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SUMMARY

A numerical discrete-clement method of wave motion analysis Is

surmarized and extended for problems involving infinite or semi-infinite
solid media in plane and axi-symmetric conditions. Space discretization of
2 solid medium is accompl ished through a lumped=-parameter discrete-element
model of the medium, whereas the time discretization is embedded within a
general numerical integrator. This invariably leads to a system of finite
di fference equations; thus, the required mathematical conditions for numerical
stability can be developed on the basis of avallable finite difference theory.
Explicit stability conditions for plane and axi-symmetric problems are presented.

Calculations of wave motions in an Infinite or semi-infinite space
can be confined to a finite region or interest If the region Is terminated by
suitable "transmitting boundaries'' such that no significant reflections are
gencrated at these artificial boundarles. Based on the concept of a step-wise
transmission of D'Alembert forces, a general transmitting boundary was developed
for the discrete-element method of analysis. The boundary was verified
extensively through actual calculations of plane strain and axi-symmetri:
problems, including those with 1ayered half-spaces, elastic-plastic systems,

and a problenm involving long calculation time.
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1. INTRODUCTION

.1 Statement of Problem

The prediction of wave motions in solid media often requires discrete
numerical solution techniques. One such method is the calculus of finite
differences. The usefulness of the method has been enhanced greatly through the
development of discrete-element lumped-parameter models of continuous media;
through these discrete models the required difference equations (usually centered
difference) can be derived directly on the basis of clear physical considerations.
This removes many of the difficulties usually associated with boundary conditions
when the necessary discretizations are imposed or applied purely through mathematical
operations as is ordinarily dcne with the application of finite differznce equations.

In any discrete method of analysis (including finite element [13]), the
space domain must necessarily be limited to some finite region. When such discrete
methods are applied to wave propagation problems involving extensive space domains
(could be infinite or semifinite), the amount of calculations required may
conceivably become excessive, to the extent that it becomes uneconomical, or even
impossible, to perform the calculations. This iimitation of the discrete formulation
may be removed if the required caiculations can be confined to a finite space domain
of interest, such that there are no reflections from the teminating boundaries of
the finite region. Unfortunately, there are no such boundaries that are generally
availablie for this purpose.

The objective of this study is to develop a ''transmitting boundary'' that
can be used for numerical wave propagation calculations in plane and axi-symmetric
media.

1.2 General Solution Method

The transamitting boundary developed herein is intended to be used with
a general method of numerical solution that is =ssentially based on the mathematical

theory of finite differences. The technique of formulation requires discretization




of the space domain as well as the time domain. Proper bases for such discreti-
zations can be accomplished through a physical discretization of the space domain
through the use of discrete element models. It should be emphasized, however,

that for dynamic problens of wave propagation, a formulation of the problem based
merzly on a proper discretization of the space domain does not necessarily lead to
a solution (even in an approximate sense). To assure a valid approximate solution,
certain mathematical requirements must be satisfied.

In the method of formulation suggested herein, the discretization of the
space domain is accomplished through the use of appropriate mathematically
consistent discrate-el=2ment models of the solid media, whereas the time discreti=-
zation is embedded within the numzrical integrator. The space-time discretization
is mathematically equivalent to a finite difference formulation; consequently, the
mathematical relations rzquired to assure stability and convergence of the fesulting
solutions can be studied from the standpoint of the stability of finite differences.
Explicit stability conditions were obtained for the algorithmic schemes suggested
herein.

1.3 Scope of Investigation

The general method of analysis for wave propagation has previously been
appiizd extensively to numerous problems of solid media, including large-scalz
problems of wave and ground shock predictions from blast loadings, and earthquake-
induced ground motions. A comprehensive discussion of the method of formulation
and solution is summarized in Chapter Il, including new mathematical results
pertainiag to calculational stability requirements.

The main scope of this study pertains to the development of a transmitting
boundary. The major concepts involved in the various developments are presanted ia
Chapter IIL. Certain aspects of the developments require semi-empirical investigations

as explained in Chapter I1l; the concepts presented herein represent the final




results of numerous schemes that were considered and tested numerically in these
investigative studies, some of these are illustrated in Chapter 1V.

The results of the specific investigations may be summarized as follows:

(i) For the one-dimensional plane elastic propagation, the step-wise
transmission of D'Alembert forces is theoretically exact; this is verified by the
specific numerical calculations.

(ii) For the two-dimensional propagation under plane strain and axi-
symmetric conditions, the exact speed of transmission of the D'Alembert forces
is not known; certain combination of the dilatational and shear velocities of the
material was found to be suitable. For low velocity material, this was found to
give excellent results; however, for fast material (i.e., <4 < 3,000 fps) certain
high-frequency oscillations were observed on unloading. Such oscillations,
however, can be corrected with the use of artificial viscosity, which is normally
required also for numerical stability in axi-symmetric calculations. The trans-
mitting boundary is applicable to problems with layerings, as well as general
loadings including periodic loading histories.

(iii) Extension of the transmitting boundary to elastic-plastic media
requires the inclusion of the fully plastic velocity of propagation, as well as
the propagation of the elastic precursor waves.

A number of schemes using different combinations cf elastic and plastic
velocities were devised and tested; these led to the development of an elastic-
plastic scheme for the transmitting boundary. Although not fully verified for
all cases, the algoritim presented herein is suitable for the elastic-perfectly
plastic problems examined herein, including those in which plastic waves are
involved at the terminating boundary.

The investigation included also an exploratory application of the

transmitting boundary to a finite-element type of formulation. The results,




al though not very conclusive, indicated that the step-wise transmission of
D'Alembert forces, which is the basis of the proposed transmitting boundary,
may not be directly applicable to the finite element method of analysis.
Modifications of the basic concept, however, may make it applicablz; additional
studies for this purpose, however, are required.

Finally, an alternate finite difference scheme was developed to serve
the same purpose as that of the transmitting boundary. This is based on certain
mathematical properties of wave propagation, and can be used in place of an
explicit transmitting boundary; however, the scheme is limited so far to purely
elastic calculations.

1.4 Acknowledgments
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Agency as Task | of Contract DASA-01-69-0040.

A number of other technical personnel were involved in conducting the
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1.5 Hotations

The following list of symbols and notations is used in this report:

4 velocity of dilatational waves in an elastic medium
< velocity of shear waves in an elastic medium

c wave velocity, in general

3 vector representing solution error

¢ direct strain

G Lame constant (shear modulus)

h : unit dilatational transit time h = Ay/cd

k unit shear transit time k = Ay/cs




. At
K J.Z-c“l or

1 imaginary constant, JT'

i index for r (or x) coordinate of a point

j index for z (or y) coordinate of a point

n index for time level = t/ At

[ index for distance of a mass point from the r- (or x=) axis
=r/ Ar

q index for distance of a mass point from the z- (or y=) axis
= 2/ Az

9. 9, artificial pseudo-viscous stress in r- and z-directions,

respectively

r, 8, 2 cylindrical coordinate system

i distance of the i th point from axis of symmetry

t time variable

u displacement of a mass poiant in r= (or x=-) direction

velocity of a mass point in r= (or x=) direction

U acceleration of a mass point in r= (or x=) direction

u dependent variable vector

v Fourier coefficient vector

w displacement of a mass point in z= (or y=) direction

X value of llei_V

Y an indicator of plastic yielding

X, Y Cartesian coordinate system in a plane

X, ¥ non=Cartesian local reference system in a plane

o angle between x- and x-axes; also as given in Eq. (3.24)

a parameter in Newmark's B- method; also as given in Eq. (3.25)

i coefficient of linear artificial viscosity




Y shearing strain

aAv volume of an element of a mass point of the lumped-parameter model
Ar, A9, Az uniform mesh sizes in r-, 8-, and z-directions, respectively

At time increment

Ax, Ay uniform mesh sizes in x- and y-directions, respectively

A Lame constant of medium

v Poisson ratio of medium

g factor representing error growth from one time step to the next
0 mass density of medium

o diract stress

T shearing stress

W angle between y- and x-axes

r ratio of space meshes, { = &r/ 8z



t1. DISCRETE FORMULAT'ON OF SPACE-TIME PROBLEMS

Analytic formulation of space-time problems of solid media invariably
leads to a system of partial differential or integro-differential equations.

The solutions of thess cquations are the relevant physical quantities desired in
a problam, which are generally continuous functions of space and time. Such
continuous analytic solutions, however, are quite difficult to find, except for
certain simple problems. For problems of practical engineering significance,
continuous solutions are often virtually impossible to obtain; in these instances,
approximate numerical solutions are the only practical alternative. lInvariably,
such numerical solutions represent discrete approximations to the continuous
functions of space and time. This is often accomplished by formulating an
associated set of difference equations, the corresponding solutions of which
yield a discrete function of space and time -~ i.e., it is a function defined
only at discrete points in space and at discrete instants of time.

For space-time problems, a discratized formulation does not necessarily
imply a solution; i.e., the solution of the discretized svstem of equations may or
may not lead to a valid approximation of the 'correct' solution. Certain mathema-
tical requirements must be satisfied in the numerical solution process to assure
the validity of the approximate solution. These include questions of convergence
and stability of a particular numerical scheme.

2.1 Space Discretization

A discrete formulation of a space-time problem requires discretization
of the space domain, as well as the time domain. It will be scen later that the
rasulting solution will depend on the relation between the space and time
discretizations.

Discretization of the'space domain may be done mathematically in terms

of finite differences; alternatively, the space discretization may be accomp!lished



cn a3 physical basis. This latter approach requires lumped-paraneter or discrete-
clement (e.g3., finite element) models of the otherwisa continuous space problem.

In any such models, the basic physical quantities are defined appropriately at a
finite number of discrate positions in the space domain. The resulting set of
ecquatinns formulated {or the discrete-element modal may also be (centered) finite
difference equations; such a property may be referrz=d .0 as ''mathematical consistency"
of the discreta-element model.

Lumped=-parameter models for two and three dimensional solid media have
been developed and described extensively elsevhere [ 1, 2, 4 ). However, for the
sake of coherence and compieteness, the models for plane strain and axi-symmetric
media are summarized herein.

Plane Strain Model ==~ In rectangular Cartesian coordinates, the plane

strain model is shown graphically in Fig.2.1. As are commwon with models of the
same type, the basic elements of the plane strain model consist simply of mass
points and stress points, at which the particle motionc (accelerations, velocities,
and displacements) and stress-related quantities (such as stresses and strains) of
the solid medium are defined, respectively.

Based on the fundamental principles of dynamics, the equations describing
the particle motions of tie mass points in the model are (given for mass point

(i, j) at time t):

N (i+1,5) = OL(i-1,)) e, (1,41) = v (1,51)

..t
0 - + T = ot (1,)) (2.1)
and,
ol (i i+1) - 08(i,j-1) el (1+1,5) - x} (i-1,)) .
L T + =B TR = oV (i,)) (2.2)

which are clearly, respectively, the usual centered finite difference analoyues

of the following differential equations for plane strain motions:



a 2
P, BTy 2% (2.3)

[+]
Ax 3y at?
and,
ac Ar 2
i i . PN (2.4)
Ay Ax Btz

£qs. (2.1) and (2.2) are quite general and apply to any material in plane
strain, including materials with nonlinear-inelastic behavior. However, for
problems where small strains are involved, the nontrivial strain-displacement

relations for plane strain condition are:

(i j) ~ u(?‘l,j) b ul‘-lji)

e (i,
Ax
vi(iyj+1) = v(i,j=1)
e (i,j) = (2.5)
y By
ul(i,j+1) = u(i,j=1) v(i+l,j) = v(i=1,j)
Vx (ivj) - *
X ay ax

and the corresponding strain-rates can be obtained by simply replacing the
displacements in Eq. (2.5) by the corresponding velocities.

Through the stress-strain relationships (or constitutive equations)
of the material, it is clear that Eqs.(2.)) and (2.2 can be expressed in terms of
the particle motions; specifically, in terms of the displacements u, v and
velocities G, v (or Au, Av). In particular, if the material is linearly Hookean,

then Eqs. (2.1) and (2.2), respectively, become

2
Cd r
uli=2,j) - 2u(i,j) + ul(i+2,])
T ]
2

[
+ — u(t,j=2) = 2u(i,j) +ul(i,j+2)
(Av)2 [ ]




2 2

475 [ vGi541) = w(ielim1) < v(inl,+1) + V-t = uGig) @)
8%+ &

and,
2

(Ad)z [ V(i,j‘z) - zv(in;) i V(ip_i+2) -I
Y

[

w(i=2,§) = 20(i ) + v(i+2.)) |

+ ——i- l- uitl,j+1) = u(i+l,j=1) = uli=1,j+1) + u(i= ,.i-l)] = v(i,j) (2.7)
Axe Ay

Plane Strain Model in Non-Cartesian Reference =--- In modeling solid

media with irregular boundarias, or containing irregular openings and inclusions,
the discretization o7 the space domain must include such geometric irregularities.
For these purposas, the discretization of the space domain may be described in
non=Cartesian (i.e., nonorthogonal) coordinates. Fig. 2.2 shows such a description
for the plane model. In this general frame of referznce, a local non-Cartesian
coordinate and 3 global! Cariesian coordinate systems are required. The particlz
motinons of the mass points are referred to the global system; however, at a stress
point whizh is incident on four neighboring mass points (see Fig. 2.2), the strains
are intrinsically defined in :he local reference. A transformation between ‘he
local references (generally different from stress point to stress poi1t) and the
global Cartesian raference, therefore, is required.

Denoting the global coordiasates as x, y and the local coordinates as

X, y, the required transformation for the plane model Is glven by,

x4

1
= ET;T:r:-;)(x sin w = y cos w) (2.8a)

e NS (x sineg + 7y cos &) (2.8b)
sin(g=-o)

<t

10



where o and y are the angles between the x~axis and the x= and ;-axes,
respectively, as shown in Fig. 2.2a.
The strain components at a general stress point (assuming small strain

theory) then become,

] ra_u=§_‘i.§l(_+a_‘i.u
' 3x  ax  ax ay 3y

P =§Y.._-§_\:..B_X+a._z.a—z (2.93)
4 dy 3x Ax 3y dy

> ax

o3y 3% dy dyay d3x dx dy dx
- . A% o Ay
in which the partial derivatives 3% Ay’ ax and 3y ar: obtained from Eq. (2.8),

and for stress point 0 in Fig. 2.2a which Is incident on mass points 1, 2, 3 and &4

(). e M- B uY, 2_ %
ax 0 A% av 0 Ay

where Ax and Ay are the mesh lengths in the local reference system. Using

these relations, the strains at siress point 0, therefore, are:

1 Uy = ug Uy = Uy

¢ = —— sin w-'——j——sinaj>

sin(we=e) ax Ay

- ! < Vi~ V3 Vo T Vg )
g = ————— = ——— Cc0S % + ———— CO0S ¢
14 sin{w-e) ax dy
I Yy T Y3 AR (2.9b)
y = ——( e cos gy + cos o

Xy . - =

sin(wa) Ax Ay

v -V v -V
}
+ sin w = = ~ sin a)



For a specified stress=strain equation, the assoclated strzss componcn's
at stress point 0 can then be determined with the strains given ahove; thes:
stresses are defined in the global (x,y) reference. By suitable tensorial
trans{ormation [ 7, 1 ], the stresses in the local reference can b: obtained,

whizh are:

0- = | (e sinzm -t sin2w+© coszw )
X e x xy Y
sin{w=)
0g- = l (o sin?’a - T sin 20+ O cosza ) (2.10)
Y sin(p=c) X 2/ Y ¢
| . ]
(45 = e —— - + - 0
& : [ o, sin g sin w 5y sin(wto) y €08 @ cos w
sin(n-a)

The stresses at all the stress points surrounding a mass point must be doterminced;
having these stresses, the corresponding forcus acting on the mass point can be
determined in the appropriate local reference. These forces may be trensformed
into the glabal refarence, thus permitting the writing of the equations of motions
of the mass point in question, yielding for mass point 0 (see Fig. 2.2b),

v, (9, sin @ = 7., 308 &) - by, (0,

I 'I 3”“%-'"3‘“ "'3)

+ 8x, (-GXZ sina, + Txyz cos °’2) + Ax, ('x4 sina, - 7"4 cos n‘)
=2 8V, 'U’o (2.11)
and,
- . - e
8xy ("yz cos a, -rw2 sin o,) + A&x, (Txy4 sin a, Ya cos 04)
+ a8y, (T"Yl sin g = Oy' cos 'I) + Ay:l (Oya cos w,y © "‘y3 sin ""3)
= 2o AV, .‘;o (2.12)



where 8V, is the elemental volume [ 7, V1 ] of mass point O.
Using the straln-displacement equations of £q. (2.9b) and Hooke's
stressestrain equations, the equatlions of motions, fqs. (2.11) and (2.12), become

[ f\'ﬁ - (A .k

1" Vg o AJI\;) up * Ak ug )
= les,s vg = Bk a,t,) vo * Byky" vg )
< LGy ) ug = (€3 €p) ug = (€ €) uyg * (€y: ) uyg ]
S L) €)) vg = (030 €)) vg = (D)2 E) vyg ¢ (030 E) vyg ]

U | ‘:/L?- u, Fuhye Uy - (lelnz . F“/l\‘.) uol

R B W T A (Y PR XL W) vo ] = 20 AV} U (2.13)

and,

[0y vg = (b 2 Iyhg) vg  Tyky® v |

- Lokt ug = Bk ¢ Byky) ug ¢ Bgky” ug ]

5 33

c Loy« €)) ug - (D) ¢ Ey) ug = (D + E)) upy ¢ (D, + Ey) uyg )
= L0y 2 9) vg = ()« Jy) vg o By ¢ 4) vig = () = 9) vipy
- [yt uy o (Hyfhy ¢ AL ug ¢ WA uyy )
[k

2/ Vg m (pfky ¢ KAy) vo Kl vy ] = 20 8V (2.14)

For ¢ = 0 and 3 = ~/2 (orthogonal coordinates), fqs. (2.13) and (2.14) reducc to

€Eqas. (2.6) and (2.7), respectively.

Where
k= 8y / bx
0 +G) slnzc ¢+ 6 (A +* G) sin g cos &
Aw s B =
sin (g - g) sin (g = o)

13



(%X G) sin wsina +Gcos (w=-eo) A sin gcos o +G sin o cos o

C = R D=
sin (¢ - o) sin (w - o)
A singcos » + G cos g singy (A + @) s!nz o +6
£ = s F =
sin (w - a) sin (v - a)
(\ + G) sin 5 cos & (A +G) cos2 w+ 6
H = v I =
sin (@ = o) sin (w = a)
(\ +G) cos o+ cos g + G cos (w~ o) (» +G) cos2 o +6
J = ;) K=
sin (w - o) sin (v - a)

Axj-symmetric Model --- In cylindrical Cartesian coordinates, the
axi-symmetric model shown In Fig.2.3 can be used to formulate problems of axi-
symmetric wave motions. Generally, Iin this case, two sections of the model are
required to describe the model, and the corresponding equations of motions In

terms of stresses are,

o (1+1,0) = ar(1=1,)) 1 (1,341 = 27, (1,)-1)

+
Az I'Ys
ok (1,0) - o5 (1,))
o ) o)) p Ut (1,)) (2.15)
r(".')
and,
3;11,1+1) - a;(l,J-l) . 1;1;v+l,1) - Tﬁzj}-l,J)
Az Ar
(1))
$o— = o WE(L)) (2.16)
r(i,J)

In thls case, the strain-displacement relations are:

14



u(i+l,j) = u(i=1,j)

" Ar
w(i,j+1) = w(i,j=1)
ez - (2.17)
Az
U(‘Jj)
€ = T(1,))
u(i,j+|) = U“,j") W('*‘)J) - W(i":j)
Yre = Az -+ Ar

Again, if the material equations are specified, then through these strain-
displacement relations (plus the corresponding strain rate-velocity relations),
Eqs.(2.15) and €2.16) can be expressed in terms of u, v and U, Vv (or Au, A4v). For a

Hookean material, Eqs. (2.15) and (2.16) become

A”G[( ) - 2u(1,)) + ul ):]“26[(1) -1, ]
u(i=2,J) - 2u(l,j) + ul(i+2,] + u(i+1,]) - u(i=1,
(Ar)2 r(ar)
A+ 26
. G
- %) ali,j) + (Az)z [ uli,j=2) = 2u(i,j) +u(i,j+2) ]
A+ G
v [w(i+l,j+l) - w(itl,j=1) = w(i=1,j+1) + w(i-l,j-l)w =p U(i,])) (2.18a)
Ar-Az 7
and,
A+ 26
2 W(i)j'z) - ZW(I,j) + W(i,j+2)] +-§_r\ﬂl('+l,]) - W(i",_])]
(82) e I
6 , . A+ G .
" an? w(i-2,0) = 20(1,0) +wli2)] + e [u@,5+1) = u(1,5-1)]
A +G
' [”(i+"j+') = u(i=1,341) - u(is,j-1) ¢ u(i-l,J-l)] =p W(i,j) (2.18b)
Ar-Az



2.2 Time Discretization

In each of the cases described above, we have a set of differential-
difference equations; e.g., Eqs. (2.1) and (2.2) for the plane strain case. We
observe that, so far, the discretization has been confined only to the space
domain; no discretization of the time domain has been introduced, and presumably
time may be continuous. However, in order to obtain solutions to problems involving
general time functions, discretization of the time domain will normally also be
necessary. The resulting solutions will, accordingly, be deftned only at the
various discrete time instants. Such solutions are usually obtained through a
step-by=-step numerical integration procedure. There are numerous integration
schemes avalilable for this purpose. However, for a large class of second=-order
systems encountered In wave propagation problems, a general and convenient method for
this purpose is the Newmark B-Integrator [9]. This is a step-wise recursive method
of numerical quadrature. The basic recursive relations for advancing a small but

finite time step At are the following:

G(t+at) = Ga(t) + Fat [ () + U(c+at) ]

} (2.19)
v(t+at) = v(t) + 3at [ V(t) + V(c+at) ]
ut+at) = u(t) +at-a(t) + (at)? (B-8) () + (at)?p u(t+at) } _—
v(t+at) = v(t) + at-vlt) , (ae)2 (3-) V(t) + (a¢6)%8 U(t+at)

These relations are used to update the motions (u, G, U; v, v, ¥) for each time
increment At at all generic points in the space domain (i.e., mass points of the
model). Assuming the motions at time t to be known, the process of updating
consists of the following steps:

(1) At time t, the motions of all mass points are presumed to be
known. Compute U(t+At) and V(t+At) for all mass polnts from the appropriate

equations of motions; e.q., Eqs. (2.1) and (2.2) for the plane straln case, using

16



the stresses at time t.

(2) cCalculate G(t+at), v(t+At) and u(t+At), v(t+At) for all mass
points using Eqs. (2.19) and (2.20), respectively.

{3) Compute new strains and stresses associated with the velocities
and displacements calculated in (2), and determine U (t+At) and V(t+At) from the
appropriate equations of motions again.

(4) compare U(t+at) and V(t+at) of steps (3) and (1), and repeat steps
(2) and (3) if necessary; otherwise, increment the time step and repeat the
process.,

2.3 Stability Requirements and Analysis

The discretized space formulation and step-wise numerical integrator
described above are intended to yield discrete time functions of the relevant
physical quantities at all generic points In the space domain, Unfortunately,
not every numerical solution to the discretized problem is necessarily valid;
there are certain mathematical requirements that must be satisfied to insure a
valid solution. 1In other words, a physical discretization of the space and time
variables is not sufficient to guarantee a valid numerical solution; unless certain
mathematical conditions are complied with, the calculations may yield completely
erroneous and senseless numerical results. This is in contrast to many statical
problems in which no such mathematical conditions are required. An important
consideration in dynamical calculations is the assurance of stability of the
numerical scheme, meaning that the errors associated with the approximate
numerical solution do not grow with time. For the formulations described in
Sects. 2.2 and 2.3, the required stability conditions are the same as those of
finite difference schemes, for which methods of stability analyses have been

well deveioped [ 6, 8, 10, 12],



In particular, for the numerical scheme developed herein for general
problems of wave propagation, the requisite stability conditions can be obtained
through the Fourier transform method [12]; this usually yleld the von Neumann
necessary condition for stable calculations. A conplete analysis of stability
for the numerical schemes used herein can be found In Ref. [11]; we summarize
hercin the principal results for plane strain and axi-symmetric media.

As it turned out, the stability of the difference schemes depend on the
value of B, For example, in the plane strain case, values of B < ¢ ylelds only
conditional stability; whereas, for 8 > ¢ the resulting difference scheme is
unconditionally stable. The von Neumann condition is only a necessary condition
for stable calculations; however, for practical purposes this is often sufficient.

The available methods of stability analysis, including the Fourler
transform method, are based on an expliclit set of finite difference equations.

We can show that the numerical scheme used herein is equivalent to an explicit

system of difference equations. Eq.(2.20) can be applied to time t+2At, ylelding

u(t-28t) = u(t+at) + At-a(t+at) + (at)2(3-8) G(t+at) + (at)?s U (t+2at)

and similarly for v(t+2At).

Subtracting this from Eq. (2.20), and using Eq. (2.19) to eliminate the & terms,

we obtain
9 U(t+2at) + (1-28)li(t+at) + g ti(t)
1

(—)2- [ u(t+2at) - 2u(t+at) + u(t) ] (2.21)
At

Similarly,

3 V(t+2at) + (1-28) v(t+at) + B v(t)

|
. — [ v(t+2at) - 2y (t+at) + v(t) ] (2.22)
(at)



Thus, the Newmark B-integration procedure is equivalent to solving an explicit
system of difference equations with the time discretization indicated in Eq. (2.21).
Stability of a numerical solution means that the error in the approxima-
tion remains bounded (does not grow indefinitely) at all time steps. Since the
solution vector G(t) at any time t of the resulting system of difference equations
is approximate, it will contain some error, say error vector £E. It can easily be
shown that the error term will also satisfy the homogeneous part of Eqs. (2,21) and
(2.22). If E is expanded into a Fourier series, each term in the series will
individually also satisfy the homogeneous system of difference equations if the
equations are linear. A typical term in the expansion may be written as
exp | i(wlpr + “bq'éy) ] g"; where w) and w, are frequencies, p and q are each
number of space mesh, n is the number of time steps, and £ is the modulus of the
error. For the difference scheme used herein, the determinantal equation of the
homogeneous system ylelds a system of quadratic equations in €. The error term,
therefore, will be bounded with increasing time steps n if |¢| < 1.0; hence,

stability of the solution scheme is assured if
gl < 1.0 (2.23)

Stability Conditions for Plane Straln Propagation === For elastic wave

propagation under plane strain conditions, Eqs. (2.21) and (2.22) (after using

Eqs. (2.6) and (2.7) ) become

h+2 ntl  n cq 8t 2 n+2 n+2 n+2
i, Ty Yt (T Vel s eyt v y)
n+l n+l n+l n n n .
+ (1 - 25)(ui-2,j ZuI,j + Uia,j) B(u‘_z’J 2u"j + °I¢2,j) ]
c_ At
S 2 n+2 L n+2 n+2 . n+l -
+ ( 5 ) [a(u,’j.2 2u"j + um,,z) + 2!)(u"j_z
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n-l 1
SR i) 80 gt M e g) )
2 _ 2 ar’ 2 2
ns +2 n+
Fleg o cg) e (’("M ot T Vi, ey T "?-l,jou . "t-n,j-l)
N N N
C - 2"“’:4 S "?n,]-l - "'t‘-l._m * '?-l,j-l) *
SO0y jer T VEen, el T Vien,ger  Vien e 1o (2.24)
and,
n2 “ cg 8t 2 2 2 2
Vi T vt az OOy = ) V)
nel n+! n+l n n n
CO B B ) 0 v V) T
. c_At ) I n+2 2'"20 ) + Q0 2)("" 1""0
( ar .(Vi.z,J h v|'J ' 2] -8 V' 2,) ° V' o]
e 2
+] n n n 2 2 ne+
Vi) 00, v,y tVig,p) ] Y g ) g DO
2 n+2 n+2 n+l
UL, gt T Vi, et Vet ge) t O S 28 i, -

+) +) 4
“74.14 ° “'I'-l,jﬂ * “'l‘-l,j-l) * .("?ﬂ,jﬂ

N "'l‘-l,jﬂ * “'t'-u.j-l’ ]
In this case, the determinantal equation ylelds (1)
(1 eos)gd-(2-00-20080¢ « (1 +98)) =0

(1~ 08,82 = [2-00-28) 8,08 « (1 +88,) =0

where,
o= lcin ccinye(hechnm,]
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b et (2R e 2

a 2
vitth
At J"A,
“' = == ¢in
ar 2

"2 - '—t- sin BA—Y

&y 2
The details of the solution of Eqs.(2.26) and (2.27) are described in Ref. (V1]
the resulting solutton for |€| are shown as a function of (cd- %&)2 In Fig. 2.4,
Ve obscrve that stabillty, as required by Eq.(2.23), depends on the value of §
uscd in the nhewmark integrator. For all geometrically mesningful values of B;
i.c., 800, TZL" -é—, -7'.—-, and -%—, the corresponding conditions required for

stability are tabulated below:

abil on for P n lcyle
a2 Stebl)icy Condition”
. At

0 <4 &y € 0.7

| . &8
-7 <4 by < 0.87

' L ] “
3 ¢’ ay S

) . AL
T Cd &y < 1.22
+ Unconditionally stable
-—;- Unconditionally stable

In general, the stability condition is,

At
‘d ay

'%

; irec<t

Ji- 8

" Assuming gy € &x.



and, unconditionally stable if 8 2% .

For plane strain problems formulated with the non=Cartesian model; i.e.,
Eqs. (2.13) and (2.14), the corresponding stability conditions can also be determined

('1] through the above Fourier transform method. The results are:

&l-

For a8 <
At ] [sin (w = o)l

. €  m——
4 ax J 2 - 8 |sin w| + |sin o]

if |sin @ + |sin o] 2 |cos @l + |cos af

at | [stn (0 - o)l
c'- - < ’
¢ ax J2- 88 lcos w|] + |cos of

if |sln w| + |sln rvl < |cos wl + |cos °’|

whereas for 8 21!‘- » 1t is unconditionally stable.

! o ns for Axl-symmetr Propagation === For wave
propagation under axially symmetric condition, Eqs. (2.21) and (2.22),
respectively, yield
cd At
Ar

n+2 n+| n (

2 n+2 n+2 m+2
"!,j Zu',J +“t,j Y [ 8(u

1-2,) ~ 1,5 YY) 1t

+1 +1 +
O - 23)(u';_2’1 - ZU?’J +u?+2’J) + B (t.l':_z"j - 2u':‘..l + ”?+2,_)) ] +

+

! c, At p
r= (2= (p (“?Jj,j - u?:fd) + () - 25)(u?1:,.’ - u?::’J) +
P ar
c, At
©8 Wy ey P i‘z’ ( dA.- 1 (e uf’] 40 - 28) T
o n ]*(C!At)zl (n+2 _2n+2+n+2 )+
Bui,j ae B luy,je2 = 2Uy,) * Y0
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+

n+l _ o, N+l n+l o n n
(I 28)(u',j_2 2“;,-’ I j+2) j-2 2ui,j +ui’j+2) ] +

2

2 2y O n+2 n+2 n+2 2y

R [ B (Wi+l,j-+-l i T L AT o

2
At [ 8 (wn+2 n+2 L Nt n+2 J =

CA—_— i40,540 T Vi, -1 T Y0 T Vi, e

n+l n+l n+) n+1

n
F41,540 " Y5at,Je1 " Yiat, el T Yia,ga) TR W

P, g+ 7

+

(1 -~ 28) (w

i n n
- + 2.28
wi*'l_.j-l wi-],j i wi-l,j-') ] ( )

and,

n+2 n+1 n €4 at 2 n+2 n+2 n+2
. 4 = 2 = ( ———
ts) i ’j ( Lz = 8 (w".]'z eh; iy * w':j+2) *

n+l n+l

n+l
i, T Yi,je2

(1 - 28) (w, - 2w
\ _12

+

A R RN

| c_ At 2
- (=)
p Ar

(o i, -wi2 0+ (=20 @ll =il s

+

c_ At
( S )2 [B(Wn+2 2wn+2 + n+2 ) +

- 1-2,] Wi+2,]

n
LA AR

n+l n+l n+l n

(1 - 20) g5 = By,5 “Wiag,p) * B0,y - By o) 0

+

' 2 2 Atz n+2 n+2 n+l
— - . - 1 =2 -
) o (cg - <) o LBy ja = v, ga) * By 1

2
t n+2

LBy, ja -

2 2
},je2) T BT, g - ) T (g =€) ar bz

n+2 n+2 n+2 n+l n+l!
TULLY, e T Ve, et T,y O ) (g
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n

where uij " ulp ar, q 8z, n At)
s

w' . - w(p Ar, q 82, n At)
hyJ

On the basis of Eqs. (2.28) and (2.29), the Fourier method of stability

analysis leads to the following determinantal equations:

O

Q

where C‘ and

wi th,

~pc)e - (2= (1-p)c, ) g+ (o8 =0

+8Cy)e2 - [2- (1 -28)C,) € + (1 +BC,) = 0

Cz are complex quantities, which are

el - ) sin 2D g0 22T
2 2

2 w 4z
-l(’-‘;) [usln-';‘—'*c(l-u)slnzz—]

Ar
¢ = — ; (ar g 82)
Az
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1 =2y

T cz / c2 z e=e———a— , In which vy is the Poisson ratio.
s d
200 - V)
&t
K= 'fz cd. —
aAr

For generic points that are far from the axis of symmetry (i.e., p = ),

¢ - 8' and (:2 - 02, and €qs. (2.30) and (2.31) approach Eqs (2.26) and (2.27), respectively;

hence, the corresponding stablility conditions tend toward those for the plane strain
propagation.

for generic points that are close to the axis of symietry (i.e., finite
p), the stability enalysis requires the solution of Eqs.(2.30) and (2.31) fo- 2!,

The solutions are given by [11]),

1= (3 =-p)Cs '!_[l - (% = o)clz -0 - sc)z
¢= (2.32)
(1 - 8cC)

where C Is C' or Cz, which are complex quantities. The maximum values of |2 |

have been evaluated numerically; the results are presented in Figs. 2.5 through 2,10
which show the envelopes of |€| versus kK for all geometrically meaningful values

of B and varlous Polsson ratfio v. An examination of thesc figures reveal the
following:

(1) 1In all cases, |€] > 1.0;: this means that the general numerical
scheme is locally unstable when applied to axi-symmetric wave propagation,

(2) As 8 Increases, the 'degree'’ of Inszabllity decreases (i.e., |€|
is not much greater than 1.0), but In no case coan stabillity be assured In
accordance with £q. (2.23).

(3) As v Increases, the degree of Instability worsens.

(4) As p Increases, the modulus |#| tends toward the value 1.0,
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Stability of the original scheme, therefore, cannot be assured, on
the basis of Eq. (23), for axi-symmetric calculations. However, conditional
stability of the difference scheme can be achieved through the introduction of
a dissipative mechanism, in the form of artificial viscosity [12], into the original
system of equations, such that the equivalent system of differential equations

become:

Ao, + qr) o % " %
+ + = p iU (2.33)
ar az r
3., ale, + qz) Trz
+ + —— o] W (2'31"')
Ar 3z r

where q, and q, are pseudo=viscous stresses in the r and z-directions, respectively,

corresponding to an artificial viscosity coeffictent I'y given as follows:

ad ( :
q = gpc, T AFr - — 2.35
r d ar
aw
a9, = ocyl 8z — (2.36)
3z
aq, 5
Clearly, without the terms o and ==, the discrete forms of Eqs.(2.33) and
(234) would reduce, respectively, to Eqs. (2.15) and (2.16). With the Introduction
of artificial viscosity, discretized forms of ;‘ir_ and iz_ must be added to
dr 3z
Eqs. (2.15) and (2.16). This may be done by applying backward difference” to au and
ar
M of Eqs. (2.35) and (2.36); thus
a—z qs. . an . » u »
n n=1
-~ u -u
o=
At

¥ The corresponding forward difference will lead to an unstable scheme; hence,
should be avoided [11].
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and, w o=
At

Then, applying centered difference for the space derjvatives, we obtain for the

artificial viscosity terms,

bqr r 4
n n n
_ = . = 2u, . tu, !
ar ° Ar At [ (u'+2’J u"J u'-z’J)
n=1 n-l n=1 )
(ui+2,j - zui, i ui-2,j) ] (2-35d)
qu g “d n n n
——— = - +
dz P Az ot : (w"1+2 zwi,J “1,j-2)
n-1 - aun=l n=1
T Mg TR ) ] (2.36)

Eqs. (2.35a) and (2.36a) should be added, respectively, to Eqs.(2.28) and (2.29). The
Fourier transform method applied to the resulting systems of equations then yield

the following determinantal equations for the modifled difference scheme:

a|g3 +b'g2 +c € +d =0 (2.37)

a8 +b.82 + ¢ +d, =0 (2. 38)

2 2 2 2 .
where:

ay =1+BC, +BA, ; a, +1 +8C, +BA,

b, =2+ (1 - ZB)C, + (1 - 35)A, H b2 = =2+ (1 - ZS)CZ + (1 - BB)A2

cp =1+8C, - (1 -38)A ;i c,=1+8C, - (1 -38)A,

d) = -BA i dy = -BA,

in which €, and C, are defined following Eqs. (2.30) and (2.31), and
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A' =242T K sin
2
Az
A =2J-2rxc sin?
& 2
g =4r / Az

The roots & of Eqs. (2.37) and (2.38) can only be determined numerically;
the results for various values of ' and v, and at varying distances from the axis
of symmetry (i.e., different p), are summarized in Figs. 2.11 through 2.16
Only the maximum moduli of & are given in these figures. Examination of the plots
shown in these figures indicate that depending on the values of B and p, there
is a range of values of I' for which the von Neumann condition !€| < 1.0 is
satisfied for values of v < 0.50; and hence stabillity can be conditionally
assured. However, for v = 0.50 (incompressible medium) the use of artificial
viscosity does not lead to a stable scheme; see Figs., 2,13 through 2.16. Fligs.
2,11 through 2.15 also show that as p or § Increases, the range of stability
corresponding to a given value of ' improves.,

From these figures, it can be seen that for specified values of p, B,
and v, the stable range of K (i.e., range of K for which || < 1.0) varies with
I'. Also, corresponding to each value of ', there is a nontrivial value of K
(i.e. # 0) for which |£]| = 1.0; this value of K can be called Kepe Values of
K__ are plotted versus [ in Figs, 2.17 through 2.22; it can be observed from these

cr

figures that depending on p, B, and v, Kcr attains a maximum value for certain I,
This value of ' represents an optimal value of artificlal viscosity, and Is

recommended for practical applications.
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I11. DEVELOPMENT OF TRANSMITTING BOUNDARY

3.1 Need for Transmitting Boundary

The discrete method of formulation described in Chapter II is a general
numerical method for determining the physical quantities at the discrete generic
points in space as well as in discrete instants of time; in other words, a
solution obtained through such a formulation is a discrete-variable function in
space and time. Such a discrete-variable solution is necessarily limited to a
finite region of the physical space; a solution for a space-time problem then
consists of the relevant quantities within a finite space-time domain.

The space domain, therefore, must always be bounded or terminated by
suitable boundary conditions., If these boundaries are well defined, such as a
regular stress or displacement boundary, then the problem is completely described
in the discrete sense. However, if a problem involves an infinlte or semi-infinite
medium, then it is not possible to describe the solution over the entire space;
to do so would require an infinite number of discrete points. The alternative is
to terminate the medium at some appropriate Io;ation with an artificial boundary
that will reproduce essentially the same effect as that of the infinite medium
beyond it. In other words, the artificial boundary must be such that all incident
waves are transmitted through it without reflection, as iIf the material were
continuous and the boundary were not present. Such a termination may be call;d
a '"transmitting boundary'' or a "nonreflecting boundary''.

Alternatively, a calculational scheme may be developed to serve the
same purpose as that of an explicit transmitting boundary by taking into
consideration the theoretical effects of an Infinite or semi-infinite region.

In practice, transmitting boundaries are often required for reasons of
economy in calculations. For instance, in the practical prediction of ground

motions induced by nuclear bursts, such transmitting boundarfes are needed in a
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nunber of sltuations, including the following:

(') Calculation of ground motions in the distant rzgions of a burst
where generally outrunning condi tions prevail.

(2) Cal:ulation of compliux structure-medium interaction under a ground-

transmitted disturbance and/or air-blast forces resulting from a nuclear burst.

In the first instance, the motlons and stressns at relatively shallow depths in

thw distant outrunning r:gions arc of interest; unless the calculations of the
motions originating from the source are limitad to the upper surface strata,
tesminated properly with a suitable nonreflecting boundary, the calculations must

be extended to the regions at great depts in order ta avoid the artificial
reflection at the bottom from r:aching the outrunning regions. In the second case,
a transmitting boundary will permit the isolation of the region around the structure
and the calculations can be confined within this ragion without the unwanted
reflections from the temminating boundaries of the rzgion; unless this can be done,
the calculations of structure-=medium interaction effects must necessarily be

performed with very coarse grid.

3.2 Previous Work

Onc of the flrst* salutions Iinvolving the use of a transmitting boundary
was performed for a problem involving outrunning ground motions [3]. The
prob, v vo s the detemination of ground-motion histories due to a surface
nuclaar b. i a layered system. The problem was modeled to consist of thrae
layers of cla .ic material, with the last layer assumed to havs infinite depth.
The input consists of the direct ground shock effect applied in a crater plus

the expanding airehlast pressures applied at the surface.

*# To the knowledge of the authors, this was the first successful use of a
transmitting boundary in numerical calculation of wave motions.
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In order to obtain reasonably reliable results in the outrunning regions
(at large distances from ground zero), the depth of the spatial region involved in
the calculations must be limited, otherwise the amount of storage and calculation
“ime would be excessive; to do this, the bottom was terminated with a boundary that
simulated the infinite depth. An early version of a transmitti dary was
employed for these calculations [ 3). This is the forerunner of the trans-
mitting boundary subsequently refined and f rther developed in the studies

desgribed herein.

3.3 Theoretical Basis of Transmitting Qoyndary

The concept of a transmitting boundary or a 'nonreflecting boundary'' for
wave propagation calculation as concelved In this project can be described first
(for the sake of clarity) for the elastic plane one-dimensional case. This same
concept can be extended to higher space dimensions and will be described subsequently,
Consider a semi=Infinite bar subjected to a plane stress pulse P(t) from
the free end, as shown In Fig. 3.1a. The discrete Idealization Of the bar, based
on the same space discretization as those for t'ho plane strain and axisymmetric
media, Is shown In Fig. 3.1b. We observe that the equation of motion of a general

Interior mass point | at time t Is,

et +1) =at(t - 1)

&x

- o Gt (3.1)

The corresponding equation for the mass point b st the terminating boundary Is

similarly,

ot +1) -0t - 1) R
=p 4 (b) (3.2)

ax

However, for a mass po'nt on the boundary, the stress ot (b + 1) Is not known and

cannot be computed in the usual manner. But If the velocity of propagation is c,

k]|



It can be observed from Fig. 3.1b that the travel time of & stress weve fram one
stress point to the next s exactly equal to one Increment of transit time h =
4x/c. MHence, tf the stress at stress point (b-=1) at time (t-h) ls ct.h(b-l).

then this stress must be the stress at point (b+l) at time t; thus,
't(b 5 ') - ('t."(b - ') (’.’)

Therefore, In order to simulate the Infinite medium the equation of motion of the

boundary mass point, Eq. (3.2), must be,

A Nbe) - ot - 1)
~

-p &) (3.4

We might emphasize that for plane elastic propagation, Eq. (3.4) will simulate
an Infinite medium gxpctly (in the sense that there Is no additional appronimetion
other than those of the centered finlte difference). However, the extension to
higher space s not cbvious on this basis. For this latter purpose, we shall derive
€q. (3.4) from another consideration.

In discrete steps, the transmission of the stress wave mey de conslidered
as the transfer of the D'Alembert force at ¢ mass point from one stress point to
the next as time Increases in Increments of h. Fram this stendpoint, the D'Alesbert

force on the mass point | at time (t-h) Is equal to
Al 1 - )

where A |s the area of the bar. Transmission of this force will give rise to &
change in the force of stress point (i + 1) from time (t = h) to time t equal to

the D'Alembert force on mass point | at time (t=h); |.e.,
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AlotG+1) -t i +11= cafa®™ P+ -6"a-11
Therefore, ct(i +1) = at-h(i -1) (3.3)

Thus, for the boundary mass point, i = b, Eq. (3.4) is again obtained from Eq.
(3.1) using Eq. (3.3).

3.4 Transmitting Boundary in Plane Strain

The extension of the above concept of the transmission of D'Alembert
forces to higher space will now be illustrated for the two-dimensional space under
plane strain condition. Consider the lumped-parameter idealization of a two-space
as shown in Fig. 3.2. Assume that the region is terminated at j = b. The equations

of motion of the mass point (i,b) are:

on (i +1,) = ol (1 = 1,6) L (1,b + 1) = 1 (isb = 1)

&x ay

o &t (1,b) 3.5)

t 4
oy (isb +1) - o;(l,b -1) -r’t‘y(i +1,b) - T;y(' - 1,b)

and, +
by &x

o VE(i,b) (3.6)

From Fig. 3.2, we observe that the following physical quantities are not defined

in the above equations of motions, and cannot be determined in the usual manner:
(i) The stresses ay(l,b + 1) and -rxy(i, b +1) for all i; and
(ii) The strain cy(i + 1,b) and 'xy“ + 1,b) for all i. cy(i + 1,b)

is required to determine o (i + 1,b).
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These quantities can be determined from a consideration of the transmission of
the D'Alembert forces on the boundary mass points.

Consider first the mass point (1,b). If the stresses are assumed to
propagate at the dilatational velocity of the medium cq » then from the trans-
missfon of the D'Alembert force on this mass point in the x-direction, we have

- feoy [ofa 1) - o;'h(l-l.b) ]
t-h t-h
*Axlfxy (l,b+l)-1-xy (1, = 1) 1)

= t - t-h
aAx [ Txy(',b + ') ‘Tuy (',b re ') ]

from which we obtain,

& .. v
(b 1) == [af™( + 1,8) = 051 - 1,0) )

ax
t=h
+ Txy ("b ')
4y
where h = P ; the unit dilatational transit time.
d

Similarly, consideration of the D'Alembert force In the y-direction ylelds,
- {ax Lop™b + 1) - o316 = 1) ]
teh teh
+ 8y ['rxy (1 +1,8) = v (0 = 1,b6) 11}
= ax {ellb + 1) = of™PLL + 1) )

From which,

_ . by L -
oy (b + 1) = b b = 1) =1 Sl UER PO R R NI
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Based on the same assumption that stresses are propagating at the
dilatational velocity cq? the D'Alembert force In the y-direction of mass point
(1 +1,b - 1) at time (t-h) must be equal to the change in the vertical force at

stress point (i + 1,b) from time (t-h) to t; thus,
- {ax Loy +1,0) =6l 4 1 - 2) ]

sy Lo+ 2,0 = 1) =aiPib - 1) 1)
=ax [of (1 +1,0) = o5+ 1,0) ]

Therefore,

oy
t t-h t-h t-h
oy‘(' + 1,b) = 9 (Tt +1,b-2) - ( Ty <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>