

of the second order of smallness. Thus, in the case of a nonrotating

fl ,:: earth deprived of an atmosphere, it is possible to shnw su'ch

~rci~gdirection.; of zmall *;ct-or-z ol' the chango in velocit"Y or

t% zillft :' thz: ro:kcct at th,,c and of the pouecr-fl~.ght seection, in

thLu prc~rcncei which thL change .;n flight range ol' the rocket has

m, ~ ~ a ; - hrzoci ;der --f -- lnez SImar directions

car,1 be z3-.owr1 in general if one considers the rotation of the earth

AnG its rotisp'-trical state in the presence of an atmosphere. However,

Thev prc-ve to be ilfferer2L, and for the solution of the problem, on
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Fi.g. 8.

selection of the proper instant oif the switching off of the engine
of one integrator of accelerations with the axis of sensitivity of
constant direction, in general, they are insufficient. The mentioned
problem (also correct to smallness of the second order) is most
simply solved with the help of two integrators of accelerations (see
§ 3 cf Chapter III) with additional irtegraLion of rcadlnCs c."

of them.

C

C

C

~ c



C H A P T E R II

THEORY OF INERTIAL CONTROL OF FLIGHT RANGE OF
BALLISTIC MISSILES IN THE

GENERAL FORMULATION

§ 1. Expression of the Error in Flight Range of the
Missile with Small Changes in Parameters of the.

End of the Power-Flight Section.
Ballistic Function

The theory of inertial control becomes incomparably more com-

plex if with thre motion of the missile, in contrast to the simplify-

ing assumptionr accepted in Chapter I, we take account of the change

In acoelerati'2n of the force of gravity both in magnitude and in

JiLrectinn, c,.nsider the earth no longer to be fixed, and in the cal-

culalun of the free-flight section take account of the resistance

of the atmosphere. The basic difficulty consists here in the selec-

tion of a certain rather simple function of parameters measured

aboard the missile by inertial sensing elements. The function

should be such that with the achievement by it of the earlier

assigned value, it was possible to produce a switching off of the

engine, having provided the calculated range of the missile. An

example of a similar kind was given in Chapter I. This functi'on,

ca -l).urb>qurntly, Just as ir; ChcIpter I, balllistc (someti-'cz it

is called controlling and aiso controlZing functionaZ), is con-

structed aboard the missile by means of the computer, which uses

current readings of the integrators of accelerations. The magnitude

of the tallistic function should be directly connected with the error

in the flight range of the rocket which -would occur if the switching

off of thf engine occurred at the current instant of time. The
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system of inertial control in turn sl:auld give a signal for cessation

of the operation of the engine upon achievement by the ballistic

function of a value which corresponds to the turning of the mentioned

error into zero.

One of the ballistic functions is the error itself in deter-

mining the flight range of the missile, expressed in terms of its

moving coordinates x(t), y(4), z(t) and projections v (t), VY (t),

v (t) of velocity relative to the so-called starting system of

coordinates xyz connected with the rotating earth. In this case it

is proposed, of course, that at precisely the instant t complete

switching off of the engine occurs.

it is convenient to put the beginning of starting system at the

center of the earth, having directed the y axis along the radius of

the earth through the points of start 0 and the z axis so that the

coordinate plane zy, called the program, contains the assigned points

of fall of the missile C. if we direct the x axis to the side of

points C, then direction of the x axis is thereby completely deter-

mined (Fig. 9). It is useful to note, that the trajectory of the

missile does not lie in plane zy, passing, nevertheless, in the cal-

culated case through the origin of coordinates 0 and through point ",.

For the magnitude of the flight range of the missile I we can

take the shortest geographical distance between the point f" lt: r

and actual point of fall of the missile D, and for its lateral detvii-

tion b - distance of points D to the programmed plane, i.e., pI~r.

, (Fig. 9'.

,,-t us introduce brief designations

SO@) -,go F(a)my, Z (a) mS,

vs (a) vs. y (a) - V. v. (a) - .

for values oif coordinates of the missile and proJections of its

velocity relative to the starting system of coordinates .r :. the

In:;tant of the :wircning _Jff of the engine t = a. It- this :atse it
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2

Fig. 9.

is considered that the instant t - 0 is referred to the beginning

of motion of the missile from the start. With fixed values x, y, 

and v, u , v, range I depends on the width of the place of the

start and on the location of the plane xy relative tO the point of

the eompa.-:. The p.sition at the instant of termination of the
active section of the celestial bodies - moon and sun relative to

the earth, practically does not govern the flight range of the

missile. A certain small effect on the magnitude of the range of

the missile proves to be the state of the atmosphere, especially

near the points of Ils fall, which subsequently, however, is not

considered.

Having in mind any specific position of start of the missile
ariu its assigned point of fall, we take Lha:. range Z is only a func-

tion of coordinates x, y, z and projections uf velocity v, V , Vz
uf the missile at the end of the power-flight section of flight and

dw(.. ri-tC, depend on the duration of the latter. Thus, we will con-
S.1 U,_ " that

l (9, VP St V ,, V ,, V ). ( 2 .1I. 2 )

The vonstrction of functions (x, y, z, , if, 0 ) in general

in the form of' an explicit function of their varla i(!:: is impossible,
slro,:e, I!, ',.,ntrnst t,> that given in Chapter , the 0 &,1.. I.)n )f" m t 1t,rt

- , I



of the missile in the free-flight section in quadratures are not

integrated. Nevertheless, mathematical machines with great accuracy

allow comparatively rapidly calculating the magnitude of range of

the missile I according to data of its coordinates x, y, z and pro-

jections of velocity v, V VZ, which corresprnds to the end of the

power-flight 3ection in the starting system of' coordinates x~i.

Let us designate by x* y, z4 and v *, v*, v* those values of

2.--ordlnates and of projections of velocity of the missile in the

starting system of coordinates xyz, which orrasponds to the end of

r.he power-flight section in the calculated motion and by Z* the cal-

culated range of its flight. In accordance with equation (2.1.2).

we have

W.-- , S". 40, w,*, V ). (2.1.3).

Let us form expression

/ W--tl #. i . t, (2-1 4)., t. , l-

It can be accepted as the ballistic function mentioned in the

beginning of this section. Actually, if we turn off the engine at

any arbitrary instant t, then value of the selected function corre-

sponding to this instant is directly the error in the flight range

of the missile. If, however, the engine is turned off at that

instant t = a at which this function turns into zero, then, naturally,

there will not be an error in the flight range.

because of the absence of the equation which expresses function

L?. I.?) in an explicit form in terms of its arguments, the practical

use of the difference (2.1.4) as a ballistic function is difficult.

.onsiderably simpler is another ballistic function, which is obta.,-ea

from the expansion of function I into Taylor series about calculated

values of its arguments, i.e., about the totality of quantities x*,
* ,~ v*, v, and V*. According tc expression (2.1.4), retaining

only smallness of the first order, we thve,



+, _ t-(,)-' Va N + I (0-o jr+ IV ()-N~ (2.1-5)

Here the partial derivatives 7., J71, -W. r. ,-. called balZli8tic

coefficients, are taken at values of their arguments, respectively

equal to x*, y, z v*, v* and v, and, consequently, for the

assigned flight of the rocket are constant quantities. The ballistic

.erflcients can be calculated, specifically, on high-speed computers.

It is obvious that with a small deviation in the motion of the
missile from calculated as a balli3tic function one can take expres-

sion

08 a

,nctually, with the switching off of the engine at the instant when

this expression becomes equal to zero, the difference between the

real and calculated flight range of the missile proves to be a
magnitude ;'J the second order of smallness. In this case deviations

in the parameters of the actual motion of the missile from the cal-
culated rt the end of the power-flight section of its flight are

taken ae smallness of the first order.

§ 2. Equations Connecting Coordinates of the Missile

in Starting and Nonrotating System of Coordinates

ul.I., prub ~,~i'.f lnt.tial guldancc; the sta.ill sytem of'
*urdinatcs represents certain inconveniences. Specifically, the

ietcrmination of coordinates and components of velocities of the

'If we do not take into account, of course other facts disturb-
!rig the accuracy of flight of the missile, specifically, the effect

f Rtmonphric -onditions at the end of the power-flight section.
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missile in this system according to readings of newtonmeters or

integrators of accelerations is complicated by the necessity of

calculation of translational and coriolis forces of inertia. Let

us introduce, therefore, the nonrotating system of coordinates En4

with the same beginning at the center of the earth as that for the

starting system xyz, which rotates together with the earth. Let us

assume that at the instant of the beginning of motion of the missile

t = 0 the axes of system of coordinates &nr and xyz respectively

coincide.

Let us designate by U&, V/n and U projections of angular

velocity of the earth on corresponding axes of the system of co-

ordinates Crh and by U , UY and Uz - on axes of the system xyz.

For an arbitrary instant of time the following equalities are

valid

U - U. - LU. U, - U1,M MU,
Ut - us -- WU. ..

where Z, ,i, n - direction cosines of the earth'z axis and, con-

-et.ent~, vector V in the system of coordIr.-tlu ETl4 or, whiun -

trie: :;;ae, in the system of coordinates xy:;.

After the time t after the start of the missile, tne -vstei ct'

ciordinates xuz will be turned counterclockwise at angle

IPM U4

rvlative to the system n4, if we observe ,in,. or. the os>o c"

the positive direction of the vector of angular eioc4t:, the

e.th I (i.e., on the side of the sthr Polr.i .,.

Together with the current coordinates of the mis.ile x(t), y )

and z(t) in the starting system of coordinates xyz, let us introduce

its coordinates Ut), n(t), 4(t) in the system n4. Axes of the

latter, as follows from the aforementioned, do not change their

rier:tation rc-ative to directions at fixed stars.



The table of cosines of angles between the axes of system of

coordinates &n and xyz' is the following:

z ( -Cos ) P+ (I--eosY)mt+ ( C-os g) R-
+CosY +as.In -asla,

(1-cosy)rn- (1-cosy)m'+ (I-eos)nm+
--ui + cOS9 + Isin g,

s(i- 9)In+ (I-Coa)m- (t-cosy)n'+
+mang -lu9W + oCg. (2.2.3)

According to table (2.2.3), one can determine coordinates of

the missile in the system &n4, i.e., quantities C(t), ,(t), and (t),
if direction cosines 1, m, n, angle * and coordinates x(t), y(t),

zet) are known. The appropriate equations have the form

o- s +( -P X) + os + [0 - CoszM --- -in9l F (1) + [(0 - cosg) In + in sin 9 1 s (9),

() - [(- cosy) m1 + nsing X () + ( -eos) m' +
+ Cos V(t) + [(i - Cosq) mn - 1 sin q1 z(9),

C(s - ((t - cogI) ,I - msin y! z(j) + [(I - coa.),n +

+ I sLin) (1) +( -cos) ' + cosQ (0. (2.2.41)

... reverse, conversion, which expresses coordinates y(t), (t,

and .(t) in terms of &(t), n(t) ana C(t), corresponds to the finite

turn of the system of coordinates & relative to the system xyz at

t a~'.- angle Z but in the opposite direction. Specifically, it
is obtained from the previous equations (2..4) if we replace in

them rFgle € by -€ and exchange places of" quLntities and x, n and

y, and alse ¢ nd z. As a result we obtain equations

z (t) - 1(1 ---e z: ) P" -.j . , I () -; [( -- c ) m i-I

+fnsing1i c()-I- (i -- cos).l- msinvl C.(),I(a) ((- CoST) In - n sin gl E (t)+ C( - cos) m'+
+cosJ.n (M + ( - cosT) nm + ! slsh i(1Y,

s (I) - 1(I - osp) In + msinqy] () + [(!-cos)mn-

-invil,() +I(t -cosg)n' +COSl(), (2.2.5)

~ s~-:ifca~,, e.'r-ndix on page 98.



which, of course, can be obtained directly, using table (2.2.3).

§ 3. Projections of the Velocity of the Missile
Relative to the Nonrotating

System of Coordinates

Earlier there were introduced designations v (t), v (t) and
x

(t) for current values of projections on axes x, R and z of veloc-

ity of the missile relative to the starting system of coordinates

xyz rotating together with the earth. Projections of velocity of

the missile in nonrotating system of coordinates &nC on the axis of

this system are designated, respectively, by uC(t), zn(t) and u (t).

It is obvious that

in the same way as

Quantities vX(t), v (t) and vt(t) can be expressed by u (t), un(t),

u (t) and inversely. According to equations of kinematics relative

to the motion of the points, we have

us (S) - V. (1) + uX (9)- U a).
a M - ,(5 + Ur (M)- u().
5,.t - .M + U M- VW (t). (2.3.3) Th

t h
where u,(t), U Y(t), u (t) -projections on the axes x, & and z of

the velocity of the missile in the rotating system of coordinates

In equations (2.3.3), In accordance with equalities (2.2.1),

let us replace Ux, U and U., and coordinates x(t), y(t) and z(t)

will be expressed by means of relations (2.2.5) in terms of co-

ordinates &(W), n(t) and 4(t). If.further projections u (t)', i(t)
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and Ct) are expressed, using table (2.2.3), in terms of projections

U (t), u t,) and u. (t), then we will arrive at the following desired

equations

V. [(1 -cos q) P' + Cos q 1 () +

+ 1( -C oST) IM, + pg "al , (1) +
+((t - Cos V) In - ft sing I ut (I) - U,, (1(t -cosq)nI+
+ m in (9) + 41 - cosq)mn -I sin qIiq (9) +
+ 1(t - ea8y) '-+coy ITC (9))+ U (1(1 - CoST) IM -

a in , (1 + 1-coo 9) W4- cs9lu i (,) +
+ I(t -Gras) MR + I -iO I().

wil) 1(1 - CoS) Im - n si,.V Ut (9) +

+ I(I - cOST)M + osal U,.(9) +
+ I(t - GOOT) mA + I sin l u (9)-
- U(I -cor) T) +cm,, + (G ) +

+ I( C q) t - a 1 +(t)}+
+ U. 11(t - corny) lot + n limIl (9)+ 1( - cooq)n n-

-S ita (8) + ((t - coo.q) no + co q1 }

.S( - cosq) In + m sinyl ut'(9) +

+ [(1 -c quy) mn - I sl qIu () + 1(t - coony) i' +
+ c41g. ac (t) - Ut (((I - co) In - n singl t (t) +

+ I(-co?) m' + oS) 'Q (9) +
+ 1(1 - corny) um + I sly 1 n (V)) +
+ U. {(0 - Cos) 40P + Cos~ 9, ()+

+ [(t -. ,) mI + a si,,V1 q (1) +
+1(1 -coas) nL - m sino (t)). (2.3.4)

The last cquaticons are somewhat simplified after the replacement in

the,;i of projections of angular velocity of th( earth U, U and U

respectively by products 1U, U and nU in accordance with the same

equailtics (2.2.1). As a result we obtain

u.()-4 -os q) 0 + C"1 "t (1) +
+ [(I -coo q) m + n singIus (1) +
+ 1(t - cor y) nt - m uinTl ur (f)-
- U (Corn Im (9) - nq (9)1 -
- Isinq IIt (1) +mq (r) +n (t)] + ()sin i).



N(1)= i - cosy) Im - n sinqT ut (t) +

+( -coo IF) m' + Coe j UO(W +
+ f( coo q) mni + I sin ql ur. (9)-
-- (c{os 4 Int (t) - I C (t)1 - m ia 4 [t P) + ,,iq (1) +

+ n (1 +q(O sin ).
u,(t)= (-coo)ln +m sin lu (f) +

+[( -Coso) mn - Isin u, () +
+ t(-oo) to -+ cog UC (0 -
- U (Coe8 y11 (9) - mt (01 -- • i-g [it (*) +mq () + n4 0 ( +o (2.3.5 )

it is obvious that by similar means it is possible to arrive at

equations which vxpress quantities u,, U and it in Lerms of v,

v _.nd z) We nave

Y z

4 m( - Cosy) 0 +Cos ,I ( +

+ [(-cag) In -as-nin g P, (t) +
+ [( - cosyg) In + mn si 1 v. () +
+ U (cosy [mz (I) - y (t)1 + 1I slna [Lz() +
+ mv (t) + nz(,- x (t) in tp},

U.(t)= (I - cosy) ml + n sin l 'v (1) +
+ 1(0- cos)m' +co's , (VV() +
+ 1(1 - coo g)rn- I sin g v, () + U (cos.4-nz () -
- is ()1 + m sing flx (9) + my (t) + nz (ty - (4in9 ),

()= i( - cos9) nI - m sap1 v. (t) +
+ I(1 - cosy) nm +'I sin q v ( ) +
+ c( o - cos)+n' + os4pv . () +
+ U Icosye fly () - mz () +
+Ain av 1lz () + my W + Az i- z ( sin. (,.

Error in Flight Jeange of the AlisilJo ":
junction of Changes in Par:ieters of thc' ,':',

cf' t h- F'!wred- 1"V .ht Se I .... in tie
-N--o(CItitqg o-yte o-- Loorizea&es.

Initial Ballistic Function

We wi.] designate coordinates and projections of velocities of

th"o  nX. ,,le in the nor;rotating system of coordinates rj at the

iri:' - r:. of tlhc eni of tne tower,. d-f]light section of itz flight

'. : .-t .v,.Lv., ,.:; l ,tters r , , na u,, u m : .,

JZ



are similar to designations (2.1.1) introduced earlier for quantities

X, Y, z and v X vY, Vu, which refer to the starting system xyz. Thus,

(Z) L n ,(a) - o C (a) ,- L,

1 (o)m- ul.,(@) -v,. ", ur,~. (2.4.1)

Setting in equations (2.2.5) and (2.3.4) U - ha, we obtain expres-

sions of quantitles x, y, a in terms of F, n, ; and a and also

quantities vx. v , iV in terms of u,, nP uC, y n, and a. This

allows considering magnitude of range I as a function of values of

coordinates of the missile U(t), n(t) and 4(t) at the instant t = o.

projections of its velocity u (t), u, t) and u.(t) in the nonrotational

system of coordinates tn (at this instant of time) and, finally, the

duration itse1* of the powered-flight section a. In accordance with

formula (2.1.2) we now have

- (z.to yo,, ,,w. V,) M ( t , f,uu: ,). (2. 4.2)

it ir eaz:v to explain why in this case the range I clearly depends on

variabic o. Actually, the position of the rocket relative to the

earth at the same values of its coordinates in the nonrotating system

nC suostrzntially depenas on the position of the latter with respect
to stariin, system of oord!oates xz connected to th4 earth, i.e.,

o, angle €t : ''. Thc .,me refers to magnitudes of" projections of

the e: tcr -f ve,.ty of the missile in the etarting system at the

t :in of termnaticn sf the powered-f.igh. section.

Calculated values of parameters of the end of the powered-

:'fllrh' ctlon 1n the starting system of coordinates x*, ,, z*,

0, v, arid v. correspond to calculation values of parametev b *

n*, u!, u*, a in the nonrotating system En . They are

connected with each other by equations (2.2.5) and (2.3.4) or (2.2.4)

and (2.3.6 , in which it follows to assume s - Uc*, considering 0*

as the designation of the calculated duration of the powered-flight

scuIr ;'f flight of tne missile. It is ,;bvious that in czordance
-'ii r ur. a . . ,



C'- 5 (X.. z. V1 V.0) - I(', ,% o. U;. U, ;) (2. 4-.3)

where j*, as previously, is the rated value of the range.

The difference Al between the magnitude of the actual range of

the missile i and its calculated value V4 can be represented, similar

to equation (2.1.5), in the form of the expansion

AL - (I - F) -+ ( - q1) A+ (C - ) + (at - a;) +

ee

+CU)+H.U (2.4.401

where terms of the second and higher order relative to differen2es

are dropped

In contrast to the expansion (2.1.5), entering into equatlon

(2.4.4) is a term of the first order, which contains by a factor

the difference a - 6* between the actual time of the powered-flight

section of flight of the missile a and its calculated value of. The

same difference is contained by a number of terms of expansion

(2.4.4) of a higher order. The reason for this fact was already

explained in the beginning of this section.

Derivatives ._. , . a are themselves functions

of variables t, n, 4, u, Un, U and a. In the expansion of (2.14.4)

they should be taken at calculated values of enumerated variables

, ~,. {* u,. u*, zy oi, and, consequently, for the specific

assigned flight of the missile arv constant qu-.itiit. - ballistl

coefficient, which refer to the nonrotating system of coordinatos.

Let us show that they are all expressed in terms of ballistic

coefficients of the starting system , i' " ', # and

Actually, according to rules of differentiation of complex functions,

specifically, we have:
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- +-~at at at of or 1O t8s, O , 1h

X+ (2.4.5)

Analogous expressions take place for derivatives , -, . ,
Dl

and for the partial derivative . equation

at Oat arat l . 1 'a ,'_ , 40'1 &V aD,
-. . *,g + + . (2.4.6)

is valid. Entering into enumerated expressions, the partial deriva-

tLves cf variables x, y, z, v V s with respect to variables E,

r, 4, VC V , V and a are formed by means of the application of
appropriate operations of differential equations of the type (2.2.5)

and (2.3.5), in which it follows preliminarily to set t a and

Thus, for instance,

-W -- (t -P) sin .s+(, i . s

U UI- (t - 1) USIn Us+ (Lu. sin VC,+n Cos.Us) N +

+ (In sin U - moos Us) up! + V'I ('u4 - ,)sin Us +

+ I M+ Mri+ nOens U's- tCosUZI,.

if now in equation5 (2.4.5), (2.4.6), (2.11.7) and ones similar

to them, we assume the values of all variables equal to the cal-

culated values, then thus the desired coefficients in expression

(L.4.4) will be completely determined.



V - will assume that as a result -f the sma'l deviation in the

reI m1 ntion of the missile from the calculated in the expansion -A,
(2. .A), the terms caused by the so-called lateral deviation in the

Z e Man d -- u;4 are small in comparison with other

."rMs. '\t a -eslt the difference between the actual i*nd cAIcU! :ted

:':ght ringce of the missile Al can be represented by the appr.xinate

-V) + (,q " ql)+

51 81 81 81 81
'.ht re ,- 0- , 0- and , as was already shown above, are number:)

are completely defined by the selected calculated !notion cf

.:xprez:.:ion ( .1i.b) ,orresponds _to the followi i L±i:.

• zr, :i. r, which we call the initial ballistic J'unction:

a(t) M l(g)-ol -- +I l8(- A+ I U.( M ;I

.-. .,.uj.. +-. . .-

.r', ~ *.t , U " , t ) and a (t) , as refore, are mcvi:.g ,-rainat:l:

In w>roject !, no )f velocity of the missile In the norir,'t:itinL sw -,,

f -.ngirze of the ml:;sile is turned off --t a. .:. t
" ' ,. ** . t:, t, , - . A,' Vq , '-. . .. (2 . 1 1.] a nd (2 .14 .8 ) t L. w:: , _ , "

t:. I ii.,t:Ltc fc.In(.4. 9) correspondjing to thlt3 irst'tnt1 cuv'rvcL

-t' tne second order determines the error in tie fiight

"tn.ge I" t"le :IsciPe. To avold thls error, ont. ,nould turnr of' ,

,he mis-sile at the -stant when the Lca.listL' functicr-
* ' u'n.; L' " ...... hus, trie ne ,essary instant ,_' %he swit,:,i,..

e by % -,. ,o , " -T-, ttor



k~) r~+ fTIMjQ)-iJ. .+ (u()- ul j +
Y 0. (2.4.10)

Equation (2.4.10) will be called the initial balli8tic equation.

The basic content of subsequent sections of this chapter and

also Chiaoters III and IV consists in the construction of a series

rf other ballistic functions, with the help of which it is possible

as simply as possible to solve the problem about the inertial control

of" the flight range of the ballistic missiles. They all are obtained

by means of certain conversions from function (2.4.9) and different

presentations of coordinates and projections of velocity of the

mlislie in the nonrotating system nC in terms of current readings

of integratoro of accelerations.

5. Differential Equations Which Determine Current
Cocriinates of Motion of the Missile

The m nst natural, but, as it appears, not the simplest, method

:f c -nstruction of the left side of the initial ballistic eauation

(2.4.I0) aboard the missile is the preliminary obtaining of most

noving j.:'dlnates F,(t) and q(t) by means of solution of zne dif-

:'crentl eouati)ns. wnich connect these coordinates with current

a-ndln, .,f wo newtonmeters. The axes of sensitivity of the latter

s ncuI I -- ntain the fixed directions, respertively, parallel to axes

. .a.. the rionrotating system of coordir ;es & Readings of

the :entioned newtonmeters are projections a. t) and a (t) of the

Lparerll acceleratlon of the missile on the axis and n. According

tr e 2tifn (1.4.i) of Chapter I, in this case we have

at (9) - WO) - A. a(ll.) -uf WqM A (2.5.-1)

W (25.2)

: r- p.;.ecti~no on axes and n of the real a:celeration of the

:'. .t~ive t the f'lxed system cf coordinates Mn(, and



A- A !|($). ,(4). CCV); 1.
(2.5. )I It 0|(). 11 (t). C (1k, 11

are, respectively, projections of acceleration of the force of the

earth's gravity, which depend in evident form not only on coordinat

of the missile, but also on time t. For an explanation of the last

fact let us note that even at the point with constant coordinates

relative to the nonrotating system &n; the acceleration of the forc

of gravity is changed with the course of time. Actually, with

respect to the system of coordinates &n4 the position of the earth

is continuously changed. At the same time the field of gravity of

the earth does not have radial symmetry, specifically, as a result

of the deviation in its form from a sphere. If the last fact is

disregarded and the earth is considered a sphere with radial and

symmetric distribution of density, then projections of acceleration

of the force of the earth's gravity will be represented by equations

Am~IRd 1. -low3I~~ (2.5.4)

no longer dependent in evident form on time. Into them f0 is the

value of acceleration of the force of gravity on the earth's surface

examined as a sphere of radius R, and

is the distance between the missile and center of the earth. Because

of the smallness of the lateral deviation in the rocket V(t' In com-

parison with the radius of the earth R, this coordinate in equation

(2.5.5) can be cropped. Correspondingly, it is possible to drop

coordinate r (t) in equations (2.5.3), considering the effect of this

coordinate on the magnitude of acceleration of the force of gravity

unimportant. Then relations (2.5.1) can be considered as a combina-

tion of two differential equations

(2.5.6)
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for the search of desired functions k(t) and n(t) on the given

current readings aE(t) and an(t) of two newtonmeters.

The direct Lolution of the system of nonlinear differential

equations (2.5.6) aboard the missile for the purpose of seeking the

current values of coordinates F(t) and r(t) it is possible by means

of the use of a rather high-speed computer. In the subsequent two

chapters the approximation solution to these equations, which in

principle can be used in the system of control of the flight range

of the ballistic missile in the presence of onboard of its newton-

meters or integrators of accelerations and simplest computers is

used.

§ 6. Auxiliary Relation Connecting Magnitudes of

Ballistic Coefficients in the Nonrotating
System of Coordinates

At different conversions of the initial ballistic equation

(2.11.10) one relation proves to be useful, and it connects magnitudes
at 0 1 at at

of the ballistic coefficients and w in the nonrotating

system of coordinates En with projections of velocity u*, u* and

with projections of acceleration of the force of gravity f&(E*, n*;

J*), f (&*, n*; o*), which refer to the instant t = of of the termina-

tion of the powered-flight section of the calculated motion of the

missile.

Let us introduce functions E(t) and n*(t), which are current

coordinates of the missile in its calculated iotion on the powered-

flight section. They satisfy the totality of differential equations

(2.5.6), if in them the current values of projections a (t) and a (t)

of t11( app ,vrt accclration arte replaced by their calculated values

a*(t) and a*(t). Thus,

if - ,( 2 . 6 . 1 )

It a (') + fIt'(0, n*'0; 11.
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Correspondingly, let us introduce functions **(t) and ri**(t), which

are coordinates of the missile in the free-flight section of its

calculated motion. Let us assume that in the beginning of motion

of the missile in the free-flight section the resistance of the

atmosphere is unimportant, and, consequently, the apparent accelera-

tion is absent. In this case one should consider that functions
*A(t) and n**(t) satisfy the totality of differential equations,

which is obtained from (2.6.1) if in equations of the latter we drop

quantities a*(t) and a*(t) and replace variables &*(t) and nr(t)

respectively by C**(t) and nr*(t). We obtain

d-f-orm"(. 4-(S); nl.

(2.6.2)-7- to It' " ) ..

Let us designate the current values of projections on the axes 1 and
n of the velocity of the missile in the powered-flight section with

its calculated motion by u*(t) and 0(t), and by u**(t) and u**(t) -

the corresponding quantities which refer to the free-flight section.

We have the evident equalities

_.f-e, ,(t,. k (2.6.3)

and, similar to them

The powered-flight section of the calculated motion of the missile at

the instant t = a* will pass over into the free-flight section, whence

it follows that

r on - r (do) - r. q" W) - I- 01' - fr. ( 2.65 )

and also

' - '- .3 4. (2.6.6)
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According to equations (2.6.1) and equations (2.6.5) for the end of

the calculated powered-flight section,' we obta.in

-5--- 4; (*') + A W . ''
(2.6.7)

.- ') + 4 W, ('; 4).

Similar relations can be ootained on the basis of equations

(.6.2) and the same equations (2.6.5) for the beginning of the

calculated free-flight section. They have the following form:

it wj!m(.v ; a), Wijo) (2.6.8)
I i

Let us examine now on the calculated free-flight section of

flight of the missile the certain instant t - tP which follows
fnd after the instant of the switching off of the engine t = o*. Correct

th tc sr.9Lalness of the second order we have expansions in Taylor series

fcr coordinates of the missile El and n., which refer to this instant,
on. namely:

-6 r-# 03 t" (61 + (11-")
(2.6.9)

- 0,) (a' + (t-,

or, taking account equalities (2.6.4), (2.6.5) and (2.6.6),

"+ (is--l U;, TI- Tr +(VI,- al U.. (2.6.10)

e atenat Similarly for projections u2 and u of the calculated velocity ofh]ence Si il rl

the missile aW Lhc merntiouied instant t = t we have

'In designations of the type d&(o)/dt it follows, of course, to
consider, that from the beginning an operation of differentiation of
th. a;.proprlat.- function is produced, and then the va' ue shown In
parenthesis c givcer to the argument.

rI



P110 G*) (1(2. 6.11)

+d

*q " "l (t1) "- m" 6') + (t1- o')dU

On the basis of equations (2.6.4), it is possible here to produce

the following replacement:

(2.6.12)

Taking into account, furthermore, equality (2.6.6), and also rela-

tions (2.6.8), we obtain n

t

Nj +(t~i J&(V ir;d*L(2.6.13)
8 ; + (81 -9. 11 W .W; €)

Let us imagine such a motion of the nissile in .hc powered-

flight section different from the calculated, as a result of whic.

at the instant t - t it proves to be at the point with coordinateF

(i and nI, possessing a velocity the projections of which on axes

&land n are respectively equal to quantities u and u If at this

instant t - t the engine of the missile is turned off, then the

following free-flight section of its motion, because of the unique-

ness of solutic-1 to the problem of dynamics completely coincides wh

with the calculated. Actually, both motions are such that at the th

same Instant t - tI in them positions and velocities of the missile co

relative to the system of coordinates &nC coincide. Furthermore,

when t > t1 they are subordinated to the same totality of differential

equations, which refers to the free-flight section of its motion.

Thus, at such a powered-flight section the rocket will not nave an

error in the range of its flight. Consequently, parameters of the1 1

end of the powered-flight section of its motion El' n, 'd an u I

should satisfy the initial ballistic equation (2.4.10), i.e.,
or:

+ '- 1 +
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Replacing here quantities 1 and n, by their expressions according

to equations (2.6.10), and u and uI1 in accordance with equations

(2.6.13), we obtain after, reduction to the common factor t 0

equality

+a W. .,. +

+/1(' '; al + -0, (2.6.15)

which connects the ballistic coefficients W-g SK and in the

nonrotating system of coordinates &nr with projections of accelera-

tion of the force of gravity /&(t, v1;, a)',/, (t, '; a*) and with projec-

tions of velocity of the missile u* and u4 at the calculated Instant
( n

;f the switching off of the engine. -

Let us exclude from equality (2.6.15) projections of accelera-

tion of :he force of gravity by means of relations (2.6.7) and use

t.ons (2.6.3). As a result let us obtain the new equality

W + +o,
(2.6.16)

which will be used in the following section during the conversion of

the expression of the initial ballistic equation (2.4.10) tc the form

convenient for applications.

§ 7. Isochronal Variations of Coordinates and
Projections of the Velocity of the Missile.

Basic Ballistic Equation

With the Juxtaposition of the real and calculated motions of

the missiles, let us call the isochronaZ variation8 of its co-

ordinates the differences

ft()- E()- r(. an (- q()-t'(1). (2.7.1)

42

i-



Similarly, let us introduce isochronal variations of projections of

velocity of the missile

(t)- U(Q)-nt(t), O()- u(f)--(Q) (2.7.2)

and projections of the apparent acceleration

aft- a(t)- a(), 01- a,(q-a(). (2.7.3)

We will consider the enumerated isochronal variations small quantities,

the squares and products of which can be neglected. Thereby, it is

proposed that the problem of thrust of the engine both in direction

and in magnitude is produced to a sufficient degree accurately.

Functions E*(t), n*(t), u*(t), u*(t), a*(t) and a*(t) refer to

the powered-flight section of the calculated motion of the missile

and, consequently, are determined at values of the argument t not

exceeding the duration of this section a*. At the same time in

equations (2.7.1), (2.7.2) and (2.7.3) functions (t), n(t), u(t),

u (t), a (t) and a n(t) refer to the powered-flight section of the

real motion of the missile, the duration a of which can be both less

and more than the calculated value a*. Therefore, for the complete

certainty of variations 6&(t), 6n(t), 6u&(t), 6un(t), 6a&(t) and

6a (t) in the whole time interval of the powered-flight section of

the real motion of the missile, one should agree upon what is under-

stood by functions &*(t), n*(t), u*(t), u*(t), a*(t), a*(t) with

argument t somewhat exceeding quantity a* (within 'lmits of the

allowed variance of duration of the powercd-flight section for the

specific type of missile). If one assumes that the thrust cf the

eiglie with termzlatlon of the powered-flight section is locwcredi

grai-.'.Il or by stages, then for thec functicn. .. :hn t > a* It i 7

natural to take, respectively, functions &**(t), nf*(t), uU(t) and

*(t), which refer' to the calculated free-flight section and assume

functions a*(t) and a*(t) equal to zero. In this case it follows to

expect that the isochronal variations (2.7.1), (2.7.2) and (2.7.3)

will be small at the short time interval directly following the

calculated Instant. or the switching off of the engine.
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For missiles with the sudden switching off of the engine, on

the contrary, it is more preferable to consider functions V(t),

n*(t), u*(t) and u*(t) when t > o* equal to their calculated values

calculated on the assumption that the- engine of the missile at the

instant t = a* was not switched off. Here the isochronal variations

(2.7.1), (2.7.2) and (2.7.3) again can be considered small.

Let us use now equations (2.7.1) and (2.7.2) for isochronal

variations of coordinates and projections of the velocity in order

to transform the initial ballistic equation (2.4.10) by which, as

was already mentioned, the necessary time of cessation of operation

of the engine of the missile for its hitting of the assigned target
is de-termined.

Let us present in the beginning equatior (2.4.10) in the

following manner:

+M V JN 1q -1 ) at) -[r (t) -,) 8
+ 11%.-, M -a (0 ;,),; +

+ +f-)-;, + -al (2.7.4)

Irto, the lep't side of the last equation let us substitute expressions

for Isochronal variations of coordinates and projections of the

vciocity of the rocket, according to equations (2.6.5), (2.7.1) and
(.).... In its right cide lct u. ex-pand each of the funct.on "*(t),

rj4'*,', "~(t), zu(.) in Taoylor -ti.es near the value t uO, retain-

i ; ~.thc c,_,3on on]y tcr. of th fir.. order of sWallness. Wc

obtain

at1at ()
4 () wc-+ q M) + Mu ( + am (t)u

all du t da 8U J3

+ '*(*') 81 +d'*(s') at at (2.7-5)
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The right side of the last equation can be considerably

simplified if we take into account equality (2.6.16) of the

previous section. As a result we arrive at the following equa-

tion:

rn~(~t) (e~) .-(e) ~.(2.7.6)

which, subsequently, we will call the baeic baiZtisc equation.

For the actual use of equation (2.7.6) in the system of inernial

control of the flight range of ballistic missiles its left side should

be constructed aboard the missile at current readings of newtonmeters

in the form of a certain electrical or mechanical magnitude.
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CHAPTER Ill

APPROXIMATE PRESENTATIONS OF THE BAI.LISTIC EQUATION
DETERMINING THE INSTANT OF SWiTCHING

OFF OF THE ENGINE

§ 1. Differential E uations for lsochronal
Variations of Coordinates of the
'Missile in the Powered-Flight

Section of Its Motion d

In the previous chapter there was obtained the so-called basic

b .,listic equ:7ti n (2.7.6), which should satisfy parameters of the

end of the powered-flight section in order that the rocket would

not have an error in the range of its flight. For the construction

,.f the left side of this equation, it is necessary to know aboard

the missile the isochronal varia.ions of coordinates 6t(t) and 6n(t),

and also projections of the velocity 6u(t) and 6u (t). The latter

are, of course, time derivatives of variations of coordinates, i.e.,

The coordinates themselves V(t) and n(t) .f the real motion of

the missile in the powered-flight section satisfy the totality of

d!fLcr(_irlial equatlu,, (',.5.6), and coordinates of the calculated

motior: - totality (2.6.1). Let us form the differences, respectively

of the left and right sides of these equations and equate them to

each other. 'Taking into account equalities (2.7.1) and (2.7.3), we

obtair,

,.6



'"q M (9) +/ I" (0 6t a(9). q"'(f) + q (t); 91 -

-. (3.1.2)

In the right sides of the last equalities we can use the

expansion in the Taylor series of the function according to increases

in two of its a.rguments. Retaining only terms of expansion of the

first order relative to variations 5S(t) and Wt) and carrying out

simplifications, we will arrive at the following totality of two

linear differential equations:

(9) + att M + W/ a (9).
JF'-()+ ) (3.1.3)

s*- ,(1) + !' at(.)+ a ()

The desired functions of these equations are isochronal varia-

tions of coordinates of the rocket 6t(t) and 6n(t). Initial condi-

tions for them can be obtained from the fact that at the instant of

the launch, i.e., when t - 0, coordinates and velocities of the

missile are the same both in real and in calculated motions. Con-

sequently, according to equations (2.7.1) and (2.7.2), we have

at(0), O, aq (O) = 0 (3.1.4)

and further

.o)-"(°)- ,9 - °"  (3.1.5)

The right sides of equations (3.1.3) contain variables -

isochronal variations of projections of the apparent acceleration

of the rocket 6a (t) and Sa 1(t). In accordance with equations

(2.7.3), in principle they can be obtained aboard the missile by

means of a continuous formation of the difference between the real

rcading of the appropriate newtonmcter and its current calculated
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Coefficlents of equations (3.1.3)1

' - --W W -' -W (3.1.6)

should be considered as time functions, known earlier for each

specific case of flight of the missile. In order to obtain these

coefficients, in accordance with rules of expansion in Taylor series,

in partial derivatives of functions IA(t,'; t) and A(Lq;f) according toS
varLables & and n, it is necessary to produce replacement of the

latter by functions *(t) and n*(t). Functions t*(t) and ri(t) are

earlier known according to calculated motions of the missile in the

powered-flight section. Thus, if aboard the missile continuous

(without substantial lag) integration of equations (3.1.3) is carried

out and thus magnitudes of functions 6E(t), 6n(t), 6u&(t) and 6u n(t)

become known, then the left side of the basic ballistic equation

(2.7.6) can be constructed by means of multiplying and adding devices.

Similarly, with the use of a clock mechanism the right side of this

equation 4-s constructed.

§ 2. Approximate Expressions for Isochronal
Variations of Coordinates and Projections

of Velocity of the Missile.
Simplification of the
Ballistic Equation

The simplest method of the use of integrators of accelerations

in the system of control of the flight range of ballistic missiles

is based on the simplification of differential equations (3.1.3).

in them terms containing as factors the isochronal variations them-

selves of coordinates 6&(t) and 6n(t) are dropped. This is equivalent

to the assumption about the fact that the effect on the missile of

f, rcv of gravity with its actual and calculated motions can be

.onsidered practically equal. Such an assumption is admissible only

'The equality in (3.1.6) follows from the fact that projections
ci' acceleration of the force of gravity are partial derivatives of
tne potential of gravity according to appropriate coordinates.



with sufficiently small deviations In the real motion of the missile

from the calculated, i.e., at increased requirements for the accuracy

of ction cf the missile according to the assigned program. Equations

(3..3) are replaced in this case by the approximate equalities

-g-w (, A.()u- &21,- (3.2.1) Here

path

whence allowing for relations (3.1.1), (1.5.4) and (3.1.5), there are

equations for variations of projections of the velocity of the missile

where

6 a(9) - &C. (S). _t - ().(3 2 )
am* (t) - S' s " i, (t) dt = 6V, (t).

- ~J~ .~,a 1 t~d=6V.1).are p

Quantities 6v (t) and 6k'V(t), which enter into these equations,

can ,e calleu isochronal variations o- the apparent velocity cf the

missile. According to equations (2.7.3), they are differences their

[ 8va(m) - mt--K[(s). 3v (t)- V (t)- -'(), (3 2 3)

tivel
in which equat

U I

v 1(t) - 1 V t, V,(I)- a, (,)di (3.2.4) of th

are projections of the apparent velocity of the missile during its

actual motion and

V;( )- V'( . t ) ( ) d (3.2. )
and a

are calculated values of the same magnitudes. 
and

Integrating in turn expressions (3.2.2) with respect to time,

we obtailn the following equotions for isochronal variations of

ccor.;Inates of the missile:
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R (a) - aft($) d's , VO()d- = .S(f),

(3.2.6)
8q(Q) - II 8dt)d'" = S!'V.Q)d- 6S(Q)"

Here 6S(t) and 6S (t) are variations of projections of the apparent

path, i.e., differences

C (t).)$S)-Q-4). 8S(3.)27()-(),

where

(0- Vtr~dt 6'10--V~lldt(3.2.8)

are prc)ections of the apparent path of the missile and

S1(t 1V;(adt S(l)) -e .V;(t)dt (3.2.9)

their calculated values.

Let us substitute now expressions (3.2.6) and (3.2.2), respec-

tively, for 6E(t), 6n(t), 6u (t) and 6u r(t) into the basic ballistic

equation (2.7.6), which determines the instant of the switching off

of the engine. We have 4i

sIQ()* + &S s 'V t V t
• I

Y - ) [M (e)+ .;(e)(3.2.10)
i

Replacing here variations of projections of the apparen, velorlty I
and apparent path by their expressions, according to equations (3.2.3)

and (3.2.7), we obtain

t)S 1)+ is. (t) -S;tI. 1i +

v (a) 2L+ w)(3.2.11)
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The last equation can be consid.rably simplified, if we note

that correct to smallness of the first order inclusively the follow-

Ilg expansions in Taylor series take place:

V; (0 = vt (a) + (t -:0' a; (4'), ( . .2(3.2.12)

V; (") V (a) + (9- a) a*. (0).

By means of these equalities equation (3.2.11) is reduced to the form

0t at

St (S) - S (9)1 .+ Is. (-), (8) 1- + Vt (t) +

+ V~),(O- - ve) + V; (e') -- (3.2.13)

where terms dependent on time in evident form are already absent.

Thus, the basic ballistic equation (2.7.6) can be substituted

bly the Approximate equation (3.2.10) or the equition (3.2.i3)

equivalent to it. For the construction of the left side of equation

.2.13), the presence is necessary aboard the missile of two

integrators of accelerations, axes of which during the whole powered-

flight section of flight should retain directions, parallel respec-

tively to axes F and n of the nonrotating system of coordinates n .

Purthermore, there must be a computer, which includes in its com-

position two additional elements for the time integratlon of current

readings of the very integrators of accelerations and a special

element for the reproduction of the calculated current values of

projections of the apparent path S*(t) and S*(t).

§ 3. Construction of the Ballistic Equation by_ Means
of the Use of Readings of Two Integrators

of Accelerations with Special
Orientation of Their Axes

of Sensitivity

There can be considerable interest in the possibility of the

reduction In the number of elements of the computer system of

l rertlal determinattn of the flight range of the balistic- mssile
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by means of the proper selection of orientation of axes of sensitivity

of integrators of accelerations. It turns out that there can be

produced a total of one additional integration of current readings

of integrators of accelerations, and not two, as in the method of

the construction of the ballistic equation given in the previous

paragraph. For this purpose, as will be shown below, axes of

sensitivity of integrators of accelerations should be parallel to

certain directions fixed in each specific case of flight of the

missile (so-called A- and u-directions).

Another method of simplification of the .system of inertial

control of the range with the use no longer of an integrator of

accelerations, and the meter of the apparent accelerations with the

changing orientation of the axis of sensitivity, is stated in the

fo]lowing paragraph. Subsequent modificaticn of this method is

given in § 5 of this chapter.

Tilus, let js position the axis of sensitivity of one of the

irtegrators of accelerations in the plane &n of the nonrotating

system of coordinates Cn4 at a certain constant angle X to the axis

. The direction itself of the axis of sensitivity of this integra-

tor will be called the X-direction (Fig. 10).

On the basis of equation (1.6.5), after the replacement in it

of letters x, y and v, respectively, by &, n and X and also angle a

by angle X, we obtain equation

V'%(8) -- V& (9) ws + V%(M SW X, (331 )

whl h expresses; the projection of the apparent velocity of the
missile or, the mentioned A-direction by its projections on axes

:iri ri. It is obvious that in accordance with formula (1.4.7)

V (t) - A t. (3.3.2)

where a (t) - component of apparent acceleraticn along tne same A-

X52!
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Fig. 10.

Thus, quantity V (t) is the current reading of the integrator of

accelerations with the axis of sensitivity, oriented in directicn X.

Let us select angle X so that there would take place equalities

~m~os1.~m~I*Lan(

.ere, as it is easy to see (see Fig. 10), quantity

N-~~ y(-) 3
ve

is for each specific case of flight of the missile, an earlier di

known quantity. an

Using equations (3.3.1) and (3.3.3), let us transform the sum

of the last two corresponding terms of the left side of equation

(3.2.13). We have

V4 (s) + V. ) A- ,MVC(tlcos + Vj(t)9lnAl"

- M aQ). (3.3.5) eq;

Tntus, the veduced sum correct to the constant factor M is

determined by the reading of the integrator of accelerations, the



axis of sensitivity of which is located along the X-direction.

Au a result of relat.4rin (3.3.5), we have

(d) + V . ,(' 1(0). (3.3.6)

Similar to relation (3.3.5), we Lan obtain the following

equali ties

/4(t)- + 31(t) = -N ISO)- c+s.('). si A -Ns.,)- /

AJ + S (1) N +(;I)- -. Si (1) Cot P + $,(t) An, sl I NS;lt). ( 3.3.7 )

In them angle w (Pig. 11) is determined by means of equations

N - Nlp. (3.3.8)

and the constant factor N - by equality

N- U0. (3. 3.9)
._

In right sides of equations (3.3.7) S (t) -projection of the

vector of the apparent path of the missile on the so-called P-

direction, which forms the constant angle p with axis (Fig. 11),

and S*(t) - current calculated value of this projection. By analogy

with equations (1.6.7) and (1.4.7),

so! V

Let us turn now again to equation (3.2.13). Taking into account

equalities (3.3.5), (3.3.6) and (3.3.7), we obtain

MV. e) + NIV s, t) -S()I - MI (a). (3.3.11) f

5I
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Fig. 11.

The right side of the last equation is a constant determined

for each specific case of flight of the missile. This magnitude

correct to the constant factor M is equal to the calculated value

of projection on the X-direction of the vector of apparent velocity

of the missile at the calculated instant of the switching off of its

engine t = a*. If in equation (3.3.11) we introduce another designa-

tion'

I , (3.3.12)

then it can be reduced to the following final form:

V1,(9) + P Esp.(8)- 50 (9)] - rA 01. ( 3313 )

For the construction aboard the missile of the left side of the

ballistic equation (3.3.13), an additional integration of current

readings of only one integrator of accelerations is necessary with

the axis of sensitivity oriented in the u-direction. Furthermore,

the reproduction of the calculated values S*(t) of this repeated

integration is necessary.

'Let us note that coefficient p, similar to factor l/t in equa-
tion (1.6.11), has a dimensionality opposite to time (in particular
-5. 1
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§ 4. Construction of the Ballistic Equation witr1
the Help of a Special Meter of

Apparent Accelerations of
the Computer

Let us examine another conversion of the ballistic equation

(3.2.13), as a result of which the possibility of solution to the

problem of' inertia! control of flight range of the ballistic missile

hy me-iris ,f a single newtonmeter is explained. Its readings in the

,omputer should be integrated after preliminary multiplication by

Aertain assigned time function. The axis of sensitivity of the

newtonmeter in turn change its orientation of the nonrotating system

of coordinates according to the azsigned law.

Let us turn, first of all, to the conversion of the first two

corresponding terms of the ballistic equations (3.2.13). According

to equations (3.2.4) and (3.2.8) and also the known Cauchy equation

of the conversion of the repeated integral into a simple one contain-

i~,mr e u. v, v th'esh'Yro in the form 1-f the parameter in the sub-

Lrtegrai expression, we hive

S~(I)~V 1 (tdL =(3.4.1)

where T - nrew variable of integration. Representing here the

difference t - T in the form

S(-, 0 (iW- ). (3.4.2)

we cbtal equality

* a

() t -g ' (-) d + (a'- v) at(,) d,. (3.4.3)
* S

fi.turning In the last integral of the right side of this

equality tco the initlAl variable of integration, t ar." taking into

acc.:un:t equu~i, ( . 2.4), we obtain



P.() ( - al ) ( + ('- ,) (1) ,,. 3. 4. 4)'

Let us note further that correct to umallneszq cf the first order

incluslvely we can assume that

the
(3.4.5)

n Dns
Equating to each other differences of tle left and right sides

of the last two equalities, we have

4 -- ()(,-t()t-si(6) +

+v -- o) IV )- V;l)1 <3.4.6)

equa
The last-term of the right side of equaliy 3.4.6) ha. a Inco

second order of smallness and can be omitted. Actually, as a tion

s'-., 2' . e pr'oxinity cf the real anu calculated instant =S

anu t of of the switching off of the engine quantity V&(t) dlfferx

little from V(a*), and this latter is distinguished from V*(o4) by

a small isochronal variation 6V!(a*). Therefore the difference

V (t) - V (o#) is a 3mal] magnitude, which in equation (3.4.6) is

multiplied ir; turn ty another small difference t - o.

Thus, correct to smallness of the second order

Iii perfect analogy

,11- ,,1- \£- ),@(,)dt - S.1(). ( 3. .-)

Substituting dilfferences (3.).7) and (3.4.8) into equation

i3.2.13) and repiaing In, it, furthermore, quantities V (t) and V (t)

Lv t 1''!" pre:erit-stoins, according to equations (3.2.4), we obtai:.
a ft F r i ;:l i I a t I on,
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- + * S S(o) (3. 4.9)

-m r'ighl 6ide u.' the last equation for the specific flight of

the roc!ket is a certain constant, which we designate by the letter
.n ac',ordnr, e with equations similar to (3.3.6) and (3.3.7). this

constant ;an also be represented in the f-rr,

N- (") + 46 (a). ( 3.4.101,

Conversion of the integrand expression of the left side of

equation (3.4.9) can be produced by the same methods which were

incorporated in the previous section. Let us present in this equa-

tion alternating factors before projections of the apparent accelera-

- , : ( ) in 2' fo]lowing manner;

(3. L.ll)

X (t)sinx I(t).

I

in ac crdauice with the 1ast equalitle,

N N+ W,, C +i W+w t

(3.4.12)

The second equaticn (3.4.12) determines K(t) changing with time

arij-t betwet-n the so-called K-Jirection and axis (Fig. 12).

I

____ _________



Fig. 12.

Using equations (3.3.3), (3.3.8) and (3.3.12), expression

(3.4.12) for variable K(t), after comparatively simple conversions,

can also be presented in the form

. ++ -(3.4.13)

Let us produce in the left side of equation (3.41.9) replacerer:t

of coefficients according to equali.tes (3.4.10) and ,3.4.11). ..

obtain the relation

JIf()([a(t) cosu(L) + au(L)ss'a()JdS C ( 3.1411)
(34.14)

S

where in Integrand expression the sum

a() cos x (t) 4- a, (t) sinxt)= 3 () (3. x1. 15 )

i6 the projection of the apparent acceleration of the missile towaru
the mentioned variable K-direction (Fig. 12), and constant C is

expressed by equation (3.4.10). As a result we obtain the baIlIst~c

equation in the following form:

. ()3. 1I=

,st,,,.'±~tLo uf the left .;ide of equatliln (3. .'-.f, bard the

in:, ;-ilf :equlire£- the presen:e of highly i-ccurate V2 v,;--q. y~tem3
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located on a gyroscopic stabilizer for the change in orientation of

the axis of sensitivity of the meter of acceleration according to

the assigned program.

Of course, approximation methods of the formation of the left

side of the ballistic equation (3.4.16) by means of the usual integra-

tors of accelerations, for example, by means of replacement of func-

tions K(t) and K(t) by their certain mean values.

§ 5. Inertial Control of Range of the Ballistic
Missile by Means of Longitudinal and

Standard Integrators
of Accelerations

In systems of control of ballistic missiles one can use the

so-called standard integrators of apparent accelerations, the axes

of sensitivity of which are guided in plane &n at the assigned angle

to the axis C according to the progrn of flight. The control of

fiigL' contr'o-s is producn% Jr this case so that together with the

fulfilling of the assigned program of the change in pitch of the

missile (i.e., change in angle between its longitudinal axis and

axis C) the reading on the standard integrator would be reduced to

zero. The angle between the axis of sensitivity of the standard

integrator and axis of the missile itself is selected close to a

straight line.

Mhe ase of the standard integrator of the apparent accelerations

in the system of control of motion of the missile leads to stabiliza-

tion in the assigned direction of the resulting force of thrust of

the engine and aerodynamic forces acting on the rocket. Thus, the

direction of the vector of the apparent acceleration of the missile

(h'v."vcr, of' rourie, ijut its magnitude) is stabilized. With the

kjiu n approximation, being distracted from errors of the system of

eontrol, it can be considered that the standard integrator controls

the flight of the missile so that the projection of the apparent

acceleration on the axis of sensitivity of this integrator would be

'!qua] to zer,_



Let us present in the ballistic equation (3.4.16) of the n

previous section quantity a K (t) in the form of the product C.

S.()-a V)OT ). (3.5.1)

(3

Here y(t) is the angle which forms the vector of the apparent in

acceleration a(t) with K-direction inclined at angle K(t) to axis by

(Fig. 13). ne

of

of

to

Ce

Co

la

\in

of
J01

Fig. 13. of

mi

Function K(t) is determined by the second equality (3..12), ac

and the direction of the apparent acceleration is changed accord'-rg 0

to the assigned law. Because of this the magnitude of angle y(t) a

:,ould be considered as a known function of time.

Producing in equation (3.4.16) the replacement of quantity

a (t), according to equation (3.5.1) we will arrive at the follow- wn

ing modification of the ballistic equation: its

* Q),*dt m C. (3.5.2) t h,

ur

I, . the alternating coefficient ,b

(1 ) C o s (8) (3.5.3 )_
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should be considered the known time function for the given cal-

culated case of flight of the missile.

For construction of current values of the left side of equation

(3.5.2) aboard the missile just as earlier (see § 4 of this chapter),

integration of current values of the apparent acceleration, multiplied

by the assigned time function is required. However, now there is no

need in special high-precision equipment for the change in orientation

of the axis of sensitivity of the meter of the apparent acceleration

of the missile. Actually, if this newtonmeter is rigidly connected

to the standard integrator so that axes of their sensitivity would

be perpendicular to each other, then with the proper accuracy of the

control of flight of the missile the apparent acceleration of the

latter (more accurately, apparent acceleration of location of these

instruments) wiii be wholly directed along the axis of sensitivity

of toe mentioned newtonmeter.

w.t! C,: 3-, of accuracy of flight of the missile the newton-

:eter can be fastened directly aboard the missile, the guiding axis

of its sensitivity in parallel to the longitudinal axis of the

mis-ile. The iatter ij ueflected from the direction of the apparent

acceleration of the missile, i.e., from the direction of the resulting

force of thrust of the engine and forces of aerodynamic actions, as

a rule, at small anglec. Because of this, approximately to lay

40MM0).(3-5.4J)

where a0(t.'- projection of apparent acceleration of the missile on

its longitudinal axis.

If, in accordance to the last approximate equality, we produce

the appropriate replacement in equation (3.5.2) and, furthermore,

stihotitute function Q(t) by its certain mean value Q, then we will

jbtaln the approximate equation

, - QvoQ) C (3.5.5)



for the determination of the instant of switching off of the engine

of the missile. Here expression

t

V.(t) S . (t)dt (3.5.6)

is the current reading of the integrator of acceleration with the

axis of sensitivIty parallel to the longitudinal axis of the missile.'

Such an integrator is called longitudinal. As is known, it was used

in the guidance system of the German missile V-2.

Let us return again to equation (3.5.2) and examine additionally

certain approximate methods of construction of its left side on the

basis of current readings

(T (Q)a d(3.5.7)

of the integrator of accelerations with the axl. of' sensiLivity

located perpendicular to the axis of the standard integrator. Con-

sidering the latter equality the left side of equation (3.5.2' is

converted to the form

I"

O f

and can be integrated by parts. As a result, taking into considera-

tion that V(O) - 0, we obtain, according to relations (3.5.8) and

(3.5.2), the ballistic equation in the following form:

q~tVl)- O (tl r() ¢r . (3.5 9)

'Let us note that quantity V0 (t) in equatior, ( because

4.r the variability of direction of the lnngitudinal axis is not the
urojection on this axis of the apparent velocity of the missile in
.he nonrotating system of coordinates (for more detail on this sep
§ cr Chapter I).

6;



The construction aboard the missile of the left side of the last

equation can 3lready be produced by means of only one integrator or

acceleration.

Let us note in conclusion that the same method of integration

by parts can be used for constructing the left side of the ballistic
equat.iicn (3.4.16).

!/
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C H A P T E R IV

INERTIAL CONTEOL OF THE RANGE OF FLIGHT CF THE C 3.
BALLISTIC MISSILE ALLOWING FOR THE

CHANGE IN THE FORCE OF GRAVITY tic)
exp

§ 1. One Method of the Solution of Differential whi
Equations by Which Isochronal Variations of Tn

Coordinates of the Missile with Its

Motion in the Powered-Flight of

Section Are Determined t-

eng

in the previous cr.dater the basiz tallstlc -.. ,atLion (2.7.6) was ak.

transformed to such a form at which its left side ould be constructed isol

dooard the missile with the help of integrators of accelerations. In we

this case Iscchronal variations of coordinates and projections of

velccity of the missile, which enter into the composition of equa-

tion (2.7.6), were expressed by the approximate equations (3.2.6)

and (3.2.2). This corresponded to the neglect In differential equa-

tions (3.1.3) of terms containing as factors the isoohronal varia-

tions S(t) and Sn(t) themselves. As was already indicated in Chpter

III, the mentioned terms of equations (3.1.3) take into account dur- i n "
fig the determination of current coUrdinates cf the rocket changes in

acceleration of the force of gravity because of the noncoincidence of

its actual motion with the calculated. Error appearing from such a

simplification of equations (3.1.3) in the determining of thu range

if flight of the missile is small only at rather small deviations in

its real motion from the calculated. Otherwise It is necessary to of

solve approximately aboard the missile differential equations (3.1.3)

allowing for terrs reflecting the effect of the change in accelera-

tior. , f t:ie fcrcc o" gra',A ty. sol
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Below for tht solution of equations (3.1.3) a similar approxima-

ticn method is used, and it was shown to the author by corresponding

member of the Academy of Sciences of the Ukrainian SSR Yu. D. Sokolov.'

By means of this method the problem of inertial control of range nar

be ,uite accurately solved by the means given in Chapter III with
the help of the application of standard integrators of accelerations

and the simp]est computers.

The Idea of the method consists in the conversion of equations

3.1. ), to their equivalent Integral-differential and integral rela-

tlons with suusequent replacement under the sign of integral of

expressions of Jesired functions by their simplest approximations,

which satisfy, however, initial and final conditions of the problem.

in accordance with this, let us integrate the right and left sides

of equations (3.1.3) with respect to time from the initial instant

t - 0 up to the unknown until the instant of switching off of the

engine t - c, which provides the hitting of the missile on the target.

'zk~ng intc. at- -. ' 1: this se initial co",ditions (3.1.5) for
isochronal variations of projections of the velocity o' the missile,

we obtain tw integral-differer.lal relations

In which, similar to equalities (37.2),

Wit(Y)- I&%t)d. av.(4) = I6.,(t) d (4.1.2)

thc lu.curoxal va:-iations of projections of the apparent velocity

of the missile on axes and n at instant t - a.

'See, for example, Yu. D. Sokolov. One method of observed
solved linear integral differertial equations. - Dop. AN URSR,
1955, No. 2.
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If, however, the right and left sides of equations 3.1.3) are

integrated with respect to time twice: one time within the limits

of't = 0 to the current instant t and the second - also from t - 0

to the instant of switching off of the engine t -o, then, taking

account initial conditions (3.1.4) and (3.1.5), we obtain an addi-
tional two integral relation:

44 81 () dt2 + -sit a ()dtW.

(3( ) - () + WOW (4.1.3)

where in turn, in accordance with equalities (3.2.6),

8S( )m - Vq(t)d - ! , (f) de

Isochronal variations of projections of the apparent path cf the

rocket, which refer to the instant t - a.

In accordance with the mentioned method, one should 6ubstitute

in the right sides of relations (4.1.1) and (4.1.3) functions 6W(t

unrd 6n(t) by 1heir approximate representations, wfich turn into zero

.t the Initial instant of time and respectively into 64(o) and 6n(o'

when t = a. Then values o' quantities 6C(c,, Sn(a), 6u,(a) and

6u (a), found in accordance with the mentioned relations, prove to

be, as a rule, more accurate than those calculated according to

equations (3.2.2) and (3.2.6), founded uporn approxrmate equalitit.-

(3.2.1).

i possible to take as approximate representations 6t(h,) and

In right sides of relations (4.1.!) and (4.3.3), f'r example,

th. .inear approximation

n7



where o - instant of time for which the determination of dezired

functions is produced; in this case a - instant of termination of

the powered-flight section of flight of the missile.

The best results should be expected with the quadratic approxima-

ti. rn of the form

The reason for this is that functions (4.1.6), unlike functions

(4.1.5), satisfy simultaneously initial conditions (3.1.4) and

(3.1.5), which concern both variations themselves of the coordinates

and their tire derivatives at the instant t - 0. Functions (4.1.5)

do not satisfy initial conditions (3.1.5).

Leacilng to ,in even greater accuracy should be the assignment

of functions 6t(t) and 6n(t) in the form of the following polynomials

of the third power

These polynomials not only satisfy initial conditions (3.1.4) and

(3.1.5), but, furthermore, when t = o turn, respectively, into 6&(0)

and Sn(a) and their derivatives - into Su (a) and 6un(a).

§ 2. Approximate Solution of Differential Equations

for Variations of Coordinates Using the Quadratic
Approximation and Also the Approximation in the

Form of Polynomials of the Third Power

Let us examine from the beginning the solution of differential

Qquations (3.1.3) which corresponds to the quadratic approximation

k,;..6). 2uustituting into right sides of reitions (4.1.3)

6



expressions for 6&(t) and Wnt), according to equations (4.1.6),
we obtain

64()M a t d I+! ) 0 td. (41.2.1)

Let us introduce here designations

@AS

foe ~ ()- N' (4.2.2)

where, because of relations (3.1.6),

Au () -hat a).(41.2.3)

As a iebult let; us arrive at the two algebraic equal-ions:

with respect Itc the desired quantities 6&(a) and 6ri(a).

Values of coefficients h C&(a), h&n(a) - h n&(a) and h nn () with

an accuracy sufficient for practice can be taken with argument a
& 0. Actu~lly, the real duration, of the powered-flight section a

only by a small magnitude is distinguished from the calculated a*.

lsotnronal variations 6C(a) and 6n(a) should also be considered as

small magnitudes. Consequently, the error which occurs from the

mentioned replacement in coefficients h && (), h &n(a) and h n (a),

which sruand In the right side of equations (41.2.41), of' the value of

ar,-u.ewnt a by o*, has thE- second order of smallness.

69



Let us designate coefficients (4.2.2) when a a* by the same

letters but without indication of the argument. With the made

simplifications and replacement of the designation of argument a by

t equations (4.2.4) take the following form:

640 64s) AU6 M+ht-V).(4.2.5)&%Qt) - S, (I) + A4090) +AWA, 0 ..

ihre ,hr h are quantities known for the given cal-

flight f the missile, which are small in comparison with

unity (see . 3 of this chapter). Because of this the totality of

equations (4.2.5) is must convenient to solve by means of iterations,

taking 6E(t) and 6,j(t) in the right side of equations (4.2.5) the

basic expressions represented by equations (3.2.6), namely

At () 4Ms(). 64 () 6S.(IM. (4.2.6)

by subsL'iutirg e expi.'esions intc right sides of equations
(4.2.5), we arrive at the following equations for current isochronal

varlation- Df roordinatns ZV() and 6n(t):

(4.2.7)61 () 445 (Iut) t+ A") M. (t)

It iE easy to be convinced that subsequent iterations of equa-

tions (4.2.5) 1eaj accurately to the same equations for 6k(t) and

6n(t), if jnly in the calculations we drop terms with squares and

products , 4 , h -a : , and h n "

To srnirch for \.'rations of projections of the velocity of the

misslle 6U (t) and 6U11(), let us substitute into right sides of

relations (4.1.1) expressions for 6 (t) and 6n(t), represented by

equations of the same quadratic approximation (4.1.6). We obtain

for thv d, .11reu, magrn ude thesi equations
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8ut (a) a 8V1(a) + at (3)r.',td + Ild~t'd,(..8

& s)o NV 4 M + an@) . (0) ( 4d2 .+

Let us introduce designations

(4.2.91,

. , - -- g,, (a) tIdt.

Then equations (4.2.8) are presented in the form

6n% (a) - 6Vt (a) + gu (s) 64 (a) + g, (a) 6 1 (o), (4.2.10)
8u. (a) - av (0)+ gA (a) 8(a) + g,, (a) 6 ()).

Similar to the previous in equations (4.2.10), instead of

coefficients g (o), g,,(o) = g,,(a) and gnn(o), it is possible to
take their values at the calculated instant of the termination of the

powered-fiight section of flight of the missile o*. We designate

these values, respectively, by g&, g~n = g., and gnrl" Let us sub-

stitute further into equations (4.2.10) expressions (4.2.5) for
variations of coordinates 6&(a) and 6n(o) and disregard the products

of coefficients g and h with arbitrary indices. Ultimately we

arrive at equations for the desired Isochronal variations of velocity
of the missile 6u&(a) and 6un(a) with'respect to Immobile system of
coordinates &. Changing in them the designation of at.gument a by

L, we obtain

a,,(u ) - 8V () +, u.S (t) + g'6S (), (4.2.11)

,% (t) - 6V, (t) + g48S, (t) + g,,64 (f).

Equations (4.r.7) and ('.2.11) are the app',>lr, ate solution of the

totality of differentia] equations (3.1.3) in a 'Thrm similar for the
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application ir, systems of inertia] control of flight range of

ballistic missiles.

Somewhat more bulky are equations for isochronal variations of

coordinates and projections of velocity of the missile, if we take

polynomials (4.l.7) for the initial approximations in equations

(4.1.1) and (4.1.3). As a result, similar to the case of the

quadratic approximation, it is possible to arrive at the following

equations for variations of coordinates:

6(t) - (t +3 u- 20) 8S t) + (3. - 2/c.) 8S, (t) +
+ VQU - hv) 6v 1 (1) + ** (/to - a V" (1),

bq(t) n(3A- 21,x) 8&(t) + (t + 3..21,..) 6S1 (t) +
+ ea- ,- Wit )M + U4. '- kl) 6V,4 (1), (4.2.12)

and for variations of projections of the velocity, correspondingly

8I (I) - (3et - 2t.) 8S& (,) + (3gt.- 2-it,) 8S, (t) +

+ It + 4, iUt - g-)i 8V1 (1) + a. (it. - g-.) aV. (),

6a,, (t) - (3g- 21c) A (f) + (3g.. - 21%.) 8S, (t) +

In equations (4.2.12, and .4.2.13), besides designations already:

introduced in this section, quantities 1 , & F.-r, i PTI and J V

$n, 'qr, $ are valued of integrals

of[" I: = a,
74 Oiiadt. ion(e)eh=.\.jIdt,

. \ (4.2.14)

"" *44,(a) t di° :-' "

e O
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I

which they take with argument a equal t. n*, i.e., at the calculated

instant of switching off of the engine.

1 3. Simplification of Equations for Isochronal
Variations of Coordinates and Projections of

Velocity of the Miesile at Extensions of
the Powered-Flight Small in ComDarison

with the Radius of the Earth

Equations (4.2.7) and (4.2.10) and also (4.2.12) and (4.2.13),

obtained in the previous section for variations of coordinates and

projections of velocity of the-missile, can without great harm for

their accuracy be represented in simpler form, which dces not require

preliminary calculation of integrals of the type (4.2.2), (4.2.9),

(4.2.14) and (4.2.15). Actually, partial derivatlves of the accelera-

tions of the force of the earth's gravity . K T tak

part in these integrals, are functions of moving coordinates of the

calculated motion of the missile and, consequently, finally - time.

However, with a small extension of the pcered-fliht sectior. -f' the

trajectory of the missile, in comparison with the radius of the

e:irth, these functions can be substituted by their values, which

refer to the point of the missile launch, and the derivatives them-

selves can be calculated on the assumption that the earth Is a spherp

with a radial distribution of density.

The last assumption, if one considers equations (2.5.4), leads

to the following expressions for the mentioned derivatives of

accelerations of the force of gravity:

!-Z-ZjLm3I'q (41.3.1)

Here E, n and C - coordinates of the arbitrary point of space

and p - its distance to the center of the earth.

73



For the point of th4 missile launch (see 6 1 of Chapter II) we

have

1-t--0 and -- mR. (4.3.2)

and, consequently, at this point, according to equations (4.3.1),

*h 2 4* .3-3)

where there ;- Inro,:;duced designation

S(43..4)

gY
9 "A

In the theory of gyroscopes and inertial navigation quantity

v, determined by equation (4.3.4), is known by the name of Schuler

frequency (v z C.00125 i/s).

Using the approximate expressions (".3.3) for derivatives

and W ir. equalities (4.2.2), (4.2.9), (Z.2.l) and

(4.2.15', we arrive at t..e following simple equations:

hw, () t 's (0) 44 " (0)-O.r,1)-*'
FT " 0.A"0

and also

(4.3.6)

Having assumed in these equations o - 0*, one can present expressions

(14.2.7) and (4.2.11) for isochronal variations of coordinates and

projections of velocity of the missile with the initial quadratic

approximation (4.1.6) in the following final formn:



a,(t) ,=[1 ' .1S Y ).
- b

6MC () b Or W - 64. (437 b
3

e
a, (t) = 6V, (j) + 20eS" (1).

Similarly, for the case of the. initial approximation of functions

6 .() and Sn(t) in the form of polynomials (4.1.7), on the basis of
equations (4.2.12) and (4.2.13), we obtain

30(e -last (8) +i + ("), - (t).

[aI)[- 6Y.Vt) + V%. S(t). (4.3.8)6

Equations (4.3.7) or (4.3.8), which approximately consider the

change in action on the missile of The force of the earth's gravity

(because of the wrotion of the missile not according to the assigned

calculated law), should be more accurate than similar equations

k3.2.2) and (3.2.6) given in Chapter III.

§ 'i. Construction of Ballistic Equations in Which
the Effect of Changes in Acceleration of the

Force of the Earth's Gravity is
Approximately Taken Account

In the previous paragraph equations (4.3.,' rnj *zo 4. 4.8)

were obtained for the determination of variationis uV .-oord]lnatc- arif,
projections of the velocity of the missile with -. Lppr xirnate
calculation of the effect of the change in the fV'rce of the earth's

gravity with motion according to the law which Is somewhat distin-

guished from the calculated. The mentioned equations allo, more

accurately, in comparison with expres.;Arns 3.3.13'; And '3.4. 't)r
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obta1,jed in Chapter, III, constructing the left side of the basic

ballistic equation (2.7.6) aboard the missile, using readings of

the same integrators of accelerations. For this we will use in the

heginning equations (4.3.7) and substitute into equation (2.7.6)

expressions for 6(t4, dn(t.), 6u (t) and< 6u (t) determined by them;

we obtain

1a'( + ve (e, a +0-T -Of
11f~(? a' aq ': , q+

+ t (,) , +I av. (,) 2--

(I- 0) [< (dOf+ 4 :(f) a (4.4.1)

Further, similar to that which was done in § 2 of Chapter III,

let is present variations of projections of velocity SV (t) and

5V (t) in the r-rm of differences (3.2.3) and use equations (3.2.12).

St y L,~: a; JI .- t as In the conversion of equation (3.2.10), termb

standing in the right side of equality (4.4.1) are reduced with

i;'iLar terris of its ieft side. Taking into account still equatiur.-

j.L.7,, we arrive at the equation

I (t);(9) AV + (eSq) -LS)A+ V (1)4..

i ri w.h I c'h

W -- r- W -3- 4- -(4.4.3)

Equa+,ior. (4.4.2) differs from equation (3.2.13) only by
• -ffitents of Isochronal variations of projections of the apparent

path 5S (t) and 6S (t). Such coefficients in equation (3.2.13) dre,

rk-spective1y, partial. derivatives Lf and - and in equation (4.4.2)
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Simiare quantities A' and A' distinguished little from them. Therefore,
t n (4.

subsequent conversions of equat on (h.4.2) can be produced exactly
ran

as in § 3 of the previous chapter. Then instead of equation (3.3.13),

of
we will arrive at the following:

iI r {#}~~(8 + 1 M.. M )- 4. (01 - (e,). ..

in

The left sides of equations (4.4.2) and (4.4.4) are zonstructed
and

aboard the missile with the heip if the same technical means as for

equations (3.2.13 and (3.3.13), i.e., two integrators of accelera-

tions and the appropriate computer, which includes elements of

repeated integration. In this case the axis of sensitivity of one jee

.,f the integrators is at the same constant angle X to axis as ir

the construction aboard the missile of the left side of equation res

(3.3.13). As regards the axis of sensitivity of the other Integrator, thc
the

the latter should be inclined toward the axis at an angle of u',

which is little distinguished from the corresponding angle ji. Similar

t6 eq- lity (3.3.8) the magnitude of angit .,' Is found from relatic)ns

A = N* cos W. A, wN'sln p'. (.4.)

where, of coairse,

'-4'. ( 4.6)

In turn the coefficient p' Is distinguished little from coefficienL

of equation (3.3.13) and is determined by equation in t

p.
7' (.4-.7)

lere quantity M is the same as that in equation (3.3.4).

P ossible also is the conversion of the ballistic equation

(4,4.U) to the form

In I

K'(t)a, (1)* - Co. (4.4.6)
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similar to the form of equation (3.4.16). The use of equation

(4.4.8) allows solving the problem about inertial control of flight

range of ballistic n'is ]es just as in § 4 of Chapter Ill by means

of one meter of acceleration with an alternating direction of the

a~i r of sensitiv'ty. In equation (4.4.8) the variable coefficient

K'It; is formed by the same equations (3.4.11) as coefficient X(t)

in equation (3.4.16) but with the replacement of angle K(t) by angle

K'!t) and derivatives and A- , respectively, by qaantitles A'
and A'..

n

The u6Q In the transformation of the basic ballistic equation

(2.Y.6) of more complex equations (4.3.8) for coordinates and pro-

jecticns of velocity of the missile leads, naturally, to more bulky

results in :;QLparison with equations given in the beginning of this

sectiun. li.ztead of equation (4.4.1), in this case we arrive at

the more coumple× equation

" + M t t -&v3( 01 ~+3~

+ I +.v!!j- +,[t + W
S+ +

(4.4.9)

in turn equation (4.4.2) is replaced by the following:

In it these designatio .- are introduced
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A; f t +--- .o

"; +It + V4.,.S.

Similarly, equation. (4.4.4), when using equations (4.3.8), is

replaced by the following:

V.+() + IS.- ()- S'- (t) = V. () +

+ -- "(B 4 aja) + 3 (4.4.12)

Here A" and p" are directions of axes of sensitivILy of two Integra-

tors of accele-ations, which, respectively, differ little from .-

and P-di'rections, introduced in § 3 of Chapter III. Angles X" and

V", which these directions from with axis , are determined by
relation

Aj-.Novwj: ;- N'sinj ,

Coefficient p" in equation (4.4.12) is expressed by equation

*N-

:'he construction of the right side of the ballistic equation in

the form (4.4.12) aboard the missile is complicated, as compared to

the case of the equation of the form (4.4.4), by thn necessity of

introduction into the computer of an additional tem: linearly

ierendent on time. Finally, Subsequent conversions of equation.

(4.4.12), specifically, to the form similar to the ballistic equa-
ti o~14.,4.8) and also (3.,5.2) are allowed.

!n ccnc.iusion let us note that the selection for the specific

s ... !m ,,' control of the C'light range of one of the baliistic
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equations given in this and previous chapters should be produced on

the basis of estimates of quantities of the so-called systematic

errors inherent to the system of inertial control of the given type

of rocket. Systematic errors are understood usually as those errors

in the determining of flight range of the missile, which appear

exclusively because of simplifications made in the derivation of

the appropriate ballistic equation. Because of this, even with the

accurate switching off of the engine of the rocket at the instant

indicated by the ballistic equation and with the accurate operation

of a13 remaining irstruments and devices of the system of inertial

control, the actual flight range of the missile can be somewhat dis-

tiriguished from that assigned according to the calculation. As

regards to the technical difficulties of the construction of systems

of inertial control of flight range of ballistic missiles, they are

included in the manufacture of meters and integrators of the apparent

accelerations (i.e., newtonmeters and impulse meters) with extremely

small instrumental errors and gyroscopic instruments with minimum

servicing -,ff Lheir stabilIzed axes relative to directions on fixed

3tar. The sa,!ne refers to the immediate switching off of the engine

-,n the signal of the achievement by the ballistic function of a value

%,orrc.-pondirng %o the assigned flight range of the missile.

I,
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CHAPTER V
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CONTROL OF LATERAL MOTION Ole THE BALLISTIC MISSILE

] i1

1 1. Lateral Deviation of the Missile from the Target,
Expressed in the Form of a Function of Changes In

Parameters of the End of the Powered-Flight
Section in the Starting System

of Coordinates mot

tim

In the solution of the problem about the elimination of lateral ran

deviation in the missile from the assigned target, there appear acc

additional aifficulties connected with the fact that cf the duratJctr dur:

of the free-flight section of real motion of the missile, as a dep

rule, is somewhat distinguished from !s calcul3ted value. Tn view tn

of this, control according to the earlier assigned law of the motion

of the missile in a direction perpendicular tc the proprammed plane,

i.e., plane xy of the starting system of coordinates xyz or (i.:i : c

anoteor possible variant) to plane &n -f the nonrotating sys-t em m

tn , in general does not provide the absence of lateral devlati'r,-

in the missile from the target. Really, because of the laws of r'la

mechanics the missile on the greatel part of the free-flight section of

of Its flight is moved with minute deviations from a certain plane,

which does not change its orientation relative to directions at

fixd stars (the mentioned deviations are connected basically wi''

the nonsphericity of the earth). Therefore, if the duration of th. tior

free-flight section is not equal to its calculated value, ther. i, e

because of the rotation of the earth lateral deviation in the negl

missile fror, the target' continuously appears. However, with eart

'An exception Is the ease of flight of a missile in the plane of
ti.e equator an from one pole on another.
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small distinction in the actual motion of the missile from cal-

culated this deviation should also be small. Correspondingly the

control of motion of the missile in the powered-flight section in

a lateral direction can be reduced only to the requirement of the

fulfillment of an earlier assigned (calculated) law of motion in

the projection on the z axis (or in another variant - on axis i).

However, for a more accurate elimination of lateral deviation in the

missile from the target it is necessary to take into account how

at current instant of time its real motion in a longitudinal

ilrtior is distinguished from the calculated. For this nurpo7e

nw car, use current readings of instruments of the control of

]iizht range 3f the missile.

It is obvious that an especially accurate control of lateral

motion of the missile is necessary only during a short interval of

time when cutoff of its engine can occur in flight at the assigned

range. At the remaining time of the powered-flight section the

accuracy of control of lateral motion can be somewhat less. The

durattot. of the mentioned interval of allowed cutoffs of the engine

depend on the quality of control of motion of the missile according

to the assigned program.

In the starting system of coordinates xys (see § 1 of the

second chapter, Fig. 9) quantity b - of .lateral deviation in the

mirsile from the target, just as the range Z-" is a function of

coordinates x, y, z and projections vx, vy, V of its velocity

relative to this system of coordinates at the instant of termination

of the powered-flight section of the flight. Thus,

b-b(-b(s, s, , , ) (5.1.1)

The asti.onomical time, which corresponds to Instant of termina-

tion of the powered-flight section, does not play any role here as

in equation (2.1.2), unless one does not take into account the

negligible effect of such factors as the mutual arrangement of the

earth and moon or the earth and sun.
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With the replacement of arguments of functlon (5.1.1) by their

calculated values x**,Y B*, V*J v*, and v: it should turn into
X Y

-zero, since the lateral deviation in this case is absent. Thus,

b (z, Y', ;., ;. V;) = 0 (5.1.2)

and, consequently,

AM = b(, . . , ,, v)-b(z' 3'. , v, . v) b, ( 5.1. 3)

I.e., the error in the lateral deviation Ab is equal to the latera:

deviation b.

In accordance with the Taylor series for the function of' many

variables, we have, correct to smalls of the first order InclusivelN,

the following expansion:

ab 81+ (V. -' + op. - e.) + (V, - v'-:) 5 .

Here derivatives Ob 81 t ab q r ken at cal-

culated values of their arguments and, conrc'erIt~v, '-r each
o alculated case of flight of the misslLv are. earl<:. icRvwn quantities.

'h-:-y can be determined in a way similar t- the ta 2T1 ttI >,_ffic en-

rv-r 'it, 4 1 of the second chapter.

5 2. Lateral Deviation as a Funct'cr. or a-:,etev'
of the End of the Powered-Flight Section in

the Nonrotating System of Coordinates

In examining the problems of inertial control '..era]

mtior, of the ballistic missile, the starting system .c,.rdi -e,9

1.- ;nconvenient. Therefore, let us Introduce the same . -" *

5Vstem of coordinates & as that in the examining of the th( . :
Inertial ountrol of range (see § 2 of the second chapter). Current
.oordinates x(t), y(t), z(t) and projections v(t) , v (t) and Z(t)

L:f t:c v,)clty of the missile relative to the starting system of



coordinates xyz are expressed in this case by current coordinates
Ut), n(t), (t) and projections u (t), un (t) and u Ct) of the

velocity of the missile in the nonrotating system of coordinates
&n4 by equation r (2.2.5) and (2.3.5). Entering into the mentioned
ecuations also in evident form (through angle * - Ut) is time t, which
passed at the instant of launch of the missile. In view of this,
in accordance with equation (5.1.1), the magnitude of lateral
deviation in the missile from the target can be represented in the
for. of a function'

b -b(L 1% Lut. u.. uc, ) 2. 1

ol' ccordihat- &, r, C and projections u, u., u of the velocity
of the miselle relative to the system of coordinates &nC at the
instant t = a of termination of the powered-flight section and also
i2s very duration a.

Calculated values of coordinates x*, y*, a* and projectionsv*, v*, * r-f velocity of the missile relative to the starting

system xyz correspond to certain calculated values of coordinates
&*, n*, 4* and projections u, u , u, of velocity of the missile
in the nonrotating system Cnt. It is obvious that function (5.2.1),
which represents the lateral deviation of the missile from the
target, will turn Into zero at these values of their arguments if,
furthermore, we assume the duration of the powerEd-flight section
is also equal to its calculated value a*. Thus,

b(P,, , I ', u,u; d)inoO. (5.2.2)

Expanding function (5.2.1) in Taylor eries and being limited
in the latter only by terms of the first order of smallness, we
ol. tan, takIntrg Into account equality (5.2.2), the equation

b=(-- +6 (+.-- )b +( - b) +

"U + (5.2.3)

1 11ere-, Ju t in § h of the second charte-, ef'Ia 40ns
2.4.1) ,L ',.':'-rted.
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in which partial derivatives -1 91 ' - and . are magn

constant coefficients, since their arguments , n , U u, , It a

and a are taken equal to their calculated values, i.e., respectively swit
*, n 8 , J , , U u and a*. Magnitudes of these - effl lents

depend finally on the selection of a certain calc:.ated case of

flight of the missile. In a way similar to the appropriate partial func

derivative of function Z, which represents the flight range of the sign

missile, they are expressed by equations of the type IZ.4.5) and This

(2.4.6) In terms of partial derivatives a. '." o-. "-turn

and also quantities x, y, at, v*, V, 4 .  magn
X ' X deri

Equations (5.2.3), correct to squares and products of differences

9-- l q-q. C-V, t u-U. U. .- 4 &-s,a-g , determines the lateral

deviation in the missile from the target when magnitudes of coordi-

nates and projections of velocity of the missile at the end of the

powered-flight section are not equal to their calculated values,

of I

With real motion of the missile neither the Instant o1f --witching of f

off of the engine a nor its coordinates C, n and prnject-on of maki

velocity u,, u,,, which correspond tc this Instant of time, are

known earlier. Therefore, for elimination with the abrve-mentioned

accuracy of lateral deviation in the missile from the target, a

continuous change Is necessary in quantities r(t) and u, (; charac-

terizing itc motion In a lateral direction during a certain time

interval of the end of the calculated powered-flight section. The

purpose of such a control is the continuous reduction to zero of the

function missi

no nro

PQ) (('-~ ~+ Aoe-,iJ~ + 10)-~ VIA +

r,, tI't wth,,le !.terva) of possible instants of the switching -f f an r

tnt. engine f' r a missile of the give, system. Actually, functio.
outt.1TK C cni



0(t), according to equations (2.4.1) and (5.2.3). turns into the

magnitude of lateral deviation in the missile b If we assume in

it argument t equal to the actual value of the instant of the

switching off of the engine a.

The current value of function a(t), which we will call the

function of LateraZ deviation, can be used as the controlling

signal in the system of control of lateral motion of the missile.

This system should operate in such a way that function B(t, would

turn into zero because of the corresponding change in current

magnitudes of the coordinate of the missile C(t) and its time

derivative u (t). C/
§ 3. Construction of Corresponding Terms of the Funccion

of Lateral Deviation Dependent Only on
the Basic Motion of the Missile

As was shown in the previous section, for the Inertlil control

of lateral motion it is necessary to reproduce the currei:t value

of function 8(t) aboard the missile. The totality rf te ms (5.2.

making up this function is decomposed into two groupF k1 t) and

6't). The first of them is the sum

I () -I|() rl 2t- + lIn (M-no

U; I t+I,' -

the magnitude of which is determined by the basic motion of the

missile, i.e., by the motion of its projection on plane '.n of the

nonrotating system of coordinates t. The second group

ccnsists of two terms containing, regoectively, quant1'

and u (t;.

Some methcds -f the construction f tie current value f

function La(t; abcard the missi. - are examined In the r .wling
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.ection. As regards the sum (5.3.1), thpn it, according to its

struc:ture, is completely similar to equation (2.4. 9 ) for the initia]

ballictlc function e(t). Therefore, the approximate construction

of the sum (5.3.1) can be produced aboard the missile by the same

methods as were used for the construction of function c(t). Let

us examine, for example, the construction of' this sum aboard the

missile by means of using readings of two integrators of accelera-

tions, the axes of sensitivity of which are oriented respectively

parallel to axes and n of the nonrotating system of coordinates

&n . Similar to equation (2.7.4), the sum (5.3.1) can be represented

in the form

&M) , [| t)- " O)M +[I)NFR

-+

+11" (8)- l'11 + I q'( M-"*'I J + I a; M)- ";1 I +

+ a3 + '(5.33)

With subsequent conversion of the sum 81 (t) we will use equations

(2.7.1) and (2.7.2) for Isochronal variations of coordinates and

projections of the velocity of the missile and also equations of the

expansion in Taylor series (being limited only to terms of the

first order of smallness)

r(-"- M r )- (o - (CO-f) t- )!," (5.3.4)
- i(t)- -. q(1) -()=(- 9-ac_,

and in exactly the same manner b

i~ a.; M - U; - U (,)..- ; (0') -V ( 0 ai- d '
- -- -- ~ -- ,

m,* (1) -. ,* = U,4 (t)- ,,; (0') = (*-- ) . .

Taking into account, furthermore, that in accordance with

(2.6.3)
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-d8 - (5.3.6)

we tr'ansform the expression for sum (t) to the form

a6 OU Gb

'I8u (I) -
+ _,. r -*J + ., *a!t ,

*4.(e 0 _~(a*) ab+ + + t (53.7)

Just as in the third chapter, let us disregard in the beginning

the effect of the change in the acceleration of the force of gravity

during motion of the rocket not according to the calculated law.

In accordance with equations (3.2.6), (3.2.7), (3.2.2) and (3.2.3),

we obtain at small values of the difference t - a* relations

It k(8) = ()- s)-& t 0S(' +

+ (I V; (d). (5.3.8)

8, ()-&S, (t) = S,)- (t) W S,(t)IS. (') +
+ (17- - ) v6.(')

and also

au(t) 6v,(,) - (t)- V(t) = V,()- K. () +

+ (t- d') 40(')1.- (5.3.9)

Used here again are equations of the expar.;.Ion in Taylor series,

but for projections S; (t), s(t) of the apparent path of the missile

and projectionn V. (). I* () of Its apparent velocity in the calcu1nted
rnwt tor, equations (3.2.5) and (3.2.9) are taken Into account.

By mean- of equalities (5.3.8) and (5.3.9) the sum (5.3.7)

is reduced to the form



No)- +(,) + $1() + V() + V . ) +

dtL--- --- "(3') V. +

I t
In the last equation we can produce further simplifications, since, det

according to equality (2.6.1), we have

- (- 1 1t)" , "(t); LI, one

rep
-(." (0); 1 ( 5.3.11) con

cha
as a consequence, as a result of the integration with respect to are

time within limits of t - 0 to t - *, allowing for equations

(3.2.5)

pro

, , +(I eoxp

dev

(5.3.12)

Equations t-.3.lI) and (5.3.12) can be used in the subsequent

conversion of t-xpression (5.3.10) for the sum 8 1 (t). As a rczult

let us obtar. the following final expression for this s'Jm:
rel -

reacp,-&(t) + s% M,)-t+V 1 ,()a

-C+ (I-a')D. (5.3.13)

Introduced here are des ignations

C sikA S 3) + V 31A +for
ou 

the



D = 4It+ i*'~ u

+h , (t ), 1 " (;'): I W + 1. " ('), " (T') ! 31 +

+ . Ob --dt-. - (5.3.15)

It is obvious that C and D are constant quantities, which can be

determined earlier for each specific case of flight of the missile.

For the construction of expression (5.3.13) aboard the missile,

one can use the same integrators of accelerations and elements of

repeated integration as in the solution of the problem on inertial

control of flight range by the method given in 5 2 of the third

chapter. Furthermore, an additional computer and clock mechanism

are n:ecessary here.

If, however, the control of flight range of the missile is

produced with the help of integrators whose axes of sensitivity

are ,ara'le' to X- and u-directions, then for the fcrmation of

expression (5.3.13) there will be required, furthermore, an auxiliary

device of the type of converter of coordinates, which continuously

solves the system of equations (see § 3 of the third chapter)

VjLt)coa L + V,(t)sin % - VI(t),

Wt (I) @03P + V,(1)i 31 up V4.(1)

relative to quantities V (t) and V (t) according to data of current

readings V (t) and V (t) above-mentioned Inte-rators.

§ 4. Construction of Main Terms of the Function
of Lateral Deviation

7he second group of corresponding terms of equation (5.2.4)

for firction B(t), as was indicated in the previous section, is

the su:.. f two terms

and I ( - , ---Og. (5.4.1)

I
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They can be called the main terms of the function of lateral

deviation P(t), since they play the main role in the control of

lateral motion of the missile.

For the construction of current values of the sum (5.4.1)

aboard the missile, one can use readings Vt(t) of the integrator

of accelerations, the axis of sensitivity of which is oriented in

parallel to axis t of the nonrotating system of coordinates &nC

(so-called lateral integrator).

Let us note that, according to equation (1.4.1) (§ 4 of Chapter I),

there occurs the relation

,t )(5.4.2)

where a (t) - projection of apparent acceleration of the missile

on axis 4, and f- projection on the same axis of acceleration of

the force of the earth's gravity. Thd latter, similar to equations

(2.5.4), with sufficient accuracy can be represented in the for

(5.4.3)

Thus, relation (5.4.2) can be considered the differential equation

in the desired function i(t).

At the instant t = 0 the axes of the starting system of coordi-

nates xyz, which is connected to the eart respectively coincide

with axes of the nonrotating system Cnt, and the center of masses

of the missile, on assumption, is found at their common origin.

Furthermore, at this instant the missile does not have velocity wlth

rPespcet to the stft1 nr system of r--dinates xu . Corrauently,

InItia] conditions of equation (5.4.2) are such:

-Co =0 o..=,()= (5. 4.4a)

where - velocity of the beginning of the starting system of

coordinates in the nonrotating system &n at the inntant when
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t = 0, i.e., at the beginning of the powered-flight section of

its flight.

It is possible to assume that the acceleration of the force

of gravity proves to have an insignificant effect on the rate of

change in function (t). Therefore, as a first approximation it

is possible not to consider the projection f in equation (5.4.2)

and, respectively, consider that

M-() (5.4-5)

Hence, taking account the second initial condition (5.4.4), we have

-t - VC(,) + t. (5.14.6)

Here

w (,) a () t (5.4.7)

Is the current value of the projection on axis of the apparent

velocity of the missile relative to the nonrotating system of

oeordinates Cnc. This is the reading of the integrator of accelera-

t!..is with the axis of sensitivity parallel to the axis . Secondary

integration of' both parts of equality (5.4.5), allowing also for

the first of the initial conditions (5.4.4), leads to the equation

(8)- s(9) + , (5.4.8)

in which S (t) - projection on axis t of the vector of the apparent

path of the missile in the nonrotating system of coordinates &n .

In accordarice with the last equation, for the construction

a .c-'urd tle missile of current values (t), an additional integration

-f readings of the aforementioned integrator of accelerations is

rntce.sary. Actually

t



On the basis of equations (5.4.6) and (5.4.8) the expression

for the sum (5.3.2) is reduced to the form

(5.4.10)

This sum, just as sum 01(t), obtained in § 3 of this chapter,

can be constructed directly aboard the missile.

Thus, under the assumptions made about the unimportance of

quantity f,, it is possible by means of integrators of accelerations

and computers to obtain current values of the function of lateral

deviation

+ ).(5..1)

§ 5. Calculation of the Acceleration of the Force
of Gravity in the Construction of the Function

of Lateral Deviation

Methods given in the fourth chapter, allow, as will be shown

below, approximately integrating equation (5.4.2) for function

c(t) taking into account the projection of the acceleration of the

force of the earth's gravity f{.

Let us note, first of all, that with an accuracy sufficient for

practice at not too great an extension of the powered-flight section

of the flight of the missile in equation (5.4.3), the distance p frorr

the missile to the center of the earth can be substituted by the

radius of the earth R. After this let us arrive at equation

(5.5.1)

in which quantity v (Schuler frequency) is determined by equation

(4.3.4). Finally equation (5.4.2) can be replaced by the following:

.(t)-v% (t). (5.5.2)
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Let us integrate witi, respect to time the right and left sides of

this equation within limits of 0 to t taking Into account the second

initial condition (5 .4.4). Equating the obtained results, we arrive

at integral different'al relation

VC (1) -V t i+ tilt (/ 3)

Let us prcduce the sam- operation of integration agair but taking

into account the first initial condition (5.4.4). As a result we

ottain the integral relation

C., (t), d + ic, 5.5.49 P) - U.1

which is the equation for the determination -f lateral shift cf the

missile r(t) according to the assigned function S (t). The expression

represented by equation (5.4.8) can be considered the first approxi-

mation to the solution of this equation. To obtain the following

arprcxlnation, -n which already the effect of acceleraflon of the

force of gravity will be taken into account, it is possible to use

the method given in the fourth chapter. First of all, let us assume

in relation (5.5.4) t - *. Then it takes the form

(a) - S;(a) - V C () del + "t-. (5.5.5)

Let us further replace in the right side of equation (5.5.4) function

C(t) by its approximation in the form of a polynomial of the second

power

(9) - vt + -- it--•.(5. 6)

the coefficients of which are selected so that initial conditions
(5.4.4) would be satisfied, and, furthermore, in order that the

polynomial would take value (o) at the instant t - o of termination

4



of tlh powered-flight section of real r tJcii of the mJisile.I

if' then we produce a similar replacement also in relation

(5.5.3) and accomplish the necessary operations of' Integration,

then we will arrive at equality

U(a)s V ()- V'uO -- V2C (a). + U-,
(5. 5.7)

which can be examined as the equation for determining the value of

the function It:elf r(a) and its time derivative u (a) at the

instant t

The solution of the second equation (5.5.7) can be obtained

with sufficient. acruracy if in its right side quantity C(a) is

substituted by its first approximation, according to equation

(5.4.8), i.e., If we assume

(a) - S(a) + ur d. (5.5.8)

A.; a result we obtain equation

C (a) Tu ri

IV. produce the same replacement in the first equation of 13.5.7).

'inally we arrive at the following approximate equation for the

i '.ermination of the projt'-ctin of the actual velocity of the

:ni: sile on axi- .'

3 T) (5.5.10)

Conlauering the argument a to be close to a*, it i: :.s1bi;

'fltf.YUt great loss of accuracy in equations (5.5.9) and .5.10)

I. is a possibility, 71miiar to § 1 of the fourth 2hapter, )f
-n. rfpr-oxlmation by means of a polynomial of the third nower Ir
wiiich the, derivative when t = a still turns into 4(o'.
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to substitute argument a in terms containing the small factor v2,

by the rated value of duration of the powered-flight section a*.

Substituting in other places of these equations argument a for the

current time t, we obtain the following final expressions for C(t)

and u (t)

['-r
.V)_0)_ 8C 1) +(5-511)

:qua tions (5.5.11) lead to a presentation of the sum a2 (t), more

a.ccurate in comparison with expression (5.4.10), namely:

{[,c- "'"-
+ {Vd()-T :(+ [t"-- ;-k.5.5.12)

The construction of function W2(t) aboard the missile can be

prcduced by means of the integrator of acceleration with axis of

sensitivity parallel to axis (and also, of course, the integrating

devi ce).

In t ;is hoIL, as wa- already Indicated in the introduction, an

-oriunt of problems of the thc-ry of inertia, 'rlro! flight

.- balli;tic ~riitles was produced under t .:,.urption of the ideal

:tabillzatlcn :f axes of sensitivlty )f '.wt( . eters and Lntgrators

'f accelerations and completely accurate cper-!t on of the latter,

.e., accurate indication by them of current values of projections

,)f 'hw. vo'tm, fr :ppirent acceleratlon of the missile and 'nterrPIs
L, f t' ,. L V, Il L', -..

Af estim.t- _,f the effect of instrumental errors of gyroscopic

,, -c ;-.i Ii rators of accelerations on th niar.,.,,e possle
.t M. ' , z,'sIe le wltt> , ht at the ,s, I - .',t ,nd also



an analysis of causes of the appearance of these errors and develop-

ment of measures on their elinination represent an independent

interest and fall outside the framework of this book.

Let us note, finally, that problems of inertial control of

space missiles can be solved by the same methods as the problem

examined above about the flight of ballistic missiles within limits

of the earth.
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APPENDIX

DERIVATION OF EQUATIONS FOR COSINES OF ANGLES BETWEEN
AXES OF TWO SYSTEMS OF COORDINATES TURNED RELATIVE

TO ONE ANOTHER AT A FINITE ANGLE

In manuals on analytical geometry and according to theoretica2

mechanics, equations for the cosines of angles between axes of two

systems of coordinates arbitrarily turned relative to each other are
derived usually with the help of several additional geometric con-

structions. The derivation of these equations is also possible
c5" reans_ of the frcquent use of tables of cosines of angles between

axes of the basic and auxiliary system of coordinates, each of
which is turned relative to the previous around one of the coordi-

nate axes' common with it. Specifically, the main axis of rotation

is simultaneouslyI the axis of coordinates of two auxiliary systems
turned one relative to the other at the same angle as the main

axes.

Given below Is a purely analytical derivation of the mentioned

equations, founded exclusively on the simplest theorems of

analytical geometry, and some of these theorerr..- are used in

vectorial form.

lct u- asut-t that the system of coordinates &nC is turned at

an arbitrary angle 0 around a certain axis d, which passes through

'See, for example, Whittaker. Analyt!3al Kinetics. M.-L., 1937
and A. Yu. lshlinskiy. Mechanics of Gyroscopic Systems. Izd-vo
AN S7SP, 1963.
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the origin of this system.' The final I.osition of the system is

designated by xyz. If Z, m and n are -osines of angles which form

the mentioned axis of the final turn d with axes of the system of

coordinates 4, then it is obvious that the same magnitudes are

respectively cosines of angles between the axis d and axes of the

system xyz. Specifically, we have

A - oa. (1)

where a - angle which forms the axis of rotation d with the axis

of the system of coordinates n and simultaneously the same axis

of rotation d with the x axis of the system xyz (see Fig. 1h).

I

~Fig. ii4.

X~ ..he .2

Let us designate the direction cosines of the x axi3 relative

t the system of coordinates &nC respectively by a, b. and c. They

are In this case the desired quantities. Besides the apparent

quality

(2)

'In §§ 2 and 3 of the second chapter of this book such an axis
.. the nxis of rctation of t.c earth, and angle I -..,as the product
)f the angular velocity of the earth U for time t, which passes from
that instant when the axes of systems of coordinates nr, and .yz,

r .,,r l v.]:.. , c-oincided.



the direction cosines a, b and c sacisfy also the relation

a+ mb +nc=l, (3)

which, in accordance with the known equation of the analytical

geometry, expresses the magnitude of the cosine of angle a between

the x axis and axis of rotation d.

For the determination of the three desired quantities a, b and c,

one equation is necessary. Specifically, it can express the fact
that plane xd is turned relative to plane Cd about the axis of

rotation d at the assigned angle C, Thus the measure of the dihedral

angle between the mentioned planes also should be equivalent to

angle €.

Since the dihedral angle is measured by the angle between two

perpendiculars to the planes forming it, then we will introduce

two vectors h and T, the first of which is perpendicular to the

plaine Id, and the other - plane xd. According to the property of

&.e scalar pr :,ct of two vectors, we have

kcosp -hk + hk, + hk, (I4)

where h, h h - projections on the axis E, r, of vector T

and, respectively, k, kn, k4 - prol'ctl-ons or these axes of vector

Let us take as vector T the vectorial pr:.cuct of the single

vector To, located on the & axis, and sIngl- vector ao, whi!h

possesses the direction of the axis of r.,tatn n d. Projections of

the first of them on axes &, n and C, of course, are equal,

rca.pectively, to numbers

1,0,0, (5)

ar:.A C'!' the secold

,m, n.

.rd I I V,' th.' compe Itio,, 'tf the vectoz:l i -rcd, 4t,
.",±,tai i
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and, consequently,

lk~o.h,--n . (8)

In turn for vector we take the vectorial product

i-'x -.! ;' • (9)

Here the second line of the determinant is made up of projections

of the single vector x0 on the axes C, q and c, equal, of course,

to the direction cosines of the x axis in the system of coordinates

Expanding the mentioned determinant, we arrive at the followinz

equality:

4mb-se ,,--ofc-na. k--ma-fb. (10)

Moduli of both vectorial products (7) and (9) are identical

and equal to the sine of angleod between axes & and d or, which is

the same, between axes x and d. Thus, taking into account still

another equation (1), we have

k me--Sag-1T7'. (AW)

By means of equalities (8), (10) and (11) relation (4) can be

presented in the form

(I - P) co - - I (nb + ne) I ('+ m'). (12 )

It. is the deficient third equation, besides equations (2) and (3),

for the search of the three unknown cosines a, b and c, which

determine the direction of the x axiz' with respect to axes of the

-j:steTr of coordinates n•
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According to equation (3), we have

Furthermore,

no+ lo - is. (14i)

Taking account the last two equalities in equation (12), we obtain

after reducing similar terms to the equation for one of the desired

quantities

a - Coeq+P(1am 4F. (15)

TO determine quantity b, we exclude from relation (2) cosines

a An~d o by means of equations (12) and (15). As a result we arrive

at the quadratic equation

which after simplif'ications with the help of relation (14) is

reduced to the form

bl-2h Lu (t - cos j) +Pm' (I -coon y)'-m' vie' y''0. (i7)

-'f the two rcuots *_.f this equation

b, hn (t - ON ) + a do 1.

e :;hould di cuss the first. Actually, assuming specifically,

we u~aln accordingly

-+,b,-. (20)
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However, taking into account the accepted designations (see Fig. 14J),

we have in this case

b .can Xq -+I (21)

and, consequently, the second root of equations (18) should be

dropped. Thus, in general

b - o - 08) 4-n in T- (22)

Substituting now expressions (15) and (22) for a and b into equation

(3), we will arrive at the following equation for the determination

of quantity c, namely:

e - In(I - co) - msin . (23)

Similarly cosines of angles between the y axis and axes ~
Sand further between the z axis and the same axes Fr are

Jptermined. Finally, the table of cosines of the angles between

axes of the system of coordinates xyz and &n can be represented

In the following form:

6(1-cOBMy)P+ (1-cosF)nd4 (I-ow)ni-
+ oaf + naing -Maing
p (fco.Yl-(1 -COSY)M'+ (I-cA34)mn +

''C0-.o'y)lIa+ 0 - Cos) il V Tles) n'+
+ing -lai M + Cos qP

AFi table was used In the second chapter )f this ! ,ok.
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