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SUMMARY

Considerable information is available to date concerning the charact-
eristics of the flow in the planetary boundary layer, which comprises roughly
the lowest two thousand feet of the atmosphere. Unfortunately, in many in-
stances, the results from different sources do not always agree. This is in
part due to the extremely complex nature of the flow and as a result, some
confusion exists as to the exact description: of the planetary layer. For
this reason, a fairly extensive survey of the existing data has been carried
out, and the results of this review are presented herein. The planetary layer
is described in detail with respect to both mean velocity and turbulence, and
the effect of thermal stability and surface conditions oni these characteristics
is discussed. Finally, a simplified analytical representation of the flow in
the planetary layer is presented.
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NOTATION

constants relating fluctuating component variances to
friction velocity (Sec. 3.5)

constants used in cross-correlation spectrum expressions

(SEC. 3.6.5)
co-spectral density function (Sec. 2.4)
four-dimensional spectral density tensor (Sec. 2.4)

total mean turbulent kinetic energy

k.2
= k"*z.z

longitudinal correlation coefficients (Sec. 2.1 and
2.5)

gravitational acceleration

lateral correlation coefficients (Sec. 2.1 and 2.5)
unit vector in x-direction

=41 ; also, an index referring to u, v, or w

unit vector in y-direction

an index referring to u, v, or w

von Kfrnfn's constant =~ 0.l

eddy viscosity

reduced frequency or wave number = n/U cycles per foot

value of k at maximum value of the non-dimensionalized
spectrum of the 'i' velocity component

wave number vector =i k_ + jk_+ k kz; also, unit
Tec?or in z -direction y

k
Prandtl mixing length

length scaele defined by Davenport and Harris (Secs.
3.6.5 and 3.7) L
U (30/dz)T

T

scaling length defined by W

integral length scales of turbulence (Sec. 2.2 and 2.5)

frequencies, cycles per second
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u(t), v(t), w(t)

ul, vl’ wl

Xy, ¥y 2

4

7o
2

(n)

713’

r

A

pressure

quadrature spectrum (Sec. 2.4)

spatial separation vector = i r.+ d ry +k rz;|£|5 r
gradient Richardson Number (Sec.3.2)

general double velocity correlation tensor (Sec. 2.1)
one-dimensional correlation tensors (Sec, 2.1)
Eulerian time-delay correlation tensor (Sec. 2.1)
time

temperature

integral time scale of turbulence (Sec. 2.2)

total velocity component in x-direction = U + u(t)
mean velocity in x-direction

turbulence velocity vector = i u(t) + jv(t) + k w(t)
friction velocity

gradient wind velocity (Sec. 3.l)

fluctuating velocity components in x, y and z directions,
respectively

rms values of fluctuating velocity components;

u' = Jﬁzzvv's 7 , W'E
Cartesian coordinate axes
height above earth's surface
roughness length (Sec, 3.U4)
gradient height (Sec. 3.1)

mean velocity power law index (Sec., 3.4); also, angle
between mean wind and geostropic direction

lapse rate = -dT/dz

constant defined in Sec. 3.6.4

coherence function (Sec. 2.4)

magnitude of cross-correlation spectrum (Sec.3.6.5)
dry adiabatic lapse ratz =~ 1°C/100 m ~ 5.5°F/1000 ft.
wavelength = 1/k = U/n, feet

vii



¢1J(n),¢1J(kx), etc.
0,,(6),0] ,(4),0] (8)
¢ﬁ(k)

‘1’1.j

el O €

o

air density

potential temperature = temperature which a volume of
air assumes when brought adiabatically from its exiscting
pressure to that at the earth's surface

one-dimensional spectral density functions (Sec. 2.k)
one-dimensional spectral density functions (Eq. (29))

power spectrum of total velocity component in x-’irection

function related to cross-correlation spectrum (Sec.

3.6.5)

incremental time-delay; also shear stress
surface shear stress

frequency, radians per second, = 2/m
reduced frequency, radians per foot, ®E 27k
non-dimensional form of a

time average of a

viii
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I. INTROLDUCTION

In the past few years, it has been increasingly important to know in
detai. the characteristics of the atmosphere at low altitudes. The present empha-
sis on low-flying and V/STOL aircraft is in part responsible for this require-
ment, as is the advent of rocketry, with its large launch vehicles. 1In addition,
the continuation of the trend toward taller and more radically shaped buildings
and structures necessitates a good simulation of the fiows at these levels in order
realistically to determine their response tc these flows. The prominence of the
pcllution control issue in recent years has also added weight tc the requirement
cf achieving a proper description, and ultimately simulation of the planetary
boundary layer.

To date, considerable data has been gathered in both the aeronautical
and meteorological disciplines. While the information is by no means complete,
it is possibie to draw many conclusions about the nature of the planetary layer,
and in particular the turbulence therein. Due to the extremely complex nature
of the flows, however, there is sometimes considerable variability in the con-
clusions that have been drawn. For example, there have been widely scattered
conclusions about the magnitude and variation of the integral scales of turbu-
lence through the planetary layer. This has been due in part to a lack of rigor
in determining exactly what scales are being obtained in some cases, and in part
to the refusal of the atmosphere to submit easily to simple descriptions.

It is the purpose of this review tc describe and summarize most of
the existing data on the characteristics of the flows in the planetary layer, and
to attempt to clarify some of the discrepancies that have occurred in the past.
In addition, in light of the data available, a simplified mathematical model is
suggested to represent the flows.

II. DEFINITICNS AND THECRY OF TURBULENCE

In the literature on turbulence there is on the whole a fairly wide
range of notation used. In order to avoid confusion and to clarify precisely
what is being referred to in *his review, the notation and definitions of turbu-
lence theory used in this report are presented in some detail in the following

pages.

2.L Correlations

P
\ul




Consider the two arbitrary points P_ and P separated by a vector
r 1 re bi] ry +k r, in a homogenous three-gimensional turbulence field as shown

above. Let the flow be moving with mean velocity U along the x-axis of a fixed
Eulerian reference frame of which P, is the origin. The points P, Py and P3 are

the projections of P on the coordinate axes. The turbulent motion at any point
in the field is represented by the vector U(t) = iu(t) + jv(t) + kw(t), with
appropriate subscripts, where u(t), v(t) and w(t) are the longitudinal, lateral
and vertical fluctuating velocity components, respectively. Thus the total
(Eulerian) velocity in the x-direction at P, is

Uo(t) = U(tl, T) + uo(t)

where U(tl, T) is the mean velocity and is defined by
) . t1+ T
U(tl, T) =55 f Uo(t) dt (1)
t,-T
and is the same at all points in the field due to the assumption of homogeneity.

The mean of the fluctuating component u (t) as defined by Eq. (1) is necessarily
zero, as it is for the other two componénts vo(t) and wo(t) at P since there is

mean motion only in the x-direction, and similarly for any other points in the
field. The three fluctuating components, in addition to U (t), are random func-
tions of time, and as such are said to be stationary if théir statistical prop-
erties are independent of time in the limit as T - o, Thus for stationary flow,
U(tl, T) is independent of tl and the mean velocity is given by

- 1 T
U= 1lim 7 f U (t) dt (2)
To _T °

and thus
Uo(t.) =0+ uo(t).
Stationarity of the velocity components will be assumed throughout this review.

Any pair of fluctuating components at either P or P which are separa-
ted in time or space can be multiplied and averaged to form a (double) velocity
correlation functior.. The complete set of possible correlations is given by

(r, ) = Rij(rx’ry’rz’T) 1,§ = u,v,w

R,
1] - 3
gTo(t) U(t +7) el

which is a second order tensor whose components are functions of the four
variables shown and which is usually called the 'general correlation tensor!.
As an example of one of the components of this tensor, consider i = u, and

J = v. Then



m

Ruv(rx’ ry’ rz’ T)

uo(t) v(t + 1)

T
lim = f u (£) v(t + 7) dt

T —bio0 et ‘7
1 T
= %im o /\ u(0,0,0,t) v(rx,ry,rz,t+ T)dt (4)
- 2 L

since uo(t) is the component at P_ and v(t) is at P,

It should be noted that in defining the mean velocity and correlations
above, t ime averages of the velocity signals have been used, since it is these
averages that are actually measured in practice., However, it may in some cases
be mathematically advantageous to consider ensemble averages rather than time
averages. For example, if U (t) represents an ensemble of N records of the velo-
city U(t) where K = 1,...N, $hen the ensemble average of U(t) is defined by

N
7 = I},n—n’mz U(t,)
K=1

where U/t) is assumed stationary such that U is independent of the arbitrary point
in time, tl. In the special case when the time-averaged mean velocity as defined

by Eq. (2), as well as any other statistical properties of U(t), are identical
regardless of which of the K records of U(t) is used in obtaining them, U(t) is said
to be ergodic. In this case, time averages are equivalent to ensemble averages

such that the mean. velocity as defined by Eq. (2) is identical to the ensemble
average defined above. In practice, ergodicity of the velocities is usually assumed.
Note also that ergodicity requires stationarity, but not vice-versa.

Of the general correlation tensor of Eq. (3), we are particularly int-
erested in five special cases. These are

Rij(rx’oﬁoio)’ RiJ(Oersoao)’ Rij(oso:rzao)’
ij(rx’o’o’ ).
The first three of these special tensors are zero time-delay spatial cross-corre-
lations between the turbulence components at P_ and those at P., P, and P_,
respectively, as shown in the above sketch. Tﬁey are given ty%icaily by
~ -
u&(t)ui(f) u;(t)vl(ﬁ) uo(t)wl(t)
R 0,0,0) =
AL A ot e B O © B PN €9

Lwé(t)ul(t) RO wo(t)wl(ty-

RiJ(O,O,O,O) and R

=Ry ,(r,) (5)

and similarly,
RiJ(O,ry,O,O) = Rij(ry)

(6)
and R,,(0,0,r,,0)

Rij(rz)’



The fourth tensor is the well-known Reynolds Stress tensor and is given by

—-—

u (t) uo(t)vo(t) uo(t)wo(t)
Ri'j(o,o,o.o) = vo(t)uo(t) v02(t) vo(t)wo(t) E Rij. (7)
_wo(t)uo(t) W (t)v (¢) w02(t) ;

The diagonal components of this tensor are of course the familiar mean-square values

o?_;“e ﬁmty onents, The root-mean-square (rms) values or variances

and are rewritten as uo', vo' and wo', respectively, for simplieity.

Firally, the fifth special tensor is important because it in fact represents the
single point time-delay correlations that are measured by a probe at a fixed point
such as Po in a laboratory (Eulerian) frame. That is, in a time increment T, the

mean flow moves along the x-axis a distance Ut and if we simply set rx = ﬁT, ve
obtain

Rl,j(rx’o’o"r) = Rij(ﬁT’O,O:T) EﬁiJ(T) (8)
wnere _ _
uo(t)uo(t+7) uo(t7V;(f+T) uo(t)wo(t+T)
R;5(1) = TR € PN €20 BTN €9 2N €220 BN € PN €250 (9)
wo(t)uo(t+T) wo(t)vo(t+7) wo(t)wo(tﬂ)J

and is obtained by correlating time-delayed signals as measured by a probe fixed
at P . The diagonal components of this tensor are called 'autocorrelations' since’
the components are being correlated with themselves. It is also to be noted that
from Eq(8) for T O (R ( ) may be related to the Reynolds Stress tensor of

Eq(7); that 1sﬂ = Rij'

Generally, the various correlation functions defined above are normalized
to yield correlation coefficients. This normalization is done using the appropriate
rms values of the velocity components such that, for example, the normalized form
of the u-v correlation function defined in Eq(L) is
= Ruv(rx’ry’rz’ ™)

R v(rx’ry’rz’T) = TURTL

and similarly for any of the other correlations. The only exceptions to this
rule are the three diagonal components of the Reynolds Stress tensor. Since
these components are themselves the mean-square values of the velocities,
normaication as above necessarily yields unity and is therefore of no use, For
this reasor, the roots of_these components are simply non-dimensionalized either
by the friction velocity U » Or by the mean velocity U in which case the familiar

turbulence intensities glven by u '/U v '/U and w '/U are obtained.

In general, the diagonal components of the spatial correlation co-
efficient tensors are referred to as either 'longitudinal' or 'lateral' corre-
laticn coefficients. This nomenclature derives from the direction of the velo-
city compcnen'. being correlated at the two points with respect to the vector r
separating the points, If the component is parallel to this vector, the
correlation is called longitudinal and the function f(r) is used to denote the



Al

s
coefficient, where ) 2 2
r:lrl-':'r +r +r H
= X Yy Z

if it is perpendicular to r, the correlation is called lateral and the function g(r)
denotes the coefficient. Thus there are three longitudinal correlation coefficients

giver hy

14

£,(r) = R (r),
£,(r,) = ﬁw(ry), (10)
and fw(rz) = ﬁ;w(rz),
and six tateral ccefficients given typically by
g,(r) = R _(r), gf(r) =R (r), (11)

and similarly for gu(ry), gw(ry),gu(rz) and gv(rz).

2.2 Integral Scales

Au integral or 'macro-scale' of turbulence can be defined for any
correlation coefficient.of any of the special tensors defined in the previous
sectior except the Reynolds Stress tensor. The scale is defined as the integral
of the correlation coefficient over the positive range of its independent vari-
able, and it can thus be either a length scale or a time scale. Ope can there-
fore defire four scale tensors corresponding to the four tensors R,

(r ’
R4j(r ), R, (_rZ) and &i (). However, only the diagonal componentslaf ¥hese tensors

i
are of major interest, and in the case of the first three tensors, one obtains
nine scale lengths defined by

[>¢]
1= Ry, (=)
®© ~
7 Efo Ryy(r )ar, (b) (12)
2 <t
and : L E‘[; Ry, (r,)ar , 1 = uv,w. ()

From the ﬁ‘j(T) tensor, the three time scales of importance are given by
EY 0
X = R,.(7) dT (13)
i o ii

and these time scales can be related to the length scales Lix through the use of
Taylor's Hypothesis (see below).

As with the correlation coefficients of Eqs{10) and (11), the length
scales of Egs(12) are referred to as longitudinal or lateral scales, the criterion
logically being from which type of correlation coefficient they are obtained.

Thus from these equations it is seen that L X, L ¥ and L 2 are longitudinal

v W
scales, while the other six scales of Eqs(lgz) are lateral scales.

2.3 Taylor's Hypothesis

Tayior's Hypothesis provides a time-space transformation which allows
spatial -rariations in the turbulence field to be expressed in terms of time



variations at a fixed point in the field. The hypothesis states that in a Lagrangian

reference frame moving with the mean flow, there is no time variation of the comp-
onents - that is, the field is 'frozen'. Mathematically, this may be stated as

9/t = -Ud/dx (14)

and the hypothesis is made under the assumption that U >> u'. The physical inter-
pretation of this is that the time fluctuations at a fixed point in the field such
as P, can be imagined to be caused solely by the entire field being frozen at a
particular instant and convected past the point with the constant velocity U. The
velocity fluctuations over a period of time at the point will then be identical
with the instantaneous distribution of the velocity u (t) along the x-axis through
thie point, These physical implications will be furth@r discussed in the following
section.

In terms of the previously defined correlations, Taylor's Hypothesis means
that RiJ(E,T) is now replaced by Rij(g). Thus the time-delay correlation of Eq(8)

may now be written
Ri,j(T) = Ri,j(rx’o’O)
which is identical to the spatial cross-correlation R, .(r ) of Eq(5). Thus we
may now write R (1) = R (r ) 1t x
ij ijt x

or ﬁij(T) ﬁid(rx), r. =07 (15)

X
and Rij(rx) may be determined simply by measuring the velocity signals at a fixed

point and obtaining the time-delay correlations of these signals. Using this Te-
sult and Eqa(l2a) and (13), it is now possible to relate the scales Lix and T,7.
That is,

X ® ~ *® - - X
1 F - [ Ryt = [ R0 atn - o (16)
o o

Strictly speaking, Taylor's Hypothesis was made for homogeneous, iso-
tropic turbulence, although it has been found quite reasonable for non-isotropic
uniform flows. Its application in shear flows, however, requires further con-
sideration (see Sec. 3.3.4).

2.4k Spectral Density Functions

Associated with any correlation function is a corresponding spectrum
function defined as the Fourier Transform of the correlation. Thus for the
general correlation tensor of Eq(3), one obtains a tensor of spectra given by

-i2m(k.r + n'T)

Eij(g,n') = 16 [[o/ifaij(z,f)e dr dv (17)

where k = i kx gl ky =k kz is the wave number vector corresponding to the sep-
aration vector r after the transformation. Writing Eq(17) out in full gives
-i2m(k.r +kr +kr +n'T)
XX yy zz

[¢¢]
Eij<kx’ky’kz’n ) = lb\[[[]\Rij(rx’ry’rz’ T)e drxdrydrsz.
- (18)



The tensor (k n') is a tensor of four-d.mensional spectrum functions and can of

course be usei to regain the correlation tensor through the inverse Fourier Trans-
form such that

iem(k.r + n'7)

Suppose now that we insert in the above equations the relation r.= U7
which was used to relate r and 7 in the previous section. Then Eg(18) betomes

® -ien[(k_+n'/U)r_+k r +k r ]

. . X X yy 2z
! = R
Elj[(kx4 /U),ky,kz] 8\[]]&Hj(rx,ry,rz)e drxdrydrz

New let n = kxﬁ + n'. Physically, the frequency n represents the overall time

fluctuations as seen by an observer at a fixed point such as P_ while the flow
sweeps by with mean velocity U relative to the point. It is tBerefore the
requency which would be measured in an experiment by a probe fixed at P , and

is the sum of the two frequencies n' and k U The frequency n' is that whlch
would be seen by the observer at a fixed point in a Lagrangian frame moving
with the fluid. 1In this case, the relative velocity between the observer and
the flow would be zero such that n = n'. The remaining frequency ka represents
the time fluctuations that are due entirely to the flow field being ccuvected
past P, with the relative mean velocity U. In fact, if U is large enough such
that k U >>n', then n = k U and this is none other than Taylor's Hypothesis.
That Lf, if the flow werextruly 'frozen', n' would be zero and n = k B2 ‘Thus i
can be seen that the validity of Taylor's Hypothesis depends on the Felative
velocity between the observer and the flow field, and if this velocity is very
small such that n' is of the order of k U then n' cannot be neglected with

espect tc k U and the frozen flow hypothesis is not valid. Skelton (Ref.6)
suggests tha% the minimum relative velocity for the hypothesis to be valid is about
cne-third of the mean flow velocity.

Returning now to the spectrum tensor, we may write
-iew (n/U)r tkorotkr ]

0]
g yy
't/ k =
Elj.n/t,ky, z) B‘KXYNRiJ(rx,ry,rz)e drxdrydrz
—00

and if Taylor's Hypothesis is assumed (n' = 0), n = ka and E,, may be written

ij
oo -iem(k r_+ kyry+ k,r,)
ElJ(kx ky kz 2 efff RlJ(rx,ry,rz)e drxdrydrz. (19)
- 00
Consider now the special tensors defined by Egs.(5), (6) and (9). By

Fourier trarsforming these one-dimensional correlations, one can define the
ceoresponding one-dimensional spectrum functions by

X

_ 00 -i2ﬂerx
¢ij(kx) =02 \/:w Rij(rx) e dr (a)



6,0k, = 2f_m Ry (x) e il ar, (o) (20)
= -iEszrz
6, (k) = ;zf_m R (r,) e ar, (o)
e 00 -i2mT
¢1J(n) = 2[_00@1 (1) e ar. (21)
The ccrresponding inverse transforms are of course
oo i2nk r
g =E f ege T a (a)
—w i2nk r
R () =3 Byl T ax (b) (22)
o0 i2nk r
R (r,) =} fmq,ij(k e Z%ak (c)
00 i2mr
and Rij(T) = %\[; ¢id(n)e dn. (23)

The ¢ij(n) spectra of Eq.{21) are those which are obtained by placing a measuring

instrument at a fixed point in the flow, and if Taylor's Hypothesis is assumed,
these can be easily related to the ¢, (k ) spectra. That is, from Egs.(15) and

(20a), and since r = Ut and k = n/U
o -i277erx
Ejf Rij(rx)e dr_
—~00 .
-i2mr
~ 00
2 0 . (T) e dr.
j_m Ry (7)
Comparing this with Eq. (21), it can therefore be seen that
d)ij(kx) = U ¢ij(n)'

Notice also that in the particular case of T = 0, Eq.(23) may be used to relate
the Reynolds Stress tensor to the ¢ij(n) tensor by

R0 =7, = [ o (m an. (24)

¢, (k)

iJt x

i

1

The one-dimensional spectra defined by Egs.(2C) could also have been
obtained by integration of the three-dimensional spectra of Eq.(19). For example,

o, J(mx) is also given by the double integration of E, J(k ky ,k ) over ky and kz,
Similarly, two-dimensional spectra can be defined by 1ntegrating E, 13 over only one

variable, but these will not be dealt with here.

As with the correlation functions and integral scales of turbulence,
special terminology is generally applied to the spectrum functions. Of the nine



diagonal components of the tensors defined by Eqs. (20), three are termed longi-
tudinal spectra and the other six lateral spectra, depending on whether longitudi-
nal or lateral correlations appear in their definition, 1In addition, Lhe diagonal
components of Egs. (20) and (21), which are defined by autocorrelation functions,
are usually called 'power spectral densities' or 'power spectra' while the off-
diagonel components are referred to as 'cross-spectral densities' or simply 'cross-
spectra'. Since the spectra of the ¢, g(n) tensor are those that are measured in

practice, they are of the most interest and unless specified otherwise, the terms
'power~zpectra' and 'cross-spectra' refer to these spectra throughout the remainder
of thisg review.

Because of the assumption of stationarity, the power spectra ¢ ( ) are
even functions of the frequency n. Thus from Egs. (21) and (23),

33(a) = b [ @y (7) contemmer (25)
and -
Qii('r) = fo ¢ii(n) cos(2mmr) dn, (26)
in particular, for T = 0, one obtains from Eq. (26) the expressions
Ry, (0) = o - fo ¢ (n) dn (a)
- 2 ®
0@ = e [ o ) (v) (27)
R, (0) = l;¢w“>“ (c)

indicating that the area under the power spectrum of any velocity component is
equal to the mean square of the component. Equation (25) shows that the power
spectra are real functions of n. The cross-spectra, however, are complex functions
of n, with

8y5(-n) = 63, %(n) =0y (), L £ 4,

These spectra are generally redefined as

L -i2mT
2]_00 ﬂij(T)e ar

= Cyyln) -1 qyn), 143

where C, .(n) is called the co-spectral density or co-spectrum and Q, ,((n) is called

the guaé -spectrum, and these functions are real-valued even and odd functions of
n, respectively., In addition, these cross-spectra can be expressed in coefficient
fo*m by the ccherence function, defined by

. _ e
7ij(n) = ¢11(n)¢33(n) 5 17".]

|
—
ny
[0 ¢]
~—

[A)
where 723 is the coherence.



Finally, it should be mentioned that in the spectral theory of turbu-
lence, the independent frequency variable n is not always used. In the litera-
ture, any of the variables

k =n/U, w=2m, or 2=2m/l =27k

may be found where, of course, if Taylor's Hypothesis is assumed, k =k . In these
cases, it is generally Eq. (24) that is used to properly relate the varfous spectral
functions to each other., That is

Ry, - ;—f_w 0, (n)an = gf_w%(k) dk

5‘[m¢ﬁ W)ng?[w¢£UndQ

which, along with the above definitions of the independent variables, can be used
to show that

¢y 5(k) = U0, (n) = 2m0 @, ((w) = 2md,5(R) ‘- (29)

In the description of the planetary layer which follows, it is the function ¢1J(k)
which will be used. This is because if the 'reduced frequency' or inverse wave-
length k = n/U is used as the independent variable, where U is the mean speed
relative to the measuring system, the turbulence measured will not depend on the
motion of this system, and spectra measured by aircraft may be directly compared
with those obtained on towers (at the same altitude, of course). Note also from
Eq. (29) that

k ¢iJ(k) = n ¢ij(n)'

2.5 Homogeneity and Isotropy

The turbulence field under consideration in the preceding discussion
was assumed to be homogeneous, That is, its statistical properties do not vary
frocm point to point in the field, and thus all the functions described are inde-
pendent of the location of the point P_ in the field. In addition, the assump-
tion of homogeneity allowed the correlations of Sec. 2.1 to be written as functions
of the separation between the points rather than of the points themselves, and
thus simplified the description considerably.

The concept of isotrce,y simplifies the description of the turbulence
even further, If a turbulence field is isotropic, its statistical properties are
independent of direction in the field, and thus they do not change with a rota-
tion of the coordinates axes. Thus isotropy implies homogeneity, but not vice-
versa. All off-diagonal components of the special correlation tensors of Sec.
2.1 are zero, as are the corresponding cross-spectra of Sec. 2.4 (note that the
off-diagonal components of the general correlation tensor of Eq.(4) are not
necessarily zero). All longitudinal correlations are equal, such that

£(r) = £.(r) = £(r) = £(r) (30)

R
u'x vy z

and all lateral correlations are equal, or

) -g,(r) = 5,(r,) = g (r,) = alr) (31)

so(ry) = g, (r,) =g (r, -
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and the equation of continuity can be used to relate th.ese correlations by

g(x) = 2(r) + 2 g%iﬁl (32)

where r = l gl. Thus only one independent non-zero correlation remains. In
addition, Batchelor (Ref.7) has shown that in isotropic turbulecnce, the general
(spatial) correiation tensor is given in terms of f(r) and g(r) by

~ r,r
Ryy(x) = [£(r)-g(x)] —i—;l 8(r) byy s 1) = U, vy w

where 613 is the Kronecker delta and r, E rx, etc. Similarly, the three-
dimer.sicnal spectrum tensor Eij(g) may be expressed as a fairly compact function

in isotropic turbuience by

A
Byl = i‘ﬁiﬂ_ & 5, - 4,4

2 2 2
1 V/kx + kK

where

) 3

and E(f) is a scalar function usually referred to as the 'energy spectrum function'.
hs for the ¢, (n) spectra, isotropy requires that

¢ij(n)=o’ ifj
and thus from Eq. (28),

745 =05 1 £3. (33)

Llso,
6, () = @ (n)
ard Eq.{32) may be used to show that

d¢ _ (n)
Sp(n) =30 (1) - F —p— . (34)

Because of Eqx. (30} and (3.), all longitudinal integral scales are equal to each
other in isotropic turbulence, as are lateral scales. That is,

X _.¥Y_,2¢
L, =L = Lw L, (35)
and
y= Z= x= Z= X yE
Ly =Ly L, L, =L, *=L, L,

and from Eg. (32), it can be shown that

L. =2 L : (36)

u v
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Finally, the velocity component mean-square values are equal in isotropic turbulence,
such that

u2=v2=w2= 0'2

and the Reynolds Stress tensor, for example, is now given by

o? )
R,, = i
Y 0 ¢ 0 (37)
o o &
- -

1II, CHARACTERISTICS OF THE PLANETARY BOUNDARY LAYER

3.1 General Description

The atmosphere near the surface of the earth can conveniently be divided
into three regions, These regions are the free atmosphere, the planetary bourdary
layer, and the surface boundary layer. In the free atmosphere, viscosity is neg-
lected, and only inertial, Coriolis, and pressure gradient forces act on the air.
The wind resulting from these forces is called the gradient wind, and is independent
of the nature of the earth's surface below, It can easily be shown (Ref.3) that
the gradient wind must flow along the isobars, and in the special case when the
isobars are straight or so slightly curved that centripetal acceleration of the air
is negligible, the gradient wind is called the 'geostrophic' wind and is given
approximately by

where n is normal to the isobars and f = 2wsing, with w the rotational velocity of
the earth and ¢ the latitude.

The planetary boundary layer refers to the region between the earth's
surface and the height at which the free atmosphere can be said to begin. This
height is called the 'gradient height', zg and is generally of the order of 1000-

2000 feet, depending on surface conditions. The surface boundary layer is a sub-
layer of tne planetary layer, extending from the ground up to about 200 ft.(i

100 ft,) depending again on surface conditions. In the surface layer, Coriolis
forces are assumed negligible, and wind characteristics are determined by surface
conditions, thermal stability and height. Shear stress is assumed constant here,
and indeed this actually defines the extent of the region. In the remainder of
the planetary layer above the surface layer, Coriolis forces begin to have an
effect on the wind, surface roughness effects decrease, and the shear stress de-
creases from its constant value in the surface layer.

In this review, it is the planetary layer that is being considered, and
consequently the basic parameters of interest will be the surface conditions,
thermal stability, and the height.



$ov Atmocpheric Stebility

The hydrostatic stability of the atmosphere depends of course on the temp-
erature gradients in it, The basic criterion is whether or not the decrease in
temperature with height, called the lapse rate 7, is greater than the dry adiabatic
.apse rate, I'(7 ~190/100 m. =~ 5.5°7/1000 ft). During a 'lapse' period, when

7 & -dT/dz > 7T

& volume of sair dicplaced upward will experience a buoyant force upward and thus
will continue to ascend. Thus the atmosphere in lapse periods is classified as
"hydrostatically unstable', or simply unstable. During so-called 'imversion'
pericde, when 7 < I’y the volume of air displaced upward will be at a lower tem=s
peratire than its surroundings and will experience a restoring downward force, in
which case the atmosphere is classified stable, If y =T or very slightly less,
the atmosphere is classified neutrali..

As for the effect of stability on turbulence in the atmosphere, one would
cbvicusiy expect greater turbulence levels in hydrostatically unstable air since
under these conditions, heat convection would be added to the 'mechanical' turbu-
lence produced by the shear. A better understanding is obtained if one considers
the driving force in moving vertically the volumes of air mentioned above. The
erergy required to displace the air, that is, to produce turbulence, is extracted
from the mean flow by the Reynolds Stress. Whether the velocity fluctuations
increase or decrease will depend on whether or not the rate of this energy supply
is greater than the rate at which work must be done in the gravitational field
i nmoving the fluid volumes in the vertical direction. The parameter expressing
thi. criterioa is the gradient Richardson Number, Ri, defined by

Ri = E-S-—Lla? 22 5 - (38)
8(00/3z)

Betweer. 2zero and unity there is a 'eritical' Richardson Number above which turbu-
.ert mction ir the air will subside into laminar motion and below which it will
remain turbuleat, A definite value of this critical number is not available,

and indeed it may depend on surface conditions. There is some indication (Ref's.
3 and 4), however, that it should be Ri ~ 0.25, such that above this value of

Ri turbulence ceases to exist.

Hydrostatic stability can easily be expressed in terms of Richardson
Nunter., For an ideal gas, the potential temperature € is related to the actual

texpe »ature T by
& 88 _ L SARE
8 0z T\ Oz '

g(dT/dz + I')
7(30/32)°

. &l -7) \
7(30/3z2)° (39)

Therefore wistable alir corresponds to Ri < 0 and stable air to Ri> 0.

Thus from Eq.(38),
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Summarizing, then, the atmosphere may be characterized by the following Richardson
nurber régimes: :

Ri < 0 unstable air, with considerable convective turbulence in
addition to the mechanical turbulence

R, ~ O generally for |Ri|<~0.03”'the air is termed neutral or
'near-neutral' and the turbulence is jurely mechanical

O< Ri <~ 0.25 stable air, with mechanical turbulence being damped by
the thermal stratification

Ri >~ 0.25 very stable air in which no turbulence can exist at all,
at least in the vertical direction

The Richardson number is v-:ry important in the atmosphere since the Reynolds numbers
are so large that they cease to be of importance, and Ri is the most relevant non-
dimensional number,

3.3 Simplifying Assumptions

3.3.1 Stationarity

Spectral data measured by aircraft at different times in the planetary
layer nave shown that stationarity of the velocity signals can reasonably be
assumed for periods up to 10-20 minutes, and sometimes longer. Thus reasonable
record lengths can be obtained for the data without the stationarity assumption
breaking down.

B B\l Homogeneitx

It is generally assumed that the flow in the planetary layer is homogeneous
in all horizontal planes, such that aircraft measurements obtained in any direction
in these planes may be treated. Gunter et al (Ref.4t3) go so far as to conclude
complete homogeneity of the turbulence based on measurements at 250 ft,and 750 ft.
However, this conclusion seems somewhat optimistic, and indeed, some of the data
presented refutes this conclusion since they find a definite increase in integral
scale with height. Consequently only the concept of horizontal homogeneity is considered
acceptable, and results show that in general this is a quite reasonable assumption,
particularly over relatively homogeneous terrain.

3.3.3 lsotropy

In the free atmosphere, isotropy is a fairly reasonable assumption, but
this proves 'ess tenable with decreasing altitude. Lappe, Davidson and Notess
(Ref.19) concluded from tower and aircraft measurements at z ~ 300 ft.in unstable
air that Taylor's Hypothesis is roughly equally well satisfied regardless of what
direction the aircraft flies relative to the wind. This would indicate that the
turbulence under these conditions is more or less horizontally isotropic. Gunter
et al (Ref.43) tested isotropy for hundreds of hours of aircraft data taken at
z = 250 ft.and 750 ft.(i.e., generally above the surface layer) by comparing
experimental ratios of vertical-to-lateral and longitudinal-to-lateral component
spectra with the corresponding ratios obtained from the isotropic von Kérmén
spectral equations. Their conclusion is that for most stability cases and for all
combinations of height and surface conditions, the turbulence is totally isotropic.
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. 2 2
Thisz conclusion iz enhanced bty s and Tyy CoOlierence measurements, which were

always less than 0.15 for all frequencies, and would of course be zero for iso-
tropic turbulence, It is to be noted, however, that the 7 w2 coherences, which
one would expect to be larger than the other two in a chear filow, were not pre-
sented., Also, upon inspecting the presented data, it is seen that the conclusion
of isotropy depends largely on the size of the difference between the theoretically
isotropic case and the experimental data that is allowed for the data to be called
isotropic. Within roughly 20% variatior, the data is indeed seen to indicate iso-
tropy, although the variaticn of scale with height still precludes true isotropy.
It i, evident from the data, however, that there is a distinct reduced frequency

k =~ 3 x 10-3 cpf. above which tuere is a very significant decrease in the amount
of departure of the data from the isotropic case. This suggests a 'local isotropy'
region in which the turbulence is significantly closer to true isotropy than at
lower frequencies.

The concept of Local isotropy was first put forth by Kolmogoroff. It
postulates that in the so-called inertial subrange region of the energy spectrum,
the turbulence is isotropic. In this region turbulent energy is neither produced
nor dissipated, but merely passed through from the large anisotropic eddies to
smaller eddies by inertiai forces. This erergy is then dissipated by viscous
forces at the same rate € at which it is inertially passed through the subrange,
maintairing an equilibrium state. Kolmogoroff showed that in this inertial
subrarge, the energy spectrum will be proportional to the -5/3 power of frequency,
and the . tio of iongitudinale=to-lateral or longitudinal-to-vertical spectra must
te 3/4b. The longitudinal component power spectrum in this region is of the form

¢ (k) = b P13 503

where b is a constant, while the lateral and vertical component spectra are given
by simil_.ar expressicns but with b replaced by 4b/3. In the planetary layer, this
notion of local isotropy seems quite reasonable, in that one would expect anisotropy
for eddies large enough to be affected by the mean shear and thermal structure,
while smaller eddies with shorter time scales should be able to redistribute their
energy among the components more quickly. Thus one would expect that over a

range of wavelengths small compared with some characteristic length, say the dis-
tance to the ground, z, or to the nearest stable layer, the turbulence should be
isotropic.

Experimental results have in general tended to confirm the local isotropy
concept, with some reservations. The spectra generally obey the -5/3 power law,
with the constant b having a value of ~0.5 if k is in radians/m or~0.065 if k,is
in cycles,ft. However, there is some disagreement as to whether the 3/4 ratio of
the spectra in the subrange actually exists. Elderkin (Ref.l7) found for spectra
at z = 10 ft. and 20 ft. that the longitudinal and vertical spectra are about
the same in magnitude in the inertial range, and refers to some results by
Stewart that found the same tendency. Also Berman (Ref.40) quotes several papers
and states that the conciusion from these results is that all component spectra
have the same magnitude in the subrange and not the Kolmogorofrf ratios. On the
other hand, however, Busch and Panofsky (Ref.4l) studied considerable data for
heights up to 300 ft. and concluded that in regions over which the spectra obey
-5/3 power laws, the ratios of the components "show fair agreement" with the 3/k
ratios predizted by Kolmogoroff. In addition, Fichtl and McVehil (Ref.39) assumed
the 3/4 ratic in obtaining model equations for the longitudinal and lateral
components which ultimately fit measured data very well, thus indicating this ratio
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to be valid for at least these components. Finally, the alrcraft data obtained by
Gunter et al obeyed the Kolmogoroff ratios quite well in the inertial subrange. 1In
view of these discrepancies, no definite conclusion can be drawn as to whether the
Kolmogoroff ratios are or are not obeyed.

There is far better agreement among investigators as to the validity of
the -5/3 power law for the spectra. The data generally show that the spectra obey
a -5/3 frequency dependence up to wavelengths much greater than can possibly be
expected to lie in the Kolmogoroff inertial subrange, especially in the case of the
longitudinal spectrum. However, it is not necessarily the case that this represents
a simple extrapolation of this subrange (see Ref.lWl). As for the actual 'isotropic
limit' above which local isotropy exists, considerable information is available.
Lumley and Panofsky (Ref.4) give a detailed discussion of the limiting frequency,
and quote a result from Priestley based on co-spectral measurements that local
isotropy exists for k >~ 0.6/z. Elderkin (Ref.17) concludes that while the -5/3
law is obeyed to frequencies as low as k ~0.2/z in some cases, the co-spectra do
not reduce to zero until k ~3/z, and true local isotropy is not attained for
k < ~bjz. Lappe and Davidson (Ref.38) state that the Kolmogoroff range can exist,
if at all, only for wavelengths less than 88 ft. based on measurements made at
z = 40O ft., which suggests k must be greater than ~lU/z. Finally, the value of k
quoted above from the data of Gunter et al, above which isotropy improves (k=3 x 10~
cpf.), corresponds to an isotropic limit of k ~1/z - 2/z for the heights measured,
a value roughly in agreement with that suggested by Panofsky in Ref.63. Thus it
appears that a reasonable value of reduced frequency above which local isotropy
can be said to exist is k ~3/z.

3

To summarize, it can generally be said that turbulence in the planetary
layer is not isotropic in the true sense, However, a region of local isotropy does
exist for k>~3/z, although the component spectra may or may not obey the Kolmogoroff
ratios in this region. Horizontal isotropy, in which the turbulence is independent
of rotations of the coordinate system about the vertical axis, is also a reasonable
assumption.

3.3.4 Taylor's Hypothesis

Lin (Ref.55) has investigated the validity of applying Taylor's Hypo-
thesis to the turbulence in shear flows and concludes that the requirement of
u'<< U should be valid for k such that

v (40)

k>> iz

i

If the logarithmic velocity law is assumed to hold (Eq.(42), Sec.3.4) then Eq.
(40) becomes

1
k>>z—m a (b1)

Lappe and Davidson (Ref.38) compared aircraft and tower measurements at z = 300-400
ft. and found that the spectra so measured were the same for wavelengths at least
as large as 600-900 ft. Since z, for these tests was ~3.3 ft. (Ref.19), Eq. (Ll1)
suggests that in this case, k >>~0.0005 rpf. for Taylor's Hypothesis to be valig,
or

A = << 2000 ft.

1
k
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Thus Lappe anc Devidron's result roughly obeys Lin's requirement., In any case,
it must be realirzed that Taylor's Hypothesls becomes decreasingly accurate for
A > ~ 1000 ft,

3.4 Mean Wind Characteristics

3.4,1 Velocity Profiles

Ia the surface bourdary layer, the validity of the Prandtl logarithmic
law fcr the mean velocity in a neutral atmosphere has been well-verified. The
law can be easily obtained from Prandtl's Mixing Length theory (or von K&rmfn's
similarity hypothesis) under the assumptions that
(1) viscous stress is negligibie;

(ii) mixing length is proportional to height; that is, £ = Kz;

(iii)shearirg stress is constant and equal to the surface stress T, That is,

where UT is the friction velocity and is defined by the above relation.

If in addition U = 0 at z = z, and it is assumed that 2 << 1z, the law can be

written in the form
= % In (2—) (42)
o)
-

where K is the vorn K&xmfn constant (~0.4) and z, is the so-called 'roughness
length'.

o |=
|

The logarithmic iaw of Eq.(k2) is valid strictly speaking only for
neutral conditions. in non-neutral stabilities, a modification of this law is
given (Ref.4 o~ 4h4) such that

- % () (1) 2

where L' is a temperature deperdent scaling length. The function ¥ is a universal
function of z/L' ard cince it can be shown that the Richardson Number is a unique
function of z/n' (Ref.4), Eq.(L3) can be used to obtain mean velocity in non-
neutral stabilities.

The roughrecs length z_ usually turns out to be about 1/30 times the

average dimension of a typicel roughress particle., In practice, both z, and UT
are determined from measurements of at least two values of U and z in the surface
layer and soluticn of Eq. (43). An excellent description of the details of the
procedure used to determine these guantities with the greatest possible accuracy
is given in Ref. Lk,

Above the surface layer, Coriolis forces increase, surface r ghness

effects decrease, and the logarithmic law begins to depart from the empirical
data. However, treating the planetary Zayer as a whole, & power law velocity
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profile of the form
glo. = (z/zlsl : (k)

is found to fit the cata quite well in neutral conditions, where U, is the velo-
city at some reference height z . Davenport (Ref's. 9 and 10) use% the gradient
height as the reference height,Lsuch that

o0, = (z/zG)a. (45)

The parameters z_. and & depend on surface conditions, and Davenport (Ref.42) has
surveyed publishéd wind profiles at sites having a wide range of z, values in
order to determine the dependence of these parameters on z . The results of

this survey are given in Fig. 1, and the shape of the profile given by Eq. (45)
for three different terrain types &s: shown in Fig.2. The gradient height z, must
in general be obtained by measurement of U at several heights and an estimaté

of the_gradient velocity U,. Thus there is some uncertainty in its exact value
since U, is usually obtainéd from isobaric charts whose accuracy depends on the
spacing ‘between the meteorological stations from which the pressure readings are
obtained. However recent estimates of both z_, and @ have shown good agreement
with the values suggested by Fig. 1, including the results for various cities
around the world given by Davenport in Ref. 10. It must be remembered, of course,
that the power law can be of only limited usefulness in cities, since it cannot
be expected to apply to the mean wind speed for heights considerably below typical
cbstructions. In cities these obstructions may be up to 700-800 ft. high, and
the wind speed is very much a function of the detailed nature of the structures.
Harris (Ref.58) states that it is not certain at the present whether, for the
treatment of winds above a city, it is more correct to use a power law with large
Q@ as Davenport suggests,or to use a lower index combined with an upwards dis-
placement of the U = O reference plane to take account of the obstruction height.
However, it would appear from the data that Davenporﬂs approach is quite reason-
able in those regions where any power law can be expected to apply.

In applying Eq. (L45) to estimate gust loads on buildings, it is the
extreme values of the mean wind that are of importance. Thus the value. used
for U, is in general based on surface measurements of extreme wind-speeds, and
Davenport (Ref’'s. 9, 10 and 42) outlines in detail the procedure for estimating
extreme values of ﬂc from local meteorological data.

As for the effect of stability on the shape of the power- law- profile,
little data is available. In gereral, however, the exponent & tends to become
smaller with decreasing stability. That is, in unstable air, the profile is
generally 'fuller'.

3.4.2 Mean Wind Direction

It is not only the magnitude of the mean wind in the planetary layer
which is important but also the direction, particularly in the consideration of
the wind loading of structures. In the free atmosphere, the mean wind is the
gradient wind, and it flcws along the isobars. However, in the planetary layer,
the presence of shear stresses in combination with the Coriolis forces causes
a systematic deflection of the mean wind. This deflection is away from the iso-
bars in the direction of decreasing pressure gradient, and is such that in the
Northern Hemisphere the wind direction rotates clockwise with increasing height.
Several theories have been postulated as to the exact variation with height of
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the angle ¢ between the mean wind and the isobars (i.e., the geostrophic direction),

but they all require assumptions about the exchange of momentum due to turbulence
at various helghts. This exchaenge is represented by the eddy viscosity KM where

- Uw

T S

The simplest theory is due to Ekman and is outlined by Sutton in Ref.3. Ekman.
assumed KM constant with height and as a result predicted that & should decrease
from 459 at the surface to zero at the gradient height. This work has led to the
change of wind direction with height being referred to as the 'Ekman Spiral'.
Ekman's theory is somewhat of an oversimplification, however, and Sutton describes
more sophisticated theories. One approach by Kohler assumes KM = Klzm where m

depends mainly on stability, and predicts that at the surface,0 lies between lO°

and 30°, decreasing of course to zero at Zye Sutton's theory predicts values of Q
ranging from 31° in open country to 45° in city centres., In general, although
little date is available over urban areas, other measurements have indicated values
of @ at the surface of the order of 20°, agreeing roughly with the theory. However,
Harris in Ref.58 has suggested that very little of the decrease in & with height occurs
in the first 600 ft. or so. His results in high winds (i.e., neutral stability)
over flat terrain for z up to 600 ft. show no systematic deviation in wind direction,
and he states that other results have tended to agree. Harris thus suggests that
except for very tall structures or those with special features making them extremely
sensitive to wind direction, it should be reasonable to ignore the change of wind
direction with height in strong winds over all types of terrain.

3.5 Reynolds Stresses

3.5.1 Total Kinetic Energy of Turbulence

The parameters governing the magnitudes of the variances u', v', and w'_
of the velocity components, and thus the total kinetic energy of the turbulence, e,
are mean velocity, surface roughness, height, and stability. Similarity theory
predicts that for neutral air, the total kinetic energy is roughly proportional
to Ug, indicating that this eneryy should thus be independent of height. Thus

from Eq. (42) we get

& oc T —§—“2— (46)
in (z/zo)

for the surface layer, and the data (viz.Ref.4) show that in general the variation
of e with both velocity and height indicated by Eq. (46) is roughly correct. The
effect of surface conditions, however, is not adequately represented by the rough-
ness length Z e This result is not surprising since z, is a measure only of the
small scale features of the surface and does not account for large irregularities
such as hills and mountains, As for stability, a decrease tends generally to
increase the total energy, due to the additional convective energy in unstable
alr, This effect is minimized over rough teriain, where most of the turbulence is
of mechanical origin,.
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3.5.2 Vertical Component Variance

Similarity theory predicts that in neutral stability,

W= Al (47)
where A is a constant independent of height, windspeed, and surface roughness.
The data of various investigators (viz. Ref's. 17, 29, and 41) has shown this to
be true at Jeast through the surface layer, indicating that the effect of surface
conditions on w' is adequately represented by U_, and thus by z, (from Eq. (42)).

That this is sc for the w' component likely results from the fact that very large
wavelength, low frequency components of w' are suppressed due to the presence of
the ground, and thus the effect of large scale non-uniformities is reduced.

As for the value of the constant A in Eq. (47), there is considerable
discrepancy in the data. Lumley and Parofsky (Ref.l4) point out that values rang-
ing from 0.7 to 1.3 have been cbtained, and suggest that A ~ 1.0 is the best com-
promise. However, more recent data has leaned toward a value of ~ 1.3. Elderkin
(Ref.17) obtained a value of 1.33 for z = 10-20 ft, while Busch and Panofsky
(Ref.L1l) obtained 1.29 from an integration of their model spectrum, and state that
this value is consistent with direct measurements made using sonic anemometers.
Also, Panofsky and McCormack (Ref.29) found a value of ~ 1.3 for heights up to
about 250 ft. and Panofsky in Ref.63 shows some results indicating that A = 1.3
over a considerable range of Richardson numbers. Thus it is concluded that
A = 1.3 is the most appropriate value in view of the existing data.

The effect of atmcspheric stability on w' is in general not too large.
The magnitude of w' tends to increase somewhat with decreasing stability, as one
would expect., In addition, w' increases slowly with height in unstable air,
while in stable air it decreases with height. Thus stability effects on w' tend
to be felt more at higher values of z, and are not too important near the ground.

3.5.3 Lateral Component Variance

In neutral air, at least, most of the existing data show that through
the surface layer,

¥i=BF (48)

where B is a constant. This suggests that v' does not vary with height in neutral
air., One notable exception to this conclusion is the investigation by Fichtl and
McVehil (Ref.39) whose tower data measured for heights up to ~ 500 ft. indicate
that in neutral air, v' decreases slightly with height, being proportional to
z=170 over this range. As for the dependence of v' on surface conditions, the
roughness z is unfortunately inadequate to completely estimate the surface
effect, as 9s the case for the total kinetic energy. Consequently, the constant

B is a function of large scale roughness and thus varies from place to place,
ranging from 1.3 to 2.6 (Ref.4).

Atmospheric stability has a quite large effect on v', increasing it by
a large amount as stability decreases for the same wind speed. Lumley and
Panofcky (Ref.lt) show, however, that in either stable or unstable air, there is
still very little vertical variation of v'. In this case, Fichtl and McVehil's
results agree cince they find that in unstable air, v'e¢ z™~*¥<, indicating a
very weak dependence of v' on height.
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An interecting consequence of the differential behaviour of v' and w'

with height in stable air is pointed out by Lumley and Panofsky. Since w' decreases
with height in stable air while v' does not, smoke emitted at z ~ 300 ft. in an
inversion meanders horizontaily, with little vertical spreading. 1In fact, this
meandering results from the presernce of low frequency components in the spectrum

of v (see Sec., 3.6.2),

3.5.4 Loangitudinal Componert Variance

While the longitudinal fluctuating velocity component is the largest of
the three, its properties generally tend to be intermediate between those of v
end w, Stability affects it more than the w conponent but not so drastically as
it affects the v component. Lumley and Panofsky (Ref.4t) indicate that u' does
not vary with height in any stability, although the fluctuations in stable air
tend to shift from high frequency near the ground to lower frequency at larger
heights., The independence of u' with height is confirmed by data quoted by Templin
(Ref.30) for unstable air and heights up to 500 ft, and by the resu%ts of Fichtl
and McVehil (Ref.39) who for similar conditions find that u'ec 2°V* i In neutral
stability,however, Fichtl and McVehil find that u'ec 2-0.315, rather than being
constant with height,

In neutral air, Lumley and Panofsky suggest that
u' =C I-J . (,49)

T
As with the lateral component, the roughness length z 1is again not adequate to
completely represent large =cale variations in the te?rain, and while C is constant
with height, it varies from place to place. Values quoted range from 2.1 to 2.9,
with the value of 2.5 suggested as a reasonable engineering approximation.

3.5.5 Summary of Variances

The precedirg discussion of the three component variances referred for
the mos* part to the surface bourdary layer. In this layer, if neutral stability
is asrumed and the suggested values of the constants A, B, and C are used, the
ratios of the component variances are given by

u'fvt/fw /U= 2.5/2.0/1.3/1 . (50)

Also, since the logarithmic law of Eq.(.42) is valid under these conditions, the
friction velocity is given by

U

T 2.5 1In lz?zoi

and thus from Eqs. (47), (48€), and (49) the component intensities are given by

i

u' 1. ' _0.80 W' 0.52

u e il e . (51)
U in (2/z ) U 1n(z/z ) U in(z/z )
o} o o
These curves are shown irn Fig.3 for z = 3 cm, a value characteristic of flat,
open country. Also shcw: are some acgual measurements quoted in Ref.30 for
Sale, Austrzlia which has similar surface conditions (zo = i cm), and these
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values are seen to agree well with the predicted values.

For the planetary layer above the surface layer, little information has
been presented because there does not appear to be a great deal of information
available. This may result from the fact that most towers used for measurement do
not reach heights far above the surface layer, so aircraft data is the only major
source, Some useful measurements have been obtained by Harris (Ref.65) for heights
up to about 600 ft. in neutral stability, and these are shown in Fig.3. It is
seen that these results agrees quite well with Eq.(51) for u'/U in the surface layer
and with the Sale data above it.

Considerable data on the component variances at z = 250 ft. and 750 ft.
is to be found in Ref.43. Unfortunately, since velocity values are not available,
direct comparison with the above data cannot be made. However, the data suggests
that both these heights be considered above the surface layer, and if this is done
some useful conclusions can be drawn about u'y, v', and w' above the surface layer.
First, within reascnable limits, u' = v'= w' at each height. Also, increased sur-
face roughness results in larger component variances, although the effect is felt
more at 250 ft. than at 750 ft.yas expected. In addition, for both heights there
is an increase in the variance with decreasing stability, and finally, the variances
decrease frcm 250 ft. to 750 ft. for virtually all stabilities. When these con-
clusions are considered together with the above results, it would appear that in
general, above the surface layer, the three velocity component variances tend to
decrease with height toward the same value, as is the case in a typical wall
boundary layer (vizeRef.2 or 60). Thus curves similar to those found in a wall
boundary layer have been shown in Fig.3. The particular value that the variances
approach must of course be that in the free atmosnhere, which is very small and
which would in the ideal case of no velocity gradients be zero.

3.5.6 Other Reynolds Stresses

The component variances discussed above are, of course, simply the roots
of the diagonal compcnents of the Reynolds Stress tensor, Eq. (). The remaining
Reynolds Stresses are the uv, vw and uw co-variances (the tensor is Hermitian),
which would of course be zero if the turbulence were isotropic. Elderkin (Ref.l7)
obtained values of these stresses in various stabilities at z = 10 ft. and 20 ft.
over flat terrain having zo = 3 cm., His results in neutral air show that the vw

stresses are quite small compared to G;, while v values are larger than VW but
still considerably less than uw., For the uw stress, there is really not sufficient
data to make significant conclusions about the assumption of constant stress in
the surface layer, although the values at the two measurement heights do not in
general show any larger variation than that between different runs at the same
height.

In the surface layer, the friction velocity is given by (see Sec. 3.4.1).

UT= - Uuw ° '
Thus if the air is neutrally stable and the ratios of the component variances of
Eq.(50) are assumed, then the correlation coefficient: for the u and w components
is given by

0

uw =
ul wl

-

- — = - 0.31, (52)
(2.50_)(1.30.)



Above the surface layer, this value must decrease, since the shear decreases and
uw falls to zero. As for uv and vw above the surface layer, little data is availe
able, although the coherence data of Gunter et al (Sec. 3.3.3 and 3.6.4) suggests
that these stresses are quite small,

3.6 One-Dimensional Spectral Density Functions

In general, the one-dimensional turbulerce component power spectral
dencsities ¢ii(k) consist of three distinet regions: a low frequency region in
which energy is put into the turbulent motion from the mean flow; a middle fre-
quency equilibrium region in which no energy production or dissipation is occur-
ring, and oniy an inertiel transfer of energy toward smaller eddies is taking
place {:.e., the Kolmogoroff inertial subrange); and e high frequency region in
which turbulert energy is converted to heat by viscous dissipation (viscous
subrange), The frequency dependence of ¢, (k) in these three regions is roughly

given by ko, k‘5/3, and k‘7, respectively. As with the component variances,
the power spectra ia general are dependent on height, surface roughness, mean
velocity, and thermal stebility.

In addition to the above general regions of the power spectra, the
existence of a 'buoyant subrange' has been suggested for atmospheric turbulence
spectra in stable conditions. In this region, & 'buoyant length' depending on
the stratification is the factor limiting the inertial subrange, rather than
the distance to the ground. Lumley and Panofsky (Ref.4) discuss the buoyant
subrange at some length, and Busch and Panofsky (Ref.Ul) show experimental data
suggesting that it does exist, at least for the vertical spectra, with a frequency
dependence of the order of k'3 as suggested by Lumley (Ref.56).

The behaviour of the power spectra in the inertial subrange has been
discussed at some length in Section 3.3.3 with regard to both the relative mag-
nitudes of the components and their frequency dependence, and consequently there
is only minimal attention given to this region in the discussion that follows.

3.6.1 Vertical Component Spectrum

The vertical velocity power spectrum ¢ww(k) has been quite extensively
investigated and a considerable amount &§ known about it. In general, it is
found that below a height of roughly 150 ft.-200 ft. the spectrum obeys dynamic
similarity. That is, it can be expressed as

K (k)
wWw

2
where F is a universal function, and f = kz, such that when the spectrum is
plotted in simi'arity coordinates k¢ww(k)/;é vs. kz for fixed stability, it is

independent of height, mean velocity, and surface roughness. In addition, the
shape of the spectrum at these heights does rot vary a great deal with stability,
except perhaps in the unstable case when distinct low frequency convective peaks
are found (vizeRef.17 for z = LO ft., and also z = 270 ft.). The maximum value
of the non-dimensional spectrum as given by Eq. (53) was found to be ~ 0.2 by
Elderkin and slightly larger { .22 - .3) by Busch and Panofsky (Ref.lil).

= F(f, Ri) (53)

While stabi’ity does not in general have too great an effect on the
shape of the spectrum at lcw altitudes, it does tend to shift the spectrum as a
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whole. A decrease in stability moves it toward lower frequencies (larger wave-
lengths) while an increase.shifts it to higher frequencies. This is a reasonable
effect, in that in stable air, convective energy -is minimized and one would thus
expect a reduction in the low frequency energy components., Thus if f W=k ¥ 2

is the value of f at which the non-dimensional spectrum has its maximum value,
the effect of stability is indicated by changes in value of f_*. Above 160 ft.,
Busch and Fanofsky have noted that stability affects not only" f ¥, but also the

spectrum shape, with energies being concentrated around higher fgequencies in
stable air,

For regions close to the ground, one would expect the energy at low
wave numbers to be limited by the presence of the surface. This suggests that
the scale cf the vertical component should increase with height. This is indeed
the case since, as indicated by the similarity of the spectrum, f ¥ does not

change with height for fixed stability. Thus k_¥ is inversely proportional to

height, and since it is also inversely proportional to scale (see Sec.3.7), the
scale is linearly dependent on height. Above 160 ft, Busch and Panofsky have
shown that fp“ begins to increase with height, indicating the breakdown of

dynamic similarity and a weakening dependence of scale on height. More will be
sald concerning the height dependence of scale in Sec. 3.7.

Many analytical expressions have been suggested in the past in order
to represent the power spectrum of the vertical component. Bowne and Anderson
(Ref.5) 1ist several of these expressions, and in their Fig. 15 compare them
for similar conditions. Lumley and Panofsky (Ref.4) also discuss some of these
spectra in detail. One well-known model is the Dryden spectrum, which can be
obtained for isotropic turbulence by assuming that the correlation function
R _{(r.) is given by

uu" X -r /L X
- x' “u
f(r) = £,(r,) =R (r)=e = (54)
Then using Eq.{32), the correlation §ww(rx) may be obtained as
-r /L X
- X x'"u
] =t { = (1.
gr) =g (r) =% (r) = (lr /%) e

and the &,,(k,) power spectrum is found by Fourier transforming this correlation.
Assuming Taylor's Hypothesis, this spectrum is given in the frequency domain
by

(55)

X, \2
< { 1+3 (2771.u k) .}

¢ (k) =2w 0,
L [+ (BnLuxk)2]2

where L * is the longitudiral integral scale and has been assumed to be twice

the vertical component sca'e L _X. This model, like several others, indicates

a frequency dependence of k=? ir the inertial subrange, and because the recent
data conzistently show a -5/3 power law, these models have fallen out of use.

Of the other models, the von K&rmfn equation is likely the best, since it captures
the features of scale length, tota. variance, and the -5/3 slope, Like the

Dryden model, it was developed for isotropic turbulence, and Lux =2 wa is

assumed. The equation is



4

(56)

— 1+ 188 (L *k)°
o (W) =2w p¥d e }
WwW u | (1 + 70.7(Luxk)d]ll/6

Another good iodel is that suggested by Busch and Panofsky (Ref.4l) for z up to
160 ft., nondimensionally given by

k& (k) 0.63 £/t "
L 1+ l.S(f/pr)

assuming w' = 1.3 ﬁT . In thnis expression, f ¥ is a function of stability only,

w 3 Lo A n .
and Busch and Penofsky relave f and stability in their paper.

For heights above the surface layer, the results presented by Gunter
et al (Ref.h3) leave little doubt that the von K&rmfn model spectrum best fits
the experimental data. For lower heights, Fig,4 shows that while the Busch-
Panofsky model of Eg. (57) prcvides a somewhat better fit to the data than the
von K&rmAn equation at low frequencies, both models ternd to underestimate the
energy in this region. Thus in the interest of simplicity and since the scale
parameter in Eq. (56) can be used to indicate stability effects as is f_ in Eq.
(57), it is suggested that the von Kfrmfn model with an appropriate vallle of
scale (see Sec. 3.7 and L,6) adequately describes the vertical component spec-
trum throughout the planetary layer.

3.6.2 Lateral Component Spectrum

The power spectrum ¢vv(k) of the lateral velocity component does not

in general obey similarity theory, except for large wave numbers in some cases.
Also, in neutral and unstable conditions, there is little dependence of the shape
of the.. spectrum on height, although the location of the peak k_V does appa-

rently depend on height as suggested by the results of Fichtl and McVehil (Ref.
39), who found that for z = 60 -500 ft. in neutral air, kacc z -0.42 ang in

unstable air, k 21:2'0'28. There is, however, a very large variation in both

the magnitude agd shape of this spectrum with cstability. In addition to a ten-
dency for the spectrum to shift as a whole toward lower frequencies for un-
stable conditions, decreasing stability also greatly increases the low frequency
portions ¢f the spectrum while leaving the high frequency part relatively un-
affected. Thus for fixed wind speed the effect of decreasing the stability

is to superimpose long period variations on the shorter, mechanically produced
eddies. Consequently, the low frequency part of the spectrum depends mainly

on stability while the high frequency part depends on roughness and velocity.

In stable air, height variation of ¢vv(k) becomes more significant,

Lumley and Panofsky (Ref.:) show data which indicates that while the low frequency
part of the spectrum remains roughly constant with height, the high frequency
part decreases repidly. The relative invariance of the low frequency part sug-
gests also that the total variance v~ tends not to vary too much with height, as
indicated in Sec, 3,5.3. Recalling that W~ decreases with height in stable air,
and since k¢ww(k) we iz invariant with height (dynamic similarity) it follows

that ¢ww(k) decrease:z with height for all frequencies, Thus at heights of the
order of 200-300 ft. in stable air, the low frequency components of ¢Vv(k) are
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large relative to those of ¢ (k), explaining why smoke plumes in these conditions
meander laterially with 1itt¥e vertical spreading.

The lateral component spectrum is more difficult to represent analytically
than that of the vertical component because of the lack of similarity. The
ggpal practice i3 to use the same model as for the vertical spectrum, but with
we replaced by v€ and wa replaced by va, In the case of the von Kérmfn model,
this theoretically makes no digference, since in isotropic turbulence,
Lux = 2 LVx =2 wa and v¢ = weyand the equation is '

)2
115 - } : (56)

Another equation that has been found appropriate is a modification of the Busch-
Panofsky relation of Eq.(57) which Fichtl and McVehil fitted to their data.
This equation is given non-dimensionally by

— 1+ 188.4 (L % k
¢ (k)=2v2Lx{ L
vv u

L+ 70.7(L X k)2]

k¢ (k) O 4 :
Vv - v P S (59)
BVU‘E [1+ 1.5(f/fpV)'rw'r ]5rv/3

where Cv and T, depend on stability and fpV and BV depend on height and stability,

Abcove the surface layer, the results of Gunter et al (Ref.43) show that
the von Kirmin equation provides the best fit to the data for a wide range of
conditions. Consequently it is suggested that, as with the vertical component,
the von Kérmfn equation be used to model the lateral component spectrum through-
out the planetary layer, using appropriate values of scale (see Sec.3.7 and 4.6).

3.6.3 Longitudinal Component Spectrum

3.6.3.1 Total Velocity Spectrum

The complete power spectrum of the total velocity in the longitudinal
direction extends to much lower frequencies than those of the other two velocity
components., This is due to the long period variations of the 'mean' wind speed
U resulting from macrometeorological fluctuations, and U is, of couse, non-
zero only in the longitudinal direction. The best data available for the complete
spectrum of horizontal windspeed is that obtained by van der Hover (Ref.32) at
Brookhaven, and shown in Fig. 5. This spectrum was formed by piecing together
several separate portions which were obtained at different times at z ~ 330 ft.
Also shown in Fig., 5 for comparison are the periods of some common occurrences
as obtained from Ref. 30,in addition to a pair of conjectural peaks suggested by
Davenport (Ref.9) and not measured by van der Hoven.

Generally, the part of the complete spectrum measured by van der Hoven
displays two major peaks. One of these peaks has a period of ~ 100 hours, and
is characteristic of the large scale movement of pressure systems. The other
major peak has a period of 1-2 minutes and is characteristic of the gusts and
winds resulting from the modifying influence of the ground. It is this part of
the curve, the 'gust' spectrum, which is represented by the fluctuating component
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u(t) and which corresponds to the lateral and vertical component spectra already
discussed. It is of major interest =since il contains the frequency components
which most seriously affect structures and aircraft. In between the two peaks,
there is a minor peak with a period of about twelve hours which corresponds to
the lulls in windspeed generally occurring at sunricse and sunset,

Between the gust peak ard the twelve hour peak, there is an obvious
region of very iow energy extending from a period of ~5 minutes to ~5 hours.
This region is referred tc ac the 'spectral' or 'micrometeorological gap' and
it apparently exists for all stability and terrain conditions, It results from
a lack of any physical processes capable of gererating fluctuations having. these
periods, and is generally assumed to exist for all cases., This assumption does
not teke into account the cccurrence of intense local storms such as thunderstorms
and tornedoes, but these are usually of such local extent that their probability
of occurrence at a particular location is negligibly small,

The existence of the spectral gap is indeed fortunate in that it allows
a very clear distinction to be made between gusts and macrometeorological
fluctuaticns., By defining the mean wind velocity U as the average over some
period within the gap, it &s conveniently separated from the gust velocities.
Also, since the gap begins at periods as short as 5 minutes, estimates of U can
be obtained from very reasonable record lengths. Indeed the meteorological esti-
mates of mean wind in various countries throughout the world are based on avera-
ges over periods ranging from 5 minutes to one hour, and the existence of the
spectral gap ensures that these estimates will be virtually the same,

3.6.3.2 Gust Velocity Spectrwn

The cpectrum @ (k) of the longitudinal gust component in the surface
layer is in a sence intermediate between that of the vertical and lateral velo-
city components. The low frequency portion is affected more by stability changes
than the high frequency region, so the shape of the spectrum is stability depen-
dent. However, the derendence is not nearly as strong as that of the lateral
component, while the vertical component shape is virtually independent of stabi-
lity. It is noted also that, as for the other velocity components, decreasing
stability shifts the spectrum to lower frequencies,

Under all conditions, the longitudiral component spectrum contains
considerable energy at low frequercies, such that in stable and neutral air,
when this energy is less than in unstable air, it is still considerably larger
than that of the other two component spectra. This is an indication that in
neutral and stable air, the larger eddies are elongated in the wind direction
(see also Sec. 3.7). Ancther distinct feature of the longitudinal component
spectrum is that the -5/3 povwer law extends to considerably luarger wavelengths
than it does for the cther two spectra. Lumley and Panofsky (Ref.h) suggest
it is obeyed down to k ~ 0.2/z, the value alsc found by Elderkin (Ref.17) and
by Panofsky and van der Hoven {Ref.35).

In gererai, as with ¢vv(k), the spectrum does not obey dynamic simi-

larity except, perhaps, ut very large wave numbers, When plotted in similarity
coordinates, the spectra show a great variety of s e and position for neutral
air (viz. Kef.i0)., The maximum value of k ¢uu(k)/u“ also varies, since Busch

and Panof:sky (Ref.4s) found a value of coughly 0.18, assuming u' - 2.5 UT, and

Berman (Ref.i) obtained ~ 0.77 using the same a: umptior.,, while Elderkin (Ref.17)
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found a value of 0,12 and Fichtl and McVehil (Ref.39)found ~ 0.13. Finally, the
location of the spectral peak f Y violates dynamic similarity, in that its value
tends in general to increase wilh height at all locations, This result is found
by virtually all investigators, and as the value of fpu determines the scale of

the longitudinal combonent, its variation will be discussed further in Sec., 3.7.

As has been done fcr the vertical component spectrum, a number of
analytical expressions have been suggested to represent the longitudinal spectrum
¢uu(k). The Davenport spectrum (Ref's. 9 or 10) is used extensively in the building

aerodynamics field, but it predicts that at low frequencies, ¢uu(k)ecls. This is

inconsistent with the notion that ¢uu(k) approaches a constant value proportional

to the integral scale at low frequencies, and this model thus departs from the
data at low frequencies. A modification of Davenport's spectrum which removes
this objection has been suggested by Harris (Ref's. 58 or 62) but this turns out
to be identical to the von K&rmin spectrum below. The isotropic Dryden spectrum
corresponding to Eq. (55) for the vertical component is given by

4 u2 I X
u

0y (K) = (60)

1+ (21rLuxk)2

but like its counterpart, it is rejected due to the -2 slope it predicts for large
k. The von K&rmfn model is

,4 u2 L X
= (61)

o (k) = —
i (1 + 70.7(L Xk)2] >/6

and it of course does not suffer from this objection. This is also the case for
the model spectrum suggested by Fichtl and McVehil (Ref.39), similar to that
suggested for the lateral component, which fits the data they obtained for neutral
and unsteble concitions up to z ~ 500 ft. This equation is, non-dimensionally,

u
k <Duu(k) i Cy f/fp
N S — (62)
B, U, 1+ 1.5(1‘/1‘p ) ]

where Cu and T, depend on stability and ﬁu and fpu depend on height and stability.

Finally, Berman (Ref.40) has presented graphs which can be used to obtain spectral
values for any frequency as a function of height and for different stabilities,
for heightsup to z ~ L50 ft.

The results of Gunter et al (Ref.43) above the surface layer show that,
as for the lateral and vertical component spectra, the von K&rm&n model provides
an excellent fit to the data for various stabilities and surface conditions, if
a suitable scale value is used in the model. The curves of Fig. 6 show that it
also fits the data well in the surface layer, at least for larger heights. The
discrepancy between the results of Elderkin at z = 10-20 ft. and the other two
curves emphasizes the difficulty in modelling the spectra due to the lack of
dynamic similarity.

Figure 6 also shows horizontal bars to indicate the range of natural

28



il

frequencies impurtant to air-raft und structures., These bars have been adapted
from those of Templin (Ref.30) and are plotted for a representative height of

z = 200 ft. PFor the 'tall buildings and bridges' bar, & mean velocity of 50 fps.
has been assumed for & typical frequency range of from 0.1 to 1 cps.

It is to be noted that none of the model spectra for the three velocity
components takes account «f the viscous subrange in which ¢ii(k)cc kT ., This is

in general not a serious omissiou since this region is usually beyond the frequency
range that affects the motions of aircraft or the oscillations of exposed structures.
However, as Templin shows in Ref,30, if simulation of the planetary boundary layer
is attempted on toe small a scale, the viscous subrange may well be near the region
of interest, resulting in significant errors if it is ignored. This point should
thus be considered when the scale of an experiment is being determined.

3.6.4 Cross-Spectra

In general, cross-spectral data is available only for the different velo-
city components at a single point, but as for the power spectral densities, it is
only these spectra that are of major interest. For the ¢uv(k) and ¢vw(k) spectra,

Gunter et al have obtained measurements at z = 250 ft. and 750 ft., for various
roughness and stability conditions and have presented the results in the form of
the coherences 7uv2(k) and 7vw2(k). As pointed out in Sec. 3.3.3, these coherences

are generally less than ~ 0.15, and tend to be smallest for k > ~ 2/z. Elderkin
(Ref.17) has measured the co-spectral parts of the cross-spectra, cuv(k) and va(k)

for heights up to 260 ft. in various stabilities. His results are given typically
by Fig's. 7 and 8 and while these co-spectra are not in general significantly
smaller than the Cuw(k) co-spectra, the values tend to be centered about the zero

axis in most stability cases. Also, these co-spectra do not become truly zero for
k less than about 3/z, with the values becoming larger for lower values of K. As
for the quadrature component spectra qu(k) and va(k)’ these are generally assumed
to be zero.

The ® (k) cross-spectrum differs considerably from the other two cross-
spectra above. The quadrature component Quw(k) is generally quite small, but its

sign is useful for indicating what part of a moving eddy with transverse vorticity
contributed to the reading. Thus, very qualitatively, the height of the centre
of gravity of an eddy having & particular frequency k can be estimated by knowing
the sign of Quw(ko) at a few values of the height (se® Ref.4)., As for the co-

spectrum C_ (k), it is negative at low frequencies, with the absolute value de-
creasing toward zero for increasing frequency. Elderkin's data show that it
reaches zero at about the same frequency as do the Cuv(k) and va(k) co-spectra,

and thus while the small eddies may have considerable energy, they do not contribute
to the correlations between the velocity components. This result has been known
for some time, and is consistent with the concept of local isotropy. Elderkin

also finds that as for the power spectra, there is a slight shift of Cuw(k) to-

ward higher frequency with increased stability., In addition, Elderkin's plot of
this co-spectrum in similarity coordinates shows that, like the vertical velocity
power spectrum, it displays fairly reasonable dynamic similarity. Indeed the cross
spectrum ¢uw(k$ should not vary too much with altitude through the surface layer

over homogeneous terrain, since the area wunder it is uw which is assumed constant,



Analytical representation of the ¢ (k) cross spectrum has been discussed
uw

by Lumley and Panofsky (Ref.4) on the besis of the similarity of the co-spectrum

Cuw(k). They have suggested an expression for Cuw(k), but unfortunately this does

not fit the data at very low frequencies or in the inertial subrange., A useful
model for ¢uw(k) has been suggested, however, by Case et al (Ref, 53), in which
Quw(k) is af€sumed zero such that ¢uw(k) = Cuw(k). They used data taken near the

wal®l in a wind tunnel boundary layer and also in the surface boundary layer over
the oceun to obtain the root-coherence functions defined from Eq. (28) by

(k) = | %) (63)
fa [0 (00, (]2

It wes tound that the expression

7
k) = 2 6h
T [1 + 0.395(1, *)2]"/2 )

provided a good representation of the experimental data. The quantity 7y is a
constant whose value is determined by the power spectra ¢uu(k) and ¢ww(k) and
the value of the Reynolds Stress coefficient EW/u'w'. Thet is, from Eq. (24),

oo
= o
Ry = W= 2\/\ ¢uw(k) dk

= ‘/ﬁm <Duw(k) dk

o
since if Quw(k) is zero, ¢uw(k) = Cuw(k) = Cuw(-k). Also, since Cuw(k) is nega-

tive at all values of k until it reaches zero, we may write

oo
uw = -~/; l¢uw(k) | dk.
Thus from Eq.(63), we get

2

) 1
T [ 000,00, 007 ax

[®]
and using Eq. (64),
, 1/2
o~ d (k) ¢ (k)
T = -y - Ll dk. (65)
o} e
o 1+ O.395(Luxk)

Now recall from Eq, (52) that in the surface layer,
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W = - 0.31 u' w' = -0.31 v]:‘— v .

such that when this is combined with Eg. (65), we get

0031
ie = == 5 12 ~ (66)
° fm P o NF . (e ] / .

' ?
o L 1+0.395(L, %)

Thus 7 can be found for any cuoice of the ® (k) and ¢ww(k) spectra, and the
cross spectrum is obtained from Eq's. (£3) and (64) as

1/2
(67)

o (k)=

B, (0)0,, () J
= |
: ° L1+ 0.395(1, %K)

Evaluation of 7o 85 & fuaction of z has been done using the von K&rmén spectra
(Sec.L.5 and Fig.12).

3.6.5 Cross-Correlation Spectru

Consider as & special case of the general correlation tersor of Eq.(3)
the tensor

3 7 = ‘/_, > I %
Ry (o) =Ry (m,,7,,0,0) (68)
In order to obtsin a teasor of true two-dimensional spectrum functions, one would
Fourier transform this tenscr twice, such that
© -iem(k . r + k r_)
XX Yy
O (k k) =14 (r ,r .
i) =l B ) e ar ar (69)
-00

Similarly, if the correlatiocns Rii(rx> are Fourier transformed once, one gets a
L3
tensor of true one-dimensicnal spectrum functions
~i27k_r
= X X
e =2 R\ e dar
0y ,(k) L)

— 00

X

as in Eq. {20a). However, suppose now that the two-dimensional correlation functions
Rij(rx’ ry) are Lransformed only cnce, with respect to T In this case, the

results are not true spectrum Tuncticns in the sense defined above, but neither
are they correlation rfuncticus, The result of such a transformation is
-i27k_ r
X X

~ 00
|
= R (v v =
) 2J B, 4=y _y)e dr_. (70)

Yijkkx’ry

00

Assuming Taylor's Hypothesis, kx may be replaced by k = n/ﬁ, and since o Uty
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-i2mT

Yi,j (k, ry) =i Uj:waj(ry’T) e dr (71)

for homogereous turbulence. Indeed, if the turbulence is not homogeneous in the
y-direction, this quantity is a function of the two points Y and Yo which are
separated by ry rather than of only ry. That is, :

® -i2mT
4 =) 2 Y
¥ysk ¥ps ¥)) U_[ ®;;(vys vpom) € e
—00

This gquantity can also be expressed in terms of a coherence function, defined by

2

where ¢i:(k,y1) refers simply to the power spectrum ¢ii(k) of the i-component

2., s
i edile o yls y2) = (72)

ij

obtained at y., and similariy for ¢jj(k’ yg). Physically, Yij(k, ¥y yé) may be

interpreted as the zero-time-delay cross-correlation (or mean product) of the
parts of the two velocity components i and j conteined in their respective

spectra at the frequency k, and this has led Davenport (Refs.9 and 10) to use
the term 'narrow-band cross-correlation', of which 7i.(k, ¥y y2) as defined

here is the magnitude. It may also be interpreted as the frequency distributiocn
of the spatial cross-correlation of the i- and j-components, leading to the term
'cross-correlation cpectrum' also used by Davenport. Finally, it is pointed out
that since Yij(k, ¥y» ye) is a form of cross-spectrum, it may be expressed as

the sum of real and imaginary parts., That is,
( = + g
and thus Eq. (72) becomes
2, 2
; ( +
2 A i ClJ \k:O yl, y2) QiJ (k, yl’ y2)
7.:‘,' '\k’ y19 y2) S % - ®

In the case of homogeneocus turbulence, Qij = 0 and the yl and yé dependence is
repiaced by ry such that

2
C.. tk, ¢
7..2(k,r = 1J i y)

. (73)
1 y Cbii(k)(bjj(k)

Davenport measured the quantity 7uu(k, ry) as defined above for the

longitudinal velocity componerts at two points separated laterally across a strong
turbulent flow in a wind tunnel (see Refis. 9 or 22). His results showed that
for various values of ry, the data colilapsed on a curve given by
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. -ckry )
/uu(Ks ry) e (7 )

where ¢ = 8, Tor the turbulence in the atmosphere, measurements have shown that
for ceparations in the vertical direction, cross correlations of the longitudinal
component indicate the existence of a similar relationship, That is, if the sep-
aration in the y-direction as above is replaced by separation in the z-direction

and the coherence is defined by

e
Cij (k, rz)

2
ryy (k7)) = (75)
@, (k) (k)
then measurements at various vertical spacings have shown that
-c kr
z T2
7uu(k’ rz) =e i
-c,n rz/U
= e
-Clon r /U
= e 2/ 710 (76)

where the coefficients c. . and cz are defined depending on whether the velocity U

10

at height z or 610 at z = 10 m, is used, Generally, the value UlO is preferable

here, since the increase of U with height means that U is different at Zy and z,

and thus the question arises as to which value of U to use. Davenport in Ref, 10
quotes values of c,. ranging from 5 to 10 for heights from 300 to 830 ft. over
various types of terrain. The coefficient appears to be independent of height,
but seems to be generally smaller for rough surface conditions such as urban areas
than for smooth surfaces,

Surry (Ref.1?) investigated grid turbulence in a wind tunnel and found
that a modified version of the Davenport relation of Eq, (74) better fits his
data for 7uu(k, ry) than the original expression. This modified empirical relation
is

-(ckr )®
rw oz e ()

where ¢ ~ 6,4 and a =~ 1.4, In addition, Surry points out that a curve of this
form with a = 1.4 and ¢ = 8 provides a better fit to Davenport's own data than
Eq. (74). Finally, Harris (Ref.58) has shown that the data is better represented
by a more complex analytical expression based on homogeneous isotropic theory.

It can be shown for the von Kérmfn model that

5/6 11/6
1) = Em{ (3) K- (3)  xpmf
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where 1 = Zwryﬁlo \/2 + §e /&ﬁ and n = nL/ﬁlo. The parameter L is a length scale
and K5/6 and K, /. are modified Bessel functions of the Sécond ktnd. 1 n > 2,
/

which is the case for most of the frequency range, the above expression for 7
becomes '

n = Ennry/ﬁ = 2‘nkry

and direct comparison of Eq. (78) with the above empirical relations becomes quite
simple. This comparison is shown in Fig. 9, along with experimental results meas-
ured in wind tunnel grid turbulence by Bearman and quoted by Harris in Ref. 58.

It is seen that the theoretical expression is superior since it accounts for the
negative portions of the curve, while the empirical curves do not. Indeed, neither
Surry's ncr Davenport's experimental data showed negative results, presumably
because they found results only for n up to ~ 2.2.

As for atmospheric data, Harris compares data measured at points separated
vertically above the surface with the corresponding theoretical expression

5/6 11/6
s B) = E 1(2) suem-(3) mym |

where n = 2Wkrz. His results show very gcod agreement for heights above the surface

layer, but deterioration of this agreement within the surface layer. This result
is not at all surprising, since it is an indication of the closer adherence of
atmespheric turbulence to isotropic relations above the surface layer than in it,
and this feature is indicated by virtually all the other turbulence data.

3.7 Integral Scales of Turbulence

Integral scales of turbulence have been defined in Sec. 2.2 and of the
nine scales defined by Egs.(12), the scales Lu?’ va and L ¥ of Eq. (12(a)) are of

the most interest. In order to cbtain estimates of these scales from experimental
data, three basic methods can be used, The first of these is what might be called
the direct method, since it involves obtaining the actual correlation curve in

the scale definition and integrating to obtain the area under it. In the case

of the above scales, the single point time correlation curve is generally measured
and Taylor's Hypothesis assumed to convert the time scales so obtained to

length scalez. Thus, for example, from Eq. (16)

L T ore
L* - uf & (e = 2 f & (") ar.
[0} o)

The difficulty that often occurs with this approach is that at the low frequency
(large T or spatial separation) end, the correlation does not approach zero
asymptotically. Instead, due to the existence of very slow variations, the
cerrelation obtained from a finite recording period has undulations about the
zero axis at the low frequency end (viz.Ref's. 24 and 48). One attempt at avoid-
ing this problem is the use of the second method for obtaining scales. In

this method, one uses for the scale the value of the space (or time) separation
at which the rormalized correlation curve has dropped to a value of l/e. Thus
assuming the correlation is a true exponential, such that, for example,
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X
'Ix/Lu

Ruu(rx) = e

as in Eq. (54), then the above value of r_is the true scale Lux. As one would

expect, however, this iz usually not the case, and some form of correction to this
value is generally required, This correction usually requires the application of
the first method at least a few times.

The third method for obtaining integral scales is from the one-dimensional
power spectra, In all the model spectra, there is a free scale parameter which
locates the curve on the frequency axis, and for the von K&rmfn or Dryden models,
this parameter is the true integral scale Lux. For any particular model, this
scale parameter can be related to the value  k 1 at which the non-dimensionalized

spectrum has its maximum value. For example, grom the von K&rmfn model for the
longitudinal component spectrum, Eq. (61), we get

x u
L’ = 0.11;6/1(p (79)
while the Dryden model of Eq. (60) gives
X u u
= = 0, kK .
L 1/21rkp 0.159/ 5 (80)

For the vertical component models, Eq. (56) yields
x W
L, = 0.212/k (81)

and from Eq. (55)
X W
L™= 0.2314/kp . (82)

The lateral component models will of course give the same expressions as Egl"s.
(81) and {82) with kpw replaced by kp". Suppose now that either the von Kfrmén

or the Dryden mcuel is assumed to fit the experimental spectral data for a
particular component, The scale can thus be simply obtained from the location

k i of the peak of the experimental curve by using the appropriate expression
aBove. This method for obtaining scale estimates is used quite commonly, but

it has two major drawbacks. In the first place, the peak of the experimental
data 1s not always clearly defined, particularly for the longitudinal and lateral
components, and it can therefore be difficult to obtain a good estimate of k i,

In addition, the peak is generally located near the low frequency end of the
spectrum, where the data is not as reliable as it is at larger frequencies, and
further errors may be introduced.

In obtaining scale values by the third method outlined above, con-
siderable care must be exercised in interpreting exactly what has been obtained,
As previously stated, both the wvon Kérm&n and the Dryden spectral models are
for isotropic turbulence, and the vertical and lateral component models are
written in terms of the longitudinsal component scale Lux on the assumption that
the isotropic relation L ¥ = 2], X = 2wa is valid. However, if the turbulence

is not isotropic, the isotropic models may still fit the experimental data quite
well, but the above scale rélation is not valid. 1In particular, this is the case
in the lower atmosphere. Thus if one applies Eq. (81) or (82) to experimental
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data for the vertical veloc1ty component, it is in fact not L that has been ob-
tained, but rather 2 L , and from this data one can obtain 1nformat10n only about

the vertical component, not the longitudinal. This point explains why Taylor
(Ref.51), for example, concludes that Lux is proportional to height z from the
surface up to z = 1000 ft. when most results indicate a much weaker variation
with height. Taylor's results are based on vertical component data taken from
Saunders(Ref.20) and Panofsky and McCormack (Ref.29) and fitted with the von
K&rmén verticel component model. The data shows that kpw is proportional to

height,, such that while Eq. (81) indicates L ¥ should thus be proportional to
height, it is in fact L X bhat is proportlonal to helght. No conclusions can be
made about ux except perhaps at larger heights where L 2wa is a more reason-

able approximation, Probably the best way to avoid confus1on here when using the
von KArmin or Dryden models is to replace L, X by 2L, X in the lateral component

equstion and by 2L * in the vertical component equatlon. Thus for the von Kérmén
medel, Eq's. (79) and (81) become

X u X w
Y o.1h6/kp sk = 0.106/kp (83)

and for the Dryden model, Eq's. (80) and (82) become

30 u p ] w
L = o.;59/kp s L= o.117/kp : (84)

u

In the literature, the bulk of the data available is for the scales L b
and wa. As one might expect, these scales are functions of height, thermal

stability, and surface conditicns since physically they represent the size of the
predominant eddies in the turbulence. As with the longitudinal and lateral com-
ponent variances, the effect of surface conditions is not adequately expressed by
roughness length, since large scale non-uniformities such as hills and mountains
have a significant influence on the scales. For example, the results of Berman
(Ref.40) show little effect of roughness length on scale for uniform terrain
while Lappe (Ref.28) indicates a distinct increase in scale with increasing sur-
face non-uniformity. Lappe also shows that the effect of the surface is felt
most strongly at lawer heights, end that as height increases toward 1000 ft.,
terrain type becomes less important. This tendency was also found by Gunter et
al (Ref.43) whose results show that increasing surface non-uniformity.increases
scale at z = 250 ft., but has little effect at 750 ft. Conversely, an increase

of scales with decreasing stability was found by Gunter «t al to be quite noticeable
at z = 750 ft, but not at 250 ft. To summarize, then, it may be concluded that
increasing surface non-uniformity tends in general to increase integral scales,
but mecre so at small heights than at large; decreasing thermal stability tends to
increase scale, buf more so at large heights than at small. Also, roughness
length has little effect on scales, while increasing large scale non-uniformities
of the surface tends to increase them.

- As for the effect of height on scale, it is generally agreed that all
of L. va and Lw increase with height, although not necessarily in the same
manner. The variation of the scale Lw of the vertical component is the one
which is most consistently agreed upon, Figure 10 shows the results of most of
the investigaticns of recent years, for neutral air over flat terrain unless
otherwise noted. In all cases, the scales were cbtained by the spectral fit
method, and in the few cases when only *“he spectra were given, Eq. (83) was used
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to determine L x. It is noted also that for the data of Ref's, 20, 21 and 28, the
published values for Lux were divided by 2 and used as wa since these values were
determined ftrom vertical component data., It is evident thal the scale wa is in
fuct proportional to height as suggested previously, and a value of 0,40 for the

constant of proportionality places the curve in the centre of the data within a
reasonable amount of scatter, Thus it is suggested that the relation

L™ =0.42. (85)

glves a reasonable estimate of this scale for heights up to 1000 ft. in neutral air
over relatively flat terrain. It is &also pointed out that if one considers only

the region outside the surface layer in Fig. 10 (i.e., £ = 200 or 300 ft, to

z = 1000 ft.), the variation of L X with height appears to weaken somewhat, as
suggested by Busch and Panofsky (ﬁef. 41). The additional line shown in this region
is given roughly by

L™ =2.1z (86)

and this may fit the data slightly better in this region than the Lux = 0.4 2
relation,

The results available to date for the scale Lux at various helghts in

neutral air are shown in Fig. 11. Here again, most of the data were obtained by

fitting spectral models to experimental data for the longitudinal component. It

is obvious that there is considerably greater scatter in this data than in those

for L X, However, some definite conclusions can be drawn. First, it can be seen
that ghere is a distinct increase in L * with height over the entire range 0-1000
ft. Also, this increase with height 1§ wesker than that for wa, with Berman

(Ref.40) suggesting L Xoc 2°0°and Webb concluding L *oc 2042, Thirdly, the data
u u

for the surface layer is considerably more conclusive than that for the remainder
of the planetary layer. In the 0-200 ft., range, most of the data falls within
the shaded band shown. The centre of this band is given by the line

0.h47
LY =22.7 2 (87)
and the extremities of the band are roughly 50-60% away from this l1ine. Since
this rejation suggests more accuracy than is reasonable considering the scatter,
the relation

L* =20 Nz (88)
u

is also shown in Fig. 11, and it is seen to reasonably indicate the location of

the band., Thus it is suggested that Eq. (88) be used to estimate L * in the sur-

face layer under these conditions, realizing that variations of the size shown

are unavoidable due to the complexity of the atmosphere, Above 200 ft., Fig. 11

shows that Eq. (88) can also be used with a scatter in the data similar to that

below 200 ft, However, it is to be noted that over the 200-1000 ft. range, a

stronger or weaker variation coulc¢ e the case, as the data are not too conclusive,

In particular, the line Lux = 0,8 2 is seen to fall within the scatter band, as

is the line ] 0.73
I = = ba 2

!

Both these lines represent the isotropic relation Lux = 2wa based on the
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relations of Eq's. (85) and (86) for L in the 200-1000 ft. range. However, the

line Lu = 0.8 z is seen to be completely unacceptable below z = 200 ft., Thus,

here again, as from other observations, it is seen that if any form of isotropy
exists in the lower atmosphere, it must certainly be outside the surface layer.

In Fig, 11, the fact that Lux increases with height is indicated by

most of the data shown, including that of Davenport (Ref.37). This is contrary
to the conclusion of Elderkin (Ref.17) and Fichtl and McVehil (Ref.39) who state
that Davenport's data showed the peak of the longitudinal spectrum, and thus the
scale L , to be invariant with height. However, the invariance of this data
with helgh? results only from the fact that the variable n/U was used as the

abcissa, where U_o is the mean velocity at z = 10 m. Indeed, as Davenport himself

points out in Ref.10, if n/U were used as the independent variable, where U is the
mean velocity at height z, then the location of the peak,which would now be kY

as previously defined, would indeed show a variation with height. Thus the 'scale'
I, used by Davenport in Ref.10 (and which was equal to 1200 m. in Ref. 37) and
also by Harris (Ref's. 58 and 62) is constant with height, but only because it
was defined using n/UlO By comparing Harris' spectral model with that of von

Karmar, this scale may be found in terms of the true integral scale as

i
L = <11.9 —= )"
i

and it is thus easily seen that since L is constant,

X == Q
L, o U/Ulooc z

using Eq. (44). Thus Davenport's results do not indicate constant longitudinal
scale but rather that this scale increases with height in the same way as the
mean velocity does.

Very little data is available for the scale L x’ and few definite

conclusions can be drawn., Gunter et al (Ref.43) found that overzdllsssabilities
and terrain types, the average value of LVX was 180 ft. at z = 250 ft. and

230 ft. at z = 750 ft., these values being roughly equivalent to those found
for wa and half the values found for Lux. The spectra obtained by Fichtl and
McVehll (Ref.39) were used to find that in neutral air,

0.42
= 35.2

for z ~£0-500 ft., indicating a variation with height similar to that for L

but yielding values that are roughly the same in magnitude as L X rather than
wa. Elderkin's data for z = 10-20 ft. yield- va =~ z, such thit va is larger

than the wvalues of wa obtained from his data but smaller than the L X values

so obtained. Thus about all that can be said about L X is that it increases
with height, and above the surface layer it is probably roughly the same as L

As for the remaining scales defined by Eqs.(12), little information is

available. Panofsky (Ref.24) gives some information based on correlation curves
measured over smooth terrain (zO = 1l cm) at z = 6.5 m. From so-called 'semi-scales'
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X
obtained from these correlations, he found that in stable air, Lu ~ 8 Luy, a

result which was also found by Grant (Ret.2?%) in a wind tunnel boundary layer.
Thus the eddies are elongated in tlie mean wind direction in stable air,and also
presumably in neutral air. The lateral component scale was also found to be
elongated in the mean wind directicn in ctable air, with L X ~ 3 L Y, and also
Lvy = Luy. In unstable air, however, Panofsky's results ¥how an entirely

different situation, in that L X was found to be increased by a factor of about

u
six over the stable air value, and all scales were roughly the same size, or
Lux & Luy & va = Lvy. Finally, Panofsky also found wa and Lwy much smaller

than the other scales at this height for both stable and unstable air, a result
not surprising considering the nearness of the surface., Thus the anistropy of
the turbulence very near the surface is emphasized by these results, in addition
to the strong effect of stability. Panofsky sums up his findings by stating that
on a clear day (i.e., unstable air) the scales Lux, LY, va, and Lvy are all

large and of the same order of magnitude, while at night (stable air) the scales
are much smaller and that of the u-component is much smaller across the wind than
along it. For a further qualitative description of the eddy structure in the
atmosphere, the reader is referred to Ref. L, page 210.

IV. MATHEMATICAL MODEL OF THE PLANFTARY BOUNDARY LAYER

As a summary to the preceding description of flow characteristics in
the planetary layer, a mathematical model is suggested, based on certain simpli-
fying assumptions. This model is intended to be a compromise between precision
and simplicity, and the validity of any part of it can be determined by referring
to the appropriate section of the preceding discussion.

4.1 Assumptions

(1) The mean wind velocity is assumed to be strong enough such that the
atmosphere may be considered neutrally stable.

(2) Taylor's Hypothesis, or the assumption of frozen flow, is assumed to
be valid over the entire gust spectrum range of interest (A = 0/n~50-7000 ft).

(3) The gross features of the terrain are assumed to be relatively uniform,
such that roughness length z, represents the surface effects adequately.

(4) The flow is assumed stationary for periods at least as long as the
record length used to obtain mean velocity values.

(5) The flow is assumed to be homogeneous in any horizontal plene.

4.2 Mean Velocity Profile

The mean velocity through the entire planetary layer (z = 0 to ~ 2000 ft,)
is given by

U/UG = (z/szx

where Zq and ¢ are given in terms of surface roughness by Fig. 1 and the gradient
wind UG is determined from local meteorological data. For the surface layer alone
(z =0 to ~200 ft.) the mean velocity is given by
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0/0 = 2.5 1n (z/zo)
where ﬁr is the friction velocity.

L.3 Reynolds Stresses

The ratios of the velocity component variances in the surface layer are
given by

u'/v'/w'/ﬁT = 2,5/2.0/1.3/1

and the turbulence intensities are

u' I v' _  0.80 w' 0,52
= == R e and e e
§ ln(z/zo) U ln(z/zo) U 1n(z/z°)

Above the surface layer, the intensities all tend toward the same value, this value
being determined by the turbulence intensity in the free atmosphere which is
assumed to be zero.

The Reynolds Stresses uwv and vw are assumed to be zero throughout the
planetary layer. In the surface layer, the uw Reynolds Stress is determined by
the variance ratios specified above, such that (Eq.52)

w / u'w' = -0.31.

Above the surface layer, uw decreases in magnitude toward zero.

4.4 Power Spectra

The von K&rm&n equations are suggested as the model for the velocity
component power spectra. The appropriate (anistropic) values of integral scale
and variance must be used, however, as specified. Thus the power spectra are
given by

X
- 4L

¢ (k) = o . = (90)
) (1 + 70.7(Luxk)2 ]5/6

— H it 188.L~(21,V"k)2 '
= v WL L .}
g Y U+ 0.7(en xk)? ] P8 (91)

—_ C 1+ 138.4(20 k)P
(b'“(r{) o WL. L1, : JL ul 11/6 }
YU+ 700720, K)%)
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4.5 Cross-Spectra

The cross=-spectra Qtv(k) and va(k) are assumed to be zero in this model,
along with the quad-spectrum Qw(k). The cross-spectrum ¢w(k) is thus equal to
cuw(k) and is given in the surface layer by

1/¢
0, 0) G0 Y
q’uw (k) = '70 2
1 +0.395(L *k) (93)
or in non-dimensional terms,
7
o)
7uw(k) = (9k)

[1 + 0.395(L *k)2 172

The value of 7 can be determined from Eq. (66) using the power spectra of Egs. (90)

and (92) and the scale values given in the following section. The variation of
7o with height is determined completely by the ratio wa/Lux’ and this variation is

shown in Fig.12 for wa/Lux as found from Eqs.(95) and (96). In the figure, 7o is

shown to be constant with height above the surfacs_}ayer. since wa/Lux =0,5= u

constant. In fact, however, % will decrease as uw/u'w' decreases, since, as indi-
cated by Eq. (66), 70 is proportional to this value.

4.6 Integral Scales

X

For the planetary layer as a whole, assume va = Lw and the scales Lux

and wa are given by
L* =24z (95)

and
Ty =00k 2 .

When the region above the surface layer is being considered alone, the expressions

= 4.2 073 (96)

end 0.73

(o
|

= 2.1 2

are suggested, and thus in this region, the isotropic relation

X hws [, = 2 X
u v v

L

is valid.
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