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The monograph discusses the mathematical
principles of certain allowed variants of iner-
ttal gutdance of the flight of ballistic miseiles,
t.e., the control without the use of any external
information (radio signals, radiation of stare
and othersij.

It i8 assumed that the providing of the
assigned flight range of the misstle ie produced
as a result of the well-timed switching off of
ite engine by a signal entering from the computer.
Fed to the input of the latter are current read-
ings of seneitive elements of the system of iner-
tial guidance, which measure the apparent accel-
eration of the missile or integrals from the
apparent time acceleration. I he control should
be such that the deviation of the actual motion
‘of the missile from the rated does not have an
effect on the range of its flight. For this mea-
suring instruments of the system of inertial
navigation are placed aboard the rocket in a
quite definite manner, and, specifically, the
direction of their axes of semsitivity in a num-
ber of cases is stabilized by means of gyroscopes.
The setting of the necessary directions of axes
of sensitivity and the search of relations which
should satisfy current readings of sensing ele-
ments for the formation in the computer of the
command for the switching off of the engine, and
this is the main content of the book. Questions
of the inertial guidance of motion of the missile
in a lateral direction are also considered.

The monograph is intended for specialists in
the field of the theory of control processes. It
can prove to be useful in the investigation of
new probleme of thie discipline and also as a
training manual.
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THE AUTHOR'S COMMENT

This book came about as a result of thoughts of many years cver
the general problems of inertial guidance systems of moving objects.
Some of them are presented in my other monograph, published in 1963
under the name of "Mechanics of Gyroscopic Systems," in which, in
accordance with its name, considerable space has been given also to
the theory of sensing elements of systems of inertial guidance - a
'gyroscope in a gimbal suspension, gyroscopic stabilizer and gyroscoplce
integrator of the apparent unit accelerations. In this book, on the
contrary, studied basically is the possibility of the solution of
problems of inertial guidance of ballistic missiles by means of
different combinations of gyroscoplc and othrer mechanized sensing
elements and computers. Of course, questions examined here exhaust
by no means the whols diversity of ideas and possibilities of auto-
nomous control of ballistic missiles. In recent years in the theory
of specific inertial systems great successes have been achieved.
They have not received as yet the proper reflection in monographic
literature. It can be hoped that for the assimilation and develop-
ment of new ccncepts of inertial control the proposed book proves to

be useful.

The author thanks A. S. Kachanov, D. M. Klimov, D. F. Klim,
I. S. Kovner and M. Ye. Temchenko for their valuable advice in the
editing and preparaticn of the manuscript for press.
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INTLODUCTION

Given in this small monograph are mathematical bases of one of
the possible aspects of the theory of flight control of ballistic
missiles without any external information (radio signals, radlation
of the stars and others). The initial data for such control are
readings of instruments located aboard the missile. They‘fécdrd
both the curientation of the missile with respécf to fixed directions
(ap fixed stars) and the difference in its motion from free‘flight
" without resistance of the medium. The effect of such instruments

1s based on the phenomenon of inertia. Because of this the mentione

- guldance is called inertial. Besides instruments which incorporate
laws of mechanics, in systems of inertlial guldance the application
of instruments founded upon other physical principles (spins of
elementary particles, standing waves of coherent radiation of lasers

and cothers) is possible.

Creation of the variant examined in the monograph of the theory
of inertial guidance is based on the assumpticn that aboard the
missile there is stabilization (specifically, gyroscopic) of direc-
tions of axes of sensitivity of meters of apparent accelerations -
newtonmeters or instruments directly measuring the time integral
frum current values of apparent acceleration. The latter are callec
below integrators of sccelerations; they can also be named impulso-
meters [Translator's note: This term is not verified]. The selec-
tion of these sensing elements was determined by the many years of
interest of the author on gyroscopic instruments and other mechanlea

measuring devices.
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The instruments have a different kind of error. The effect of
the latter on the accuracy of flight o( the missile requires a
special investigation, which gces beyond the 1limits of this monograph.
Here 1t 1s assumed that instruments of systems of inertial guidance
are 1deal, 1.e., they function as though without errors. The same
is referred to servodrives and reading devices and also any, which
accomplish, specifically, arithmetical operations and the integration
of current values of different parameters.

Airborne instruments and devices should not be excessively
complex and bulky. Therefore, keeping in mind the use of simplified
schemes, with the solution of problems of inertial guidance certain
fundamental errors can be allowed. The latier, however, should not
involve great deviations in the missile from its target. The selec-
tion of an appropriate compromise (at which deviations are small,
and the system of inertial control is not too complex) constitutes
one of the basic tasks of the designer of a specific system of
inertial guldance.

Independently of the form of the guidance system, in its design
one should proceed from the fact that the same target — the end of
the free-flight section — can be hit by the ballistic missile, with-
out necessarily moving along the programmed trajectory but according
to an infinite set of other adjacent trajectories. Therefore, for
an accurate hitting of the target it is not necessary that at the
instant of termination of the active flight section of the missile
its coordinates and component velocltlies in a certain system of
coordinates, fixed relatlve to the earth, would be equal to the
calculated provided by the program of control. The last observation
is very important since the providing of the just mentioned equalities
places before the system of control of flight of the missile very
difficult, not always feaslible tasks. The attaining, a rather
accurate determination of current values of the coordinates them-
selves of the moving missile and projections of 1ts velocity is
considerably simpler. It is possible, therefore, to interrupt the
poweréd-flight section of the missile at exactly that instant when
the totality of deviations in its moving coordinates and projections

FTD-MT-24-291-70 ix



of velocity from the appropriate calculation values provides sub-
sequent motion aiong one of the trajJectories leading to the target.
The determination of relaticnships which should be satisfied by the
mentioned deviations at instant of the switching off of the engine,
constitutes the main task of the stated theory of inertial guidance
of flight of ballistic missiles. In this case without apparent
deterioration of the accuracy of hitting of the missile on the target,
considerable simplifications of guidance systems can be produced
because of the separate control of the range and lateral motion of
-the missile and ‘also due to the selection of specific directions of
axes of sensitivity of inertial instruments and the forming of

signals from them.

With gyroscopic stabilization of axes of sensitivity of newton-
meters and integrators of accelerations, it 1s natural to construct
caiculated equations and equations cf inertial guldance in the
syétem of coordinates not taking part in the rotation of the earth.
et us note, nowever, that range of flight of the missile is deter-
mined in this case not only by values of its coordinates and com-
ponents of veloclties relative to such a system at the instant of
termination of the power-flight section, but also of duration of the

latter.

(3

In the computer of the given system of inertial guidance of.
flight range according to current readings of newtonmeters and
integrators of accelerations, there 15 generated a certaln alternating
magnitude, uniquely connected at each instant with the magnitude
of range of the missile. Understood by the latter 1is that magnitude
of range which is obtained if the thrust of the engine at the instant
of time suddenly becomes zero. To provide accurate hitting of the
missile at the target, the switching off of the englne should be
produced at the instant of time of achievement by the mentioned
magnitude of assigned value. Since this magnitude is determined by
the ‘actual course of the change 1n coordinates and projections of
the velocity of the missile, then it 1s called functional. As 1t .
will te shown below, it is possible to propose different forms of ‘
functionals. With thelr construction in the cbmputer, subsequently,

FTD-MT-24-291-70 X
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there will not be taken into account the squares and prcducts of
deviations 1n the actual coordinates and projections of the velocity
of the missile at the instant of end of operation of the engine from
the rated. The same refers to deviations of moving coordinates and
projections of the velocity of the rocket and also to the time
interval between the necessary and calculated instants of the switch-
ing off of the engine. The assignment of the control of range 1s
thus solved in a linear approximation. This should not lead to
great errors in flight at the assigned range of the missile with
well-controlled thrust of the engine and with the possibility of

the switching off of the latter after the feed of the appropriate
command with a minimum delayed pulse. In the case when control of
the thrust 1s hampered, subsequent refinements of equations deter-
mining the termination of the power-flight section are necessary.
These problems and also the problem of inertial control without the
switching off of the engine are not considered in this monograph.

Results of investigations, given in this monograph indicate
that in the flight of a missile over great ranges it is expedient
to have on the gyroscopic stabilizer two integratcrs of acceleration.
Axes of sensitivit& of these integrators shoula L& definitely oriented
in twe different directions. Fed into the comp.ter, which determines
+he instant of the switching off of the engire, are the current value
of one integrator and the result of complementary integration of
readings of the other. 1In principle, it is possible to bypass one
integrator of acceleration if in the process cf flight of the missile
properly both parameters of the integrator and direction of its axis
of sensitivity are changed.

The use of two stabilized integrators of accelerations or one
but with alternating parameters allows constructing the so-called
complete functional most accurately resolving the problem of the
control of range of the missile. Subsequent development of the
theory leads, specifically, to the basis of the arrangement of
integrators of accelerations directly aboard the missile under the
sondltion of introduction intc the guldance system of the so-called
standard integrator of accelerations with accurate execution of 1ts
eommands.

x1
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The acceleration of force of the earth's gravity depends on the
distance between the missile and the center of the earth and also
on geographlcal coordinates of the missile. Consequently, forces of
gravity acting on the missile in its actual and calculated motions
are nct equal. This fact can condition the error in the determining
of the necessary instant of switching 6ff of the enginé even during
accurate operation of the 1ntegrators'of accelerations and of gyro-
scopes of the system of inertial controcl. For the complete elimina-
tion of this error the airhborne computer should be supplemented by
a certain comparatively complex integrating equipment. However, a
~conslderable decpease in this error can be achieved also by simpler
means — because of a small change in the orientatlon of the integrator

of acceleration.

Deviation of the rocket from the target ln a lateral direction
can be eliminated with the help of introduction into the system of
inertial guidance of the so-called lateral integrator, which controls
the motion of the rocket in the direction of the normal to assigned
programmed plane of its flight. The distinction of the actual
magnitude of duration of the free-flight section from its calculated
value leads to additional lateral deviations of the missile because
of the rotation of the earth. However, in principle it is possible
to avoid errors of such a kind if we use current values of integrators
of acceleration of system of range control.

Content of book is the following. Chapter I gives a solution
to the problem of inertial gulidance of ballistic missiles in a
simplified formulation for the purpose of explaining basic ideas and
methods examined 1n détail in subsequent chapters. Here the earth
is taken 2s being flat and not rotating. The effect of the atmosphere
is not considered and the force of gravity 1s considered constant in
magnitude and direction. It is natural that under such simplifying
assumptions the motion of the missile in the free-flight section of
its flight is completely described by known equations of theoretical
mechanics about the motion of a material particle in a vacuum in a
uniform field of the force of gravity. Further it 1s explained

"TD=NT-24-291-70, x11
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which relationship should be satisfied by small changes in parameters
of the end of the power-flight section, i.e., coordinates of the
missile and projections of 1its velocity at the instant of the switch-
ing off of the engine in order that it hits the assigned target with
an error of not more than the second order of smallness. This
relatlionship serves as the basic point for the formation of a certain
variable, called the ballistic function. In the examined case the
value of this function at any fixed instant of time is the approximate
expression for the error in the range of the rocket, which will arise
if the engine of the missile 1s turned off at precisely this instant.
It is natural that rop the hitting of the misslle on the target the
engine should be turned off at the instant of the passage of current

values of this function through zero.

To construct a ballistic function aboard the rocket in the form
of a certaln electrical or mechanical magnitude with the variant of
the inertial system selected in the monograph the presence of special
"éensing vlements 1s proposed — newtonmeter and a computer, which
contains in its composition integrating, multiplying and summing
clements. In the example of thc simplest meter of apparent accelera-
tion 1s established the connectlon between the magnitude being mea-
sured, the real acceleration of the missile and acceleraticn of the
force of gravity. Concepts of apparent velocity and apparent .travel
of the missile are introduced and it is indicated, specifically, that
for the direct measurement of the apparent veloclty 1t 1s necessary
that the axis of sensitivity of the integrator of accelerations be
stabilized. It turns ocut that the ballistic function, which 1s
referred to the given case of motion of the missile in a uniform
field of gravity without allowing for resistance on the side of the
atmosphere, can be constructed aboard the missile, using only the
integrator of acceleratlon with subsequent integration of its current
readings by means of the computer. At the end of the chapter an
analysis of this question 1s given both from an analytical and
geometrical point of view. It 1s indicated that the flight range of
the miscsile will be changed by a magnitude of the second order of
smiallness If the vector of its actual veloclity at the end of the

FTD-NT=-24-291-T70 . x111
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poyer-flight section appears the same as that in the calculated case,
and the position of the missile will be somewhat displaced in a cer-
tain definite direction, or, on the contrary, with a fixed position
of the missile the difference between the real and calculated vectors
of its velocity at the same instant of time proves to be definitely
directed. In the examined case the mentioned directions colncide
with each other, They, specifically, are parallel to the vector of
velocity of the missile at instant of its hitting of the target with
calculated motion. In general when the curvilinearity of the form

of the earth, the effect of the atmosphere on the descending branch
of the free-flight section of the trajectory and heterogenelty of

the fleld of the earth's gravity are taken into account, such
directions also exist, but they are not paréllel. The perpendiculars
to them, the so-called A- and u-directions can serve, as it 1is )
indicated in more detail in Chapter III, for orientation of axes of
sensitivity of integrators of accelerations of the appropriate system
of autonomous control of the flight range of the mlssile.

Chapter 1I gives ballistic functions of various kind for the
general case of flight of the missile, 1i.e., without additional
simplifying assumptions, which took place 1in Chapter 1. Here 1t is
impossible to express the magnitude of range of the missile in the
form of a definite equation, which would contain parameters of the
end of the power-flight section, for example 1in the starting system
of coordinates. Nevertheless, correct to smallness of the .second
ofder relative to differences between current parameters of the real
motlon of the missile and parameters of the end of the power-flight
section of its calculated motion, it 1is possible (with the help of
the use of the same instruments as in Chapter I) to determine the
error in the range which would take place with the switching off of
the engine at the current instant of time. The expression for such
an arbitrary error in range can be accepted as the ballistic func-
tion. Derivatives of the magnitude of flight range of the missile
entering into this function, according to parameters of the end of
the power-flight section, 1.e., according to coordinates and pro-
jec-ions of veloclity, are taken at calculated values of the latter.

PTD=-MT=24=291=-70 xiv
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Thus they are constant quantities, which can be determined earlier
for each assigned case of flight of the missile.

With the inertial control of range ‘the current value of the
ballistic function should be determined onboard the missile itself.
‘This leads to the necessity of continuous determination by means of
the computers of current coordinates of the missile and projections
of its velocity according to readings of newtonmeters or, in other
cases, integrators of apparent accelerations. The starting system
Tor thils goal proves to be barely adequate because of the necessity
of the calculation of translational and coriolls accelerations.
Therefore, 1t 1s more expedient to pass from coordinates and pro-
Jections of veloclty of the mlissile in the starting system of
coordinates to appropriate magnitudes referring to the nonrotational
system with the origin at the center of the earth. As a result,
after the rejection of terms of the second order of smallness and
terms dependent on the motion of the missile in a direction per-
pendicular to the plane of flight, the so-called initial ballistic
function is formed, and they are linear with respect to the moving
coordinates and projJections of velocity of the missile and time. The
.-expression for the initial ballistic function in a nonrotating system
of coordinates contains a derivative of the magnitude of flight range
of the rocket wlth respect to duration of the power-flight section.
However, thils derivative can be excluded from the analysis by means
of the use of some auxiliary relation. The latter follows from the
equality of the actual range to its calculated value, 1f coordinates
and projections of velocity of the end of the power-flight sectlon
accuratély colinclde with current values of coordinates and projections
of velocity of any particles of the calculated free-flight section.
Finally the basic ballistiec equation is cbtained for detcre’+-~tion
of the becessary current time of the switching off of the engine in
flight of the missile at the assigned range. Determination of
current coordinat€s and projections of velocity of the missiles,
which enter the left part of this equatlon, requires continuous
integration aboard the missile .f appropriate nonlinear differential
equations, which connect the cecond derlvatlives of coordinates with

FPD-MT=-20-291-70 XV
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appropriate projections of the apparent acceleration and accelera-

tion of the force of gravity. However, we can substantially simpliry
such a problem, if into the basic ballistic equation we substitute
expresslions of coordinates and projection velocities -obtained as a i
result of the integration of approximate iineaﬁldiffeféntial equations |
~in the so-called isochronal variations of coordinates of the missile. :
The latter are differences between the acutal and calculated values
of appropriate coordinates of the missile, which refer to the same
instant of time. With the proper afbitréry extension ‘of the cal-
culated power-flight section of flight of the missile during the
calculated instant of the switching off of the engine isochronal
variations of coordinates, projections of velo~ity and ppojections

of apparent acceleration can be considered small magnitudes during
the whcle interval of time which corresponds»td‘thé”féal power-flight
.s8ecticn.

o A A b S ek

Differential equations for isochronal variations of coordinates
are derived in Thapter III, and thelr approximate integration, allow-
ing for terms appearing as a result of the heterogeneity of the field
o? the earth's gravity, is developed in Chaptefrlv; In Chapter III
in differential equations for 1sochronal variations of coordirates,
the mentioned terms are completely droped whereupon variations of
projections of velocity become equal to variations of proJections
of the apparent velocity of the missile, and variations of the
coordinates themselves — to variations of proJections of the apparent
path. This allows converting the basic ballistic equation to one of
the forms allowing the construction of current values/of its left side ;
directly onboard the missile according to current readings of lntegra- !

tors of accelerations.

Different orientation of axes of sensitivity of the integrators
uf accelerations are possible., Depending on this, the computing N
part of the system of inertial control of the range and the number
of elements entering it are changed. For example, with orientation
of axes of sensitivity according to invariable A- and u-~directions,
which was already mentloned above, it is possible to manage with only
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one element of repeated integration of accelerations unlike the case
of using two such elements necessary in the arrangement of axes of
sensitivity in parallel to the axes of the nonrotating system of
coordinates.

It proves to be possible to construct a ballistic equation even
with the help of a single meter of acceleration, if we according to
the earlier assigned law change the orientation of its axis. 1In the
computer there should be provided in such a case the integration of
current readlngs of this meter, preliminarily multiplied by the
coefficient, whicai also 1s changed with the course of time.

The problem indicated above on the creation of a ballistic
equation can be solved approximately also with the help of one
integrator of acceleration, as this 1s indicated at the end of the
chapter in the example of construction of the system of inertlal
control of range with accurate control of the direction of thrust
of the engine according to indications of standard integrator of

~acgelerations. In this case the axes of sensitivity of the .standard

integrator and integrator of the system of control of the range are
located perpendicular to each other. Finally, 1f we consider the

. deviation in the force of thrust of the engine from the longitudinal

axis of the missile to be insignificant, then for solution of the
problem of control of range one can use current readings of the
integrator, the housing of which 1s directly fastened to the side of
the missile, and the axis of sensitivity 1is parallel to its longl-
tudinal axis (so-called longitudinal integrator).

In Chapter IV there is formed the integration of the totality
of differential equations for lsochronal varlations of coordinates
of the missile with the approximate calculation in them of terms
which characterize changes 1in projJections of the force of gravity
during motion of the missile according to the law different from
the calculated. Corresponding to this, the basic ballistic equation
derived out in Chapter II 1s converted to the form similar to that
examined in Chapter II1I. Because of a specific method of integration
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of the mentioned totality of equations, the problem on inertial con-
trol of the range is solved by the same means as it was earlier, i.e.,
with the help of current readings of integrators of accelerations and
computers, which contain only integrating, multiplying and summing
elements. This method is based on the preliminary replacement of
equations of the mentioned system by equivalent integral differential
and cumulative relations with the subsequent introduction intc the
terms being lntegrated instead of the sought functions, which repre-
sent current values of coordinates of the missiles approximating

thelr polynomials of the second or third degree. Coefflicients of
approximating polynomials of the second degree are selected so that
the polynomials would satisfy the same 1initlal conditions as the
sought functions, and, furthermore, coinclide with the latter for the
instant of termination of the power-fllight sectlion. With a more
accurate solution to the problem, one should approximate the isochronal
variations of coordinates by means of polynomials of the third degree.

'In this'case time derivatives are equated also to appropriate pro-

Jections of velocity of the missile at the instant of termination of
the power-flight section. As a result for the determination of
variations of coordinates and projections of velocity of the missile,
algebraic equations with coefficlients dependent on time are obtained,
The latter, with sufficient accuracy, can be replaced by constants
equal to values of these variations at the instant of termination of
the power-flight section of flight of the missile. Finally the
desired varlation:; are expressed ln terms of readings of integrators
of acceleratlions and integrals of their time readings. Thereby, the
subsequent creation of different forms of ballistic functions similar
to those given in Chapter III, fundamental has no basic difficulties
and is reduced basically to certain changes in coefficients and
directions of axes of sensitivity of integra:ors of accelerations.

Finally, Chapter V of the book 1s devoted to the general
problems of inertial control of the lateral moticn of ballistic
missiles. The removal of lateral deviation in the rocket from the
target requires different methods than the providing of the ascigned
range of its flight, where the required accuracy can be obtained
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because of the well-timed switching off of the engine. The duration
of the power-flight section with flight at the same range depends for
rockets of the same design on a number of random facts and, con-
sequently, is 1tself a random magnitude, the mean value of which is
near to the magnitude of duration of the power-flight section of the
calculated motion. Therefore it is sufficient that the control of
lateral motion of the missile would be especially accurate only during
the interval of time in which switching off of the engine can occur.

The current removal of the missile from the programmed plane is
connected with projections on the normal to this plane of its apparent
acceleration and acceleration of the force of gravity by means of a
differential equation of the second order. To control the lateral
motion of the missile, it 1s necessary to know current values of
this removal and its time derivative. They can be obtained by means
of the so-called lateral integrator of accelerations and simplest
computer, As a [irst approximation can in the mentioned differential
equation drop terms containing the projection of the force cf
gravity, whereupon 1t is immedlately integrated. The lateral depar-
ture of the rocket proves to be equal to the projection of its
apparent path on the normal to the programmed plane of flight, and
the value of velocity of this departure - respectively, to the pro-
Jection of the apparent velocity. With the obtaining of more accurate
expressions for the mentioned sought magnitudes, the approximation
method of integration of differential equations given in Chapter IV

1s used.

In Chapter V it is also indicated how oric can use readings of
the instruments of inertial control of the ringe in order tc remove
the additional lateral deviation in the rocket from the target because
of noncolncldence of its actual and calculated motions in the pro-
Jection on the programmed plane.

In the appendix of the bock an analytical derivation of cosines
of angles between axes of system of coordinates with a finite turn
is given. The table of cosines 1s used in Chapter II.
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CHAP/ER I

THEORY OF INERTIAL CONTROL OF FLIGHT RANGE OF THE
BALLISTIC MISSILE IN SIMPLIFIED FORMULATION

§ 1. Equation Exgressing Fllght Range of the Missile
in Terms of the Coordinate and Projecticn of
Its Veloc%gy at the End of the
Power-Flight section

The general formulation of the problem of control of Tlight
range of the ballistic missile is most convenient toc exp.:irn i- *tre
following simplest example.

Let us assume that the earth is flat and does not rotafe, the
atmosphere surrounding the earth is absent,rand the acceleraticr cf
the force of the earth's gravity f, coinciding in this case with
gravity g, is constant in magnitude and direction. Equations of the
motion of the missile! on the free-flight section of its trajectory
under such simplifying assumptions are completely integrated, and
thereby the whole solution to the problem can be conducted in general
form up to the end.

Let the power-flight section of flight of the missile proceed
from the origin 0 of the fixed system of coordinates xy, the x axis
of which is horizontal, and the y axis is directed along the vertical
upward (Fig. 1). The initial velocity of the missile is considered
equal to zero.

lHere and further the term "motion of the missile”" is understocd
as motion of 1ts center of mass.
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Fig. 1.

The calculaggd or programmed motiqn of the missiles is that one
at which 1ts coordinates are changed in accurate conformity with their
precalculated values.

Let us designate coordinates of the real motion of the missile
at instant o, termination of the power~flight section of its flight,
i.e., at the instant of complete switching off of the engine, by =z
and y, and the same coordinates in calculated motion — by z* and y*
(Fig. 1). Let us designate by v, and vy projections on the axis =x
and y of the velocity of the rocket at the instant of the termination
of the power-flight section of its real motion and respectively by
v; and v; - their calculated values. The magnitude of duration of
the pcwer-flight section of the actual flight of the missile o in
general 1s distinguished from its calculated value o¥,

The integration of equations of motion of the missile in the
pov .. - fiight section of molion

P, e, (1.1.1)

immediately leads to the following expfessions for current projec-
tions of velocity vz(t) and vy(t):
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o) = =m0 = mn—g, (1.1.2)
and its moving coordinates z(t) and yl(t):
. . ' _“p
z(t) =z 4 v, y()=y+og—=-. (1.1.3)

Time t 1s read off here anew, i.e., from the instant of termination
of the power-flight sectlion and, consequently, from the beginning of
the power-flight section of motion of the missile. Arbitrary con-
stants with Integration are selected so that there would take place
the apparent equalities

%0 =p., 20 =, z(0)==, y(O)=1. (1.1.4)

Considering that the free-flight section 1s finished at instant
t = 1t at point ¢ - intersection of the trajectory of the missile
with the x axis, it 1s easy to determine the connection between the
range of its flight I and appropriate parameters =z, y, v, and vy -
end of the power-flight section. Setting, first of all, in the
second equation (1.1.3) ¢t = t and y(1) = 0, we obtain the following
gquadratic equation for determination of the duration of the free-
flight section T:

£ — 20,5 — 2y = 0. (1.1.5)
Hence .
= (0, + )/} + 200), (1.1.6)

since one takes the positive root of equation (1.1.5). Having
substituted now the found value 1 into the first equaticn [1.1.3),
we obtain the desired expression for the range of the rocket as
functions of parameters =z, y, v, and vy — end of the power-flight

section, namely:

[-:(1)-:+%(v,+|/u’,+2gy). (1.1.7)
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5 2. Condition of Invariability of Flight Range with
Little Distinction in Coordinates and Projections
of Veloclty of the Missile from Their
Calculated Values at the Instant
of Termination of the

Power-Flight -

Section

Let us assume that the actual values of parameters of the power-
flight section of flight of the missile =z, y, L and vy are distin-
guished from thelr calculated values by small magnitude

A mz—z, Aymypy—y, A’z-’-—’;_-'bv"'v"":' (1.2.1)

The flight range of the rocket I, in accordance with that given in
§ 1, and, specifically, according to equation (1.1.7), 1s a function

of magnitudes =z, y, v, and vy, i.e.,

I=1(z, § 0o D). (1.2.2)
In accordance with equality (1.2.1), we have
I=1(z* 482, ¥ +8y, v+ 805 5, + A7) (1.2.3)

Expanding now the right side of equation (1.2.3) into Taylor series
for the function of many varlables, we obtain correct to smallness
of the first order relative to magnitude Ax, Ay, Avx and Avy

L 16", 000 + S Ar B By 4 3 B, 4 2, (1.2.4)

z.’
varlables x, y, v, and v, are thenccelves functions of the same

varlables. In this case they can be presented in evident form as
a result of the differentiation of function (1.1.7; according to

Partial derivatives of function l(z, y, v Ly) with respect to

the appropriate variable, namely:

St fe ot A AT,

o :
-4 — ),
», ,( +,f——,,.+m) (1.2.5)



According to rules of the composition of Taylor series, in
equation (1.2.4) arguments of aforementioned partial derivatives
should be assumed correspondingly equal to magnitudes z*, y*, v?

. x
and v;. Thus they are for the selected calculated motion of the

missile certain constants. Taking into account, furthermore, that
expression

(s y oo o) ) (1.2.6)

is the calculation flight range of the missile, lei{ us transform
equation (1.2.4) co the form

- ': L '. '

Al o As s By + (5 V@0 + 207) vt
—.; ‘ '; . . )
,'"'( +7q—q‘."+~')‘lp (1.2.7)

where the difference

i1s the change in flight range of the missile because of noncoincidence
of magnitudes of parameters of the end of the poweréflight section
T, Y, Y, and vy with their calculated values z*, y*, v; and v;.

The expression for Al, allowing for equation (1.1.6), can be
represented now in the form

Al = As 4 kAy + ¥ (Av, + kAv)), (1.2.9)

where

be ('J‘“ﬁ' (1.2.10°

Let us note, that coefficient k has a simple geometric meaning. It
1s easy to show, using equations (1.1.2) and (1.1.€), that it is
egqual to the.magnitude of the angular coefficlent of the normal v to
the‘calculated trajectory of motion of the missile at point C,

its intersection with the r axis (Fig. 1). Thus,

e
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b=ye, (1.2.11)

where a — angle between the mentioned direction v and x axis (and
also between the vertical line and vector of veloclty of the missiile
at the instant of 1ts incidence on the earth).

From equation (1.2.9) it follows that correct to smallness of
the first crder inclusively the range of the missile remains the
very same 1f changes in parameters A4z, 4y, Av: and Av, - end of {ts
prower-rlight section in comparison with their calculated values, will
be subordinate tc the condition

Ax 4 bAy + ¢ (A9, + kAB,) == 0. (1.2.12)

It is important that this condition is the 1linear relation with con-
stant coefficients known earlier for the selected flight of the
missile.

The duration of the power-flight section of flight o, 1in con-
trast to parameters cf its end =, y, v, and vy, does not play any
role in tre determination of the magnitude of range . Therefore,
there 1s no meaning (2 strive with execution of the gpecific program
of motion of the missile for the rated value of duration o% of the
power-flight section. On the contrary, by slightly lengthening or
shortening the power-flight section, it is possible to obtain a
fulfilling of Just the given condition (1.2.12) and, consequently,
provide the calculated range of the missile at not exactly an accurate

sequence of the actual coordinates to their programmed values.

§ 3. Error in Flight Range of the Misslle Presented
in the Form of a Function of the Duration
of the Power—Flight Section

Let us assume that, as also in § 1, z(t) and y(t) are functions
which are the actual (not calculated) change in time of coordinates
of the missile on the power-flight section, a vx(t) and v_(t), re-
spectively, zre projections of 1its velocity, and the instant ¢t = 0
at this +ime corresponds tc the teginning of the power-[liight section.

€
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Let us substitute into equation (1.2.9) for Al quantities Ax,
Ay, Avx and Avy respectively by differences

’(‘)-‘.o '“)‘_"’y.o 'l(‘)—:';n '.(‘)"’:- (1 R 3 . 1)

As a result let us obtain the time function
s()=z()—2 + RO —¥'1 4 < [0 () —0i] +
+ ke’ (v, () — w)), . (1.3.2)

which we call ballistie function.

At the iInstant of the switching off of the engine ¢t = o¥%* this
function, according to equation (1.2.9), turns into Al and, con=-
sequently, determines the error in flight range of the rocket because
of dn accurate execution of the program of the power-flight sectlion
but accurate observance of its duration. However, 1f we interrupt
the‘power-flight section at that instant when the ballistic function
€e(t) turns into zero, then the error into the range proves to be a
magnitude of the second order of smallness, and the desired accuracy
of flight of the missile wlll be achieved. Hence 1t follows that
the problem of inertial control of the flight range of the missile
can be reduced to the construction of current values of the ballistic
function directly aboard the misslle and to the switching off of 1its
engine with the passage of function e(t) through zero. For this
purpose, besides the summing and multiplying devices, the presence
aboard the missile of special instruments which measure the apparent
acceleration with subsequent integration of their current readings,
or instruments directly recording the time integral from the apparent
accelerations — integrators of accelerations is necessary. Meters
of apparent accelerations will subsequently be called newtonmeters.

§ 4, Connection Between the Acceleration of the Missile
in Its Motion Relative to the Fixed System of

Coordinates and Reading of
Newtonmeter Set on It

In the system of control of the flight range of the ballistlc

-
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misslle when using newtonmeter one should keep in mind that the latter
can measure only the apparent and not the real acceleration of that
place of the missile where they are located. The apparent accelera-
ticn 1s usually called the difference petween the acceleration of

any points in the fixed system of coordinates and the acceleration

of the force of gravity. Specifically, standard uniaxial newton-
meters should measure the projection a, of the apparent acceleration
on its axis of sensitivity v, i.e., magnitude

ﬁ-éo_fn (l-u-l)

where w, ~ projection on axis v of the real acceleration of the
newtonmeter relative to the fixed system of coordinates and fv -
projection on the same axis of acceleration of the force of the

earth's gravity.

Let us explain equation (1.4.1) in the example of the newton-
meter, tre sensing element of which 1s a small weight of mass m
attached to the end of the spring of rigidity ¢ (Fig. 2). The other
end of the spring 13 sealed in the housing of the newtonmeter. The
small weight can be moved within the housing on straight line v,
which is the axis of sensitivity of such a meter of apparent accelera-

tion.

Fig. 2.



The equation of motion of the s$mall weight relative to the
housing of the newtonmeter, if we disregard the mass of the spring
and friction of small weight about the internal cylindrical surface
of the housing, can be presented in the form

o

—M%‘-+n~3-mt.+e6- (1.4.2)

. L 4

Here 8§ — movement of the small weight from that position E-:at which
the spring has not been stretched; ws - brojection cn direction v cf
tranctational acceleration, i.e., acceleration with respect to the
fixed system of coordinates of that place c¢f the housing where at the
g£iven instant the small weight 1s located {(projection of the coriovlis
acceleratiorn. to direction v is equal to zero).

With translational movement of the housing of the rewtonmeter

K, (1.4.3)

where u; ~ acceleration of the place of fastening of the spring to

the housing.

If, however, the housing of the newtcnmeter has, furthermore,
angular motions, then equality (1.4.3) should be considered as
approximate. However, because of the comparatively small dimensiors
of newtonmeters the difference between wﬁ and W is important.'

Let us assume that the frequency p of natural oscillatlicns of
the small weight, determined ty equation

p-.V;. (l.s.4

'It is possibie to show that this difference is equal tc the
praduce wgc where wy ~ prcjecticn ¢f angular velocity of <he nousing

tre newtonmeter on the plane perpendicular te the axls » znd p —
sance vetweer -he small weigrnt and point of attachmernt f <the
4
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1s sufficlently great. Then the amplitude of these oscillations,
conditioned basically by the change in acceleration of the housing
of. the newtonmeter w, will be small. ;n this case the term -nn%}

in equation (1.4.2) can be dropped, and allowing for equality (1.4.3)

we can obtaln relation
e, = mf, + 3. (1.4.5)

The member cé§ of equation (l.4.5) 1s the elastic force of the
spring. Deformation & (see Fig. 2) will be considered positive if
the small welght is displaced in a negative direction of axis v.
Wher. § = 0 the spring 1s not stretched, and the small weight is
located at position E (see Fig. 2). The observable shift in the
small weight from position E can be graduated so that it would
directly measure a certain magnitude a, connected to the deformation

of the spring by relation

om0 (1.4.6)

Replacing here the magnitude of deformation of the spring § by its
expression, by tnhe following from equation (1.4.5), we will arrive
at equation (1.4.1). Thus, the shift in the small weight is pro-

portional to the projection of its apparent acceleration on the
direction v, 1.e., on the axis of sensitivity of the newtonmeter.

The current reading of the integrator of the apparent accelera-
tions or simply integrator of accelerations (it can also be called
impulsometer) is a time integral from the projection of the apparent
acceleration on its axis of sensitivity, i.e., magnitude

[ ]
Vo(l) = sc.(t)dt. (1.4.7)

If the axis of sensitivity of the integrator of acceleration
retains a fixed direction with respect to the fixed system of

courdinates, then
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w0 (1.4.8)

where vv(t) — projection on the direction v of velocity of the hous-
ing of the integrator in the same fixed system. Therefore, sub-
stituting into equation (1.4.7) the expression for a, from equation
(1.4.1) and using equality (1.4.8), we obtain the relation

. ‘ .
Vo(8) = 0, (£)— 0, (0) — §/.mae. (1.4.9)

which connects the projection of velocity vv(t) with the reading of
the integrator of acceleration Vv(t). The latter is called in this
case the projection of the apparent velocity on direction v.

Function f, (t) which stands under the sign of the integral in
the right side of relation (1.4.9) when the earth is not proposed to
be flat, 1s changed with the course of time because of a2 change in
the position of the missile relative to the earth.

With alternating crientation of the axis of sensitivity v, for.
example, when the integrator of acceleration 1s located directly
aboard the missile, equations (1l.4.8) and (1.4.9), of course, are
not applicable, and the reading of the integrator of acceleration is
no longer equivalent to the corresponding projection of the apparent
veloclty.

§ 5. Construction of a Ballistic Function by Means of
Two Integrators of Accelerations and a Computer

In this section let us examine the use in the system of inertial
control of the flight range of two integrators of accelerations.
Let us assume that the integrators are stabllized so0 that the axis
of sensitivity of one of them during the whole power-flight section
of the missile would remain parallel to the horizontal x axis, and
the axis of sensitivity of the other woulid be directed parallel to

the vertical y axis.
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In the examined case, 1.e., under the assumption of a nonrotat-
ing flat earth, projections of accelerations of the force of gravity
on the z and y axes are expressed by equations

fa=0, fy=—yg. (1.5.1)

Consequently, in accordance with formula (1.4.1), projections of the
appareht acceleration on the same axis are the quantities

‘:"":(')u ‘1'”'(‘)""' . (1.5.2)
where "'(" &z () do_(6) d% (1) (l )
"-(‘)‘T——A—- Wv(‘)-—},-—-_—é—. 5.3

are corresponding projections of the real acceleration of the missile
in the fixed system of coordinates xy. Here xz(t) and y(t), Jjust as
earlier, are current coordinates of the missile on the power-flight
section »f 1ts flight. ‘

The current readings of the integrators with axes of sensitivity
parallel to axes of coordinates r and y, according to equation
(1.4,7), are quantities '

o B, AR N N

[ ] [ ]
v,-S.,(:)dc, V,-Sc,(l)dl. (1.5.4)

which are projections of the apparent velocity of the missile,
respectively, on the axis of the fixed orientation = and y. In
virtue of equations (1.5.2) and (1.5.3) they are connected with
prejections vx(t) and v, (t) of the real velocity of the missile
relative to the system of coordinates zy by relation

Va(t) = g (2), Vy(t) = vy (t) + £2. (1.5.5)

Into the latter ccnstants of integration are absent, since projec-
tfons of the real veloeéity of the missile at the initial instant .

Je—
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of the power-flfght section, i.e., when t = 0, are equal to zero.
Coordinates of the missile x(t) and y(t) at this instant are also
equal to zero. Therefore, as a result of the integration with
respect to time of current indications Vx(t) and Vy(t) of corre-
sponding integrators of accelerations will be reduced un the basis
of equations (1.5.3) and (1.5.5) to the foliowing relation:

I P

SO=2() SO=yO+&. (1.5.6

j
/
|

Tn chem time functions

] ¢ )
so={v.0e  s0={v0n (1.5.7;
can be called projections of the apparent path of the missile.

By means of relations (1.5.5) and (1.5.6) one can express,
coordinates zft) and y(¢t) in terms of functions S, (t) and $ d"'
and projections v, (t) and v (t) of 1ts real velocity — in terms of
current readings of integrators of accelerations Ve (t) and V (t,.
If further we substitute these results into equation (1.3. 2) for
the ballistic function e(t), then after the simplest conversions we
will obtain for it the following expression:

LEER T FFEF PR PR i

8(f) == S () + A8, (1) + T [V () + AV, (N —
- =y =1 (0l + b)) — gt — T, (1.5.8)

where the coeffizient %k, as before, 1s determined by equation
(1.2.10).

For the construction aboard the missile of a current value of
the bzllistic function €(t) in the form of an alternating mechanical
or electrical magnitude In the examined case the presence of two
integrators of accelerations, clccks and computer is necessary.:  The
composition ©f the latter, specifically, should include two elements
of additionai integration of readings of integrators of accelerations




§ 6. Control of Flight Range of the Missile by Means
of a Single Integrator of Accelerations with
inclined Orientation of Its Axis

An attentive examination of expression (1.5.8) for the ballistie
function e(t) leads to the conclusion that sums

Va(8) + AV, (0), Sa(8) + kSy (1), (1.6.1)

entering into its composition can be formed aboard the missile by
means of unly “he integrator of accelerations with subsequent addi-
tional time integration of its instant readings. The axis of
sensitivity v c¢f such an integrator should be inclined during the
whole time of th= power-flight section of flight of the missile to
the horizontal axis x at a constant angle a, the magnitude of which
is connected witn coefficient k by relation (1.2.11). Thus (see § 2
of this chapter), the direction of the axls of sensitivity of the
mentioned integrator is perpendicular to the vector of velocity of
‘he missile at tho instant of reaching by it of the target ¢ with
cuziculated moticr (Fig. 1).

Let us note, first of all (Fig. 3), that for projections on
the direction v of the acceleration of the force of gravity and real
acceleration of the misslle we have equations

fym —gsina, 0, == w, (t)cosa + 1w, (f) sina. (1.6.2)

Consequently, according to equation (1.4.1), we have

8y = w, () — fu(t) == wy(t) cosa 1 [w, () + g] sina (1.6.3)

or, taking into account equaliiy (1.5.2),

s

8, (t) = g, (t) cosa 4 ay(f)slna. 11.6.5)

The last relation indicates that the apparent acceleration is a
ve.‘opr wn.ze components are parallel to axes of coordinates x and y,

respectively equal to quantities a_(t) and ay(t).



b -, - T W T

Fig. 3.

Integrating expression (1.6.4) for the projection of the
apparent acceleration on the direction v with respect to time, and
taking into account equations (1.4.7) and (1.5.4), we obtain equality

Vo(t) = Voa(t) cosa + V, (¢)sina, (1.6.5)

which indicates that quantity Vv(t) is in this case a projecticn on
the direction v of a certain vector with components Vx(t) and Vy(t}
along axes z and y. '

Function Vv(t) is the current reading of the integrator of
acceleration whose axis of sensitivity has the direction v. Integrat-
ing this time function and taking into account equation (1.5.7), we
obtain a new relation

S,(t) = S, (t)cosa + S, (f)sina, (1.6.6)
in which quantity

[ ]
'&m-}mmm (1.6.7)

can be called the projection of the vector of apparent path of the

missile on direction v.

Relations (1.6.5) and (1.6.6) can be given with the help of
equation (1.2.11) the followlng form:
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o V.(l)-eosa'[l’,(t)-{-ki’,(t)] (1.6.8)

Se(t) = cosa [S,(0) + kS, (2)]. (1.6.9)

From the obtained relations it follows that sums (1.6.1) and, con-
sequently, and expression (1.5.8) for the ballistic function e(t)
can be constructed aboard the missile by means of the use of current
readings of the single integrator of acceleration and of its time
integral. Really, on the basis of relations (1.6.8) and (1.6.9),
expression (1.5.8) is converted to the form

8 (1) = iz 150 () + TV (N — (2" + hy") —
— 1 (02 + ko) — kgt —k - (1.6.10)

As was already mentioned above, the duration of the power-flight
section is determined by equation e€(t) = 0. In accordance with
equations f1.6.10) and (1.2.11), this equation, which will sub-
sequently pe called balligtie, 1s reduced to the following, more

convenient form:

' _v.(:)+-‘!;-s.(:)- vicosa + (o) + gt)sina + i
....;t. x’cos¢+(y'+—';-)sin¢]-‘ (1.6.11)

§ 7. Conversion of the Balllstic Equation by Using
a New Rectangular System of Cnordinates

The ballistic equation (1.6.11) acquires a more transparent form,
if we introduce a new fixed system of coordinates En with the same
origin as that four the system zy. Axls & of thls system of coordl-
nates ls directed parallel to stralght line v, l.e., atr the same
angie a to the horizon (to the z axis) at which the axls of éensitivity
of the integrator of acceleratlons should be located (Fig. 4). Then
axls n will be the antiparallel to the vector of velocity of the
missile at the instant of lts hitting of the target with calculated

motion (zee Filg. 1).



Fig. 4.

Coordinates of the end of the calculated power-flight section
of the trajectory of the missile in the new system of coordiraates
are designated by t£* and n%. They are connected with coordinates
x* and y* of the same points in the zy system by equations of con-
version

T =s"c0sa+ ysina, %’ = —2s°sin'a 4y cose. (2.7.1)

Let us designate projections of velocity of the missile on the'axis
S and n with its calculated motion at the instant of the switching
off of the engine by vE and va. They are connected with projections
of the same velocity on the axes x and y, with gquantities v; and v;,
"by similar equations

W =9008a v slna, Pym—oysina v cona. (1.7..)

For moving coordinates of the missile in the system &n, whicnh relers
to 1ts real motion, let us introduce designations §(t) and n(t’), for
projections of its velocity on these axes - vE(t) and v (t), and,
finally, for projections of acceleration — wa(t) and w (t)

Since the axls % and direction v are_parall«l, then th- pro-
Jection of acceleration of the missile on the direction v 1is the

equation

(0
&

W, (f) = w0y (§) = (1.7.:
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and, consequently, according to equations (1.4.1) and (1.6.2), we
obtain

L = a0+ 1='e,()—gsina. (1.7.4)

At vthe initial instant (¢t = 0) of the power-flight section,
coordirates of the missile £({t) and n(t) and also projections of
its velocity vE(t) and vy (t) are equal to zero., Therefore, succes-
sively integrating expression (1.7.4) for dzi(t)/dt with respect to
time, we obtain equations

n(f) = %ﬁ- m Vy(t)—gtsina,
) = 8,0 — & shna, ' . (L1.5)

where Vv(t) and sv(t)’ as before, are projections of the apparent
velocity of the missile and its apparent path on direection v or,
which is the same, on axis £. They are connected with the projec-

tion of the apparent acceleration av(t) by relations (1.4.7) and
(1.6.7).

When using equations (1.7.5), (1.7.2) and (1.7.1) the ballistic
equation (1.6.11) for determination of the instant of the switching
off of the engine is reduced to the following simple fom:!?

R+ FtO=R+FE © (1.7.6)

' Not entering into equation (1.7.6) is either the coordinate, of
the missile r(t) or projection vn(t} of its velocity on axis n. This
means hat the small éistinction in the mentioned magnitudes at the
‘end of the puwer-flight section from their calculated values n* and

'tquation (1.7.6) can be obtained directly from the ballistic
equation €(t) = 0, in which function €(t) is taken in the initlal
rorm (1.3.2). In corder to be convinced of this, it 1s enough to sub-
stitute in expression (1.3.2) coefficient k by its value following

from the relation (1.2.11) and to use equations (1.7.1) and (1.7.2)
and also those similar to them for quantities £(¢t) and vg(t)



va correct to smallness of the second ?rder should not affect the
flight range of the missile. 1In essence this is explained by the
fact that for the control of the flight range of the missile it is
enough to use only the integrator of accelerations whose axis of
sensitivity 1s parallel to the axis § or, which is the same, as

direction v.

§ 8. Geometric Examination of the Condition of
Hitting of the Missile on the
Assigned Target

From a geometric point of view the ballistic equation (1.7.6) of
the previous section can be given the following interpretation. Let
us assume that the motion of the missile is such (Fig. 5) that at
the instant of the switching off of the engine it proves to be at
pdint A', shifted with respect to points 4 — the end of the cal-
culated trajectory of the power-~flight section on a small segment
parallel of axis n. If its velocity at this instant appears the
same as that at the end of the power-flight section ¢f the calculated
motion, then the trajectory of the missile in the free-flight section
will have the same form as that in the calculated case. In order to
obtain this trajectory, it is enough to shift by the magnitude of
segment AA’ the whole calculated trajectory forward in the directicn
cf axis n or, which is the same, in the direction of the tangent to
the trajectory at point C of its intersection with axis z (see Fig. 5).
It is obvious that the point of intersection of the "shifted" tra-
Jectory with the r axis will be remote from points ¢, i.e., from the
calculated points of fall of the rocket, on a smallness of the

second order.

Let us assume that, on the contrary, at the end ¢f the power-
flight section the rocket arrives accurately at the calculated pecint
A, Lut at a velocity somcwhat distinguizhed from the caloulated in
magnitude and in direction (Fig. 6 and Fig. 7). The form of theé

et 1

trajuectury pruves to be different, and li gencral the rocket will

nu iunger hit the assigned target.
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hNevertheless, as follows from the balllstlic equation in the
form (1.7.6), if the velocity of the missile will be different from
the calcuiated by a small vector parallel of axis n (Fig. 8), then
the deviation of the rocket from the target will also be a magnitude
of the second order of smallness. Thus, in the case of a nonrotating

flut earth deprived of an atmosphere, it is possible‘to show such
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selection of the proper instant of the switching off of the engine

of one integrator of accelerations with the axis of sensitivity of
constant direction, in general, they are insufficient. The mentioned
problem (also correct to smallness of the second order) 1s most
simply solved with the help of two integrators of accelerations (see

§ 3 cf Chapter IIl) with additional irtegration of readings <f

of them,

Jne
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CHAPTER II

THEORY OF INERTIAL CONTROL OF FLIGHT RANGE OF
BALLISTIC MISSILES IN THE
GENERAL FORMULATION

§ 1. Expression of the Error in Flight Range of the
Missile with Small Changes in Parameters of the.

End of the Power-Flight Section.
- Ballistic Function

The theory of inertial control becomes incomparably more com-
plex if with trhe motior of the missile, in contrast to the simplify-
ing assumptionc zccepted in Chapter I, we take account of the change
In ascceleraticn of the force of gravity both in magnitude and in
Jdirecticn, ccensider the earth no longer to be fixed, and in the cal-
culation of the free-flight section take account of the resistance
of the atmosphere. The basic difficulty consists here in the selec-
tion of a certain rather simple function of parameters measured
aboard the missile by inertial sensing elements. The function
should be such that with the achlevement by it of the earlier
assigned value, 1t was possible to produce a switching off of the
engine, having provided the calculated range of the missile. An
example of a similar kind was given in Chapter I. This function,
calle”? aubraquently, Just as in Chapter I, ballistic (someti-zc 1t
is called countrolling and also controlling functional), 1s con-
structed aboard the missile by means of the computer, which uses
current rzadings of the integrators of accelerations. The magnlitude
of the ballistic function should be directly connected with the error
ir the flight range of the rocket whicthould occur 1f the switching
off of the englne occurred 2t the current instant of time. The

2¢



system of inertial control in turn should give a signal for cessation
of the operation of the engine upon achievement by the ballistic
function of a value which corresponds to the turning of the mentioned

error into zero.

o

One of the ballistic functions is the errcr itself in deter-
mining the flight range of the missile, expressed in terms of 1its
moving coordinates xz(t), y(t), z(t) and projections vz(t), vy(t),
vz(t) of velocity relative *o the so-called starting system of
coordinates xyz connected with the rotating earth. 1In this case it
is proposed, cf course, that at precisely the instant t complete

switching off of the engine occurs.

It is convenient to put the beginning of starting system at the
center of the earth, having directed the y axis along the radius cf
the earth through the points of start 0 and the z axis so that the
coordinate plane zy, called the program, contains the assigned points
of fall of the missile C. 1If we direct tiie x arxis to the side of
points £, then direction of the z axis is thereby completely deter-
mined (Fig. 9). It 1is useful to note, that the trajectory of the
missile does not lie in plane xy, passing, nevertheless, in the ca:-

culated case through the origin of coordinates U and through point .

For the magnitude of the flight range of the missile { we can
take the sheritest geographical distance between the point of :
and actuzl point of fall of the missile D, and for its laters
tion b — distance of points D to the programmed plane, i.e., plar«

2. (Fig. 9.

SsLvars
] deviae

VoLl

s,0t us introduce brief designations

z2(0) =z, y(a) = y,. z(0) = 3,
v (0) =0, v,(0)=v, v (9)=0, (21,2

for values of coordinates of the missile and projections of 1its

velocity relative to the starting system of coordinates ruys 2l the
:ase it

4+ o=

tnstant of the cwitehing off of the engline ¢ = 0. In this

%)
L}



Fig. 9.

Ais considered that the instant t = 0 is referred to the beginning

of motion of the missile from the start. With fixed values x, Y, =
and v, v s v, range ! depends on the width of the place of the
start and on the location of the plane xy relative td the point of
the compars. The pssition at the instant of termination of the
active section of the celestial bodies — moon and sun relative to
the earth, practicaily does not govern the flight range of the
missile. A certain small effect on the magnitude of the range of
the missile proves to be the state of the atmosphere, especially
near the points of lvs fall, which subsequently, however, 1s rict
consldered.

Having in mind any specific position of start of the missile
and its ussigned point of fall, we take tha: range . is only a func-
tion of cceeordinates x, y, 2 and projections of velocity Vs vy, v,
of the missile at the end of the power~flight section of flight and
doe: notl depend on the duration of the latter. Thus, we will con-

sruce that

Las (2, Vs 3, Vxe Oy, Vy)e (2.1.2)

»r

The construction of functions l(x, vy, 3, Vs U s v,) in general
in the form of an e¢xplicit function of thelir variatics 1s impussible,

sirnce, in tontrast to that given in Chapter i, the causvion f nmoticn

ot Wi AR a0yt %



of the missile in the free-flight section in quadratures are not
integrated. Nevertheless, mathematical machines with great accuracy
allow comparatively rapidly calculating the magnitude of range of
the missile 7 according to data of its coordinates x, ¥y, 2 and pro-
Jections of velocity V..o vy, ¥ which corresp.nds to the end of the
power-flight section in the starting system of coordinates xuu.

Let us deslignate by xz*, y*, z2* and v;, vg, v; those values of
2rordinates and of projections of velocity of the missile in the
starting system of coordinates xyz, which corrasponds to the end of
the power-flight section in the calculated motion and by 1* the cal-
culated range of its riight. In accordance with equation (2.1.2),

we have

r-‘(‘.!"".l ’:-’;o ’;)- (2.1.3)
Let us form expression

Al == ll2(2t), y(2), 5(8), "z(‘)’.’v (1), v (e)) —
C= UYL S, e ). (2.1.4)

it can be accepted as the ballistic function mentioned in the
beginning of this section. Actually, if we turn off the engine at

any arbitrary instant ¢, then value of the selected function corre-
sponding to this instant is directly the error in the flight range

of the missile. If, however, the engine is turned off at that

instant t = 0 at which this function turns into zero, then, naturally,

there will not be an error in the flight range.

bYecause of the absence of the equation which expresses function
(?.1.2) in an explicit form in tefms of 1ts arguments, the practical
use of the difference (2.1.4) as a ballistic function is difficult.
sonsiderably simpler 1s another ballistic function, which 1s obtai:ea
from the expansion of function I into Taylor series about calculated
values of 1its arguments, i.e., about the totality of quantitles z*,
y*, z*, v;, v*, and u;. According tc expression (2.1.4), retaining

only smallness of the first crder, we have



8= (s (=21 3L+ WO~V o+ 50— 21 2+
+ o)~ w1 35 + (04 () — w31 % + Ios (0 — 01 - (2.1.5)

L] : ‘
Here the partial derivatives or. 4:. 4. a3 o called ballistic

coeffietents, are taken at values of their arguments, respectively
equal to z4, y*, =%, v;, v; and v;, and, consequently, for the
assigned flight of the rocket are constant quantities. The ballistic
:verficients can be calculated, specifically, on high-speed computers.

It is obvious that with a small deviation in the motion of the
missile from calculated as a ballistic function one can take expres-

sion

3() = ()= 2150 + V=V 155 + () =51 - +

+ire(1)—vl} ,-‘,l.+ (v, ()~} },‘;+ !v.(t)-—viloi,". (2.1.6)

nctually, with the switching off of the engine at the instant when
this expression becomes equal to zero, the difference between the
real and calculated flight range of the misgile proves to be a
magnitude . the second order of smallness.! In this case deviations
in the parameters of the actual motion of the missile from the cal-
culiated =zt the end of the power-flight section of 1its flight are
taken a: smallness of the first order. '

§ 2. Equations Connecting Coordinates of the Missile
in Starting and Nonrotating System of Coordinates

10 volve probice 7 inertlal guldaznce, the startling system of
».ordinatcs represents certain inconveniences. Specifically, the
Jetermination of coordinates and components of velocities of the

'If we do not take into account, of course other facts disturb-
g the accuracy of flight of the missile, specifically, the effect
»f atmospreric conditions at the end of the power-flight sectlon.



missile in this system according to rzadings of newtonmeters or
integrators of accelerations is complicated by the necessity of
calculation of translational and coriolils forces of inertia. Let

us introduce, therefore, the nonrotating system of coordinates &ng
with the same beginning at the center of the earth as that for the
starting system xyz, which rotates together with the earth. Let us
assume that at the instant of the beginning of motion of the missile
t = 0 the axes of system of coordinates £nf and xyz respectively

coincide.

Let us designate by UE’ Un and UC projections of angular
veloclity of the earth on corresponding axes of the system of co-
ordinates £ng and by Ux’ Uy and Uz - on axes of the system zxyz.
For an arbitrary instant of time the following equalities are
valld

Ug=U, = IU, Uy Uy =mU,
UymU,=nl, . (2.2.1°
n — direction cosines of the earth'c axis and, con-

where 1, =

s 3

t

Leguentay, vector ¢ in the system of ccordiratces £ng cr, whicn 's

tne same, in the system of coordinates xys.

Atter the time ¢t after the start cof the missile, tne zvstem ¢t

caordinates ryz will be turned counterclockwise at angle

Pwm Ut {evzn.

relatlve to the system &ng, if we observe rc.ulicn on the slilde Crf
the positive direction of the vector of anguiar -eiocity I the
earth I/ (1.e., on the side of the star Polaris,.

Together with the current coordinates of the missile x(t), y(t)
and z(t) in the starting system of coordinates zyz, let us introduce
its cuordinates E£ft), n(t), t(t) 1in the system £nf. Axes of the
iatter, as follows from the aforementioned, do not change thelr

riertation relative to directions at fixed stars.



The table of cosines of angles between the axes of system of
coordinates &ng and zyz' is the following:

£ n B 4 :
Tl —cos®)'+ (1—cos@)ml+ (41— cos@)nl—)
. +cos @ +nsing ~—msing,
y({—cos®)im— ({ —cosq)m*4 (4 —cosP)nm--
~nsing + cos@ +ising,
5 (1—cos®)int+ (1—cos@)mn— ({—cos@)nt 4
+meing —lli.l' + cos@. (2-2-3)

According to table (2.2.3), one can determine coordinates of
the misslle in the system &ng, 1.e., quantities £(t), n(t), and [/},
if direction cosines I, m, n, angle ¢ and coordinates =z(t), y(t),
z(t) are known. The appropriate equations have the form

B = (1 —cosg) I +cosgl z (1) + (1 — cosp)im —
~nsingly (¢) + [(1 —cosq) In + msingl 2 (1),
0= [(1 -—.cosv) mt +nsinglz () + (1 —cosq) m?® +

4cosoly(®) + [(1 — cosg) mn — [singl :(_t).

$(0) = (t —cosq) nl — msingl z(f) + [(1 — cosq) mn +- »
+2dn@ly () +{(1 —cosqg)n® fcosqlz(f). (2.2.4)

The reverse conversion, which expresses coordinates x(¢), y(t)
and z(*+, 1in terms of £(t), n(t) and g(t), correcponds to the finite
turn of the system nf ccordinates &ng relative to the system xyz at
tiie sanme angle ¢ but in the opposite directicn. Specifically, it
is obtained from the previous equations (2.°.4) 1f we replace in
them argle ¢ by -4 and exchange places ¢f gquintities £ and x, n and
¥, and 21s¢0 ¢ and z. As a result we obtaln equations

z() = 1(1 —cocq) I -creql T (1) § (1 — coeg) miq
4+ nsin@ln ()4 (1 —cosq)nl —~msingl (1),
v () = [(1— cosq) Im — nsin @l £ (1) + [(1 — cosq) m*+
+cospln () + [(1 — cosqp). nm + lsiagl§ (1),
s() = [(1 —cosg) In +msingl § () + (1 — cosg)mn—
—Isin@ln () + [(1 — cosq) n* - cosql L (2), (2.2.5)

Yoee, cp-ciflcally, the Lopendlix on page 98,
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which, of course, can be obtained directly, using table (2.2.3).

§ 3. Projections of the Velocity of the Missile
Relative to the Nonrotating
System of Coordinates

o

Earlier there were introduced designations vx(t), vy(t) and
vz(t) for current values of projections on axes x, y and 2z of veloc~
1ty of the missile relative to the starting system of coordinates
ryz rotating together with the earth. Projections of velocity of
the missile in nonrotating system of coordinates &nf on the axis of
this system are designated, respectively, by ug(t), un(t) and "C(t)'
It is obvious that

w) =80 =8O, g S0, (2.3.1)
in the same way as

v,(t)—%ﬂ, »,(t) = 15?-’- v.(‘)-iﬁ'l- (2.3.2)

Quantities uz(t), v (t) anad vz(t) can be expressed by ug(t), un(t),
;(t) and inversely. According to equations of kinematics relative

to the motion of the points, we have

u

U () =0 () + Uy O—Upt)
8, (1) = v () + U () —Uss(®),

8. () =y, () +UH(O)—Uz(0), (2.3.3) oh

th

where “:(t)’ u (t), uz(t) —~ projections on the axes x, y and z of re
the velocity of the missile in the rotating system of coordinates eq'

&ng.

In equatiouns (2.3.3), in accordance with equalities (2.2.1j,
let us replace s Uy and U, and coor?inates z(t), y(t) and z(t)
will be expressed by means of relations (2.2.5) in terms of co-
ordinates £(t), nft) and ¢(t). If. further projections “x(t)’ uy(t!
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and «,{t! are expressed, using table (2.2.3), in terms of projections
ug(z), un(:) and uc(t), then we willl arrive at the following desired
2quaticns

o {t) = (1 — cose) I* + cosqlug (1) +
4+ (1 —coag)im - mainglu () +
+l(1 —cosg)in — msinglug (1) — Uy {{(t —cosq)nl 4+
+meingl B (f) + {(1 — cosg)mn — [singly ()) +
+ (1 = cosg) n"+cos @l ()} + Ug {I(1 — cosgp) im —
—nsingl & (1) + [ — cosg) m* 4 cosqln (1) +
+ (1 = cosg) ma + 2edngll (1),

o) = (1 — cosg)im — nsiceglug () +
+ (1 —cosg) m® 4 conegl ug (1) +
+ [(1 — cong) ma + I singl ug (1)—
— Ug {l(§ —cosg) I' 4-cosgpl E(9) +
+ (1 — cosq)ml 4 nsingln() + .
+ (1 — cong)nl —msingl§ () +
4+ Ue{l(t — cosg) in 4 msingl & (t) + (1 —cosg) mn—
— tsingin (1) + [(1 — cosg) n* +cosgl L (0},

o) = [(1 — cosg) In + msivgl ug(t) + :
+ [ ~comg)mn — lsinglus(f) + [(1 — cosg) n* +
+ conql ug (1) ~ Up {I(1 — cosq) Im — nsingl & (1) +
+ (1 —cosp)m® {cosgln() +
+ (i — cosg)mn + Isingl L)) +
+U (I —cosq@) P fconql k(1) +
+ [t —cosq)m! + asingln () +
+1{(d — cosg) nt — msingl § (). (2.3.4)

The last equaticns are somewhat simplified after the replacement in

Lvherni of projecticns of angular velccity of thc earth UE’ Un and Uc

respectlvely by products U, mU and nU in acccrdance with the same
equaiities (2.2.1). As a result we obtain

ou(t) = 11 —cong) PP 4 cosqlug (1) +
4+ (1 —cos@)mi - nsingluy (1) +
+ (1 — coag) nl — msinglug ()—
— U {cosg [m (1) — nn (1)] —
—~lsing UE@®) +mn () +a8 ()] + & (1) sing).

L,




By ()= (1 — cosq) Im — nsing! ue (¢) +
+ (1 — cos@) m* 4 cosql uy (1) +
+ (1 — cosg) mn 4 Isinegl ug (6)—
— U feosq [nE () — 1T ()] — m sin @It (9) +mn (9 +
+n§ ()] +n () sing},

oit)= [(1 — cos®) In + m singl ug () +
+ [(1 — cosq) mn — Lsinglu,(t) +
+ [ — cosq) n* +cosq) ug (f) —
— U (cosq [in (1) — mE ()] —
~ maing (1§ () +mm () + (9] + L (1) stag). (2.3.5)

It 1s obvious that by similar means it 1s possible to arrive at

cquations which express quantities Mgs Up and Uy in terms of V..
v, «nd v_. ve nave
Y 2

ug (f)= [(1 — cos@) P +-cospl v, (8) +
+ [ — cosg)im — nsingl v, (t) +
+ [ —cosq) in +msingl v, (&) +
+ U (cosg [mz (t) — ny ()} + Ising [tz (1) +
+my () + nz(@OF— z () sin g},
ue(t)= [(1 — cosq) mi L+ nsinglv, () +
+ (1 — cosg) m* +-cosol v, (1) +
+ [ — cosg) mn— tsingl v, (1) + U (cosplnz (t) —
— iz ()] + m sing [iz (¢) -+ my (t) + nz ()] — y (Osing),

ug ()= [({ — cosq) nl — msingl v (1) +
+ [{t — cosg) nm +'Isingl v, (t) +
+ [(1 — cosg) n* + cosql v, (1) +
+ U (cosg lly () — mz ()] +
+nsing Uz () +my (1) +nz (] — z(f) sing}. (c. 3.6y

»

5 . bkrror in Flight kange of the iMissils @5 i
runctinn of Changes in Parameters of the Ena
of the Fowered-Flight Section in tne
“Nonrotating System of Coordinates.
Initial Ballistic Function

We will designute coordinates and projections of velocities of
thie missile in the nonrotating system of coordinates £nf at the
incoant of the end of the powered-tlight section of its flight

= v, rvogpectively, by letters £, v, § 2na k., u, ind a, . Theey

v. .
1N [
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are simlilar to designations (2.1.1) introduced earlier for quantities

z, y, 2 and v, vy, v,, which refer to the starting system zyz. Thus,

E@ =% n@)=n (=L
n(0) = vy, Hy(0)mu,, Ug(8)mu. (2.4.1)

Setting in equations (2.2.5) and (2.3.4) ¢ = Uo, we obtain expres-
sions of quantities z, y, 3 in terms of £, n, £ and o and also
quantities v_, vy, v, in terms of Ups Ups Ups Ey, n, ¢ and o. This
allows considering magnitude of range I as a function of values of
coordinates of the missile £(t), n(t) and ¢(t) at the instant t = o.
projections of its veloeity ug(t), unlt) and u;(t) in the nonrotational
system of cocrdinates gnz (at this instant of time) and, finally, the
duraticn itse!“ of the powered-flight section a. In accordance with

formula (2.1.2) we now have
Lo l(2,9,%,00,0,) = I} 0,8, ug, u,, tg: 9). (2.4,2)

It Is easy to explain why iln this case the range 1l clearly depends on ¥

variable 0. Actually, the positlion of the rocket relative to the

earth at the same values of its cocrdinates in the nonrotating system

Eng sucstantially depenas on the position of the latter with respect

to starsing system of coordlnates xyz connected to the earth, i.e.,

on anglie ¢ = Jo. The came refers to magnitudes of projections of ;
r of veleooity of the missile Iin the <tarting system at the

trztant of terminaticn of the pewered-~filght section.

Calculated vaulues of parameters of the end of the powered-
Sflight zection in the starting system of coordinates x*, u*, 2%,

v*, v*, and v* correspond to calculation values of paramecters g,

n¥, ¥, ug, ug, and u} in the nonrotating system &£nz. They are
connected with each other by equations (2.2.5) and (2.3.8) or (2.2.4)
and (2.3.6 , in which 1t follows to assume ¢ = Uc¥*, considering o*

as the leslgnation of the calculated duration of the'powered—rlight

secuicr of flight of tre missile. It is cbvious that in accordance

s

tas

witi: furmul

Y
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Cml(s'y, 205, 00,00) = LE WL, ug, vy, g o), (2.4.3)
where 7*, as previously, is the rated value of the range.

The difference Al between the magnitude of the actual range of
the missile [ and its calculated value l* can be represented, similar
to equatlion (2.1.5), in the form of the expansion

M= (8~ )+ =) g+ G — ) T+ (me—ud) & +
e — D e — ) 5+ 6N G (2.4.4)

-

where terms of the second and higher order relative to differences
are dropped

= n—0" 0L g —vg, v —uy, wg— g, 0—0’.

In contrast to the expansion (2.1.5), entering intc equation
(2.4.4) is a term of the first order, which contains by a factor
the difference o - o%* between the actual time of the powered-flight
section of flight of the missile o and its calculated value o%*, The
same difference is contained by a number of terms of expansion
(2.4.4) of a higher order. The reason for this fact was already
explained in the beginning of this section.

s N M N M o M F
Derivatives r O T 2 O O and 5 are themselves functions

of variables &, n, I, Ugs Up, U, and o. In the expansion of (2.4.4)
they should be taken at calculated values of enumerated varliablies
ER n*, ¥, ug, ug, uz, o*, and, consequently, for the specific
assigned flight of the missile arcv constant qu.ntitlies — ballist]
coefficient, which refer to the nonrotating system of coordinates.
Let us show that they are all expressed in terms of ballistilc

coefficlients of the starting system ;’;. -;‘;. q::-. ;'L. :.—'- and ;.i.
= » z

Actually, according to rules of differentiation of complex functions,
specifically, we have:
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3 a 3 , Al oy, o, d,
R=~ERty Rt tEx Rt Rt

o nav,  qd, ubs,

e s;a';'*'s;'r.f"'rsq (2.4.5)

Analogous expresslons take place for derivatlves ;%.gé.i&.ﬁ&.

and for the partial derivative %; cquation
a N 8 .o, Wb, ut, Uk
FeEwEta e tastes thntiw: (2.4.6)

1s valid. Entering into enumerated expressions, the partial deriva-
Lives ¢f variables x, y, 2, Vo vy v, with respect to variables E,
T, &, vg, vn, vC and o are formed by means of the application of
appropriate operations of differentlal equations of the type (2.2.5)
and (2.3.5), in which it follows preliminarily to set ¢t = o and

¢ = Uo.
Thus, for instance,

..;;_:-cowa+(t-mvow
&,

-E-(i—-mva)bu-i-nsinml.

S e Ay

3{' -t — I‘)s}n Ua,

g - U [—(1 —EsinUs 4 (Im sin Uo + ncos Us)n +
4 (insin Us — moos Us) L1,

‘;’- wmUl—(1—M u._ﬂn Us4+(Im sia s L+ ncosUs)ag+
+ (Insin Ua— meos Us) ug] -+ U [(mE — an)sin Us 4

+ Lk + mn+ nf)ensUs —Ecos Us) (¢ bt

if now in equations (2.4.5), (2.4.6), (2.4.7) and ones similar
to them, we assume the values of alli variables equal to the cal-

cuiated vulues, then thus the desired coefficlents in expression

(c.4.4) will be.completely determined.



We will acsume that as a result <f the small deviation in the
real motion of the missile from the calculated in the expansion of
(2.%.4), the terms caused by the so-called lateral deviation in the

R a a’ 9t n M s
missile (@@= )f and (u:-—ﬂ:)g;-‘» are smail in comparison with other

Lepms ., A5 4 result the difference between the actual and calceu!lated
Dolght range o the missile Al can be represented by the approximate

=quiation

Al = @—8)gg +(— W)+ (e — )+

- g ko=, 2.6,

a A A
ﬁ-' N Fug® du,
Cahich are completely defined by the selected calcuiated motion cf

al ,
and 5. as was already shown above, are numbers:

Hhere

the migsile,

$ e 3
¥ SN .

wipression (~2.4.8) corresponds to the following v

$
“woimioun, which we call the fnitial ballistic function:

o (f) = lw)—-rli‘g + ln(t)—n’l-"i + (o (1) — wi| 5o+
+ (e () — il A (¢ — ). | Con s

S yigs T f e} v
A G LI A v )

, ug(a) and un(t), as obefore, are nmnovirg 2rurainates
re

nd nprojections of velocity of the missile In the nonrotating svouem

U oot ilnates Eng.

Tf the oengine of the misslie 1s turned off{ at any .rotant = 7
treens o the bLuolo of equetions (200010 and (2.04.8) the ocniae of

toolilctic funciton (2.4.9) corresponding to this iInstant correct .
smaliness 2 the cecond order determines the error in trpe fiight
rarge o tne misslile, To avold thls error, one snould vurn off v
et ine L che missile at the instant when tne tallistis runction™

c o curns intoe zera.  Thus, tne necessary instant of the switoning

TUr the crpeline 1o determined by whe root 0 eguation




[BO— 815 + IO — w135 + w0 — ) T +
+lu.(c)'—uh,:i.+(¢.-"'a-)%‘-o._ (2.4.10)

Equation (2.4.10) will be called the initial ballistic equation.

The basic content of subsequént sections of thils chapter and
‘also Chapters III and IV consists in the construction of a series
of other ballistic functions, with the help of which 1t 1s poszible
as simply as possible to soive the problem about the inertial control
ol the fliight range of the ballistic missiles. They all are obtalnecd
by means of certain conversions from function (2.4.9) and different
presenitations of coordinates and projections of velocity cof the
missllie in the nonrotating system £ng in terms of current readings

o’ integrators of accelerations.

§ 5. Differential Equations Which Determine Current
Corrdinates of Motlion of the Missile

The meost natural, but, as 1t appears, not the simplest, methcd
s eonstruction of the left slde of the initial ballistic equatlon

(#.4%.10) aboard the missile is the preliminary obtaining of most
} and n(t) by means of solution of Zhe dif-

ot

moving coorvdinates £{
Terential eauatlons, whilch connect thece coordinates with current
readings of two newtonmeters. The axes of sensitivity of the latter
ancu!d maintaln the rixed directions, respectively, parallel to axes
£ and n of the nonrotating system of courdir :tes &ng. Readings of
the mentlioned newtonmeters are prbjections agft) and an(t) of the
apparent acceleration of the missile on the axis § and n. According

t~ enuation (1.4.1) of Chapter I, in this case we have

, a()=wi(t)—fe. @ () =ws()—/s (2.5.1)
Woieste 3 '
(O} , (1) ' )
o (1) = 42, we() = 2 (2.5.2)
are progections on axes § and n of the real azceleration or the
Slesile rejavive tor the Tlxed system cof coordinateées ing, and

Lo
Lo}



fo= I n (), T ) 11,
fa=fulE(). 0 (D), SC2):. 1)

w

(2.5.3)
}

|
\

are, respectively, projections of acceleration of the force of the
earth's gravity, which depend in evident form not only on coordinate
of the missile, but also on time ¢. For an explanation of the last
fact let us note that even at the point with constant coordinates
relative to the nonrotating system £nf the acceleration of the force
of gravity 1s changed with the course of time., Actually, with
respect to the system of coordinates Eng the positioﬁ'of the earth
i1s continuously changed. At the same time the field of gravity of
the earth does not have radial symmetry, specifically, as‘a result
of the deviation in its form from a sphere. If the last fact is
disregarded and the earth 1s considered a sbhere with radial and
symmetric distribution of density, then projections of acceleration
of the force of the earth's gravity will be repreSentéd by équations

N L R L (2.5.4)

no longer dependent in evident form on time. Into them fo is the
value of acceleration of the force of gravity on the earth's surface
examined as a sphere of radius R, and

o=V EOFFMOP F O (2.5.5)

is the distance between the missile and center of the earth. Becaus:
of the smallness of the lateral deviation in the rocket (¢’ in com-
parison with the radius of the earth R, this coordinate in equation
(2.5.5) can be cropped. Correspondingly, it is possible to drop
coordinate ¢ (t) in equations (2.5.3), considering the effect of this
coordinate on the magnitude of acceleration of the force of gravity
unimportant. Then relations (2.5.1) can be considered as a combina-
tion of two differential equations

2O o g () + I, MY 11,
. - (2.5.6)
LU = 5+ 1T A 1]
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for the search of desired functions &(t) and n(t) on the glven
current readlings ag(t) and an(t) of two newtonmeters.

The direct :olution of the system of nonlinear differential
equations (2.5.6) aboard the missile for the purpose of seeking the
current values of coordinates £(t) and n(t) 1t 1s possible by means
of the use of a rather high-speed computer. In the subsequent two
chapters the approximation solution to these equations, which in
principle can be used in the system of control of the flight range
of the ballistic missile in the presence of onboard of its newton-
meters or integrators of accelerations and simplest computers is

used.

§ 6. Auxiliary Relation‘Connecting Magnitudes of
Ballistic Coefficients in the Nonrotating
System of Coordinates

At different conversions of the initial ballistic equation
(2.4.10) one relation proves to be useful, and it connects magnitudes

of the ballistic coefficients %&.;%.5&.5& and %§ in the nonrotating

system cf coordinates &ng with projections of velocity "E’ ua and

with projections of acceleration of the force of gravity fE(E', n*;
o*), fn(a*, n*; o%*), which refer to the instant t = o%f of the termina-
tion of the powered-flight section of the calculated motion of the

missile.

Let us introduce functions E*(t) and n*(tj, which are current
coordinates of the missile in its calculated 7otion on the powered-
flight section. They satisfy the totality of differentlal equations
(2.5.6), 1f in them the current values of projections ag(t) and an(t)
of the apparent acceleration are replaced by their calculated values

% . *
“g(t) and an(t). Thus,

ot . . o/
ﬂml- )+ £ 1E (), 0" (0): 1),
" ‘ (2.6.1)
ﬁ',,';.‘i’ = o (1) + 18 (1), W (0): 41
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Correspondingly, let us introduce functions £**(¢) and n**(t), which
are coordinates of the missile in the free-flight section of its
calculated motion. Let us assume that in the beginning of motion

of the missile in the free-flight section the resistance of the
atmosphere 1s unimportant, and, consequently, the apparent accelera-
tion is absent. 1In this case one should consider that functions
E**(t) and n**(t) satisfy the totality of differential equations,
which is obtained from (2.6.1) if in equations of the latter we drop
quantities ag(t) and a;(t) and replace variables £*(¢) and n*(t)
respectively by £4%(t) and n*#*(t). We obtain

T = 18 (O, v (03 11,

S pa g () ™ 0 ).

(2.6.2)

Let us designate the current values of projections on the axes £ and
n of the velocity of the missile in the powered-flight section with

its calculated motion by ué(t) and u;(t), and by ua*(t) and ua*(t) -
the corresponding quantities which refer to the free-flight section.
We have the evident equalities

w@ =52, - Lo-N0 (2.6.3)

and, similar to them

(=50, WJ=fT0 (2.6.4)

The powered-flight section of the calculated motion of the missile at
the instant t = o®* will pass over into the free-flight section, whence

it follows that

go‘cp) - goo(GO) - E.D l'|’(d') - "u(ao) - ".' ( 2. 6 . 5 )

and also

ug (") = ug (0)) = us, Be(0") = uy (6°) = uy. (2.6.6)



e According to equations {(2.6.1) and equations (2.6.5) for the end of
the caloulated powered-flight section,! we obtaln

- T m e () + R0,
4 (2.6.7)
°(a") o e ¢ o
=8y (3)+ (k,nig)
»
b cp
Similar relations can be ootained on the basis of equations
{2.6.2) and the same equations (2.6.5) for the beginning of the \
calculated free-flight secticon. They have the following form: /
: . Y .‘f ) ] . o
O e @wio), D@ w0, (2.6.8) i
r / LY
g
Let us examire now on the calculated free-flight section of %
flight of the missile the certain instant ¢t = tys which follows i
nd after the instant of the switching off of the engine t = a%. Correct '
th te srallness of the second order we have expansions in Taylor series
= fcr coordinates of the missile El and Ny which refer to this instant,
on. namely:
b= () m b () + (h— ) B, 2 6.0)
3 . . . . . €.
= A (f) = 0 (0 + (=) LD,
or, taking account equalities (2.6.4), (2.6.5) and (2.6.6),
4)
L=+ (—o)u, Mme=n"+(h—a)u. (2.6.10)
¢ at ; 1
Fhence Similarly for prcjections ug and U of the calculated velocity of
th.e missile at Lhc mentioned instant t = t; we have

k92

'In designations of the type df(c)/dt it fcllows, of course, to

consider, that from the beginning an operation cof differentiaticn of 2
the apcropriate functicon is produced, and then the value shown in §
rzrenthesis iz given Yc¢ the argument. E




=l = @)+ - S

- . (2.6.11)
oLl () = ag (9] + (1, — ) G

On the basls of equations (2.6.4), 1t 13 possible here to produce
the following replacement:

AN A ) A (2.6.12)

Taking into account, furthermore, equality (2.6.6), and also rela-
tions (2.6.8), we obtain

slen 4 (G~ (R, 8 )

. (2.6.13)
n=ath—AE 8 9).

Let us imagine such a motion of the missile in .he powered-
flight section different from the calculated, as a result of which
at the instant ¢t = t, it proves to be at the point with coordinates
Cl and nys possessing a velocity the preojections of which or axes
£ and n are respectively equal to quantitles u1 and ui. If at this
instant t = t; the engine of the missile 1s turned off, then the
following free-flight section of its motion, because of the unique-
ness oOf soluticr to the problem of dynamics completely colincides
with the calculated. Actually, both motions are such that at the
same instant t = tl in them positions and velocities of the missile
relative to the system of coordinates &nZ coinclde. PFurthermore,
when t > tl they are subordinated to the same totality of differential
equations, which refers to the free-flight section of its motion.
Thus, at such a powered-flight section the rocket will not have an
error in the range of its flight. Consequently, parameters of the
end of the powered-flight section of 1ts motion El’ nys ué and ui
should satisfy the initial ballistic equation (2.4.10), i.e.,

(h—l')%+(m-n')%+("l—u:)£+
+E =& +(—o) =0, (2.6.24)




Replacling here quantities 51 and ny by thelr expressions according

to equatlons (2.6.10), and ué and ui in accordance with equations
(2.6.13), we obtain after reduction to the common factor t, - ot
equality

.u

Nt AR O
+hE R+ 5 =0, (2.6.15)

which connects the balllstic coefficients -;-'. %. &,& and -:‘7 in the

nonrotating system of coordinates &nf with projections of accelera-
tion of the force of gravity [fi(t, %% ¢ /» (8° 0" ¢} and with projec-
tions of velocity of the misslile uE and ua at the calculated instant
<f the switching off of the engine.

Let us exclude from equality (2.6.15) projections of accelera-
ticnn of the force of gravity by means of relations (2.6.7) and use
«suattons (2.6.3). As a resuit let us obtaln the new equality

s'!f)_ﬁ_‘*. " (o* %4‘_[“‘(‘.)_‘;(30)];:_‘.*.
+[%‘ﬂ_.;(¢~)]£+%=o. (2.6.16)

which will be used in the following section durlng the conversion of
the expresslion of the initlal balllistic equation (2.4.10) tc the ferm
convenient for applications.

§ 7. Isochronal Variatlons of Coordinates and
Projections of the Velocity of the Missile.
Basic Ballistic Equation

with the juxtaposition of the real and calculated motions of
the missiles, let us call the isochronal variations of 1its co-

ordinates the differences

@)=t —¥F), () =n(t) —n*(1)- (2.7.1)
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Similarly, let us introduce i1sochronal variations of projections of
veloclity of the missile

Bug (1) = g () —BE (1), Bty () = wa () —u3 (2) (2.7.2)
and projections of the apparent acceleration

dag = ag()—al(f),  Oaq=ay()—ai(!). (2.7.3)

We will consider the enumerated isochronal variations small guantities,
the squares and products of which can be neglected. Thereby, it 1s
proposed that the problem of thrust of the engine both in direction
‘and .in magnitude is produced to a sufficient degree accurately.
Functions E*(t), n*(i), “é(t)’ u;(t), ag(t) and agrt) refer to
the powered-flight section of the calculated motlion of the missile
and, consequently, are determined at values of the argument ¢ not
exceeding the duration of this section o*. At the same time 1in
equations (2.7.1), (2.7.2) and (2.7.3) functions &(tJ), n(t), ug(tl,
u (t), ag(t) and a, (t) refer to the powered-f{light section of the
real motion of the misq*le, the duration o of which can be both less
and more than the calculated value o¥®. Therefore, for the complete
certainty of variations 8&(tJ, én(t), dug(t), Gu (t), 6a£(t) and
6a (t) in the whole time interval of the powered flight section of
the real motion of the missile, one should agree upon what 1is under-
stood by functions £*(t), n*(t), E(t), n(t), E(t), a(t) with
argument t somewhat exceeding quantity o* (within 1imits of the
allowed variance of duration c¢f the powercd-flight cection for t
specific type of missile). If one assumes that the thruct cf the
englne with termination of the powered-flight secticn iz lcwered
gradunlly or by stages, then for these funeticns when &> o* 3¢ ic
natural to take, respectively, functions £**(t), n**(t), ué*(t) and
u;*(t), which refer to Lhe calculated free-flight section and assume
functions aé(t) and a;(t) equal to zero. In thic case it follows t
expect that the isochronal variations (2.7.1), (2.7.2) and (2.7.3)
will be small at the short time interval directly following the
caleuluated instant of the swltching off of ths engine.
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For missiles with the sudden switching off of the engine, on
the contrary, it 1s more preferable to consider functions £*(t),
n*(t), ug(t} and u;(t) when t > o%* equal to their calculated values
calculated on the assumption that the- engine of the missile at the
instant t = 0¥ was not switched off. Here the isochronal variations

(2.7.1), (2.7.2) and (2.7.3) again can be considered small.

Let us use now equations (2.7.1) and (2.7.2) for isochronal
variaticns of coordinates and projections of the velocity in order
to transfcrm the initial ballistic equation (2.4.10) by which, as
was already mentioned, the necessary time of cessation of operation
of the engine of the missile for its hitting of the assigned target

i1s determined.

Let us present in the beginning equation (2.4.10) in the

following manner:

TO— & Ol Fg+ IO — " (O + g () — w5 () 2
+im OO =— O —-E1 5+ i
+ (t)—nnﬁ+lu,(t)—u:1%+
+ 1O~ o + (¢ — ) 55 ) (2.7.4)

side of the last equation let us substitute expressions
variations ¢f ceccrdinates and projections of the
xet, according to ecguaticns (2.6.5), (2.7.1) and

Ints the left
for isochronal

velcelty cit th e dir
(2.7.2) In 1t3 right side lct uc coxpand each of the functions §*(¢),
nriel, ué(t}, u;(;) in Tayler scorics near the value ¢t = c%*, retain-
v 5 4n the cxpansion only tecrma ¢f Lhe first order of smallness. e
obtain

RO+ + 8. 2 + By () 2 =
-—(t—o')["'"°'—¢—+"‘ ’i+

sy ol |, dnra) Al , A
+—7n dut+ a6 du, Tz’]'

an
(2.7.5)

Ly



The right side of the last equation can be considerably
simplified if we take into account equality (2.6.16) of the

previous section. As a result we arrive at the following equa-
tion:

L N (I N
8n(t ! Sug (¢ -
Ry + 'I()ﬁ'i'hl()q'f' -();;
-_(o_n[.;(e)-,’{l-h;m,'-::]. (2.7.6)
which, subsequently, we will call “he baeic ballistic equation.
For the actual use of equation (2.7.6) in the system of inertial
control of the flight range of ballistic missiles its lelft side should

be constructed aboard the missile at current readings of newtonmeters
in the form of a certain electrical or mechanical magnitude.
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CHAPTER IlI

APPROXIMATE PRESENTATIONS OF THE BAWLISTIC EQUATION
DETERMINING THE INSTANT OF SWITCHING
OFF OF THE ENGINE

§ 1. Differential) Equations for lsochronal
Variations of Coordinates of the
Missile in the Powered-Flight
Section of Its Motlon

In the previous chapter there was obtained the so-called basic
bi.listic equatin (2.7.6), which should satisfy parameters of the
end of the powered-flight section in order that the rocket would
net have an error in the range of its flight. For the construction
of the left side of this equation, it is necessary to know aboard
the missile the isochronal varia:ions of coordinates §£(t) and én(t),,
anc alsc projections of the veliocity 6uE(t) and éun(t). The latter
are, nf course, time derivatives of variations of coordinates, i.e.,

\.

b () =B, =Y. (3.1.1) ¢

The coordinates themselves &(t) and n(t) «f the real motion of
the missile in the powered-flight section satisfy the totality of
difrerential equatlune (7.5.6), and coordinates of the calculated
moticer — totality (2.6.1). Let us form the differences, respectlively
of the left and right sides of these equations and equate them to
each other. Taking into account equalities (2.7.1) and (2.7.3), we

-

cbtalr
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PR o ey (1) + 1o IO+ B, (0 + dn (0 1) —
T RO T,

LIV e B0 (1) + £ [T () + BE (D), 0" (1) + n (0): 1 —
— IO, 0 (0% 11 J (3.1.2)

In the right sides of the last equalities we can use the
expanslon in the Taylor serles of the function according to increases
in two of its arguments. Retaining only terms of expansion of the
first order relative to variations 8£(t) and én(t} and carrying out
simplifications, we will arrive at the following totality of two
linear differential equations:

PO . dag (1) + %-65(!) + -’,i:-bn(l).

PO e, (1) + 202 B(0+ T dn (1),

(3.1.3)

The desired functions of these equaticns are 1isochronal varia-
tions of coordinates of the rocket 8§&(t) and én(t). 1Initial condi-
tions for them can be obtalned from the fact that at the instant of
the launch, i.e., when t ~ 0, coordinates and velocitlies of the
missile are the same both in real and 1n calculated motions. Con-
sequently, according to equations (2.7.1) and (2.7.2), we have

38 (0) =0, n(0)=0 (3.1.4)
and further
duy (0) = 22O oo, du,(0) = 230 . (3.1.5)

The right sides of equations (3.1.3) contain variables -
1sochronal variations of projections of the apparent acceleration
of the rocket Saﬁ(t) and 6an(t). In accordance with equatliorns
(2.7.3), in principle they can be obtained aboard the missile by
means of a continuous formation of the difference between the real
reading of the appropriate newtonmcter and its current calculated

vaiiue,
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" Coefficlents of equations (3.1.3)!

3&!1" %“"%' %.' (3.1.6)

should be considered as time functions, known earlier for each
speclific case of flight of the missile. In order to obtain these
coefficients, in accordance with rules of expansion in Taylor seriles,
in partial derivatives of functions f (¢ % ¢) and fa(§,n:8) according to
variables £ and n, it 1s necessary to produce replacement of the
latter by functlons £*(t) and n*(t). PFunctions £*(t) and n*(t) are
earlier known according to calculated motions of the missile in the
powered-flight section. Thus, if aboard the missile continuous
(without substantial lag) integration of equations (3.1.3) is carried
out and thus magnitudes of functions 8E(t), én(t), Gug(t) and Gun(t)
become known, then the left side of the basic ballistic equation
(2.7.6) can be constructed by means of multiplying and adding devices,
Similcrly, with the use of a clock mechanism the right side of this

eguation is constructed.

§ 2. Approximate Expressions for Isochronal
Variations of Coordinates and Projections

of Velocity of the Missile.
Simplification of the

Ballistic Equation

The simplest method of the use of integrators of accelerations
in the system of control of the flight range of ballistic missiles
is based on the simplification of differerntial equations (3.1.3).
In them terms containing as factors the isochronal variations them-
selves of coordinates 8§£(t) and én(t) are dropped. This 1s equivalent
to the assumption about the fact that the effect on the missile of
forves of gravity with its actual and calculated motions can be
:onsidered practically equal. Such an assumption is admissible only

'The equality in (3.1.6) follows from the fact that projections
¢l acceleration of the force of gravity are partial derlvatives of
tne potential of gravity according to appropriate coordinates.
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with sufficiently small deviations in the real motion of the mlssile
from the calculated, 1.e., at increased requirements for the accuracy
of mction c¢f the missile according to the assigned program. Equations
(3.1.3) are replaced in this case by the approximate equalities

whence allowing for relations (3.1.1), (1.5.4) and (3.1.5), there are
equations for variations of projectlons of the velocity of the missile

(3.2.2)

]

dme (1) = 52 = \Ba ()t = V(0.
l

du, ()= 2 (0 -}a.,(s)az =8V, (1)

Quantities GVE(t) and 6Vn(t), which enter into these equatlions,
can te calieu isochronal variations oi tne apparent velocity ¢l the
missile. According to equations (2.7.3), they are differences

W) =Va)—Vg (1), V() =Va() = Va(0), (3.2.3)

in which .

I [
v'(‘)-S"(‘)d" .V.(‘)-=§¢-(f)d‘ (3.2.4)

are projections of the apparent veloclity of the mlissile during its
actual motion and

[ ] . ] :
o={ame  vio={aos (3.2.5)
are calculated values of the same magnitudes.

Integrating in turn expressions (3.2.2) with respect to time,

we obrain the following equations for isochronal variations of
ccordinates of the missile:
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te 3
8’ (e) = §§ dag (1)d* = 5 Ve (t)dt = BS (),
(3.2.6)
BV () dt = 85, ().

LI 2

() - ii BaL(t)dit =

Here ésg(t) and 6Sn(t) are varlatlions of projections of the apparent
path, i.e., differences

A5y (1) = Se(D— Se(r),  35.(0) = Sa(t) = Sh(0), o (3.2.7)
where _ .
] ¢
o =\rod  so={v.ou (3.2.8)

are proltections of the apparent path of the missile and

St = §v;(¢)d¢. Su() = SV;(M‘ (3.2.9)
their calculated values.

Let us substitute now expresslons (3.2.6) and (3.2.2), respec-
tively, for &8£(t), 6n(t), 6u€(t) and 6un(t) into the basic ballistic
equation (2.7.6), which determines the instant of the switching off
of the engine. We have '

85 (1) 3 + 854 3 + V() - + V. (0 5 =
.__(:_.')[.;(o');‘qfa;(o');:—’ . (3.2.10)

Replacing here variatlions of projections of the apparen* velocity
and apparent path by their expressions, according to equations (3.2.3)
and (3.2.7), we obtain

15— SIOI g + 50— SIO1 35 +
. [ . [
+ V() - Ve (D) gt Valt) — Vu(‘)lg; -
-—(‘—-q‘)[ai(o-)‘%‘_._a;(o-)ﬁ. (3.2.11)
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The last equation can be considerably simplified, if we note
that correct to smallness of the first order lnclusively the follow-
ing expansions In Taylor series take place:

Vall) = V(o) + (¢ —3) a{ (s,

: . ., L [ (3.2.1?)
Va() = Vo) + (t—a)a.(d).

By means of these equalities equation (3.2.11) is reduced to the form

[Se(®) —ﬁ(')l;’é—.+ [Sa(t) — S ()] 3’“’-4- V‘(:)% +

+Vatg: = Vile) g + Vate) o7 (3.2.13)

where terms dependent on time 1n evident form are already absent,

Thus, the basic ballistic equation (2.7.6) can be substituted
bv the approximate equation (3.2.10) or the equation (3.7.13)
equivalent to it. For the construction of the left side of equation
{4.2.13), the presence 1s necessary aboard the missile of two
Integrators of accelerations, axes of which during the whole powered-
flight section of flight should retain directlons, parallel respec-
tively to axes £ and n of the nonrotating system of cocordinates £ng.
IFFurthermore, there must be a computer, which includes in 1lts com-
position two additional elements for the time integraticn of current
readings of the very 1integrators of acceleratlons and & special
element for the reproduction of the calculated current values of
projections of the apparent path Sg(t) and S;(t).

§ 2. Construction of the Ballistic Equation by Means
of the Use of Readings of Two Integrators
of Accelerations with Special
Orlentation of Their Axes
of Sensitivity

There can be cor.siderable interest in the possibility of the
reduction In the number of elements of the computer system of

inertial determinatio n of the flight range of the ballistic missile
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by means of the proper selection of orlentation of axes of sensitivity
of integrators of accelerations. It turns out that there can be
produced a total of one additional integration of current readings

of integrators of accelerations, and not -two, as in the method of

the construction of the ballistic equation given in the previous
paragraph. Fcr this purpose, as will be shown below, axes of
sensitivity of Integrators of accelerations should be parallel tc
certain directions fixed in each specific case of flight of the
misslle (so-called A- and p-directions).

Another method of simplification of the system of inertial
control of the range with the use no longer of an integrator of
accelerations, and the meter of the apparent accelerations with the
changing orientation of the axis of sensitivity, is stated in the
following paragraph. Subsequent modificaticn of this method 1s
given in &8 5 of thils chapter.

Tuus; let us pesltion the axis of sensitivity of one of the
integrators of accelerations in the plane §n of the nonrotating
system of coordinates g£ng at a certain constant angle X to the axis
£. The direction itself of the axls of sensitivity of this integra-
tor will be called the A-direction (Fig. 10).

On the basic of equation (1.6.5), after the replacement in it
of letters x, y and v, respectively, by £, n and X and also angle «
by angle A, we obtain equation

Va(t) = V() cosh +V(f)sin, (3.3.1)

whih expresses the projection of the apparent velocity of the
missile on the mentioned A-direction by its projections on axes §

and n. It 15 obvious that in accordance with formula (1.4.7)
g
nm-samm. (3.3.2)
where ax(t) — component of apparent acceleraticn along the same A- T
dirvection,




Fig. 10.

Thus, quantity Vx(t) is the current reading of the integratcr of
accelerations with the axis of sensitivity, oriented in directicn X,

Let us select angle )\ so that there would take place equalitles

-:-‘—Moosl. ;‘_‘—‘-M-l_nl- (3.3.3)

liere, as it is easy to see (see Fig. 10), Quantity

%=/ (&) +H) (3.3.%)

is for each specific case of flight of the missile, an earlier
known quantity.

Using equations (3.3.1) and (3.3.3), let us transform the sum
of the last two corresp5nd5ng terms of the left side of equation
(3.2.13). Wc¢ have

"(‘)7."7 + V,(c),:‘T - M [Vi(t)cosh + V (t)sinh] =
= MYy (1) (3.3.5)

Tinus, the reduced sum correct to the constant factor M is
determined by -he reading of the integrator of acceleratlions, the

1
H
!
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axis of sensitivity of which is located along the A-directlon.

Ac a result of relaticn (3.3.5), we have
Vo) 2 + V) g = MV, (3.3.6)

Similar to relation (3.3.5); we can obtain the following
equalities

&) ';‘E + 500 % =N |Se () cos p+5 (1) sin ] = NS, (8)

S () 3“(- +S:(t)% w V[ Se(t)coen + Syt)sinp)=NSy(0). (3.3.7)

1. them angle u {Fig. 11) is determined by means of equations

.:“.m)vmp, %—Nnmp, (3.3.8)

and the constant factor N — by equality
Y Tnd
N N
V=1 (%) + (). (3.3.9)

In right sides of equations (3.3.7) Su(t) — projection of the
ve:itor of the apparent path of the missile on the so-called u-
direction, which fcrms the constant angle w wlth axis § (Fig. 11),
and Sa(t) — current calculated value of this projection. By analogy
with equations (1.6.7) and (1.4.7),

] [}
S,(!);_,SI',(t)dt- 5;.;,(:)..’;'. (3.3.:0)

Let us turn now agaln to equation (3.2.13). Taking into account
equalities (3.3.%5), (3.3.6) and (3.3.7), we obtain

MVL(0) + N (Sp(8) — Sp () = MV} (3)). (3.3.11)
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Fig. 11.

The right side of the last equation is a constant determined
for each specific case of flight of the missile. This magnitude
correct to the constant factor M 1s equal to the calculated value
of projection on the A-direction of the vector of apparent velocity
of the misslile at the calculated instant of the switching off of 1its
engine ¢ = o*. If in equation (3.3.11) we introduce another designa-

tion'

: v_v/ GI+E
P-w-'/-(—%ﬁ;));;—[’?%—)—;. (3.3.12)

then it can be reduced to the following final form:

Va(0) + PISe () — 52 ()] = V3 (o). (3.3.13)

For the construction aboard the missile of the left side of the
ballistic equation {3.3.13), an additional integratior. of current
readings of only one integrator of accelerations 1s necessary with
the axls of sensitivity oriented in the u-direction. Furthermore,
the reproduction of the calculated values SJ(t) of this repeated

integration 1s necessary.

!Let us note that coefficient p, similar to factor 1/t in equa-
tion (1.6.11), has a dimensionallity opposite to time (in particular

s~
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§ 4. Construction of the Ballistic Equation witn
the Help of a Special Meter of
Apparent Accelerations of
the Computer

Let us examine another conversion of the ballistic equation
{3.2.13), as a result of which the possibility of solution to the
problem of inertisl control of flight'range of the ballistic missile
hy metns »f a slngle newtonmeter is explalned. 1Its readings in the
computer should be integrated after preliminary multiplication by
2 rertaln assigned time function. The axis of sensitivity of the
newtonmeter in turn change its orientation of the nonrotating system

of coordinates according to the acsigned law.

Let us turn, first of all, to the conversion of the first two
corresponding terms of the ballistic equations (3.2.13). According
to equationz (3.2.4) and (3.2.8) and also the known Cauchy equation
of the conversion of the repeated integral into a simple one contaln-
ing' vhe urper threshold in the form of the parameter in the sub-

integrai expression, we have
s e ' .
sun =\ ={{aae é-}(:—v)am)dv. (3.45.1)
[} [ 1]

where 1t — new variable of integration. Representing here the
difference t - 1 in the form

t—t=(—0) 4 (0°~ 1), (3.4.2)

we c¢btalin equality
[} [} .
Se(0) = (¢t — W () dv + (" — DV ag(v)dv. (3.4.3)
[ ] [

keeturning in the last integral of the right side of this
equality to the initial variable of integration & ari taking into

account equution £3.0.4), we obtaln



[ ]
K= (=) + ) = D (. (3.4.4)

l.et us note further that correct to smalliness c¢f the first order

inclusively we can assume that
Si(1) = S (a) + (t — ) Vi (o). (3.4.5)

Equating to each other differences of the left and right sides
of the last two egualities, we have

(]
K@) —K ) = ;«'-—ouu)a—s:(o') + ]
+(t— ) V() — Vil (3.4.6)

The last-term of the right side of equality (3.4.¢) has a
second order of smallness and can be omitted. Actually, as a
Pos gt LU tae proximity of the real anu ctalculated instantis ¢ = <
ang t = o% of the switching off of the engine quantity ngt) difrer’
little from VE(O.)‘ and this latter is distinguished from Vg(c‘) by
a small isochronal variaticn 6Vé(o'). Therefore the difference
Vg(t) - Vg(o') is a 3mall magnitude, which in equation (3.4.6) is
multiplied in turn bty anotner small difference ¢ - o®.

Thus, correct tc smalilness of the second order

)
S =50 = { (" —ya)dt — S (s)) (3.4.7;
. L ]
it perfect analogy
. .
Su(t)—Su(t) ~ }(a‘-:)-.(:)dc—s:(e'). (3.4.7)

substituting differences {3.4.7) and (3.4.8) into equation

{3.2.13) and replacing in 1t, furthermore, quantities VE(r) and vn(t)

Ly thelr reprecentsations, aceerding to equations (3.2.4), we obteln
after sliplifications
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R+ =0 Jle + [ + @ —n 3] a0} de -
= RO+ VU + FE S 1 5 S (3.4.9)

The right side of the last equation for the specific flight of
the rocket is a certain constant, which we designate by the letter
In acvordarce with equations similar to (3.3.6) and (3.3.7), this

constant can a.lsc be represented in the furm

Co VO + Vi) + S + 35 5u0) =

- MV (3") + NS, (). (3.4.10)

Conversion of tre integrand expression of the left side of
equation (3.4.9) can be produced by the same methods which were
incorporated in the previcus section. Let us present in this equa-
ticn alternating factors befcre projections of the apparent accelera-

R T

ar.d 1, (t) in tre following manner;
i

,‘-.'—‘+(a'-:)-:{.- K (t)cos (i),

(2.4.11)
".L‘+(¢'_¢)%-K(t)llnu(t).
Tn acveerdance with the iast equalitles,
'] \J
K= 1/[,‘.i‘+(o°—t)-3‘t] +m 4 =gl
L] o
+(e=n
‘!IU)=‘: ‘i- (3.4.12)
q+!¢'- U1y

The second equaticn (3.4.12) determines x(t) changing with time
aligle vetwaen the so-called k-direction and axis & (Fig. 17},
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Fig. 12.

Using equations (3.3.3), (3.3.8) and (3.3.12), expression
(3.4.12) for variable X(t), after comparatively simple conversions,

can also be presented 'in the form

Kty=MYT+2p(c"—t)cos(p—2) + P (3 — ¢)°- (3.4.13)

. 1

Let us produce in the left side of equation (2.4.9) replacement
of coefficients according to equali‘ies (3.4.10) and .3.4.11). .«

obtaln the relation

[ ] .
SK(!)[ag(l)cosxll)+a.(l)slnn(t)]d!-=C. (3.4.14)
) .

where in Integrand expression the sum

ag (1) cosx (t) 4-a, () sin x (1) = a. (1) (3.4.15)

is the projection of the apparent acceleration of the missile towara

the mentioned variable k-direction (Fig. 12), and constant C is
expressed by equation (3.4.10). As a result we obtain the ballistic
equation in the following form:

[}
)xm-.(nd==c. (3.0.16,

(3.9..6; zboard the

constraction of the left side of eguation

minasile requires the presence of highily accurate ol icw-dp. syctems
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located on a gyroscopic stabilizer for the change in orientation of
the axls of sensitivity of the meter of acceleration according to

the assigned program.

Of course, approximation methods of the formation of the left
side nf the ballistic equation (3.4.16) by means of the usual integra-
tors of accelerations, for example, by means of replacement of func-
tions kK(t) and x(t) by their certain mean values.

§ 5. Inertial Control of Range of the Ballistic
Missile by Means of Longitudinal and
Standard Integrators
of Accelerations

In systems of control of ballistic missliles one can use the
so-called standard integrators of apparent accelerations, the axes
of sensitivity of which are guided in plane &n at the assigned angle
to the axis £ according to the program of flight. The control of
Tiigh- controls is producez in this case so that together with the
fulfillirg of the assigned program of the change in pitch of the
misslle (i.e., change in angle between 1ts longitudinal axis and
uxls £) the reading on the standard integrator would be reduced to
zerau, The angle between the axds of sensitivity of the standard

integrator and axils of the missile itself 1s selected close t¢ a

straight line.

'he use of the standard integrator of the apparent accelerations
in the system of control of motinn of the missile leads to stabiliza-
tion in the assigned direction of the resuiting force of thrust of
the englne and aerodynamic forces acting on the rocket. Thus, the
direction of the vector of the apparent acceleration of the missile
(hewever, of course, not its magnitude) 1s stabilized. With the
kncwn approximation, being distracted from errvors of the system of
control, it can be considered that the standard integrator controls
the flight of the missile so that the projection of the apparent
acceleration on the axis of sensitivity of this integrator would be

equal to zero,



Let us present In the ballistic equation (3.4.16) of the
previous section quantity aK(t) in the form of the product

a.(!) = & (t)cos T (1) (3.5.1,

Here y(t) 1s the angle which forms the vector of the apparent
acceleration al(t) with x=-direction inclined at angle x(t) to axis
£ (Fig. 13).

v"\

Fig. 13.

Function «(t) is determined by the second equality (3.4.12),
and the direction of the aprarent acceleration 1s changed according
to the assigned law. Because of this the magnitude of angle y(t)
should te considered as a known function of time.

Preducing in equation (3.4.16) the replacement of quantity
ar(t), according to equation (3.5.1) we will arrive at the follow-
ing modification of the ballistic equation:

'§Q(‘)l(‘)d'=-0. (3.5.2)

*

i which the aiternating coeflicient

Q(t) = K()cosy(¥) (3.5.3)
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should be considered the known time function for the given cal-
culated case of flight of the missile,.

For construction of current values of the left side of equation
(3.5.2) aboard the missile just 3s earlier (see § 4 of this chapter),
integration of current values of the apparent acceleration, multiplied
by the assigned time function is required. However, now there is no
need in special high-precision equipment for the change in oriertation
of the axis of sensitivity of the meter of the apparent acceleration
of the missile. Actually, if this newtonmeter 1s rigidly connected
to the standard integrator so that axes of their sensitivity would
pe perpendicular to each other, then with the proper accuracy of the
_control of flight of the missile the apparent acceleration of the
latter (more accurately, apparent acceleration of location of these
instruments) wiil he wholly directed along the axis of sensitivity
of tne mentioned newtonmeter.

Witk scme leas of accuracy of flight of the missile the newton-
weter can be tastened directly aboard the missile, the gulding axis
of its sensitivity 1in parallel to the longitudinal axls of the
mis-ile. The iatter 1s udeflected from the direction of the apparent
acceleration of the missile, i.e., from the direction of the resulting
force of thrust of the engine and forces of aerodynamic actions, as
a rule, at small anglec. Because of this, approximately to lay

e () 226 (h), (3.5.4)

where ao(t) — projection cof apparent acceleration of the missile on
its longitudinal axis.

1f, in accordunce to the last approximate equality, we produce
the appropriate replacement in equation (3.5.2) and, furthermore,
subctitute function Qft) by its certain mean value ¢, then we will

sbtain the approximate equation

[]
@l erdt = Qa1 =C (3.5.5)
L4



" for the determination of the instant of switching cff of the engine
of the missile. Here expression

. t “
7.(t)-§-.(r)d¢ (3.5.6)

1s the current reading of the integrator of acceleration with the
axis of sensitivity parallel to the longltudinal axis of the missile.'
Such an integrator 1s called longitudinal. As 1s known, it was used
in the guldance system of the German missile V-2,

Let us return again to equation (3.5.2) and examine additionally
certain approximate methods of construction of its left side on the
baslis of current readings

+
'(l)-_-Sc(t)dl (3.5.7)

of the integrator of accelerations with the axi. cf sensitivity
located perpendicular to the axis of the standard integrator. Con-
sidering the latter equality the left side of equation (3.5.2; is
converted to the form

}o(nau)a-gqm—‘%}'-’a (3.5.8)

and can be integrated by parts. As a result, taking intc¢ considera-
tion that v(0) = 0, we obtain, according to relations (3.5.2) and
(3.5.2), the ballistic equation in the following form:

1 ,
Q(:)V(:)--;Q'(n e C. (3.5.9)

!Let us note that quantity ia(t) in equation (3.9.7) because

of the variability of directlon of the leongitudinal axis 1s not *the
urojection on this axis of the apparent velocity of the missile in
‘he nonrotating system of coordinates (for more detail on this see

§ 4 ¢ Chapter I).



The construction aboard the missile of the left side of the last
equation can 3lready be produced by means of only cne integrator of
acceleration.

Let us note in conclusion that the same method of !ntegration
by parts can be used for constructing the left side of the balllstic
equaticn (3.4.16).




CHAPTER 1V

INERTIAL CONTFEOL OF THE RANGE OF FLIGH! CF THE
BALLISTIC MISSILE ALLOWING FOR THE
CHANGE IN THE FORCE OF GRAVITY

§ 1. One Method of the Solution of Differential
Equations by Which lsochronal variations of
Coordinates of the Missile with Its
Motion in the Powered-Flight
Section Are Determined

in the previous crajter the basi: ballistic =;aatlon (2.7.6) was
transformed to such a rorm at which 1ts ler't side could be constructed
apcard the missile with the help of integrators of accelerations. 1In
Lthis case iscchronal variations of coordinates and projections of
velccity of the missile, which enter 1into the compositioﬁ of equa-
tion (2.7.6), were expressed by the approximate equations (3.2.6)
and (3.2.2). This corresponded to the neglect in differential eqgua-~
tions (3.1.3) of terms containing as tactors the isochronali varla-
tions S&(t) and dn(t) themselves. As was already indicated in Clhzpter
III, the mentioned terms of equations (3.1.3) take into account dur-
ifg the determination of current cocurdinates cf tlie rocket changes 1in
acceleration of the force of gravity because of the noncolncldence of
its actual motion with the calculated. Error appearing from such a
simplification of equations (3.1.3) in the determining of the range
>f flight of the missile is small only at rather small deviations in
its real motion from the calculated. Otherwise 1t 1s necessary to
solve apprnximately aboard the missile differential equations (3.1.3)
1llowing for terms reflecting the effect of the change in accelera-
tior. of tue fcree o gravity.
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Below for the solution of equations (3.1.3) a similar approxima-
tion method 1s used, and 1t was shown to the author by corresponding
member of the Academy of Sclences of the Ukrainiarn 3SR Yu. D. Sokolov.'!
By means of this method the problem of inertial control of range can
ve juite accurately solved by the means given in Chapter III with
the help of the application of standard integrators of accelerations
and the simplest ccmputers,

The idees of the method consists 1n the conversion of equations
+3.1.3; to their equivalent integral-differentia. and integral rela-
tions with suusequent replacement under the sign of integral of
expressions of Jesired functlions by their simplest approximations,
which satisfy, however, 1initial and final conditions of the problem.
In accordance with this, let us integrate the right and left sides
of equations (3.1.3) with respect to time from the initial instant
t = 0 up to the unknown until the instant of switching off of the
engine ¢t = 0, which provides the hitting of the misslile on the target.
Taking inte ac~ uot L this cuse initial covditicns (3.1.5) for
isochronal varlations of projections of the velocity of the missile,
we cbtain two integral-differerclial relations

. »
-‘B;,(i) = Bug (3) = W (3) + ;—.5':- °§(‘)t“+§ —;,';'-0'!(')“-

y . ‘y
O L pu(a) -AV.(=)+}—,{~ LHOL S e~ TOL (3.1.1)
ir: which, similar to equalities (3‘.5.2),
w‘(,)_su‘qw. ov._(s)=s&x.u)dt ) (4.1.2)

the ilswenronal variations of projections of the apparent velocity

of the missile on axes § and n at instant t = o.

'See, for example, Yu. D. Sockolov. One method of observed !
solved linear integral differential equations. =— Dop. AN URSE, !
1955, Mo. 2. . :
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If, however, the right and lef* sides of equatlions (3.1.3) are
integrated with respect to time twice: one time within tite limits
of t = 0 to the current instant t and the second — 2lso from t = 0
to the instant of swiltching off of the engine t = o, then, taking
account initial conditions (3.1.4) and (3.1.5), we obtain an addi-
tional two integral relation:

X
™

S%,’,,ian(tm.
]
)

where in turn, in accordance with equalities (3.2.6),

ot g
. a

]
8L (0) = 8S¢ (9) + .')’—,giaewdr- +

2

4,

.‘.
8n(0) = 85, (9) + »7{ (e 4+ \\ 2o dn, (4.1.3)

5|

L T )

85 (0) = somt)dt-ssuwm.

[ 3
854(0) = SW.(c)d: - S (dau(0yar

isochronil variations of projections of the apparent path cf the
rocket, which refer to the instant ¢t = 0.

In accordance with the mentioned method, one should substitute
in the right sides of relations (4,1.1) and (4.1.3) functions §&(¢/
arid én(t) by their approximate representations, which turn into zero
4t the lnitial instant of time and respectively into 3$§{(c) and én(g’
when t = 0. Then values of quantities §£{o’, d3n(o), Guch) and
éun(o), found in accordance with the mentioned relationé, prove to
be, as a rule, more accurate than those calculated according tc
equations (3.2.2) and (3.2.6), founded upon approximate equalitlies
(3.2.1).

I+ is prssible to take as approximate representations 8£(-! and
fv¢st in right sides of relations (4.1.1) and (4.1.3), for exampie,

th I+ lnear approximation



RN=R@ 3. MO =M@, (4.1.5)

where 0 - Instant of time for which the determination of decsired
functions 1is produced; in this case ¢ — instant of termination of
the powered-flight section of flight of the missile.

The best results should be expected with the quadratic approxima-
tivn of the form

BO=R(@5. ) =dn(e). (4.1.6)

The reason for this is that functions (4.1.6), unlike functions
(4.1.5), satisfy simultanecusly initial conditions (3.1.4) and
(3.1.5), which concern both variations themselves of the coordinates
and their time derivatives at the instant ¢t = 0. Functions (4.1.5)
do not satisfy initial conditions (3.1.5).

Leading to un even greater accuracy should be the assignment
of functions §g£(t) and &n(t) in the form of the following polynomials

of the third power

&=~ 8 (35 —25) +omie (% —5).

- =
aﬂ(‘)-&ﬂ(ﬂ)@%——z%)+bu‘(c).a(%_ %.). (4.1.7)

These polynomials not only satisfy initial conditions (3.1.4) and

(3.1.5), but, furthermore, when t = o turn, respectively, into §£(o) |
and §n(o) and their derivatives — into Gug(a) and Gun(c).

§ 2. Approximate Solution of Differential Equatlions
for Variations of Ccordinates Using the Quadratic
Approximation and Also the Approximation in the
Form of Polynomlals of the Third Power

Let us examine from the beginning the solution of differential ;
vquations ¢ 3.1.3) which corresponds to the quadratic approximation
(. 1.6, Cuustituting into right sides of relations (4.1.3)

6t




expressions for §£(t) and én(t), according to equations (4.1.6),

we obtaln

- 88 (0) = 85y (9) +!$'-’§§-',%Nz- +!y'_’ss ¥ an,
) o0

dn(0) = 35, (0) + 5,‘,‘-’3.’&"-”& +!!}’S§.’A= oo,
. 0 [ ] .

Let us introduce here designations

ol ot
(o) = e [ 408 bt = 50 v
4
k(c)-g‘.-S;-’,’g-m: A..(c)--;‘rsf-’,’em-.
, X

where, because of relations (3.1.6),

Ao (0) = Ag (0).

As a result let us arrive at the two algebralc equations:

88(6) = 85¢(9) + Aax (2) 8 (0) + hua(0) Bn o)
80 (0) = 854(0) + hut (0) 8 (0) + Aua (o) B0 (o)

with respect tc¢ the desired quantities 8£(og) and én(o).

(un2cl)

(4.2.23

(4.2.3)

{4.2.4)

Values cof coefficients hEE(o)’ han(o) - hng(o) and hnn(o) with
an accuracy sufficient for practice can be taken with argument o =
= o%, Actually, the real duration of the powered-flight section o
only by a small magnitude is distinguished from the calculated o*.
Isocnronal variations 8£(oc) and én(o) should also be considered as
small magnitudes. Consequently, the error which occurs from the
mentioped replacement in coefficients hgg(c), h&n(o) and hnn(c)’
which stand in the right side of equations (4.2.4), of the value of

arsument ¢ by o*, has the second order of smallness.
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Let us designate coefficients (4.2.2) when o = g* by the same
letters but without 1indication of the argument. With the made
simplifications and replacement of the designation of argument ¢ by
t equations (4.,2,4) take the following form:

O (6) = 05 (1) + M2 () + MM (0), (4.2.5)
On () = 854 (2) + AR () + Andn (1),

where i h are quantities known for the given cal-

., h, = h__,

6& &ni ng nn

culated fiight of the missile, which are small in comparison w'th
anity (see § 3 of this chapter). Because of this the totality of
equatlons (4.2.5) is must convenient to solve by means of iterations,
taking 6€(t) and dnft) in the right side of equations (4.2.5) the

basic expresslions represented by equations (3.2.6), namely

(1) m S (6), (1) = A5, (N (4.2.6)

by subsitituting these2 expressions intce right sides of eguations
(4.2.5), we arrive at the following equations for current isochronal
variations s>f coordinates <§£(t) and 6n(t):

B(1) = (1 + A 3Se (1) + MBS, (1), ,
3N (8) = AudSt{1) + (1 + Aw) 85, (0). (h.2.7) i

It i=s easy tc be cenwvinced that subsequent iterations of equa-
ticns (4,2.5) iead accurately to the same equations for ¢E(t) and
én(t), if only in the calculations we drop terms with squares and

products =# h

‘ger Mgn = Fpgs 8NA A, 5

To search for variations of projections of the velocity of the
misslie éug(t) and 6u“(t), let us substitute into right sides of
relations (4.1.1) expressions for &§£(t) and é&nft), represented by
equations of the same quadratic approximation (4.1.6). We obtain ;
for the drsireda magnitudes these equations ;

A ——




dug (0) = V¢ (0) + 8k (o) E‘-‘dt+6n(c) )"’lmn
% %

]
%

(4.2.8)
Quy(0) = V(o) + 6;(:»)-;- = 1%t 4 81 (o) o = d,
Let us introduce designations
-1 % : ‘o
u.(0) = -ar;—aé' 0dt; gee(0) = 73 -,
( u . 2 . 9 a"
1 -”1
g (0) = }T‘ B!, ge(0) = ?} =2d,
Then equations (4.2.8) are presented in the form
Bag (3) = OV (9) + 8 (9) 38 (0) + £u4 () 0 (o),
(4.2.10)

8uy(0) = &V (0)+ gue (9) 3E(0) -+ gaa (0) 80 (0).

Similar to the previous in equations (4.2.i0), instead of
coefficlents 555(0)’ ggn(o) = gng(o) and gnn(c), it is possible tco
take thelr values at the calculated Instant of the termination of the
pdwered-riight section of flight of the missile o*, We designate
these values, respectively, by g £E? g&n = n& and g Let us sub-
stitute further into equations (M 2.10) expressions (h .5) for
varlations of coordinates §£(0) and 8n(o) and disregard the productc
of coefflclents g and h with arbitrary indices. Ultimately we
arrive at equations for the desired isochronal variations cf veloclity
of the missile 6“5(0) and Gun(o) with“"respect tc¢ ilmmoblle system of
coordlnates gn¢. Changlng in them the designation ¢f argument ¢ by
L, we obtain

Sy (¢) = 8V (¢) + £ua85e (t) + 2685 (1),

(4,2.11
Ba, () = Vo (8) + DSt (1) + £2s0S (1). 11)

Equations (4.2.7) and {(4.2.11) are the appruslmute solution of the
totality of differential equations (3.1.3) irn a T rm similar for the
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application in systems of inertial control of flight range of
ballistic missiles.

Somewhat more bulky are equations for isochronal variations of
coordinates and projections of velocity of the missile, if we take
polynomials (4.1.7) for the initial approximations in equations
(4,1.1) and (4.1.3). As a result, similar to the case of the
quadratic approxlmatlion, 1t is possible to arrive at the following
-equations lor varlations of coordinates:

82(t) = (1 + Iher — 2fen) 8Se (1) + (kg — 22a) 354 (1) +
+ 0 (for — Aer) 8V (1) + 6° (e — Ped) OV (2),

(1) = (Whag— 2/0) 85 () + (1 + My — 21,4) 85, (1) +
40 (e — b)) W (0) + 0 (fra— A BV, 1), (4.2.12)

and for varlations of projections of the velocity, correspondingly

Sog (1) = (3gee — 2 357 (1) + (3gea— 204} 85 () +
4 [ + 0" (igg — £ee)] Ve (¢) -+ 0 (iga— £:2) OV (1),

Buy (1) = (3gux — 2iag) 8y (1) + (38ua— 2i4d) A5 (1) +
40" (g — ) OV (1) + [§ + 5 fivg— £4c)1 80 (1), (4,2.13)

In equations (4.2.12) and {4.2.13), besldes deslignations already

rintroduced in this section, guantities LEE, 1En’ zn&’ T and JEE,

jEn’ jn&’ J,p are value, of integrals

v X
iu(¢)=%-s%'-:—l'dl, iw(o) = "i ._5;:_"3{'
. ) .
ye A4 (4.2.14)
"/
iga(0) = lg (0) = -;-}-a-"!-t’df
atrd ., . )
fer (0) = ‘E‘I'W %‘— 13d1*, jaa(3) = .5.}:_6_;.”,1'
[ X ]
(4.2.15)

L8 2 agn
ful®) = jo©@ = ?S§T‘—t’dt .

no
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which they take with argument o equal to> n%*, i.e., at the calculated
instant of switching off of the engine.

§ 3. Simplification of Egﬁations for Isochronal
Variations of Coordinates and Projections o

Velocity of the Missile at Extensions of
the Powered-Flight omall in Comparison
with the ﬁa%Ius of the Earth

Equations (4.2.7) and (4.2.10) and also (4.2.12) and (4.2.13),
obtained in the previous section for varlations of coordinates and
projections of velocity of the-missile, can without great harm for
their accuracy be represented in simpler form, which dces not require
preliminary calculation of integrals of the type (4.2.2), (4.2.9),
(4.2.14) and (%.2.15), Actually, partia. derivativss of the accelera-

tions of .the force of the .earth's gravity 3}. %‘--‘.%. -:l'-"-, taking

part in these integrals, are functions of moving coordinates of the
calculated motion of the missile and, consequently, finally ~ time.
However, with a small extension of the pLcwered-flight sectior. . Lne
trajectory of the missile, in comparison with the radius of the
s2arth, these functions can be substituted by their values, which
refer to the point of the missile launch, and the derlvatives them-
selves can be calculated on the assumption that the earth 1s a sphere
with a radial distribution of density.

The last assumption, if one considers equations (2.%.4}, leads
to the following expressions for the mentioned derivatives of
accelerations of the force of gravity:

R=-F0-2f). R--F0-sH),

.‘,’..L.._‘,’ls-a'—;,"!gq. _ (4.3.1)

Here £, n and ¢{ — coordinates of the arbitrary point of space
and p — its distance to the center of the earth.



(&

re

ra-

For the point of thé missile launch (see § ! of Chapter II) we
have

E=%=0 and nvp=R, (4.3.2)

and, consequently, at this polnt, according to equations (4.3.1),

A
"‘-—-’l'--—-v', *-T-o.

N
;’q;=3,;-.=z.-, _ . | (4.3.3)

where there 1z irrrcduced designation

,,-)/—.E.. (4.3.4)

In the theory of gyroscopes and lnertial navigation quantity
v, determinec by equation (4.3.4), is known by the name of Schuler
frequency (v = (.30125% 1/3).

Jeing the approximate expressions {4.3.3) for derivatives
Ay 9 'Y Mg .
?“"‘a_:""ﬂ.' and - ir. equalitles (4.2.2), (4.2.9), (4.2.1K) and

(4.2.15), we arrive at tie following simple equaticns:

e () = — JF- . Aa(0) = Aa (9) = 0, Anio) = 5.

@ =—F . M) =@ =0, gulo) =, (4.3.5)
and alsc

M@ ==, Re@=la@=0, julo) =g,

0@ ==, @ =ia@=0, in@=. (4.3.6)

Having assumed in these equations o = o¥%, one can present expressions
(4.2.7) and (4,2.11) for isochronal variations of coordinates and
projections of velocity of the missile with the initial quadratic
approximation (4.1.6) in the following final form:

L v W 0

| "
P umrm— LY

~—




8&() = [1 - —'f-(,{i] 38y (D),

() =[1+ X ]as, 0,
Sug () = Ve () — 57 5y, (4.3.7)

dug(t) = V(1) + Z5T 85, (0.

Similarly, for the case of the. initial approximation of functions
§E£(+) and §n(t) in the form of polynomials (U4.1.7), on the basils of
"equations (4.2.12) and (4.2.13), we obtain

8 = [1— 5T ase 0 + ZEL vy,
(1) =[1 + 35 @ 1] 850 () — g v (@ OV (1),
e () =[1+ ZFE|or (0 — 5 as 0,

By (f) = [1- e as

]6V.(t)+v’c’bs.(t). ' (4.2.8)

Equations (4.3.7) or (4.3.8), which approximately consider the
change In action on the missile of “he force of the earth's gravity
‘vecause of the motion of the missilie not according to the assigned
calculated law), should be more accurate than similar equations
£3.2.2) and (3.2.6) given in Chapter III.

§ 4, Construction of Ballistic Equations In Which
the Effect of Changes in Acceleration of the
Force of the Earth's Gravity Is
Approximately Taker Account

In the previous paragraph equations (4.3./ and .::s0 (4,2.8)
were obtained for the determinatlion of variations of coordinate- and
projections of the velocity of the missile with - pprczimate
calculation of the effect of the change 1n the f-.rce of the earth's
gravity with motion according to the law which s somewhat distin-
guished from the calculated. The mentioned equations allow more
accurately, in comparison with exprescions [72.3.13) and 3.4.1h,

€E ® O o T O

N - O -
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obtalined in Chapter 111, constructing the left side of the basic
ballistic equation (2.7.6) aboard the miss ile, using readings of
the came Integrators of accelerations. For this we will use in the
beginning equations (4.3.7) and substitute into equation (2.7.6)
expressions for 8&£(t), &n(t), Gug(t) and‘dun(t) determined by them;

we obtain

(:){[1 "‘"’] - ;;'1}!-]+
+M'-(l){[ v'(o‘)’] - g;}+
+ () Z+ W =

=— (1= [a () -+ (N ] - (4.4.1)

Further, similar to that which was done in § 2 of Chapter III,
iet us present varlations of projections of velocity Gvgft) and
sv, (t) in the farm of differences (3.2.3) and use equations {(3.2.12).
It uhis case Just as in the conversion of equation (3.2.10), terms
standing in the right side of equality (4.4.1) are reduced with
ointlar terms of 1ts ieft side, Taking into account still equatiors

j.c.7,, we arrive at the equation

[Se ()~ SE(D) Ag + [Sa (D) — Sa (O] Aut Vz (r)},ﬁ; +
+V.(t)—--=VZ(°’) +V(°’) (44,20

in «hich
A o AP N A A
aarr A e
wt I

(4.4.3)
‘n’ﬁ"‘

Equution (4,4.2) differs from equation (3.2.13) only by :
‘o fflclents of isochronal varlations of projections of the apparent ;

path 85,(t) and dsn(t). Such coefficients in equation (3.2.13) are,
' a

respectively, rartial derlvatives T and ;% and in equation (4.4.2;, -




dre quantities Aé and Aé distinguished little from them. Therefore,
subsequent conversions of equat on (U.4.2) can be produced exactly

us in § 3 of the previous chapter. Then instead of equation (3.3.13),
we will arrive at the following: '

Vo) + 2 1S, () — S5 (1)) = VR (0. (4.4, 4

The left sides of equations (4.4.2) and (4.U4.4} are constructed
aboard the missile with the heip of the same techriical means as for
equations (3.2.13; and {(3.3.13), i.e., two integrators of accelera-
tions and the appropriate computer, which lncludes elements of
repeated integration. In this case the axls of sensitivity of one
2f the integrators 1s at the same constant angle A to axis § as ir
the construction aboard the missile of the left side of equation

(3.3.13)., As regards the axis of sensitivity of the other integrator,

the latter should be inclined toward the axis § at an angle of u',
which 1s 1little distinguished from the corresponding angle p. Similar

to equality (5.3.8) the magnitude of angle w' 1s [ound from relatiorns

Ag = N’ cosp’, A, = N'sinp’, (4, 4,€)
where, of course,

N =V (&) +(4) (4. 4.6€)

In turn the coeffricient p’ is distinguished little from coefficlent
.r of equation (3.3.13) and is determined by equation '

r~%. (4.4.7)

Here quantity M is the same as that in equation (3.3.4).

Possible also is the conversion cf the ballistic equation
(4“.4.4) to the form

$x'm...(:)dc-c'. (4.4.8)

ran

axi:

In




similar tc the form of equation (3.4.16). The use of equation
(4.4.8) allows solving the problem zbout inertial control of flight
range of ballistic miseiles just as in § 4§ of Chapter 11l by means
of cne meter of gcceleration with an alternating directiocn of the
axls of sensitiv’ty. In equation (4.4,8) the variable coefficient
K'(t;, is formed by the same equations (3.4.11) as coerficient X(¢)
in equation (3.4.16) but with the replacement of angle x(t) by angle
x'(t) and d2rivatives ;% and ;% , respectively, by quantities Aé
and Aé._ .
The use in the ilransformation of the basic ballistic equation
{(2.7.6) of more compliex equations (4.3,8) for coordinates and pro-
Jecticns of velocity of the missile leads, naturally, to more bulky
results in comparisorn with equations given in the beginning of this
section. lus*ead of eguation (4.4.1), in this case we arrive at

the more complex equation

e O B bbb vantmp - ¢ M

oo [1- 27 - 2
+as [t + )] g+ )+
ALY
+8v, _!"f%-{—[l-f—‘{-'—’-]%‘}..
=—{t—0) [-;(c'),i_'-‘+c;(c'),-’;'- . (4.4.9)

in turn equation (4.4.2) 18 replaced by the following:

1S () — ST Ag + S () — SL( 4a + V() B+
+ Vo0 B Vitn (B~ ) — Vio(Bi— ) -

-r;(.y,‘_i‘+v;(¢')}.i'. (4.4.10)

In 1t these designations are introduced

S e SRR =




A“[,+_‘%_z]ac 02,

o hap
B, = 2L +li+-—-2—(’ ](,,,l (4.4.11)
8:=— ﬁ(:‘)'%_*_[i v'(:-,s]‘...

Similarly, equation- (4.4.4), when using equations (4.3.8), is
replaced by the following:

Vie (t) 4 " [Sp= () — Sp= (1)) = V- (6") +
+‘—§3:[(31—5—)¢:(0)+ (Bi—2)akeh] (4.4.12)

Here A" and p" are directions of axes of sensitivity of two integra-
tors of accele atlons, which, respectively, differ little from -
and p-directions, introduced in § 3 of Chapter I1Il. Angles A" and
u", which these directions from with axis £, are determined by
relation

Ag= Ncosp’, Ag=Nsinp,
B:-M.ml‘, B:-M.gin):. (ll.lt.l3,-

Coet'ficient p” in equation (4.4.12) is expressed by equation

’.=N'= (Agf'i-(.".)’. ol h
vV Grrer IEREE

The construction of the right side of the ballistic equation in
the form (4.4.12) aboard the missile 1is complicated, as compared to
the case of the equation of the form (4.4.4), by the nccessity of
introduction into the’computer of an additlional tern iincarly
ierendent on time. Finally, subsequent conversions of equatior
(4,4,12), specifically, to the form similar vo the ballistic equa-
tiorn +4.4.8) and also (3.5.2) are allowed.

In eenziusion let us note that the selection for the specific
av~rtem o control of the flight range of one of the baliistic
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equatlions given in this and previous chapters should be produced on
the basis of estimates of quantities of the so-called systematic
errors inherent to the system of inertial control of the glven type
of rocket. Systematic errors are understood usually as those errors
in the determining of flight range of the missile, which appear
exclusively because of simpliifications made 1n the derivation of

the appropriate ballistic equation. Because of this, even with the
accurate switching off of the englne of the rocket at the instant
indicated by the ballistic equation and with the accurate operation
of all remaining instruments and devices of the system of inertlal
control, the actual flight range of the misslle can be somewhat dis-
tinguished from that assligned according to the calculation. As
regards to the technical difficulties of the construction of systems
of inertial control of flight range of balllistic missiles, they are
included in the manufacture of meters and integrators of the apparent
acceleraticns ({.e., newtonmeters and impulse meters) with extremely
small instrumental errors and gyroscopic instruments with minimum
servicing - their stabillized axes relative to directions on fixed
star. 'The same refers to the immediate switching off of the engine
~1y the signal of the achievement by the ballistic function of a value
corresponding Lo the ascigned flight range of the missile.

.~
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CHAPTER vV
CONTROL OF LATERAL MOTION OV THE BALLISTIC MISSILE

§ 1. Lateral Deviation of the Misslile from the Target,
Expressed in the Form of a Function of Changes in
Parameters of the End of the Powered-Flight
Sectlon in the Starting System
of Coordinates

In the solution of the problem about the elimination of lateral
deviation in the missile from the assigned target, there appear
additional aifficulties connected with the fact that cf the duravicn
of the free-fllight section of real motion of the missile, as a
rule, 1s somewhat distinguished from !-s calculated value. Tn vlew
of this, control according to the earlier assignec law of the motion
cf the missile in a direction perpendicular tc the programmed p.anre,
i.e., plane zy of the starting system of coordinates xyz or (irn
anothcer possible variant) to plane &n of the nonrotating syctenm
Ent, in general does not provide the absence of lateral deviation
in the missile from the ta;get. Really, because of the laws of
mechanics the missile on the creater prart of the free-flight scction
of 1ts flight is moved with minute deviations frcm a certain plane,
which does not change its orientation relative to directions at
fix~d stars (the mentioned deviatlons are connected bhasiecally with
the nonsphericity of the earth). Therefore, if the duration of th.
free~flight section 1s not egquil to 1us calculated value, ther
because of the rotation of the earth lateral deviation in the
hissile fronr the target' continuously appears. However, with

'An excepticn ‘s the case of flight of a missile in the plane of
tl.e equator an¢ from one pole on another,

g1




small distinction in the actual motion of the missile from cal-
culated this deviation should also be small. Correspondingly the
control of motion of the missile in the powered-flight section in
a lateral direction can be reduced only to the requirement of the
fulfillment of an earlier assigned (calculated) law of motion in
the projection on the z axis (or in another variant - on axis z).
However, for a more accurate elimination of lateral deviation in the
missile from the target 1t 1s necessary to take into account how
at current instant of time its real motion in a longitudinal
iircetior 1s distinguished from the calculated. For thils purpoze
one can use current readings of instriments of the control of
flieht range cf the missile.

It 1s obvious that an especlally accurate control of lateral
motion of the missile is necessary only durling a short interval of
time when cutoff of 1ts engine can occur in flight at the assigned
range. At the remainihg time of the powered-flight section the
accuracy of control of lateral motion can be somewhat less. The
duratlior. of the mentioned interval of allowed cutoffs of the engine
depend on the quality of control of motion of the missile according

to the assigned program.

In the starting system of coordinates xzys (see § 1 of the
second chapter, Fig. 9) quantity b - of lateral deviation in the
mirsile from the target, Jjust as the range %f'is a funetion of
coordinates x, y, 2 and projections Vys Vs Vg, of 1ts velocity
rolative to this system of coordinates at the instant of termination
of the powered-flight section of the flight. Thus,

b-‘(’-l-’-’:v’m'z)‘ (5-1-1)

The astronomical time, which corresponds to instant of termina-
tion of the powered-flight section, does not play any role here as
in equation (2.1.2), unless one does not take into account the
negligible effect of such factors as the mutual arrangement of the
earth and moon or the earth and sun.
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With the replacement of arguments of functlon (5.1.1) by their
calculated values x¥#, y¥*, z¥, v;, v¥*, and v; it should turn into
-7zero, silnce the lateral deviation in thils case 1s absent. Thus,

b(z', ", 2°, 05, 0. ) = 0 (5.1.2)
and, consequently,

Ab = b‘t' Yo 20 Uxy "l' ”l)-'b(:.v ’.- 2‘, v;v v;v ”;) = bv ( 5 .1, 3)

i.e., the error in th2 lateral deviation Ab is equal to the laters’
deviation b.

In accordance with the Taylor series for the function of many
variables, we have, correct to smalls of the first order inclusively,

the following expansion:

bm(z—) L+~ S+ (= 24

O~ S5+, — B g+ (0, — 0D -

(5.,1.,48)
Here derivatives g—:-, %. -:—:-, ai-:'," -‘-ﬁ—b; A g’- 1re “aken at cal-
culated values of thelr arguments and, conseguentiv, for each
cralculated case of flight of the misslie are earliar kncwn quantities.
oy éan be detérmined'in a way similar v- the halllxti-. -c0efficlents
ziver i1, § 1 of the second chapter.

% 2. Lateral Deviation as a Functicr of Ta:r.meter:
of the End of the Powered-Flight! Section In
the Nonrotating System of Coorainates

In examining the problems of inertial controi -~ - 'eral
motior of the ballistic missile, the starting system °~ _oordi- suec
15 inconvenlent. Therefore, let us Introduce the same .7 0% 50

Rl

system of coordinates Enf as that in the examining of the the - .:
‘nertial control of range (see § 2 of the second chapter). Current
coordinates x(t), y(t), z(t) and projections vx(t), vy(t) and v, (t)
~f wre veloelty of the missile relative to the starting system of
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coordlnates xyz are expressed in this case by current coordinates
E(t), n(t), ¢ft) and projections ug(t) u, (t) and Uy (t) of the
velocity of the misslle in the nonrotating system of coordinates

Eng by equations (2.2.5) and (2.3.5). Entering into the mentioned
ecuations alsc in evident form (through angle ¢ = Ut) is time ¢, which
passed at the instant of launch of the missile., In view of this,

in accordance with equation (5.1.1), the magnitude of lateral
deviation in the missile from the target can be represented in the
form of a function!

.-b(&nl‘lutvuﬁvu{;a) (5-2.])
21" ccordinates £, n, ¢ and projections Ups Ups

of the missile relative to the system of coordinates £nz at the
instant ¢t = g of teérmination of the powered-flight section and also

u; of the velocity i

its very duration .

Calculated values of coordinates z¥, y*, a* and projections
v;, v;, ﬁ; cf velocity of the missile relative to the starting
system zya correspond to certain calculated values of coordinates
E*, n*, ¢* and projections ug, u;, uz of velocity of the missile
in the nonrotating system £nZ. It is obvious that function (5.2.1),
which represents the lateral deviation of the missile from the
target, will turn intoc zero at these values of their arguments if,
furthermore, we assume the duration of the powered-flight section

is also equal to its calculated value o¥,. Thus,
(R %, U, g, uf, "vd')=0 (5.2.2)

Expanding function (5.2.1) in Taylor scries and being limited
in the latter only by terms of the first order of smallness, we
ob.taln, taking into account equality (5.2.2), the equation

P=E— DI+ =) B 4

o e =R e R e S, (555

'Here, Just 4s in § L of the second charter, seciznat’ons
Y} are acepted.

B
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in which partial derivatives %.!" %:—. & 2 a8 & and % are

RN
constant coefficients, since thelr arguments &, n, g, Up) Ups Uy

and ¢ are taken equal to their calcvulated values, 1.e., respectively
ER, n¥, g®, “E’ u:, ug and a*, Magnitudes of these -nmeffictients
depend rinally on the selection of a certaln calcviated case of
flight of the missile. 1In a way simllar to the appropriate partial
derivative of function I, which represents the flight range of the

missile, they are expressed by equations of the type /..4.5) and

(2.4.6) in terms of partial derivatives -?; -3-:- %. 3‘; -:,L. -:;‘-
= ] L]

and also quantities z¥%, y*, s*, v;, v;, v:.

Equations (5.2.3), correct to squares and products of differences
1~ n-7n -0, u—up We—U, u—m, a—c® , determines the lateral
deviation in the missile from the target when magnitudes of coordi-
nates and projections of velocity of the missile at the end of the
powered-flight section are not equal to their calculated values.

With real motion of the missile neither the instant o«f <switching
off or the engine o nor its coordinates £, n and projection of
velocity Ugs “ps which correspond t¢ this instant of time, are
known earlier. Therefore, for elimination with the above-mentioned
accuracy of lateral deviation in the missile from the target, a
continuous change is necessary 1n quantities z¢t) and ucfz: charac-
terizing it motion in a lateral direction during a certain time
interval of the end of the calculated powered-flight section. The

purpose of such a contreol 1s the continuous reduction to zero of
function

» ; .
B)= (BN —F1 5 + ()= w13 + RI—3 12+
3 [ - b .
+lug () — uy) duy + [# (1) — uy] o, T

+le@— )l 24—

i thhe whoire .:terval of possitle instants of the switching ~ff .7
the englne for a2 missile of the giver. system. Actually, function
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8(t), according to equations (2.4.1) and (5.2.%). turns into the
magnltude of lateral deviation in the missile b if we assume 1n
it argument t equal to the actual value of the instant of the
switching off of the engine o.

The current value of function 8(tJ, which we will call the
Ffunetion of lateral deviation, can be useld as the controlling
signal in the system of control of lateral motion cf the missile,.
This system should operate in such a way that function 8(¢t' wouid
turn intc zero because of the corresponding change in current

magnitudes of the coordinate of the missile z{t) and its time
derivative uc(t).

§ 3. Construction of Corresponding Terms of the Function
of Lateral Deviation Dependent Only on :
the Basic Motlon of the Misgsile

As was shown in the previous sectlon, for the inertlil control
of lateral motion 1t 1s necessary to reproduce the curre:nt value
of function 8(t) aboard the missile. The totality ~f “ems (5.2,4}
making up this function is decomposed into two groups E
8.t). The first of them 1s the sum

<

l't) and

B =) —F1 ¢+ —wT 52 +

e .o o
Hog (0 — 0] oo + 18 () = wll G- H— ) (5.3.1,

the magnitude of which 1s determined by the basic moticn of the
missile, 1.e., by the motion of its projection on plane in of the
nonrotating system of coordinates &ng. The second grcup

ﬂ-(')-IC(‘)—rl§-+lu‘(t)—uE|% (6.3,

ccnsists of twe terms containing, respectively, quantittie. (2!
and u, (.
z

Some methcds >f the constructicn >f the current value .f
function 8.it) akcard the missi.< are examined in the fc .1 .wing

g6

A b 1

wling

NI IR R R

et LAY L

b ik BB

L P L O P e T e R PIR L

——




cection. As regards the sum (5.3.1), then 1t, according tec its
structure, is completely similar te equation (2.4.9) for the initial
ballictic function €(t). Therefore, the approximate construction
of the sum (5.3.1) can be produced aboard the missile by the same
methods as were used for the construction of function e(t). Let

us examine, for example, the construction of this sum aboard the
missile by means of using readings of two integrators of accelera-
tions, the axes of sensitivity of which are oriented respectively
parallel to axes £ and n of the nonrotating system of coordinates
gnz. Similar to equation (2.7.4), the sum (5.3.1) can be represented
in the form

B = (RO — £ )} g + I~ 1 % +
FInO—n O+ (O — w02+ \
HEO-E1R o 2 o -

RO ) S (5.3.3)

With subseunnt conversion of the sum Bl(t) we will use equations
(2.7.1) and (2.7.2) for isochronal variations of coordinates and
procjections of the velocity of the missile and also equations of the
expansion in Tuvlor series (being limited only to terms of the

n

£irst order of smallness)

PO— = O—F@) =(t—0) L2,

(5.3.4)
n‘(l)—n‘-n‘(t)—-n’(c')=(t—v‘)!-!':‘,ﬂ.

U
and in exactly the same manner b
a
ug (6) — U = 4 (- - up (0% = (¢ -—0°) - "!“’ .

vy —uy= w0 — ) = - ZYD (5.3.5)
i

Taking into account, furthermore, that in accordance with
(2.6.3)
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dug(a) () du_ 18" .
TeT T g o= liﬂ(,)'

(5.3.6}
we transform the expression for sum Bl(t) to the form
mm—&w +Mm +Mwa+MU)
(l—a‘)[ ab '(r)ab+
+ 5%+ 5 ""’;‘;‘+%]. (5.3.7)

Just as in the third chapter, let us disregard in the beginning
the effect of the change in the acceleration of the force of gravity
during motion of the rocket not according to the calculated law.

In accordance with equations (3.2.6), (3.2.7), (3.2.2) and (3.2.3),
we obtain at small values of the difference t - o* relations

B (1) = 8K (1) = S () — Se (1) = Se (0 — 15¢(3) +
R X () (100 F ' (5.3.8)
an(8) = 854 (1) = Sa () —S52 (1) = Su)— 153" +
+@—a) V(o))

and also
Bug (1) = BV (1) = V() — Ve () = Ve () — (Ve(s) +
+(t—0)ag(a)],
du, (1) = V() - Va(N—Va(N =V (N—1Vi(3) +
+{t—a')as(s)). (5.3.9)

Used here agalin are equations of the exparsion in Taylor series,

but for projections &; (1), S; () of the apparent path of the missile
and projections Ve Va() of 1ts app=arent velocity in the calculated

mot ton equations (3.2.5) and (3.2.9) are taken into account.

By meanc of equalities (5.3.8) and (5.3.9) the sum (5.3.7)

is reduced to the form



Bl = SO g + S35+ Ve + Va0 B

~[£(c’)$+-ﬁ(a');‘§+"i(a')'; V:(n,,_]+
+e— O {[F— )] o + [ Vi) 2 +

5 e T L) YR P

In the last equation we can produce further simplificatlions, since,
according to equality (2.6.1), we have

T i) = S I @ v @11,

a£'n° . . .
2 ai () = fa 18O 0 (0 1) (5.3.11)
as a consequence, as a result of the integration with respect to

time within limits of t = 0 to t = g%, allowing for equations
(3.2.5)

‘
d"(‘s-z _Vi(o') = lxlﬁ (0, " (1), (1de +dl (0) .

i) _ V'(a)-)l.ll @), w ). ade -+ G2 (5.3.12)

Fquations (».2.11) and (5.3.12) can be used in the subsequent
conversion of —xpression (5.3.10) for the sum el(t). As a recsult
let us obtair the fellowing final expression for this sum:

B= Sdt)z+8 (')—+l (t);_—+V (r)é—w
—C+(t—0)D. (5.3.13)

Introduced here are desigrnations

N .
C“I(-"_"?ﬁ"‘.(’) +‘;(’>~—+' (a),,. (5.3.14)




B » RN
D= g I @ 0 a4 f.r, (& (0, ' () 01 de 4

’I‘

F /AL @)W (@) 312+ I (@) () 3] ;’—:; +
+%;%!‘.§j_m+.;'ii'§;@]. (5.3.15)

It is obvious that ¢ and D are constant quantities, which can be
determined earlier for each specific case of flight of the missile,.

Por the construction of expression (5.3.13) aboard the mlssile,
one can use the same integrators of accelerations and elements of
rereated integration as in the solution of the problem on inertial
control of flight range by the method given in § 2 of the third

chapter. Furthermore, an additional computer and clock mechanism

are necessary here,

If, however, the control cf flight range of the missile is
produced with the help of integrators whose axes of sensitivity
are rara-.lel to A- and u-directions, then for the fermation of
expression (5.3.13) there will be required, furthermore, an azuxiliary
device of the type of ccnverter of ccordinates, whichk continuously
sclves the system of equations (see § 3 of the third chapter;

Vg(‘-)ml + V‘(l)!in A= V‘ (t)'
Ve(t)eosp + ¥V ()ainp =V, (8) (5.3.16)

relative to quantities Vg(t) and Vn(t) according to data of current
readings Vk(t) and Vu(t) above-mentioned intezrators.

§ 4. Construction of Main Terms of the Function
of Lateral Deviation

The second group of corresponding terms of equation (5.2.4)
for function B(t), as was indicated in the previous section, is
the su:. «f two terms

RO—CIF and o) — g (5.4.1)

u
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They can be called the main terms of the function of lateral
deviation R(t), since they play the main role in the control of
lateral motion of the missile. )

For the construction of current values of the sum (5.4.1)
aboard the missile, one can use readings Vc(t) of the integrator
of accelerations, the axis of sensitivity of which 1s oriented in
parallel to axis Z of the nonrotating system of coordinates &ng
(soc-called lateral integrator).

Let us note that, according to equation (1.4.,1) (§ 4 of Chapter I),
there occurs the relation

w (= B o () + 11 (5.4.2)

where ac(t) - projection of apparent acceleration of the misslle
9n axis z, and fc - projection on the same axis of acceleration of
the force of the earth's gravity. Thé latter, similar to equations
(2.5.4), with sufficlent accuracy can be represented in the form

k-a—-’%."'-;(c,. (5.4.3)

Thus, relation (5.4.2) can be considered the differentlal equation
in the desired function f(t).

At the instant t = 0 the axes of the starting system of coordi-
nates xyz, which 1s connected to the earth, respectively coircide
with axes of the nonrotating system &nf, and the center of masses
of the missile, on assumption, is found at their common origin.
Furthermore, at this instant the missile doec not have velocity with
respeet to the sta=tine system of c~~»dinates zy=. Corseguently,

1nitial conditions of equation (5.4.2) are such:
§@=0, B9 _y 0 =u, (5.4.4)

where “2 - velocity of the beginning of the starting system of

coordinates in the nonrotating system &nZ at the instant when
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t =0, 1.e., at the beginning of the powered-flight section of
its flight.

It is possible to assume that the acceleration of the force
of gravity proves to have an insignificant effect on the rate of
change in function g(t). Therefore, as a first approximation it
is possible not to consider the projection fC in equation (5.4.2)
and, respectively, consider that

B0 mac( (5.4.5)

Hence, taking account the second initial condition (5.4.4), we have

Bl e b (1) = Ve () + w2, (5.4.6)
Here
1
Vzu)-Saw)d’ (5.4.7)

is the current value of the projection on axis § of the apparent
velocity of the missile relative to the nonrotating system of
ronrdinates Enz. This is the reading of the integrator of accelera-
t!-ns with the axis of sensitivity parallel to the axls 7. Secondary
integration of both parts of equality (5.4.5), allowing alsc for

the first of the initial conditions (5.4.4), leads to the equation

L) = Seit) + w3, (5.4.8)

in which Sc(t) - projection on axls ; of the wvector of the apparent
path of the missile in the nonrotating system of coordinates &ng.

In accordance with the last equation, for the construction
aboard the missile of current values g(t), an additional integration
- rcadings of the aforementioned integrator of accelerations 1s

necessary.  Actually

Se(t) = Y Verae. (c.1.5)
@



On the basis of equations (5.4.6) and (5.4.8) the expression
for the sum (5.3.2) 1s reduced to the form

' ] “® . ey B
This sum, Just as sum Bl(t), obtained 1n § 3 of ¢his chapter,
can be constructed directly aboard the missile.

Thus, under the assumptions made about the unimportance of
quantity fc, it 1s possible by means of integrators of accelerations
and computers to obtaln current values of the function of lateral

deviation

BI) =Bu()+Bar). ‘ (5.4.11)

]

§ 5. Calculation of the Acceleration of the Force |
of Gravity in the Construction of the Function
of Lateral Deviation

Methods given in the fourth chapter, allow, as will be shown
below, approximately integrating equation (5.4.2) for function
t(t) taking into account the projection of the acceleration of the

force of the earth's gravity fC'

Let us note, first of all, that with an accuracy sufficient for
practice at not too great an extension of the powered-flight section
of the flight of the missile in equation (5.4.3), the distance p fror
the missile to the center of the earth can be substituted by the
radius of the earth R. After this let us arrive at equation

fo= =), (5.5.1)

in which quantity v (Schuler frequency) is determined by equation
(4.3.4). Finally equation (5.4.2) can be replaced by the following:

RO ma )= (1), (5.5.2)
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Let us integrate witis respect to time the right and left sides of
this equation within limits of 0 to ¢t taking Intec aceount the second
initial condition (5.4.4). FEquating the obtained results, we arrive
at integral differential relation

. ¢
.ngl.-v‘(:)—- \"£C(')d‘+"2~ (2.5.3)

Let us prcduce the same operation of integration agair but taking
inte account the first initial condition (5.4.4)., As a resuit we
ottain the integral relation

c(s)-s‘(c)-_-v'§§c(:)m-+q:. (5.5.4)

which 1s the equation for the determinatiorn :f lateral shift c¢f the
misaile §(t) according o the assigned function Sc(t). The expresslon
represented by equation (5.4.8) can be considered the first approxi-
mation tc the solution of this equatlon. To obtain the fellowling
arproximation, in which already the effect of acceleration of the
force of gravity will be taken into account, it is possible to use

the method given in the fourth chapter. Filrst of all, let us assume

in relation (5.5.4) t = 3, Then i1t takes the form v
et
;(a)-s‘(a)-—v'sS;(t)dt'+nza. (5.5.5)
]

Let us further replace in the right side of equation (5.5.4) function

g(t) by its approximation in the form of a polvnomial of the second
power

Q) — 3
C0 = o+ 800K (5.5.6)
the coefficients of which are selected so that initisl conditlions
(5.4.4) would bve satisfied, and, furthermore, in order that the

polynomial would take value Z(o) at the instant ¢t = ¢ of termination %

yd
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of" tho powered-flight section of real m-ticn of the mirsile.!

Iff then we produce a similar replacement alsc in relation
{5.5.3) and accomplish the necessary operations of integration,
then we will arrive at equality

ll‘(O) s Vt(a)--‘ v‘u:—%‘-:_ y“(g)% + ug'

(5 - 5 * 7)
8(0) = St (0)— v T — VL (0) 1 + uto,

which can be examined as the egquatlon for determining the value of

the function 1tself z(g) and its time derivative u;(o) at the
instant + = 0.

The solution of the second equation (5.5.7) can be cbtained
with sufficient accuracy If in 1ts right side quantity rz(o) is
substituted vy its first approximation, according to equation
{(5.4.8), 1.e., If we assume

$(0) = Se(o) + ula. (5.5.8)
ds a result we obtain equatlon

u")ﬂ(’-——':%'-)Sg(d)-}-(i-—_'—':'—)dug. (5.6,

We produce the same replacement in the first equation of (5.5.7).

IFinally we arrive at the following approximate equation far the

~derermination of the prolectien of the actual velocity of the

missile orn axis 7

e (0) = Ve () — S (9) + (1 — ) us. (5.5.10)

Consluering the argument ¢ to be close to o%, it 1rs .:2slble

without great loss of accuracy in equatlons (5.5.9) ana 7%.5.10)

I'mare is a possibility, similar to § 1 of the fourth chapter, »f
ar approximation by means of a polynomial of the third nower Ir
which the derivative when ¢ = ¢ 5till turns irto uc(c}.



to substitute argument ¢ in terms containing the small factoer ve,
by the rated value of duration of the powered-flight section o¥,
Substituting in other places of these equations argument o for the
current time t, we obtain the following final expressions for z(t)

and uc(t)

(O = [1 - 'l‘;-’z')l] Se) + [1— i‘.gl)’.] tuy,

we (1) = Ve () — Y5 S0+ [1— 250 Tn, (5.5.11)

“guations (5.5.11) lead to a presentation of the sum Bz(t), more
accurate in comparison with expression (5.4.10), namely:

B ={t— S Jsco+t— 260 o — ¢} 2 4

vy

e~ s+ [t — 20 g - ug} o (5.5.12)

A

The construction of function 82(t) aboard the missile can be
prcduced by means of the integrator of acceleration with axis of
sensitlvity parallel to axis ¢ (and also, of course, tle integrating

device).

irn tiis boek, as was already Indicated in the intrcducticn, an
aeeount of problems or the theorv af Inertial corips? o *he flight
~f ballistle missiles was produced under the isunption of the ideal
<tabilizatlen »f axes of sensltlivity ~f ‘uwtc. o neters and .ntegrators
~f accelerations and completely accurate cper-tion of the latter,
i.e., accurate indlcation by them of current values of projections
nf the voetor of apparent agceceleration of the missile and Inteprals

uf LY L0 ovatue e,

An estimate of the effect of Instrumental errosrs of gyvroscoplce

B ~

doevicen and Inveprators of accelerations on the magn..ude of possible

dewlation T e pdessile withy “light at *he sslipned t- it ond also



an analysis of causes of the appearance of these errors and develop-
ment of measures on their elimination represent an lndependent
interest and fall outside the framework of this book.

Let us note, finally, that problems of inertial control of
space missiles can be solved by the same methods as the problem
examined above about the flight of ballistic missiles within limits

of the earth.
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APPENDTIX

DERIVATION OF EQUATIONS FOR COSINES OF ANGLES BETWEEN
AXES OF TWO SYSTEMS OF COORDINATES TURNED RELATIVE
TO ONE ANOTHER AT A FINITE ANGLE

In manuals on analytical gecmetry and according to theoretical
mechanics, equations for the cosines of angles between axes of two
systems ¢of ccordinates artitrarily turned relative to each other are
derived usutally with the help of several additional geometrilc con-
structions. The derivation of these equations is also possible
cy meanc of the frequent use of tables of cosines of angles between
axes of the basic and auxiliary system of coordinates, each of
~hich is turned relative to the previous around one of the coordi-
nate axes' common with it. Specifically, the main axis of rotation
i1s simultaneouszly the axis of coordinates of two auxiliary systems
turned one relative to the other at the same angle as the main

axes.

Given below is a purely analytical derivation of the mentioned
equations, fournded exclusively on the simplest theorems of
analvtical gecometry, and some of these theorem:- are used in

vectorial form.

let u: assume that the system of ccordinates Enf 1s turned at
an arbitrary angle ¢ around a certaln axis d, which passes through

'See, for example, Whittaker. Analyticzal Kinetics. M.-L., 1937
and A. Yu. Ishlinskiy. Mechanics of Gyroscopic Systems. Jzd-vo
AN S838R, 1363,
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the origin of this system.' The final jposition of the system is
designated by zyz. If I, m and n are -osines of angles which form
the mentioned axis of the final turn d with axes of the system of
coordinates &nZ, then it 1s obvious that the same magnitudes are
respectively coslines of angles between the axis d and axes of the

system xya. Specifically, we have

{=cosa, (1

where a - angle which forms the axis of rotation d with the axis §
of the system of coordinates £ng{ and simultaneously the same axis
of rotation 4 with the x axls of the system xyz (see Fig. 1L4).

Tig. 1b.

Let us designate the direction cosines of the x axis relative

to the system of coordinates Enf respectively by a, ¥ anc e. They
are in this case the desired quantities. Besldes the apparent

squality
P tet=t (2)

'Tn 8§ 2 and 3 of the second chapter of this book such an axis
vda the axis of rctation of t'e earth, and angle ¢ was the product
»f the angular velocity of the earth U for time ¢, which pasces fror
that instant when the axes of csvstems of coordinater Enz and xyz,

rospectively, nolncided,

':J-’i



the direction cosines ¢, b and e sacisfy also the relation
lat+mb4ne=1, (3)

which, in accordance with the known equaiion of the analytical
geometry, expresses the magnitude of the cosine of angle a between
the x axls and axls of rotation d.

¥or the determination of the three desired quantities a, b and e,
one equation 1is necessary. Specifically, it can express the fact
that plane zd 1s turned relative to plane £d about the axils of
rotation d at the assigned angle ¢. Thus the measure of the dihedral
angle between the mentioned planes also should be equlvalent to

angle ¢.

Since the dihedral angle 1s measured by the angle between two
rarpendiculars to the planes forming it, then we will introduce
two vectors % and k, the first of which is perpendicular to the
rlane &d, and the other - plane zd. According to the property of

W scalar pr. tuct of two vectors, we have
Ak cos @ m ekg -+ hoks + Ak, (4)

where hg’ h_, h_- projections on the 2xis £, n, z of vector h

n® g
and, respectively, kg’ kn’ k., -~ prolections on these axes of vector

k.

9

Let us take as vector k cthe vectoriai pr>luct of the single
vector EO, located on the §& axis, and singls vector ZO, whish
rossesses the direction of the axis of rotati-r d. Projections of
the first of them on axes £, n and f, of course, are equal,

recpectively, to numbers

1, 0,0, (5)
and of the second

i, m n )
according 10 0 0 ot the compoeritlon of the vectordal prrcduct,

wee wbitaln,
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and, consequently,

=0, Rywe —n, Awm. (8)
In turn for vector k we take the vectorial product

;-;'X’- (9)

P
'

’.1!
2 oen

Here the second line of the determinant is made up of projections
of the single vector zo on the axes £, n and ¢, equal, of course,
to the direction cosines of the x axis in the system of coordinates
Eng.

Expanding the mentioned determinant, we arrive at the following
equality:

A= nb—me, kywlc—na, k= ma— 0. (10)

Moduli of both vectorial prshucts (7) and (9) are identical
and equal to the sine of angle®a between axes £ and d or, which is
the same, between axes x and d. Thus, taking into account still
another equation (1), we have

kmh=sing=)yT=P. (11)
By means of equalities (8), (10) and (11) relation (i) can be
presented in the form
(§— P)cosqg = —I(md 4 ne) 4 (n* 4+ mY)a. (12)
It is the deficient third equation, besides equations (2) and (3),
for the search of the three unknown cosines a, b and ¢, which

determine the direction of the z axiz with respect to axes of the
zaystem of coordirates £ng .
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According to equation (3), we have
=+ new i(1—8). (13)

Furthermore,
mt A= - (14)

Taking account the last two equalities in equation (12), we obtain

after reducing similar terms to the equation for one of the desired
quantities

a-eu.-{-?(i—ui,). (15)

'o determine quantity b, we exclude from relation (2) cosines

a and ¢ by means of equations (12) and (15). As a result we arrive
at the quadratic equation

P+ —Meosop +¥ 4+ L 0— 10+
+ (1 —Meos )l —bm)* = f, (16)

which after simplifications with the help of relation (14) is
reduced to the form

-2 im (£ — cosg) 4 Pm* (1—cos ¢)*—n® sin® p=0. (17)
f the two ruots =f this equation
O mim(1 —coag) +nsing, g
d=im(f —cosg) — nuing (18)

.2 3hould di:cuss the first., Actually, assuming specifically,

le=m=0, a=1, o=3F, (19)
we ocuealn accordingly
b= 41, {y=—1. (20)
100
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However, taking into account the accepted designations (see Fig. 14),
we have in this case

b=cosn = 41 (21)

and, consequently, the second root of equations (18) should be
dropped. Thus, in general

d=Im(l —cosg) + nsing. (22)

Substituting now expressions (15) and (22) for « and b into equation
(3), we will arrive at the following equation for the determination

of quantity e, namely:

e=In(l —cosg) — msing. (23)

Similarly cosines of angles between the y axls and axes &,
rn, £ and further between the 2z axls and the same axes &, n, ¥ are
determined. Finally, the table of cosines of the angles between
zxes of the system of coordinates xyz and Ent can be represented
in the fol%owing form:

¢ n 4
s(l—cos@)*+ (1—cosq)ml4 (1—cos®)ni-—

+ cos @ + nsing —msing
y (i—eq.')lm-— {(1—cosP)m®*+ (1—cos@)mn+4
—nsin@ + cos@ + isine
s({—cos®)in4 (1 —cos®)mn— (! — cos®)nt 4
+ msing —lsin® + cos® L 24)

"+ is table was used in the second cuapter »f this t 2ok,
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