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SUMHARY 

Considerable information is available to date concerning the charact- 
eristics of the flow in the planetary boundary layer, which comprises roughly 
the lowest two thousand feet of the atmosphere.    Unfortunately, in many in- 
stances, the results from different sources do not always agree.    This is in 
part due to the extremely complex nature of the flow and as a result, some 
confusion exists as to the exact description,   of the planetary layer.    For 
this reason, a fairly extensive survey of the existing data has been carried 
out, and the results of this review are presented herein.    The planetary layer 
is described in detail with respect to both mean velocity and turbulence, and 
the effect of thermal stability and surface conditions ori these characteristics 
is discussed.   Finally, a simplified analytical representation of the flow in 
the planetary layer is presented. 
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NOTATION 

A, B, C constants relating fluctuating component variances to 
friction velocity (Sec. 3.5) 

a, c, c , cn_ constants used in cross-correlation spectrum expressions 
z  10 (Sec. 3.6.5) 

C..(n) co-spectral density function (Sec. 2.h) 

E. .(k, n) four-dimensional spectral density tensor (Sec. 2.^) 

e total mean turbulent kinetic energy 

f =   k.z 

f""1 a   k4r:.z 
P P « 

f(r),f (r ), etc. longitudinal correlation coefficients (Sec. 2.1 and 
u   x 2.5) 

g gravitational acceleration 

g(r)> 6v(r )> etc. lateral correlation coefficients (Sec. 2*1 and 2.5) 

± unit vector in x-direction 

i s sEl ; also, an index referring to u, v, or w 

^ unit vector in y-direction 

j an index referring to u, v, or w 

K von K&mSn's constant    «0,4 

K eddy viscosity 

k reduced frequency or wave number s n/Ü cycles per foot 

k' value of k at maximum value of the non-dimensionalized 
^ spectrum of the 'i'  velocity component 

k wave number vector s
-ik   +jk   +kk; also, unit 

vector in z -direction y 

Jk |k| 
£ Prandtl mixing length 

L length scale defined by Davenport and Harris  (Sees. 
3.6.5 and 3.7) 

ÜT  (dÖ/dz)T 
L' scaling length defined by   ggTggTggl— 

L.   ,L.   JLJ   ,L ,L integral length scales of turbulence (Sec. 2.2 and 2.5) 

n, n' frequencies, cycles per second 

vi 



p pressure 

Q. .(n) quadrature spectrum (Sec. 2.k) 

r spatial separation vector »ir   •••Jr   +kr;|r|sr 

Ri gradient Richardson Number (Sec.3.2) 

R. .(r  ,r  ,r ,T) general double velocity correlation tensor (Sec. 2.1) ij    x    y    z 

R. .,R. .(r ), etc. one-dimensional correlation tensors (Sec. 2.1) 

^..(T) Eulerlan time-delay correlation tensor (Sec. 2.1) 

t time 

T temperature 

T. Integral time scale of turbulence (Sec. 2.2) 

U(t) total velocity component In x-dlrectlon 2 Ö + u(t) 

Ü mean velocity In x-dlrection 

U(t) turbulence velocity vector * i  u(t) + Jv(t)  + k w(t) 

Ü friction velocity 

Ö_ gradient wind velocity (Sec. 3.1) 

u(t), v(t), w(t) fluctuating velocity components In x, y and z directions, 
respectively 

u', v', w' rms values of fluctuating velocity components; 

u* s^u ,v,s«/v , w'svw 

x, y, z Cartesian coordinate axes 

z height above earth's surface 

z roughness length (Sec. 3«^) 

zn gradient height (Sec. 3.1) 

a mean velocity power law index (Sec. 3«^); also, angle 
between mean wind and geoötroptc direction 

y lapse rate s -dT/dz 

y constant defined in Sec. 3'6.^ 
p 

7'r.(n) coherence function (Sec. 2.h) 
ij 

7* -i^iy-, tYp)>yA A^>r  )    magnitude of cross-correlation spectrum (Sec.3.6.5) 

r dry adiabatic lapse rats * 10C/100 m * 5.50F/lOOO ft. 

A wavelength - l/k = Ü/n, feet 

vil 



P air density 

9 potential temperature * temperature which a volume of 
air assumes when brought adiabatically from Its exlsdng 
pressure to that at the earth's surface 

0i1(
n)»0i1(

k )> etc. one-dimensional spectral density functions (Sec. 2.^) 

♦j^Ck),*.'.(«),♦?j(0) one-dimenslonal spectral density functions (Eq. (29)) 
ij   ij   ij 

<l>Ä(k) power spectrum of total velocity conponent In x-'irectlon 

Y. . function related to cross-correlation spectrum (Sec. 
iJ 3.6.5) 

T Incremental time-delay; also shear stress 

T surface shear stress o 

fa* frequency, radians per second, ■ 27m 

fl reduced frequency, radians per foot, * 2irk 

a non-dimensional form of a 

a time average of a 

vlil 
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I. INTRODUCTION 

In the past lew years, it has been increasingly important to know in 
detail the characteristics of the atmosphere at low altitudes. The present empha-
sis on low-flying and V'/STOL. aircraft is in part responsible for this require-
ment, as is the advent of rocketry, with its large launch vehicles. In addition, 
the continuation of the trend toward taller and more radically shaped buildings 
and structures necessitates a good simulation of che flows at these levels in order 
realistically to determine their response to these flows. The prominence of the 
pollution control issue in recent years has also added weight to the requirement 
of achieving a proper description, and ultimately simulation of the planetary 
boundary layer. 

To date, considerable data has been gathered in both the aeronautical 
and meteorological disciplines. While the information is ,by no means complete, 
it is possible to draw many conclusions about the nature of the planetary layer, 
and in particular the turbulence therein. Due to the extremely complex nature 
of the flows, however, there is sometimes considerable variability in the con-
clusions that have been drawn. For example, there have been widely scattered 
conclusions about the magnitude and variation of the integral scales of turbu-
lence through the planetary layer. This has been due in part to a lack of rigor 
in determining exactly what scales are being obtained in some cases, and in part 
to the refusal of the atmosphere to submit easily to simple descriptions. 

It is the purpose of this review to describe and summarize most of 
the existing data on the characteristics of the flows in the planetary layer, and 
to attempt to clarify some of the discrepancies that have occurred in the past. 
In addition, in light of the data available, a simplified mathematical model is 
suggested to represent the flows. 

II. DEFINITIONS AND THEORY OF TURBULENCE 

In the literature on turbulence there is on the whole a fairly wide 
range of notation used. In order to avoid confusion and to clarify precisely 
what is being referred to in this review, the notation and definitions of turbu-
lence theory used in this report are presented in some detail in the following 
pages.. 

2.1 Correlations 

1 



Consider the two arbitrary points P and P separated by a vector 
r ; i r + jr + k r in a homogenous three-aimensional turbulence field as shown 
above. Let the flow be moving with mean velocity 0 along the x-axis of a fixed 
Eulerian reference frame of which P0 is the origin. The points P^, P« and Po are 
the projections of P on the coordinate axes. The turbulent motion at any point 
in the field is represented by the vector U(t) = iu(t) + jv(t) + kw(t), with 
appropriate subscripts, where u(t), v(t) and w(t)'"are the longitudinal, lateral 
and vertical fluctuating velocity components, respectively. Thus the total 
(Eulerian) velocity in the x-direction at P is 

Uo(t) = %tv  T) + Uo(t) 

where D(t,, T)  is the mean velocity and is defined by 

t,+ T 

0(V T) 22r / Uo(t) dt (1) 

h-T 
and is the same at all points in the field due to the assumption of homogeneity. 
The mean of the fluctuating component uh(t) as defined by Eq. (l) is necessarily 
zero, as it is for the other two components v (t) and w (t) at P since there is 
mean motion only in the x-direction, and similarly for any other points in the 
field. The three fluctuating components, in addition to U (t), are random func- 
tions of time, and as such are said to be stationary if their statistical prop- 
erties are independent of time in the limit as T -»no. Thus for stationary flow, 
U(t , T) is independent of t, and the mean velocity is given by 

rn 

Ü = lim \=    \     U (t) dt (2) 

-T 

and thus 

Ujt) = Ö + uo(t). 

Stationarity of the velocity components will be assumed throughout this review. 

Any pair of fluctuating components at either P or P which are separa- 
ted in time or space can be multiplied and averaged to form a (double) velocity 
correlation function. The complete set of possible correlations is given by 

Kijtl» T) =  Rij(
r
x>ry.rz,T)    i,J = u,v,w 

=  LT^t) U (t + T) 
(3) 

which is a second order tensor whose components are functions of the four 
variables shown and which is usually called the 'general correlation tensor'. 
As an example of one of the components of this tensor, consider i = u, and 
.1 = v. Then 



R    (r . r , r , T)    3   u (t) v(t + T) 

= lim     i-    /      uo(t) v(t + T) dt 

i   rT 
= lim     — u(0,0,0,t) v(r ,r  ,r  ,t+ T)dt (M 

since u (t) is the component at P   and v(t) is at P. 

It should be noted that in defining the mean velocity and correlations 
above, time averages of the velocity signals have been used, since it is these 
averages that are actually measured in practice.    However, it may in some cases 
be mathematically advantageous to consider ensemble averages rather than time 
averages.    For example, if U^Ct) represents an ensemble of N records of the velo- 
city U(t) where K = 1,...N, then the ensemble average of U(t) is defined by 

N 

U   a   lim     y    VJt) 
N ..,00 4-i      K   1 

K=l 

where U^t) is assumed stationary such that U is independent of the arbitrary point 
in time, t.. In the special case when the time-averaged mean velocity as defined 
by Eq. (2), as well as any other statistical properties of U(t), are identical 
regardless of which of the K records of U(t) is used in obtaining them, U(t) is said 
to be ergodic. In this case, time averages are equivalent to ensemble averages 
such that the mean velocity as defined by Eq. (2) is identical to the ensemble 
average defined above. In practice, ergodicity of the velocities is usually assumed. 
Note also that ergodicity requires stationarity, but not vice-versa. 

Of the general correlation tensor of Eq. (3), we are particularly int- 
erested in five special cases. These are 

RiJ(rx,0,0,0)' Rij(0»ry»0»0)» Rij(0,0,rz,0), 

R^CO,0,0,0)  and ^(^,0,0, T) . 

The first three of these special tensors are zero time-delay spatial cross-corre- 
lations between the turbulence components at P   and those at P , P_ and P_, 
respectively, as shown in the above sketch.    Tney are given typically by 

R..(r  ,0,0,0) = 
ij    x 

and similarly, 

and 

uo(t)u1(t) 

v0(t)u1(t) 

V^i^) 

u^t^^t) 

v0(t)v1(t) 

w0(t)v1(t) 

u0(t)w1(t) 

v0(t)wl(t) 

w0(t)w1(t) 

5 RiJ(rx) (5) 

^^(0,^,0,0) =   *u{rv) 

Rij(0,0,r2,0)  S   ^{rj. 
(6) 



The fourth tensor is  the well-known Reynolds Stress tensor and is given by 

R. .(0,0,0,0)  = 
ij 

v
0(t)uo(t) 

wo(t)uo(t) 

u (t)v (t) ov  '  ov  ' 

wo(t)vo(t) 

uo(t)wo(t) 

B    R 
ij' 

(7) 

The diagonal components of this tensor axe of course the familiar mean-square values 
of^hß vei nH t.v cfljmonents. The root-mean-square (rms) values or variances 
TuS Jv 2 and Jw0

2 are rewritten as u ', v ' and w ', respectively, for simplicity. 

Finally, the fifth special tensor is important because it in fact represents the 
single point time-delay correlations that are measured by a probe at a fixed point 
such a.6 P    in a laboratory (Eulerian) frame. That is, in a time increment T, the 

mean flow moves along the x-axis a distance UT and if we simply set r = Or, we 
obtain x 

R..(r ,0,0,T) = R..(UT,0,0,T) * fi Ar) 
ij 

wnere 

fti^' 

U (t)u (t+T) 
o  ' o   ' 

V (t)u (t+T) 
o ' o 

W (t)u (t+T) 
o ' o   ' 

U (t)V (t+T) 
ov ' ov  ' 

V (t)V (t*T) 
ov ' o   ' 

W (t)V (t+T) 
o ' o   ' 

ij 

U (t)W (t+T) 
ov ' ov  ' 

V (t)w (t+T) 
ov ' ov  ' 

W (t)W (t+T) 
O  ' 0 

(8) 

(9) 

and is obtained by correlating time-delayed signals as measured by a probe fixed 
at P . The diagonal components of this tensor are called 'autocorrelations' since 
the components are being correlated with themselves. It is also to be noted that 
from Eq/S) for T = Q, (R. .(T) may be related to the Reynolds Stress tensor of 

Eq,(7); that is ff?. .(0) = R. .. v '       ij '   ij 

Generally,  the various correlation functions defined above are normalized 
to yield correlation coefficients.    This normalization is done using the appropriate 
rms values of the velocity components such that,  for example, the normalized form 
of the u-v correlation function defined in Eq,^)  is 

R     (r  ,r  ,r ,T)  = uv    x'  y'  z'   ' 

R„„(rv»r„»r,»  T) _   uv 
u' v' 

and sirilarly for any of the other correlations. The only exceptions to this 
rule are the three diagonal components of the Reynolds Stress tensor. Since 
these components are themselves the mean-square values of the velocities, 
normalization as above necessarily yields unity and is therefore of no use. For 
this reasor; the roots of_these components are simply_non-dimensionalized either 
by the friction velocity Ü , or by the mean velocity 0 in which case the familiar 

turbulence intensities given by u '/0, v '/U and w '/O are obtained. 

In general, the diagonal components of the spatial correlation co- 
efficient tensors are referred to as either 'longitudinal' or 'lateral' corre- 
lation coefficients. This nomenclature derives from the direction of the velo- 
city component being correlated at the two points with respect to the vector r 
separating the points. If the component is parallel to this vector, the 
correlation is called longitudinal and the function f(r) is used to denote the 



coefficient, where /   p p 0 

=   III-/ r     + r     + r x y z      ' 

if it is perpendicular to r, the correlation is called lateral and the function g(r) 
denotes the coefficient.    Thus there are three longitudinal correlation coefficients 
giver by 

f (r ) s   R    (r ) 
u    x7 uu    x7' 

f (r ) s   R    (r ) (10) 
v    y' w    y" ' 

and f (r ) =   R    (r ), wv z' ww   z 

and six lateral coefficients given typically by 

g. (r ) s   R    (r ), g (r ) = R    (r ), (11) ^v^ x7 wx x" 0wv x'        wvr x'* v    ' 

and similarly for g (r ), g (r ),gn(r ) and gv(r ). 

2,2    Integral Scales 

An Integral or  'macro-scale'  of turbulence can be defined for any 
correlation coefficient ..of any of the special tensors defined in the previous 
section except the Reynolds Stress tensor.    The scale is defined as the integral 
of the correlation coefficient over the positive range of its independent vari- 
able, and it can thus be either a length scale or a time scale.    Oße can there- 
fore    define four scale tensors corresponding to the four tensors R..(r ), 
R^(r )» R-.i(r. ) and^L ,(T).    However, only the diagonal componentsof ^hese tensors 
are or major interest, and in the case of the first three tensors, one obtains 
nine scale lengths defined by 

L ix -=l \,K^> <*) 

i^fWV (b) (12) 

v 5    ^ii^dT (13) 

0 

and . LiZ      /      ^ii^z^z' i = u»v'w'      (c) J   Q 

.Prom the ft. .(T) tensor, the three time scales of importance are given by 

x = 

a:id these time scales can be related to the length scales L. through the use of 
Taylor's Hypothesis (see below). 

As with the correlation coefficients of Eqs^lO) and (11), the length 
scales of Eqs.(l2) are referred to as longitudinal or lateral scales, the criterion 
logically being from which type of correlation coefficient they are obtained. 
Thus from these equations it is seen that L x, L ^ and L z are longitudinal 
scales, while the other six scales of Eqi(l2; ) are lateral scales. 

2.3 Taylor's Hypothesis 

Taylor's Hypothesis provides a time-space transformation which allows 
spatial variations in the turbulence field to be expressed in terms of time 



variations at a fixed point in the field.    The hypothesis states that in a Lagrangian 
reference frame moving with the mean flow,  there is no time variation of the comp- 
onents - that is,  the field is  'frozen'.    Mathematically, this may be stated as 

Vät = -Öö/Öx {Ik) 

and the hypothesis is made under the assumption that Ö » u'. The physical inter- 
pretation of this is that the time fluctuations at a fixed point in the field such 
as P0 can be imagined to be caused solely by the entire field being frozen at a 
particular instant and convected past the point with the constant velocity 0. The 
velocity fluctuations over a period of time at the point will then be identical 
with the instantaneous distribution of the velocity u (t) along the x-axis through 
the point. These physical implications will be further discussed in the following 
section. 

In terms of the previously defined correlations, Taylor's Hypothesis means 
that R. .(£,T)  is now replaced by R. .(£)•    Thus the time-delay correlation of E(i(8) 
may now  be written 

«ij(T) = Vv0'0) 
which is identical to the spatial cross-correlation R. .(r ) of Eq^5). Thus we 
my n0W Write (RijCr) - R^) 

*i^-*i^>    rx = ÖT (15) 

and R. .(r ) may be determined simply by measuring the velocity signals at a fixed 

point and obtaining the time-delay correlations of these signals. Using this re- 
sult and Eqti(l2a) and (13), it is now possible to relate the scales L.x and T. . 
That is, 

/< 00 p 00 

Sii(rx)drx = ^ii(T) d(&T) = V (l6) 

o ^ o 

Strictly speaking, Taylor's Hypothesis was made for homogeneous, iso- 
tropic turbulence,  although it has been found quite reasonable for non-isotropic 
uniform flows.     Its application in shear flows, however, requires further con- 
sideration (sec Sec.  3.3«^)• 

2.^    Spectral Density Functions 

Associated with any correlation function is a corresponding spectrum 
function defined as  the Fourier Transform of the correlation.    Thus for the 
general correlation tensor of Eci(3),  one obtains a tensor öf spectra given by 

-i27r(k.r + n'r) 

E^Q^n') = 16 jjjj Rij(r,T)e dr dr (17) 

-00 

where k = _! k    +jlk    =kk    is  the wave number vector corresponding to the sep- 

aration vector r after  the transformation.    Writing Ec^(l7)  out in full gives 

oo -i27r(k r+kr + kr + n'r) 
rrrr v  x x      y y      z  z 

E. .(k  ,k  ,k  ,n')  = lb R. .(r  ,r  ,r  ,  T)e dr dr dr dr. 
ij    x' y'  z'     '' 'jj'    1J    x    y    z x   y   z 

-» (18) 



The tensor E..(k,n') is a tensor of four-dimensional spectrum functions and can of 
course be used to regain the correlation tensor through the inverse Fourier Trans- 
form such that 

oo i27r(k.r + n'r) 

Suppose now that we insert in the above equations the relation r - UT 
which was used to relate r and T in the previous section. Then Eci(l8) becomes 

oo -i27r[(k +n7Ü)r +k r +k r 1 prr L x '   ' x    y y z zJ 

E. .[(k H '7Ü),k ,k ] = 8 /  R, ,(r ,r ,r )e dr dr dr . ij^ x   ' " y'  zJ JJJ     ij x' y' z' x y z 
-00 

New let n - k U + n1 . Physically, the frequency n represents the overall time 
fluctuations as seen by an observer at a fixed point such as P while the flow 
sweep? by with mean velocity Ü relative to the point. It is therefore the 
frequency which would be measured in an experiment by a probe fixed at P , and 
is the sum of the two frequencies n' and k Ü. The frequency n' is that which 
would be seen by the observer at a fixed point in a Lagrangian frame moving 
with the fluid. In this case, the relative velocity between the observer and 
the flow would be zero such that n = n'. The remaining frequency k 0 represents 
the time fluctuations that are due entirely to the flow field being ccuvected 
past P^with the relative mean velocity 0. In fact, if 0 is large enough such 
that k U »n*, then n « k Ü and this is none other than Taylor's Hypothesis. 
That if, if the flow were truly 'frozen', n' would be zero and n = k 0. Thus it 
can be seen that the validity of Taylor's Hypothesis depends on the relative 
velocity between the observer and the flow field, and if this velocity is very 
small such that n' is of the order of k Ü, then n' cannot be neglected with 
respect to k U and the frozen flow hypothesis is not valid. Skelton (Ref .6) 
suggests that the minimum relative velocity for the hypothesis to be valid is about 
one-third of the mean flow velocity. 

Returning now to the spectrum tensor, we may write 

oo -i27r[(n/0)r +k r +k r ] rpr l    '      x y y z zJ 
E. .(n/U.k ,k ) = 8 /// R. .(r ,r ,r )e dr dr dr 1.1 ' ' y' z'   JJJ    ijv x' y' z^ x y z 

— 00 

and if Taylor's Hypothesis is assumed (n1 ^ 0), n = k Ö and E. . may be written 

"o -i27r(k r + k r + k r ) rrr v x x      y y      z z' 

Vkx'Vkz^ 8 JJJ  Rij(VVrz)e drxdrydV ^9) 
— 00 

Consider now the special tensors defined by Eqs.(5),  (6) and (9). By 
Fourier trar.üforming these one-dimensional correlations, one can define the 
corresponding one-dimensional spectrum functions by 

poo -i277k r 
0. .(k ) =    2 R4.(r )  e x x dr (a) 
ijv x7 j        ijv x7 x w 



• i27rk r 
y y 

*iJ(Vä 2J.   EiJ(ry)e ^y        (b) (20) 

i277k r 
z z 

^ ..(k ) ä   2  /      R. .(r  )  e dr (c) 
i.T  z I ij    z' z x  ' 

and ■127mT 
0ij(n) ~2 /   <l:iij(T) e dT* (21) 

The corresponding inverse transforms are of course 

i27rtc r 

_ *ij(kx'e    x x dkx        (a' 

/oo i27rk r 

.„*ij(ky)e      "% (b) (22) 

r oo i27rk r 

ij    z        ^   J      ^ij    z z 

roo i27mT 

^iJ(T)  H ^J      0ij(n)e dn' (23) 

The    0:^-j(n)  spectra of Eq.(2l)  are those which are obtained by placing a measuring 
instrument at a fixed point in the flow, and if Taylor's Hypothesis is assumed, 
these can be easily related to the 0. .(k ) spectra.    That is,  from Eqs,(l5) and 

(20a),  and since r    = UT and k    = n/Ö, 

poo -i27rk r 

^J^32!«   RiJ(rx)e XX    drx 
-i27mT 

^ 00 

= 2 0 /       (R. .(T) e dr. 
J -00 J 

Comparing this with Eq.   (21),  it can therefore be seen that 

*ij(kx)  ^.(n). 

Notice also that in the particular case of T - 0, Eq.(23) may be used to relate 
the Reynolds Stress tensor to the 0. .(n) tensor by 

/oo 

0.^) dn. (2l4) 

The one-dimensional spectra defined by Eqs.(2C) could also have been 
obtained by integration of the three-dimensional spectra of Eq.(l9). For example, 
0. .(k ) is also given by the double integration of E..(k ,k ,k ) over k and k , ij x        o    .7 1jV x, y» z'     y    z 

Similarly, two-dimensional spectra can be defined by integrating E. . over only one 
variable, but these will not be dealt with here. 

As with the correlation functions and integral scales of turbulence, 
special ternr'nology is generally applied to the spectrum functions. Of the nine 



diagonal components of the tensors defined by Eqs,  (20),   uhree are  termed longi- 
tudinal spectra and the other six lateral spectra, depending on whether longitudi- 
nal or lateral correlations appear in their definition.    In addition,   the diagonal 
components of Eqs,  (20) and (2l), which are defined by autocorrelation functions, 
are usually called 'power spectral densities' or 'power spectra'  while the off- 
diagon&l components are referred to as  'cross-spectral densities'   or simply 'cross- 
spectra' .    Since the spectra of the 0.,.(n)  tensor are those that are measured in 
practice, they axe of the most interest and unless specified otherwise, the terms 
'power-ipectra' and 'cross-spectra1  refer to these spectra throughout the remainder 
of this review. 

Because of the assumption of stationarity, the power spectra   0. .(n) are 
even functions of the frequency n.    Thus from Eqs,  (21)  and (23), 

/< 00 

(Rii(T)  C0s(27mT)dT (25) 
n 

(26) 

and 
/no 

0ii(n)  co5(27mT) dn. 
o 

[n particular, for T = 0, one obtains from Eq. (26) the expressions 

(B    (0) =   u^ =    /      0uu(n) dn (a) 
'UU     ' f UU" 

^ o 

CO 

ftwC0) =   v2 =    f    0    (n) dn (b) (27) v\r  ' '       w " o 
. CO 

Äww(0) s   ^ =    T     ^{n) dn (c) 

indicating that the area under the power spectrum of any velocity component is 
equal to the mean square of the component.    Equation (25)  shows that the power 
spectra are real functions of n.    The cross-spectra, however, are complex functions 
of n, with 

0ij("n)  =    0i/(n)  S0ji(rl)' i ^ J- 

These spectra are generally redefined as 

poo -i27mT 
^(n) H   2j      (Ritj(T) e dx 

=   CiJ(n)  - i ^(n),    i } J 

where C. .(n) is called the co-spectral density or co-spectrum and Q. .(n) is called 
the quad-spectrum, and these functions are real-valued even and odd functions of 
n, renpectively. In addition, these cross-spectra can be expressed in coefficient 
form by the coherence function, defined by 

o        l^n)!2 

^  5 0..(n0 .(n)  '  i /J W 
iiv /1Kjjv ' 

where 7". is the coherence. 



Finally, it should be mentioned that in the spectral theory of turbu- 
lence, the independent frequency variable n is not always used. In the litera- 
ture, any of the variables 

k = n/U, UJ = 27m,    or    fi = 27m/Ö = 277k 

may be found where, of course,  if Taylor's Hypothesis is assumed, k s k .    In these 
cases,  it is generally Eq.  (24)  that is used to properly relate the various spectral 
functions  to each other.    That is 

00 

Rij   =   2    '        0ij(n)dn   S   2 j        *ljW   dk 

j     <t '   M  dw s|        4)   (fl) dß 
-00 

which,  along with the above definitions of the independent variables, can be used 
to show  that 

^(k) = Ü 0iJ(n) = 27rÜ <D '(w) = 27*^(0) (•-; (29) 

In tne description of the planetary layer which follows, it is the function <t> (k) 
which will be used. This is because if the 'reduced frequency* or inverse wave- 
length k = n/Ü is used as the independent variable, where Ü is the mean speed 
relative to the measuring system, the turbulence measured will not depend on the 
motion of this system, and spectra measured by aircraft may be directly compared 
with those obtained on towers (at the same altitude, of course). Note also from 
Eq.   (29)   that 

k VjU) s   n   'VjM' 

.5    Homogeneity and Isotropy 

The turbulence field under consideration in the preceding discussion 
was assumed to be homogeneous.    That is, its statistical properties do not vary 
frjm point  to point in the field, and thus all the functions described are inde- 
pendent of the location of the point P    in the field.    In addition, the assump- 
tion of homogeneity allowed the correlations of Sec. 2.1 to be written as functions 
of the separation between the points rather than of the points themselves, and 
thus simplified the description considerably. 

The concept of isotrc^y simplifies the description of the turbulence 
even further.    If a turbulence field is Isotropie, its statistical properties are 
independent of direction in the field, and thus they do not change with a rota- 
tion of the coordinates axes.    Thus isotropy implies homogeneity, but not vice- 
versa.    All off-diagonal components of the special correlation tensors of Sec. 
2.1 are zero, as are the corresponding cross-spectra of Sec. 2.k (note that the 
off-diagonal components of the general correlation tensor of Eq.CO are not 
necessarily zero).    All longitudinal correlations are equal,  such that 

f (r )  « f (r )  = f (r ) a f(r) (30) uv  x v    y w    z 

and all lateral correlations are equal, or 

Mrx) " ^{rx)  =sgu(ry) W = gu(rz) = 6v(rz) H g(r)      (31) 
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and the equation of continuity can be used to relate these correlations by 

*(r) « f(r) + f $£1 (32) 

where r ■  I r|.   Thus only one independent non-zero correlation remains.    In 
addition, Batchelor (Ref.7) has shown that in Isotropie turbul'.nce,  the general 
(spatial) correVation tensor is given ir terras of f(r) and g(r) by 

r r 
R^Cr) =    [f(r)-g(r)3 -^ + g(r) b^  , i,J = u, v, w 

where b^j is the Kronecker delta and r s r , etc. Similarly, the three- 
dimensional spectrum tensoi 
in Isotropie turbulence by 
dimensional spectrum tensor E^Qt) may be expressed as a fairly compact function 

where 

and £(,&) is a scalar function usually referred to as the 'energy spectrum function' 
A..- for the 0^ (n) spectra, isotropy requires that 

^ J 

and thu.'i from Eq. (28), 

Also, 

0ij(n) » 0 , 1 / J 

7^ = 0,  i ^ J . (33) 

0 (n) = 0 (n) w '    wwN ' 

and Eq.{32) may be used to show that 

<#..,» 
0 (n) = | 0 (n) - §   ^   . (3^) ^wwx '  2 uuv '   2    dn ' 

Because of Eq:'.  (30) and (31)> all longitudinal integral scales are equal to each 
other in isotrf>pic turbulence, as are lateral scales.    That is, 

LX = Ly = L2s   L (35) u v w u 

Ty     Tz      Tx      Tz     Tx     Ty_T 
and 

1 u u v v w w 

and from Bq.   (32),  it can be shown that 

L    = 2 L  . (36) u v v     ' 
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Finally, the velocity component mean-square values are equal in isotropic turbulence, 
•mch that 

"2      "2      "2 o U     a   V     »   W      =     CTC 

and the Reynolds Stress tensor, for example, is now given by 

tf2      0     0 

R 
U 

0 

0 

,2   0 

o  7 
(37) 

III, CHARACTERISTICS OF THE PLAMETARY BOUNDARY LAYER 

3.1 General Description 

The atmosphere near the surface of the earth can conveniently be divided 
into three regions. These regions are the free atmosphere, the planetary boundary 
layer, and the surface boundary layer. In the free atmosphere, viscosity is neg- 
lected, and only inertlal, Joriolis, and pressure gradient forces act on the air. 
The wind resulting from these forces is called the gradient wind, and is independent 
of the nature of the earth'? surface below. It can easily be shown (Ref.3) that 
the gradient wind must flow along the isobars, and in the special case when the 
isobars are straight or so slightly curved that centripetal acceleration of the air 
is negligible, the gradient wind Is called the 'geostrophic* wind and is given 
approximately by 

UG = pf  5n 

where n is normal to the isobars and f = 2wsin0, with 
the earth and 0 the latitude. 

u) the rotational velocity of 

The planetary boundary layer refers to the region between the earth's 
surface and the height at which the free atmosphere can be said to begin. This 
height is called the 'gradient height', z and is generally of the order of 1000- 

2000 feet, depending on surface conditions. The surface boundary layer is a sub- 
layer of tne planetary layer, extending from the ground up to about 200 ft. ( + 
100 ft,) depending again on surface conditions. In the surface layer, Coriolis 
forces are assumed negligible, and wind characteristics are determined by surface 
conditions, thermal stability and height. Shear stress is assumed constant here, 
and indeed this actually defines the extent of the region. In the remainder of 
the planetary layer above the surface layer, Coriolis forces begin to have an 
effect on the wind, surface roughness effects decrease, and the shear stress de- 
creases from its constant value in the surface layer. 

In this review, it is the planetary layer that is being considered, and 
consequently the basic parameters of interest will be the surface conditions, 
thermal stability, and the height. 
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i,--'   Atmoepheric Stability 

The hydrostatic stability of the atmosphere depends of course on the temp- 
erature gradient:: in it. The basic criterion is whether or not the decrease in 
temperature with height, called the lapse rate 7, is greater than the dry adiabatic 
.apse rate, 1(7 =- l0C/lOO m. *» J.J^/lOOO ft). During a 'lapse' period, when 

y  s -dT/dz > F 

a volume of air displaced upward will experience a buoyant force upward and thus 
will continue tc ascend.    Thus the atmosphere in lapse periods is classified as 
'hydrostatically unstable', or simply unstable.   During so-called 'inversion' 
periodsj when 7 ^ F, the volume of air displaced upward will be at a lower tern« 
perature than its surroundings and will experience a restoring downward force, in 
which case the atmosphere is classified stable.    If 7 « f or very slightly less, 
the atmosphere is classified neutral.. 

As for the effect of stability on turbulence in the atmosphere, one would 
obviously expect greater turbulence levels in hydrostatically unstable air since 
under these conditions, heat convection would be added to. the 'mechanical'  turbu- 
lence produced by the shear.    A better understanding is obtained if one considers 
the driving force in moving vertically the volumes of air mentioned above.    The 
erergy required to displace the air, that is,  to produce turbulence, is extracted 
from the mean flow by the Reynolds Stress.    Whether the velocity fluctuations 
increase or decrease will depend on whether or not the rate of this energy supply 
is greater than the rate at which work must be done in the gravitational field 
;r4 moving the fluid volumes in the vertical direction.    The parameter expressing 
thl-. criterion is the gradient Richardson Number, Ri, defined by 

Hi -     &&&1    . (38) 
e(aO/öz)d 

Between zero and unity there is a 'critical' Richardson Number above which turbu- 
lent motion in the air will subside into laminar motion and below which it will 
remair turbulent, \  definite value of this critical number is not available, 
and indeed it may depend on surface conditions. There is some indication (Ref's. 
3 and k)}  however, that it should be Ri ~ 0.25, such that above this value of 
P,i turbulence ceases to exist. 

Hydrostatic stability can easily be expressed in terms of Richardson 
Number. For an ideal gas,  the potential temperature 9 is related to the actual 
tenpe rature T by 

Thus from Eq.(38),, 

Hi - 

1  de    1 / dr 
9   Sz ~ T v ^z 

gQT/^z + r) 

T(au/öz)? 

g(r- 7) 
T(ÖÜ/öz)c (39) 

"■.herefore unstable air corresponds to R. < 0 and stable air to R.> 0. 
1 1 
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Summarizing, then,  the atmosphere may be characterized by the following Richardson 
number regimes: : 

Ri < 0 unstable air, with considerable convective turbulence in 
addition to the mechanical turbulence 

R.  ~    0 generally for   |Ri K~0.D3?, the air is  termed neutral or 
'near-neutral'  and the turbulence is purely mechanical 

CK Ri <~ 0.25 stable air,  with mechanical turbulence being damped by 
the thermal stratification 

R. > ~ 0.25      very stable air in which no turbulence can exist at all, 
at least in the vertical direction 

The Richardson number is viry important in the atmosphere since the Reynolds numbers 
are  so large that they cease to be of importance, and Ri is the most relevant non- 
dimensional number. 

3.3    Simplifying Assumptions 

3.3•1    Stationarity 

Spectral data measured by aircraft at different times in the planetary 
layer nave shown that stationarity of the velocity signals can reasonably be 
assumed for periods up to 10-20 minutes,  and sometimes longer.    Thus reasonable 
record lengths can be obtained for the data without  the stationarity assumption 
breaking down. 

3.3.2 Homogeneity 

It is generally assumed that the flow in the planetary layer is homogeneous 
in all horizontal planes, such that aircraft measurements obtained in any direction 
in these planes may be treated. Gunter et al (Ref.^O) go so far as to conclude 
complete homogeneity of the turbulence based on measurements at 250 ft.and 750 ft. 
However, this conclusion seems somewhat optimistic, and indeed, some of the data 
presented refutes this conclusion since they find a definite increase in integral 
scale with height. Consequently only the concept of horizontal homogeneity is considered 
acceptable, and results show that in general this is a quite reasonable assumption, 
particularly over relatively homogeneous terrain. 

3.3.3 Isotropy 

In the free atmosphere,  isotropy is a fairly reasonable assumption,  but 
this  proves  less  tenable with decreasing altitude.    Lappe, Davidson and Notess 
(Ref.19)  concluded from tower and aircraft measurements at z ~   300 ft.in unstable 
air  that Taylor's Hypothesis  is roughly equally well satisfied regardless of what 
direction the aircraft flies relative to the wind.    This would indicate that the 
turbulence under  these conditions is more or less horizontally isotropic.    Gunter 
et al  (Ref.^3)  tested isotropy for hundreds of hours of aircraft data taken at 
z - 250 ft.and 750 ft.(i.e.,  generally above the surface layer)  by comparing 
experimental ratios of vertical-to-lateral and longitudinal-to-lateral component 
spectra with the corresponding ratios obtained from the isotropic von Kfirmfin 
spectral equations.    Their conclusion is that for most  stability cases and for all 
combinations of height and surface conditions, the turbulence is  totally isotropic. 

Ih 



2      ? 
This conclusior is enhanced ty y ^     and /   coherence measurements, which were 

always less than 0.15 -or all frequencies, and would of course be zero for Iso- 
tropie turbulence. It is to be noted, however, that the y    *  coherences, which 
one would expect to be larger than the other cwo in a shear flow, were not pre- 
sented. Also, upon inspecting the presented data, it is seen that the conclusion 
of isotropy depends largely on the size of the difference between the theoretically 
Isotropie case and the experimental data that is allowed for the data to be called 
isotropic. Within roughly 20^ variation, the data is indeed seen to indicate iso- 
tropy, although the variation of scale with height still precludes true isotropy. 
It it, evident from the data, however, that there is a distinct reduced frequency 
k » 3 x 10"^ cpf. above which tuere is a very significant decrease in the amount 
of departure of the data from the isotropic case. This suggests a 'local isotropy' 
region in which the turbulence is significantly closer to true isotropy than at 
lower frequencies. 

The concept of local isotropy was first put forth by Kolmogoroff. It 
postulates that in the so-called inertial subrange region of the energy spectrum, 
the turbulence is isotropic. In this region turbulent energy is neither produced 
nor dissipated, but merely passed through from the large anisotropic eddies to 
smaller eddies by inertial forces. This energy is then dissipated by viscous 
forces at the same rate e at which it is inertially passed through the subrange, 
maintaining an equilibrium state. Kolmogoroff showed that in this inertial 
subrarge, the energy spectruia will be proportional to the -5/3 power of frequency, 
and the : tio of longitudinal-to-lateral or longitudinal-to-vertical spectra must 
be 3/h.    The longitudinal component power spectrum in this region is of the form 

ct (k) = b e2/3 k"5/3 
uu 

where b is a constant, while the lateral and vertical component spectra are given 
by similar expressions but with b replaced by itb/3. In the planetary layer, this 
notion of local isotropy seems quite reasonable, in that one would expect anisotropy 
for eddies large enough to be affected by the mean shear and thermal structure, 
while smaller eddies with shorter time scales should be able to redistribute their 
energy among the components more quickly. Thus one would expect that over a 
range of wavelengths small compared with some characteristic length, say the dis- 
tance to the ground, z, or to the nearest stable layer, the turbulence should be 
isotropic. 

Experimental results have in general tended to confirm the local isotropy 
concept, with some reservations. The spectra generally obey the -5/3 power law, 
with the constant b having a value of ~0.5 if k is in radians/m or~0.06'5 if k,is 
in cycles/ft. However, there is some disagreement as to whether the 3A ratio of 
the spectra in the subrange actually exists. Elderkin (Ref.1T) found for spectra 
at z = 10 ft. and 20 ft. that the longitudinal and vertical spectra are about 
the same in magnitude in the inertial range, and refers to some results by 
Stewart that found the same tendency. Also Herman (Ref.U0) quotes several papers 
and states thai the conclusion from these results is that all component spectra 
have the same magnitude in the subrange and not the Kolmogoroff ratios. On the 
other hand, however, Busch and Panofsky (Ref.41) studied considerable data for 
heights up to 300 ft. and concluded that in regions over which the spectra obey 
-5/3 power laws, the ratios of the components "show fair agreement" with the 3A 
ratios predicted by Kolmogoroff,  In addition, Fichtl and McVehil (Ref.39) assumed 
the 3A ratio in obtaining model equations for the longitudinal and lateral 
components which ultimately fit measured data very well, thus indicating this ratio 
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to be valid for at least these components. Finally, the aircraft data obtained by 
Gunter et al obeyed the Kolmogoroff ratios quite well in the inertial subrange. In 
view of these discrepancies, no definite conclusion can be drawn as to whether the 
Kolmogoroff ratios are or are not obeyed. 

There is far better agreement among investigators as to the validity of 
the -5/3 power law for the spectra. The data generally show that the spectra obey 
a -5/3 frequency dependence up to wavelengths much greater than can possibly be 
expected to lie in the Kolmogoroff inertial subrange, especially in the case of the 
longitudinal spectrum. However, it is not necessarily the case that this represents 
a simple extrapolation of this subrange (see Ref.^l). As for the actual 'Isotropie 
limit' above which local isotropy exists, considerable information is available. 
Lumley and Panofsky (Ref .M give a detailed discussion of the limiting frequency, 
and quote a result from Priestley based on co-spectral measurements that local 
isotropy exists for k >~ 0.6/z. Elderkin (Ref.17) concludes that while the -5/3 
law is obeyed to frequencies as low as k ~0.2/z in some cases, the co-spectra do 
not reduce to zero until k ~3/z, and true local isotropy is not attained for 
k < ~k/z.    Lappe and Davidson (Ref .38) state that the Kolmogoroff range can exist, 
if at all, only for wavelengths less than 88 ft. based on measurements made at 
z = hOQ  ft., which suggests k must be greater than ~k/z.    Finally, the value of k 
quoted above from the data of Gunter et al, above which isotropy improves (k« 3 x 10" 
cpf.), corresponds to an isotropic limit of k ~l/z - 2/z for the heights measured, 
a value roughly in agreement with that suggested by Panofsky in Ref.63. Thus it 
appears that a reasonable value of reduced frequency above which local isotropy 
can be said to exist is k ~3/z. 

To summarize, it can generally be said that turbulence in the planetary 
layer is not isotropic in the true sense. However, a region of local isotropy does 
exist for k>~3/z, although the component spectra may or may not obey the Kolmogoroff 
ratios in this region. Horizontal isotropy, in which the turbulence is independent 
of rotations of the coordinate system about the vertical axis, is also a reasonable 
assumption. 

3.3.^  Taylor's Hypothesis 

Lin (Ref.55) has investigated the validity of applying Taylor's Hypo- 
thesis to the turbulence in shear flows and concludes that the requirement of 
u'<c Ö should be valid for k such that 

k»i  §. m 

If the logarithmic velocity law is assumed to hold (Eq.(i>2), Sec.3.^) then Eq. 
(ho)  becomes 

k » —~ / ,—r . (1*1) z In (z/z ) o 

Lappe and Davidson (Ref .38) compared aircraft and tower measurements at z = 300-1*00 
ft. and found that the spectra so measured were the same for wavelengths at least 
as large as 600-900 ft. Since z for these tests was ~3.3 ft. (Ref.19), Eq. (1*1) 
suggests that in this case, k»~0.0005 rpf. for Taylor's Hypothesis to be valid, 
or 

*=■£■« 2000 ft. k 
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Thus Lappe and Davidson's result roughly obeys Lin's requirement.    In any case, 
it must be realized that Taylor's Hypothesis becomes decreasingly accurate for 
Ä > ~ 1000 ft. 

3.^    Mean Wind Characteristics 

3.k.l    Velocity rroflies 

In the surface boundary layer,  the validity of the Prandtl logarithmic 
law for the mean velocity in a neutral atmosphere has been well-verified.    The 
law can be easily obtained from Prandtl's Mixing Length theory (or von KSrnim's 
similarity hypothesis) under the assumptions that 

(i)    viscous stress is negligible; 

(ii) mixing length is proportional to height;   that is,  i = Kz; 

(iii)shearing stress is constant and equal to the surface stress T  .    That is, 

T = -puw =    T    -    Of p - 

where U is the friction velocity and is defined by the above relation. 

If in addition Ü = 0 at z = z and it is assumed that z « z, the law can be 
written in the form 

(1*2) 

where K is the von Karmin constant (M).^) and z is the so-called 'roughness 
length'. 

The logarithmic law of Eq.^S) is valid strictly speaking only for 
neutral condition?. In non-neutral stabilities, a modification of this law is 
given (Ref.1* or kk)  such that 

n 1     . 7. 
a TT   In «. K V' u v 0 

r^KO-*^). (^3) 

where L' is a temperature dependent foaling length. The function ^ is a universal 
function of z/L* and since  it can be shown that the Richardson Number is a unique 
function of z/V (Ref.4), Eq,(i+3) can be used to obtain mean velocity in non- 
neutral stabilities. 

The roughness length z usually turns out to be about 1/30 times the 
average dimension of a typical roughness particle. In practice, both z and 0 

are determined from measurements of at least two values of Ü and z in the surface 
layer and solution of Eq. (^3) . An excellent description of the details of the 
procedure used to determine these quantities with the greatest possible accuracy 
is given in Ref. kk. 

Above the surface layer, Corioli? forces increase, surface r ugliness 
effects decrease, and the logarithmic law begins to depart from the empirical 
data. However, treating the planetary layer as a whole, a power law velocity 
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profile of the form 

U/U1 = (z/z
Lf W 

is found to fit the uata quite well in neutral conditions, where tL is the velo-
city at some reference height z, . Davenport (Ref's. 9 an^ 10) uses the gradient 
height as the reference heightaxsuch that 

u/uG - (z/zQ)a. e+5) 
The parameters ẑ  and a depend on surface conditions, and Davenport (Ref.'+2) has 
surveyed published wind profiles at sites having a wide range of ZQ values in 
order to determine the dependence of these parameters on z . The results of 
this survey are given in Fig. 1, and the shape of the profile given by Eq. (^5) 
for three different terrain types ts • shown in Fig.2. The gradient height zQ must 
in general be obtained by measurement of U at several heights and an estimate 
of the gradient velocity U^. Thus there is some uncertainty in its exact value 
since Up is usually obtained from isobaric charts whose accuracy depends on the 
spacinĝ between the meteorological stations from which the pressure readings are 
obtained. However recent estimates of both ẑ  and a have shown good agreement 
with the values suggested by Fig. 1, including the results for various cities 
around the world given by "Davenport in Ref. 10. It must be remembered, of course, 
that the power law can be of only limited usefulness in cities, since it cannot 
be expected to apply to the mean wind speed for heights considerably below typical 
oostructions. In cities these obstructions may be up to 700-800 ft. high, and 
the wind speed is \ery much a function of the detailed nature of the structures. 
Harris (Ref.58) states that it is not certain at the present whether, for the 
treatment of winds above a city, it is more correct to use a power law with large 

OL as Davenport suggests,or to use a lower index combined with an upwards dis-
placement of the U = 0 reference plane to take account of the obstruction height. 
However, it would appear from the data that Davenport's approach is quite reason-
able in those regions where any power lav/ can be expected to apply. 

In applying Eq. (U5) to estimate gust loads on buildings, it is the 
extreme values of the mean wind that are of importance. Thus the value, used 
for U is in general based on surface measurements of extreme wind- speeds, and 
Davenport (Ref's. 9j 10 ar-d ̂ 2) outlines in detail the procedure for estimating 
extreme values of U_, from locâ  meteorological data. 

G 

As for the effect of stability on the shape of the power- law-profile, 
little data is available. In general, however, the exponent a tends to become 
smaller with decreasing stability. That is, in unstable air, the profile is 
generally 'fuller'. 

3.̂ .2 Mean Wind Direction 

It is not only the magnitude of the mean wind in the planetary layer 
which is important but also the direction, particularly in the consideration of 
the wind loading of structures. In the free atmosphere, the mean wind is the 
gradient wind, and it flows along the isobars. However, in the planetary layer, 
the presence of >ihear stresses in combination with the Coriolis forces causes 
a systematic deflection of the mean wind. This deflection is away from the iso-
bars in the direction of decreasing pressure gradient, and is such that in the 
Northern Hemisphere the wind direction rotates clockwise with increasing height. 
Several theories have been postulated as to the exact variation with height of 
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the angle a between the mean wind and the isobars (i.e., the geostrophic direction), 
but they all require assumptions about the exchange of momentum due to turbulence 
at various heights.    This exchange is represented by the eddy viscosity K^ where 

™        ÖO/öz 

The simplest theory is due to Eknan and is outlined by Sutton in Ref.3.    Ekman. 
assumed IC, constant with height and as a result predicted that a should decrease 
from ^5° at the surface to zero at the gradient height.    This work has led to the 
change of wind direction with height being referred to as the 'Ekman Spiral1. 
Ekman's theory is somewhat of an oversimplification, however, and Sutton describes 
more sophisticated theories.    One approach by Köhler assumes IC. = K z111 where m 

depends mainly on stability, and predicts that at the surf ace,a lies between 10 
and 30°, decreasing of course to zero at z  .    Button's theory predicts values of a 
ranging from 31° in open country to ^5° in city centres.    In general, although 
little data is available over urban areas, other measurements have indicated values 
of a at the surface of the order of 20°, agreeing roughly with the theory.    However, 
Harris in Ref ,58 has suggested that very little of the decrease in a with height occurs 
in the first 600 ft, or so.    His results in high winds (i.e,, neutral stability) 
over flat terrain for z up to 600 ft,  show no systematic deviation in wind direction, 
and he states that other results have tended to agree.    Harris thus suggests that 
except for very tall structures or those with special features making them extremely 
sensitive to wind direction, it should be reasonable to ignore the change of wind 
direction with height in strong winds over all types of terrain, 

3.5   Reynolds Stresses 

3.5.1   Total Kinetic Energy of Turbulence 

The parameters governing the magnitudes of the variances u', v', and w'_ 
of the velocity components, and thus the total kinetic energy of the turbulence, e, 
are mean velocity, surface roughness, height, and stability.    Similarity theory 
predicts that for neutral air, the total kinetic energy is roughly proportional 
to 0^, indicating that this energy should thus be independent of height.    Thus 

from Eq.  {h2) we get 

ln2(z/zo) 

for the surface layer, and the data (viz.Ref.U) show that in general the variation 
of e with both velocity and height indicated by Eq,  (^6) is roughly correct.    The 
effect of surface conditions, however,  is not adequately represented by the rough- 
ness length z  .    This result is not surprising since z   is a measure only of the 
small scale features of the surface and does not account for large irregularitie? 
such as hills and mrjuntains.   As for stability, a decrease tends generally to 
increase the total, energy, due to the additional convective energy in unstable 
air.   This, effect is minimized over rough terrain, where most of the turbulence is 
of mechanical origin. 

19 



3.5.2 Vertical Component Variance 

Similarity theory predicts that in neutral stability, 

w' = A UT (1+7) 

where A is a constant independent of height, windspeed, and surface roughness. 
The data of various investigators (viz. Ref's. 17, 29, and l+l) has shown this to 
be true at least through the surface layer, indicating that the effect of surface 
conditions on w' is adequately represented by UT, and thus by ZQ (from Eq. (1+2)). 

That this is so for the w' component likely results from the fact that very large 
wavelength, low frequency components of w' are suppressed due to the presence of 
the ground, and thus the effect of large scale non-uniformities is reduced. 

As fox the value of the constant A in Eq. (̂ 7), there is considerable 
discrepancy in the data. Lumley and Panofsky (Ref.U) point out that values rang-
ing from 0.7 to 1.3 have been obtained, and suggest that A ~ 1.0 is the best com-
promise. However, more recent data has leaned toward a value of ~ 1.3. Elderkin 
(Ref.17) obtained a value of 1.33 for z - 10-20 fU, while Busch and Panofsky 
(Ref.̂ l) obtained 1.29 from-an integration of their model spectrum, and state that 
this value is consistent with direct measurements made using sonic anemometers. 
Also, Panofsky arid McCormack (Ref.29) found a value of ~ 1.3 for heights up to 
about 250 ft. and Panofsky in Ref.63 shows some results indicating that A = 1.3 
over a considerable range of Richardson numbers. Thus it is concluded that 
A = 1.3 is the most appropriate value in view of the existing data. 

The effect of atmospheric stability on w1 is in general not too large. 
The magnitude of w' tends to increase somewhat with decreasing stability, as one 
would expect. In addition, w' increases slowly with height in unstable air, 
while in stable air it decreases with height. Thus stability effects on w' tend 
to be felt more at higher values of z, and are not too important near the ground. 

3.5.3 Lateral Component Variance 

In neutral air, at least, most of the existing data show that through 
the surfe.ee layer, 

V = B UT (1+8) 

where B is a constant. This s;iggests that v' does not vary with height in neutral 
air. One notable exception to this conclusion is the investigation by Fichtl and 
McVehil (Ref.39) whose tower data measured for heights up to ~ 500 ft. indicate 
that in neutral air, v' decreases slightly with height, being proportional to 
z-.17.' over this range. As for the dependence of v1 on surface conditions, the 
roughness z is unfortunately inadequate to completely estimate the surface 
effect, as is the case for the total kinetic energy. Consequently, the constant 
B is a function of large scale roughness and thus varies from place to place, 
ranging from 1.3 to 2.6 (Ref.i+). 

Atmospheric stability has a quite large effect on v*, increasing it by 
a large amount as stability decreases for the same wind speed. Lumley and 
Panofsky (Ref.^) show, however, that in either stable or unstable air, there is 
still very little vertical variation of v'. In this case, Fichtl and McVehil's 
results agree since they find that in unstable air, v' oc z-®*^, indicating a 
very weak dependence of v' on height. 
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An interesting consequence of the differential behaviour of v1 and w' 
with height in stable air is pointed out by Lualey and Panofsky.    Since w' decrease! 
with height in stable air while v' does not, smoke emitted at z ~   300 ft, in an 
inversion Tneanders horizontally, with little vertical spreading.    In fact, this 
meandering results from the presence of low frequency components in the spectrum 
of v (see Sec. 3.6.2). 

3,3,k   Longitudinal Component Variance 

While the longitudinal fluctuating velocity component is the largest of 
the three, its properties generally tend to be intermediate between those of v 
and w.    Stability affects it more than the w component but not so drastically as 
it affects the v component.    Lumley and Panofsky (Ref.^)    indicate that u' does 
not vary with height in any stability, although the fluctuations in stable air 
tend to shift from high frequency near the ground to lower frequency at larger 
heights.    The independence of u' with height is confirmed by data quoted by Templin 
(Ref.30) for unstable air and heights up to 500 ft, and by the results of Fichtl 
and McVehil (Hef .39) who for similar conditions find that u'oc z"0*0^.    in neutral 
stability,however, Fichtl and McVehil find that u'oc z"'0'315, rather than being 
constant with height. 

In neutral air, Lumley and Panofsky suggest that 

u» = C ÖT . (49) 

As with the lateral component, the roughness length z is again not adequate to 
completely represent large scale variations in the terrain, and while C is constant 
with height, it varies from place to place. Values quoted range from 2.1 to 2.9, 
with the value of 2..5 suggested as a reasonable engineering approximation, 

3.5.^ Summary of Variances 

The preceding discussion of the three component variances referred for 
the most part to the surface boundary layer. In this layer, if neutral stability 
is assumed and the suggested values of the constants A, B, and C are used, the 
ratios of the component variances are given by 

u'/v'/w'/^ =• 2,5/2.0/1.3/1 . (50) 

Also, since the logarithmic law of Eq.(.k2)  is valid under these conditions, the 
friction velocity is given by 

G      - Q      .    . 
üT    "    2.5 m (z/zo) 

and thus from Eqs.   (^7),  (*+£), and (^9) the component intensities are given by 

(51) 

These curves are shown in ?ig.3 for z    = 3 cm, a value characteristic of flat, 
open country.    Also .shew.-: are some actual measurements quoted in Ref.30 for 
Sale, Australia which has similar surface conditions (z    - 1 cm), and these 
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values are seen to agree well with the predicted values. 

For the planetary layer above the surface layer, little information has 
been presented because there does not appear to be a great deal of information 
available. This may result from the fact that most towers used for measurement do 
not reach heights far above the surface layer, so aircraft data is the only major 
source. Some useful measurements have been obtained by Harris (Ref.65) for heights 
up to about 600 ft. in neutral stability, and these are shown in Fig.3. It is 
seen that these results agres quite we'll with Eq.(5l) for u'/U in the surface layer 
and with the Sale data above it. 

Considerable data on the component variances at z = 250 ft. and 750 ft. 
is to be found in Ref.^3. Unfortunately, since velocity values are not available, 
direct comparison with the above data cannot be made. However, the data suggests 
that both these heights be considered above the surface layer, and if this is done 
some useful conclusions can be drawn about u', v', and w' above the surface layer. 
Firft3 within reasonable limits, u' « vISB w1 at each height. Also, increased sur-
face roughness results in larger component variances, although the effect is felt 
more at 250 ft. than at 750 ft.,as expected. In addition, for both heights there 
is an increase in the variance with decreasing stability, and finally, the variances 
decrease from 250 ft. to 750 ft. for virtually all stabilities. When these con-
clusions are considered together with the above results, it would appear that in 
general, above the surface layer, the three velocity component variances tend to 
decrease with height toward the same value, as is the case in a typical wall 
boundary layer (viz.Ref.2 or 60). Thus curves similar to those found in a wall 
boundary layer have been shown in Fig.3. The particular value that the variances 
approach murt of course be that in the free atmosphere, which is very small and 
which would in the ideal case of no velocity gradients be zero. 

3.5.6 Other Reynolds Stresses 

The component variances discussed above are, of course, simply the roots 
of the diagonal components of the Reynolds Stress tensor, Eq. (7)• The remaining 
Reynolds Stresses are the uv, vw and uw co-variances (the tensor is Hermitian), 
which would of course be zero if the turbulence were isotropic. Elderkin (Ref.17) 
obtained values of these stresses in various stabilities at z = 10 ft. and 20 ft. 
over flat terrain having z =3 cm. His results in neutral air show that the vw 
stresses are quite small compared to uw, while uv values are larger than vw but 
still considerably less than uw. For the uw stress, there is really not sufficient 
data to make significant conclusions about the assumption of constant stress in 
the surface layer, although the values at the two measurement heights do not in 
general show any larger variation than that between different runs at the same 
height. 

In the surface layer, the friction velocity is given by (see Sec. 3«̂ »l)> 

^ = 

Thus if the air is neutrally stable and the ratios of the component variances of 
Eq.(?0) are assumed, then the correlation coefficient- for the u and w components 
is given by 

— -U2 

UW f - 0.31. (52) u' w' (2.5UJ(1.3UJ 
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Above the surface layer, this value nrost decrease, since the shear decreases and 
uw falls to zero. As for uv and vw above the surface layer, little data is avail» 
able, although the coherence data of Gunter et al (Sec. 3.3.3 and l.S.k)  suggest« 
that these stresses are quite small. 

3.6 One-Diaensional Spectral Density Functions 

In general, the one-dircensional turbulence component power spectral 
densities ^^(k) consist of three distinct regions: a low frequency region in 
which energy is put into the turbulent motion from the mean flow; a middle fre- 
quency equilibrium region in which no energy production or dissipation is occur- 
ring, and only an inertial transfer of energy toward smaller eddies is taking 
place (i.e.| the Kolaogoroff inertial subrange); and a high frequency region in 
which turbulent energy is converted to heat by viscous dissipation (viscous 
subrange). The frequency dependence of *ii(k) in these three regions is roughly 

given by K0, k'^/l,  and k*', respectively. As with the component variances, 
the power spectra in general are dependent on height, surface.roughness, mean 
velocity, and thermal stability. 

In addition to the above general regions of the power spectra, the 
existence of a 'buoyant subrange' has been suggested for atmospheric turbulence 
spectra in stable conditions. In this region, a 'buoyant length' depending on 
the stratification is the factor limiting the inertial subrange, rather than 
the distance to the ground. Lvunley and Panofsky (Ref.4) discuss the buoyant 
subrange at some length, and Busch and Panofsky (Ref.^i) show experimental data 
suggesting that it does exist, at least for the vertical spectra, with a frequency 
dependence of the order of k"3 as suggested by Lumley (Ref.56). 

The behaviour of the power spectra in the inertial subrange has been 
discussed at some length in Section 3.3.3 with regard to both the relative mag- 
nitudes of the components and their frequency dependence, and consequently there 
is only minimal attention given to this region in the discussion that follows. 

3.6.1 Vertical Component Spectrum 

The vertical velocity power spectrum <J)
ww(k) has been quite extensively 

investigated and a considerable amount is known about it. In general, it is 
found that below a height of roughly 150 ft.-200 ft. the spectrum obeys dynamic 
similarity. That is, it can be expressed as 

k<t> (k) 
-=— = F(f, Ri) (53) 

w2 
where F is a universal function, and f = kz. such that when the spectrum is 
plotted in simiiarity coordinates k<t (k)/^" vs. kz for fixed stability, it is 

independent of height, mean velocity, and surface roughness. In addition, the 
shape of the spectrum at these heights does not vary a great deal with stability, 
except perhaps in the unstable case when distinct low frequency convective peaks 
are found (viz.Ref.l? for z = ho  ft., and also z =• 270  ft.). The maximum value 
of the non-dimensional f.pectrum as given by Eq. (53) was found to be ~ 0.2 by 
Elderkin and slightly larger (.23- .3) by Busch and Panofsky (Ref.41). 

While stability does not in general have too great an effect on the 
shape of the spectrum at lew altitudes, it does tend to shift the spectrum as a 
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whole. A decrease in stability moves it toward lower frequencies (larger wave- 
lengths) while an increase shifts it to higher frequencies. This is a reasonable 
effect, in that in stable air, convective energy is minimized and one would thus 
expect a reduction in the low frequency energy components. Thus if f w= k w. z 
is the value of f at which the non-dimensional spectrum has its maximum value, 
the effect of stability is indicated by changes in value of f w. Above l60 ft., 
Busch and Fanofsky have noted that stability affects not only' f w, but also the 
spectrum shape, with energies being concentrated around higher frequencies in 
stable air. 

For regions close to the ground, one would expect the energy at low 
wave numbers to be limited by the presence of the surface. This suggests that 
the scale of the vertical component should increase with height. This is indeed 
the case since, as indicated by the similarity of the specferum, f w does not 

P 
change with height for fixed stability. Thus k w is inversely proportional to 
height, and since it is also inversely proportional to scale (see Sec.3.7), the 
scale is linearly dependent on height. Above l60 ft, Busch and Panofsky have 
shown that f w begins to increase with height, indicating the breakdown of 

dynamic similarity and a weakening dependence of scale on height. More will be 
said concerning the height dependence of scale in Sec. 3«7» 

Many analytical expressions have been suggested in the past in order 
to represent the power spectrum of the vertical component. Bowne and Anderson 
(Ref.5) list several of these expressions, and in their Fig. 15 compare them 
for similar conditions. Lumley and Panofsky (Ref.4) also discuss some of these 
spectra in detail. One well-known model is the Dryden spectrum, which can be 
obtained for Isotropie turbulence by assuming that the correlation function 
Rin,(r ) is given by 
UU x -r /L * x' u 

f(r) = f (r ) s R (r ) « e     . (5^) v     uv x    uu x' x  ' 

Then using Eq.(32), the correlation R (r ) may be obtained as ww X 
-r /LX 

g(r) = g (r ) s R (r ) = (l-r /2L x) e ox '  e'wv x7   ww x      x'  u ' 

and the ^WW^Y-1
 power spectrum is found by Fourier transforming this correlation. 

Assuming Taylor's Hypothesis, this spectrum is given in the frequency domain 
by 

4> (k) - 2 wP 
1 + 3 i2TfL\y 

m'   ' u  ^ [I + (27/L xk)2]2 
L      V     U   '  J 

-} (55) 

where L  is the longitudinal integral scale and has been assumed to be twice 
the vertical component scale L x. This model, like several others, indicates 
a frequency dependence of k"? ir the inertial subrange, and because the recent 
data consistently show a -5/3 power law, these models have fallen out of use. 
Of the other models, the von Kltman equation is likely the best, since it captures 
the features of scale length, total variance, and the -5/3 slope. Like the 

eiupeu lor ibuorupn; uui uuxein-'e, euiu ii 

assumed. The equation i 
Dryden model, it was developed for Isotropie turbulence, and L  = 2 Lu

x is 
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-r f 1 + 188.14 (L \)r        ) 
*  (k) = 2 w" L 

x ^ hr-rrmr - (56) 
u    t- [1 + 70.7(Lu

Xk)r]3:i^-J 

Another good /.'«odel is that auggested by Busch and Panofsky (Ref.i*!) for z up to 
l60 ft*, nondimensionally given by 

k «• (k)   0.632 f/f W 

v? 1 + 1.5(f/fp
w)5/i 

assuming W = 1.3 U. . In this expression, f w id a function of stability only, 

and Busch and Panofsky relate f  and stability in their paper. 

For heights above the surface layer, the results presented by Gunter 
et al (Ref .143) leave little doubt that the von KtÜrmÄn model spectrum best fits 
the experimental data. For lower heights, Fig.^ shows that while the Busch- 
Panofsky model of Eq. (57) provides a somewhat better fit to the data than the 
von K&rmSn equation at low frequencies, both models tend to underestimate the 
energy in this region. Thus in the interest of simplicity and since the scale 
parameter in Eq. (56) can be used to indicate stability effects as is f in Eq. 
(57), it is suggested that the von Küxinüin model with an appropriate value of 
scale (see Sec. 3«7 and ^.6) adequately describes the vertical component spec- 
trum throughout the planetary layer. 

3.6,2 Lateral Component Spectrum 

The power spectrum $    (k) of the lateral velocity component does not 

in general obey sindlarity theory, except for large wave numbers in some cases. 
Also, in neutral and unstable conditions, there is little dependence of the shape 
of the ..' spectrum on height, although the location of the peak k v does appa- 

rently depend on height as suggested by the results of Fichtl and McVehil (Ref. 
39)> who found that for z - GO  -500 ft. in neutral air, k voc z -0.42 an(i in 

v  n ?ft P unstable air, k oc z"^'  . There is, however, a very large variation in both 

the magnitude and shape of this spectrum with stability. In addition to a ten- 
dency for the spectrum to shift as a whole toward lower frequencies for un- 
stable conditions, decreasing stability also greatly increases the low frequency 
portions cf the spectrum while leaving the high frequency part relatively un- 
affected. Thus for fixed wind speed the effect of decreasing the stability 
is to superimpose long period variations on the shorter, mechanically produced 
eddies. Consequently, the low frequency part of the spectrum depends mainly 
on stability while the high frequency part depends on roughness and velocity. 

In stable air, height variation of $ (k) becomes more significant. 

Lumley and Panofsky (Ref.-:) show data which indicates that while the low frequency 
part of the spectrum remains roughly constant with height, the high frequency 
part decreases rapidly. The relative invariance of the low frequency part sug- 
gests also that the total variance v- tends not to vary too much with height, as 
indicated in Sec. 3,5.3. Recalling that w^ decreases with height in stable air, 
and since tä    (k)/w^ is invariant with height (dynamic similarity) it follows 

that 4' (k) decreaseü with height for all frequencies. Thus at heights of the 

order of 200-300 ft. in stable air, the low frequency components of <t> (k) are 
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large relative to those of '^.(k), explaining why smoke plumes in these conditions 
meander laterially with little vertical spreading. 

The lateral component spectrum is more difficult to represent analytically 
than that of the vertical component because of the lack of similarity.    The 
usual practice id to use the same model as for the vertical spectrum, biiit with 
w^ replaced by v^ anci L X replaced by L x.    In the case of the von KÄrmÄn model, 
this theoretically makes no difference,  since in Isotropie turbulence, 
LX-2LX=2LX and v^  = w-,and the equation is u     v     w 

x  2 

W = 2 v- L x ] U - rrrg . [ •        (58) 
fl + 188.i4 (L  k) 

w ,-i.L+ CU.Yl.L *U 70.7(L x k)2]J 

Another equation that has been found appropriate is a modification of the Busch- 
Panofsky relation of Eq.(57) which Fichtl and McVehil fitted to their data. 
This equation is given non-dimensionally by 

k * (k)     C f/f V 
 £L__ =  v / P _^  (59) 
ß Ü2      [1 + 1.5(f/f v) hfov/l 
V T L '  p ' "   J 

where C and r depend on stability and f v and ß depend on height and stability. 

Above the surface layer, the results of Gunter et al (Ref.^3) show that 
the von Kärmän equation provides the best fit to the data for a wide range of 
conditions. Consequently it is suggested that, as with the vertical component, 
the von Karnlän equation be used to model the lateral component spectrum through- 
out the planetary layer, using appropriate values of scale (see Sec.3.7 and ^.6). 

3.6.3 Longitudinal Component Spectrum 

3.6.3.1 Total Velocity Spectrum 

The complete power spectrum of the total velocity in the longitudinal 
direction extends to much lower frequencies than those of the other two velocity 
components. This is due to the long period variations of the 'mean' wind speed 
Ü resulting from macrometeorological fluctuations, and Ü is, of couse, non- 
zero only in the longitudinal direction. The best data available for the complete 
spectrum of horizontal windspeed is that obtained by van der Hoven (Ref.32) at 
Brookhaven, and shown in Fig. 5. This spectrum was formed by piecing together 
several separate portions which were obtained at different times at z ~ 330 ft. 
Also shown in Fig. 5 for comparison are the periods of some common occurrences 
as obtained from Ref. 30, in addition to a pair of conjectural peaks suggested by 
Davenport (Ref.9) and not measured by van der Hoven. 

Generally, the part of the complete spectrum measured by van der Hoven 
displays two major peaks. One of these peaks has a period of ~ 100 hours, and 
is characteristic of the large scale movement of pressure systems. The other 
major peak has a period of 1-2 minutes and is characteristic of the gusts and 
winds resulting from the modifying influence of the ground. It is this part of 
the curve, the 'gust' spectrum, which is represented by the fluctuating component 
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u(t) and which corresponds to the lateral and vertical component spectra already 
discussed. It is of oajor interest since it contains the frequency components 
which niost seriously affect structures and aircraft. In between the two peaks, 
there is a minor peak with a period of about twelve hours which corresponds to 
the lulls in windspeed generally occurring at sunrise and sunset. 

Between the gust peak and the twelve hour peak, there is an obvious 
region of very low energy extending from a period of ~5 minutes to ~5 hours. 
This region is referred to as the 'spectral' or 'micrometeorological gap' and 
it apparently exists for all stability and terrain conditions. It results from 
a lack of any physical processes capable of generating fluctuations having.these 
periods, and is generally assumed to exist for all cases. This assumption does 
not take into account the occurrence of intense local storms such as thunderstorms 
and tornadoes, but these are usually of such local extent that their probability 
of occurrence at a particular location is negligibly small. 

The existence of the spectral gap is indeed fortunate in that it allows 
a very clear distinction to be made between gusts and macrometeorologlcal 
fluctuations. By defining the mean wind velocity Ö as the average over some 
period within the gap, it i..0 conveniently separated from the gust velocities. 
Also, since the gap begins at periods as short as 5 minutes, estimates of Ü can 
be obtained from very reasonable record lengths. Indeed the meteorological esti- 
mates of mean wind in various countries throughout the world are based on avera- 
ges over period.", ranging from 5 minutes to one hour, and the existence of the 
spectral gap ensures that these estimates will be virtually the same. 

3.6.3.P? Gust Velocity Spectrum 

The spectrum <t>    (k) of the longitudinal gust component in the surface 
layer is in a sense intermediate between that of the vertical and lateral velo- 
city components. The low frequency portion is affected more by stability changes 
than the high frequency region, so the shape of the spectrum is stability depen- 
dent. However, the dependence is not nearly as strong as that of the lateral 
component, while the vertical component shape is virtually independent of stabi- 
lity. It is noted also that, as for the other velocity components, decreasing 
stability shifts the spectrum to lower frequencies. 

Under all condition?, the longitudinal component spectrum contains 
considerable energy at low frequencies, such that in stable and neutral air, 
when this energy is less than in unstable air, it is still considerably larger 
than that of the other two component spectra. This is an indication that in 
neutral and stable air, the larger eddies are elongated in the wind direction 
(see also Sec. 3.7). Another distinct feature of the longitudinal component 
spectrum is that the -5/3 power law extends to considerably larger wavelengths 
than it does for the other two spectra, lumley and Panofsky (Ref.^) suggest 
it is obeyed down to k ~ O.2/2, the value also found by Elderkin (Ref .1?) and 
by Panofsky and van der Hoven (Ref.35). 

In general, as with * (k), the spectrum does not obey dynamic simi- 

larity except, perhaps, at very large wave numberr-. When plotted in similarity 
coordinates, the spectra show a great variety of sti^pe and position for neutral 
air (viz. Kef.^0). The maximum value of k «t (k)/u'- also varies, since Busch 

and Panofsky (Ref.^j) found a value of roughly 0.18, assuming u' ~ 2.5 0 , and 

Berman (Ref.^O) obtained ~ 0.r'7 using the sane a-- umption, while Elderkin (Ref.17) 



found a value of 0.12 and Fichtl and McVehil (Ref.39)found ~ 0.13. Finally, the 
location of the spectral peak f u violates dynamic similarity, in that its value 
tends in general to increase wi?h height at all locations.    This result is found 
by virtually all investigators, and as the value of f u determines the scale of 

P 
the longitudinal component, its variation will be discussed further in Sec, 3.7. 

As has been done for the vertical component spectrum, a number of 
analytical expressions have been suggested to represent the longitudinal spectrum 
*uu(k).    The Davenport spectrum (Ref's.  9 or 10) is used extensively in the building 
aerodynamics field,  but it predicts that at low frequencies, «t    (k)oCk.    This is 

inconsistent with the notion that <t>    (k) approaches a constant value proportional 
to the integral scale at low frequencies, and this model thus departs from the 
data at low frequencies.   A modification of Davenport's spectrum which removes 
this objection has been suggested by Harris (Ref's. 58 or 62) but this turns out 
to be identical to the vonKÄrnÄi spectrum below.    The Isotropie Dryden spectrum 
corresponding to Eq.  (55) for the vertical component is given by 

4 u2 L X 

♦uu^ a r (60) U 1 + (27rL xk)2 x      u    ' 

but Like its counterpart, it is rejected due to the -2 slope it predicts for large 
k. The von KlirmCn model is 

4 u L 
* (k) = TTZ- (61) 

[l + 70.7(Lu*k)2] VÖ 
l l) 

and it of course does not suffer from this objection.    This is also the case for 
the model spectrum suggested by Fichtl and McVehil (Ref .39), similar to that 
suggested for the lateral component, which fits the data they obtained for neutral 
and unstable conditions up to z ~ 500 ft.    This equation is, non-dimensionally, 

k *    (k) C    f/f u 

uu _ u   /   p 
u ru 5 r/3 ^ 

ßu u; [1 + 1.5(f/f U)    ]     u _p 

P 

where Cu and ru depend on stability and ßu and f U depend on height and stability. 

Finally, Berman (Ref.Uo) has presented graphs which can be used to obtain spectral 
values for any frequency as a function of height and for different stabilities, 
for heights up to z ~    ^50 ft. 

The results of Gunter et al (Ref .i*3) above the surface layer show that, 
as for the lateral and vertical component spectra, the von Karmin model provides 
an excellent fit  to the data for various stabilities and surface conditions, if 
a suitable scale value is used in the model.    The curves of Fig.  6 show that it 
also fits the data well in the surface layer, at least for larger heights.    The 
discrepancy between the results of Elderkin at z = 10-20 ft. and the other two 
curves emphasizes the difficulty in modelling the spectra due to the lack of 
dynamic similarity. 

Figure 6 also shows horizontal bars to indicate the range of natural 
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frequencies impuftanl to aircraft und structures.    These bars have been adapted 
from those of Tenrplin (Ref .30) and are plotted for a representative height of 
z ■ 200 ft.    For the  'tall buildings and bridges'  bar, a mean velocity of 50 fps. 
has been assumed for a typical frequency range of from 0.1 to 1 cps. 

It is to be noted that none of the model spectra for the three velocity 
components takes account of the viscous subrange in which (t..(k)oC k"'   .    This is 

in general not a serious omission since this region is usually beyond the frequency 
range that affects the motions of aircraft or the oscillations of exposed structures. 
However, as Templin shows in Ref.30, if simulation of the planetary boundary layer 
is attempted on too small a scale,  the viscous  subrange may well be near the region 
of interest, resulting in significant errors if it is ignored.    This point should 
thus be considered when the scale of an experiment is being determined. 

3.6.4   Cross-Spectra 

In general, cross-spectral data is available only for the different velo- 
city components at a single point, but as for the power spectral densities,  it is 
only these spectra that are of major interest.    For the <1>   (k) and *    (k)  spectra, 

Gunter et al have obtained measurements at z = 250 ft. and 750 ft. for various 
roughness and stability conditions and have presented the results in the form of 
the coherences 7uv

2(k)  and y    2(k).    As pointed out in Sec.  3.3^S,  these coherences 

are generally less than ~ 0.15, and tend to be smallest for k > ~ 2/2.    Elderkin 
(Ref.I?) has measured the co-spectral parts of the cross-spectra, C AS)  and C    (k) 

for heights up to 260 ft.  in various stabilities.    His results are given typically 
by Fig's. 7 and 8 and while these co-spectra are not in general significantly 
smaller than the C    (k)  co-spectra, the values tend to be centered about the zero 

axis in most stability cases.   Also, these co-spectra do not become truly zero for 
k less than about 3/z, with the values becoming larger for lower values of k.    As 
for the quadrature component spectra 0    (k) and Q^-^k), these are generally assumed 
to be zero. 

The 4»    (k) cross-spectrum differs considerably from the other two cross- 
spectra above.      The quadrature component Q    (k)  is generally quite small, but its 
sign is useful for indicating what part of a moving eddy with transverse vorticity 
contributed to the reading.    Thus, very qualitatively, the height of the centre 
of gravity of an eddy having a particular frequency k    can be estimated by knowing 
the sign of 0    (k ) at a few values of the height (se8 Ref.U).    As for the co- 

spectrum C    (k), it is negative at low frequencies, with the absolute value de- 
creasing toward zero for increasing frequency.    Elderkin's data show    that it 
reaches zero at about the same frequency as do the C    (k) and C    (k)  co-spectra, 
and thus while the small eddies may have considerable energy, they do not contribute 
to the correlations between the velocity components.    This result has been known 
for some time, and is consistent with the concept of local isotropy.    Elderkin 
also finds that as for the power spectra, there is a slight shift of C    (k) to- 
ward higher frequency with increased stability.    In addition, Elderkin's plot of 
this co-spectrum in similarity coordinates shows that,  like the vertical velocity 
power spectrum, it displays fairly reasonable dynamic similarity.    Indeed the cross 
spectrum «t    (k)  should not vary loo much with altitude through the surface layer 
over homogeneous terrain,  since the area under it is uw which is assumed constant. 
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Analytical representation of the <t>   (k)  cross spectrum has been discussed 
uw 

by Lumley and Panofsky (Ref.^) on the bt.sis of the similarity of the co-spectrum 
CUW(K).    They have suggested an expression for C    (K), but unfortunately this does 
not fit the data at very low frequencies or in the inertial subrange. A useful 
model for $ w(

k) has been suggested, however, by Case et al (Ref. 53), in which 
Q    (k)  is assumed zero such that $    (k)  = C    (k).    They used data taken near the 

t4" UW UW 

wall in a wind tunnel boundary layer and also in the surface boundary layer over 
the ocean to obtain the root-coherence functions defined from Eq.  (28) by 

'  *uw(k)l 
^k   - TTT . (63) 

[4)    (k)*    (k)]1^ 
*•     1111 v      '     wu'      ' J 

It war;  : ound that the expression 

y,J*) = _ 7o   . .. ..wo (6^) uw 
[1 + 0.395(Li

xk)^] 
2^72- 

u 

provided a good representation of the experimental data. The quantity 7 is a 

constant whose value is determined by the power spectra $ (k) and <I> (k) and 

the value of the Reynolds Stress coefficient üw/u'w'. That is, from Eq. {2k), 

R  s uw - 1 
uw        d /  $ (k) dk J   uwv ' 

— 00 

fco 

<t>    (k) dk uwv ' 
o 

since if Q (k) is zero, * (k) = C (k) = C (-k). Also, since C (k) is nega- uw '    uw    ' uw uw      ■ * uw    ' ° 
tive at  all values of k until it reaches zero, we may write 

—      r00 
uw - - |*uw(k)   j  dk. 

J o 
Thus from Eq.(63), we get 

—        r00 Vs 
uw = - /  7 (k)[ * (k)* (k)]   dk J uwx /L  uuv ' wwv 'J 

and using Eq. (6^), 

roo r $  (k) $  (k)      -1  ' 
~..7 J  f.- -__-     dk. (65) 

OJo L 1 + o.395(L xkr -I 

Now recall from Eq. (ri?) that, in the surface layer, 
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such that when this is combined with Ec.. (65), we get 

0.31 f ££\ 
7Q =•. —== — v ; g — • (66> 

1 p — 
J-C L 1 + 0.395(1.**)" 

dk 

Thus y can be found for any choice of the <t> (k) and <t> (k) spectra, and the 
o UU , WW 

cross spectrum is obtained from Eq's, (63) and (6t) as 

4> (kVi> (k) 1 / / ? 
. /, \ t ua ' wwv 

* ( k ) = ~7n 1 o 
U W 0 L i J. r\ • J C J K / ' T X l 

(67) 
L 1 + 0 .395(L u

x k) 

Eva lua t ion of 7 as a f r i c t i o n of z has been done us ing the von K^rm£n s p e c t r a 
(Sec . ^ . 5 and F i g . 1 2 ) . 

3.6,5 Cross-Correlation Spectruiu 

Consider as a special case of the general correlation terror of Eq.(3) 
the ten.c;or 

R. .(r ,r ) sR..(r ,r ,0,0). (68) ij x> y' x* y' 

In order to obtain a tensor of true two-dimensional spectrum functions, one would 
Fourier transform this tensor twice, such that 

«> -i2ir(k r + k r ) 
JT x x y y , „ 

tf>. .(k »k ) ~ U / / R. .(r ,r ) e dr dr . (69) U x* y JJ ~y x» y' x y 
— 00 

Similarly, if the correlations Rij(rx)
 i^e Courier transformed once, one gets a 

tensor of true one-dimensional spectrum functions 

00 - i27Tk r p x x 
0 . . (k ) = 2 / R. . ( r ) e dr i j x J i j xJ x 

— 0 0 

as in Eq. (20a). However, suppose now that the two-dimensional correlation functions 
R. .(r s r ) are transformed only once, with respect to r . In this case, the ij x' y x 
results are not true spectrum functions in the sense defined above, but neither 
are they correlation functions. The result of such a transformation is 

W. .(k ,r ) = 2 / R.,(r , r ) 
ij x' y J ij x' y 

-i2?7k r xx 
drx. (70) 

Assuming Taylor's Hypothesi.-;, k may be replaced by k - n/U, and since r = UT, 
X X 
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n°° -i277irr 
Yij (k, ry) = 2 U J ^j(ry,T) e dr (71) 

for homogeneous turbulence. Indeed, if the turbulence is not homogeneous in the 
y-direction, this quantity is a function of the two points y and y^ which are 
separated by r rather than of only r . That is, y y 

r «° -i2TOT 
tyfk, yx, y2) - 2 0 / «y(y1, y2,T) e ar . 

This quantity can also be expressed in terms of a coherence function, defined by 

P I ^Ck , y,» y„)l 
rii (k, y s y„) s ^ — (72) 

' 1 ' 

where <t>i4(k,y^) r e f e r s simply to the power spectrum ®^(k) "the i-component 
obtained, at y . , and similarly for <t^(k, y 2 ) . Physically, (k, y^» y2) ^ y b e 

interpreted as the zero-time-delay cross-correlation (or mean product) of the 
parts of the two velocity components i and j contained in their respective 
spectra at the frequency ks and this has led Davenport (Refs.9 and 10) to use 
the term 'narrow-band cross-correlation', of which 7„(k, y^, y a s defined 
here is the magnitude. It may also be interpreted as the frequency distribution 
of the spatial cross-correlation of the i- and j-components, leading to the term 
•cross-correlation spectrum1 also used by Davenport. Finally, it is pointed out 
that since f.. (k, y. , y0) is a form of cross-spectrum, it may be expressed as 1J X c-
the sum of real and imaginary parts. That is, 

fijrkj yi' y2^ " Cij(k' V2
) T 1 Qij^k' yl» y2^ 

and thus Eq. (72) becomes 

2 v y-\> y J + ^/(k* y.» y2) 
(k, y,3 y,) = ^ ^ — - — . . 

- ' yx) •^(k, y2) 

In the case of homogeneous turbulence, Q̂ _. = 0 and the y^ and y^ dependence is 
replaced by ry such that 

0 C. .2(k, r ) 
7
 2(k,r„) - — 2 (73) 

y <t>. .(k̂ 4>. .(k) 
li' ' ' 

"avenport measured the quantity >uu(k, r ) as defined above for the 
longitudinal velocity components at two points separated laterally across a strong 
turbulent f.l.ow in a wind tunnel (see Ref's. 9 or 22). His results showed that 
for various valuer of r , the data collapsed on a curve given by 
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-ckr 
/ (k. r ) » e   y (7M uuv * y7 

where c ^ 8, For the turbulence in the atmosphere, measurements have shown that 
for separations in the vertical direction, cross correlations of the longitudinal 
component indicate the existence of a similar relationship. That is, if the sep- 
aration in the y-direction as above is replaced by separation in the z-direction 
and the coherence is defined by 

2          C 2 (k, r ) 
r   2  (k, r ) =  -Ü £~ (75) 

then measurements at various vertical spacings have shown that 

-ckr z  z 
7 (k, r ) = e /uuv ' z' 

-c n r /Ö z  z' 
■ e 

£ e-
c10nVÖl0 (76) 

where the coefficients c-n and c are defined depending on whether the velocity Ö 

at height z or U  at z = 10 m. is used. Generally, the value Ü  is preferable 
here, since the increase of U with height means that Ü is different at z. and z 

and thus the question arises as to which value of 0 to use. Davenport in Ref, 10 
quotes values of cin ranging from 5 to 10 for heights from 300 to 830 ft, over 
various types of terrain. The coefficient appears to be independent of height, 
but seems to be generally smaller for rough surface conditions such as urban areas 
than for smooth surfaces. 

Surry (Ref .12) investigated grid turbulence in a wind tunnel and found 
that a modified version of the Davenport relation of Eqf (7^0 better fits his 
data for 7 (k, r ) than the original expression. This modified empirical relation 
ls      uu   y 

-(ckr )a 

7uu (k» V "^ e   y (77) 

where c «= 6,U and a » l,k.    In addition, Surry points out that a curve of this 
form with a = 1.4 and c = Ö provides a better fit to Davenport's own data than 
Eq. (7^). Finally, Harris (Ref.58) has shown that the data is better represented 
by a more complex analytical expression based on homogeneous Isotropie theory. 
It can be shown for the von K^rm£n model that 

5/6 11/6 

W». V ■ TTJTS) {(i )   b/e^- (I)    Ki/6(4        (^ 
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where ri = 2rr U „ \J2 + n2 /LU and n = nL/U.,rt. The parameter L is a length scale y 10 v ' '10 -
and K and K, are modified Bessel functions of the second kind. If n » 2, 

5/6 1/6 
which is the case for most of the frequency range, the above expression for TJ 
becomes 

T) = 27mr y/U = ^ 7 T k r y 

and direct comparison of Eq. (78) with the above empirical relations becomes quite 
simple. This comparison is shown in Fig. 9> along with experimental results meas-
ured in wind tunnel grid turbulence by Bearman and quoted by Harris in Ref. 58. 
It is seen that the theoretical expression is superior since it accounts for the 
negative portions of the curve, while the empirical curves do not. Indeed, neither 
Surry's r-cr Davenport's experimental data showed negative results, presumably 
because they lound results only for T] up to ~ 2.2. 

As for atmospheric data, Harris compares data measured at points separated 
vertically above the surface with the corresponding theoretical expression 

5/6 11/6 

" 7 ^ { ( ! ) S/6^ ' ( I ) V(n) } 
where n « 27rttr . His r e su l t s show very good agreement for heights above the surface 

z 
layer, but deterioration of this agreement within the surface layer. This result 
is not at all surprising, since it is an indication of the closer adherence of 
atmospheric turbulence to isotropic relations above the surface layer than in it, 
and this feature is indicated by virtually all the other turbulence data. 

3.7 Integral Scales of Turbulence 

Integral scales of turbulence have been defined in Sec. 2.2 and of the 
nine scales defined by Eqs.(l2), the scales L x, L x and L x of Eq. (12(a)) are of 

U V " 

the most interest. In order to obtain estimates of these scales from experimental 
data, three basic methods can be used. The first of these is what might be called 
the direct method, since it involves obtaining the actual correlation curve in 
the scale definition and integrating to obtain the area under it. In the case 
of the above scales, the single point time correlation curve is generally measured 
and Taylor's Hypothesis assumed to convert the time scales so obtained to 
length scale". Thus, for exa.inp.le, from Eq. (l6) 

/

OO - p 00 

T>dT - / *UU ( T ) dr-
o u o 

The difficulty that often occurs with this approach is that at the low frequency 
(large T or spatial separation) end, the correlation does not approach zero 
asymptotically. Instead, due to the existence of very slow variations, the 
correlation obtained from a finite recording period has undulations about the 
zero axis at the low frequency end (viz.Ref's. 2b and 48). One attempt at avoid-
ing this problem is the use of the second method for obtaining scales. In 
this method, one uses for the scale the value of the space (or time) separation 
at which the normalized correlation curve has dropped to a value of l/e. Thus 
assuming the correlation is a true exponential, such that, for example, 
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-r /L X 
x' u 

R (r ) » e 
uux x7 

x 
as in Eq. (5^)» then the above value of r is the true scale L . As one would 

expect, however, this ic ucualXy not the case, and some form of correction to this 
value is generally requlredf This correction usually requires the application of 
the first method at least a few times. 

The third method for obtaining integral scales is from the one-dimensional 
power spectra. In all the model spectra, there is a free scale parameter which 
locates the curve on the frequency axis, and for the von K^rnÄn or Dryden models, 
this parameter is the true integral scale L x. For any particular model, this 
scale parameter can be related to the value k i at which the non-dimensionalized 

spectrum has its maximum value. For example, from the von K£rm£n model for the 
longitudinal component spectrum, Eq« (6l), we get 

Lu
x = 0.lk6/^u (79) 

while the Dryden model of Eq.  (6ü) gives 

LU
X - l/277kp

u = 0.159Ap
U. (80) 

For the vertical component models, Eq,  (56) yields 

and from Eq, (55) 

Lu
X » 0,212/kp

W (81) 

Lu
X • 0.23VkF

W. (82) 

The lateral component models will of course give the same expressions as Eq's, 
(8l) and (82) with k w replaced by k v.    Suppose now that either the von Karmin 

X^ x^ 

or the Dryden moael is assumed to fit the experimental spectral data for a 
particular component.    The scale can thus be simply obtained from the location 
k ^ of the peak of the experimental curve by using the appropriate expression 
aSove,    This method for obtaining scale estimates is used quite commonly, but 
it has two major drawbacks.    In the first place, the peak of the experimental 
data is not always clearly defined, particularly for the longitudinal and lateral 
components, and it can therefore be difficult to obtain a good estimate of k    . 
In addition, the peak is generally located near the low frequency end of the 
spectrum, where the data Is not as reliable as it is at larger frequencies, and 
further errors may be introduced. 

In obtaining scale values by the third method outlined above, con- 
siderable care must be exercised in interpreting exactly what has been obtained. 
As previously stated, both the von Karmin and the Dryden spectral models are 
for isotropic turbulence, and the vertical and lateral component models axe 
written in terms of the longitudinal component scale L x on the assumption that 
the isotropic relation L x = 2L x = 2L x is valid.    However, if the turbulence r U V w * 
is not isotropic, the isotropic models may still fit the experimental data quite 
well, but the above scale relation is not valid.    In particular, this is the case 
in the lower atmosphere.   Thus if one applies Eq.  (8l) or (82) to experimental 
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x data for the vertical velocity component, it is in fact not that has been ob-
tained, but rather 2 L^, and from this data one can obtain information only about 

the vertical component, not the longitudinal. This point explains why Taylor 
\.Ref.5l), for example, concludes that Lu

x is proportional to height z from the 
surface up to z = 1000 ft. when most results indicate a much weaker variation 
with height. Taylor's results are based on vertical component data taken from 
Saunders(Ref.20) and Panofsky and McCormack (Ref.29) and fitted with the von 
KarmCr: vertical component model. The data shows that k w is proportional to 

f x -P 
height, such that while Eq. (8l) indicates should thus be proportional to 
height, it is in fact L x that is proportional to height. No conclusions can be 

V W X X 
made about except perhaps at larger heights where = 2Lw is a more reason-
able approximation. Probably the best way to avoid confusion here when using the 
von Karm£n or Bryden models is to replace L^x by 2L^X in the lateral component 
equation and by 2L x in the vertical component equation. Thus for the von Karman 
model, Eq's. (79) and (8l) become 

L X = 0.lU6/kpU, Lw
X = 0.106/kpW (83) 

and for the Dryden model, Eq's. (80) and (82) become 

L x = 0.159A u» L x = 0.117A w« (8M u ' p ' w ' p 
x In the literature, the bulk of the data available is for the scales L 

X and Lw . As one might expect, these scales are functions of height, thermal 
stability, and surface conditions since physically they represent the size of the 
predominant eddies in the turbulence. As with the longitudinal and lateral com-
ponent variances, the effect of surface conditions is not adequately expressed by 
roughness length, since large scale non-uniformities such as hills and mountains 
have a significant influence on the scales. For example, the results of Berman 
(Ref.UO) show little effect of roughness length on scale for uniform terrain 
while Lappe (Ref.28) indicates a distinct increase in scale with increasing sur-
face non-uniformity. Lappe also shows that the effect of the surface is felt 
most strongly at lower heights, and that as height increases toward 1000 ft., 
terrain type becomes less important. This tendency was also found by Gunter et 
al (Ref.̂ 3) whose results show that increasing surface non-uniformity.increases 
scale at z = 250 ft. but has little effect at 750 ft. Conversely, an increase 
of scales with decreasing stability was found by Gunter et al to be quite noticeable 
at z = 750 ft. but not at 250 ft. To summarize, then, it may be concluded that 
increasing surface non-uniformity tends in general to increase integral scales, 
but more so at small heights than at large; decreasing thermal stability tends to 
increase scale, but more so at large heights than at small. Also, roughness 
length has little effect on scales, while increasing large scale non-uniformities 
of the surface tends to increase them. 

As for the effect of height on scale, it is generally agreed that all 
of L X, L x and L x increase with height, although not necessarily in the same 

u ' v w 
manner. The variation of the scale L^x of the vertical component is the one 
which is most consistently agreed upon. Figure 10 shows the results of most of 
the investigations of recent years, for neutral air over flat terrain unless 
otherwise noted. In all cases, the scales were obtained by the spectral fit 
method, and in the few cases when only the spectra were given, Eq. (83) was used 
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to determine L . It Is noted als^o that for the data of Ref's. 20, 21 and 20. the 

published valuer for L  were divided by c1 and used as L x since these values wore 

determined from vertical component data. It is evident that the scale L  is in 

fact proportional to height as suggested previously, and a value of 0,'*0 for the 
constant of proportionality places the curve in the centre of the data within a 
reasonable amount of scatter. Thus it is suggested that the relation 

L X = ü.i4 z (85) w 

gives a reasonable estimate of this scale for heights up to 1000 ft, in neutral air 
over relatively flat terrain. It is also pointed out that if one considtrs only 
the region outside the surface layer in Fig, 10 (i.e., t  « 200 or 300 ft, to 
z = 1000 ft.), the variation of L x with height appears to weaken somewhat, as 
suggested by Busch and Panofsky (fief. JU). The additional line shown in this region 
is given roughly by 

x     ^«73 
Lw » 2,1 z (86) 

and this may fit the data slightly better in this region than the L - O.b  z 
relation. 

The results available to date for the scale L  at various heights in 

neutral air are shown in Fig. 11. Here again, most of the data were obtained by 
fitting spectral models to experimental data for the longitudinal component. It 
is obvious that there is considerably greater scatter in this data than in those 
for L x. However, some definite conclusions can be drawn. First, it can be seen 
that there is a distinct increase in L x with height over the entire range 0-1000 
ft. Also, this increase with height is weaker than that for L x, with Berman 

(Ref.^0) suggesting L x oC z0'25and Webb concluding L XoC z0,5. Thirdly, the data 

for the surface layer is considerably more conclusive than that for the remainder 
of the planetary layer. In the 0-200 ft. range, most of the data falls within 
the shaded band shown. The centre of this band is given by the line 

y 0,47 
Lu

x = 22,7 z (87) 

and the extremities of the band are roughly 50-6056 away from this line.    Since 
this reJition suggests more accuracy than is reasonable considering the scatter, 
the relation 

L X = 20  Sz (88) 

is also shown in Fig. 11, and it is seen to reasonably indicate the location of 
the band. Thus it is suggested that Eq. (88) be used to estimate L x in the sur- 
face layer under these conditions, realizing that variations of the size shown 
are unavoidable due to the complexity of the atmosphere. Above 200 ft,, Fig. 11 
shows that Eq, (88) can also be used with a scatter in the data similar to that 
below 200 ft. However, it is to be noted that over the 200-1000 ft, range, a 
stronger or weaker variation coulc t^o the case, as the data are not too conclusive. 
In particular, the line L x - 0,8 z is  seen to fall within the scatter band, as 

is the line „, 

LU
X = 4.2 z  . (89) 

x    x 
Both these lines represent the Isotropie relation L  - 2h      based on the r r u    w 
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relations of Eq's. (85) and (86) for L X in the 200-1000 ft. range. However, the 
X ^ line L = 0.8 z is seen to be completely unacceptable below z = 200 ft. Thus, 

here again, as from other observations, it is seen that if any form of isotropy 
exists in the lower atmosphere, it must certainly be outside the surface layer. 

In Fig. 11, the fact that Lu
X increases with height is indicated by 

most of the data shown, including that of Davenport (Ref.37). This is contrary 
to the conclusion of Elderkin (Ref.I7) and Fichtl and McVehil (Ref.39) who state 
that Davenport's data showed the peak of the longitudinal spectrum, and thus the 
scale L , to be invariant with height. However, the invariance of this data 
with height results only from the fact that the variable n/U^Q was used as the 

abcissa, where U-Q is the mean velocity at z = 10 m. Indeed, as Davenport himself 
points out in Ref.10, if n/U were used as the independent variable, where U is the 
mean velocity at height z, then the location of the peak,which would now be k^u 

as previously defined, would indeed show a variation with height. Thus the 'scale' 
L used by Davenport in Ref.10 (and which was equal to 1200 m. in Ref. 37) and 
also by Harris (Ref's. 58 and 62) is constant with height, but only because it 
was defined using n/U^. By comparing Harris' spectral model with that of von 
Karman, this scale may be found in terms of the true integral scale as 

and it is thus easily seen that since L is constant, 

using Eq. C+H). Thus Davenport's results do not indicate constant longitudinal 
scale but rather that this scale increases with height in the same way as the 
mean velocity does. 

x Very little data is available for the scale ly , and few definite 
conclusions can be drawn. Gunter et al (Ref.*+3) found that overa&llsSfcabilities 
and terrain types, the average value of Lv

x was 180 ft. at z = 250 ft. and 
230 ft. at z = 750 ft., these values being roughly equivalent to those found 
for L x and half the values found for I. x. The spectra obtained by Fichtl and 
McVehil (Ref.39) were used to find that in neutral air, 

0.1+2 
L = 35.2 z 
v 

for z ~60-500 ft., indicating a variation with height similar to that for Lu 

but yielding values that are roughly the same in magnitude as L x rather than 
fj x. Elderkin's data for z = 10-20 ft. yield L x « z, such thMt L x is larger w v v 
than the values of L x obtained from his data but smaller than the L x values w u 
so obtained. Thus about all that can be said about L x is that it increases 

v x with height, and above the surface layer it is probably roughly the same as Lw . 

As for the remaining scales defined by Eqs.(l2), little information is 
available. Panofsky (Ref.2̂ ) gives some information based on correlation curves 
measured over smooth terrain (z =1 cm) at z = 6.5 m. From so-called 'semi-scales' 
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obtained from theoe correlations, he found that. In atabie air, L1J ~ 8 L , a 

result which waa also 1'ound by (Jrant (Ret',?';) in u wind tunnel boundary layer. 
Thus the eddies are elongated in the mean wind direction in stable air,and also 
presumably in neutral air. The lateral component jscale was also found to be 
elongated in the mean wind direction in stable air, with L x ^ 3 L ^j and also 
L y ~ L y. In unstable air, however, Panofsky's results Xhow an entirely 

different situation, in that L  was found to be increased by a factor of about 

six over the stable air value, and all scales were roughly the same size, or 
LX ~Ly~iJ

x~Iiy. Finally, Panofsky also found L x and L V much smaller uuvv        ** ww 
than the other scales at this height for both stable and unstable air, a result 
not surprising considering the nearness of the surface. Thus the anistropy of 
the turbulence very near the surface is emphasized by these results, in addition 
to the strong effect of stability. Panofsky sums up his findings by stating that 
on a clear day (i.e., unstable air) the scales L x, L y, L x, and L y are all tf\» / uuv       v 

large and of the same order of magnitude, while at night (stable air) the scales 
are much smaller and that of the u-component is much smaller across the wind than 
along it. For a further qualitative description of the eddy structure in the 
atmosphere, the reader is referred to Ref. kt  page 210. 

IV. MATHEMATICAL MODEL OF THE PLANETARY BOUNDARY LAYER 

As a summary to the preceding description of flow characteristics in 
the planetary layer, a mathematical model is suggested, based on certain simpli- 
fying assumptions. This model is intended to be a compromise between precision 
and simplicity, and the validity of any part of it can be determined by referring 
to the appropriate section of the preceding discussion. 

U,l   Assumptions 

(1) The mean wind velocity is assumed to be strong enough such that the 
atmosphere may be considered neutrally stable. 

(2) Taylor's Hypothesis, or the assumption of frozen flow, is assumed to 
be valid over the entire gust spectrum range of interest (A = 0/n~50-7000 ft). 

(3) The gross features of the terrain are assumed to be relatively uniform, 
such that roughness length z represents the surface effects adequately. 

{k)    The flow is assumed stationary for periods at least as long as the 
record length used to obtain mean velocity values. 

(5) The flow is assumed to be homogeneous in any horizontal plane. 

U.2 Mean Velocity Profile 

The mean velocity through the entire planetary layer (z ■ 0 to ~ 2000 ft,) 
is given by 

Ü/ÖG = (z/zG)
a 

where z„ and a are given in terms of surface roughness by Fig. 1 and the gradient 

wind U- is determined from local meteorological data. For the surface layer alone 
G 

(z » 0 to    ~200 ft.) the mean velocity is given by 
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Ü/Ü    = 2.5 In (z/z ) " o 

where Ü    is  the friction velocity. 

^.3    Reynolds Stresses 

The ratios of the velocity component variances in the surface layer are 
given by 

u'/vVwVUT « 2.5/2.0/1.3/1 

and the turbulence intensities are 

u' 1 ll = 
Ü 

0.80 ,  and    — 
Ü 

_      0.52 

U ln(z/zo) ln(Z/zo) ln(z/zo) 

Above the surface layer,  the intensities all tend toward the same value,  this value 
being determined by the turbulence intensity in the free atmosphere which is 
assumed to be zero. 

The Reynolds Stresses uv and vw are assumed to be zero throughout the 
planetary layer. In the surface layer, the uw Reynolds Stress is determined by 
the variance ratios specified above,  such that  (Eq.52) 

uw / u'w' = -0.31. 

Above the surface layer, uw decreases in magnitude toward zero. 

k.h    Power Spectra 

The von Kdirmfin equations are suggested as the model for the velocity 
component power spectra. The appropriate (anistropic) values of integral scale 
and variance must be used, however, as specified. Thus the power spectra are 
given by 

*uu(k) = ^ •   Lu x 2   3/6 
(90) 

uu [i + 7o.7(Lu
xkr r 

~2 1 + l88.M2Lv
Xk.)2 , 

*    (k)  = v.k L X i rrjr-  f 
V   1 [1 I 70.7(2L xk)2   ] WS    / 

,1 + 188.U(2L xk)2 

(91) 

*WwW - ^' k\    r.   —-r7 O^J, t (92) 
[1 + 70.7(2Lw

Akn 

k0 



•4.5    Cr os B-Spectra 

The cross-spectra 4*   (k) and $   (k) are assumed to be zero In this model, 
uv      vw 

along with the ^uad-spectrum O(k), The cross-spectrum 't (k) is thus equal to 

C (k) and is given in the surface layer by 

*uw 00 
4> (k) * (k) 

'0 L 1 + Ü. 395(Lu
xk)' 

1/2 

(93) 

or in non-dimensional terms, 

7    (k) -         2  
UW [1 + 0.395(L1

xk)2 ] W * (9M 

The value of 7     can be determined from Eq. (66) using the power spectra of Eqs. (90) 
and (92) and the scale values given in the following section. The variation of 
70  with height Is determined completely by the ratio L 

X/L x, and this variation is 

shown in Fig.12 for L X/L X as found from Eqs.(95) and (96). In the figure, 7     is 

shown to be constant with height above the surface layer, since L X/L x = 0.5 * a 

constant. In fact, however, y   will decrease as uw/u'w' decreases, since, as indi- 

cated by Eq. (66), y    is proportional to this value. 

U.6 Integral Scales 

For the planetary layer as a whole, assume L  - L  and the scales L 

and L  are given by 

and 

L X = 20>/7 
u 

L X = 0.1* z . 

(95) 

When the region above the surface layer is being considered alone, the expressions 

Lu
x = k.2 z0,73 (96) 

and 
L X = 2.1 z0'73 

w 

are suggested, and thus in this region,  the Isotropie relation 

is valid. 

LX = 2LX = 2LX 

V. V w 

1*1 
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