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ABSTRACT 

<9 
This investigation was undertaken with the objective of developing 

techniques for solving the problem of sound transmission from a 

harmonic monopole source through a finite, corrugated boundary between 

fluid media and to corroborate these techniques by means of laboratory 

data obtained for the important case of air-to-water sound transmission. 

Using a form of the Kirchoff radiation integral, expressions were 

derived describing both the refected and transmitted acoasric 

potentials due to the scattering of monopole sound at a corrugated 

boundary between fluids.  For the case of sound transmission through 

the boundary the integral expression was reduced to an approximate 

closed-form solution which is valid in the limit of geometrical optics 

and for extended interface geometries for which the tangent plane 

approximation is applicable. 

Empirical data was obtained using fojr different laboratcry models 

of corrugated (sinusoidal) surface sections designed to float on tbe 

surface of an anechoic tank so as to simalate different corrugated air- 

water boundaries.  Numerous comparisons of theoretical results with 

experimental data obtained by loudspeaker insonification of these 

model surfaces demonstrated the suitability of tbe theory and illu- 

strated the inaccuracies which arise in cases for which the tangent 

plane approximation is unsuitable. 
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CHAPTER I 

INTRODUCTION 

General Introduction to the Problem Area 

In recent years» a considerable amount of Interest has evolved 

regarding changes which occur in the characteristics of acoustic 

signals which are transmitted within or between two media of different 

characteristic Impedances which share a common boundary. Of 

particular Interest Is the problem of predicting the Influence of 

various rough boundary surface configurations on the characteristics 

of these signals. Until very recently, such studies have been almost 

entirely devoted to the problem of sound scattering (reflection) from 

such boundaries by various classes of rough surfaces. Evidently, 

this interest in acoustic signal scattering was motivated principally 

by the need to understand the effects of rough surfaces such as that 

of the sea surface or ocean bottom on various echo-ranging signals 

transmitted in the ocean. However, with the development of more 

sophisticated underwater acoustics equipment, it has become obvious 

that reception of acoustic signals passing between air and water is 

practicable. Hence, in order to more fully exploit this capability, 

renewed Interest has been shown in studies related to the problem 

of sound transmission through various classes of rough surfaces 

separating fluid media. Moreover, in addition to problems involving 

sound transmission between different fluids separated by rough 
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boundaries, various related problems abound involving the transmission 

of vibrational waves between fluid-solid and solid-solid interfaces 

in such fields as oceanography and seismology. Hence, basic studies 

which enhance our knowledge of vibrational wave transmission between 

media separated by arbitrary boundary geometries can be expected to 

contribute significantly to the advancement of technology even in 

diciplines not directly involved with the transmission of sound waves, 

per se. 

Need for the Study 

Present theoretical literature contains but scant reference to 

the problem of sound transmission through a rough interface separating 

two media of different characteristic impedances. That which does 

exist deals in various approximate ways with the transmission of a 

perfectly planar incident wave at the surface of an infinite boundary 

described as a general periodic uneven surface or a boundary« comprised 

of a corrugated surface extending to infinity in two directions. No 

reference whatever has been found which relates to the point-source 

rough interface transmission problem.  Evidently, one of the reasons 

that this latter problem has been virtually neglected to date is that 

the mathematical difficulties encountered in the development of a 

rigorous theoretical treatment have proven to be intractable.  In fact, 

Lysanov (1958) points out that it is Impossible to use the method of 

separation of variables to obtain a solution of the wave equation 

X which satisfies the boundary conditions specified on the uneven 
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surface. Denied the use of this powerful method for solving the 

relevant system of equations, It Is not difficult to appreciate the 

mathematical complexities which result. 

For the specific case of a simple (monopole) source In one medium, 

both (wave) Integral equations and geometrical optics-type (ray theory) 

solutions exist which can be used to compute the sound field developed 

In the adjacent medium, but only for the case of a smooth (flat) 

boundary geometry. Much stll! remains to be done to extend these 

techniques, or develop new ones, which will permit one to compute the 

sound field in the adjacent media for rough boundary geometries. 

Finally, no empirical data of any consequence appears to be 

available for the case of sound transmitted between fluid media 

separated by rough boundaries. 

Specific Statement of the Problem 

The objective of this study is to advance our understanding of 

the processes involved in acoustic transmission between fluid media 

which are separated by an uneven boundary surface. In this context, 

the specific problem herein chosen for study concerns the description 

of the steady-state sound field which arises in a fluid medium due to 

the transmission of acoustic energy from a point (monopole) harmonic 

source located in a second (adjacent) fluid medium sharing a common, 

limited time-invariant corrugated boundary with the first. 

4 
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Scope and Llmitatlone of the Study 

In order to advance our understanding of acoustic transmission 

between media separated by rough boundary surfaces this study was 

initiated to: 

(1) Develop a mathematical model and computational procedure to 

predict the acoustic field in a fluid medium due to the operation of 

a point (monopole) harmonic source in a second fluid medium of 

different acoustic impedance. Each of the two homogeneous Isotropie 

media are assumed to occupy its own infinite half-space. Transmission 

of acoustic energy is assumed to take place only through a finite 

portion of the common boundary between the two media. Further, the 

cross-section of the acoustically transparent interface between the 

media is assumed to be composed of regular corrugations (sinusoidal 

undulations). 

(2) Obtain empirical data on the transmission of sound from air 

to water through a finite corrugated boundary surface with excitation 

frequency and source an^le as parameters. 

(3) Establish the suitability of the mathematical model by 

comparing predicted results with the empirical data obtained during 

the laboratory tests. 

(4) Investigate various relationships between the physical 

parameters of the surface and source with the objective of defining 

the conditions under which the accuracy of the theoretical procedures 

will be maintained. 
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To facilitate the manipulation and evaluation of the expressions 

to be developed herein, it was necessary to introduce certain specific 

assumptions in the course of the mathematical analysis. Actually, 

these restrictions have become familiar in studies of this type and 

most, if not all of them, have been used, either implicitly or 

explicity, in all of the studies on scattering and refraction reported 

to date. These limitations include the following suppositions: 

1. Multiple reflections in either medium can be Ignored. 

2. The source and receiver are restricted to positions not 

in the immediate vicinity of the interface in the sense 

that k R0 and k R are large. 

3. Masking (shadowing) of one portion of the surface by 

adjacent ones need not Lj considered. 

4. Transient effects are not included. 

5. The tangent plane approximation is valid. 

6. The spatial rate of change of the phase of the incident 

wave changes much more rapidly than that of the transmission 

or reflection coefficients in the region of the interface. 

Note that no specific restriction on the height of the surface 

is made, providing the above assumptions remain valid. 

Previous Related Studies 

Apparently, the earliest and certainly the best known approximate 

approach to solving the problem of reflection and transmission of 

harmonic waves at a rough interface is that described by kayleigh in 
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his "Theory of Sound" published in 1877 (See Reference 8). For a 

normally Incident plane harmonic wave and an infinite sinusoidal 

surface, Rayleigh formulated a solution to the problem in terms of 

an equivalent problem in which the solution of an infinite set of 

linear equations must be found.  Inverting this system, he obtained 

a solution to the transmitted wave in the form of an infinite series 

made up of individual terms representing distinct planar waves (the 

spectra) which are scattered in various directions.  In order to 

evaluate the coefficients in the series, it is necessary to assume 

that the acoustic wavelength is much smaller than the wavelength of 

the surface undulations, observer and source are in the far field of 

the surface and the slope of the uneven surface is small. 

A noteworthy extension of Rayleigh's basic treatment has been 

reported by Asano (1966). He assumes that a general periodic surface 

can be decomposed into a Fourier series composed of elementary 

corrugations and then proceeds to fit boundary conditions at a 

representative corrugated interface, much in the same way as Rayleigh. 

However, in addition to considering purely longitudinal vibrations, 

he includes transverse vibrations (shear waves) in his formulation for 

several cases of interest in seismology. Although his work Is, for 

the most part, restricted to the case of plane normally incident 

elastic waves, he does include the subject of oblique incidence when 

the incident wave is of the plane longitudinal (P) type. Again, to 

facilitate application of the boundary conditions, both the amplitude 

and slope of the corrugations were assumed to be small. 
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By numerically evaluating the first two coefficients of the 

resulting series solution, Asano reached several important conclusions 

regarding the effects of corrugation amplitude and wavelength on the 

strengths of the lower order spectral components. The most striking 

obserraUon noted was the presence of large, rapid fluctuations in 

the values of the series coefficients as the ratio of the corrugation 

wavelength to the wavelength of the incident P-wave (^ A,) was varied 

in the range of about one-half to two. Especially rapid changes were 

frequently encountered for values of (X A ) just slightly less than 

one. On the other hand, for values of (X A-) in excess of two, the 
s - i 

amplitude coefficients tended to remain reasonably constant. Although 

his numerical evaluation was limited to velocity contrasts less than 

two to one, Asano noted a tendancy toward greater fluctuation in the 

amplitudes of all low order coefficients as the velocity contrast was 

increased. He also noted a tendency for the regularly refracted 

P-wave to gain energy at the expense of the regularly reflected P-wave 

as the corrugation amplitude was increased. For the case of an 

obliquely directed incident P-wave, the angle of incidence appeared to 

have little effect on the regularly reflected and refracted P-waves 

but a somewhat more significant (although still moderate) influence 

on the irregularly reflected and refracted P-waves, 

A particularly illuminating study of a related problem in the 

field of electricity and magnetism is that of Park and Erteza (1969). 

Undertaking to solve the problem of radiation from an arbitrarily 

oriented electromagnetic dipole source in the presence of a rough. 
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imperfectly conducting earth, they present a form of the vector 

Helmholtz integral which is suited for their application. By means of 

this formulation, they proceed to express the reflected and transmitted 

v Hertz potentials in terms of the dyadic reflection and transmission 

coefficients of the boundary. Applying themselves to a mathematical 

model of a slightly rough surface described by a random process with 

a stationary Gaussian height distribution, they obtain solutions of 

the geometrical optics type for the expected Hertz potentials and 

expected power arising from steady state excitation of an elementary 

dipole.  In addition to being a worthwhile exposition of an application 

of the mathematics of geometrical optics to transmission in the 

presence of a rough boundary, this recent contribution is apparently 

the first significant work to be reported on the problem of scattered 

electromagnetic transmission through a rough interface. 

Mashashvili and Urusovskii (1969) report, an extension of work 

previously reported by Urusovskii (1965) in which chey consider the 

problem of plane wave diffraction by an extended periodically uneven 

interface between two homogeneous media.  Using the Green's formula, 

together with the Hankel function representation of the incident wave 

field, they make use of the periodicity of the integral kernels to 

develop a solution for the reflected and transmitted pressure fields 

in terms of a set of algebraic equations 



CHAPTER II 

THEORETICAL DEVELOPMENT 

Kirchoff Radiation Integral 

Due to the similarity in the development of the Integral 

equations for scattering (reflection) and transmission (refraction) 

arising from point source insoniflcation of a corrugated boundary, it 

is useful to carry through the general theoretical development for 

both cases. However, methods for evaluating the resulting Integral 

expressions as well as application of corroborative experimental work 

will be restricted to the case of transmission through the boundary, as 

indicated previously. However, it is important to emphasize that only 

minor modifications are required to adapt the computational procedures 

developed for sound transmission to the case of sound scattering 

(reflection). 

An integral equation for the portion of the incident sound field 

scattered back into the original medium by the corrugations, as well 

as an expression for the field transmitted into the adjacent medium, 

may be found with the aid of the Kirchoff integral.  In order to 

develop a form of the Kirchoff integral suited for use in the present 

study, we begin by consideration of Green's Theorem in the form 

(Reference 4, Page 15): 

fv  (^S - tV^dv =/s (^ - ^ |-)ds, (2.1) 
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where ♦ and f are arbitrary scalar fields, dv is the differential 

element of volume, and ds the differential element of surface area. 

The partial derivative $- denotes differentiation with respect to the 

unit normal directed outward from the volume under consideration. 

For the solution of the Hyperbolic (wave) equation relevant to 

the present case, we require specification of Cauchy boundary 

conditions (the potential and its normal derivative) on an "open" 

surface (Reference 4, Page 17). Here, the open surface is the three- 

dimensional half-space at a fixed-time. We can manipulate Equation 

(2.1) to obtain an integral expression for the velocity potential at 

any point within the particular medium to be used in Equation (2.1) 

and for any time, t, greater than the fixed initial Instant chosen. 

However, it is expedient to restrict ourselves to the steady-state 

time periodic case from the outset and, with this understanding, we 

can develop the pertinent form of the Kirchoff equation with minimal 

effort. Refer to the geometry depicted by Figure 1. Then using the 

subscript, i, to denote the numerals I or 2 (which refer to medium I 

or 2) and the subscript, j, to indicate the letters r or t for 

reflection or transmission, we let 

■  e-^W t=— • (2.2) 

Separating the time variation from the potential, we can write 

Oj = fj e"ia)t . (2.3) 
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Now, ehe physics of the problem requires Chat the scattered 

potentials satisfy a homogeneous wave equation, i.e., 

or, using Equation (2.3), 

2 
^    +k1

2; =o ik^SÄ-j     . (2.5) 
Cl 

Further, since ty  in Equation (2.2) is Green*s function for the medium 

containing the observation point, it satisfies the equation 

2 
^if-K   —, * = -4« 8(R.) e'1** (2.6) 

^ (f- 1 *> + kl2 (R~ i ^ = -U*  8(R1)- (2-7> 

or 

.ik R ik.R 

f;  *> + kl  ^ 

Using Equations (2.2), (2.3), (2.5) and (2.7), it is easy to show 

that Equation (2.1) becomes: 

_ n     ik R    07. 

•j <xi' v zi> = fcis t^   [^+ iki«+ ^h]ds- <2-8) 

Since we need consider only the space variation of the potential, 

we will henceforth dispense with the bar over the symbol for the 

potential.  In addition, for observation points in the far field of 

the surface Equation (2.8) simplifies to: 

1  p  ik.R. fa 

*j <V V V--^/SR; V + iki*j]d8 •      (2-9) 
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Geonetrical Optics Result for the Surface Potential 

To determine the value of the potential required by Equation 

(2.9), it is convenient to express the monopole source at (0, h, 0) in 

a double Fourier series in much the same fashion as for instance, 

Brekhovskikh (1960). For y<h, the unity amplitude velocity potential 

due to the source is: 

fRo=kj[** ^kix«+ h** - vy-h^ ^r"- • 
(2.10) 

where 

k   = (k2. k 2. k V/2 k
ly ^l       klX   

klz ) 

and 

R0 = [x
2 + z2 + (y-h)2]1/2    . (2.11) 

Since the phase of the potential does not change upon transmission 

into the second medium, use of the tangent plane approximation permits 

us to write the potential for the transmitted wave, evaluated at the 

point P on the interface, as 

Vx'yo'2) = hfrexp Ni[kixx + ki22" Vv1^)dklxdkl2' 
1 '  kly 

(2.12) 

where 

2p1c2 cos el 

T = P2C2COS ei +  plclcos e2 (2'13) 
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is the (plane wave) transmission coefficient evaluated at point P on 

the interface. Of course, we relate 0 to Ö    by means of Snell's 

law; i.e., 

k1 Sin ei  = k2 Sin 02     . (2.14) 

To evaluate the potential at the interface, using Equation (2.12), 

apply the geometrical optics approximation and restrict the location 

of the source point such that the quantity k R remains large.  In 

this instance, the integral may be evaluated by the method of 

stationary phase in much the same way as that employed by Park and 

Erteza (1969). To illustrate the use of this method, we seek to find 

the points at which the phase term in Equation (2,12) takes on 

stationary values. That is, defining the phase function as 

* = k:xx + kizz + Vh-V ' (2-15) 

we seek values for k, , k, and k, at which 
Ix  ly     Iz 

Using Equations (2.11) and (2,15), and the condition (2.16), the 

points of stationary phase are found as 

i  x 

k,   = k, "r- 
lx    1 R0 

kiy -r0 <h-V 

klz =^2-    . (2.17) 
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In the vicinity of the stationary phase points, the phase function may 

be expanded in a power series; i.e., 

2J0 (klx  Klx ) * 2%, 
Ix Iz 

♦ " [*]0 + 1^0  <klx - klx'>2 + 1^0  <klz - "I.')1 

v2 
+ [|^T-]0 <klx - klx^ <klz - ki>--..>      (2.18) 

where the symbol [ L is used to denote that the enclosed expression 

is to be evaluated at the stationary phase points. 

Inasmuch as the method of stationary phase rests on the 

supposition that the principal contributions to the value cr  the 

integral arise from regions in the complex plane in the immediate 

vicinity of the stationary phase points, Equation (2.12) may be 

approximated by the relation 

00 I! 

♦t(x.y0.z) - i—r [T]0 /^^expCf [|^-2]0 (^ - ^ )2 
2* kly -« IX 

+ ^0^-klz')2 + 2fi^-^0<klx-klx') ok, lx Iz 
IZ 

.(klz-kl2')+...j ]dklxdklz . (2.19) 

For the geometrical optics approximation, there is no need to retain 

terms in Equation (2.19) above the second order.  It is shown in 

Appendix A that, under these conditions. Equation (2.19) may be 

directly integrated with the result that: 
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if*] I 2      2        2 

(2.20) 

Using Equations (2.15) and (2.17), it follows immediately that 

[*]0 = k^Q  . 

öklx
2 0   kl (y0 - h)

2 

2J0= - ———r • (2-21) 

and 

öklz      kl % ■ h> 

^2, Rnxz 

dk, ok, J0    1 /  ux2  ' 

with which Equation (2.20) may be evaluated, obtaining: 

ikiRo 
^t(x,y0,Z) : [Tl0 ^   , (2.22) 

In an exactly analogous manner, the scattered potential at the portion 

of the interface adjacent to medium 1 can be found to be given as 

ik1R0 

*r(x,y0.z) : [S]0-^   , (2.23) 

where 

P c0cos d    -  p c cos 9 

" p2c2cos e1 + plc1cos e2 
KL'^) 
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Is the reflection coefficient in which 0 is again related to 0 by 

means of Sneli's law. 

Geometrical Optics Result for the Normal Derivative 

To compute an expression for the normal derivative of the 

potential at the surface suitable for the geometrical optics 

approximation, we proceed in a somewhat heuristic manner. We suppose 

that the potential at a point on the transmitted ray» only slightly 

removed from the interface, is of the form 

00 

+ i   rr dki dki 
♦t (X'VZ) = k  r exp 1(kiRo+ k2R2) k    '   (2'25) 

I -00 
f 

ly 

+ 
where the symbol <i>  denotes the transmitted potential evaluated very 

close to the point x, y , z. Now, for surfaces of comparatively gentle 

slope, the space rate of change of the transmission coefficient may be 

expected to be small compared to that of the exponential and 

00 

i   rr dki dki 
^t' (x,y0,z) = 2^ //T Vexp Kk^ + k^)  ^X iz .   (2.26) 

r» ly 

Moreover, since the maximum space rate of change of the phase must 

occur along the rays, 

V exp IC^RQ + k2R2) = i kt exp 1(1*^ + k^) ,        (2.27) 

where k is the transmitted ray which is related to the incident ray 

by Sneli's law. Thus, the gradient of the potential evaluated at the 

surface becomes; 
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vv*.yo.*):fc//*i^e*p(Vo)dki*dkiz • <2-28> 

Noting the similarity of Equation (2.28) with Equation (2.12), the 

geometrical optics solution to Equation (2.28) follows immediately as: 

A  e
ikiRo 

^t:(x.y0.z) = i[ktT]0 ^ . (2.29) 

Using a coordinate system centered at the point P, ana new unit vectors 

a and a aligned with the normal and tangent to the surface, it is 

not difficult to show that 

, e
iklR0    h-y -xo) H sin(ü) x-r) 

|j .t(x,y z) = i k2 [T]0 (^-) —0   h ; 2'     -772 > 
R0 [1 + Cüg H    sin    (cosx-7)J 

(2.30) 

where the positive sense of the normal derivative is that directed 

from medium 2 into medium 1, 

Integral Equations for Reflection and Transmission 

Substituting the expressions previously obtained for the potential 

and its normal derivative into the Kirchoff integral, we obtain: 

ik. re
i(kiRo+ W 

W'VV = üff f^ [T]o 
b 

h-H cos(a)sx-7)-xajsH sln^gX-r) 
[ T-z 5 rjz—■ + 1] ds     , 

V1 + ^S H   sln   (V"7)J 

(2.31) 
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where 

20,0 cos 0. 
FT] = —i-2 1  
' 0  P2C2Cp8 ei  + PiciC08 dl2    * 

2       ci    ci       l 

h-Hcos(cüsx-7)-Xü)sH Sin(a)sx-7) 
COS 0.   =  r-r = ryr-    , 

R0[l +a)sV sin^cügX-r)]1^ 

R0 = [x
2 + z2 +  (yp-h)

2]1/2 

and 

R2 = [(x2-x)
2 + (z2-z)2  + (y2-y0)

2]1/2   . (2.32) 

In an exactly analogous manner, the reflected potential turns out to 

bfc: 

lk1 f/(WW 1Ki r*    *■0  ii (t> (x ,y ,2 ) = -—£ ^ ^ _ rgi r 1 1 1'  4ir ^ R^        LSJ0 

Hcos(a)sx-7)-h+xa)sH 8iii(a)sx-7) 

RoLl-^gVsin2^^)]^ 
~TT  2—" fT?  + 1] ds , 

(2,33) 
where 

and 

[s] - p2c2cos ei - Picic°« e, 
o P2C2COS e1 T pjCj^cos e 

«! = [(^-x)2 + (2i-2)2 + (yi.yo)2]l/2   . (2 34) 
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An expression which will be useful in subsequent sections is that 

expressing the ratio of the transmitted pressure at (x y?z ) to the 

source pressure at unit reference distance and is given by: 

!t = -£ * (x^y z )     . (2.35) 
Q^    t    *    I    2 

Equation (2.35) may be readily evaluated numerically, and the FORTRAN 

IV listing of a digital program written to carry out the computations 

is included as Appendix B, The only nonzero contributions from the I 

integral arise from the region of the corrugations and the surface 
| 
j 

integral becomes a definite double integral with \ 

ds = [1 + ü)S
2
 H2 sin2 (a)sx-7)]

1/2 dxdz   . (2.36) 

I 

Special-Case Solutions for the Transmission Integral 

A closed-form solution for Equation (2.31) is extremely difficult, 

if not impossible, to obtain in the general case.  Even for an extended 

Interface, the determination of the stationary phase points, which 

enables one to calculate a solution valid in the geometrical optics 

sense, leads to transcendental equations which can only be solved 

numerically.  Nevertheless, it is worthwhile to outline the development 

of such a solution In general terms and to evaluate it for special 

cases in which application of suitable parametric constraints renders i 
i 

the mathematics tractable. j 

To compute the stationary phase points, we first define the phase j 

function from Equation (2.31) as; 
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y  = k^ + k2R2  , (2.37) 

then the stationary phase points, xm and z^t  follow as the real 

solutions to the relation 

^ = ^ = 0      . (2.38) 
dx  ?z 

Using Equation (2.37) in Equation (2.38), the equations for the 

stationary phase points may be written as 

V1 + n r2)+ ^Jw1 ir^on.) J - v-»   •     (2-39) 
om om 

and 

tjl-n -^Hl) - z    = 0    , (2.40) m K z om 

where: 

r    2 2      .        ux2il/2 
Rom=  [X«    +2m    +<yom-h>   ] * 

R2m - [(VV2 + <VZm)2 + (^oJ2^2    • 

yoin = Hcos  UgX^r)     . 

yom = - ST " "S* 8inKV7)   • 

and 

n = c2/c1      . 
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Using the stationary phase points obtained as the solutions to 

the above equations, the evaluation of the transmitted potential 

corresponding to each stationary phase point can be carried out in the 

limit of geometrical optics in a manner completely analogous to that 

developed in previous sections of this chapter, with the result that 

*tm(WV = RomR2m   (pjCj+p^B,) N £ m -v * m 

-[Ö-i 
-1/2 

hxdz    m 

where, in addition to the special variables defined previously, we 

have: 

(2.41) 

[*]     = k.R      + k R, m 1  om        2 2m 

0    . /0      h -x y' 
f[l + (7    )  ] ^    +   

m   In oml 
m      ^ wom R 

om 

B    =  (1-n ) 
R   '[U(y:_)'] z»     om ')2 

om + n 
m [h -x y'  V m   m om 

h    = h-y 
m om 

and 

. s2 c0    N2. „ «      (x +h y    ) 2  ro ¥i n       ri    ,  u 2 /    '  \2 m    m om       < r" L—^J^, = T— Ll + h_ m    y_ + (y_) ^ J 03    \  2Jm      R dx om 'm ^S    7om       """om7 2 
om 

+ RT [l+y2^s '^oJ - ~2 ] 
2m
 R2m 
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CD       öxöz m 3 v m       nrorn7 J m    2 72m7om/     ' 
Koin R2m 

with 

y2m = y2 - yom = -^W 

Äs an example of the use of Equation (2.41), we proceed to solve the 

comparatively simple problem of sound transmission from a mcnopole 

source to a receiver directly below it when the boundary separating 

the source medium from the receiver medium is that of an extended plane 

(H=0). This problem provides a valuable end-point check on the theory 

since a solution to this problem using other techniques has already 

been reported by Weinstein (1965) and Hudimac (1957). For a receiver 

at depth, d, the solution to Equation (2n39) and (2.40) is: 

xm = zm = 0     , (2.42) 

so that Equation (2.41) becomes: 
i(k1h+k2d) 

V0'd'0) - (p^l^p^nd) <2^) 

for the case of a plane boundary and, of course, a unit amplitude 

source.  The expression for the potential can be readily transformed to 

an expression for the pressure amplitude at depth, d, in a water medium 
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due to the operation of a one erg per second point source in the air 

medium above it and the result is 

This last expression is precisely that obtained by Weinstein (1965) and 

Hudimac (1957) using other methods. 

It is interesting to note that the expression describing the ratio 

transuitted pressure to the source pressure (at unit distance), i.e., 

Pt I  2P2C2  

pi r (P2c2^pici) (h+nd) (2'45) 

indicates that the transmitted pressure level is directly proportional 

to the ratio formed by the characteristic impedances of the two media. 

This proportionality constant is analogous to the transfer function of 

a resistive voltage divider in elementary electric network theory. 

Another feature of Equation (2.45) which is noteworthy is the 

effect of the velocity contrast factor, n, as a multiplier on the 

water depth parameter. The presence of this term indicates that 

changes in the pressure ratio brought about by changes in receiver 

depth are n times mere effective than changes in this ratio brought 

about by adjusting the source height.,  In fact, at sufficiently high 

depth-to-height ratios for the air to water transmission case, only 

very small changes in the received pressure level will be observed for 

comparatively large changes in source height.  It must be kept in mind, 

however, that Weinstein (1965) showed that the velocity contrast 
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multiplier is correct only for the geometrical optics case for which 

it applies; it does not appear in the limiting case of low frequencies. 

To illustrate how the simplified geometrical optics solution may 

be evaluated for the more complex case of a corrugated boundary, a 

digital program was written to carry out the analysis required to 

locate the stationary phase points and to subsequently compute the 

transmitted pressure ratio by means of the relation (2.33) applied to 

the potential given by Equation (2.41). The FORTRAN IV listing for 

this program is included in Appendix C and some examples of its use 

will be presented in Chapter IV. Note that when more than one 

stationary phase point is involved, the total solution is the complex 

sum of the potentials obtained for each stationary point. 

To simplify the process of finding th3 stationary phase points, 

the particular embodiment of the solution (2.41) just described assumes 

that z =0, so that z -0 from Equation (2.40). The roots, x , are then 
z m m 

computed using Equation (2.39) under the constraint that the receiver 

lies in the x-y plane containing the source. Note that solution (2.41) 

Is particularly useful when the characteristics ^f sound transmitted 

through a corrugated Interface of large extent -.re to be found. In 

such a case, the numerical evaluation of the transmission integral can 

consume considerable computer time, whereas substantially identical 

results can be obtained using the simpler solution. On tue other hand, 

numerical solution of the Integral equation is preferred over that of 

the simpler solution represented by Equation (2o41) when the corrugated 
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section of the Interface is of only limited extent. In these cases, 

one often finds that only a very few, perhaps only one, stationary 

phase point may exist. When this happens, the approximate solution 

tends to produce results that average out the interference effects 

arising from the combination of various rays at the receiver and thus, 

some of the finer sound field pattern detail contained in the integral 

solution may be lost. Examples of this effect will be illustrated in 

Chapter IV. 



CHAPTER III 

EXPERIMENTAL PROCEDURE 

Description of Laboratory Apparatus 

To provide experimental corroboratlon of the theory developed in 

Chapter II, a complementary experimental program was carried out using 

the anechoic tank facility at the Ordnance Research Laboratory of The 

Pennsylvania State University. To simulate the monopole source, a 

high quality enclosed back loudspeaker (tweeter) was used in an 

unbaffled configuration.  To implement the finite, corrugated boundary, 

several model corrugated surface sections were constructed of one* 

eighth-inch ABS (acrylonitrile-butadiene-styrene) sheet material 

manufactured by Marbon Chemical Division of Borg-Warner Corp.  Before 

corrugated models were constructed, however, the suitability of ABB 

for acoustically simulating an uneven water boundary was examined by 

comparing data obtained on sound transmitted through a flat water 

boundary to that obtained when ABS sheet was used on the water surface. 

Although these preliminary tests did show some minor discrepancies, 

the general conclusion was that ABS could be used to faithfully 

simulate the acoustic properties of the water surface when insonified 

from the air medium, providing intimate contact is maintained between 

the lower portion of the sheet and the main body of wateru 
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For Che purposes of this study, four model corrugated surfaces 

were constructed and photographs of these are Included as Figure 2 

through 5, inclusive. The principal characteristics of these surface 

models are summarized in Table I. 

While in use, each surface model is stabilized by lead ballast 

connected to each of the four corners. The ballast permits each 

corrugated surface to float at a level attitude and with the 

corrugations completely submerged.  Before placing the surface model 

on the water, the corrugated ABS sheet is treated with a wetting agent 

to exclude air bubbles and ensure intimate contact between the water 

and the underside of the corrugated material.  From the air medium, 

this section of the surface constitutes a stationary, corrugated 

air/water boundary. As an additional precaution against reflections, 

all inside vertical surfaces of the model-surface frames are covered 

with about an inch of acoustic damping material. Finally, before tests 

were made, all other portions of the tank surface were covered with 

acoustic damping material to substantially attenuate the stray 

acoustic paths between the air and water« 

To facilitate collection of the laboratory data, an automatic 

hydrophone positioning and recording system was designed, constructed 

and installed in the anechoic tank»  By means of this system, the 

hydrophone used to record the underwater sound field could be 

automatically swept over the entire length of the acoustic tank and at 

any predetermined depth. An electrical output derived from the drive 

system was used to accurately position the pen of an X-Y recorder in 
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accordance with the horizontal position of the hydrophone. 

Since acoustic damping material was used over all of the tank 

surface except that portion covered by the model Interface section, 

direct observation of the hydrophone could not be maintained during 

the tests. Consequently, an electro-optical system was provided to 

automatically shut down the sweep and produce a spatial calibration 

marker to the recorder upon reaching a fixed position at either end of 

the tank. 

Figure 6 shows the major mechanical portion of the sweep system. 

The large drumlike assembly behind the tank was used to adjust the 

sweep to a given depth. The small probe hydrophone was mounted to the 

center of a horizontal L frame constructed of ABS sheet.  (The acoustic 

Impedance of ABS material is very close to that of the water in which 

it is immersed.) Also visible in the photograph are the lights used 

for the optical position sensors. These sensors, located on the 

traverse, fore and aft of the wheel assembly, provide the sense signal 

required for automatic shut down of the sweep when the leading light 

aligns itself with a photocell mounted on the end of the frame„ 

In Figure 7, a block diagram of the experimental apparatus, the 

configuration depicted is one that utilizes narrow-band random-noise 

(NBRN) excitation of the loudspeaker source.  It was found during the 

course of these tests that NBRN is the most satisfactory means for 

obtaining laboratory data, particularly when the complex patterns 

produced by corrugated interfaces are to be studied. The CW or 
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warble-tone (FM) signals usually fall to provide satisfactory pattern 

definition because of the existence of residual reflections in air 

(such as those that exist between the speaker and the surface) and 

underwater (as between the bottom and the surface). Supplying wide- 

band noise to the loudspeaker (and filtering the received signal only) 

is also unsatisfactory because of the power limitations of the source. 

Calibration 

The form of the transmission equations which relate received 

pressure to incident pressure (or source level) is particularly 

convenient for making comparisons with experimental data. Using these 

equations, the theoretical data was computed as sound pressure in 

decibels relative to the source level.  It could then be readily 

related to received sound pressure level by adjusting the relative 

level by the figure obtained for the loudspeaker source level (LSL) 

given by: 

LSL = Gc +20 log E,  - 29.4  , (3.1) 
bp        m 

where 

LSL = Loudspeaker Source Level 

(dB re 1 jibar at 1 ft.) 

G  = Loudspeaker (EIA) Rating 
bp 

(dB re 0.0002 pibar and In^ at 30 ft.) 
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and 

E  = Loudspeaker Input Level 

(rms volts) 

In all the experimental work to be reported herein, the loudspeaker 

input level was maintained at +8dBv(rms).  This figure represented the 

maximum input voltage which could safely be accommodated by the 

loudspeaker without leading to excessive distortion or mechanical 

failure of the voice-coil. 

Calibration of the receiving system was accomplished simply by 

recording the deflections produced at the recorder for known inpui 

signals and adjusting these figures to account for the receiving 

sensitivity of the hydrophone.  Pertinent calibration data obtained for 

the loudspeaker and hydrophone are summarized la Table II. 

Practical Considerations in the Design of the Experiment 

The choice of the various parameters of the corrugated surface 

models, as well as the selection of the excitation frequencies used in 

the tests, were heavily influenced by the performance characteristics 

of the acustic source and the anechoic tank.  In order to develop 

sufficiently high source levels when usin^ NBRN, it was necessary to 

restrict the source center frequency to values not in excess of about 

20 kHz. However, even if this limitation did not exist, it would be 

difficult to employ source frequencies much higher than this due to 

the accuracy requirements which the use of such short acoustic 
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| 

SOURCE AND RECEIVER CALIBRATION DATA 

Frequency 

(kHz) 

8 

9 

10 

11 

12 

14 

16 

18 

20 

Gsp 
b 

Sensitivity 

(dB re 0.002 ^bar (dB re 1 volt 

and 1 nfc) at 30 ft.) and 1 pibar) 

50.0 108.2 

47.8 106.5 

46.5 105.0 

46.5 104.5 

46.5 103.5 

47.5 102.9 

53.0 105.5 

51.5 105.5 

46.0 105.1 

University Sphericon Tweeter 

Atlantic Research LC10 hydrophone 
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wavelengths would Impose on the fabrication of the surface model. 

Instead of the comparatively simple heat forming process used in the 

construction of the models used here, it would be necessary to utilize 

much more precise construction techniques, as well as to provide rauch 

more sophisticated apparatus to measure and maintain the various 

physical parameters used in describing the experiment. 

The lower frequency limitation of the experimental procedure arose 

as a result of two considerations. First, the acoustic absorption of 

the tank liner was highest in the frequency range near 20 kHz and 

diminished drastically for frequencies below 10 kHz. Consequently, 

any data obtained for frequencies below 10 kHz was questionable due to 

the reduction in received signal-to-noise ratio caused by the increased 

reverberation in the tank.  Secondly, for the longer wave lengths, it 

became increasingly more difficult to acoustically mask the unused 

surface of the tank, and the existence of stray acoustic paths which 

bypassed the region of the corrugated model began to seriously degrade 

the quality of the data. Thus, it was concluded that meaningful data 

could not be obtained for frequencies less than about 10 kHz. 

With excitation center frequencies limited to the 10 to 20 kHz 

ranpe. the design of the corrugated models was undertaken as a 

compromise between requirements which tend to favor the use of models 

of large physical size and those which favor the use of smaller ones. 

Whereas larger overall size permits a greater amount of the incident 

energy to be transmitted into the water and also allows a larger number 
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of undulations Co be used, larger models suffer from the disadvantage 

that the receiver must be located at a greater distance from the 

Interface In order to be in the far field of the extended radiator at 

the surface (the corrugated model). With the depth of the receiving 

hydrophone limited to nine feet with the sweep system installed, it 

appears that the use of surface models larger than about one foot on a 

side could lead to difficulty, especially at the lower frequencies. 

In practice however, it was found that somewhat larger corrugated 

models could be used and useful results obtained even in the near-field 

of the corrugated model. 



CHAPTER IV 

DISCUSSION OF RESULTS 

Comparison of Theory with Experiment 

In this section, the thsoretical data obtained by numerical 

evaluation of the Transmission Equation [Eq. (2.31)] are compared to 

experimental data obtained for the case of air-to-water sound 

transmission using the experimental program described in the previous 

chapter. Of particular interest is the examination of the accuracy of 

the theoretical predictions for sound transmission through a number of 

surface model corrugations designed with various waveheights, slopes, 

corrugation wavelengths and radii of curvature. 

The results of the data comparison are presented below for each 

surface model in turn beginning with model No. I. For each model, 

test results are presented for various excitation frequencies beginning 

with the  lowest one. This order of presentation is then continued for 

each successively larger loudspeaker tilt angle used for that particular 

surface model. For loudspeaker Inclinations different from zero, the 

actual location of the loudspeaker is to the left of an imaginary 

vertical line passing through the center of the surface model. With 

respect to the curves given, these positions then correspond to 

positions to the left (negative side) of zero. 
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Figure 8 is a comparison of theory and experiment for surface 

model No. 1, the largest of the models. The data was taken at a test 

frequency of 10 kHz with the axis of the loudspeaker aligned with the 

vertical line passing through the center of the surface. 

Figures 9 through 11, inclusive, also represent data taken with 

zero loudspeaker tilt angle, although at higher frequencies. For this 

model surface, normal loudspeaker incidence (zero tilt angle) produced 

the least accurate match between theory and experiment. Even so, the 

data can be seen to agree well with respect to average transmitted 

pressure level, and the differences which do exist tend to be confined 

to the finer details of the pattern shapes. However, for the highest 

frequency used, 20 kHz^ Figure 11 shows that even the finer details of 

the pattern are in close agreement with theory. 

The somewhat irregular appearance of the experimental data is 

attributed to two factors:  the fluctuation in the excitation signal 

which arises out of the requirement to use very narrow bandwidths at 

the loudspeaker input to produce adequate radiated power levels with 

NBRN excitation; and the spatial irregularities caused by partially 

coherent reflections.  In fact, some rather pronounced excursions are 

often associated with the edge of the plots (the ends of the acoustic 

tank) and particularly for cases in which a null should appear in the 

data. This is due to the fact that equipment installed at the corners 

of the tank to support the hydrophone positioning apparatus leads to a 

higher incidence of reflections as the receiving hydrophone approaches 
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the limits of its sweep. For example, irregularities in the data which 

appear to arise in this way are seen in Figure 8 in the region to the 

left of the figure and in Figure 11 at horizontal sweep positions 

between 25 and 45 inches on the right side of the figure. 

Figures 12 through 16, inclusive, are for a loudspeaker tilt angle 

of three degrees and frequencies in the 10 kHz to 20 kHz range.  In all 

cases, agreement between average transmitted levels and fine pattern 

detail is well within expected experimental limits for a large region 

containing the principal lobes of the transmitted sound field. Again, 

the agreement between theory and experiment tends to improve with an 

increase in frequency and for the highest frequency 20 kHz (Fig. 16), 

It is exceptionally good throughout the entire sweep range. Figures 17 

through 22, inclujive, represent data for a speaker tilt angle of six 

degreeso Agreement between theory and experiment is again very good 

for all frequencies In the 10 kHz to 20 kHz range. 

Figures 23, 24 and 25 show data taken for the model 1 surface at 

eight degree speaker tilt angle. These curves, and especially that of 

Figure 23, Indicate a tendency for stronger lobes to concentrate In the 

region beneath the actual location of the source which, In this case, 

is located in the air medium at about the 13-Inch horizontal position«, 

This Is obviously not a general property of the transmitted sound field 

patterns, however. At least for small changes in the loudspeaker 

angle, some tendency for the sound field pattern to retain its shape 

but shift its relative position in response to changes in louspeaker 
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angle (position) was also noted. Usually, the amount of the pattern 

shift can be estimated using Snell's law.  This is to be expected 

since the portion of the loudspeaker pattern which insonifies the 

surface model is essentially omnidirectional. Hence, if the surface 

section was very large, one could expect the basic underwater sound 

patterns to be spacially repetitive or periodic (with respect to a 

vertical reference line through the source) as the source is moved in 

a given horizontal direction. 

Figures 26 through 31, inclusive, are examples of underwater sound 

field data compiled for surface model No. 2.  This corrugated section 

actually consists of juat a single large wave, but has the highest 

value for the waveheight (H) and wave steepness figure (2H/X ) of any 

of the model corrugations used. The slope of a tangent drawn at the 

point of Inflection of this wave has an inclination of about 32 

degrees.  Even so, it is seen that satisfactory agreement between 

theory and experiment is again obtained for all frequencies an angles 

of loudspeaker inclinations used.  The tendency for the pattern details 

to agree more cloaeiy as the frequency is Increased is again noted in 

the data. 

The satisfactory agreement between theory and experiment for the 

transmitted sound fields of models No. 1 and Mo0 2 at frequencies 

between 10 and 20 kHz indicates that the theory is probably acceptable 

when used for frequencies somewhat below 10 kHz.  Unfortunately, this 

could not be substantiated with the acoustic tank used because data 
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below 10 kHz was not considered valid for the reasons previously 

discussed. 

Figure 32 is an example of a comparison between theory and 

experiment for surface model No. 3 at zero degree loudspeaker 

inclination and at a moderately high (16 kHz) value of excitation 

frequency. The agreement between the two curves is satisfactory 

although sufficient definition of the three center lobes which should 

be present on the experimental curve is lacking. 

Generally, it was found to be difficult to obtain experimental 

transmission patterns that were well defined and symmetrical for this 

surface model and for the vertical loudspeaker position» Although all 

the tests carried out at 12 kHz and above compared very well with 

respect to the transmitted pressure levels, Figure 32 represents the 

best pattern shape agreement obtained during the zero degree loud- 

speaker tests.  It is felt that mechanical inaccuracies in the 

construction of the model surface were largely responsible for the lack 

of pattern symmetry observed. 

Figures 33 through 36, inclusive, were obtained for a loudspeaker 

tilt angle of three degrees. Comparison of the data obtained at 10 kHz 

(Fig. 33) with that obtained at 12 kHz (Fig. 34) illustrates that 

satisfactory agreement between theory and experiment is lost in the 

vicinity of 10 kHz (and probably for frequencies below this value). 

At these low frequencies, the experimental data is at variance with the 

theory, particularly with regard to the existence of a broad null just 
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to the right of positions directly below the center of the surface 

model. Although an experimental null in the region of about +17 inches 

is almost non-existent at 10 kHz, a broad null at about 30 inches does 

appear at a frequency of 12 kHz and is illustrated by Figure 34. Thus, 

it is at frequencies of 12 kHz and above that the experimental data 

begin to display increasingly better agreement with theory. For 

example at 16 kHz (Fig. 35) and at 20 kHz (Fig. 36), both pattern 

shapes and overall levels are in good agreement. 

Figures 37 through 41, inclusive, represent model No. 3 trans- 

mitted pressure data at a loudspeaker inclination of six degrees. As 

in the case of three degree inclination described previously, the data 

taken at 10 kHz disagree with respect to the existence of a dip in 

transmitted pressure in the region to the right of zero inches. 

However, in this case, the discrepancy is rather small because the 

pressure dip is not pronounced. For the data at 12 kHz (Fig. 38), there 

is a broad null in the region of +50 to +70 inches and, again, the 

experimental data also displays a null in this region at this higher 

frequency. At still higher frequencies, such as 16 kHz (Fig. 39), 

18 kHz (Fig. 40) and 20 kHz (Fig. 41), agreement between theory and 

experiment once again is very good. 

The final collection of experimental data to be examined is that 

which illustrates the transmitted sound field data for surface model 

No. 4. Referring to Table 1, it can be seen that this surface model is 

designed with a value of slope factor (2HA ) smaller than that of 

either models No. 1 or No. 2, but twice that of model No. 3. However, 
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the wavelength of model No. 4 is identical to that of model No. 3, so 

that the effects of increased slope and curvature on the accuracy of 

the theory may be examined. 

As had been expected, the pronounced curvature of model No. 4 is 

sufficient to produce a situation in which the geometrical optics 

solution proves to be deficient for predicting the experimental data. 

In fact, for this surface, agreement between the data is generally poor 

throughout the 10 to 20 kHz frequency range and for small speaker tilt 

angles. For example, Figure 42 illustrates such a comparison of data 

at 12 kHz and 3 degree tilt angle. Although the average predicted 

pressure levels in this case tend to agree within a few decibels, the 

pattern shapes display little similarity^  The same ccnclusion is 

reached for data taken at higher frequencies such as that for 14 kHz 

(Fig. 43), 16 kHz (Fig. 44), 18 kHz (Fig. 45) and 20 kHz (Fig. 46). 

Furthermore, from these .lata, it does not appear that any trend yet 

exists toward increased agreement between the curves for higher 

frequencies although such a trend is to be expected.  In fact, the data 

at 20 kHz is in particularly poor agreement.  It is likely that 

frequencies much higher than those available for these tests would need 

to be used before such a trend becomes discernible» 

Model No. 4 transmitted sound field data for six degree loudspeaker 

tilt angle is included as Figures 47 through 51„ Although the curves 

still do not agree as closely as they do under similar circumstances 

using the other model surfaces, the agreement ie much improved over 
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that obtained at three degrees.  For the frequency range 12 to 18 kHz, 

average predicted pressure levels are very close to experimental data 

and the pattern shape details are generally acceptable.  However, the 

data at 20 kHz (Fig. 51) once again must be considered one of the 

poorest cases. 

In addition to demonstrating the accuracy of a mathematical model 

for the transmission problem based on a solution of the geometrical 

optics type, the above comparisons between theory and experiment 

provide useful insight into the limitations imposed by the use of such 

a theory.  One of the limiting conditions on the theory which is 

illustrated by the above work is that imposed by the use of acoustic 

wavelengths which are approximately equal to or greater than the 

corrugation wavelength.  At such frequencies, it appears that detailed 

transmitted pattern information cannot be predicted accurately by the 

theory.  Although the actual conditions under which the theory begins 

to break down are rather vague due tc the subjective nature of the 

processes involved In matching pattern shapes, it appears that gradual 

loss of the ability to predict pattern shape provides the first 

indication of theory deficiency.  Substantial discrepancies in 

predicting average pressure levels tend to cccur only when tre acoustic 

wavelengths are increased still more.  This is an expected result, 

since it is the phase relationships between the transmitted rays 

reaching the receiver which largely establish the characteristics of 

the transmitted sound field pattern.  Thus, substantial variations in 
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the pattern shape details arise from only relatively small discrep- 

ancies in predicting these phase relationships. 

As an example of this limit on the theory, consider the data 

obtained for model No. 3 at 10 kHz (Fig. 33 and Fig. 37).  For either 

loudspeaker angle, noticeable differences in pattern shape are observed 

between theory and experiment at 10 kHz, but these disappear when the 

frequency is raised to 12 kHz (Fig. 34, three degree speaker angle) or 

to 11 kHz (Fig. 38, six degree speaker angle). There also appears to 

be some tendency for the data to agree somewhat more closely at a 

given frequency as the speaker inclination is increased, but inasmuch 

as the loudspeaker pattern in the region of the interface is 

essentially omnidirectional, the improvement noted is probably due to 

the spatial relationship of the loudspeaker to the undulations below 

it rather than on its inclination, per se. 

It is important to note that these apparent deficiencies in the 

theory occur for this model surface (Nc. 3) at the frequency for which 

the acoustic wavelength in one of the media equals the corrugation 

wavelength.  Specifically, Table 1 shows that the wavelength in water 

(the high velocity medium) is equal to the corrugation wavelength at 

10 kHz,  Finally, we remark that the tendency for the geometrical 

optics solution to be deficient when the acoustic wavelength in either 

medium is comparable to or greater tran the corrugation wavelength also 

appears to be indicated by the work of Asano (1966) which was cited 

previously.  His theoretical data for plane wave incidence on an 
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extended corrugated surface shows that the low-order coefficients of 

his series solution for the transmitted potential tend to vary very 

rapidly with frequency in the type of situation described above, and 

that the range over which these coefficients vary increases with the 

velocity contrast between the two media.  Evidently, the observed 

"instability" of the series coefficients relates to the convergence of 

the series solution and to the tendency of the geometrical optics 

solution to be deficient at lower frequencies.  The limitation on the 

theory described above may be referred to s.s  a lower bound on the 

applicability of the geometrical optics-type solution to the trans- 

mission problem.  The method can also fail at frequencies above those 

dictated by corrugation wavelength considerations alone, however, and 

these attendant limitations arise as a consequence of other assumptions 

made in the development of the theory. 

Comparing the data obtained for model No. 4 with the results 

obtained with the other model surfaces provides an appreciation cf the 

effects of other parameters on the applicability of the theory.  For 

this model corrugation, the predictability of pattern details, in 

particular, was generally poor even up to 20 kHz, with the exception 

of data taken at six degree loudspeaker angle and frequencies of 14 

and 16 kHz.  Obviously, corrugation wavelength considerations alone do 

not explain these observations since the wavelength of model No„ 4 is 

identical to that of model No. 3 for which accurate results were 

obtained above 10 kHz, Neither does the influence of large waveheigVt 
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nor large slcrpe account for Che difference since both aodel surfaces 

No. 1 and No. 2 have substantially higher vaveheights and steeper slope 

figures than model No. 4. One feature which dees stand out, however, 

is the fact that model No. 4 has a minimum radius of curvature 

2 
(r  * l/ta- H) of about one-half of that of the other models. Thus, it 
cm    5 

is likely that the poor agreement between theory and experiment for 

this model can be attributed to the inapplicability of the tangent 

plane approximation for the frequencies used. 

To test this supposition, we note that Park and Erteza (1969) give 

Brekhovskikh's criterion for the validity of the tangent plane 

approximation as: 

4itr cos a» X  , (4.1) 
c 

where r is the radius of curvature and a is the local angle of 
c 

Incidence. Evidently, the wavelength (A) refers to that in the high 

velocity medium. 

The influence of the local angle of incidence is difficult »:o 

consider in the present case, since it takes on oiany different values 

along the surface (as does r ). However, if we assume that this term 

is equal to unity, we may still obtain estimates on the limits of the 

tangent plane approximation as follows. Rewriting Equation (4.1) in 

terms of the excitation frequency, f, we obtain the inequality 

f » -r—    . (4.2) 
c 
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Using the fact that the treiuwitced sound field pattern of surface model 

No. 3 can be accurately predicted by the theory at frequencies as low 

as 10 kHz, inequality (4.2) indicates that the Uniting frequency for 

the tangent plane approximation for this surface is at least of the 

order of 15 times the characteristic frequency factors, c M^r . Note 

that, for model No. 3, the tangent plane approximation is valid for 

frequencies down to the region where X   = \s> but: at the8e frequencies, 

the tangent plane approximation must surely fail unless the wavehelght 

is orly a small fraction of the acoustic wavelength. Extrapolating 

our results for model No. 3 to the case of model No. 4, then, 

inequality (4.2) indicates that the tangent plane approximation is 

invalid unless the frequency used with model No. 4 exceeds 20 kHz and 

this conclusion substantiates our previous observations. 

Discussion of Experimental Discrepancies 

During this investigation, supplementary work was carried out in 

an attempt to estimate expected discrepancies between theory and 

experiment and thus provide a reasonable basis for evaluating the 

accuracy of the solution techniques. As already indicated, comparisons 

of computed results with experiment indicated that generally good 

agreement in both pattern shape and acoustic levels was obtained for 

those cases in which very low frequencies or very severe corrugation 

properties (small r ) were not encountered.  It was also discovered, 

however, that there were cases for which optimum agreement between 
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theoretical and experimental curves required some ainor adjustment of 

the X-axls spatial-reference position between the two curves.  Proper 

adjustment of the zero reference then resulted In coincidence of the 

two patterns. Since there was strong correlation between the amcunr 

of adjustment required and the date on which various experiments were 

carried out, it was clear that these adjustments were required due to 

the presence of various mechanical errors in the expezlmental setup. 

Some of the possible errors that were considered to be contrib-' 

utlng to the existence of this pattern dislocation effect include, in 

order of importance: 

1. Errors in the measurement of and uncertainty in the 

position, orientation, and alignment of the loudspeaker 

source^ the model surface section, and the underwater 

receiver. 

2. Physical errors in the slope, size, and construction 

of the model corrugations. 

3. Flexing and bending of the model due to stresses 

applied by ballast weight and hydrostatic pressure. 

The type of laboratory or theoretical checks that were made to 

assess the independent effects of position, orientation, and alignment 

errors included: 

I.  Rotation of the surface model by turning it end-for-end 

to check for pattern variation when the direction of 

corrugations are reversed; this evaluates the physical 
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symetty of the corrugated model and provides a check 

on how accurately the surface level can be established. 

2. Rotation of the speaker about its axis to check for 

all^nnent of the nechanlical and acoustic axes. 

3. Movement of the surface model to different locations 

in the tank to establish repeatability of established 

test conditions and check uniformity of the underwater 

acoustic environment. 

4. Introduction of small angular errors into speaker and 

surface model orientation to observe the effect on the 

pattern. 

3. Introduction of a small positioning error into the 

location of the speaker relative to the surface model. 

As a result of tests of the type described above, the following 

conclusions were reached regarding the relative importance of various 

parameters on the horizontal positioning accuracy of the experimental 

underwater sound field: 

1, Rotation of the surface model affects the structure 

of the main lobes somewhat and can result in uncertainty 

in the positioning of the nulls in the data by as much 

as 12 inches. This effect is complicated by its 

dependence on speaker angle, hydrophone depth, frequency, 

and corrugation characteristics» This, of course, is 

true of most of the errors that were examined. 
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2. No mUmllgniDent of mechanical and acoustic axes could 

be discerned for the loudspeaker. 

3. Reestablishing experloental conditions demonstrated that 

repeatability of patterns Is uncertain wit regard to 

null positions by distances of the order of 2 Inches. 

4. Errors In measuring the speaker and surface model 

inclinations are very Important. A surface Inclination 

uncertainty of about 2 degrees was observed to affect 

the resulting underwater sound pattern by «bout 10 to 

15 inches (horizontally) at a 9 ft. depth. Changes In 

speaKcr tilt angle of about 1 degree, for nominal 

inclinations near normal, can result in pattern shifts of 

the order of 10 to 12 inches at a 9 ft. depth. 

5. Small variations (of the order of 1 inch) in the 

loudspeaker height have no appreciable effect on 

the pattern. However, Inaccuracies in the horizontal 

displacement of the speaker relative to the center of 

the interface are significant.. Here, Tnaasurement errors 

of as little as 1 inch can cause pattern position errors 

of the order of 5 to 10 inchesc 

There are other sources of error but these were considered to hi 

insignificant and no evaluation of these were therefore attempted. 

These include discrepancies introduced by: 
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1. Approximation errors arising frov the use of a 

piecewise planar approximation to the surface geometry. 

2. Neglecting multiple scattering of sound at the 

interface (in air and in water). 

3. Truncation and round-off noise produced by the 

computer program during the execution of the 

| arithmetic operations. 

As a result cf the above work, it was concluded that the 

uncertainties experienced in the substantiation of the computational 

procedure were within reasonable tolerances, and that experimental 

results were generally in good agreement with theory except in those 

cases for which the geometrical optics solution does not apply. 

Examples of the Use of the Approximate Closed-Form Solution 

In this section, several examples ire provided to illustrate the 

use of the approxir . te closed-form solution derived previously and to 

establish the usefulness of this method as an alternative to direct 

numerical Integration of Equation (2.31). 

A comparison of the results of the approximate solution with a 

representative set of experimental data is presented as Figure 32. 

Here, the experimental data, previously presented in Figure 36 (model 

No. 3 at 3 degree loudspeaker angle and 20 kHz), is compared with the 

results of the approximate solution.  It can be seen that very good 

agreement between theory and experiment has been obtained. Further, 

comparison of the approximate theoretical solution of Figure 52 with 
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Che cheorecical data presented in Figure 36 shows that the two methods 

lead to very similar results. 

For the theoretical data of Figure 52, the number of stationary 

phase points found within the interface boundaries averaged about eight 

and was evidently sufficient to produce adequate definition of the 

shape of the transmitted sound field pattern. There are casec, 

however, when the location of the source and receiver, as well as the 

interface size and geometry, lead to only a very few stationary phase 

points. For example, Figure 53 is a comparison of theoretical data 

obtained for a corrugated surface with a waveheight equal to that of 

model No. 4, but with a larger wavelength specification. Note that 

these data are computed for zero source angle and a symmetrical 

Interface; thus, the pit terns are symmetrical about the zero-inch 

reference point. 

For eight foot source height and nine foot receiver depth 

specifications used in Figure 53, only one stationary phase point was 

found with the receiver in the regions of zero to 47 inches and 77 to 

110 inches.  For this reason, the approximate solution tends to predict 

values closer to the average pressure levels in these regions and fails 

to account for the large variations in the received pressure level 

caused by interference effects.  For the region between 50 inches and 

75 inches, three stationary phase pcints exist and it can be seen that 

this leads to much better prediction of the transmitted pattern shape. 
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Figure 54 is another comparison between the tvo  theoretical 

methods, assuming the same corrugation properties previously used In 

Figure 53, but at 40 kHz excitation frequency. Only the region between 

50 Inches and 75 Inches leads to more than one stationary phase point 

and one again notes the tendency for the approximate solution to 

predict average levels rather than the pattern detail when only one 

stationary phase point exists. 

To Illustrate the substantial Improvement in the approximate 

solution in cases for vMch a larger number of stationary phase points 

exists, refer to Figure 55. Here, the transmitted sound field is 

again computed for an interface with the same corrugation properties 

used in Figures 53 and 54, but with the source height increased to 20 

feet.  In this case, a larger portion of the interface is  insonlfied 

by the source and the stationary phase points become more numerous. 

The data is once again symmetrical about the zero-inch horizontal 

reference point and the generally good agreement between the two 

methods is clearly evident. Although the number of stationary phase 

points is about three, on the average, only one stationary phase point 

was found for data in the regions from zero to 10 Inches and again for 

the region from 50 to 62 inches. 

This particular case (Figure 55) provides an excellent example of 

the utility of the approximate closed-form solution for predicting the 

transmitted sound field for an extensive interface.  It w&s possible to 

obtain data for this case with only about two percent of the 

expenditure of computer time required by the numerical integration of 

Equation (2.31). 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Statemen of the Problem 

With the development of increasingly more sophisticated equipment 

to measure, record and analyze underwater acoustic signals, it has 

become evident that the usefulness of underwater acoustic sensors can 

be enhanced by extending their range of application to the reception 

and detailed analysis of underwater acoustic signals produced by 

airborne sources. However, in order to fully exploit any capability of 

processing or otherwise utilizing acoustic energy transmitted between 

fluids in general, more detailed knowledge is required of the 

processes involved in the transmission of acoustic energy between fluid 

media separated by arbitrary boundary geometries. To advance our 

understanding of these processes, this Investigation was undertaken 

with the Intention of developing practical techniques for solving the 

important basic problem of sound transmission from a monopole source 

through a finite, corrugated boundary between fluid media and to 

corroborate these techniques by means of laboratory data obtained for 

the important case of air-to-water sound transmission. 

Procedure of the Investigation 

The subject matter of this investigation is divided into two major 

sections.  The first of these deals with the theoretical aspects of the 
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study and Includes: 

I 
| 1.  The derlv&tion of mathematical models, based on a 

I particular form of the Kirchoff radiation integral, 

which may be used to compute the properties of the 
[ 
I reflected and transmitted sound fields of a monopole 

! source after its modification by a finite, uneven, 
I 

fluid-fluid boundary composed of regular corrugations 

(sinusoidal undulations). 

2. The development of approximate closed-form solutions 

to the transmission Integral described in (1) above 

which are useful in the study cf sound transmission 

through certain extended interfaces which are 

insonified by high frequency sources. 

3. The reduction of the equations Involved in both the 

integral solution and the approximate closed-form 

solution (for sound transmission) to digital computer 

programs in order to facilitate their numerical 

evaluation. 

4. Examples of the practical application of the 

mathematical models by computing the transmitted 

sound field in numerous cases for which independent 

evaluation of the quality of the solutions can be 

carried out. 
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The second major section of this study concerns the experimental 

corroboration of the transmission Integral, and the related 

computational model, ^v means of experimental data obtained for the 

case of air-to-water sound transmission through several finite, 

corrugated Interface sections. 

Discussion of Result^ 

The most significant results obtained during this study were the 

development and experimental corroboration of practical techniques for 

predicting sound transmission through a finite, fluid-fluid interface 

of sinusoidal cross section. These tests of the theory were carried 

out by utilizing four laboratory models of corrugated surface sections. 

These model corrugations were designed to simulate different 

corrugation properties of the interface and were fabricated 

specifically for use in obtaining data on the problem of sound trans- 

rission from air to water. Thus, by varying both the orien^tion and 

frequency of the loudspeaker source used to insonlfy each model surface 

section, underwater sound field data for transmission through 

corrugated boundary surfaces was obtained over a comparatively wide 

range of test parameters and for two fluids of widely different 

acoustic impedance.  For the first three of the four model surfaces, 

i.e,, those designed with parameters within the presumed range of 

validity of the theory, very good comparison between theory and 

experiment was generally noted for all frequencies used, thereby 

corroDorating the theory. 
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Model No. 4, which was designed with more severe corrugation 

properties, was employed to obtain information on the limitation of the 

theory when it is applied to a surface geometry containing regions with 

small radius of curvature. As expected, use of this corrugated model 

interface produced marginal results when the experimental data was 

compared to the predictions of the theory, particularly with regard to 

the lack of agreement which was displayed by the spacial details of the 

transmitted sound field patterns. From these data, it was shown that 

the principal limitation of the theory arose at low frequencies as a 

result of the inapplicability of the tangent plane approximation used 

in fitting the boundary conditions at the uneven interface. Using a 

form of Brekhovskikh's criterion (4.2) for the applicability of the 

tangent-plane approximation, an order-of-magnltude relation was 

proposed tö predict the lower frequency limit for the theory in terms 

of the velocity of propogatlon in the water (the high velocity medium) 

and the minimum radius of curvature of the corrugated boundary  It was 

shown that the least lower bound on the theory occurred when the 

acoustic wavelength in one of the media was equal to the corrugation 

wavelength. 

To demonstrate the use of the approximate closed'form solution to 

the transmission Integral, several exemplary solutions obtained with 

this technique were compared with corresponding ones obtained by direct 

(numerical) evaluation of the integral.  It was shown that, even when 

only a very few stationary phase points exist, the apprcximate 
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solution predicted the average transmitted pressure level reasonably 

well. However» the best results were obtained when the interface was 

large and moderately rough and the source and receiver were not too 

close to the interface.  In such a case, the stationary phase points 

are sufficiently numerous to permit a good approximation to be made to 

the shape of the transmitted sound field pattern as well as to the 

average pressure level. Noteworthy is the fact that the approximate 

closed-form solution works well in situations involving comparatively 

large interfaces — situations in which numerical evaluation of the 

transmission integral requires a l^rge amount of computational effort. 

Conclusions and Specific Contributions of This Study 

As a result of this investigation, theoretical solutions have been 

obtained for the problem of transmission of sound from a mcnopole 

source through a finite corrugated boundary separating two fluid media. 

These solutions have been shown to be valid tn the limit of geometrical 

optics for interface geometries which do not contain undulations with 

a minimum radius of curvature of the order of J wavelength of sound 

(or less) in the high velocity medium. 

The specific contributions of this study can be briefly outlined 

as follows: 

1.  Integral expressions, were derived to predict the 

transmitted and reflected potentials due to the 

Impingement of sound from a monopole source on a 

corrugated interface separating two fluid media, 
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2. For the case of sound transmission through a corrugated 

Interface, the integral expression for the transmitted 
« 

potential was reduced to an approximate closed-form 

solution valid in the limit of geometrical optics. 

3. Empirical data was obtained on the transmission of 

sound through several finite corrugated air-water 

boundary sections for various excitation frequencies 

and source orientations.  It is believed that this 

is the first time that experimental data has been 

reported on transmission of vibration»! waves through 

a rough boundary between fluids. 

4. Computational techniques wene developed tc evaluate 

the transmission integral described in (1) above and 

the approximate closed-form solution described in (2). 

3. Extensive comparisons were made between the theoretical 

results obtained by evaluating the transmission integral 

and the experimental data described in (4) above. These 

comparisons were used to corroborate the theory and to 

illustrate the conditions under which the accuracy of 

the theoretical procedures will be maintained. 

6. Practical examples were provided to desionstrate the 

use of the approximate closed-form solution and 

comparisons were made with other data to illustrate 

its suitability as an alternative tc numerical 

integration of Equation (2.31)c 
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Figure  1.     Geometry for Transmission and Reflection 
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NOT REPRODUCIBLE 

Figure 2.     Surface Model No.   1 
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MT «EPROOUCJßu 

Figure 3.     Surface Model No.   2 
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N^ REPRODUC/BLI 

Figure 4.     Surface Model No.   3 
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NOT REPRODUCIBLE 

Figure 5.     Surface Model No,  4 
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APPENDIX A 

EVALUATION OP AN INTEGRAL BY THE STATIONARY PHASE METHOD 

Consider the integral 

00 

.2 

-00 Ix ö  Iz 

+ 2 [H^rz]o (ki*" ki'x) (kiz' "^ J dkixdki2 

Making the substitutions 

a = [^4jn a = k, 
c^k,  2 0 lx 

Ix 

b = [^Vjn B = k; 
,klz

2  o 
and 

c =  r£Ji 1 x = k 

^k2? 

it can be rewritten as 

I = //exp  [±Z    (x-a)^ + 2  (y-B)4 + 2 j (x-a)   (y-B)     J  ixdy 
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\   i 

Completing the square within the braces and rearranging the result 

gives: 
00 

.2 
I =    Pexp   | [(y-B)2 (b- | )] dy Axp ^ [(x-a) + j (y-B)]2 dx 

-00 

In the rightmost integral, make the substitution: 

u = (x-a) + j (y-B) 

and the integral may be rewritten as 

2 oo jau co 

je2     du = 2 /[cos | u2 + i sin | u2] du 

-<» 0 

00 

r      a   ^ 
= 2  (1+i)  / cos -r u" du 

0 

= (ui) (f)1/2   • 

Substituting into the original equation, we have: 

CO 

I = d+i) (f)1/2Axp i [(y-B)2 (b- ^ )] dy 

In this equation, let 

i0..s!)-r 

and introduce the change of variables 

u = y-B     ; 
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Chen 

* 1/2 r iru 

I - (Ui) (ZyU J  e    du 

vhich Is 

-1/2 
I = 2«i (2a7) ' 

or, In terms of Che original variables, 

A A A2Ur 2       -1/2 

Öklx Ökl2 ^IX^lZ   0 
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APPENDIX B 

COMPUTER PROGRAM FOR NUMERICAL INTEGRATION 

OF THE TRANSMISSION INTEGRAL 

The digital program included in this Appendix was written to 

provide a means for numerically integrating the transmission integral 

(2.31). The method employed is that of carrying out the dcMe 

summation suggested by the integral, using small x and y intervals 

whose size is set by specification of the parameter DELTA. The 

successive contributions to the final result are suramed within the 

double DO loop using double precision arithmetic. Within the inner DO 

loop, the sign of the quantity in the Snell's law radical is checked 

and solutions representing negative values of this quantity are cast 

out since they represent cases In which Incident rays make an angle 

with the normal to the surface which exceeds the critical angle. 

One difficulty which can be foreseen with the use of this version 

of the program is the loss of accuracy which can occur when the "ray 

path lengths" (k.R^k R ) become very large.  In such cases, it is 

well to restructure the computations made to account for relative 

phase delays at the receiver in order to avoid loss of precision in 

summing the various contributions to the magnitude of the total 

transmitted potential (or pressure). 
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C WmERlCAL   EVALnfiTIIIW Of   TlUNS*!SSinN   INTFGHAL 
C 
C 
C CALCULATiriN   OF   aAT»0  Of   TkANSMITTFn  PRESSURE   TO   INCIOFMT   PHgSSilRE 
C FOR   THF   SOtHTtniM  Of   TH^   uROHLFM  OF   ^fHIWO  TRANSHlTTFf)  FROM  A 
C MrwnpnLF smmcF TH^IHIGM A CMKRHOATFO FIJIIO RUHMOARY 
C .t.»«ACAt.MSn     mi 10/17/^9     VFRSION   3 
C 
C 
C INPUT  UNITS   ARF   TU **F  SUPPMFn   IN   FTtLRS,FT/SFC<LR<;/FT«»?tKH2   f. 
f OFGRFFS.   APPRHPRIAF^  UM T   CllNVFRSinNS   ARF   MAOF   RV   TMF   PRIlftRANI. 
C 
C I.! ST OJ- SYMHOLS F«W PRINCIPAL VARIARtFS 
C 
C SYM^nt n^SCRIPTIOW  im   FDIIATION 
c 
C ANS «FCFIVFD PRFSSURF AMP RF SHHRCF AMP 
C ANSI ?0«U)r.(ANS) 
C C1 VFLHCITV OF PRnmrtATIflN-MFDIIIM I 
C C? VnUlf. ITY OF PROPIIfATKlN-MFOIHM ? 
C OFLT* X AWM Y INTFRVAL SIZF 
C FRF« FRFOUENCY OF SOMRCF 
C GAMMA CORRtlGATlON PHASF ANGl.F 
C H CORRMGATION AMPUTMOF 
C NX NHMRFR OF GRID POINTS IN X OIRFCTION 
C N7 NUMHFR OF GRID POINTS IN Z MlRFCTION 
C PMASF SOORCF TO RFCFIVFR PHASF CHÄWGF 
C RHOl DENSITY OF MFOIMM I 
C RHO? DENSITY OF MEDIMM ? 
C RO DISTANCE FRHM SfHPRO TO INTERFACE 
C R? DISTANCE FROM IMTFWEACE TO KFCEIVER 
C SRCHT SOURCE HEIGHT 
C T PERIDO HE CORRIIGATIIIN 
C WS a TWMPI/T 
C Xlf71 VARIARL^S   OF    INIFGRATIiW 
C XSTRT INITIAL   VAIJIE   OF   X 
C V7EHn s   H«COS(W>*XI-GANMA) 
C X?,V?,7? RECEIVPR COORDlNATFS 
C ZSTHT fNITUL VALUE HE 7. 
C 
C 

REAL KUK7 
REAL*«   TMAf;i f TMAG? 

NAMFLIST/HATIN/RHOI fC1 ♦KHd?, C?, Hf Tf GAMMA , SRf.HT,DELTA, XSTRT, 7 STRT, 
lEREO,NX,M7/RCVRPT/X?fY7,7?,X7lN,Y?IW,Z?IN/lim/ANS,AMSl , TMAGl ,TMA(;2 
?,FPHSE 

1   READ( 5,2)   RHRl,CI,Wwr)2,c?fH,T,GAMMA,SRCHT,DELTA,XSTRT,7STWT,FRFO, 
INX,N7 

?   FDRMATI IJ'E'I.UPIS) 

WRITF(6,0ATTNJ 
TW0PI=?,«^,14159?6 
FREOaFRFM«1000. 
WS* TWOPl/T 

nAMMA= GAMMA*<TWHPl/3^0.) 
r.RATin= r,?/n 

3   REAfHSf4)X?tY7,7? 
^   FDRMATI3^in,^) 

X?IN=X?«1?, 

Y?IM=y?«l?# 

7?IN=7?*1?. 
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WRlTF(ftfRr.VRPT) 
IFfYZ.PO.O, J   STOI» 
K\m   fTWnPI*FH»:0)/Cl 
K?«   (TwnP?*FRFO)/C? 
TMAA1«0« 
TMÄG2«0, 
nn « I»!.NX 
XI* XSTRT * l*nFLT4-DFl.TA/?. 
YZPRO « H«cnsrW<;*XI-GA*»MA) 
HYZROs WS«H*SINCWS*XI-GAMMA) 
FCTRU (^»rwT-YZFRM-X^nYZRri) 
FCTRIP « FCTRl«»? 
nn « jsifM7 
71« ZSTRT + .l*nFLTA-nFLTA/?. 
RO?« m#*?+7l**7+(VZF«il-SRr,NT»**7> 
R2 » SORT((X?-Xl)**? + (7?-.7n««?*(Y?-YZFRn)«*?) 
RO«SORT<R''i?) 
FCTR2«  »07*(1#+nv7Pn**7) 
RAniCL« {l.-r.PATin«*2)*{FCTH?/FCTHlP)+ CRATIM*#? 
IF(RAniCL,I..T.O, )Gn Tl) 8 
FCTR3«  RHn?«C?+  RHMl*Cl*SQRT(RAniCL) 
FCTR4a     (^CTRl/iRO^SORTd.+OYZRO**?)))*   1,0 
nELMG*   ((FCTRA*(0FLTA**'))/(R0*R?*FCTR3)l»SORT(K+OYZRO«*?) 
PHASF   s   K|*WO+   K?.*A? 
PHASE*   AMrjp'. PHASE» TWO   I) 
TMAGl*   TMAf;i+   nFLMG*COS( PHASE) 
TMAG2s   TMAG?   +   nELMG*SIN(PHASE) 
CnNTINUE 
FPHSE* TMAGP/TMAG1 
FPHSE* ATAN(EPHSE) 
FPHSE*   AMnn(FPHSE»TW0Pn 
FPHSF-EPHSF*nfO./TWOPI ) 
ANS=     RHn?'!tFRF0*nSnRT(TMftG1««2+TMAG?**?) 
ANSI-   ( Al.nG10(ANSn*20, 
WRITEI^,f)MT) 
GO   Tn   3 
END 



121 

APPENDIX C 

COMPUTER PROGRAM FOR EVALUATION OF 

APPROXIMATE CtOSED-FORM SOLUTION OF 

TRANSMISSION INTEGRAL 

The digital program Included in this Appendix was written to 

facilitate evaluation of the roots of the stationary phase relations, 

Equation (2.39) and (2.40), for the specific case z =0 and thereby 

to compute the transmitted pressure. This particular program obtains 

the stationary phase points in two stages or steps. First, an 

estimate of the locations of the roots is found by checking the sign 

of the result for Equation (2.39) as x is varied from a starting 
m 

value, XSTRT, to its final value, XSTOP, at intervals of DELTAX. 

Possible real roots are Indicated, and their values stored in vector 

ROOTS(I), when particular successive values of x cause the left-hand 
rn 

side of Equation (2.39) to vanish or to alternate in sign. After all 

the possible approximate roots are catalogued in this way, these roots 

are more closely approximated by the use of subroutine RTWI as the 

second step in their evaluation. After locating all the points of 

stationary phase, the program evaluates the total potential at the 

observation point (x-,y ,0) by summing the individual contributions 

using Equation (2.41).  Finally, the tot^l transmitted pressure is 

calculated in decibels and presented as output. 
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I I 

C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

eVALUATIHN HF POINT-SOWCE CORRUGATED INTEÄFACF SOLUTION BY 
GEOMETRICAL OPTICS APPROXIMATION OF TRANSMISSION INTEGRAL 
SURFACE EQUATION IS  YO«H«COS(WS*X-GAMMA) 
SOURCE POSITIONED DIRECTLY OVER ORIGIN 
RECEIVER IN X-Y PLANE 
J.MACALUSO  ORL  11/20/69 VERSION 3  MOD I 11/2P/69 

LIST OF SYMBOLS FOR PRINCIPAL VARIABLES 

SYMBOL DFSCRIPT10N OR EQUATION 

Cl VELOCITY OF MEDIUM 1 
C2 VELOCITY OF MEDIUM 2 
0 RECEIVER DEPTH 
OFLTÄX INCREMENT OF X FOR ROOT SEARCH 
F FRFOUFWCY 
GAM CORRUGATION PHASE ANGLE«DEG) 
GAMMA CORRUGATION PHASE ANGLF(RAO) 
H HEIGHT OF CORRUGATIUM 
ITER NUMBER OF ITERATIONS IN RTWI 
Kl WAVENUMBER IN MEDIUM 1 
K2 WAVENUMBER IN MEUIUM 2 
NN C2/CI 
PHASE SOURCE TO REC PHSE ANGLE FOR XM 
PHI TOT TOTAL (RED PRESSURE AT RECEFVFR 
PHIRE INTERMEDIATE VALUE OF POTENTIAL(RE PT) 
PHHM INTERMEDIATE VALUE OF POTENTULMM PT) 
RHOl DENSITY OF MEDIUM I 
RH02 DENSITY OF MEDIUM 2 
ROM DISTANCE FROM SOURCE TO STÄT PHSE PT 
ROOT«1) I»TH APPROXIMATE ROOT 
R2M DISTANCE FROM RECEIVER TO STAT PHSE PT 
SRCHT SOURCE HEIGHT 
T PERIOD OF CORRUGATION 
WS ?*PI/r 
XMP TRIAL VALUE OF X IN ROOT SFA^CH 
XM MOST ACCURATE VALUF FOR I•TH ROUT 
XSTRT STARTING VALUE OF X FOR ROOT SEARCH 
XSTOP FINAL VALUE OF X FOR ROOT SEARCH 
Y7ERn VALUF OF Y AT CCORDINATE XM 

DIMENSION R00TSI50> 
REAL KlfK2,NNfNN2 
COMMON NNfWS»HtGAMMAtSHCHTtnfX2 
EXTERNAL  PCT 
NAMELIST/DATIN/RH0UClfRH02,C2,T,MfSRCHTfD,Fr  GAM  fiTER »XSTRT, 
lXST0PfDELT&X,X2 

1 READ«5,2)RMni',Clf'lHn2fC2tT,HtSRCHT,FfGAM     ,ITFR 
2 FORMAmPS.1,215) 
3 IFrRHOl.EO.O.JSTOP 

PUS.lAlbQPA 
G&MMA«GAM«(PI/iflO.) 

301 READ(5,300) 0,XSTRT,XSTOP,DELTAX,X2 
300 FORMAT«5E10.3) 

WRITE«6,DATIN) 
IFJD.EO.O.) GO TO I 
TWOPI» 2,*PI 
WSnTWOPI/T 
B«(WS**2)*H 
Kl» «TW0PI*F«1000.)/Cl 
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K2«   (*WniM*F«lOOO.)/C2 
NN.C2/C1I 

PHIIM»0, 
IOX«0 
NX«(XSTOP-XSTRT)/DFLTAX  +1, 
XMP.XSTRT-OFLTAX 
HO   100   WltNX 
XHP«XMP*DF(.T4X 
XMPPl-XMP+OPLTAX 
Yl«FCT(XMP) 
y2«FCT(XMPPn 
IF <(XMP-Yl)«(XMPP1-Y2))101,101♦100 

101   IDXalOX+l 
«nOTS(IOX)aXMP*06LMX/?. 
IFnOX.EO,l)r,ll  TO  100 
IF(ROnTS(inX)-ROOTS{IOX.l).GT#l.5*0FLTAX)GO  TO   100 
inx-iox-i 
ROOTS(I0X)«RnOTS(inX)*nFLTAX/2. 

100 CONTINUE 
DO 105 KK«1flOX 

105 WRITF(6,10M   KK«ROOTS(KK) 
106 FORMATdH   , 13, • APPROXIMATE  ROOT  FOUND  AT   XM-SE10.3) 

DO  «   J^l,IDX 
XNP-ROOTS«J) 
CALL RTWI(XMtvAL,FCTfXMP,l.E-OA,ITBR,!ER) 
!ER«IFR*l 
CO  TO(50U50?f503),f ER 

502 WRITE«*»,517)XMfXMP 
51?   FOKMATUHOt'NO  CONVERGENCE,   XM«», E 10.3, »XMP«» ,E10^) 

GO   TO 410 
503 WRITE(6,513» 
513 FORMAT(1HO,»DENOMINATOR»0.,I.E. FNCN DERIVATIVE«1.CANNOT CONTINUE 

IGO TO NEXT RECEIVE« PO^NTM 
GO TO 301 

501 WRITE(6,5in VAL,XM,XMP 
511 FORMATdH ,»VAL OF X-F(X) AFTER CONVERGENCE»« ,E1Ö.3, »XN«« ,610.3, 

1«XMP«SE10.3I 
HT«SRCHT-H«COS(WS*XM -GAMMA) 

All XM2»XM**? 
DO«0<»H«CnS(WS«XM-6AMMA) 
R0M2« XM2*HT**2 
R2M2« I X2-XM) *»2-»-nD**2 
R0MaS0RT(RnM2) 
R2M.SORT(R2M2) 
YZERO«H»Cn<W W.S*XM-G6MMA) 
yP«WS*H*SIN(WS*XM-GAMMA) 
YP2«YP*«? 
RADICL»     fUl.-NN2)*ROM2*(l.*YP2))/((       HT-XM*YP)**2))+NN2 
IF(RADICL,GF.O.) GO TO 11 

410 PHlTOMaO. 
GO TO 12 

11 RADICL« SORT(RADICL) 
FCTRl» RHriP^C^^RHOI^Cl^RADICL 
FCTR2« ll.+ l   HT-XM*YP)/(RnM*SORT(U*YP2)l)*SORT(l.*YP2) 
FCTR3»(NN/ROM)*(l#+HT«YZERO*(WS*'»2)*YP2-(«XH+Hl*YP)«*2)/ROM2) 
FCTR4»(l.-DD«(WS**2>*YZFRO+YP2-((XM-X2-DD*YPI*1«2»/R2M2)/R2M 
D2BDX«  FCTR3*FCTR4 
D2BDZ   ■   NN/ROM  ♦   1./R2M 
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FCTR5 ■ O2BDX*02ßD? 
FCTR5» ABS(FCTR5» 
FCTR5« S0RT(FCTR5) 
PHITOM • (RH01*C2*FCTR2)/(FCTR1*FCTR5*R0M*R2M) 

9 PHASE ■ Kl*RnM+K2*R?M 
PHASE « AMHD(PHASE »TWOPU 
PHIRE* PHITOMItCOSfPHASF) + PHIRE 
PHIIM« PHlTnM*SlN(PMASF) ♦ PHIIM 

12 PHITOT« S0RT<PH1RE**2*PHIIM*«2) 
IF«PHITOT.NE.O.)GO TO 10 
PHITOT—9.99E+09 
GO TO 401 

10 PHITOT ■  70.*ALOGlOnRH02*PHITOT)/RH01) 
401  WRITE<6fM     JtPHITOr 

6  FORMAT« IHO.'REL  PRESS LVL   WITHM5, «ORDER  CORRECTION TERM   ISS 
1E10.3»»0R»///) 
IFfH.EO^O,)  GO TO 301 

ft CONTINUE 
GO TO 301 
END 
REAL  FUNCTION  FCT(X) 
REAL KlfK2,NNfNN2 
COMMON NN«WSfHvGAMMAfSMCHT9nfX2 
HPRME«   SRCHT-H«COS(WS«X-GAMMA) 
nPRME«-D-H«COS<WS*X-GAMMÄ.| 
ROMP«SORT(X*«2+HPRMF**2) 
R2MPaSORT((X2-X)**2 + OPHMtr#»?) 
yPRME*WS*H«SIN(WS«X-GAMMA) 
FCTRl«-{NN«HPRME«YPRME*R2MP)/(NN*R2MP+ROMP) 
FCTR2«(DPRMF*YPRME«ROMP) /(NN*R2MP4-R0MP) 
FCTR3«<X2«RnMP)/fNN«R2MP4.ROMP) 
FCT«FCTR1-FCTR2 ♦FCTRS 
RETURN 
END 
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