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SUMMARY 

A numerical  discret:-clement method of wave motion analysis  is 

sunmarlzed and extended for problems  involving infinite or semi-infinite 

solid media in plane and axi»Symmetrie conditions.    Space discretization of 

a solid medium is accomplished through a lumped-parameter discrete-element 

model   of   the medium, whereas the  time discretization is embedded within a 

general  numerical   integrator.    This  invariably leads to a system of finite 

difference equations;  thus,  the required mathematical  conditions for numerical 

stability can be developed on the basis of available finite difference theory. 

Explicit stability conditions for plane and axi-symmetric problems are presented. 

Calculations of wave motions in an infinite or semi-infinite space 

can bo confined to a finite region or interest  if the region  is terminated by 

suitable "transmitting boundaries*1  such that no significant reflections are 

generated at these artificial  boundaries.    Based on the concept of a step-wise 

transmission of D'Alembert forces, a general   transmitting boundary was developed 

for the discrete-element method of analysis.    The boundary was verified 

extensively through actual   calculations of plane strain and axi-symmetric 

problems,   including those with layered half-spaces, elastic-plastic systems, 

and a problem Involving long calculation time. 
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I. INTRODUCTION

I.1 Statement of Problem

The prediction of wave motions in solid media often requires discrete 

numerical solution techniques. One such method is the calculus of finite 

differences. The usefulness of the method has been enhanced greatly through the 

development of discrete-element iumped-parameter models of continuous media; 

through these discrete models the required difference equations (usually centered 

difference) can be derived directly on the basis of clear physical considerations. 

This removes many of the difficulties usually associated with boundary conditions 

when the necessary discretizations are impKJsed or applied purely through mathematical 

operations as is ordinarily done with the application of finite difference equations.

In any discrete method of analysis (including finite element [13]). the 

space domain must necessarily be limited to some finite region. When such discrete 

methods are applied to wave propagation problems involving extensive space domains 

(could be infinite or semifinite), the amount of calculations required may 

conceivably become excessive, to the extent that it becomes uneconomical, or even 

impossible, to perform the calculations. This limitation of the discrete formulation 

may be removed if the required calculations can be confined to a finite space domain 

of interest, such that there are no reflections from the terminating boundaries of 

the finite region. Unfortunately, there are no such boundaries that are generally 

available for this purpose.

The objective of this study is to develop a "transmitting boundary" that 

can be used for numerical wave propagation calculations in plane and axi-symmetric 

media.

1.2 General Solution Method

The trans.ni tting boundary developed herein is intended to be used with 

a general method of numerical solution that is essentially based on the mathematical 

theory of finite differences. The technique of formulation requires discretization



of the space domain as well as the time domain. Proper bases for such discreti* 

ZHtions can be accomplished through a physical discretization of the space domain 

through the use of discrete elsTient models. It should be emphasized, however, 

that for dynamic probleiiis of wave propagation, a formulation of the problem based 

merely on a proper discretization of the space domain does not necessarily lead to 

a solution (even in an approximate sense). To assure a valid approximate solution, 

certain mathematical requirements must be satisfied.

In the method of formulation suggested herein, the discretization of the 

space domain is accomplished through the use of appropriate mathematically 

consistent discrete-el ament models of the solid media, whereas the time discreti­

zation is embedded within the numaricai integrator. The space-time discretization 

is mathematically equivalent to a finite difference formulation; consequentiy, the 

mathematical relations required to assure stability and convergence of the resulting 

solutions can be studied from the standpoint of the stability of finite differences. 

Explicit stability conditions were obtained for the algorithmic schemes suggested 

he re i n.

I.3 Scope of Investioation

The general method of analysis for wave propagation has previously been 

applied extensively to numerous problems of solid media, including large-scale 

problems of wave and ground shock predictions from blast loadings, and earthquake- 

induced ground motions. A comprehensive discussion of the method of formulation 

and solution is summarized in Chapter II, including new mathematical results 

pertaining to cal cui ational stability requirements.

The main scope of this study pertains to the development of a transmitting 

boundary. The major concepts involved in the various developments are presented i.n 

Chapter III. Certain aspects of the developments require semi-empi rical investigations 

as explained in Chapter III; the concepts presented herein represent the final



results of numerous schemes that were considered and tested numerically in these 

investigative studies, some of these are illustrated in Chapter IV.

The results of the specific investigations may be summarized as follows; 

(i) For the one-dimensionai plane elastic propagation, the step-wise 

transmission of D'Alembert forces is theoretically exact; this is verified by the 

specific numerical calculations.

(ii) For the two-dimensional propagation under plane strain and axi- 

symmetric conditions, the exact speed of transmission of the D'Alembert forces 

is not known; certain combination of the diiatational and shear velocities of the 

material was found to be suitable. For low velocity material, this was found to 

give excellent results; however, for fast material (i.e., c^ <3/000 fps) certain 

high-frequency oscillations were observed on unloading. Such oscillations, 

however, can be corrected with the use of artificial viscosity, which is normally 

required also for numerical stability in axi-symmetric calculations. The trans­

mitting boundary is applicable to problems with layerings, as well as general 

loadings including periodic loading histories.

(iii) Extension of the transmitting boundary to elastic-plastic media 

requires the inclusion of the fully plastic velocity of propagation, as well as 

the propagation of the elastic precursor waves.

A number of schemes using different combinations of elastic and plastic 

velocities were devised and tested; these led to the development of an elastic- 

plastic scheme for the transmitting boundary. Although not fully verified for 

all cases, the algorithm presented herein is suitable for the elastic-perfectly 

plastic problems examined herein, including those in which plastic waves are 

involved at the terminating boundary.

The investigation included also an exploratory application of the 

transmitting boundary to a finite-element type of formulation. The results.



although not very conclusive, indicated that the step-wise transmission of 

D'Alembert forces, which is the basis of the proposed transmitting boundary, 

may not be directly applicable to the finite element method of analysis. 

Modifications of the basic concept, however, may make it applicable; additional 

studies for this purpose, however, are required.

Finally, an alternate finite difference scheme was developed to serve 

the sane purpose as that of the transmitting boundary. This is based on certain 

mathematical properties of wave propagation, and can be used in place of an 

explicit transmitting boundary; however, the scheme is limited so far to purely 

elastic calculations.

1.4 Ackno\<l edcwen ts

The work reported herein was conducted for the Defense Atomic Support 

Agency as Task I of Contract DASA-0I-69-0040.

A number of other technical personnel were involved In conducting tl>e 

research studies. Specifically, Dr. L. A. Lopez and Dr. A. H. H. Sameh assisted 

in the development of the requisite computer programs, and Or. Y. Uckan assisted 

in the development of some of the mathematical relationships.

1.5 Notations

The following list of symbols and notations is used in this report:

Cj velocity of dllatational waves in an elastic medium

Cj velocity of shear waves In an elastic medium

c wave velocity, in general

E vector representing solution error

direct strain

Lame constamt (shear modulus)

unit dllatational transit time 

unit shear transit time

AY/Cj

Ay/Cj
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>^2 c • At

imaginary constant, >/^l 

index for r (or x) coordinate of a point 

index for z (or y) coordinate of a point 

Index for time level > t/ At

Index for distance of a mass point from the r- (or x-) axis

- r/ Ar

index for distance of a mass point from the i- (or y-) axis

- z/ Az
artificial pseudo-viscous stress in r- and z-dlrectlons, 

respectively

cylindrical coordinate system

distance of the i th point from axis of symmetry

time variable

displacement of a mass point in r- (or x-) direction 

velocity of a mass point in r- (or x>) direction 

acceleration of amass point In r- (or x-) direction 

dependent variable vector 

Fourier coefficient vector

displacement of amass point in z- (or y) direction

an indicator of plastic yielding

Cartesian coordinate system in a plana

non-Cartesian local reference system in a piane

angle between x- and x-axes; also as given in Eg. (3*24)

a parameter in Newmark's |- method; also as given in Eg. (3.25)

coefficient of linear artificial viscosity



V shearing  strain 

JW volume  of   an element of a mass  point of  the   lumped-parameter model 

Ar,  A9, Az uniform mesh  sizes   in  r-,  9-,  and  z-dlrectlons,   respectively 

Ac time   increment 

Ax,  Ay uniform mesh sizes  in x-  and  y-directions,   respectively 

X Lame constant  of medium 

v Poisson   ratio of medium 

5 factor  representing error growth  from one  time step to the next 

0 mass  density of medium 

» diract  strass 

T shearing stress 

ui angle  between y-  and x-axes 

C ratio of space meshes,   C "Ar/ Az 



I I.     DISCRETE   FORMULAT'ON  OF  SPACE-TIME   PROBLEMS 

Analytic   formulation  of   space-time   problems  of   solid  media   invariably 

leads   to a system of partial   differential   or   integro-differential   equations. 

The  solutions  of   thasa  equations   are   the   relevant  physical   quantities  desired   in 

a  problem, which  are  generally  continuous   functions  of  space  and   time.     Such 

continuous  analytic solutions,  however,  are  quite difficult   to  find,  except  for 

certain  simple problems.     For  problems of  practical   engineering  significance, 

continuous  solutions   are often  virtually   impossible   to obtain;   in  these   instances, 

approximate numerical   solutions   are   the only  practical   alternative.     Invariably, 

such  numerical   solutions   represent  discrete  approximations   to  the  continuous 

functions  of space  and   time.     This   Is often  accomplished  by   formulating an 

associated  set of difference equations,   the  corresponding solutions  of which 

yield   a discrete  function of space  and  time  --  I.e.,   It   Is   a  function defined 

only  at discrete points   In  space  and  at discrete   instants of   time. 

For space-time  problems,   a discretlzed   formulation  does  not necessarily 

imply a solution;   I.e.,   the solution of  the discretized system of equations may or 

may not   lead  to a valid  approximation of  the "correct"  solution.    Certain mathema- 

tical   requirements must  be satisfied  In  the numerical   solution  process  to assure 

the validity of  the approximate  solution.    These   include questions of convergence 

and  stability of a particular numerical   scheme. 

2.1     Space Discretization 

A discrete   formulation  of  a space-time  problem  requires  discretization 

of  the  space domain,   as well   as   the   time domain.     It will   be   saer   later  that   the 

resulting solution will   depend on  the  relation between   the  space and  time 

di scretizations. 

Discretization of   the  space domain may  be done mathematically   In  terms 

of  finite differences;   alternatively,   the space discretization may  be  accomplished 



on  .1  physical   basis.     This   latter approach   requires   lumped-parameter or discrete- 

element   (e>3>,   finite element) models  of   the otherwise continuous  space  problem. 

In  any  such models,   the  basic physical   quantities  are defined appropriate!/  at  a 

finite number of discrete positions   in  the  space domain.    The  resulting set of 

equations   formulated   lor  the discrete-element model  may also be   (centered)   finite 

difference equations;   such a property mny be  referred   :o as "mathematical   consistency" 

of  the discrete-element model. 

Lumpod-parameter models   for  two and   three dimensional   solid media have 

been  developed   and  described extensively elsewhere  [   |, 2, k].     However,   For  the 

sake of  coherence  and  completeness,   the models   for   plane strain  and  axl-symmetr.c 

media are  summarized herein. 

Plane  Strain Model   ---  In  rectangular Cartesian coordinates,  t!ie  plane 

strain model   is  shown  graphically  it Fig.2.1.   As  are common with models of  the 

same   type,   the  basic elements of the plane  strain model  consist simpl/ of mats 

points  and stress  points,  at which  the particle motior'   (accelerations, velocities, 

and displacements)   and stress-related quantities  (such as stresses end strains) of 

the solid medijm  ara defined,  respectively. 

Based on  the  fundamental   principles of dynamics,  the equation« describing 

the  particle motions of  tie mass points   in   the model   are (given  for mass point 

(i, j)   at   time   t): 

-s ■£-* +-** ST-5* a^d.j) (2.1) 

and, 

"'(i.'-H)   -•'(l.j-D T'   (iH.j)   -TVO-IJ) 
~t ^ +"** XT** pv'Oj) (2.2) 

which are  clearly,   respectively,  tie usual   centered  finite difference aneloyues 

of  the  following differential  equations  for plane strain motions; 

3 



and,

. ,s!a
»x 8y

ay ax at

(2.3)

(2.4)

Eqs. (2.1) and (2.2) are quite general and apply to any material In plane 

strain, including materials with nonlinear-inelastic behavior. However, for 

problems where small strains are involved, the nontrivial strain-displacement 

relations for plane strain condition are:

ud^i.1) - u(i-i.il

•y(».j)

V,y(t,j)

v(l,J+l) - v(l,j-l)

u(l,J+l) - u(i,j-l) v(I+l,J) - v(I-l,J) 
■■ — ♦

(2.5)

and the corresponding strain-rates can be obtained by simply replacing the 

displacements In Eq. (2.5) by the corresponding velocities.

Through the stress-strain relationships (or constitutive aquations) 

of the material, it Is clear that Eqs.(2.1) and (2.2) can be expressed In terms of 

the particle motions; specifically, in terms of the displacements u, v and 

velocities ii, v (or Au, Av). In particular. If the material Is linearly Hookean, 

then Eqs. (2.1) and (2.2), respectively, become

(Ax)
2 L u(I-2,J) - 2u(l,J) + u(I+2,J)

(Ay)"

u(I,J-2) - 2u(l,j) + u(I,j+2)



2 2 

Ax'Ay 

-ind , 

2 
c 

["  v(i+l ,j+l)   -   v{i + l ..i-l)   -  v(i-l ,j + l) +  v(i-l ,j-l) I =  u(i.j)        (2.6) 

^-r [  v(!,j-2)   - 2v(i..i) +  v(i1i+2)   1 
(Ay)2 L 

2 
c 

+ —Hr r v(r-2.J)   - 2v(i.j) + v(i+2.j)   ] 
it*)- ' 

2        2 
+ -ä s. 

fix-Ay 
[ u(l+l.j + l)   - u(i+l .j-I)   - u(l-1 ,j + l) + u(l-l .j-1)] x v^ij) (2.7) 

Plane Strain Model   in Non-Cartesian Reference ---   In modeling sol Id 

media with   irregular boundaries,  or containing  irregular openings  and  Inclusions, 

the discretization of  the space domain must   include such  geometric  irregularities. 

For  these  purposes,   the discretization of  the  space domain may be described  in 

non-Cartesian   (i.e.,  nonorthogonal)  coordinates.    Fig.  2.2  shows  such a  description 

for  the  plane model.     In  ttis  general   frame  of  reference,   a  local   non-Cartesian 

coordinate and  a global  Cartesian coordinate  systems  are  required.    The  parti:!a 

motions of  the mass points are  referred  to  the global  system;  however,   at  a stress 

poin whi:h  is   incident on  four neighboring mass points  (see Fig.  2.2).  the strains 

are  intrinsically defined  in   the  local   reference.    A transformation  between  the 

local   references   (generally different  from stress point  to stress point)   and  the 

global   Cartesian  reference,  therefore,   is   required. 

Denoting the global   coordinates  as  x,  y and  the  local   coordinates  as 

x,  y,   the  required  transformation  for  the  plane model   is  given  by, 

* ' s\n(j - o)^ sin ^ ' y cos  J») (2.8a) 

(x sin » + y cos a) (2.fib) 
sln(« - et) 

10 



where a  and  & are   the  angles  between   the x-axis  and   the X- and  y-axes, 

respectively,   as  shown   in  Fig.  2.2a. 

The  strain  components  at   a  general   stress   point   (assuming  small   strain 

theory)    then   become, 

_ 9ü ^ du      Sx        3u  _ 8y 
x ^x      Äx       Sx Äy      hy 

e   = av = ^ . 3i+ i^ . ai (2<ga) 

Sy      3x      ^x      ^y      3y 

?y      5x      ^y ?y      9y ?y       8x      Äx      äy      9x 

in which   the  partial   derivatives r—,  f"i   «     .   and    7^    ar^ obtained   from  Eq.   (2.8), 8x    Sy    8x 3y ^.   \       , , 

an d   for  stress   point  0   in  Fig.  2.2a which   Is   Incident   on mass  points   I,   2,  3  and  ^ 

u.   - u. . u2   - u4 

8x   0 Ax Ay    0 Äy 

ax ^0 Ax 8y   0 Ay 

where    Ax  and    Ay    are   the mesh   lengths   in   the   local    reference  system.     Using 

these  relations,   the  strains  at stress   point 0,   therefore,  are: 

! ^  u,   -  u0 u0   -  u/ 

« .   = 
^ ul   " u3     . u2   "  u4     . > 
\ — s in (jj -  _ sin») 

sinOju-o-)   v Ax Ay 

/-       vl   '  v3 v2  "  v4 > 
( cos  U)   +         cos ry    ) 
V A" »~ ^ 

v,    -   v0 v0   -   V,, 

g  = —:—r -     ,, 
y        s i n (urer) Ax Ay 

1          r        Ul   " U3 .     u2  ' u4 
Yx    =     ( :     cos cu   +      cos 0, 

sindiror)               Ax Ay 

.   Vl   "  V3 .                   V2   -   V4       .          N 
+■   sm  tu    -            '    '      sin a  J 

Ax Ay 

(2.9b) 

II 



for d specified  stress-strain equal ion,   the  associated  strsss conpon. n's 

at   stross   point  0  can   then   be  deternined with   the   strains   given   ahove;   thus* 

stresses   are defined   in   the  global   (x,y)   reference.     By suitable   tensorial 

transforrndtion   [7,   1]   ],   the  stresses   in   the  local   reference can  bj obtained, 

which   are: 

I 2 2 
<*-     = (•    sin  tt -  T     sin2u)+ 9    cos  m ) 

I ? 2 
<*-     =    —^——     (o    sin'» -  T       sin 2»+ o    cos or ) /,   .-» 

y .   ,      v x xy y (2.10) 

T--    =      1   -o    sin et sin  u»   +    T w slnCuH-o)   - 9    cos or cos w 
XY sin((r-»)  L      x ^ V 

The  stresses at all   the  stress  points  surrounding a Mass  point must be determined; 

having  these stresses,   the corresponding forces acting on  fie mass point can  be 

determined   in the appropriate   local   reference.    These  forces ma.-  be  transformed 

into  the  global   reference,   thus  permitting  the writing of  the equation« of motions 

of  tie mass  point   in question,  yielding  for mat«  point 0  («ee Fig.   2.2b), 

AV,   ("Xi  «in »,   - Txy|   =os «,)   - A;3 (»^ «In », - r^ cos ^) 

+ A;2   (-^ sin or2 + T^^ cos ar2) + A^ (^ sin nr4 - TRy< cos i»4) 

-2pAV0-V0 (2.11) 

and, 

A*2   (Cy2 
cos a2 ' Txy2 

S,n 0,2) +    A*4 (Txy4 •
,n »4 " ay4 

e0* *4) 

+ A?,   (Txy)  sin ^   - »^   cos V  +    4^  (»^ cos  *, - T^ sin «3) 

-    2o AV0-  v0 (2.12) 

12 



wher« AV0     is  the  elemental   volume   [     7«   11   ]   of mtt point  0. 

Using  the straln-dl%plac«ment equation« of  Eq.   f2.9b)   and Hooku*« 

stress-strain aquations,   the equations of motions, Cqs.   (2.11)   and   (2.12),  becone 

Vl* u5 " (A|k| W u0 * Vl' "9 ' 

BlS' v5 " (BIV« • W v0 * VS* V 

(C,.  C2)  u6 -   (C3. Cj)  od -   (C,. Cu) «|2   .  (C,-  C,,)  u10 1 

(0,* F2)  y6 -   (Cy l2) v8 -   (0,- lu) v|2  ♦  (Oj. tk)  v)0 1 

.A,   • F^A-) uA 1 

.    ul , 

',A?. u7 » r^. u,, - (r2,-2     ru,~k, w0 

H2A2.   v7   • M^-  v,,   -   (M2A2   • H^A^)  v0 )   - 2o 4V( VQ 

l\k\ v5 • (Iihi • W vo * Vs' "l* 

V.- -5 ■ (Biki    Vs^o * W "S1 

(02   • t,) u6 -  (02  • E,) u8 -   (0% ♦ E,) u)2 ♦  (0^ • E,) ü)0 1 

'Jl   * J2) v6 "  (J2  * 'S» v8  *   (JS  * V VI0 -   -I 

M2A2-  u7 -   (M2A2  ♦ M^A^) u0  ♦ M^A^'  u,,  1 

(J.   •  Jj.)  V V  VI2  1 

K2A2-  v7 -   (K2A2  ♦ K^A^)  v0  • K4AU-  v,,  1   - 2o AV0 ao 

(2.13) 

(2.14) 

For »-0 and   i • -/?   (orthogonal coordinates)» Eqs.   (2.13)  and  (2.14)   reduce to 

Eqs.   (2.6)  and  (2.7), respectively. 

Whtre; 

k   - AY / A* 

0   •  C)  Sin2« * C 

sin   (v - 0) 

(\   *  C)   sin « COS  p 

sin   (« - » ) 

13 



( > ' G)  sin % sin ->   »  G cos   (u) - ») X sin w cos or + G sin ry cos w 
C «        ;      D -   

sin   (x - tv) sin  (oi - ar) 

X  sin (y cos 4  <- C cos a sin m (\  + G)  sin    »  + G 
E -        ;    F 

sin   (u) - or) sin   (tu - a) 

2 
(X   ♦ G)  sin » cos tv (X  + G) cos    m + G 
 . ;;      ;     1 ,     

sin   (UJ - a,) si,,   (^ . a) 

2 
(X  + G) cos a cos a > G cos   (UD - a) (X  + G) cos   a + 6 

••    K - 
sin   (UJ - a) sin   (UJ - or) 

Axi-svmmetrlc Model  --- In cylindrical  Cartesian coordinates«  the 

axi-Symmetrie model   shown  In Fig.2.3 can be used to formulate problems of axl- 

symmetric wave motions.    Generally,  In this case,  two sections of the model are 

required to describe the model, and the corresponding equations of motions  in 

terms of stresses are, 

0*(»+»,J)   -Cf^O-lj) T^(l,J>l)   -   T^(I,J-1) 

Az Az 

o!(i,j) - O!(I,J) t 
* — a  -  P troj) (2.15) 

r(l,J) 
and. 

\{\,]+\) - cy*(l,J-l) T^(M,J) - T^(I-1,J) 

Az Ar 

T!Z(1,J) 

r(l,J) 
+       -    D «'(ij) (2.16) 

In this case, the strain-displacement relations are: 

14 



u(l + »,j) - uO -1 .j) 

Ar 

w(i J + I) - w({ »J -1) 

« = r 

, =   (2.17) 

Y 

uQj) 
{6 =  r(t,j) 

u(i,j+n - u(t,j-D     w(i+i,j) - w(f-i,j) 

rß " Az Ar 

Again, if the material equations are specified, then through these strain- 

displacement relations (plus the corresponding strain rate-velocity relations^, 

Eqs. (2.)5) and f2.l6) can be expressed In terms of u, v and ü, v (or Au, Av). For a 

Hookean material, Eqs. (2.15) and (2.16) become 

r u(i-2,j)  - 2u(t,j)   + u(l+2,j)  1 +  [ u(i+l,J)  - u(l-l,J)    | 
L J      r(Ar)    L J 

u(l,J)  +—H r ufl»J-2)  - 2u(l,J)  + u(l,J+2)  1 
(Az)2  ' J 

[w(t+l,j+I)  - w(l+l,j-l)   - w(l-l,j+l)  + w(l-l,j-l)] = p ü(i,j) (2.18a) 

(Ar)2 

X   + 2G 

r2 

X   + G . 

Ar-Az 

and, 

X   +  2G 

(Az)2 

G 

(Ar)2 

X   + G  , 

rw(l,j-2)  - 2w(i,j)   + w(l,J+2)1 + -2— Fwd+M)  - wfi-l,J)l 
L J      r-Az u J 

rw(i-2,j)  -  2w(},J)   + w(I+2.j)l +      [uOj+l)   -  u(t,j-l)1 
L •J        r-Az J 

Fud+IJ+l)  - u(l-l,J+l)  - u(l+l,J-l)  + u(l-l,j-l)"| = p «(l,j) (2.18b) 
Ar-Az 
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2.2     T?me   Discretization 

In  each of   the cases described above, we  have a set of differential- 

difference  equations; e.g., Eqs.   (2.1)   and   (2.2)   for  the  plane  strain case.     We 

observe   that,   so far,   the discretization  has been confined only  to the  space 

domain;  no discretization of  the time domain has been  introduced, and presumably 

time may  be  continuous.     However,   in  order   to obtain  solutions  to problems   involving 

general   time  functions,  discretization of  the time domain will  normally also be 

necessary.     The  resulting  solutions will, accordingly, be defined only at the 

various discrete  time  instants.     Such  solutions are usually obtained through a 

step-by-step numerical   integration procedure.     There are numerous  integration 

schemes available for this purpose.     However,   for a  large class of  second-order 

systems encountered  in wave propagation  problems, a general and convenient method for 

this  purpose   Is the  Newmark B-integrator   [9].     This  Is a step-wise   recursive method 

of  numerical  quadrature.     The basic  recursive  relations for advancing a  small  but 

finite time  step At are the following: 

Ü(t+At)   -    ü(t)   + iAt   [ ü(t)  +Ü(t+At)  ] , 
} (2.19) 

v(t+At)  =    v(t)  + iAt   [ v(t)  +-v(t+At)  ] J 

u(t+At)  -    u(t)  + At-u(t)  +  (At)2   (i-B) ü(t)  +  (At)2a U(t+At) 

v(t+At)  =•    v(t)  +At-*(t)  ,   (At)2   (i-B) V(t)  +  (At)2B V(t+At) 

} (2.20) 

These  relations are used  to update the motions   (u,  ü, U; v, <f,  V)  for each time 

increment    At    at all  generic points   in  the  space domain   (i.e., mass points of  the 

model).     Assuming  the motions at  time t  to be known,  the process of updating 

consists  of   the following steps: 

(I)    At  time t,  the motions of all  mass points are presumed  to be 

known.     Compute ü(t+At)  and v(t+At)  for all  mass points from the appropriate 

equations  of motions; e.q.,  Eqs.  (2.1)   and   (2.2)   for the plane strain  case, using 
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the   stresses at   time   t. 

(2) Calculate ü(t+At),  v(t+At)  and u(t+At),  v(t+At)   for all  mass 

points  using  Eqs.    (2.19)   and   (2.20),   respectively. 

(3) Compute  new  strains and stresses associated with the velocities 

and  dispiacements  calculated   in   (2),  and  determine  ü(t+At)  and  v(t+At)   from  the 

appropriate equations  of motions again. 

Ct)     Compare ü(t+At)  and v(t+At)  of   steps   (3)  and   (I), and  repeat   steps 

(2)   cind   (3)   if  necessary;  otherwise,   increment   the  time  step and  repeat   the 

process. 

2.3     Stability  Requirements and Analysis 

The discretized   space  formulation and   step-wise  numerical   integrator 

described above are   intended  to yield discrete  time  functions  of  the  relevant 

physical  quantities at  all   generic points   in   the  space domain.     Unfortunately, 

not  every numerical   solution  to the discretized  problem  is necessarily valid; 

there are certain mathematical   requirements that must be  satisfied to  insure a 

valid  solution.      In  other words,  a physical   discretization of  the  space and   time 

variables   is  not   sufficient  to guarantee a  valid  numerical   solution; unless  certain 

mathematical  conditions are  complied with,  the calculations may yield completely 

erroneous and  senseless  numerical   results.     This   Is   in contrast  to many  statical 

problems   in which no such mathematical  conditions  are  required.     An  important 

consideration   in  dynamical   calculations   is  the assurance of   stability of  the 

numerical   scheme,  meaning  that  the errors associated with  the approximate 

numerical   solution  do not  grow with time.     For  the  formulations described   in 

Sects    2.2 and 2.3»   the  required  stability conditions are  the  same as  those  of 

finite difference  schemes,   for which methods  of  stability analyses have been 

well   developed   I  6,   8,   10,   12]. 
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In  particular,   for   the numerical   scheme developed  herein  for general 

problems  of  wave   propagation,   the   requisite   stability  conditions  can be  obtained 

through  the   Fourier   transform method   (12];  this usually yield  the von  Neumann 

necessary  condition   for   stable  calculations.     A  complete  analysis  of   stability 

for  the numerical   schemes used  herein can  be  found  in Ref.   [II] ; we  summarize 

herein  the  principal   results   for  plane  strain and  ax I-symmetric media. 

As   it   turned  out,   the  stability of  the  difference  schemes depend  on  the 

value of 0.     For example,   in  the plane  strain case,  values of ß <: 5 yields  only 

conditional   stability; whereas,   for  B > 5  the  resulting difference scheme   Is 

unconditionally  stable.     The  von Neumann condition   Is  only a necessary condition 

for  stable calculations; however,  for practical   purposes  this  Is often  sufficient. 

The available methods of  stability analysis.   Including the Fourier 

transform method, are based on an explicit  set of  finite difference equations. 

We can show that   the numerical   scheme used  herein  Is equivalent to an explicit 

system of difference equations.   Eq. (2.20) can be applied   to time t+2At, yielding 

u(t-2At)  = u(t^t)   + At-u(t+At)  +  (At)2(5-B) ü(t+at)  +  (At)2B ü(t+2At) 

an4 similarly  for v(t+2At). 

Subtracting  this  from Eq. (2.20),  and using Eq.   (2.19)   to eliminate the ü terms, 

we  obtain 

9 ü(t+2At)   +  (l-2B)ü(t+At)   + B ü(t) 

I 
-  r    [ u(t+2At)  - 2u(t+At)  + u(t)  1 (2.21) 

(At)2 

SImllarly, 

3  v(t+2At)   +  (1-28) v(t+At)   + B v(t) 

I 

(At)2 
[ v(t+2At) - 2v(t+At)  + v(t)   ] (2.22) 
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Thus,   the  Newmark p-integration  procedure  is equivalent  to solving an explicit 

system of  difference  equations with  the time discretization   Indicated  in  Eq.   (2.21), 

Stability  of a  numerical   solution means  that  the error   in  the approxima- 

tion   remains bounded   (does not  grow   Indefinitely)  at all   time  steps.     Since  the 

solution  vector u(t)  at any  time  t  of  the  resulting  system of difference equations 

is  approximate,   it will   contain  some error,  say  error vector  I.      It  can easily be 

shown  that   the error  term will   also  satisfy  the  homogeneous  part   of   Eqs.   (2.21)   and 

(2.22).   if  I  is expanded   into a  Fourier  series, each term  in  the  series will 

individually also satisfy  the  homogeneous system of difference equations  If  the 

equations  are   linear.     A  typical   term  In  the expansion may be written as 

exp   [   i (uj.pAx  + (j^q'Ay)   ]   {   *> where  uj.  and uu are  frequencies,   p and q are each 

number  of   space mesh,  n   is  the  number  of  time steps, and ?   is  the modulus of  the 

error.     For  the difference  scheme used herein,   the determinantal   equation of   the 

homogeneous  system yields a  system of quadratic equations  In %.     The error  term, 

therefore, will be bounded with  Increasing time steps n  If  |?|  < 1.0; hence, 

stability  of  the solution scheme  Is assured  If 

If!  < 1.0 (2.23) 

Stability Conditions for  Plane Strain Propagation — For elastic wave 

propagation under plane strain conditions,  Eqs.   (2.21)  and  (2.22>   (after using 

Eqs.   (2.6)   and  (2.7)   )  become 

n+2      „ n+l   ,    n , cd At   »2   f a, n+2 , n+2 n+2    v 
U1,j  "2UI,J   +UU  "   (~)     tB(ul-2.J -2ul+2,J    *   "l^.J5  ^ 

+  0  - 2BHV2,J  " 2ul,J   + UU2,J)   + B(ul-2.j  ■ 2ul,J   + UI*2.J)  ' 

/ C5 At   x2   r a/ n+2 ,  n+2  ,    n+2     x        /.       „%/ n+l +   (-£- )     I ^u|,j.2  - 2u|,j   +uI.J+2)  +  {}   - 2B)(uI.J.2 " 
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nl nl 

2 
   r -/ "'2 n*2 «+2 <5 * . 
— ' »(VI.I,J-I " '..I.J-I " «I-I.J.I • »l-LJ-l' * ' <c5 ■ c2.> 
At 

A» 

nl 

n*2 

nl n-l 

9(VJ.I,J-I - VIH,J-I - V"-I,J>I * Vij-^ , ' 12.Ik) 

.tnd , 

n'2       «  n *l n 
V».J   "^U       V».J 

n*2 n*2   ,    n*2 

>  (I  - 2S)(vIfJ.2 - 2v|J   ♦ v, ^2)   • 0(v|#J.2 - 2yIJ   * v, ^j) 1   ♦ 

"IT"    • '-^J"   '»J   V|*2'J       " M,(¥,-2.J '   »»J 

I _ Ay 
tt' nH 

«♦2 n^ n*2        »       /.      •«»/ n*! 

n*! n*I n*l »   ^ •/ " " 

-UI-I,J*I >UI-I.J-I,, (2.2S) 

In this cat«»  th» d«t«rmtn«nt«l «quatlon yield«   [II] 

(•  * I»,) %2 •  t2-(l - 21) •,] ?   ♦  (I  ♦ ••,) - 0 

where. 

0   * Mj) ?    *  I2-(» " 2») ^ «   * <'   * •i2) " 0 

•, - * [ ej t|} * «I ^ * («J • eJ) V2 ] 

(2. 26) 

(2.17) 
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-2 ■ ^ i c^2 * c2s ^ * fcj - s> ^ri' 
wi th 

At .,/• 
-.   - — sin   

Ax 2 

A» .-Ay 
-    - — sin -*— 

AV 7 

TIK  details o»   the solution of  Eqs.(2.26) .md (2.27) are described  in Raf.   [ II I: 

the  resulting solution  for   |{|  «re shown as 4 function of   (c.* ~)     In fig. 2.'*. 

Wf observe  tKit   st.Uii!t*y,  as  required by £0.(2.2}}, depends on  the value of 0 

usert  In the '«cvrtark   integrator.    For all  geonetrtcal ly meaningful values of B; 

I.e., S "0, TT*. "T~» "T—•  and 4",  the corresponding conditions required for 

stability are tabulated belr*.; 

Stability Conditions for  Plane Strain Calculations 

JL Stability Condition 

0 cd   JJ^0-7' 

■ d   Ay s 

+ vJJ^1" d Ay - 

Unconditionally stable 

Unconditionally stable 

In general, the stability condition Is, 

c   AS.  <     !         if • < 4. 

Assuming ^y < A x> 21 



•ind, unconditionally stable if  P > 77 . 

For plane strain problems formulated with the non-Cartestan model; I.e., 

Eqs.(2.I3) and (2.14), the corresponding stability conditions can also be determined 

[11]  through the above Fourier transform method. The results are: 

For  ? < ^ I 

At I |sln   (uu - oi)\ 

V 

c 

Ax    "   ^ 2 - 88 I sin  UJ|   +  |sin a| 

if      |sin  UJI   +   |sln rv|  %  |cos  u)|   +  |cos a\ 

Lt I |sln   (u) - a)\ 
.,.- —  £     ; 

Ä* ^2-89 I COS   (ül    +   I cos  «I 

if     |sin u)|   +  |sin rv|  <  |cos  m\   + |cos a\ 

whereas  for 8 ^r  >   it  Is unconditionally  stable. 

Stability Conditions  for Axi-symmetric  Propagation --- For wave 

propagation under axially symmetric condition,  Eqs.   (2.21)  and   (2.22), 

respectively,   yield 

n^2      ,  n+l n , cd At   v2   r . , n+2 , n+2   .    m+2     v  , 
u«j m2ut,} +U«,J " ("Är-)  f ^UI-2,J '2u\l} 

+UI*2,J) ] + 

+ (i - 2B)(U;:]J - 2u;;j + u;:}^) + s (üj.2J - 2^^ + uj+2J) j 

- c ^~ )2 (• KI^J -«;:? ) + (i - 2B)(u;:!^ - u^j ) + 
p fir 

D    n      1       / Cs At   »2   r .   / n+2 , n+2   .    n+2    » 
8 Ul,J  ]       ( "T^ )     t *   (u»,J-2  " 2ul,J  + Ul,J+2)   * 
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n+1 „ n + 1 n+1 
y   (I   -  ZSHU^J.J  - 2u,|j   ^|(Jt2)   »B   (uI(J.j  -2U.J   ^^J^J)  I 

1   ^   -  ^ 

At 

Ar Az 

r  „   ,  n +2 n <-2 n +2 n +2 v 
[  B   (VV1,J+1   - W!+l,j-l   ■  WI-l,j+l   ^I-IJ-P   + 

At" 
,  2 2,     "u        r   a    , n^2 n+2 n+2 n+2 . 

n H n + l n + 1 
+   ('   "  2S)(w! + l,j+I   -Wl+J,j-I   "Wf.l,J+I   +Wi-l,j-l)   +B   (WJ+I,j+1   " 

n n n v   , 
l+l,J-l i-l^J^l '-'»J-l 

(2.28) 

and, 

n+2       ,  n+1    ,     n             , cd At   v2 w.    .   -   2w.    .   + w.    .   =   (   
-,J i,J i>j Az 

^     r  .   / n+2 o  n+2   J    n+2     x 
)     [ t   (W^J.J - Sw^j  *v<|jj+2)   * 

n + l n + I ,,       n„\ i n+ -  n+ n + l     \       ./ n « n n v   i 
(I   -2B)(wJ.2J  - 2«,^   >»]+2)})   +ß(wf.2)j  -2wf>J   -wt+2jJ)   ]   + 

'2        2,     At ,   /. 4.% c  - / n+2 n+2     \ /.       ««\/ n + ' 

^   d'Cs ITZ [ *{u*>}+}' "»'J-'*   ( " B)(U'»J+' 

At 
Ui,J-2)   + 9(ul,j+I  ■ "IJ-I5  ]   +   (cd " cs)  — t B(ul+I,J+l 

n+2 n+2 n+2 »   ,    /.       «-\/ n + l n + I 
VlJ+l   "  U!+!,j-I   ""J-IJ-I5   +   (,   "  2B)(UI+1,J+I   - ÜM,J-I 

n + I 
Vl,j+I   ■,"U?-IJ-I)   +e(u!+j  ■ Ul+l,J-I   " UI-1,j+I       "i-l. j-l)]        (2,29) 
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where u.    .        u(p  Ar,  q  fiz,   n  At) 

wk   .      w(p Ar, q Az, n At) 

On the basts  of  Eqs.   (2.28)   and  (2.29),  the Fourier method of stability 

analysis   leads to the following detcrmlnantal equations: 

(•   ♦fC,)?2 -  [ 2 -   (I  - 6)0,  ) f  ♦ 0   ♦ BC,) 

(I   * BC,)?' -  ( 2 -   (I  - 2S)C-1 ?  ♦ 0   ♦ BC.) - 0 

(2. 30) 

(2-31) 

where C.  and C. are complex quantities, which are 

2 *lAr        .2 ...2 ■■ ** C.   ■ -^ * 2K2  [ «In' -»— * uC' tin 
'      2pZ 2 2 

(v, Ar ui. Ax K *. Ar 
+ {(I  - u)  •!"    ' sin    *        J -  I   * — «In    ' 

2 2 p 2 

2  r  -2 .. 2   "H Al .._2 ■• Ar 

2 2 2 

(i), Ar ok Al 
* CO - u) »In -J  tin    ■        J 

2 2 

with, 

„2 .. Ar o* ** 
!(*:)   ( u »In -J  ♦ CO * ») •»" -*  1 

p 2 2 

Ar 
C  -   —    ;     (Ar < A«) 

Ax 
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7        2     ' " 2v 
u • c  / c . ■ ^^——  , In which v Is the Poisson ratio. 

*   d    2(1 -v) 

K - ri cw. — 
d Ar 

For generic  points  thet are  far   Tron the ajtis  of   symmetry   (i.e.,  p — •), 

C|   • B.  and  C    •• 8-, and Cqs. (2.30) and (2.31) approach Eqs (2.26)and (2.27),  respectively 

hence,   the corresponding stability condition»  tend  to«v.ird  thos«  for  the plane strain 

propAgation. 

Tor generic points  that    «it-  close   to the axis of   synnetry   (I.e.,   finite 

p),  the stability analysis requires the  solution o*  Eqt. (2.30) and (?..3I)   for   |f |. 

The solutions .ir« given by  (ll). 

(2.32) 
I - tt - DC ♦   7 ti  - (r - i)C)2 - (I ♦ 8C)2 

f-   
(I • BO 

»•here C is C. or C_, which are cample» quantities.  The maximum values of \% \ 

luve been evaluated numerically; the results are presented In Figs. 2.5 through 2.10 

which show the envelopes of \\\   versus K for all geometrically meaningful values 

of B and various tolsson ratio v. An evaninatlon of these figures reveal the 

following: 

(i)  In all cases» |{| > 1.0; this mean« that the general numerical 

scheme is locally unstable when applied to axl»Symmetrie wave propagation. 

(2) As 8 Increases, the 'degree" of Instability decreases (i.e., If| 

Is not much greater than 1.0), but In no case can stability be assured In 

accordance with Eq. (2>23). 

(3) As v increases, the degree of Instability worsens. 

(<») As p increases, the modulus |r| tends toward the value 1.0. 

25 



Stability of the original scheme, therefore, cannot be assured, on 

the basis of Eq. (23), for axi-symmetric calculations.  However, conditional 

stability of the difference scheme can be achieved through the Introduction of 

a dlsslpatlve mechanism. In the form of artificial viscosity ['2], Into the original 

system of equations, such that the equivalent system of differential equations 

become: 

*(*r +qr)  »Trz    ar -<fg 

+  +   = pü (2.33) 
8r      az       r 

3Trz    Ä(<?2+q2) 

  +   +   = p w (2.3^) 
*r       Sz        r 

where q    and q    are pseudo-viscous stresses  In the  r and z-dtrectlons,   respectively, 

corresponding to an artificial   viscosity coefficient F,  given as follows: 

du 
q- - p c. T Ar • — (2.35) 

Sr 

a* 
q, - o c . T Az * — (2.36) 

Sz 

Sqr     ^s 
Clearly, without the terms r—• and r— , the discrete forms of Eqs. (2.33) and 

or      oz 

(2M)  would reduce, respectively, to Eqs. (2.15) and (2.16). With the Introduction 

*L: andÜl 
»r     8z 

Eqs. (2.15) and (2.16). This may be done by applying backward difference to e^u and 
8r 

p- of Eqs.(2.35)   and  (2.36);   thus, 

n        n-l u    - u .n   u      ■   ———— 

of artificial  viscosity, dlscretized forms of    *it   and      z    must be added to 

At 

* The corresponding forward difference will   lead to an unstable scheme; hence, 
should be avoided   [II]. 
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n n-1 w    - w 
and, w       =    ——— 

fit 

Then,  applying centered  difference  for   the  space derivatives,  we  obtain  for   the 

artificial   viscosity  terms, 

^r     r cd 
  - o   
ar      Ar At 

r  / n       _ n      n    \ [  (u, - . - 2u, . + u, . .) 1+2,j    I,J    i-2,j 

K:i,j -<] +"T.]2,j)] (2-35a) 

^z      r cd 

dz Az At p—  [  (wI,J+2 " 2wi,j +WI,j-2) 

K:]+2-2W?:] +w?:]-2)i ^•^^ 

Eqs. (2.35a)and (2.36a) should be added, respectively, to Eqs.(2.28) and (2.29).  The 

Fourier transform method applied to the resulting systems of equations then yield 

the following determlnantal equations for the modified difference scheme; 

a,?3 + b,?2 + Cj? + d, =0 (2.37) 

a2?
3 + b25

2 + c25 + d2 = 0 (2.38) 

whe re, 

aj = I + BC1 + ßAj  ; a2 + I + BC2 + BA2 

b, - -2 + (I - 20)0, + (I - 3B)A]  ; b2 = -2 + (I - 2ß)C2 + (1 - 3e)A2 

c, - i + ec, - (i - 3e)A1   ;  c2 - i + 3c2 - (i - 3e)A2 

d, - -ÖA, ; d2 = -SA2 

in which C. and C- are defined following Eqs. (2.30) and (2.31), and 
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./Tn   u   ..2   !ü! Ar 
Aj   = 2V2 T K  sin 

A2=2 
r" ,  (u,  Az 

V 2 T K £   sin'' -s  
2 

C    = Ar / Az 

The  roots  f of  Eqs.   (2.37)  and  (2.38)  can only be determined numerically; 

the   results  for  various Vcilues of T and v, and at  varying distances  from  the axis 

of symmetry   (i.e.,  different p),  are summarized   In Figs.  2.11     through 2.16 

Only  the maximum moduli   of 5 are given   in  these figures.     Examination of  the  plots 

shown  in  these  figures  indicate  that depending on the values of 0 and p,  there 

is a  range of values of T for which the von Neumann condition  j§|  < 1.0  is 

satisfied  for values of v < 0.50; and  hence stability can be conditionally 

assured.     However,   for v = 0.50   (incompressible medium)  the use of artificial 

viscosity does not   lead  to a  stable scheme;  see Figs.  2.13  through 2.16.     Figs. 

2.11  through 2.15 also show that as p or 3  increases, th« range of stability 

corresponding to a given value of r Improves. 

From these figures,  it can be seen that  for specified values of  p,  0, 

and v>  the  stable  range of K   (I.e.,  range of K for which  |5| <  1.0)  varies with 

P.    Also,  corresponding to each value  of F,  there  is a nontrlvlal   value of K 

(i.e.  t 0)  for which   \%\   ■  1.0; this value of K can be called K    .    Values of 
C r 

K  are plotted versus T  in Figs. 2.17 through 2.22; it can be observed from these 

figures that depending on p, 3, and v, K  attains a maximum value for certain f. cr , 

This  value of T  represents an optimal  value of artificial  viscosity, and is 

recommended for practical  applications. 
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III.  DEVELOPMENT OF TRANSMITTING BOUNDARY 

3.1  Need for Transmitting Boundary 

The discrete method of formulation described In Chapter II Is a general 

numerical method for determining the physical quantities at the discrete generic 

points In space as well as In discrete Instants of time; In other words, a 

solution obtained through such a formulation Is a discrete-variable function In 

space and time.  Such a discrete-variable solution Is necessarily limited to a 

finite region of the physical space; a solution for a space-time problem then 

consists of the relevant quantities within a finite space-time domain. 

The space domain, therefore, must always be bounded or terminated by 

suitable boundary conditions.  If these boundaries are well defined, such as a 

regular stress or displacement boundary, then the problem is completely described 

In the discrete sense.  However, if a problem involves an infinite or semi-Infinite 

medium, then it Is not possible to describe the solution over the entire space; 

to do so would require an infinite number of discrete points.  The alternative Is 

to terminate the medium at some appropriate location with an artificial boundary 

that will reproduce essentially the same effect as that of the infinite medium 

beyond It.  In other words, the artificial boundary must be such that all Incident 

waves are transmitted through It without reflection, as If the material were 

continuous and the boundary were not present.  Such a termination may be called 

a "transmitting boundary" or a "nonreflectIng boundary". 

Alternatively, a calculatlonal scheme may be developed to serve the 

same purpose as that of an explicit transmitting boundary by taking Into 

consideration the theoretical effects of an Infinite or seml-InfInlte region. 

In practice, transmitting boundaries are often required for reasons of 

economy In calculations.  For Instance, In the practical prediction of ground 

motions Induced by nuclear bursts, such transmitting boundaries are needed In a 
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nunb.T ot"  si tu.it ions,   including   the   following: 

(I)     Calculation of  ground motions   in  the  distant  regions of  a burst 

whero  generally  outrunning conditions  prevail. 

(2^     Calu'ation of complex structjre-medium  interaction under a ground- 

transmitted disurhance  and/or air-blast  forces  resulting from a nuclear bur»t. 

In  the  first   instance,   the motions and stresses at  relatively shallow depths   in 

tu- distant outrunning  regions  arc of  interest;  unless  the calculations of the 

motions originating from  the source are  limitid  to  the upper surface strata, 

terminated properly with  a suitable nonreflecting boundary,  the calculations must 

bo extended  to the  regions at great deptSs   in order ts avoid the artificial 

reflection at the bottom from rjachiig the outrunning regions.    In the second case, 

a  transmitting boundary will   permit the  isolation of the region around the structure 

and   the calculations  can  be confined within  this  region without the unwanted 

reflections  from  the terminating boundaries of the region;  unless this can be done, 

the calculations of strueture-medium interaction effects must necessarily be   - 

performed with very coarse grid. 

3.2    Previous Work 

One of the first' solutions Involving the use of a transmitting boundary 

was performed for a problem involving outrunning ground motions [3].    The 

prob;      •   vo      s  the determination of ground-motion histories due to a surface 

nucioar b> a layered system.    The problem was modeled to consist of three 

layers of ela  .>c material, with the last layer assumed to hava infinite depth. 

The  input consists of the direct ground shock effect applied  In a crater plus 

the expanding air-blast pressures applied at the surface. 

* To the knowledge of the authors, this was the first successful use of a 
transmitting boundary   in numerical  calculation of wave motions. 
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In order to obtain reasonably reliable results  In  the outrunning regions 

(at  large distances from ground sere), the depth of  the spatial  region  Involved In 

the calculations must be  limited, otherwise the amount  of storage and calculation 

rime would be excessive;  to do this«  the bottom was temltatcd with a boundary that 

simulated  the  Infinite depth.    An early version of a  transmitting boundary was 

employed for these calculations   [3].      This  is  the  forerunner of  the  trans- 

mitting boundary subsequently  refined and f  rthcr developed  in  the  studies 

described herein. 

3.3    Theoretical Basis of Transmlttlno Boundary 

The concept of a transmitting boundary or a  'Vionreflectlng boundary" for 

wave propagation calculation as conceived In this project can be described First 

(for the sake of clarity) for the elastic plane one-dimensional case.    This same 

concept can be extended to higher space dimensions and will be described subsequently. 

Consider a semi-infinite bar subjected to a plane stress pulse P(t) from 

the free end, as shown In Fig. 3.1a.    The discrete Idealization Of  the bar, based 

on the same space discretization as those for the plane strain and axlsymmetrlc 

media.   Is shown In Fig. 3.1b.    We observe that the equation of motion of a general 

Interior mass point I at time t  Is, 

/(I * I) - a'd - I) 
0 ff^O (3.1) 

Ax 

The corresponding equation for the mass point b at the terminating boundary Is 

similarly. 

a1 (b ♦ I) - o* (b - I) 
-0 £.•*«.) (3.2) 

Ax 

However,  for a mass po'nt on the boundary, the stress a   (b ♦ I)   Is not known and 

cannot be computed in the usual manner.    But If the velocity of propagation Is c, 
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it in be observed tron rig. 3.1b that the trewei   time of • ttr««» «••«• fron on« 

• tr«»t point to the "vxt   i« exactly equal  to on« Increment of transit tloe h ■ 

;.. \.     Hence,  tr   the «tres« at »tre»« point   (b-l) at tUw  (t-h)  It o'*   (b-l), 

then this  stress must be  the stress at point   (b*l) «t  tiwe t; thus, 

Nb   •   I)  - t>tmhb -  I) (J.J) 

Therefore, in order to simulate the infinite medium the aquation of motion of the 

boundary «ass point. Eq. (}.2), must be, 

„^b-l) - »«(b - I) 
  p 8*(b) (J.M 

An 

We might emphasize that for plan« elastic propagation, Eq. ().4) MIII simulat« 

an infinite medium «nactIv (In the sense that ther« I« no additional •pproelmatlon 

other than those of the cantered finite difference). However, the extension to 

higher space Is not obvious on this basis. For this latter purpose, w« shall derive 

Cq> (3 *•) from another consideration. 

In discrete steps, the transmission of the stress wav« «ay ba considered 

as the transfer of the O'Aiembert fore« at r  mass point from on« stress point to 

the next as time increases In Increments of h. From this standpoint« the O'Aleahert 

fore« on the mass point I at time (t-h) Is equal to 

-A [etmh{l  * i: ••t',,(l - I) 1 

where A is the area of the bar. Transmission of this force Mill give ris« to a 

chang« In the force of stress point (1*1) from time (t • h) to lime t equal to 

the O'Aiembert force on mass point I at time (t-h); I.«., 
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A [ o*(8 + 1) - +1)1- -At + 1) - - 1) ]

Therefore, <J*(I + 1) - a*"*’0 - I) (3.3)

Thus, for the boundary mass point, ! - b, Eq. (3.^) is again obtained from Eq.

(3.1) using Eq. (3.3).

3.4 Transmitting Boundary In Plane Strain

The extension of the above concept of the transmission of D'Alembert 

forces to higher space will now be illustrated for the two-dimensional space under 

plane strain condition. Consider the lumped-parameter idealization of a two-space 

as shown in Fig. 3.2. Assume that the region Is tenninated at J - b. The equations 

of motion of the mass point (i,b) are:

oJO + l,b) - oJ(l - l,b) tJ (I,b + 1) - T* (l,b - I)

P C*(l,b) (3.5)

and.

oJ(l,b + 1) - oJ(l,b - 1) T^yd + l,b) - rjyd - l,b)

p V*(l,b) (3.6)

From Fig. 3.2, we observe that the following physical quantities are not defined

In the above equations of motions, and cannot be determined in the usual manner:

(I) The stresses ff„(l,b + I) and t „(l, b + 1) for all I; and 
y

(II) The strain t (1 + l,b) and T^„(l + l,b) for all l'. t (I + 1,b) 
y ^y y

is required to determine ?^(i + l,b).



These quantities can be determined   From a consideration of  the transmission of 

the  D'Aletnbert   forces on the boundary mass points. 

Consider first the mass point (t,b). If the stresses are assumed to 

propagate .it the dtiatational velocity of the medium c. , then from the trans- 

mission of  the D'Alembert force on  this mass point  in the x-dlrectlon, we have 

( Ay  t <*'"h(l  ^ l,b) - ^"h(i-I,b) 1 

AX    (    T*"h(i,b    ♦    I)    -   T'"h(l,b    -1)1) 

-AX [T;y(i.b + i)-^;h
(t>b + l) j 

from which we obtain. 

T' ,0,b  * I) -— C cj"h(l  ♦ I,b) - al'h(\ - I,b) 1 
y ^ 

♦ T*'h(l,b - 1) (3.7) 

Ay 
where h ■ —    ; the unit dtiatational  transit time. 

ed 

Similarly, consideration of the D'Alembert force In the y-dlrectlon yields, 

-   ( Ax  I ffj"h(l,b * I) -<yj"h(l,b -  I)  1 

-Ay  t T^h(l  * l,b) - T^h(l - l,b) ]  ) 

- A» ( »Jd.b * I) - aj"h(l,b + I) ] 

From which. 

^.O.b    *    I)    -«T*"h(l,b   -|)*—(   T^h(l   -   l,b)   -   Tj"h(l    ♦   l,b)    J (3.8) 
V' V Ax ' ™ 
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Based on  the same assumption that  stresses are  propagating at the 

dllatatlonal  velocity c.,   the D'Alembert  force  In the y-dlrection of mass point 

(i   + 1,b -   I) at  time   (t-h) must be equal  to the change   In the vertical   force at 

stress point   (I   + l,b) from time  (t-h)  to t; thus, 

-  { Ax  I <jj"h(l  + M>) - cTy'h(l  ♦ I,b - 2) ] 

+ Ay [ T^h(l  +2,b - I) -T**h(l,b - 1) ]   } 

- AK t aj  0  + l,b) -aj"h(l  + l,b) 1 

Therefore, 

Ay 

„'(I  + l,b) -   0*^(1  + l,b . 2) - — ( T*"h(t   ♦ 2,b - I) - T'"h(l,b -  I)]     (3.9) 
y • y »JJ       " Äy 

Knowing «  (I   + l,b),  the strain «*(t  + l,b)  Is obtained from the stress-strain 

equation.    This will  then permit the calculation of the stress or .(t   + l,b). 

o . (I -  l,b)  Is found similarly through the transmission of the vertical  D'Alembert 

force of mass point   (I  -I, b -  I). 

Considering the D'Alembert force of mass point   (I   + l,b -  I)   In the 

x-dlrectlon, we obtain 

- f Ay  ( ^"h(l  +2,b -  I) -^'"(»»b - I) J 

+ Ax  [ T'"h(l   + l,b) - T*"h(l   + l,b - 2)  1 
Äy wy 

-Ax  t rJyO  + l,b) - T^h(l  ♦ I,b) 1 

from which. 

35 



-',(?   I.b) = T**h(PI,b-2) - — [ ~*"h(l*2,b-l) - ^"h(lfb-l) 1 (3.10) 
xyi xy Ax X * 

Sin! Kirly, 

Ay 
Txyi(,-,'b) = TiCh<,f,'b-2) - — I v^"h(l,b-l) - a*"h(l-t,b-l) 1 (3.n«) 

Ax 

The stresses given  In Eqs.   (3.7) through  (3.11)i which «re required In 

Eqs.   (3.5) and  (3.6), would be the correct stresset If the velocity of propagation 

of  these  stresses were  Indeed c..     However»  In a  two-dimensional   solid medium,   It 

Is known that certain stresses propagate at the shear velocity c  .    Alternatively« 

tf the stresses through the boundary are assumed to propagate at the shear 

velocfty c     , consideration of  the corresponding O'Alembert forces at the boundary 

mass points would yield the following stresses«  Instead of Eqs.   (3.7) through (3.11): 

Av 
^y2(l,b I) -    * rJ'Sl.b-l) [ <jj"k(l*l,b) - «^(l-l^b) 1 (3.7*) 

A* 

rJ2(t.bM) .^■k(l,b-l)   >— I ^k(M,b) - %Jh(H-l,b)  1 (}.8») 

Av 
^2(IH,b)   - ^"k(l*l,b-2) - — ( T^k(l*2,b-I) - T*"k(l,b-I) 1 (3.*) 

Av 
%y2(l*,'b) " %yk(,*,'b"2) [ 0l'k^*2» b-1) * ^"k0.»»-0 1 (3.10a) 

A** 

Av 

%y2(,",'b) " ^ik(,",'b"2,  * "" [ »rk(,»b",) " ^'k<,-2»b-1) 1 ÖnÄ> 
A* 

In which k - —*• , the unit shear transit time. 

However, the transmission of the D'Alembert forces will not be 

exclusively at the velocity c nor exclusively at c  ; Invariably» It will be 
d * 
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a combination of the two propagation velocities. Accordingly, the correct 

stresses to be used in Eqs. (3.5) and (3.6) should be some combinations of Eqs. 

(3.7) through (3.11) with Eqs. (3.7e) through (3.11a). Unfortunately, there is 

no theoretical basis for combining these stresses. Through various computational 

experiments, it was determined that the following combination is quite suitable 

and sufficiently accurate for practical purposes.

For a direct stress.

and for a shear stress.

ffy - Of o*, +(!-•) 0*2

rjy -(!-•) rjy, + » rjyj

(3.12)

(3.13)

In which a Is the fraction of the total D'Alembert force contributed by the direct 

stresses when the velocity of propagation Is assumed to be , whereas 0 Is the 

fraction of the shear stress contribution to the total D'Alembert force when the 

propagation velocity Is assumed to be c^ . For example, when applying Eqs. (3.12) 

and (3.13) to the stresses at (l,b>l),

and.

0 -

I oJ’Nl,b+l) - oJ"'’(l,b-l) {

I o*-Ni,b+i) - o*-Ni,b-i) 1+^1 T^Ni+i,b) - T*'Ni-i,b)

I »•»-!) I

Tjy'‘(l,b+l) - T^^yS^b-l) I + g I oj-‘‘(l+l,b) - oj’Ni-^b)

(3.l^*)

(3.15)

We might observe that for a plane dllatatlonal propagation, Eqs. (3.14) 

and (3.15) become

a - I.0 and 0 " 0



and if the propagation is also in a direction normal to the transmitting boundary, 

the transmitted stresses become 

Tj;y(!,b+1) « 0 

and, «»J(J,b+l) - cTj,(t,b+l) 

which is the same as Eq.   (3.3)  for one-dimensional  plane propagation. 

On the other hand,  for plane shear propagation,  Eqs,   (3.1M and   (3.15) 

become 

(V « 0 and ß ■ 1.0 

and  if the direction of propagation is normal  to the boundary, the transmitted 

shear stresses are 

Txy('^)-TJy2-Tx;k(!'b-,) 

and CT'O^+I)  • 0 

which are the results  For the one-dimensional  plane shear propagation. 

Special  Boundary for  Linearly Elastic Media — The transmitting boundary 

described above  is applicable for problems  In which inelastic behavior may occur 

anywhere within the region terminated by these transmitting boundaries.    However, 

for problems involving purely elastic behavior,  the  lumped-parameter model  of Fig. 

3.2    can be simplified to that of Fig. 3.3,     In which each mass point defines either 

the vertical or horizontal motions of the model  only; accordingly, the direct and 

shear strains and stresses are also defined only at alternate stress points, as 

shown  in Fig.  3.3. 
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Consistent with the   lumped-parameter model   of  Ffg.   3.3,   the 

transmitting boundary can also be  simplified.     Specifically,   in  this case, we 

see  from Fig.    3.3      that   the  vertical   D'AIembert  force of  mass  point   {i,b) 

yields  Eqs.   (3.8) and   (3.8a); whereas,   the horizontal   D'AIembert   force of mass 

point   (I+I,b-I) yields Eqs.    (3.10) and   (3.10a).     On  the basis of  Eqs.   (3-12) 

through   (3.15),  the stresses  required  in the equations of motions of  the 

boundary mass  points are,   therefore,  completely defined. 

3.5    Transmitting Boundary  in Ax I-symmetric Condition 

The concept  of   the  step-wise   transmission of  D'AIembert   forces can be 

readily extended to the development  of  an axl-symmetrlc  transmitting boundary. 

Consider the  lumped-parameter model  of an axi-symmetric  half-space 

shown  In Fig.    3.4,   which  Is  terminated at j  = b.    We observe that the motions 

of all  mass points at J  * b and J  - b-l  cannot be determined  In the usual manner; 

that  Is,   the equations of motions of  these mass points will  contain  stress   (or 

strain)  components which cannot  be defined  in  the usual  way   In  terms of differences 

In displacements.    For example,   the equations of motions of mass  point   (i,b)  at 

tIme  t a re : 

(yr(I+I,b) - CTr(I-l,b)        Trz(l,b+l) - Trz(I,b-l) 

Ar Az 

,b) 

p u'(I,b) (3.16) 

er{\,b) - oe(l,b) 

r(I) 

and, 

Trz(f+1,b) - Trz(I-I,b)      cyz(l,b+I)  - oz(I,b-l)       Trz(l,b) 

Ar Az r(l) 

The following stresses cannot be determined In the usual manner; 

o «0,b)   (3.17) 
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:n Eq. (3.16);

T^^(I,b'l) is completely unspecified; whereas, cJ^(i<-l,b) and ffr(l-l,b) 

cannot be computed because e^(l*^I,b) and «^(l-1,b) are not defined.

In Eq. (3.17);

0^(1,b*l) is completely unspecified; whereas, T^^(I+1,b) and T^^(I-I,b) 

cannot be computed because Is not defined for the shear strains at these 

stress points.

However, these stresses can be determined on the basis of the 

transmission of D'Alembert forces on the boundary mass points; I e., the mass 

points at J - b and J « b-l. Specifically, consideration of the D'Alembert force 

In the z-directlon of mass point (l+l,b-I), assuming the transmission at the 

velocity Cj, yields

«?j,(in,b) - crJ"‘’(I+l,b-2) - — [ tJ"^(I+2,1.-1) - Tj'**(I,b-l) ]

Ar

T!:'’(i+i,b-i) 
r(IM) "

(3.18)

where h ■ —- 
'd

Knowing this stress, the corresponding strain e*(l+l,b) can be determined from 

the pertinent stress-strain equation. This will then permit the calculation of 

9f|(l*l>b). On the same basis, ff||(l-l,b) Is determined.

Consideration of the D'Alembert force In the r-directlon yields.

T* ,(l+l,b) - Tj;”(l*l,b-2) - — [ a5'Nl+2,b-l) - aj''’(l,b-l) ]
-t-h/

Ar

A* - t-h
[ 9p(l*I,b-I) - 0*"'’{l+l,b-I) ]

r(l>l)

(3.19)



Applying  the  transmission   (assuming a  velocity c.)   of  D'Alembert   forces 

to mass point   (l,b)   then yields, 

Az 
a*,(l,b+l)  = ^(l^b-I)  - — [ Tj;h(l+I,b)   -  T^h(l-I,b)  ] 

Az    t-h 

r(l) 

and. 

T^"(l,b) (3.20) 

Tj2)(l,b+1) = Tj;h(l,b-I)  - — [ aj^d -l,b)  - aj"h(l-l,b) 
Ar 

+ — [ *!i"h(l,b)  - a^h(l,b)  ] (3.21) 
r(l)        e r 

Eqs. (3.18) through (3.21) were obtained assuming that the propagation 

velocity Is c. . Alternatively! If the velocity of propagation Is assumed to be 

c     ,  the corresponding  stresses would be 

o\2{\+\,b)   ,    Tjz2(l+I,b)  ,    ey*2(l,b+l), and T*z2(l,b+1)  , 

which are obtained by  replacing h by k = ftz/c     In Eqs.   (3.18)  through  (3.21). 

From a -(l+l,b),   the corresponding strain  «  (l+I,b)   Is obtained,  from which 

a 2(l+l,b)   Is determined,    cr 2(l-l,b)   Is obtained on a  similar basis. 

The correct  stresses to use  In Eqs.   (3.16)  and   (3.17) will be some 

combination of  the  stresses computed on the basis  of velocity c    with the stresses 

corresponding to velocity c     . 

Again,  on  the basis of  various computational  experiments,  the combinations 

suggested  In Eqs.   (3.12)  and   (3.13) were found  to be also suitable  for axi- 

symmetrlc calculations;  specifically,   in this case we have. 
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- (1 - ») (3.22)

and, ^Szl • 0 ^2 (3.23)

where the factors -y and B, when applied to the stresses at (i,b^l\ for example, 

are as follows:

t-h.

i-T^'Ni.b-i) - a‘-Ni,b-i)| . K tT;'NiH,b)-tJ;Ni-i,b):-

... (3.24)

and,

lv;'‘(i,b+i) - Tj''‘(i,b-i)|

(1 ,bH (t ,b-I)I . (» (l-l,b)] + (I,b)-<yj”‘' (1 ,b)Jl
Ar

... (3.25)

We can observe also in this case that if the propagation is purely 

dl latational, Eqs. (3.24) and (3.25) become

1.0 0-0

and if the propagation is normal to the transmitting boundary, Eqs. (3.18) through 

(3.21) would yield the

Tjjj(l,b*l) - 0

and. o*(l,bi^l) c*,(i,b+l)

a*'Ni,b-l)



which arc   the   results expected   in  a   one-dimensional   plane  propagation. 

Special   Boundary  for  Axi-symmetric   Elastic Mtdia   -—   In  general,   two 

sections  of  mass  points and   stress   points are   required   to describe an axi-Symmetric 

solid;   the grids between  the  two  sections are  shitted  by  half  a  nesh   length   In 

each direction, as   indicated   previously  and  shown   in  Fig.  2.3. 

However,   for   linearly  elastic media,  a   single  grid,   on which  the   radial 

and  vertical  motions are defined at   alternate mass  points,  will   suffice   if  certain 

quantities are approximated with the corresponding averages of   the neighboring mass 

points   (or stress points as appropriate).    Such a simplification  Is similar  to that 

described   in Sect.   3.** for   linearly elastic material   In plane  strain. 

3.6    Transmitting Boundary  for Elastic-Plastic  Propagation 

For elastic-plastic material,  the transmitting bendary described above 

can be used without modification  If  the necessary calculation» are  terminated  In 

a  region where the material  can be assumed to be elastic.     In many cases, this 

should be sufficient and whenever applicable should be used. 

However,   the above  transmitting boundary can also be extended to Include 

clastic-plastic propagation.     Basically,  this extension  for elastic-plastic    media 

must   Include the fact  that   there are more  than one dllatatlonal   propagation 

velocity;  In particular,  the elastic  conponent of a wave will  propagate ahead of 

the plastic component.    Also,  the unloading wave may propagate at   Its own velocity 

(elastic unloading  Is assumed  In  this  study). 

Several  schemes  for  Including the effects of  elastic-plastic behavior 

were  investigated  in this study.     On the basis of  these  investigations, the 

following extension or modification  to the algorithms described   In Sects.  3.** 

and 3.5  i* suggested: 
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Consider the plane-strain case (the extension to the axl-syi«metrlc 

case can be similarly accomplished). Referring to Fig. 3.2 , we determine 

the stresses at point (l,b<-l) as follows:

Let Y be an Indicator at time (t-h^), such that

^ 0 , If the materiel Is elastic

I , If the material Is plastic

•I , If the material Is unloading

Then the stress ffy(l,b+l) Is determined as follows:

(rj(l,b+l) - (l-X,) t ,v *»J"*’(l,b-l) + (!-<,) oJ*'‘(l,b-l) 1

> X, ( ^ ,T*"’’(l,b-l) + (l-<») oJ'‘‘(l,b-l)

> ( CTJ■^(l,b-l) - <TJ;^(l,b-l) 1

♦ — { (l-Xj) I • tj’^(l-l,b) > (l-«) Tj^‘‘(l-I,b) ]

. " ^ (l-Xj) ( , .••"(I.l.b) . (I.,) .J^(l-l.b) 1

>xj [»T^^jd-i.b) ^ (i-»)

.(,';Vi.i.b)-,;;;b(i-i.b))]} (3.26)



Ay -
In which h ■ “ » the fully plastic unit transit tlmewithc -/ ,7.^. 1— ; 

P *=p p V3(l-2v)o

and X ■ J ^2 ; where the subscripts I, 2, 3 on X refer to the stress points

(l,b-1), (l-l,b), and (l+l,b), respectively, at time (t-hp).

We should emphasize that If the material remains purely elastic (I.e., 

V • 0), Eq. (3.26) reduce to Eq. (3.12); whereas, If a stress point Is clastic- 

plastic (I.e., Y ■ I), the elastic precursor will be transmitted through the 

boundary at the elastic velocity and the plastic component will be transmitted 

at the fully plastic velocity c^.

SImllarly.

t‘ (l,b+l) - (l-X|) B T*'Sl,b-l) + (l-B) T*:'’(l,b-I)t-h-

L" *y

+ —{ (1-Xj) r I o*"'‘(l-l,b) + (l-l) a*"*'(l-l,b) 
A* *

♦*2 [ • (»•»»*>) * (»-B) oJ'^(l-l,b)

+ (»J‘^(I-I,b) - aj;^(l-l,b))]}

Ay r
• «rj"‘‘(l+l,b) + (l-B) ffj‘'*(l+l,b)

♦ *3 [ B oJ^Nl^^b) ^ (l-B) oJ;^(l>l,b)

♦ ( ffJ->»P(l*l,b) - <yJ;^(l-1,b) > ] } (3.27)



The stresses t*' (i+I,b), (i-1,b), a*(i+1,b), and CT*(i-l,b), which are 
xy ^ ^

required in the equations of motions for the mass point (i,b), are similarly 

determined from a consideration of the transmission of the D'Alembert forces 

on mass points (it|,b-l) and (i-l,b-l).



IV.      ILLUSTRATIVE NUMERICAL  CALCULATIONS 

Numerical   calculations   for  a   large  number  of   test  problem were 

performed   in  the  course of   this  study;   these were  necessary  to verify one or 

more  aspects of   the capabilities   and   requironents   of   the  transmitting  boundary. 

Many of   these calculations were also  required   for   rejecting or modifying a 

particular conceptual   scheme.     In particular,  all   the numerical   schemes described 

in Chapter   III  were   tho   results of extensive computational  experiments  and 

numerical   verifications.    Typical   anong  the  problems used  for  these  purposes 

are those described  in  the sequel. 

4,1    One Dimensional   Propagation 

In Sect.  3.3,   it was stated  that  the proposed  transmitting boundary  is 

theoretically exact  for  linearly elastic propagation  In one dimension;  exact  In 

the sense that no additional  approximations,  other  than those associated with  the 

basic finite difference scheme,  are  introduced   in  the transmitting boundary. 

This   is verified with  the nunerlcal   results  for  the  following problems: 

(a) A semi-Infinite one-dimensional   bar subjected to a sustained 

pressure applied at  the  fine end.    The exact solution for this case  is  known; 

i.e.,   the appliad pulse  Is maintained at all   sections Along the bar.    The 

corresponding numerical   solutions obtained with Eq.   (3)  at  the  boundary  arc 

compared with  the exact solution  in Fig.  4.1.    Complete  time histories  are 

presented. 

(b) A second problem  is  a half-plane  subjected  to the  pressure  pulse 

shown  In Fig. 4.2, applied throughout  the surface of  the half-plane.     In  this 

case,   the pressure pulse consisted of both  loading  and unloading phases of  the 

applied pressures.    The exact solution  is  also known, which  is   the applied  pu's- 

reproduced at all  depths.    Numerical   results calculated using the  transmitting 
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corresponding  to   two different  depths  of   the   terminating  boundcry.     Evaluation 

of   the   results   calculated with   the  shallower   boundary   relative   to   those  obtained 

with   the  deeper   boundary  gives   a neans  of  verifying  the  capability  of   the 

transmitting  boundary. 

A  large number of cnlculation<il   problems were  performed;   problem» 

involving  both  slow  and   fast materials  were   considered.     However,   for   the   purpose 

of   illustrating   the effectiveness  and  limitations of the  boundary,   the  results of 

typical   cases only will   be presented.     In  all   cases,  complete   time histories  arc 

presented   for  stress points close   to a  transmitting boundary. 

The half-plane described   in Fig.  4.5 has  a slow material  with  a dilata- 

tlonal   velocity of  1,600 fps.    The  transmitting boundary was placed  at   two depths; 

in one case at   15  ft.,  and  in  the other  at 2b  ft.    The calculations were performed 

with a rectangular grid of Ax   ■  10 ft.  and A>   - 5 ft., and a uniform  time  increment 

of At  m 0.75 msec, was used  in  the numerical   integration.    This  represents  a very 

severe  test of   the capability of  the   transmitting boundary;  observe  that   there are 

only 3 mesh  lengths  to the boundary  in one case  (and 5  in  the other),  such  that 

the  travel   time  from the surface  to  the boundary  is only  about  1/6 the duration 

of  the applied  pulse  (and about   1/4  the duration of  the pulse with  the deeper 

boundary). 

The  results are presented  in  the  form of  time histories of vertical 

stresses  at  the center  line and at   10  ft.  horizontally  from  the center  line   (i.e., 

points  a and  b   in  Fig.  4.5)   in Figs.  4.7  and 4.8,   respectively.     It  should   be 

emphasized   that   the stresses  presented   in   these   figures  arc   for   the   stress  points 

immediately  adjacent  to the   transmiItin ,  boundary when   it   is  placed  at   the  shallow 

location   (I.e.,  D   =  lb  ft.).     In each   figure,   the   results  calculated with   the 

transmitting  boundary  located  at  depths of   15  ft.   and 25  ft.   are presented 

together  for comparison; on   this  basis,   the   validity of  the   transmitting  boundary 
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Is clearly evident far this case.

Plane strain calculations were performed also for a partially loaded 

half alane wifi dilatstional velocities of 3,100 fps and 10.000 fps, resembi in.j 

soil ind h.ird rocks, respectively. The test pioblen is idealized as shown in 

fig. 1.9, subjected to the normal pressure pulse shown in Fig. 4.13.

Calculations for the 3,130 ,>i matirial were quite wel I-behavedi that is, 

the results ,«re similar to those for the 1,600 fps mate rial illustrated earlier, 

and consequently will not be repeated. It will suffice only to empfiasizu that 

the caltu'ations wore performed without artificial viscosity and serve to further 

verify the validity of the transmitting boundary.

For the 10,000 fps materisi, the vertical stresses at five depths 

adjacent to the center line, calculsted without artificial viscosity (I.e., T » O), 

are sham in Fig. 4.11. Fig. 4.12 also presents the vertical stresses at roughly 

the same depths and at a horizontal distance of 120 ft. from the center line.

The results presented li these figures Mlustrats very succinctly the difficulty 

thn could arise with the transmitting boundary when a fast material is involved. 

Although tho main pulses are correctly transmitted through the boundary, high- 

frequency oscillations begin tJ appear upon unloading; these oscillations can be 

quite spurious .m ilijstrated in Figs. 4.II and 4.I2. Such oscillations appear 

to start at the center llte. However, the fact that such oscillations are of 

high frequencies suggest that artificial viscosity should be effective in 

suppressing them. The amount of viscosity required appears to depend on the 

propagation -/elocitv of the material.

in Figs. 4.I3 through 4.I8 ara presented the calculattonal results 

obtained with several values of the artificia' viscosity coefficient T. combined 

with two different time l-icrenunts. From the results given in Figs. 4.I7 and 

4.I8, it appears that for a material with 10,000 fps dilatational velocity, an



artificial   viscosity of F   = 0.40   is   sufficient   to  suppress   the   spurious 

oscillations   at   the   transmitting   boundary without  affecting   the main  pulses 

significantly«     A! I   the  calculations -/ere  performed with Ax   = Ay  =  35  ft. 

The   results   shown   in   Fiy.   4.13   ihrouijh  4,ID   illustrate   the  consequence 

of   insufficient viscosity   (r  = 0.28).     These  also   inHicate   that  a  reduction   in 

the   integration  time step  (from   1.30 msec,   to  1.40 msec.)   tends   to reduce   the 

oscillations  but does  not  eliminate   them. 

On  the  oasis of   the   two-dimensional   plane  strain  calculations   illus- 

trated above,  the  following observations emerge: 

(I)    For slow material   (say c. < J.OOO  fps),   the   transmitting boundary 

can  he  used   for p'anc  strain problems without  artificial   viscosity. 

(ii)     For  fast material   (say c. > 3,000  fps),   the   transmitting boundary 

ought   to  be used with some  artificial   viscosity;   for example,  with  c     =  10,000 

fps,  f ■ 0.40 appears  to be appropriate — spurious oscillations are  suppressed 

without  affecting the  real   signals  propjgatlng  through   the  boundary. 

4,3    Axl-svmmetrlc Calculations 

The  transmitting boundary was  also  tested   for  a variety of  problems 

under ar.lally r^mictric conditions;   these were  all  conducted   Involving an axi- 

symmotric half-space subject 'd   to normal   pressures  applied at   the  surface, 

including  the pulse  loading shown  in Fig.  4.19 and a periodic  sinusoidal   load 

shown   in Fig.  4.26 applied over  d  finite circular area. 

For a homogeneous  half-space with c.  ■*  1,600  fps,  calculations were 

performed  for  the problem    shown   In  Fig. 4.20.     A space mesh of  Ar ■ 10 ft.   and 

Az  *  5   ft.,     and a  tine mesh of  At   ■  1.0 msec,  were  used   in   tie  calculations. 

Again,   in    order  to provide  a basis   for judging  the  validity  of   the   results, 

the calculations were conducted with   the   transmitting boundary  placed  at   two 

different  depths;  namely,  at   15   ft.   and 25 ft.,   respectively.     On  the  basis 
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of other test cases, tie probleii presented here represents the most severe test 

of th.! trans'ii ttt 19 boundary in axi-synmietric condition.

The vertical stresses at a depth of 12.5 ft. (stress points Itmedlately 

before the transmittino boundary at 15-ft. depth) are presented is Figs. 4.21 

and T.22 for the poiits a and b in ^ig. 4.20 which are, respectively, on the e;tis 

of s>ii»iietry and at r > lO ft. These wore obtained with an artificial viscosity 

o*' r » 0.I5 os required for calculatlonal stability of the axi-symmotri: 

differencing scheme. In each of Figs. 4.2I and 4.22, the resu'ts calculated 

with the transmitting boundary located at I5 ft. and 25 ft. are presented for 

the purpose of comparison.

A similar problem involving a fast material, c. ■ 10,000 fps, was also
d

analyzed. The problem was formulated far the half-space shown in Fig. 4.23 

subjected to the sate pressure pulse of Fig. 4.19. The transmitting boundary 

was placed at a depth of 180 ft., and calculations were performed with Ar > Az >

40 ft. and a uniform time 'lesh of At • 0.75 msec. An artificial viscosity of 

r -0.4 was used.

The corresponding results for the time histories of vertical displace­

ments and stresses at two points along the center line are shown In Figs. 4.24 

and 4.25, respectively. It might be emphasized that the calculations along the 

center line were found to be most critical; i.e.. If any spurious oscillations 

occur, they invariably start from the center line.

The transmitting boundary with axial symmetry was also tested for 

repeated loadings. For this purpose, the ha» f-space shown in Fig. 4.20 was 

subjected to a sinusoidal loading function, described In Fig. 4.26, with a 

period of 120 msec. The vertical stress histories are presented in Figs. 4.27 

and 4.28, respectively, for poiits a and b of Fig, 4.20. In each figure, the calcu­

lations were performed with the transmitting boundary located at the two depths;



narcly,  at  15  ft.   and  25  ft. 

It   is  of  s•qnificancc   that   the   results  obtained with   the  shallow and 

deep   tcrmin.ilions ,   as  shown   in  Figs.  4.21   and  4.22   anrl   in  Figs.   4.2'  and 4.28, 

ara  very close  to each ot'ier;  moreover,   the calculations  renained stable   long 

a'ter unlDadinj   in   the case of   the  simj'o  puls^:   load,  whereas   in  the case of 

tie  periodic   load   the sinusoids  are accurately   reproduced.     Fron  the experijnee 

with several   other schemes   tosted,   it   is  the  general   observation  that  any 

transmitting boundary roust  be capable of virtually  perfect  simulation of   tie 

effect of an   iifinitc   region,  othervise  grossly erroneous calculations occur 

almost   immediately on  the  arrival   of  a wave.     Therefore,   the   fact  that   the main 

signals arc  reproduced correctly  through the  transmitting boundary and no spurious 

oscillations  ./ere observed on unloading,   is  strong evidence of  the validity of 

the  transmitting boundary. 

4.4    Axi-svf.iTKnric Layered  Elastic-Plastic S/stem 

In order to  illustrate  the capabilities of   the  transmitting boundary 

for problems   involving coriplex wave  forms,  calculations   /ore  performed  for a 

3-laycr elastic-plastic axi-symmetric ha'f-space shown  in Fig.  4.29.    The pressure 

pulse applied at  the surface of  the half-space   is  the  sate  as  that shown   in  Fig. 

4.19.    The  three  layers have dilatational  speeds  as  follows: 

c.   ■    2,500  fps 

c-  >    6,000  fps 

c-  ■ 10,000  fos 

The calculations were  perf>:<ined with  the  following mesh  sizes: 

Ar ■    40  ft.   (throughout) 

Az,   -    20  ft. 

Az,  «    30   Tt. 

Az3  =    40   ft. 
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and jn  intojrüiion  time sl'.p of At = 0.75 .nsüc. was used.    The calculations 

wero done with  artificial   viscosities of f  = 0.05,  0.15,   and 0.4  for  the  three 

respective  layurs.    The  transmlttlig boundary was  placed   in the  third  layor at 

a d'jpih of   130   ft. 

Two sets of calculations wnre performed.     In one case,  the material   in 

all   the  layers ./ere assumed  to be elastic;   in the  second casn,  the material   in 

o.ich   layer was  assumed   :o be el asti ;-perfectly plastic with a yield strangth of 

0.3 ksi, such  that plastic yielding extends  all   the way  to the transmitting 

boundary as  depicted   in  Fig.   4.30. 

Typical   stress histories are presented   in Figs, 4.31   and 4.32 for 

points on the axis of symmetry and at depths of 50 ft.  and 160 ft.,  respectively. 

In both of these figures,  the elastic and elastic-plastic stresses are presented 

for comparison.    Similarly,  the displacement functions  for the elastic and elastic- 

plastic calcu'ations are shown  in Figs. 4.33 and 4.34,   respectively, at depths of 

50 and  160 ft. 

Again,  it is significant fiat the results are quite regular with no 

spurious oscillations.   At should be expected, plastic  flow t.-tnds to decrease the 

maxlmuri stresset  at a stress  point, but larger displacements are produced under 

the same loading. 

From this last problem, two points should be emphaslz«d: 

(i)    The  transmitting boundary Is capable of propagating complsx waves 

sich as t'iosc arising fron a layered system; 

(ii)    The effects of elastic-plastic material  can be Included in the 

transmitting boundary. 

4.5   Results of Long Sustained Calculatlo^al Time 

To Illustrate the capability of the transmitting boundary for problem» 

r.-quiring lomj calcu*ationa!   time (I.-J., many calculational  tin« stap»), the 



1 ■—II"'IP"  

problem described  in Fig. 4.35 was used.     It resembles crudel/ a problsm of a 

nuclear air burst.    The problem  Is  idealized as an axi-symmütrlc half-space 

subjected  to an  Initial   air slap applied over a circular region of  radius 645 ft., 

plus an expanding air blast whose peak pressures decay exponentially with the 

radial  distance.    The  initial   air slap was assumed  to have  the pulse shown  in 

Flg. 4.10, whereas the subsequent air pressures correspond  to those described  in 

Ref.   [5]   for a one-magaton surface nuclear burst.    The half-space consists of 

t'iree layers as shown  In Fig.  4.35 with dilatatlonal   velocities of 2,500, 6,000, 

and  10,000 fps,  respectively.    The thickness of layers 1  and 2 are 75 ft. and 

160 ft.,  respectively; whereas  the third  layer Is tarminatad by the transmitting 

boundary at a   depth of 345 ft.  from the surface.    The material   in each la/er  is 

assumed  to be elastlc-perfectl y plastic with a uniform yield strength of 10 ksi. 

The calculations were performed with the following space meshes: 

Ar    ■   40 ft., for all   layers 

Lz - 10 ft. for layer 1 

Az ■ 20 ft. for layer 2 

Az    -   30 ft.  for layer 3 

A uniform time mesh of At ■ I msec, was used throughout.   The results for a 

duration of 2.5 sec. were calculated; corresponding,  therefore,  to 2,500 time 

steps, rdpresentlng a long calcufatlonal   time. 

The results for points close to the transmitting boundary, specifically 

at a depth of 330 ft«, ara presented  in Figs. 4.36 through 4.53.    These are 

complete time histories of motions and stresses for two points adjacent to the 

transmitting boundary; Figs. 4.36 through 4.44 ar.- at a radial distance of 1480 ft., 

whereas Figs. 4.45 through 4.53 show the motions and stresses at. a radial distance 

of 1920 ft. 
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Thcvic  results  clearly show t'ie capjbilitles of the transmitting 

boundary;   specitically,   the   foliating should  be observod: 

(1) There are no spurious oscillations, even after long calcul ational 

timj.     In  fie  various   test  problems,   the transmitting boundary has  been shown  to 

transmit correctly  the main pu'ses.    Moreover, we have  indicated  that the boundary 

is sensitive  to small   i-(accuracies,  such that unless the transmitting boundary 

accurately reproduces  t'ie effect of an  infinite space,  the errors are rapidly 

magnified and exhibited   in  the  form of spurious oscillations. 

Therefore,  the absence of spurious oscillations  in the above calculations 

is an  indication of  the  validity of the  results. 

(2) The calculated particle notions,  specifically accelerations, 

velocitias and displacements, are essentially zero after som.; finite time, 

reflecting the fact that  the particles come to rest after the passage of the 

stress waves.    The durations of the signals are longer for points at larger 

distances  from the centsr. 

(3) The strass waves are quite conpiex,  reflecting the effects of the 

material   layerings.    Aft^r the passage of the main signals, the amplitudes of  the 

stresses are significantly reduced (especially at the 1480' range as shown In 

Figs. 4.36 through 4 44).    This Is further evidence that the complex waves are 

being transmitted throujh the boundary without irregularities, which would be 

expected  if the transmission'-, through the boundary were Inaccurate. 



V.     OTHER  EXPLORATORY  STUDIES 

5.1 Finite Element Type Formulation 

The notion of  the  transmission of D'Alembert forces   is scemingl/ 

applicable to the  formulation of a finite-element  type  transmitting boundary. 

The feasibility of such a formulation was explored.     For this  purpose,  the 

plane-strain model  shown  in Fig.  5.1  was used.    This   is the same model  of Fig. 

2. I     with the positions of the elements rearranged as shown. 

A stress point and the  four neighborin g mass points may be considered 

to constitute a finite element;  this would be equivalent to a constant-strain 

rectangular element.    A stiffness matrix can be derived for such an element  and 

the equations of motion formulated  in the x and y global  directions.    Calculations 

were performed on this basis for the problem described  in Fig. 4.9,   in which 

the  transmission of D'Alembert forces are imposed on the boundary mass points. 

In Figs.  5.2 and 5.3 are  shown the  results for the vertical   and shear 

stresses at several  depths along the center line.    False signals from the 

boundary appear to be quite evident  in these  results.    These error signals are 

slowly oscillatory and grow continuously.    In contrast to the  formulation 

suggested  in Chapter III   In which  artificial   viscosity  is effective  in suppressing 

the high-frequency error growth,  there  is no way  that  the type of errors 

illustrated  in Figs.  5.2 and 5.3 can be easily removed. 

On the basis of the exploratory calculations performed, as described 

above,  the proposed  transmitting boundary  is not directly applicable to the 

finite-el'jment type formulation.    At least some modifications of the schemes 

presented  in Chapters  III  and  IV will  be required. 

5.2 An Alternatu Approach 

Other means of treating the effects of an  infinite or soml-infinit! 

space  in <i discrete-variable solution of w.ivo propagations nay  bt possible. 
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One such allernate method was developed as described  In the Appendix.     Instead 

oT  terminating artificially an  infinite  space domain with a transmitting boundary, 

the effects of  the  infinite space may be  included  in the discrete-variable 

fomulation within a finite space by recognizing certain mathematical  properties 

of wave propagation  theory. 

The basis of such a mathematical   scheme Is developed In the Appendix 

for a centered  finite difference formulation.    Specific finite difference 

equations  (or operators) were developed for one-dimensional  and two-dimensional 

plane strain elastic media.    The theoretical   basis of this approach  is described 

to illustrate an alternate discrete-variabla treatment of an  lifinlte or semi- 

infinite space. 



 —— 

VI.    SUMMARY AND CONCLUSIONS 

A comprehensive method for  the numerical   calculation of wave 

propagation   in solid media  is summarized.    This   Includes  a physical   basis  for 

the discretization of  t'ie  space domain  that   leads mathematically  to a centered 

finite difference system.    The time domain  is discretized through  a second-order 

step-wise numerical   integrator.    The  resulting space-time formulation  r> 

equivalent  to a system of finite difference equations  for a set of discretized 

space and time variables. 

It might be emphasized that for problems   involving hyperbolic or 

parabolic systems,  such  as   in dynamic wave propagation,  a discrete-variable 

formulation does not necessarily imply a valid numerical  solution.    Certain 

mathematical  conditions  for stability and convergence are required, which 

depend on the resulting set of equations.    In the formulation suggested herein, 

the necessary conditions  for convergence and stability are available  in the 

mathematical   theory of finite differences.    On this basis, explicit stability 

conditions for plane and axi-symmetric propagations were developed. 

Calculations with any discrete-variable solution method are necessarily 

limited to some finite space donai.i.    For problems   involving Infinite or semi- 

infinite spaces the "finite" space domain,  therefore, must be terminated  In 

such away that the artificial  boundaries of the pertinent domain will   reproduce 

the effects of the  infinite space.    Such a boundary, called a "transmitting 

boundary", has been developed for the calcutational  method described above. 

The proposed transmitting boundary is based theoretically on the concept of 

the sttjp-wise transmission of D'Alcmhert  forces.     It simulates exactly the 

effects of an infinite space If the transmission speed  is known.    Therefore, 

for Iilear ono«difflensional  elastic propagation  (including spherically symmetric 

propagation),  the proposed transmitting boundary  is exact,  In the s^nse that 
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no errors,  other  than   thos.j  associated with  the basic finite difference 

ipproximiitions, are  introduced at   the  artificial   boundary.    This  concept ;an 

be  readily extended   to propayaUon  problems  in higher dimensional   media, or to 

inelastic   nedia.     In higher dimensional   space,  the  formulal:ion of  the necessary 

calculatlonal   algorithm at  the boundary   ii facilitated with  the use of the 

appropriate   lumped-parameter model;   fie  step-wise change of the D'Alembert 

forces  on  a mass point constitutes   the underlying basis of the  boundary.     In 

these  cases,  there are   invariably more  than oie material   speed,  such that the 

actual   speod of  transmis;ion of  the D'Alembert forces   I; not known;  however, 

the different: propagation speeds must be  reconciled.     Among the several  schemes 

that havo  been examined  for  this  purpose,   a means of  including properly all   the 

marerial   speeds has been found.    The  resulting transmitting boundary was tested 

thoroughly with a large variety of problems and ca)culational  experimants.    Some 

approximation  in the transmitting boundary  is unavoidable when there  is more than 

one propagation velocity.    The errors  i.ivolveH in this approximation  invariably 

show up  in  the form of high-frequency spurious oscillations, especia'l/ for fast 

material, which normally occur after passage of the mail signals  (i.e.,  after 

unlojding).    These os:l Nations .ire characteristic of rapid error growth which 

can be suppressed through .he Introduction of small  artificial  viscosity, as  !s 

normally required also in a,'.i-syr,im.urlc calculations, which does not significantly 

affect   the  real waves« 

Based on the studies and i.iv-jsti gat tons conductsd herein, the following 

conclusions may be emphasized: 

(I) The concept of tho step-wise transnission of O'Alynbcrt forces I« 

a suitable basis (»r an ariiflcial transmitting boundary to «imulate thu effjets 

of an  inflnlta or soni-infini tc space  in ono and two«space dimensions« 
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(2) For problems with multiple propagcition speeds,   it  is of 

significance  to observe  that  the errors associated with the approximation 

required  to  reconcile  the multiple speeds,  have a tendency  to grow rapidly   into 

spurious high-frequency oscillations, especially  for fast materials.     In  view 

of  this, some artificial   viscosity should be used with  the  transmitting boundary. 

The  level   of artificial   viscosity normally   raquirad  for stability of axi-symmetric 

calculations will   also be sufficient to suppress  the error growth at  the  trans- 

mitting boundary.     3y virtue of  the fact  that  the boundary   is extremely sensitive 

to small  errors  that are normally exhibited   in  the  form of spurious oscillations, 

the absence of such oscillations   in a particular calculation   is also a maans of 

ascertaining or verifying the validity of fie  results. 

(3) The same concept   is applicable  for a transmitting boundary   in 

three-space.    Although no difficulties are expected, other than those experienced 

and resolved  in  the two-space problems,  the  generalization of the basic concept 

to three-space  requires additional   investigation. 

(4) Although the boundary was not  test id for any formulation   In 

non-Cartesian coordinates, the concept of step-wise transmission of D'Alembert 

forces  Is applicable to any coordinate system.    Therefore, no special  difficulty 

is anticipated  in using the proposed transnltting boundary for tefmi.iftting a 

space domain with an  irregular geometry based on the generalized iiiil ..^^, 

element model  described  in Sect. 2.1. 

(3)    The proposed transmitting boundary  Is also applicable  to conplex 

wave propagation probloms,  including thos • with material   layerlngs, periodic 

pulses, and other realistic loadings such a« blast  forces and earthquake 

disturbances. 

(6)    When applied to clastic-plastic material, the plastic speed of 

the material  and  the elastic precursor waves -usi   JC reflected in the formulation 

6: 



of  iho  transmittlmj boundary.    Although the extension of the  boundary to 

..•I .T. Llc-pl astic Material   appears   tu be valid,  the  boundary was not as 

ihorouqhly  testad as uns dono.  for  fie elastic cases.    Nevertheless,  the basic 

concept of  t'ie proposed  transmitting boundary   is suitable  for elastic-plastic 

material,   if  the  proper propagation -jpeeds of a signal   are   included; one way 

of doing  this is  developed   herein. 
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APPENDIX    —    ALTERNATE NUMERICAL SIMULATION OF INFINITE SPACE 

A.I    General  Concepts 

The proposed alternate numerical   procedure   is based on the following 

proposition:    Let    ün , Wn , Ün , and Wn    , be the r,s; u.   .   '    r,s; u.   .        r,s; u,   . r.s; u.   . 
' »J ' »J ' »J ' iJ 

components of displacement and velocity,  respectively, at the nth time step and 

at the point designated by r,s due to a unit  initial  displacement at point  I ,J 

(u.   .  = 1).    Similarly, one can define displacements  and velocities at t - n At 
' iJ 

and the point r,s due to    ü.   .  3 I, w,   .   ■ I, and w.   .  - I. 1 »J ' »J ' »J 
For linear problems.  It follows that the components of displacement and 

velocity at t ■ n At and at the point r.s are given by: 

n 1      /   o     j-n + •* ijn *   ® un J. 
r,s       l,J  ( "r.J "r.s; u,^ * "l.J "r,.; 8,^ * "l,J "r.,; »jj + 

w"     -   £      ( u0     Un + ü0 wn + w0 vin + Wr.s       l.j   K ul,j Wr,s; u|(J 
+ ul,j Wr,s; uifj 

+ wi ,j Wr,8; w, ^ + 

+ w? . W"    .   .        ) (A.4) '.j    r,s; w,   , 
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where   the  suriualion exiends over  the. set of points  at which the   initial   conditions 

arc   a\ I   non-zero. 

Therefore,   if  for a yiven problem the quantities U i    IL .. » r,s; u.   .        r,s; u.   . 
• »J ' »J 

Wn , Wn , Un         can be determined,   then the solution 
r,s;  u.   .'     r,s; u.   .       r,s;  u.   . 

i .J i .J i .J 

of   the discrete inilial-value problem  is found using Eqs. A.I  through A.6.    For 

convenience of  refurenco,   the set of quantities U       . » 'J» .. » r.s, uitj   r.s, u,j 

Wn      , and Un        for all values of n and r,s will be referred to as 
r.s; u.   . ' r.s;  u.   . 

1 tj ' ij 

the "operator  for unit  initial  displacement u "•   Likewise, U_ ,,   .       . U   ,,  .       . rt», u|tj      r,$. uj(j 

Wn and Wn       .        for all n and r,s constltuta the "operator for unit 
r,s; u.   . r,s; u.   . 

1 i.i ' »j 

initial  velocity u ".     In the more general case discussed above which actually 

corresponds to axi-symmetric wave motion, one has to compute four unit operators; 

\,A,,  for u, ü, w, and w, respectively. 

The construction of the unit operators is the stage at which the actjal 

Integration of fie differential-difference equation by means of the appropriate 

numerical   integrator is performed.    The construction of these unit operators may 

present some difficulties under certain circumstances; for certain classes of 

problems, however, some simplifications are possible: 

I)    Due to the numerical   Integrator used (i.e., the Newmark Btnethod), 

a unit disturbance at a point for t - 0 with all other Initial conditions being 

equal  to zero will cre^t« non-zero displacements or velocities only at a finite 

number of points at t * At;  the unit operator will  propagate in a pyramid-like 

fashion into the time domain with the apex of the pyramid located at t ■ 0. 

This permits considerable savings in the computations necessary to construct the 

finite difference operators. 
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2)    For one-dimensional  and plane strain wave propagation problems, 

if central   finite-difference approximations are used, then the operators will  be 

either symmetrical or anti-symmetrical with respect to the coordinate axes passing 

through the apex of the pyramid.    The differential-difference equations obtained 

on the basis of the appropriate lumped-parameter models are central   finite- 

difference analogues of the corresponding continuous formulations«    In this case, 

a substantial  economy of computations  is realized. 

A.2    One-Dimensional Wave Motion - Infinite Spatial Domain 

The equation of motion for one-dimensional wave propagation when 

formulated using the lumped-parameter model of Fig.  2.1» 

U, - (-i-)2 (u|+2 - 2 u, + uj.j)   , (A.5) 
"Ax 

where Ax is the uniform space increment In the x-direction, and c. is the 

dilatatlonal velocity of propagation.    The domain of integration is assumed to 

be restricted to (see Fig. A.I) 

0 < t < N At 

0 5 x < p Ax 

Both at x - 0 and x ■ p Ax, no boundary conditions are prescribed. 

The unit operators to be constructed are those for u? - I and u? ■ I. 

The construction Is made by integrating Eq. A.5 using the quadrature relations 

of Eqs. (19) and (20); this process is simplified upon realizing the symmetry 

of the operators with respect to the apex point i. In other words, 

U?^    • Un 
l+r; U|   i-r; u, 

l+r; u,  ui-r; u, 
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u"      .   = u"      . (A-6) 
i+r;  u, 1-4; u. 

Ü"        .    - U"        . i+r; u. i-r; Uj 

Usiri'j this synmctr/,  the expression for acceleration at the a>;!s of symmetry of 

the unit operators becomes: 

ü.   = 2  ( —^_ )2 (u        . U)) (A.7) 
hx 

The final   i/atues of the displacements and velocities are obtained from 

u 
■ j •    « . «| 

(A.8) 

n I     /   o   „n .   .o „n » 
•r   '   LI  '"l   "r; u, + "l "r; i. ' 

K   ■   ?.!  < »',   K: u, * "?   ^"r: a, > 

In order to realize t'ie most economical use of the procedure outlined 

above, three distinct situations should be considered (tee Fig. A.I): 

(1) N < p-l.    In this casa. the operators should be constructed up to 

and i-icludltg the time level n ■ N.   The triangular construction with apex 

centered at the extreme ends of the domain of integration will suffice since It 

corresponds to the most critical situation.    It should be observed that the points 

to the right of the dotted line in Fig. A.I  are unaffected by the unit effects at 

the apex since such points are not Inside the "influence area" of the apex. 

Consequently, the integration is carried out for considerably less points than 

t'ie total of points within the domain of Integration. 

(2) p-l < N :! 2(p-l). The pyramid-like operators already computed up 

to and including n ■ p-l can be used to evaluate the values of displacements and 

velocities for points  inside the spatial  domain of Integration for all   time stsps 

up lo and including n ■< 2(p-I).    Eq. A.8 must be used for this purpose. 
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In extending the operators up to the time step n * 2(p-l). no data pertaining to 

points outside the prescribed domain of integration are computed. 

(3) N >2(p-l). In order to construct the unit operators to a depth 

of n = N >2(p-I), the triangular portions evaluated in (I) above for up to 

n ■ p-l can be used with the points at n - 2(p-l). However, the influence area 

of the point I at n ■ 2(p-l) goes well beyond the spatial domain by an amount 

equal to (p-l) Ax. Therefore, in order to carry out the construction beyond n ■ 

2(p-l), p-l additional points outside the domain of Integration must be evaluated 

at n - 2(p-l). 

The number of extra points to be evaluated in order to carry out the 

integration up to n4t depends upon the number of mats points inside the domain of 

integration. The obvious advantage of the algorithm is that for N i2(p-l) the 

total number of points which are integrated are less than the sum of alt points 

Inside the domain of integration; and beyond 2(p-l) additional axtra points must 

be integrated for only at intervals of p-l. It should be emphasized that after 

the construction of the operators, the extra points need not be retained in the 

memory of the computer. Furthermore, the number of additional points to be 

considered at each time step of multiples of p-l after n ■ 2(p-l) increases by 

an amount of p-l up to the middle of the interval (p-l, N] ; it then decreases by 

an amount of p-l gradually, thereby avoiding superfluous computations. 

Once these unit operators are obtained, it is a straightforward matter 

to compute the displacements and velocities for a prescribed set of initial 

conditions using Eq. A.8. An advantage of the proposed method Is that the 

operators derived for a given grid and a time increment can be used to solve 

different wave propagation problems corresponding to different initial pulses. 
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A.J    Plane Strain Wavo Motion - Infinite Spatial DomaM 

The discrete equations of motion  For plane strain wave propagation 

loniul.it-d on  the  basis of  t'ic plane-strain   I jmped-paranoter model   are: 

"i.j   " ^^  ( Ui-2.J  ■ 2 ul.j + ui+2.i  > + ^ < "i.j.2 ■ 

2 _   2 

"2Ui•■i + 'Ji•j+2) + 'tn7(W|+,••i+, "^•J-' " 

-wi-l,j+l + wi.l.j-i) (A-9) 

Wi.J-(~-)2(W'.J-2"2Wl'i+W'^) + (^)2(W'-2'J 

2 _    2 

•2 wi.j + ww.j ) + ^V* (Ui+^J+, " "•♦'.J-' " 

"Vi.j+i + UI-I.J-I , (A-,0) 

The domain of integration is defined by 

0 < t < N At 

0 < x < 1/2 p Ax (A.ll) 

0 < y < 1/2 q Ay 

The spatial domain of integration is actually infinite; Eq. A.ll defines a portion 

of it over which nintericai   integration will  be performed. 

It Is observed that the first and the second terms  in Eqs. A.9 and A.10 

are symmetrical  and the third terms in both of these equations are antl-symmetrical 

with respect to the reference coordinates passing through the point i ,j.    This 
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observation leads to considerable simplifications in the construction of the 

unit operators, because: 

(I) In the operators for unit initial displacement u, . and unit 

initial velocity u? ., Un      , Un      . u"   .   and Ü" .. .   are 
•ij  r,s; u, .' r.s; u. .' r.s; u. .    r,s; u. . 

' »J       ' ij       ' »J ' »J 

synmetrical and Wa      , Wn      , w"      and Wn   .   are anti- 
r.s; u,.  r.s; u..' r.s; u^j     r.s; u,^ 

symmetrical. For example. 

U?  .      - Un - Un  .       - U?  . 
l+r,j+s; u. .   i-r,j+s; u. ,   i+r,j-s; u. ,   i-r.j-s; u. . 

un        - -un        ■ -un        ■ un 
*l+r,j+s: u|tj  ^1-r.j+s; u,^  ^i+r,j-s; u, j   i-4,j-$; u,^ 

(2) In the operators for unit initial displacement w? ,. and unit 

initial velocity ^ , U"      • "? .. w   
u? .. i  •nd ör s- w  're 

are anti-symmetrical and w"      • ""      , w"   .   and iT   . 

symmetrical with respect to the coordinate axes through i ,J. 

Therefore, in constructing the operators for u? . • I, u? . ■ I, 
i »J ' »J 

w? .  - I. and w? . ■ I. it is sufficient to integrate only for points which are 
' »J ' »J 

included inside a quadrant of the reference coordinates originating from i ,j 

(see Fig. A.2).    For points in which either i or j   is I or 2, the computation of 

accelerations cannot be made through Eqs. A.9 or A.10 directly.   The use of 

symmetry or anti-svmmetry yields the following simpler expressions at such points: 

For u°(, - I or 0^,  - I   : 

^J-2 ^ (ü3.1  " "l.l) + 2 ^ S.3 - "Ij) + 
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2        2 
c. • c 

+ 4 _<L_JL-   w 

Ax Ay 
2.2 (^I2a) 

.2 
UA2 , Sv2 ,  ,  ^  (-ä-)'   (w,  , - 3 w, ,) +   (-5-)'   (w.  , - 3 w. J + '2,4     - "2,.? 

Ax 
4,2     - "2,2' 

2 2 
c .  -  c 

+  i    (U3.3-"3.I   -UI.3+UM) 
Ax Ay 

■dx2 ^2 
i3;tj=2(^(u3tj.Uif.)+(^(U)j_2.2u,j+üitj+2 ) + 

+ 2 

2        2 

Ax Ay 
" (w2,j+l  " w2,j-l) 

(A.I2b 

(A.I2c) 

Ui.I   " ^2  ("1-2,1   - 2 "i.l + U|.2,I> + 2 (-T-)2  ("1.3 - ui,|) + 

+ 2ifir (^.2-w'-'.2) (A.12d) 

^.J   "  ^^  (w2.j-2 * 2 W2.j + -2.j«) + ^2 <«4,j   ■ 3 w2.j) + 

cd-s 
AxV    (U3.^-U3.j-l"UI.J + .+UI.J-l) (A.I2e) 

Ki.2 • ("^">2 (W'^ " 3 Wi.2) + ^  (W'-2.2 " 2 W1.2 + W^.2) + 

+ i7^(üi+1.3-Uf+l.1  -Vl.1 + UM,l) 

•• •• 
Wl.l   3U2.2 "wl,j   "wl,l   '^.J  -ul,2  '0 

(A.12f) 

(A.IZg) 

And for w? ,  - I or   w1? . * I  : 
1,1 I.J 
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Ay 
W.  .  -2  (-S-)2  (w.   3 -w,   |) + 2  (-L-)2  (W; 3.1 -WM)4 

Ax Ay 
2,2 

(A.13a) 

.2 • ^  ("4.2 - 3 u2.2) + <-r->2  (U2.4 " 3 U2.2) + 
^2 

y 

c2 -c2 

(A.13b) 

$^2 
tt.  ,  - (-jL)2 (w,   ,., - 2 w,  , + w,   I+2) + 2 (—).    (w, , - w,   ,) + 
M,j Ay 

'l.j-2     *"l,j     "l,j+2 Ax 

(A.13c) 

wI() - 2 A2    (w,(3 - w,tI) + ^)2 (w,.^,  - 2 w,^ + wt+2| ) + 

c2-c2 

Ax Ay ' 

(A.13d) 

=d .2 
2 Uo  . + "^  tj.o) + 

"2.J  " ^     (U4.J  * 3 »2.]) + ^     (u2.j-2 * 2 U2.J + u2.j+2 

c2-c2 

+ ^77i(w3.j+' "W3,M •WI.J+I+WI.J-I: (A.13e) 
Ax Ay 

'1.2 A2  ("1.2.2 " 2 Ui.2+ ui+2.2) + ^2  ("i.4 " 3 "I.P + 

c2-c2 

+ -£-^    (Wi+1.3-Wi-I.3-VM +WI-1.1) (A.I3f) 
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"1,1   -«2.2 '"Li  ""l.l  "^.j ^"M '0 (AJ39) 

Furthermore,  it should bo noted fiat the operators for u.   . - I or 

u.   .   - I , u.   .  =0 when i and j  are both ov-jn, and w.  .  ■ 0 «<hon I anrt j are 1 • •     ' »J ' «J 

both odd. Conversely, the operators for w. . * I or w. . ■ I, u. . ■ ü when i 

and j are both odd, and w. . = 0 when i and j ars both even. This Is a result 
».J J 

of  the  forms of Eqs.  A.9 and A. 10. 

When these considerations arc used, the construction of the operators 

for unit displacements and velocities becan<s .ipprociably simpler. 

Depondinj upon the size of the spatial domain of Integration and the 

number of time steps at which integration is desired, three different situations 

am possible (see Fig.  A.3).    If it is arbitrarily assuned that p > q, then: 

(1) N < 1/2 q - I.    In this case, the number of points at which 

integration is to be performed in constructing the unit operators will be much 

less than the total   -lumber of points inside the domain of Integration.    The 

operators for unit displacements and unit velocities extend into the time domain 

in a pyramid-like fashion, and the integration must be carried out for n ■ N time 

steps. 

(2) 1/2 q - I < N ^ 2 (1/2 q - I).    The most economical way of 

constructing the operators is to first construct the pyramid-like portions    p to 

and including n - 1/2 q - I, and then to use these operators in association with 

Eqs. A.I   through A.4 for the computed values of displacements and volocltlss at 

n - 1.2 q - I;   in this manner for time steps beyond 1/2 q - I, only the points 

inside the spatial domain can be computed without the necessity of going beyond 

the imaginary boundaries. 

(3) N > 2(1/2 q - I).    For n < 2(1/2 q - I), the construction of the 

unit operators  is done by the procedure   described abovo.    However, at n « 
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2(1/2 q - I) the wave front is already outside the spatial domain of Integration; 

consequently, In order to compute for the points at n ■ 2 (1/2 q - I), some 

additional points outside the domain of integration at n - 2(1/2 q • I) must be 

evaluated (see Fig. A.3).    The information about the displacements and velocities 

at the points inside the triangular area ABC is sufficient to construct the 

operators,   by the aid of the pyramid-like portions of the operators, up to n - 

3(1/2 q - I) without having to compute for any points outside the spatial domain 

ot  integration.    In this way, only at intervals of 1/2 q - I beyond n - 2(1/2 q - I) 

is it necessary to consider additional  points outside the spatial domain.    Again, 

following the construction of the operators, the information concerning the 

additional points outside the domain of Integration need not be retained in the 

memory of the computer.    Finally, the number of extra points for which computations 

are to be mad« increases gradually in the Interval   (1/2 q > I, N) up to the middle 

of this Interval, and then may be decreased gradually to only the required points 

Inside the domain of integration at n - N. 

The next step following the construction of the unit operators is the 

evaluation of the displacements and velocities of the mass points using the 

principle of superposition as expressed by Eqs. A.I through A.4.   Obviously, the 

construction of the unit operators depends on the physical properties of the 

material  in the domain of Integration, the mesh size and the time increment, but 

Independent of the Initial  conditions.   Consequently, the unit operators derived 

for a given problem can be used for different sets of initial conditions. 

A.4   Treatment of Semi-Infinite Domain. 

The algorithm described up till  this point is capable of handling 

infinite spatial domains of Integration with no real boundaries.   When boundary 

conditions are also prescribed In addition to the Initial conditions, the proposed 

algorithm can easily be adapted to take care of semi-infinite domains.    The modified 
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tilyorithm presented below  is  for one-dimensional wave propagation   in a seml- 

Mflnite düinain-,  extension  to plane strain wave propagation   in a semi-infinite 

domain  is  straightforward. 

(1) Let AB represent the real   boundary In the (x,  t)-plane where 

boundary conditions are known  (see Fig.  A.4).    The spatial  domain of Integration 

!s  limited by an  imaginary boundary at the right-hand side of the domain.    Let us 

arbitrarily suppose that the  Initial  conditions are liven at points 2, 3  

p1, where p' < pH i  and beyond the point p'   initial  conditions are uniformly zero. 

(2) The operators for unit displacement and unit velocity are 

constructed  for n = p-2  in the same way  as  that described for an  Infinite medium. 

Since point  I   i> the boundary point,  the depth of the operators must be p-2 time 

steps,  and not p-1, which was the case previously. 

(3) The points at and to the  right of the line CD up to the time step 

n - p-2 are not influenced by the boundary conditions along AB.    Consequently, 

the displacements arid velacitias  for such points can be computed using the derived 

operators and Eq.  A.8. 

(4) At each time step between n • 1  and n ■ p-2,  the points to the left 

of the  line CD are affected by the boundary conditions along AB as well  as the 

initial  conditions at t = 0.    Therefore,  the displacements and velocities at such 

points cannot be computed by the unit operators.    However,  It should be observed 

that at each time step between n ■ 1   and n ■ p-2, the portions of the spatial 

domain enclosed by the lines AB and CD  are bounded such that at both boundaries 

the displacements and velocities  are  known.    Consequently,  the points between AB 

and CD can be  integrated directly, using the numerical   Integration procedure for 

a bounded domain. , 

(5) If Integration  is desired for n> p-2,  then the above steps should 

be repeated for p-2 < n < 2(p-2).    Again, the boundary conditions along AD do not 
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have any effect on the points at and to the right of the line CO1; such 

points are integrated using the Initial conditions at n = p-2 with the unit 

operators. The points to the left of CO' are Integrated directly as before. 

However, since the wave front shown by the line EFGH is beyond the spatial 

domain at n = p-2, in computing for points for n J» p-2, p,-2 additional points 

for which the displacements and velocities are determined while computing for 

0 < n < p-2 must be taken into consideration. Similarly, if N > 2(p-2), then 

at n o 2(p-2), an additional (p,-2)+(p-2) points must be computed. 

As before, the number of additional points beyond the spatial domain 

of integration that are to be computed at time steps which are multiples of (p-2) 

increases in number by p-2 at each p-2 time steps up to the middle of the interval 

(p-2, N) and then gradually decreases to the size of the spatial domain at n » N. 

This Is the most economical way of attacking the problem. Also, It should be 

realized that, while computing for n > k(p-2), the extra points computed at 

n < (k-l)(p-2) need not be retained Inside the computer. 

The algorithm described in this section Indicates that the use of the 

proposed numerical procedure Is not limited by the assumption that the initial 

impulse must be restricted to within the spatial domain of Integration; at long 

as the wave front Is faithfully followed, the disturbances outside the limited 

spatial domain can also be accounted for. 

A.5 Concluding Remarks 

The proposed algorithm is based on the assumption of a linear problem 

and the applicability of the principle of superposition, it, therefore, cannot 

be used when noniinearlties due to material behavior or large displacements are 

present. Also, It is limited to Newmark's Integrator with p ■ 0; non-zero values 

of 6 do not lend themselves easily to the proposed numerical procedure since the 

unit operators will not be as simple as those for 6 ■ 0. Other numerical 
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inteijrJtors would also have  the same complication. 

Despite these  limitations,  the algorithm is promising in clastic wave 

propagation problems  in ono.-dimensional   and plane strain media.    It can readily 

be generalized to include wave motion in spherically symmetric and axi-Symmetrie 

media, as well, since the only change comes In the construction of the unit 

operators for displacements and vslacities. 

The proposed numerical   algorithm has the foil awing advantages: 

(1) In addition to those associated with the finite-difference scheme 

itself, no additional  approximations are introduced. 

(2) The numerical  procedure is equivalent to the solution of the 

finite-difference schema;  it then follows that the stability and the convergence 

properties of the original difference scheme remains unaltered by the proposed 

algorithm, and that no other types of instabilities are introduced Into the problem. 

(3) The operators for unit displacements and velocities depend on the 

material  propertias of the medium, the mesh size and the uniform time step. 

Therefore, once tSey are constructed, they can be used to solve the sane problem 

with dlffarent sets of Initial conditions^ 

The mal-i drawback of the procedure stems from the fact that depending 

on the number of discrete mass points Included in the spatial  domain and the 

number of time steps for which Integration Is desired, it may be necessary to 

compute for some additional  oolnts outside the spatial domain in order to follow 

the wave front.    Ordinarily, the wave front must be inevitably followed by 

computing for a gradually increasing number of points outside the spatial domain 

of integration at each time step;  the proposed algorithm eliminates this by 

offering a compromise in that it is necessary to consider extra points only at 

intervals of the time increment which Is the depth of the unit operators.    Thus, 

depending on the mesh size and the total number of time steps N for which 
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integration is to be performed, one may totally avoid the extra computations 

or limit the additional points to such a number that the whole solution process 

becomes no less economical than the conventional integration procedure which is 

incapable of handling the problems arising at the boundaries. For any given 

problem, as soon as the problem parameters are fixed, the analyst may easily 

determine the most economical mesh configuration for which a minimum of 

additional points is necessary. Table I Is designed to illustrate these 

concepts in the case of wave motion In a one-dimensional medium extending 

infinitely In both directions. 

The algorithm has been successfully applied to a number of problems 

in one-dimensional and plane strain media. It has been noted that the construc- 

tion of the unit operators can be done with a relatively high efficiency in a 

digital computer. The construction of these operators constitutes the bul.k of 

the solution process; however, for a finite number of time steps which is not 

excessively large compared to the minimum number v <>ais points along any one 

of the spatial directions, this can be economically accomplished, and needs to 

be done only once for a class of problems. 
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TABLE  1   -  111 jsttdtton oT  the Economy of Computation with t'le 

Alternate AlgoritSm ~ One-Dimonsion.il   Elastic Propagation 

No. of No. of Max. No. of Total No. of Percent of 
1   mass points tine steps extra points extra points extra points      1 

1          I*-' N 

102 no ... -"" 0                  j 

\0?. 200 ... .— 0                  ! 

1          102 300 100 (a n-200 100 0.33 

1           l02 
400 100 & n-200 

or n«300 
200 0.49 

102 500 200 C n-300 400 0.79 

1         l02 600 200 @ n>300 
or n-400 

600 0.98            j 

102 700 300 (S n=400 900 1.21 

|         102 800 ■J00 9 n-400 
or n>500 

1200 1.47            « 

102 90Ü 400 9 n-«500 1600 1.74            I 

102 1000 400 $ n«500 
or ii»600 

2000 1.95            I 
| 

1 
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FIG. A.2   CONSTRUCTION OF UNIT OPERATORS '. PLANE STRAIN 
PROPAGATION IN AN INFINITE SPACE 
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13    ABSTRACT 

A numerical discrete-element method of wave motion analysis Is summarized and 
extended for problems Involving Infinite or seml-lnffnlte solid media In plane and 
axt-Symmetrie conditions.    Space discretization of a solid medium Is accomplished 
through a lumped-parameter discrete-element model of the medium, whereas the time 
discretization Is embedded within a general numerical  Integrator.    This Invariably 
leads toe system of finite difference equations; thus, the required mathematical 
conditions for numerical stability can be developed on the basis of available 
finite difference theory.    Explicit stability conditions for plane and axl- 
symmetrlc problems are presented. 

Calculations of wave motions In an Infinite or seml-lnfInlte space can be 
confined to a finite region or Interest If the region Is terminated by suitable 
"transmitting boundaries" such that no significant reflections are generated at 
these artificial boundaries.    Based on the concept of a step-wise transmission of 
D'Alembert forces, a general  transmitting boundary was developed for the discrete- 
element method of analysis.    The boundary was verified extensively through actual 
calculations of plane strain and txl-symmetrlc problems,  Including those with 
layered half-spaces, elastic-plastic systems, and a problem Involving long 
calculation time. 
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