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ABSTRACT

This paper describes a system for the computer
understanding of English. The system answers questions,
executes commands, and accepts informatlon in normal English
dialog.    It uses semantic information and context to understand
discourse and to disambiguate sentences. It combines a complete
syntactic analysis of each sentence w~ti~ a "heuristic
understander" which uses different kinds of information about a
sentence, other parts of the discourse, and general information
about the world in deciding what the sentence means.

It is based on the belief that a computer cannot deal
reasonably with language unless it can "understand=~ the subject
it is discussing. The program is ~iven a’ detalled model o~ the
knowledge needed by a simple robot having only a hand and an
eye. We can give it instructions to manipulate toy objects,
interrogate it about the scene, and give it-information it w~11
use In deduction. In addition to knowing the properties of toy
objects, the program has a simple model of its own mentality.
It can remember and discuss its plans and actions as well as
carry them out. It enters into a dialo~ with a person,
respo~Idin~ to English sentences with actions and En~lish
replies, and asking for clarification when its heuristic
programs cannot understand a sentence throush use of context and
physical knowledge.

In the programs, syntax, semantics and inference are
integrated, in a ’"vertical" syste~ in which each part is
constantly communicating with the others. 91e nave explored
several techniques for integrating the larse bodies of complex
knowledge needed to understand language, t~e use Systemic
Grammar, a type of syntactic analysis which is designed to deal
with semantics. Rather than concentratin~ on the exact form of
rules for ti~e shapes of lin~uis~ic constituents, It is
structured around choices for conveyin~ meaning. It abstracts
the relevant features of the linguistic structures which are
!mportant for interpreting their meaning.

We represent many kinds of knowledge in the form of
procedures rather than tables of rules or 11sis of patterns. By
developinE special procedural langua~es for ~rammar, semantics,
and deductive logic, we ~ain the flexibillty and power of
pro~rammln~ lan~ua~es while retainin8 the regularity and
understandahillty of simpler rule forms. Each piece of
knowledge can be a procedure, and can call on any other piece of
knowledge in the system.

Thesis Supervisor: Seymour A. Papert, Professor of Applied
Mathematics



Note on the Organization of the Text

This paper was written to be re3dable at several different
levels of detail. The Preface Is intended to be understandable
to a layman with no special knowledge of lin~uistics or
computers, and ~ives a ~e~eral idea of the purposes and methods.
The Introduction ~ives so,newhat more d~tail, alcn~ with a sample
of a dialo~ with the program. It explalns more specifically how
the program is organized, and what theories were used in Its
construction.

The remaininx chapters each contain .a ~eneral Introductory
section, followed by further sections explainin~ the details of
the proErams and theories. It should be possible to ~et a ~ood
basic understandin~ of the paper by reading the introduction,
followed by the first section of each chapter. In addition,
there was an attempt to keep sections independent so that parts
of the paper could be selected separately. For example, the
description of the PRO~RAMMAR lansuage, and the description of
our ~rammar.of English can be read independently.

Because of thls structure, some parts of the paper are
redundant -- a particularly important principle or relevant
example may be repeated at all three levels of explanation, and
in the different sections where It is needed. However it is
hoped that it will allow the reader to go into the content as
deeply as he wants without getting bogged down in detail.
ThKoughout the text, slngle-spaced paragraphs are used for
emphasis.
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Preface -- Talking to Computers

Computers are being used today to take over many of our

jobs. They can perform millions of calculatlons In a second,

handle mountains of data, and perform routine office work much

more efficiently and accurately than humans. But when it comes

to telling them what to do, they are tyrants. They insist on

being spoken to in special computer langua~es, and act as though

they can’t even understand a slmple English sentence.

Let us envision a new way of using computers so they can

take inst~uctions in a way suited to their jobs. ~Ve will talk

to them just as we talk to a research assistant, librarian, or

secretary, and they w~11 carry out our commands and provide us

with the information we ask for. If our instructions aren’t

clear enough, they will ask for more information before they do

what we want, and this dlalog wI11 all be in English.

Why isn’t this being done now? Aren’t computers

translating foreign lanauages and conducting psychiatric

interviews? Surely it must be easier to understand simple

requests for information than to understand Russian or a

person~s psycholo~icaI problems. The key to this question Is In

understanding what we mean by "understandin~". Computers are

very adept at manlpulating symbols -- at shuffIin~ around

strings of letters and words, 1ooklng them up in dictionaries,

and rearranging them. In the early days of computing, some

people thought that simple applications of these capabilities
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might be just what was needed to translate lansuages. The

~overnment supported a tremendous amount of research ~to

lan~ua~e translation, and a number of projects tried different

approaches. In Ig66 a committee of the National Academy of

Sciences wrote a report evaluatin~ this research and announced

sadly that it had been a ?ailure. Every project ran up against

the same brick wall -- the computer didn’t know what it t~as

ta~king about.

~’lhen a human reader sees a sentence, he uses knowledge to
understand it. This includes not only ~rammar, but also his
knowledge about words, the context of the sentence, and most
important, his knowledse about the ~ubject matter. A computer
program supplied with only a ~rammar for n~anlDulatlng the syntax
of language could not produce a translation of reasonable
quality,

Everyone has heard the story of the computer that tried to

translate "The spirit is wllling but the flesh is weak." Into

Russian and came out with something which meant "The vodka Is

strong but the meat is rotten." Unfortunately ~he problem Is

much more serious than just choosing the wrong words when

translating idioms. It Isn’t always possible to even choose the

right grammatical forms. We may want to translate the two

sentences "A message was dellvered by the next visitor." and "A

message was delivered by the next day." If we are translatin~

into a language which doesn’t have the equivalent of our

"passive voice", we may need to completely rearrange the first

sentence into something corresponding to "The next visitor

delivered a n~essa~e." The other sen~ence might become somethln~
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11ke "Before the next day, someone de!ivered a message." If the

computer picks the wrong form for either sentence, the meaning

is totally garbled. In order to make the choice, it has to know

that visitors are people who can deliver messages, while days

are units of time and cannot. It has to "understand" the

meanings of the words "day" and "visitor".

In other cases the problem is even worse. Even a knowledge

of the meanings of words is not enough. Let us try to translate

the    two    sentences:

"The city councilmen refused to ~ive the women a

permit for a demonstration because they feared violence."

and

"The city councilmen refused to glve the women a

permit for a demonstration because they advocated

revolution."

If we are translating into a language (like French) which

has different forms of the word "they" for masculine and

feminine, we cannot leave the reader to figure out who "they"

refers to. The computer must make a choice and If it chooses

wrong, the meanin~ of the sentence is changed. To make the

decision, it has to have more than the meaninKs of words. It

has to have the ~nformatlon and reasoning power to realize that

city councilmen are usually staunch advocates of law and order,

but are hardly likely to be revolutionaries.

For some uses, it isn’t really necessary to understand
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much.    There has been much publicity about a well known

"psycnlatrist" program named ELIZA. It imitates the kind of

Rogerian psychiatrist who would respond to a questlon llke "What

time is it?" by asking "Why do you want to know what tlme it

Is?" or muttering "You want to know what time It is!", Thls can

be done without much understanding. All It needs to do Is take

the words of the question and rearrange them in some simple way

to make a new question or statement. In addition It recognizes

a few key words, to respond with a fixed phrase whenever the

patient uses one of them. If the patient types a sentence

cont~}iplng the word "mother", the program can say "Tell me more

about your family!". In fact, this Is lust how the psychiatrist

program works. But very often it doesn’t work -- its answers

are silly or meaningless because it isntt really understanding

the content of what is being sald.

If we really want computers to understand us, we need to
give them the ability to use more knowledge. In addition to a
grammar of the language, they need to have all sorts of
knowledge about the subject they are discussing, and they have
to use reasoning to combine facts in the right way to understand
a sentence and respond to it. The process of understanding a
sentence has to combine grammar, semantics, and reasoning in a
very intimate way, callin~ on each part to help with the others.

This thosis explores one way of givin~ the computer

knowledge in a flexible and usable form. In addition to basic

tools and operations for understandln~ language, we give the

computer specialized information about the English language, the

words we will use, and the subject we will discuss. In most

earlier computer prosrams for understanding language, there have
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been attempts to use these kinds of information in t~.e form of

lists of rules, patterns, and formulas.

In our system, knowledge Is expressed as programs In
special 13nguages designed for syntax, semantics, and reasoning°
These languages have the control structure of a programmln~
]anguase, with the statements of the language expllclt|y
contro]lin~ the process. This makes it possible to relate the
different areas of knowledge more directly and complete|y. The
course of the understanding process can be determined directly
by special knowledge about a word, a syntactic construction, or
a particular fact about the world.

Thls gives greater f|exiblllty than a program with a fixed

control structure, In which the specific knowledge can only

Indirectly contro| the process of understandin~. By us;ng

languages speclal|y deve]oped for representing these kinds of

knowledge, It Is possible for a person to ~teach~m the computer

what It needs to know about a new subject or a new vocabulary

without being concerned with the details of how the computer

will go about using the know|edge to understand language. For

simple information, It Is even possible to just =~tell~ the

computer In English. Other systems make It posslble to ~te11~

the computer new thlngs by a11owlng It to accept only very

speclallzed kinds of Information. By representing Information

as programs, we can greatly expand the range of things which can

be Included.

The best way to experiment wlth such Ideas Is to write a

working program which can actually understand language.    ~Ve

would llke a program which can answer Questions, carry out

commands, and accept new Information In English. If we really
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been attempts to use these kinds of Information In the form

lists of rules, patterns, and formulas.

In our system, knowledge ls expressed as oro~rams in
special languages designed for syntax, semantics, and reasoning.
These languages have the contro= structure of a prog~ammlng
language, wlth the statements of the language ex~llcltiy
controllin~ the process. This makes It possible to relate the
different areas of knowledge more directly and completely. The
course of the understanding ~rocess can be determined directly
by special knowledge about a word, a syntactic construction, or
a p~rtlcular fact about the world.

This gives greater flexlbllity than a proKram with a fixed
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Indirectly control the process of understanding. By using
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without being concerned with ti~e details of how the computer
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the computer new things by a11owlng It to accept only very

speclallzed kinds of Informatlon. By representing Information

as ~rograms, we can greatly exoand the range of things which can

be Included.

The best way to experiment with such Ideas Is to wrlte a

working progran~ whlch can actually unders:and language.    We

would like a program which can ~nswer questlons, carry.out

commands, and accept new in~ormatlon In Engllsh. If we really
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want it to understand language, we must give it knowledge about

the specific subject we want to talk about.

For our experiment, we pretended that we were talking to a
simple robot, with a hand and an eye and the ability to
manipulate toy blocks on a table. We can say, "Plck up a block
which is bigger than the one you are holdlng and put it in the
box "̄  , or ask a sequence of questions like "Had you touched any
pyramid before you put the green one on the little cube?" "When
did you pick it up?" "Why?", or we can give it new information
like "I like blocks which are not red, but I don’t llke anythln~
which supports a pyramid." The "robot" responds by carrying out
the commands (in a simulated scene on a display screen attached
to the computer), typing out answers to the questions, and
accepting the information to use in reasoning later on.

The dialog is carried out by typing on a terminal attached

to the computer tl~e-sharing system. There are a number of hard

technical problems in getting a computer to communicate by

voice, and it has not been attempted.

We had three main kinds of goals in writing such a program.

The first is the practical goal of having a language-

understanding system. Even though we used the robot as our test

area, the language programs do not depend on any special subject

matter, and they have been adapted to other uses.

The second goal is gaining a better understanding of what

langbage is and how It is put together. To write a program we

need to make a11 of our knowledge about lan~uage very explicit,

and we have.to be concerned with the entire language process,

not just one area such as syntax¯ Vie need the most advanced

theories which linguists and others have developed, and we must

fit them together to get the program working. This provides a

rigid test for lingulstic theories, and leads us into making new
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theories to fi11 the places where the old ones are lacking. To

make a computer understand language, we have to increase our

knowledge of how people understand lansuase, and one Important

goal is the Improvement of our comprehension of language and

llnguistlcs.

More generally, we want to understand what Inte111gence Is
and how It can be put Into computers. Language Is one of the
most complex and unique of human activities, and underst~ndlng
its structure may lead to a better theory of how our minds work.
The techniques needed to write a language-understandlng program
may be useful in many other areas of Intelligence such as
vlslcn, mathematlcal problem solvlng, and game playlng. A11 of
these areas have similar problems of integrating large amounts
of knowledge Into a flexlble system.

With advances In artlflclal inte111gence we w111 some day

be able to combine a|| of these areas to provide computers which

are not tyrants, but can understand what we tell them and do

what we want them to In an inte11I~ent way.
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Chapter I -- Introduction

1.1 Genera] Description

This paper describes a system for the understanding of

English by a computer. The system answers questions, executes

commands, and accepts information In normal English dla]og. It

uses semantic Information and context to understand discourse

and Co dlsamblguate sentences both sy~tactlcal]y and

seman~!ca]]yo It combines a complete syntactic analysis of each

sentence with a "heuristic unders~ander" whlch uses different

kinds of Information about a sentence, other parts of the

discourse, and general Information about the world In deciding

what a sentence mea;~So

i= Is based on the belief that a computer canno= deal

reasonably wlth language unless tt can "understand" the subject

It Is discussing. The program is given a detailed mode] of a

small part of know]edge~ and It can understand sentences

concerning the subject It knows about. He use as an example the

knowledge needed by a simple robot consislstln~ nf only an eye

and a hand. Ne can give it Instructions to manipulate =oy

objects, in~erro~ate it about ~he sce~.e~ and ~Ive it informat|on

It wl]] use I~ deduction.

In addition to knowing the properties of blocks, hands~

e~c.~ ~he program has a simple model of Its own mentality.

can remember and discuss its plans and actlons as we]] as carry
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them out. it enters Into a true dlal~8 v~lth a person,

responding to EnEllsh sentences with actions and Eng|Ish

replies, and asking for clarification when Its heuristic

programs cannot dlsamblguate a sentence through use of context

or physical knowledge.
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~ ~ ~ J..@n~ua~e?

To write a computer program which understands natura!

lan~uage, we need to understand what lan~uage Is and what i:

does. It should be approached not as a set of mathematl:al

rules and symbols, bt~t as a system Intended to communicate Ideas

from a speaker to a ;learer, and we want to analyze how it

achieves that communication. It can be viewed as a process of

translation from a structure of |mconcepts~ in the mind of the

speaker, Into a string of sounds or written marks, and back into

concepts In the mind of the hearer,

In order to ta|k abou: concepts, w.~ must understand the

Importance of mental models (see <Hlnsky 1965>}. In the f|ood

of data pouring Into cur brains every moment~ people recognize

regular and recurrent patterns. From these we set up a mo’el of

the world which serves as a framework in which to organize our

thoughts. We abstract the presence of partlcu|ar objects,

havlng properties, and enterln~ Into events and reIatlonshlps.

Our th~nklng Is a process of manlpu|atlng the ~=concep:se~ which

make up thls model. Of course, there is no way of ac:uaI|y

observlns the Internal woTklngs of a person=s mind, but in

Section 5.~ we will discuss the justification for postula~in~

such a =~model~ In analyzing the human use of language. In

Section 5.~ we show what this model might look llke For a 3mall

area of knowledge, and describehow it can be ~sed for

reasoning.
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When we communicate with others, we select concepts and

patterns from the model and m3p them onto patterns of sound,

which are then reinterpreted by the hearer in terms of his own

model.    A theory can concent~’ate on either half of this process

of generation and lnterpretat|on of language. Even thouKh a

complete theory must account for both, its approach Is ~tronsly

colored by which one it views as logically primary. Most

current theories are "Kenerat|ve", but it seems more Interesting

to !ook at the Interpretive side (see <W!no~rad 1969> for a

discussion of the Issues involved). The first task a child

faces ls understandinK rather than producinK language, and he

’understands many utterances before he can speak any. At every

stage of development, a person can understand a much wider range

of pa,terns: than he produces (see <Miller>, Chapter 7).

program Is not a detailed psychologl~al theory.of how a person

Interprets language, but there may In fact be very Informative

parallels, and at a high level, It may be a reasonable

simulation.

Language understanding ls.~ kind of Intel!ectual activity,

in which a pattern of sounds or written marks Is lnterpreted

into a structure of con:agt~ In. the mlnd of the Interpreter. We

cannot think of It as belng done in simple steps: ~. Parse; 2.

Unoerstand the meaning; 3. Think about the meaning. The way we

parse a sentence .is controlled by a continuing semantic

Interpretation which guides us In a "meaningful" direction.
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~;hen we see the sentence B~He gave the boy p|ants to water,t=

we don~t get tangled u~ in an lnterpreta~;on whlch would be

parallel to "He gave the house plants to charity,t! The phrase

"boy plants~ doesn’t make sense like t~house plants~ or t~b&y

scouts~, so we reject any parsing which would use It.

Syntax, semantics, and Inference must be lntegraLed In a

close way, so that they can share In the responslbl|Ity for

interprecation. ~ur program mus~ Inaorporate the flexlbillty

needed for this kind of "vertlcal" system In which each part Is

constan¢ly talkln~ to the others. We have explored sev~ra|

~echnlques for inte~rati~g the large bodies of complex knowledge

needed to understand language. Two are par~icularly Important.

First, we use a type of 3yntactlc ana~ysls whlch is

designed to deal with questions of semantics. Rather than

concentrating on the exact form of rules for shufflln~ around

lln~uistlc symbols, it studies the way 1anguage is structured

around choices for convey|ng meaning. The parsin~ of a sentence

indicates Its detailed structure, but more Important It

abstracts the ~features" of the |ingulstic components whlch are

important for lnterpretin~ thelr meanln~. The syntactic theory

includes an analysls of the way language Is structured to convey

In¢orma~lon through systematic choices of features. The other

parts of the program can look d|rectly at these relevant

features, rather than having to deal w|th m|nor details of the

way the parson8 tree looks.
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Second, we represent knowledge In the form of procedures

rather than tables of rules or ~lsts of pa==erns. By developing

speclal procedural languages for grammar, semantics, and

deductive loglc, we gain the flexibility and power of programs

while retalnlng the regularity and understandibillty of simpler

rule forms. Slnce each piece of knowledge can be a procedure,

it can call cn any other piece cf knowledge of any type. The

parser can call semantic routines to see whether the line of

parsing it is following makes any sense, and the semantic

routines can call deductive programs to see whether a particular

phrase makes sense In t~e current context. Thls is particularly

Important In handllng discourse, where the interpretation of a

sentence containing such things as pronouns may depend in

comolex .rays on the preceding discourse and knowledge of the

sub ~ct matter.

This dual view of programs as data and data as programs

would not have been possible In traditional programming

languageSo The special languages for expresslng facts about

grammar, semantics, and deduction are embedded In LISP, and

share with i~ the capability of ignorlng the artlflclal

dlstinctlon between programs and data,
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1.1.2 ~ o~ the J.~jEZ~U_~ Upders~andin~ Proces~

We can divide the process of language understandlng Into

three main areas -- syntax, semantlcs, and Inference. As

mentioned above, these areas cannot be vlewed separately but

must be understood as part of an Integrated system.

Nevertheless, we have organ|zed our programs aicng these basic

lines, since each area has Its own tools and concepts which make

it usefu| to write speclai programs for It.

L|stln~ these aspects of |anguage understanding separately
is somewhat mls|eadlng, as It is the Interconnectlon and
interplay between them which makes the system posslble. Our
parser does not parse a sentence, then hand It off ~o an
interpreter.    As It finds each piece of the syntactic
structure, it checks Its semantlc intepretatlon, first to see If
it is plauslb]e, then ~lf possible) to see if It is in accord
with the system’s knowledge of the wor|d, both speclflc and
genera]. This has been done In a |lmlted way by other systems,
but In our program It Is =n |ntegrai part of understanding at
every |eve1.

A. Syntax

First we need a system for the syntactic ana|ysls of Input

sentences, and any phrases and other non-sentences we might want

In our dla|ogs. There have been many different parsing systems

deve|oped by different |an~uage projects, each based on a

particu|ar theory of grammar. The type of ~rammar chosen plays

a major role In the type of semantlc ana|ysis which can be

carried out. A language named PROGRAMMAR was designed

speclflca||y to fit the type of analysis used In this system.

it dlffers from other parsers In that the grammar Itself Is

written In the form of a co||ectlon of programs, and the parsing
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system Is In effect an Interpreter for the language used In

writing those programs.

Havlng chosen the "type of grammar", we need to formalize a

grammar for parsing sentences in a particular language. Our

system Includes a comprehensive grammar of English following the

lines of systemic grammar (see Section 2.3).    This type of

grammar Is well sulted to a complete ]anguage-understandlng

system since It views language as a system for conveying meaning

and Is highly oriented toward semantic analysis. It Is Intended

to cover a wide range of syntactic constructlons~ one basic

criterion for the completeness of the grammar is that a person

with no knowledge of the system or its grammar shou|d be able to

type any reasonable sentence within the limitations of the

vocabulary and expect It to be understood,

Bo Inference

At the other end of the |lnguistlc process we need a
deductive system which can be used not only for such things as
resolving ambiguities and answering questions, but also to allow
the parser to use deduction In trying to parse a sentence. The
system uses PLANNER, a deductlve system designed by Carl Hewltt
(see <Hewitt 1969, 1970>) whlch Is based on a philosophy very
similar to the general mood of this project. Deduction In
PLANNER Is not carried out In the tradltlonal "logistic
framework" In which a general procedure acts on a set of axioms
or theorems expressed In a formal system of logic. Instead,
each theorem Is In the form of a program, and the d~ductlve
process can be directed to any desired extent by "Intelligent
theorems." PLANNER Is actually a |.anguage for the writing o4
those theorems.

This deduc:lve system must be given a model of the world,

with the concepts and knowledge needed to make Its deductions.

Useful language-understandlng can OCCLr only when a program (or
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perscn} has an adequate understanding of the subject he Is

talking about. We will not attempt to understand arbitf’~ry

sentences talking about unknown subjects, but Instead wl]] give

the system detailed know]edge about a partlcu]ar subject -- In

this case, the slmp|e robot world of children’s toy blocks and

some other common objects. The deductive system has a double

task of solving goal-problems to plan and carry out actlons for

a robot within this world, and then ta]kln~ about what it Is

doing and what the scene looks ]lkeo We want the robot to

dlscuss its plans and actions as well as carry them out. We can

ask questions not only about physlca| happenings, but also about

the robot=s goals. We can ask ~=Why did you clear off that

block?~w or "How did you do it?".    This means that the model

Includes not only the properties uf blocks, hands, and tables,

but a mode] of the robot mind as we]]. We have wrltten a

collection of PLANNER theorems and data ca]led BLOCKS,

describing the world of toy blocks seen and manlpu]ated by the

robot, and the know]edge it needs to work with that wor]do (see

Section 3.k). Figure 1 shows a typical scene.

C.

To connect the syntactic form of the sentence to Its

meaning, we need a semantic, system which provides primitive

operations relevant to semantic ana]ysls. Thls Includes a

language in which we can easl]y express the meanlngs of words

and syntactic constructions. The system Includes mechanisms
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F Igure 1
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for se~ting up slmple types of semantic networks and using

deductions from them as a first phase of semantic analysls. For

example, the network could Include the Information that a

"block" Is a physlcal object, while a "blcc" Is a poIItlcal

objects and the definition of the word m~support’W could use this

Information In chooslrlg the correct meanings for the sentences=

The red block supports the pyramid,     and

The red bloc supports Egypt.

More Important, the meaning of a word or construction Is

also defined in the form of a program to be Interpreted In a

semantic language. It Is this procedural aspect of semantics

which Is missing In most other theorless which llmlt themselves

to a partlcular type of network or relatlo~1 structure. The

meaning selected for a word can depend on any aspect of the

sentence, th~ discourses or the world. In deciding on the

meaning of lWone~ In ~PIck up the green one~. we need a program

which can examine past sentences. Thls program Is Included as

part of the definition of the word ’~one".

The semantic system Includes a powerful heuristic program
for resolvlng ambiguities and determining the meaning of
references In discourse. In almost every sentence, reference Is
made either explicitly (as with pronouns) or lmplicltly (as with
the word ~too") to objects and concepts not expllcltly mentioned
In that sentence. -To interpret these, the program must have at
Its ~isposal not only a detailed grammatical analysis (to check
for such things as parallel con.structions), but also a powerful
deductive capacity (to see which reference assignments are
logically plausible), and a thorough knowledge of the sub3ect It
Is discussing (to see which lnterpretatlons are reasonable In
the current situation).
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In order to deal with language In a human way, we must ~ake

Into account all sorts of discourse knowledge, in addltion to

remembe¢lng the immediatelyprevlous sentences for such things

as pronoun references, the system must remember what things have

been mentlonedthroughout the discussion, so that a reference to

m=the pyramid~= w|ll mean ~=the pyramid we mentioned earlier== even

if there are several pyramids In the scene.

In addition the system must have some knowledge of the way

a person will communicate with It. If we ask ~ls there a block

on a green table?~ ~What color is It?=~, the word ~It~ refers to

the block. But If we had asked ~ls there a green block on a

table?=~ =eWhat color is It?~, ~=lt~ must refer to the Lable since

we would not ask a qubstlon which we had &nswered ourselves In

the previous sentence.

Our semantlc system works with a base of knowledge about

si~nple semantic features In the subje~t domain, and wlth a

collection of definitions for. Indlvldual words. These

definitions are written In a ~semantlcs !anguage~ which allows

simple words to be defined In a straightforward way, whlle

a11owlng more complex words to call on arbitrary 6mounts of

cGmputatlon to Integrate their meaning into the sentence.

Finally we need a generative language capacity to produc~

answers to questions and to ask questions when necessary to

resolve ambiguities. Grammatically this Is much less demanding

than the Interpretive capacity, since humans can be expected to



Section 1.1.2 - Pace 28

understand a wide range (~f responses0 and It is possible to

express almost anythin~ in a syntactlcally simple way. Howevero

It takes a sophlstlcated semantic and deductive capablllty to

phrase chlngs i~ a way whlch Is meaningful and natural In

dlscourseo since the form of a response depends on both the

context and on what the Speaker assumes that the hearer knows

and wants to know.
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~.2 Implementation of the System

The languaca understanding p~’ogram Is written In LISP to

run under the PDP-10 Incompatlble Tlme-sharlng System at the

Artificial Intelligence Laboratory at HIT. When operating with

a 200 word vocabu|ary and a falr|y complex scene, It occupies

approximately 80K of core. Thls Includes the LISP Interpreter,

all of the programs, dictionary entries, and data, and enough

free storage to remember a sequence of actions and to handle

complex sentences and deductions. ~ee Figure 3 for a more

detal]ed descrlpton of memory usage.

The program Is organized as Indicated In Figure 2. (Arrows

Indicate that one part of the program calls another directly)=

~- MON I TOR ~

I N PU T’T’k"’/G’~RAG RAMH~//A R ~ S E,~ANSt~ER

BLOCKS. I

FEATURES    ~

PLAN N E R    DATA

Flgure 2 -- Organization of the Programs

1. MONITOR is a small LISP program which calls the basic

parts of the system. Since the system ls organized vertlcaIy,

most of the communication between components Is done directly,

and the monitor Is called only at the beginning and end of the
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Interpreters

25.1

Know|edge
of English

22.5

Knowledge
of Subject

16.5

Data for
Scene

2.5

Parser

G~AHHA R
7.3

DICTIOHARY
1.7

Seman t Ics

S EHANT = CS
15.2

DICTIONARY
6.0

21.2

Deduct i on

PLANNER

5.5

BLOrKS
8.8

Assertions

15.6

I,

Other

t ISP
and

Display
14.8

DIsp|ay
1.2

16.0

Storage A11ocatlon for Language Understanding Program
In Thousands of PDP-10 words

Note: Approxlm~te]y 12 thousand addltlona| words of free
storage are necessary for a dlalog Ilke the one described In
Section 1.3. As the length of dialog or comp|exlty of the
actions Is |ncreas2d, more free storage Is needed.

Figure 2 -" Memory Requirements                                ~
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understandln~ process.

2. INPUT Is a LISP program ~.’hlch accepts typed Input In

normal En~llsh orthography and punctuation, looks up words In

the dictionary, performs morphemic analysis (e.g. realizing that

’~runnlng" Is the ~’In~" form o’f the word "run’~, and modlfyln~ the

dictionary deflnl~Ion accordingly), and returns a string of

words, together wlth their definitions. Thls Is the Input wlth

which the grammar works.

3. The GRAMFIAR Is the maln coordinator of the language

understanding process. It consists of a few large programs

written In PROGRAMMAR to handle the basic units of the English

language (such as clauses, p~un groupsx preposltonal groups,

etc.).    There are two PROGRAHHAR compilers, onew..Ich compiles

Into LISP, which Is run Interpretlvely for easy debugg|n~, and

another which makes use of the LISP compiler to produce LAP

assembly code for efficiency.

~. SEHANTICS Is a coilectlon of LISP programs which work In

coordination wlth the GRAHf.IAR to Interpret sentences. In

general there are a few sem~ntlcs programs corresponding to each

basic unlt In the grammar, each performing one phase of the

analysis for that unlt. These semantics programs call PLANNER

to make use of deduction in Interpretln~ sentences.

5. ANSWER Is another collection of LISP programs which

control the responses of the system, and take care of

rememberln~ the discourse for future reference. It contains a
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number of heurlstlc programs for producing answers which take

the dlscourse into account, both in ~eclding on an answer and in

figuring out how to express It In f|u~nt Eng|ish.

G. PROGRAFIMAR is a parsing syste~n which Interprets grammars

written In the form of programs. It has mechanisms for bulldIng

a parsing tree, and a number of specia! functions for exploring

and manipulating thls tree In the GRAHHAR programs. It Is

written in LISP.

7. The DICTIONARY actually consists of two parts. The.flrst

is a set of syntactic ~eatures assoclated wlth each word, used

by the GRA~1~AR. The second Is a semantic deflnltlon for each

word, written In a language which Is Interpreted by the

SEHANTICS programs. T:~e form of a word~s deflnltlon depends on

its word class (e.g. the definition of e~two~ i~ =e2~=}. There are

speclal facilities for Irregular forms (like ~geese~ or

=~slept~), and only the definitions of root words are kept, since

INPUT can analyze a variety of endings. The deflnltlons are

actual|y kept on the LiSP property llst of the word, and

dictionary lookup is handled automatically by LISP.

8. The system has a network of SEHANTlC FEATURES, kept on

property lists and used for an inltlal phase of semantlc

analysis.    The features subdivide the world of objects and

actions Into simple categories, and the semantlc Interpreter

uses these categories to make some of Its choices between

alternaC|ve definitions For a word (for example ~=In~= would mean
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"contained In" when applied to a hollow object like a box, but

would mean empart of~m when applled to a conglomerate like a

stack, as In e~the red block In the tall stack~).

9. BLOCKS is a collection of PLANNER theorems whlch contain

the system=s kno~led&e abou~ the properties of the physical

world, and the methods of achieving ~oals and making deductions

about It. It I~ a very simple model, deslgned less for a

realistic simulation of a robot, and more to glve the system a

world to talk about In which one can say many different types of

things.

10. HOVER Is a set of display routlnes written In LAP which

simulate ~he robotts world on the DEC 3~0 Eraphic display

attatched to the PDP-10 cpmputer. It d’splays the scene

Indicated by the DATA currently In memory, and any action called

for is displayed In real time, so the human can get visual

feedback from his commands to the robot. The Input sentences

and responses are also displayed. Figure 1 displays a typical

scene.

11o PLANNER Is the deductive system used by the program, ~nd

Is used at all stages of the analysis, both to direct the

parsing process and to deduce facts about the BLOCKS world.

Currently the system uses Hlcro-Planner, an abbreviated version

of Carl Hewl~t=s original language, Implemented by Terry

Nlnograd, Gerald Sussman, and Eugene CharnIak ~Sussman). It Is

written !~ LISP.
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12. The DATA about the current scene Is I~ the form of

PLANNER assertions describlng the objects, their sizes, shapes,

colors, and locations. The system assumes It has some sort of

robot "eye", so al] of this i=~f0rmation Is Initially known and

does not have to be entered In Engllsh.

Nhen running complied, th~ system Is fast enough to carry

on a real-time discourse. Each sentence takes from 5 to 20

seconds to analyze and respond to, and the dlsplay is designed

to move at the speed of a real ~rm.

The program listings are ali available In hard copy and

DECtape, but before Implementln~ them on another system, It

would be wise to read about the speclal features of HACLISP

<Nhlte> which may be In conflict with other LISP

imolamentatlons.
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1.3 Sample Dialog

This section contains a samp~ of a dialog wlth the

language understanding system. It carries out actions and

answers questions about a slmp]e scene contalnlng a table, hand,

and box, and several blocks and pyramids. The lines In lower

case were typed In by a person, and the lines In upper case are

the computerWs response. Indented lines are comments descrlblng

some of the features being exh.lblted.

The dialog was carried out in real time with the response

of the e~robot~= displaved on a CRT screen. Figures are Included

to show the state of the scene at various points.

plck up a blg red block.

OK.
The system answers ~OK~ when It carries out a
command. In order to pick up the red block.
It had to clear it off by flndlng a space for
the green one and moving the green one away.
Figure ~ shows the scene when the command was
given, Figure 5 shows the green block beln~
put out of the way, and Figure 6 shows the end
result.

2. grasp the pyram!d.

I DONWT UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids In the scene, so the
program does nothing.

3. find a block which is taller than the one you are holdlng
and put it into the box.

The system has to figure out what is meant by
=Vonev’ and °Vlt~°, as well as using, deduction to
de~lde which block it Is holding.
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Figure ~                                                *
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Figure 5
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Figure 6
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BY tllTtt, I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE
ONE I AM HOLDING.

OK.
Printed out to keep us Informed.

The hand has to set down the red block to plck
up the taller blue one. Figure 7 shows the
resu! t.

what does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what ;s the pyramid supported by?

Earller the system responded to "the pyramid"
by saying "1 don~t understand which pyramid
you mean." now, It knows that we must mean
the one which was just mentioned.

THE BOX.

6. how many blocks are not In the box?

Negatives such as "not" and "no" are handled
whether they appear In c~..~uses or noun groups
(such as "no boxes").

FOUR OF THEM.

7. Is at least one o~ them narrower than the one which i told
you to pick up?

The phrase "at least one of them" must be
analyzed to refer back to the previous
question, and "the one whlch...~ must also
refer to blocks. Noun groups can have
complicated numbers such as "at least
one=~,"more than threem=, ~exactly sevenme, etc.
The memory of past events Is used to deduce
which block Is "the one whlch I told you to
pick up". Notice the complicated grammatlca]
structure In which "the one" Is a~tually the
object of a clause embedded two levels deeper.

YES, THE RED CUBE.

8. ls It supported?



F igure 7
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YES,

g.

NO.

Passives can be used without a I~by ...~0
phrase.

BY THE TABLE.

can the table plck up

The semantic rules make this a nonsensical
question which therefore must be false.

10. can a pyramid be supported by a block?

YES.
The deductive system finds an actual example,
so it knows this Is possible.

11. can a pyramid support a pyramid?

I DON~T KNOW.

The question makes sense, but there Is no
example In the scene0 so there is no easy way
to tell without belng able to examlne the
robot’s programs.

12. stack up two pyramids.

I CANeT.
The robot tries and fails.

13. the blue pyramld Is nice.

I UNDERSTAND.
This data Is added to the data base.

Ik. i like blocks which are not red, but I don~t like anything
~hich supports a pyramid.

I UNDERSTAND.

Two new theorems are created for proving
things about "liking".

do i like the box?

The box supports whatever It contains,
Includlng a pyramid.



16. do I llke anything In the box?

YES, TVJO THIHGS: 3HE BLUE BLOCK AND THE BLUE PYRAMID.

Presumably we !Ike anything which Is nlce, and
the blue block Is certainIy not red.

I7. will you please stack up both of the red blocks and either"
a green cube or a pyramlX?

OK.
Logical connectives such as ."and~’ ’~or’=
~’either" etc. are handled in both the grammar
and semantics. A c3n~mand Is executed even If
It looks l~ke a question. The robo¢ carries
out the comma~d by the serles of steps shown
In ~igures 8 through ~. It puts o ~reen cube
on the large red block (note that it chooses
the green cube with nothln~ on lt)~ then
removes the small pyramid from the little red
cube, so that It can use that cube to comDlete
the stack as specifled.

18. which cube Is sittln~ on the table?

THE LARGE GREEN ONE ~HICH SUPPORTS THE RED PYRAMID.

Ordinarily the system would be satisfied with
calling thls "a bl~ ~reen.cube~, but since we
asked "which cube" It has to be more specific
in namln~ It. The use ofsubstltute nouns
(such as "one") and pronouns in answers makes
the discourse more natural.

19. Is there a large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE AND
THE BLUE ONE.

20. put a small one onto the ~reen cube which supports a
pyramid.

’=A snta11 one" must contrast wlth the earlier
phrase "a large block", so this means "a small
block".

OK.

21. put the littlest pyramid on. top of It.



F igure 8
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F l~;ure 9
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Flgure 10
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Figure 12
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Words like "littlest" are not In the
dictionary but are Intcrpreted from the root
forms like "little". The scene now looks like
Figure i2.

OK.

22. does the shortest thlng the tallest pyramldms support
supports support anything green?

The grammar can handle words like "support"
which are both verbs and nouns without getting
confused, and can understand possessives. To
compute the answer, see Figure i] for the
scene.

YES,    THE GREEN PYRAMID.

what color is it?

BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST
PYRAHID=S SUPPORT SUPPORTS.

If we had asked "what size Is It?", the system
would have assumed that =’It" meant the green
pyramid, but nobody would ask the color 3f
something which was just ca~led "the green
pyramid", so it had to look farther for the
reference of "it".

RED

24. how many things are on top of green cubes?

l~M NOT SURE WHAT YOU MEAN BY ’=ON TOP OF" IN THE PHRASE
TOP OF GREEN CUBES ".

DO YOU MEAN:
1 " DIRECTLY ON THE SURFACE
2 - ANNHERE ON TOP OF ?

When there are several Interpretations and
none Is clearly better, the sysc~.~ has to ask
the user for more Information. The
paraphrases were Included wlth the dlctlonary
definition of "on", and the request for more
Information occurs automatlcally when the
heuristics for r~solvlng ~mblgultles aren’t
sufficient. A request llke thls can a3so
occur when the meaning of a pronoun such as
"It" or "they" Is unclear.
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Section

THREE OF THE~.I.

25. had you touched any pyramid before you put the green one on
the little cube?

YES, THE GREEN ONE.

The system deduces from Its memory what event
!s being referred to, and can relate other
events to it In time, The analysls Includes
complex tenses of verb groups, and there are
special facllitles for keeping track of the
various forms of Irregular verbs like "have".

26. when did you pick it up?

WHILE    I WAS STACKING LiP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEN CUBE,

27. why?

A tlme Is described by naming the main goal
whlch was be1:.g worked on.

The system remember~ i mmedlate|y previous
sentences to understand questions like this
and the following ones.

TO GET RID OF IT.

By keeping track of se|ected parts of the
original subgoa] tree, the system has some
understanding of its own motives.

28o why did you do that?

TO CLEAN OFF THE RED CUBE.

"That" refers to the actlon mentioned In the
answer.

29. why did you clea? off that cube?

Here, "that" means the one just re~erred to.

TO PUT IT ON A LARGE GREEN CUBE.
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30. why did you do that?

TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN
CUBE.

31. why did you do that?

BECAUSE YOU ASKED ME TO.

It re,~embers what It dld, not how the request
was ~orded.

32. how d d you do it?

"It" refers to the action mentioned In the
last questlon, rather than the answer.

BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO
OF IT ~ TH3N PUTTING A LARGE GREEN CUBE ON IT # THEN LETTING GO
OF THAT CUBE ; THEN PUTTING THE RED CUBE ON THAT CUBE ~ THEN
LETTING GO OF THAT CUBE.

This Is a descrlptlon of the top-level
subgoals used to achieve the goal.

33. how many objects did you touch while you were dolng It?

Time references can r~fer to a time span,
uslng words llke ~whlle~.

FOUR OF THEH.

3k. what did the red cube support before you started to clean
it off?

THE GREEN PYRAHID.

5y rememberlng what has been moved, It Is
possible to deduce things about earlier states
of the scene. V~e can use complex nestings of
clauses like ~before you started to clean It
off".

35. there were five blocks to the left of the box then.

~Then~ must refer to the time mentioned In ~he
last sentence.

NO, ONLY FOUR OF THEH: THE RED CUBE , T~O LARGE GREEN CUBES
AND A LARGE RED BLOCK.
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Earller In the dlalog, Information about
"11klng" was accepted at face value. But the
system knows that It has complete Information
about about the basic properties of objects,
including 1ocatlon. It checks any statements
about 1ocatlon or other such properties to see
:vhether it agrees or disagrees.

36. put the blue pyramid on the block In the box.

Thls Is syntactically ambiguous, but Is
understood without ambiguity since the parsing
corresponding to "put the blue pyramid which
is on the block !n the box.’~ does not make
sense In the current scene, whlle ~’put the
blue pyramid on the block which Is In the box"
does. We can see the sltutatlon In Figure I~,
and the result In Figure 15.

OK.

37. Is there anything which Is bigger than every pyramid but Is
not as wlde as the thing that supports It?

The system understands quantlflers such as
m~every’~, ~any~, m~some’~, etc., and structures
such as "bigger than", "as wlde as", etc.
Here "It’" refers to a noun group wlthln the
same sentence but two levels up In the parsing
tree.

YES,    THE BLUE BLOCK°

3~. does a steeple
SORRY, I DONtT KNOW THE V~ORD "STEEPLE~. PLEASE TYPE TWO SPACES.

The system Interrupts Im.~edlately when.lt sees
a word It can’t figure out. The two spaces
are to clear the Input buffer of anything
typed after the message was sent but before
the typist saw It.

~0. a "steeple" I~ a stack which contains ~tv~ green cubes and a
pyramid.

The quote marks Indlcat~ that we are defining
a new word.
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I UNDERSTAND.

a,’e there any steeples now?

build one.

The new defln|tlon Is used as a description to
recognize steeples,

The description given In the definition Is
enough to deduce a plan for buildlng new
objects as well as reco~nizing them. The word
"one" means "a steep|e", and the plan Is
carried out. First, one of the large green
cubes Is cleared off by removing the red cube
and ~wc pyramids. Then the two green cubes
and the tall red pyramid are stacked up to fit
the description. Figures ~6 thre’Jgh 19 show
the Inltla] state, some Intermediate steps,
and the result.

43. ca]] the biggest block "superb]ock".

OK.
We can also glve objects names.

¯ W~. have you picked up superblock since we began?

YES.

~5. why dld you drop !t?

BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.

I CAN’T EXPLAIN A NON-EXISTENT EVENT.

There is no record in memory of any block
beln~ dropped.

46. ;s there a~ythlng to the right of the red pyramld?

YES, FOUR THIdGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID
AND THE @LOCK NAMED SUPERBLOCK

Once an object has a name, the name is used to
help Identify it in respopses.
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F 1 8;ure ~6
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F Ig;u re 17
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F i~ure 18
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Figure 19



Section 1.3 - Page 60

thank you.

YOUtRE £’JELCO~IEI

The special Idlom-deflnlng capabilities allow
us So Include such pleasantries without
modlfyin~ the grammar.
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Chapter 2. Syntax

2.1 Basic Approach to Syntax

21.1 Svnt#~ ~ tleanln~

The decision to consider syntax as a proper study devoid of

semantics Is a basic tenet of ~ost current Iln~ulstlc theories.

Language Is viewed as a way of or~anlzln8 strlnss of abstract

symbols, and competence Is explained In terms cf symbol-

manlpulatln~ rules. At one level thls has been remarkably

successful. Rules have been formulated which describe In 8rear

detail how most sentences are ~ut to~ether. The problem comes

In tryln~ to relate those symbols and structures to the function

of language as a vehicle for conveying meaning. The same

approach whic’: has worked so well In accounting for the

machinations of syntax has been unable to.provlde any but the

most rudimentary and unsatisfactory accounts of semantics.

The problem Is not that current theories are flndln~ wron~
answers to the questions they ask; It Is that they are askln~
the wron~ questions. Hhat Is needed Is an approach which can
deal meanln~fuIly wIch the question "How Is language or~anlzed
to convey me,nine?’= rather than "How are syntactic s~ructures
or~anlzed.when viewed in Isolation?".

How does a senten:;e convey meanln~ beyond the meanln~s of

indlvld~’al words? Here Is the place for syntax. The structure

of a sentence can be viewed as the result of a series of

~ramma~ical choices made In ~eneratln~ It. The speaker encodes

meanln~ by choosln~ to build the sentence with certain

"features", and the problem of the hearer Is to reco~nlze the
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presence oF those features and Interpret their meanlng.

We want to analyze the possible choices o� features and

functions which ~rammatlcal structures can have. For example,

we ml~ht note that all sentences must be either IMPERATIVE,

DECLARATIVE, or a QUESTION, and that in the last case they must

choose a~ well between being a YES-NO question or o WH- question

containing a word such as "why" or "which". We can study the

~vay In which these features of sentences are organized -- which

ones form mutually excluslve sets (called "systems"), and which

sets depen~ on the presence of other features (11ke the set

contaln|n~ YES-NO and ~H- depe:~ds on the presence of QUESTION).

This can be done not only for rut! sentences, but for smaller

syntactic units such as noun groups and preposltlonal 8roups, or

even for Indlvldual words.

In addition we can study the different functions a

syntactic "unlt" can have as a part o7 a larger unlt. In

"Nobody wants to be alone.", the clause "to be alone" has the

function of OBJECT In the sentence, whlle the noun group

"nobody" Is the SUB.IZCT. We can note that a transitive clause

must hece units to fI~l the functions of SUBJECT and OBJECT, or

that a NH- Question has to have some constituent ~hlch has th~

role of "question element" (11ke "~hy" ~n "Why dld he go?" or

"which dog" In "Which dog stole the show?").

In most curren~ theories, these features and functions are

Impllclt In the syntactic rules. There Is no explicit mention
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of them, but the rules are desl~ned In such a way that every

sentence w;11 In fact be one of the three t’ipes 11sted above,

and every ~~H- question will In fact have a question element.

The dlfflculty Is that there Is no attempt In the ~rammar to

dlstln~u|sh s|~n|flcant features such as these from the Infinite

number of other features we could note about a sentence, and

which are also Implied by the rules.

If we look at the "deep structure" of a sentence, again the

features and functions are Impllclt. The fact that It Is a YES-

NOquestlon Is Indicated by a questlon marker hangln~ from a

particular place In the tree, and the fact that a component Is

the object or subject Is determined from Its exact relation to

the branches around It. The problem Isn’t that there Is no way

to flnd these features In a parsln~, but that most theories

don~t bother to ask "l~hlch features of a syt, tact|c structure are

Important to conveyln~ meanln~, and which are just a by-product

of the symbol manlpulatlons needed to produce the rl&ht word

order."

Nhat we would like Is a theory In which these choices of
features are primary. Professor H.A.K. Ha111day at the
Unlv.~rslty of London has been workln~ on such a theory, called
Systemic GrammaK (see references <Halliday 1961, 1966a, 1966b,
1967> <Huddleston>, <Hudson>). His theory reco~nlzes that
meaning Is of prime Importance to the way language Is
structured. Instead of havln~ a "deep structure" which looks
like a klnd of syntactic structure tree, he deals t~lth "system
networks" which describe the way different features Interact and
depend on each other. The primary emphasis is on analyzin~ the
limited and highly structured sets of choices which are made In
producing a sentence or constltuent.    The exact way In whlch
these choices are "realized" In the final form Is a necessary
but secondary part of the theory.
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The reallzatlon rules carry out the work which w~,.~Id be

done by transforma~lons In transfGrmatlonal grammar (TG). In

TG, the sentences "Sally saw the squlrrel.", "The soulrreI was

seen by Sally.", and "Dld Sally see the squirrel?" would be

derived from almost Identical deep structures, and the

difference In flnal form Is produced by tramsformatlons. In

systemic grammar, these would be analyzed as havlng most of

their features In common, but differing In one partlcu]ar

choice, such as PASSIVE vs. ACTIVE, or DECLARATIVE vs. QUESTION.

The realization rules would then describe the exact word order

usea to sl;nal these features.

%~hat does this theory ~Ive us to use In a lan~ua=e

understandlnK program? What kinds of parslngs does It produce?

If we look at a typical parsing by a systemic grammar, we note

several points. First, It Is very close to the surface

s~ructure of the sentence. There Is no rearrangement Into

supposed "underiyln~" forms. Instead, each const.ltuent Is

marked wlth features Indlcat!n= Its structure and function.

Instead of saying that "Did dohn ~o?" has an underlying

structure which looks like "John went.", we simply note that It

has the features QUESTION and YES-NO, and that the noun group

"John" has the fun:tlon SUBJECT. Other parts o~ the language

understandln~ process do not have to be concerned wlth the exact

way the parsing tree Is structured, since they can deal directly

wlth the relevant features and functions.
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V~hat Is more Important Is that these features 3re not

r~ndom unrelated 11sts of observations. They are p~rt of a

hlshly structured net~vork, and the ~ro~,~,atlcai l:heory includes a

description of that network. %’~hen we do semantic analysis. ".~e

are not faced with the task of Invenl:Ins "projectlon rules" to

deal with the raw form of specific syntactic rules. Instead we

can ask "Nnat aspect of meanln~; does this system convey?",

"What Is the sl~nlflcar, ce of this partlcular feature within Its

system?".
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~ ~arstn~

In Imp!em~ntlng a systemic grammar for a computer program

for understanding |anguage, we are concerned with the process of

reco~nition rather than that of generation. We do not begin

with choices of features and try to produce a sentence. Instead

we are faced with a string of letters, and the job Is to

recognize the patterns and features In it, We need the Inverse

of reaIizatlon rules -- Interpretation rules which look at a

pattern, Identify Its structure, and recognize Its relevant

features. This Interpretation process Is closely related to

ocher types of pattern recognition, and many Interesting

parallels can be drawn ’with the process of Interpreting a vlsual

scene (see <Wlnograd 1969>). The Important aspect of both types

of Interpretation Is 1ooklng for symbollc features which wlil be

relevant to understanding, so that the parsing can be Integrated

with the rest of the understanding process. In general, thls

problem of isolatlng Important features from complex Information

and representing them symbo1Ically Is a central Issue for

Artiflclal Inte111sence, and the Idea of a ~esystemlc~e parser may

be of use In other areas.

The parsing system for our program Is actually an

nterpreter for PROGRAMMAR, a language for writing grammars. It

s baslcally a top-down left-to-rlght parser, but It ~nodlfles

hese properties when It Is advantageous to do so. By writing

n a language designed for grammars, we can express the
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re~:ularltles of language in a s~ralchtforward way, as 3imply as

in a syntax-directed parser. The primitives of the language are

thcse operations which have particular relevance to natural

language and Its parsing.

A program For parsing ]anguage is as much a "generative"

description of the language as Is a set of rules For producing

sentences.    The meanlng of "generative" in Chomsky~s original

sense ((Chomsky 1957, 1965)) is that the grammar should

associate a structural descrlptlon to each permissible sentence

in the language. A parsing program does just that.

By making the Forma|Ism For grammars a programming
language, we enable the grammar to use special tools to handle
complex constructions and irregular Forms. For example, we can
set up programs to deFlne certain words like "and", and ’=or"
as "demons", which cause an Interrupt In the parsing process
whenever they are encountered I.. the normal leFt-to-rlght order,
In order to run a special program For conjolned structures.
Idioms can also be handled uslng thls "Interrupt" concept. In
Fact, the process can be Interrupted at any polnt In the
sentence, and any other computations (either semantic or
syntactic) can be performed before going on. These may
themselves do blts of parsing, or they may change the course the
basic program wlll take after they are done.

It Is paradoxical that llngulstlc workers Famlllar with

computers have generally not appreciated the Importance of the

"control" aspect of #rogrammlng, and have not used the process-

describing potentla]Itles of pro~ra~mln~ For their parsing

theorles. They have Instead restricted themselves to the

narrowest kinds of rules and transformations -- as though a

programmer were tO stick to such simple models as Turlng

machines or Post productions.    Designers of computer languages
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today show this same tendencyl See M!nsky’s remark In hls

Turin8 lecture <MInsky 1970>. Our parser uses semantic guidance

at a11 points, 1ook|ng for a meanlngful parsing of the sentence

rather than trying a11 of the syntactic posslbllltles.    Section

2.2 describes PROGRAHHAR In detail, and 2.3 gives a sample

grammar for English. Section 2.4 explains programming details,

and shows how the special features of the language are actually

used to handle specific linguistic problems.
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2.2 A Descrlptlon of PROGRAMMAR

2.2LI GF~mmar and Computers

In order to exp]aln the features of PROGRAMMAR, we wll]

s~Jmmarlze some of the princip|es of grammar used In computer

language processing. The basic form of most grammars Is a list

(ordered or unordered) of "replacement rules," which represent a

processs of sentence generat, lop.    Each rule states that a

certain string of symbols (its ]eft slde) can be replaced by a

different set of symbols (its right side). These symbols

Include both the actual symbols of the language (called terminal

symbols) and addltlona] "non-terminal" symbols. One non-

terminal symbol Is desigrated as a starting symbol, and a string

of termlna] symbols Is a sentence If and only If It can be

derived from the starting symbol through successive application

of the rules. For example we can write Grammar 1:

1.1 S -> NP VP
1.2 NP -> DETERMINER NOUN
1.3 VP -> VERB/INTRANSITIVE
1.~ VP .-> VERB/TRANSITIVE NP
1.5 DETERMINER -> the
1.6 NOUN -> giraffe
1.7 NOUN -> apple
1.8 VERB/INTRANSITIVE -> dreams
1.9 VERB/T~ANS~TIVE -> eats

Figure 20 -- GRAMMAR

By startln~ wlth S and applylng the 11st of rules (1.1 1.2

1.5 1.6 1.~ 1.2 1.7 1.5 1.9), we get the sentence "The giraffe

eats the apple." Several things are noteworthy here. Thls Is an
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unordered set of ru1’es. Each rule can be applled any number of

times at any p)Int In the derivation where the symbol appears.

In addition, each rule Is optional. We could just as well have

reversed the appllcations of 1.6 and 1.7 to get "The apple eats

the giraffe.", or have used 1.3 and 1.8 to get "The giraffe

dreams." Thls type of derivation can be represented graphically

as:

S

l ] DETE RM I NER

NitJNt e si.- ffe eats t.e ap le

Figure 21 -- P~rslng Tree

We will call thls the parsing tree for the sentence, and

use the usual termlnolos:~ for trees (node, subtreee, daughter,

parent, etc.). In addition we will use the linguistic terms

"phrase~ and ~constltuent~ Interchangeably to refer to a

subtree.    This tree represents the ~immedlate ¢o~tltuent~e

structure of the sentence. The PROGRAMMAR language Is a general

parsing system which, although oriented ttoward systemic

grammar, can be used to parse grammars based on other theories.

In descrblng PROGRAM~4AR we have used a more Conventional sat of

notations and analysis of English In order to make the

description independent of the work presented In later sections.
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2.2.2 Context-free ~ Context-s¢nslclve Grammars

Grammar I Is an example of what is called a context-free

grammar. The left side of each rule consists of a slngle

sy=.boi, and the indicated replacement can occur whenever that

symbol ls encountered. There are a great number of different

forms of srammar which can be shown to be equivalent to thls

one, in ~hat they can characterize the same languages. It has

been pointed out that they are not theoretically capable of

expressing the rules of English, to produce such sentences as,

"John, Sidney, and Chan ordered an eggro11, a ham sandwich, and

a bagel respectively.~ Much more Important, even though they

could theoretically handle the bulk of the English language,

they cannot do thls at all efflclently. Consider the slmple

problem of subject-verb agreement. We would 11k_ a grammar

whlch gene-ates "The glraffe dreams." and "The glraffes dream.",

but not "The giraffe dream." or "The giraffes dreams.". In a

context-free grammar, we can d~ this by introducing two starting

symbols, S/PL and S/SG for plural and slngular respectively,

then duplicating eacF rule to match. For example, we would

have=

1.1.1 S/PL -> NG/PL VP/PL
1,1,2 S/SG -> NG/SG     VP/SG
1.2.1 NG/PL -> DETERMINER     NOUN/PL
1o2.2 NG/SG -) DETERMINER NOUN/SG

1,6.1 NOUN/PL -) giraffes
1°6,2 NOUN/SG -) giraffe

etc.
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If we then wlsh to handle the difference between "I am",

"he Is", etc. we must Introduce an entire new sit of symbols

for flrst-person. Thls sort of duplication propagates

multlplicatlvely through the grammar, and arises In a11 sorts of

cases. ~or example, a question and the corresponding statement

w111 have much In common concerning their subjects, objects

verbs, etc., but In a context-free ~rammar, they will In general

be expanded through two entlrely different sets of symbols.

One way to avoid thls problem Is to use context-sensltlve

rules. In these, the left side may Include several symbols, and

the replacement occurs when that combination of symbols occurs

In the string being ~enerated.
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2.2.3 Systemic Grammar

We can add power to our &rammar with context-sensitve rules

which, for example, In expanding the symbol VERS/INTRAf~SITIVE,

look to the precedlng symbol to declde whether It Is singular or

plural. By using such context-sensitlve rules, we can

characterize any language whcse sentences can be listed by a

deterministic (possibly neverendlng) process. (i.e. they have

the power of a turlng machine). There Is however a problem in

Implementlng these rules. In any but the simplest cases, the

context wlll not be as obvious as In the simple example given°

The choice of replacements w111 ,~ot depend cn a single word, but

may depend !n a complex way on the entire structure of the

sentence. Such dependencies cannot be expressed In our simple

rule format, and new types of rules must be developed.

Transformational grammar solves thls by breaklng the generation

process down Into the context-free base grammar which produces

"deep structure" and a set of transformations which then operate

on this structure to produce the actual "surface structure" of

the grammatical sentence. We wil| not go Into the details of

transformational grammar, but one basic idea Is this separation

of the complex aspects of language Into a separate

transformational phase of the generation process.

Systemic grammar Introduces context in a more unified way

Into the Immediate-constituent generation rules. Thls is done

by introducing "features" associated with constituents at every
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level of thc parsing tree. A rule of the grammar may depend,

for example, on whether a partl.:ular clause is transitive or

intransitive. In the examples "Fred found a frog.", "A frog was

found by Fred.", and "Hhat did Fred find?", all are transitive,

but the outward forms are quite different. A context-sensltlve

rule which checked for this feature directly In the strln¢ being

generated would have to be ~uite complex. Instead, we can allow

each symbol to have additlona| subscr;pts, or features which

control Its expansion. In a way, this Is like the separation of

the symbol NP into NP/PL and NP/SG in our augmented context-free

grammar. But it ls not necessary to develop whole new sets of

symbols with a set of expansions for each. A symbol such as

CLAUSE may be associated with a who]e set of features (such as

TRANSITIVE, QUESTIO~I, SUBJU~ICTIVE, OBJECT-QUESTION, etc.) but

there is a single set of rules for expandln= CLAUSE. These

rules may at various points depend on the set of features

present.

The power of systemic grammar rests on the observation that
the context-dependency of natural language ls centered around
clearly defined and highly structured sets of features, so
through their use a great deal of complexity can be handled very
economically. Hore Important for our purposes, there Is a high
correlation between these features and the semantic
Interpretation of the constituents whlch exhlblt them. They
cannot be put in aone-to-one correspondence with semantic
properties of the phrases In whlch they appears but are a
tremendous aid to interpretation.

A parsing of a sentence In a systemic grammar mlght look

very much like a context-free parsing tree, except that to each

node would be attached a number of features. These features a~e
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not random comblnatlons of facts about the constltuent, but are

a part of a carefully worked out analysis of a ]anKua~e in terms

of Its "systems". The features are orKanlzed In a network, wlth

clearly organlzed dependen<:les. For example, the features

IMPERATIVE (command) and QUESTION are mutually excluslve In a

c~ause, as are the features YES-NO (yes-no question like "D;d he

go?") and WH- question (;Ike "Who went?). In addition, the

second choice can be made only If the choice QUESTION was made

In the first set. A set of mutually excluslve features Is

called a "system", and t~le set of other features whlch must be

present for. the cholce to be possible Is called the "entry

condition" for that system. Thls Is discussed In detal~ In

section 2.3.

Another basic concept of systemic grammar is that of the

rank of a constituent. Rather than having a plethora of

different non-terminal symbols, each expanding a constituent in

a s|ightly different way, there are only a few basic "un.its",

each having the posslbl|Ity of a number of different features,

chosen from the "system networks’ for that unit. In an ana|ysis

of English, three basic units seem to explaln the structure: the

CLAUSE, the GROUP, and the WORD. In general, clauses are made

up of groups, and groups made up of words. However, through

"rankshlft", clauses or groups can serve as constituents of

other clauses or groups. Thus, in the sentence "Sarah saw the

student sawing logs." "the student sawing logs" Is a NOUN GROUP
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with the CLAUSE "sawing logs" as a constituent (a modifier of

t~student").

The constituents "who", "three da:’s~’, "some of the men on

the board of directors," and "anyone who doesn’t understand

are all noun groups, exhibiting different features. Thls means

that a PROGRA~4F,IAR grammar will have only a few programs0 one to

deal wlth each of the basic units. Our current grammar of

English has programs for the units CLAUSEs NOUN GROUPo VERB

GROUP~ PREPOSITION GROUP, and ADJECTIVE GROUP.
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.2~.~.~_~ Gramma&~ ~ Programs

Earlier we pointed oct that a complet~ ~eneratlve

description of a language can be in the form of a program for

parsing it. For simple grammars, there is a close

correspondence between the parsing program and the usual

generatlon rules.

We can think of a grammar as a set of l,~structlons for

parsing a sentence In the language. A rule like: NP ->

DETERMINER NOUN can be Interpreted as the Instruction "If you

want to flnd a NP, look for a DETERMINER fo~1owed by a NOUN."

Grammar ] could be dlag~ammed as shown In Figure ~2.

The basic function used Is PARSE, a function which tries to

add a constituent of the specified type to the parsing tree. If

the type has been defined as a PROGRA~.IAR program, PARSE

activates the program for that unlt, 81vlng It as Input the p~rt

of the sentence .yet to be parsed and (optlonally) a 11st of

Inltlal features. If no definition exists, PARSE Interprets Its

arguments as a list of features which must be found In the .

dictionary definition of Dhe next word In the sentence. If so,

It attaches a node for that word, and removes It from the

remainder of the sentence. If not, It falls. If a PROGRAMMAR

program has been called and succeeds, the new node Is attached

to the parsln~ tree. If I" falls, the tree Is |eft unchansed.
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DEFINE pre~ram SENTENCE

PARSE a HP

suc~d?

PARSE a VP

any w~rds

left?

RETURN success

failure

DEFINE prod;ram NP

PARSE a DETERP~INER

PARSE~a N~’UN

RETU R~P~ success

~Ri~URN fallure

DEFINE program VP

PARSE a VERB

is it~ITRANSITIVE?====~PARSEI a NP7

is it     NTRAN:S ITIVE?

RETURN success<

RETURN failure

Figure 22 --Simple Parsing Program
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2.2.5 The Form of PROGRAMMAR Gramm3rs

Written In PROGRAMMAR, the progra-,s would look ilke:

2.1 (PDEFINE SENTENCE
2.2 (((PARSE NP) NIL FAIL)
2.3 ((PARSE VP) FAIL FAIL RETURN)))

2.4 (PDEFINE NP
2.5 (((PARSE DETERMINER) NIL FAIL)
2.6 ((PARSE NOUN) RETURN FAIL)))

2.7 (PDEFINE VP
2.8 (((PARSE VERB) NIL FAIL)
2.9 ((ISQ H TRAN$1T!VE) NIL INTRANS )
2.10 ((PARSE NP) RETURN NIL)
2.11 INTRANS
2.12 ((ISQ H INTRANSITIVE) F~ETURN FAIL)))

Rules 1.6 to 1.9 would have the form=

2.13 (DEFPROP GIRAFFE (NOUN) WORD)
2.14 (DEFPROP DREAM (VERB INTRANSITIVE) WORD)

etc.

Figure 23 -- Grammar 2

Thls example Illustrates some of the basic features of

PROGRAMFIAR.    First it Is embedded In LISP, and much of Its

syntax Is LISP syntax. Units, such as SENTENCE are defined as

PROGRAMMAR programs of nr arguments. Each tries to parse the

string of words left to be parsed in the sentence. The exact

form of this Input string ls described in section 2.k.8. The

value of (PARSE SENTENCE) will be a |lst structure corresponding

to the parslng tree for the complete, sentence.

Each tlme a ca|l Is maJe to the functlon PARSE, the system

begins to build a.new node on the tree. Since PROGRAMMAR

programs can call each other recurslveiy, It Is necessary to
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keep a pushdown 11st of nodes which are not yet completed (I.e.

th~ entire rlghtmost branch of the ¢ree}. These are all called

"active" nodes, and the one formed by the most recent call to

PARSE Is called the "currer, tly active node".

We can examine our sample program to see the basic

operation of the language. Whenever a PROGRAMMAR program Is

called dlrectly by the user, a node of the tree structure Is set

up, and a set of special varlabIes are bound (see section

2.k.9). The lines of the program are then executed In sequence,

as In a LISP PROG, except when they have the speclal form of a

BRANCH statement (a list whose first member (the CONDITION} is

non-atomlc, and which has either 2 or 5 other nembe.’s, called

DIRECTIONS}. Line 2.3 of GRAHMAR 2 Is a three-dlrectlon branch,

and all the other executable 11nes of the program are two-

direction branches.

When a branch statement is encountered, the condition Is

evaluated, and branching depends on its value. In a two-

direction branch, the first direction Is taken If it evaluates

to non-NiL, the second direction If It Is NIL. In a three-

direction branch, the flr~t direction Is taken only If the

condition Is non-NIL, and there Is more of the sentence to be

parsed. If no more of the sentence remains, and the condition

evaluates non-NIL, the third direction Is taken.

The directions can be of three types. First, there are

three reserved words, NIL, RETURN, and FAIL. A direction of NIL
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sends evaluation to the next statement In the program. FAIL

causes the program to return FIIL after restoring the sentence

a..d the parsing ~ree to ~helr state before that program was

called. RETURN causes the program to attach the curren~iv

active node to the completed parsing tree and return the subtree

below that node as Its value.

If the direction Is any other atom, It acts as a GO

statement, transferring evaluation to the statement Immediately

following the occurence of that atom as a tag. For example, If

a fallure occurs In line 2.9, evaluation contlnues with line

2.12.    If the direction Is non-atomic, the result Is the same

as a FAIL, but the direction Is put on a specla] failure message

list, so the callln6 program can see the reason for fal|ure.

DIRECTIONs can also be used in the function GOCOND. The

statment (GOCOND TAG1 TAG2) causes the program to go to TAG1 If

there are words left to be parsed, and to TAG2 otherwise.

Looking at the programs, we see that SENTENCE will succeed

only If it first finds a NP, then finds a VP which uses up the

rest of the sentence. In the program VP, we see that the first

branch statement checks to see whether the next word Is a verb.

If so, It removes It from the remaining sentence, and goes on.

If not, VP fails. The second statement uses the PROGRA~IMAR

function ISQ, one of the functions used for ch~ckln~ features.

(ISQ A B) checks to see whether the node or word polnted to by A

has the feature B. H Is one of a n~mber of special variables



Section 2.2.5 - Page 82

used to hold Information associated wlth a node of the parsln~

tree. ~see section 2.4.9) It points to the last word or

c(nstituent parsed by that program. Thus the condition (ISQ H

TRANSITIVE) succeeds only If the verb just found by PARSE has

the feature TRANSITIVE. If so, the direction NIL sends It on to

the next statement to look for a NP, and If It finds one It

returns success. If either no such NP Is found or the verb Is

not TRANSITIVE, control goes to the tag INTRANS, and If the verb

Is INTRANSITIVE, the program VP succeeds. Note that a verb can

have both thefeatures INTRANSITIVE and TRANSITIVE, and the

parsing will then depend on whether or not an object NP Is

found.
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2.2.6 Context-Sensltive Aspects

So far, we have done little to go beyond a context-free

grammar. How, for example, can we handle agreement? One way to

-’~ thls would be for the VP program to look back In the sentence

for the subject, and check Its agreement wlth the verb before

going on. We need a way to climb around on the parsing tree,

looking at Its structure. In PROGRAFIMAR, thls Is done wlth the

pointer PT and the moving function ~.

Whenever the function ¯ Is called, Its arguments ’Form a

list of Instructions for moving PT from Its present po~Itloe.

These Instructions can be quite general, sayln~ things like

"Move left until you flnd a unlt wlth feature Xo then up untll

you find a CLAUSE, then down to Its last constltutent, and left

unt|I you find a unit meeting the arbitrary cond;tlon y.~l The

Instruction list contalns non-atomic CONDITIONS and atomic

INSTRUCTIONS. The Instructions are taken In ordero and when a

condltlon,ls encountereds the preceding Instruction Is evaluated

repeatedly until the condition Is satisfied.    If the condltlon

is of the form (ATOM)~ It Is satisfied only If the node pointed

to by PT has the feature ATOM. Any other condltlon Is evaluated

by LISP, and .Is satisfied If It returns a non-NIL value.

Section 2.4.10 11sis the Instructions for -.

For example~ evaluatln~ (* C U) will set the pointer to the

parent of the currently active node. (The ~nemonlcs are;

Current, Up) The call (* C DLC PV (NP)) w111 start at the
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current nodes move down to the rightmost completed node (i.e.

not current|y active) then move left untll it finds a node with

the feature NP. (Down-Last-Completed, PreVious). If *succeedss

It returns the new value of PT and leaves PT set to that value.

If It fails at any point In the list, because the existing tree

structure makes a command Impossible, or because a condition

cannot be satisfied, PT Is left at its original positions and *

returns NIL.

We can now add another branch statement to the VP program

In sectlon 2.2.5 between lines 2.~ and 2.9 as follows:

2.8.1 ((OR(AND(ISQ(* C PV DLC)SINGULAR)(ISQ H SINGULAR))
2.8.2       (AND(ISQ PT PLURAL)(ISQ H PLURAL)))
2.8.3 . NIL (AGREEHENT))

This is an example of a branch statement with an error

message.    It moves the pointer from the currently active node

(the VP) to the previous node (the NP) and down to its last

contituent (the noun). It then checks to see whether this

shares the feature SINGULAR with the last constituent parssd by

VP (the verb). If not It checks to see whether they share the

~ea=ure PLURAL. Notice that once PT has been set by *s It

remains at that posltlon. If agreement is found, evaluation

continues as before with line 2.9. If not, the program VP falls

with the message (AGREEHENT).

So far we have not made much use of features~ except on

words. As thegrammar gets more complexs they become much more

Important.    As a s|mple e~ample, we may wlsh to augment our
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grammar to accept the noun groups "these fish,t’ ’1this flsh,=~

"the giraffes," and "the giraffe," but not "these glraffe," or

"this giraffes." ~le can no longer check a single word for

agreement, since "fish" gives no clue to number in the first

two, while "the" gives no clue in the third and fourth. Uumber

is a feature of the entlre noun group, and we must Interpret it

in some cases from the form of the noun, and In others from the

form of the determiner.

~Je can rewrite our programs to handle this complexlty as

shown in Grammar 3:

3.1 (PDEFINE SENTENCE
3.2 (((PARSE N=)NIL FAIL)
3.3 ((PARSE VP) FAIL FAIL RETURN)))

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

(PDEFINE NP
(((AND(PARSE DETERMINER)(Fq DETERHINED))NIL NIL FAIL}

((PARSE NOUN)NIL FAIL}
((CQ DETERMINED)DET NIL)
((AND(. H)(TRNSF (qUOTE(SINGULAR PLURAL))))RETURN FAIL)

DET
((TRNSF (MEET(FE(* H PV (DETERHINER)))

(qUOTE(SINGULAR PLURAL)))}
RETURN
FAIL})}

3.1~ (PDEFINE VP
3.15 (((PARSE VERB)NiL FAIL}
3.16 ((MEET(FE H)(FE(* C PV (NP)))(QUOTE(SINGULAR PLURAL)})
3.17 NIL
3.18 (AGREEMENT)}
3.19 ((ISQ H TRANSITIVE)NIL I~TRANS)
3.20 ((PARSE NP)RETURN NIL}
3.21 ((ISq H It~TRANSITIVE}RETURN FAIL}))

Figure 2k -- Grammar 3
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V~e have used the PROGRAMMAR functions FQ and TRNSF, which

attach features to constituents. The effect of evaluatlng (FQ

A) is to add the feature A to the 11st of features for the

currently active node of the parsing tree. TRNSF Is used to

transfer features from the pointer to the currently active node.

Its argument is a list of features to be looked for. For

example, 11ne 3.8 looks forthe features SINGULAR and PLURAL In

the last constituent parsed (the NOUN), and adds whichever ones

It finds to the currently active node.

beginning wlth line 3.10 is more complex.

the DETERHINER of the NP being parsed.

The branch statement

The function * finds

The function FE finds

the list of features of this node, and the function HEET

interse~:ts this with the list of features (SINGULAR PLURAL).

Thls Intersection Is then the set of allowable features to be

transferred to the NP node from the NOUN. Therefore If there Is

no agreement beween the NOUN and the DETERMINER, TRNSF fails to

find any features to transfer, and the resulting fallure causes

the rejection of such phrases as "these giraffe.=w

In line 3.7 we use the function CQ which checks for

features on the current node. (CQ DETERMINED) wlll be non-NIL

only If the current node has the feature DETERMINED. (I.e. It

was put there In line 3.5) Therefores a noun group wlth a

determiner ls marked wlth the feature DETERMINED, and Is also

given features corrrespondlng to the intersection of the number

features associated wish the determlner If there Is one, and the
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noun. Notice that thls grammar can accept noun groups wlthout

determiners, as In "Glraffes eat apples." since line :5.5 falls

only I? a DETERf.IINER Is found and ther,. ~re no more words In the

sentence.

In conjunction wlth the change to the F!P program, the VP

program must be modified to check with the NP for agreement.

The branch statement beginning on Line 3.16 does thls by making

sure there Is a number feature common to both the subject and

the verb.

This brief descrlptlon expialns some of the basic features

of PROGRAMMAR. In a simple grammar, their Importance Is not

obvious, and indeed there seem to be easier ways to achieve the

same effect. As grammars become more complex, the special

aspects of PROGRAHI~AR become more and more Important. The

flexibility of writing a grammar as a program Is needed both to

handle the complexities of English syntax, and to combine the

semantlc analysis of lancuage with the syntactic analysis In an

Intimate way. Section 2.3 describes a fairly complex grammar of

English, and sectlon ~.2 descrlbes the way It Is integrated with

the semantic programs. A number of the other features and

details of ~RC, GRA~AR are described In Section 2.~.
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2~2.7 ~mb|~ultv and Und~rstandln~

Readers familiar with parsln~ systems may by now have

wondered about the problem of ambl~dlty. As explained, a

PROGRAMF1AR program trles to find a possible parsing for a

sentence, and as soon as It succeeds, It returns Its answer.

Thls is not a defect of the system, but an active part of the

concept of language for which It was designed. The language

process Is not segmented Into the operation of a parser,

followed by the operation of a semantic Interpreter. Rather,

the process Is unified, wlth the results of semantic

Interpretation being used to guide the parsing. Thls Is very

difficult In other forms of grammar, wlth their restricted types

of context-dependence. But It Is straightforward to Implement

In PROGRAFIMAR. For example, tee last statement In a program for

NP may be a call to a noun-phrase semantic Interpreter. If I"

Is Imposslble to Interpret the phrase as It Is found, the

parsing Is immediately redirected.

The way of treating ambiguity Is not through listing all

~2~ possible Interpretations of a sentence, but in being

in{el|Igent In looking for the first one, and being even more

Inte111gent In looking for the next one If that falls. There Is

no automatic backup mechanism In PROGRAM~IAR, because blind

automatic backup Is tremendously Inefflcent. A good PROGRAMMAR

program will check Itself when a fallure occurs, and based on

the structures It has seen and the reasons for the failure, It
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will decide speclflcally what should be tried next. This Is the

reason for Internal fallure-messsases, and there are facllltles

for performing the specific backup steps necessary. (See

section 2.~.5)

As.a concrete ~xample, we might have the ~entence "I rode

down the street in a car." At a certain point In the parslnx,

the NP program may come up wlth the constituent "the street In a

car". Before going on, the semantic analyzer will reject the

phrase "In a car" as a possible modifier of "street", and the

program will attach It Instead as a modifier of the action

represented by the sentence. Since the sem~ntlc system Is a

part of a complete deductive understander, wlth a definite

world-model, the semantic evaluation which, guides parsing can

Include both general knowledge (cars don’t contain streets) and

specific knowledge (Melvin owns a red car, for.example). Humans

take advantage of thls sort of k~o~ledge In their understanding

of language, and It has been polnt~d out by a number of

linguists and computer scientists that good computer handling of

language will not be posslble.unless computers can do so as

well.                                                   ’

Few sentences seem ambiguous to humans when first read.
They are guided by,an understanding of what Is sald to plck a
single parsin~.and a very few different meanln~s. By usln~ thls
same knowledge to guide Its parsing, a computer unders~andlng
system can take advantage of the same technique to parse
meaningful sentences quickly and efficiently.

We must be careful todlstlngulsh between gramma’tlcal and

semantic ambiguity. Although we want to choose a slngle parsing
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wlthout considering the al~ernatlves simultaneous|y, we want to

handle semantic ambl~uity very differently. There may be

several Interpretations of a sentence which are all more or less

meanln~ful, and the choice between them will depend on a complex

evaluatlon of our knowledge of the world, of the knowledge the

person speakln~ has of the world, and of what has been sald

recently.
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2.2.8 Summary

In understanding the reason for developing PROGRANMAR,

several factors are Important. The ~Irst Is that only through

the flexibility of expressing a grammar as a program can we

Introduce the type of intelligence necessary for complete

language understanding. PROGRAMMAR is able to take Into account

the fact that language is structured In order to convey meaning,

and that our parsing of sentences de~ends intimately on our

understanding that meaning. PROGRANNAR can take advantage of

this to deal more efflclently with natural language than a

general rule-based system, whether context-free or

transformational.    Note Important, the analysis returned by

PROGRANNAR Is deslgned to serve as a part of a total

understanding process, and to lend itself directly to semantic

interpretation. This was one reason for selectlng systemic

grammar, and has guided much of the design of the system. The

exact way In which semantic Interpretation can be done, and the.

reasons why a systemlc analysis Is Important will be discussed

In sectlons 4.1 and 4.2.
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2.3 A Grammar of English

~ About the Grammar

This section describes the grammar of English used by our

system. It is based on the prlnc|ples of svstffml¢ ~rammar

(<Halllday 1961, 1966a, 1966b, 1967>), and emphasizes the

analysis of the significant features exhibited by llngustlc

structures, rather than their detailed form. Instead of glvln~

a set of grammar rules or algorithms, this sectlon w111 try to

convey an Impressionistic overvlew of En~|lsh grammars ¢lvln~

examples of the most Important features. Section 2.3.11 follows

the parser through two sample sentences, showlng how the grammar

is used. The actual PROGRAMMAR grammar contains the details,

and Is available on request. A few partlcularly Interesting

parts of the detailed grammar are described In section 2.~.

Appendix A Is a ¢~ossary of features wlth references to the

pages on which they are Illustrated.

Before beginnlns, several warnings are In order. Flrsts

thls is not by any means a complete grammar of En$11sh. The

task of codlfyln¢ an ent!re language In any formallsm Is so

large that It would be folly to try In the course of a single

research project. Our goal was to cover a large enough portlon

of Engllsh syntax so that a user could converse comfortably with

the system about its toy-block world. There are whole areas of

syntax which are Involved with conveyln~ Information of types

not included in this narrow fleld (such as the emotlonal
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reaction, mood, and emphasis of the speaker). These are not

handled at all, and even within the toy-block world, there are

numerous sentences and constructions which the grammar ls not

yet equipped to handle.. It will be of Interest to see whether

the basic structure of the syntactic theory Is flexible enough

to add the great amount of complexity which could be Included In

a more complete grammar.

Second, the grammatical theory ls used In a very Impure

way. The main consideration was to produce a working grammar

which could serve In a language-understanding program. The

demands of practicality often overrode more theoretical

criteria, ~.~d the resulting grammar ls not very ~tpretty~. This

is especially true since It has evolved In a contlnuous process

of wrltln~ and debugging, and has not yet undergone the

"polishing~ which removes the traces of Its earlier stages of

development.

Demands of time made it Impossible to coordinate the

writing of the grammar with other curr~nt versions of systemic

grammar, so the analysis is non-standard, often disagreeing with

Ha11IdayWs analysls or other more complete versions. Some

differences are simply no:attonal (using different names for the

same thing), others are Intentional slmpllflcatlons (Halliday=s

analysis is much more complete), and some represent actual

theoretical differences (for example, our analysls of the

transitivity system puts much of the structure Into the semantic
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rather than syntactic rules, while HallldayWs Is more purely

syntactic.). We will not describe the differences In detall~

since this is not a proposal for a spe~I?lc verslon o? English

grammar. It Is Instead a proposal for a way of low)king at

language, and at English, pointing out some of the lnterestlng

features.
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~ Units, Ran~, and Features

We wlil begin by describing so~e of the basic concepts of

sys{emic ~rammar, before giving details of their use In our

analysis.    Some of the description Is a repetition of materlal

in Section ?.1. In that section t~e needed to glve enough

explanatlon of systemic grammar to explain PROGRAMMAR. Here we

glve a more thorough explanatlon of its details.

The first Is the notion of svn~a=tlc units In analyzlng the

constituent structure of a ~entence (the way It Is built up cut

of smaller parts). If we |cok at other forms of grammar, we see

that syntactlc structures are usually represented as a binary

tree, with many levels of branching and few branches at any

node. The tree is not organized Into ==grouplngset of phrases

which are used for ccnve~Ing different parts of the meaning.

For example, the sentence "Th~ three big red dogs ate a raw

steak." would be parsed with something llke the first tree in

Figure 25.

Systemic grammar pays more attention to they way |anguage

is organized into units, each of which has a special role In

conveying meaning. In English we can distinguish three basic

£~DJS3. of units, the CLAUSE, the GROUP, and the HORD. There are

several types of groups~ NOUN GROUP (NG), VERB GROUP (VG)

PREPOSITION GROUP (PREPG) and ADJECTIVE GROUP (ADdG). In a

systemic grammar, the same sentence might be viewed as having

the second structure in Figure 25.
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Figure 25 - Parsing Treas
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In this analysis, the WORD Is the basic bulldln8 block.

There a~’e word classes llke Iladjectlve" , "noun", "verb", and

each wof’a Is an lntegral unit -- It Is not chopped Into

hypothetical bl~s (like analyzing "dogs" as being composed of

"do~" and "-s" or "do~" and "plural").    Instead we view each

word as exhibiting features. The word "do~st’ Is the same basic

vocabulary item as "dogt~, but has the feature "plural" Instead

of ~’sln~ular". The words ~’took", ~take", "taken~’, "takln~~’,

etc., are a11 the same basic word, but with differing features

such as t~past participle’~ (EN}, ~’inflnitive’e (INF), "-in~t~

(ING), etc. ~hen discussing features, we wll~ use several

notational conventions. Any ~ord appearing in all upper-ca~e

letters, is the actual symbol used to represent a feature In our

grammar and semantic programs. A feature name enclosed in

quotes Is an English version which is more Informative. Usually

the program version is an abbrevlatlon of the ~:~llsh version,

and sometime~ we will indicate this by typin8 the letters of the

abbreviation in upper-case, and the rest in lower-case. Thus if

’1determinerI’ Is abbreviated as DET, we may write DETerminer. V~e

may even write things like QuaNTiFIeR. When we want to be more

careful, we wlll wrlte ~quantifler" (QNTFR).

The next larger uni~ than the {VORD is the GROUP, of which

there are the four types mentioned above. ~ach one has a

partlcular function In conveyin~ meaning. Noun groups (NG)

describe objects, verb groups (VG) carry complex messases about
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the time and modal (logical) status of an event or relationship,

preposition groups (PREPG) descr|be simple relationships, wh|le

adjective groups (ADJG) convey other kinds of re]atlonshlps and

descriptions of objects. These semantic fu~ctions are ¯described

in more detai| in section 4.2.

Each GROUP can have ~siots=~ for the words of whl.uh It Is

composed. For example, a NG has slots for ~determlner~ (DET),

~numbers~ (NU~), ~adjectlvest~ (ADd), ~tclasslfiers=t (CLASF}, and

a NOUN. Each group can also exhlblt features, just as a vord

can. A NG can be =~slngular== (NS) or ==plural=~ (NPL), ~definlte"

(DEF) as In ~the three dogs~ or ~Indeflnlte~ (INDEF) as In e~a

steak~, and so forth. A VG can be ~negatlveee (NEG) or not, can

be MODAL (as in "could have seen~), and it has a tense. (See

Section 2.3.8 for an analysis of complicated tenses~ such as ~He

would have been going to be fixing lto")

Finally, the top rank is the CLAUSE. We speak of clauses

rather than sentences since the sentence Is more a unit of

discourse and semantics than a separate syntactic structure. It

is either a single clause or a series of clauses joined together

!n a simple structure such as ~A and B and...~.    Ne study these

conjolnln~ structures separately .since they occur at all ranks,

and there is no real need to have a separate syntactic unit for

sentence.

The clause is the most complex and diverse unit of the

language, and Is used to express complex relatlonshlps and
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event.ss Involving times place, manner and many other aspects of

meanlng. It can [Je a QUESTION, a DECLARATIVEo or an IF~PERATIVE,

it can be ~p~ssiv~,~" (PASV) or °|active|| (ACTV), It can be a YES-

NO question or a ~qH- question (like "~qhy...?~ or ||t’lhich...?||).

Lool:ln~ at our sample parsing tree, Tree 2 in Fl~ure 25. we

see that the clauses are made up of groups, which are in turn

made up of words However few sentences have this simple three-

layer structure. Groups often contain other groups (for

exampleo ~the call of the wild" is a NG, which contains the

PREPG ~of the wild~ which in turn contains the F~G ~the wild||).

Clauses can be parts of other clauses (as in ~doln the Navy ~o

see ~he world.~)~ and can be used as parts of groups In many

different ways (for example, In the ~G ~the man w__b_9, came to

d|nner~ or the PREPG ~by leavln~ ~he countrv=~.) This phenomenon

is called rankshif~s and is one of the basic principles of

systemic grammar.

If the units can appear anywhere in the tree, what Is the

advantage of grouping const!tuents into ||units|| instead of

having a detailed structure like the one shown in our flrst

p~rsing tree? The answer Is In the ==features~ we were notin~

above. Each unit has associated with It a set of features~

which are of primary significance In conveying meaning, tqe

mentioned that a clause could have featuressuch as IHPERATIVE~

DECLARATIVEs QUESTION~ ACTV~ PASV~ YES-NOs and WH-. These are

not unrelated observations we can make about a clause. They are
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related by a definite logical structure. The choice between

YES-HO and WH- Is meanin~less unless the clause Is a QU~STIOHs

but if It Is a QUESTiO~, the choice must be made. SlmI1arly,

the choice between QUESTION, It.IPERATIVEo and DECLARATIVE Is

mandatory for a MAJOR clause (one which could stand alone as a

sentence), but Is not posslble for a "secondary" (SEC) clause,

such as "the country whlc~ possesses the bomb." The choice

between PASV (as In "the ball was attended by John",) and ACTV

(as in "John attended the ba11.") Is on a totally different

dimension, since It can be made regardless of which of these

other features are present.

We can represent these |o~Ical reIatlonshlps graphically

using a few simple conventions. A set of mutually exclusive

features (such as QUESTION, DECLARATIVE, and IMPERATIVE) Is

called a svstem~ and Is represented by connecting the features

wlth a vertical bar~

I
QUESTION

The vertical order is not Important, since a system Is a

set of unordered features among which we will choose one. Each

system has an entry coDdltlon which must be satisfied In order

for the choice to be meaningful. This entry condition can be an

arbi~rary boolean condition on the presence of other features.

The simplest case (and most common) Is the presence of a single
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other feature. For example, the system just depicted has the

feature MAdOR as Its entry :ondltlon,.slnce only MAdOR clauses

make the cholce between DEC:ARATIVE, IMPERATIVE, and QUESTIOfI.

This simple entry condition is represented by a horizontal

llne, with the condltlon on the left of the system being

entered. We can diagram some of our CLAUSE features as:

I DECLARATIVE
C LAU S E .._._! MAd 0 R-----1 IMPERATIVE

SEC IQUESTION IYES-HO

~’:H -

OFten there are Independent systems of choices sharln~ L:.e

same entry condition. For exam, p1,,, the choice between SEC and

MAJOR and the choice between PASV and ACTV both depend dlrectly

on the presence of CLAUSE. Thls type of relatlonshlp ~vlll be

Indlcate6 by a bracket In plaue of a vertical bar.

CLAUSE

MAJOR~...

SEC

PASV

ACTV

If we want to assign a name to a system (to .talk about It),

we can put the name above the line leadlng Into It:

VOICE_IPASV_
iACTV

We can look at these notations as representing the lo~Ical

operations of "or"and "and", and we can use them to represent

mo~e complex entry conditions, if the choice between the
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features C and D depends on the presence of either A c~r Bo we

and If the entry condition for the "C-D" system Is the

presence of both A ~]j].~ B, we write:

B~.a~      ID

FlnalIy, we can a11ow "unmarked’~ features, In cases where

the choice Is between the presence or absence of some~hlng of

Interest,    We might have a system |Ike;

NEGATIVITY     lhE~ATIVE...

In which the feature "non-negative" Is not given a name, 5ut Is

assumed unless the feature NEGATIVE Is present.

V~e will explain our grammar by presenting the system

networks for all three ranks -- CLAUSE0 GROUP,and WORD, and

~Ivin~ examples of sentences exhIbItIn~ the features. We have

no~ attempted to show all of the logical relatlonshlps in the

networks -- our networks may Indicate combinations of features

which are actually not possible, and would need a more complex

network to represent properly. We have chosen clarity over

completeness whenever there was a conflict. In addition, we

have represented "features" of units (i.e. descriptions of their
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structure) and "f,~nctlons" (descriptions of their use) in the

same network. In a more theoretlcal presentation, It would be

preferab;e to distinguish the two. The names chosen for

features were arbitrary mnemonics Invented as they were needed,

and are ;~either as clear nor as systematic as they might be in a

"cleaned up" version.
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The structure exhibltlng the Kreatest variety In Engllsh Is

the CLAUSE. It can express rel~tlonshlps and events Involvln~

time, place, manner, and other modifiers. Its structure

Indicates what parts of the sentence the speaker wants to

emphasize, and can express various kinds of focus of attention

and emotion. It determines the purpose of an utterance --

whethe~ It is a question, command, or statement -- and Is the

basic unit which can stand alone. Other Units can occur by

themselves when their purpose is understood, as in answer to a

question, but the clause Is the primary unit of discourse.

The CLAUSE has several ma~n ingredients and a number of

optional ones. Except for specla| types of incompIe=e clauses,

there Is a|ways a verb ~roup, contalnln~ the verb, which

Indicates the basic event or relatlonshlp being expressed by the

CLAUSE. Almost every CLAUSE contains a subject, except for

IMPERATIVE (in which the semantic subject is understood to be

the person being addressed), and embedded clauses In which the

subject lies somewhere else In the syntactic structure. In

addition to the subject, a CLAUSE may have various kinds of

objects, whlch wl]l be explained In detal| later. It can take

many types of modifiers (CLAUSES, GROUPS, and ~tORDS) which

indicate tlme, place, manner, causality, and a variety of other

aspects of meaning. One part of the CLAUSE system network Is

shown in Flgure 26.
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CLAUSE-

I F’,PERAT! VE

MAJOR~--.~ DECLARATIVE o

SEC---

RSNG-=---

" I DANGLI HGPREP*
I

SHORT
ADJ*----

ADVMEAS*

|SUBJ-
SUB*--~

ISUBJT*

IOBJI*

OBj...~
OBJ2*

LOBJ*

iNG*"- /TRANS2TO*

TIHE*

DOV~N*

HH RS ~

NG._.~SUB. .-. ING

|THAT
i RE P.ORT-’"~...

"--" OBJ~°BJI

OBJ2

LOBJ

Figure 26 -- NETNORK I
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Beginning at the top of the network, we see a choice

between HAJOR (a clause which could stand alone as a sentence)

and tesecondary~ (SEC). A MAJOR clause Is elther an IMPERATIVE

(a command), a DECLARATIVE, or a qUESTION, questions are elther

YES-NO -- answerable by ~yes

(sl) Did you llke the sh~w?

or NH- (involvlng a question element llke =ewhen~, =ewhere==,

"which","how",          etc.).    The choice of the WH- feature leads into

a whole network of further choices, which are shared by QUESTION

and two kinds of SECondary clauses we will discuss |ater. In

order to share the network, we have used a simple notational

trick -- the symbols contain a ~*~ and when they are being

~ppIled to a question, we replace the * with ~Q=~, while when

they are applied to relative clauses, we use "REL’~. For

example, the feature ~PREP*~= in the network will be referred to

as PREPQ when we find It In a question, but PREPREL when It is

In a relative ¢laus~. This is due to the way the 8rammar

evolved, and In later verslons we will probab|y use only one

name for these features. This complex of features Is basically

the choice of what element of the sentence Is bein~ questioned.

English allows us to use almost any part of a clause as a

request for’information. For example, In a PREPQ, a

preposltlonal Broup In the clause is used¯ as in=

(s2) N_.LS_I~ w_J~3~ dld you erase it?

We more commonly find the preposition In a DANGLING posltlon, as
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in:

(s3) ~hat did you erase It wi~h?

We can tell by tracing back through Network 1 that sentence s5

has the features PREPQ, DANGLING. WH-, QUESTIOn, and HAJOR.

We can use a special question adverb to ask questions of

time, place, and manner, as in:

(st) ~ did the chicken cross the road?
(sS) ~ were you born?
(s6) How will you tell her the news?
(sT) ~Lb.~e has my little dog gone?

These are all marked by the feature ADJQ. In discourse they can

also appear in a short form (SHORT) In which the entire

utterance is a single word, as In:

(sS)

We can use the word ||how|~ In connectlon wlth a measure adverb

(llke ~fast~] to ask an ADVHEASQ, llke:

(sg) How ~s~ can he run the mile?

The most flexible type of NH- question uses an en~lre noun

group as the question element, using a special pronoun (llke

~what~ or ~who~=) or a determiner (like ~which~, or ~how many")

to Indicate that It is the ~uestion element. These clauses have

the feature NG~.~ and they can be further divided according to

the function of the NG in the clause. It can have any of the

possible NG functions (these wlll be described more formally

with regard to the next he;work). For example, it can be ~he

subject, giving a SUBJQ, like:

(slO) Nhlch h_h_~D_~ holds th~ M and M~s?
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It can be the subject of a THERE clause (see below), giving us a

SUBJTQ:

(s11) How man~ PueKto Rlcans are there In Boston?

A complement Is the second half of an "Is’~ clause, like:

(s12) Her halr Is red.

and It can be used to form a CO~IPQ:

(s13) What color was her hair?

or wlth a "measure" In a ~EASQ~

(slh) How deep Is the ocean?

.Thenoun group can be an object, leading to the feature

OBJQ, as in:

(slS) V~hat do you want?       or
(s16) Who dld you give the book?

These are both OBJIQ, since the first has only one object

("what"), and the second ~uestlons the fl.rst, rather than the

second object ("who", Instead of t~the book"). We use the

ordering of the DECLARATIVE form "You gave me ~he b_.~9.~’t. if

this were reversed, we would have an OBJ2Q, like:

(s17) Wha~ dld you glve hlm?

If we use the word ’~to" to express the first object wlth a

two object verb like ’~glve", we can get a TRANSTO2Q, like:

(s18) To whomdld you glve ti~e book? or
(s19) Who dld you glve the book to?

Sometimes a NG can be used to Indicate .the tlme In a

clause, givil~g us a TIMEQ:

(~20) W__~.~_~ day wlil the Iceman come?
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In a more complex style, we can embed the question element

within an embedded clause, such as:

(s21} Which car did your brother say that
he was expecting us to tell Jane to buy?

The NG "which car’~ Is the question element, but Is in fact

the object of the clause "Jane to buy...", which is embedded

several layers deep. This kind of NGQ Is called DOWNQ. The

role of the question element in the embedded clause can Include

any of those which we have been describlns. For example It

could be the object of a preposition, as In

(s22) ~ ~ did you say Lincoln was born In?

Looking at the network for the features of SECondary

clauses, we see three maln types -- ADJUNCT, "Rank-Shifted

Qualifler" (RSQ), and "Rank-Shifted to act as a Noun Group"

(RSNG).    ADJUNCT clauses are used as modifiers to other

clauses, giving time references, causal relationships, and other

similar Information. We can use a BOUND clause contalnln~ a

"binder" such as "before", "whlle", ~=because", ~’If", "so",

"unless", etc., as In=

(s23) While Nero .f..Lddied, Rome burned.
(s24) If It: rains, stay home.
(s25) Is the sky blue becaus~ It Is cold?

To express manner and purpose, we use a TO clause or an ING

clause:

(s25) He died to save us from our sins.
(s27) The bridge was built usin~ orlmltlve ~.

The RSQ clause Is a constituent of a NG, folIowlng the noun
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In the "qualifier" position (see Section 2.3.5 for a descrlptloll

of the positions In a NG), It Is une of the most commonly used

secondary clauses, and can be of four different types. Three of

them are classlfled by the form of the verb group within the

clause -- TO, ING, and EN (where we use "en" to represent a past

participle, such as "broken"):

(s28) the man to see abou~ ~ ~ob
(s29) the piece holdlnR the door 9_~
(s30) a face weathered b_.z sun 9_D~ w lnd

Notice that the noun being modified can have various roles

in the clause. In examples 28 and 29, "piece" Is the subject of

"hold", whlie "man" Is the object of "see". We could have sald:

(s31) the man to do the Job

In which "man" is the subject of "do". Our semantic analysis

sorts out these possibilities Ip determining the meaning of a

secondary clause.

The fourth type of RSQ clause Is related to WH- Questions,

and Is called a WHRS. It uses a wh- element like "which" or

"what", or a word ilke "that" to relate the clause to the noun

It Is modifying. The different ways i~ can use thls "re]atlng"

element are very slm|lar to the different posslbll|tles for a

question element In a WH- question, and In fact the two share

part of the network. Here we use the letters REL to Indicate we

are talking about a relative clause, so the feature PREP* in

Network I becomes PREPREL. In sentences (s2) through (s22), we

l|lustrated the different ~ypes of WH- questions. We can show
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parallel sentences for WHRS RSQ clauses, The ~ollowlng list

shows som~ examples and the relevant feature names=

(s52)

(s35)
(s56)
(s37)
(s58)
(s59)

(s~l)
(sk2)

(skk)

(sk6)
(sk7)
(s~8)
(s~9)

(sS0)

the thlng~LJ_tLt~]etJJ.[_GJJ, vou erased
the thlng ~ you erased J.~ w_J_l;_~
the reason why the chlGken crossed
the day ~ ~ ~ ~    RELADJ
the way ~ ~~~~~ RELADJ
the olace ~ little ~~~ RELADd
the reason ~    RELADJ SHORTREL
the hand ~~ ~ cradle SUBJREL
the number of Puerto Rlcans ~~ Boston

SUBdTREL
the color ~~ ~~~ COMPREL
the depth ~~ ~~ HEASREL
the information ~~~
the man ~ ~ ~ ~    OBJ~REL
the book ~~~~ OBd2REL
the man to ~~ ~ ~~ TRANSTO2REL
the man ~ ~~ ~~    TRANSTO2REL
the. day ~ lcema~ ~ TIHEREL
the car ~ ~rother ~ ~ ~.~Dectln~

DOWNREL
the state ~~~~~~ DOWNREL

PREPREL
PREPREL DANGLING

RELADd

Notlce that In sentences

~9, and 50, there Is no relative word llke "which" or "that".

These could just as well ali have been put In, but English glves

us the optlon of omitting them. When they are absent, the

CLAUSE is marked with the feature RELDELo

Returning to our ne.two~k, we see that there Is one other

type of basic clause, the RSNG. This Is a clause whlch Is rank-

shifted ~o serve as a NG. It can function as a part of another

clause, a preposition group, or an adjective group. There are

four basic types. The first two are TO and ING, as In=

(s51)
(s52)
(s55)

I llke to fly, TO
Bulldln~ houses Is hard work, ING
He got It by sav|nE coupons, ING
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Notice that I~ s51, the RSNG clause Is the object (OBJ1), In

s52 It Is the subject (SUBJ), and In s55 It Is the object of a

preposition (PREPOBJ). We can have a separate subject within

the TO and ING clauses, giving us the features SUBTO and SUBING=

(s54) I wanted Ru~h JLQ. lead the revoIutlon.    SUBTO
(s55) They liked .~Lo_b_~’~ leadlnR JL_t=.      SUBING

The SUBING form takes. Its subject In the possessive.

In addition to ING and TOo we have’the REPORT CLAUSEo which

has the structure of an entire sentenceo.and Is used as a

participant In a relation about things like hearing, knowlngs

end saying=

(s56) She heard that ~he ~ ~earn had w__Q_O_=
(s57) Tha~ she wasn’~ there surprised us.
(s58) I knew he cou]d do lt.

The word ~that" Is used In s56 and s57 to mark the beginning

of the REPORT CLAUSE~ so they are assigned the feature THAT.

The absence of "that~t Is left unmarked.

If the subject of a clause Is In turn a RSNG clauseo we may

have troub!e understanding It=

(s59) That ~nvone who knew the combination .~_O.g.]~ have

ooened the lock was obvious.

There Is a special mechanism for rearranglng the sentence by

uslng the word t~it"o so that the complicated subject comes last=

(s60) It was obvious that anyone who knew the ~qmbtnatlon

could have opened the lock.

In thls caseo we say that the RSNG clause Is serving as an
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ITSUBJ. TO and ING clauses can do the same=

(s61) It will be fun to see r~hem
(s62) It was dangerous ~oin~ u_~ without g parachute.

The final type of RSN~ ls the WHR~, whlch ls almost

Identical to the WHRS RSQ described above. Rather than

through the details again, we w111 Indicate how a few of our RSQ

examples (sentences s32 to sSO) can be converted, and wlll le3ve

the reader to do the rest.

(s63) I donlt know what he did It with. PREPREL DANGLING
(s6k) Ask hlm when he was born.    RELADJ
(s65) He told me why. RELADJ SHORTREL
(s66) It Is amazing how ma_o_q3. Puej~2 Rlcans ~here are In

Boston. SUBJTREL
(s67) Only her hairdresser knows what color her hair was~

COHPREL
etc.

Let us examine one case more carefully:

(s68) I knew whlch c_~. v our brother sald ~hat h__e.
was ~.~pectln~ us to tell Jane .1;.9_ buy_.

Here we have a .DOWNREL clause, "which car .... buy’t, serving

as the object of the CLAUSE "I knew..°". However, thls means

that somewhere below, there must be another clause wlth a slot

Into which the re]atlve element can flt. In thWs case, It Is

the RSNG TO clause "Jane to buy", which Is missing Its object.

Thls clause then has the feature UPREL, which Indicates that Its

mls~Ing constituent is somewhere above In the structure. More

speclfically It Is OBJIUPREL.

Once thls connection Is found, the program might change the

pointers In the structure to place the relatlve as the actual

OBJI of the embedded clause structure. In the current ~rammar,

i
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the pointers are left untouched, and special corrtnands to the

movln~ functio~ * are used when the object is referenced by the

semantic program.
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In addition to the systems we have already described, there

Is a TRANSITIVITY system for the CLAUSEo which describes the

number and nature of Its basic constltuents. We mentioned

earI ler that a CLAUSE had such components as a subject and

various objects. The transltlvlty system specifies these

exactly. We have adopted a very surface-oriented notion of

trar~sltlvltyo in which we note the number and baslc nature of

the objects, but do not deal with their semantic roles, such as

’lrange" or ~beneflclary~. Halliday~s analysis <Halllday 1967>

is somewhat different, as it Includes aspects which we prefer to

handle as part of the semantic analysis. Our simplified network

Is=
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CLAUSE~

BE__~THEREI FIT

ITRNS

TRANS

TRANS2

TRANSL

ITRNSL

INT

/PASV------

Figure 27 --NETWORK 2

The first basic division Is Into clauses wlth the maln verb

"he", and those wlth other verbs. Thls Is done ~Ince BE clauses

have very different posslbllltles for conveying meaning, and

they do not have the full range of syntactic choices open to

other clauses. BE c|3uses are divided Into two types -- THERE

clauses, !iks:

(s69) .T_~.E~ was an old woman who lived in a shoe.

and INTensive BE c|auses=

(ST0) War.L~. hell.

A THERE CLAUSE has only a subject, marked SUBJT, while an INT
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CLAUSE has a SUBject and a CO~IP1ement. The COMPlement can be

either a ~G, as In s70

(s71) He was an ~ ;~ ~ FBL=

or a PREPG:

(s72) The klng was In the countln~ bouse~

or an ADJG=

(s73) Her strength was fontastlc.
(s7~) My daddy Is stronger than yours.

Other clauses are dlvlded according to the number and type

of objects they have. A CLAUSE wlth no objects Is Intransitive

(ITRNS):

(s75) He Is running.

With one object It Is transitive (TRANS):

(s76) He runs ~ mIlIin~

With two objects TRANS2:

(s77) I gave m~’ ]__O_~.~ ~ ~heFrv.

Some verbs are of a specla] type which use a Iocatlon as a

second object. One example Is "put

(s78} Put the bloc’( on ~ table.

Note that this cannot be considered a TRANS wlth a

modifier, as

(s79) He {-uns a milling machine In Chlca~o.

since ~he verb "put~’ demands that the location be ~Iven. We

cannot say "Put the block." Thls type of CLAUSE Is called

TRANSL, and the location object Is the LOBJ. The LOBJ can be a

PREPG as In s78, or a special adverb, such as "there" or
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"somewhere", as in=

(sS0) ~here did you put It?     ~r
(s81) Put It there.

Some Intransitive verbs also need a logaclonal object for

certain meanings, such

(s82) The block is sitting on ~he table.

This Is called ITRNSL.

Finally, there are INTensive clauses which are not BE

clauses, but which have a COMPlement, as In:

(S83) He felt sick. and
(sSk) He made me ~

We have not run Into these with our simple subject matter, and a

further analysis w111 be needed to handle them properly.

Any of the constituents we have been mentioning can be

modified or deleted when these features Interact with the

features described in Network 1. For example ln~

(s85) the block which I told you j;.Q out on the table

the underlined CLAUSE is TRANSLo but Its OBdZ Is missing since

It Is an UPREL.

English has a way of making up new words by combining a

verb and a "particle" (PRT)o producing a combination llke

up", "turn on", "set off"~ or "drop out~. These do not slmply

combine the meaningsof the verb and part|cle~ but there Is a

special meaning attached to the pair, whlch may be very

different from either word in lsolatlon. Our dictionary

contains a table of such pai~s, and the grammar programs use
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them. A CLAUSE whose verb Is a part of PRT pair has the feature

PRT. The particle can appear either Immediately after the word:

(s86) He ~ away the plan.

or in a displaced position (marked by the feature DPRT):

(s87) He ~ the plans awav~

Regardless of whether there Is a PRT or not, we have the

cholc~ between the features passive (PASV) and active (ACTV).

ACTV placds the semantic subject first:

(s88) ThepFesidcr~ started the war.

while PASV puts the semantlc object flrst:

(s89) The ~.@.E was started by the Presldent.

If there Is a PREPG beginning with ~by~t, it Is Interpreted as

the semantic subject (as In s89), and the CLAU~E has the feature

AGENT.

If the CLAUSE Is active and its subejct Is a RSNG CLAUSE,

we can use the IT form described ear~iem. This Is marked by the

feature IT, and i.ts subject Is marked ITSUBJ, as In sentences

60, 61, and 62°
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~ Noun Grouos

The best way to explain the syntax ot: the NOUN GROUP is to

look at the "slot and filler" analysis, which describes the

different components it can have. Some types of NG, such as

those with pronouns and proper nouns, will not nave thls same

construction, and they will be explained separately later.

We will diagram the typclal NG structure, using a "*" to

Indicate that the same element can occur more than once. Most

of these "slots" are optional, and may or may not be filled In

any particular NG. The m~anIn~s of the dlfferen= symbols are

explained below..

I I I I I I
DET ORD     NU~    AD~     ~LASF~     NOUN     Q~

Figure 28 -- NG Structure

The mos¢ Important ingredient is ~he NOUN, which Is almost

always presenC (If It isn’t, the NG Is INCOHplete). It gives

the basic Information about the object or objects being referred

to by the NG. Immedlately precedln~ the NOUN, there are an

arbitrary number of "classifiers" (CLASF). Examples of CLASF

are:

(sgO) plant life
(s91) ~ rneter ~,.!2.~Le=r. adjustment screw

Notice that the same class of words can serve as CLASF and N~UN

-- In fact Halllday uses one word class (caIled NOUN), and
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dlstlnguishes between the functions of ~head~ and ~classlfler~=.

We have separated the two because our dlctlonary gives the

meaning of words according to their word class, and nouns often

have a special meaning when used as a CLASF.

Preceding the CLASFs we have adjectives (ADd), such as ~big

beautiful soft red..." We can dlstlngulsh adjectives from

classlflers by the fact that adjectives can be used as the

complement of a BE CLAUSE, but classlflers ~annoto Ne can say

"red hair"¯ or "horse halt"¯ or "That hair Is red."¯ but we

cannot say ~That hair Is horse ~. , since ~horsei~ is a CLASF¯ not

an ADd. Adjectives can also take on the COHPARative and

SUPerlatlve forms (~red¯ redders and reddest~)¯ while

classlflers cannot (~horse, horser, and horsest~ll?).

Immediately following the NOUN we can have various

quallflePs (Q), whlci: can be a PREPG:

(s92) the man J jl ~.e moo~

or an AOJG=

(s93) a night dar~er than doom

or a CLAUSE RSQ=

(sgk) the woman ~ conducts the oFchestra

We have already discussed the many types of RSQ clauses. In

later sections we w111 discuss the PREPG and ADJG types whlch

can occur as ~uallflers.

Finally, the first f~w elements In the NG work together to

give Its logical description -- whe~i~er !~ refers to a slngle
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ob3ect, a class of ob3ects, a group of ob3ects, e:c. The

deCermlner (DET) Is the normal start for a NG, and can be a word

such as "a", or "that~, or a possessive. It Is followed by an

"ordinal" (ORD)o There Is an Infinite sequence of number

ordinals ("first, necond, thlrd...") and a few others such as

"last" and "next". These can be recognFzed since they are the

only words that can appear between a DET like ~the~ and a

number0 as in:

(s95) the nex~ three days

Fl~ally there Is a NUHber. It can either be a simple

~nteger llke "one~, "two~°, etc. or a nlore complex construction

such as "at least three", or "more than a thousand~. It Is

posslble for a NG to have all of Its slots fille~ as in:

OET ORD    NUH ADd ADd CLASF CLASF NOUN
the first three old red clty fire hydra~s

Q(PREPG)       Q(CLAUSE)
without covers you can ~lnd

It Is is also posslb]e to have combinatlons of almost any

subset. Nlth these basic components In mlnd, let us ~ook at the

system network for NG In Flgure 29,
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NG-

..~QUEST~,,..~PRONG     -_.
TPRONG

PROPNG
INDET

IOET---

OBJI

OBJ2
OBJ,----

OFOBJ

PREPCBJ
COMP

TIME
|DEFPOSS

,POSS"’I...

NP~

/NFS

DEF-----

INDEF----

QNTFR

DEM

POSES

FIEure 29 --NETWORK

First we can look at the major types of NG. A NG made up

of a pronoun Is called a PRONG. It can be, either a QUESTIon¯

like "who" or "what’’, or a non-question (the unmarked Case) like

"I" "~hem", "It"¯ , etc. The feature TPRONG marks a NG whose

head ls a specla] TPRON, like ’~something", "everything"¯

"anything~’, etc. These enter into a peculiar construction



Sect.lon 2.3.5 - Pa~e

containing only the head and quallflers, and In which an

adjective can follow the head, as In:

(s95) anything ~reen whlch Is b,I~ger than the moon

The feature PROPNG marks an NG made up of proper nouns,

such as "John", "Oklahoma", or "The Union Of Soviet Soclallst

Republics."

These three speclal classes of NG do not have the structure

described above. The PRONG IS a single PRONoun, the PROPNG Is a

string of PROPNs, and the TPRONG has its own special syntax.

The rest of the NGs are the unmarked (normal) type. They could

be classified according to exactly which constituents are

present, but In dolng so we must be aware of our baslc goals In

systemic grammar. We could note whether or not a NG contained a

CLASF or not, but this would be of minor signlflcance. On the

other hand, we do note, for example, whether It has a DET, and

what type of DET It has, since this is of key Importance in the

meaning of the NG and the way it relates to other units. We

distinguish betwen those with a determiner (marked DET) and

those without one (NDET), as In:

(s97) Cats adore ~ NDET
(s98) The ca~ adored ~ fish. DET

The DET can be DEFinite (llke "the" or "that"), INDEFInite

(like "a" or "an"), or a quantifier (QNTFR) (llke "some",

"every’~, or "no~). The DEFlnlte determiners can be either

DEHonstratlve ("this’, ~that", etc.) or the word "the" (the

unmarked case), or a POSSessive NG. The NG "the farmer’s son"
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has the NG "the farmertt as Its determiner, and has the feature

POSES to Indicate th;s.

An INDEF NG can have a number as a determiner, such as=

(s99) ~lve gold rings
(slO0) ,~I: I__~.~_~_~ ~ dozen eggs

In which case it has the feature NUHDET, or It can use an INDEF

determiner, such as "a". In either case It has the choice of

being a QUESTIon. The question form of a NUMDET Is "how many",

while for cther cases It Is "which" or "what".

FlnaIIy, an NG can be determined by a quantifier (QNTFR).

Although quantlflers could be subcIasslfled along various 11nes,

we do so In the semantics rather than the syntax. The only

cIasslflcatlons used syntactlcaIly are between slngu]ar and

plural (see below), and between NEGative and non-negatlve.

If a NG Is either NUMD or QNTFK, it can be of a speclal

type marked OF, like=

(s101) three of the offices
(si02) all of your dreams

An OF NG has a DETerminer, fo|lowed by "of’t, followed by a

DEFinite NG.

A determined NG can also choose to be INCOMplete, leaving

out the NOUN, as an

(s103) Give me three.
(s1Ok) I want ~

Notice that :here Is a correspondence between the cases which

can take the feature OF, and those which can be INCOM. We

cannot say either "the of them" or "Give me the.". Possessives
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are an exception (we can say ’:G!ve me Juan’s." but not

of them"), and are handled separately (see below).

The middle part of Network ~ describes the different

possible functions a NG can serve. In describing the CLAUSE, we

descrlbed the use of an NG as a SUBJ, COMP, and OBJects

various types. In addition, it can serve as the object of a

PREPG (PREPOBJ), In:

(r105) the raoe of .r,J~.Lock

If It is the object of ~’of" In one of our special OF NGs, it is

called an OFOBJ=

(s106) none of 3L~_V_t tricks

A NG can a]so be used to Indicate TIHE, as In:

(s107) ~esterdav the world ended.
(s108) The da~ she e.L~.~, all work stopped.

Finally, a NG can be the POSSessive determiner for another

NG. In:

(sl0g) the cook#~ kettles

the NG =’the cook" has the feature POSS, lndlcating that It is

the determiner for the NG ’=the cook#s kettle", whichhas the

feature POSES.

When a PRONG Is used as.a POSS, It must use a special

possessive pronoun, llke =’my’=, ’#your", etc. We can use a POSS

In an Incomplete NG, like

(s110) Show me your~
(s111) . John#~ is covered with mud.

There Is a speclal class of pronouns used In these NGWs
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(labelled DEFPOSS), such as ’~vc~rs", "mlne", etc.

Contlnuln~ to the Ias~ pa,’t of ~et~ork 3, we see fe.~tures

of ~erson and number. These ar~ use~ to match the noun to the

verb (if the NG Is the subject) and the determiner, to avoid

un~rammatical comblnatloi~s like "these ka~ga-oo" or "the women

wlns".    In the case of a PRO3G, there are specla! pronouns for

first, secand, and third ~erson, sln~uIar and plural. The

feature NFS occurs only with the f!rst-per~on slngu|ar p~onouns

("I", "me", "my", "mln~"), and no distinction Is made betwee.~

othsr persons, since they have no effect on the parsln~.

sln~ular pronouns or other sln~ular.NGs are marked wlth the

feature NS. The pronoun "you" Is always treated as If It were

plura! and no distinction Is made between "we", "you", "they",

or any p|ura| (NPL) NG as far as the ~rammar Is concerned. Of

course there Is a semantic difference, which wl]] be considered

In later chapters.
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~ pr~poslti9n Groups

The PREPG is a comparatively simple structure used to

express a rela ’onship. It consists of a PREPosition followed

by an object (PREPOBJ), which Is either a NG or a RSHG CLAUSE.

In some cases, the preposition consists of a two or three word

combination Instead of ~ sln~le word, as In:

(s112) .next to the table
(s1=3) on top o~ the house

The grammar Includes provision for thls, and she dictionary

lists the possible combinations and their meanings. The words

In such a combir~tion are marked as PREP2. The network for the

PREPG ,s In FiKure 30.

ways.

(sll~)

PREPG--,"

ILOBJ

’"iADJUNCT
/AGENT

RELPREPG

Figure 30 -- NETWORK ~

Yhe PREPG can serve as B constituent of a CLAUSE In several

It can be a COMPlement:

Is It In ~.he kitchen?
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a ]ocatlona! object (LOBJ):

(s115) Put It o__~_hr,.b.~ ~able.

an ADJU#~CT:

(s116) He got It by ~ h{s soul

or an AGEhT:

(s117) It was bousht b_.~ ~he ~evII.

If the PREPG Is a constituent of a QUESTION CLAUSE0 It can be

the question element by having a QUEST NG as Its object:

(sllB) In what
(s119) for
(s120) by whom

In which case the PREPG Is also marked QUEST. A PREPPEL CLAUSE

contains a RELPREPG:

(s121) the place I~ which she works

If the CLAUSE is an ~PQUEST or an UPREL, the PREPG can be

the constltuen~ which Is "missing" the piece whlch provides ~he

upward refe:ence. In thls case It Is also marked UPREL:

(s122) the lady I saw you

or UPQUEST:

(s123) Who did you knl~ It for?

In these cases, it Is also marked SHORT to Indicate th~ ~he

object is not exp]Iclt]y In the PR~PG. It can ~iso b~ shor~ If

It Is a PREPG In a DANGLING PREPQ or PREPREL CL~i~oE:

(s12k) what do you keep it In?

Within a NG, B PREPG serves as a ~ualifler (Q):

(s125) the man In tl~e Iron mask
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or as the body ,)f an OF FIG:

(s126) so,he of ~
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2.3.Z Adiectly~ Gro~p~

The ADJG Is a speclal!zed unlt serving as a COHPlement of

an intensive clause0 as a Qualifier to an NG, or as a CLAUSE

ADJUNCT.    The network Is:

~=_._~ THAN

Figure 31 -- NETWORK 5

An ADJG which -Jrves as an ADJUNCT contains an adverbs 11ke

"fast" In=

(s127) He could run fast~r~hanan arrow.

In place of an adjective. (Clearly our termlnology could do

wlth some cIeanlng up at places like thls In doing a theoretical

version of the grammar.) Theother two types of ADJG use an

adjectives as In a Qualifier=

(s128) a hotel as bad as ~he.o~,.C one

or a COHPlement=

(s129) They were blissful,

The basic forms for an ADdG Include THAN=

(s130) holler ~:han thou

AS=
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(s131) a~s quick a~s a flash

COMPARative:

(s132) Thls one Is blg~.er.

or QUESTIon:

(s133) How ~ can he take dictation?

The network Is arranged to show that a quaIIfler ADJG can

be only of the first two forms -- we cannot say "a man bigger"

without using "than", or say "a man blg". In the specla| case

of a TPRON such as "anythlr.~" as In:

(sI3h) anything s__tran~e

the word "strange" Is considered an ADJ which Is a direct

constituent of the NG, rather than an ADJG,

The grammar does not yet account for more complex uses of

the word "than".
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~ Verb Groups

The End:fish verb ~roup Is designed to convey a complex

combination of tenses so tF.at an event car. relate several tlme

references.    For example, we mIxht h~ve:

(s135) By next week you ~!ll have ~een llvln~
here for a mopth.

Thls Is sald to have the tense "present In past In future". Its

basic reference Is to the future -- "next week", but It refers

back to the past from that tlme, and also indicates that the

event Is still goln~ on. -Thls type of recursive tense structure

has been analyzed by HalIIday <Halliday 1966b> and our ~rammar

adopts a variant of hls scheme.

Essentially the choice Is between four tenses, PAST,

PRESENT, FUTURE, and ~ODAL. Once a choice between these has

been made, a second, third, fourth, and even fifth choice can b~

made recurslvely. The combination of tenses Is realized in the

syntax by a sequence of the auxilIIary verbs "be", "have", and

"goln~ to", along wlth the ING, EN, and I~IFInltlve forms of the

verbs. The restrictions on the recurslon are:

I. PRESENT can occur only at the outer ends of the series

(at first and/or final choice).

2. Except In the final two positions, t~e s~me tense

cannot be selected twice consecutively.

3. Future can occur only once other than In last

position.

~. ~odal can be only in final position.



It Is Important to distinguish between the posltlon of a

word In the VG 3nd the posltlon of Its tesnse In the recurslve

tense feature -- the dlrectlon Is reversed, In sI~5,

the first word, and

PRESENT In PAST in FUTURE, Some sample verb groups and thelr

tenses are: (from (Ha]11day

ACTIVE

took - past
takes - present

w111 take - future
can take - modal

has taken - past In present
was takln~ - present In past

was ~oin~ to have taken - past In future In past
was ~oin~ to have been takln~ - present In past In future In past

PASS I VE

Is taken - present
could have been taken - past In modal

has been ~oln6 to have been taken -
past In future In past In present

Fl~;ure 32 -- Verb Group Tenses

The structure of a flnlte VG (one takln¢ part In this tense

system -- see below for other types) Is a sequence of verbs and

auxIIllarles In which the last Is the ~’maln verb" (marked MVB

and remembered by the parser), and the first is either a MODAL,

the word "will", or a "finite" verb (one carryln~ tense and

number agreement with the subject). Interspersed in the

sequence there may be adverbs, or the word ~’not" (or Its reduced

Form "n’t’)o The best way to describe the relationship between
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the sequence of verbs and the tense Is by ~lving a flow chart

fo~ parsing a VG. Tnis Is a good example o~ the usefulness uf

representing syntax it1 the form of prucedures, as It describes a

relatlvely complex system In a clear and succ!n.."t way.

In the flow chart (Figure 33) �he variable T represents the

tense, and the symbol "." indicates the a~dt~lon o~ a member to

the front of a list. The "~" Indicates repla.=ement In the

FORTRAN sense, and the function "RE’IOVIZ"~, removes words from the

Input string. The features used are those described for verbs

In section 2.3.9. The command (FQ PASV) Indicates that the

entire VG Is to be marked wlth the feature PASV (passive voice).

The flow chart does not Indicate the entire .parslns~ but only

that part relevant to determlnin~; the tense.
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ENTER

Next word ~ext word
PAST? ~)"           PRES?

T :~PAST)

~(PRES)
Next word DO and

2nd word INF?

_..~Next word__Next word
WILL? ~ HODAL?

T = (~FUTURE) T~=~ (HODAL)

Remo~,~, 1 word

PAST , T=~Remove I wordNext word HAVE ~ T
and 2nd word EN?

Next word BE?:::~2nd Word GOI.~IG :~:::~T = FUTURE . T
and 3rd TO

and ~th INF?

~ Remove ] words:

Next word ING? T = PRES. T

>FQ PASV:~

~.~EX I T

Next word EN?

Figure 33 -- Syntax of VG Tense Structure
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This system of tellses 1S operative on]y for FINITE verb

groups. The network fox the VG In general Is=

FINITE

IHPER

IACTV

Figure 5h --NETt4ORK 6

There are several types of VG which do not enter the normal

tense system, but which h~ve a specialized form. The IHPER VG

is used In imperatives=

(s136) ~ when ready.
(s137) Done~ drop the baby.

It consists of a verb In the INFinitive form, possibly precedeff

by the auxilllary "do" or Its negative form "don~t", The EN VG

Is used in EN RSQ CLAUSES, like=

(s138) a man ~qrsak~ by his friends

and consists of a past partlcple verb.

an ING verb or the verb "beln£" followed by an EN verb.

The ING VG Is made up of

It Is
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used in various types of IF!G clauses:

(s139) Beln~ marrl,,ed Is ~reat,
(sly0) the glrl slttln~ near the wall

Similarly, the TO VG Is used In TO clauses. In the case of

conjoined structures, the ~toI~ may be omitted from the second

clause, as

(s141) We wanted to stop the war and end repression.

Such a VG ls marked TODEL.

We separate those verb groups whose main verb Is ~be" from

the others, as they do not under¢o the further cho;ce between

PASV and ACTV. These correspond to the same features for

clauses, and are seen In the structure by the fact that a PASV

VG contains a form of ~he aux1111ary I~be~ followed by the main

verb In the EN form, as In:

(s142) The paper was flnlshed by the deadline.
(slk3) He wanted to be kissed by the bride.

Finally, any VG can be NEGatlve, either by usin¢ a negative

form of an auxiIllary like ~=don=t", =~hasn~t~, or =~won=t=~, or by

Includlng the word
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Our grammar uses a number o~ separate word classes, each of

which can be dlvlded Into subclasses by the features ~ssi~ned to

individual words. It was necessary to make arbitrary decisions

as to whether a distinction between groups of words should be

~e~resented by different classes or different features within

the same class. Actually We could have a much more tree-like

structure of word classes, In which the Ideas of classes and

features were combined. Since this has not yet been done, we

will present a list of the different classes In alphabetical

order, and ~or each of them give descriptions of the relevant

features.    Many words can be used In more than one class, and

some classes overlap to a large degree (such as F!OUN and CLASF).

In our dictionary, we slmply llst all of the syntactic features

the word has for all of the classes to which It can belongo

When the parser parses a word as a member of a certain class, it

sorts out those features whlch are applicable. Figure 35 Is a

li~t of the word classes and their’features.

ADd -- Adjectlve Is one of the constituents of a NG as well as

being the main part of an ADJGo This class Includes words

like =~blg==, ~=ready=~, and ~=strange~, The only features are

SUPerlative (as In =~biggest") and COMPARative (as in

~blgger").

ADV -- Ne use the name ~adverb" to refer to a whole group of

words used to modify other words or clauses. It Is sort of a
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CLASS

ADV

BINDER

CLASF

lET

ADJ

NOUN

NU~

NUMD

ORD

PREP

PREP2

PRON

PRONREL

PROPN

PRT

QADJ

TPRON

VB

FEATURES

ADV ADVADV LOBJ PLACE PREPADV TIMW TIM2 VBAD

BINDER

CLASF

DEF DEH DET INCO~ INDEF NEG NONUM NPL NS OFD PART
QDET QNTFR

ADJ CO,PAR SUP

MASS NOUN NPL NS POSS TI~E TIHI

NPL NS NUM

NUMD NUMDALONE NUFIDAN NUMDAT

ORD TIMORD

PLACE PREP NEED2

PREP2

DEFPOSS NEG NFS NPL NS OBJ POSS PROt~ REL SUBJ

NPL NS PRONREL

NPL NS POSS PROPN

PRT

PLACE QADJ

NEG NPL NS TPRON

AUX BE DO EN HAVE      IMPERF    INF    ING INGOB    INGOB2    INT
ITRNS    ITRNSL MODAL MVB NEG PAST PRES QUAX REPOB REPOB2
SUBTOB SUBTOB2 TOOB TOOB2 TO2 TRANS TRANSL TRANSL2 TRANS2
VB VFS VPL VPRT V3PS WILL

Fi~;ure 35 -- Word C)asses and Appllcable Features



Section 2.3.9 - Pa~e 141

"mixed bag" of words which don’t really flt anywhere else.

The basic classlflcation depends on wha~ Is beln~ modified,

and has the terms (ADVADV VBAD PREPADV CLAUSEADV). An ADVADV

Is a word like "very" which modifies other adverbs and

adjectives.    A VBAD modifies verbs, and Includes the class

of words endln~ In "-ly" like "qulckly" and "easlly’~. A

PREPADV modifies prepositions, as "dlrectIy" In "directly

above the stove". A CLAUSEADV Is a constituent of a clause,

and can be either TIMW or PLACE. A T!MW ]Ike "usually",

"never", "then", or "often" appears as a CLAUSE constituent

speclfyln~ the tlme. ¯ The PLACE ADV "there" can either be an

adjunct, as In:

(sI~4) ~ I saw a mlracle.

or an LOBJ, as In:

(SII~K) PUt It there,

BINDER -- Binders are used to "bind" a secondary clause to a

major clause, as In:

(sI~6) Before you ~ot there, we left.
(s1~7) I’ll ~o If you do.

We do not assign any other features to binders.

CLASF -- In Section 2.3.5 we discussed the use of CLASF as a

constituent of a NGo The CLASF Is often another NOUN, but It

appears In a position lI!~e an adjective, as In "~ov scout".

DET -- DETerminers are used as a constituent of a NG, as

described In ~.~.5. They can have a number of different

features, as described In the network:
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O £T--,~

Figure 36 -- NETWORK 7

A DET can be-INDEFinite, like "a=’ or’ "an" or the

questlon ~etermlners (QDET) "which", "what", and "how many".

It can be DEFinite, like "the" or the DEMonstrative

determiners "thls"~ "that", "those", and "these". Or It can

be a quantifier (QNTFR) l!ke "any"s "every"s "some=’, etc.

Quantlflers can have the feature OFDs l~d|catlng that they

can be used In an OF NG l|ke=

(slk8) som~ of my best friends

We originally had a separate feature named INCOM Indlcatlng

whether they could be used In 3n Incomplete NG llke=

Ls1~9) Buy.s_~.q~.�~

but later analysis showed these features were the same. Not

all quantiflers are OFD -- we cannot say "every of th~ cats"

or "Buy every,t~ Quan~Iflers can also b~ NEGative, like "none"



Section 2.3o9 - Page 143

or ==no==, or can be NONUM, Indicating that they cannot be used

with a number, such as =1many== or ==none== ewe ca;l say ==ary thres

cats== or ==no three cats==, but not ~=none three== or ==many three==).

The NG pro�ram takes these features into accoun3 in decldlng

what NG constltuents to |ook for. It ~|so has to find agl’eement

in number between the DET and the NOUN. A DET can have the

features ==singular== (NS~, =~plural== (NF’L) or HASS (like ==some== or

==no==, whlch can go with MASS nouns !ike ==water==). A DET can

have more than one of these -- ==the== has all three, while ==all

Is MASS and NPL, and ==a~= is just

NOUN -- The main constituent of a N~ is Its NOUN. It has a

feature of number, identlcal to that of the DETerminers it must

match.    The wor.~ ==parsnip== is MS, ==parsnips== Is NPL, .and

==wheat== ~s MASS. Some nouns may have more than one of these,

such as ==fish==, which Is all three since It can be used In

flsh==, ==three flsh==, or ==Fish Is my favorlte food.== In

addition, a NOUN can be POSSessive, llke ==parsnip=s==.

in order to tel| whether a NG is functlonlng as a time

element In a CLAUSE, we need to know whether its NOUN can refer

to time. He therefore have two features -- TiME words like

==day==, and ==month==, as In:

(s150~ The next d__o.Y. It started to snow.

and TIM~ words like ==yesterday== and ==tomorrow==.

i~tustrates ~he interaction between syntax and semantics. A



phrase llke "the next visit" can be used to indica~e a time,

since a "visit" is an event. The actual distinction should

be the semantic difference between "event’= and ==non-event’=

The ~rammar could be easily chanced to look at the

semantic Features rather than syntactic features of the NOUN

in deciding whether it could be the head of a TIME NG.

NUM -- The class of NUMbers is large (uncoun~ably Infinite) but

not very Interesting syntactically. For our purposes we only

note the features NS (For ~’one") and NPL (for all the rest).

In fact, our system does not accept numbers In numerlc form,

and h~s only been taught to count to ten.

NUMD -- In complex number specifications, like "at least three"

or "more than a milllon", there is a NUMD. The features they

can have are (NUMDAN NUMDAS NUHDAT HUHDALONE). NUMDAN words

such as "more" and "fewer" are used with =’thanr~, while NUMDAS

words such as "few" fit into the frame "as...as", and NUMDATs

are preceded by "at", as In "at least", and ==at most’=,

NUMDALONE Indicates that the NUMD can stand alone with the

number, and Includes "exactly" and "approximately’=.

ORD -- The class of ORDlnals includes the ordinal numbers

"first", "second’=, etc., and a few other words which can fit

into the position between a determiner and a number, like

"next", "last", and "only=’, Notice that SUPerlative

ADdectlves can also fill this slot in the NGo

PREP -- Every PREPG begins with a PREPosition, either alone, or
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as part of a combination such as ’~on top of". In the

combination case, the words followln~ the !nitlal PREP )~ave

the feature PREP2. A PREP which cannot appear without a

PREP2 (such as "next’~ which appears in "next to~) are tnarked

NEED2.

PRON -- PRONouns can be classified alon~ a number of dimensions,

and we can think of a large multi-dimenslonaI table wlth most

of Its positions fI11ed. They have ~u~ber features iNS NPL

NFS) (note that Instead of the more usual division Into

first, seconds and third person, sln~ular and plural, we have

used a reduced one In which classes wlth the same syntactic

behavior are lumped together). They can be POSSessives such

as ~your~ or ~my~s or POSSDEFs like =~yours~ or ~mlne~. Some

of the personal pronouns dlsclngulsh between a SUBject form

11ke ~I" and an OBject form 11ke "me=~. there are also

speclal classes like DE~lonstratlve ("thls~ and ’~that~) and

PRONREL -- the pronouns used In relative clausess such as

~who~, ~which"s and ~that~. Those wh(ch can be used as a

question elements such as ~whlch" and ~who" are m~rked QUEST.

PROPN -- Proper nouns include sln~le words like ~’Carol’~, or

phrases such as "The American Legion" which could be parseds

but are Interpreted as representing a partlcular object

(physlcal or abstract). A PROPN can be NPL or NS, and is

assumed to be NS unless defined otherwise.

PRT -- In Section 2.3.~s we discussed clauses which use a
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combination of a "particle" and a verb, like "pick up;~ or

;~knock out;e. The second word of these Is a PRT.

QADd -- One class of QUESTION CLAUSE uses a QADd such as

~where", "when~, or ||how|| as Its question element. They can

also be used In various kinds of relative clauses, as

explained In Section 2.3.3.

TPRON -- There is a small class of words made up of a quantifler

and the suffix ~-thln~~e which enter into a speclal type of NG

construction like ~anythln~ green~eo This Is not an

abbrevlatlon for a quantifier followed by a noun, since the

NG ~any block green~ would have the same structure but Is not

grammatical.

VB -- The verb has tne most complex network of features of any

word |n our grammar° They describe Its tense, transltivity,

number, and use, as well as marl¢ln~ special verbs like

The network Is In Figure

Verbs are divided Into AUXllllarles and others

(unmarked).    AUXllllarles are the ||helping verbs~e which

comblne with others In complex VG structures. They can have

speclal NEGative forms, like e~can~t~e, or can appear standln~

alone at the beginning of a QUESTION, in which case they have.

the function QAUX, as Int

(slSl) ~ I ever finish?

The auxl]liar’les Include "be~, "do", "have", "wl|l"~ and the

~ODALs like ~cou]d" "can~, ~nd =~must". Separate features are
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AUX ~

PRES

PAST

ING

EN

INF

IQAUX

BE

DO

IHAVE

WILL

HODAL

..,.,.~ V FS

| ITRANSITIVITY SYSTEM
~,w (SEE-TEXT)

Figure 37 -- NETWORK 8
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used for these as they are crltlcal In determining the

struc~:ure of a VG. An AUX can choose from the system of

person and number, distinguishing ~=thlrd-person sln~ular"

(V3PS) as In "Is", "p|ura1", as In ~have==, or ==first

singular" (VFS), used only f~r "am==.

Non-auxI111ary verbs can be VPRT, which combine with a

PRT, and they have a whole cluster of transitivity features.

In Section 2.3.4 we described the different transitivity

features of the CLAUSE, and these are controlled by the verb.

We therefore have the features (TRANS ITRFIS TRANS2 TRANSL

ITRNSL INT) In addition, the verb can control what types ~}f

RSNG CLAUSE can serve as Its various objects. The feature

names combine the type of CLAUSE (ING TO REPORT SUBTO SUPING)

with either -OB or -OB2, to get a product set of features

like SUBTOB and INGOB2.

For example, the verb ==want== has the features TOOB and

SUBTOB, but not INGOB, REPOB, etc. since ==1 want to So.== and

"1 want you to gOo’= are grammatical, but =11 want going.==, ’11

want that you go.", etc. are not.

Flnaliy, all of these kinds of verbs can be In various

forms such as ING ("breaking==), EN ("broken==), INFinitive

(=’break), PAST ("broke’=), and PRESent (==breaks"). The

network does not Illustrate all of the relations, as some

types (llke MODAL) do not make aI~ of these choices.



Section 2,3,10 - PB~e

2_.~_~_1_0 CoNjunction

One of the most complex parts of English Is the system of

conjunction.    Thls section presents a simpiified version which

has been Implemented usln~ the special Interrupt feature of

PROGRAMMAR (see Section 2.~.2 for details). This makes the

parsing partlcularly slmpie.

The basic concept Is that anv u__n.LE In a sentence can :e

replaced by a COMPOUND unlt of the same type. In the sentence:

(s152) I baked ~ chocolate, cake, t_.b~ ~les, and
~~ b..~ownles,

the object Is a COMPOUND NG wlth three components.

a compound ADJ, as In:

(s153) a ~ or yellow flag

or a phras~ can be ambiguous, as In:

(slSk) black ca_g_t~ ~nd ho~ses

This can be Interpreted as having either a CO~POUND NG,

composed of the HGs e~black cats~ and ~=horses~, or a single P~G

with a COHPOUND NOUN, ~cats and horses~=,

The features of a COt~POUND unit are determined by Its

components and by the type of conjunction. The conjunctl~n

features are from the followin~ network:

The~e can be
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COMPOUND----

FIGURE 38 -- NETNORK 9

The first choice Is the actual conjunction used. The

feature BOTH lndlcates a word at the be¢lnnin¢ of a COMPOUND

structure, as In:

(sI55) bo~h you and your famlly

the specific word depends on the conjunction -- "both" with

"and’=, =’either=’ with "or, and "neither" with "nor", The

features BOTH and NOR combine In:

(s156) neither you nor I

A conjoined structure can be made up of two elements with a

conjunctton (as In the previous three examples), or a LIST

connected with commas and a conjunction before the last element

(as in s152), or It can be a list connected with conjunctlons (a
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LISTA), as In:

(s157) cabbages and kings and sealin~ wax and things

Every constituent but the first is marked with the feature

COMPO~IENT. The COMPOUND unit also takes on features from Its

constituents. It may have features such as number and tense,

relevant to its syntactic function. For example, a COMPOUND NG

with the feature AND must be plural (NPL), while one with the

feature OR wi!1 have the number feature of Its lnltlal

constituent.

Finally, there can be "forked~ structures like=

(s158) We dropped the watermelon and ran.

Notice that thls cannot be viewed In the same way, since

~dropped the w~termelon~= Is not a single constituent of any

unlt.    This sentence Is viewed as a conjunction of two clauses,

sharing the subject ~we=~. The second clause is marked with the

feature SUBJFORK to Indicate this. Similarly, the subject and

verb can be shared, as

(3159) He gave GreK the apple and Gloria the pear.

The Clause ~Glorla the pear~= Is marked as VBFORK and SUBdFORK.

The only constituents relatlve to a fork are those necessary for

the clause structure. In:

(s160) They easily saw the trouble and cheerfully fixed It.

the parser does not determine whether the ~easlly

both constituents, but leaves ~hls decision to semantics. Thls

Is in keeping with our orientation of syntax to surface



Section 2.3.10 - Pase 152

structure and the belief th{~t much of ~Wde~p structure~ Is more

the province of the semantic analyzer.
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~ Followln~ ~ ?arser l~ Operation

Let us follow the parser through two examples to see how

the ~rammar Is used In practice. We wI11 not actually watch

of the details, or deal with the way semantic prosrams are

Intermixed wlth the ~rammar. Instead we wI11 Follow a somewhat

reduced version, to ~et a feellng for the way the 8rammar works,

and the way It Interacts wlth the different features described

above.    We have chosen one very simple sentence, and another

which is difficult enough to exercise some of the more complex

features of the grammar. The first sentence Is the first

sentence of our sample dialog: (Section

Pick up a big red block.

The system be~lns tryln~ to parse a sentence, which, as

explained above, ,n~ans lookln~ for a MAJOR CLAUSE. It activates

the ~rammar by calling (PARSE CLAUSE MAJOR). Since CLAUSE Is

one of our units, there is a program defined for It. The CLAUSE

program is ca]]ed with an initial feature list of (CLAUSE

MAJOR).

The CLAUSE program looks a~ the first word, In order to

decide what unit the CLAUSE begins with. If I~ sees an adverb,

it assumes the sentence be~|ns with a sin~le-wor6 modifier. If

It sees a PREPosition, It looks for an lnltlal PREPG. If It

sees a BINDER, It calls the CLAUSE program to look for a BOUND

CLAUSE.    In English (and posslb]y all la~xua~es) the first word

of a constructlon often ~ives a very good c!ue as to what that
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construction w111 be. We have "advance notice" of what

structures to look for, and this makes parsing much easier. Our

grammar tries to make as much use as possible of these natural

"signals", in this case, the Inltial word Is a verb, and thls

lJ=dlcates that we may have an IMPERATIVE CLAUSE. The program

calls (PARSE VG IMPER) to start {he VG program with the Initial

VG feature ,list (VG IMPER)s looking for a VG of the right: type.

The VG program checks this inltlal feature list0 and sees that

It Is looking for an IP.PERatlve VG. This mus~: either begin with

some form of the verb "do", or with the main verb. Itself. Since

the next word is not "do’~, i~: cal]s (PARSE VB INF (MVB)). This

;s a different kind of call to PARSEo since VB Is not a unit we

have defined. It Is a word class~ and t:he call says to check

the next word In the Input (~n this case st111 the first word)

to see whether It Is Indeed the INFinitive form of a VerB. If

so, It ls to be attached to the parsing trees and given the

addltlonal feature MVB (main verb). The current structure can

be d -’.grammed! ......

(CLAUSE MAJOR) (pick...)
(VG IMPER)* (plck.,.)

(VB MVB INF TRANS VPRT) plck

Flgure ~9 -- Syntactic Structure :L

We use several conventions for diagramming syntact:lc

structures.    Rather than using a tree forn=at (whlch qulckly

grows off of ~he page), we use a format more ilke a tradltlonal

outline, with the sub-phrases of any phrase Indicated
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Immedlately below It and Indented. We use the symbol ~*" to

indicate the program which Is currertly active, and show ~he

actuol words of each piece of the sentence to the right of the

outline, putt~n~ units lar~er .than WORD In parentheses. A

series of dots In the English words co the rl~ht of a unit

indicates that the program for that unit has not yet finished.

Figure ;9 shows that we have a CLAUSE, with a constituent

which Is a VG, and that the VG program Is active. The VG so far

consists of only a VB. Notice that some new properties, have

appeared on the list for VBo We have not mentioned TRAMS or

VPRT. These came from the definition of the word "pick" when we

called the function PARSE for a word (see section 2.~.~ for

details).

Ordlnarl~,’ the VG program checks for various kinds of tense

and number, but In the speclal case of an I~PER VB, It returns

immediately after flndln~ the verb. We will see other cases In

the next example.

When the VG program succeeds, CLAUSE takes over a~aln.

Since It has found the right klnd of VG for an IMPERative

CLAUSE, It puts the feature IMPER on the CLAUSE feature list.

It then checks to Fee whet;her the MVB has the feature VPRT,

Indlcatln~ It is a specla~ kind of verb whlch takes a partlcIe.

it discovers that =~plck~= Is such a verb, and next checks to see

if the t~ext word is a PRT, which It is. it then checks In the

dictionary to see If the comblnation ~plck up~ is defined, and
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when it discovers thls Is true, It calls (PAR~E PRT) to add ’fup"

to the parsing tree. Notice that we might have let the VG

program do the work of 1ooklng for a PRTs but it would have run

Into dlfflcultles with sentences like "Pick the red block up."

In which the PRT Is dlsplaced. By lettlng the CLAUSE program do

the 1ooklngs the problem Is slmpIIfled.

As soon as It has parsed the PRT, the CLAUSE programmarks

the feature PRT on its own feature list. It then looks at the

dictionary entry for "plck up" to see what transitivity features

are there. It Is TRANSItive, which Indicates that we should

look for one object -- OBJZ. The dictionary entry does not

Indicate that thls Is a verb which can take speclal types of

RSNG clauses as objects~ so th~ object must be either a NG or a

WHRS clause (which can appear wherever~a NG can). If the object

were a WHRS clause~ It would begin wlth a relatlve pronoun, 11ke

"Pick up.wh_.b.p_~ I told you ~o.~ $!nce the nex~ word Is "e", thls

is not the case, so the CLAUSE program looks for an object by

calling (PARSE NG OBJ OBJ1), asking the NG program to flnd a NG

which can serve as an OBJ1. The structure is ncw=

(CLAUSE MAJOR IHPER PRT) (pick up...)
(VG IMPER ) (pick)

(VB MVB INF TRANS PRT) pick
(PRT) up
(NG OBJ OBJI)* (...)

Figure h0 -- Syntactic Structure 2

The NG program Is started and notices that the upcoming
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word is a DET, ’la~’. It calls (PARSE DET) to add It to the

parsing tree, then uses the function TRNSF to transfer relevant

features from the DET to the entire fJG. It is Interested In the

type of determination (DEF vs. INDEF vs. QNTFR), and the number

(NS vs. NPL). It also adds the feature DET go the fi~ to

Indicate that It has a determiner. The feature 11st for the NG

Is now:

(NG OBJ OBJ1 DET INDEF NS)

since ~a~= Is a singular Indefinite determiner. The NG program

then notices the feature INDEF, and decides not to look for a

number or an ordinal (we cantt say ~a next three blocks~=), or

for the OF co~structlon (~a of them=~ Is imposslble). It goes on

Immediately to look for an ADjective by ca11Ing (PARSE ADJ).

When this succeeds wlt~ the next word ~big~, a simple program

loop returns to the (PARSE ADJ) statement, which succeeds again

with ~red~. on the next trip it falls, and sends the program on

to look for a classifier, since "block~ isnet an ADJ. But

~block~ Isn’t a CLASF either In our dictionary, so the NG

program goes on to look for a NOUN, by ca111ng (PARSE NOUN).

This succeeds with the NOUN ~block~, which Is singular, and the

program checks to see If It agrees with the number features

already present from the determiner (to ellmlnate illegal

combinations like ~these boy~). In this case, both are singular

(NS), so the program Is satisfied. Ordinarily It would go on to

look for qualifiers, but in this case there Is nothing lef~ In
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the sentence. Remember that we have an especially ~sy way of

indicating In a PROGRAMMAR program what action shou;a be taken

at any point if the sentence runs out. We can do It by simply

putting a thlrd direction in any branch statement. In this

case, since we have found all of the basic constituents we need

for a NG, the "third branch’1 tells us that the NG program should

return success. If we had run out after the determiner, it

would have sent us to check for an INCOMplete NG, while If we

had run out after an ADd it would have entered a backup program

which would check to see whether It had misinterpreted a NOUN as

an ADd.

In this case, the NG program returns, and the CLAUSE

program similarly notices that the sentence has ended. Since a

TRANS verb needs only one object, and that object has been

found, the CLAUSE program marks the feature TRANS, and returns,

ending the parsinE. In actual use, a semantic program would be

called here to understand and execute the command -- In fact,

semantic programs would have been called at varlous points

throughout the process. The final result looks like=
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(CLAUSE HAJOR IMPER PRT TRANS)

(VG IMPER)
(VB HVB    INF TRANS VPRT)

(plck up a blg red block)

(plck}
plck

(PRT) up

(NG OBJ OBJI DET INDEF HS) (a big red block)
(DET INDEF NS) a
(ADJ) blg
(ADJ) red
(NOUN NS) block.

Figure kl -- Syntactic Structure
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Now let us take a more complex sentence, like:

How many blocks are supported by the cube ~hlch I
wanted you to pick up?

~/e w111 not ~o into as much detail, but will em[,haslze the

new features exhibited by this example. Fl~st, the parser

recognizes that thls sentence Is a question by Its punctuation.

it ends with a question mark. This "cheating" ls not really

necessary, and In the future the grammar wi!l be revised to look

for the other signals of a question (for example, beginning with

a determiner llke "how many" or "which").

In any event, the feature Q.UESTION Is noted, and the

program must decide what type of aue.stlon It is. It checks to

see if the CLAUSE begins with a QADJ like "why", "where", etc.

or with a PREPosltlon which might be~In a PREPG QUEST (like "In

what year...").

A]I of these thln~s fall In our example, so It decldes the

CLAUSE must have a NG as Its questlon element, (called NGQ),

marks thls feature, and ca|Is (PARSE NG QUEST). The NG program

starts out by notlcln~ QUEST on Its Inltlal feature list, and

looking for a Questlon determ|ner (DET QDET). Slnce there are

only three of these ("~nlch", ~’wbat’w, and "how ma~y"), the

program checks for them expllclt]y, parsln~ "how" as a QDET, and

then callln~ (PARSE NIL MANY), to add the word "many" to the

parslng tree, without worryln8 about !is features. (The call

(PARSE NIL X) checks to see If the next word Is actually the

word "x")).
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Since a determiner has been found, Its properties are added

to the NG feature l.lst, (In this case, (NUMDET INDEF NPL)), and

the NG program goes on with its normal business, looking for

adject!ves, classifiers, and a notch. It finds only the NOUN

"blocks" with the features (NOUN NPL). The word "block" appears

In the dictionary with the feature NS, but the Input program

which recognized the plural ending changed NS to NPL for the

form "blocksI’. Agreement Is checked between the NOUN and the

rest of the NG, and since "how many’1 added the feature NPL, all

is well. This time, there Is more of the sentence left, so the

NG program continues, looklng for a qualifier. It checks to

see if the next word Is a PREPosition (as In "blocks on the

tabie), a relatlve word ("blocks which...), a past participle

("blocks suoooorted by...), an ING verb ("blocks slttln~ on...)

a compar~ive adjective ("blocks bl~er than...) or the word

"as" ("blocks as big as...). If any of these are true, it tries

to parse the appropriate quallfylng phrase. If not, it tries to

find an RSQ CLAUSE ("blocks the b~ock suooorts), in this case,

all of these fall since the next word Is "are", so the NG

program decides It wlll find no qualiflers, and returns what it

already has. Thls gives us:

(CLAUSE MAJOR (~UESTION NGQ)*
(NQ QUEST DET NU~IDET NPL INDZF)

(DET QDET NPL INDEF)
()
(NOUN NPL)

how many blocks...)
(how many blocks)

how
many

blocks

Figure ~2 -- Syntactic Structure
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Next the CLAUSE program wants a VG, so It calls (PARSE VG

NAUX). The feature NAUX indicates that we want a VG which does

not consist of only an AUXi11Iary verb, like "be" or ~have". If

we saw such a VG, It. would Indicate a s:ructure like "How many

blocks are the boxes supporting?", in which the question HG Is

the object of the CLAUSE. We are Interested In flrst checking

for the case where the question NG Is the subject of the CLAUSE.

The VG program Is designed to deal with combinations of

auxllliary verbs like "had been going to be...~ and notes that

the first verb Is a form of "be". It calls (PARSE VB AUX BE),

assuming that ~are~ is an aux|l|lary rather than the maln verb

of the sentence (if this tuFns out wrong, there is backup). It

transfers the lnitla] tense and person features from this verb

to the entire VG (The English VG ~lways uses the le~dlng verb

for these features, as In ~He has been...~=, where it Is ~=has=~

which agrees with ==he==) in ti~s c~s~ ~are~ Is plural (VPL) and

present tense (PRES).

When "be" Is used as an auxilllary, It Is followed by a

verb In either the ING or the EN form. Since ~supported~ Is an

EN form (and was marked that way by the Input program), The VG

program calls (PARSE VB EN (MVB))~ marking ~supported~ as the

main verb of the clause. The usa of a "be" followed by an EN

form Indicates a PASV VG, so the feature PASV Is marked, and the

VG program is ready to check a~reement. Notice that so far we

haven’t found a SUBject for this clause, s!nce the QUESTIon NG
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might have been an object, as In ~How many blocks does the box

support?’~ However the VG program Is aware of this, and realize.;

that instead of checking agreement with the constttuent marked

SURJ, It must use the one marked QUEST. it uses PROGRAMMAR~s

polnter-movlng functions to find this constituent, and notes

that I~ is NPL, whlch agrees with VPLo VG therefore Is happy

and returns Its valueo

!~CLAUSE t4AJOR QUESTION NGQ)*

(NG QUEST DET NUHDET NPL
(DET QDET NPL INDEF)

I       ()
(NOUN NPL)

We now have~

(how many blocks are supported...)

INDEF) (how many blocks)
how

many
blocks

(VG NAUX VPL PASV (PRES))
(VB AUX BE PRES VPL)
(VB HVB EN TRANS)

(are supported)
are

supported

Flgure k3 -- Syntactic Structure 5

The CLAUSE program resumes, and marks the feature SUBJQ,

~lnce It found the right kind of VG to indicate that the NG "how

many blocks" Is Indeed the subject. It next checks ~o see If we

have a PRT situation as we did In our first example° We don~t,

so It next checks to see If the VG Is PASV, and marks the clause

wlth the feature PASVo This Indicates that there will be no

objects, but there ml~ht be an AGENT phrase. It checks that the

next wocd Is ~eby~, and ca]|s (PARSE PREPG AGENT).

The PREOG pro�ram Is falr|y simple -- It flrst calls (PARSE

PREP), ~hen ~ARSE NG OBd PREPOBd). The word =~by~ is a PREP, so

the first call succeeds and NG Is called and operates as
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described before, finding the DET "the" and the NOUN "cube", and

checking the ~pproprlate number features. In thls case, "the"

Is both NPL and NS, while "cube" Is only NS, so after checklnK

the FIG has only the feature NS.

The NG program next looks for qualifiers, as described

above, and thls tlme It: succeeds. The word "which" sl~;nals the

presence of a RSQ VIHRS CLAUSE modifying "cube". The NG prod;ram

therefore calls (PARSE CLAUSE RSQ WHRS). The parsing tree now

looks llke:

(CLAUSE MAJOR QUESTION NGQ SUBJQ PASV)
(how many blocks are supported by the cube...)

(NG QUEST DET NUMDET NPL INDEF)
(DET QDET NPL INDEF)
()
(NOUN NPL)

(VG NAUZ VPL PASV (PRES)}
(̄VB AUX BE PRES VPL)
(VB MVB EN TRANS)

(PREPG AGENT)
(PREP)

(NG OBJ PREPOBJ DET DEF NS)
(DET DEF NPL NS)
(NOUN NS)
(CLAUS~ RS~ WHRS)*

(how many blocks)
how

many
blocks

(are supported)
are

supported

(by the cube...)
by

(the cube...)
the

cube
(...)

Figure kk -- Syntactic Structure 6

The CLAUSE program Is Immediately dispatched by the feature

WHRS to look’for a RELWD, It finds "which", and marks Itself as

NGREL,    It then goes on to look for a (VG NAUX) just as our

QUESTION NGQ clause did above, Remember that WH- questions and
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WHRS clauses share a great deal ~f the network, and they share

much of the program as well. This time the VG program falls,

since the next word Is "1", so the CLAUSE program decides that

the clause "which I..." ls not a SUBJREL. It adds the temporary

feature NSUBREL, Indlcatln~ thls negative knowledge, but not

deciding yet just what we do have. It then goes to the point In

the normal clause program which starts looking for the major

constituents of the clause -- subject, verb, etc. We call

(PARSE NG SUBJ) and succeed with the PRONG "1". We then !ook

for a VG, and flncl "wanted". In this case, since the verb Is

PAST tense, It doesn’t need to agree wlth the subject (only the

tenses beginning with PRES show agreement). The feature NAGR

marks the non-applicabillty of agreement. The parsing tree from

the WHRS node on down ls now:

I(CLAUSE RSQ WHRS NGREL NSUBREL)* (which I wanted...)

(RELWD)

(NG SUBJ PRONG NFS)
(PRON NFS)

(VG NAGR (PAST))

which

(I)
I

(wanted)
(VB HVB PAST TRANS TOOBJ SUBTOBJ) wanted

Figure ~5 -- Syntactic Structure 7

The CLAUSE program notes that the MVB is TRARS and begins

to look for an OBJ1. Thls time it a]so notes that the verb Is a

TOOBJ and a SUBTOBJ (it can take a TO clause as an object, as In

"1 wanted to g=_O.~", or a SUBTO, as In "1 wanted you ~o ~o." Slnce
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the next word Isn=t "to"s It decides to look fur a SUBTO clause,

ca]ling (PARSE CLAUSE RSNG OB60BJI SUBTO). In fact, thls

checking for different kinds of RSNG clauses Is done by a small

function ..amed PARSEREL, which looks at the features of th~ MVB,

and calls the appropriate clauses. PARSEREL Is used at several

points In the grammars and one of main advantages of writing

grammars as programs Is that we can write such auxi11Iary

programs (whether In PROGRAMMAR or LISP) to make full use of

regularities In the s~ntax.

The CLAUSE program Is called recursiveIy to look for the

SUBTO clause "you to pick up". :f finds the subject e=you==, and

calls (PARSE VG TO) since It needs a verb group of the "to’=

type. The VG program notices this feature and finds the

appropriate VG (which Is again NAGR). The PRT mechanism

operates as described In the first example, and the bottom of

our structure now looks like:
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(CLAUSE RSQ WHRS NGREL NSUBREL) (which I wanted you to pick up)
(RELV~D) whlch
(NG SUBJ PRONG NFS) (I)

(PRON NFS)                       I
(VG NAGR (PAST))                           (wantsd)

(VB MVB PAST TRANS TOOBJ SUBTOBJ) wanted

(CLAUSE RSNG SUBTO OBJ OBJI PRT)* (you to plck up)

(NG SUBJ PRONG NPL)
(PRON NPL)

you )
you

(VG TO NAGR) (to pick)
() to
(VB MVB INF TRAHS VPRT) plck

(PRT) up

Figure 46 -- Syntactic Structure 8

Notice that ~ve have a transitive verb-particle combination,

"pick up", with no object, and no words left In the sentence.

Ordinarily this would cause the program to start backtrack’ng --

checking to see If the t4VB is also intransitive, or If there Is

some way to reparse the clause. However we are in the speclal

circumstance of an embedded clause which Is somewhere on the

parsing tree below a relativeclause with an "unattached"

relative. In the clause "which I told you to pick up",’I~is

the subject, and the CLAUSE "you to pick up" is the object. The

"which" has not been related to anything. There Is a small

program named UPCHECK which uses PROGRA.~.~MAR’s ablllty to look

around on the parsing tree. It looks for thls special

situation, and when it finds It does three things= 1) Mark the

current clause as UPREL, and the approprlate type of UPREL for
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the thing It Is missing (In this case OBJ1UPREL). 2) Remove

the feature NSUBREL from the clause wlth the unattached r~latlve

3) Replace it with DOWNREL to indicate that the relatlve has

been found below. This can all be done with simple programs

using the basic PROGRAMMAR primitives for moving around the

tree (see section 2.4.10} and manlpuIatln8 features at nodes

(see 2.4.11). The Information which Is left In the parsing tree

Is sufficient for the semantic routines to figure out the exact

relationships between the various pieces Involved.

In thls example, once the CLAUSE "to pick up" has been

marked as OBJIUPREL, It has enough objects, and can return

success since the end of the sentence has arrived. The CLAUSE

"which I want you to plck up" has an object~ and has Its

rdlatlve pronoun matched to something, so It also succeeds, as

does the NG "the cube...", the PREPG "by the ~ube..", and the

MAJOR CLAUSE. The final result Is shown In Figure 47.

Even In thls falrly lengthy description, we have left out

much of what was goln~ on. For example we have not mentioned

all of the places where the CLAUSE pro�ram checked for adverbs

(like "usually" or "quickly"), or the VG program looked for

"not", etc. These are all ~qulck~ checks, since there Is a

PROGRAMMAR command which checks the features of the next word.

In followln¢ the actual programs, the course of the process

would be exactly as described, without backups or other attempts

to parse major structures.
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(CLAUSE MAJOR QUESTION NGQ SUBJQ PASV AGENT)

(NG QUEST DET NUMDET NPL INOEF)
(DET QDET NPL INDEF)
()
(NOUN NPL)

(how many blocks)
how

many
blocks

(VG NAUX VPL PASV (PRES))
{VB AUX BE PRES VPL)
(VB MVB EN TRANS)

(are supported)
are

supported

(PREPG AGENT)
(PREP)

(by the cube whlch I wanted you to pick up)
by

(NG OBJ PREPOBJ DET DEF NS)
(the cube which I wanted you to pick Up)

(DET DEF NPL NS) the
(NOUN NS) cube

(CLAUSE RSQ WHRS NGREL DOWNREL TRANS)
(which I wanted you to pick up}

(RELWD) whlch

(NG SUBJ PRONG NFS)
(PRON NFS)

(I)
I

(VG NAGR (PAST))
(VB MVB PAST TRANS TOOBJ SUBTOBJ)

(wanted)
wanted

(CLAUSE RSNG SUBTO OBJ OBJ1 PRT
TRANS UPREL OBJ1UPREL) (you to plck up)

(NG SUBJ PRONG NPL)
(PRON NPL)

(you)
yOU

(VG TO NAGR) (to pick}
() to
(VB MVB INF TRANS VPRT) pick

(PRT) up

Figure k7 - Syntactic Structure 9
"How many blocks are supported by the cube

which I wanted you to pick up?"
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This may seem llke a quite complex p~ocess and complex

grammar, compared to other systems, or even our own examples in

Section 2.2. This Is because language is indeed a highly

complex phenomenon. We have tried to handle a great deal more

of the complexity of English than any of the previous language-

understanding systems. It is only due to the fact that

PROGRAMMAR gives us an easy framework In which to include

complexity that It was at all possible to include such a

detailed grammar as only one part of a project carried out by a

slng|e person In less than two years.
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~ Analvsls of Word End;n~s

Thls secLIo~ describes the ~=spe111n~ rule.s;~ used by the

program In reco6nlzlng Inflectlonal endings of words. For

spoken langua~e, these would be called the "morphophonemlc~

rules¯ but since we deal wlth written language¯ ~:hey are

==morpho-graphemlc.~=

These rules enable a reader to recognize that¯ for example¯

~=pleaslng’~ Is a form of ~’please==¯ while ’=beating’= Is a form of

=~beat~. There Is a structure of conventions for doubling

consonants¯ dropping ==e~=¯ changlnK m=I~ to ~y~=, ere. when adding

endings, and a corresponding set for removing them.

A word like "runnlng=~ need not have separate entry In the

dictionary, since It Is a regular Inflected form of "run’=. The

program can use an Interpretive procedure to discover the

underlying form and attach the appropriate syntactic features

for the inflection.

In des~nlng a formallsm for these rules, It seems most

natural to express them as a program for Interpretation. The

flow chart in Figure k8 Is deslsned to handle a number of

Inflectional endings -- ==-n~t=’ for negative, "-~s=~ and ’=-~" for

possessive, ==-s~= and Its various forms for plural nouns and

slngular third-person verbs~ ==-ln~’=~ ==-ed==¯ and ~=-en== verb

forms, the superlative =~-est~= ;nd comparative ~=-er~ and the

adverbial

As the flowchart shows, these endings shar~ many aspects of
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START

off E~

or Z?~~rd-S o~r Z?

¯ Figure k8 -- Analysis of English Endings
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morphographemlc structure, and the prosram representation Is

able to capture these genera|{tles as well as de~:allln¢ those

a3pects peculiar to each endlnK. It Is not ~ complete

description, but covers a wlde variety of words, and could

easily be expanded to treat more specla~ cases.

The description uses a few slmp%e notations In addition to

normal flowchart convention, s. "No" and "yes" answers to branch

conditions are represented by single and double arrows

respectively.    The function "cutoff" Indicates what is to be

cut off of the end of the word. The ordinals "1st", "2nd", etc.

count letters from the end of the word backwards, lznorln~ those

which have been cut off. Several classes of letters are

relevant to endings -- VOWEL Includes (A E I 0 U Y), LIQUID Is

(L R S V Z), and NOEND Is (C G S V Z). The label "TRY"

represents the part of the program which tries looking up the

supposed root In the dictionary. It uses whatever letters have

not been "cut off". At some places, the pro.gram tries an

Interpretation, then if that fails, carries out a different

ana]ysls and tries again.

The program can correctly analyze such roots as: bashes -

bash, bathes - bathe, leaning - lean, leaving - leave, dented -

dent, danced - dance, dogs - dog, kisses - kiss, curved - curve,

curled - curl, rotting - rot, roI11n~ - ro11, played - play,

p11ed - ply, realest - real, palest - pale, knives - knife,

prettlly- pretty, nobly - noble, etc.
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It is Important to note that exceptions do not need to be

explicitly Included In the analysis program. The word ~wasem is

directly In the dlctionary, and the rules will therefore never

be applied In try{ng to analyze It. The distinction between

lexlcaI ldlosyncracles and generalities Is empirical. A

productive rule like the one relatlng "sang" and ~slng~, or

"rang" and "ring" might wel! be Included In a more complete

program, while less productlve ones (such as relating ~will~ to

"won’t") wll1 be left as separate dictionary encrles.

It is temptlng to see this program as a simple finite state

machlne, but this is not the best formallsm for several reasons.

First, the tests which can be done to a word In decldin¢ on a

transltlon are not, In general, simple checks of the next Input

letter. Whether a certain analysis is possible may depend, for

example, on how many syllables there are In the ~ord, or on some

cemplex phonological calculation Involving vowel shifts.

Semantic and syntactic Information should be applied as well In

many cases.

The morphographemlc analysis alone is sufficient to do a

great deal of ti~e interpretatlon of English endln~s. In facto

some systems ((Thorne 1969)) use It to avoid having a dictionary

of open class words. The Inflection of the words in the Input

determines thelr syntactic class posslbllltles. Of course,

without a dlctlonary, they cannot attempt to deal with the

meaning of words, beyond trying to match them with other
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occurences of the same rOGto

Peop|e rarely operate at this level of Ignorance. T~y use

t:helr lexlcal knowledge to realize that ==under== Is not a

comparative form of some adjectlv~ ==und~, and that ~=be|y~= Is not

an adverbla| form of ’~be=~. This knowledge can readily be

Integrated Into the Interpretive program. Once a possible

morpilograp.hemic analysis Is found, the hypothetical root can be

cnecked In the dlctlonary. If It Is not theres the program can

try another analysls. Notice that In the flow chart, words

ending In a double LIQUID, followed by an inflection, are first

if’led In the form wlth the doubled consonant (as In ~rolllng" -

~roll~=), then if that falls, another try Is made with the slngle

consonant (~patrolled=~.- ~=patrol~).

If the root Is found in the dlctioary, Its syntactic class

Is checked to see if the endlng Is appropriate (e.g. a ~-est~

endlng can apply only to an ADd). The list of syntactic

features is changed to take the ending into account. For

example, the ending =~-s~= changes the feature MS (singular noun)

to NPL (plural noun) and the feature INF (infinltlve verb) to

V3PS (third-person singular verb). A word which flts into more

than one category m3y have more than one set of features

changed, In detarminingla11 of the possible Interpretatlo~s.

The problems involved in analyzing more complicated

endings, such as the ==-tion==, e~-ment==, and ~=-er=~ endings of

nomlnallzatlonswili be discussed in a later paper.
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2o~ Programming Details

~ ODeratlon of the ~

Since the grammar Is Itself a program, there is not much

overhead mechanism needed for the baslc operation of the parser.

Instead, the system consists mostly of special functions to be

used by the grammar. The system maintains a number of global

variables, and keeps track of the parsing tree as It is built by

the main function, PARSE. When the function PARSE Is called for

a UNIT which has been defined as a PROGRAM~!AR program, the

system collects Information about the currently actlve node, and

saves it on a pushdown llst. It then sets up the necessary

varlables to establlsh a new active node, and passes control to

the PROGRAMMAR program for the approprlate unit. If thls

program succeeds, the system attaches the new node to the tree,

and returns control to the node on the top of the PDL. If It

fails, It restores ;he tree to Its state before the program was

called, then returns control. A PROGRAMMAR program Is actually

converted by a slmple compiler to a LISP program and run in that

form. The varlables and functions avai.lable for writing

PROGRAM~AR programs are described In the rest of part 2.4. In

order to make these details more lndependent of our detailed

grammar of English, we wlll continue to use a simpllfled grammar

whenever possible. We use the hypothetical grammar begun In

2.2, ~nd try to Use full length feature names for easier

underssandlng.
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When the function PARSE Is called wlth a first argument

which has not been defined as a PROGRAHMAR program, It checks to

see wh:~her the next word has a11 of the features 11sted In the

arguments. If so, It forms a new node pointing to that words

wlth a 11st of features which Is the Intersection of the 11st of

features for that word wlth the a]1owable features for the word

class l~dlcated by the first argument of the ca11. For’ example,

the word "blocks" w111 have the posslblllty of being either a

plural noun or a thlrd-person-sl.ngular present-tense verb.

Therefore, before any parsing It w111 have the features (NOUN

VERB N-PL VB-3PS TRANSITIVE PRESENT). If the expres~lon (PARSE

VERB TRANSITIVE) Is evaluated when "blocks" Is the next word In

the sentence to be parsed, the feature 11st of the resultlng

node wI11 be the Intersection of thls combined 11st wlth the

11st of a11owable features for the word-class VERB. if we have

defined=

(DEFPROP VERB (VERB INTRANSITIVE TRANSITIVE PRESENT PAST

VB-3PS VB-PL) ELIM),

the new feature 11st w111 be (VERB TRANSITIVE PRESENT VB-

3PS).    (ELIM Is simply a property Indicator chosen to Indicate

this list which ELIMinates features). Thus, even though words

may have more than one part of soeech, when they appear In the

parsing tree, they will exhibit only those features relevant to

their actua~ use In the sentence.
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~2 Special Words

Some words must be handled In a very special way In the

grammar. The most prevalent are conjunctions, such as ~and~t and

"but". When one of these Is encountered, the normal process Is

lnterrup:ed and a special program Is called to declde what steps

should be taken In the parslngo This Is done by giving these

words the grammatical features SPEC or SPECLo Whenever the

.function PARSE is evaluated, before returning it checks the next

word In the sentence to see If it has the feature SPEC° If so,

the SPEC property on the property list of that word Indicates a

function to beeva|uated before parsinK continueso This program

can In ~urn call PROGRANMAR programs and make an arbitrary

number of changes to the ~arsln~ tree before returning control

to the normal parsing procedure. SPECL has the same effect, but

is checked for when the function PARSE is cal|ed, rather Chan

before ~t re~urns. Various other specla| va~iab|es and

functions allow th~se programs to control the course of the

parsing process after they have been evaluated.    By using these

special words, It is possib|e to write amazlngiy simple and

efficient programs for some of the aspects of grammar which

cause the greatest dlfficulty. This is posslble because the

general form of the grammar Is a program.

For example, "and" can be defined as a program which Is

diagrammed=
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Parse a unlt of the same type
as the currently active node

Replace the node with a new node
combining the old one and the one
you have just found

Return    success

~)Return failure

Figure k9 -- Conjunction Program

For example, given the sentence "The giraffe ate the apples

and peaches,I= the program would first encounter I=and~= after

parsing the NOUN apples, It would then try to parse a second

NOUN, and wou!d succeed, resultlng in the structure:

SENTENCE

~P~NP

/
DETERMINER VERB DETERMINER NOUN           |    I~IOUN

the giraff~. ate the apples ano peaunes

Figure 50 -- ConJoined Noun Structure

If we had the sentence, I=The =Iraffeate the apples and

drank the vodka.~= th~ p~rser would first try the same thing.

However, ~=dranks= is not a NOUN, so the AND program would fall
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and the NOUN "apples" ~ould be returned unchanced. This wo=~ld

cause the NP "the apples" to succeed, so the AND program would

be called again. It would fall to find a NP beglnnln¢ with

"drank"¯ so the NP "the apples" would be returned¯ causing the

VP to succeed. This time, AND would try to parse a VP and would

find "drank the vodka". It would therefore make up a combined

VP and cause the entire SENTENCE to be completed with the

structure:

I
’

SENTENCE

h I I
e giraffe ate

!
DET NOUN
I I

the vodka

Flgure 51 -- Con3o|ned Clauses

The program to ac~ually do this would take only 5 or k

lines in a PROGRAH~4AR grammar. In the actual sysLem, !~_ Is more

complex as It handles lists (like "A¯ B¯ and C") other

conjunctlons (such as "but") and speclal constructlons (such as

"both A and B"). The co~junction program Is called by all of

the ccnjunctions, the words Uelther"¯ "neltheru, and "both", and

the mark " " which appears as a separate word In the Input.

The functlon ** Is used to look ahead for a repetition of

the special word, as In "...and.ooand...". If ene is found, a
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unit of the type most recently parsed Is parsed again, trying to

extend all the way to the repeated conjunction or comma. This

is Iterated as long as there are repetitions, with special

checks made for structures like ~A, B, and C~ or ~A and B but

not C~e. As each new node is parsed, Its structure Is saved, and

when the last is found, a new node Is created for the compound.

Its features combine those for the type of conjunction with

those appropriate for the type of unit (e.g. a compound NG

connected with ~=and=~ Is given the feature ~plura;~ (NPL).) The

list of constltuent structures is put on the tree as a list of

subnodes of the conjoined structure, which then replaces the

original unit on the parsing tree.

Compounds with a preceding word like ~both~ are parsed

differently, since the word Is encountered before any unit has

been parsed. In this case It is possible to adopt themore

general philosophy of attempting the longest possible unit

first. These words have a SPECL definition, so the program Is

called as the next unlt Is about to be parsed. The ¢onjunctlon

program iook; for the matching conjunction (~and~= with =~both~w,

~or=~ with e~elther~=, and e~nor~ wlth ~nelther") and trle~ to parse

the unit ex~.endlng on|y to the conjunction, if this succeeds,

the normal conjunction procedure Is followed. If not, some sub-

comPonent is the conjoined one, and nothln~ happens until the

parser attempts a sub-unit, when the process Is repeated.

A SPECL program can modify the parsing In several ways.

I
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For example it can call the function FLUSHHE, which simply

removes the word from the Input sentence (loe. It ls Ignored).

It can take arbitrary actions on th~ current parslng tree, can

Indicate to PROGRAHHAR that It should SKIP parsing =he unit and

use |nstead results provld~d by the SPECL program, or It can

Indicate an action to be taken after the norma] parslng Is DONE.

Finally, a SPEC or SPECL program can abort the entire parslng,

indlcating a response to the usar. For example, the word

"thank" calls a SPECL program which checks to see If the next

word is "you". If so, the parsing Is glven up, and the system

replies "YOU’RE NELCOHE". Currently =here is no backup

procedure to modify the Interpretation of an ambiguous structure

like "A and B or C"o Thls wll] in face be parsed as (A and (B

or C)). Notice that "either A and B or C" wil! be parsed

correctly as ((A and B) or C).

The exact format for a SPEC or SPECL definition Is a LISP

llst to which wll! be appended two Items -- the lnitla] feature

list of the unit being parsed and an Indicator o~ whether It is

a word or a unit which ca~]ed the program, The resultant form

Is then EVALIed.
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1

~ Possessives

One of the best examples of the advantages of procedural

grammars Is the ability to handle left-branching structures like

possessives. In a normal top-down parser, these present

difficulties, since any NG can beKln wlth a possessive NG, which

can In turn be�In with a possessive NG, etc., as In "my mother’s

slster=s student’s cat’s fur". SpeclaI care must be taken to

avoid Infinite loops.

In our grammar thls Is handled by a check after the NOUN or

PRONOUN Is found In a NG. If It has the feature "possessive"

(POSS) (e.g. "my" or "block=s’’) a node Is created for the NG

thus far parsed, and this is placed on the tree as a constituent

(the determiner) of a NG to be continued. The program then

returns to the point where !t was after finding a determiner,

and contlnu_~ looking. This can happen any number of tlmes, but

in each case is triggered by the presence of another POSSesslve

word. It therefore loops only as much as necessary. This

departure from top-down parsing Involves no changes to the

parser, and only a slmple loop in the program. Any other left-

branchlng structure can be handled slmilarly.
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2=~.~_~ The Dictionary

Since PROGRA~4AR Is embedded :n LISP~ the facllltles of

LISP for handling atom names are used dlrectly. To define a

word, a list of grammatlcal f~atures Is put on Its property list

under the Indicator WORD, and a semantic definition under the

Indicator SFIKTC. Two facilities are Included to avoid having to

repeat information for different forms of the same word. First,

there Is an alternate way of defining words, by using the

property Indicator WORDI. This Indicates that the word given Is

an Inflected form, and Its properties are a modified form of ti~e

propertles of Its root. A WORD1 definition has three element~,

the root word, the llst of features to be added, and the llst of

features to be removed. For example, we might define the word

"go" by= (DEFPROP GO (VERB INTRANSITIVE INFINITI.VE) WORD) We

could then define "went" as (DEFPROP WENT (GO

(PAST)(iNFINITIVE)) WORD1) This Indicates that the feature

INFINITIVE Is to be replaced by the feature PAST, but the rest

(includln~ the semantic definition) is to remain the same as for

The other facility is an automatic system which checks for

simple modifications, such as plurals, ==-lng,’= forms, ~=-er=~ and

~-est~ Forms and so forth, If the word as typed in is not

defined, the proEram loo~s at the way it is spelled, tries to

remove Its endlnE (taking into account rules such as changing

:~runnln~" to "run~, but "buzzing~ to ~buzz~),    It Zhen tries to
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flno a definition for the reduced root word, and If It succeeds,

It makes the appropriate changes for ~he endln~ (such as

chan~Ing the feature SINGULAR to PLURAL). The program which

does thls Is not a part of the PROGRA~MAR system hut is

speclflcally bullt for En~11sh. It Is described In section

2.3.12.

Everything else described in this section Is designed

generally for the parsing of any language. In any particular

language, this Input funtlon would have to be written according

to the special rules of morphoKraDhemlc structure.    The

requirement for such a program Is that Its output must be a

list, each member of which corresponds to a word In the orlglnal

sentence, and is in the form described In section 2.~.8. This

list Is bound to the variable SENT, and is the way In which

PROGRA~MAR sees its Input.

The o~her form of data in the d!ctionary Is tables of verb-

particle and prepositlon-prepos!tlon combinations like "pick

or "on top of’. The table Is stored on the property lls~ of the

lnltla| word unde~ the indicator PRTT or PREPP respectively. It

Is an association list, each m~mber of whlch has the second word

of the combinatlon as l~s CAR, and a word parsing structure (see

section 2o~.8) as Its CADR. There may be more than one

comblnatlon for the same Inltla| word (e.~o "pick up’, "pick

out"), and a three-word comblnatlon can be defined by makln~ the

CADR be an association list of the same form for a third word.
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24.5 BackuD~.~?~J_L~_~.~_

As expIalned In section 2.2.7, ti~ere I~ no automatlc

backup, but there are a number of speclal functions which can be

used In writing grammars. The slmD]est, (POPTO X) slmp|y

removes nodes ?ram the tree. The argument Is a list of

features, and the effect Is to remove daughters of the currently

actlve node, beginning wlth the rlghtmost and working leftward

untI| one Is reached wlth all of those features. (POP X) Is the

same, except that It also removes the node wlth the Indlcated

features. If no such node exlscs, nelther functlon takes any

action. (POP) Is the same as (POP NIL), and a non-nll value Is

returned by both functions If any actlon has been taken.

A very Important feature Is the CUT variable. One way to

do backup Is to first try to flnd the longest posslble

constituent at any point¯ then 17 for any reason an Impasse is

reached¯ to return and try again ¯ limiting the ¢onsltuent from

going as far along In the sentence. For example, in the

sentence "Was the typewriter sittlng on thecake?’t¯ the parser

will first flnd the aux|11Iary verb "was=~, then try to parse the

subject. It will find the noun group ~’the typewrlter sitting on

the cake", which In another context might well be the subject

(~lthe typewriter sitting on the cake Is broken.~#). It then

tries to flnd the verb, and discovers none of the sentence is

left. To back up¯ it must change the subject. A very clever

program would look at the ~truct~re of the noun group and would



Section 2.~.5 - Page

realize that the modifying clause "sitting on the cake" must be

dropped.    A more slmpIe-m[nd~d but st[]l effective approach

would use the following Instructions:

(** N PW)
(POP)
((CUT PTW)SUBJECT (ERROR))

The first command sets the pointer PTW to the last word In

the constituent (In thls case, "cake"). The next removes that

constltuent. The third sets a special pointer, CUT to that

location, then sends the program back to the polnt where It was

looking for a subject. It would now try to flnd a subject

agaln, but would not be allowed to go as far as the word "cake".

It mlght now flnd "the typerwrlter slttlng," an analog to "The

man slttlng Is my uncle." If there were a good semantlc

program, It would reaIlze that the verb "slt" cannot be used

wlth an Inanlmate object without a location speclf[ed. Thls

would prevent the constituent "the typewrlter sitting" from ever

being parsed. Even If thls does not happen, the program would

fal| to flnd a verb when It looked at the remalnln~ sentence,

"on the cake." By going through the cuttln~ loop aga|n, It woild

flnd the proper subject, "the typewriter," and would continue

through the sentence.

Once a CUT point has been set for any active node, no

descendant of that node can extend beyond that point untll the

CUT Is moved. Whenever a PROGRAMMAR program Is called, the

varla~le END Is set to the current CUT point of the node which
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~alled It. The CUT point for each constltuent Is Inltlally set

to its Ef~D. ~qhen the functlon PARSE Is called for a wsrd, It

first checks to see If the current CUT has been reached (l.eo H

and CUT are the same), and If so it fallso The third branch In

a three-d|recClon branch statement Is taken If the curren~ CUT

point has been reached. The CUT pointer is set wl~h the

function CUT of one argument,
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2__.~6 Auxilllarv Functions

Since PROGRAHHAR grammars are programs, they ca;= call

sL~broutlnes just as any other program. These subroutlnes can

use PROGRAHHAR pr|mltlves l|ke PARSE and *, as well as returning

values for use .In the maln program. One example used in our

grammar is UPCHECK, used to see if the current node Is embedded

In a structure which could be an UPREL like "the man I wanted

you to see." It is used In conjunctlon with UPMOD whlch makes

the appropriate changes to the parsing tree. They both use

primitives |Ike * to find and change the elements.

In order to slmpllfy the search for rank-shifted c|auses, a

function PARSEREL was written. It takes as arguments a list of

clause types (like REPORT, ING, etc.) a corresponding |lst of

features to look for an the main verb, a pointer to that verb,

and the rest of the informatlon to be Inc|uded In the ca|| to

PARSE. PARSEREL then loops through these lists, attempting to

parse varlous types of RSNG c|auses If they are In accord with

the restrictions associated with the verb and the use of the

clause In the sentence. It uses the function PARSE to modify

the parsing tree before returning to the main CLAUSE program.
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~ ~essa~es

To write good parsing programs, we may a~ times want to

know why a partlcul~r PROGRA~If~AR program failed, or why a

certain pointer command could not be carried out. In order to

facilitate this, ~wo message variables are kept at the top level

of the system, MES, and ~ESP. Messages can be put on HES In two

ways, elther by using the special failure d!rectlons In the

branch statements (see section 2.2.5) or by using the functions

M and MQ, which are exactly l|ke F and FQ, except they put the

Indicated feature onto the message llst HE for tl~at unit.    When

a u:~lt returns either failure or success, ~E$ is bound to the

current value of NE, so the calllng program can r(celve an

arbitrary list of messages for whatever purpose It may ,a..t

them. ~ESP alwayscontains the last failure message re~lved

from =~ or =.
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The Form of the parsing: Tree

Each node is actually a list structure with the following

nformat lor~,"

FE the list of features associated wlth the node
NB the place In the sentence where the constituent

begins
N the place Immediately after the constituent
H the subtree below that node (actually a list of

Its daughters In reverse order, so that
H points to the last constituent parsed)

SM a space reserved for semantic Information

These symbols can be used in two ways. If evaluated as

variables, they will always return the designated Information

for the currently active node. C Is always a pointer to that

node. If used as functions of one argument, they give the

appropriate values for the node pointed to by that argument; so

(NB H) gives the location In the sentence ~f the first word of

the last constituent parsed, while (FE(NB H)} would give the

feature llst of that word.

Each word in the sentence is actually a list structure

containing the k Items=

FE as above
the semantic definition of the word
the word Itself (a pointer to an
the root of the word (e.g. "run" if the

word is "runnlng~=).

.SMWORD
WORD
ROOT



Section 2.~.9 - Page 192

~ V,~rlables ~aln~alned by the ~

There are twotypes of variables, those bound at the top

level, and those whlch are rebound every time a PROGRAHMAR

program is called.

Variables bound at the top level
N                       Always points to next word In the

sentence to be parsed
SENT Always points to the entire .sentence
PT PTVJ Tree and sentence pointers.

See Section 2.~.10
M~’S ~4ESP List of messages passed up from lower

levels. See Section 2.~.7

Special variables bound at each level

C F E N B S~1 H
NN CUT END

UNIT

REST

T1 T2 T3

HVB

See section 2.~.8
See section 2.h.5. HN always

equals (NOT(EQ N CUT))
the name of the currently active

PROGRAMMAR program
the list of arguments for the call

to PARSE (These form the Inltlal
feature list for the node, but as
other features are added, REST
continues to hold only the orl~Inal
ones.)

Three temporary PROG varlables for use
by the program In any way needed.

Bound only when a CLAUSE Is parsed
used as a pointer to the maln verb

List of messages to be passed up to
next level See Section 2.~.7
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2.4.10 Pointers

The system always maintains two pointers, PT to a place on

the parsing tree, and PT~V to a place In the sentence. These are

moved by the functions * and ** respectively, as explained In

section 2.2.10. The Instructions for PT are:

C
H
DL

DLC

DF
PV
NX
U
N

se~ PT to the currently active node
set PT to most recent (rightmost) daughter of C
(down-last) move PT to the rl~htmost daughter

of Its current value
(down-last completed) 11ke DL, except It only

moves to nodes which are not on the push-down
11st of active nodes.

(down-flrst) like DL, except the leftmost
(previous) move PT to Its left--adjacent sister

(next) m()ve PT to Its rlght-adjacent sister
(up) mov~ PT to parent node of Its current value
Move PT to next word In sentence to be parsed

The pointer PTW always points to a place In the sentence.

It Is moved by the function ** which has the sa~e syntax as *,

and the commands:

N
FW

LW
AW

PW
SFW

SLW

S~t PTW to the next word In the sentence
(flrst-word) set PTW to the first word of the

constituent pointed to by PT
(last-word) Ilke FD~
(after-word) like FW, but first word after the

~onst | tuent
(next-word) Set PTW to the next word after Its

current value
(prevlous-word) llke NW
(sentence-flrst-word) set PTW to the first word

In the sentence
(sentence-last-word) like SFW

Since the pointers are bound at the top level, a program

which calls others which move the pointers may want to preserve

their 1ocatlon, PTW Is a slmple varlable, and can be saved with

a SETQ, but PT operates by keeping track of the way It has been
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moved, In order to be able to retrace Its steps. Thls Is

necessary since LISP ilsts are threaded In only one direction

(In thls case, from the parent node to Its daughters, an~ from a

right.slster to its left slscer). The return path Is bound to

the variable PTR, and the command (PTSV X) saves the values of

both PT anu PTR under the var|able X, whlle (PTRS X) restores

both values.
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~ Eeature ManIDulatln~

As exD1alned In section 2.2.6, we must be able to attach

features to nodes In the tre~. The Functions F, FQ, and TRNSF

are used for puttln~ features onto the currert node, while R and

RQ remove them. (F A) sets the feature 11st FE to the union of

Its current value wlth the list of features A. (FQ A) adds the

single feature A (I.e. It quotes Its argument). (TRNSF A B) was

explalned In Section 2.2.7. R and RQ are Inverses of F and FQ.

The functions ISX, ISQ, CQ, and NQ ~re used to examine features.

If A points to a ~ode of the tree or word of the sentence, and B

points to a featu~’e, (ISX A B) returns non-nll IF that node has

that feature. (ISQ A B) Is equivalent to (IS A (QUOTE B)),

B) Is the same as (ISQ C B) (whereC always points to the

currently active node), and (NQ B) Is the same as (ISQ N B) (N

always points to the next word In the sentence left to be

parsed).

The function ~IEXTW checks to see of the root of the next

w~rd matches the argument. (I, EXTW BE) evaluates to non-NIL

If the next word Is some ~orm of the verb ’~be". PUTF and RZMF

are used to add and remov~ features from some node other than

the current one. They are FEXPRS whose argument Is a list of

features, which are put on or removed from the node currently

poln~ed to by the pointer PT.
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2.5 Com~arlson w|Ch Other Parsers

~ ~Ider Parsers

~’~he~, work first began on analyzln~ natural language wlth

¢om~uterso no theories of syntax existed which were ~xDllclt

eno~,&h to be used. The early machlne-tran~lator designers were

forced ~o develop their own lln6ulstlcs as they worked, and ~hey

produce~; rough and ready versions. ¯ The parsers were collectlons

of "packa~in~ routines", "Inserted structure passes", "labelln~

subroutines", etc. (see (Garvln)) which evolved 6radually as

the 8rammars were expanded to handle more and more complex

sentences. They had the same difflcultles as any program

designed In this way -- as they became more complex It became

harder and harder to un,~erstand the lnterac~ions within them.

~takln~ extensions ~hlch ~ere intended to deal wlth a limited

anticipated set of Inputs tended to make It dlf~lcult to extend

the system later.

~hen the machlne-translatlon effort failed, It seemed clear

that it had been premature to try handlln~ all of En81Ish

without a better background of ~.n~u|stlc theory and an-.

understandln~ of the mathematical properties of ~rammars.

Computer prosrams for natural lansuase took two separate paths.

The first was to I~nore traditlonal syntax entirely, and to use

some sort of more ~eneral pattern matchln~ process to ~et

Information out of sentences. Systems such as STUDENT, SIR,

ELIZA, and Semantic Memory made no attempt ~o do a complete
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syntactic analysls of the inputs. They elther 11mlted t:~e user

to ~ small set of fixed input forms or limited their

unde~standin~ to those th|n~s they could ~et while

syntax.

The other approach ~as to take a s:m~lif|ed subset of

EngTIsh which could be handled by a ~ell-understood form of

8rammar, such as one of the variations of context-free ~rammars.

There has been much Interestin8 research on the properLles of

abstract languases and the alsorlthms needed to parse them.

Usin8 this theory, a serles of parsln8 alsorlthms and

representations were developed. Yor a summary of the computer

parsers desisned before 1966, see <Bobrow IgB~>. A more recent

development was Early~s context-free parser <Early> which

operates In a time proportional to the cube of the lensth of a

sentence.

The problem faced by all of these parsers (Includln8 the
mammoth Harvard Syntactic Analyzer (<Kuno>). is that such
simple models are not adequate for handl|n~ the full complexity
of natural lans~.ase. Thls is discussed theoretlcally In
<Chomsky 1957> but for our purposes It Is more Important to note
that many aspects which cou|d theoretically be handled would be
included only at the expense of gross Inefficiency and
unnecessary complexity.

Several people attempted to use Chomsky’s transformational

grammar as the basis for parsers. (see <Petrlck> and <Zwlcky>)

They tried to "unwind" the transformations to reproduce the deep

structure of a sentence, which could then be parsed by a context

free "base component".    It soon became apparent that thls was a

very difficult task. Although transformational grammar Is
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theoretlcally a "neutral!’ description of language, it Is In

fact highly biased toward the process of ~e~eratln~ sentences

rather than interpreting them. Adapting ~eneratlon rules to use

in Interpretatlon Is relatlvely easy for a context-free grammar,

but extremely dlfflcult for transformatlonal grammars. <Noods

I969> discusses the problems of "comblnatorlal exploslon"

inherent In the Inverse transFormatlonal process. The

transformaClonal parsers have not ~one beyond the sta~e of

handling small subsets of Engllsh !n an Inefficient way.
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~ Au.~.~(~ted Transition Networks

In the past two years, three related parsing systems have

been developed to deal wlth the full complexity of natural

lal~guage.    The first was by Thorne, Bratley, and Dewar (<Thorne

Ig68 and Ig6g>), and the more recent ones are by Bobrow and

Fraser (<9obrow igGg>) and Woods (<Woods Ig6g>). Th~ three

programs operate In very slrnIlar ways, and since Woods~ Is the

mos~ advanced and best documented, we wlll use It for

comparison. In hls paper Woods compares hls system wlth the

other two.

The basic Idea of these parsers Is the "augmented

transition netwoek". The parser Is seen as a transition network

much like a flnlte-state recognizer used for regular languages

In automata theory.

The first extension Is In allowing the networks to make

recurslve calls to other networks (or to themselves). The

condition for foI1owlng a particular state transition Is not

llm;ted to examining a slngle Input symbol. The condltlon on

the arc can be somethlng like "NP" where NP is the name of an

inltla| state of another network. Thls recurslvely called NP

network then examines the Input and operates as a recognlzer.

If it ever roaches an accepting state, It sto~s, and parsing

contlnues from the end of the NP arc In the original network.

These "recurslve transltlon networks"’ h~ve the power of a

context-free ~rammar, and the corr~s;~:..’:~ce b~twee=, a network
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and Its equivalent ~rammar Is quite simple and direct.

To parse the full range of natural language, we need a

critical addition. Instead of using "recJrslve tras~sI~lon

networks" these parsers use "auEmented transition networks",

~vhlch can "make changes In the contents of a set of re~Isters

associated wlth tl, e net~vork, and whose transitions can be

conditional on the contents of those registers. (<~Voods

Thls Is done by "adding to each arc of the transition network an

arbitrary condition which must be satisfied In order for tee arc

to be followed, and a set of structure bulldln~ actions to be

executed If the arc Is followed."

Augmented tran:01tlon networks have the pov~er of Turln~

machines (since they have changeable registers and can transfer

control dependln8 on the state of those re~Isters). ~learl~

they can handle any type of grammar which could possibly be

parsed by any machine. The advantases lie In the ways In which

these augmented networks are close to the actual operations of

language, and ~Ive a natural and understandab|e representation

for ~rammars.
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~ ~letwork~ on,~[ Pror.rams

How does this type of parser compare w!th PROGR#MMAR? Is

there anythln~ In common between ~rammors which are networks and

grammars which are programs? The reader may have alr~,ady seen

the "joke" in this Question. In fact these are just t~o

different ways of talking about doln~ exactly the same thlngl

Picture a flowchart for a PROGRA~.IPAR grammar, In which
cells to the function PARSE are drawn on the arcs rather khan at
t.~e nodes. Every arc then Is either a request to accept the
next word In the Input (when the argument of PARSE is a word
class), or a recurslve caI| to one of the grammar pro~ra{nSo A~
each node (i.e. segment of program between conditionals and
PAPSE :alls) we have "a set of arbitrary structure building
action;." Our flowchart Is just like an augmented transl~lon
network.

Now picture how V~oods~ networks are fed to the computer.
He uses a notation (see <Unods 1969> p. 17) whi~h ]oaks very
much like a LiSP-embedded computer language, such as PROGRAH~4AR
or PLANNER. In fact, the netvzorks could be translated almost
directly into PLANNER programs (PLANNER rather than LISP or
PROGRAM~AR because of the automatic backup features -- see
discus’$1on below).

It Is an Interesting lesson In computer science to look at

Woods~ discussion of the edvantages of networks, and "translate"

them Into the advantages of programs. For example, he talks

about efficiency of representation. "A major advantage of the

transition network model Is...the ablllty to merge, the common

parts of many context free rules."

Looking at grammars as programs, we can call thls "sharing

subroutines", lie says "The augmented transition network,

through Its use of flags a11ows for the merging of slmllar parts

of the network by recording Information In registers and

Interrogating It...and to merge states whose transitions are
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similar except for conditions on the contents of the registers."

Thls Is the use of s,Jbroutlnes wlth parameters. In addition,

the nets~orks can "capture the regularltles of the

language...whenever there are tsvo essentially Identlcal parts of

the grammar which differ only In that the finite control part of

the machine is remembering some piece of Informatlon...It Is

sufficient to explIcl~ly store the distinguishing piece of

Information in a re~Ister and use only a sln=Ie copy of the

sub~raph." Thls is clearly the use of subroutines with an

argumentl

Similarly we can ~o through the arguments about efficiency,

the ease of mlxln~ semantics wlth syntax, the ablIIty to Include

operations which are "natural" to the task of natural lan~ua~e

analysls, etc. AI~ of them app|y |dentlcaIIy whether we are

1ookln~ at "trensltlon networks" or "pro=rams".

What about "perspicuity"? Woods clalms that augmented

transition net~vorks retain the persplcul:y (ease of readln~ and

understandln~ by humans) of slmpler ~rammar forms. He says that

transformatlonal ~rammars have the problem that "the effect of a

~Iven rule Is Intlmately bound up wlth its Interrelatlon to

other rules...It may require an extremely comp|ex analysis to

determine the effect and purpose." (.:Woods 1969> p.}8) Thls Is

true, but It w~uld also be true for any ~rammar complex enough

to handle all of natural lan~ua~e. The slmple examples of

transition networks are Indeed eesy to read (as are slmple
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examples of most ~rammars), but In a network for a complete

lan~ua~e, the purpose of a Liven state would be Intlmately bound

up with Its Interrelatlon t~ other states, and the grammar wl~1

not be as."persplcuous" as we might Hope. This is just as true

for programs, but no more so. If we look at the 1=low chart

Instead of the 11stln~, programs are equa!ly perspicuous to

networks.

If the basic prlnciples are really the same, are there any

differences at all between ~¢oods’ system an~ ours? The ansv~er

Is-yes, they ~Iffer not In the theoretlca| power of the parser,

but In the types of ana~ysls bein~ carrled out.

The most Impo,’tant dlfference Is the theory of grammar
being used. A11 of the network systems are based on
transformational ~rammar. They try to reproduce the."deep
structure" of a sentence whlle doln~ surface structure
reco~nitlon. This is done by usln~ speclal commands to
explicltiy bulld and rearrange the deep structures as "he
parsln~ goes alon~. PROGRANNAR is orlented towards systemic
~rammar, with Its Identification of sl~nlflcant features In the
constltuents belng parsed. It therefore emphas!zes the ability
to examlne the features of constituents anywhere on the parsing
tree, and to manlpulate the feature descriptions of nodes.

In sectlon 2.E we discussed the advantages of systemic ~rammar

for a lan~ua~e understandln~ system. Elther type of parser

could be adapted to any type of ~rammar, but PRO~RANMAR was

specla1|y desl~ned to Include "natural" operations for systeml¢

understandln~ of s~ntences.

A second difference Is In the Impiementation of speclal

additions to the basic parser. For example In section 2.~.~ we

discussed th~ way in which words iike "and" could be deflned to



Section 2.5.3 - PaRe 20~

act as "demons" which Interrupt the parsln~ at whatever point

they are encountered, and star: a special program for

lnterpretln~ conjolned structures. This has many uses, both in

the standard parts of the Grammar (such as "and") and in

hand|ln6 Idioms and unusual structures. If we think In network

terms, this is like having a separa:e arc marked "and" leadin=

from every node In the network. Such a feature could probably

be added to the network formulatlon, but it seems much more

natural to think In terms of programs and Interrupts.

A third difference Is the backup mechanlsm. The network

approach assumes some form of nondeterminlsm. If there

several arcs leavln~ a node, there must be some way to try

followin8 all of them. Either we have to carry forward

simultaneous interpretations, or keep track of our choices In

such a way that the network can automatically revise Its choice

If the original choice does not lead to an acceptln~ state.

This could be done In the prosram approach by uslr,~ a lansua~e

such as PLANNER with I~s automatic backup mechanisms. But In

section 2.2.7 we discussed the question of whether It Is even

desirable to do so In handlln~ natural language.

We pointed out the advantage of an Intelligent parser which

can understand the reasons for its failure at a certain point,

and can ~ulde Itself accordln~ly Instead of backln~ up blindly.

Thls Is Important for efficiency, and Noods Is very concerned

wlth ways ~o modify the networks to avoid unnecessary and



wasteful backup by "makln~ the network more determlrlstlc."

(<~ioods Ig69> p. 45). It might be lnt~restlng to explore a

compromise solutlon In which automatic backup facilities

existed, but could" be turned on and off. ~’le cou|d do thls by

~Ivlng PROGRAh~AR special ~:ommands which ~ould cause It to

remember the state of the parsing so that later the grammar

could ask to back up to that state and try something else. Tkls

Is an Interesting area for further work on PROGRAMMAR.

It Is difficult to compare the performance of dlfferen~

parsers since there Is n.o standard ~rammar or set of test

sentences. Bobrow and |~oods have not published the results of

any experiments wi~h a large ~rammar, but Thorne has pub|lshed.

two papers (<Thorne ~g68, ~969>) with a number of sample

parslngs. Our system, with Its current ~rammar of En~llsh has

successfu|ly parsed all of these examples. They took from ~ to

5 se~Gnds aplece. Some samples of more complicated parslngs

~one by the system are ~Iven In Appendix B.
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CHAPTER 3. Inference

3.1 Basic Approach to Neanin~

.3.I.1 Re~resentln~ ~qowled~e

We have described the pr~)cess of understandin~ lansuage as

a conversion from a string of of sounds or letters to an

Internal representation of "meaning". In order to do thls, a

lan~ua~e-understanding system must have some formal way to

express its knowledge of a subject, and must be able to

represent the "meaning" of a ~entence In thls for,nallsm. The

formalism must be structured In such a way that the system can

use Its knowledge to make deductions, accept new Information,

answer questions, and Interpret commands. Choosing a form for

thls information Is of central Importance tO both a practical

systen and a theo,’y of semantics,

First we must decide what kinds oF things are to be

represented In the fGrmaIIsm. As a beginning, we would like to

be able to represent "objects", "properties," and "relations."

Later we w111 have to show how these can be combined to express

more comp]ic3ted knowledge. We will describe ways to express

the meaning of a wlde variety of complex sentences,

Using a simple pre~Ix notation, we can represent such facts

as "Boise Is a clty."and "Noah was the father of dafeth." as=

(CITY BOISE) (FATHER-OF NOAH JAFETH)
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Here, BOISE, NOAH, and JAFETH ~re specific objects, CITY Is

a property which objects can have, and FATHER-OF Is a relation.

It !s a practlcal conven!ence to list properties and relations

first, even thou6h thls may not follow the natural En~llsh

order, so we will do so throughout.    Notice that properties are

in fact special types of relations which dea! with only one

object. Properties and relations wl~l be dealt wlth In

identical w3ys throughout the system. In fact, It Is not at all

obvious which concepts should be considered properties and which

relations. For example, "DeGaulle Is old." mlKht be expressed

as (OLD DEGAULLE) where OLD Is a property of objects or as (AGE

DEGAULLE OLD), where AGE Is a relation bet~een an object and Its

age. In the second expression, OLD appears In the position of

an object, even though It can hardly be construed as a

particular object like BOISE or DEGAULLE. This suggests that we

might like to let properties or relations themselves have

properties and enter Into other relations. Thls has a deep

logical consequence which will be discussed In later sections.

In order to avoid confusion, we will need some conventlon~

about notation. ~lost objects and relationships do n_.g_t, have

simple English names, and those that do often share their names

wlth a range of ocher meanlnKs. The house on the corner by the

market doesn’t have a proper name like Jafeth, even though It Is

just as much a-unlque object.    For the Internal use of the

system, we will glve It a unique name by stringing together a
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descriptive word and an arbitrary number, then prefixing the

result vlich a colon to rem!nd us It Is an object. The house

mentioned above might be called :HOUSE37~. Propertles and

relations must also go under an as~;umed name, slnce (FLAT X)

might mean very different thlngs dependlng on ~.zhether X Is a

tire or a musical note. 9Je can do the same thlng (uslng a

different punctuation mark, #) to represent these two meanings

as #FLATI and #FLAT2. ~Vhen the meanln~ Intended is clear, we

wll! omit the numbers, but leave the punctuation marks to remind

ds that It ~s a property or relation rather than a specific

object. Thus, our facts listed above should be written:

(#CITY :BOISE) (#FATHER-OF :FIOAH :JAFETH), and either

(#OLD :DEOAULLE) or (#AGE :DEGAULLE #OLD).

de are lettln~ properties serve In a dual function -- we

can use them to say things about objects (as In "The sky Is

blue." -- (#BLUE :SKY)) or we can say thin~s about them as If

they were objects (as In "Blue Is a color." ~- (#COLOR #BLUE)).

~’le want to extend this even further, and allow entire

relationships to enter Into other relationshlps. (~e

distinguish between "relation", the abstract symbol such as

#FATHER,OF, and "relationship", a partlcu]ar instance such as

(#FATHER-OF :NOAH :JAFETH)).    In accord wlt.h our earlier

conve~tion about na~ing thln~s, we can give the relatlon~hlp a

name, so that we can treat it like an object and say (#Kr!O~’J :I

:REL76) where :REL76 Is a name for a partlcular relatlonshIp
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like (#FATHER-OF :NOAH :JAFETH). We can keep s:ral~ht ~vhlch

name goes wlth which relatlonshlp by puttin~ the name directly

into the relatlonshlp.    Our example would then become (#F~THER-

OF :NOAH :JAFETH :RELT6).    There is no speclal re~son to put

the name last, except that It makes Indexing and readln~ the

statements easier. ~Ve can te|l that :REL76 Is the name of thls

reIatlon, and not a participant since FATHER-OF relates only two

objects. Similar]y, we knew that It has to be a participant In

the relationship (#KNOW :I :REL76) since #KNOW needs two

arguments.

~Ve now have a system which can be used to descrlbe more

complicated facts. "Harry slept on the porch after he gave

AIlce the jewels," ~ould become a set of assertions:

(#SLEEP :HARRY :REL1)    (#LOCATION :RELE :PORCH)

(#GIVE :HARRY :ALICE :JEWELS :REL2)    (#AFTER :RELE :REL2)

This example points out several facts abut the notation,

The number of participants In a relationship depends on the

particular relatlon, and can vary from 0 to any number. We do

not need to glve every relationship a name -- It Is present only

If we want to be able to refer to that relationship elsewhere.

Thls wi]! often be done for events, which are a type of

relatlonship wlth specla] properties (such as tlme and place of

occurrence).
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~ Phi1osoph~¢al ~onsl~eratlo~s

Before ~oing on, let us-stop and ask what v,e are doing. In

the preceding paragraphs, we have developed a notation for

representin~ certain kinds of meaning. In doing so we have

gl|bly passed over Issues which have troubled phI1sophers and

Ilngulsts for thousands of years. Countless treatises and

debates have tried to analyze just what It means to be an

"object" or a "property", and what 1oglcal status a symbol such

as #BLUE or #CITY should have. We wlll not attempt to glve a

philosophlcal answer to these questions, but Instead take a more

pragmatic approach to meaning.

Language Is a process of communication between people, and

ls Inextricably enmeshed In the knowledge that those people have

about the world. That knovJ1edge Is not a neat ¢olIe¢tlon of

definitions and axioms, complete, concise and consistent.

Rather It is a collectlon of concepts designed to manlpulate

Ideas. I~ is In fact Incomplete, hIsh]y redundant, and often

Inconsistent. There Is no self-contalned set of "primitives"

from which everything e|se can be defined. Definitions are

circular, with the meaning of each ooncept depending on the

other concepts.

Thls might seem l|ke a meaningless chan~e -- saying that the

meaning of words Is represented by the equally mysterious

meanings of "concepts" which exist In the speaker’s and heater’s

minds, but which are open to neither Immediate Introspect!on nor
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experiment. However, .there Is a major difference. The structure

of concepts which is postulated can be manlpulated by a |oRlcaI

system within the computer. The "Internal r~presentatlo~}" of a

sentence Is somethln~ which the system can obey~ answer, or add

to its knowledge. It can relate a sentence ~o other concepts,

draw conclusions from it, or store it In a way which makes it

useable in further deductions and analysis.

This can be compared to the use of "forces" In phys!¢s. We
have no way of directly observing a force like ~ravlty, but by
postulating Its existence, we can write equa~lons describing
and relate these equations to the physical e’~ents Involved.
Slmllarly, the "concept" representation of meaning Is not
Intended as a direct picture of something which exists In a
person~s mlnd. It Is a fiction of the scientist, valld only In
that it gives him a way to make sense of data, and predict
actual behavior.

The justification for our use of concepts In thls system

Is the way It actually carries out a dialog which simulates In

many ways the behavior of a human language user. For a wider

fleId of discourse, !t would have to be expanded In Its details,

and perhaps In some aspects of Its overall structure. However

the Idea Is the same -- that we can In fact galn a better

understanding of language use b~ postuIatlng these fictitious

concepts and structures, and analyzing the ways In which they

interact wlth language.

The success of such a theory at actualy describing language

will depend largely on the power and flexibility of the

representation used for the concepts. Later sections of thls

chapter discuss the reasons why PLANNER Is partlcularly well
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suited for this job.

We v~ou]d ]Ike to consider some concepts as "atomlc’~. (I,e.

concepts which are considered to have their own meanln~ rather

than bein~ just combinations of other more basic concepts). A

property or re~atlon is atomic not because of some special

1o~Ical status, but because It serves a useful purpose In

relation to the other concepts in the speaker’s model o~ the

world. For example, the concept #OLD Is surely not primitive,

since it can be defined In terms of #AGE and number. However,

as an atomic property It w111 often appear in knowledge about

people, the way they look, the way they act, etc. Indeed, we

could omit it and always express something like "having an age

greater than 30", but our model of the world will be simpler and

more useful If we have the conc,~pt #OLD avallable Instead.

There is no sharp line dividing atomic concepts from non-

atomic ones. It would be absurd to have separate atomic

concepts for such thin~s as #CITY-OF-POPULATION-23, hS5 or

#PERSON-~EIGHING-BETV~EEN-178-AND-ESE.    Bu~ It misht In fac~ be

useful to dis{inguish between #BIG-CITY, #TOWN, and #VILLAGE, or

between #FAT, and #THIN, since our model may often use these

distinctions.

If our "atomic" concepts are not 1o~Ica1|y primitive, what

kind of status do they have? What Is their "meanin~"? How are

they defined? The answer is again relatlve to the world-mode!

of the speaker. Facts cannot be classlfled as "those which
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define a concept" and "those which describe It." Ask someone to

define #PERSON or #JUSTICE, and he w111 cone up wlth a forrauIa

or slogan which is very limited. #JUSTICE Is defined In hls

world-model by a series of examples, experiences, and spec{flc

cases. The model Is circular, wlth the meanln~ of any concept

depending on the entire knowledge of the speaker, (not just the

klnd which would be Included in a dictionary). There must be a

close similarity between the models held by the speaker and

listener, or there could be no communication. If my concept of

#0EMOCRACY and yours do not coincide, we may have ~reat

difflculty understanding each otherls polltlca! viewpoints.

Fortunately, on slmpler thln~s such as #BLUE, #DO~, and #AFTER,

there is a pretty ~ood cha,ce that the models wit1 be

practlcally Identlcal. In fact, for slmp|e concepls, we can

choose a few primary facts about the concept and use them as a

"definition" , which corresponds to the tradltlonal dictionary.

Returnin~ to our notation, we see that It is Intentlonally

~eneral, so that out system can deal wlth concepts as people do.

In English we can treat events and relatlonsh|ps as objects, as

In "The war destroyed Johnsonis rapport wlth the people." I~Ithln

our representation ofmeanln~ we can slmllarly treat an event

such as #WAR or a relatlonshlp of #RAPPORT In the same way we

treat objects. Vie do not draw a sharp, ph|1osophlcal distinction

between "specific objects", "properties", relatlonshlps",

"events", etc.
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~ Comolex Information

We now have a way to store a data base of assertlons about

part!cular objects, properties, and relatlonshlps. Next, we

want to handle more complex Informatlon, such as "A|| canaries

are Yel low." "A, or     thesis Is acceptable If elthcr It ls long or

It contains a persuaslve argument."     Thls could be done using

a formal language such as the predicate calculus. Basic logIcal

relatlons such as implies, or, and, there-exlsts, etc. are

represented symbolically, and Informatlon Is translated Into a

"formula". Thus we might: have:

(FORALL (X)    (IMPLIES(#CANARY X)(#COLOR X #YELLOW)))

(FORALL (X) (IMPLIES
(AND (#THESIS X)

(OR (#LONG X)
(EXISTS (Y)

(AND (#PERSUASIVE Y)
(#ARGUMENT Y)
(#CONTAINS X Y)))))

(#ACCEPTABLE ~)))

Figure 52 -- Predicate Calculus Representation

Several notational conventions are used. First, we need

variables so that we can say thlngs about objects without naming

partlcu|ar ones. This Is done with the quantlflers FORALL and

EXISTS. Second, we need loglca| relations like AND, OR, NOT,

and IMPLIES. Using this forma|Ism, we can represent a question

as a formula to be "proved". To ask "Is Samls thesis

acceptable?" we could give the formula (#ACCEPTABLE =SAM-THESIS)
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to a theorem pro~er to prove by manlpulatlng the formulas and

assertions In the data base according to the ,-ules of 1oglc. We

would need some addltlonal theorems which would a11ow the

theorem prover to prove that a thesis Is long, that an argument

ls acceptable, etc,

In some theoretical sense, predicate calculus formulas
could express all of our knowledge, but In a practical sense
there is something missing. A person would also have knowled&e
about how to go about doing the deduction. He would know tha~
he should check the length of the thesis first, since he might
be able to save himself the bother of reading It, and that he
might even be able to avoid counting the pages if there Is a
table of contents. In addition to complex Information about
what must be deduced, he also knows a lot of h~nts and
~heuristlcs’~ telllng how to do It better for the particular
subject being discussed.

Most ~theorem-provlng~ systems do not have any way to

include this additional intelligence. Instead, they are llmlted

to a kind of ~tworking In the dark~. A uniform proof procedure

gropes Its way through the collection of theorems and

assertions, according to some general procedure which does not

depend on the subject matter. It tries to combine any facts

which might be relevant, working from the bottom up. In our

example given above, we might have a very complex theorem for

dec~ding whether an argument is persuasive.     A uniform proof

procedure might spend a great deal of time checkln~ ti~e

persuasiveness of evbry argument It knew about, slnca a c~ause

of tha form (PERSUASIVE X) might be relevant to the proof. ~hat

we wou|d prefer Is a way for a theorem to gulde the process of

deduction In an inte]llgent way. Car] Hewltt has worked wlth
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thls problem and has developed a theorem-provlng language called

PLANNER <Hewltt 1968, 196S>. In PLANNER, theorems are In the

form of programs, whlc;~ describe how to go about proving a ~oal,

or how to deduce consequences from an assertion. This Is

described at length In section 3.3~ and forms the basis for the

Inference part of our Engllsh understander. In PLANNER, our

sentence about thesis evaluatlon could be represented as shown

In Figure 53.

This Is similar In structure to the predicate calculus

representation given above, but there are Important dlfferenceso

The theorem Is a program, where each Io~lca! operator ;ndlca=es

a definite series of steps to be carrled out. THGOAL says to

try to find an assertion In the data base, or to prove it usln¢

other theorems. THUSE gives advice on what oth¢~ theorems to

use, and in what order. THAND and THOR are equiva|ent to the

~oglca] AND and OR except that they give a speclflc order In

which thi~¢s should be trled. (The "lisping" Is to

differentiate PLANNER names from the standard LISP functions AND

and OR. Thl~ same convention Is used for a11 functions which

have LISP analogs.)

The theorem EVALUATE says that If we ever want to prove

Chat a thesis is acceptable, we should first make sure It ls a

thesis by looking In ~he data base. Next, we should try to

prove that It Is lon�, first by usln¢ the theorem CONTENTS-CHECK

(which would check the table of content~)~ and If that falls, by
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(DEFINE THEOREM EVALUATE
;EVALUATE is the name we ere
;glvlnp; to the theorem

(THCONSE(X Y)
;thls Indicates the type of
;theorem and names Its
;varlables

(THGOAL(#THESIS $?X))
;show that X is a thesis
;the =t$?. Indicates a variable

(THOR
;THOR Is like "or", trying things
;in the order given until one works

(THGOAL(#LONG $?X)(THUSE CONTENTS-CHECK COUNTPAGES))
;THUSE says to try the theorem
;named CONTEHTS-CHECK .first,
;then If that doesnlt work, try
;the one named COUNTPAGES

(THAND
;THAND Is 11ke "and"

(THGOAL(#CONTAINS $?X $?Y))
;find something Y which Is
;contained In X

(THGOAL(#ARGUMENT $?Y))
;show that It is an argument

(THGOAL(#PERSUASIVE $?Y)(THTBF THTRUE))))))
;prove that It Is persuaslve, uslng
;any theorems which are applicable

Figure 53 --    ANNER Representation
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using a theorem named CO~NTPAGES (which might In fact call a

simple LISP program which thumbs through the paper.) If they

both fail, then we look In the data base for something contained

In the thesis, check that it is an argument0 and then flnally

try to prove that It Is persuasive. Here0 we have used (THTBF

THTRUE), whIch is PLANNERgS way of saying g~try anythlng you know

which can help prove It~eo     PLANNER must then go searching

through all of Its theorems on persuasivensess0 just as any

other theorem prover would. Thero are two Importan: changeso

though. First, we never need to look at persuasiveness at all

If we are able to determine tha~ the thesis Is lOngo Second, we

only look at the persuasiveness of arguments wh|ch we already

know are a part of the thesis. ~e do not get sidetracked Into

looklng at the persuasiveness theorems except for ~he cases we

really want.

PLANNER also does a number of other thlngs~ like

maintaining a dynamic data base (assertions can be added or

removed to reflect the way ~ae world chan~es In the course of

time), allowing us to control how much deduction will be done

when new facts are added to the data base, e~c. These are all

discussed in section
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PLANNER Is particularly convenient for a language-

understandln~ system, since It can express statements, commands,

and questions directly.    We have already shown how asser:lons

can be stated in simple PI.ANNER format. Commands and questions

are also easily expressed. Sl~ce a theorem Is written in the

form of’a procedure, we can le~ steps of that procedure actually

be actions to be taken by a robot. The command "Pick up the

block and put It in the box." could be expressed as a PLANNER

program:

(THAND(THGOAL(#PICKUP :BLOCK23))
gTHGOAL(#PUTIN =BLOCK25 =BOX7)))

Remember that the prefix "=" and the number Indicate a specific

ob)ect. The theorems for #PICKUP and #PUTIN would also be

programs, describing the sequence of steps to be done.

Earlier we asked about Samts thesis In predicate calculus

In PLANNER we can ask=

(THGOAL (#ACCEPTABLE :$AH-THESI$)(THUSE EVALUATE))

Here we have specified that our theorem EVALUATE Is to be

used. If we evaluated this PLANNER statement, the theorem wou~d

be called, and executed just as described on the previous pages.

PLANNER would return one of the values "T" or ~NIL~ depending on

whether the statement Is true or falseo

For a question l|ke "Hhat nations have never fought a war?~

PLANNER has the function THFINDo Ne would ask=
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(THFIND ALL $?X (X Y)
(THGOAL(#NATION $?X))
(THNOT

(THAND(THGOAL(#HAR $?Y))
(THGOAL(#PARTIClPATED $?X $?Y)))))

and PLANNER would return a list of all such countries. Using

our conventions for ~lvln~ names to relations and events, we

could even ask=

(THFIND /,LL $?X (X Y Z EVENT)
(THGOAL(#CHICKEN $?Y))
fTi-iGOAL(#ROAD $?Z))
(THGOAL(#CROSS $?Y $?Z $?EVENT))
(THGOAL(#CAUSE $?X $?EVENT)))

Thls brief description has explalned the basic concepts

underlyln¢ the ~eductlve part of our lanCuage understanding

program. To go with It, we need a complex =odel of the subjec~

being discussed. Thls Is described In ~ec~lon 3.~. Section 3.3

elves more details about the PLANNER lant;uage and l~s uses.
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3.2 Comparison wlth Previous Programs

In Section 3.1 we discussed ways Of representing

information and meaning within a lan~ua~e-comprehe:Jdin~ system.

In order to compare our ideas with those In previous systems, we

w~|l estaollsh a broad classlflcatlon of the fleld. Of course,

no set of plgeon-holes can completely characterize the

differences between programs, but they can give us some

viewpoints from which to analyze different people=s work, and

can help us see past the superficial differences. We will deal

only with the ways that programs represent their lnformat!on

about the subject matter they disc:Jss. Issues such as parsing

and semantic analysis techniques are discussed In other

sections. We will distinguish four basic types of systems

called "speclal format~, "text based~’, "restricted logic~’, and

~’general deductive~.
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~ ~,Reclal .F_9.r.!~ Systems

Host of the early language undestar~ing programs were of

the special format type. Such systems us~ally use two special

formats designed for their partlcular s~bject matter -- one for

representing the knowledge they keep stored away, and the other

for the meanln~ of the En~IIsh Input. Soma examples are:

BASEBALL <P.F.Gruen>, which stored tables of baseball results

and Interpreted questions as "specification lists" requestln~

data from those tables; SAD SAM <Llndsay>, which Interpreted

sentences as slmple relatlonshlp fact~; about people, and stored

these In a network structure; STUDEt~T <Bobrow ~96~>, which

Interpreted sentences as linear equations and could store other

linear equations and manipulate them to solve algebra problems;

and ELIZA <Welzenbaum E966>, whose Internal knowledge Is a set

of sentence rearrangements and key word3, and which sees Input

as a simple string of words,

These programs a11 make the assumption that the only

relevant Information In a sentence Is that which flts their

partlcular format. Although they may have very sophisticated

mechanisms for uslng this Information (as In CARPS <Charnlak),

whlch can solve word problems In calculus), they are each built

for a special purpose, and do not handle informatlon wi=h the

flexlbl1!ty which would allow them to be adapted to other uses.

Nevertheless, their restricted domain often allows them to use

very clever tricks~ which achieve Impressive results with a
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mlnlmum of concern for the complexitles of language.
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Some researchers were not satisfied with the ll~Itatlons

Inherent In the special-format approach. They wanted systems

which were not limited by their construction to a particular

specialized field. Instead they used English text, with all of

its generality and diversity, as a basis for storing

Information. In these ’~text based~’ systems, a body of text

stored directly, under some sort of Indexing scheme. An Engllsh

sentence Input to the understander Is Interpreted as a request

to retrieve a relevant sentence or greup of sentences from the

text. Varlous ingenio~s methods were used to findpossibly

relevant sentences and decide which were most llkely to sastlsfy

the request.

PROTOSYNTHEX I <Simmons zg66> had an Index speclfylng

the places where each "~ontent word" was found In the text. It

tried to find the sentences which had the most words In common

with the request (using a special welghting formula), then did

some syntactic analysis to see whether the words In co,,~mon were

In th~ right grammatica! relationship to each other. Semantic

Memory <quI!IIan 1966> stored a slightly processed version of

English dictionary deflnltlons In which multlple-meanln~ words

were e]iminated by having humans Indicate the correct

Interpretation.    It then used an assoclative lndexln& scheme

wh!ch enabled the system to follow a chain of Index references.

An Input request was In the form of two words Instead of a
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3entence. The response was the shortest chaln whluh connected

Lhem through the assoclatlve lndax (e.g. If there is a

definition conta|nin~ the words A and B and one containing B and

C, a request to relate A and C w111 return both sentences).

Even with complex Indexing schemes, the text based approach

has a basle problem. It can only spout back spuclflc sentences

which have been stored away, and can not answer any question

whlch demands that so~nethlng be deduced from more than one piece

of Information. In addltlon, Its responses often depend on the

exact way the text and questions are stated In Engllsh, rather

than dealing with the underlying meaning.
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3.2.3 LImited Lo~./c =~.y~tems

The "limited logic" approach attempted to correct

faults of text based systemso and has been used for most of the

more recent language understandlng programs. First, some sort

of more formal notation Is substituted for the actua! Engllsh

sentences In the base of stored knoledge. Thls notatlon may

take many different formso such as "desrlptlon lists" <Raphae|

196k5~ "kernels" <Simmons 19685 "concept-relation-concept

triples" <Simmons 19695, "data nodes" <Qu111Ian 19695 , "rings"

<ThompsonS, "relatlona] operators" <Tharp5 , etc. Each of these

forms is designed for efficient use In a particular system, but

at heart they are el! doln8 the same thing -- providing a

notation for simp]~ assertions o~ the sort described In section

3.1.1o It is relatively unimportant which special form Is

chosen. A]I of the dlfferent methods can provlde a uniform

formallsm which frees simple lnf;~rmatlon from being tied down to

a speclflc way of expressing it In Engllsho Once this Is done,

a system must have a way of translating from the English Input

sentences Into thl= Internal assertion format, and the greatest

bulk of the effort In language understanding systems has been

this "semantic analysis". We will dlscus"s it at length In

chapter ~. For now we are mcre Interested In what can be done

w=th the assertions once they have been put Into the desired

form.

Some systems (see <~ullllan 19695~ <TharpS) remain close to
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text based systemse only partlally breaking down the lnltlal

text lnp~Jt. The text Is processed by some sort of dependency

analysis and left in a. network forme either emphaslzin~ semantic

relationships or remaining closer to the syntactic dependency

analysis,What Is co~on to thes~ systems Is that they do

attempt to a,~swer questions from the stored Information. As

with text based systems0 they try to answer by �lying back bits

of Information dlrectly from the data base, They may have

clever ways to decide what parts of the data are relevant to a

request, but they do not try to break the question down and

answer It by logical Inference. Because of thls, they suffer

the same def|clencles as text based systems. They have a ~nass

of lnformatlon stored away~ but little way to use It except to

print It back out.

Host of the systems which have been developed rec~ntl)

more comfortably under the classification "limited loglc~. In

addition to their data base of as~ertlons(what~ver they are

called), they have some mechanism for accepting more complex

Information, and using It to deduce the answers to more complex

questions. By =:comolex information~ we. mean the type of

knowledge descrlbed In section 5.1.5. This l~¢ludes knowledEe

contalnlng lo¢lcal quantiflers and relatlonshlps (such as "Every

canary Is either yellow or purple," or ~=lf A is a part of B and

B Is a part of C, then A Is a part of C.=~). By ~complex

questions", we mean questions which are not ~nswerable by ~|ving
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out one of the data base assertions, but d~mand some loglcal

Inference to produce an answer.

One ¢f the earllest llmlted loglc programs was SIR <Raphael

196k>, which could answer questlons using simple logical

relations (like the ~part" example In the previous paragraph).

The complex Information was not expressed as data, but was built

directly into the SIR operating program. This meant that the

types of complex Information It could use were highly limited,

and could not be easily changed or expanded. The complex

questions it could answer were sln=!lar to those In many later

limited logic systems, consisting of four basic types. The

simplest Is a question which translates into a single assertion

to be verified or falsified (e.g. "Is John a bagel?") The second

is an assertion In whlch one part is left undetermined

"Who Is a bagel?") and the system responds by "filling in the

blank". The third type Is an extension of this, which asks For

all possible blank-Fillers (e.g. "Name all bagels."), and the

fourth adds counting to this listing facility to answer count

questions (e.g."How many bagels are there?"). SIR had special

lo~1c for answering t~how many" questions, using information llke

"A hand has 5 fingers.", and In a similar way each llmlted Io�1c

system had special built-In mechanisms to answer certain types

of questlons.

The DEACON system <Thompson> had special "verb tables" to

handle time questions, and a bottom-up analysis method which
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allowed questlor~s to be nested. For example, the question ~Who

Is the commander of the batalllon at Fort Fubar?~° was handled by

first lnterna11~ answering the questlon "~Jhat batalllon is at

Fort Fubar?~ The answer was then substituted dlrectly into the

orlglnal question to make it ~Jho Is the commander of the 69th

bata11.~on?~t, which the system then answered. PROTOSYNTHEX II

<Simmons 2968) had special logic for taklng advantage of the

transitivity of ~tls~ (e.g. °~A boy is a person.~ ~Ā person Is an

animal.=~ therefore ~°Ao.o=~). PROTOSYNTHEX III <Simmons ~969) and

SAHENLAQ II <Shapiro) bootstrapped thelr way out of flrst-order

logic by ailowln~ simple assertions about relatlonshlps (e.g.

||No=’~h-of is the converse of Sou~h~of.i|). CONVERSE <Kellog�>

converted questions Into a ~query language|| which allowed ~he

form of the question to be more complex but used simple table

lookup for flndln~ the answers..

A~I of the limited lo~1c systems are baslcally similar¯ In

that complex infotmatlon Is not part of =he data, but is bul~

Into the system programs. Those systems which could add to

their Initial da~a base by acceptln~ English sent’ences could

accept only slmple assertions as Input. The ques=lons could not

Involve complex quantified relationships (e.~. ’~ls there a

country which is s~aller than every UoS. state?).
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~ ~ Deductlv~ Systems

The p~’oblems of 11mlted 1oglc systems were recoKnlzed very

early (see <Raghae| 196k) p. ~0), and neople looked for a more

general approach to storing and using comp|ex Information. If

the knowledge could be expressed In some standard ma~hematlcal

notation (such as the Dredlcate calculus}, then all of the work

1o¢Iclans have done on theorem proving could be utlllzed to make

an efficient deductive system. By expressing a question as a

.theorem to be proved (see sectIon .~.I.~), the theorem prover

could actually deduce the Information needed to answer any

question which could be expressed In the formalism. Complex

Informailon not easily useable In limited logic systems could be

neatly expressed In the predicate calculus, and a body of work

already existed on computer theorem provln¢. Thls led to the

"Keneral deductive" approach to lan~uaCe understanding proKrams.

The early programs used 1oglcal systems |ess powerful than

the full predicate calculus (see <Bar-Hlllel), <Coles 1968>, and

<DarllnCton)) but the blg boost to theorem provln¢ research was

the development of the Robinson resolutlon al¢orlthm <Robinson),

a very slmple "complete uniform proof procedure~ for the flrs~

oroer predicate calculus. This meant that it became easy to

write an automatic theorem provln& proKram with two lmportan¢,

characteristics. First, the procedure is "uniform" -- we need

not (and In fact, cannot) tell It how to �o about proving thinks

In a way suited to part|cu]ar subject matter. It has Its own
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fixed procedure for bulldlng proofs, and we can only change the

spts of logical statements (or "axioms") for it to work on.

Second, |t guarantees that if any proof Is possible using the

rules of predlca~e calculus, the procedure w!11 eventually find

It (even thG.Jgh It may take a very long time). These are very

pretty properties for an abstract deductlve system, but the

question we must ask is whether their theoretlcal beauty is

worth paylng the price of low practicality. We would like to

argue that In fact they have led to the worst deflclencles of

the theorem-provlng question-answerers, and that a very

different approach Is :alled for.

The ~unlform procedure=~ approach was adopted by a number of

systems (see <Green ~9.68, 196~>) as an alternative to the klnd

~ specialized limited logic dlscussed in the previous section.

It was felt that there must be a way to present complex

Information as data rather than embedding it Into the Inner

worklngs of the language understanding system. There are many

benefits In having a unlform notation for representing problems

and knowledge In a way whlch does not depend on the quirks of

the particular program which will Interpret them. It enables a

user to describe a body of knowledge to the computer In a

~=neutral" way without knowin~ the detal|s of the question-

answering system, and guarantees that the system will be

applicable to any subject, rather than being specialized to

handle only one.
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Predicate calculus seemed to be a good uniform notation,
but In fact It has a serious deficiency. By putting complex
Information Into a "neutralI’ logical formula, these systems
Ignored the fact that an :mportant part of a personls knowledge
concerns how to go about figuring thlng~ out. Our heads don~t
contain neat sets of logical axioms from which we can deduce
everything through a "proof procedure". Instead we have a large
set of heuristics and procedures for solving problems at
different levels of generality. Of course, there Is no reason
why a computer should do things the way a person does, but In
Ignoring thls type of knowledge, programs run Into tremendous
problems of efficiency. As soon as a "uniform procedure"
theorem prover gets a large set of axioms (even well below the
number needed for really understanding language), It become~
bogged down In searching for a proof, since there Is no easy way
to guide Its search according to the subject matter. In
addition, a proof which Sakes many steps (even If they are In a
sequence which can be easily predicted by the nature of the
theorem) may take Impossibly long since It Is very difficult to
describe the correct proving procedure to the system.

It Is posslble to write theorems In a clever way In order

to lmpIlcltIy guide the deduction process, and a recent paper

<Green 1969) describes some of ~he problems In ’~techniques for

"programming" In flrst-order logic". First order 1oglc Is a

declarative rather than Imperative language, and to ~et an

Imperatlve effect (l.e. te111ng It how to go about doing

something) takes a good deal of careful thought and clever

tr!ckery.

It might be possible to add strategy infor~atlon to a

predicate calculus theorem prover, but with curren~ system~ such

as QA3, ~lTo change strategies In the current verslon, the user

must know about set-of-support and other program parameters such

as level bound and term-depth bound. To radlcally change the

strategy, the user presently has to know the LISP language and

must be able to modify certain strategy sections of the
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program." (<Green 1969> p.236). In newer programs such as QA~,

there wll| be a specla| str;JLegy language to go along with the

theorem-proving mechanisms. ~t will be Interesting to see how

close these new strategy ]a=|guages are to PLANNER, and whether

there Is any advantage to be gained by putting them In a hybrid

with a resolution-based system. As to the completeness

argument, there are good reasons not to have a complete system -

- these are dlscussed later In thls section.
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)~2.5 Procedural Deductive ~.Y3.1L~

The problem with th~ llmited logic systems wasn’t the fact

that they expressed their ccmplex Information In the form of

programs or procedures. The problem was that these programs

were organized In such a way that "...each change In a

subprogram may affect more of the other subprograms. The

structure grows more awkward and dlfflcult to

generallze...FInally the system may becon,e too unwleldy for

further experimentation." (<Raphael 196~> p.91). Neverthelesss

It was necessary to build In more and more of these subprograms

in order to accept new sub]ect matter.

What was needed was the development of new programming

techniques so that systems could retain the capabllity of using

procedural lnforn~atlon, but at the same time express this

information In a simple and straightforward way whl6h did not

depend on the peculiarities and special strucuture of a

particular program or subject of dlscussiono

A system which partla]ly fits this descriptlon is Woods~

<Woods 1968>.    It uses a quantlflcatlonal query language for

expresslng questlonss then assumes that there are "semantic

primitives" In the form of LISP subroutines which decide such

predicates as (CONNEC~ FLIGHT-23 BOSTON CHICAGO) and which

evaluate functlons such as "number of stops", "owner’=,etc. The

thing which makes thls system dlfferent from the limited logic

systems Is that the entire system was designed without reference
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to the way the partlculz.r ~prlmltlveIt functions would operate on

the data base. In a way, thls Is avoiding the Issue, since the

I.Iformatlon which the system was deJI~ned to hand]e (the

Official Alrllne Guide) Is partlcularly amenable to simple

tab|e-lookup routines. If we had to handle less structured

Information of the type usually done with theorem provers, these

primitive routines might indeed run Into the same problems of

Interconnectedness described In the quote above, and would

become harder and harder to generallze.

PLANNER was designed by Carl Hewltt as a goal-oriented

procedura] language to d~al with these problems. It has speclal

mechanisms for deallng wlth assertions In an efficient way, and

in aadltlon has the capabllty to Include any complex Information

which can be expressed In the predicate calculus. More

Important, the complex Information Is expressed In the form of

procedures, which can include all sorts of knowledge of how to

best go about proving thlngs. The language is t~oal-orlented",

in that we do not have to be concerned about the d~talls of

Interaction between the dlfferent procedures. If at different

places In our knowledge we have theorems which ask whether an

object Is sturdy (for example in a theorem about support, about

building houses, etc.) they are not forced to specify the

program which w111 serve as sturdiness-Inspector. Instead they

say something like "Try to flnd an assertion that X is sturdy,

or prove it using anything you can.~ If we !-now of special
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procedures which seem most likely to g;ve a quick answer, we can

specify that these should be tried first. But If at some point

we add a new sturdiness-tester, we do not need to flnd out which

theorems use it. We need only add it to the data base, and ~he

system will automatically try It (along with any other

sturdiness-testers) whenever any theorem glves the go-ahead.

The ability to add new theerems without relatlng them to
other theorems Is the advantage of a "uniform" notation. In
fact PLANNER Is a uniform notatlon for expressing procedural
knowledge just as predicate calculus !s a notatlor= for a more
limited range of information. The advantage is that PLANNER has
a hierarchical control structure. In addltlon to specifying
loglcal re|atlonshlps, a theorem can take over control of the
deduction process.

We can have complete control over how the system will

operate. In any theorem, we can tel| It to try to prove a

subgoal using only certain theorems (If we know that the goal is

bound to fall unless one of them works), we can tell It to try

things in a certain order (and the choice of thls order can

depend on arbitrarily complex calculations which take place when

the subgoal Is set up) or we can even write a "spoiler" theorem,

which can tell the system that a goal Is certain to fall, and

that no other theorems should even be tried.

Notice that this control structure makes it very difficult

to characterlze the abstract logical properties of PLANNER, such

as consistency and completeness, it Is worth polntin~ out here

that completeness may In fact be a 3ad property. It means (we

believe, necessarily) that If the theorem-prover is ~iven

something to prove which Is in fact false, It will exhaust every
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possible way of trylng to prove It. By forsa~ing completeness,

we a||ow ourselves to use good sense in deciding when to give

up.

In a truly uniform system, the theorem prover Is forced to

=’rediscover the wor|d" every time It answers a question. Every

goal forces It to start from scratch, |ooklng at all of the

theorems In the data base (perhaps using some subject-matter-

free heuristics to make a rough se|ectlOn)o Because it does not

want to be limited to domain-dependent Information, !t cannot

use It at al|. PLANNER can operate In this ~b|lndman~’ mode if

we ask It to (an~ It is less efficient at doing so than a

procedure specially Invented to operate this way), but It should

have to do this only ra~-ely -- when discoverlng somethlng which

was not known or understood when the basle theorems were

written. The rest of the time it can go about proving things

which it knows how to do~ without a tremendous overhead of

having to piece together a proof from scratch each time. As

mentioned above, It might be posslb|e to patch "strategy

programs" onto theorems in conventlonal theorem;provers In order

to accomplish =h~ same gGalo In PLANNER we have the advantage

that this can be done naturally using the notation, and the

strategy Is embedded In the PLANNER theorems, which themselves

can be looked at as data. In an advanced system a PLANNER

program could be written to learn from experience. Once the

"bllnd~an mode" finds a proof, the method It used could be
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remembered and tried first when a slmilar goal Is generated

again. See section 5ol for more discussion c~ learning.

To those accustomed to uniform proof procedures, this all

sounds like cheating. Is the system really proving anything If

you are giving It clues about what to do? Why Is It different

from a simple set of programmed LISP procedures like those

envisioned by Woods? Flrst, the language Is deslgned so that

theorems can be written Independently of each other, without

worrying about when they will be called, or what other theorems

and data they will need to prove their subgoalso

The language Is designed so that If we want, we can write
theorems In a form which is almost Identical to the predicate
calculus, so we have the benefits of a uniform system. On the
other hand, we have the capability to add as much subject-
dependent knowledge as we want, re|ling theorems about other
theorems and proof procedures. The system has an automatic
goal-tree backup system, so that even when we are specifying a
partlcular o~der In which to do things, we may not know how the
system wlll go about doing them. It wi11 be able to follow our
suggestlons and try many different theorems to establish a ~oal,
backin¢ up and trying another automatically if one of them leads
to a failure (see sectlon

In summary, the main advance in a deductive system using

PLANNER is in allowing ourselves to have a data base of

procedures rather than formulas to express complex Information.

This cemblnes the general|ty and power of a theorem prover with

the ability to accept procedural knowledge and heuristics

relevant to the data. It provides a flexible and powerful tool

to serve as the basls ~or a lanKuage underst~ndlng system. The

rest of thts chapter describes the PLANNER language and the way

It Is used |n our system.
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3.3 Programming in ?LANNER

~ Basic Operation of PLANNER

The easiest way to understand PLANNER is to watch how It

works, so In thls section we wil! present a few slmp|e examples

and exp]aln the use of some of lt~ most elementary features.

Flrst we wl]! take the most venerable of ~radltlona]

deductions=

Turlng Is a human
Al1 humans are fallible

so
Turlng Is fa11Ible.o

It is easy enough to see how this �ould be expressed In the

usual loglcal notation and handled by a uniform proof procedure.

Instead, let us express It In one possible way to PLANNER by

saying=

(THASSERT (HUHAN TURING))
~Th;s asserts that Turln¢ is human.

(DEFPROP THEOREHI
(THCONSE (X) (FALLIBLE

(THGOAL (HUHAN $?X)))
THEOREM)

;Thls is one way of saying that a]] humans
~are fa~]lbleo

The proof wou|d be generated bv asking PLANNER to eva|uate

the expresslon=

(THGOAL (FALLIBL~ TURING) (THTBF THTRUE))

.He Immediately see several points, First, there are two

different ways of storing information. Simple asser~ions are

stored In a data base of a~sertlons, while more complex

sentences contal~ing quantlflers or loglcal connectives are



Sectlon 3.3.1 - Page 2kO

expressed In the form of theorems.

Second, one of the most Important points 6bout PLANNER Is

that It is an evaluator for statements written In a programming

lan~uage. It accepts input in the form of expresslo~s written

In the PLANNER language, and evaluates them, producing a value

and slde effects. THASSERT Is a function which, when evaluated,

stores its argument in the data base of assertions or the data

base of theorems (which are cross-referenced In various ways to

give the system efficient look-up capabI11tles). A theorem Is

defined wlth DEFPPOP as are functions In LISP.

In thls example we have defined a theorem of the THCONSE

type (THCONSE means consequent~ we w111 see other types later).

Thls states that If we ever want to establish a goal of the form

(FALLIBLE $?X), we can do thls by accompllshlng the goal (HUMAN

$?X), where X Is a variable. The strange prefix characters are

part of PLANNER’s pastern matching capabIlltles. If ~e ask

PLANNER to prove a goa| of the form (A X), there Is no obvlous

way of knowing whether A and X are constants (like TURING and

HUMAN In the example) or varlab]es. LISP solves this problem by

usln~ the function QUOTE to Indicate constants. In pattern

matching this is Inconvenient and makes most patterns much

bulkier and more difficult to read. Instead, PLANNER uses the

opposite convention -- a constant Is represented by the atom

Itself, while a varlable must be Indicated by adding an

appropriate preflx. This prefix differs according to the exact
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use of the variable In the pattern, but for the tlme being let

us just accept $? as a prefix IndlcaRlnK a variable. The

definition of the theorem Indlcates that It has one variable, X,

by the (X).following THCONSE.

The third statement Illustrates the function THGOAL, which

calls the PLANNER Interpreter to try to prove an assertion.

This can function In several ways. If we had asked PLANNER to

evaluate (THCOAL (HUMAN TURING)) It would have found the

requested assertion Immediately In the data base and succeeded

(returning as Its value some Indicator that It had.succeeded).

However, (FALLIBLE TURING) has not been asserted, so we must

resort to theorems to prove It.

Later we will see that a THGOAL stat~menc can glve PLANNER

various kinds of advice on which theorems are applicable to the

goal and should be tried. For the moment, (THTBF THTRUE) Is

advI~e that causes the eva%uator to try all theorems whose

consequent Is of a form which matches the goal. (I.e. a theorem

wlth a consequent ($?Z TURING) would be tried, but one of the

form (HAPPY $?Z) or (FALLIBLE $?Y $?Z) would not. Assertions

can have an arbitrary list structure fo~ their format -- they

are not limited to two-member lists or three-member lists as.ln

these examples.) The theorem we have just defined would be

found, and In trying It, the match of the consequent to the

~oal would cause the variable $?X to be assigned to th’e constant

TURING. Therefore, the theorem sets upa new goal (HUMAN
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base. In general, the success of a theorem wi|] deoend on

evaluating a PL~N~IER program of arbitrary complexity. In this

case It contains only a single THGOAL statement, so Its success

causes the entlre theorem to succeed, and the goal (FALLIBLE

TURING) Is proved.

Conslder the question his anything fallible?no or In

logic, (EXISTS (Y)(FALLIBLE Y))o This requires a varlabIe and

It could be expressed in PLANNER as=

(THPROG (Y) (THGOAL (FALLIBLE $?Y)(THTBF THTRUE)))

N~tlce that THPROG (PLANNERts equivalent of a LISP PROGo

complete with GO statements, tags, RETURN, etCo) acts as an

exlstentlal quantiflero It provides a binding-place for the

varlable Y, but does not Inlti_llze It -- It ]eaves It In a

state particularly ~erked as unassigned. To answer the

questlon, we ask PLAt~NER to evaluate the entire THPROG

expression above. To do this It starts by evaluating the THGOAL

expression. This searches the data base for an assertion of the

fnrm (FALLIBLE $?Y) and falls. It then looks for a theorem with

a consequent of that form, slnce the recommendation (THTBF

THTRUE) says to look at a]] possible theorems which mlgh~ be

applicable.    When the theorem defined above Is called~ the

variable X In the theorem Is Identified with the varlable Y In

the goal, but since Y has no v~lue ye~ X does not receive a

value. The theorem then setsup the goal (HUMAN $?X) with X as
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a varlabie. The data-base searching mechanism takes thls as a

command to look for any assertion which matches that pattern

(I.e. an Instantla~lon), and flnds the assertion (HUMAN TURING}.

This causes X (and therefore Y) to be as3Igned to the constant

TURING, and the theorem succeeds, completinK the proof and

returning the va|ue (FALLIBLE TURING).



There se~ms to be something missing. So far, the data base

has contained only the relevant objects, and therefore PLANNER

has found the right assertions Immedlate]y. Consider the

problem we would get if we added newInformatlon by evaluatln~

the statements:

(THASSERT (HUMAN SOCRATES))
(THASSERT (GREEK SOCRATES))

Our data base now contains the assertions:

(HUMAN TURING}
(HUMAN SOCRATES)
(GREEK SOCRATES)

and the theorem:

(THCONSE (X) (FALLIBLE $?X)
(THGOAL.(HUMAN $?X)))

What If we now ask, "is there a falIlble Greek?" In PLANNER

we would do this by evaluatlng the expression:

(THPROG (X) ~THGOAL (FALLIBLE $?X)(THTBF THTRUE))
(THGOAL (GREEK $?X)))

THPROG acts like an A~D, Insisting that all of Its terms

are satisfied before the THPROG Is happy. Notice what might

happen. The ?!rst THGOAL may be satisfied by the exact same

deduction es before, since we have not removed Information. I?

the data-base searcher happens to run into TURING before it

finds SOCRATES, the goal (HUMAN $?X) wll1 succeed, asslgnin~ $?X

to TURING. After (FALLIBLE $?X) success, the THPROG will then

establlsh the new goal (GREEK TURING), which Is doomed to fall

since it has not been asserted,.and there are no applicable
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theorems. If we think in LISP terms, this is a serious problem,

since the evaluatlon of the first THGOAL has been completed

before the secord one Is called, and the ~push-down list~1 now

contains only the THPROG. If we try to go back to t~e beginning

and start over, it wlll again find TURING and so on, ad

Infinitum.

One of the most Important features of the PLANNERlanguage

Is that backup 1~ case of fallure is always possible, and

moreover this backup can go to the last place where a decision

of any sort was made. Here, the decision was to pick a

particular assertion from the data base to match a goal. Other

decisions might be the choice of a theorem to satisfy a goal, or

a decision of other ty=es found in m~i’e complex PLANNER

functions such as THOR (the equivalent of LISP OR). PLANNER

keeps enough information to change any decision and send

evaiuation back down a new path.

In our example the declslon was made Inside the theorem for

FALLIBLE, when the goal (HUMAN $?X) was matched to the assertion

(HUMAN TURING). PLANNER w111 retrace Its steps, try to find a

different assertion which matches the goal, find (HUMAN

SOCRATES), and continue with the proof. The theorem w!11

succeed wlth the value (FALLIBLE SOCRATES),I and the THPROG wlll

proceed to the next expression, (THGOAL (GREEK $?X)). Since X

has been assigned to SOCRATE3, this wlll set up the goal (GREEK

SOCRATES) which will.succeed Immediately by find!ng the
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corresponding assertlon in the data base. Since there are no

more expressions in the THPROG, It wll| succeed, returning as

its value the value of the last expression, (GREEK SOCRATES).

The whole course of the deduction process depends on the failure

mechanism for backing up and trying things Gver (thls Is

actually the process of trying different branches down the

subgoal tree.) kll of the functions llke THCOND, THAND, THOR,

etc. are contro!!ed by success vs. failure. Thus it Is the

PLANNER executive which establishes and manlpulates subgoals In

looking for a proof.



Section 3.3.3 - Page 247

Differences wlth _Qj;her Theorem-Provers and Languages

Although PLANNER Is written as a programming language, It

differs In several crltlcal ways Crom anyLhlng which Is normally

considered a programming language. First, It Is goal-directed.

Theorems can be thought of as subroutines, but they can be

called through a very general pattern-marcher which looks at the

goal which Is to be satisfied. Thls Is 11ke having the abllltly

to say "Call a subroutine which will achieve the desired result

at this point." Seconds the eva]uator has the mechanism of

success and fal|ure to handle the exploration of the subgoal

tree.    Other languages, such as LISP, wlth a basic recurslve

evaluator have no way to do thls. Third, PLANNER contains a

bookkeeping system for matching patterns and manlpulatlng a data

bases and for handling that data base efficiently.

How Is PLANNER different from a theorem prover? What Is
gained by ~rlt{ng theorems In the form of programs, and giving
them power to call other programs which manipulate data? The
key Is In the form of the data the theorem-prover can accept.
Most systems take dec]Bratlv~ information, as In predicate
calculus. This is In the form of expresslons which represent
~facts~ about the world. These are manipulated by the theorem-
prover according to some flxed uniform process set by the
system.    PLANNER can make use of lmoeratlve Information,
telI!ng it how to go about proving a subgoal, or to make use of
an assertlon. This produces what Is called hlerarchlca| control
structuFe. That lss any theorem can Indicate what the theorem
prover Is supposed to do as It continues th3 proof. It has the
full power of a genera] programming language to evaluate
functions which can depend on both the data base and the subgoa]
tree, and to use Its ~-esults to control the further proof by
maklng assertions, declding what theorems are to be used, and
specifying a sequence of steps to be followed.

What does this mean in practical terms? In what way does

It make a "better~t theorem prover? We w111 glve several
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examples of areas where the appro;~:h is important,

First, consider the basic problem of decldlng what subgoa|s

to try in attempting ~to satisfy a goal. Very often, knowledge

of the subject matter w111 tell us that certain methods are very

likely to succeed, others may be useful If certain other

conditions are present,.while others may be posslb|y valuable,

but not likely. We would like to have the abl~ity to use

heuristic programs to determine these facts and direct the

theorem prover accordin~ly. It shou|d be able to dlrect the

search.for ~oa|s and solutions in the best way possib|e, and

ab|e to bring as much inte]l~ence as possible to bear on the

decision. In PLANNER this Is done by adding to our THGOAL

statement a recommenda~!on ~.~.~ which can specify that ONLY

certain theorems a~e to be tried, or thatcertaln ones are to be

trled FIRST in a specified order. Since theorems are programs,

subrou~ines of any type can be ca||eo to help make this decision

before establlshln~ a new THGOALo Each ~heorem ha~ a name (in

our definition at the beginning of Section 3.~o~, the theorem

was given the name THEOREH~), to facl|ltate referring to It

explic|tlyo

The islm~lest kind of recommendation Is THUSE, which takes a

list of theoffems (by names) and recommends that they be tried In

the order listedo A more ~eneral recommendation uses filters

Which look at .the theorem and decide whether It should be tried.

The user defines his own fllters, exceptfor the standard filter
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THTRUE, which accepts any theorem°

The filter command for theorems is THTBF, so a

recommendation list of the form:

((THUSE TH1 TH2)(THTBF T£ST)(THUSE TH-DESPERATION))

would mean to first try the :heorem named TH1, then TH2, then

any theorem which passes the filter named TEST (which the user

would define), then if all that falls, use the theorem named TH-

DESPERATION.    In our programs, we have made use of only the

simple capabilities for choosing theorems -- we do not define

filters other than THTRUE. However, there !s also a capability

for filtering assertions In a similar way, and we do use this,

as explained in section 4.3.
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~ ~ontrollln~ the Data Base

An Important problem ls that of maintaining a data base

with a reasonable amount of materla|. Consider ~he first

example above. The statement that all humans are falilble,

while unambiguous in a declarative sense Is actually ambiguous

in Its Imperative sense (i.e, the way It is to be used by the

theorem prover), The first way is to simp|y use It whenever we

are faced with the need to prove (FALLIBLE $?X). Another way

might be to watch for a statement of the form (HUMAN $?X) to be

asserted, and to Immediately assert (FALLIBLE $?X) as we|l.

There is no abstract |oglcal dlfference, but the Impact on the

data base is tremendous. The more conclusions we draw when

Information Is asserted, the easier proofs will be, slnce they

will not have to make the additional steps to deduce these

consequences over and over again. However since we donlt have

inflnlte speed and size, it is clearly folly to think of

deducing and assertln~ everythlng possible (or even everythlng

Interesting) about ~hc data when it is entered. If we were

working with totally abstract meaningless theorems and axioms

(an assumption which would not be incompatible with many

theorem-proving schemes), thls would be an insoluble dilemmao

But PLANNER Is deslgned to work In the real world, where our

knowledge Is much more structured than a set of axioms and rules

of inference. We may ver~, well, when we assert (LIKES $?X

POETRY) want to deduce and assert (HUMAN $?X), since In



Section 3.$.~ - Pa~.e 251

deducing things about an object, It will very often be relevant

whether that object Is human, and we shouldntt need to deduce It

each tlme. On the other hand, It would be silly to assert (HAS-

AS-PART $?X SPLEEN), since there Is a horde of facts equally

Important and equally limited In ~se. Part of the knowledge

which PLANNER should have of a subject, then, Is what facts are

Important, and when to draw consequences of an assertion. Thls

Is done by having theorems of an antecedent type:

(DEFPROP THEOREM2
(THANTE (X Y) (LIKES $?X $?Y)

(THASSERT (HU~4AN $?X)))
THEOREM)

Thls says that when we assert that X likes something, we

should also assert (HUMAN $?X). Of course, such theorems do not

have to be so simple. A fully genera] PLANNER program can be

activated by an TIIANTE theorem, doing an arbitrary (that Is, the

programmer has free chol.e) amount of deduction, asssertlon,

etc. Knowledge of what we are doln~ In a partlcular problem may

indicate that it is sometimes a good idea to do this kind of

deduction, and othe:- times not. As wlth the CONSEQUENT

theorems, PLANNER has the full capaclty when something Is

asserted, ~o evaluate the current state of the data and proof,

and specifically decide which ANTECEDENT theorems should be

called.

PLANNER therefore allows deductions to use all sorts of

knowledge about the subject matter which go far beyond the set

of axioms and basic deductive rules. PLANNER Itself Is subject-



Independent, but Its power Is that the deduction processs never

needs to operate on such a level of Ignorance. ~he programmer

can put In as much heuristic knowledge as he wan~s to about the

subject, just as a good teacher wouid help a c|ass to understand

a mathematlcai theory, rather than jus: ~eIIIng them the axioms

and then giving theorems to prove.
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~ Events ~d States

Another advantage In representing knowledge In an

imperative form Is the use of a theorem prover In ~eallng with

processes involving a sequence of events. Conslder the case of

a robot manipulating blocks on a table. It might have data of

the form, "block1 is on block2," "block2 Is behind block3", and

"If x Is ony and you put !t on z, then x Is on z, and Is no

longer on y unless y Is the same as z". Hany examples In papers

on theorem provers are of this form (for example the classlc

"monkey and bananas" problem). The problem is that a

declarative theorem prover cannot accept a statement ll~e (ON 81

82) at face value. It clearly Is not an axiom of the system,

since its validity will change as the process ~oes on. It must

be put in a form (ON B1 82 SO) where SO is a symbol for an

in;tlal state of the world. See <Green 1969> for a dlscusslon

of such "state" problems.

The third s~atement might be expressed as:

(FORALL (X Y Z S)(AI,D (ON X Y (PUT X Y S))
(OR(EQUAL Y Z)

(NOT(ON X Z (PUT X Y S))))))

In this representatlon, PUT Is ~ function whose va~ue Is

the state wh!ch ~esults from putting X on Y when the prevlous

state wgs S. We run Into a problem when we .try to ask (CN Z W

(Pi~T X Y S)) I.e. Is block Z on block N after we p~t X on Y? A

human knows that If we haven’t touched Z or N we could just ask

(ON Z N 3) but in general it may take a complex deductlon to
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decide whether we have actually moved them, and even If we

haven’t, It wl]l take a whole chain of deductions (trac~r.g back

through the tlme sequence) to prove they haven=t been moved. In

PLANNER, where we specify a process dlrect]y, thls whole type of

problem can be handled In an Intultlve]y more satisfactory way

by using the primitive function THERASE.

Eva]uatlng (THERASE (ON $?X $?Y)) removes the assertion (ON

$?X $?Y) from the data base. If we think of theorem provers as

working with a set of axioms, It seems strange to have a

function whose puroose Is to erase axioms. If Instead we think

of the data base as the "state of the world’~ and the operation

of the prover as manipulating that state, It allows us to make

great simplifications. Now we can simply assert (ON B1 B2)

without any explicit mention of states. We can express the

necessary theorem as=

(DEFPROP THEqREM3
(THCONSE (X Y Z) (PUT $?X $?Y)

(THGOAL (ON $?X $?Z))
(THERASE (ON $?X $?Z))
(THASSERT (ON $?X $?Y)))

THEOREM)

Thls says that whenever we want to satisfy a goal of the

form (PUT $?X $?Y), we should first flnd out what thing Z the

thing X is sitting on, erase the fact that It ls slttln~ on Z,

and assert that It Is sitting on Y. We could also do a number of

other things, such as proving that It ls I~deed possible to put

X on Y, or adding a list of speclfic Instructions to a movement

plan for an arm to actually execute the goal.in a more �omplex
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case, other Interactloms might be Involved. For example, If wa

are keeping assertions of the form �ABOVE $?X $?Y) we would need

to delete those assertions which became false when we erased

$?X $?Z) and add those which became true when we added (ON $?X

$?Y).    ANTECEDENT theorems would be called by the assertion (ON

$?X $?Y) to take care of that part, and a slmllar group called

ERASING theorems can be called In an exactly analogous way when

an assertion Is erased, to derive consequences of the erasure.

Asaln we emphasize that which of such theorems would be called

is dependent on the way the data base is structured, and is

determined by knowledge of the subject matter. In this example,

we would have to decide whether It was worth adding all of ~:he

ABOVE relatlons to the data base, with tbe resultant need to

check them whenever somethinE Is moved, or instead to omit them

and take time to deduce them from the ON relation each time they

are needed.

Thus In PLANNER, the changln~ state of the world can be

m!rrored in the chan~ln~ state of the data base, avoiding any

need to make explicit mention of states, with the requisite

overhead of deductions. This ls posslble since the lnformatlon

Is given In an Imperative form, specifying theerems as a series

of speclflc steps to be executed.

If we look back to the distinction between assertions and

theorems m~de on the first page, it would seem that we have

established that the base of assertions Is the "current state of
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the world", while the base of theorems is our permanent

knowledge of how to deduce things from that state. This Is not

exactly true, and one of the most exciting posslbilltles In

PLA~INER is the capablllty .for the program Itself to create and

modify the PLANNER functions which make up the theorem base.

Rather than simply making assertlons, a particular PLANNER

function might be written to put .together a new theorem or make

changes to an exlstlng theorem, in a way dependent on the data

and current knowledge. It seems likely that meanlngfu|

"learning~’ Involves thls type of behavior rather than simply

modifying parameters or adding more individual facts

(assertions) to a declarative data base.



F
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~ ~ Functlons

There are a number of other PLANNER commands, desl~ned to

sult a range of problem-solvlng needs. They are described In

detail {n <Hewltt 1969, 1970> and We wllI describe only those

which are of particular use In our question answering program

and which we will want to refer to later.

We have already mentioned the bas!c functlon~ and described

how they operate. THGOAL looks for assertions In the data base,

and calls theorems to achieve ~oals. THAND takes a list of

PLANNER expressions and succeeds only If they all succeed In the

order they are listed. THOR takes a similar list and tries the

expressions In order, but succeeds as soon as one of them does.

Remember that In case of a failure farther a]on~ In the

deduction, THOR can take back Its decision and continue on down

the list. The other slmp|e LISP functlons PROG, COND, and NOT

have their PLANNER analogs, THPROG, THCOND, and THNOT, which

operate just as their LISP counterparts, except that they are

contro|led by the distinction between ~fallure~= and ~success~=

Instead of the distinction between NIL and non-NiL. THPROG acts

like THAND, falling if any one of Its members fal|s.

One of the most useful PLANNER functions Is THFIND, which

ls used. to find al| of the objects or assertlons satlsfylng a

given PLANNER condltlon. For example, If we want to find all of

the red blocks, we can evaluate~



Section 3.3.6 - Page 258

(THFIND ALL $?X (X)
(THGOAL(BLOCK $?X))
(THGOAL(COLOR $?X RED)))

The function THFIND takes four pieces of Information.

First, there is a parameter, te11Ing It how many objects to look

for. When we use ALL, it looks for as many as It can flnd, and

succeeds If It finds any. If we use an Integers It succeeds as

soon as It finds that many, without looking for more. If we

want to be more complex, we cam tell it three thln~s= a. how

many it needs to succeed~ b. how many It needs to quit Iooklngs

and c. whether to succeed or fall If It reaches the upper limit

set In b.

Thus If we want to find exactly 3 objects, we can use a

parameter of (3 4 NIL), which means ’~Donlt succeed unless there

are three, look for a fourth, but If you flnd It, fall~.

The second blt of Informatlon.tells It what we want in the

list It returns. For our purposes, thls will alweys be the

variable name of the object we are interested In. The third

Item Is a list of variab!es to be useds and the fourth Is the

body of the THFIND statement. It is thls body that must be

satlsfled for each object found. It is Identical to the body of

a THPROGs and can have tags and THGO statements ~s well as a

series of expresslons to be evaluated.

Another function used extensively by the semantic

inter~-eter Is THAMONG. This takes two arguments, the second Is

a list, and the first is the name of a variable. If the
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variable Is assigned, THAHONG acts just like LISP HEH~,

succeeding If the value of the varlable Is contained In the

llst.    However, If the v~rlable Is unassigned, THAHONG assigns

It to the first member of tl~e llst, then succeeds. If this

causes a failure to back ~p to the THAHONG, it binds the

variable Instead to the second member and tries ~galno This

continues ~=ntil the entire expression succeeds with some

asslgnment or the list Is exhausted, in which case THAMONG

returns failure. Using this, along with the normal blndlng

mechanism in THGOAL statements, fallure can be used to run a

loop through a llst of objects which are specified by giving a

PLANNER goal ur arbitrary expression which they satslfy.
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3.~ The BLOCKS World

We need a subject to discuss with our language-

understandln~ program which ~Ives a variety of =hlngs to say and

In which we can carry on a discourse, containing statements,

questions, and commands. We have chosen to pretend we are

talking to a very simple type of robot (like the ones beln~

develooed In AI projects at Stanford and HIT) wlth only one arm

and an eye. It can look at a scene containing toy objects l|ke

blocks and balls, and can manipulate them with Its hand.

We have not tried to use an actual robot or to simulate It

In physlcal detail. Since we are Interested prlmarlly In

complex language activity, we have adopted a very simp1|fled

model of the world, and the ~robot~ exists only as a display on

~he CRT scope attached to the co~puter.
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~ Objects

First we must decide what objects we will have In the

world. In 3.1, we adopted some c~,,ventlons for notation In

representing objects and assertions. Any symbol which begins

wlth ":" represents a specific object, whl]e anythln~ beginning

wlth "4" Is the tame of a property or relation.

The model begins with the two participants In the

discussion, the robot (named :SHRDLU), and the person (called

=FRIEND). The robot has a hand (:HAND}, and manipulates objects

on a table (:TABLE), which has on it a box (=BOX). The rest of

the physical objects are toys -- blocks, pyramids, and balls.

We give them the names :BE, :B2, :B3,...

Next we must decide on the set of concepts we w111 use to

describe these objects and their propertles. We can represent

these In the form of a tree=

#PHYSOB-"-

#ROBOT

#PERSON

#PROPERTY,

#TABLE

#BOX      IeBLOCK

#HANIP’-’---I#BALL
#HAND /#PYRAHID

#STACK

, I#COLOR
#SHAPE

Figure 51~ -- Classlficatlon of Objects and Properties

The symbol #PHYSOB stands for "physical object’t, and #HANIP for

"manlpu}able object" (I.e. somethlng the robot can plck up).
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~Je could use these as simple predicates, and have

assertions 11ke (#ROBOT :SHRDLU), (#HAND :HAND), and (#PYRAMID

:B5) to say that Shrdlu Is a robot, the hand Is a hand, and :B5

Is a pyramid. In section ~.~.3, we describe the way the

langua~e programs choose an En~IIsh phrase to describe an

object. In order to do so, they need a basic noun -- the one we

would use to say "thls Is a ...". If we represented the

concepts in the above tree usln~ simple predicates, and then

used the same for~ for ocher p.~dlcates, such as co~ors (for

example, (#BLUE :BS)), the language ~eneratin~ routines would

have no easy way to know which was the "baslc’I property. It

would be necessary to keep lists and contlnualiy check.

Instead, we adopt a different way of wrltln~ these concept~.

use the concept #IS to mean "has as Its basic desc~Iptlon", and

write (~IS =SHRDLU #ROBOT), (#IS :H~ND #HAND), and (#IS =B5

#PYRAMID).

Looking at the tree, we see that the properties #PHYSOB and

#MANIP cannot be represented In this fashion, since any object

havln~ them also has a basic description. We therefore write

(#MANIP =BS) and (#PHYSOB =TABLE).

Next, we would like to assign physical properties to these

objects, such as size, shape, color, and 1ocatlon. Shape and

color are handled wltn slm91e assertions |ike (#COLOR =BOX

#~HITE) and (#SHAPE :B5 #POINTED). The possibl~} shapes are

#ROUND, #POINTED, AND #RECTANGULAR, and the colors are #BLACK,
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#RED, #WHITE, #GREEN, and #BLUE. Of course it would Involve no

programming to Introduce other shape or color names -- all that

we would do Is use them In.an assertion, II:~e (#COLOR =B11

#MAUVE), and add an assertion telling what type of thln~ they

are.    The property names themselves can be seen as objects, and

we have the cof~cepts #COLOR and #SHAPE, to make assertions like

(#1S #BLUE #COLOR), and (#IS #RECTA,.GULAR #SHAPE).

Size and locatlcn are more complex, as they depend on the

way we choose to represent physlca] space. We have adopted a

standard three-dimensional coordinate system, wlth coordinates

ranging from 0 to 1200 In all three directions. (The number

1200 was chosen for convenlenc~ in programming the display).

The coordinate point (0 0 0} Is In the front lower left-hand

corner of tf’e scene.

We have made the simplifying assumption that objects are

not allowed to rotate, and therefore a|way~ ~eep their

orientation a|lgned with the coordinate axes. W~ can represent

the position of an object by glvin~ the coordinates of Its front

lower left-hand corner, ano can specify Its size b~’ giving the

three dimensions. We use the symbols #SIZE and #AT, and put th~

coordinate trlp]es as a single element In the assertions. For

examp|e, we might have (#AT =B5 (k00 600 200)), and (#SIZ~ :B5

(100 !00 300)).

Slf~e we assume that the robot has an eye, the system

begins the dialog with complete Information about the objects In
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the scene, their shapes, sizes, colors, and locations. In

addition to the PLANNER assertions, the system keeps a table of

sizes and Iocatlons for mo~e efficient calcu]atlon when ]ooklng

for an empty ~pace to set something down.
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The basic relatlons ~ will need for this model are the

spatial relations between objects. 31n~e we are Interested In

movln~ objects around In the s(:ene, one of the most Important

relations Is ~SUPPORT. Tho InltlaI data base contains all of

the appllcable support relations for the Initial scene, ~nd

every tlme an object is moved, an antecedent theorem removes the

old assertion about ..’hat was supporting It, and puts In the

correct new one. We have adopted a very simplified notion of

support, In which an object Is supported by whatever Is directly

below Its center of ~ravlty, a~ the level of Its bottom face.

Therefore, an object can support several others, but there Is

only one thln~ supportln~ It. Of course this Is an extreme

simplification slnce It does not recognize that a simple brld~e

Is supported. If this program were to be adapted to use with an

actual robot, a m~ch more ~eneral Idea of support would be

necessary.    Alon~ with the #SUPPORT relations, we keep track of

the property #CLEARTOP. The assertion (#CLEARTOP X) wi11 be In

the data base If and only If there Is no assertion (#SUPPORT X

Y) for any object Y. It is also kept current by antecedent

theorems which are called whenever an object is moved. This

happens automatically whenever an assertlon of the form (#AT OBJ

(X Y Z}) Is made. The theorems make theappropriate check to

see whether the #CLEARTOP status of any object has chan~ed, and

If so the necessary erasures and assertions are made.
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A second relation which is kept In the data base Is

#CONTAIN.    The f~rst participant must be the box, since this Is

the only container In the scene. The Information about what ls

contalne~ in the box is also kept current by an antecedent

theorem.    The relatlon #GRASPING is used to lndicate wha:

object (If any) the robot’s hand ls grasping. It is

theoretically a two-place predlcate, relating a grasper and a

graspee, as In (#GRASPING :SHRDLU :B2). Since there Is only one

hand in cur scene, It is clear who mL~st be doing the grasping,

so the assertior= is reduced to (VGRASPING :B2)o

The other relation which is stored i~ the data base Is the

�PART relation between an object and a stack. Ne can glve a

name to a stack, such as =$1, and assert (#PART :B2 :$1). As

objects are moved, the changes to the data base are agaln made

automatlcal|y by an=ecedent theorems which notice changes of

location.

As we explained in section 5.3.3, we must ds~lde wha~

relations are useful enough to occupy space In our data base,

and which should be recomputed from simpler Information etch

time we need them. We have Included relations ilke #SUPPORT and

#CONTAIN because they are often referenced in decldin~ how to

move objects. We can think of other relations, such as the

relative posltlon of two objects, which can be computed from

their locations, and are not used often enough to be worth

keeping In the data base and partially recomputlng every time
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something is,moved. We represent these relations using the

symbG1S #RIGHT, #BEHIND, and #ABOVE. (These repr�.ssnt the

direction of the positive coordinate axis for X, Y, and Z

respectlvely).    We do not need the converse relations, since we

can represent a fact like ":B1 Is below =B2" by (#ABOVE =B2

=BI), and our semantic system can convert what Is sald to thls

~tandard format. The symbol #ON Is used to represent the

transiLIve closure of #SUPPORT. That Is, Z Is #ON A If A

supports B, B supports C,...supports Z.

The three spatial relatlons use a common consequent theorem

called TC-LOC wh;ch decides If they are ~rue by 1ookI~ at the

coordinates and sizes of the objects. The #ON relation has a

consequent theorem TC-ON which looks for chains of support.

(;~otlce that the prefix TC- stands for Theorem Ccnsequent, and

Is attached to a11 of our consequent theorems. Slmilarly, TA-

and TE- are used for antecedent and erasln~ theorems.)

The measurements of #HEIGHT, #WIDTH, and #LENGTH are

represented as a slmple assertion, Ilke (#HEIGHT =B3 I00}, but

they are not stored In the data base. They are computed when

needed from the #SIZE asser¢lon, and can b~ accessed by usln~

the theorem TC-HEA3UR~, or by usln~ a functional :otatlon. The

expression (#HEIGHT X) evaluates to the hei~t of whatever

object the variable X Is bound tc. If #S!ZE Is used In this

way, it returns a measure of ~=overal~ size~ ~o be used for

comparisons llke ~blg~er"o Currently It returns the sum of the
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X, Y, and Z coordinates, but It could be easily changed to >’e

more In accord wlth human psycholoay.

In order to compare measurements, we have the relatlon

#NORE. The sentence ":BI Is shorter than :B2" Is equlvalent to

the ~.3ertlon (#NORE #HEIGHT :B2 :BE). A~aln, we do not need

the relatlon "less" since we can simply reverse the order of the

objects. The reiatlon #ASMUCH Is used In the same way, to

express "greater than or equal", Instead of "strlctly greater

than".    None of these assertions are stored (If we have ten

objects, there w111 be almost ~00 relatlonshlps), but are

computed from more basic Information as they are needed.

One flnal relatlonshlp Is #LIKE, which relates a person or

robot to any object. There Is a theorem which shows that the

robot likes everything, bu£ knowledge about what the human user

11kes Is gathered from his statements. The semantic programs

can use statements about 11klng to Generate further PLANNER

theorems which are used to answer questions about what :FRIEND

llkes.
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.~,,.~r..,.~ Actions

The only events that can take place In our world are

actions taken by the robot In moving Its hand and manipulating

objects. At the most basic level, there are only three actions

which can occur -- HOVETO, GRASP, and UNGRASP. These are the

actual commands sen~ to the dlspIay routines, and could

theoretically be sent directly to a physical robot system.

The result .~f calling a consequent theorem to achieve a

goal requlrln~ ~:otlon, like (#PUTON :B3 :B4), Is a plan -- a

llst of Instructions ~Isln~ the three elementary functions.

MOVETO moves the hand and whatever It Is currently grasping to a

set of specified coordinates. GRASP sets an Indicator that the

grasped object -s to be moved along with the hand, and UNGRASP

unsets it. The robot ~rasp~ by moving its hand dlrectly over

the center of the object on Its top surface, and turning on a

"magnet". It can do this to any manipulable object, but can

only grasp one thing at a time. Using these elementary actions,

we can bulld a hlerarchy of ~ctlons, Including goals which may

involve a whole sequence of deductions and actlons, llke

#STACKUPo

The semantlc pro�rams never need. to worry about details

Involving physical coordinates or speclfI¢ motion Instructions,

but can produce Tnput for h|~her-leve! theorems which do the

detailed work.

At a slightly hlghar level, we have the PLANNER concepts
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~MOVEHAND, #GRASP and #UNGRASP, and corresponding consequent

theorems to achieve them. There Is a significant difference

between :hese and the functions listed above. Calling tne

function MOVETO actually causes the hand to move. On the other

hand, when PLANNER evaluates a statment like:

(THGOAL(#MOVEHAND (600 200 300))(THUSE TC-MOVEHAND))

nothing Is actually moved. The theorem TC-MOVEHAND Is called,

and It creates a plan to do the motion, but If thls move causes

us to be unable to achieve a goal at some later point, the

PLANNER backup mechanism wll] automatlca]y erase It from the

p|an.    The robot plans the entire actlon before actually movlng

anything, trying all of the means It has to achieve Its goa|.

The theorems also do some checklng to see If we are trying

to do something impossible. For example, TC-MOVEHAND makes sure

the action would not Involve placing a block where there Is

already an object, and T~-BNGRASP falls unless there Is

something supportlng the object It wants to let go of.
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~.~.~ CarEyi~F. Ou~ ~ommands

Some theorems, like TC-GRASP, are more complex, as they can

cause a series of actions. In this section we will

PLANNER through such an action, using the slmp|Ifled thecrems of

figure 55° If PLANNER tries the goal:

(THGOAL (#GRASP :BZ)(THUSE TC-GRASP))

the theorem TC-GRASP can do a number of things. It checks

make sure :B1 is a graspable object by looking In the dais base

;for (#MANIP :B1). If the hand is a|ready grasping :he object,

It has nothing more to do. If not, it must first get abe hand

to the ob]ect. This may involve complications -- the hand may

already be holding something, or there may be objects sitting on

top of the one It wants to grasp. In the first cas~, It mus:

ge: rid of whatever ~s in the hand, using :he the command #GET-

RID-OF. The easiest way to get rid of something Is to set

on the table, so TC-GET-RID-OF creates the goal (#PUTON $?X

:TABLE), where the variable $?X is bound to the object the hand

;s ho]dlng. TC-PUTON mus: In turn find a big enough empty place

to set down Its burden, u~lng the command #FINDSPACE~ wmlch

gerforms the necessary ca]cu]atlons~ using |nformatlon abou~ the

sizes and ]ocatlons of all :he objects. TC-PUTON then creates a

~oal usln~ #PUT, which calculates where the hand must be moved

~o ge: the object into the desrlred place, then calls #MOVEHAND

to actually plan the move. If we look at the loglca] structure

of our active goals a~ this point, assumlngtha: we
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{DEFTHEOREH TC-CLE~RTOP
(THCO~ISE (X Y)    (#CLEARTOP $?X)

GO (THCOND ((THGOAL (#SUPPORT $?X S_Y))
(THGOAL (#GET-RIO-OF $?Y)

(THUSE TC-~ET-RID-OF))
(THGO GO))

((THASSERT (#CLEARTOP $?X))))))

(DEFTHE3REM TC-GET-RID-OF
(THCONSE (X Y)      (#GET-RID-OF $?X)

(THOR
(THGOAL (#PUTON $?X    :TABLE)(THUSE TC-PUTON)).
(THGOAL (#PUTOH $?X $?Y)(THUSE TC-PUTON)))))

(DEFTHEOREM TC-GRASP
(THCONSE (X Y)         (#GRASP $?X)

(THGOAL(#MANIP $?X))
(THC0ND ((THGOAL (#GRASPING $?X)))

((THGOAL (#GRASPING S_Y))
(THGOAL (#GET-RID-OF $?Y)

(THUSE TC-GET-RID-OF))))
(T))

(THGOAL (#CLEARTOP $?X)    (THUSE TC-CLEARTOP))
(THSETQ $_Y (TOPCENTER $?X~
(THGOAL (#MOVEHAND $?Y)

(THUSE TC-MOVEHAND))
(THAS~ERT (#GRASPING $?X))))

(DEFTHEOREM TC-PUT
(THCONSE (X Y Z) (#PUT $?X $?Y)

(CLEAR $?Y (SIZE $?X) STX)
(SUPPORT $?Y (SIZE $?X) $?X)
(THGOAL (#GRASP $?X) (THUSE TC-GRi~3P))
(T~SETQ $_Z (TCENT $?Y (SIZE
(THGOAL (#HOVEHANO $?Z) (THUSE TC-MOVEHAND))
(THGOAL (#UNGRASP) (THUSE TC-UNG~ASP))))

(DEFTHEOREM TC-PUTUN
(THCONSE (X Y Z)      (#PUTON $?X $?Y)

(NOT (EQ $?X
(THGOAL (#FINDSPACE $?Y SE (SIZE $?X} $?X $_Z}

(THUSE TC-FINDSPACE TC-MAKESPACE))
(THGOAL (#PUT $?X $?Z}      (THUSE TC-PUT}))}

Figure 55 -- SImpiIfled PLANNER Theorems
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grasp :BI, but were already 8raspln6 :a2, we see:

(#GRASP :BI)
(#GET-RiD-OF

(#PUTON :B2 :TABLE)
(#PUT :B2 (453 201 0))

(#MOVEHAND (555 501 I00))

After movln~, TC-PUT    cal}s #UNGRASP, and we have achieved

the first part of our original goal -- emptying the hand. Now

we must clear off the block we want to grasp. TC-GRASP sets up

the ~oaI:

(THGOAL(#CLEARTOP :B2)(THUSE TC-¢LEARTOP))

This Is a good exe,mple of the double use of PLANNER 8oals to

both search the data base and carry out actions. If the

assertion (#CLEARTOP :B~) Is present, It satisfies thls

Immediately wlthou~ callln~ the theorem. However If :B1 Is not

already clear, this THGOAL statement calls TC-CLEARTOP which

takes the necessary ~ctlons.

TC-CLEARTOP wlll try to #GET-RID-OF the objects on top of

:B1. This wi|l In turn use #PUTON, which uses #PUT. But TC-PUT

may have more to do thls time, since the hand Is not already

graspin~ the object It has to move. It therefore sets up a goal

to #GRASP the object, calling TC-GRASP. We have ~one full

circle, and are back in the theorem we started In. Of course

this is no problem In a recurslve language, and the process

continues as it should untll al! of the goals have been

achieved, or all of the methods Included In the theorems have

failed.
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Vie have gone through thls example In some detail to glve a

feeIlng for the goaI-orlen~ed programs used by PLANNER. The

programs are highly recurslve, wlth a clear subgoal structure,

and wlth theorems often calling themselves to achieve subgoals.

During all of thls, PLANNER Is keeping track of what Is being

done In such a way that It can bK~ u~ and try something

different If necessary. For example, If TC-GET-RID-OF puts an

object on the table, and It later Is In the way of something

which must be done, a failure will propagate back to TC-GET-RID-

OF, and.lt will try putting It somewhere else.

Figure 56 lists the different action concepts more

systematically, showing the form of the goal statements, and the

actions taken by the theorems correspondln~ to them. In our

program, the names of the ~heorems are formed by adding the

prefix TC- for a consequent theorm, TA- for antecedent, and TE-

for erasing. Thls Is strlct]y for programmer convenience In

recognizing the purpose of a theorem from Its name. All of

these goals can be used Internally within the BLOCKS system, and

most of them can be called directly by the semantic pro~rams, as

direct translatlons of English commands. Some, 11ke #MOVEHAND

cannot be called by the 11ngulstlc programs, since the semantic

routines do not Include a way to specify exact coordinates In

English.
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(#MOVEHAND (X Y Z)) ~iove the center of the hand to 1ocatlon
(X Y Z). Anything being grasped goes
along automatically.

(#UNGRASP) Let go of whatever the hand Is holding.
Fails If the object Is not supported.

(#GRASP X} Grasp object X, doing any manipulations
necessary to get to It.

(#PUT W (X Y Z)) Put ~1 at 1ocatlon (X Y Z).
the space is empty.

Fails unless

(#RAISEHAND) Ralse the hand and whatever It holds as
hlgh as It will

(#PICKUP X) Grasp X ~nd raise the hand.

(#PUTON X Y) Put object X on object Y. If there Is
not enough free space on Y, move
objects to make it.

(#PUTIN X Y) The same as #PUTON, except that Y must be
a box, and different methods are used
to find space.

(#GET-RID-OF X) 3ry to put X on the table, and If that
falls puL It on anything else.

(#CLEARTOP X) Get rld of everything which Is on X.

(#STACKUP (X Y...)) Stack Xs Y, ... on top of each other,
In order of slze.

(#FINDSPACE A (X Y Z) B S_C)
Thls goal can be achieved by two different

theorems. TC-FINDSPACE tries to find a
space of size (X Y Z) on top of object
A, counting any space occupied by B as
empty. $_C is a variable blndlng used
to return the answer. If this falls,
TC-MAKESPACE can create the space by
moving objects.

Figure 56 -- BLOCK3 Commands
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~ Memory

~n order to answer questions about past events, the BEOCKS

programs remember selected parts of their subgoal tree. ~’hey do

this by creating objects ca|led events, and putting tb~ on an

EVENTL~ST.    The system does not remember the detailed series of

specific steps like #MOVEHAND, but keeps track of the larger

goals ilke #PUTON and #STACKUP. The time of events Is measured

by a clock which starts at 0 and Is Incremented by I every tlme

any motion occurs. The theorems which want to be remembered use

the functions MEMORY and MEMOREND, calling ~EMORY when the

theorem Is entered and MEMOREND when It exits. MEMOREND causes

an event to be created, combining the original goal statement

with an arbitrary name (chosen from El, E2,...). Recall from

Sectlon 3.E that a relation can lnc|ude Its own name, so that"

other relations can refer to it. If we call TC-PUTON wlth the

goal (#PUTON $?X $?Y), with the variables X and Y bound to :BE

and :B2 respectively, the resulting event which Is put Into the

data base Is (#PUTON EE :BE :B2). The event name Is second,

Instead of last as described In 3.E for unimportant technical

reasons which will be changed In later versions.

In addition to putting this assertion In the data base,

MEMOREND puts Information on the property ||st of the event name

-- the starting time, ending time, and reason for each event.

The reason Is the name of the event nearest up In the subgoal

tree which Is being remembered. The reason for goals called by
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the linguistic part of the system is a special symbol meaning

"because you asked me to~s. HEMORY Is called at the beginning of

a theorem to establish the start time and declare that theorem

as the "reason=~ for the subgoals It calls.

A second kind of memory keeps track of the actual physical

motions of objects, noting each time one is moved, and recording

Its name and the location It went to. This list can be used to

establlsh where any object was at any past time.

Nhen we want to plck up block =B1, we can say=

(THGOAL(#PICKUP =B1)), and it ls Interpreted as a command. How

can we ask ~Dld you pick up :BI?~? Nhen the robot plcked It

an assertion like (#PICKUP E2 =81) was stored in the data base.

Therefore if we ask PLANNER

(THPROG(X)
~THGOAL (#PICKUP $?X

it will ~ind the assertion, blnding the varlable X to the event

name E2o Since th~ property 11st of E2 gives Its sta~tin~ and

ending times, and its reason, this Is sufficlent Information

answer most questlons.

If we want to ask somethln~ like "Dld you pick u~

before you built the stack?" we need some way to look for

particular ~lme Intervals. This is done by u~In~ a modified

version of the even~ description, Includin~ a t/me Indicator.

The exact form of the ~Ime indicator is described in the sectlon

on semantics, but the way it Is used to establish a goal Is:

(THGOAL(#PICKUP $?X :BZ $?TI~E)(THUSE TCTE-PICKUP))
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The prefix TCTE- on the name of a theorem means that It

Includes a time and an event n~me. Ordinarily when such a

theorem is entered, the variable TIME would have a values while

the variable X would not. The theorem looks through the data

base for stored events of the form (#PICKUP $?X =BI) and checks

them to see If they a~ree with the tl~e TIHE.

For some eventss like #PUTONs this is sufflclent slnce the

system remembers every #PUTON It does. For otherss like #PICKUP

less Information Is kept. When #PICKUP Is called as a goal at

the top level~ it is remembered. But the system does not

remember each time something was picked up In the course of

moving the toys around. The fact that a block was picked up can

be deduced from the fact that It was put somewhere~ a~d the

theorem TCT£-PICKUP actually looks at a number of different

types of events (like #PUTON and #PIITIN) to flnd al! the

occasions on which an object was really picked up.

For spatial relationss we also need to be able to Include

tlme~ for examp|e~ "Was the block behind the pyramid before..o?

In this cases no assertions are stored~ since the me~~ory of

motion events Is sufficient to reconstruct the scene. There are

special theorems wlth the pref!x TCT- w~lch try to verify a

rela~lon with a time condition. For exz,m~les we ca~ ask "Is

on =B27" with the �oal

(THGOAL(#ON =B1 =B2)(THUSE TC-ON))

To ask "Was =B1 on =B2 before.°.?" we blnd the variable TIME to
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the representation of the tlme we are Interested !n, and ask

(THGOAL(#ON =B1 =B2 $?TIME)(THUSE TCT-ON))

The theorem TCT-ON is the same as TC-ON except that It dea]s

wlth the specified time Instead of the present. Slmilar TCT-

theorems exlst for a~l of the spatial reIatlons, and for

properties whlch change In tlme~ such as #¢LEARTOP and #AT.

Appendlx C is a listing of parts of the eLOCKS program as

It was used In generating the s~mple dialog. PLANNER theorems

are s~fflc.len~|y se|f=explanatory that only a few commen~s have

been Included. The auxl]llary LISP functions (such as the one

~hlch decides whether a space Is empty) are not inc|uded, but

are available on request~ alon~ with the complete ~L~CKS

listings.
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Chapter ko Semantlcs

4.1 What Is Semantics?

~.1.1 the ProVince 9~ Semantics

The fle|d of semantlcs has always been a hazy swampland.

The~’e is llttle agreement among "semanticlsts" where Its borders

lie or what the terrain looks llEe. Logicians, philosophers,

and linguists all approach It with the tools of their own trade,

and the problem of just deflnlng "semantics" and "meaning" have

occupied volumes of debate.

In trying to program computers to understand natural

language, It h~s been necessary to have a more exp]Iclt and

complete notlon of semantlcs. The attempts et wrltlng ]anKuage

understanding pro�rams have made It more c|ear just what a

semantlc theory has to do, and how It must connect wl*h t.he

syntactic and log;ca1 aspects of language. In practical terms,

we need a transducer whlch can work with a syntactic analysis,

and produce data which Is acceptable to a logical deductive

system.

In the precedlng chapters we have described the two ends of

a language system -- a syntactic parser with a grammar of

English, and a deductive system with a base of knowledge about a

particular subject. What does our semantic theory have to do to
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fill the gap?

In section 3.1.2 we outlined the basis for a theory oF

semantics. It Includes a world of "concepts" and ;tructures of

concepts which are postulated by the linguist in trying to

explain linguistic phenomena. These are not a psycholo~ical

real|ty, but a formalism in which he can syctematically express

those aspects of meaning which are relevant to language use. By

manipulating structures In this formalism as a part of analyzlng

sentences In natura! language, the theory can directly deal wlth

problems of relating meaning to parts of the speaker’s and

hearer=s knowledge which are not mentioned explicitly in the

sentence being analyzed.

A semantic theory mutt describe the relationship between
the words and syntactic structures of natural language and the
postulated formalism of concepts and operations on concepts. In
our theory, thls relationship is described as a set of
orocedures which analyze linguistic forms to produce
representations of meaning In the Internal conceptual formalism.
dust as with the grammar, this does not purport to be a model of
an actual process taking place In the hearer or speaker. The
process description Is used because It Is a powerful way to
describe W~neutral~ relationships, as well as being
psychologlcally sucgestlve.

The theory must describe relationships at three dlfferent

levelso    First, there must be a way to de~in~ the meanings of

words.    We pointed out In the sectlon on "meaning" (section

3ol) that the real "meanlng" of a word or concept cannot be

defined In simple dictlonary terms~ b~t Involves Its

relationship to an entire vocabulary and structu=-e of concepts.

However’, we can talk abo~t the formal descrlptlo(~ attached to a
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word which allows |~ Co be |n=egrated |nto the systen,. In the

rest of this chapter, we w]l! use the word "meaningz~ In this

more limited sense, descrlblng those formal aspects of the

meaning of a word (or syntactic construction) which are attached

to it as Its dlctlonary definltlon.

The formalism for definlt|ons should not depend on the

details of the semantic programs, but should allow users to add

to the vocabulary in a simple and natural way, It should also

be posslbie to handle the quirks and Idlosyncracles of meaning

whzch words can have, Instead of lim|tlng ourselves to ~we11-

behaved" standard words.

At the next level we must relate the meanings of the words

!n a sentence to each other and to the meaning of the syntactic

structures. We need an analysis of the ways In whlch English

structures are designed to convey meaning0 and what role the

dlfferent words and syntactic features play in this meaning.

Finally, a sentence In natural language is never

Interpreted in isolatlon. It ls always part of a context~ and

Its meaning is dependent on that �ontext. A theory should

explain the dlfferen~ ways in which the "settlng" of a sentence

can affect Its meaning. It mus~ deal both with the linguistic

setting (the context wl~hln the discourse) and the real-world

settln~ (the way meaning Interacts with knowledge o~ non-

linguistic facts.)



Section k.1.2 - Page 283

.~f.~ The Semantic System

~lth definite goals in mind for a semantic system, we can

consider how to Implement It. First let us look at what it

should know about English. As we have been emphaslzlng

throughout the paper, a language Is not a set of abstract

symbols. It is a system for conveying meaning, and has ~vo]v’~d

with very specla] mechanlsms for conveying just those aspects of

meaning needed for human communlcatlon.

Section 3.1 discussed the person’s "mode] of the world"

whlch ls organized around notions of "objects", havlng

"properties" and entering Into "relationships," In 3.1.3, these

are combined to form more compIlcat.ed ]oglca] expressions.

Looking at the propertles of English syntax (as descrlked In

Section 2.3) we see that these basic elements of the "world

model" are just what English is good at conveying.

For describing ~bjects, there is the NOUN GROUP. It

contains a noun, which lndlcates the kind of object~ adjectlves

and classifiers, which describe further properties of the

object~ and a complex system of q~antlfiees and determiners

describing its logical status -- whether It is a particular

object, ("the sun"), a class of objects ("people"), a

particular set of objects ("dohn~s I Izards")~ an unspecified set

containing a s~eclfled number of.obJects ("three b&nanas"), etc.

The details (described In sectlon ~.2) are complex, bu~ the

Important.thing is the existence of a systematic structure.
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For describing relatlonshlps and events, there are the

CLAUSE, PREPOSITION GROUP, and ADJECTIVE GROUP. The CLAUSE Is

especlally suited for dealing with relatlonshlps having a

partlcular time reference, working In coordination wlth the VERB

GROUP, which functions to convey Information about tlme, using

an Ingenious system of tenses. Clauses can also be used to

represent an even� or relatlonshlp as an object (as In

~ pleased me."), or to modify a partlcular object within a

NOUN GROUP (in "the man who broke the bank"). The PREPG Is a

less flexlble and simpler way of expressing relationships which

do not need modifiers such as tlme, place, and manner (such as

"lhe man jj~ the blue vest"). The ADJG Is used In some

constructions to describe propercles and some speclal kinds of

relationships of objects (such as "Her glft was bl~erhJ;.b.~

breadbo~.")

The semantic system Is built around a group of about a

dozen programs which are experts at |ooklng at these particular

syntactic structures. They look at both the structures and the

meanings of the words to build up PLANNER expressions whlch

be {lsed by the deductive mechanism. It !s Important to remember

that the parser uses svstemlc zrammar so the semantic programs

can look dlrectIy for features such as PASSIVE or PLURAL or

QUESTION to make decisions about the meaning of the sentence or

phrase,

Since each of these semantic ~’specla]ists’l can work
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separately, ~here Is no need to wait for a complete parsing

before beginning semantic ana]ysls. The NOUN GROUP specialist

can be called as soon as a NOUN GROUP has been parsed, to see

whether it makes sense before the parser goes on. In fact, she

task ~an be broken up, and a preliminary NOUN GROUP speclallst

can be called In the mlddle of parsing (for example, after

finding the noun and adjectives, but before looking for

modifying clauses or prepositional phrases) to see whether It Is

worth continuing, or whether the supposed combination of

adjectives and noun is nonsensical. The grammar IsIn the form

of a program, so It Is just as easy to call a semantic routine

at any time as a syntactic one. Any semantlc program has full

power to use the deductive system, and can even cal| the grammar

to do a specla! bit of parsing before going on w!th the semantic

analyslso For this reason It Is very hard to classify the

semantic analysis as ==top-do~nI~ or "bottom-up". In general each

piece of the structure Is analyzed as It Is parsed, which is a

bottom-up approach. However whenever there is a reason to delay

a part of the ana]ysls untlI some of the ]arger strt~cture has

been analyzed, It Is just as easy to write the semantic

specialist programs In this top-down manner. In our system both

approaches are used.
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A semantic system needs to deal wlth two different kinds of

words. Sonde words are Included In the ge,teral knowled~;e of the

Eng!ish language, Words like "that’~ or "than"o In "He knew ~hat

they were madder ~ hornets," would be difficult to define

except In terms of their place in the sentence structure. They

are beln~ used as signals of certain syntactic structures and

features, and havo no meaning except for thls slgnaIIlnE (which

is recognized by the grammar). These are often cal~.ed "funct:lon

words" In distinction to the "content words" which ~ake up the

bulk of o.’r vocabulary. Thls Is not: a sharp distinction, since

many words serve a combination of purposes (for example, numbers

are baslcally "function words", but each one has Its unique

meanln~).    We can generally dlst:In~;ulsh between words like

"that" and "than" whose meanln~s are built Into the system, and

words like "snake~’, ~’under", and ~walk’~, which surely are not.

The definitions of content words should not have to Include

"expert’~ knowledge about ~e semantics or ~;rammar of the

lan~uage. In deflnln~ the word ~’ml~hty’’, we should not have to

worry about whether It appears In =’The sword Is mighty," or

"the mightiest warrior", or "a man ml~htler than a locomotive.~

We should be able to say "=Mighty’ means havlnll t:he property

represent:ed concept:ually as #MIGHT.", and let: t:h~ semantic

system do the rest.

We need a sem@ntlc lan~,ua~e for expressing deflnl~lons In a
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way whlch does not depend on the grammar or the Particular

semantic programs. Each of our "specialists=’ which looks at the

meanings of words should be able to interpret those statements

In the semantic language which might be relevant to Its lob.

Section 4.2 describes simple formats for defining common

verbs, nouns, adjectives, and prepositions, and In fact,

these definitions do not look much Ilke programs at ell. ~Vhy

then do we call this a "language" Instead of saying that we have

a set of special formats for defining words? The dlstlnctlon

becomes Important for all of the Irregular cases and the

ldlo~yncracles that words can have. For example, In ~=The block

Is on theroof of the car.~, ~the roof of the car~ is a NG

referring to a particular object which Is a roof. But if we say

"The block Is on the rlght of the box", we r~e not referring to

a particular object which Is a "right~, The normal NG mechanism

for describing objects Is being used Instead to describe a

relationship between the block and the box. We could reprogram

our NOUN GROUP semantic speclallst to recognize this speclal

case and treat it differently, but this Is a path lead!rig to a

roadblock. We w111 not be able to antlclpate every case, and as

the program becomes more and more patched, it will become harder

to change and less likely to work.

What we need is a flexible way of defining words, so that

the word "right" ltself can cause the right things to happen In

semantic |nterpretatlon, without changing the system. Thls Is
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achleved by lettln~ the definition of each word be a LISP

program to be run at an appropriate time in the semantic

analysis. For ~imple cases, there are standard functions with a

special format for usual types of definitions. In the complex

cases there is a platform from which to operate, doing whatever

calculations and changes of the environment are needed. This

~lexlblllty Is important in many places. For example, the word

"one" ~;~en used as a noun (as in "the green one=’) has a specla!

use for referring back to previously mentioned nouns. It could

not be defined by a slmple format, as could "block" or "dog",~

since It Involves complex decisions about what ls really belr~g

refe.rred to, and needs access to the previous discourse. In our

system, its definition as a noun is compatible w!th the

definltlons of all other nouns -- the semantic specialists don’t

know anything about it. When th~ NG specialist Is ready to use

the deflnitlon of the noun, It calls it as a program. In the

usual case, this program sets up a standard data structure. In

the case of "one", It calls a heuristic program for

understanding back-references, and Its effect on the meaning

wi11 depend on the discourse. Similarly, the verb "be" Is

ca~led like any other verb by the semantic specialist, but in

fact Its definition Is a complex program describing Its

different uses.

The use of procedures to represent meanings of words gives

a flexlblllty whlch allows these exceptional words to be handled
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as well as the more ordinary forms, At the same time, it

provides a strict test oF representations of procedures for

part|cular words, since ti~e procedures can actually be run In

the system.
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~ Ambl~ulty

A semantic theory must have some way to account for

mu]tiple meanings of words, phrases, and sentences. We would

llke to explain not only how multl!~]e Interpretations can occur,

but also how the hearer sorts them o~t to pick a single meaning.

As a start, we must allow words to have several "senses",

and must be able to have multiple Interpretations of phrases and

sentences to correspond to them. Next we must realize that the

syntactic structures can ~lso lead to semantlc ambiguities.

Sentences like the famous "Time f]les llke an arrow." derive

some of their amblguity from their ability to be analyzed

syntactically In more than one way. Finally, we Include some

ambiguities as a result of the semantlc ~nalysls. The sentence

"A man sittlng in this room fired the fatal shot." w111 be

ambiguous even If we agree on a slnEle meaning for each word,

and a surface structure for the sentence. If spoken by Perry

Macon at a dramatic moment In the courtroom, it means "a man who

Is sitting In this room", but If spoken by the detectives when

they broke Into the empty hotel room across the street from the

scene of the crime, It means "who ~ slttlng In this room’~,

This could be treated as a syntactic ambiguity in the deep

structure, but In our analysis It Is Instead treated as a

semantlc ambiguity Involvlng the time reference.

In describing the grammar It was pointed out that we do not

carry forward slmuitaneous parslngs of a sentence. We try to
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find the ~best~ parsing, and try c,~her paths only If we run Into

trouble. In semantics we take the other aproach. If a word has

two meanings, then two semantic descriptions are bul|t

s~multaneously, and used to form two separate phrase

Interpretations.

We can immediately see a problem here. There is dire

danger of a comblnatorlal explosion. If words A, B, C, and D

each have three meanings, then a sentence containing all of them

may have 3x3x3x3, or 81 Interpretations. The possibilities for

a long sentence are astronomlcal.

Of course a person does not build up such a tremendous

list.    As he he~rs a sentence, he ~fllters out=~ all but the

mo~t reasonable interpretatlons. We know that a ~ba11e~ can be

eit~er a spherical toy or ~ d~nclng party, and that ==green~ can

mean either the color ~reen, or unripe, or inexperienced. But

when we see ~the ~reen ball~, we do not get befuddled ~ith slx

Interpretations, we know ~hat only on~ ma’~es sense. The use of

~reen== for =tunrlpe~ applles only to fruit, the use as

~inexperlenced~e applies only to people, and the color only to

physlcal objects. The meaning of ~eballe~ as a party fit~ none of

these cat~orles, and the meanln~ as a ~=spherical toy== fits only

the last one. Ne can subdivide the world into rough c,asses

such as ~=anlmate~, ~Inan|lnate~, ~ephyslcal~ ~eabstract~, =~event~e,

~human~, etc. and can use thls classification scheme to filter

out meaning|ess combinations of Interpretations.
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Some semantic theories <Fodor> are based almost comp|ete|y

on this idea. We would ]lke to use It for what It Is -- not a

complete representation of meaning, but a rough c]assiflcatlon

which eliminates frult]ess semantic interpretations. Our system

has the ability to use these "semantlc markers" to cut down the

number of semantic Interpretations of any phrase or sentence.

A second method used to reduce the number of dlfferent

semantic interpretations ls to do the interpretation

continuously.    We do not pile up a]! possib|e interpretations

of each piece of the sentence, then try to make loglcal sense of

them together at the end. As each phrase is completed, It is

understood. If we come across a phrase ~!ke "the colorful

In contexL, we do not keep the two different possible

interpretations In mlnd until the utterance is flnlshed. We

lmmedlately look in our memory to see which Interpretation is

meaningful in the current context of dlscourses and use only

that meaning in the larger semantic analysis of the sentence.

Since our system allows the grammar, semantics and deductlon to

be easily Intermlxeds It is posslb|e to do this kind of

continuous Interpretation.

F|na]]y we must deal with cases where we cannot e]Imlnate

al! but one meaning as "senseless". There will be sentences

where more than one meaning makes sense, and there must be some

way to choose tn~ correct one In a ~|ven context, i~ the

section on context below, we dlscuss the use of the overa~
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discourse context in asslgininE a plauslbillty factor to a

particular interpretation. By combinlng ~he plauslbilltles of

the various parts of a sentence, we can derive an overall factor

to help choose the best.

There wlll always be cases where no set of heuristlcs w111

be enough. There will be multiple ir~terpreta~ions whose

plausibilities w111 be so close that It would be simply guessing

to choose one. In our sample dialogue, there is an example with

the word ~eon~, e~The block is on top of the pyramid.~ cou]d mean

either ~directly on th~ surface~ or ~somewhere above~. There is

no way for the hearer (or computer) to read mlnds. The obvious

alternative I~ co 3sk the speaker to explain more clearly what

is meant. As a final resort, the system can ask questions like

~By the word ~,on~ In the phrase ~on top of green blocks~ did you

m~an ~dlrectly on the surface~ or ~somewhere above~?~. The

methods used for handl:ng ambiguity are described In mcre detail

in section k.2.10
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~ Dl,scourse

At the beginning of our discussion of semantics, we

discussed why a semantic system should deal with the effect of

"setting" on the meaning of a sentence, A semantic theory can

account for three different types cf context.

First, there Is the ~ di~qQurs~ contexts whlch covers

the discourse immediately preceding the sentence, and ls

Important to semantic mechanisms like pronoun reference. If we

ask the question ’~DId you put It on a g-teen one?’~ or "~hv?~ or

~’How many of them were _t~3.~_E~ then?’m, we assume that It ~i|1 be

possible to fill in the missing lnformati~n from the Immediate

discourse. There are a number of special mechanisms for using

this kind of information, and they form part of a semantic

theory.

Second, there ~s an ~veral! discourse context. A hearer

will Interpret the sentence ’’The group didn’t have an Identity.

differently depending on whether he Is discussing mathematics or

soclology. There must be a systematic way to account for this

effect of general subject matter on understanding. In addition

to the effects of general subject on choos|n~ bet4:een meanings

of a word, there Is an effect of the context of p~rtlcular

thlngs being discussad.    If we are talkln~ about Argentina, and

say ~#The government is corrupt.~, then it Is clear that we mean

"the government of Argentina~. If we say ~Plck up the

pyramld.~, and there are three pyramids on the tables It w111
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not be clear which one Is meant. But If this imnodlately

follows the statement "There is a block and a pyramid In the

box.", then the reference is to the pyramid In the ~ox. Thls

would have been clear uven if there had been several sentences

between these two. Therefore this is a different problem than

the local discourse of pronoun reference. .~ semantlc theory

must deal with all of these different forms of overall discourse

context.

Finally, there Is a context of knowledge about the world,

and the way that knowledge effects our understandln~ of

lanKuage.    If we say "The city cou~,cilmen refused the

demonstrators a permit because they feared vlolen~e.~e, the

pronoun ~they~ wlll have a different Interpretation than If we

=3!d ~tThe city councilmen refused the demonstrators a permit

because they advocated revolutlon." ~e understand this because

of our sophisticated knowledge of councilmen, demonstrators, and

politics -- no set of syntactic or semantlc rules could

Interpret this pronoun reference without usln~ knowledge of the

wor]d. Of course a semantic theory does not include a theory

of poliLical power groups, but It must exp1~ln the ways In which

this kind of knowledge can .Interact wlth lln~ulstic knowledge in

Interpretin~ a sentence.

Knowledge of the world may affec~ not only such thin~s as

the Interpretation ~f pronouns, but may alter the parslng, of the

syntactic structures as we11. If we see the sentence ~He hlt
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the car with a rock." the structure will be parsed differently

from "He hlt the car with a dented fender.", since we know that

cars have fenders, but not rocks.

In ot=r system, most of thls discourse knowledge Is called

on by the semantic specialists, and by partlcular words such as

"one", "it", "then", "there", etc. We have concentrated

particularly on local discourse context, and the ways In which

English carries information from one sentence to the next. A

number of special pieces of information are kept, such as the

time, place, and objects mentioned In the previous sentence.

This Information Is referenced by special structures and words

like pronouns, "then~’, and "there". The meaning of the entire

previous sentence can be referred to In order to arswer a

question like "~hy did you do t ha~?" or just ’eWhy?".

There are two facIIItles for handllng overall discourse

context. The first Is a mechanism for assigning a

"piausabillty factor~’ to an Interpretation of a word. For

example, the definition of the word "bank" might Include the

fact that If we are d;scusslng money~ It Is most likely to mean

a financial Institution, while If we are discussing rlvero It

¯ probably means the edge of the land. Our system allows the

definition of a word to Include a program to compute a

"plausablllty factor" (an arbitrary addltlve constant) for each

interpretation. Thls ~omputatlon might Involve ]ooking at the

rest of the sentence for key words, or might use some more
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K~neral Idea, 11ke keeping track of the general area of

discussion (perhaps In some sort of network or block structure)

and lettlng the plausibility of a partlcular mea~lln~ depend on

Its "distance" from the current topic. This has not been

Implemented since we have Included only a sln~le topic of

discourse In the vocabulary. It Is discussed further In section

5.2.

The second type of overall discourse context Involves the

objects which have been prevlously mentioned. Whenever an

object or" one of its properties Is mentioned, either by the

human or the computer, a note Is made Of the tlme. Later, If we

use a phrase like "the pyramid", and the meaning Is not clear,

~he system can look f.~r the one most recently mentioned.

Finally, the knowledge of the world can enter Into the

semantic Interpretation. We have mentioned that the ~rammar can

ask the semantic Interpreter "Does thls NOUN GROUP make sense?"

before continuing theparsln~. The semantics programs can In

turn call on PLANNER to make any deductions needed to decide on

its senslblIIty. Thus Information about the world can guide the

parsing directly.                           ’
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~,I.G G ca~s of ~ Semantic Theor~

£We have set ourselves very broad goals In our definition of

semnntics, askln~ for everythln~ which needs to be done, rather

~han IImltln~ ourselv~= to those aspects which can be explained

and characterized In a neat formalism. How does thls compare

w~th the more limited ~oals of a semantic theory like that of

Fodor and Katz <Fodor>o which looks only at those aspects of

meanln~ which are Indenendent of the "setting" of a semtence?

We have seen that their theor~ of "semantic markers" Is In

fact a part of the "filtering" needed for "exploiting semantic

relations In the sentence to ellmlnate potential ambiguities"

(<Fodor>p. ~85)", and that the "semantic dtstlngulshers" are a

rudimentary form of the logical descriptions which we build up

to descrlbe objects and events. They state that "the

distinction between markers an’ distinguishers is meant to

coincide wlth the distinction between that part of the meaning

of a lexlcal item which Is systematic for the language and that

part of the meaning of the Item which Is not." (<Fodor> p. k98).

We be|Ieve that much more of meaning is systematic, and that a

semantic theory can be of a ~uch wider scope.

Nhat about the more restricted goals a semantlc theory
might achieve such as "accountlnE for.o, the number and content
of the readings of a sentence, detectin~ semantic anomalies, and
deciding upon paraphrase relations between sentences."? In a
more complete semantic theory, these are not primary goals, but
by-products of the a~a|ysiso A phrase is a semantic anomaly if
the system produces no possible Interpretations for It. Two
sentences are paraphrases if they produce the sz~me
representation In the Interna| formalism for meaning, and the
"number and content=’ of the readings of a sentence are ~he
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Immediate result of its semantic anaIysls. Which of these w111
happen depends on the entire range of ways in which language
communicates meaning, not on a restricted subset such as the
1ogi~al relatlons of markers. Once we have a conceptual
representation for meaning, problems such as these are secondary
byproducts of the basic analysls which relates a sentence to the
representation of Its meaning.

In addition, we can talk about sentences being anomalies or

paraphrases ~ln context~=, as well as "without regard to

context~, since we want the theory to Include a systematic

analy3ls of those features of context whlch are relevant to

understanding.
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4.2 Semantic Structures

The previous section outlined the structure of a semantic

Interpreter~ and described the use of semantic "specialists" In

analyzing different aspects of IIngulstlc structure. Each

specialist is In the form of a procedure which describes the

particular aspect of semantics which with It is concerned. We

can.look at Its function as creating a part of a complete

description of the meaning of the sentence by bulldlng complex

list structures which we wll] call "semantic structures~’ to

describe objects and relationships. Events are a type of

relationship (involving time), and the class of "object"

Includes anything which could be treated as an object In English

grammar, even if It is as abstract as "t~uth". There are two

basic types of structures used -- one to describe objects, (an

Object Semantic Structure, or OSS) and the other So describe

relationships (an RSS). In ~enera|, noun groups are Interpreted

to form object structures, while the other groups and clauses

are |nterpreted to form relationship structures. Words a|ready

have a semantic structure of their own (their deflnltlon) and

are used in bulldin~ up the structures for the |arger units

which contain them.
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~ Object Semantic S~ructu~es

Let us First look at the semantic structures used to

describe objects. First, we need the actual PLANNER statements

which will be used in deducing thlngs about the objects. An NG

like "a red cu~e" can be described using the formalism of

Chapter 3:

(THPROG (Xl)
(THGOAL(#IS $?Xl #BLOCK))
( #EO, D I M $?Xl)
(THGOAL(#COLOR $?X1 #RED)))

Figure 57 -- Simple PLANNER Descrlptlon

The variable "XI" represents the object, and this

description says that It should be a block, It should have ecl~al

dimensions, an�; It should be red. (See section 25.~ for the

del:ails of representation). A phrase such as "a red cube which

supports three pyramids but Is not contained In a box" has a

more complex description. This would be built up from the

descriptions for the various objects, end would end up:

(THPROG(X].)
(THGOAL(#1S $?X~. #BLOCK))
(#EQDIM $?X1)
(THGOAL(#COLOR $?X1 #RED))
(THFIND 3 $?X2 IX2) (THGOAL(#IS $?X2 #PYRAHID))

(THGOAL(#SUPPORT $?X1 $?X2)))
( THNOT (TH PROG ( X 3 )

(THGOAL(#1S $?X$ #BOX))
(THGOAL(#CONTAIN $?X3 $?X~.)))))

Flgure 58 -- PLANNER Description

ICe can learn how the semantic specialists work by watchln~

them build the pieces of this structure. First take the simpler
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NG, "a red cube". The first NG specialist doesn’t start work

until after the noun has been parsed. The PLANNER description

Is then built backwards, starting with the noun, and continuing

in rlght-to-left order through the classifiers and adjectives.

The beginning of the NG, with the determiner,.number, and

ordinal is hand]ed by a part of the NG sDeclallst descrlbed

later. The first NG specialist Is named SMNG1 -- all of the

names begin with SM (for "semantic"), followed by the name of.

the unit they work wlth, followed by a number lndlcatln~ the

order In which they are called.    S~ING1 sets up an envlroDment

(we will describe various parts of It as we go), then calls the

definition of the noun. (Remember that deflnition~ are in the

form of programs). For simp|e nouns there Is a standard

function to define them easily. What should the deflnltlon

Include?    First, a way to Indicate the PLANNER ~tatements which

are the heart of its meaning. The symbo] "***" Is used to

represent the object, so our deflnltlon of "cube" contains the

expression:

((#IS -** #BLOCK)(#EQDIH ***))

The syntax of PLAN~ER functlons such as THPROG and THGOAL wlll

be added by the specialists, since we want to keep the

deflnltlon as simple as possible.

There is one other par~ of the deflnltlon for a noun -- the

semantlc markers, used to filter out meanlngless

int<~rpretations of a phrase. The definition needs to attach
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these semantic markers to each OSS. The BLOCKS world uses the

tree of semantic markers in Figure

Thls Is the same type of diagram used for grammars, in

which vertical bars represent choices of mutually exclusive

markers, while horizontal lines represent logical dependency.

The symbol "#PHYSOB" n~eans "phys|cal object", and "#FIANIP" means

"manipulable object". The word "cube" refers to an object

the markers (#THING #PhYSOB #~ANIP #BLOCK).    tle shouldn’t need

to mention all of these In the deflnitlon, slnce the presence of

#BLOCK lmpIles ~he others through the lo~Ical structure of the

marker tree.

The definition of the noun "cube~ Is then:

(N~EANS((#BLOCK)((#1S *** #BLOCK)(#EQDI~I *~*))))

NMEANS Is the name of the function for dea]In~ with nouns,

and It accepts a list of different meanings for a word. In this

case, there is only one meanln~. The first part of the

deflnltlon Is. the marker |Ist, followed by the reduced PLANNER

definition. When NMEANS Is executed, It puts this Information

onto the semantic structure which Is beln~ bul~t for the object.

It takes care of flndln~ out what markers are Implied by the

tree, and decldln~ which predicates need ~o be In a THGOAL

statement (]ike #IS), and whlch are LISP predicates (like

#EQDI~).    We will see later how it also can decide what

recommendation llsts to put onto the PLANNER Eoals, to guide the

deduction.
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THING#,,=,.-.

#NAME

#PLACE

#PROPERTY---

#ANIMATE

#PHYSOB--

#RELATION---,

#SHAPE

#SIZE

#LOCATION

#COLOR

~"~S PECTRUM

#BLUE

#RED

#BLACK

#WH I TE

#GREEN

I#ROBOT

#HUMAN

#CONSTRUCT~-,~

#HAND

#STACK

#PILE

#ROW

#TABLE/#PYRAMID

#HANIP-"I#BLOCK
#BOX /#BALL

#EVENT

#TIMELESS

Figure 59 -- Semantic Markers for the BLOCKS Vocabulary
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SMNGI then calls the definition for the adjective "red".

We would like thls definition to Include the PLANNER assertion

(#COLOR ~*- #RED), and indicate that It applies only to physical

objects, lVe can use the same format used for nouns, defining

"red"

.(NMEANS((#PHYSOB)((#COLOR **- #RED))))

Notice that there Is no distinction made between the use of

#PHYSOB here to imply "applies only to physical objects" and the

use Of #BLOCK In the definition of "cube" to say "thls Is a

block".    Thls is because of the way the markers are

implemented. The marker llst in a definition is Interpreted to

mean "this definition applles only If none of the markers here

are In ~onfIict with any of the markers already establlshed for

the object". Since the noun Is ~he first thing Interpreted, Its

markers cannot possibly conflict, and are slmply entered as the

I.nltlal marker list for the object. The marker programs are

designed so that we do not need to IImlt ourselves to a single

tree -- we could ¢lasslfy objects along several dimensions, and

set up separate marker trees for each. For example~ we mlght

classify objects bosh by their physlc~l properties and by their

use.

.The order of analysis of modifiers I~ quite natural to the

use of "relative" modifiers. It Is Impossible to give an

absolute definition for "big" or ~’llttle’~, since a "big flea" is

still not much competition for" a "little elephant". The meanln~
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of the adjective Is re]atlve to the noun It modifies. In fact,

It may also be relative to the adjectives followlng It as well.

A "big toy elephant" Is on a scale of Its own. Since our system

analyzes the NR from right to left, the meanln~ of each

adjective Is added to the description already built up for the

head and modifiers to the right. Since each definition Is a

program, It can just as wel] be a program which examines the

description (both the semantic markers and the PLANNER

description), and produces an appropriate meanlng relative to

the object being described. Thls might be In the form of an

absolute measurement (e.£. a ~blg elephant~ Is more than 12 feet

tall) or can remain In a relative form by producing a PLANNER

expression of the form ~the number of objects fitting the

description and smaller than the one beln~ described Is more

than the number of suitable objects bigger than It Is~.

In adding the meaning of ~red" to the semantic structure,

the speclallst mus~ make a choice In ordering the PLANNER

expressions. We remember from section 2.3 that the order of

expressions can be Important, since variable assignments are

done In the order encountered. If we have the first sequence

shown In Figure 60~ PLANNER will look through all of the blocks,

checking until It finds one which Is red. However If we have

the second, It will look throu£h all of ~he red objects until It

finds one which Is a block. In the robot’s tl~y world, thls

Isn’t of much Importance, but If we had a data base which could
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take phrases like "a man In this room", we would certainly be

better off ]ooklng around the room first to see what was a man,

than looking through all the men In the world to see if one was

In the room.

(THPROG(X)
(THGOAL(#IS $?X #BLOCK))
(THGOAL(#COLOR $?X #RED)))

(THPROG(X)
(THGOAL(#COLOR $?X #RED))
(THGOAL(#IS $?X #BLOCK)))

Figure 60 -- Ordering Goals

To make this choice we allow each predicate (like #IS or

#COLOR) to have associated with It a program which knows how to

evaluate Its "priority" In any given environment. The program

might be as slmp]e as a single number, which would mean "this

relation always has this priority". It might on the other hand

be a complex heuristic program which takes Into account the

current state of the world and the discussion. In our

definltlons, we have adopted the simpler a]ternatlve, assigning

fixed priorities In the r~nge 0 to 1000 arbitrarily. By keeping

track of the prlorlty of the expression currently at the top of

the PLANNER description, the function NMEANS can decide whether

to add a new expresslon above or below It.

Let us now look at the actual structure which wou]d be

bul]t up by the program:
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((Xl) 200 (THGOAL(#IS $?Xl #BLOCK))
(THGOAL(#COLOR $?XI #RED))
(#EQDIM $?XI))

(0 #BLOCK #MANIP #PHYSOB #THING)

(#~AN!P #PHYSOB #THING)

X1

(NS    INDEF NIL)

NIL)

Figure 61 -- OSS f~r

PLANNER
d{~scrl pt Ion

merkers

systems

varlab]e

determiner

ordinal

red cube"

Most of the parts of thls structure (called an Object

Semantic ~trqcture or OSS) have already been explained.    The

PLANNER description Includes a varlab]e list (we will see Its

use later), the priority of the first expression, and a Ilst of

PLANNER expressions describing the object.    The "markers"

position lists a11 of the semantic markers applicable to the

object. The 0 at the beglnn!n~ of the ilst Is the

"plausablllty" of this Interpretation. This factor was

discussed In section 4.1.4, and I~ set when we are faced with

more than one posslbIe Interpretation of a word. Each semantic

structure ¯carries alon8 wlth It an accumulated plaus~blllty

ratin~. This will remain 0 unless it is set specifically by an

amblguity.

The "systems" position Is a ~ist of all of the nodes in

the set of marker trees (remember that there can be more than

one) which have already had a branch selected, it 13 used In

looking for marker conflicts. The "variable" is the variable



Section ~.2.I - PaKe 309

name chosen to represent thls object. The system 8enerates It

from the set XE, X2, X3..., provldln~ a new one for each new

~tructure. The only two positions |eft are the determiner and

the ordlna|, These are explalned In section ~,2.4
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~ Relative Clauses

Let us now take a sll~htly more compllcated NG, "a red cube

which supports a pyramid," and follow the parslf~ and semantlc

analysis.    First, the NG parsing program flnds the determiner

("a"), adjective ("red"), and noun ("cube"). At this point

S~.INGI Is called and creates the structure described In the

previous section. Notice that the NG Is not finished when SMNGI

is called -- It has only reached a point where we can do a first

anaiysls. At thls point, the NG mlsht be rejected without

further parsln~ If the combination of noun, classifiers, and

adjectives Is contradictory to the system of semantic markers.

Next ~he NG prosram looks for a qualifier, and calls the

CLAUSE part of the ~rammar by (PARSE CL~.USE RSQ). The feature

RSQ (rank shifted quallfler) Informs the CLAUSE program that It

should look for a RELWD 11ke "which". It does, and then looks

for a VG, succeeding with "supports". The VG ~rogram calls

own semantic specialist to analyze the time reference of the

clause, but we wl:1 Ignore thls for now. Next, since "support"

Is transitive, the CLAUSE looks for an object, and calls the NG

program. This operates in the same way as before, producln~ a

semantic structure to describe "a pyramid". The definition of

"pyramid" Is:

(NMEANS((#PYRAMID)((#IS *~* #PYRAMID))))

so the resultln~ structure Is:
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( ((X2) 200 (TItGOAL(#IS $?X2 #PYRAHID)))
(0 #PYRAh~ID #MANIP #PHYSOB #THING)
(~HANIP #PHYSOR #THIHG))

X2
(NS    INDEF NIL)
NIL)

Figure 62 -- OSS for "a pyramid~

At this point the first CLAUSE speclallst is called to

analyze the clause "which supports a pyramid". We want to

define verbs in a simple way, as we do nouns and adjectives,

saying something like t~lf the subject and object are both

physlcal objects, then e~support" means the relation #SUPPORT

between them In that order". Thls is written formally using the

function CHEANS, as=

(CNEANS((((#PHYSOB))((#PHYSOB)))(#SUPPORT #1

All of the oxtra parentheses are ~here to leave room for

fancier options which will be described later. The Important

parts are ~he semantic marke~ lls~s for the objects

partlclpa~|ng in ~he relatlonship~ and the actual PLANNER

expression naming It. The symbols "#Z" and "#2" (and "#}" If

necessary) are used t~ Indicate the objects, and the norma!

order Is 1. semantic subject (SMSUB) 2. semantlc first object

(SNOB1) }. semantic second object (SNOB2). Notice tha~ we

have prefixed the word "semantic" to each of these. In fact,

they may very well not be the actual syr=tac~Ic subject and

objects of the c~ause. In this example~ the SNSUB Is the NG "a

red cube" to which the clause is being related. SNCL1 knows
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thls since the parser has noted the feature 3U3JREL. Before

caIIin~ the definition of the verb, SMCLE has found the OSS

de3crlbln~ ’ta red cube" and set It as the value of the varldble

S~ISUB. Similarly It has taken the OSS for "a pyramid" and put

It In SMOBI, since it Is the object of the clause. The

definition of the verb "support" Is now called, and CMEANS uses

the Information In the definition to build up a Relatlon

Semantic Structurp (RSS). First it checks to make sure that

both objects are compatible with their respective marker lists.

The marker lists are In the same order as the symbols hE, #2,

and #3. In this case, both the subject and object must be

physlca] objects.

Next S~ICLI substitutes the objects Into the relation. If

It Inserted the actual semantic structures, the result would be

hard to read and tlme.oconsumln~ to print. Instead, the NG

specialists assign a name to each OSS, from the set NG1, NG2,

NG3,... We therefore get (gSUPPORT NGI NG2) as the description

of the relationship. The final semantic structure for the

clause (after a second specialist, SMCL2 has had a chance to

look for modifiers and rearrange the structure Into a convenient

form) is:
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(NGI (#SUPPORT NG1 NG2) NIL}    (0))
re| relation nag markers

Figure 63 -- Relatlon Semantlc Structure I

The position marked "rel" holds the name of the NG

description to which thls clause serves as a modifier. We wlll

see later that It can be used In a more general way as well.

The #’relation’~ Is the materlal for PLANNER to uses and "neg~’

marks whether the ~lause Is negative or not.

The last element Is a set of semantic markers and a

priority, just as we had wlth object descriptions.

Relationships have the full capability to use semantic markers

just as objects do, and at an early stage of buildln~ a relation

structure, It contains a PLANNER description, markers, and

systems In the Identical form to those for object structures

(this is to share some of the programss such as those which

check for conflicts between markers). We can c|assify different

types of events and relationships (for example those which are

changeable, those which involve physical motion, etc.) and use

the markers to help filter ou~ Interpretations of clause

modifiers. For example, the modifying PREPG "without the

shopping list" In "He left the house without tke shoppin8 list~

has a different interpretation from ~without a hamme~" In ~He

built the house without a hammer.|| If we had a classification of

activities which included those involving motion and those using
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tools, we could choose the correct Interpretation. A system can

be constructed which operates much like FIllmorets c~se system,

assl~ning classes of verbs accordln~ to the type of modlf°Icatlon

they take, and usin6 thls to find the correct relation between a

verb and Its modlfyln~ phrase. This wlll be discussed more In

the section on types of PREPG.

In our Iimlted world, we have not set up a marker tree for

rel.atlonshlps and events, so we have not Included any markers In

the definition of "supportw~. The marker Ilst In the RSS

therefore contains only the plausibility, 0. The ~#IIL" In the

definition Indicates that there are no markers, and would be

replaced by a list of markers If they were used.

The clause Is now finished, end the specialist on relative

clauses (SfIRSQ) Is called. Its task Is to take the Information

contained In the PLAI|NER descriptions of the objects Involved In

the relatlon, alon~ with the relatlon Itself, and to put It

onto the PLAflNER description of the object to which the clause

is being related. The way In which thls Is done depends on the

exact form of the different objects (partlcular.Iy on their

determiners). In thls case, It Is relatlvely easy, and the

description of ~’a red cube which supports a pyramldt~ becomes=
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((Xl X2) ’~00 (THGOAL(#IS $?Xl #BLOCK))
(THGOAL(#COLOR $?Xl #RED))
(#EQDIM $?X1)
(THGOAL(#IS $?X2 #PYRAHID))
(THGOAL(#SUPPORT $?X1 $?X2)))

(0 #BLOCK #t,IANIP #PHYSOB #THING)
(#HANIP #PHYSOB #TH!NG))

Xl
(NS    INDEF NIL)
NIL)

Figure 64 -- OSS for ~a block which supports a pyramld~=

The only thln¢ which has changed Is the PLANNER

description, which now holds aI! of the necessary information.

Its ,v3riabIe list contains both XI and X2, and these varlable

names have been substituted for the symbols NGI and NG2 In the

relation, whlch has been combined with the separate PLANNER

descriptions for the objects. Section 4.2.4 describes how a

re]atlve clause works with other types of NG ~escrlptlons.
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~ 8reposl_tlom G~ou.ps

Comparln~ the phrase "a red cube which supports a pyramid"

with the phrase "a red cube under a pyramid, we see that

relatlve clauses and quallfylng preposltlonal phrases are very

slmllar In structure and meanlng, in fact, their semantic

analysis Is almost Identical. The definition of a preposltlon

11ke "under" uses the same function as the definition of a verb

like "support", saying "If the semantic subject and object are

both physlcal objects, then the object Is #ABOVE the subject"

(Pemembe, that In our BLOCKS world we chose to represent all

ve.tlcal space relatlons using the concept #ABOVE}. This can be

formalized as:

(CI4EANS((((#PHYSOB))((#PHYSOB)))(#ABOVE #2 #I)NIL)

Again, the symbols #I and #2 refer to the semantic subject

and semantic first object, but in the case of a preposition

group used as a qualifier, the SMSUB Is the NG of which the

PREPG Is a part, while the SMOBI Is the object of the PREPG (the

PREPOBJ). As with clauses, the situation may be more comp|ex.

For example, In a sentence like "Who was the ante|ope I saw you

with last nl~ht?", the SMOBJ of the PREP "with" Is the question

element "who" In the MAdOR CLAUSE. However, the PREPG

speciallst (SMPREP) ~akes care of all thls, and In deflnln~ a

preposition, we can deal directly with the SMSUB and the SMOBI.

Notice that If we had been deflnlng "above" Instead of "under",

everything would have been the same except that the relatlon
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would have been (#ABOVE #I #2) Instead of (#ABOVE #2 #I), If

the PREPG Is an adjunct to a CLAUSEo the St~SUBJ Is the RSS

defining the CLAUSE. The definition of a preposition can then

use the semantic markers which are Inc|uHed In an RSS.
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~ T__Y_Eg_E of ObJect Descriptions

In the examples so far, all of the objects described have

been sln~ular and INDEFInite, like "~ red cube", and the

semantic system has been able to assign them a PLANNER varlable

and use it in buildln~ their properties Into the description.

Let us consider another simple case, a DEFinite object, as In "a

red cube which supports the Dvramld".

The analysis begins exactly as It did for the earlier case,

building a description of "red cube", then one of "pyramid."

The "pyramid’: description differs from OSS 2 In havln~ DEF In

place of INDEF In Its determiner. This Is noted at the very

beginning of the analysis, but has no effect until the entire NG

(including any qualifiers) has been parsed. At that time, the

second NG specialist SMNG2 checks for a definite NG and tries to

determine what It refers to before ~oln~ on (we have pointed out

In various places how thls Is used to ~uide the parsing). It

takes the PLANNER description which has been built up, and hands

It to PLANNER In a THFIND ALL expression. The result is a

of all objects fitting the description. Presumably If the

speaker used "the", he must be referring to a partlcuIar object

he expects the listener to be aware of. If more than one object

flts the description, there are various discourse heuristics

used to find the reference, (see Section ~.3.}) and If nothing

succeeds, a fal]ure message Is produced and the parser has to

back up and try somethln~ else to parse the
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If SMNG2 Is able t:o flnd the object belnF= referred

puts It Into the description (on th~ property list). When SMRSQ

relates the descriptions to bulld the meaning of =’a red cube

which supports the pyramid=~ It takes advantage of this. The

object found wit1 have a proper name 11ke :BS. Instead of

bulldlng the PLANNER description of OSS 3, It builds;

((XZ) 200 (THGOAL(#IS $?X1 #BLOCK})
(#EQDIM $?X1)
(THGOAL(#SUPPORT $?XI :BS}))

Figure 65 -- PLANNER Description I
"a red cube which supports the pyramid==

The object: itself Is used In the relation rather than dealing

with its description.

What: If we had asked about "a red cube which supports three

pyramlds~l? In that case the PLANNER description would Include

an expression using the function THFIND with a numerical

parameters as shown In Flgure 66. If we had said ~la red cube

which supports at most two pyramids~, a fancier THFIND parameter

would have been used, as shown. Here, the parameter means ~=be

satisfied if you donWt find any, but if you flnd 3o Immediately

cause a failure.~ In ad~li=ioi} t= numbers, the SMNG1 and

programs can work together to relate descriptions of quantified

objects. "A red cube whlch supports some pyramid~ is handled

~ust like the orlglnal i~definite case. "A red cube whlch

supports £L~ pyramld=~ and ~a red cube which supDorts every

pyramid=~ are handled using the other PLANNER primitives. A

un.lversa! quantifier Is translated as ~there Is no pyramid which
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(THGOAL(#IS $?X2 #PYRAMID))
(THGOAL(#SUPPORT $?Xl $?X2))

"which supports a pyramid"

(THGOAL(#SUPPORT $?X1 :B3))

"which supports the pyramid"

(THFIND 3 $?X2 (X2) (THGOAL(#IS $?X2 #PYRAHID))
(THGOAL(#SUPPORT $?XI.$?X2)))

"which supports three pyramids==

(THFIND (0 3 NIL)    $?X2 (X2)    (THGOAL(#IS $?X2 #PYRAMID))
(THGOAL(#SUPPORT $?X1 ~?X2)))

"which supports at most two pyramids==

(THNOT
(THPROG (X2) (THGOAL(#IS $?X2 #PYRAMID))

(THGOAL(#SUPPORT $?XI $?X2)))))

"which supports no pyramids"

(THNOT
(THPROG (X2) (THGOAL(#IS $?X2 #PYRAHID))

(THNOT
(THGOAL(#SUPPORT $?Xl $?X2)))))

=’which supports every pyramid=’

Figure 66 -- quantlflers
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the red cube does not support". For the r~hot, "every" means

"every one I know about". This Is not a requirement of PLANNER,

or even of the way we have set up our semantic programs. It was

done as a convenience, and will be chan~ed when the system Is

expanded to discuss universal statements as well as the specific

commands and questions It nov~ handles.

We similarly handle the whole range of quantiflers and

t/pes of numbers, usln~ the logical primitives and THFIHD

parameters of PLANNER° The work Is actually done in two places.

SF1NG1 takes the words and syntactic features, and ~e.~erates the

"determiner" which was one of the ln~redlents o5 our semantic

structure for objects. The determlner contains three parts.

First, the number Is either NS (sln~ular, but not ~Ith the

specific number "one"), NPL (plural with no specific number),

NS-PL (amblsuous between the two, as In "the flsh"), or a

construction contalnln~ an actual arithmetic number. This can

either be the number alone, or a combination with ")", "<", o~

"exactly".    Thus the t~o NGs "at most two davs" and "fe~er than

three days" produce the Identlcal determiner, contalnln= "(<

})".    The second element of the determiner Is either DEF,

ID~DEF, ALL, NO, or NDET [no determiner at a|1 -- as In "We 11ke

shee~.") The third Is saved for the question types HO~’~MANY and

WHICH, so .it Is NIL in a NG which Is not a qUEST or REL.
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N umbe r

NS
NPL
7
(> 2)
C< S)
(EXACTLY 2)

Determiner

an apple
some thou&his
seven sisters
at least three ways
fewer than flve people
exactly two minutes

DEF the law
INDEF a riot
ALL every child
NO nothing
N~ET Eood Intentions

Question Marker

HO~MANY how many years
~/HICH which road

Fl~ure 67 -- Examples of Determiner Elements

Other specialists such as SMRSQ and the answer|nE routines

use this Information to produce PLANHER expressions like the

ones described above, in addition, there are special programs

for cases like the OF NG, .as In "all of your drea~ns". In this

case, the PREPOBJ followln~ "of" ls evaluated as a ;~G flrst.

Therefore In "three of the b.locks", we analyze "~he blocks"

first, and since it is definite, PLAMNER Is called to find out

what It refers to. It returns a list of "the blocks", (e.~.

(:B1 :B4 :B6 =BT)). The OF specialist uses the PLANNER. functlon

THAMONG (which chooses Its variable blndln~s from "among" a

given list) to produce an expression like:

(THFIND 3 $?X1 (XE) (THAMONG X1 (QUOTE(:B1 :B~ :B6 ;B?))))
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Ordlnals are treated specl~lly, alon~ ~vlth SUPerlatlve

ADdectives. If we have a FIG |Ike "the blg$:est block whlch

supports a pyramld", It Is Imposslble for S~I to add the

meanlng of "blggest" to the descrlptlon in the same way as It

would add an expresslon for "bi~". The biock Is "blggest" wlth

respect to a group of objects, and that ~roup Is not fully

defined until the entire NG has been parsed, lncludln8 the

~ua|iflers. S~!NG1 therefore does a partial analysis of ~he

meanln~, looking up the name of the measure that partlcular

adjective refers to, then han~s the result in the last niche of

the OSS described In section 4.2.1 After a11 has been parsed,

SMNO2 finds It there and creates a full In~Ical description.

the case of "the bI86est block ~hlch supports a pyramid", we

would ~et the PLANNER description:

((X~ X2 X3 X~ )    200
(THGOAL(#IS $?XI #BLOCK))
(THGOAL(#IS $?X2 #PYRA~.:ID))
{THGOAL~#SUPPORT$?X1 ~?X2))
(THNOT

(THAND(THGOAL(#1S $?X$ #BLOCK))
(THGOAL(#1S $?X4 #PYRA~ID))
(THOOAL(#SUPPORT $?X$ $?X~))
(THGOAL(#~IORE #SIZE $?X} $?XI)))))

Figure 68 -- PLANNER Description ?
"the biggest block which supports a pyramid"

A s!milar type of description Is generated, for other

superlatives and ordinals.

In
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~ The ~W~ of Questlon~

So far, we have discussed the semantics of objects and the

reIationshlps which are used to describe them In preposition

~roups and relative clauses. Now we wl]! deal wlth the overall

meaning of a sentence as an utterance -- as a statement, a

question, or a command. The sentence Is analyzed Into a

relationship semantic structure, and the system must act on It

by responding, taking an action, or storln~ some knowledge.

First let us look at questions. In descrlbln~ the grammar

of clauses (see .section 2.3.3) we pointed out the similarities

between Questions and relatlve clauses, which share a large part

of the system network and the parsln~ program. They also have

much In common on a semantic level. We can look at most

questions as being a relatlve clause to some fo.~.Q.G_V_~ element In

the sentence.

In the class of WH questions, thls resemblance Is easy to

see. First we can take a NGQ Question, whose Question element

is a DIG. The question "l~hlch red cube supports a pyramid?" Is

very Closely related to the NG "a red cube which supports a

pyramid. The system can answer such a question by relatln~ the

clause to the object, and bul]dln~ a description of "a red cube

which supports a pyramid." It then takes thls-entlre PLANNER

description and puts It Into a THFIND ALL statement, whl~h Is

eva~uated In PLANNER. The result Is a list of objects flttln8

the description, and Is In fact the answer to ou~ question. Of
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course PLANNER ml~ht flnd several objects or no objects meetln~

the description. In thls case we need answers Like ’~nune of

them~’ or "t~vo of them". Section ~.~ describes hew responses to

Guestions such as these are ~enerated, dependln~ on the relatlon

between the specific question and the data found. If the

question Is ’~how many" Instead of ’lwhlch1~, She system goes

thro~gh the Identical process, but answers by countln~ rather

than nam!a~ the objects found.

No matter what type of NGQ we have (there Is a tremendous

variety -- see section 2.5.~) the same me~hod works. V!e treat

the MAJOR clause as a relative clause to the FIG which Is the

question element, and which we call the focus. Thls Integrates

the relatlonshlp intended by the clause Into the description of

that object. PLANNER then finds all objects satlsfyln~ the

expanded description, and the results are used to ~enerate an

answer.

Next, we have the QADJ questions, ~Ike "when", ’~why", and

"how". In these cases the focus Is on an ~ rather than on

one element of the relation. If we ask "VIhy did you plck up a

block?~, we are referrln~ to an event which was stored In the

system’s memory as (#PICKUP E23 :BS) where :B5 Is the name of

the object picked up, and E2~ Is the arbitrary name which was

assigned to the event (see Section 3.~ for a description of the

way such information Is stored.) We can ask In PLANNER:
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(THFIND ALL $?EVENT ($?EVENT $?X)
(THGOAL(#PICKUP $?EVENT $?X))
(THGOAL(#1S $?X #BLO£K)))

In other words, "Find all of the events In which you picked up a

block," Thls Is clearly the flrst thing whlch must be done

before we can answer "why". Once It has been done, answering Is

easy, s|=ice PLANNER will return as the value of THFIND a list of

names of such events. On the property list of an event we flnd

the f,ame of the event for which It w~s called as a subgoal (the

"reason"). Ne need only to describe =hls In En~llsh. Similarly

if the question is "when", the property list of the event gives

its startin~ and endln~ times. If the questlon is "how" It

takes a little-more work, since the subgoal tree Is stored wlth

only upward links. But by looking on the EVENTLIST~ the system

can ~enerate a list of all ~hose ~oals which had as their reason

the one mentioned In the sentence.

This concept of a relation as a sort of object called an

"event" Is useful In other parts of the semantics as well -- for

instance in dealing wl~h embedded clauses as In "the block which

I told you to pick up". Thls Is described In section ~.2.~2.

i’Nhere" Is some=Imes handled ~;Ifferently, as It may be

either a constituent of a clause, such as a 1ocatlon object

(LOBd.) (in "~here did you pu~ It?") or an ADJUNCT (as In "~here

did you meet him?"). The first case Is h~ndled just like the NG

case, maklng theclause a relative, as If It were "the place

where you ~ut it", then askln~ In PLANNER:
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(THFIND ALL $?PLACE (PLACE EVENT)
(THGOAL (#PUT $?EVENT tOBJ $?PLACE)))

The ADJUHCT case Involves thinking about a special #LOCATION

assertion, as In:

(THFIND ALL $?PLACE (PLACE EVEHT)
(THGOAL(#NEET $?EVENT :YOU :HIM))
(THGOAL(#LOCATION $?EVENT

In this example, we have moved away from the BLOCKS world since

|t does not yet contain any actions in Its vocabulary whlch

occur at a specific place without that place beln~ mentioned !n

the event, such as #PUT. However the semantic system Is

perfectly capable of handlln~ such cases.

So far, we have seen that we can answer WH- questions by

pretendin~ they are a relative to some object, event, or place,

and by addln~ the relatlonshlp to the description of this focus.

It Is an Interestln~ ~act about English that even In a YES-NO

question, where ther: is no ~uestlon element there ls usually a

focus.    Conslder a simple questlon like "Does the box contaln a

block?" Someone ml~ht answer "Yes, a red one.", as |£ the

question had been "Whlch block does the box contain?" Notice

that "Yes, the box." would not have been an approprlate answer.

Somethln~ about "the box" makes It obvious that It Is not the

focus. It is not Its place as subject or object, since "Is a

block In the box?" reverses these roles, but demands the same

answer. Clearly It Is the fact that "a block" ~s an IHDEFInlte

NG.

The fact that a speaker says "a block" Instead of "~he
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block" Indl,.:ates that he Is not sure of a specific object

referred to by the description. Even If he does not Inquire

about it specifically, the listener knows that the Information

will be new, and possibly of Interest since he mentioned the

object.    In answering "Does the box contain a block?", our

system does the same thing It would do wlth "How many blocks

does the box contaln?~’, It adds the relation "contained by the

box" to the description of "a block", and finds all of the

objects meeting this description. Of course the verbal answer

is different for the two types of question. In one case, "Yes"

Is sufficient, while In the other =’one" Is. But the loglca

deduction needed to derive it Is Identical. In fact, our system

uses this extra lnformatlcn by replyln~, ~’Yes, two of them: a

red one and a green one.~I Thls may sometimes be verbose, but ~n

fact gives a natural sound to the questlon-answerlns. It takes

on the "Intelligent" character of te111ng the questioner

Information he ~ould be Interested In knowing, even when he

doesn’t ask for it explicitly.

In YES-NO questions, It Is not always easy to determine the

focus. Only an INDEF ~G which Is mot embedded In another N~ can

be the focus, but there may be several of them In a sentence.

Sometimes there Is no way to choose, but that Is rare. In

asking a questlo,~, people are usually focusing their attention

cn a partlcular object or event. There are a number of devices

for Indicating the focus. For example a quantifier, 11ke "any"
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or a TPRON like "somethin~’| emphasizes the NG more than a simple

determiner like "a"o In boil; "Does anything green support a

block?~’, and "Ooes a block support anything ~reen?’~, the phrase

"anything ~reen" Is the focus. When none of these cues are

present, the syntactic function of the NG makes a difference.

If we ask "Is there a block on a table", then "block" Is the

focus, since it is the subject while "table" Is inside a PREPG.

Our system contains a heuristic program which takes Into account

the kind of determiners, number features (sln~ular Is more

likely than plural), syntactic position, and other such.factors

in choosing a focus° If It Is in fact very difficult to choose

in a ~iven case, it is likely that the speaker wlll be satisfied

with ar~y choice.

For sentences in the past tense, which contain no focus HG,

we can again have an event as a focus. If we ask, "Did Jesse

James rob the stagecoach?", a possible answer, Interpreting the

event as the focus, Is "Yes, three times: yesterday, last week,

and a year a~o." This is closely parallel ~o answerln~ questions

Inwhich the focus ls an object.

There are some questions wh|ch have no focus, such as

present-Lense cla,Jses with only definite noun groups. These,

however, are even easier to answer, since they can be expresss~d

¯I~ the form of a sin~ple set of assertions with no variables.

The NG analysis fln~s the actual objects referred to by a

definite ~IG, and these are used In place of the variable In
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relationships.    We c~r= therefore answer ~Byes~t or ~=noB~ by making

a goal of the relatlonshlp and letting PLANNER evaluate It. The

question "Does the red cube support the box?B= would generate the

simple PLANNER expression

(THGOAL (#SUPPORT =B3 =BOX))

i~ :B3 Is the Internal name for the red cube. PLANNER would

return a non-NIL value only If the answer were =ByeSB~o
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~ Interpretln~ I__m£,eratlves

The system can accept commands In the form of It4PERATIVE

sentences. These are handled somewhat differently from

questions. If they contain only definite objects, they can be

treated In the way mentioned above for questions with no focus.

The command 11Pick up the red ba11.", Is translated Into the

reIatlonship (#PICKUP :BT) which can be evaluated dlrectly by

putting it In a THGOAL statement which will carry out the

action:

(THGOAL (#PICKUP :B7)(THUSE TC-PICKUP))

However, If we say "Pick up ~ red ball.’~, the situation Is

different.    We could first use THFIND to flnd a red bali, then

ou[ thls object In a slmple 8oai statment as we dld wlth "the

red bat1". Thls, however, ml~ht be a bad Idea. In choosln8 a

red ball arbitrarily, we may choose one which Is out of reach or

which Is suppo~,:In8 a tower. The robot might fall or be forced

to do a lot of work which It could have avoided with a litt|e

thought.

Ne want to send the theorem which works on the goal a

description rather than an obj(:ct name, and let the theorem

choose the specific object to be used, accordln~ to the criteria

which best suit It. Thls is the method we have adopted.

Remember that each OSS has a name like "NG~5". Before a clause

Is related to its objects, these are the symbols used In the

relationship.
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When we analyze "Pick up a red ball", (t will actually

produce (#PICKUP N~45), where NG~5 names an OSS describing "a

red ba11." k~e use thls dlrectly as a ~oal statement, ca111n~ a

special the~rem which knows how to use these descriptions. The

theorem calls a theorem named TC-FINDCHOOSE, which uses the

description of the object, alon~ wlth a set of "deslrable

properties" associated wlth objects used for trying to achieve

the ~oa1. #PICKLP may specify that It would prefer plckln~ up

something which doesn’t support anythln~, or which Is ~ear the

hand’s current 1ecatlon. Each theorem can ask for whatever it

wants. Of course, It may be Imposslble to flnd an object which

flts a11 of the requirements, and the theorem has to be

satisfied wlth what It can ~et. TC-FINDCHOOSE tries to meet the

full specifications first, but If I~ can’t flnd an object (or

enough objects In the case of plural), It ~radually removes the

restrictions. It must always keep the full requirements of the

description Input In En~llsB In order to carry out the specified

command. The robot simply tries to be clever about choosln~

those objects which flt the command but are also the easiest for

it to use.
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~ Accentin~ Declaratlve .Infgrmatlon

In addition to questions and commands, the system can

accept declarative sentences. Ne have intentlonally not

emphasized them, as there are theoretical problems and dangers

In designing a program to accept Informatlon In this way. In

Chapter ~, we discussed the complex world-model a person has and

explained why we felt that Intelligence needed a hlghly

structured and coordinated body of knowledge rather than a set

of separate uniform facts or axioms. It is comparatlv~ly easy

to Bet a program to add new Information of the second type, but

very difficult to get It to add the flret, since this Involves

understanding the relationship between the new information and

whatever Is already there.

Wherefore, although we have included declarative sentences
In our d|alog (and they are fully handled in the grammar), we
believe that before trying to "tel1" many things to a program,
we need to have a better Idea of how knowledge should be
structured, and the program should approach new Information as a
problem solving activity rather than a clerlcaI one.

t~hen a human sees a new sentence, he does ~ot simply store

It away, but he relates It to what he already knows, perhaps

changing his "programs", or Ignoring the conten~ of the sentence

and InterpretlnE somethlng about the person who sald It. A

language understander needs to have an Interpreter which |ooks

at each r ’~ sentence and decides how to use It. Thls may

Include checkin& It for consistency wlth what It already knows,

creating new data or types of data In Its storage, modifying

theorems, and many othe- posslbI11tles. Thls Is discussed



further In Section 5.1

In our system we have four different ways In which

information can be accepted Im a declarative sentence. The

first Is a simple word definition fa~lllty. If we say "A ’marb~

is a red block which Is behind a box."o the system recognizes

that we are defining a new word. It currently reco~nlzes thls

by the quote marks, but It could just as easily declare all

unfamiliar words as possible new words. IVe have not done thls

as It would elIn, lnate the feature that the system Immediately

recognizes tyDIn~ errors without waltln~ to be~In parsln~ the

sentence.

In thls klnd of definition, the complement of the sentence

is a roun ~roupo which has an OSS. ~le save thls OSS and

generate a new dictionary entry for the word, defined

syntactically as a noun, and .vlth Its semantic definition being

the program ~set the object ~escrlptlon to this one we saved

earlier." Remember that all deflnltions are programs, so thls

one fits In with no problem. When it Is called on to build Dart

of the descrlptl¢-, It simply Inserts the description ased to

define it. If we talk about ~two bI~ ~arbs~, the system will

build a description exactly like the one for ~t~o big red blocks

which are behind a box.~

The second kind of Information the system acceptsis simple

assertions involving a predlca~e for which It does not have

complete knowledge. As we mentioned in Section }.~, the system



Section ~.2.7 - Pa~:e 335

has complete data about the physlcal characterlstlcs of the

objects In the scene. He have selected #LIKE as an arbitrary

relation about which the system knows nothln~ excerpt what It Is

told In the dlaIo~. IF we say "I Ilke yeu." thls produces the

a~se,’tlen (#LIKE :FRIEHD :SHRDLU) (the name of the robot Is

:SHRDLU) which Is slmply added to the data base. The system

also plays a trick wlth the adjective "nlce". Instead of havln~

some concept of #NICE, It assumes that the use of "nlce" In

describing somethln~ Is real ly saylng more about the speaker

than the object, so the definition of "nice" Is

(~.IEANS((#THI~G)((#LiKE :FRIENP ~*-))))

In other words, the person who uses the word "nlce" 11kes the

object he was.referrlng to.

If we use an object which Isn’t definite, as In "I ||ke red

blocks. ," the system uses the object descrlptlon to generate a

simple PLANNER consequent theorem. It creates a theorem of the

form:

(THCONSE (X1)
(#LIKE :FRIEND $?X1)

(THGOAL (#IS $?Xl #BLOCK))
(THGOAL (#COLOR $?XI #RED)))

Thls theorem says "Whenever you want to prove that the user

likes somethln¢, you can do It by proving that It Is a block and

It Is red." This Is added to the theorem data base, and can be

used to answer questlons or.carry out deductions Involving

objects described as "nice". The system does not separate types

of non-definite objects and assumes unlversal quantification.
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The results would have been the same If the sentence used

red block", "every red block", "all red blocks", or (wrongly) "a

red block." A r~ore complete treatment Is one of the Oossible

extensions of the system.

It does notice the form "no red blocks" and uses thls for

the fourth klnd of Information. It sets up an almost Identical

theorem, but wlth a "kicker" at the end. If we say "I like no

red blocks.", It sets up the theorem:

(THCONSE
(#LIKE :FRIE~D

(TIIGOAL (#1S $?XI
(THGOAL (#COLOR *?X$ #RED)))
(THFAIL THGOAL))

VJhen the system Is tryln& to prove that we like something,

this theorem Is c~lled just like the ~ne above. But this time,

after it flnd~ out that the object is a red block, It does not

succeed.    Instead, it uses the PLANNER functlon THFAIL In a

po~,erfu; way. Instead of just causln~ that theorem to fall, It

causes the ~,-tlre ~oel to fall, regardless of what other

theorems th~,e are. ~e c~n also accept a sentence 11ke thls

with a positive NG but a ne~atlve clause, as In =’i don~t like

the red block’= or "1 don=t llke any red blccks."
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O~e of the most complex parts o~ EnR11sh seman:~cs Is the

way of establlshln~ temporal re|atlonshlps. It v~as polnted out

earller that one of the primary differences between the clause

and other u~Its such as the N~ or PREPG Is ~he specla| set. of

mechanisms ~Ithln the clause for han~In~ tlm=. ~n this section

~e ~i11 describe how those mechanisms opera~" bo~h wlthln the .

clause and at nther levels of syntax.

In our formalism for descrlbln~ relatlons and events (see

section 3.1) there Is provision for Includln~ a tlme reference

In a relation. The sentence "Harriet sa~ the film last week."

might be represented as

(#SEE :HARRIET :FILM :rlME2$)

where :TIME2~ ls an arbitrary name for a structure descrlbln~

the tlme reference "last week". The semantic programs for

dealing with time con be described in three parts -- the form of

structures used to represent tlme, the way those structures are

crea~ed, and the way they are used Inunderstandlng and

deduction.

A. Time Semantic Structures

For the purposes of our BLOCKS world, we have treated only

a simple part of the overall range of t!me references In

EngIlsh. In pBrticu!ar we have dealt only wlth references to

actual events which have happened In the past or are occurrln~

In the present, wlthoul deallng wlth the many varieties o5
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future events, posslble events, conditional events, etc. Nlth

thls slmpiificatl,)n the system can use a simple linear tlme

scale (like a clock), relatin~ all events to specific numerical

times. Thls does not mean that a single event must occur at a

single tlme -- it may continue for a period of tlme during which

other events are occurring.

English makes a clear distinction between events which are

thought of as occurring at a particular tlme¯ and those which

are pictured as continuing over on Interval. Thls contrast Is

expressed both In the choice of verbs and In the shape of the VG

containin~ the verb.

Verbs like "like" and "know"¯ are Inherently pro~resslve¯ ¯

They express a relatlonshlp which continues over a period of

tlme¯ Verbs like "hlt"¯ and "write" are not pro~resslve¯ but

indicate the completion of an action as a whole. Of course,

thls action also Involves a process¯ and there Is a way to

express thls aspect by using a tense PRESENT IN... The sentence

"i broke It." Is not progressive¯ giving the feeling of a single

momentary act. "I was breaking It." emphasizes the process of

breaklng~ to which other events can be related.

In the present tense¯ the distinction Is clear. The

present of a progressive verb has the expected meaning¯ as In ~I

know your name." Nlth a non-progresslve verb¯ there Is a ;peclal

meaning of habitual or repeated action¯ as In "I break bottles."

In order to produce the meaning usually considered ~present~,
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the verb group must be PKESENT IN PRESE:~T, as in ’:I am breakin~

bottles "

Ambiguirles can arise from verbs which are both progressive

and non-progressive. The question "Did the red block touch the

~reen one while you were bulldln~ the stack?" has two

Interpretations. One means "Was It In contact during that

tlme?", while the other asks "Did It make contact during that

tlme?" If the verb were replaced by "support" only ~he ana|o8

of the first meaning would be valid, while "hit" would Involve

the second. The representation for tI~e references must take

thls progresslvlty Into account in trying to Interpret tlme

modifiers.

The representation used for time has four elements: the

tense, an Indicator for progressive¯ a starting tlme limit, and

and ending ti;~e |Imlto Either or both of the ]Imlts may be

ommltted. Some examples of sentences and thel- correspondln~

structures are shown In Figure 69.

A supports B
A supported B before time 2~
A hlt B before time 2~
You bullt It after time 2~
You were bulldlng It after time 2~

(PRES) T :HOYl :NOW
(PAST) T NIL 23
(PAST) NIL NIL. 23
(PAST) NIL 2k NIL
(PAST) T 2k NIL

Flsure 69 -- Time Semantic Structures

The difference between the last two examples in Figure 69

can be visualized by drawing a time line:



Section 4.~.8 - Pa~e 3~0

Non-ProKresslve

You built It after tirn, e 2W
~ ,

tlme beKin
24 buildlnL~

Progressive

You were building It after tlme 2~

I finish
tlme bul ldln~

Figure 70 -- Pro~resslve a~d non-Pro~resslve Times

A non-progresslve action must begin after the start tlme,

and end before the end time. A progressive one begins before

the start tlme and ends after the end tlme. The TSS ~or "you

hlt It during event 23" (assuming event 23 began at tlme ~ and

ended at 7) would be

(PAST) NIL 3 7

I.e. the hlt began after event 23 started and ended before It

ended. The sentenc=_ "you were hitting It during event 23" would

be:

(PAST) T 7 3

i.e. the hitting began before event 23 was over, but ended after

It had begun. Thls covers all ways of havln~ the two events

overlap. The definitions of the relating words like "during"

and "bafore" do not have explicit mention of ~:hls distinction,

but: the semantic analysis programs take Into account whether the

verb and VG a=,e progressive In setting up the TSS.
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B. Setting up Time Structures

Time Semantlc Structures are associated wlth clauses, and a

new one Is ~enerated each tlme a clause Is parsed. Its elements

are determined by different aspects of the c|ause structure --

the tense depends on the form of the VG, the progresslvlty

depends on both the tense and the specific verb, anl the limits

are set by modifiers such as bound clauses, adverbs, and tlme

NGs as well as by the tense.

No ana]ysls Is done until after the VG Is parsed and the

tense established. Some types of secondary clauses such as IHG,

SUBING, TO, and SUBTO do not Indicate a tense. There Is a

potentla] ambiguity In determining the time reference. "The man

sitting on the table baked the bread." might Indicate that the

man was sitting on the table when he b~ked It, or that he Is

slttl,lg on the table now.

Unless there Is a specific reference (like "the man sitting

on the table yesterday...") the system should take both

posslbl|Ities into account and resolve them as It would an

ambiguity caused by multlple senses of words. The current

system does not do this, but uses a slmpIIfylng heurlstlc.

the secondary clause Involves PAST, and Is embedded in a PAST

MAJOR CLAUSE, the two times are assumed the same unless

speclfically mentioned. If the secondary clause has no tense,

it Is assumed PRESENT, If It Is PAST, but Imbedded In a PRESENT

~:AJOR CLAUSE, the sys:em checks the t|me reference o? the
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Previous sentence. If this is PAST, ~he new one Is assumed to

be the same (Includin~ whatever modifiers, limits, etc.

applled). If not it sets up a ~eneral time structure for PAST,

with no bealnnin8 limlt,, and an end limit of :NOW. A PRESENT

.tense TSS is represented by the slng,e ~tom

~reated speclally by the programs, and ;s often deleted from

relations which Interrogate the curren~ s:a~e o~ the data base

(see b~lOw) o I~ can be applied onl~ to pro=resslve verbs and

~enses (no provlslon exists for understandln~ habltuai

Modals are treated like present tense as far as

establlshln= time references. A more complete system would

account for future, different types of modals, more complex

tenses, and would Involve heuristics for findln8 the referents

of muItlple tenses like "He wI11 have been 8oln~ to

Immediately for a month by Tuesday."

The start and end 11mlts are set by modifier:. Adverbs

like "yesterday" and TI~E NG~s like "the week he a~’rlved" set

both 11mlts. This can also be done by bound clauses 1~e "while

you ~ere buI1dln~ the stack" or PREPGs 11ke "durln~ the flood".

Other clauses, prepositions, and ~roups se~ only the start limlt

(like "after you hlt It"~ "after the war") whlle others (IIk~

"before" and "untl1") set the end llmlt. In lhe curren~ system

~he event beln~ referred to In the modifier Is assumed to be

known alon~ wl~h Its exact time (it ~ust be In the paS~o) The

exact be~Innin~ and endln~ time are used In settln~ the 11mlts.
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The question "Dld you plck It up whlle you were bulldln~

the stack?" is ans~vered by first fi.-~dln~ the event of bulldlr-~

the stack (us{n~ a CSS for PAST tans~ wlth no other limits),

then uslnK the beginning ~nd er~dln~ of that event as limits for

the TSS In the relation #PICKUP.

There are discourse phenomena which Involve tlme referenc:~.

First, there are specific back-references wlth words 11ke "then"

and phrases like "at that tlme’:. The syste~ keeps track of the

major tlme reference of the previous sentence, and substitutes

It In the current sentence whenever such phrases are used. Thls

tlme Is also carried forward Impllcltly. Consider "Did you plck

up a red ~Iock while you were bulldln~ the tower?" ’~No." "Did

you pick up a green one?" In thls sequence, the second ques~lon

Involves a specific time Interval although It Is not mentioned

again. Whenever there are ~wo successive PAST sentences and the

second does not have any expIIclt tlme reference, the previous

TSS Is used. Lon~ dialogs can appear In which the same tlme

Interval Is used throughout, but Is mentioned only In the first

sentence.

C. Use of TSS

So far, all of our discussion haslnvolved the clause with

Its verb group and time modifiers. But In makln~ use of tlme

information we must handle other units as well. The sen=ence

"The man sitting ~ the Sable baked the bread." has two

meanings, but the point would have been Identlca] for "T~e man
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on the table baked the bread." The quailfylng preposltlonal

phrase "on the table" does not refer to time, but can be

interpreted either as meaning "on the table now" or "on the

table then". Adjectives can be affected similarly. Consider

the sentences:

a. Nany rich men made their fortunes during the depression.

b. Nany rlch men lost their fortunes during the depression.

c. Nany rlch men worked In restaurants during the depression.

The first clearly means "men who are now rlch", the second

"men who were rlch", and the third might have either

Interpreta~ion.    The adjective "rlch" Involves an Implicit tlme

reference, as does any adjective ~hlch describes a state which

can be true of an object at one tlme, but false at ano.ther.

Nouns can also Involve states which are changeable, and the

problem would be Identical If "rlch men" were replaced by

"millionaires".

~n a traditional transformational approach, thls would be

used to show that even a simple phrase such as "a rlch man" or

"millionaires" Is generated by a series of transformations. The

possibility of two meanings Is a~¢ounted for by two dlffer~nt

deep structures, Involving sentences corresponding to "The men

were rich." and "The men are rlch." This leads-to a syntactic

theoryin which the simplest sentence may Involve dozens of such

transformatlon~, to account-for each noun, adjective,

presposltlon, etc. The parser must b= able to handle all of
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these detalis uslnE syntactic Information.

in our approach, these can be seen as semantic amb;gultles

which arise within a single syntactic structure. Part of the

semantic deflnltion of the word t’mllllonaire" (or "student",

"bachelor", etc.) Involves a reference to time.. Wlthln the

language for writing semantic definitions, there Is a special

symbol *TIME. Hhenever the program for the meaning of a word In,

the dlctlonary Is cal]ed, the semantic system will have

determined the appropriate Time Semantic Structure (or

structures) and have assigned a value to thls symbol

accordingly. If the tlme reference Is ambiguo~-, the deflnltlon

will be called once for each possibility. The noun mil]lonalre"

mlght be defined:

(NMEANS ((#PERSON) ((#IS *** #PERSON)
(#POSSESS *** $1,000,000 *TIRE))))

Notice that not every relation Involves time. Being a

#PERSON ls assumed to be a permanent cha’racterlstlc. If the

~|me ls PRESENT (indicated by the TSS =NOb}), the system deletes

the tlme reference, so FLAHNER w111 receive the expression

(THGOAL (#POSSESS $?X1 $1,000,000)), where $?XZ Is the variable

asslgned to the object beln¢ described. If the sentence were

"During the war, many millionaires worked In restaurants.~, ~he

tlme reference of the sentence wou~d be a structure llke (

(PAST) NIL 19k~ 19k5), and the PLANNE£ ~xpresslon for

"m111Ionalre" would Include=

(#POSSESS $?Xl $1,000,000 ((PAST) NiL 19~1 19~5))



A different theorem would be used for this case, slnce It cannot

look dlrectIy Into the data base to see what the person has, but

must look Into Its past "records" to reconstruct the

Information.    In our programs, a record Is ke~t of when and

where objects have been moved, so theorems can determine the

location of any object at any time in the past.

Since ad]ectlves can be defined wlth NMEANS, they are

treated Identically. PREPositions and verbs are usuaI]y defined

with CHEANS, which has the same co.~ventlons, The symbol *TIHE

can appear in the PLANNER descript!on in the deflnltlon, and Is

deleted If the applicable time Is :~OW, and replaced with the

TSS otherwise. The time applicable to anything but a clause is

that of the clause closest above It In the parslnK tree. Thls

is only an approximation, and does not take Into account

ambiguities such as illustrated In sentence c. above. In fact,

a PREP or NG can have Its own time reference, as In "~ form@r

mlllionalre", "many ~uture students’=, "my roommate J_a_~L.y_e=s~.",

"the man on the table yesterday". Thls Is one of many places

where the current semantic system needs to me extended by making

the analysis more general. It seems that this could be done

within the framework of the current system.
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~ Semantics of ~onjunctlon

The semantlc system does not handle conjunction as

~enerally as does the parser. A few cases have been dealt wlth

In a simp]Ifled way -- noun groups, adjectives, RSQ c|auses, and

MAJOR clauses which are not questions. The distinction between

"and’~ and "but" Is Ignored.

~Ith MAJOR clauses, the conjunction must be "and", and the

components are processed as If they were completely separate

sentences, except that the response ("OK." for IMPERatives, and

"I UNDERSTAND." for DECLARatlves) Is supressed for all but the

last.    The system wi11 not accept sentences joined with "or",

or "nor", and will misunderstand compounds which cannot be

separated into Indlvid’~al actions (e.g. "Build a stack and use

three cubes In

Noun groups can be connected with "and" wherever they

appear, and with "or" If they are part of an argument to a

command (like "Pick up a cube or a pyramid."). An OSS Is bu|lt

with the semantic markers of the ~Irs~ constitutent NG, the

conjunction Itself, and a lls~ of the OSS for the components.

If all of the components are DEFinite and the conjunction Is

"and", the conjoined NG is definite, and Its REFERent is the

union of the referents.

The use of the conjoined OSS depends on Its place In the

sentence. If it Is the object or subject of a verb or

preposition, the definition of that verb or preposition can
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check expIicltly for conjoined structures and treat them

specially.    For example, "touch" can be defined so that the

sentence "A and B are touching." wi11 be represented as (THGOAL

(#TOUCH :A :B)). If there Is no special check, the system

assumes that the desired object Is the Ilst of referents. "A

and B support C." would produce (THGOAL (#SUPPORT (:A :B)

If the first element of the PLANNER expression (usually the name

of a predicate) has a property MULTIPLE on Its property list,

the system mod!fles this to create the expression:

(THAND(THGOAL(#SUPPORT :A :C))
(THGOAL(#~bPPORT :B :C)))

If the conjoined NG Is one of the arguments to a command,

the theorem TC-CHOOSE wlll choose the specific referents. If

the conjunction Is "and", It wl]| combine the referents for each

of the components in a single list. If It Is "or", It

first choose according to the first constituent, then If a

failure backs up to the choice, It will try the second, third,

etc.    It does not lock at the various cholees In advance to

decide which Is most appropriate for the task beln~ done.

The other units which can be combined wlth "and" and "or"

are the adjective and RSq clause. The semantic structure for

the conjoined unlt Is a list whose first element Is the

conjunction, and the rest are the Individual Interpretations for

the constituents. In usln~ these to modify an OSS, the system

combines all of the descriptions wlth THOR or Implicit THAfID.

For example, "a block which Is In the box £~Lnd IS red" becomes:
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(THGOAL(#IS S?X #BLO~3K))
(THGOAL(#1N $?X :BOX))
(THGOAL(#¢OLOR $?X #RED))

while "a red or green block" becomes:

(THGOAL(#IS $?X #BLOCK))
(THOR(THGOAL(#COLOR $?X #RED))

(THGOALi#COLOR $~X #GREEN)))

This could easily be extended to other modifiers such as

preposition groups. Hany ocher types of conjunctlon could be

handled without major changes.to the sy3tem, usually by adding

~wo bits of program. One would create a conjoined semantlc

structure appropriate to the unit, and the other would recognize

it and take the appropriaCz action for Its use.

Whenever the constituents of a conjoined structure are

ambi[uous, the resultant structure simply multlplles the

amblgu|ty~ takln[ all possible combinations of Interpretations.
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4.2.~0 Flare o__n AmblRu!~.~

Section ~.1 described how the number of Interpretations of

an ambiguous sentence can be reduced through the use of semantic

markers, and selectlon r~strictlons associated wlth verbs,

adjectives, and prepositions. Thls section will describe the

mechanism for producin~ multlple Interpretations, asslanln~

plauslblIItles to them, and resolvln~ the ambiguities through .

discourse heuristics and Interaction vilth the user.

Any word of the classes ADV, ADJ, ~OUN, PREP, PRON, PROPN,

VB, CLASF, or PRT can introduce an ambiguity Into the semantic

Interpretation. The remaining classes (such as NU~Iber and

DETerminer) have very limited definitions, and are handled

dlfferently.

In general, a word Is expected to produce a ~ of

semantic structures, based on Its definition, and.the other

lists of semantic structures to which It Is related. NOUN,

PRON, and PROPN set up lists of Object Semantic Structures. ADJ,

ADV, and CLASF take one of these lists, andproduce a new list

adding the modification (and posslbliy eIImlnatlng anomalous

combinations).    The V~, PREP, and PRT (In conjunction wlth VB)

set up ilsts of Relatlon Semantlc Structures, and other classes

can modify these lists.

Any of these definitions can Involve speciaI programs for

producln~ the list of structures. For examp|e the SMIT program

Is used for analyzing pronouns |Ike "they" and "It". It



Sectlon ~,2,10 - PaK~ 351

contains a ~omplex set of heuristics and syntactic criteria to

find the possible referents of a pronoun and set up an

~nterpreta~Inn-for each one. For simpler words, ~he functlons

NMEANS and CHEAN$ have ways to deal wlth multiple senses of a

word.

First, they both take as an argument not a single

definition, but a llst of deflnl~ions, each with its own

semantic markers, PLANNER expressions, etc. Second, each of

them has mechanisms for looplng through each of the relevant

"Input" lists, to produce multiple Interpretations. If the

subject and object of a clause each have two Interpretations,

and the verb has three senses, ali twelve combinations w111 be

tried, and the resulting llst of Interpretations for the clause

will contain as many of them as pass through the semantic marker

°’filters". This Is all done by the function CMEANS withou;

mention in the deflnltionso Third, the deflnltlon functlons

have optional w~ys to establish a ==plauslbillty"ratlng and

paraphrase for each meaning.

In the dlctlonary, the word ~ton" has a sema~t|c definition

which uses the functlon ~ON, which conta|ns=

(CMEANS ((((#PHYSOB)) ((#PHYSOB))) (#ON #1 ~2 *TIME)
NIL

C200 (AN~HERE ON TOP
((((IPHYSOB)) ((#PHYSOB))) (~$UPPORT ~2 #I

NIL
(0 (DIRECTLY ON THE SURFACE)))

((((~PLACE)) ((#PHYSOB))) (#ON ~1 ~2) NIL))
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Thls contains three different senses. The third definition

will never confilct with the first two, s.lnce It Insists that

the subject be a place rather than a physical object. The first

two, however can be applied to the same objects, and therefore

can be involved In an ambiguity. Each of them is given an

additional argument, to help resolve ambiguities. Thls argument

appears after the standard semantic fllters, PLANNER relation,

and semantic markers for the relatlon. It Is composed of two

elements -- a LISP form to be evaluated for a ~’plauslblllty~,

and a paraphrase of t~e meaning. In this example, the

plauslbiIIties are slmply numbers. They could just as easily be

a form 11ke (PLAUSCHECK), which would ca!l a speclal program

(defined by the user) which could do arbitrary calculatlons in

order to decide on a plauslbI11ty. This might Invo)ve PLANNER

deductions, checks on the exact syntax of the sentence, or other

schemes such as Iooklng through a network or other model in

order to decide which meaning flts best with the the other words

in the sentence and the subject being discussed.

As a semantic structure Is bullt,. It takes on the sum of

the plauslbllltles of Its co{nponents, as its own plausibility.

No ~pruning~ {s done to e~im|nate obvious low plausibillties,

alFhough this would be a simple addition to the program. All

interpretations are ~arrled along untll the sentence Is totB11y

parsed.

If the sentence Is a command, the system tries to carry out
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the most plausible Interpretation. If that fails, It tries the

next, ~nd so on until one succeeds or a total failure, causes the

system to respond "I CAN’T’’. questions are handled more

completely.    The system orders the Interpretations by

plausibility and finds the answer for the most plausible. It.

then tries again to answer It, usln~ only Information mentioned .

In the previous sentence and Its answer. If It succeeds In

flnd~n~ the same answer, It deducts 500 from the plausibility,

since It is unusual to ask a Question to which the answer was

just given, either explicitly or Implicitly. If the Information

In the previous sentence Is not sufficient to answer It, the

system then tries to answer usln~ only lnform~tlon w~Ich has

been mentioned previously In the discourse. If this succeeds It

deducts 200. If the plausibility Is hl~her than that of the

next interpretation by a large enough mar~In (a factor set by

the user and called TIMID} it ~ives the answer as found. If

not, It saves the answer and repeats the process for the next

Interpretation.    After all Interpretatlo~s have been processed,

the answers are checked to see if they are Identical. in this

case It doesn’t matter which Internr~atlon Is Intended, and the

system slmply gives the answer. Flnally, if there are dlfferln~

answers, the user must be asked what he meant. Associated with

each interpretation Is a list of those places where it differed

from others. This Is produced automatically by each program

which accepts multiple deflnltlons (such as NMEANS and CMEANS).
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Each difference Is marked by two atoms -- one whose properties

Indicate the place In the sentence whet3 the ambiguity was

produced, and the other Indicating the meaning selected. In

sorting out the ambiguities, the system looks for two such

structures with the same first atom but different second ones.

The first can be used to decide what phrase Is questionable,

while the second atoms carry the paraphrases. Special care Is

taken to make sure that the same sentence Interpretation does

not involve two different interpretations of a single element

(like "It").

Faced with an unresolvable ambiguity, the system looks

through the list of Interpretations for a conflict,-then

generates a response like:

lIM NOT SURE WHAT YOU MEAN BY i’ON TOP OFi’ IN THE PHRASE ’iON
TOP OF GREEN CUBES ".

DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE
2 - ANWHERE ON TOP OF ?

The response (a typed number) Indicates which Is meant, and

all interpretations which Involve the other meanings (there can

be more than 2 associated with a single amblgulty) are

e11minated.    If there are still conflicting Interpretations,

another ambiguity Is selected and the process Is repeated until

a1! those which have not been eliminated ~Ive the same answer,

and It can be used as a response.

For Interpreting statements, much more subtlety Is needed.

In general the choice between Interpretations depends on how
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"reasonable’| an Interpretation Is. if we see "The book fell off

the table because It was slanted.|’, we avoid believln~ thaC ~|t~

refers to the books or that It was "slanted~ by the author’s

bias. It would not be reasonable for elther of these to be the

reason for fallin~ o~f of a table.

Par~ of the Interpreter which looks at declaratl.ve

statements must be able to evaluate how "sur~risinK|= an

interpretatlcn is, and to choose the one which fits best into

the normal expectations, includln8 the hearer=s knowledge about

the world. This is not easy to formallze# and was not attempted

in this project. It could be extended to lower levels to check

sub-units for r~asonablenass as ~hey are formed# to avoid

carryln~ multiple interpretations through =he analysis of the

entire sentence. It seems clear that people do th|s, and a

truly intell|sent langua~e-understam~in8 program must do so as

well.
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The verbs "be" and "have" are two of the most common words

in En~ilsh, and have a complex variety of uses. They appear In

the syst~m In two vtays. First, In the ~rammar they are treated

speclally since they can occur as auxl]]~ary verbs, as In "I

would have been going". In thls use, they do not add any

semantic Information except for helpln~ to determine features of

the VG, such as Its tense. Their other use Is as maln verbs In

clauses like "Do you ~ a mat:h?" and "He I._~s wrong." As a maln

verb, "be" Is handled speclaIIy In the grammar since It can

enter Into constructions such as "there Is" which do not appear

with any other verb. Ho~ever, the semantic analyzer does not

know anything special about "be" and "have". Their meaning Is

Included In their deflnitl~ns, which are called as programs just

like any other verb definitions.

A. Be

The use of "be" depends on the specific consteIIatlon of

objects and complements in tl,e cleuse. The definition Is a

program contalnln~ about ~0 lines of LISP, ~vhlch hand|es those

meanings relevant to the BLOCKS world (for example, It cannot

deal wlth a "roIe-playln~" meanln~, Ilke "Laurence OIlvler was

Hamlet.")

Sentences with the Feature THERe, Invo]vln~ a construct:on

like "there Is" are represented by the PLANNER expression

(#EXISTS #1 *TIME). Thls attaches the correct tlme, and might
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be important for objects which can be created and destroyed, as

In "Was there a stack...?".

The other meanings of "be" Involve INTensive clauses which

contain an object and a complement. One definition checks for

COMPQ questions Ilke "V~hat color Is the block?", to generate a

PLANNER expression (#COLOR :BLOCK $?X1). If the complement Is a

definite NG, as in "is the green block the bi~es~ object?" or

"~hat is the bl~es~ object?", the referent will have already

been determined, a~d Is Inserted In a PLANNER expression

(THAMONG *** (OUOTZ(:OBd))), where :OBJ Is the referent. This

can function In two ways. If. the subject Is also definite, as

in the first example, the *** wl|I be replaced by Its referent,

and the statement will succeed only if the two are Identical.

If the subject Is Indefinite, the THAMONG statemen: ~Ii] c~use

It ~) be assigned to the same referent as the complement.

If the complement is a PREPG or a complex ADJG, llke

"bigger than a breadbox", "be" is only serving, as a place-holder

which can accept a time reference, The semantic Interpreter In

dealing wlth a phrase like "on the =able" In "Is the block on

the table?" has already set up a reIatlon of the form (#ON

:BLOCK :TABLE) which includes the appropriate tlme reference.

In thi; case, =he "be" program simply takes the RSS produced for

the complement, and uses It as the semantic interpretation of

the clause.

The other posslb~]ltles for the complement are an
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indefinite NG, a simple ADJG (e.g. a single adjective), or a new

word. In the case of a NG, the complement NG contains

addltlonal Information to be ascribed to the subject, as in "a

large object which Is ~ red bi_~_~_F=_~". The PLANNER description of

the complement Is stripped from Its OSS, and appended to the

PLANNER description of the subject. If the subject Is definite,

as In "Is the b~.’~_LIL.ILb.LP_g a red block?", the referent Is

known, and can be plugged Into the PLANNER description of the

complement to see If the description applies. Thls Is done

using a pseudo-concept called #HASPROP which triggers the

mechanisms In the semantic Interpreter.

If the complement Is a slm~le ADJG, the ADJG semantic

specialist creates Its OSS by taking the OSS for the subject,

stripping away the PLANNER description, and using the rest as a

skeleton on which to place the PLANNER expression produced by

the adjective. Once thls Is done, It can be treated exactly

like an Indefinite NG.

Flnally, If the subject or complement Is a new word (as In

"A frob Is a blg red cube." or "A bl~ red cube Is a frob.") a

new definition Is created using the function #DEFINE. The

definition must be In the form of an Indefinite HG, and the new

word Is as3sumed to be a noun. The semantic definition created

for the noun contains the OSS which was created for the defining

NG, and sets thls OSS up as the meaning of the noun when It Is

used.
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B. Have

The definition of "have" Is also used to handle the

possessive. For the ,|mired subject matter (and for much of

En~Ilsh) this Is a good approxlmatI~n. There are cases where It

does not apply -- "the painting which John has’I Is not

necessarlly the same as "John’s palntlng.~I The preposition "of"

also makes use of the same definition. A more complete

treatment would distinguish between the three, and this would

involve only simple chan~es to the semantic programs.

The Interesting thing about ~’have" Is that It ls not used

to indicate a few different relatlonshlps, but Is a place-marker

used to create relationships dependent on the semantic types of

the objects Involved. "Sam has a mother.II can be represented

(#~IOTHER-OF X SAM), ~’Sam has a friend.II Is (#FRIEFIO X SAF!), IISam

has a car.’l Is (#OWF] SAFI CAR)~    am has support iI is (#SUPPORT X

SAM), ~Sam has a hand.’l is (#PART SAF1 HAND), e~c. The

deflnl~ion of "haveII (or =he possesslve, or ~lof") does not

Include within Itself all of ~hese different relatlons. A few

interpretatlons (llke have-as-part, owning, or having In

physical, possession} can be reasonably considered distinct

meanings of IIhave", and are Included In Its definition. The

others, such as IImothert’ and ~lsupportl= really are determined by

the subject and object. Some systems use this fact to find the

meaning of special phrases like "cllen[Is lawyer" without doing

syntactic analysls (see section 2.;). Our system uses a
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different method, a11owlng a word to be def==~ed as a #ROLE.

"~1otherI~ might be defined

(NMEANS((#PERSON #ROLE)
((#PERSON

(#MOTHER-OF ,** ?)
(#ROLE((#PERSON))(#MOTHER-OF #1 #2)))

There are two new t=~in~s In thls definition. First, the

semantic marker #ROLE is added to Indicate the type of

.definition. Second, a role definition Is Included. It contains

a semantic filter for objects which can be used In the relatlo~

(In thls case those which ccu]d have a nother), and a PLA~NER

statement indlcatln~ the relatlon (in the sane syntax used by

CMEANS). If the word ’~mother" Is used In a phrase 11ke "Caro1=s

mother" or "Carol has a mother~ or "the me=her of Carol~, =he

system will Insert the rl~ht OSS to produce Lhe PLANNER

descrlptlon.(#MOTHER-OF $?Xl CAROL) If "mother" appears In any

other form, the OSS wI11 contain (#MOTHER-OF $?X1 ?) which wI11

be satisfied In a PLANNER ~oal If XI Is the mother of anyone at

all.

Through the #ROLE mechanlsm~ arbitrary relatlonshlps can be

expressed wlth "haveI~ (or ~of", or possessives) without bloatln~

Its definition. There could be more than one #ROLE assigned to

a word as we11. For example ~’palntln~~ would Involve different

roles for ’~Rembrandt~s palntln~~’ ~Geor~e Washln~ton~s palntln~

by Stuart~, ~the Modern Museum’s palntlng.~ etc.
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~ Addltional Semantic Inf9rrnat;!on

A. Using Clauses as Objects

In order to interpret a sentence like "Find a block which

is taller than the one I told you to pick up." the system must

use a clause (mtyou to pick up~’) as the object of a verb

(’ttell’~). It generates a pseudo-object of the type #EVENT, and

creates an OSS for that object. In the example mentlone~, the

clause ~=you to pick up" would have produced the RSS=

~(~,~1 (#PICKUP NG1 ((PAST) NIL NIL NIL)) NIL)    (0))
tel PLANNER expression neg markers

Figure 71 -- RSS for "vou to plck up~t

NGI {s an OSS describing the object "the one~, which .~he

system has set up as the object of the clause, and has

Interpreted as ~block~o Th~ program SMCL~ takes this structure

and produces a corresponding OSS:

’(’(- - ((EVX1) 0 (THGOAL (#PICKUP $?EVX1 $?X1 ((PAST)NIL ~IL NIL))
(THUSE TCTE-PICKUP)))

(0 #EVENT #THIHG)
(#THING))

EVX1
(1 INDEF NIL)
NIL)

Figure 72 -- OSS for "you to pick up"

A variable was 8enerated for the event, of the form EVXn,

and a new PLANNER expression for the event was gener~3ed,

Includln8 the event name as the second elemer=~. The r~son for

putting It second is technical, and should be changed someday

for programmer convenience and consistency with the scheme
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described In Section 2.1. In the expression, thename of the

OSS is replaced with Its associated variable (In thls case $?X1)

since the new structure w111 be used as part of the description

of that object. The recommendation list Includes the theorem

which Is designed to deal with expressions Involving tlme and

event-names, and Is put In by the system. Ir workln~ with the

r~st of the sentence, this resultant OSS can be used just like

any other OSS, as an object of a verb, preposition, etc.

When PLANNER evaluates the expression, It may have the

event already stored away, or It may have to deduc{, that It

happened by ]ooklng at other events, Thls Is handled by the

theorem TCTE-PICKUP, and the name of the resultant event ls the

value which Is assl~ned to tne varlable EVX1.

B. Types of Modification

There are a variety of ways In which a modifier can affect

the meaning of the phrase or clause It modifies. Slnce the

definition Is a program, the user has great freedom to use

61fferent types of modification. A time modifier like "now" or

"then" will modify the Time ~emantlc Structure associated with

the clause, an adverb llke "quickly=’ may set up a new relatlon

such as (#SPEED $?EV1 #FAST) using the name of the event, while

others may make changes d!rect}y to the relation being

constructed.    The semantic structures previously built can be

analyzed and modified by an arbitrary function which suits the

meaning of the modlfler. One special facility exists for makln~
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substitutions wlthin an expression. If the PLAFINER expression

of a CMEANS or NMEANS definition Is of the form (.#SUBST aE a2 bE

b2...), the effect wit1 be to modify the exlstVn~ semantic

structure by substituting the atom a2 for aE, b2 for ~E, etc.

No new expression Is added to the PLAN~!ER description. The word

"move" might be defined using:

(CMEANS((((#AFIIMATE))((#MANIP))) (#PUT #2 LOC *TIME) (#MOVE)))

Thls Indicates that moving is done by an animate object to a

manipulable object, and Involves putting It at the place "LOt".

The atom LOC would be given a OSS Indlcatln~ an unknown place.

The resulting RSS has the semantic marker #MOVE. The sentence

"Move a block." would create a ~oaI (#PUT NG1 LOC), where ~IGI Is

a description of "a block". The theorem for #PUT could then

choose a block and place. If the sentence Is "Move a block into

the box.", the final result should be (#PUTI~I NG1 =BOX). The

modlfylnB phrase makes a major change In the !rternal

representation, of the meaning.

This change can be done by defining "Into" to Include among

Its meanings:

(CHEANS((((#MOVE))((#BOX))) (#SUBST #PUTIN #POVE #2 LOC) NIL))

If a PREPG wlth the preposition "Into" modifies a clause wlth

the semantic marker #MOVE, and the object of the preposition has

the marker #BOX, then the definition applies. The RSS for the

clause Is chanCed by substituting #PUTIN for #MOVE, and ~he

object of the preposition for #LOC. The special symbols #I., #2,
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#3, ***, and tTIHE are treated as they would he In a normal

CHEANS or NHEANS definition, beln~ replaced by the appropriate

object.

C. Using Evaluation In CHEANS and NHEANS

Although every definition has the power to use programs,

defI~itlons using the standard forms CHEANS and NMEANS are

forced into a rather rigid syntax which does not have a

procedural character. To avoid this, there Is an extra levelof

evaluation. If the PLANNER portlon of a definition Is of the

form (#EVAL s) where s is any LISP atom or s-expresslon, the

form will be EVALled before the description is used In the

definition, and Its value used Instead. This value will undergo

the usual substitutions for #1, #2, *TIPE, etc. This feature Is

of particular use In capturing the semantic regularities of the

language by usin~ auxllllary functions in deflnln~ words. For

example, color adjectives llke ’lredll and "blueI~ share most of

their characteristics. They apply to physical objects0 Involve

a relation with #COLOR, etc. Rather than define them

separately, we would like a single function #COLOR which needs

only to have the exact color specified. The dictionary

definition of blue would then be (#COLOR #BLUE). The function

#COLOR can be def;ned In LISP:

(D~FUN #COLOR FEXPR (A)
(NHEANS((#PHYSOB)     (#EVAL (LIST(LIST .(QUOTE #COLOR)

(QUOTE ***)
(CAR A)))))))
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When (#COLOR #BLUE) is evaluated, the #EVAL w111 produce

the form ((#COLOR *** #BLUE)), which will then be used by NMEANS

in the usual way.

As another example, the word ~e$rasp" can be used to mean

#(~RASPING (an object being held) or #GRASP (the actlo;~ of

~]oslng the fingers around !t). The difference dep.ends on

whether the VG is progressive or not. The function

(PROGRESSIVE) flnds out whether the clause Is progr~sslve, by

looking at the verb and the tense. The deflnitlon of

can be:

(CMEANS((((#ANIMATE))((#MANIP)))
(#EVAL (COND ((PROGRESSIVE) (QUOTE(#3RASPIHG #2 *TIME)))

(T (QUOTE (#GRASP #2 ,TIHE))))) NIL)}

D. So~e Interesting Problems

There are many areas In which ~he semantic analysis needs

to be refined and expanded. The system does not pretend to

contain a complete ana|ysls of Eng|lsh# but is rather an

Illustration of how many aspects of semantics could be handled.

This section describes a few places where modlflcatIon might

begin.

1. Definite Determiners

in our system, a definite noun phrase Is Interpreted as

referring to a unique object or set of objects known to ~he

hearer. In more genera] language use~ deflnlteness Is often

used to convey new lnformatlono The phrase ~’my brother who

lives in Chicago" can be said to someone who Is not aware I have-
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a brother, and the effect Is to Inform hlm that Indeed I do, and

to tell hlm where thls brother ~Ives. Other nouns can describe

"functions", so tha: "the tlt:le of hls new book", or ’Imy

address", are allowable even If the hearer has not heard the

tlt]e or address, since he knows that every book has a unique

tlt|e, and every person an address. SuperIat|ve phrases like

~t:he t:alIest: elephant: In Irldlana" also refer to a unique object,

even though t:he hearer may not have seen or heard of thls object

before.

Cases such as these can lead to problems of referential

opacity. If your name Is =~Seymour~, and I say ’=Excuse me, l~ve

never heard your name. ", It does not Imply t:h~t: I have never

heard t:he name Seymour. The sentence "I want to own the fastest

car In the world." does not have the same meanln~; If we replace

the NG wlt:h Its current referent:-- I don~t want whichever car

It: Is t:hat: happens to be fastest right now.

These and other such prob|ems need to be handled In the

programs fo~ Interpretlr.~. a definite NG, usinE syntactic,

semantic, and world knowledge.

2. Verb Tenses

The current: system Implements only a few of the possible

tenses -- PRESENT, PAST, PRESENT IN PRESENT, PRESENT IN PAST,

PAST IN PAST, and an elementary form of the t4ODAL

Sect:Ion 4.2.8 described some of the problems which can be

I.n, vo]ved in time reference, and a deeper anlaysls Is needed
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account for Interactions between the order of phrases and the

posslbIIitles for tlme reference. The modals, condltlonals,

subjunctives¯ etc. need to be handled. Thls may demand a

version of PLANNER which can temporarlly move Into a

hypothetlcal world, or which has more power to analyze !ts own

theorems to answer questions Involvln~ modals like "can" and

~mus t~ .

3. Conjunction

Only the most elementary problems In conjunction have beer,

dealt with In the current system. Many conjoined structures do,

not yet have semantic analyzer programs, end no subtlety Is used

in deciding on the meaning of words llke ~andle. "And~l can be

used to Indicate temporal s~quence ("Vie went to the circus and

came home.~l} causalit~ (~We ~aw him and understood.~l), as a type

of conditlonal (~Do that aBain and l111clobber youl~l) in

specification of how to ~o something ("Be afrlend’and help

me."), etc. Under’standlng these’uses will be related to the

discourse problem of the o~derln~ of sentences. For example,

"The ll~ht is on. He~s there." Indicates a chain of reason|n�.

In addition, n~ attempt has been made to dlsamblRuate

nested structures like "A and B or ~", or "the old men and

women." Syntactic crlterla are hOt.sufficient for these

distinctions,’ and a powerful semantic program will have to be

used to ask ;’which Interpretation makes more sense In this

caseII.



l~on-syntactlc Relations

There are some p.aces In English where the relation be:ween

a set of words is not indicated by syntactic clues, but Is

largely based on semantics. One example Is chain of class!flers

before a noun. In "strlct ~un law", the law Is strict, but In

"stolen gun law", the gun Is stolen. It Is poss!ble to combine

long strings like "a helical aluminum soup pot cover adjustment

screw clearance sale", In which a large amount of semantic

Informatlon must be combined wlth the ordering to flnd the

correct interpretation. The current system handles classifiers

by assuming that they.all separately modify the head. Thls

needs to be changed, to use both the semantic markers, and

complex deductions to flnd the real relationships.
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4.3 The Semantics of D~scourse

In section 4,1. we discussed the different types of context

which can affect the way a sentence Is Interpreted. In thls

section we wIl! descrlhe the specific mechanisms used by our

program to Include context In Its Interpretation of language,

V~e have concentrated on the "local discourse context", and the

ways In which parts o~ the meanin8 of a sentence c.~n be referred

to by elements of the next sentence. For example, pronouns llke

"it" and "they" can refer to objects which have been prevlous|y

mentioned or to an entire event, as In "Nhy did you do I~?".

The words "then" and ~’there" refer back to a previous time and

place, and words I ike "that" can be used to mean "the one most

recently mentioned", as In "Explain that sentence.~

In addltlon to referring back to a particular object, we

can refer back to a description In order to avoid repeatln~ it.

We can say= "Is there a small grey elephant from Zanzibar next

to a big one?". Sometimes ;nstead of usln~ "one" to avoid

repetition, we simply omit part of a phrase or sentence. ~e can

reply to "Would you like a corned-beef sandwich?" with "Brln~ me

~wo.~ or we can ~espond to almost anything with |~Why?’| in these

examples, the second sentence ;ncludes by Impllcatlon a part of

the first.

These are not really discourse features, since they .~an

appear lust as well In a sln~]e sentence. In fact, there are

some sentences which wou|d be almost Impossible to express
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without uslng one of these mecha:~Isms, such as: "Flnd a block

which Is bigger than anything which supports It.~t These

mechanisms can be used to refer back to anything mentioned

previously, whether lr~ an earller sentence of the speaker, one

of the replles to hlm, or something occurring earlier In the

same utterance.



~ Pronouns

First we will look at the use of pronouns to refer back to

objects. Since our robot does not know any peop|e other than

the one conversing wlth It, it has no trouble wlth the pronouns

"you" and "I" ~hich always refer to the two objects :SHRDLU and

:FRIEND.    A more general program would keep track of who was

talk|ng to the computer In order to flnd the referent of

When the NG p, oKram In the grammar finds a NG consisting of

a pronoun, it calls the program which Is the definition of that

pronoun.    The definitions of "It" and ’~they’~ use a specla!

heuristic program called SF~IT, which looks Into the discourse

-for all of the different thin~s they mIRht refer to, and assIcns

a plausibility value to each Interpretation. If more than one

Is possible, they are carrled alone slmultaneously through the

rest of the sentence, and the ambiguity mechanism decides at the

end which is better, Inc]udlng the last-resort effort of

printing out a message asking for c]arlflcatlon. If SMIT finds

two different Interpretations, and one Is chosen because of a

higher plauslbl|ity, the systsm types out a message to Inform us

of the assumptlo;~ made In choosing one Interpretation, as In

Sentence ~ of Section 1.3:

BY "IT", I ASSUMEYOU MEAN THE BLOCK
WHICH IS TALLER THAN THE ONE I AH
HOLDING.

if a response from the user is needed, the request Is typed

In the same format as the mes~aCe used for other amblgul~les, as
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in sentence 24 of Section 1.3. In the case of sentence 3, It

would be:

l’t.1 NOT SURE ~VHAT YOU MEAN BY "IT" IF!
THE PHRASE "PUT IT INTO THE BOX"

DO YOU MEAN:
i - THE BLOCK WHICH IS TALLER THAN THE

ONE I AM HOLDIHG

2 - THE ONE I AM HOLDING ?

A simple transformation Is used to switch "you" wlth

and make the corresponding verb changes, and the words are

borrowed directly from the Input sentences.

In our discussion of pronouns, we will use "It" as typlcaI.

In most cases, "they" (or "them") Is treated identlcaIIy ~xcept

checking for agreement wlth plural rather than singular. The

pronouns "he" and "she" never occur In our IImlted subject

matter, but they would be treated exactly like "It", except that

they would make an extra check to see that their referent Is In

fact animate and of the right gender.

The first thln~ checked by SMIT Is whether "It" has already

appeared In the same sentence. ~e very rarely use the same

pronoun to refer io two different objects In the same sentence,

so It Is generally safe to adopt the same Interpretation we dld

the first tlme. If there were several posslble Interpretations,

the system Is carefu] not to ~atch up one Interpretation from

one occurrence of "It" wltha different one from another

occurrence In bulldln~ an overall Interpreted!on of the

sentence.
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Similarly, if "It" was used In the previous sentence,

likely that if used again It will refer to the same thln~. In

either of these cases, St41T simply adopts the previous

Interpretation.

Next, a proncun may be Inside a complex syntactic

construction such as "a block which I~ bigger than anything

which supports It.’~ Engllsh uses the reflexlve pronouns, like

"Itself" to refer back to an object In the same sentence.

However, If In going from the pronoun to the referent on the

parsing tree, It Is necessary to pass through another F~G node,

an ordinary pronoun like "it" Is. used, since "Itselfi’ would

refer to the intermediate NG. Notice that If we replaced "it"

by i~itself" In our sentence, It would no longer refer to the

block, but to "anything".

SHIT looks ~or thls case and other related ones. When such

a situation exists, the program must work differently.

Ordinarily, when we refer to "It" we have already finished

finding the referent of the t~G being referred back to, and "it"

can adopt this referent. Inthis case, we have a circle, where

~it~ Is part of the definitlonof the object it Is referring to.

The part of the program which does variable binding In relating

objects and clauses Is able to recognize this, and treat It

correctly by uslng the same variable for ~a b|ock~ and

The pronoun may a|so refer to an object in an embedded

clause appearing earlier In the same clause, ~s In ~Before you
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pick up the red cube, clear It off." S~IT looks through the

sentence for objects in such acceptable places to which "It"

might refer. If it doesnWt find them there, it begins to look

at the previous sentence. The pronoun may refer to any object

in the sentence, and the meaning will often determine whlch it

ls (as In our examole abolit the demonstrators in the Preface).

V~e therefore cannot eliminate any of the possibilities on

syntactic grounds, but can only 81ve them different ratings of

"plausibility". For example, in Section 4.2.5 we discussed the

Importance of a "focus" element in a clause. "It" Is more likely

to.refer to the previous focus than to other elements of the

clause.    Slmllarly, the subject is a more likely candidate than

an object, and both are more llkely than a HG appearing embedded

in a PREPG or a secondary clause.

The system keeps a list of all of the objects referred to

in the previous sentence, as well as the entire parslng tree.

By using PROGRAMMAR’S functions for exploring a parsing tree,

S~IT is able to find the syntactic poslton of all the possible

references and to assign each a plauslblllty, using a fairly

arbitrary but hopefully useful set of values (for example we add

200 for the focus element beyond what It would normally have ~or

Its position as subject or object). In order to keep the list

of the objects in the las~ sentence, our semantic system has to

do a certain amount of extra work. If we ask the question: "Is .

any block supported by three pyramids?", the PLANNER expression
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produced is:

(THFIND ALL $?XI (XI)
(THGOAL(#1S $?Xl #BLOCK))
(THFIND } $?X2 (X2)

(THGOAL(#IS ~?X2 #PYRA~¢IO))
~v(THGOAL(#$UPPORT $.~2 $?X~)}))

Once thls Is. evaluated, It returns a list of all the blocks

satisfying the description¯ but no record of what pyramids

supported them. If the next sentence asked "Are they ¯ ¯ we

would have no objects for "they" to refer to. Speclai

Instructions are Inserted Into our PLANNER descriptions which

cause lists like thls to be saved. The actual PLANNER

expression produced would be=

(THPUTPROP (qUOTE
(THFIND ALL $?X1

(THGOAL(~S $?XI #BLOCK))
(THPUTPROP (QUOTE X2)

(TtlFIND 3 $?X~ (X2)
(THqOAL(#IS $?X2 #PYRA~41D))
(THGO~L(#SUPPORT $?X2 $?X~)))

(QUOTE BIND)))
(QUOTE BIND))

This only occurs when the system ~s handlin~ discourse.

Flnally~ "lt|| can be used in a phrase like "Do It:l" to

refer to the entlre maln event of the last sentence. Thls

LASTEVENT Is saved~ and SFIIT can use it to replace the entire

meanln~ of "do It" wlth the description generated earlier

the event.

Nhen "that" is used In a phr6se like "do that"~ it is

handled In a similar way¯ but with an Interestln~ difference.

If we have the sequence "Why did you plck up the ball?" "To
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build a stack,°t ~Ho~ did you do It?~°, the phrase t~do It~ refers

to ~PIck up a balle~. But If we had asked t~How did you do

that?~, it would refer to building a stack. The heuristic is

that ~tha=~t refers to the event most recently mentioned by

anyone, while ~lt~ refers to the even= most recently mentioned

by the speaker.

In 3dditlon to remembering =he participants and.main event

of the previous sentence, the system also remembers those in Its

own responses so that it can use them when Whey are called for

by pronouns. It also remembers =he last time reference,

(LASTIHE) so the word "then" can refer back to the time of =he

previous sentence.

Spe¢!al uses of ~=it== (as In ~lt ls ralnlng.~) are not

handled, but could e~slly be added as further possibilities to

the SNIT program.
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..l~.~..~. Substltutes ~D~ Incomoletes

The next group of things the system needs to interpret

Involves the use of substltutenouns like "one", and Incomplete

noun groups i|ke =’Buy me two." Here we cannot look back for a

partlcular object, but must look for a descrlpt~on. SHIT looks

throu&h a |Ist of partlcu|ar objects for Its meaning. SHONE

(the program used for "one") |ooks back Into the Input sentence

Instead, to recover the English description. "One" can be used

to stand for part or all of that descrlptlon.

As wlth "It=’, "one=’ can refer back to something In a

previous sentence, the previous reply, or earlier In the same

sentence.    Here though, there are no restrictions about where

In the. parsing tree the description can lie. "One" depends more

on surface characterlstlcs than on structural dlfferences. For

example, It cannot refer back to a NG which is a oronoun or uses

a TPRON like "anythin~". Our program for "one" is not as

complex as the one for "it". It is primarily based on the

heuristic of "contrast’=. People often use ’=one" to contrast two

characteristics of baslcally similar objects, for example "the

big red block and the llttle one." The program must understand

these contrasts to Interpret the description properly. We

realize that "the litle one" means "the little red block", not

"the little big red block" or "the little block". In order to

do this, our system has as part of Its semantic knowledge a list

of contrasting adjectives. This Information Is used r~ot only to
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decide how much of the description Is to be borrowed by "one",

but also to decide which description in a sentence "one" Is

referring to. If we say ~The green bl~ck supports the bi~

pyramid but not the little one." It Is fairly clear that ’~one"

refers to eepyramld~. But If we say "The big block supports the

green pyramid but not the little one.", tt;en "one" might refer

to "block~. The only difference Is the chan~e of adjectives --

"bl~" and "little" contrast, but ~=green" and "lltt]0~~ do not.

Our program looks for such contrasts, and If It finds one, It

assumes the most recent contrasting description Is the referent.

|f there Is no contrast between the phrase bein~ analyzed and

any NG In the same sentence, previous answer, or previous

sentenue, It then looks for the most recent NG which contalns a

noun.

it is |nter~sting to note that SHONE causes the system to

parse some of Its own output. In order to use the fragment of a

NG It finds, S~ONE must know which elements it can use (such as

inoun, adjective, and classlfler) and ~hlch It does not (such as

number and determiner). For the noun ~roups (n previous Inputs,

the parsing Is available, but for the reply, only the actual

words are available and It Is necessary to construct a simple

parsing before understanding the n~eanin~ of "one". It does not

call the entire system recurslvely to do thls, but uses a

simplified version..

An Incomplete NG, containing only a number or Quantifier is
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used In mush the same way as ~one=~. In fact, if we look at the

series ==Buy me three.~= ~Buy me two.~= ~Buy me oneo=~, we see

they are nearly ldentlcal. We can take the view that an

l|~complete NG actually has an lmplled substitute noun of

This is the way our program handles Incomplete noun gFoups.

Currently the set of contrasts is stored separately as

special properties In the dtctlonary entries of ~he adjectives

involved.    It would be better to combine this with the semantic

marker syste,i, or the actual system of PLA~NER programs and

concepts°
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~ v~_~roll Dlsceurse ~ontext

~’~e have discussed several ways of using overall discourse

contex~ In understanding. V~e have so far experimented wlth only

one of these -- keeping track of what has been mentioned earlier

in the discourse. Thls Is not the same as |ooklng back In the

previous sentence for pronoun references, as It may Involve

objects several sentences back or occurring In separate

sentences.    If there are many blocks are on the table, we can

have a conversation: "What Is In the box?" "A block and a

pyram!d." "V~hat Is behind It?" "A red block and another box."

"Nhat color Is the box?" "Green." "Pick up the two blocks.:’

The phrase "the two blocks Is to be Interpreted as a

particular palr of blocks, but there may be others In the scene,

and nowhere In ~he dialog were ~wo blocks.ment.loned ~o~ether,

The system needs a way to keep track of when th|n~s were

mentioned, In order to Interpret "the" as "the most recently

mentioned" In cases like thls.

To do so, we use PLANNER’S facility for ~Ivln~ properties

~o assertions. When we mention a "green block", the semantic

system builds a PLANNER Qescrlptlon whlch Includes the

.expressions:

(THGOAL(#IS $?~1 #BLOCK)) (THGOAL(#COLOR $?X1 "GREEN))

After the sentence contalni’n~ this phrase has been Interpreted,

the system goes back to the PLANNER descriptions and marks al1

of the assertions which were used, b~ puttlng the current

sentence number on their property lists. Thls is also done for

k_
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the assertions used In generatln5 the descriptions of objects In

the answer.

When the semantic programs flnd a deflnlte NG like °#the two

red blocks", the second NG speclallst (SHNG2) uses PLANNER to

make a 11st of a11 of the objects which fit the description. If

there are the right number for the NG, these are ]Isted as the

"reference" of the NG, and the interpretation of that NG Is

finished. If there are fewer than called for by the determiners

and numbers, St4NG2 makes a note o? the Engilsh phrase which was

used to build the description, and returns a message to the

parse; that something has gone wrong.

If the parser manages to parse the sentence differently,

a11 Is well. If not, the system assumes that the

Interpretation was the reason for the fallu.~, and the system

uses the stored phrase to print out a message ~I don~t

understand what you mean by...~

However, If there are too many objedts which match the

description, SMNG2 tries to find ou~ which ~ere mentioned most

recently.    It does this by using PLANNER to recheck the

description for the Items It found, but this time usin~ only

those assertions mentioned In this ~ the previous sentence.

This ls easily done by usin~ PLANNER’s ablllty to put a ==filter~=

on the assertions to be retrieved from the data base, a11owlng

only those which are accepted by a LISP predicate (which In thls

case |ooks for a sentence number in the appFopFIat~ range on the



property list of the assertlr.1. See <Sussman) for details.) If

It finds the right ;~umber, these must be the reference of the

NG. If It finds too few, It can reiterate the procedure, but

using all of the assertions mentioned In the last two sentences.

This backward progress continues until at some point either It

finds the right number or the number found jumps from below the

right number to above it. In this case a message of failure Is

returned to the parser as before, but a marker Is set so that In

case the sentence cannot be understood, the messaEe returned Is

"1 donWt know which.., you meanle, as in sentence 2 of Section

1.3:

I DOf~WT UNDERSTAND ~HICH PY~A~I~ YOU

Of course, a more sophisticated program Is needed for

determining the referents of definite NGs. If~ the conversation

is about a book, the NG "the t|tle~! Is clearly acceptable and

must refer to the ~Itle of ~ha~ book, even though no tit|e was

previously mentioned. If there I~ a complicated NG !lke w=the

biggest cat in the world" or "the thing I want to do most", the

program must deduce from the form of the NG that there Is only

one such object, even thoush It has not been previously

mentioned, and that It ls beln~ defined by this description.

There Is a large area for expansion In dealln~ ~ith these and

s|mllar problems.

It seems l|kely that these and other similar aspects of "

language can be handled systematically, usln~ the form~llsm of
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procedures within a systnm like the one described ~n this paper.

The semantic and deductive systems provide a framework wlthln

which we can formalize ,~nd combine a varlety of aspects of

meaning and know|edge to dea| wl~h the real problems of

semantics.
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k.k Generation of Responses

In this section we will describe how our laeguage-

understanding system 8enerates Its ]Ingulstlc responses. Thls

aspect was not emphasized as much in the research as the problem

of understanding language, and we have not developed a general

theory of discourse generation. The programs produce behavior

which seems reasonable" for carrying on a dlalog about the robot

world. In particular we dealt wlth four different aspects of

dlsco~irse production -- patterned responses, appropriate answers

to questions, ~eneratlng descriptions of objects and events, and

the production of fluent discourse.

~ Patterned ~¢sDonses

The easiest way to get lanRuage behavior from a computer

program Is to Include a set of fixed responses which are

appropriate for the situations It will encounter. These

responses can be made as complex and varied as we want, since

they are created by the programmer, and the program only repeats

them.    Many language systems make heavy use of these fixed

responses to achieve t’good sounding’~ output.

In general, these responses are not f]exlb|e enough for a

true |anguage system, but there are p|ages where they are

appropriate -- for example, when the program wants to

acknowledge that something has happened, or that It has reached

a cer~a|npoint In its ana|yslso Our system Uses several types

of patterned response. First there Is a set of slmp|e responses
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for specific situations. The system responds "OK." when a

command is carried out, "! UNDERSTAND.== when a declarative

sentence Is analyzed, "1 DON=T UNDERSTAND.w’ when a sentence

cannot be analyzed, and =’1 CAN=T.|= when a command cannot be

executed.

A slightly more complex type of response Involves ==filling

in the blank" with a phrase borrowed from the Input. The

simplest example in our system is "SORRY, I DON=T KNOW THE WORD

’=...", PLEASE TYPE TW~ SPACES.’= The offending word ls taken as

it was Input and lnse~ted In the blank. The ==two spaces== are to

clear the input buffer oF characters typed after the message was

sent. Two slightly more complex types of response i~Volve

manipulating the determiners of the phrase which was Input. I~

the usee types something like "the three green pyramids==, and

the syr=tem cannot f|gure out what he is referring =o, it types

"1 DOI~=T KNOb! WHICH THREE GREEN PYRAMIDS YOU MEAN°=| It has

slmply replaced |’the’= wl~h "which" before filling =he blank.

The ==1 assume" mechanism does the opposite~ replacing an

indefini~e de~e=-~|lner with "=he"o If we talk about ==some �teen

pyramid’= or ’=a green pyramid’=, then later refer to that pyramid

as "i~=;~ the system can notify us of Its Interpretation o~ ==|===

by saying ’=BY =IT= I ASSUHE YOU MEAN THE GREEN PYRAMID.== Here

the system has removed the indeflnlte determiner or quantifier

(’=a" or "some==) and replaced It with =’the’=. It uses knowledge

about varlous ktnds of determiners to fill in the pattern



Section !~.1~.1 - Pa~e 386

reasonably in a number of cases (for example, possessives are

left alone, since they are already deflnlte). It can also

handle the use of "they" to refer to several objects.

Our most complex "blank-filling" response Is the one which

handles ambiguity, it uses parts of the Input sentence and

pieces of the definitions of words stored In the dictionary. In

the response to sentence 2~ of the sample dlalo~ (section 1.3):

2W. how many things are on top of green
cubes?

the system typed:

I=H NOT SURE WHAT YOU MEAN BY ~ON TOP
OF ’~IN THE PHRASE ~eON TOP OF GREEN
CUBES " .

DO YOU MEANt
1 - DIRECTLY ON THE SURFACE
2 - ANWHERE Oft TOP OF ?

The two phrases e~on top of’e arid ~on top Of green cubes~

were taken directly from the Input, and the paraphrases

m~dlrectly on. the surface~ and ~=anywhere on top ofe~ were part of

the dictionary definition provided for "on". One of the answer

routlnes looks at the llst of places where the Interpretations

differ, and generates this request for clarlflcatlon. The

response must ellmlnate at least one possibility, and the

program contlnues 8eneratin~ questions llke this one un¢~l only

one Interpretation remains. If the amblgulty Is caused by

multiple Interpretations for a pronoun, the Engllsh text of the

phrases ori~lnally used to refer to the objects are used in the

response choices.



~ ~pswerin~ ~ues.~Ion~.

In order to carry on a d|scourse, we need to know what types

of responses people expect to different types of questions. In

Section 2.3.3 we classlfled various types of questions

syntactlcally, and we can use It.Is classlflcatlon to select

apgroprlate answers. The system answers whenever posslble, wlth

a complete phrase, providing as much Information as possible.

No attempt is made to produce fu~] sentences, since In fact

people rarely answer questions wlth sentences. The natural

response to "Which block Is In th~ box?’~ Is "the red block’|, or

"the red one", certainly not "The red block Is In the box." We

have tried to analyze what sort of phrases provide the most

Informative and natural responses.

The first case Is the WH- question, and within that class,

the NGQ(see section 2.3.2}, Involving a question NOUN GROUP,

such as "which block=’, "who~, "how many pyramids", or ~what".

We can divide these into three classes -- ’~how many~=, ~=va~ue=~,

and |’specific". If asked "What ls in the box?’~, we can answer

"a blue block and a pyramld" without belnx more specific at

Identifying ~hem. If Instead we are asked ||Which block Is In

the box?" we must use a more specific description like ~the

large blue cube which supports a pyramld.~’ The program must

~enerate English descriptions of par;lcular objects, and It must

be able to ~enerate both de~Inite andindeflnlte descriptions.

Thls part of the pro~ra=n will be described In the next section.
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The use of Its results Is straightforward for NGQ questions. If

the f~G Is "what", we generate Indefln~te descriptions of the

object or objects. If It Is "which...", we generate a definite

description. "Who" Is never a problem, since the system only

knows of two people, "you", and "I". There are also default

responses, so that a question like "Vlhlch block supports the

table?" can be answered "NONE OF THEM."

HOWMANY questions are answered with the number of

appropriate objects, fnllowed by "OF THEM" to make the discourse

smoother. For example, the response to dla1¢.g sentence 6, ~’How

many blocks are not in the box?", Is =’FOUR OF THEM."

The next type of question Is the QADJ, such as ~’why==,

"when", "how", or "where". The only three which have been

Implemented so far are "why" "when", and "how", but the others

can be done In an analogous fashion. A "why" question Is

answered using the systemes memory of the subgoals it used In

achieving Its goals in manlpulat~ng toy objects. If we can

decide what event Is being referred So in the question, we can

see what goal called It as a subgoal, and answer by describing

the higher goal In Engilsh. If the event was Itself a top level

goal, It must have been requested as a command, and the response

Is "BECAUSE YOU ASKED ME TO.".

We need a program which creates an Engllsh description of

an event from Its PLANNER description like (#PUTON =B3 =TABLE).

It must generate phrases which refer to the objects involved,
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and combine them into a clause of the proper type wlth the

proper tense. This program Is also described in the next

section.

We can use the same event-describer to answer ~howe=

questions by describing all of the eveners which were sub~oals

used In achieving the event mentioned. We say "BY    " then

list each event In an ~inge~ form, as In: ~=BY.PICKING UP A RED

BLOCK AND PUTTING IT IN THE BOX.~ If the event was Itself a

lowest-level goal, the system has no way of analyzing its own

programs for achieving that goa|, and answers ~1 CAN’T ANALYZE

HOW".

~Whene~ questions are answered similarly -- a tlme is named

by describing the top-]eve| coal which was belng carrled out at.

the time¯ saying "WHILE I ~~A$..o" and using the ||ing|| form to

describe the event. This Is Inappropriate if the question

refers directly to the top-level goal (Ne can=t answer =~Nhen did

you build the stack?" with "~HILE I ~IAS BUILDING THE STACK.|~),

and In that case we s~y e~BEFORE..." and name the top-leve] goal

Immediately fo]iowlng in ~Ime. I~ the goal mentioned was ~ust

done¯ the ~ystem replies ||JUST NON,e~. In addition to the norma~

responses¯ the system has a set of fixed resgonses such as

"NEVER~, and "1 CAN’T EXPLAIN A NON-EXISTENT EVENToee ~o answer

questions which demand them.

Flna|]y we come to YES-NO questions whlch, paradoxically,

are the most comp]lcatad_ It seems that a one word. answer Is
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called for, but this Is often Impossible and rarely the best way

to respond. If we ask "Does the block support three pyramids?",

and In Fact it supports four, what Is the correct answer?    The

system could ask for clarification of the Implicit ambiguity

between "at least three" and =’exactly three", then answer "yes"

or "no". But it Is more efficient and helpful to answer "FOUR

OF THEM", leavln& the speaker to Interpret his own question.

If there were only two pyramids, the system could respond "NO",

but It would be more Informative to say "NO, ONLY TWO OF THEM".

In any of these cases, we might be even more complete, and say

something 1 lke "FOUR OF THEM: A BLUE ONE, TWO RED ONES, AND A

LARGE GREEN ONE."

There are three parts we can Include In the answe.- -- "yes"

or "no", a number, and a description of the objects. Remember

that whenever possible a YES-NO question Is treated llke a fIG

question by looking for a focus element (an Indefinite NG In the

question). A questlon llke "Does the pyramid support a block?"

Is treated logically llke the question "t~hlch block does the

pyramid support?" , or "How many bl.ocks does the pyramld

support?" A11 three send a THFIND ALL request to PLANNER, asking

for a11 of the objects fitting the descrlptlon:

(THPROG (X)
(THGOAL (#IS $?X #BLOCK))
(THGOAL (#SUPPORT :B5 $?X)))

wh~ e :B5 Is the system’s Internal name for the pyramid beln~

referred to by "the pyran~id" (thI~ would be determined In
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separate calls to PLANNER). In the case of the H~\VMANY question

we answer wlth the number of objects found. For the "whlch~’

question, we name the objects.    In the case of a YES-NO

question, we answer with all three kinds of Information, sayln¢

~YES, TWO OF THE~I: A LARGE RED O~IE AND THE G~EEN ONE."

The first element Is "YES" If the answer Is clearly yes

(for example If the number Is matched exactly,, or the number in

the orlginal question was Indefinite as In th;s example), "~IO"

If It Is clearly no (for example If there are fewer than

requested, none at all, or the request.wes of a form

’~exactly..." "at least..o~ ’~more than...~ etc. and was not met),

and Is omitted If there Is a question about Its Internretatlon

~as described above).

The second element, the number, Is omitted If the number

found matches the request (For example, ~’Ar.~ there three

blocks?" Is not answered redundantly, ’~YES, THREE OF THEM: A

GREEN ONE AND T~VO LARGE RED ONES."). The phrase "OF THEH’t

following the number Is changed to "THINGS~’ If the focus

contains a TPRON like ~anything", or ~somethlng~=. If the number

found Is less than that In the focus, It Is .preceded by

"ONLY...", so the answer comes out "NO, ONLY TWO OF THEM:...~)

At the end of a response, we put the description of the

objects found, unless the request used a special number format

such as ’~exectly...~’, "at least..." etc. In which case the

system assumes the number Is ~c-e Important th÷~n the specific



object:s. We use the objec:-namlng program In Its indefinite

mode.    IF the fccus originally appeared as the object of a

preposition, we repeat that preposition before the descrlptlon

to clarify the answer. Thus. "Is the pyramid on a block?" Is

answered "YES, ON A LARGE GREEN ONE." The unknown aKent of a

passive like "Is It supported?" Is impllcitly the object of

"by", SO the answer is "YES, BY THE TABLE." If a YES-NO

question contains no possible focus since all of its NGs are

DEFlnlte, as in "Does the table support the box?", the system

answers simply "YES" or "NO".



~ Namln~ ~b~ects and Events

The previous section covers a11 of the different types of

questions the system can handle, and the types of phrases It

uses In response. We have not yet explained how It names an

object or describes an event. Thls Is done wlth a set of

PLANNER and LISP functions which examine the data base and flnd

relevant Information ~bout objects. These programs take

advantage of the fact that the subject matter Is ]Imlted. In

general, the way an object Is named Is highly dependent on what

the person being spoken to Is Interested in and wh~t he already

knows.    Thls has not been dealt wlth yet. Certain features of

objects, such as their color and slze, are assumed to be the

best way to describe them In all contexts.

First we need to know how the object Is baslcalIy

cIasslfied. In the BLOCKS world, the concept #IS represents

thls, as In (#IS :HAND #HAND), (#IS ~BI #BLOCK), and (#IS #BLUE

#COLOR). The naming program for objects first checks for the

unique objects In I~ world, ~1~, ~’you~, ’~the table~, ~the box~e,

and ~the hand=~. If the object Is one of these, these names are

used. Next it checks to see If It Is a color or shape, In whlch

case the En~llsh name Is simp|y the concept name without the

=~#~. The ques~Ion ~What shape Is the pyramid?e~ Is answered

~POINTED.~ since it has the shape #POINTED. If the the object

Is not one of these and Is not a #BLOCK, #BALL, o~ a ~PYRAf41D

the program gives up. If It Is one o~ those three, the correct
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noun Is used (Includln~ a special check oF dimensions to see If

e #BLOCK Is a "cube"), and a description is built of Its color

and slze. .At each sta~e of building, the description Is checked

to see If It refers uniquely to the object being described. If

so, the determiner "the" Is put on, and the description used

without further addition. If there Is only one ball In the

scene, It will always be referred to as "the ball".

If the description Includes color and slze, but still flts

more than the desired object, the outcome depends on whether a

specific description or an nonspeclfic one Is called for. If It

Is nonspeclFIc, the program puts the indefinite pronoun "a" or

1’an" on the beginning and produces something Ilke "A LARGE GREEN

CUBE". If It Is specific, more Information Is needed    If the

object supports anything, the program adds the phrase "WHICH

SUPPORTS,.." then includes the English descriptions (indefinite)

of all the objects It supports. If the object supports nothing,

the program adds "~HICH IS TO THE RIGHT OF..." and names all of

the objects to the left of the desired one. This still may not

characterize the object uniquely In some sltuatlons, but the

system assumes that It does. If at any point In the dialog, an

object Is given a proper name, It Is referred to using only the

noun and the phrase "NANED...", as In "THE BLOCK NAMED

SUPEPBLOCK."

Namln~ events Is relatively straightforward. Hlth each

event type (such as #PUTOfI or #STACKUP) we associate a small
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program which generates an En~11sh name fo~ the event and

combines It properly wlth the names of the objects Involved.

For example, the definition for #PUTON Is:

(APPEND (VBFIX (QUOTE PUT)) OBJI (QUOTE (ON)) OBJ2)

VBFIX Is a program which puts the verb Into the rlaht form for

the kind of clause needed to answer the question. (for example,

-In~ for answerln~ "how’e, or Infinitive for answerln~ eewhy~e).

It takes Into account the chan~es In spellln~ Involved In addln~

endln~So OBJI and OBJ2 are bound by the system to the En~Ilsh

names of the objects Involved In the event, usln~ ~he object-

namln~ program described above. APPEND Is the LISP function

which pu~s to~ether the four In~redlents end to end. We

therefore get descrlp~lons like ~’BY PUTTING A LARGE RED CUBE ON

THE TABLE". There Is a special check for the order of particles

and objects, ~o that we output "TO PICK UP THE SMALL BLUE

PYRAMID.", but, "TO PICK IT UP" rather than, e~TO PICK UP IT".
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~ Generating Dlsc~urse

The prevlous, sect!ons described a generating capability

which can produce reasonable.English answers to different types

of questions, but used by themselves, the features described

would produce awkward and stilted responses which would at times

be Incomprehensible. Even though we have mentioned some

dlscourse-Iike patterns (like "...OF THEM" following a number),

we have not yet discussed the real problems of discourse. The

system uses three different discourse devices In producing Its

answers. These are much more limited than the rangeof

discourse features It can understBr=d, buz they are sufficient to

produce fluent dialog.

The first problem Involves lists of objects. Our Initial

way of naming more than one object Is to simply string the

descriptions together wlth commas and "AND". We might end up

with an answer like "YES, FOUR OF THEM: A LARGE BLUE BLOCK, A

SMALL RED CUBE, A S~IALL RED CUBE, AHD A SMALL RED CUBE." To

avoid thls redundancy, the obje~t-namer looks for Identical

descriptions and combines them wlth the appropriate number to

~et "A LARGE BLUE BLOCK AND THREE SMALL RED CUBES." (Note that

It also must change the noun to plural).

The next problem Is the use of substitute nouns. We would

like to respond to ~’Is there a red cub.~ which supports a

pyramid?" by."YZS, A LARGE ONE." Instead of "YES, A LARGE RED

CUBE.~’ By comparing the English descriptions of the objects wlth
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the wording of the focus In the Input sentence, we can omit

those nouns and adjectives they share ~nd replace them by ~ONE".

The third problem is more serious, as Ignoring it can lead

to incomprehensible responses. Consider the answer to question

32 in the dialog ("How dld you do It?"). If we dld not use the

proncun ~it~ or the determiner "that=~, the response would be=

BY PUTTING A LARGE RED BLOCK ON THE TABLE, THEN LETTING GO
OF A LARGE RED BLOCK, THEN PUTTING A LARGE GREEN CUBE ON A
LARGE RED BLOCK, THEN LETTING GO OF A LARGE GREEN CUBE,
THEN PUTTING THE RED CUBE ON A LARGE GREEN CUBE, THEN
LETTING GO OF THE RED CUBE.

How many different blocks and cubes are Involved? In describing

events, we must have some way to indicate that we are re~errIng

to the same object more than once. We can do tl~Is using ~=It~’

and ~that", and at the same tlme can use these words to Improve

the smoothness of the discourse In other ways. The system has

heuristics which lead It to use "it" to refer to an object In an

event It Is describing whenever= I. the same object was called

~it" In the question. 2. the object was ca|led ’~It" In the

question preceding th~ current one, and 11It~ was not used. In the

current one. 3. the object has already been named In =he

current ~nswer, and was the flrst object In the answer W. no

objects have yet been named In the current answer, and the

object was the only one named In the previous answer.

To refer to an object already named In the current answer,

other than the first, the program applies the determiner "that"

to the appropriate noun, to ~et a phrase llke "BY PUTTING A
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GREEN BLOCK Oil A RED CUBE THEN PUTTING THAT CUBE IN THE BOX."
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~ Future Development

The generatlcn of language Is a complex subject, wide open

to future development. Our current system Is just a be�Inning,

and has some major deficiencies. First, we would like to

describe an object by using facts which are relevant to the

context. In our simple world, we have declared by flat that

color, slze, and support relationships are the Important facts

about an object. We could just have well have used location to

get answers like "the block nearest to the back of the table".

With a wider range of subjects, we would need much more

sophlstlcated heuristics for decldlng what features of an object

wlil serve best to Identify It to the hearer.

Se ond, we do not have a way to turn an arbitrary PLAHNER

expression Into English. We can handle only specific objects

and simple events. There are a number of applications for a

more powerful EngIlsh generator. For example, In case of

ambiguity, we shouldnet have to Include special paraphrases In

the definition. The system should be able to look at the two

PLANNZR descriptions and describe the difference directly In

English.

The system should be able to tell us more about itself and

how It does things. If we ask a question like t’How do you build

stacks?", it should’ be able to look at Its own programs and

convert them to an English description llke "First I find a

space, then l choose b|ocks, then I put one of the bloc~ts on
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that space, then...~ PLANNER’s structure of goals and subgoals

Is ideal as a subject for this kind of descript|on, and a great

deal could be done along th|s l|ne. In a more speculatlve veln,

the development of discourse generators which could convert an

Internal loglcal format Into natural language mlght lead to

computer essay writers, or translators which could understand

the material they were work|rig with.
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4.5 Comparison with Other Semantic Systems

~ Intro.duc¢!qR

This section compares our semantic system with two other

models for the semantics of natural lancua~e. E~ch has served

as the basls for computer programs which "understand" lancuage,

and we will consider the usefulness of the models for this

purpose as well as their value as theoretical models of a

natural     process.

The three models can be |abel|ed ~¢ate~orlzation~,

~assoclatlon~, and ~procedure~=o Thes~ do not represent a cross

section of somantlc theories, but represent one particular type

of theory. They assume that it ts meanin~fui to postu|ate a

conceputa| organization of human knowledge, related by semantics

to the linguistic forms used In express|n~ thoughts. This sets

them c.?f from traditional approaches which avoided postulatin~

mentalistlc structures and dealt Instead with extra-mental

representations such as ]ogica| truth condltlons or stimu|us-

response re|atlonshlps.

These three models are oriented towards vlewln~ language es

a human activity rather than an abstract ca]cu~ls of symbo|s.

They study the process in terms of human mode|s~ and. take into

account the production and lntepretatlon o? language. One

posslb|e reason why the current syntactlc theories have been

weak in developing semantic theories is their Insistence on a

~neutra]~ characterization o? the com~)etence o~ a |an~uage user,
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without regard to the process carried ou’: In an Intelligent

speaker or hearer, Since semantics Involves the Interaction

between the structures of the language and the knowledge and

intelligence of the language user, it cannot be understood

without trying to deal with this Intelligence direct~y.
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~ Cate£orizatlon

The Ca=egorlzation model of semantics was developed In Its

best known form by Katz and Fodor <Katz>, and has been a part of

many computer systems for understanding natural language.

The basic principle ls a structure of categories, called

"semantic markers", dividing the conceputal world much as the

Dewey decimal classification subdivides the books in a library.

The usual sense of the word "bachelor" has the semantic markers

"male", "human", "animate", "phys|cal object", etc. and the

fina]distingulshing characteristic ("never having been

married!’) is its "semantic distinguisher".

;n choosing between different senses of a word In a

particular sentence, these markers are combli=ed according to

"projection rules". Fcr example, the word "colorful" would be

interpreted In on~ sense In "colorful cube", another In

"colorful party’=, while the rules would Indicate that "a

colorful ball" has two posslb]e readings.

Further Information can be gleaned from the le~Icai

relations between the markers such as the fact that "male

uncle" Is redundant, while "female uncle" Is anomalous.

Fodor and Katz did not attempt to explain the process of

producing on6 understanding language In terms of these markers,

preferrlngto see them as abstract neutral relationships

underlylng the speaker’s competence. They dld not deal In any

systematic way ,v!tE ~:,ose aspects cf meanlng whlch cannot be
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dealt with through thls type of categorization.

t~evertheless, cate~orlzatlon has been used In many computer

programs for understandln~ natural language, to help choose the

right meaning for potentlally ambiguous words. Schank <Schank

lg6g, lg70> has extended the appllcatlon of thls theory, usln8

semantic relatlonsh!ps to parse sentences conceputa~ly.

Associated wlth each sense of a word Is a conceptualization,

speclfyln~ the semantic relatlonshlps of that word wlth other

words In the same structure. For examp]e,one meanln~ of the

word "hlt" would be an actlen of physical strlkln~, whose

subject Is a "person", whose object Is a ’=physlca! object", and

which has a possible Instrument of the category "weapon". The

sentence "I hlt the boy wlth ~ stick." would be parsed by

notlcln~ words In cate~orles which could fl]] the roles, a~d by

settln~ up an appropriate structure. It could also account for

the Interpretation In which "hI~" Involves strlkln~ with a flst~

and "wlth" represents possession of a "physical object’= by a

"person", but thls would be found onIy on "prompting" (see

<Schank ~970>, p. 26).

The underIyln~ belief is that humans make much use of this

sort of categorization In understandln~ sentences, rather than

doln~ a complete syntactic parsing. The sentence:

"The window the bal! the boy threw hit broke.’~

Is understood more easl]y than:

"The man the woman the ~Irl knew llked died.==
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Fodor and Ga~rett <Fodor 1967> studied sentences like these, and

found that they are more ea;I:l understood when the cate¢orles

associated with the verbs can indicate the conceptual structure.

For sentence fraCments and un&rammatlcal ~Jtterances, this

ability seems vital.
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~ Asseclatlon

The second m~del has Its roots more In psychology, and the

presence of "associations" between words In a personls mlnd. It

postulates a sprawling collectlon of words and concepts,

connected tc each other by slmple links. If "goose" Is

connected to ’~quili~ and ~qulll’~ to ~pent~ and ~Ipen~ to ~tlnk~,

there is a path of length three from ~8oose" to "Ink~. These

11nks would be present In Information such as ~A ~u111 Is a

£oose feather", "Pens can be made of qulils~I, etc. The

justification for thls model Is that the course of a path

describes the relatlonship betwee~ the two nodes, and that Its

len~th Is a ineasure of their relatedness. The use of

association as a model for computer lancua~e understandln~ has

been most Influence~ by the work of Qulillan <GulIllan 196~,

Z969>.    Information Is coded Into the network of concepts usln~

several types of 11nks (for example, ~he cla~s-subclass

relatlonsh|~ used In the cate~orlzatlon model). In

understand~n~ a sentence, a search Is Inltl3ted through the

network from each of the content words of the sentence, to flnd

the shortest paths 11nkin~ them. The system uses the

Information alon~ that path to decide what the sentence Is

about.

It Is Important to understand why I call this the
"association" model instead’of the ~network~ model, The word
"network" has been used to refer to every conceivable variety of
data structure. The semantic markers In the categorization
model form a network , Schank <Schank ~969> refers to the
output of his par.set as a "lan~uage-free conceptual network",



recent ~arsers <~qoods 1970> are called "augmented transition
networks", while our parser uses sVstemlc grammar w|th
networks". Each of these "newtorks" represents a
different sturcture and use of data. Sayln~ that a structure Is
a "network" Is not much more Informative ~han saying that It Is
represented bv blts In a c~mputer memorv. \~hat .~ust be stated
is the way ~he network Is used.

A central oommlttment of the assoclat~n r.~de! Is that

There Is a significance to tracing along the llnks fro;; node to

node ignoring the!r content. Once a path Is found, all sorts of

Ioglcal operations may be used to determine Its sI~mlfIcanc~ and

make use of Its Information, but In the propagation,

of caIculatlon is done at each node.

It Is d~ffl~ult ~o formalize a "minimum" of calcu|ati~n,

but It Is important to have some understand~n~ of Its

ImpI~catlons. Any computation whatever, can be expressed as a

network by drawing a flow chart, wlth the blocks of computation

as nodes, and the transfers of control as links. The

computation then traces a path through the net. i: might seem

that there Is something Inherently different between a program

foI|ow;ng a slngle path through a flowchart, and a slgna|

propagating In all directions through a net. However the

difference disappears If we a|Iow some sorJ of para|lel

processing (for example the pseudo-slmu|tameous e’:aluatlon of

several paths, as found In many slmulatlon ~ngumges, and some

theorem-provers such as new versions of PLANNER <~ewltt Ig70>).

Thls Is not the place to debate the merits og Dara|lel vs.

serla! processing. The Important thing Is to realize that once
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networks carry out computations at each node, they move away

from the association moeel, towards a model of semantics as a

program.

Some types of natural langua~e understandln~ do appear to

Involve slmple associations. On hearing the words "fortune" and

"almond", a person wTll (.If he has ea:en In Chinese restaurants)

think of the word "cookie". It Is hard to describe Ioglcal

connections which lead so such a quick reaction, and much more

appeailng to picture a short asso¢latlon path between "cookie"

and each of the orlglnal words. The mode] can also be used to

explain the chol¢~ of a slngle meaning for a potentlally

ambiguous word In a sentence. If a word Is connected by a link

to each of the concepts It might describe, the shortest path to

the other words In the sentence should be through the relevant

meaning.
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~ Procedure

We can call the model of semantics used In our system the

"procedure model". The primary organization of knowledge Is

a deductive program with the power to combine l;,formatlon about

the parsing of the ~ .nt~’~ce, the dictionary meanings of Its

words, and non-lingulstlc facts about the subject beIe~

discussed.    Any relevant blt of knowledge can Itself be In the

form of a program or procedure to be activated at an appro~riate

tlme In the process of understanding. The program operates on a

sentence to p~oduce a representation of Its mean|n8 In some

Internal lansuage, In our case PLANNER. Thls language a11ows the

expression of a wide variety of the aspects of language --

loslcal connectives and quantlflers, tlme references (provided

by verb tenses and modifiers), different sorts of object-

modifier relatonshlps, types of object reference (e.g. the

difference between "the do~~’ and "a do~"), etc.

In analyzln~ a sentence, the program can use Information

about previous sentences In the discourse and about the subject

being discussed. Thls allows It to deal wlth features of

language such as pronoun reference, substitute noun~ the effect

of discourse on specific referents, and the dlsamblguatlon of

meaning through knowledge of non-lln~ulstlc facts (like Bar-

Hlllel’s classic example of the "box In the pen" <Bar-Hlllel~).

Other programs, such as <Woods 1969> also use the procedure

model. These programs use a complete syntactic parsing of the
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input to provide a frame’~ork from which the proKram can decide

what aspects of meaning to deduce, The majority of the

language-comprehending programs have used the orocedure model in

a simplified form, performing only a few elementary types of

deduction In analysis, and ha’/ing an internal language tailored

to a specitic application,
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~ EvaluatlnR the ~

There is no single set of criteria to judge the success of

a model of semantics or a computer program for "cnmprehendln~

language". Success is relative to the ~oals o£ the model, and

the aspects it wishes to describe. Four criteria seem to be of

importance both it, computer language comprehension and In

developlng a theory of semantics. These are: ability to

combine syntax and meaning ; efficl~ncy; ablIlty to expIa.ln

human performance; and the ability to understand language In

context.    These wl~| be discussed separately.

A. Inte~ratln~ Syntax

There are many facets to the meanlng of an utterance In a

natural languase, and no model sheds equal llsht on al| of them.

In fact, two of the three models are 11mlted to one part of the

meanln~ -- the baslcsemantic relatlonshlps between the words

used in the sentence.

The Fodor-KaZ= verslon of the catesorlzatlon model does not

attempt to deal ~ith the part of meanln~ expressed by the

semantic dlstin~ulshers, ana|yzlng only those aspects ~hlch can

be modelled by the markers. It does not ~ork ~Ith other aspects

of meanln~ such as tense, mood, and reference to. objects.

Schank~s verslon attempts to model the way people understand a

sentence, describing an actual parsin8 process. However the

conceptual parsl.n~ does not actually flnd the "meanln~". One

argument for the mode~ is human ablllty to understand utterances
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in a f.D~el~n language without a detailed knowledge of She

~,ammar.    Only the meanings of ~ords are needed :o f~nd the

l~n~ua~e-free conceptual connections {see <Schank 1~70>,

This seems a Good parallel ~o the type of understandln~ done by

the categorization model. ~nyone who has tried to ~et alon~ In

an unfamiliar foreign language will be familiar wlth the.

followin~ experience. A friend says sc:nethln~ which contains

the forei~n lan~uaRe equivalents of the ~’ord~ ’°llke|°, "see°’, and

"f|lm". The fore~n visitor knows the v:ords and the!r "word-

concept couplings", bu~ is totally at a los.s In tryln~ to

respond, since the sentence may have been any one of a vast set,

lncludln~:

"1 like seeln~ fllms." "Have you s..en any films you liked?|| °’l
see you like films." "Nould you llke to see a film?" °’1 sa~ a
film I liked." "~Id you like seein~ the f!lm?" etc.

~llthout the add;tlonal meanln~ provided by syntax, It Is

impossible to understand the content of the sentence. If the

visitor responds "Ne are talkln~ about a person who sees a film

and likes the film||, hls Foreign friend can ri~htfully re~ly

"Oh, you dldn~t understand." This problem app|les equally to the

assoclat~on model. Flndin~ the intersection of signals from the

nodes "see", "film", and ~llke" might produce the right

conceptual relationships, but none of the addltlonal

lnformatiop. Neither of these two models has been the basis for

an actual questlon-answerln~ system, slnce they do not deal with

the ways in which syntax conveys meaning, and therefore l~nore
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those aspects of semantics In which syntax plays a large role.

The procedure model pays more" attention to a complete

understandln~ of a sentence, tryln6 to interweave syntax,

semantics, and deduction in order to actually answer a questlof,,

use a piece of new ~ formation, or follow a command.

B. Efficiency

It would seem reasonable to look for capablilties of the

ocher two models not possible for the procedure model. In one

sense, thls quest Is a joke. SInc~ a procedure system has

Information in the form of programs, those prosrams can Include

simulations of any o~her model. The significant question Is not

what Is possible theoretically, bu~ what Is reasonable to do.

A program could play a simple ~ame like NIM by using

standard strategies of minimax and look-ahead. If It could wln,

It would provide a successful model of Nl~i playing. However II

mak{s no use of the simple wlnnln~ strategy, and therefore Is a

bad model for the specific game. Similarly, ~he procedure model

approaches.semantics in a ~eneral way, saying that every part of

semantics Involves powers of deduction and the abl|Ity to

combine information, of a variety of types. If In fact, major

parts of lan~uase comprehension can be explained by more

elementary approaches, the general procedure model Is not a ~ood

description for those areas.

The Issue at stake ~s more than computer effici~ncy. Since

we are modelling a natural process, the criterion of ~eOccam=s
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razor" applies just as In any other science. The most

satisfactory explanation Is the least complex one which can

account fDr the facts.

The area of computational complexity Is barely charted, and

t Is nearly Impossible to determine that some computation Is

nherently "more complex" or "more difficult" than another. It

s especially dangerous to characterize hlgh-level processes

Ike deduction, since a computation which takes Impossibly long

using one scheme may be trivial for another. However, there Is

an intuitive sense In which efficiency can be judged. A

procedure system could handle the "fortune -- almond" example bv

systematlcally looking through the things It knows about

fortunes and almonds, and using some sort of analogy program So

test for relationships. This seems clearly more complex than

the presence of a simple association link. Those who advocate

the assoclatlonal model feel that there wlll be many such cases

In which the deductive process needed to flnd the path would be

Impossibly torturous and lengthy.

There Is also a complexlty of syntactic parsing. The

semantic connections might give clues to the underlylng

structure which would change the parsing task Into simply

checking ~i~e plausibility of the relations, and cleaning up the

detal!s.    Thls Is the approach taken by both Schank and

Qullllan.    The example lnvolvln~ the bo~, ball, and wlndo~

involves a complex syntactic s~ructure which could not be
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handled by most of the parsers which have been written for

computers, yet a simp!e set of semantic criteria seem to analyze

It directly without any complex synt3x rules.

C. Hodelllng Human Behavior

It is difficult to find psychological experiments which

could decide between one model and another, slnce the underlying

conceptual structure Is too complex to isolate a |’single

interaction|=. However, son,e examples seem to suggest the

validity cf various models. In speech communication, people

understand sentence fragments, scattered words, and blurred

phrases which require filling In much of the meaning. In a

model requlring a complete parsing, this woulG add a ~reat deal

of complexlty, since the parser would have to know about the

different types of fragments as well as the grammatlcal

sentences. A semantic relation model suggests that the syntax

is only used at the end of the process, to check on the

conceptual message. If the syntax is lacking, the final check

Is ~one, but the basic meaning Is still d|scoverab~e.

Special types of language us~ like poetry, puns# and jokes

seem to Involve slmple assoclatlonal links. Often the gunch

line of the joke comes from reco~nlzlng the lnaporoprlateness o?

the link which was made~ wh!le the poem conveys meaning by

showin~ that a llnk is not as Irrelevant as it outwardly seems,

but hlnts at deeper connections.
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D. Context

One of the most Important facts about language

comprehension Is th,~t sentences do not appear in logical

isolation, but are always part of a context, both of other

utterances and of the situatlon In which they are uttered. Some

semantlcists try to avoid this problem, saying It goes beyond

the proper realm of semantics. Katz and Fodor believe that

"...a semantic theory, cannot be expected to account for the way

setting determines how an utterance Is understood.’t (<Katz> p.

~86) However, If semantics Is to be a study of the way language

and meaning are actually related, we cannot Ignore the facts.

One of the maln strengths of the procedure model Is Its

ability to Include all sorts of knowledge In making deductions

at any stage of semantic ana~ysls. The program can ca]| on the

contextual knowledge just as easily as the dictionary

definitions or syntax. Within the framework of the basic

procedure mode], there can be a detal]ed mode] of those parts of

the context which are needed for understanding (for examp|e a

memory of the objects which have been mentioned, so pronouns can

refer back to them). The examples below show some of the

problems Involved in other models when context enters Into

understanding.

Schank uses the sentence ~tl hit the man wlth a stlck.~ to

Illustrate conceputal parsing. (<Schank 1970> p. 26) Since

"hlt~ takes an Instrumental of the type =~weapon=t, the conceptual
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parser first assumes that the phrase "wlth a stick" has this

Let us look at two possibie contexts for themeaning.

sentence:

2,

Three men attacked me. I hit the man wlth a stick.

A man attacked me. I hlt the man wlth a stick.

The phrase "wlth a stlck’~ Is Interpreted dlfferentiy In the

two cases, but thls cannot be because of differing conceptual

reIatlons.    The relevant Information Is that a phrase like ’~the

man" wl]1 only be used when It Is clear which particular man Is

meant, while ~’the man with a stick" wit1 be used only In trying

to distinguish one partlcuIar man from others.

Another example used (<Schank 1970> p. 11) Is the

dlsambiguatlon of the word "fly" depending on whether Its

subject Is a "pilot" or pot. ~f you know that Ed~s father Is a

pilot, the sentence "Ed~s father fle~ to Chlcago.~’ should be

interpreted In the sense of =’operating a plane~’. But there are

no categorization clues in the words "Ed~’ or "father~’, for the

conceptua~ parser.

It seems that within the association model there should be

some way te make use of this Information. If there were a node

llnked to "Ed", "father, and "pllot", then the network search

Involving ’tEd", ~’father’~, and "fly~ would go through It, and the

relatlons could be determined from the path. This approach Is

deceptive, as adding this type of knowledge creates a world of

false short paths. Thls is a problem Inherent to the approach.
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The earlier example of ~goose~ ||quill|| ~pen~ ~lnk~ could be

extended one place further from ~ink~ to ~spot~. It is

extremely u~~llkely that a sentence containing ~spot~ and

would actually involve this connection. Yet It might be a much

shorter path than the one actually representing the connection

In ~i spotted a goose.~ As the amount of knowledge grows, there

will be a rapldly expanding number o~: false pathss made up of

links which are indlvidua!!y very closes but whlch bear no

logical relatlon to each other. Since the association network

does not check the logical relations of the links until after

the path is found, t!~er’e Is no Immediate way to sort these out.

By including specific knowled~e~ this proble~ is

exacerbated, since each node ~111 have a large number of llnks~

of widely dlfferlng logical types.

There are various w~ys to sneak deduction Into the

association model, and for each simple example, it Is possible

to deslKn a trick which cuts out the Irrelevant 1Inks

(Qullllan|s distinction between proper~y and superset links

<Qui11Ian 1969> is an example). As the amount of information in

the net increases~ it needs more ad-hoc deductive schemes# and

In order to handle language Benerally, the association net wlll

become a full-fledged parallel processor using procedures to

find semantic relations.

In addition ~o swamping the system with Implausible l|nks~

the association model can produce very plausible Incorrect
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llnks.    If the sentence=

"He hated the landlord so much he decided to move into the

house on Harvard StJ~

were given to a system like TLC, it would be hard to restrain It

from saying "We are talk;n~ about a landlord who owns a house.

The house Is located on Harvard St ...." The path from "landlord"

to "house" will be as strong as the path from "lawyer" to

"client" In the standard associational example. But In this

Case, deduction Is needed to reallze that the association Is

wrong.    A person would move out of the house of a landlord he

hated, not into

These examples point out a serious defect of non-deductive

models, Earler sections discussed the existence of areas of

language comprehension which could not be hand|ed without syntax

and deduction. These examples Indicate that deduction is

necessary even for the tasks for which the other models are

designed -- finding the semantic and conceptual relat|ons

between the words in the sentence.
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~ Concluslon~

Alti:ough the procedure model seems to account for much more

of language behavior than either of the others, there are some

parts of language understanding v~here they are especially

applicabie.    There Is no one aspect of understanding which can

succeed without deduction, but the simpler models can be of help

In making appropriate dad~Jctions In many sentences.

In trying to understand language at a deep level, a system

cannot hope to simply throw together the advantages of these

different models, but needs a way to Integrate them usefully.

This Is the primary advantage of the procedure point of view.

It is flexible enough to make use of the other models In a

systematic way In an Integrated system. If semantic criteria

can simplify parsing, a partial semantic analysis can be

Included In the procedure before syntactic analysis. This could

involve category matching, or even a controlled search throt’gh

some sort of assocla:lon net. These might be used as well In

choosing between meanings of a word, or In flnding lnformatlon

applicable to a deduction about the subject matter In generating

a response.

The degree to which these speclal sub-models could be used

.~ould depend on the particular appllcatlon and the sub3e¢t belng

discussed.

A program to read poetry or retrieve documents Gn the basis

of vague descriptions of subject matter may need a strong
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association component. One written to answer questions abou~

airline schedules, or understand questions and commands to a

robot will be more procedura|ly oriented. In general, a use

involving detailed knowledge of any specific subject can rely on

deduction, while an application needing superficial knowledge of

a wlde ranze of subjects can benefit from association, and wlll

be correspondingly weak In Its ability to ~ive specific

responses.

Speclflc models such as association and categorlzatlon are

subparts of a mo~el of language understanding, whiIe the

pro(:edure model Is fundamentally an approach to Integrating a11

of the different sub-models Into a total semantic theory. It

represents a polnc of vlew that no part of the process can be

Isol~ted from the basic computational power or ~Intelll~ence~e of

the language-understander (whether human or computer).

Understanding of language, as well as other types of human

behavior, depends on thls ability to see the operation of

Intelligence at every level of processing.
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Chapter 5. Conclusions

5.1 Teaching, Telling and Learning

One of the most Important requirements of a natural

language understandlng system is generality. It should not be

based on special tricks or shortcuts whlch ]Imlt it to one

particular subject or a small subset of grammar, but should be

expandable to really hand]e the full diversity of language. In

each of the ~hree preceding cha~ters we have pointed out that

many approaches to language understanding are qulte limited, and

have tried to illustrate the progression within each sub-area

towards ..1ore general approaches.
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~ ~.y_pes of Knowledge

In eva]uatlng the flexlbI11ty of a system, we must consider

the four different levels of knowledge It contains.

First, there Is the "hard core" which cannot really be

changed without remaking the entire system. Thls Is Its "Innate

capacity" -- the embodiment of Its theory of language. A: thls

level we must deal wlth such questions as whether we should use

a top-down transformational parser, a semantic net, or some

other approach to the basic ana]ysis of a sentence, or whether

we should have special tables of Information or a general

notation (sbch as the predicate calculus) for representln¢

Information.

The second level of knowledge Is the complex knowledce

about the la~guage and the subject being discussed. Thls would

Include such things as the grammar of a languace, or the

conceptua] categories Into which the speaker divides hls model

of the world. If we think about the human speaker, thls Is a

type of knowledce which Is obvlously not Innate (since the

~rammar would be different for En¢llsh and Chinese and the set

of concepts used would differ for ~alkln¢ about toy blocks and

talkin~ about love stories). However it Is not something which

he learns by being told, or whldh he chances very easlly. Over

a period of years, he builds up a store of very complex,

ir~terre~ated knowledge, which serves as a framework for more

speclflc Information.
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The third level Is our storehouse of know%edge ~bout the

details of our language and our world. It Include~ the ,,ma---,~Ings

of words¯ and most of what we called "complex knowledge" In

section 3.1.3. Thls would Include such things as "A house built

on sand cannot stand.", "If you ~vant to pick up a block, first

clear off its top." .¯ or ’=Sunspots cause strange weather.==      In

human terms¯ this Is the knov~iedge we are continually learnln~

all of our lives¯ and fol-ms the bulk of what we are taught In

school.

Flnal ly, the fourth level Is the se~ oF specific facts

,~hlch are relevant to a discussion. Thls Includes facts such as

"~Fllght ~2 leaves Boston at noon "̄ ¯ ~The red block Is ~ Inches

tallo||, or "A bandana is hanging above the chalro’~o This Is the

easiest: type to |earn~ since It does not: demand forming any new

Interrelationships.    It is more like putlng a new entry into a

table or a new simple assertion into a data base. There Is no

sharp dlstlnction between levels three and four, but within any

given system there will usually be two different ways of

handling Information corresponding to this distinction. Let: us

look at the three areas of syntax~ infer.ence, and semantics¯ and

see how these different levels of knowledge relate to language

understanding programs and the way they can learn.



Section 5.1.2 - Page ~25

~ Syntax

In syntax It Is clear that at the top level of knowledge

there w111 be a basic approach to grammar, whether It be

transformations, pattern matching, or finite state networks. In

addition, there must be some sort of built in system to carry

out the parsing.

Some programs (such as the early translation programs) had

the grammar built In as an Integral part of the system. In

order to add new syntactic Information it was necessary to dlg

Into the deepest Innards of the system and to understand Its

details.    It was recognlzed 3ulte early that this approach made

them Inflexible and extremely dlfflcult to change. The majorlty

of language systems have Instead adopted the use of a "syntax-

directed" parser. A grammar Is described by a series eF rules

which are applled by a unlform parsing procedure. In handling

simple subsets of English, this turns grammar Into a thlrd-level

type of knowledge. We can add new single rules (for example,

adding the fact that verbs can have a modifyln~ adverb) In a way

similar to adding words to a vocabulary -- without ~orrylng

about the Interaction between rules. Thls slmpilclty Is

deceptive, since It depends on the slmpIlclty of context-free

grammars for small subsets of natura! language. Once we try to

account for the complexItles of an entire language wlth

something 11ke a systemic or transformatlonal grammar, we must

again pay attention to the complex Interrelatl0nshlp~ between
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the rules, and the srammar becomes a tanzJed web Into whi(:h any

new addition must be carefully fitted. For examples of

complexity of current transformational grammars for English, see

<KIima>. Hore recent programs which use transformational

~rammars <Woods 1970>, <Bobrow Z970> <Thorne i968,

recoEnize the fact that syntax ls not really that simples and

adopt a more Interrelated representatlon such as networks.

In our system we have used programs to express the =rammar,

as explained In chapter 2. This Is not a return to the original

first-level representation, slnce the grammar programs are

completely separate from the system Itself. One of the

arguments for using syntax-dlrected parsers was that the grammar

rules could be expressed In a uniform way which dld not depend

on the details of the parsing program. Therefore changes could

be made more easily and the grammar was expandable. By

deslgnin¢ a special language for wrltln~ ~rammars~ we can use a

represen~ation which Is just as ~eneral as syntax-rule tables,

but which allows greater flexlblllty In designln~ a grammar, and

relatln~ it to semantics.

How difficult Is It to change our ~rammar? For small

¢han~es (like a||owlng noun groups to contain only a number, as

In "Are there any books? ! want three.~) only one or ~wo

additional lines of program would be needed. For a more

substantial change (like adding a new type of modlfylng clause)

we might need as many as a dozen small additions to the grammar
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In different places which would be affected. The first change

could be done wlth little d|fflculty by anyone wlth an

understanding of PROGRAM~AR and section 2.3. The second would

take a deeper understanding of how the grammar Is written, but

would still |nvolve only a small amount of programming, and of

course would not Invo]ve changing the basic system at all. The

grammar was written to he f3lr]y complete and wlth expa~slon In

mind. It seems f]exlb]e enough that we wi]] be able to include

as much of the the complexity of English as we want.

What is Important In terms of ]earning Is that this Is

level-two knowledge -- It Is the type of knowledge which Is

learned once in a Ilfetlme by a person (or computer program),

and should not need any major changes after childhood.

Therefore although It must be changeable, we do not need to

worry about "quick" learnlng techniques. If any learnlng Is

studied at this level, we must deal In a sophisticated way with

the methods used to learn large amounts of complex Interrelated

materla1. Those computer programs which have "learned" syntax

(<McConlogue> <SIklossy>) have done so by takin~ such an

oversimplified view of syntax that ~he results hardly have

significance for natural language.

At 1eve1 three of our knowledge of syntax, we have our

knowledge of particular words, their grammatical categories and

pecullarltles. We need to ask, How easy Is It to add new words?

How much do we have to know about the grammar to Increase the
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vocabulary?    In most systems there are a few words (such as

"be", "there", or "than") which have complex and unique

grammatical behavior. These are built Into the grammar

initially at level two. The rest of the vocabulary, like nouns

and verbs, can be specified In a simple format. Our system is

no except}on. To add the words "cat"t "purple~’, and "walk" to

the system~ we would only need to know the rl~ht abbreviations

(from section 2.3) to enter In LISP:

(DEFLIST WORD (CAT (NOUN NS))(PURPLE(ADJ))(WALK(VB INF ITRNS)))

This says that "cat" is a slngular (NS) NOUN, "pu.’ple" Is

an ADJective, and "walk" is the INFlnltlve form of an

InTRaNSitive VerB.

Can we give this information In English? It would be

straightforward to add the right terms to the vocabulary and set

up simple PLANNER theorems which would allow us to say "’Cat’ Is

a noun." or "’Walk’ Is an Intransitive verb." It would be an

Interesting project to see how far this could be extended. Some

programs have avoided giving dictionary entries to these "open

class" words (like verbs, nouns, and adjectives) and let the

parser determine their part of speech from context. <Thorne

~969> This approach is not generally meaningful for a complete

language unders~andln~ system, slnce we need a dlctionary of

meanings.    It could be used when adding new words to the

system, and could be done so trivially in our Input prog.’ams, by

assl~n~n~ al! unknown words to have all possible "open class"
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grammar|ca! features0 then letting the parser choose the correct

ones for the context.
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5.1.3 Inference

In the domain of Inference, there has been tremendous

variation In how different systems treat knowledge. In the

early programs, all of the complex Information was at level one

(built into the system), while the specific facts were at leve~

four. As we have discussed, thls made It very hard to modify or

expand the complex Information held by the system. In the

theorem provers, a11 of the complex Information was~ treated at

the fourth level -- as a set of Indlvldual formulas which ~ere

treated as isolated facts. At level one, they have a un~orF~

proof procedure as the heart of the system. We have discussed

how thls lack of information at other levels <Informat~an about

the Interrelationships between different theorems) severely

limlts thls approach, in our system, only slmple assertions

(such as "Noah Is the father of dafeth.", or :IParent-of Is the

converse of Child-of.") are dealt with at the lowest level. The

rest of the knowledge Is In the form of PLANNER theorems which

have the ability to Include Information about their connections

to other theorems. Some of these, such as the.examples In

section 3.1.3 about canaries and thesis evaluatlon, are at the

third level, since they are not Interwoven into complex

relatlonshlps with other parts of the knowledge.    Other

theorems, such as the BLOCKS programs (sectlon 3.W) for keeping

track of a table full of objects, are at level two.

Again we can ask, how easy Is tt to add or change

l
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Information at each of the levels. At the two ends, the answer

is clear. At the top we nave PLANNER and uur commlttment to Its

klnd of theorem-provlng procedures. Any change In this is a

major overhaul. At the bottom level, we have simple facts like

"The red pyramid Is supported by the green cube.’~ These are the

facts which the system plays wlth whenever It Is conversing.

They can be changed by simply telling information (either In

English or PLANNER), and are changed automatically when things

happen In the world (for example If we move the red pyramid).

The middle levels form the much more Interesting problem.

At the.second level we have our basic conceptual model of

the world. Thls incl~Jdes our choice of categories for objects,

ways of representing ectlons, tlme, place, etc. One of the

benefits of PLANNER ,and of LISP, In which It Is embedded} Is

that we have a variety of useful facilities to represent our

world efficiently. Section 3.4 described the BLOCKS world, and

it should be similarly easy to define new worlds of discourse

for the system (see below for examples).

The third level presents the most Interesting problems for

adding new Information to the system. It ls simple to do so In

PLANNER by adding new theorems, but we would like to do it In

Engllsh as wel|. Of the previous systems, the only ones which

could accept ccm~|ex Information In English were the theorem

provers which dealt wlth it at the fourth level (as a set o4

unrelated formulas). In our sample dialogs we have some
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examples of telling the system simple and s;Ightly complex

Information in Engllsh. Saying ’~i like blocks which are not

red, but I don~t like anything which supports a pyramid.~

created two theorems. The first says, ~lf you want to prove I

like something, prove that it Is a block and that It is not

red.~ Thls Is no different from a form-la for any theorem

prover, since It is not related to the system In any complex

way. The second theorem says, ~lf you are trying to pt’ove that

I like something, and you can prove that It supports a pyramid,

then glve up." Tills Interacts with the other goals and theorems,

but In a v~ry specialized way.

Huch smarter programs could be built to accept complex

in?o~’~n3tlon and use it to actually modify the PLANNER theorems

~lready In the data base. For example, we mlght have a theorem

to pick up a block, but It fails whenever the block has

somethlng on top of It. ~le would like to say In English, ~hen

you want to pick up a block, first take everythln~ o?? o? It

and have the system add this Information to the theorem In the

form of an addltlona! goal statement at the beglnnlns. In order

to do this, the system musL h3ve not only a model of the world

It talks abo~t, but also a model of Its own behavlor, so that It

can treat its own programs as data to be manipulated and

modified. This is one of the most fascinating dlrect!ons In

whlch the system could be expanded.

Another Is the possibility o? lettln~ the system learn
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sxperlence. This Is a complex problem and car~ be dealt with at

many levels. At a simplistic level, we can have It ~learn=~

~peclfic facts. For example, we have a theorem which proves

that a block has Its top clear (by proving It supports nothing).

As the last line of this, we have the PLANNER statement

(THASSERT (#CLEARTOP $?X)), which says that we should add to the

data base the assertion that this block Is clear. If we then

need the fact again, we don~t need to repeat the deduction, In

a sense the system has e~learned~e this fact, since It has been

added to the data base without being mentioned In the dialog.

But In another sense, It hasnWt learned any ne~/ Information,

since nothlng can be deduced with this fact that couldn’t have

been done before using the theorem that already existed. A more

Interesting type of learnlng would be shown by changing the

PLANNER theorems for accompllshlng a goal, depending on what had

been achieved In the past. For example, we might have a goal

statement with the recGmmendatlon (THTBF THTRUE) meaning try

anything you can. If the goal Is achieved using some partlcular

theorem, we might have the system change the recommendatlon to

suggest trying that theorem first° At a more advanced stage, we

would have a heuristic program which trled to figure out why a

particular chain of deductlon worked or dldnWt work In a

particu|ar case. It would then modify the recommendations to

choose the best theorems In whatever envlronments came up in the

fdtUreo It mlght also recognize the need for new theorems In
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some cases, and actually build them. This is perhaps closest to

human learning. It does ~o~ Involve juggling parameters or

adding new isolated bits of Information. Instead it involves

figuring out ~BHow are my ideas wrong (or rlght)?~1 and |1How can I

change or generalize them?~1 It invo]ves a kind of ~debugglng~ of

ideas~ and ls a key reason for representing knowledge as

procedures.
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~ ~emantlcs

$~nce semantics is the least understood part of lansuage

understanding, It is difficult to flnd a clear body of "level

one~’ knowledge on which to base a system. Our system has a

basic approach to semantics, explained In chapter k, but most of

the semantic work Is done at level two -- the Interrelated ~roup

of LISP programs for handling part|cu]ar semantic jobs. At thls

level we have two separate areas of knowledge. The first Is

knowledge about the language, and the way It Is structured to

convey meaning.    This Includes knowledge such as ~=In a passive

sentence, the syntactic subject Is the semantic object.

definite noun group refers to a partlcu]ar object In the world

model.’= or "IItI Is more likely to refer to the subject of the

previous sentencethan the object.~ This Is closely tied to the

grammar, and Is about as hard to modify as the grammar programs

themselves. The other type of level two knowledge is the

network of ~semantic features~ described in section ~.2. This

Is pecullar to the domain beln~ discussed, and becomes more

complex as the range of discussion Increases. As we pointed

out, this is currently separate from the network, of ~lconcepts=~

used for Inference by PLANNER, but the two could be combined.

As with ]eve] two knowledge In other areas, this is not

something to be quickly learned and changed. Our knowledge of

how language conveys meaning grows along with our know|edge

its syntactic structure, and Is just as seldom modified.
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At the third level we have the bulk of semantic Information

-- the meanings of Indlvldual words. This is the part Which

must be easy to change and expand. As In most language

understanding systems, this knowledge Is In the form of separate

dictionary entries, so that new words can be added without

chanKing otEers. The definition of each word Is a program In

the |’semantic languaget| described In section 4.2, and we 8aln

great flexibility from this program form. The writer of

semantic definitions does not have to be concerned wlth the

exact form of the grammar, and If he wants to enter stmple

words, he can use a standard function to 0escrlbe them very

simply.    Most words can be ~dJed by using the functions CMEANS

and ~IEANS., or by using the particular simple semantlc form

appropriate, to the type of word (for example, we wouid define

"thirteen" by ((NUM E~))). If we come across a type of semantic

problem or rel~tionship we hadn’t anticipated, or which Involves

relatlng things In an unusual way, we can write a LISP function

as the defi~ltlon of the word to perform the required

operations.

We have tried to design our system so that It would be

flexible and could be easily adapted to handle other fields of

knowledge and to have a large vocabulary. It would be nice to

enter new definitions in English Instead of having to use the

special semantics language. In our sample dialog, the sentence

"A "steeple" Is a stack which contains Swo ~reen cubes and a
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pyra,nid." produced a new definltlon for a noun. Thls is only

possible whun we can o~p~ess the definition of the new word In

terms of theold words and conceots, It Is a bl~ deceptive for

a langua~e understandln8 system to a11ow new words to be added

so slmpIy.    If we wanted to define the word "face", so that we

could talk about the faces of blocks, the system would be

lacklng the basic concepts and relatlonshlps necessary to use

the new word.    This klnd of know]ed~e Is at the second level,

an(~ we cannot expect to add It through a slmple deflnltlon.

There must be a powerful heuristic program which reco~nlzes the

need for a nev# concept and which relates thls concept to the

entire model of the world. In this example, It would have to

reallze that a face Is a part of an object, but Is not an object

Itself. Thls ml~ht have varied consequences throu~hout the

model, wherever relatlons such as "part" are Involved.

Thus althouxh our system can accept definitions of some

words, It Is a worthwhlle but untried research project ~o desl~n

programs which w111 really be able to learn new words In an

Interest|rig way. We believe that thls w111 be much easier

within the environment of a problem solvln8 lanxua~e like.

PLANNER, and that such programs could well be added to our

system.                                             ~
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5.2 Directions for Future Research

In the preface we talked about usln~ computers In a new way.

We speculated about the day when we will lust tell our computer

what we want duae, and It will understand. Thls paper has

described a small step In that direction. Where Is such

research leadlns? Vlhat approaches should we take In the future?

~qe can see three basic directions In which we could extend

our system. First, at present It knows only about a tlny

slmpllfled subject. Second, most of what It knows has to be

programmed, rather than told or t~ught. Flnally, we can°t talk

to It at a11{ We have to type our slde of the conversation and

read the computer°s.

The problem of wldenin~ the scope of knowledge Involves

much more than buI!dlr~ blg~er memories or more efficient lookup

methods. If we want the computer to have a large body of

knowledge, the Information must be hlghly structured. The

critlcal Issue Is to understand the kinds of organization

needed.    One of the reasons that our system Is able to handle

many aspects of language which were not posslble in earlier

systems Is that It has a deep understandlng of the subject it Is

dlscussln~. There Is a whole body of theorems and concepts

associated wlth the words In the vocabulary, and by making use

of this knowledge In Its question-answerin¢ and action, Its

language behavior Is more like ours. In going to larger areas

of discourse we cannot �lye up this Insistence that the computer
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must know what It Is talklng about.

We need a way to Integrate large amounts of heterogeneous

knowledge into ~ slng|e system which can make use of It. At the

same tlme, we cannot |el the system become overburdened and

Inefficient by Insisting on a stlfiin6 generality and

uniformity,    tie want the advantages of specialized types of

knowledge and structure-that can come from llmltln~ the subject

to a s~all area, but at the same time we must have the

flexlblIIty that a11cws knowledge of different types to

Interact.    PLANNER-like languages may be a be~Inn|ng toward

these new kinds of organization.

.There are many different approaches which can be taken

towards higher or~anlzatlon of knowledge. Vie may want to think

in terms of a "block-structure~t of contexts, eac=~ of which

carries Its own special vocabulary and Information. We may

think of a network, In which we can consider the t~dlstance"

between two concepts or words. It might be possible to deal

wlth a set of specialized ~subroutines" for deallng wlth

different kinds of situations. Even for somethln~ as seemingly

simple as ch|Idrens! stories, there are =remendous complex|t~es

and a we11-structured approach Is necessary.

in section ~.~.~ we dls~d some of the ways our system

could take advantage of thls large-scale structure of knowledge.

The subject mat%er would Influence the choice of relevant

definitions of words and appropriate theorems to be used In
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ded:ctlon.    Thls has been explored very little, and there are

many possibilities for further research.

The problem of learnln~ Is of great Interest not only to

those working on practical comouter systems, but also to

psychologists Interested In understanding how Iearnlng takes

place in other In~ellI~ent systems, such as people. We need to

understand how the amount of knowledge we already have affects

the amount and the way we can learn. Working on a natural

language program offers several advantages for studying problems

of knowledge and learning. Language represents a body of highly

complex knowledge, which Itself can provide a rich.field for

learning tasks wlth a wlde range of difficulties. Also,

language Is a major vehicle through which people learn about the

world. In studying the way that a computer could accept new

information tn natural language, we are studying a key area In

learnlng.    We need to understand the ways In which learnlng

depends on the organlzatlon of our knowledge. We need to

explore In what ways knowln8 about Its own mentallty could allow

a computer to really learn. This Is perhaps the most

Interesting possibility for research, and we have discussed It

at length in Section 5.5.

We have discussed the dlfficultles |nvolved in acce~tingnew

declarative knowledge In any but a superflclal way. One of the

problems most closely associated with this Is the use of world-

knowledge In understanding declarative sen{ences. Compare the
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sentences~

I put the heavy book on the table and It broke.

I put the butterfly wing on the table and It broke.

The understar.dlng of the referent of the pronoun t’It’1 must

depend on the 11keIIhood of the different objects breaking or

causln~ breakage. Thls could be handled by having the

declarative sentence ||interpreter|| try out both Interpretations

and see which leads to more "reasonable" concluslons.

Out system can currentiy do thls only If the knowledge of

the world needed is a specific slmple fact ("there Is no block

in the box.") or a categorlcal fact ("table canWt pick up

blockso~) A more complex system Is needed to accept ~eneral

declarative statements and explore their consequences. It must

seek the Interpretation which Is nelther trlvlal nor

incongruous, but which provides new InformatI~,, as the speaker

must have Intended it to. Contextual factors play the major

rO]eo The expectations might be completely reversed if the

sentence were preceded by "The strangest thing just happenedl"

Finally we have the problem of speech communication with

computers.    Again the issue Is not one of more efficient

hardware, but one of knowledge. Spoken language calls on the

listener to flll In a great deal from hls own knowledge and

understanding. Words, phrases and whole Ideas are conveyed by

fragments and mumbles which often serve as 11ttle more than a

clue as to what they Intend. The need for a truly vertlcal
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system is =n,~ch greater for speech than for written language.

The analysis at even the lowest level depends on whether the

result ~makes sense.~ People can communicate under conditions

where It Is nearly impossible to plck out Individual words or

sounds without reference to meaning.

In our system we tried to ~ntegrate the syntactic, semantic

and deductive programs In a flexible way. ~,le allow meaning to

guide the direction of the parsing. Out semantic Interpretation

Is guided by logical deduction and a rudimentary model of what

the speaker knows. For spoken language thls must be expanded.

Perhaps we might look for fragments of sentences and use their

meaning to help piece together the rest. Or possibly we could

create a unified system In which the deductive portion could

look at the context and propose what It thought the speaker

might be saying, on the basis of meaning, and the audible clues

In the utterance. It might be posslbIe to have a more mul;l-

dlmenslona] analysis In which prosodic features such as voice

Intonation could be used to recognize Important features of the

utterance. This Is not at al! saying that we should throw

syntax overboard In favor cf some sort of vague reIatlonal

structure. Often the most Important clues about what Is being

sald are the syntactic clues. What Is neeeded Is a grammar

which can look for ar=d analyze the different types of Important

patterns rather thar~ getting tremendously !nvo!ved wlth finding

the exact details of structure In a fixed order. Systemic
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grammar Is a step in this direction, and the use of programs for

grammars ~lves the kind of flexibility which would be needed for

doing this kind of analysis= It Is not clear whether our system

in its present form could tIe adapted to handle spoken ian~uaEe,

but its general structure and the basic princlples of Its

operation might we]] be used.

The challenge of programmin~ a computer to use language Is

real|y the challenge of ~roduclng lnte]|l~ence. Thought and

language are so closely Interwoven tha= the future of our

research In natural language and computers wlll be neither a

study of lin~ulstic principles, nor a study of ’=artlflclal~

intelligence, but rather an Inquiry Into the nature of

Intelligence Itself.
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Appendix A - Index of Syntactic Features

Underlines Indicate primary description of feature.

-OB 148 FINITE 137
-OB2 148 FUTURE 135,
RCTV 116, 119, 157, 138 IMPER 137
XDJ 120, 121, 132, 139 IMPERATIVE 104, 105, 106
A~JG 121, 131-152, 139 INCOM 123, 125, 142
ADJQ 105, 107 INDEF    123, 124, 125, 142
ADJREL    105 ING 105, 109-113, 157, 138, 148
ADJUNCT    105, 109, 128-131 INGOB2    148
ADV 1_~3.-I~1 IHGQ 105
ADVADV 1~1 INGREL 105
ADVMEASQ 105, 107 INT 116, 118s 148
ADVMEASREL 105 IT 116, 119
AGENT    116, 119, 128, 129 ITRHS    116, 117, 148
AND 150, 151 ITRNSL 116, 118, 148
AS 131 ITSUBJ    105, 113, 119
AUX    1~6 LIST    150
BE 116, 137 LISTA 150
BI~DER ~ LOBJ 105, 117, 128, 129
BOTH 150 LOBJQ 105
BOUND 105, 109 LOBJREL 105
BUTNOT    150 HAJOR    105, 106, 107
CLASF    120, 121, 12~, 1~1 MASS    142, 1~
CLAUSE ~]~Q.~.-119, 121, 1~3, lk8 MEASQ 105,
CLAUSEADV lbl MEASREL 105, 111
COMP 117-118, 123, 126-128, 131 MODAL 155, 154, 1~8
COMPAR    121, 131, 152, 159 NDET    125, 12k
COHPONENT 151 NEED2 1~5
CO~POUND 1~9-152 NEG 125, 125, 137, 158,
COMPQ 105, 108 NFS 125, 127, 145
CuMPREL 105, 111, 115 NG 120-127, 128-129, 152
DANGLING 105-107, 111, 113, 129 NGQ 107
DECLARATIVE    105, 106 NOBJ 125
DEF 125, 12k, lk2 NONUM lk2, 1~
DEFPOSS 125, 127 NOR 150
DEM 123, 124, lk2, lk5 NOUN 120, ~
DET 120, 122-12~, 1~1-1k~3 NPL 123, 127, 1~2-1k5
DOWNQ 105, 109 NS    125, 127, 142-145
DOWN,EL 105, 111 NUM 120, ~
DPRT 116, 119 NUMD 125, 1~
EN    105, 110, 137, 138, 148 NUMDALONE    lk4
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NUMDAN I44
NUMDAS
NUMDAT 144
NUMDET 125
OBJ    I05, 126, 145
OBJ1    105, 112, 123
OBJIQ    105, 108
OBJIREL    105, 111
OBJIUPREL    113
OBJ2    105, 112, 123
OBJ2Q    105, 108
OBJ2REL    105, III
OBJQ 105
OBJREL 105
OF 123, 125, 128, 129
OFD 142
OFD-INCOM 142
OFOBJ    125, 126
OR 150
ORD    120, 122,
PAST 133, 134, 148
PASV 116, 119, 135, 137, 138
POSES 123, 125, 126
POSS 123, 126, 143, 145
POSSDEF 145
PREP    128, ..I_iLIL, 145
PR~P2 145
PREPADV 1~1
PREPG 121,

QADJ 1~6
QAUX 146
QDET 142
QNTFR 123, 124, 125, 142
QUEST    125, 125, 128-152, 145
QUESTION I05-107, 146, 145
RELADJ 111, 115
RELDEL    105, 111
RELPREPG 128, 129
REPOB 1~8
REPORT 105, 112, lh8
RSNG 105, 109-115, 119, 128, 148
RSQ 105, 109, 121
SEC 105, 106
SHORT 105, 107, 129
SHORTREL 111, 115
SUBING    105, 112, 148
SUBJ 105, 112, 117, 125, 126, 1~5
SUBJFORK 151
SU~JQ 105, 107
SUBJREL 105, 111
SUBJT 116, 125
SUBJTQ 105, 108
SUBJTREL 105, 111, 115
SUBQ 105
SUBREL 105
~UBTO    105, 112, 148
SUBTOB
SUP 121, 144

PREPOBJ    105, 112, 123, 126, 128 THAN 151
PREPQ 105, 106, 107 THAT 105, 112
PREPREL 105, 110, 111, 113, 129 THERE 108, 116
PRESENT    155, 13~
PRON
PRONG 125, 124, 126, 127
PRONREL 1~5
PROPN 124, 145
PROPNG 123, 124
PRT 116, 118, 119, 1~5
Q 120, 128, 129, 131

TIM1 145
TIME 125,
TIMEQ 105, 108
TIMEREL 105, 111
TO 105, 109-115, 157, 158,
TODEL 157, 158
TPRON 124, 152,
TPRONG 125, 124



TRANS    116,’117, 1~8
TRANS2    116, 117, 148
TRANS2TOQ    105
TRANS2TOREL    105
TRANSL    116, 117, 148
TRANSTO2Q    108
TRANSTO2REL    111
UPQUEST    128, 129
UPREL    105, 113, 128, 129
V3PS 148
VB i~6, 148
VBAD 141
VBFORK 151
VFS 148
vG lll-IL. , 148
VPRT 148
WH-    105, 106, 107
WHRS    105, 110, 113
WORD
Yes-No 105, 106
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Appendix B - Sample Pars~ngs

HOW MANY EGGS WOULD YOU HAVE BEEN GOING TO USE IN THE CAKE IF
YOU HADN=T LEARNED YOUR MOTHER’S RECIPE WAS WRONG?

(((HOW MANY EGGS WOULD YOU HAVE BEEN GOING TO USE IN THE
CAKE IF YOU HADN’T LEARNED YOUR HOTHER~S RECIPE WAS
WRONG)

(CLAUSE MAJOR QUEST NGQUES POLR2 ACTV OBJIQ TRANS)
(((HOW MANY EGGS)

(NG QUEST HOWMANY NDEF NPL DET)
((HOW (QDET)) (MANY (QDET)) (EGGS (NOUN NPL)))}

(WOULD (VB AUX MODAL QAUX))
((YOU) (NG SUBJ DEF NS NPL) ((YOU (PRON NPL NS SUBd OBd))))
((HAVE BEEN GOING TO USE) (VG MODAL NAGR (FUT PAST MODAL))

((WOULD (VB AUX MODAL QAUX))
(HAVE (HAVE VB AUX INFTRANS))
(BEEN (AUX VB BE EN))
(GOING (VB    I~RNS    ING))
(TO (TO))
(USE (VB INF TRANS HVB))))

((IN THE CAKE) (PREPG)
((IN (PLACE PREP PLACE))

((THE CAKE)
(NG OBJ DET NS DEF)
((THE (DET NPL NS DEF)) (CAKE (NOUN

((IF YOU HADN’T LEARNED YOUR MOTHER’S RECIPE WAS WRONG)
(CLAUSE BOUND DECLAR ACTV TRANS)
((IF (BINDER))

((YOU) (NG SUBJ DEF NS NPL) ((YOU (PRON NPL NS SUBJ OBJ))))
((HADN=T LEARNED)

(VG VPL V3PS NEG (PAST PAST))
((HADN’T (HAVE VB AUX TRANS PAST VPL V3PS VFS NEG))

(LEARNED (VB TRANS REPOB PAST EN MVB))))
((YOUR HOTHEReS RECIPE WAS WRONG)

(CLAUSE RSNG REPORT OBJ OBJ1 DECLAR BE INT)
(((YOUR MOTHER’S RECIPE)

(NG SUBJ NS DEF DET POSES)
(((YOUR MOTHER~S)

(NG SUBJ NS DEF DET POSES POSS)
(((YOUR) (NG SUBJ POSS)

((YOUR (PRON NPL NS SUBJ OBJ POSS))))
(MOTHER’S (NOUN NS POSS))))

(RECIPE (NOUN RS))))
((WAS) (VG V3PS VFS (PAST))

((WAS (AUX VB BE VSPS VFS PAST MVB)}))
((WRONG) (ADJG Q COMP) ((WRONG (ADd)))))))))))
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PICK UP ANYTHING GREEN, AT LEAST THREE OF THE BLOCKS, AND
EITHER A BOX OR A SPHERE WHICH IS ~IGGER THAN ANY BRICK ON THE
TABLE.

(((PICK UP ANYTHING GREEN /, AT LEAST THREE OF THE BLOCKS /, AND
EITHER A BOX OR A SPHIZRE WHICH    IS BIGGER THAN ANY BRICK ON
THE TABLE)

(CLAUSE MAJOR IMPER ACTV TRANS)
(((PICK)    (VG IMPER) ((PICK (VPRT V~ INF TRANS HVB))))

(UP (PRT))
((ANYTHI~G GREE~ /~ AT LEAST THREE OF THE BLOCKS Io AND

EITHER A BOX OR A SPHERE WHICH IS BIGGER THAN ANY
BRICK ON THE TABLE)
(NG OBJ OBJ1 EITHER CO~POUND LIST NS)
(((ANYTHItlG GREEN) (NG OBJ OBJI TPROFI)

((ANYTHI~G (NS TPRON)) (GREEN (ADJ))))
((AT LEAST THREE OF THE BLOCKS)

(NG OBJ OBJI COMPONENT NUFID NUM NPL DET OF)
((AT (AT))

(LEAST (NUMD NUHDAT))
(THREE (NUM))
((OF THE BLOCKS)

(PREPG OF)
((OF (PREP))

((THE BLOCKS)
(NG OBJ DET NPL DEF)
((THE (DET NPL NS D~F))    (BLOCKS (NOUN NPL))))))))

((A BOX OR A SPHERE ~HICH .IS BIGGER THAN ANY BRICK ON THE
TABLE)

(NG OBJ OBJ1 COMPONENT OR COMPOUND BOTHNS)
(((A BOX)    (NG OBJ OBJ1 COF1PONENT DET NS    INDEF)

((A (DET NS    INDEF))    (BOX (NOUN NS))))
((A SPHERE ~HICH IS BIGGER THAN ANY BR~CK ON THE TABLE)

(NG O0J OBJ1 COMPONENT DET NS    INDEF)
((A (DET NS INDEF))

(SPHERE (NOUN NS))
((WHICH IS BIGGER THAN ANY BRICK ON THE TABLE)

(CLAUSE RSG SUBREL BE    INT)
(((WHICH) (NG RELWD DEF NPL) ((WHICH (NPL))))
((IS) (VG VGPS (PRES))

((IS (AUX VB BE VGPS PRES MVB))})
((BIGGER THAN ANY BRICK ON THE TABLE)

(ADJG Q CJMP CO,PAR THAN)
((BIGGER (ADJ COHPAR))

(THAN (THAN))
((ANY BRICK ON THE TABLE)

(NG SUBJ COMPAR DET NS QNTFR)
(~ANY (DET NS NPL QNTFR))

(BRICK (NOUN NS))
((ON THE TABLE)
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(PREPG q)
((ON (PREP PLACE))

((THE TABLE)
(NG OBJ DET NS DEF)
((THE (DET NPL NS DEF))

(TABLE (NOUN NS)))))))))))))))))))))
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Appendlx C - Sample BLOCKS Theorems

(DEFTtlEORE~I TA-CONTAIN
(THANTE (X Y Z)

(#AT $?X ?)
(THGOAL (#~.IANIP $?X))
(THGOAL (#SUPPORT S?Y $?X))
(THOR (THAND (THGOAL (mlS S?Y #BOX))

(THVSETQ $_Z $?Y))
(THGOAL (#CONTAIN $?Z $?Y)))

(THASSERT (#CONTAIN $?Z $?X))))

(DEFTHEOREM TC-MAKESPACE
(THCO~JSE (SURF SIZE OBJ SPACE X (WHY (EV)) EV)

(#FINDSPACE $?SURF $?SIZE $?OBJ $?SPACE}
(THNOT (THGOAL (#IS $?SURF #BOX)))
(~EMORY)
TAG
(THAND (THGOAL (#SUPPORT $?SURF S_X))

(THGOAL (#GET-RID-OF $?X)
(THUSE TC-GET-RID-OF)))

(THOR (THGOAL (#FINDSPACE $?SURF
$?SIZE
$?OBJ
$?SPACE)

(THUSE TC-FINDSPACE))
(THGO TAG))

(MEMOREND (#MAKESPACE$?EV $?SURF))))

(DEFTHEOREM TC-MORE
(THCONSE (tIEASURE X Y)

(#t~ORE $?HEASURE $?X $?Y)
(THVSETQ $_t4EASURE

(GET $?HEASURE (QUOTE HEASFN)))
(GREATERP iS?MEASURE $?X)

($?HEASURE $?Y))))

(DEFTHEOREH TC-ON
(THCONSE (X Y Z)

(#ON $?X$?Y)
(THOR (THGOAL (#SUPPORT $?Y

(THAND (THASVAL $?X)
(THGOAL (#SUPPORT $_Z $?X))
(THGOAL (#ON $?Z $?Y)

(THUSE TC-ON)))).))



(DEFTHEOREM TC-PiCKUP
(~HCONSE (X (WHY (EV)) EV)

(#PICKUP $?X)
(HEMORY}
(THGOAL (#GRASP $?X)    (THUSE TC-~RASP))
(THGOAL (#RAISEHAND)

(THNODB)
(THUSE TC-RAISEHAND))

(NEMOREND (#PICKUP $?EV $?X))))

(DEFTHEOREH TCT-PICKUP
(THCONSE {X EV TIME)

(#PICKUP $?X S?TIME)
(THOR (THAND (THGOAL (#P$CKUP$?EV $?X))

(TIMECHK $?EV $?TIME))
(THGOAL (#PICKUP $?EV $?X $?TIME)

(THUSE TCTE-PICKUP}))))

(DEFTHEOREH TCTE-PICKUP
(THCONSE (X EV EVENT TIHE)

(#PICKUP $?EV $?X $?TIHE)
(THOR (THAND (THGOAL (#PICKUP S?EV $?X))

(TIt.IECHK $?EV $?TIME)))
(THSUCCEED))

(THAMONG $?EVENT EVENTLIST)
(HEMQ (GET $?EVENT (QUOTE TYPE))

(qUOTE (#PUTON #GET-RID-OF))}
(TIMECHK $?EVENT $?TIME)
{THOR (THGOAL (#PUTON $?EVENT $?X ?))

(THGOAL (#GET-RID-OF $?EVENT $?X)))
(THVSETq $_EV (HAKESYM (QUOTE E)))
(AND (PUTPROP $?EV

(PUTPROP $?EV
(GET $?EVENT (QUOTE END))
(QUOTE START))

(QUOTE END))
(PUTPROP $?EV (QUOTE #PICKUP) (QUOTE TYPE})
(PUTPROP $?EV $?EVENT (QUOTE WHY))
(SETQ EVENTLIST (CONS $?EV EVENTLIST))
(THASSERT (#PICKUP $?EV $?X))))

(DEFTHEOREM TE-CONTAIN (THERASING (X Y)
(#AT $?X ?)
(THGOAL (#CONTAIN $_.Y $?X))
(THERASE (#CONTAIN,~?Y $?X))))
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Appendix D - Sample PROGRAMMAR Program
Excerpt from Noun Group Parser

DETI
(COND ((ISQ H NS) (FQ NS)) (T (FQ NPL)))
(OR NN (AND (FQ NUMBER) (GO INCOM)))
NUMBER
(FQ DET)
((NQ OF) OF ADJ)
QNUM
((ISQ H NONUM) OF NIL)
((AND (PARSE NUM) (FQ NUM)) NIL OF)
((COND ((EQ (SM H) 1) (AND (CQ DIS) (RQ NPL)))

((CQ NPL) (RQ NS)))
NIL
(NU~D)
INCOM)

((EQ (CADDR (NB H)) (Q NO)) ADJ NIL)
OF
((AND (NQ OF) (PARSE PREPG OF)) SMOF NIL)
((EQ (CADDR (NB H)) (Q NONE)) ItlCO~ ADd)
SMOF
(FQ OF)
((OR SMN (SMNGOF) (NOT (POP))) RETS~ IN¢O~i)
ADJ
((PARSE ADJ) ADJ CLASF NIL)
EPR
((OR (ISQ H SUP) (ISQ H COMPAR)) NIL REDUC)
(FQ ADd)
(AND (EQ (CADDAR N) (Q OF))

(PARSE PREPG OF)
(OR SMt.! (SMNGOF) (AND (ERT NOUN SHNGOF3) (GO FAIL)))
(FQ OF)
(GO RETS~))

(GO INCOM)
CLASF
((OR (PARSE VB ING (CLASF))    (PARSE VB EN (CLASF)) (PARSE CLASF))
CLASF
NIL
REDUC)

NOUt~
((PARSE NOUN) NIL RED2)
((AND (CQ TIME) (NOT (ISQ H TIM1))) REDI NIL)
(SETQ T1 FE)
(COND ((AND (ISQ H MASS) (OR (CQ PART) (NOT (CQ DET))))

(FQ MASS)))
(COND ((NOT (ISQ H NPL)) (RQ NPL PART)))-
(COND ((NOT (ISQ H MS)) (RQ NS)))
(COND ((AND (NOT (CQ DET))    (NOT (CQ NUMD))) (* H)

(TRNSF NPL MASS)))
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((HEET FE (Q (NS NPL PART HASS))) NIL REDO)
SUNG
((OR (NOT (CQ OFOBJ)) (CQ DET)} NIL FAIL)
(OR SHN (SHNG1) (AND (ERT NOUN SMNG!) (GO FAIL)))
((NOT (ISQ H POSS)) NIL POSS RETSM)
((AND (NEXTW TO)

(HEET FE (Q (COHP SUBJ)))
(PARSE CLAUSE RSQ T~)
(OR SHN (SHRSQ (SH H) SM) (GO POPRET)))

RETSM
NIL)

((AND (OR (NEXTN AS) (NQ COHPAR))
(PARSE AD~G THANNEED)
(OR SHN

(AND (NULL N)
(CQ SUBJ)
(ISQ (* C PV) AUX)
(ISQ PT BE)
(GO POPRET))

(SMPREP (QUOTE ADd))
(GO POPRET)))

RETSH
NIL)
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Appendix E - Sample D|ct|onary Entries

(defIIst wor~
(LITTLE (ADJ))
(LONG (ADJ))
(MAKE (VB    INF TRANS))
(HOVE (VB INF TRANS))
(NAME (NOUN NS VB INF TRANS))
(NARROW (ADd))
(NICE(ADJ))
(OBJECT (NOUN
(OFF (PRT))
(OUT (PRT))
(PICK (VPRT VB    INF TRANS))
(PUT (INF PAST VB TRANSL VPRT))
(POINTED (ADJ))
(PYRAMID (NOUN NS))
(RED (ADJ))
(RELEASE (VB TRANS    INF))
(RIGHT (NOUN NS))
(ROUND (ADJ)))

(DEFLIST WORD1
(BEGAN (BEGIN (PAST) (INF)))
(GAVE (GIVE (PAST) (INF)))
(SAW (SEE (PAST)
(TOLD (TELL (PAST) (IHF))))
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Semantic Deflni~|ons

(DEFLIST SMNTC
(A ((DET T)))
(ABOVE ((PREP ((T (#LOC #ABOVE T))))))
(AFTER ((BINDER (END NIL))))
(ALL ((DET (COND ((CQ OF) (Q ALL))

((HEET (Q (NUM DEF)) FE) (Q DEF))
((Q NDET))))))

(BALL ((NOUN (NMEANS ((#MANIP #ROUND)
((#1S *** #BAt.L)))))))

(BIG ((MEASURE ((#SIZE (#PHYSOB) T)))
(ADJ (NMEANS ((#PHYSOB #BIG)

((#~ORE #SIZE *** (200 200
200))))))))

(BLACK ((ADd (#COLOR ~BLACK))))
(BLOCK ((NOUN (NMEANS ((#MANIP #RECTANGULAR)

((#IS *** #BLOCK)))))))
(BLUE ((ADJ(#COt.OR #BLUE))))
(BY ((PREP ((T (CMEANS ((((#PHYSOB))

(#NEXTO #1 #2 *TIME)
NIL)))))))

(COLOR ((NOUN (NMEANS ((#COLOR) ((#1S *** #COLOR)))))])
(CONTAIN ((VB ((TRANS (CMEANS ((((#BOX)) ((#PHYSOB)))

(#CONTAIN #1 #2 .TIME)
NIL)

((((#CONSTRUCT))
((#THING)))

(#PART #2 #1 *TIME)
NIL)))))))

(CUBE ((NOUN (NHEANS ((#MANIP #RECTANGULAR)
((#IS *** #BLOCK)
(#EQDIM ***})))})}

(EVERYTHING ((TPRON (QUOTE ALL))))
(FEWER ((NUMD (LIST (Q <) NUM))))
(FOUR ((NUM
(FRIEND ((NOUN (NMEANS ((#PERSON)

((#IS *** #PERSON)))))))
(GRAB ((VB ((TRANS (#GRASP.))))))
(GRASP ((VB ((TRANS (#GRASP))))))
(I ((PRON (SETQ SM (Q (FRIEND))))))
(IT ((PRON (SMIT (Q IT)))))
(NICE ((ADJ (NMEANS ((#THING)

((#LIKE ~FRIEND
(NOW ((ADV (OR (EQ (CADR (ASSQ (QUOTE TIHE) FE))

(QUOTE =NOW))
(ERT NOW DEFINITION)))))
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(THE ((DET T)))
(THEY ((PRON (SHIT (Q THEY)))))
(THICK ((ADd (NMEANS ((#PHYSOB)    ((#MORE #THICKNESS

(0 200 0))))))
(MEASURE ((#THICKNESS (#PHYSOB) T)))))

(THIN ((ADJ (NMEANS ((#PHYSOB) ((#HORE #THICKNESS
(0 200 0)
*-*)))))

(MEASURE ((#THICKNESS (#PHYSOB) NIL)))))
(THING ((NOUN (NHEANS ((#THING #VAGUE #PHYSOB)

((#IS *** ?)})))))
(WHO ((PRONREL (SETQ SM (QUOTE (ANIMATE))))

(PRON (SETQ SM (QUOTE (ANIMATE))))))
(WHY ((QADJ (FQ
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Appendix F - PLANNER Data for Dialog In Section 1.3

(#
(#
(#
(#
(#
(#~
(#
(#
(#
(#
(#I
(#
(#
(#
(#

S
S
S
S
S
S
S
S

:BI #BLOCK)
:B2 #PYRAFIID)
:B3 #BLOCK)
:B~ #PYRAt~ID)
:B5 #PYRAMID)
:B6 #BLOCK)
:B7 #BLOCK)
:B10 #BLOCK)

S #RED #COLOR)
S #BLUE #COLOR)
S #GREEN #COLOR)
S #WHITE #COLOR)
S #BLACK #COLOR)
S #RECTANGULAR #SHAPE)
S #ROUND #SHAPE)

(#1S #POINTED #SHAPE)
(#1S :SHRDLU #ROBOT)
(#1S :FRIEND #PERSON)
(#1S :HAND #HAND)
(#AT :B1 (100 100 0))
(#AT :B2 (100 100 100))
(#AT :B3 (~00 0 0))
(#AT :B~ (6~0 6~0
(#AT :B5 (500 100 200))
(#AT =B6 (0 .00 0))
(#AT :B7 (0 240 300))
(#AT :BI0 (300 6~0 0))
(#SUPPORT :B1
(#SUPPORT :B3 :BS)
(#SUPPORT :B6 :BT)
(#CLEARTOP :B2)
(#CLEARTOP
(#CLEARTOP :BS)
(#CLEARTOP :B7)
(#CLEARTOP :BI0)
(#MANIP :BE)
(#MANIP :B2)
(#MANIP
(#HANIP :Bk)
(#~ANIP

(#CONTAI
( #SHAPE
( #SHAPE
( #S flAPE
( #SttAPE
(#SHAPE
(#SHAPE
(#SHAPE
(#SHAPE

(#HA,~IP :B6)
(#F1ANIP :B7)
(#~ANIP :BI0)
(#SUPPORT :TABLE :BE)
(#SUPPORT :TABLE
(#SUPPORT :BOX :B~)
(#SUPPORT :TABLE :BI0)
(#SUPPORT :TABLE :B6)
(#SUPPORT :TABLE :BOX)
(#AT :BOX (600 600
(#IS :BOX #BOX)
(#1S :TABLE #TABLE)

N :BOX :B~)
:BI #RECTANGULAR)
:B5 #RECTANGULAR)
:B2 #POINTED)
:B~ #POINTED)
:B5 #POINTED)
:B6 #RECTANGULAR)
:B7 #RECTANGULAR)
:B10 #RECTANGULAR)

(#COLOR :B1 #RED)
(#COLOR :B2 #GREEN)
(#COLOR :B~ #GREEN)
(#COLOR =B~ #BLUE)
(#COLOR :B5 #RED)
(#COLOR :B6 #RED)
(#COLOR ~B7 #GREEN)
(#COLOR :BI0 #BLUE)
(#COLOR :BOX #V!HITE)
(#COLOR :TABLE #BLACK)
(#CALL :SHRDLU SHRDLU)
(#CALL :FRIEND YOU}

Some of the data Is entered |nltla}}y. The rest can be
deduced and asserted by simple antecsden~ ~heorems.
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