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ABSTRACT

This paper describes a system for the computer
understanding of English. The system answers questions,
executes commands, and accepts information in normal English
dialog. It uses semantic information and ccntext to understand
discourse and to disambiguate scontences. |t combines a complete
syntactic analysis of each sentence with a "heuristic
understander" which uses different kinds of information about a
sentence, other parts of the discourse, and genecral information
about the world in deciding what the sentence means.

It is based on the belief that a computer cannot deal
reasonably with language unless it can "understand® the subject
it is discussing. The program is given & detalled model of the
knowledge needed by a simple robot having only a hand and an
eye. We can give it instructions to manipulate toy objects,
interrogate it about the scene, and give it- information it will
use [n deduction. |In addition to knowing the properties of toy
objects, the program has a simple model of its own mentality.

It can remember and discuss its plans and actions as well as
carry them out. It enters into a dialog with a person,
responding to English sentences with actions and English
replies, and asking for clarification when its heuristic
programs cannot understand a sentence through use of context and
physical knowledge.

In the programs, syntax, semantics and inference are
integrated in a '"vertical" system in which each part is
constantly communicating with the others. We nave explored
several techniques for integrating the large bodies of complex
knowledge needed to understand language. We use Systemic
Grammar, a type of syntactic analysis which is designed to deal
with semantics. Rather than concentrating on the exact form of
rules for the shapes of linguistic constituents, it is
structured around choices for conveying meaning. It abstracts
the relevant features of the linguistic structures which are
important for interpreting their meaning.

We represent many kinds of knowledge in the form of
procedures rather than tables of rules or lists of patterns. By
developing special procedural languages for grammar, semantics,
and deductive logic, we gain the flexibility and power of
programming languages while retaining the regularity and
understandability of simpler rule forms., Each piece of
knowledge can be a procedure, and can call on any other piece of
knowledge in the system,

Thesis Supervisor: Seymour A, Papert, Professor of Applied
Mathematics



Note on the Organization of the Text

This paper was written to be readable at several different
levels of detail. The Preface is intended to be understandable
to a layman with no special knowlecge of linguistics or
computers, and gives a general idea of the purposes and methods.
The Introduction gives sonewhat more dstail, aleng with a sample
of a dialog with the program. It explains more specifically how
the program is organized, and what theories were used in its
construction.

The remaining chapters each contain a general introductory
section, followed by further sections explaining the detaiis of
the programs and theories. It should be possible to get a gcod
basic understanding of the paper by reading the introduction,
followed by the first section of each chapter. In addition,
there was an attempt to keep sections independent so that parts
of the paper could be selected separately. For example, the
description of the PRCGRAMMAR language, and the description of
our grammar of English can be read independently.

Because of this structure?, some parts of the paper are
redundant ~=- a particularly important principle or relevant
example may be repeated at all three levels of explanation, and
in the different sections where it is needed. However it is
hoped that it will allow the reader to go into the content as
deeply as he wants w!thout getting bogged down in detail.
Throughout the text, single-spaced paragraphs are used for
emphasis.
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Preface -- Talking to Computers

Computers are being used today to take over many of our
jobs. They can perform miliions of calculations in a second,
handle mountains of data, and rerform routine office work much
more efficiently and accurately than humans. But when it comes
to telling them what to do, thay are tyrants. They insist on
being spoken to in special computer languages, and act as though
- they can't even understand a simple English senterce.

Let us envisicn a new way of using computers so they can
take instructicns in a way suited to their jobs. We will talk
to them just as we talk to a research assistant, librarian, or
secretary, and they will carry out our commands and provide us
with the information we ask for. |If our instructions aren't
clear enough, they will ask for more information before they do
what we want, and this dialog will all be in English,

Why isn't this being done now? Aren't computers
translating foreign languages and conducting psychiatric
interviews? Surely it must be easier to understand simple
requests for information than to understand Russian or a
parson's psychological problems. The key to this question Is in
understanding what we mean by "understanding'. Computers are
very adept at manipulating symbols =-- at shuffling around
strfngs of letters and words, looking them up in dictionaries,
and rearranging them., |In the early days of computing, some

people thought that simple applications of these capabilities

—
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might be just what was needed to translate languages. The
government supported a tremendous amount of research into
language translation, and a number of projects tried different
approaches. In 1966 a committee of the Naticnal Academy of
Sciences wrote a report evaluating this research and announced
sadly that it had been a failure. Every project ran up against
the same brick wall =« the computer didn't know what it was
tatking about.

W/hen a human reader sees a sentence, he uses knowlerdge to
understand it., This includes not only grammar, but also his
knowledge about words, the context of the sentence, and most
important, his knowledge about the subject matter., A computer
program supplied with only a grammar for manipulating the syntax
of language could not produce a translation of reasonable
quality.

Everyone has heard the story of the computer that tried to
translate "“"The spirit is willing but the flesh is weak." into
Russian and came out with something which meant "The vodka Is
strong but the meat is rotten." Unfortunately the problem is
much more serious than just choosing the wrong words when
translating idioms. It isn't always possible to even choose the
right grammatical forms. We may want to translate the two
sentences "A message was delivered by the next visitor." and "A
message was delivered by the next day." If we are translating
into a language which doesn't have the equivalent of our
"nassive voice”, we may need to completely rearrange the first

sentence into something corresponding to "The next visitor

delivered a nessage.'" The other sentence might become something
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like "Before the next day, someone delivered a message.'" |If the
computer picks the wrong form for either sentence, the meaning
is totally garbled. 1In order to make the choice, it has to know
that visitors are people who can deliver messages, while days
are units of time and cannot. It has to "understand" the
meanings of the wcrds '"day" and 'visitor".

In other cases the problem is even worse. Even a knowledge
of the meanings of words is not enough., Let us try to translate
the two sentences:

"The city councilmen refused to give the women a
permit for a demonstration because they feared violence."
and

"The city councilmen refused to give the women a
permit for a demonstration because they advocated
revoiution."

If we are translating into a language (like French) which
has different forms of the word "“they'" for masculine and
feminine, we cannot ieave the reader to figure out who "they"
refers to. The computer must make a choice and If It chooses
wrong, the meaning of the sentence is changed. To make the
decision, it has to have more than the meanings of words. It
has to have thg information and reasoning power to realize that
city councilmen are usually staunch advocates of law and order,
but are hardly likely to be revoluﬁionaries.

For some uses, It isn't really necessary to understand
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much, There has been much publicity about a well known
“"psycniatrist'" program named ELIZA. It imitates the kind of
Rogerian psychiatrist who would respond to a question llike "What
time is it?" by asking "Why do you want to know what time it
is?" or muttering "You want to know what time it ist!", This can
be done without much understanding. All it needs to do s take
the words of the question and rearrange them in some simple way
to make a new question or statement. In addition it recognizes
a few key words, to respond with a fixed phrase whenever the
patient uses one of them. |[If the patient types a sentence
contiaining the word "mother", the program can say "Tell me more
about your family!", In fact, this Is just how the psychiatrist
program works., But very often it doesn't work =-- its answers
are ciily or meaningless because it isn't really understanding
the content of what is being said.
I1f we really want computers to understand us, we need to

give them the ability to use more knowledge. In addition to a
grammar of the language, they need to have all sorts of
knowledge about the subject they are discussing, and they have
to use reasoning to combine facts in the right way to understand
a sentence and respond to it. The process of understanding a
sentence has to combine grammar, semantics, and reasoning in a
very intimate way, calling on each part to help with the others.

This thesis explores one way of giving the computer
knowledge in a flexible and usable form. In addition to basic
tools and operations for understanding language, we give the
computer specialized information about the English language, the

words we will use, and the subject we will discuss. In most

earlier computer programs for understanding language, there have
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been attempts to use these kinds of Information itn tte form of
lists of rules, patterns, and formulas.

In our system, knowledge ls expressed as programs In
special languages deslgned for syntax, semantics, and reasoning.
These languages have the control structure of a programming
language, with the statements of the language explicitly
controlling the process. This makes It possible to relate the
different areas of knowledge more directly and completely. The
course of the understanding process can be determined directly
by special knowledge about a word, a syntactic constructlion, or
a particular fact about the world,

This glves greater flexlibillty than a program with a flxed
control structure, In which the specific knowledge can only"-
Indirectiy control the process of understanding. By using
languages specially developed for representling these kinds of
knowledge, [t is possible for a person to "teach" the computer
what It needs to know about a new subject or a new vocabulary
without being concerned with the details of how the computer
will go about using the knowledge to understand language, For
simple information, It is even possible to just "tell" the
computer In English, Other systems make it possible to "tell1"
the computer new things by allowlng it to accept only very
speciallzed kinds of information. By representing Information
as programs, we can greatly expand the range of things which can
be included.

The best way to experiment with such Ideas Is to write a
working program which can actually understand language. We

would llke a program which can answer questlions, carry out

commands, and accépt new Information In English. I|f we really
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much. There has been much publicity about a well known
"nsychiatrist' program named ELIZA. It imitates the kind of
Rogerian psychiatrist who would respond to a question like "Wwhat
time is it?" by asking "Why do you want to know what time It
is?" or muttering "You want to know what time it is!". This can
be done without much understanding. All it needs to do Is take
the words of the question and rearrange them in some simple way
to make a new question or statement., In addition It recognizes
a few key words, to respond with a fixed phrase whenever the
patient uses one of them. |f the patient types a sentence
containing the word "mother", the program can say "Tell me more
about your family!". In fact, this is just hcw the psychiatrist
program works. But very often it doesn't work -- its answers
are silly or meaningless because it isn't really understanding
the content of what is being said.
1f we really want computers to understand us, we need to

give them the ability to use more knowledge. In addition to a
grammar of the language, they need to have all sorts of
knowledge about the zubject they are discussing, and they have
to use reasoning to combine facts in the right way to understand
a sentence and respond to it. The process of understanding a
sentence has to combine grammar, semantics, and reasoning in 3
very intimate way, calling on each part to help with the others.

This thesis explores one way of giving the computer
xnowledge in a flexible and usable form. In addition to basic
tools and operations for understanding language, we give the
computer specialized information about the English language, the
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been attempts to use these kinds of Information in the form oY
lists of rules, patterns, and formulas.

In our system, knowledge ls expressed as programs in
special languages deslgned for cyntax, semantics, and reasoning.
These languages have the controi structure of a programming
language, with the statements of the language expllclitly
controlling the process. This makes [t possible to relate the
different z2reas of knowledge more directly and completely, The
course of the understanding process can be determined directly
by special knowledge about a word, a syntactic construction, or
a perticular fact about the world.

This gives greater flexibility than a program with a fixed
control structure, In which the specific knowledge can only
indirectly control the process of understanding. By using
languages speclally developed for representing these kinds of
knowledge, it Is possible for 2 person to "teach" the computer
_what It needs to know about a new subject or a new vocabulary
without being concerned with the details of how the computer
will go about using the knowledge to understand language. For
simple Information, It Is even possible to just "tell" the
computer in Engllish., Other systems make It possible to "tell"
the computer new things by allowing It to accept only very
specialized kinds of information. By representing Information
as programs, we can greatly expand the range of things which can
be included.

The best way to experiment with sucn ideas is to write a
working program which can actually understand language. We

would 1lke a program which can answer questlions, carry_out

commands, and accept new information In English. |If we really
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want it to understand language, we must give it knowledge about |
the specific subject we want to talk about.

For our experiment, we pretended that we were talking to a
simple robot, with a hand and an eye and the ability to
manipulate toy blocks on a table. We can say, '"Pick up a block »
which is bigger than the one you are holding and put it in the
box.", or ask a scequence of questions like '"Had you touched any
pyramid before you put the green one on the little cube?" "When
did you pick it up?™ "Why?", or we can give it new information
like "I like blocks which are not red, but | don't like anything
which supports a pyramid." The "robot" responds by carrying out
the commands (in a simulated scene on a display screen attached
to the computer), typing out answers to the questions, and
accepting the information to use in reasoning later on.

The dialog is carried out by typing on a terminal attached
to the computer tlie~sharing system. There are a number of hard
technical problems in getting a computer to communicate by
voice, and it has not been attempted.

We had three main kinds of goals in writing such a program.
The first is the practical goal of having a language-
understanding system. Even though we used the robot as our test
area, the larguage programs do not depend on any special subject
matter, and they have been adapted to other uses.

The second goal is gaining a better understanding of what

language is and how it is put together. To write a program we

need to make all of our knowledge about language very explicit, »
and we have: -to be concerned with the entire language process,
not just one area such as syntax. We need th2 most advanced A

theories which linguists and others have developed. and we must
fit them together to get the program working. This provides a

rigid test for linguistic theories, and leads us into makling new
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theories to fill the places where the old ones are lacklng. To
make a computer understand language, we have to increase our
knowledge of how people understand language, and one Important
goal is the improvement of our comprehenslion of language and
linguistics.

More generally, we want to understand what intelligence is
and how It can be put into computers. Language Is one of the
most complex and unfque of human activitles, and understznding
its structure may lead to a better theory of how our minds work.
The techniques needed to write a language-understanding program
may be useful in many other areas of intelligence such as
visicn, mathematical problem solving, and game playlng. All of
these areas have similar problems of integrating large amounts
of knowledge into a flexible system. :

With advances In artificlal intelligence we will some day
be able to combine all of these areas to provide computers which
are not tyrants, but can understand what we tell them and do

what we want them to In an Intellligent way.
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Chapter | ~=- Introduction

1,1 General Description

This paper describes a system for the understanding of
English by a computer. The system answers questions, executes
commands, and accepts information In normal English dialog. 1t
uses semantic Information and context to understand discourse
and to disambliguate sentences both syntactlcally and
semantically. 1t combines a complete syntactic analysis of each
sentence with a "heuristic understander" which uses different
kinds of information about a sentence, other parts of the
discourse, and general Information about the world In deciding
what a sentence meaus,

i. is based on the bellef that a cohputer cannot deai
reasonably with language unless 't can "understand" the subject
it is discussing. The program [s given a detalled model of a
small part of knowledge, and it can understand sentences
concerning the subject It knows about. We use as an examgle the
knowledge needed by a simple robot consisisting nf only an eye
and a hand. We can give 1t Instructions to manlipulate toy
objects, Interrogate [t about the scere, and give It information
it will use in deduction.

In addition fo knowing the properties of blocks, hands,
etc., the program has a simple model of Its own mentallty. It

can remember and discuss Its plans and actlons as well as carry
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them out. it enters Into a true dialcg with a person,
responding to English sentences with actions and English
replies, and asking for clarification when its heuristlc

programs cannot disambiguate a sentence through use of context

or physical knowledge.



Section 1.1.1 - Page 18

1.1.]1 What is Language? _

To write a computer program which understands natural
language, we need to understand what language Is and what It
does. 1t should be approachad not as a set of mathematical
rules and symbols, but as a system lntended to communicate ldeas
from a speaker to a hearer, and we want to analyze how It
achleves ch;t communication. It can be viewed as a process of
translation frbm a structure of "concepts'" In the mind of the
speaker, Into a string of sounds or written marks, and back Into
concepts in the mind of the hearer.

In order to talk about concepts, w2 must understand the
Iimportance of mental models (see <{Minsky 1965>), In the flood
of data pourlng Into cur brains every moment, people recognize
regular and recurrent patterns. From thkese we set up a mo ‘el of
the world which serves as a framework In which to organize our
thoughts. We abstract the presence of particular objects,
having properties, and entering Into events and relatlonships.
Our thinking Is a process'of manipulating the '"concepts" which
make up thls model. Of course, there Is no way of actually
observing the Internal workings of a person's mind, but In
Section 3.1 we will discuss the justification for postulaving
such a "model" In analyzing the human use of language. In
Section 3.4 we show what thls model mlight look 1lke for a small
area of knowledge, and describe how It can be used for

reasoning.
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When we communicate with others, we select concepts and
patterns from the model and map them onfo patterns of sound,
which are then reinterpreted by the hearer In terms of his own
model. A theory can concentvrate on elther half qf thls process
of generation and interpretatlon of language. Even though a
compliete theory must account for both, its approach Is strongly
colored by which one It views as logically primary. Most
current theories are "generative', but It seems more interesting
to !ook at the Interpretive slde (see <Winograd 1963> for al
discusstlon of the»lssges fnvolvéd). The first task a child
faces Is understanding rather than producing language, and‘he
‘undgrstands many utteraﬁces before hg can speak any. At evefy
stage of development, a berson can understand a much wider range
of pa.terns: than he produces (see <Mll)er), Chapter 7). A
program Is not a Qetélled psyéhologlcal theory of how a person
interprets language, but there méy In fact be very lnfofmatlve
parallels, and at a h!éh levei, It may be a reasonable
simulatlon.’ - |

Language undgrétandlng Is- & kind of Intellectual activity,
in which a pattern of sounds or written marks Is interpreted
into a structure of concents In the mind of the Interpreter., We
cannot think of It as being done in simple steps: 1. Parse; 2.
Understand the meaning; 3. Think about the meaning. The way we
parse a sentence lIs cbntrofled by a continuing semantic

Interpretation which guldes us In a "meaningful" direction.
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When we see the sentence "He gave the boy plants to water."
we don't get tangled up in an Interpretation which would be
parallel to "He gave the house plants to charity." The phrase
"boy plants'" doesn't make sense llke "house plants" or "boy
scouts', so we reject any parsing which would use {t.

Syntax, semantics, and Inference must be Integrated in a
close way, so that they can share in the responsibillty for
interpretation. Cur program must Incorporate the flexlibillty
needed for this kind of "vertical" system In which each part Is
constantly talklng to thé others. We have explored sevaral
techniques for Integrating the large bodles of complex knowledge
needed to understand language. Two are particularly important.

First, we use a type of syntactic analysls which Is
designed to deal with questions of semantics. Rather than
concentrating on the exact form of rules for shuffling around
lingulstlc svmbols, It studles the way language Is structured
around choices for conveying meaning. The parsing of a sentence
Indicates its detalled structure, but more Important It
abstracts the "features'" of the lingulstic components which are
important for interpreting thelr meaning. The syntactic theory
Includes an anaiysis qf the way language ls structured to convey
inTormation through systematic cholces of features. The other
parts of the program can look directly &t these relevant
features, rather than having to deal with minor detalls of the

way the parsing tree looks.
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Second, we represent knowledge In the form of procedures
rather than tables of rules or lists of patterns. By developing
speclal procedural languages for grammar, semantics, and
deductlive loglc, we gain the flexibility and power of programs
while retaining the regularity and understandibility of simpler
rule forms. Slince each plece of knowledge can be a procedure,
It can call cn any other plece ¢f knowledge of any type. The
parser can call semantlc routines to see whether the line of
parsing It is followlng makes any sense, and ihe semantlic
routines can call deductive programs to see whether a particular
phrase makes sense In tie current context. Thils Is particularly
Important in handling discourse, where the Interpretation of a
sentence containing such things as pronouns may depend iIn
complex vays on the preceding discourse and knowledge of the
sub :ct matter,

- This dual view of programs as data and déta as programs
would not have been possible In traditional programming
languages. The specltal languages for expressing facts about
grammar, semantics, and deduction are embedded In LISP, and
share with 1t the capability of lgnorlng the artificial

distinctlon between programs and data.
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1,1,2 Organlzation of the Language Understanding Process

We can divide the process of language understanding Into
three main areas ==- syntax, semantlcs, and Inference. As
mentloned above, these areas cannot be viewed separately but
must be understood as part of an Integrated system,
Nevertheless, we have organized our programs alcng these baslic
1ines, slince each area has Its own tools and concepts which make
it useful to write special programs for lt.

Listing these aspects of language understanding separately
is somewhat misleading, as It is the Interconnection and
interplay between them which makes the system possible. Our
parser does not parse a sentence, then hand It off to an
interpreter, As It finds each plece of the syntactic
structure, It checks Its semantlc intepretation, flrst tc see if
it is plausible, then {if possible) to see If it Is In accord
with the system's knowledge of the world, both speciflc and
general., This has been done in a 1imited way by other systems,

but In our program It Is =n Integral part of understanding at
every level,

A. Syatax

First we need a system for the syntactic analysls of Input
sentences, and any phrases and other non-sentences we might want
In our dialogs. There have been many dlfferent parsing systems
developed by different language projects, each based on a
particular theory of grammar. The type of grammar chosen plays
a major role In the tyne of semantic analyslis which can be
carried out. A language named PROGRAMMAR was desligned
speciflcally to fit the type of ana2lysis used in this system.
it differs from other parsers in that the grammar [tself Is

written In the form of a collection of programs, and the parsing
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system Is In effect an interpreter for the language used In
writing those programs.

Having chosen the "type of grammar", we need to formallze a
grammar for parsing sentences In a particular language. Our
system includes a comprehensive grammar of English following the
lines of systemic grammar (see Sectlon 2.3). This type of
grammar Is well sulted to a complete language-understanding
system since it views language as a system for conveyling meaning
and is highly oriented toward semantic analysis. It Is intended
to cover a wide range of syntactlic constructions; one basic
criterion for the completeness of the grammar Is that a person
with no knowledge of the system or Its grammar should be able to
type any reasonable sentence within the limitations of the
vocabulary and expect It to be understoor,

B. lnference

At the other end of the lingulstic process we need a
deductive system which can be used not only for such things as
resolving ambligulties and answering questions, but also to allow
the parser to use deduction In trying to parse a sentence. The
system uses PLANNER, a deductlive system designed by Carl Hewltt
(see <{Hewitt 1969, 1970>) which is based on a philosophy very
similar to the general mood of this project. Deduction in
PLANNER Is not carried out In the traditional "loglistic
framework" in which a general procedure acts on a set of axloms
or theorems expressed in a formal system of loglc. Instead,
each theorem Is Ir. the form of a program, and the dzductive
process can be directed to any desired extent by "intelligent
theorems." PLANNER 1s actually a language for the writing of
those theorems.

This deductive system must be given a model of the world,
with the concepts and knowledge needed to make Its deductlions.

Useful language-understanding can occtr only when a program (or
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perscn) has an adequate understanding of the subject he [s
talklng about. We wlll not attempt to understand arbitrary
sentences talking about unknown subjects, but Instead will give
the system detalled knowledge about a partlcular subject == In
this case, the simple robot world of children's toy blocks and
some other common objects. The deductive system has a double
task of solving goal-problems to plan and carry out actlons for
a robot within this world, and then talking about what It Is
doing and what the scene looks like. We want the robot to
discuss its plans and actlons as well as carry them out. We can
ask questions not only about physical happenings, but also about
the robot's goals., We can ask "Why did you clear off that
block?" or '"How did you do 1t?". This means that the mndel
includes not only the properties uf blocks, hands, and tables,
but a model of the robot mind as well., We have written a
collection of PLANNER theorems and data called BLOCKS,
describing the world of toy blocks seen and manipulated by the
robot, and the knowledge It needs to work with that world, (see
Section 3.4). Figure 1 shows a typlcal scene,
C. Semantlcs

To connect the syntactic form of the sertence to Its
meaning, we need a semantlic system which provides primitive
operaticns relevant tc semantlic analyslis. This Includes a
language In which we can easlily express the meanings of words

and syntactic constructions. The system includes mechanisms
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for secting up simple types of semantlic networks and using
deductions from them as a first phase of semantic analysis. For
example, the network could Include the Information that a
"block"™ is a physical object, while a "blce" iIs a political
object, and the deflinition of the word "support'" could use this
Information In choosing the correct meanings for the sentences:

The red block supports the pyramid. and

The red bloc supports Egypt.

More important, the meaning of a word or construction is
also defined in the form of a program to be Interpreted in a
semantic language. It Is this procedural aspect of semantics
which Is missing in most other theories, which 1imit themselves
to a partlicular type of network or relatior-1 structure, The
meaning selected for a word can depend on any aspect of the
sentence, thz discourse, or the world. In deciding on the
meaning of "one" In "Plck up the green one". we need a program
which can examine past sentences. This program Is included as
part of the definition of the word “one".

The semantlic system includes a powerful heurlistic program
for resolving ambiguitlies and determining the meaning of
references In discourse. In almost every sentence, reference is
made either explicitly (as with pronouns) or implicitly (as with
the word "too'") to objects and concepts not expllicitly mentioned
in that sentence. To Interpret these, the program must have at
Jts disposal not only a detailed grammatical analysls (to check
for such things as parallel constructions), but also a powerful
deductive capaclty (tc see which reference assignments are
logically plausible), and a thorough knowledge of the subject It

s discussing (to see which interpretations are reasonable in
the current slituation).
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In order to deal with language in a human way, we must take
Into account all sorts of discourse knowledge. Ln additlion to
remembering the immediately previous sentences for such things
as pronoun references, the system must remember what things have
been mentioned throughout the dlscussion, so that a reference to
"the pyramid" will mean "the pyramid we mentioned earller" even
If there are several pyramids in the scene.

In addition the system mus t ﬁave some knowledge of the way
a person will communicate with it. If we ask "Is there a block
on a green table?" '"What color is 1t?", the word "I1t" refers to
the block. But If we had asked "!s there a green block on a
table?" "What color Is 1t?", "it" must refer to the table since
we would not ask a quéstion which we had answered ourselves In
the previous sentence.

Our semantlic system works with a base of knowledge about
simple semantic features In the subje::t domain, and with a
collection of definitlions for Indlvidual words. These
definitlions are written In 2 "semantics language" which allows
simple words to be deflned In a straightforward way, while
allowing more complex words to call on arblitrary smounts of
ccmputation to Integrate their meaning into the sentence.

Finally we need a generatlve language capaclty to produce
answers to questions and to ask questions when necessary to
resolve amblgultles. Grammatlically this is much lesé demanding

than the Interpretlve capacity, since humans can be expected to
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understand a wide range of responses, and it is possible to
express almost anything In a sﬁntactlcally simple way. However,
it takes a sophisticated semantic and deductlive capabllity to
phrase thlngs In a way which Is meaningful and natural In
discourse, since the form of a response depends on both the
context and on what the speaker assumes that the hearer knows

and wants to know,



Section 1.2 - Page 29

i.2 Implementation of the System

The language understanding pirogram Is written In LISP to
run under the PDP-10 Incompatible Time-sharlng System at the
Artificlal Intelligence Laboratory at MIT. When operating with
a 200 word vocabulary and a falrly complex scene, It occuples
approximately 80K of core. Thils Includes the LISP Interpreter,
all of the programs, dlctionary entries, and data, and enough
free storage to remember a sequence of actions and to handle
complex sentences and'deductions. See Figure 3 for a more
detailed descripton of memory usage.

The program |s organized as indicated in Flgure 2. (Arrows

indicate that one part of the program calls another directly):

/}OE\\)

INPUT GRAMMAR ¢ SEMANT | CS€———ANSWER
DICTIONARY PROGRAMMAR SEMANTIC MOVER
FEATURES 4
PLANNER DATA

Figure 2 =-=- Organization of the Programs

1. MONITOR Is a small LISP program which calls the baslc
parts of the system. Since the system is organized verticaly,
most of the communicatlon between components is done directly,

and the monitor Is called only at the beginning and end of the
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Parser Semantics Deduction Other
PROCRAMMAR PLANNER LISP
- Interpreters and
Display
26,1 5.8 5.5 14.8
Knowledge GRJAMMAR SEMANT!CS
of English 7.3 15.2
22.5
Knowledge DICTIOMNARY DICTIONARY BLOMXKS
of Subject 1.7 6.0 8.8
16.5 :
Data for Assertions { Display
Scene 1.3 1.2
2.5
Total 14.8 21.2 - 15.6 16.0
67.6

Storage Allocatlion for lLanguage Understanding Program
In Thousands of PDP-10 words

Note: Approximately 12 thousand additional words of free
storage are necessary for a dialog llike the one described In
Section 1.3. As the length of dialog or complexity of the
actions Is increas>d, more free storage ls needed.

Figure 2 -- Memory Requirements



Section 1.2 - Page 31

understancling process,

2. INPUT Is a LISP program which accepts typed Input In
normal English orthography and punctuation, looks up words In
the dictlonary, performs morphemic analysis (e.g. reallzing that
“"running" is the "Ing" form of the word "run", and modifying the
dictlonary definitlion accordingly), and returns a string of
words, together with their definitlons. This Is the Input with
which the grammar works.

3. The GRAMMAR 1s the maln coordinator of the language
understanding process. It conslists of a few farge programs
written In PROGRAMMAR to handle the basic units of the English
language (such as clauses, pHun groups, preposltona! groups,
etc.). There are two PROGRAMMAR compllers, one w.lch compiles
Into LISP, which is run Interpretively for éasy debugglng, and
another which makes use of the LISP compiler to produce LAP
assembly code for efficlency.

4. SEMANTICS Is a collection of LISP programs which work In
coordination with the GRAMMAR to Interpret sentences. In
general there are a few semantlics programs correspcnding to each
basic unit In the grammar, each performing one phase of the
analysis for that unit. These semantics programs call PLANNER
to make use of deduction In Interpreting sentences.

5. ANSWER Is another collection of LISP? programs which
control the responses of the system, and take care of

remembering the dlscourse for future reference, |t contalns a
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number of heurlistic programs for producing answers which take
the discourse into account, both iIn ceclding on an answer and In
figuring out how to express it In fluent Engllish,

6. PROGRAMMAR s a parsing system which Interprets grammars
written In the form of programs. It has mechanlsms for bullding
a parsing tree, and a number of special functlons for exploring
and manipulating this tree In the GRAMMAR programs, It Is
written In LISP.

7. The DICTIONARY actually consists of two parts. The first
Is a set of syntactic features assoclated with each word, used
by the GRAMMAR. The second Is a semantlc definition for each
word, written In a language which Is Interpreted by the
SEMANTICS programs. The form of a word's definition depends on
lts word class (e.g. the definiticn of "two" Is "2"). There are
special facllitles for lrregular forms (1ike "geese" or
"slept”), and only the definitions of root words are kept, since
INPUT can analyze a variety of endings. The definitions are
actually kept on the LISP property list of the word, and
dictionary lookup Is handled automatically by LISP.

8., The system has a network of SEMANTIC FEATURES, kept on
property lists and used for an initlal phase of semantlc
analysis. The features subdivide the world of objects and
actions Into simple categorlies, and the semantic Interpreter
uses these categories to make some of jts choices between

alternative definitions for a word (for example "In" would mean
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"contalned In" when applied to a hollow object 1ike a box, but
would mean "part of" when applied to a conglomerate llke a
stack, as iIn "the red block lIn the tall stack').

9. BLOCKS Is a collection of PLANNER theorems whlch contain
the system's knowledge about the prooerties of the physlical
world, and the methods of achleving goals and making deductlions
about 1t, It Is a very simple model, desligned less for a
realistic simulatlion of a robot, and more to glve the system a
world to talk about in which one can say many different types of
things.

10. MOVER Is a set of display routines written In LAP which
simulate the robot's world on the DEC 340 graphic display
attatched to the PDP-ld computer., It d'splays the scene
indicated by the DATA currently In memory, and any action called
for is displayed in real time, so the human can get visual
feedback from his commands to the robot. The Input sentences
and responses are also displayed. Figure 1 displays a typical
scene.

11. PLANNER Is the deductive system used by the program, and
Is used at all stages of the analysls, both to direct the
parsing process and to deduce facts about the BLOCKS world.
Currently the system uses Micro-Planner, an abbreviated version
of Carl Hewltt's original language, Implemented by Terry
Winograd, Gerald Sussman, and Eugene Charntak <Sussman>. It iIs

written In LISP.
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12, The DATA about the current scene is ia the form of
PLANNER assertions describing the objects, thelr slizes, shapes,
colors, and locatlons. The system assumes It has some sort of
robot "eye", so all of thls iInformation Is Initially known and
does not have to be entered in Engllish.

When running compiled, the system |Is fast enough to carry
on a real-time dlscourse. Each sentence takes from 5 to 20
seconds to analyze and respond to, and the display Is desligned
to move at the speed of a real arm,

The program listings are ali avallable in hard copy and
DECtape, but before Implementing them on another system, it
would be wise to read about the special features of MACLISP

<{White> which may be in conflict with other LISF

implementations.
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1.3 Sample Dialog
This section contains a sampie of a dialog with the
language understanding system. !t carrles out actlons and

answers questions about a simple scene contalining a table, hand,

and box, and several blocks and pyramlids. The lines In lower
! case were typed In by a person, and the lines in upper case are
the computer's response. Indented lines are comments describing
some of the features belng exhiblted.

The dialog was carried out in real time with the response
of the "robot" displaved on a CRT screen. Flgures are Included

to show the state of the scene at various points.

1. pick up a blg red block.

! oK.

‘ The system answers "OK" when It carrles out a
command, In order to plck up the red block,
It had to clear It off by finding a space for
the green one and moving the green one away.
Figure 4 shows the scene when the command was
given, Fligure 5 shows the green block being
put out of the way, and Fligure 6 shows the end
result,

2. grasp the pyramid.
| DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids In the scene, so the
program does nothing.

3. find a block which Is taller than the one you are holding
and put it into the box.

The system has to f\gure out what Is meant by
“one" and "i1t", as well as using deduction to
de~ide which block it Is holding.
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BY "IT", | ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE
CNE ) AM HOLDING.

Printed out to keep us Informed.
oK. .
The hand has to set down the red block to plck
up the taller blue one. Flgure 7 shows the
result, .

4., what does the box contain?
THE BLUE PYRAMID AND THE BLUE BLOCK.
5. what is the pyramid supported by?

Earlier the system responded to "the pyramid"
by sayling "l don't understand which pyramid
you mean." now, it knows that we must mean
the one which was just mentioned.

THE BOX.
6. how many blocks are not in the box?

Negat!ves such as "not" and "no" are handled
whether they appear in clauses or noun groups
(such as "no boxes"). :

FOUR OF THEM,

7. 1Is at least one or them narrower than the one which | told
you to pick up?

The phrase "at least one of them" must be
analyzed to refer back to the previous
question, and "the one which..." must also
refer to blocks. Noun groups can have
complicated numbers such as '"at least
one","more than three'", "exactly seven', etc.
The memory of past events [s used to deduce
which block iIs "the one which | told you to
pick up". Notlce the compllcated grammatical
structure in which "the one" Is aztually the
object of a clause embedded two levels deeper.

YES, THE RED CUBE.

8. 1s It supported?
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Passlives can be used without a "by ..."
phrase,

YES, BY THE TABLE.
9, can the table pick up blo.is?

NO.

The semantlc rules make this a nonsenslical
question which therefore must be false.

10, can a pyramid be supported by a block?

YES.
The deductive system finds an actual example,
so It knows thils Is possible.

11. can a pyramid support a pyramid?
| DON'T KNOW.

The question makes sense, but there Is no
example In the scene, so there Is no easy way
to tell without belng able to axamine the
robot's programs.

12, stack up two pyramids.

| CAN'T.
The robot tries and falls,

13, the blue pvramid Is nice.

| UNDERSTAND.
This data Is added to the data base.

14, 1 like blocks which are not red, but | don't like anything
which sugports a pyramid.

I UNDERSTAND.

Two new theorems are created for provtng
things about "llklng".

15. do | like the box?

NO.

The box supports whatever it contalns,
Including a pyramid.
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16, do [ like anything In the box?
YES, TwO THINGS{ THE BLUE BLOCK AND THE BLUE PYRAMID,

Presumably we tilke anything which Is nlce, and
the blue block |Is certainly not red.

17. will you please stack up both of the red biocks and elther
a green cube or a pyrami~?

OK.
Lorlcal connectives such as "and" "or"
Wolther" etc. are handled in both the grammar
and semantics. A coimand s executed even {f
it looks like a question, The robot carries
out the commaiid by the series of steps shown
in figures 8 through 11. !t puts a grean cube
on the large red block (note that It chooses
the green cube with nothing on it), then
removes the small pyramid from the little red
cube, so that It can use that cube to complete
the stack as specified.

18, which cube is sitting on the table?
THE LARGE GREEN ONE WHMICH SUPPORTS THE RED PYRAMID,

Crdinarily the system would be satlisfled with
calllnzg thls "a blig green cube', but since we
asked “"which cube" it has to be more specific
in naming ft. The use of substitute nouns
(such as “one") and pronouns in answers makes
the discourse more natural.

19, Is there a large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE AND
THE BLUE ONE.

20. put a small one onto the green cube which supports a
pyramid.

“"A small one'" must contrast wlth the earlier
phrase "a large blcock", so this means "a small
block".
oK. ‘ »

21. put the littlest pyramid on top of it.
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Words like "1lttlest" are not in the
dictionary but are Intcrpreted from the root

forms like "1ittle”,. The scene now looks like
Figure 12,

oK.

22. does the shortest thing the tallest pyramid's support
supports support anything green?

The grammar can handle words llke "support"
which are both verbs and nouns without getting
confused, and can understand possessives. To

compute the answer, see Flgure 13 for the
scene,

YES, THE GREEN PYRAMID,

23, what color s (t?

BY "IT", | ASSUME YOU MEAN THE SHORTEST THING THE TALLEST
PYRAMID'S SUPPORT SUPPCRTS.

If we had asked "what size Is 1t?", the system
would have assumed that "It" meant the green
pyramid, but nobody would ask the color »f
something which was just called '"the green

pyramid", so it had to look farther for the
reference of "1t",

REC

24, how many things are on top of green cubes?

I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "ON
TOP OF GREEN CUBES ".

00 YOU MEAN:
1 -~ DIRECTLY ON THE SURFACE
2 ~ ANWHERE ON TOP OF ?

When there are several Interpretatlions and
none is clearly better, the syscsm has to ask
the user for more Informatlon. The
paraphrases were included with the dictionary
definltion of "on", and the request for more
information occurs automatically when the
heurlstics for resolving ambiguities aren't .
sufficlent. A request like thils can also

occur when the meanling of a pronoun such as

"1t" or "they" Is unclear.
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2
THREE OF THEM,

25. had you touched any pyramid before ydu put the green one on
the ljittle cube?

YES, THE GREEN ONE,

The system deduces from its memory what event
ts beling referred to, and can relate other
events to It In time. The analysis lIncludes
complex tenses of verb groups, and there are
speclal facltlitles for keeping track of the
various forms of lrregular verbs 1ike "have’.

26. when did you plck it up?

WHILE | WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEN CUBE,

A time Is described by naming the main goal
which was bel:g worked on.

27. why?

The system remembers Immediately previous
sentences to understand questions llke this
and the following ones.

TG GET RID OF IT.

By keeping track of selected parts of the
original subgoal tree, the system has some
understanding of its own motlves.

28, why did you do that?

TO CLEAN OFF THE RED CUBE.

YThat" refers to the action mentioned In the
answer.

29. why did you clear off that cube?

Here, "that" means the one just referred to.

TO PUT 1T ON A LARGE GREEN CUBE.
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30, why did you do that?

TO STACK UP THE RED CUBE , A LARGE RED BLCCK AND A LARGE GREEN
CUBE. .

31. why did you do that?
BECAUSE YOU ASKED ME TO,

it rewembers what It did, not how the request
was worded.

32, how d 4 you do it?

"1t" refers to the action mentioned In the
last question, rather than the answer.

BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO
OF IT > TH:N PUTTING A LARGE GREEN CUBE OM IT ; THEN LETTING GO
OF THAT C4YBE ; THEN PUTTING THE RED CUBE ON THAT CUBE ; THEN
LETTING GO OF THAT CUBE.

This Is a description of the top-level
subgoals used to achieve the goal.

33. how many objects did you touch while you were doing 1t?

Time references can r:fer to a time span,
using words like "while'.

FOUR OF THEM,

34, what did the red cube support before you started to clean
it off?

THE GREEN PYRAMID,

Ey remembering what has been moved, It Iis
possible to deduce things about earller states
of the scene. VWe can use complex nestings of
c;ixses like "before you started to clean It

of £",

35. there were flvé blocks to the left of the box then.

"Then" must refer to the time mentioned in the
last sentence.

NO, ONLY FOUR OF THEM: THE RED CUBE , TWO LARGE GREEN CUBES
AND A LARGE RED BLOCK. :
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Earller In the dlalog, Informatlon about
"jiking" was accepted at face value. But the
system knows that It has complete information
about about the basic properties of objects,
including location. It checks any statements
about locatlon or other such properties to see
wvhether it agrees or disagrees.

36. put the blue pyramid on the block In the box.

This Is syntactlically ambiguous, but Is
understocd without amblgulty sirce the parsing
corresponding to "put the blue pyramid which
is on the block !'n the box." does not make
sense In the current scene, while '"put the
blue pyramld on the block which Is In the box"
does. We can see the situtatlion In Figure 14,
and the result In Figure 15.

0Kk.

37. 1Is there anything which 1s blgger than every pyramid but is
not as wide as the thing that supports t?

The system understands quantiflers such as
"every", "any", "some', etc., and structures
such as ''bigger than'", "as wide as", etc.

Here "1t" refers to a noun group within the
same sentence but two levels up in the parsing
tree.

YES, THE BLUE BLOCK.

33, does a steeple
SORRY, | DON'T KNOW THE WORD “STEEPLE"., PLEASE TYPE TWO SPACES.

The system interrupts Innedliately when it sees
a word it can't flgure out. The two spaces
are to clear the input buffor of anvthing
typed after the message was sent but before
the typist saw It,

40. a "steeple"™ Is a stack which contalns twe green cubes and a
pyramid.

The quote marks Indicat~ thet we are definlng
a new word,
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| UNDERSTAND,
41. a,e there any steeples now?
NO.

The new deflnition Is used as a description to
recognize steeples.

42. build one,

0K.
The description given in the definition Is
encugh to deduce a plan for bullding new
objects as well as recognizing them, The word
“"one" means '"a steepie’, and the plan Is
carrled out. First, one of the iarge green
cubes Is cleared off by removing the red cube
and twc pyramids. Then the two green cubes
and the tall red pyramid are stacked up to fit
the description. Flgures 16 threcugh 19 show
the inltlal state, some Intermediate steps,
and the result,

43, call the biggest block '"superblock".

oK.
We can also glve objects names,

‘44, have you picked up superblock since we began?
YES.
45, why did you drop !t?
BY "MIT", | ASSUME YOU MEAN THE SUPERBLOCK.
I CAN'T EXPLAIN A NON=-EXISTENT EVENT.

There Is no record In memory of any block
belng dropped.

46. i35 there anything to the right of the red pyramid?

YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID
AND THE BLOCK NAMED SUPERBLOCK

Once an object has a name, the name s used to
help ldentify it in resporses.,
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Figure 16
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Figure 19
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47. thank you.
YOU'RE WELCOME!
The special ldlom-defining capabilitlies ailow

us to Include such pleasantries without
modifying the grammar,
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Chapter 2. Syntax

2.1 Basic Approach to Syntax
2,1.1 Syntax and Meanlnsg

The decision to consider syntax as a proper study devold of
semantics Is a basic tenet of most current linguistic theorles,
Language Is viewed as a way of organizing strings of abstract
symbols, and competence Is explalned In terms cf symbol-
manlpulating rules. At one level thlis has.been remarkably
successful. Rules have been formulated whlich describe in great
detall how most sentences are put together. The problem comes
In trying to relate those symbols and structures to the function
of language as a vehicle for conveylng meaning. The same
approach whic has worked so well In accounting for the
machinatlions of syntax has been unable to provide any but the
most rudimentary and unsatisfactory accounts of semantlcs.

The problem is not that current theorles are finding wronrg
answers to the questions they ask; 1[It is that they are asking
the wrong questions. What is needed ls an approach which can
deal meaningfully with the question '"How Is language organlized
to convey mewning?'" rather than "How are syntactic structures
organized.when viewed in isolation?".

How does a sentense convey meaning beyond the meanings of
individrral words? Here s the place for syntax. The structure
of a sentence can be viewed as the result of a serles of
grammatical cholices made In generating it. The speaker encodes

meaning by choosing to build the sentence with certaln

“features", and the problem of the hearer Is to recognlze the
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presence of those features and Iinterpret their meaning.

We want to analyze the posslible choclces of features and
functions which grammatical structures can have, For example,
we might note that all sentences must be elther IMPERATIVE,
DECLARATIVE, or a QUESTION, and that in the last case they must
choose as well between being a YES~-NO questlion or a WH- question
contalining a word such as "why" or “"which"™, We can study the
way In which these features of sentences are organlzed -~ which
ones form mutually exclusive sets (called "systems'"), and which
sets depend on the presence of other features (llke the set
containing YES~NO and WH~ depeads on the presence of QUESTION).
This can be done not only for full sentences, but for smaller
syntactic units such as noun groups and prepositional groups, or
even for Individual words.

In addition we can study the different functlions a
syntactic "unit" can have as a part o7 a larger unit. |In
"Nobody wants to be alone.", the clause '"to be aione" has the
function of OBJECT In the sentence, whlle the noun group
"nobody" is the SUBJIZCT. We can note that a transitive clause
must hove units to fIll the functlons of SUBJECT and OBJECT, or
that a WH- question has to have some constltuent which has the
role of "questlon element" (1lke "why" in "Why did he go?" or
"which dog'" In "Which dog stole the show?").

In most current theorles, these features and functlions are

impllicit In the syntactic rules. There Is no explicit mention

sy
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of them, but the rules are designed In such a way that every
sentence will In fact be one of the three types listed above,
and every YWH- questlon will In fact have a duestlon element.

The difficulty Is that there Is no attempt In the grarmmar to
distinguish significant features such as these from the Infinite
number of other features we could note sbout a sentence, and
whjch are also implied by the rules.

If we look at the "deep structure' of a sentence, agaln the
features and functions are Implicit., The fact that It Is a YES-
NO ' questlon Is Indlicated by a question marker hanglng from a
particular place In the tree, and the fact that a component ls
the object or subject 's determined from Its exact relation to
the branches around It., The problem Isn't that there Is no way
to find these features In a parsing, but that most theprles
don't bother to ask "Which features of a syntactic structure are
Iimportant to conveying meaning, and which are just a by=product
~of the symbol manipulations needed to produce the right word
order."

What we would llke Is a theory In which these choices of
features are primary. Professor M.A.K. Halllday at the
University of London has been working on such a theory, called
Systemic Grammar (see references <Halllday 1961, 1966a, 1966b,
1967> <Huddleston>, <Hudson>). His theory recognizes %that
meaning Is of prime Importance to the way language Is
structured. Instead of having a "deep structure'" which looks
like a kind of syntactlec structure tree, he deals with "system
networks" which describe the way differént features lInteract and
depend on each other. The primary emphasis Is on analyzing the
limited and highly structured sets of cholces which are made In
producing a sentence or constltuent. The exact way In which

these choices are "realized" In the final form iIs a necessary
but secondary part of the theory.




Section 2.1.1 - Page i

The reallzation rules carry out the work which waild be
done by transformations in transfcrmational grammar (TG). |In
TG, the sentences "Sally saw the squirrel.”", "The squlrrel was
seen by Saily.", and "Did Sally see the squlrrel?" would be
derived from almost ldentlcal deep structures, and the
difference In final form Is produced by transformatlions. In
systemic grammar, these would be analyzed as having most of
their features In common, but differing in one particular
choice, suchAas PASSIVE vs., ACTIVE, or DECLARATIVE vs., QUESTION.
The realization rules would then describe the exact word order
used to signal these features,

What does this theory give us to use In a language
understanding program? What kinds of parsings does it produce?
1f we look at a typical parsing by a systemlc grammar, we note
several points. Flrst, it Is very close to the surface
structure of the sentence, There Is no rearrangement into
supposed "underlying" forms. Instead, each constltuent Is
marked with features Indicating Its structure and function.
Instead of saylng that '"Did John go?" has an underlying
structure which looks like "John went.", we simply note that It
has the features QUESTION and YES-NO, and that the noun group
""John'" has the function SUBJECT. Other parts of the language
understanding process do not have to be concerned with the exact
way the parsing tree Is structured, since they can deal directly

with the relevant features and functlons.




Section 2.1.1 - Pare G5

What Is more Important is that these features are not
rondom unreiated llsts of observatlions. They are part of a
highly structured network, and the grdﬁmétfcal theory Includes a
description of that network. When we do semantlic analysis, we
are not faced with the task of inventlng '"projection rules" to
deal with the raw form of speciflc syntactic rules. Instead we
can ask "what aspect of meaning does this system convey?', anc
"What Is the significance of this particuiar feature within Its

system?",
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2.1.2 Parsing

In Implementing a systemic grammar for a computer program
for understanding language, we are concerned with the process of
recognition rather than that of generation. We do not begin
with cholices of features and try to produce a sentence. Instead
we are faced with a string of letters, and the job Is to
recognize the patterns and features In It., We need the Inverse
of realizatlion rﬁles -- Interpretation rules which look at a
pattern, ldentify lts structure, and recognize Its relevant
features. This iInterpretation process Is closely related to
other types of pattern recognitlion, and many iInteresting
parallels can be drawn with the process of Interpreting a visual
scene (see <¥Wlnograd 1969>)., The Important aspect of both types
of iInterpretation [s looking for symbolic features which wlil be
relevant to undérstandlng, so that the parsing can be Integrated
with the rest of the understanding process. In general, this
problem of isolating Important features from complex Informatlon
and representing them symbolically Is a central lIssue for
Artificial Intelligence, and the ldes of a "systemic" parser may
be of use In other areas.

The parsing system for our program is actually an
interpreter for PROGRAMMAR, a language for writing grammars, It

Is baslically a top-down left-to-right parser, but {t imodifies

these properties when It Is advantageous to do so. By writing

in a language designed for grammars, we can express the
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regularities of language in a stralghtforward way, as s>imply as
in a syntax-directed parser. The primitives of the language are
thcse operations which have partlcular relevance to natural
language and its parsing.

A program for parsing language Is as much a '"generative"
descriptlon of the language as Is a set of rules for producing
sentences. The meanlng of "generative" in Chomsky's orfiginal
sense (<Chomsky 1957, 1965>) Is that the grammar should
assocliate a structural description tc each permissible sentence
In the language. A parsling program does just that.

By making the formalism for grammars a programming
language, we enable the grammar to use special tools to handle
compiex constructions and irregular forms. For example, we can
set up programs to defline certain words like "and", and “or"
as "demons", which cause an interrupt In the parsing process
whenever they are encountered l.. the normal left-to-right order,
in order to run a speclal program for conjolined structures. :
ldlioms can also be handled using this "Interrupt' concept. In
fact, the process can be interrupted at any polnt In the
sentence, and any other computations (elther semantic or
syntactic) can be performed before golrng on. These may
themselves do blts of parsing, or they may change the course the
basic program will take after they are done.

It Is paradoxical that lingulstic workers famillar with
computers have generally not apprecliated the Importance of the
"eontrol! aspect of rrogramming, and have not used the process-
describing potentialities of programming for thelr parsing
theorles, They have Instead restricted themselves to the
narrowest kinds of rules and transformations =-- as though a
programmer were to stick to such simple models as Turing

machlines or Post productions. Deslgners of computer languages
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today cshow this same tendency! See Minsky's remark In his
Turing lecture <{Minsky 1970>. Our parser uses semantic guldance
at all points, looking for a meaningful parsing of the sentence
rather than trying all of the syntactic possibilities. Sectlon
2.2 describes PROGRAMMAR In detail, and 2.3 glves a sample
grammar for English. Sectlon 2.4 explalins programming detalls,
and shows how the speclal features of the language are actually

used to handle specific linguistic problems,
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2.2 A Description of PROGRAMMAR

2.2.1 Grommar and Computers

In order to explaln the features of PROGRAMMAR, we will
summarize some of the principles of grammar used In computer
language processing. The basic form of most grammars Is a list
(ordered or unordered) of "replacement rules,'" which represent a
processs of sentence generzation, Each rule states thast a
certain string of symbols (its left side) can be replaced by a
different set of symbols (its right side). These symbois
include both the actual symbols of the language (called terminal
symbols) and additional '"non-terminal" symbols. One non-
terminal symbol s desigrated as a starting symbol, and a string
of terminal symbols is a sentence iIf and only If It can be
derived from the starting symbol through successive application

of the ru)es. For example we can write Grammar 1:

1.1 S => NP VP

1.2 NP -> DETERMINER NOUN

1.3 VP => VERB/INTRANSITIVE

1.4 VP > VERB/TRANSITIVE NP

1.5 DETERMINER => the

1.6 NOUN => giraffe

1.7 NOUN => apple

1.8 VERB/INTRANSITIVE <) dreams

1.9 VERB/TRANSI!TIVE => eats
Figure 20 =-- GRAMMAR 1

By starting with S and applylng the llét of rules (1.1 1,2
1,5 1.6 1.4 1.2 1.7 1.5 1.9), we get the sentence "The glraffe

eats the apple." Several things are noteworthy here. This Is an
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unordered set of rules. Each rule can be applied any number of
tlmes.a; any print In the derivation where the symbol appears.
In additton, each rule Is optional. We could just as well have
reversed the applications of 1.6 and 1.7 to get "The apple eats
the giraffe,", or have used 1.3 and 1.8 to get "The glraffe
dreams." This type of derivation can be represented graphically

as?:

S
NP\/ \VP '
/ %NP

DETERMINER NGOUN VERB/TRAN ///, \\\\\

DETERMINER MOUN

the giratfe eats the apple

Figure 21 --'Pars!ng Tree

We w111 call this the parsing tree for the sentence, and
use the usuzl terminology for trees (node, subtreee, daughter,
parent, etc.). |In addition we will use the lingulstic terms
"phrase" and "constituent" interchangeably to refer to a
subtree. This tree represents the "immedlate co-stituent"
structure of the sentence. The PROGRAMMAR language Is a general
parsing system which, although orlented ttoward systemlic
grammar, can be used to parse grammars based on other theorles.
In descrblng PROGRAMMAR we have used a more conventional szt of
notations and analyslis of English in order to make the

description independent cf the work presented In later sectlons.
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2.2.2 Context-free and Context-sensitive Grammars

Grammar 1 Is an cxample of what Is called a context-free
grammar. The left slde of each rule consists of a slngle
symboi, and the indicated replacement can occur whenever that
symbol Is encountered. There are a great number cf different
forms of grammar which can be shown to be equivalent to this
one, In that they can characterize the same languages, It has
been pointed out that they are not theoretically capable of
expressing the rules of English, to produce such sentences as,
"John, Sidney, and Chan ordered an eggroll, a ham sandwich, and
a bagel respectively." Much more Important, even though they
Acould theoretically handle the bulk of the Engllish language,
they cannot do this at all efficlently. Consider the simple
problem of subject-verb agreement. We would l1lk. a grammar
which gene-ates "The glraffe dreams." and "The glraffes dream.",
but not "The giraffe dream." or "The gliraffes dreams."”. In a
context-free grammar, we can doc this by introducing two starting
symbols, S/PL and S/SG for plural and singular respectively,

then dupticating eack rule to match., For example, we would

have:
1.1.1 S/PL => NG/PL VP/PL
1.1.2 S/SG => NG/SG VP/SG
1.2.1 NG/PL =-> DETERMINER NOUN/PL
1.2.2 NG/SG =-> DETERMINER NOUN/SG
1.6.1 NOUN/PL => glraffes
1.6.2 NOUN/SG => giraffe

etc.
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If we then wish to handle the difference tetween "I am",
"he Is", etc. we must Introduce an entire new set of symbols
for first-person. This sort of duplicatlon propagates
multiplicatively thrcuzh the grammar, and arises In all sorts of
cases. For example, a questlion and the corresponding statement
.wlll have much In common concerning thelr subjects, objeﬁts
ve;bs, etc., but In a context-free grammar, they wlll In general
Se expanded through two entirely different sets of symbols,

One way to avoid thls problem Is to use context=sensitive
rules. In these, the left side may lncl&de several symbols, and
the replacement occurs when that combination of symbols occurs

In the string belng generated.
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2,2.3 Systemic¢ Grammar

Wie can add power to our grammar with context-sensitve rules
which, for example, In expanding the symbo! VERB3/INTRANSITIVE, .
look to the preceding symbol to decide whether it Is singular or
plural. By using such context-sensitlive rules, we can
characterlze any language whcse sentences can be listed by a
deterministic (possibly nevefendlng) process, (i.e. they have
the power of a turling machlne). There is however a problem In
Iimplementing these rules. In any but the simplest cases, the
context will not be as obvious as in the simple example given.
The cholce of replacements wlll not depend ¢cn a single word, but
may depend !In a complex way on the entlre structure of the
sentence., Such dependencies cannot be expressed in our slmple
rule fofmat, and new types of rules must be developed.
Transformational grammar solves this by breaklng the generation
process down Into the context~free base grammar which produces
"decp structure" and a set of transformations which then operate
on this structure to produce the actual “surface structure' of
the grammatical sentence. We will not go Into the detatls of
transformational grammar, but one basic ldea Is thls separation
of the complex aspects of language Into a separa:ie
transformational phase of the generatlon process.

Systemic grammar Introduces context in a more unlfied way
into the Immedlate-constltuent generation rules. Th!s Is done

by introducing "features" asscciated with constituents at every
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level of the parsing tree, A rule of the grammar may depend,
for example, on whether a partizular clause Is transitive or
intransitive. In the examples "Fred found a frog.", "A frog was
found by Fred.'", and "What did Fred find?", all are transitlve,
but the outward forms are qulte different. A context-sensitlve
rule which checked for this feature directly In the string beling
generated would have to be cuite complex., Instead, we can allow
each symbol to have additional subscripts, or features which
control lts expanston. In a way, this ls like the separation of
the symbol NP into NP/PL and NP/SG in our augmented context-free
grammar. But it Is not necessary to develop whole new sets of
symbols with a set of expansions for each. A symbol such as
CLAUSE may be assoclated with a whole set of features (such as
TRANSITIVE, QUESTION, SUBJUMCTIVE, OBJECT-QUESTION, etc.) but
there Is a single set of rules for expanding CLAUSE. These
rules may at varlous points depend on the set of features
present.

The power of systemic grammar rests on the observation that
the context-dependency of natural language is centered around
clearly defined and highly structured sets of features, so
tihirough thelr use a great deal of complexity can be handled very
economically. More Important for our purposes, there [s a high
correlation between these features and the semantic
Interpretation of the constltuents which exhibit them. They
cannot be put In a one~to-one correspondence wlth semantic
properties of the phrases In whlch they appear, but are a
tremendous ald to Interpretation.

A parsing of a sentence in a systemic grammar mlghtilook

very much llke a context-free parsing tree, except that to each

node would be attached a number of features. These features are




Sectlon 2.2.3 - Page 75

not random combinations of facts about the constituent, but are
a part of a carefully worked out analysis of a language in terms
of Its "systems". The features are organized In a network, with
clearly organlized dependencles., For example, the features
IMPERATIVE (command) and QUESTION are mutually exclusive In a
ciause, as are the features YES-NO (yes-no question like 'Did he
go?") and WH=- question (iike "Who went?). |In addition, the
second cholce can be made only If the cholce QUESTION was made
in the first set. A set of mutually exclusive features Is
called a "system', and tue set of other features which must be
preseﬁt for. the cholce tc be possible Is called the "entry
condition" for that system. This Is discussed in detall iIn
sectlon 2.3.

Another basic concept of systemlc grammar Is that of the
rank of a constituent. Rather than having a plethora of
different non~terminal symbols, each expanding a constltuent In
a slightly different way, there are only a few baslic "unlts",
each having the possibility of a number of different features,
chosen from the "system network' for that unit. |In an analysis
of English, three baslic units seem to explain the structure: the
CLAUSE, the GRQUP, and the WORD. In general, clauses are made
up of groups, and groups made up of words, However, through
“e-ankshift", clauses or groups can serve as éonstltuents of
other clauses or groups. Thus, In the sentence "“"Sarzh saw the

student sawing logs." "the student sawing logs" Is a NOUN GROUP
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with the CLAUSE "sawing logs" as a constlituent (a modiflier of
"student").

The constituents "who", "three davs", '"some of the men on
the board of directors," and "anyone who doesn't understand me"
are all noun groups, exhiblting different features. This means
that a PROGRAMMAR grammar will have only a few programs, one to
deal with each of the baslic units, Our current grammar of
English has programs for the units CLAUSE, NOUN GROUP, VERB

GROUP, PREPOSITION GROUP, and ADJECTIVE GROUP.
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2.2.4 Graemars as Programs

Earlier we pointed out that a complete generative
description of a language can be in the form of a program for
parsing it. For sfmple grammars, there Is a close
correspondence betwaen the parsing program and the usual
generatlon rules.

We can think of a grammar as a set of Instructlons for
parsling a sentence In fhe language., A rule llke: NP =>
DETERMINER NOUN can be Interpreted as the Instruction "If you
want to flna a NP, look for a DETERMINER followed by a NOUN,"
Grammar 1 could be diagrammed as shown In Figure 22.

The basic functlon used Is PARSE, a functlon which tries to
add a constltuent of the speclified type to the parsing tree. |If
the type has been defined as a PROGRAMMAR program, PARSE
activates the program for that unit, giving It as Input the part
of the sentence yet to be parsed and (optionally) a list of
Inttlal features. |If nu definition exlsts, PARSE Interprets Its
arguments as a list of features which must be found in the
dictionary definition of the next word In the sentence. If so,
It attaches a rode for that word, and removes It from the
remainder of the sentence. |f not, it fails. |If a PROGRAMMAR
program has been called and succeeds, the new node Is attached

to the parsing tree. |If |° falls, the tree Is left unchanged.




——
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DEFINE program SENTENCE

/

PARSE a NP - ;PRETURN fallure
/
suc d?
PARSE a VP ot
any words —]
left?

v/

RETURN success

DEFINE program NP

PARSE a DETERMINER >RTURN fallure

PARSE "a NCUN

RETURM success

DEFINE program VP

PARSE

7]

VERB = RETURN fallure

RANSITIVE?==%PA4RISE a NPzT' T

NTRANSITIVE?

<

is It

is It

&€

RETURN success

Figure 22 -=-Simple Parsing Program
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2,2.5 TIhe EForm of PROGRAMMAR Grammars

Wrltten

in PROGRAMMAR,

the progra~s would look 1lke:

(PDEFINE
(((PARSE
(

(PDEFINE
(((PARSE
((PARSE

PDEFINE

SENTENGE
NP) NIL FAIL)
VP) FAIL FAIL RETURN)))

NP
DETERMINER) NIL FA
)

L
NOUN) RETURN FAIL)))

|
)
ve

(
(((PARSE
((1sQ H
((PARSE
INTRANS
(¢1sq H

VERB) NIL FAIL)
TRANSITIVE) NIL
NP) RETURN NIL)

INTRANS )
0
1
INTRANSITIVE) FRETURN FAIL)))

Rﬁles 1.6 to 1.9 would have the form:

2.13 (DEFPROP GIRAFFE (NOUN) WORD)
2,14 (DEFPROP DREAM (VERB INTRANSITIVE) WORD)
etc. )

Ftgure 23 =-- Grammar 2

This example illustrates some of the baslc features of
PROGRAMMAR, Flrst It Is embedded in LISP, and much of lts
syntax is LISP syntax. Units, such as SENTENCE are defined as
PROGRAMMAR programs of nr arguments., Each trles to parse the
string of wofds left to be parsed In the sentence. The exact
form of thils Input string is described In sectlion 2.4.8. The
value of (PARSE SENTENCE) will be a llst structure corresponding -
to the parsing tree for the complete sentence.

Each time a call

Is made to the function PARSE, the system

beglns to build a new node on the tree. Slnce PROGRAMMAR

programs can call each other recursively, It is necessary to
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keep a pushdown list of nodes which are not yet completed (1l.e.
the entire rightmost branch of the <ree). These are a'l called
“active" nodes, and the one formed by the most recent call to
PARSE is called the "currently actlve node',

We can examline our sample program to see the baslc
operation of the language. Whenever a PROGRAMMAR program is
called dlirectly by the user, a node of the tree structure Is set
up, and a set of speclal varlables are bound (see sectlon
2.4.9). The lines of the program are then executed In sequence,
as In a LISP PROG, except when they have the speclal form of a
BRANCH statement (a list whose first member (the CONDITION) Is
non-atomic, and which has elther 2 or 3 other members, called
DIRECTIONS). Line 2.3 of GRAMMAR 2 Is a three-directlon branch,
and all the other executable lines of the program are two-
direction branches,

When a branch statement.Is encountered, the condition Is
evaluated, and branching depends on its value. In a two-
direction branch, the first direction Is taken {f It evaluates
to non=NIL, the second directlion If It Is NIL. In a three-
direction branch, the first direction Is taken only If the
condition Is non-NiL, and there Is more of the sentence to be
parsed. |f no more of the sentence remains, and the condition
evaluates non-NIL, the third directlon Is taken.

The directions can be of three types. Flirst, there are

three reserved words, NIL, RETURN, and FAIL. A direction of NIL
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sends evaluation to the next statement In the program, FAIL

causes the program to return NIL after restorling the sentence

&..d the parsing tree to thelr state before that prcgram was

called. RETURMN causes the program to attach the currentiiy ‘
active node to the completed parsing tree and return the subtree

below that node as lts value.

If the dlirection Is any other atom, it acts as a GO
statement, transferring evaluation t> the statement Immediately’
followlng the occurence of that atom as a tag. For example, if
a fallure occurs In line 2.9, evaluation continues with line
2.12, If the direction Is non-atomic, the result Is the same
as a FAIL, but the directlon is put on a specla! fallure message
1lst, so the calllng program can see the reason for fallure.
DIRECTIONs can also be used In the function GOCOND., The
statment (GOCOND TAG1l TAG2) causes the program to go to TAGl If
tnere are words left to be parsed, and to TAG2 otherwise.

Looking at the programs, we see that SENTENCE will succeed
only If It first finds a NP, then finds a VP which uses up the
rest of the sentence. In the program VP, we see that the first
branch statement checks to see whether the next word Is a verb.
If so, It removes it from the remaining senténce, and goes on.

I f ﬁot, VP falls. The second statement uses the PROGRAMMAR
function 1SQ, one of the functions used for checking features.
(1SQ A B) checks to see whether the node or worc polinted to by A

has the feature B. H Is one of a number of special variables "
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used to hold Information assoclated with a node of the parsing
tree. .see section 2.4.9) It points to the last word or
ccnstituent parsed by that program. Thus the condition (1SQ H
TRANSITIVE) succeeds only If the verb just found by PARSE has
the feature TRANSITIVE. If so, the directlon NIL sends It on to
the next statement to look for a NP, and If it finds one It
returns success, |f either no such NP Is found or the verb Is
not TRANSITIVE, control goes to the tag INTRANS, and [f the verb
Is INTRANSITIVE, the program VP succeeds. Note that a verb can
have both the features INTRANSITIVE and TRANSITIVE, and the
parsing will then depend on whether or not an object NP is

found.
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2,2,6 Context-Sensitive Aspects
So far, we have done little to go beyond a context-free . .

grammar. How, for example, can we handle agreement? One way to
“3y this would be for the VP program tc look back In the sentence
for the subject, and check Its agreement with the verb before
going on. We need a way to climb around on the parsing tree,
looking at Its structure. In PROGRAMMAR, this Is done with the
pointer PT and the moving function .

Whenever the function * Is called, Its arguments form a
1ist of instructlions for moving PT from lts present positlor.
These instructions can be quite general, saying things like
"Move left until you find a unlit with feature X, then up until
you find a CLAUSE, then down to its last constlitutent, and left
until you find a unit meeting the arbitrary condition Y." The
instruction list contalns non-atomic CONDITIONS and atomlic
INSTRUCTIONS., The Instructlons are taken In order, and when a
condition.is encountered, the preceding Instruction ls evaluated
repeatedly until the condition Is satlisfled, If the conditlon
Is of the form (ATOM), It Is satisfled only If the node pointed
to by PT has the feature ATOM. Any other conditlon s evaluated
by LISP, and .Is satisfled If It returns a non=-NIL value. N
Section 2.4,10 lists the Instructions for =,

For example, evaluating (* C U) will set the pointer to the
parent of the currently active node. (The mnemonics are:

Current, Up) The call (» C DLC PV (NP)) wlill start at the
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current node, move down to the rightmost completed node (l.e.
not currcontiy active) then move left until it finds a node with
the feature NP. (Down-Last-Completed, PreVious). |If = succeeds,
It returns the new value of PT and leaves PT set to that value.
If it fails at any point fn the 1ist, because the existing tree
structure makes a command Impossible, or because a condition
cannot be satisfied, PT 1s left at its original position, and *
returns NIL,

We can now add another branch statement to the VP program
in section 2.2.5 between_!ines 2.8 and 2.9 as follows:

((OR(AND(1SQ(« C PV DLC)SINGULAR)(1SQ H SINGULAR))

2,8.1
2.8.2 (AND(1SQ PT PLURAL)(1SQ H PLURAL)))
2.8.3 + NIL (AGREEMENT))

‘Thls is an example of a branch statement with an error
message. It moves the pointer from the currently active node
(the VP) to the previous node (the NP) and down to Its last
contituent (the noun). |t then checks to see whether this
shares the feature SINGULAR with the last constituent parsed by
VP (the verb). |If not It checks to see whether they share the
Teature PLURAL. MNotice that once PT has been set by =, It
remains at that poslition., |f agreement Is found, evaluation
continues as before with 1ine 2.9. |If not, the program YP falls
with the message (AGREEMENT).

So far we have not made much use of features, except on
words. As the‘grammar gets more complex, they become much more

Important. As a simple example, we may wish to augment our
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grammar to accept the noun groups '‘these flsh," "this fish,"
“"the giraffes," and "the giraffe," but not "these gliraffe," or
"this giraffes." We can no longer check a single word for
agreement, since '"fish" gives no clue to number In the filrst
two, while "the'" gives no clue in the third and fourth. tumber
Is a feature of the entlre noun group, and we must Interpret It
In some cases from the form of the noun, and In others from the
form of the determiner,

le can rewrite our programs to handle this complexity as

shown In Grammar 3:

3.1 (PDEFINE SENTENCE

3.2 (((PARSE N®)NIL FAIL)

3.3 ((PARSE YP) FAIL FAIL RETURN)))

3.4 (PDEFINE NP

3.5 (((AND(PARSE DETERMINER) (FQ DETERMINED))INIL NIL FAIL)
3.6 ((PARSE NOUN)INIL FAIL)

3.7 ((CQ DETERMINED)DET NIL)

3.8 ((AND(» H)(TRNSF (QUOTE(SINGULAR PLURAL))))RETURN FAIL)
3.9 DET

3.10 ((TRNSF (MEET(FE(* H PV (DETERMINER)))

3.11 (QUOTE(SINGULAR PLURAL))))

3.12 RETURN

3.13 FAIL)))

3.14 (PDEFINE VP _

3.15 (((PARSE VERB)NIL FAIL)

3.16 ((MEET(FE H)(FE(=» C PV (NP)))(QUOTE(SINGULAR PLURAL)))
3.17 NIL

3.18 (AGREEMENT))

3,19 ((1SQ H TRANSITIVE)NIL INTRANS)

3.20 ((PARSE NP)RETURN NIL)

3.21 ((1SQ H INTRANSITIVE)RETURN FAIL)))

Figure 24 =-- Grammar 3
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\le have used the PROSRAMMAR functlons FQ and TRNSF, which
attach features to constituents. The effect of evaluating (FQ
A) is to add the feature A to the list of features for the
currently active node of the parsing tree., TRNSF Is used to
transfer features from the pointer to the currently actlve node,
lts argument is a 1ist of features to be looked for. For
example, line 3.8 looks for the features SINGULAR and PLURAL in
the last constituent parsed (the NOUN), and adds whlichever ones
It finds to the currently active node. The branch statement
beginning with 1lne 3.10 Is more complex. The function = finds
the DETERMINER of the NP belng parsed. The function FE finds
the list of features of thils node, and the function MEET
interseats this with the 1ist of features (SINGULAR PLURAL).
This intersection Is then the set of allowable features to be
transferred to the NP node from the NOUN. Therefore if there lIs
no agreement beween the NOUN and the DETERMINER, TRNSF falls to
find any features to transfer, and the resulting failure causes
the rejection of such phrases as "these glraffe."

In line 3.7 we use the function CQ which checks for
features on the current node. (CQ DETERMINED) will be non-=NIL
only if the current node has the feature DETERMINED. (l.e. It
was put there In line 3.5) Therefore, a noun group with a
determiner is marked with the feature DETERMINED, and Is also
given features corrresponding to the Intersection of the number

features assoclated with the determiner If there Is one, and the
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noun. Notice that thls grammar can accept noun groups without
determiners, as in "Girafres eat apples." since line 3.5 falls
only If a DETERMINER is found and thera are no more words in the
sentence,

In conjunction with the change to the MP program, the VP
program must be modified to check with the MP for agreement.

The branch statement beginning on Line 3.16 does this by making
sure there Is a number feature common to both the subject and
the verb.

This brief description explains some of the baslc features
of PROGRAMMAR. In a simple grammar, thelr Importance Is not
obvious, and indeed there seem to be easier ways to achieve the
same effect. As grammars become more complex, the speclal
aspects of PROGRAMMAR become more and more important. The
flexibillity of writing a grammar as a program s needed both to
handle the complexlties of English syntax, and to combine the
semantic analysis of language with the syntactlic analysis in an
intimate way. Section 2.3 describes a falrly complex grammar of
English, and section 4.2 describes the way It Is Integrated with
the semantic programs. A number of the other features and

detalls of (RGCGRAMMAR are described In Section 2.4.
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2,27 Ambiguity and Understanding
Readers familiar with parsing systems may by now have

vondered about the problem of ambiguity. As explalned, a
PROGRAMMAR program tries to find a possible parsing for a
sentence, and as soon as It succeeds, It returns [ts answer.
This is not a defect of the system, but an active part of the
concept of language for which it was desligned, The language
process Is not segmented Into the operation of a parser,
followed by the operation of a semantlc Interpreter. Rather,
the procass is uniflied, with the results of semantic
Interpretation being used to guide the parsing. This Is very
difficult In other forms of grammar, with thelr restricted types
of context-dependence. But It Is stralightforward to implement
in PROGRAMMAR. For example, the last statement In a program for
NP may be a call to a noun-phrase semantlc interpreter. |If 1°
Is Impossible to interpret the phrase as it Is found, the
parsing is immedlately redirected.

Thz way of treating ambiguity is not through listing all
124% possible interpretations of a sentence, but in being
intelligent In looking for the first one, and belng even more
intelligent in lookling for the next one If that falls., There Is
no automatic backup mechanism in PROGRAMMAR, because blind
automatic backup Is tremendously inefficent. A good PROGRAMMAR
program will check itself when a fallure occurs, and based on

the structures it has seen and the reasons for the fallure, It
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will declde specliflcally what should be trled next. This Is the
reason for internal fallure-messsages, and there are facllitlies
for performing the speclfic backup steps necessary. (See
section 2,4,5)

"1 rode

As a concrete example, we might have the sentence
down the street in a car." At a certain point In the parsing,
the NP program may come up with the constituent '"the street in a
car", Before going on, the semantic analyzer will reject the
phrase "in a car" as a possible modifier of "street", and the
program will attach It Insteadvas a modiflier of the actlon
represented by the sentence. Since the semantic system Is a
part of a complete aeductive understancer, with a definite
world;model, the semantlic evaluation which guldes parsing can
include both generai kndwledgé (cars don't contain streets) and
specific‘knowledge (Melvlnlowns a red caé, for example)., Humans
take advantage of this sért of kiowledge !ﬁ thelr uhderstandtng
of language, and It has been pointéd ogt by a number of
linguists and computer sclentlstslthat good computer.handling of
language will nof be posslble unless computers can do 50 as
well, : '

Few sentences seem ambiguous to humans when first read.
They are guided by an understanding of what Is said to pick a
single parsing and a very few different meanings. By using this
same knowledge to gulde Its parsing, a computer understanding
system can take advantage of the same technique to parse
meaningful sentences quickly and efficiently.

We must be careful to distlingulsh between grammatical and

semantic amblguity. Although we want to choose a single parsing

'
i

.
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wlthout considering the alternatives simultaneously, we want to
kanille semantic ambigulty very differently. There may be
several interpretations of 3 sentence which are all more or less
meaningful, and the choice between them will depend on a complex
evaluation of our knowledge of the world, of the knowledge the
person speaking has of the world, and of what has been said

recently,
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2.2.8 Summary
In understandlng the reason for developing PROGRAMMAR,

several factors are Important. The flrst is that only through
the flexibillty of expreSslng 2 grammar as a program can we
Introduce the type of intellligence necessary for complete
language understanding. PROGRAMMAR is able to take Into account
the fact that language Is structured in order to convey meaning,
and that our parsing of sentences derends Intimately on our
understanding that meaning. PROGRAMMAR can take advantage of
this to deal more efficlently with natural language than a
general rule-based system, whether context-free or
transformational. More Important, the analyslis returned by
PROGRAMMAR is designed to serve as a part of a total
understanding process, and to lend ltself directly to semantic
interpretaticay. This was one reason for selectling systemic
grammar, and has guided much of the design of the system. The
exact way in which semantic interpretation can be done, and the -
reasons why a systemic analysis Is Important will be discussed

in sections 4.1 and 4.2,
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2.3 A Grammar of English
2.3.1 About the Grammar

This section describes the grammar of English used by our
system, It is based on the principles of systeml¢c grammar
(<{Halliday 1961, 1966a, 1966b, 1967>), and emphasizes the
analysis of the significant features exhibited by llngustlc
structures, rather than thelr detailed form. Instead of glving
a set of grammar rules or algorithms, this sectlion will try to
convey an Impresslionistic overview of English grammar, giving
examples of the most Important features. Section 2.,3.11 follows
the parser through two sample sentences, showing how the grammar
Is used. The actual PROGRAMMAR grammar contains the detalls,
and is avallable on request. A few particularly Interesting
parts of the detailed grammar are descrlibed In section 2.4,
Appendix A Is a glossary of features with references to the
pages on which they are illustrated.

Before beginning, several warnings are In order. First,
this is not by any means a complete grammar of English, The
task of codifying an entlire language in any formalism Is so
large that it would be folly to try In the course of a single
research project. Our goal was to cover a large enough bortlon
of English syntax so that a user could converse comfortably with
the system about its toy-block world., There are whole areas of
syntax which are involved with conveying Informatlon of types

not included In this narrow field {(such as the emotional -
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reaction, mood, and emphasis of the speaker). These are not
handled at all, and even within the toy-block world, there are
numerous sentences and constructions which the grammar I35 not
yet equipped to handle.. It will be of Interest to see whether
the basic structure of the syntactic theory lis flexlble enough
to add the great amnunt of complexity which could be included In
a more complete grammar.

Second, the grammaticai theory Is used in a very Impure
way. The main cons!&eratlon was to produce a working grammar
which could serve in a language-understanding program. The
demands of practicallity often overrode more theoretical
criterla, and the resulting grammar is not very 'pretty'". This
is especlally true since It has evolved In a contlnuous process
of writing and debugging, and has not yet undergone the
"polishing'" which removes the traces of its earlier stages of
development.

Demands of time made it Impossible to coordinate the
writing of the grammar with other current versions of systemic
grammar, so the analysis Is non-standard, often disagreeing with
Halllday's analysis or other more complete versions. Some
differences are simply notational (using different names for thg
same thing), others are intentional simpllfications (Halliday's
analysis is much more complete), and some represent actual
theoretical differences (for example, our analysls of the

transitivity system puts much of the structure Into the semantic
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rather than syntactic rules, while Halllday's Is more purely
syntactic.). We will not describe the differences Iir. detall,
since this is not a proposal for a speciflic versicn of English
grammar, It Is Instead a proposal for a way of looking at
language, and at English, pointing out some of the interesting

features.
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2.3.2 Units, Rank, and Features

We will begln by describing some of the basic concepts of
systemic girammar, before gliving detalls of thelr use In our
analyslis. Some of the description Is a repetltion of materijal
in Section 2.1. In that sectlon we needed to glve enough
explanation of systemic grammar to explain PROGRAMMAP, Here we
give a more thorough explanation of lts detalls.

The first Is the notlon of syntcstic unlts In analyzing the
constituent structure of a sentence (the way It Is built up cut
of smaller parts). If we lcok at other forms of grammar, we see
that syntactic structures are usually represented as a binary
tree, with many levels of branching and few branches at any
node. The tree is not organlized iInto "groupings'" of phrases
which are used for ccnvering different parts of the meaning.
For example, the sentence "Th. three blg red dogs ate a raw
steak." would be parsed with something like the flrst tree In
Flgure 25,

Systemic grammar pays more attentlon to they way language
Is organized Into units, each of which has a special role In
conveying meaning. In English we can distingulish three basic
ranks of units, the CLAUSE, the GROUP, and the WORD. There are
several types of groups: NOUN GROUP (NG), VERB GROUP (V@)
PREPOSITION GROUP (PREPG) and ADJECTIVE GROUP (ADJG). In a
systemic grammar, the same sentence mlight be viewed as having

the second stiructure In Figure 25,
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DET/ %Pl VB/'\NP
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the MHUM NP2 ate DET NP1
| | VAR
three A?d Nf%\\\ a ADJ qu
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I | ya
DET NUM A?J ADJ NOUM VB D?T Afd NCUN
| .
the three big red dogs ate a raw steak
Tree 2

Figure 25 - Parsing Treas
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In this analysis, the WORD Is the basic bullding block.
There are word classes like "adjective" , "noun', "verb", and
each word iIs an integral unit -- It is not chaopped Into
hypothetical bits (like analyzing '"dogs'" as being composed of
"dog" and "-s" or "dog" and '"plural"). Instead we view each
worc as exhibiting features. The word '"dogs" Is the same basic
vocabulary item as '"dog'", but has the feature "plural" Instead
of "singular". The words 'took", "take'", '"taken", "taking",
etc.,, are all the same basic word, but with differing features
such as "past participle" (EN), "infinitive'" (INF), "-ing"
(ING), etc. When discussing features, we wili use several
notational conventions. Any word appearing In all upper-case
letters, is the actual symbol used to represent a feature In our
grammar and semantic programs, A feature name enclosed In
quotes is an English verslon which Is more Informative. Usually
the program version Is an abbreviation of the T~y lish version,
and sometimes we will indicate this by typing the letters of the
abbrevlation in upper-case, and the rest in lower-case. Thus If
"determiner" Is abbreviated as DET, we may write DETerminer. Ve
may even write things like QuaNTiFieR. When we want to be more
careful, we will write "quantifier" (ONTFR).

The next larger unlt than the WORD is the GRCOUP, of which’
there are the four types mentioned above. Each cne has é
particular function In conveying meaning. MNoun groups (NG)

describe objects, verb groups (VG) carry cemplex messages zbout
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the time and modal (logical) status of an eVent or relatlonship,
prepositlon groups (PREPG) describe simple relatifonships, while

adjective groups (ADJG) convey other kinds of relationshlips and

descriptions of objects. These semantic functions are described
in more detail In section 4.2,

Each GROUP can have "slots" for the words of which It is
composed. For example, a NG has slots for '“determiner" (DET),
"numbers" (NUM), "adjectives" {(ADJ), “classliflers" (CLASF), and
& NOUN., Each group can also exhlbit features, just as a vord
can. A NG can be "“singular" (NS) or "plural' (NPL), "definite"
(DEF) as in "the three dogs".of "Indefinite" (INDEF) as in "a
steak", and so forth. A VG can be "negatlive" (NEG) or not, can
be MODAL (as In "could have seen'), and It has a tense. (See
Section 2.3.8 for an analysis of complicated tenses, such as '"He’
would have been going to be fixing It.")

Finally, the top rank 1s the CLAUSE. We speak of clauses
rather than sentences since the sentence is more a unit of
dlsqourse and semantics than a separate syntactic structure. It
is either a single clause or a serles of clauses joined together
'n a simple structure such as "A and B and...". We study these
conjoining structures separately since they occur at all ranks,
and there s no real need to have a separate syntactic unit for
sentence. A

The clause Is the most complex and diverse unit of the

language, and Is used to express compléx relationshlips and
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events, Involving time, place, manner and many other aspects of
meaning. It can he a QUESTION, a DECLARATIVE, or an IMPERATIVE,
it can be "passive' (PASV) or "active'" (ACTV), it can be a YES-
NO question or a WH=- question (like "Why...?" or "Which...?").

Looking at our sample parsing tree, Tree 2 in Flgure 25. we
see that the clauses are made up of groups, which are In turn
made up of words However few sentences have thls simple three-
layer structure. Groups often contain other groups (for
example, "the call of the wild" Is a NG, which contains the
PREPG "of the wild" which in turn contalns the NG "the wild").
Clauses can be parts of other clauses (as In "Joln the Navy to
see the world."), and can be used as parts of groups In many
different ways (for example, in the NG 'the man who gcame to
dinner" or the PREPG-"by leaving the country'.) This phenomenon
is called rankshlft, and is one of the basic principles of
systemic grammar.

If the units can appear anywhere In the tree, what is the
advantage of grouping const!tuents into "unlts" Instead of
having a detailed structure like the one shown In our first
parsing tree? The answer Is In the "features" we were noting
above. Each unit has associated with It a set of features,
which are of primary significance In conveylng meaning. \We
mentioned that a clause could have features such as IMPERATIVE,
DECLARATIVE, QUESTION, ACTV, PASV, YES-NO, and WH=-, These are

not unrelated observatlions we can make about a clause. They are
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related by a definite logical structure, The cholce between
YES-NO and WH- is meaningless unless the clause Is a QUESTION,
but if it Is a QUESTION, the choice must be made. Similarly,
the choice between QUESTION, IMPERATIVE, and DECLARATIVE 1is
mandatory for a MAJCR clause (one which could stand atone as a
sentence), but Is not possible for a 'secondary" (SEC) clause,
such as '"the country which possesses the bomb." The choice
between PASV (as in "the ball was attended by John",) and ACTV
(as in "John attended the Sall.") Is on a totally different
dimension, since it can be made regardless of which of these
other features are present,

We can represent these logical relationships graphically
using a few simple conventions., A set of mutually exclusive
features (such as QUESTION, DECLARATIVE, and IMPERATIVE) 1is
called a system, and s represented by connecting the features

with a vertical bar:

QUESTION

DECLARATIVE

IMPERATIVE

The vertlical order is not Important, since a system s a

set of unordered features among which we will choose one. Each
system Eas an entry condition which must be satisfied In order
for the choice to be meaningful. This entry conditlion can be an
arbitrary boclean condition on the presence of other features,

The simplest case (and most common) Is the presence of a single
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other feature. For example, the system just depicted has the
feature MAJOR as its entry <ondition, slnce only MAJOR clauses
make the cholce between DEC! ARATIVE, IMPERATIVE, and QUESTION.
This simple entry conditlion Is represented by a horlzontal
line, with the condition on the left of the system teing
entered. We can diagram some of our CLAUSE features as:
DECLARATIVE
MAJOR IMPERATIVE
CLAUSE YES~-MNO
SEC QUESTION '
WH-
Often there are Independent systems of choiccs.sharlng w.e

same entry condltion. For example, the cholce between SEC and

MAJOR and the cholce between PASV and ACTV both depend directiy

on the presence of CLAUSE. Thls tynse of relat}onshlp wlll be
Indicateud by a bracket in place of a vertical ba;.
MAJOR=—, ..

‘SEC

CLAUSE
PASVY

ACTV l
1f we want to assign a name to a system (to .talk about It),
we can put the name above the line leadling Into It:

VOICE |PASV

ACTV ‘
We can lTook at these notatlions as representing the loglcal
operations of "or" and "and", and we can use them to represent

more complex entry conditions., {if the cholice between the
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features C and D depends on the presence of elther A or B, we

draw;

A ‘ ID
] IC

and If the entry conditlon for the "C-D" system is the

B

presence of both A and B, we write:

A c
B——— D

Finally, we can allow "unmarked" features, In cases where
the choice Is between the presence or absence of somethlng of
Interest. We mignt have a system llke;

MNEGATIVITY 'NEGATIVE

| -
In which the feature "non-negative" Is not given a name, but Is
assumed unless the feature NEGATIVE Is present,

We will explaln our grammar by presenting the system
networks for all three ranks =-- CLAUSE, GROUP,and WORD, and
glving examples of sentences exhiblting the features, We have
not attempted to show all of the logical relationships In the
networks =-- our networks may Indicate comblnations of features
which are actually not possible, and would need a more complex
network to represent properly. We have chosen clarity over
completeness whenever there was a confllct. In addition, we

have represented "features" of units (l.e. descriptions of thelr
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structure) and "functions" (descriptions of thelr use) In the
same network. In a more theoretical presentation, It would be
preferabie to distlnguish the two. The names chosen for
features were arbitrary mnemonics Invented as they were needed,
and ére nelther as clear nor as systematic as they might be in 2

"cleanad up' version.




Sectlon 2.3.3 - Page 104

2,3.,3 The CLAUSE

" The structure exhibiting the greatest variety In English Is
the CLAUSE. It can express relationships and events involving
time, place, manner, and other modifiers. 1lts structure
Indicates what parts of the sentence the speaker wants to
emphasize, and can express various kinds of focus of attention
and emotion. [t determines the purpose of an utterance --
whether It Is a question, command, or statement =-- and is the
baslc unit which can stand alone, Other units can occur by
themselves when thelr purpose Is understood, as In answer to a
question, but the clause Is the primary unit of discourse,

The CLAUSE has several main ingredients and a number of
optional ones. Except for special types of incomplete clauses,
there [s always a verb group, contalning the verb, which
indicates the baslic event or relationship being expressed by the
CLAUSE, Alimost every CLAUSE contains a subject, except for
IMPERATIVE (In which the semantic subject Is understood to be
the person being addressed), and embedced clauses In which the
subject 1les somewhere else In the syntactic structure. In
addition to the subject, a CLAUSE may have various kinds of
objects, which will be explained In detail later. 1t can take
many types of modifiers (CLAUSES, GROUPS, and WORDS) which
indicate time, place, manner, causallty, and a varlety of cother
aspects of meaning. One part of the CLAUSE system network is

shown in Flgure 26,
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Beginning at the top of the network, we see a choice
between MAJOR (a clause which could stand alone as a sentence)
and "secondary" (SEC). A MAJOR clause Is elther an IMPERATIVE
(a command), a DECLARATIVE, or a QUESTION. Questlions are elther

YES-NO -- answerable by "yes" or "no", as In:

(sl) Dld you like the show?
or WH- (lnvolving a question eiement like "when", "where",
"which", "how", etc.). Thne cholce of the WH- feature leads into
a whole network of further cholces, which are shared by QUESTION
and two kinds of SECondary clauses we will discuss later. In
order to share the network, we have used a simple notational
trick =-- the symbols contain a "+", and when thay are being
applied to a question, we replace the » with "Q", while when
they are appllied to relative clauses, we use "REL". For
example, the feature "PREP*" in the network will be referred to
as PREPQ when we find It In a question, but PREPREL when it is
In a relative clause. This Is due to the way the grammar
evolved, and In later versions we will probably use only one
name for these features. This complex of features Is basically
the cholce of what element of the sentence Is being questioned.
English allows us to use almost any part of a clause as a
request for Iinformation. For example, In a PREPQ, a
prepositional group in the clause Is used, as In:

(s2) With what did you erase 1t?

We more commonly find the preposition In a DANGLING position, as
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in:

(s3) What did you erase !t with?
We can tell by tracing back through Network 1 that sentence s3
has the features PREPQ, DANGLING, WH=-, QUESTION, and MAJOR,

We can use a special question adverb to ask questlons of
time, place, and manner, as In:

(s4) Why did the chlicken cross the road?

(s5) When were you born?

(s6) How will you tell her the news?

(s7) Where has my little dog gone?
These are all marked by the feature ADJQ. In discourse they can
also appear In a short form (SHORT) in which the entire
utterance is a single word, as In:

(s8) Why?
We can use the word "how" In connectlon with a measure adverb
(1ike “fast") to ask an ADVMEASQ, llke:

(s9) How fast can he run the mile?

The most flexible type of WH- question uses an entlre noun
group as the questlion element, using a special pronoun (1lke
"what" or "who") or a determiner (1lke "which", or "how many")
to Indicate that It Is the questlion element. These clauses have
the feature NGC, and they can be further divided according to
the function of the NG In the clause. It can have any of the
possible NG functlons (these willl be described more formally
with regard to the next network). For example, It can be the

subject, glving a SUBJQ, llke:

(s10) Which hand holds ths M and M's?
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1t can be the subject of a THERE clause (see below), glving us a
SUBJTAQ:
(s11) How many Puerto Rlcans are there in Boston?
A complement is the second half of an "is" clause, 1ike:
(s12) Her hair Is red.
and.it can be used to form a COMPQ:
(s13) What color was her hair?
or with a "measure" In a MEASQ:
(s14) How deep !s the ocean?
The noun group can be an object, leading to the feature
0BJQ, as in:

(s15) What do you want? or
(sl16) Who did you give the book?

These are both 0BJ1Q, slnce the first has only one object
("what"), and the second questions the flrst, rather than the
second object ("who", Instead of "the book"). We use the
ordering of the DECLARATIVE form '"You gave me the book". If
this were reversed, we would have an 0BJ2Q, 1lke:

(sl7) What did you glve him?

If we use the word "to" to express the first object with a

two object verb like "give', we can get a TRANSTO02Q, like:

(s18) To whom did you give the book? or
(s19) W4ho did you give the book to?

Sometimes a NG can be used to indicate .the time in a
clause, giving us a TIMEQ:

(.20) What day will the lceman come?
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In a more complex style, we can embed the questlon element

within an embedded clause, such as:

(s21) MWhich gcar did your brother say that
he was expecting us to tell Jane to buy?

The NG "which car" Is the questlion element, but Is in fact
the object of the clause '"Jane to buy...", which Is embedded
several layers deep. This kind of NGQ is called DOWNQ. The
role of the question element in the embedded clause can Include
any of those which we have been describing. Ffor example It
could be the object of a preposition, as In

(s22) What state did you say Lincoln was born in?

Looking at the network for the features of SECondary
clauses, we see three malin types == ADJUNCT, '"Rank-Shifted
Qualifier" (RSQ), and "Rank-Shifted to act as 2 MNoun Group"
(RSNG) . ADJUNCT clauses are used as modifiers to other
clauses, glving time references, causal relatlonships, and other
similar Information. We can use a BOUND clause contalining a
"binder" such as "before', "while", "because", "if", "so",

"unless", etc., as In:

(s23) While Nero fiddled, Rome burned.
(s24) 1f it ralns, stay home.

(s25) Is the sky blue because 1t ls ¢cold?
To express manner and purpose, we use a TO clause or an ING

clause:

(s25) He died to save us from our sins.

(s27) The bridge was built u primitive tools.

The RSQ clause is a constituent of a NG, following the noun
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in the "quallifier" position (see Section 2.3,5 for a descr!p;lon
of the positions in a NG). It Is one of the most common'y used
secondary clauses, and can be of four different types. Tﬁree of
them are classlf}ed by the form of the verb group within the
clause =-- TO, ING, and EN (where we use “en" to represent a past

participle, such as "“broken"):

(s28) the man to see about a job
(s29) the plece holding the door on
(s30) a face weathered by sun and wind

Notfce that the noun being modified can have various roles
Iin the clause. In examples 28 and 29, "plece" is the subject of
"hold", while "man" Is the object of '"see". We could have sald:
C(s31) the maﬁ to do the iob
in which "man" Is the subject of "do"., Our semantic analysls
Sorts out these possibilities In determining the meaning of a
secondary clause,

The fourth type of RSQ clause [s related to WH- questlions,
and Is called a WHRS. It uses a wh- element llike "which" or
"what", or a word like "that" toc relate the clause to the noun
It Is modifying. The different ways 1t can use thls “relating"
element are very similar to the different possibilities for a
question element In a WH- guestlon, and i{n fact the two share
part of the network. Here we use the letters REL to indlcate we
are talking about a relative clause, so the feature PREP* In

Network 1 becomes PREPREL. In sentences (s2) through (s22), we

[l1lustrated the different types of WH- questlions. We can show
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parallel sentences for WHRS RSQ clauses. The followlng llist

shows som2 examples and the relevant feature names:

(s32) the thing with which you erased it PREPREL

(s33) the thing that you erased it with PREPREL DANGLING
(s34) the reason why the chicken grossed the road RELADJ
(s35) the day when you were born RELADJ

(s36) the way we will tell her the news RELADJ

(s37) the place my littie dog has gone RELADJ

(s38) the reason why RELADJ SHORTREL

(s39) the hand which rocks the cradle SUBJREL

(st40) the number of Puerto Rlca23852§éi are In Boston

(st4l) the color her halr was last week  COMPREL

(st2) the depth the ocean wlll be MEASREL

(su3) the Iinformatlon that you want  OBJ1RcZL

(sth) the man you gave the book OBJ1REL

(s45) the book whlich you gave him OBJ2REL

(s46) the man to whom you gave the book  TRANSTO2REL

(st7) the man you gave the book to TRANSTO2REL

{s48) the day the lceman came TIMEREL ,

(s49) the car your brothar sald he was expecting us Lo
tell Jane to buy DOWNREL

(s50) the state you sald Lincoln was born in  DOWNREL

Notlice that In sentences 35, 37, 40, 41, 42, b4, 47, 48,

49, and 50, there Is no relative word like "which" or "that".
These could just as well all have been put In, but English glves
us the optlon of omitting them. When they are absent, the
CLAUSE Is marked with the feature RELDEL.

Returning to our netwoirk, we see that there Is one other
type of baslc clause, the RSNG. This Is a clause which Is rank-
shifted to serve as a NG. |t can function as a part of another
clause, a preposition group, or an adjective group. There are

four baslc types. The flrst two are TO and ING, as In:

(s51) | like to flvy. TO
(s52) Bullding houses ts hard work. ING

(s53) He got it by saving coupons. ING
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Notlce that In s51, the RSNG clause Is the object (0BJ1l), iIn
s52 it Is the subject (SUBJ), and In s53 It Is the object of a
preposition (PREPOBJ). We can have a separate subject within
the TO and ING clauses( glving us the features SUBTO and SUBING:

(s54) | wanted Ruth to lead the revolution. SUBTO
(sS5) They liked John's leadling 1it. SUBING

The SUBING form takes its subject In the possessive.

In addltlion to ING and TO, we have’ the REPORT CLAUSE, which
has the structure of an entlre sentence, -and Is used as a
participant in a relation about things 1lke hearing, knowing,

and sayling:

(s56) She heard gthat the other team had won,

(s57) That she wasn't there surprised us.,

(s58) | knew he gould do it,

The word "that" is used In s56 and s57 to mark the beginning
of the REPORT CLAUSE, so they are assigned the feature THAT.
The absence of "that" Is left unmarked.

If the subject of a clause Is In turn a RSNG clause, we may

have trouble understanding lIt:

(s59) That anvone who knew the combination could have
opened the lock was obvious.

There Is a speclal mechanism for rearranging the sentence by
using the word "it", so that the complicated subject comes last:
(s60) It was obvious that anvone who knew the combination

could have opened the lock,

In this case, we say that the RSNG clause Is serving as an
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ITSUBJ. TO and ING clauses can do the same:

(s6l) It wi!l be fun to see them agaln,
(s62) It wes dangerous golng up without a3 parachute,

The final type of RSNR Is the WHRS, whlch Is almost

Identical to the WHRS RSQ described above., Rather than go

through the detalls again, we will Indicate how a few of our RS(

examples (sentences s32 to s50) can be converted, and will leave

the reader to do the rest.

(s63) | don't know what he did It with, PREPREL DANGLING

(sd4) Ask him when he was born, RELADJ

(s65) He told me why, RELADJ SHORTREL

(s66) 1t is amazing how many Puerto Ricans there are In
Boston, SUBJTREL

(s67) Only her halrdresser knows what ¢olor her halr was,
COMPREL
eCCC

Let us examine one case more carefully:

(s68) | knew which car vour brother sald that he
was expecting us to tell Jane to buy,

Here we have a DOWNREL clause, "which car....buy", serving
as the object of the CLAUSE "1 knew...'. However, this means
that somewhere balow, there must be another clause with a slot
Into which the relative element can fl%t. In th's case, It Is
the RSNG TO clause "Jane to buy", which Is missing Its object,
This clause then has the feature UPREL, which Indlcates that its
missing constltuent'ls somewhere above in the structure. More
specifically It iIs OBJ1UPREL.,

Once this connectlion Is found, the program might change the
~ polnters In the structure to place the relative as the actual

0BJ1l of the embedded clause structure. In the current grammar,
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the polnters are left untouched, and special commands to the
moving functlon « are used when the object ls referenced by the

semantic program.
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2.3.4% Transitivity In tha Clause

In addition to the systems we have already described, there
Is a TRANSITIVITY system for the CLAUSE, whlch descrlibes thé
number and nature of lts baslic constltuents, We mentioned
earller that a CLAUSE had such components as a subject and
varlious objects. The transltlivity system specifles these
exactly. We have adopted a very surface-orlented notlon of
transitivity, In which we note the number and baslc nature of
the objects, but do not deal with thelr semantlc roles, such as
“range" or "beneflclary®. Halllday's analysls <¢Hallliday 1967>
Is somewhat different, as It Includes aspects which we prefer to
handle as part of the semantic analysis. Our simplified network

is:
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Filgure 27 =--NETWORK 2

The first basic dlvision Is Into clauses with the main verb
"te", and those with other verbs., This Is done cince BE clauses
have very different possibilities for conveylng meaningz, and
they dc not have the full range of syntactic cholces open to
other clauses. BE clauses are divided Into two types == THERE
clauses, llke:

(s69) Thare was an old woman who lived In a shoe.
and INTenslive BE clauses:
(s70) War 1s hell,
A THERE CLAUSE has only a subject, marked SUBJT, while an INT
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CLAUSE has a SUBJect and a COMPlement. The COMPlement can be
elfther a NG, as In s70 o

(s71) He was apn agent ¢i the FBIl,

or a PREPG:'

(s72) The king was 1In the counting house,

or an ADJG:

(s73) Her strength was fantastic,
(s74) My daddy Is stronger than vours,

Other clauses are divided according to the number and type
of objects they have. A CLAUSE with no objects Is Intransitive
(ITRNS):

(s75) He Is running.

With one object it is translitive (TRANS):
(s76) He runs a millinz machline,

With two objects TRANS2:

(s77) | gave my love a cherry,

Some verbs are of a specia) type which use a locaflon as a
second object. One exampie is "put", as In:

(s78) Put the block on the table,

Note that this cannot be considered a TRANS with a

modifier, as In:

(s79) He runs a milling machine ipn Chigasgo,
since the verb "put" demands that the locatlion be glven. We
cannot say "Put the block." This type of CLAUSE Is called
TRANSL, and the location object Is the LOBJ. The LOBJ can be a

PREPG as in s78, or a special adverb, such as "“there" or
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"somewhere', as in:

(s80) Where did you put It? cr
(s81) Put It there,

Some intransitive verbs also need a locacional object for
certain meanings, such as:
(s82) The block Is sitting on the gtable,
This is called ITRNSL.
Finally, there are INTenslve clauses which are not BE
clauses, but which have a COMPlement, as in:

(s83) He felt sick, and
(s84) He made me sick,

We have not run Into these with our simple subject matter, and a
further analysis will be needed to handle them properly.

Any of the constituents we have been mentloning can be
modified or deleted when these features Interact with the
features described In Network 1. For example In:

(s85) the block which | told you to put on the table
the underlined CLAUSE Is TRANSL, but Its OBJl Is missing since
It Is an UPREL.

English has a way of making up new words by combining a

verb and a "particle" (PRT), producing a combinatlion llke "pick

UD"

. ""turn on", "set off", or "drop out'. These do not simply
cembine the meanings of the verb and particle, but there Is a
special meaning attached to the palr, which may be very
different from either word In Isolation. Our dictlonary

contalns a table of such pales, and the grammar programs use
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them. A CLAUSE whose verb Is a part of PRT palf has the feature
PRT. The particle can appear either Immediately after the word:

(s86) He threw away the plan.

or In a displaced position (marked by the Ffeature DPRT):

(s87) He threw the plans away,

Regardless of whether there Is a PRT or not, we have the
cholc= between the features passlve (PASV) and active (ACTV).
ACTV placés the semantlic subject flrst:

(s88) The President started the war.

while PASV puts the semantic object flrst:

(s89) The war was started by the Presldent.

If there Is a PREPG beginning with "by", It Is interpreted as
the semantic subject (as In s89), and the CLAU'E has the feature
AGENT.,

If the CLAUSE Is active and Its subejct Is a RSNG CLAUSE,
we can use the IT form described ear'ier, This Is marked by the
feature IT, and its subject Is marked ITSUBJ, as In sentences

60, 61, and 62.
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2.3.5 Noun Groups

The best way to explaln the syntax of the NOUN GROUP Is to
look at the "slot and flller" analysis, which describes the
different components {t can have. Some types of NG, such as
those with pronouns and proper nouns, will not have thls same
constructlion, and they will be explained separately later.

We will dlagram the typcial NG structure, usfing a "+«" to
Indlcate that the same element can occur more than once. Most
of these "slots" are optional, and mav or may rot be filled In
any particular NG, Tne mzanings of the different symbols are

explalined below.

R

DET ORD NUM ADu* CLASF» NQUN Qe

Figure 28 =~ NG Structure

The most Important Ingredient |s the NOUN, which Is almost
always present (If it Isn't, the NG Is INCOMplete). It glves
the basic {nformation about the object or objects belng referred
to by the NG. Immediately preceding the NOUN, there are an

arbitrary number of "classiflers” (CLASF)., Examples of CLASF

are?
(s90) plant life _
(s91) water meter cover adiustment screw

Notice that the same class of words can serve as CLASF and NdUN

-- In fact Halliday uses one word class (called NOUN), and
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distingulishes between the functions of "head" and "classifler".
We have separated the two because our dictlonary gives the
meaning of words according to thelr word class, and nouns often
have a special meaning when used as a CLASF,

Preceding the CLASFs we have adjectlves (ADJ), such as '"big
beautiful soft red..." We can distinguish adjectives from
classifliers by the fact that adjectlves can be used as the
compliement of a BE CLAUSE, but classlifiers cannot, We can say
"red hatr", or "horse halr', or "That halr Is red.", but we
cannot say "That hair Is horse."”, since "horse" Is a CLASF, not
an ADJ. Adjectlives can also take on the COMPARatlve and
SUPerlative forms ('"red, redder, and reddest"), while
classiflers cannot ("horse, horser, and horsest"!1?),

Immediately followling the NOUN we can have varlous
qualifiers (Q), whic: can be a PREPG:

(s92) the man ln the moon
or an ADJG:

(s93) a night darker than doom
or a CLAUSE RSQ:

(s94) the woman who gonducts the orchestra
We have already discussed the many types of RSQ clauses. In
later sectlons we will discuss the PREPG and ADJG types whlch
can occur as qualiflers. ‘
Finally, the flrst few elements In the NG work together to

glve Its loglcal description -- whether !t refers to a slingle
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object, a class of objects, a group of objects, etc. The
determiner (DET) Is the normal start for a NG, and can be a word
such as "a", or "that", or a possessive. It Is followed by an
"ordinal" (ORD). There Is an Infinlte sequence of number
ordinals ("flrst, second, third...") and a few others such as
"last" and "next". These can be recognized since they are the
only words that can appear between a DET 1lke "the" and a
number, as [(n: |
(s95) the pnext three day#

Finally there Is a NUMber. It can elther be a simple
integer 11ke "one", "two'", etc. or a nore complex construction
such as "at least three", or "more than a thousand". It Is

possible for a NG to have all of Its slots fllled, as In:

DET ORD NUM ADJ ADJ CLASF CLASF NOUN
the first three old red clty fire hydraats

Q(PREPG) Q(CLAUSE)
wlthout covers you can flind

It I Is also possible to have combinatlions of almost any
subset. With these baslic components In mlnd,.let us look at the

system network for NG in Flgure 29,
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Figure 29 =-=NETWORK 3

First we can look at the major types of NG. A NG made up

of a pronoun is called a PRONG. It can be elther a QUESTIon,

like "who" or "what", or a non-question (the unmarked case) 1lke

mu, "them", "it", etc. The feature TPRONG marks a MG whose

head 1s a speclal TPRON, like "something", "everything",

"anything", etc. These entes Into a pecullar construction
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contalning only the head and quallflers, and tn which an
adjective can follow the head, as in:
(s95) anything green which Is bigger than the moon

The feature PROPNG marks an NG made up of proper nouns,
such as "John", "Oklahoma', or "The Union Of Soviet Sociallist
Republics."

These three speclal classes of NG do not have the structure
described above. The PRONG Is a single PRONoun, the PROPNG Is a
string of PROPNs, and the TPRONG has Its own speclial syntax.

The rest of the NGs are the unmarked (normal) type. They could
be classified accordfng to exactly which constltuents are
present, but in doling so we must be aware of our baslc goals In
systemic grammar. We could note whether or not a NG contalned a
CLASF or not, but thls would be of minor significance. - On the
other hand, we do note, for example, whether it has a DET, and
what type of DET It has, since this Is of key Importance In the
meaning of the NG and the way It relates to other units, We
distinguish betwen those with a determinas (marked DET) and
those without one (NDET), as In:

(s97) (Cats adore flish, NDET
(s98) The gat adored g flish, DET

The DET can be DEFinlte (11ke "the" or "that™), INDEFInlte
(1lke "a" or "an"), or a quantifier (QNTFR) (1}ke '"some",
"every', or "no"). The DEFinlte determiners can be elther
DEMunstrative ("thls", "that", etc.) or the word "the'" (the

unmarked case), or a P0SSessive NG. The NG "the farmef‘s son"
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has the NG '"the farmer' as lts determiner, and has the feature
POSES to Indicate this.

An INDEF NG can have a number as a determiner, such as:

(s99) flve gold rings
(s100) at least a dozen eggs

In which case It has the feature NUMDET, or It can use an INDEF
determiner, such as "a", 1In elther case It has the choice of
pelng a QUESTIon. The guestion form of a NUMDET Is "how many",
while for cther cases It is "which" or "what".

Finally, an NG can be determlined by a quantifier (QNTFR).
Although quantifiers could be subclassifled aiong various 1lines,
we do so In the semantlcs rather than the syntax. The only
classifications used syntactlcally are between singular and
plural (sce below), and between NEGatlve and non-negatlive.

If a NG Is etther NUMD or QNTFR, It can be of a speclial
type marked OF, 1lke:

(s101) three of the offices
(s102) all of your dreams

An OF NG has a DETerminer, followed by "of", followed by a
DEFinite NG.
A determlined NG can also choose to be INCOMplete, leaving
out the NOUN, as an

(s103) Give me three,
{s104) | want pnone,

Notice that there Is a correspondence between the cases which
can take the feature OF, and those which can be INCOM, We

cannot say elther "the of them" or "Give me the.". Possessives
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are an exceptlon (we can say 'Glve me Juan's." but not "Juan's
of them'"), and are handled separately (see below).

The middle part of Network 3 describes the different
possible functions a NG can serve. In describing the CLAUSE, we
described the use of an NG as a SUBJ, COMP, and OBJects of
various types. In addition, It can serve as the object of 2
PREPG (PREPOBJ), In:

(<105) the rape of the logk
1f 1t Is fhe object of "of" In one of our speclal OF NGs, It Is
called an OF0BJ:

(s106) nonre of yqour tricks
A NG can also be used to Indicate TIME, as In:

(s107) Yesterday the world ended.
(s108) The day she left, all work stopped.

Finally, a NG can be the POSSessive determiner for another
NG. In: |
(s109) the cook's kettles
the NG "the cook" has the feature POSS, Indicating that It is
the determiner for the NG "the cook's kettle”, which has the
feature POSES,
When a PRONG Is used as' a POSS, It must use a speclal
possessive pronoun, like "my", "your", etc. We can use a POSS
In an incompleste NG, llke |

(s110) Show me yours,
(s111)  John's Is covered with mud.

There Is a special class of pronouns used In these NG's
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(labelled BEFPOSS), such as "“ycurs", "mine”, etc.

Contlnuing to the las: parct of Network 3, we see fe.tures
of vercon and number. These arce usea to match the noun to the
verb (if the NG Is the subject) and the determiner, to avold
ungrammatical combinations like "these karnga-oo" or "the women
wins', In the case of a PRONG, there are speclal pronouns for
first, second, and thlird rerson, singular and plural, The
feature NFS cccurs only with the first-person slngular pronouns
(", Ume", "my", "mine"), and no distinction Is made between
other persons, since they have no effect on the parsing. Al}
singular pronouns or other singula:- NGs are marked with the
feature NS. The pronoun "you" Is always treated as If It were
plural and no distinction Is made between "we", "you", "they",
or any plural (NPL) NG as far as the grammar Is concerned. Of

course there Is a semantic dlfference, which will be consldered

In later chapters.
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2,3,6 Preposition Groups

The PREPG is a comparatively simple structure used to
express a rela 'onship. It consists of a PREPosition followed
by an object (PREPOBJ), which is either a NG or a RSMG CLAUSE.
In some cases, the preposition consists of a two or three word
combination Instead of a single word, as "n:

(s112) next to the table
(s113) on top of the house

The grammar includes provision for this, and the dictionary
lists the possible combinations and thelr meanings. The words

in such a combir2tion are marked as PREP2., "The network for the

PREPG ,s In Figure 30.

COMP

r’ LOBJ

ADJUNCT
AGENT

QUEST
RELPREPG
PREPG~=-  \_ |UPREL

UPQUEST
___|°
OF

Filgure 30 -- NETWORK &4

The PREPG can serve as a constituent of a2 CLAUSE In several

ways. |t can be a COMPlement:

(s114) 1is It in the kitchen?
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a locatlonal object (LOBJ):
(s115) Put It on the table,
an ADJUNCT:
(s116) He got it by selling his soul,
or an AGENT:
(s117) It was bought by the devil,
If the PREPG Is a constituent of a QUESTION CLAUST, it can be
the question element by having a QUEST NG as lts object:
(s118) 1In what clty

(s118) for how mary days
(s120) by whom

in which case the PREPG Is also marked QUEST. A PREPPEL CLAUSE
contglns a RELPREPG:

(s121) the place ln which she works

}f the CLAUSE Is an _PQUEST or an UPREL, tha PREPG can be

the constituent which Is "missing'" the plece which provides the
upward reference. In this case It Is alsc marked UPREL:

(s122) the lady | saw you wlth
or UPQUEST:

(s123) Who dld you knit it for?
In these cases, It Is also marked SHORT to Indicate thct the
object 1s not expllicitly in the PREPG. It can »lso oe short If
it Is @ PREPG In a DANGLING PREPQ or PREPREL CLaUSE:

(s124) what do you keep 1t In?

Within a NG, a PREPG serves as a qualifier (Q):
(s125) the man in the lron mask

et aniith. Sl et

shn it~




or as the body of an OF MG:

(s126) some of ths peonle
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2.3.7 Adiectlive Groups
The ADJG is a speclallzed unit serving as a COMPlement of
an intensive clause, as a Qualifier to an NG, or as a CLAUSE

ADJUNCT. The network Is:

!Q ITHAN
ADJG lc0MP AS

ACUUNCT ey COMPAR

QUEST

Flgure 31 =-- MNETWORK §

An ADJG which -orves as an ADJUNCT contains an adverb, like
"fast" In:
(s127) He could run faster than an arrow.
in place of an adjective. (Clearly our terminology could do
with some cleaning up at places like thls In dolng a theoretical
version of the grammar.) The other two types of ADJG use an
adjective, as In a Qualifier:
(s128) a hotel as bad as the other one
or a COMPlement:
(s129) They were bllssful,
The baslic forms for an ADJG include THAN:
(s130) holier than thou
AS:




¥
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(s131) as quick as a flash
COMPARative:

(s132) This one Is bigger,
or QUESTlon:

(s133) Hgw well can he take dictation?

The network is arranged to show that a qualifier ADJG can
be only of the first two forms -- we cannot say '"a man bigger"
without using "than", or say "a man big". In the speclal case
of a TPRON such as "anythirz'" as In:

(s134) anything strange
the word "strange'" 1s conslidered an ADJ which is a direct
constituent of the NG, rather than an ADJG.

The grammar does not yet account for more complex uses of

the word "than".
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2.3.8 Verb Groups

The Engllish verb group Is designed to convey a complex
combination of tenses so that an event can relate several time
references, For example, we might have:

(s135) By next week vou will have heen llving
here for a morth.

This Is sald to have the tense "present in past In future". Its
basic reference Is to the future -- Y“next week'", but it refers
back to the past from that time, and also indicates that the
event Is still going on. This type of recursive tense structure
has been analyzed by Hélliday <Halliday 1966b> and our grammar
adopts a variant of his schemae,

Essentlially the choice is between four tenses, PAST,
PRESENT, FUTURE, and MODAL. Once a cholce between these has
been made, a second, third, fourth, and even fifth cholce can bz
made recursively. The combination of tenses Is realized in the
syntax by a sequence of the auxilllary verbs "be", '"have", and
"going to", along with the ING, EN, and INFinitive forms of the
verbs. The restrictions on the recursion are:

1. PRESENT can occur only at the outer ends of the serles

(at first and/or final choice).

2. Except In the final two positions, the sazme tense
cannot be selected twice consecutively,

3. Future can occur only once other than in last
positlion.

L, Modal can be only in final position.

e
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It Is Important to distinguish between the position of a
word In the VG and the positicn of‘lts tesnse In the recursive
tense feature =-- the direction Is reversed. In s135, "will" is
the first word, and "'living" the last, while the tense ls
PRESENT in PAST in FUTURE. Some sample verb groups and thelr
tenses are: (from <Halllday 13966b>)

ACTIVE

took = past
takes = present
will take = future
can take - modal
has taken - past In present
was taking - present In past _
was going to have taken - past Iin future In past
was going to have been taking =~ present In past In future In past

PASSIVE
Is taken - present

could have been taken = past In modal
has been golng to have been taken =~

past In future In past In present

Flgure 32 -=- Vert Group Tenses

The structure of a finite VG (one taking part In this tense
system ~- see below for other types) Is a sequence of verbs and
auxilllaries In which the last Is the "main verb” (marked MVB
and remembered by the parser), and the flrst is elther a MODAL,
the word "will", or a "finlte" verb (one carryling tense and
number agreement with the subject). Interspersed In the
sequence theie may be adverbs, or the word "not" (or Its reduced

form “"n't"), The best way to describe the relationship between
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. the sequence of verbs and the tense is by glving a flow chart
for parsing a VG. Thls Is a good example of the usefulness of
representing syntax In the form of prucedures, as It describes a
relatively complex system In = clear and succinct way.

In thé flow chart (Figure 33) the variable T represents the
tense, and the symbol "." Indicates the aZdition o a member to
the front of a 1ist. The "=" Indlcates replacement In the
FORTRAN sense, and the function "REMCVEY" removes words from the
input string. The features used are those described for verbs
in sectlion 2.3.9. The command (FQ PASV) indlcates that the
entire VG Is to be marxed with the feature PASV (passive volce).
The flow chart does not Indicate the entire parsing, but only

that part relevant to determining the tense.
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ENTER

Next word lext word Next word Next word
PAST? PRES? “';> WiLL? ;9 HMODAL?

¥ i §

=\ﬂiPAST) /(PRES) T = (FUTURE T\UI(MODAL)
Next word DO and ‘u’ /

2nd word INF? Remoye, 1 word
Wy

r———————————

%V ' HF
Next word HAVE ====3 T = PAST . T===pRemove 1 word

and 2nd word EN?

Next word BE?==3»2nd Word GOING ===3»T = FUTURE . T
| and 3rd TO
and bth INF?

Remove 3 viords+

Next word ING?====>T = PRES . T

Next word EN? ========3»FQ PASV
N — XIT

Flgure 33 -- Syntax of VG Tense Structure
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This system of tenses Is operative only for FINITE verb

groups, The network for the VG in general lIs:

FINITE
IMPER

TODEL
T0
ING
VG s BE
— IPASV
ACTV
NEG

\_  |---

Figure 34 -=NETWORK 6

There are several types of VG which do not enter the normal
tense system, but which have a specialized form. The IMPER VG
Is used in imperatives:

-

(s136) Flre when ready.
(s137) Don't drop the baby.

It consists of a verb In the INFinitive form, possibly preceded
by the auxilllary "do" or Its negative form "don't'"., The EN VG
Is used In EN RSQ CLAUSES, 1lke:

(s138) a man forsaken by his friends
and conslists of a past partlcple verb. The ING VG Is made up of

an ING verb or the verb "being" followed by an EN verb., It Is
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used in varlious types of ING clauses:

(s139) Belng merried is great.
(s140) the girl sitting near the wall

Similarly, the TO VG Is used in TO clauses. In the case of
conjoined structures, the "to" may be omitted from the second
clause, as Int

(s141) We wanted to stop the war and end repression.
Such a VG s marked TODEL.

We separate those verb groups whose main verb is "be" from
the others, as they do not undergo the further choice between
PASY and ACTV, These correspond to the same features for
ciauses, and are seen In the structure by the fact that a PASV
VG contains a form of the auxilllary "be" followed by the maln
verb In the EN form, aé int ‘

(s142) The paper was flnished by the deadline.
(sl43) He wanted to be klssed by the bride,

Finally, any VG can be NEGatlve, elther by using a negative
form of an auxilliary 1tke "don't"', "hasn't", or "won't', or by

including the word “not".
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2.3.9 MWords

Our grammar uses a number of separate word classes, each of
which can be divlided Into subciasses by the features asslgned to
individual words. 1t was necessary to make arblitrary declislons
as to whether a distinctlon between groups of words should be
represented by different classes or different features within

“the same class. Actually we could have a much more tree=-1like

structure of word classes, in which the ldeas of classes and

features were combined. Since this has not yet been done, we
will present a 1ist of the different classes In alphabetical
order, and Tor each of them glve descriptions of the relevant
features. Many words can be used In more than one class, and
some classes overlap to a large degree (such as MOUN and CLASF).

In our dictlionary, we simply list all of the syntactic features

the word has for all of the classes to which It can belong.

When the parser parses a word as a member.of a certain class, It

sorts out those features which are applicable. Flgure 35 Is a

1ist of the word classes and their features.

ADJ -- Adjective Is one of the constltuents of a NG as well as
being the main part of an ADJG. This class Includes words
like "big", "ready", and "strange'". The only features are
SUPerlative (as In "blggest”) and COMPARative (as in
"bigger").

ADV -- We use the name "adverb" to refer to a whole group of

words used to modlfy other words or clauses. It Is sort of a
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'CLASS FEATURES
ADV ADV ADVADV LOBJ PLACE PREPADV TIMW TiM2 VBAD
B!NDER BINDER

CLASF CLASF

[ET DEF DEM DET INCOM INDEF MEG NONUM NPL NS OFD PART
QDET QNTFR

ADJ ADJ COMPAR SUP

NOUN MASS NOUN NPL NS POSS TIME TIMI

NUM NPL NS NUM

NUMD NUMD NUMDALONE NUMDAN NUMDAT

ORD  ORD TIMORD

PREP PLACE PREP NEED2

PREP2 PREP2

PRON DEFPOSS NEG NFS NPL NS OBJ POSS PRON REL SUBJ

PRONREL NPL NS PRONREL

PROPN NPL NS POSS PROPN

PRf *RT

QADJ PLACE QADJ

TPRON NEG NPL NS TPRON

VB AUX BE DO EN HAVE IMPERF INF ING INGOB INGOB2 INT

ITRNS ITRNSL MODAL MVB NEG PAST PRES QUAX REPOB REPQB2
SUBTOB SUBTOB2 TOOB TCQOB2 TO2 TRANS TRANSL TRANSL2 TRANS2
VB VFS VPL VPRT V3PS WILL

Figure 35 == Word Clusses and Applicable Features
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"mixed bag" of words which don't really fit anywhere else.
The basic classification depends on wha: Is being modified,
and has the terms (ADVADV VBAD PREPADV CLAUSEADV). An ADVADV
Is a word like "very" which modifles other adverbs and
adjectives, A VBAD modifies verbs, and Includes the class
of words ending In "-1y" like "quickly" and "easily". A
PREPADV modifies prepositions, as "directly" in "directly
above the stove'", A CLAUSEADV Is a constituent of a clause,
and can be elther TIMW or PLACE. A T!MW 1lke "usually",
"never", "then", or "often' appears as a CLAUSE constituent
specifying the time. - The PLACE ADV "there" can elther be an
adjunct, as in:

(slth) There | saw a miracle,
or an LOBJ, as In:

(sl47) Put It there,

BINDER =~ Binders are used to "bind" a secondary clause tc a

major clause, as in:

(slu6) Before vyou got there, we left.
(s147) 1'11 go If you do.

~ We do not assign any other features to binders.

CLASF -~ In Section 2.3.5 we discussed the use of CLASF as a

constituent of a NG, The CLASF is often another NOUN, but It

appears In a position like ar adjective, as in "boy scout".

DET =-- DETerminers are used as a constituent of a NG, as

described in 2.3.5. They can have a number of dlfferent

features, as described in the network:
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' QDFT
!NDEF——-{ -
DEM
_DEF—-—!
(‘ -

s

— /~ |GFD~INCOM
|NEG
DET v QNTFR l
NONUM
NPL L:__.

k———‘ NS

MASS

Figure 36 -- NETWORK 7

A DET can be -INDEFinite, like "a" or "an" or the
question determiners (QDET) "which", "what", and "how many".
It can be DEFinita, like “the" or the DEMenstrative
determiners "“this", "that", "those", and '‘these". Or It can
be a quantifier (QNTFR) 1lke "anyﬁ, "avery”, "some", etc.
Quantlffers can have the feature OFD, Indlcatling that they
can be used in an OF NG like: |

(s148) soma of my best friends
We origlnally had a separate feature named INCOM indicating
whether they could be used In an Incomplete NG like:

{sl49) Buy some,
but later analysis showed these features were :he same. Not
all quantiflers are OFD =- we cannot say "every of the cats"

or "Buy every." Quantiflers can aiso be NEGatlive, like "none"
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or "no", or can be NONUM, indicating that they cannot be used
with a number, such as “many" or "“none" (we can say "ary three
cats" or "no three cats", but not "none three" or ''many three").
The NG program takes these features Into accoun in declding
what NG constltuents to look for. It also has to find agreement
in number between the DET and the NOUN. A DET can have the
features "singular" (NS}, "plural™ (NFL) or MASS (like "some" or
"no", which can go wlth MASS nouns like "water"). A DET can
have more than one of these =- "the" has all three, while "ali"
Is MASS and NPL, and "a" Is just NS,
NOUN == The malin constituent of a NC Is fts NOUN., 1t has a
feature of number, lidentlical to that of the DETerminers It must
match. The word "parsnip" Is NS, “parsnips" Is NPL, and
"wheat" !s MASS. Some nouns may have more than one of these,
such as "fish", which is all three since It can be used In “&.
fish", "three fish", or "Fish Is my favorite food." In
addition, a NOUN can be POSSesslive, llke "parsnip's".

in order to tell whether a NG Is functioning as a time
element In a CLAUSE, we need to know whether Its NOUN can refer
to time. We therefore have two features -- TIME words like
ﬁday", and "month", as In:

(s150) The next day It started to snow.

and TIM1 words like "yesterday” and "tomorrow". 7This

{llustrates the interactlon between syntax and semantics. A
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phrase 1lke "tha next visit” can be used to Indlcate a time,
since a "visit" is an event. The actual distinction should
be the semantlic difference between "event" and "non-event"”

The grammar could be easily changed to look at the
semantic features rather than syntactic features of the NOUN
in deciding whether it could be the head of a TIME NG.

NUM ~- The class of NUMbers Is large {uncountably Infinite) but
not very interesting syntactlcally., For our purposes we only
note the features NS (for "one'") and NPL (for all the rest).
In fact, our system does not accept numbers In numeric form,
and h.s only been taught to count to ten,

NUMD == In complex number sbeclficatlons, 1lke "at least three"
or "more than a million", there ls @ NUMD. The features they
can have are (NUMDAN NUMDAS NUMDAT MUMDALONE). NUMDAN words
such as "more" and "fewer" are used with "than'”, while MUMDAS

“words such as "few" flt Into the frame “as...as", and NUMDATs
are preceded by "at", as In "at least", and "at most".
NUMDALONME indicates that the NUMD can stand alone with the
number, and includes "exactly" and "“approximately",

ORD -- The class of ORDInals includes the ordinal numbers
"first", Ysecond", etc., and a few other words which can fit
into the position between a determiner and a number, 1like
"next", "last", and "only". Notice that SUPerlative
ADJectives can also fill this slot in the NG.

PREP ==~ Every PREPG begins wlith a PREPosition, elther alcne, or
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as part of a combination such as 'on top of". In the
combination case, the words following the Initlal PREP have
the feature PREP2. A PREP which cannot appear without a
PREP2 (such as "next" which appears In "next to") are marked
NEED2.

PRON == PRONouns can be classified along a number of dimensions,
and we can think of a large multi~dimensiona! table with most
of Its positions filled. They have rumber features (NS NPL
NFS) (note that Instead of the more usual dlvision Into
first, second, and third person, singular and plural, we have
used a reduced one in which classes wlth the same syntactic
behavior are lumped together). They can be P0SSesslve, such
as "your" or "my", or POSSDEF, like "yours" or "mine'". Some
of the personal pronouns discinguish between a SUBJect form
1ike "I" and an OBJect form like 'me". there are also
special classes llike DEMonstrative ("this" and "that") and
PRONREL ~- the pronouns used In relatlive clauses, such as
"who'", "which", and "that'". Those which can be used as a
questlon element, such as "which" and "who" are marked QUEST.

PROPN =- Proper nouns include single words 1lke "Carol", or
phrases such as "The American Legion" which could be parsed,
but are interpreted as representing a particular object
(physical or abstract). A PROPN can be NPL or NS, and Is
assumed to be NS unless deflnéd otherwise;

PRT =-- In Section 2.3.4, we discussed clauses which use a
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combination of a "particle" and a verb, like "plick up" or

"knock out'". The second word of these Is a PRT.

QADJ -~ One class of QUESTION CLAUSE uses a QADJ such as

"where'", "when", or "how" as Its question element. They can
also be used In various kinds of relative clauses, as

explained In Section 2.3.3.

TPRON =-- There is a small class of words made up of a quantifler

v

and the suffix "=-thing" which enter Into a special type of NG
construction like "anything green". This Is not an
abbreviation for a quantifier followed by a noun, since the
NG "any block green" would have the same structure but Is not
grammatical.
~= The verb has tne most complex network of features of any
word in our grammar. They describe Its tense, transitivity,
number, and use, as well as marking special verbs like 'be",
The network is In Flgure 37.

~Verbs are divided Into AUXilllarles and others
(unmarked) . AUX1lllaries are the "helping verbs" which
combine with others In complex VG structures. They can have

speclal NEGatlve forms, llke "can't", or can appear standing

alone at the beginning of a QUESTION, In which case they have.

the functlon QAUX, as In:
(s151) Wil | ever finish?
The auxllllarles Include "be', "do", "have', "wlll", and the

MODALs 1ike "could" "can'", and "must". Separate features are

o o bt § oo -

—
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ot HAVE
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MODAL
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Flgure 37 =-- NETWORK 8
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used for these as they are critical in determining the
structure of a VG. An AUX can choose from the system of
person and number, distinguishing "third-person singular"
(V3PS) as in "is", "plural", as in "have", or "flrst

llamll .

singular" (VFS), used only fcr

Non-auxilliary verbs can be VPRT, which combine with a
PRT, and they have a whole cluster of transitlivity features.
In Sectlion 2.3.4 we described the different transitivity
features of the CLAUSE, and these are controlled by the verb,
We therefore have the features (TRANS ITRNS TRANS2 TRANSL
ITRNSL INT) In addition, the verb can control what types of
RSNG CLAUSE can serve as Its various objects. The feature
names combine the type of CLAUSE (ING TO REPORT SUBTO SURING)
with elther -0OB or -0B2, to get a product set of features
like SUBTOB and INGOB2.

For example, the verb '"want" has the features TOOB and
SUBTOB, but not INGOB, REPOB, etc. since "I want to go." and
| want you to go." are grammatical, but "! want going.", "I
want that you go.", etc. are not.

Finally, all of these kinds of verbs can be In various
forms such as ING ("breaking"), EN ("broken™), INFlnltive
("break), PAST ('broke'"), and PRESent ("breaks"). The
netwofk does rot lllustrate all of the relatlons, as some

types (like MODAL) do not make ali of these cholces.
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2,3,10 Coniunction

One of the most complex parts of English Is the system of
conjunctinon, This section presents a simplified version which
has been Iimplemented using the speclial interrupt feature of
PROGRAMMAR (see Section 2.4,2 for detalls). This makes the .
parsing particularly simple.

The baslic concept Is that apy unlt in a sentence can 2e

replaced by a COMPQUND unit of the same type. In the sentence:

(s152) | baked a chocolate cake, three ples, and scme
hashish brownies,

the object is a COMPOUND NG with three components. There can be

a compound ADJ, as In:

(s153) a red or yellow flag

or a phrase can be ambiguous, as In:

(s154) black cats and horses

This can be Interpreted as having elther a COMPOUND NG,
composed of the NGs "black cats" and "horses", or a single MG
with a COMPOUNC NOUN, "cats and horses".

The features of a COMPOUND unit are determined by Its
components and by the type of conjunction. The conjuncti-n

features are from the following network:
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AND
e OR

NOR
BUTNOT

COMPOQUND »=—emy BOTH

LIST

1 LISTA
-

FIGURE 38 -~ NETWORK 9

The first cholce Is the actual conjunction used. The
feature BOTH Indlcates a word at the beginning of a COMPOUND
structure, as in:

(s155) both you and your family
the specific word depends on the conjunctlion == "both" with
Yand", "either" with "or, and "nelther" with "nor". The
features BOTH and NOR combine In:

(5155) nelther you nor |

A conjolined structure can be made up of two elements with a
conjunction (as'ln the previous three examples), or a LIST
‘connected with commas and a conjunction before the last element

{as In s152), or It can be a list connected with conjunctions (a
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LISTA), as In:

(s157) cabbages and kings and sealing wax and things

Every constituent but the first Is marked with the feature
COMPOMENT. The COMPOUND unit also takes on features from lts
constituents. It may have features such as number and tense,
relevant to its syntactic function. For example, a COMPOUND NG
with the feature AND must be plural (NPL), while one with the
feature OR will have the number feature of lts Initial
constituent,
Finally, there can be "forked" structures 1ike:

(s158) We dropped the watermelon and ran,
Notice that thls cannot be vlewed in the same way, slince
"dropped the watermelon" [s not a single constltuent of any
unit. This sentence Is viewed as a conjunctlion of two clauses,
sharing the subject "we'". The second clause Is marked with the
feature SUBJFORK to Indicate this., Slimilariy, the subject and
verb can be shared, as in:

(51539) He gave Gres the apple and Glorla the pear.
The clause "Glorla the pear" Is marked as VBFORK and SUBJFORK.
The only constlituents relative to a fork are those necessary for
the clauée structure. in:

(s160) They easlly saw the trouble and cheerfully fixed It.
the parser does not determine whether the “easily" applies to
both constituents. but leaves this declslon to semantlics. This

Is In keeping with our orlentatlion of syntax to surface
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structure and the belicf that much of "deep structure'! is more

the province of the semantic analyzer.
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2.3,11 Followlng the Parser ip Operation

Let us follow the parser through two examples to see how
the grammar Is used In practice. We will not actually watch all
of the details, or deal with the way semantic programs are
Intermixed with the grammar. Instead we wlill follow a somewhat
reduced version, to get a feeling for the way the grammar works,
and the way It Interacts with the different features described
above, We have chosen one very simple sentence, and another
which Is difficult enough to exercise some ¢f the more complex
features of the grammar. The first sentence s the first
sentence of our sample dlaloy (Section 1.3):

Pick up a blg red block.

The system beglns tryling to parse a sentence, which, as
explained above, means looking for a MAJOR CLAUSE. It activates
the grammar by calling (PARSE CLAUSE MAJOR). Since CLAUSE Is
one of our units, there Is a program deflned for 1t. The CLAUSE
program is called with an Initlal feature list of (CLAUSE
MAJOR) .

The CLAUSE program looks at the first word, In order to
decide what un!t the CLAUSE begins with, If [t sees an adverb,
it assumes the sentence begins wlith a single-word modifier, |If
It sees a PREPoslitlian, It looks for an Initlal PREPG. If It
sees a BINDER, it calls the CLAUSE program to look for a BOUND
CLAUSE. In English (and possibly all larnguages) the first word

of a construction often glves a very good clue as to what that
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construction will be. We have "advaace notice" of what
structures to look for, and this makes parsing much easler. Our
grammar trles to make as much use as possible of these natural
"signals". In thls case, the Initial word Is a verb, and this
indlcates that we may have an IMPERATIVE CLAUSE. The program
calls (PARSE VG IMPER) to startbthe VG program with the Initial
VG feature .list (VG IMPER), looking for a VG of the right type.
The VG program checks this initial feature 1lst, and sees that
It Is looking for an IMPERatlve VG, This must elther begin wlth
some form of the verb "4o", or with the main verb. Itself. Since
the next word is not "do", It calls (PARSE VB INF (MVB)). This
HE é different kind of call to PARSE, since VB Is not a unlt we
have deflned, It is a word class, ;nd the call says to check
the next word in the Input ('n this case szill the flirst word)
to see whether It Is Indeed the INFinlitive form of a VerB, |(f
so, It 1s to be attached to the parsing tree, and glven tae

additional feature MVB (maln verb). The current structure can

be dicgrammed:

(CLAUSE MAJOR) (pick...)
(VG IMPER)» (plck...)
(VB MVB [NF TRANS VPRT) plck

Flgure 39 -=- Syntactic Structure 1

We use several conventlons for dlagramming syntactlc
structures. Rather than using a tree format (whlich quickly
grows off of the page), we use a format more like a traditliona!l

outline, with the sub-phrases of any phrase indicated

e o bt P e
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Immediately below it and Indented. We use the symbol "+" to
Indicate the program which s currertly active, and show the
actual words of each piece of the sentence to the right of the
outline, putting units larger than WORD In parentheses. A
serlies of dots In the English words to the right of a unit
Indicates that the program for that unit has not yet finlshed,

Figure 59 shows that we have 2 CLAUSE, with a constituent
which Is a VG, and that the VG program Is active. The VG so far
consists of only a VB, Notlice that some new properties have
appeared on the list for VB. We have not mentioned TRANS or
VPRT. These came from the definlition of the word “plck" when we
called the functlon PARSE for a word (see section 2.4.4 for
detallsj).

Ordinarii, the VG program checks for various kinds of tense
and number, but i{n the special case of an IMPER VB, It returns
immedliately after flnding the verb. We will see other cases In
the next example.

When the VG program succeeds, CLAUSE takes over agaln.
Since It has found the right kind of VG for an IMPERatlive’
CLAUSE, it puts the feature IMPER on the CLAUSE feature list,

It then checks to see whether the MVB has the feature VPRT,

Indicating It Is a specia! kind of verb which takes a particle.
‘1t discovers that "pick" Is such a verb, and next checks to see
I1f the next word Is a PRT, which It is. 1t then checks In the

dictionary to see If the combination "pick up" is deflined, and
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when [t discovers this Is true, It calls (PARSE PRT) to add "up'
to the parsling tree. Notice that we might have let the VG
program do the work of looking for a PRT, but it would have run
Into difficulties with sentences 1ilke "Plck the red block up."
in which the PRT is displaced. By letting the CLAUSE program do
the looking, the problem Is simplified. .

As soon as it has parsed the PRT, the CLAUSE program marks
the feature PRT on its own feature list., |t then looks at the
dictionary entry for "plck up" to see what transitivity features
are there., It Is TRANSitive, which Indlcates that we should
look for one object =-- 0BJ1l., The dictionary entry does not
indicate that this s a verb which can take special types of
RSNG clauses as objects, so the object must be either a NG or a
WHRS clause (which can appear wherever-a NG can). If the object
were a WHRS clause, It would begin with a relative pronoun, 1like
"Pick up what | told you to." Since the next word Is "a", thls
is not the case, so the CLAUSE program looks for an object by
calling (PARSE NG OBJ 0BJ1), asking the NG program to find a NG

which can serve as an 0BJl. The structure is ncw:

(CLAUSE MAJOR IMPER PRT) (pick up...)
(VG IMPER ) : (ptck)
(VB MVB INF TRANS PRT) pick
(PRT) : up
{NG 0OBJ 0BJl)~» ‘ (...)

Figure 40 -- Syntactlic Structure 2

The NG program |s started and notices that the upcoming
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word is a DET, "a". It calls (PARSE DET) to add It to the
parsing tree, then uses the functlion TRNSF to transfer relevant
features from the DET to the entire NG. It Is Interested in the
type of determination (DEF vs., INDEF vs, QNTFR), and the number
(NS vs. NPL). It also adds the feature DET to the NG to
Indicate that it has a determiner. The feature list for the NG
Is now:

(NG 0BJ 0BJ1 DET INDEF NS)
since "a" Is a singular indefinite determiner. The NG program
then notices the feature INDEF, and decides not to look for a
number or an ordinal (we can't say "a next three blocks"), or
for the OF constructlon ("a of them" is Impossible). It goes on
immediately to look for an ADJectlive by calling (PARSE ADJ).
When this succeeds wit~ the next word "big", a simple program
loop returns to the (PARSE ADJ) statement, whlch succeeds agaln
with "red". on the next trip it falls, and sends the program on
to lcok for a classifier, since "block" isn't an ADJ. But
"block" Isn't a CLASF elther in our dictlonary, so the NG
program goes on to look for a NOUN, by calllng (PARSE NOUN).
This succeeds with the NOUN "block", which Is singular, and the
program checks to see If [t agrees with the number features
already present from the determiner (to elimlnate [1legal
combinatlons 1ike "these boy"). 1In thls case, both are singular
(NS), so the program Is satlisfied. Ordinarily It would go on to

lock for aualifiers, but In thls case there Is nothlng left In

i




Section 2.3,.11 - Page 158

the sentence. Remember that we have an especlally easy way of
Indlcating In a PROGRAMMAR program what action shouid be taken
at any point If the sentence runs cut. We can do It by simply
putting a third direction in any branch statement. In this
case, since we have found all of the basic constituents we need
for a NG, the "thlrd branch" tells us that the NG program should
return succeszs, If we had run out after the determiner, It

would have sent us to check for an INCOMplete NG, while If we

had run out after an ADJ it would have entered a backup program

which would check to see whether It had misinterpreted a NOUN as
an ADJ.

In this case, the NG program returns, and the CLAUSE
program similarly notices that the sentence has ended. Since a
TRANS verb needs only one object, and that object has been
found, the CLAUSE program marks the feature TRANS, and returns,
ending the parsing. In actual use, a semantic program would be
called here to understand and execute the command -- In fact,
seméntlc programs would have been called at varlious polints

throughout the process. The final result looks like:

. j‘w
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(CLAUSE MAJOR IMPER PRT TRANS) (plck up a blg red block)

(VG IMPER) (pick)
(VB MVB INF TRANS VPRT) plck
(PRT) up
(NG 0BJ 0GJ1l DET INDEF NS) (a big red block)
(DET INDEF NS) a
(ADJ) blg
(ADJ) , red
(NOUN NS) . block.
Flgure 41 == Syntactic Structure 3

o
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Mow let us take a more complex sentence, llke:

How many blocks are supported by the cube which |
wanted you to plck up?

We will not go into as much detail, but will emphasize the
new features exhibited by this example. Flrst, the parser
recognizes that this sentence Is a question by Its punctuation,
It ends with a questlion mark. Thils "cheating" Is not really
necessary, and in the future the grammar will be revised to look
for the other signals of a question (for example, beginnling with
a determiner 1lke "how many" or "which").

in any event, the feature QUESTICN Is noted, and the
program must decide what type of guestlion it Is. It checks to
see if the CLAUSE begins with a QADJ 1lke "why", "where", etc.
or with a PREPosition which might begln a PREPG QUEST (llke "In
what year...").

All of these things fall in our example, so [t decldes the
CLAUSE must have a NG as [ts question element, (calied NGQ),
marks this feature, and calls (PARSE NG QUEST). The NG program
starts out by noticing QUEST on its initial feature llst, and
looking for a questlon determiner (DET QDET). Since there are
only three of these ("wnich", “what", and "how many"), the
program checks for them explicitly, parsing "how'" as a QDET, and
then calling (PARSE NIL MANY), toc add the word "many" to the
parsing tree, without worrying about !ts features. (The call
(PARSE NIL X) checks to see If the next word [s actually the

word "x")).
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Since a determiner has been found, lts properties are added
to the NG feature list, (in this case, (NUMDET INDEF NPL);, and
the NG program goes on with Its normal business, looking for
adjectives, classifiers, and a noun. It finds only the NOUM
"blocks" with the features (NOUN NPL). The word "block" appears
In the dictionary with the feature NS, but the Input program
which recognized the plural ending changed NS to NPL for the
form "blocks". Agreement Is checked between the NOUN and the
rest of the NG, and since "how many" added the feature NPL, all
is well. Thl§ time, there Is more of the sentence left, so the
NG program continués, looking for a qualifier. !t checks to
see if the next word_ls a PREPosition (as In '"blocks on the
table), a relative word ("blocks which...), a past participle
("blocks suppported by...), an ING verb ("blocks sltting on...)
a compara~lve adjective ("blocks bigger than...) or the word
“as" ("blocks as blg as...). |f any of these are true, It tries
to parse the appropriate qualifying phrase. I|f not, It tries to
find an RSQ CLAUSE ("blocks the block supports). in this case,
all of these fall since the next word is "are", so the NG
program declides It will find no qualiflers, and returns what it

already has. This glives us:

(CLAUSE MAJOR QUESTION NGQ)w {how many blocks...)
{NQ QUEST DET NUMDET NPL INDEF) (how many blocks)

(DET QDET NPL INDEF) how

(@) many

{NOUN NPL) blocks

Figure 42 -- Syntactic Structure &4
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Next the CLAUSE program wants a VG, so It calls (PARSE VG
NAUX). The feature NAUX Indicates that we want a VG which does
not consist of only an AUXilllary verb, 1ike '"be" or "have". If
we saw such a VG, it would indicate a structure 1like "How many
blocks are the boxes supporting?", In which the quastion NG s
the object of the CLAUSE. We are Interested In flrst checking
for the case where the question NG Is the subject of the CLAUSE,

The VG program Is deslgned to deal with combinations of
auxilliary verbs like "had been golng to be..." and notes that
the first verb Is a form of "be"., It calls (PARSE VB AUX BE),
assuming that "are' s an auxilliary rather than *he maln verb
of the sentence (if this turns out wrong, there [s backup). It
transfers the Initlal tense and person features from this verb
to the entire VG (The English VG always uses the leading verb
for these features, as in "He has been...', where It is "has"
which agrees with ¥he') in this case "are" Is plural (VPL) and
present tense (PRES).

When "be" Is used as an auxilliary, tt is follcwed by a
verb In elther the ING or the EN form. Since "supported" Is an
EN form (and was marked that way by the lnput program), The VG
program calls (PARSE VB EN (MVB)), marking "supported” as the
main verb of the clause. The usa of a "be'" followed by an EN
form Indlcates a PASY VG, so the feature PASV Is marked, and the
VG program Is ready to check agreement. Notlice that so far we

haven't found a SUBJect for this clause, since the QUESTlion NG
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might have bheen an object, as In "How many blocks does the box
supporit?" However the VG program is aware of this, and reallzes
that Instead of checking agreement with the constituent marked
SUBJ, It must use the one marked QUEST. It uses PROGRAMMAR's
pointer-moving functions to find this constituent, and notes
that i< Is NPL, which agrees with VPL, VG therefore Is happy

and returns Its value. We now have:

{CLAUSE MAJOR QUESTION NGQ)=» (how many blocks are supported...)

5 (NG QUEST DET NUMDET NPL INDEF) (how many blocks)
! (DET QDET NPL INDEF) how
{ Q) many

(NOUN NPL) blocks

(VG NAUX VPL PASV (PRES)) (are supported)
(VB AUX BE PRES VPL) are
(VB MVB EN TRANS) supported

Flgure 43 -~ Syntactic Structure 5

The CLAUSE program resumes, and marks the feature SUBJQ,
since It found the right kind of VG to indicate that the NG "how
many blocks" is iIndeed the subject. It next checks to see If we
have a PRT situatlon as we did In our first example. We don't,
so It next checks to see If the VG Is PASY, and marks the clause
with the feature PASV. Thls Indicates that there wlll be no
objects, but there might be an AGENT phrase. 1t checks that the
next word Is "by", and calls (PARSE PREPG AGENT).

The PREPG program Is falirly simple -- It flirst calls (PARSE
PREP), then {DPARSE NG 0BJ PREPOBJ). The word “by" is a PREP, so

the flrst call succeeds and NG Is called and operates as
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described before, finding the DET "the" and the NOUN '"cube", and
checkling the zppropriate number features. In thls case, "the"
Is both NPL and NS, while "cube'" 1s only NS, so after checking
the MG has only the feature NS.

The NG program next looks for quallfiers, as described
above, and this time It succeeds. The word "which" slignals the
presence of a RSQ WHRS CLAUSE modifying "cube'". The NG program

therefore calls (PARSE CLAUSE RSQ WHRS). The parsing tree now
looks like:

(CLAUSE MAJOR QUESTION NGQ SUBJQ PASV)
(how many blocks are supported by the cube...)

(MG QUEST DET NUMDET NPL IMNDEF) (how many blocks)
(DET QDET NPL INDEF) how
O many
(NOUN NPL) blocks
(VG NAU VPL PASV (PRES)) (are suppo.-ted)
- (VB AUX BE PRES VPL) are
(V3 MVB EN TRANS) supported
(PREPG AGENT) (by the cube...)
(PREP) by
(NG 0OBJ PREPOBJ DET DEF NS) {the cube...)
(DET DEF NPL NS) the
(NOUN NS) cube
({CLAUSE RSQ WHRS)=* (...)

Flgure 44 -- Syntactic Structure 6§

The CLAUSE program Is Immedlately dispatched by the feature
WHRS to look' for a RELWD. It finds "which", and marks ltself as
NGREL. It then goes on to look for a (VG NAUX) just as our

QUESTION NGQ clause did above, Remember that WH- questlons and
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WHRS clauses share a great deal nf the network, and they share
much of the program as weil, This time the VG program falls,
since the next word is "1", so the CLAUSE program declides that
the clause "which I..." is not a SUBJREL. It adds the temporary
feature NSUBREL, Indicating this negative knowledge, but not
deciding yet just what we do have. |t then goes to the point In
the normal clause program which starts looking for the major
constituents of the clause =-- subject, verb, etc. We call
(PARSE NG SUBJ) and succeed with the PRONG "!', We then look
for a VG, and finc "wanted". |In this case, since the verb Is
PAST tense, It doesn't need to agree with the subject (only the
tenses beglnning wlth PRES show agreement). The feature NAGR
marks the non-~applicability of agreement. The parsing tree from

the WHRS node on down Is now:

(CLAUSE RSQ WHRS NGREL NSUBREL)~* (which | wanted...)
(RELWD) . whlch
(NG SUBJ PRONG MFS) (1
(PRON NFS) ' |
(VG NAGR (PAST)) (wanted)
(VB MVB PAST TRANS TOO0BJ SUBTOBJ) wanted
Flgure 45 == Syntactic Structure 7

The CLAUSE program notes that the MVB |s TRANS and begins
to look for am 0BJ1l, This time It also notes that the verb Is a
TO0BJ and a SUBTOBJ (it can take a TO clause as an object, as In

"] wanted tg¢ go.", or a SUBTO, as In "I wanted you to go." Slince
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the next word isn't "to", it decides to look fur a SUBTO clause,
calling (PARSE CLAUSE RSNG 0BdJ Oédl SUBT0). 1In fact, this
checking for different kinds of RSNG clauses [s done by a small
function ..amed PARSEREL, which looks at the features of th2 MVB,
and calls the appropriate clauses. PARSEREL Is used at several
points in the grammar, and one of main advantages of writing
grammars as programs Is that we can write such auxilliary
programs (whether !n PROGRAMMAR or LISP) to make full use of
regularities In the syntax. |

The CLAUSE program is called recursively to look for the
SUBTO clause "you to pick up®. .f finds the subject "you", and
calls (PARSE VG TO) since it needs a verb group of the "to"
type. The VG program notlces this feature and flinds the
appropriate VG (which Is again NAGR). The PRT mechanism
operates as described In the flr#t example, and the boxtom of

our structure now looks ltike:
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(CLAUSE RSQ WHRS NGREL NSUEBREL) (which | wanted you to plick up)

(RELWD) which

(NG SUBJ PRONG NFS) (1)
(PRON NFS) ]

(VG NAGR (PAST)) (wanted)

(VB MVB PAST TRANS TJ0BJ SUBTOBJ) wanted
(CLAUSE RSNG SUBTO 0BJ 0BJ1l PRT)* (you to plck up)

(NG SUBJ PRONG NPL) (you)
(PRON NPL) you

(VG TO NAGR) (to plck)
) to
(VB MVB INF TRANS VPRT) pleck

(PRT) up

Flgure 46 -- Syntactic Structure 8

Notice that we have a transitive verb-particle combination,
"nick up", with no object, and no words left In the sentence.
Ordinarily this would cause the program to start backtrack'ng --
checking to see If the MVB Is also intransitive, or If there Is
some way to reparse the clause. However we are In the special
clircumstance of an embedded clause which Is somewhere on the
parsing tree below a relatlve clause with an "unattached"
relatlive. In the clause "which | told you to plck up",?i*is
the subject, and the CLAUSE "you to pick up" Is the object. The
"which" has not been related to anything. There Is a small
program named UPCHECK which uses PROGRAMMAR's abillty to look
around on the parsing tree. It looks for this special
situation, and when It finds It does three things: 1) Mark the

current clause as UPREL, and the appropriate type of UPREL for
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the thing It is missing (Iin this case O0BJ1UPREL). .2) Remove
the feature NSUBREL from the clause with the unattached rclative
3) Replace It with DOWNREﬁ fo indicate that the relatlive has
been found below, Thlis can all be done wlth simple programs
using the basic PROGRAMMAR primitives for moving around the
tree (see section 2.4.10) and manipulating features at nodes
(see 2.4.11). The information which Is left In the parsing tree
is suff‘c!eét for the semantic routlines to figure out the exact
relztlonships Between the various pleces involved.

In thls example, once the CLAUSE "to pick uﬂ" has been
marked as OBJIUPREL, It has enough objects, and can return
success since the end of the sentence has arrived. The CLAUSE
"which | want you to plck up" has an object, and has Its
relative pronoun matched to something, so it also succeeds, as
does the NG "the cube...", the PREPG "oy the rcube..", and the
MAJOR CLAUSE. The flnal result Is shown In Figure 47,

Even in thls fairly lengthy description, we have left out
much of what was going on. For example we have not mentloned
all of the places where the CLAUSE program checked for adverbs
(like "usually" or '"qulckly"), or the VG program looked for
"not", etc. These are all "qulck" checks, slnce there is a
PROGRAMMAR command which checks the features of the next word.
In following the actual programs, the course of tihe process
would be exactly as described, without backups or other attempts

to parse major structures.
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(CLAUSE MAJOR QUESTION NGQ SUBJQ PASV AGENT)

(NG QUEST DET NUMDET NPL INDEF) (how many blocks)
(DET QDET NPL INDEF) how
O many
{NOUN NPL) blocks
(VG NAUX VPL PASV (PRES)) (are supported)
(VB AUX BE PRES VPL) are
(VB MVB EN TRANS) supported
(PREPG AGENT) (by the cube which ! wanted you to plck up)
(PREP) Ly

(NG 0BJ PREPQOBJ DET DEF NS)

(the cube which | wanted you to plck up)
(DET DEF NPL NS) the

(NOUN NS) cube

(CLAUSE RSQ WHRS NGREL DOWNREL TRANS)
(which | wanted you to pick up)

(RELWD) which

(NG SUBJ PRONG NFS) (1)

(PRON NFS) ’ 1

(VG NAGR (PAST)) (wanted)

(VB MYB PAST TRANS TOOBJ SUBTGBJ) wanted
(CLAUSE RSNG SUBTO 0BJ 0B8Jl PRT

TRANS UPREL OBJIUPREL) (you to pick up)

(NG SUBJ PRONG NPL) (you)

(PRON NPL) you

(VG TO NAGR) (to plck)

) to

(VB MVB INF TRANS VPRT) pick

{PRT) up

Flgure 47 - Syntactlic Structure 9
"How many blocks are supported by the cube
which | wanted you to pick up?"
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This may seem llke a quite complex process and complex
grammar, compared to other systems, or even our own examples In
Section 2.2. This Is because language s Indeed a highly
complex phenomenon, We have tried to handle a great deal more
of the complexity of English than any of the previous language-
understanding systems. It is only due to the fact that
PROGRAMMAR gives us an easy framework In which to include
complexity that It was at all possible to Include such a
detalled grammar as only one part of a project carried out by a

single person In less than two years.
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2.3.)2 Analysls of Word Endings

This seciicn describes the "spelling rules” used by the
program In recognizing iInflectlonal endings of words. For
spoken language, these would be called the "morphophonemic"
rules, but since we deal wlith written language, t{hey are
"morpho-graphemic."

These rules enable a reader to recognlze that, for example,
"pleasing"” Is a form of "please", whlle "beating'" Is a form of
"beat". There Is a structure of conventions for doubling

consonants, dropplng "e", changing "i" to "y"

, etc. when adding
endings, and a corresponding set for removing them, |

A word like "running" need not have separate entry In the
dictlonary, since it Is a regular Inflected form of "run'". The
program can use an Interpretive procedure to dliscover the
underlying form and attach the appropriate syntactic features
for the inflectlion.

In des'gning a formallism for these rules, It seems most
natural to express them as a program for interpretation. The
flow chart In Figure 48 Is designed to handle a number of
inflectlional endings ==~ "-n't" for negatlve, "='s" and "-'" for
possessive, "-s" and lts varlous forms for plural nouns and
singular third-person verbs, "-Ing", '"-ed", and “-en" verb

forms, the superlative "-est" and comparatlve '

'~er", and the
adverblal ®-1y", |

As the flowchart shows, these endings share many aspects of
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morphographemlic structure, and the program representation Is
able to capture these generalities as well as deuzlling those
aspects peculiar to each ending. It Is not @ complete
description, but covers a wide varlety of words, and could
easily be expanded to treat more speclial cases.

The description uses a few simple notations In addition to
normal flowchart conventions, “No" and "yes" answers to branch
conditions are represented by single and‘double arrows |
respectively. The functlon "cutoff" Indicates what Is to be
cut off of the end of the word, The ordlnals "1st", "2nd', etc.
count letters from the end of the word backwards, lgnoring those
which have been cut off. Several classes of letters are
relevant to endings -- VOWEL includes (A E | O U Y), LIQUID Is
(L RS V Z), and NOEND is (C G S V Z). The label "TRY"
represents the part of the program which tries looklng up the
supposed root In the dictionary. It uses whatever letters have
not been "éut off", At.some places, the program trles an
interpretation, then If that falls, carrles out a different
analysis and tries agaln.

The program can correctly analyze such roots as: bashes -
bash, bathes = bathe, leaning = lean, leaving - leave, dented -
dent, danced - dance, dogs ~ dog, kisses - klss, curved = curve,
curled - curl, rotting - rot, rolling - roll, played - play,
plled - ply, realest = real, palest - pale, knlves - knife,

prettlily - pretty, nobly - noble, etc.
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It is Important to note that exceptlions do not need to be
expllcitly included in the analysis program. The word "was" Is
directly in the dictlonary, and the rules will tnerefore never
be applied in trying to analyze it. The distinctlon between
lexlcal ldiosyncraclies and generalitlies Is empirical, A
productlve rule llke the one relatling "sang" and "sing", or
“rang" and "ring" might well be included in a more complete
program, while less productive ones (such as relating "will" to
"won't") will be left as separate dictfonary entrles. .

It Is tempting to see this program as a simple flnite state
machine, but this Is not the best formalism for several reasons.
First, the tests which can be done to a word In declding on a
transitlion are not, In general, simple checks of the next Input
letter. Whether a certaln analysls is possible may depend, for
example, on how many syllables there are In the word, or on some
complex phonological calculation tnvolving vowel shlfts,
Semantic and syntactlc information should be applled as well In
many cases.

The morphographemic analysls alone [s sufficient to do a
great deal of the Interpretation of Engilish endings. ln-fact,
some systems ((Thorne 19569>) use It to avold having a dictlionary
of open class words. The Inflectlon of the words Iin the lInput
determines thelr syntac:!c‘class possibilitlies. Of course,
without a2 dictionary, they cannot attempt to deal wlith the

meanlng of words, beyond trylng to match them with other
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occurences of thé same root.

People rarely operate at this level of lgnorance. Ttay use
thelr lexlcal knowledge to realize that "under" Is not a
comparative form of some adjectlvé “"und", and that “bely" Is not
an adverblal form of "be'. This knowledge caﬁ readily be
integrated Into the Interpretive program. Once a possible
merphographemic analysls Is found, the hypothetlcél root can be
cnecked in the dictionary. |If it Is not there, the program can
try another analysis. Notlce that In the flow chart, words
ending In a double LIQUID, followed by an Inflection, are first
tried In the form with the doubled consonant (as In "rolllng" -
“"roll"), then If that falls, another try Is made wlth the single
consonant ("patrolled" = "patrol").

If the root Is found In the dictioary, Its syntactlc class
s checked to see If the ending Is appropriate (e.g. a "-est"
ending can apply only to an ADJ). The 1ist of syntacflc
features Is changed to take the ending Into account. For
example, the ending "-s" changes the feature NS (slngular noun)
to NPL (plural noun) and the feature INF (Infinitive verb) to
V3PS (third-person slngﬁlar verb). A word which flts infto more
than one category may have more than one set of features
changed, In determining all of the posslible Interpretationrs.

The problems involved in analyzling more complicated
endings, such as the "-tlon", "-ment", and "-er" endings of

nominalizations will be discussed in a later paper.
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2.4 Programming Detalls

2.4.1 Operation of the System

Since the grammar Is ltseif a program, there {s not much
overhead mechanlsm 6eeded for the basic operatlion nf the parser,
Instead, the system consists mostly of speclial functlons to be
used by the grammar. The system maintains a number of global
varitables, and keeps track of the parsing tree as It is bullt by
the mafn function, PARSE., When the function PARSE Is calied for
a UNIT which has been defined as a PROGRAMMAR program, the
system collects Information about the currently actlve node, and
saves [t on a pushdown list, It then sets up the necessary
variables to establlish a new active node, and passes control to
the PROGRAMMAR program for the approprlate unit, 1If this
program succeeds, the system attaches the new node to the tree,
and returns control to the node on the top of the PDL. If it
falls, It restores the tree to Its state before the program was
called, then returns control. A PROGRAMMAR program |s actually
converted by a simple compiler to a LISP program and run In that
form. The varlables and functlons availlable for writing
PROGRAMMAR programs are described In the rest of part 2,4, |In
order to make these details more Independent of our detalled
grammar of English, we will continue to use a simplified grammar
whenever possible, We use the hypothetlcal grammar begun In
2.2, and try to use full length feature names for easler

understanding.
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When the function PARSE is called with a first argument
whlch has not been defined as a PROGRAMMAR program, It checks to
see who:her the next word has all of the features listed In the
arguments. If so, It forms a new node pointing to that word,
with a 1ist of features which is the Intersection of the list of
features for that word with the allowable features for the word
class Indicated by the first argument of the call. For example,
the word "blocks" will have the posslbility of belng either a
plural noun or a third-person-singular present-tense verb,
Therefore, before any parsing It will have the features (NOUN
VERB N-PL VB-3PS TRANSITIVE PRESENT). If the expression (PARSE
VERB TRANSITIVE) Is evaluated when "blocks" is the next word In
the sentence to be parsed, the feature list of the resulting
node will be the intersection of this combined 1ist with the
list of allowable features for the word-class VERB., I!f we have
defined:

(DEFPROP VERB (VERB INTRANSITIVE TRANSITIVE PRESENT PAST
VB-3PS VB-PL) ELIM),

the new feature 1ist will be (VERB TRANSITIVE PRESENT VB~
3PS). (ELIM s simply a property indlcator chosen to Indicate
this 1ist which ELIMInates features). Thus, even though words
may have more than one part of speech, when they appear In the
parsing tree, they will exhiblt only those features relevant to

thelr actuail use In the sentence.
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2.4,2 Special Words

Some words must be handled In a very special way In the
grammar. The most prevalent are conjunctions, such as "and" and
"but", When one of these Is encountered, the normal process Is
interrupted and a specicl program is called to declde what steps
should be taken In the parsing. Thls is done by glving these
words the grammatizal features SPEC or SPECL. Whenever the
-function PARSE [s evaluated, Before returning [t checks the neat
word In the sentence to see 1f it has the feature SPEC. |If so,
the SPEC property on the property llst of that word Indicates a
function to be evaiuated Before parsing contlinues. Thils program
can In turn call PROGRAMMAR programs and make an arbltrary
number of changes to the parsing tree before returning control
to the normal parsing procedure. SPECL has the same effect, but
Is checked for when the functlon PARSE Is called, rather than
before It returns. Varlous other speclal variables and
functions allow thase programs to control the course of the
parsing process after theQ have heen evaluated. By using these
special words, It Is possible to write amazingly simple and
efficlent programs for some of the aspects of grammar which
cause the greatest difficulty. This Is possible because the
general form of the grammar Is a program.

For example, "and'" can be defined as a program whfch Is

dlagrammed:
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Parse a unit of the same type

as the currently active node —————=>Return fallure

Replace the node with a new node
combining the old one and the one
you have just found

Return success

Figure 49 =-- Conjunction Program

For example, glven the sentence "The giraffe ate the apples
and peaches." the program would flrst encounter "and" after
parsing the NOUN apples. It would then try to parse a second

NOUN, and would succeed, resulting In the structure:

SENTENCE

NP\

N
/\

NQ\ NOQUN
DETERMINER NOUN VERB _ DETERT NER NOUN ‘\\R UN
the glraff° ate the apples and peaches

Flgure 50 == Conjolined Noun Structure

If we had the sentence, "The glraffe ate the apples and
drank the vodka." the parser would flrst try the same thing.

However, "drank" is not a NOUN, so the AND program would fall
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and the NOUN "apples'" would be returned unchanged. Thls woutd
cause the NP "the apples" to succeed, so the AND program would
be called again. 1t would fall to find a NP beginning wlth
“"drank", so the NP "the apples" would be returned, causing the
VP to succeed. Thls time, AND would try to parse a VP and would
find “drank the vodka". 1t would therefore make up a combined
VP and cause the entire SENTENCE to be completed with the

structure:

/ VP\/VP\VP
S/

P. NP ‘ ~ NP,
/ \U | N
DET NOUN VE?B D?T< NOIN VE?B D?T NOUN
I
the giraffe ate the apples and drank the vodka

Figure 51 == Conjoined Clauseas

The program tec actusal!ly do thls would take only 3 or 4
1ines in a PROGRAMMAR grammar., In the actual system, It Is more
complex as It handles 1lsts (like "A, B, and C") other
conjunctions (such as '"but") and special constructlions (such as
“"both A and B"). The conjunction program Is called by all of
the ccnjunctlions, the words "elther", "neither", and "both", and
the mark "," which appears as a separate word in the Input.

The functlon #* is used to look ahead for a repetition of

the special word, as in "...and...and...". |If one Is found, a
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unit of the type most recently parsed Is parsed agailn, trylng to
extend all the way to the repeated conjunction or comma. This
Is lterated as long as there are repetitions, with speclal
checks made for structures like "A, B, and C" or "A and B but
not C". As each new node is parsed, its structure s saved, and
when the last Is found, a new node Is created for the compound.
Its features combine those for the type of conjunction with
those approprliate for the type of unit (e.g. a compound NG
connected with "and" Is given the feature "plurai" (NPL).) The
list of constltuent structures Is put on the tree as a list of
subnodes of the conjoined structure, which then replaces the
original unit on the parsing tree.

Compounds with a preceding word like "both'" are parsed
differently, since the word Is encountered before any unlt has
been parsed. In this case¢ It Is possible to adopt the more
general phllosophy of attempting the longest possible unft
first. These words have a SPECL definition, so the program is
called as the next unit Is about to be parsed. The conjunction
program jooks for the matching conjunction ("and" with “both",
"or'" with "eilther", and "nor" with "nelther")'and tries to parse
the unit extending only to the conjunctlon, If thls succeeds,
the normal conjunction procedure Is followed. |f not, some sub-
comﬁonent Is the conjolned one, and nothing happens until the
parser attempts a sub-unit, when the process Is repeated,

A SPECL program can modify the parsing in several ways.
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For example It can call the function FLUSHME, which simply
removes the word from the [nput sentence (l.e. It Is ignored).
It can take arbltrary actlions on the current parsing tree, can
Indicate to PROGRAMMAR that 1t should SKIP parslng the unit and
use Instead results provided by the SPECL program, or It can
Indicate an actlon to be taken after the normal parsing Is DONE.
Finally, a SPEC or SPECL program can abort the entire parsing,
indlcating a response to the usar. For example, the word
"thank" calls a SPECL program which checks to see [f the next
word Is "you"., |If so, the parsing Is glven up, and the system
replies "YOU'RE WELCOME". Currently there Is no backup
procedure to modlfy the Interpretatlion of an ambiguous structure
like "A and B or C". This will In fact be parsed as (A and (B
or C)). Notice that "elther A and B or C" wlll be parsed
correctly as ((A and B) or C).

The exact format for a SPEC or SPECL definitlon Is a LISP
l1ist to which will be appended two Items ~=- the Initial feature
1i1st of the unit belng parsed and an Indicator of whether It Is
a word or a unit which called the program. The resultant form

Is then EVALled.
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2.4.3 Possesslves

One of the best examples of the advantages of procedural
grammars Is the ability to handle left-branching structures llke
possessives. In a normal top-down parser, these present
difficulties, since any NG can begin with a possessive NG, which
can In turn begin with a possessive NG, etc., as In "my mother's
sister's student's cat's fur'. Speclal care must be taken to
avolid Infinite loops.

tn our grammar thils Is handled by a check after the NOUN or
PRONOQUN s found in a NG. If It has the feature '"possessive"
(P0OSS) (e.g. "my" or "block's'") a node Is created for the NG
thus far parsed, and this Is placed on the tree as a constltuent
(the determiner) of a NG to be continued. The program then
returns to the polnt where 't was after finding a determiner,
and contlinu.s lookling. This can happen any number of times, but
In each case Is triggered by the presence of another P0SSesslve
word, It therefore loops only as much as necessary. This
departure frorm top-down parsing involves no changes to the
parser, and only a simple loop In the program. Any other left-

branching structure can be handled similarly.

e R,
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2.4.4% The Dictlionary
Slnce PROGRAMMAR |s embedded 'n LISP, the facllitles of

LISP for handling atom names are used directly., To define a
word, a llst of grammatical features s put on lts property list
under the Indlcator WORD, and a semantic definitlon under the
Indicator SMNTC., Two facllitles are Included to avoid having to
repeat information for different forms of the same word. Flirst,
there Is an alternate way of deflining words, by using the
proparty Indlcator WORDl. This iIndicates that the word glven lIs
an Inflected form, and Its propertles are a modifled torm of tie
properties of Its root. A WORD1l definition has three element:c,
the root word, the list of features to be added, and the list of
features to be removed. For example, we might define the word
"go'" by: (DEFPROP GO (VERB INTRANSITIVE INFINITLVE) WORD) We
could then defline "went" as (DEFPROP WENT (GO
(PAST)(iNFINITIVE)) WORD1) This Indicates that the feature
INFINITIVE Is to be replaced by the feature PAST, but the rest

({including the semantic definitlon) Is to remaln the same as for

"go .

The other facliity ls an automatlic system which checks for
simple modlficatlions, such as plurals, "-ing," forms, "-er" and
"-est!" forms and so forth, |If the word as typed !n is not
defined, the program looks at the way It iIs spelled, tries to
remove Its ending (taking Into account rules such as changing

Trunning"” to "run", but "buzzling" to "buzz"). It then tries to
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fina a definition for the reduced root word, and If It succeeds,
It makes the appropriate changes for rhe ending (such as
changing the feature SINGULAR to PLUKRAL). The program which
does thls Is not a part of the PROGRAMMAR system but Is
specifically built for English. 1t ls described in section
2.3.12,

Everything else descrlbed in this section is deslgned
generally for the parsing of any language. In any particular
language, thls Input funtion would have to be written according
- to the speclial rules of morphographemic structure. The
requirement for such a program !s that lts output must be a
11st, each member of which corresponds to a word in the origlnal
sentence, and Is in the form described In section 2.4.8. This
list Is bound to the variable SENT, and is the way In which
PROGRAMMAR sees Its lnput. . .

The other form of data in the dlctlionary Is tables 6f verb-
particle and preposition-prepos!tion combinations like "pick up"
or "on top of"., The table Is stored on the property 1ist of the
initial word under the indicator PRTY or PREPP respectively. It
Is an assoctation list, each member of which has the second word
of the combination as I%s CAR, and a word parsing structure (see
~section 2.4.8) as Its CADR. There may be more than one
combination for the same initlal word (e.g. “pick up", "pick
out"), and a three-word combination can be defined by makling the

CADR be an assoclation list of the same form for a thlrd word,



Sectlion 2.4.5 - Page 186

2.4,5 Backup Facilltles

As explained In section 2.2.7, there Is no automatic
backup, but there are a number of special functions which can be
used in writing grammars, The simplest, (POPTO X) simply
removes nodes from the tree. The argument Is a list of
features, and the effect Is to remove daughters of the currently
active node, bteginning with the rightmost and working teftward
until one Is reached with all of those features. (POP X) Is the
same, except that It also removes the node with the Indicated
features. If no such node exliscs, nelther functlion takes any
actlon. (POP) Is the same as (POP NIL), and a non-nil value Is
returned by both funct!onslif any action has been taken.

A very Important feature is the CUT varlable. One way to
do backup Is to first try to find the longest possible
constltuent at any point, then tf for any reason an Impasse Is
reached, to return and try again , llmiting the conslituent from
going as far along In the sentence. For example, In the
sentence "Was the typewrliter sitting on the cake?", the parser
will first find the aux!llilary verb "was", then try to parse the
subject. It will find the noun group "the typewriter sitting on
the cake", which In arother context might well be the subject
("the typewriter sitting on the cake Is broken."). It then
tries to find the verb, and discovers none of the sentence lIs
left. To back up, It must change the subject. A very clevar

program would look at the structure of the noun group and would
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reallze that the modifylng clause "sltting on the cake'" must be
dropped. A more simple-minded but stlll eflective approach
would use the followlng Instructlions:

(*« N PW)

(POP)

((CUT PTW)SUBJECT (ERROR))

The first command sets the pointer PTW to the last word In
the constituent (in this case, "cake"). The next removes that
constituent. The third sets a special pointer, CUT to that
locatlon, then sends the program back to the point where it was
looking for a subject. It would now try to find a subject
agaln, but would not be allowed to go as far as the word 'cake'.

" an analog to "The

It might now find "the typerwriter sitting,
man sltflng is my uncle." |If there were a good semantic
program, It would realize that the verb "sit" cannot be used
with an Inanimate object without a location specifled., This
would prevent the constlituent "the typewriter sitting" from ever
being parsed. Even If thls does not happen, the program would
fall to find a verb when 1t looked at the remalning sentence,
“on the cake.'" By golng through the cutting locp agaln, 1t woitld

" and would continue

find the proper subject, '"the typewrlter,
through the sentence.

Once a CUT polnt has been set for any active node, no
descendant of that node can extend beyond that point untll the
CUT Is moved. Whenever a PROGRAMMAR program Is called, the

varlatle EMND is set to the current CUT point of the node whlich
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called it., The CUT point for each corstlituent Is Inltially set
to Its EMD., When the function PARSE Is called for a word, 1t
first checks to see iIf the current CUT has been reached (l.e. N
and CUT are the same), and If so it falls. The third branch in
a three-directlon branch statement is taken If the current CUT
point has been reached. The CUT pointer is set with the

function CUT of one argument.
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2.4,6 Auxilitary Eu on

Since PROGRAMMAR grammars are programs, they can call
subroutines just as any other program. These subroutines can
use PROGRAMMAR primitives like PARSE and », as well as returning
values for use In the maln program. One example used In our
grammar [s UPCHECK, used to see [f the current node Is embedded
Iin a structure which could be an UPREL 1lke "the man | wanted

you to see."

It Is used In conjunction with UPMOD which makes
the appropriate changes to the parsing tree, They both use
primitives llke * to find and change the elements.

In order to simplify the search for rank-shifted clauses, a
function PARSEREL was written. |t takes as arguments a list of
clause types (1lke REPORT, ING, etc.) a corresponding list of
features to Yook for an the main verb, a pointer to that verb,
and the rest of the Informatlion to be included iIn the call to
PARSE. PARSEREL then loops through these lists, attempting to
parse various types of RSNG clauses If they are In accord with
the restrictlons assoclated with the verb and the use of the

clause In the sentence. It uses the functlon PARSE to modify

the parsing tree before returning to the main CLAUSE program.
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2.4,7 Messages

To wrlite good parsing programs, we may at tlmes want to
know why a particular PROCRAMMAR program falled, or why a
certain polnter command could not be carried out., I[n order to
facilitate this, two message varlables are kept at the top level
of the system, MES, and MESP, Messages can be put on MES In two
ways, elther by using the speclial fallure directions In the
branch statements (see section 2.2.5) or by using the functions
M and MQ, which are exactly like F and FQ, except they put the
indicated fzature onto the message 1ist ME for tliat unit. When
a ualt returns elther failure or success, MES s bound to the
current value of ME, so the calling program can recelve an
arbitrary list of messages for whatever purpose 1t may .a.t
them. MESP always contains the last failure message re.eived

from =« or =,
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2.4,8 The fForm of the Parsing Iree
Each node Is actually a list structure with the foilowing

Information:

FE the list of features assoclated wlth the node

NB the place in the sentence where the constituent
begins

N the place Immediately after the constltuent

H *he subtree below that node (actually a llst of

Its daughters In reverse order, so that

H points to the last constltuent parsed)
SM a space reserved for semantic information

These symbols can be used In two ways., |If evaluated as

variables, they wlll always return the deslgnated information
for the currently active node. C is always a polnter to that
node. |If used as functions of one argument, they give the
appropriate values for the node pointed to by that argument; so
(NB H) glves the locatlon In the sentence of the flrst word of
the last constltuent parsed, while (FE(NB H)) would give the
feature list of that word.

Each word In the sentence Is actually a 1lst structure

containing the 4 [tems:

FE as above
. SMWORD the semantic definition of the word
WORD the word Itself (a pointer to an atom)

ROOT the root of the word (e.g. "run" If the
word Is "running"). .
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2.4,9 Varlables Maintained by the System

fhere'ere two types of varjiables, those bound at the top
level; énd those which are rebound every time a PROGRAMMAR
program is called.

Variables bound at the top level

N Always points to next word In the
sentence to be parsed
SENT Always polints to the entlire sentence
PT PTW Tree and sentence polnters.
: See Section 2.4.10 _ ,
MS MESP List of messages passed up from lower

levels, See Section 2.4.7

Spectal variables bound at each level

C FE NB SM H See section 2.4.8

NN CUT END See section 2.4.5. MN always
equals (NOT(EQ N CUT))

UNIT the name of the currently active
PROGRAMMAR program

REST the llst of arguments for the call

~to PARSE (These form the initial
feature list for the node, but as
other features cre added, REST
continues to hold only the original

ones,)
T1 T2 T3 Three temporary PROG variables for use
by the program In any way needed,
MVB Bound only when a CLAUSE is parsed
used as a polnter to the main verb
MY . List of messages to be passed up to

next level See Sactlon 2.4,7
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2,4,10 Polinters
The svstem aiways malntalns two polinters, PT to a place on
the parsing tree, and PTW to a place In the sentence. These are

moved by the functions * and ** respectively, as explalned in

sectlon 2,2.10. The instructlions for PT are: N
C set PT to the currently active node
H set PT to most recent (rightmost) daughter of C
DL (down-last) move PT to the rightmost daughter
of its current value
bLC (down~last completed) like DL, except it only

moves to nodes which are not on the push-~down
list of active nodes,

DE (down~flrst) llke DL, except the leftmost

PV (previous) move PT to Its left-adjacent sister

NX (next) move PT to lts right-adjacent sister

U (up) move PT to parent node of Its current value
N~ Move PT to next word in sentence to be parsed

The pointer PTW always polnts to a place In the sentence.
it Is moved by the functlon ** which has the sa~e syntax as »,

and the commands:

N SJt PTW to the next word In the sentence

FW (first-word) set PTW to the first word of the
constltuent polnted to by PT

Lw (last-word) like FW

AW (after-word) like FW, but flirst word after the
constituent

NW (next~word) Set PTW to the next word after lts

v current value
PW (previous=-word) 1lke NW
SFW (sentence-first-word} set PTW to the first word .
In tae sentence
SLW (sentence=-last-word) like SFW

Since the polnters are bound at the top level, a program
which calls others which move the pointers may want to preserve
their location. PTW Is a simple variable, and can be saved with

a SETQ, but PT operates by keeping track of the way It has been
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moved, in order to be able to retrace Its steps. This Is
necessary since LISP 1ists are threaded In only one direction
(in this case, from the parent node to lts daughters, and from a
right cister to its left sister). The return path Is bound to
the variable PTR, and the command (PTSV X) saves the values of
both PT and PTR under the variable X, while (PTRS X) restores

Qoth values,
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2.8,11 Featuyre Manlpulatlng

As explalned In section 2.2.6, we must be able to attach
features to nodes In the tree, The functions F, FQ, and TRNSF
are used for puttlng features onto the currert node, while R and
RQ remove them. {F A) sets the feature list FE to the union of
Its current value with the 1ist of features A, (FQ A) adds the
single feature A (l.e. It quotes Its argument). (TRNSF A B) was
explained In Sectlon 2.2.7. R and RQ are inverses of F and FQ.
The Yunctions I1SX, 1SQ, CQ, and NQ 2re used to examine features,
If A points to a node of the tree or word of the sentence, and B
nolnts to a featuve, (I1SX A B) returns non-nil If that node has
that feature. (1SQ A B) Is equivalent to (IS A (QUOTE B)J), (CQ
B) Is the same as (1SQ C B) (where C always points to the
currently active node), and (NQ B) is the same as (1SQ N B) (N
always polnts to the naxt word In the sentence left to be
parsed).

The function NEXTW checks to see of the root of the next
w>rd matches the argument. (LEXTW BE) evaluates to non=NiL oniy
ff the next word Is some form of the verb "be'., PUTF and REMF
are used to add and remove features from some node other than
the current one., They are FEXPRS whose argument ls a llst of
features, which are put on or removed from the node currently

pointed to by the pointer PT.
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2.5 Comparlson with Other Parsers

- 2.5,1 0Ol'der Parsers

Vher work first began on analyzling natural languare with

computers, no theories of syntax existed which were oexplicit
enough to be used., The early machline-tranclator designers were
forced to develop their own lingulstics as they worked, and they
producea rough and ready versions. - The parsers were col?ect!ons‘
of "packagzing routlnes'", "inserted structure passes', "labeling
subroutines'", etc. (see <Garvin>) which evolved gradually as
the grammars were expanded to handle more and more complex
sentences. They had the same difflcultias as any prngram
designed in this wav == és they became rore complex it became
harder and harder to unuerstand the Interactions within them,
Making extensions wﬁich were intended to deal with a limited
anticlipated set of inputs tended to make It difficult to extend
the system later, |

When the machine-translatlion effort falled, it seemed clear
~that it had been premature to try handling all of English
without a better background of !.ngulstic theory and an
understanding of the mathematical properties of grammars.
Computer programs for natural language took two separate paths.
The first was to lgnore traditional syntax entirely, and to use
some sort of more general pattern matchling process to get
Iinformation out of sentences. Systems such as STUDENT, SIR,

ELIZA, and Semantic Memory made no attempt *o do a complete
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syntactic analysis of the inputs. They either limited tiie user
to u small set of fixed input forms or limited thelr
tnderstanding to those things they could get while ignro-ing
syntax.

The cther approach was to take a simplified subset of
Eaglish which could be handled by a well~-understood form of
grammar, such as one of the varlatlions of context-free grarmmars,
There has been much Interesting research on the proper.les of
abstract languages and the algorithms needed to rarse them.
Using this theory, a series of parsing algorlthms and
representations were developed, For a summary of the computer
parsers designed before 1966, sce <{Bobrow 1964>. A nore recent
development was Early's context-free parser <Early> which
operates in a time proportional to the cube of the length of a
sentence.

The problem faced by all of these parsers {including the
mammoth Harvard Syntactic Analyzer (<Kuno>). 1Is that such
simple models are¢ not adequate for handling the full complexity
of natural langtage. This Is discussed theoretlically In
{Chomsky 1857> but for our purposes It Is more Important to note
that many aspects which could theoretlically be handled would be
included only at the expense of gross inefficlency and
unnecessary complexity.

Several people attempted to use Chomsky's transformational
grammar as the basls for parsers. (see <Petrick> and <Zwlicky>)
They tried to "unwind" the transformations to reproduce the deep
structure of a sentence, which could then be parsed by a context

free '"base component", It soon became apparent that this was a

very difficult task. Although transformational grammar Is




Section 2.5.1 - Page 138

thecretically a 'neutral' description of language, it Is In
fact highly biased toward the process of generating sentences
rather then interpreting them. Adapting generatlon rules to use
in interpretation is relatively easy for a context-free grammar,
but extremely difflcult for transformational grammars. <Woods
1969> discusses the problems of "comblnatorlai explosion"
inherent In the inverse transformational process. The
transformational parsers have not gone beyond the stage of

handling small subsets of English !In an Inefflclant way.
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In the past two years, three related parsing systems have
been developed to deal with the full complexity of natural
language., The first was by Thorne, Bratley, and Dewar (<Thorne
1368 and 1969>), and the more recent ones are by Bobrow and
Fraser (<Sobrow 1969>) and Woods (<Woods 1363>). The three
programs operate In very similar ways, and slnce Woods' is the
most advanced and best documented, we will use It tor
comparison. In his paper Woods compares hls system with the
other two.

The basic ldea of these parsers Is the "augmented
transition network'!. The parser Is seen as a transitlion network
much llke a finlte-state recognlizer used for regular languages
In automata theory.

The flirct extension Is In allowing t-e networks to make
recursive calls to other rnetworks (or to themselves). The
condition for following a particular state transitlion Is not
1imited to examining a single Input symbol, The condition on
the arc can be something llke "NP" where NP Is the name of an
initial state of another network. Thls recursively called NP
network then examines the Input and operates as a recognlzer.
If It ever recaches an accepting state, It stops, and parsing
continues from the end of the NP arc In the original network.
These "recursive transition networks'" have the power of a

context-free grammar, and tha corrasc-~'.~ce batweer a network
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and Its equivalent grammar Is quite simple and direct,

To parse the full ranse of natural language, we need a
crirtlcal acddition. Instead of using "rercursive transition
networks' thesc parsers use '"augmented transition networks',
which can "make changes In the contents of a set of registers
associlated wlth the network, and whose transitlons can be
conditional on the contents of those reglsters. (<{Woods 1969>;.
This Is done by "adding to each arc of the transitlion network an
arbitrary conditicn which must be satisfled in order for thke arc
to be foi]owed, and a set of structure bullding actlons to be
executed If the arc Is followed."

Augmented transition networks have the nower of Turlng
machines (since they have changeable registers and can transfer
control depending on the state of those registers). Clearly
they cain handle any type of grammar which could posslbly be
parsed by any machine, The advantages 1le In the ways in which
these augmented networks are close to the actual operations of
language, and give a natural and understandable representatlion

for grammars.
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2.5.3 Metworks and Programs

How does this type of parser compare with PROGRAMMAR? Is

there anything in common between grammars which are networks and

grammars which are programs? The reader may have already seen

the "joke" in this question. |In fact these are just tso
different ways of talking about dolng exactly the same thingl

Plcture a flowchart for a PROGRAMMAR grammar, in which
cells to the function PARSE 2re drawn on the arcs rather than at
tne nodes. Every arc then |Is elther a recuest to accept the
next word in the input (when the argument of PARSE Is a word
class), or a recursive call to one of the grammar programs. At
each nnde (i.e. segment of prosram between conditionals and
PAPSE :alls) we have "a set of arbitrary structure bullding
action;. " Our flowchart is just like an augmented transition
network.

Now plcture how Woods' networks are fed to the computer.
He uses a notation (see <iinods 1969> p. 17) which looks very
much like a LISP-embedded computer language, such as PROGRAMMAR
or PLANNER. |In fact, the networks could be translated almost
directly into PLANNER programs (PLANNER rather than LISP or
PROGRAMMAR because of the automatic backup features == see
discussion below).

It is an Interesting lesson In computer sclience to look at
Woods' discussion of the advantages of networks, and "translate"
them Into the advantages of programs. For example, he talks
about efficiency of representation. "A major advantagé of the
transition network model Is...the abllity to merge the common
parts of many context free rules."

Looking at grammars as programe, we can call this "sharlng
subroutines'". He says "The augmented transition network,
through its use of flags allows for the merging of similar parts
of the network by recording Information In registers and

inte?rogatlng it...and to merge states whose translitions are
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simitar except for condlitlons on the contents of the reglisters."
This Is the use of subroutines with parameters. In acdition,

"canture the regularities of the

the networks can
language...whenevar there are two essentially ldentical parts of
the grammar which differ only in that the finite control part of
the machine is remembering some plece of informatlon...it Is
sufficient to explicitly store the distingulshing plece of
Information in a reglster and use only a single copy of the
subgraph." Thils is cleariy the use of subroutlnes with an
argument!

Similarly we can go through the arguments about efflcliency,
the ease of mixing semantlcs with syntax, the abllity to include
operations which are "natural" to the task of natural language
analysis, etc. All of them apply ldentically whether we are
looking at "translition networks'" or "programs".

What about "persplculty’? Woods claims that augmented
transition networks retain the persplculty (ease of reading and

understanding by humans) of simpler grammar forms. He says that

transformatlonal grammars have the problem that "the effect of a

glven rule is intimately bound up with its Interrelation to
other rules...lt may require an‘extremely complex analysis to
determine the effect and purpose.'" (< Woods 1969> p.38) This Is
true, but [t would also be true for any grammar complex enough
to handle all of natural language. The simple examples of

transitlon networks are indeed easy to read (as are simple
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examples of most grammars), but In a network for a complete
language, the purpose of ¢ glven state would be Intimately bound
up with tts Interrelation tc other states, and the grammar will
not be as."persplicuous'" as we might hope. This is just as true
for programs, but no more so., If we look at the tlow chart
instead of the llsting, programs are egually perspicuous to
networks.

1f the basic princliples are really the same, are there any
differences at all between Woods' system and ours? The answver
Is yes, they differ not in the theoretical power of the parser,
but In the types of analysls being carried out.

The most impo-tant difference is the theory of grammar
being used. All of the network systems are based on
transformational grammar. They try to reproduce the ‘''deep
structure'" of a sentence whlle dolng surface structure
recognitlon. This is done by using special commands to
explicitly bulld and rearrange the deep structures as “he
parsinz goes along. PROGRAMMAR Is orlented towards systemic
grammar, with Its ldentification of slignificant features in the
constltuents belng parsed. It therefore emphas!zes the ability
to examine the features of constituents anywhere on the parsing
tree, and to manipulate the feature descriptions of nodes.

In sectlion 2.1 we dlscussed the advantages of systemic grammar
for a language understanding system. Elther type of parser
could be adapted to any type of grammar, bu% PROGRAMMAR was
spectally designed to lnclude "natural" operations for systemic
understanding of sentences.

A second difference Is In the Implementation of speclial

additions to the basic parser. For example In section 2.4.2 we

discussed the way in which words like "and" could be deflined to
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act as "demons" which Interrupt the parsing at whatever point
they are encountered, and start a special program for
interpreting conjolined structures, This has many uses, both in
the standard parts of the grammar (such as "and") and In
handling tdioms and unusual structures. |If we think in network
terms, this is like having a separate arc marked "and" leading
from every node In the network., Such a feature could probably
be added to the network formulatlion, but it seems much more
natural to think In terms of programs and Inteerpts.

A third difference Is the backup mechanism. The network
approach assumes some form of nonaeterminism, {f there are
several arcs leaving a2 node, there must be some way to try
following all of them. Either we have to carry forward
simultaneous interpretations, or keep track of our cheolces in
such a way that the network can automatically revise Its cholce
If the original cholice does not lead to an accepting state,
This could be done lin the program approach by using a language
shch as PLANNER with Its automatic backup mechanisms., But in
sectlon 2,2.7 we discussed the question of whethar It Is even
desirable to do so in handllng natural langbage.

We polnted out the advantage of an intelligent parser which
can understand the reasons for its fallure at a certain point,_
and can guldé tself accordingly instead of backing up blindly.

This Is Important for efficlency, and Woods Is very concerned

with ways to modify the networks to avold unnecessary and
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wasteful backup by "making the network more determiristic.,"
(<Vloods 1969> p. 45). |t mlight be Interesting to explore a
compromise solutlon In which automatic backup faclilitles
exlisted, but could be turnsd on and off, Ve could do this by
giving PRCGRAMMAR speclal comhands which would cause it to
remember the state of the parsing so that later the grammar
could ask to back up to that state und try something else, Tkis
is an Interesting area for further work on PROGRAMMAR,

It Is difficult to compare the performance of different
parsers since there !s no standard grammar or set of test
sentences. Bobrow and Woods have not publlshed the results of
any experiments with a large grammar, but Thorne has publlshedA
two papers (<Thorne 1968, 1969>) with a number of sample
parsings. Our system, with Its current grammar of Engllish has
successfully parsed all of these exampfes. They took from 1 to
5 seccnds aplece. Some samples of more complicated parsings

dene by the system are given In Appendix B.
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CHAPTER 3. Inference

3.1 Baslc Approach to Meanling
.11 gsentin gggwlgdgg

Ve have described the process of understanding language as
a conversion from a string of of sounds or letters to an
Internal representation of "meaning". |In order to do thls, a
language-understanding system must have some formal way to
express its knowledge of a subject, and must be able to
represent the "meaning'" of a sentence in this formalism, The
formalism must be structured in such a way that the system can
use Its knowledge to make deductlons, accept new Informaticn,
answer questlions, and Interpret commands. Choosing a form for
this information Is of central Importance to both a practical
system and a theory of semantlcs.

First we must decide what kinds of things are to be
represented In the fcrmalism. As a beglnning, we would llke to
be able to reprezent “objects', "propertles," and “relations."
tater we wlll have to show how these can be combined to axpress
more complicated knowledge. We will describe ways to express
the meaning of a wlde varlety of complex sentences.

Using a simple preflix notatlion, we can represent such facts
as "Bolse is a clty."” and “Noah was the father of Jafeth." as:

(CITY BOISE) (FATHER-OF NOAH JAFETH)
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Here, BOISE, NQOAH, and JAFETH zre cspecific objects, CITY Is
a property which objects can have, and FATHER=-0OF is a relation.
It !'s a practical convenience to list propertlies and relations
first, even though this may not follow the natural English
order, so we will do so throughout, Notice that properties are
in fact special types of relations which deal with only one
object. Properties and relations wiil be dealt with In
identical ways throughout the system. In fact, It Is not at all
obvious which concepts should be considered properties and which
relations. For example, '"DeGaulle is old." might be expressed
as (OLD DEGAULLE) where OLD is a property of objects or as (AGE
DEGAULLE 0LD), where AGE is a relatlon between an object and Its
age. In the second expression, OLD appears in the position of
an object, even though It can hardly be construed as a .
particular object like BOISE or DEGAULLE. This suggests that we
might 1ike to let properties or relatlons themselves have
properties and enter Into other relatiuns. Thls has a deep
lcglical consequence which will be discussed In later sections.

In order to avold confusion, we wlll need some convention3z
about notatlon. Most objects and relationrnships do not have
simple English names, and those that do often share thelr names
with a range of other meanings. The hbuse on the corner by the
market doesn't have a proper name llke Jafeth, even thouzh it is
just as much a unique object. For the internal use of the

system, we will give It a unlique name by stringing together a
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descriptive word and an arbitrary number, then preflixing the
result with a cclon to remind us it Is an object. The house
mentioned above might be called :HOUSE374, Properties and
relations must also go under an assumed name, since (FLAT X) .
might mean very different things dependlngvon whether X is a
tife or a musical note. We can do the same thing (using a
different punctuatior mark, #) to represent these two meanings
as #FLAT1 and #FLAT2. When the meaning intended is clear, we
will omit the numbers, but leave the punctuation marks to remind
Jus that it is a property or relation rather than a specific
object, Thus, our facts listed above should be written:
(#CITY :BOISE) (#FATHER-OF :NOAH :JAFETH), and elther

(#0LD :DEGAULLE) or (#AGE :DEGAULLE #0LD).

e are letting properties serve in é dual function -- Qe
can use them to say things about objects (as in "The sky Is
blue." =-- (#BLUE :SKY)) or we can say things about them as If
they were objects (as in "Blue Is a color." ~- (#COLOR #BLUE)).
Vle want to extend this even further, and allow entlire
relationshlips to enter Into other relationships. (We
distinguish between "relation", the abstract symbol such as
#FATHER-OF, and '"relationship", a particular instance such as
(#FATHER-OF :NOAH :JAFETH)). In accord with our earlier
convention about naming things, we can give the relatlionship a
name, so that we can treat It like an object and say (#KMOW :I

tREL76) where :REL76 Is a name fof a partlcular relattonship
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like (#FATHER-OF :NOAH :JAFETH). We can keep s:iralght which
name goes with which relatlonship by putting the name directly
into the relationship. Our example would then become (#FATHER-
OF :NOAH :JAFETH :REL76). There is no special reason to put
the name last, except that it makes indexing and reading the
statements easier, We can tell that :REL76 Is the name of this
relation, and not a participant since FATHRER-OF relates only two
objects. Similarly, we knew that It has to be a partlcipant In
the relationship (#KNMNQOW :1 :REL76) since #KNOW needs two
arguments,

Wle now have a system which can be used to describe more
complicated facts. '"Harry slept on the porch after he gave
Alice the jewels." would become a set of assertions:

(#SLEEP :HAPRY :REL1) (#LOCATION :REL1 :PORCH)

(#GIVE :HARRY :ALICE :JEWELS :REL2) (#AFTER :REL1 :REL2)

This example points out several facts abut the notation.
The number of participants In a relationship depends on the
particular relation, and can vary from 0 to any number. \le do
not need to glive every relatlonship a name =-- It Is present only
iIf we want to be able to refer to that relaticnship elsewhere.
This will often be done for events, which are a type of
relationship with special properties (such as time and place of

occurrence).
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3,1.2 Philosophical Gonslderatlions

Before going on, let us -stop and ask wha; V€ ére doing. In

the preceding paragraphs, we have developed a notation for
representing certaln kinds of meaning. In doing so we have
g1ibly passed over Issues which have troubled philsophers and
linguists for thousands of years. Countless treatises and
debates have tried to analyze just what It means to be an
“"object" or a "property", and what logical status a symbol such
as #BLUE 6r #CITY should have. We will not attempt to glve a
philosophical answer to these questlions, but Instead take a more
pragmatic approach to meaning.

Language Is.a process of communlication between peopl¢, and
Is Inextricably enmeshed in the knowledge that those people have
. about the world. That knowledge Is not a neat collection of
definitions and axioms, complete, concise and cons}stent.
Rather It is a collection of concepts designed to manipulate
ideas. It is In fact Incomplete, highly redundant, and often

"orimitives"

Iinconsistent. There Is no self-contained set of
from which evéryth!ng else can be defined., Deflnitions are
clrcular, with the meaning of each concept depending on the
other concepts,

This might seem like a meaningless change ~- saying that the
meaning of words Is represented by the equally mystericus

meanings of "concepts" which exlist In the speaker's and hearer's

minds, but which are open to nelther Iimmediate Introspection nor
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axperiment. However, there Is a major difference, The structure
of concepts whlch is postulated can be manfpulated by a togical
system within the computer. The "internal representatlion'" of a
sentence ls something which the system can obey, answer, or add
to Its knowledge. |t can relate a sentence to other concepts,
draw conclusions from it, or store it In a way which makes it
useable in further deductions and analysis.

This can be compared to the use of "forces" in physiecs., We
have no way of directly observing a force like gravity, but by
postulating its existence, we can write equations cdescribing 1¢,
and relate these equations to the physical events lnvolved.
Similarly, the "concept" representation of meaning is not
intended as a direct picture of something which exlists in a
person's mind. It is a fiction of the sclientist, valld only In
that it gives him a way to make sense of data, and predi~t
actual behavior.

The justificatlon for our use of concepts Iin this system
Is the way it actually carrles out a dlalog which simulates In
many ways the behavior of a human language user. For a wider
fleld of disccocurse, !t would have to be expanded In i{ts details,
and perhaps in some aspects of its overall structure., However
the ldea is the same =~ that we can In fact gain a better
understanding of language use by postulating these fictitious
concepts and structures, and analyzing the ways in which they
interact with language.

The success of such a theory at actualy describing language
will depend largely on the power and flexib!lity of the

representation used for the concepts, Later sections of tnls

chapter discuss the reasons why PLANNER Is particularly well
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suited for this job,

wWe would like to consider some concepts as “"atomic", (l.e.
concepts which are considered to have thelr own meaning rather
than being just combinations of other more basic concepts). A
property or relation is atomic not because of some speclal
logical status, but bacause It serves a useful purpose In
relation to the other concepts in the speaker's model of the
world. For example, the concept #0LD Is surely not primitive,
since it can be defined In terms of #AGE and number. However,
as an atomic property it will often appear in knowledge about
people, the way they look, the way they act, etc. Indeed, we
could omit it and always express something like "having an age
greater than 30", but our model of the world will be simpler and
more useful if we have the céng¢pt #0LD avallable instead.

There is no sharp line dividing atomic concepts from non=-
atomic ones. It would be absurd to have separate atomic
concepts for such things as #CITY-0F-POPULAT!ON-23,L485 or
#PERSON-WEIGHIMNG~-BETWEEN=-178~-AND~181. But 1t might In fact be
useful to distinguish between #BIG-CITY, #TOWN, and #VILLAGE, or
between #FAT, and #THIN, since our model may often use these
distinctions.

If our "atomic" concepts are not logically primitive, what
kind of status do they have? What Is their '"meaning'"? How are
they defined? The answer‘is again relative to the world-modetl

of the speaker. Facts cannot be classified as '"those which
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define a concept'" and 'those which describe it." Ask somzone to
define *PERSOM or #JUSTICE, and he will come up with a forrula
or slogan which is very limited. #JUSTICE is defined in his
worid-model by a serfes of examples, experiences, and speciflic
cases. The model is clircular, with the meaning of any concept
depending on the entire knowledze of the spezker, (not just the
kind which would be Included in a dictionary). There must be a
clese similarity between the models held by the speaker and
listener, or there could be no communication. |f my concept of
#DEMOCRACY and yours do not colrclde, we may nave great
difficulty understanding each other's political viewpoints,
Fortunately, on simpler things such as #BLUE, #DOG, and #AFTER,
there is a pretty good chance that the models will be
practically ldentical. 1In fact, for simple concepts, we can
choose a few primary facts about the concept and use them as a
"definition”" , which corresconds to the traditional dictlonary.
Returning to our notatlon, we see that It Is intentionally
general,vso that out system can deal with concepts as people do.
In English we can treat events and relat!onships as objects, as
in "The war destroyed Johnson's rapport with the people.” Within
our representation of meaning we can similarly treat an event
such as #WAR or a relationship of #RAPPORT in the same way we
treat objects, We do not draw a sharp philosophical dlistinction
between "specific objects", "properties", relationships",

"events", etc.
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2.1.3 Complex iInformation

We now have a way to store a data base of assertions about
particular cbjects, properties, and relatlonships. Next, we
want to handle more complex Informatlon, such as '"All canaries
are yellow.", or "A thesis Is acceptable If elther It Is long or
It contalns a persuaslive argument." This could'be done using
a formal language such as the predicate calculus., Basic loglcal
relations such as [mplies, or, énd, there-exlsts, etc. are
represented symbolically, and information Is translated Into a

"formula". Thus we might have:

(FORALL (X) (IMPLIES(#CANARY X)(#COLOR X #YELLOW)))

(FORALL (X)(IMPLIES

(AND (#THESIS X)

(OR (#LONG X)

(EX1STS (Y)
(AND (#PERSUASIVE Y)
( #ARGUMENT Y)
, (#CONTAINS X Y)))))

(#ACCEPTABLE X)))

Flgure 52 == Predicate Calculus Representation

Several notational conventions are used. Flrst, we need
variables so that we can say things about objects without naming
particular ones. Thls Is done with the quantiflers FORALL and
EXISTS. Second, we need loglcal relations like AND, OR, NOT,
and IMPLIES. Using thls formalism, we can represent a §uestlon
as a formula to be "proved". To ask "Is Sam's thesls

acceptable?" we could glve the formula (#ACCEPTABLE :SAM-THESIS)
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to a theorem prover to prove by manipulating the formulas and
assertions In the data base according to the cules of loglc. We
would need some additional theorems whlch would aliow the
thaorem prover to prove that a thesis Is long, that an argument
Is accentable, etc.

In some thecrettcal sense, predicate calculus formulas
could express all of our knowledge, but In a practlcal sense
there Is something missing. A person would also have knowledge
abnut how to go about doling the deduction. He would know that
he saould check the length of the thesls flrst, since he might
be able to save himself the bother of reading It, and that he
might even be able to avold counting the pages if there Is a
table of contents. In addition to complex iInformation about
what must be deduced, he also knows a lot of hints and
"heuristlics'" teiling how to do it better for the particular
subject belng discussed.

Most “theorem-proving'" systems do not have any way to
Include this addltional Intelligence. Instead, they are limilted
to a kind of "working In the dark'". A uniform proof procedure
gropes lts way through the collection of theorems and
assertlions, according to some general prccedure which does not
depend on the subject matter. It tries to comblne any facts
which might be relevant, working from the bottom up. I[n our
example glven above, we mlght have a very complex theorem for
deciding whether an argument is persuasive, A uniform proof
procedure might spend a great deal of time checking the
persuasiveness of every argument It knew about, since a clause
of tha form (PERSUASIVE X) might be relevant to the proof. What
we would prefer Is a way for a theorem to gulde the process of

deduction In an Intelligent way. Car) Hewltt has worked wlth
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this problem and has developed a theorem-proving language called
PLANNER <Hewlitt 1968, 19656>, |In PLANNER, theorems are in the
form of programs, whicu descrlbe how to go about proving a goal,
or how to deduce consequences from an assertion. This Is
described at length in section 3.3, and forms the basis for the
inference part of our English understander. In PLANNER, our
sentence about thesls evaluatlon could be represented as shown
in Figure 53.

This Is similar In structure to the predicate calculus
representation glven above, but there are Important differences.
The theorem is a program, where each logical operator indicates
a definlte serles cf steps to be carried out. THGOAL says to
try to find an assertlion In the data base, or to prove it using
other theorems. THUSE gives advice on what othe~ theorems to
use, and in what order. THAND and THOR are equivalent to the
logical AND and OR except that they give a speclflc order In

which things shculd be tried. (The "lisping" is to

differentiate PLANNER nahes from the standard LISP functions ARND

and OR. Thls same convention Is used for all functions which
have LISP analogs.)

The theorem EVALUATE says that If we ever want to prove
that a thesis Is acceptable, we should first make sure It Is a
thesls by lookling in the data base. Next, we should try to
prove that [t Is long, first by using the theorem CONTENTS-CHECK

(whlch would check the table of contents), and if that falls, by
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(DEFINE THEOREM EVALUATE
;EVALUATE 1s the name we cre
sglving to the theorem

(THCONSE(X Y)
;this Indicates the type of
stheorem and names lits
svartables

(THGOAL(#THESIS $2X))
;show that X Is a thesls
sthe "$?" [ndicates a varlable

(THOR
;THOR 1s like '"or", trylng things
;In the order given until one works

(THGOAL(#LONG $7?X)(THUSE CONTENTS-CHECK COUNTPAGES))
; THUSE says to try the theorem
;named CONTEMNTS-CHECK flrst,
;then If that doesn't work, try
:the one named COUNTPAGES

{ THAND
;THAND Is tike Yand"

(THGOAL(#CONTAINS $?2X $7?Y))
;find something Y which Is
;contained In X

(THGOAL(#ARGUMENT $?Y))
;show that It Is an argument

(THGNAL(#PERSUASIVE $?Y)(THTBF THTRUE))))))

;:prove that It Is persuaslve, using
;any theorems which are applicable

Figure 53 =- ANNER Representatlion
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using a theorem named COVUNTPAGES (which mlght In fact call a
simple LISP program which thumbs through the paper.) If they
both fall, then we logk In the data base for somethling contalined
In the theslis, check that it i< an argument, and then flnally
try to prove that it Is persuasive. Here, we have used (THTBF
THTRUE), which Is PLANNER'S way of sayling "try anything you know
which can help prove It", PLANNER must then go searching
through all of lts theorems on persuaslvensess, just as any
other theorem prover would., Thera are two Important changes,
though. Flrst, we never need to look at persuasiveness at all
I1f we are able to determine tha: the theslis Is long. Second, we
only look at the persuasliveness of arguments whlich we already
know are a part of the thesis. We do not get sidetracked Into
looking at the persuasiveness theorems except for the cases we
really want.

PLANNER also does a number of other things, like
maintaining a dynamlc data base (assertlons can be added or
removed to reflect the way tine wcrld changes In the course of
time), allowing us to contrcl how much deduction will be done
when new facts are added to the data base, etc, These are &ll

discussed in sectlion 3.3.
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2.l.4 Questions, Sgatemepts, and Comminds

PLANNER 1Is partlcuiarly convenlient for a language-
understanding system, slince It can express statements, commands,
and questtoﬁs directly. We have already shown how asser=:ions
can be stated in simple PLANNER format. Commands and questlons
are also easlly expressed. Slrce a theorem ls written In the
form of "a procedure, we can Jet steps of that procedure actually
be actlons to be taken by a robot. The command "Pick up the
block and put It in the box." could be expressed as a PLANMER
program: .

(THAND(THGOAL(#PICKUP :BLOCK23))
(THGOAL(#PUTIN :BLOCK23 :B0X7)))

Remember that the prefix ":" and the number Indicate a speciflc

"object. The theorems for #PICKUP and #PUTIN would also be

programs, describing the sequence of steps io be done,.

Earller we asked about Sam's thesls In predlcate calculus
In PLANNER we can ask:

(THGOAL (#ACCEPTABLE :SAM-THES1S)(THUSE EVALUATE))

Here we have speclifled that our theorem EVALUATE té'to be
used. |f we evaluated thlis PLANNER statement, the theorem would
be called, and executed just as described on the previous pages.
PLANNER would return one of the values "T" or "NIL" depending on
whether the statement i{s true or false.

For a questlon llke "What nations have never fought a war?"

PLANNER has the function THFIND, We would ask:
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(THFIND ALL 87X (X Y)
(THGOAL(#NATION $2X) )
(THNOT
(THAND(THGOAL (#WAR $?Y))
(THGOAL(#PARTICIPATED $?2X $2Y)))))
and PLANNER would return a list of all such zountries. Uslng
our conventions for giving names to relatlons and events, we
could even ask:
(THFIND ALL 87X (X Y Z EVENT)
(THGOAL(#CHICKEN $?Y))
(T iGOAL(#ROAD $22))
(THGOAL(#CROSS $?Y $?Z $?EVENT))
(THGOAL(#CAUSE $2?X $?EVENT)))

This brief description has explained the baslc concepts
underlying the deductive part of our language understanding
program. To go with It, we need a complex nodel of the subject
belng discussed, This Is described In sectlon 3.4, Section 3.3

gives more details about the PLANNER lansuage and lts uses.
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3.2 Comparison with Frevious Programs

In Section 3.1 we dliscussed ways of representling
Information and meanling within a language~comprehending system,
In order to compare our ldeas with those In previous systems, we
will estaolish a broad classificatlion of the field. Of course,
no set of pigeon-holes can completely characterize the
differences between programs, but they can give us some
viewpoints from which to analyze different people's work, and
can help us see past the superficlal differences. Ve will dea)
only with the ways that programs represent thelr Information
about the subject matter they disciuss. Issues such as parsing
and semantlc analysls techniques are dlscussed in other
sectlons. We will distinguish four basic types of systems
called “speclal format", “text based", “restricted logic", and

“"general deductive".
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3.2.1 Speclal Formaf Systems

Most of the early language undestancing programs were of
the speclal format type. Such systems usually use two speclal
formats designed for their partlcular subject matter -~ one for
representing the knowledge they keep stored away, and the other
for the meaning of the Engllsn input. Soma examples are:
BASEBALL <P.F.Green>, which storec tables of baseball results
and Interpreted questions as’"speclfl&atlon 1ists" requesting
data from those tables; SAD SAM <lLindsay>, which lnterpreted
sentences as simple relationship facts about people, and stored
these In a network structure; STUDENT <Bobrow 196&),.whtch
Interpreted sentences as linear equations and could store other
linear equatlions and manlipulate them to solve algebra problems;
and ELIZA <Welzenbaum 1966>, whose internal knowledge Is a set
of sentence rearrangements and key words, and whlich sees lnput
as a simple string of words,

These programs all make the assumption that the only
relevant informaticn In a sentence Is that whlch f!ts-thelr
particular format. Although they may have very sophisticated
mechanisms for using this Information (as In CARPS <Charniak>,
which can solve word problems In calculus), they are each bullt
for a spectal purpose, and do not handle Informatlion with the
flexlbility which would allow them to be adapted to other uses.
Nevertheless, thelr restricted domaln often allows them to use

very clever tricks, which achleve Impresslive results with a



Section 3,2.2 - Page 223

minimum of concern for the complexities of language.
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2.2.2 Text Based Systems

Some researchers were not satisfied with the lhaltatlons
Inherent in the special-format app}oach. They wanted systems
which were not limited by thelr construct?onvﬁo a particular
specialized field. lInstead they used English text, with all of
lts generallty and diversity, as a baslis for storing
Information. In these "text based" sys:tems, a body of text Is
stored directly, under some sort of Indexing scheme. An English
sentence Input to the understander Is Interpreted as a request
to retrieve a relevant sentence or grcoup of sentences from the
text. Various Ingeninus methods were used to find possibly
relevant sentences and decide which were most likely to sastisfy
‘the request. .

PROTOSYNTHEX | <¢Simmons 1966> had an Index specifying all
the places where each "~ontent word" was found In the text. It
tried to find the sentences which had the most words in common
wlith the request {(using a speclial welghting formula), then did
some syntactic analysls to see whether the words In coimon were
In the right grammatical relatlionship to each other. Semantic
Memory <Qui'llan 1966> stored a slightly processed version of
English dictionary de?tnltlons tn which multiple~meanling words
were ellminated by having humans indicate the correct
Interpretation. it then used an assoclative Indexing scheme
which enabled the system to follow a chain of Index references.

An Input request was In the form of two words Instead of a
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sentence. The response was the shortest chaln which connected
them through the assocltative Indax (e.g. If there Is a
definition contalning the words A and B and one contalning B and
C, a reguest to relate A and C will return both sentences).

Even with complex indexling schemes, the text based approach
has a baslic problem. It can only spdut back speclific sentences
which have been stored away, and can not answer any questlion
which demands that sonething be deduced from more than one plece
of Information. In addition, Its responses often depend on the
exact way the text and questlons are stated in English, rather

than dealing with the underlying meaning.
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2.2.3 Limited Logic Systems

The "limlted loglc'" approach attempted to correct thase
faults of text based systems, and has baen used for most of the
more recent language understanding programs., First, some sort
of more formal notation [s substituted for the actual Engllish
sentences In the base of stored knoledge. This notation may
take many different forms, such as "desription lists" <Raphael
1964>, "kernels" <Simmons 1968> ''concept-relation-concept
triples™ <Simmons 1969>, "data nodes" <Quililan 1969> , "rings"
{Thompson>, "relational operators' <(Tharp> , etc. Each of these
forms is designed for efflicient use In a particular system, but
at heart they are all doing the same thlng == providing a
notation for slimple assertions of the sort descrited In sectlon
3.1.1., 1t Is relatively unimportant which special form Is
chosen. All of the different methods can provide a uniform
formalism which frees simple iInfirmation from being tled down to
a specific way of expressing It In English. Once this Is done,
a system must have a way of translating from the Engllsh Input
sentences Into thls Internal assertion format, and the greatest
bulk of the effort In language understanding systems has been
this "semantlc analysis". We wlll discuss It at length In
chapter 4. For now we are mcre Interested in what can be done
with the assertions once they have been put lnto the desired
form.

Some systems (see <Qullllan 1969>, ¢Tharp>) remaln close to
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text based systems, only partlially breaklng down the Inltial
text ifnpnt. The text [s processed by some sort of dependercy
analysis and left In a network form, elther emphastizing semantic
relatlicnships or remalning closer to the syntactic dependency
analysis.What Is common to these systems Is that they do nut
attempt to auswer questions from the stored Information. As
with text based systems, they try to answer by glving back bits
of Informatlion directly from the data base. They may have
clever ways to declde what parts of the data are relevant to a
request, but they do not try to break the question down and
answer [t by logical inference. Because of this, they suffer
the same deficlencles as text based systems. They have a ass
of information stored away, but 1lttle way to use It except to
print It back out.

Most of the systems whlich have been developed recently fit
more comfortably under the classlificatlion "1imited logle". In
additlon to thelr data base of assertions (whatever they are
called), they have some mechanlism for accepting more complex
Information, and u;lng It to deduce the answers to more complex
questlions. By “complex information" we mean the type of
knowledge described In sectlion 3.1.3. This Inzludes knowledge
containing loglcal quantiflers and relatlonships (such as "Every
canary Is efther yellow or purple,” or "If A Is a part of B and
B Is a part of C, then A ls a part of C."). By "complex

questions", we mean questions which are not answerable by glving
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out one of the data base assertlons, but demand some loglcal
Inference to produce an answer,

One ¢cf the earllest limited logic programs was SIR <Raphael
1964>, which could answer questlions using simple loglcal
relatlons (1ike the "part'" example In the previous paragraph).
The compliex Information was not expressed as data, but was bullt
dlrectly Into the SIR operating progrém. This meant that the
types of compiex Information it could use were highly 1lmlted,
and could not be easlly changed or expanded. The complex
questions It could answer were slnllar to those In many later
1imited loglc systems, consistling of four basic types. The
simplest Is a question which translates Into a single assertion
to be verified or falsifled (e.g. "ls John a bagel?") The second
Is an assertion In which one part is left undetermined (e.g.
"Who Is a bagel?") and the system responds oy “filllng In the
btank",., The third type Is an extenslon of this, which asks for
ail possible blank-fillers (e.g. "Name all bagels."), and the
fourth adds counting to this listing facllity to answer count
questions (e.g."How many bagels are there?"). SIR had speclal
loglc for answering 'how many"” questlons, using Information llike
“"A hand has 5 fingers.", and In a similar way each limited loglc
system had speclal bullt-in mechanisms to answer certaln types
of questions.

The DEACON system <{Thompson> had speclal "verb tables" to

handle time questlions, and a bottom=-up analysis method which



™

Sectlon 3,2,3 - Page 229

allowed questlons to be nested. For example, the question 'Who
Is the commander of the batalllon at Fort Fubar?'" was handled by
first Internally answering tre question "What batallion is at
Fort Fubar?" The answer was then substlituted dlrectly Into the
origlnal questlon to make it "Who Is the commander of the 69th
batallion?", which the system then answered. PROTOSYNTHEX |1
{Simmons 1968> had special loglic for taklng advantage of the
transitivity df "is" (e.g. "A boy Is a person.', "A person Is an
animal." therefore "A..."). PROTOSYNTHEX |11 <Simmons 1969> and
SAMENLAQ Il {Shapliro> bootstrapped thelr way out of first-order
loglc by allowing simple assertlions about relatlonships (e.g.
"North-of Is the converse of South-of."). CONVERSE <Kelloge>
converted questlons Into a "QUery language" which allowed the
form of the question to be more complex but used simple table

lookup for finding the answers.[

A1l of the Yimited loglc systems are baslcally similar, In

that complex Informatlion iIs not part of tine data, but Is bullt
Iinto the system programs. Those systems which could add to

thelr Initial data base by accepting English sentences could

accept only simple assertlons as input. The questlions could not

Involve complex quantifted relationships (e.g. "Is there a

country which Is smaller than every U.S, state?).

P
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2.2.4% General Dedyctlve Svstems

The problems of limited loglc systems were recognlzed very
early (see <Raphael 19€4> p. 60), and neople looked for a more
general approach to storlng and using complex Information. |If
the knowledge could bé expressed In some standard mathematical
notation (such as the predicate calculus), then all of the work
loglclans have done on theorem proving could be utillized to make
an efficient deductive system., By expressing a ques;lon as a
theorem to be proved (see section 3.1,3), the theorem prover
could actually deduce the Information needed to answer any
questlon which could be expressed In the formalism, Complex
Iinformatlon not easlily useable In limited logic systemé could be
neatly expressed in the predicate calculus, and a body of work
already exlsted on computer theorem proving. This led to the
"egeneral deductlve" approach to language understanding programs.

The early programs used logical systems less powerful than
the full predicate calculus (see <Bar-Hlllel>, <Coles 1968>, and
<Darlington>) but the big boost to theorem proving research was
the development of the Robinson resolution algorithm <Roblnson>,
a very simple "complete uniform proof procedure" for the first
oraer predicate caizulus. This meant that it became easy to
write an automatic theorem proving program Wlth two Important
characteristics. First, the procedure Is "unlform" -- we need
not (and In fact, cannot) tell It how to go about proving things

In a way sulted to particular subject matter. It has Its own



Section 3.2,4 ~ Page 231

fixed ptocedure for Lullding proofs, and we can only change the
sets of loglcal statements (or "axioms"} for It to work on.
Second, It guarantees that If any proof Is possible using the
rules of predicate calculus, the procedure will eventually find
It (even thcugh it may take a very long time). These are very
prétty propertles for an abstract deductlve system, but the
question we must ask is whether their theoretical beauty Is
worth payling the price of low practicality. We would like to
argue that In fact they have led to the worst deflciencles of
the theorem-proving questlion-answerers, and that a very
different approach'is called for.

The "“uniform procedure" approach>was adopted by a number of
systems (see {Green 1968, 1969>) as an alternative to the kind
ol speciallized 1imited logic discussed In the previous section.
It was felt that there must be a way to present complex
Information as data rather than embedding It Into the Inner
worklings of the language understanding system. There are many
beneflts In having a unilform notation for representing problems
and knowledge In a way which does not depend on the qulrks of
the particutlar program which will interpret them, |t encbles a
user to describe a body of knowledge to the computer In a
"neutral" way without knowing the details of the question=-
answering system, and guarantees that the system will be
applicable to any subject; rather than belng speclallzed to

handle only one.
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Predlcate calculus seemed to be a good uniform notatlion,
but In fact It has a serious defliclency. By putting complex
Information Into a "neutral" logical formula, these systems
lgnored the fact that an !mportant part of a person's knowledge
concerrs how to go about flguring things out. Qur heads dcn't
contalr neat sets of loglcal axioms from which we can deduce
everything through a "proof procedure'". Instead we have a large
set of heuristics and procedures for solving problems at
different levels of generality. Of course, there Is ro reason
why a computer should do things the way a person does, but In
lgnoring thls type of knowledge, programs run into tremendous
problems of efficiency. As soon as a "uniform procedure"
theorem prover gets a large set of axloms {even well below tle
number needed for really understanding language), It becomes
bogged down in searching for a proof, since there s no easy way
to gulde lts search according to the subject matter. In
additlion, a proof which takes many steps (even If they are In a
sequence which can be easily predicted by the nature of the
theorem) may take Impossibly long since 1t is very difficult to
describe the correct proving procedure to the system.

1t Is possible to write theorems in a clever way In order
to Impllcitly gulde the deduction process, and a recent paper
<Green 1369> describes some of the problems in "“techniques for
“"programming' In first-order logic". First order logic Is a
declarative rather than Imperative language, and to get an
Imperative effect (l.e. telllng It how to go about doing
somethlng) takes a good deal of careful thought and clever
trickery.

i1t might be possible to add strategy Information to a

predicate calculus theorem prover, but with current systems such
as QA3, "To change strategles In the current version, the user
must know about set-of-support and other program parameters such
as level bound and term-depth bound. To radically change the
strategy, the user presently has to know the LISP language and

must be able to modify certaln strategy sections of the
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program," (<Green 1969> p.236). In newer programs such as QAl4,
there will be a special strautegy language to go along with the
theorem=-proving mechanisms. !t will be Interesting to see how
close these new strategy languages are to PLANNER, and whether
there Is any advantage to be galned by putting them in a hybrid
with a resolutlon-based system. As to the completeness
argument, there are good reasons not to have a complete system =

- these are discussed later In thls sectlon.
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2.2.5 Procedural Deductive Systems

The problem with the 1imited logic systems wasn't the fact
that they expressed thelr ccmplex Informatlion In the form of
programs or procedures. The problem was that these programs
were organized In such a way that "...each change In a
subprogram may affect more of the other subprograms. The
structure grows more awkward and difficult to
generalize...Finally the system may become tco unwlieldy for
further experimentation." (<Raphael 1964> p.91), Nevertheless,
It was necessary to bulld In more and more of these subprograms
Iin order to accept new subject matter.

What was needed was th2 development of new programming
techniques so that systems could retain the capabllity of using
procedural Information, but at the same time express this
Information In a simple and straightforward way which did not
depend on the pecullarities and speclal strucuture of a
particular program or subject of discussion,

A system which partlally fits thls description Is Woods'
{Woods 1968>, 1t uses a quantificational query language for
expressling questions, then assumes that there are 'semantic
primitives" In the form of LISP subroutines which decide such
predlcates as (CONNEC™ FLIGHT-23 BOSTON CHICAGO) and which
evaluate functions such as "number of stops", "“owner", etc. The
thing which makes thls system different from the limlited loglic

systems Is that the entire system was designed without reference



Sectlon 3.2.5 - Page 235

to the way the particular "primitive" functions would operate on
the <Zata base. In a way, this Is avolding the Issue, since the
[afarmation which the system was designed to handle (the
Official Alrline Guide) Is particularly amenable to simple
table-~lookup routines. If we had to‘handle less structured
Informaticn of the type usually done with theorem provers, these
primitive routines mlight Indeed run into the same problems of
interconnectedness described In the quote above, and would
become harder and harder to generallze.

PLANNER was designed by Carl Hewitt as a goal-of!ented
procedural language to dual with these problems. It has speclal
mechanisms for deallng with assertions In an efficlent way, and
In aadition has the capatlity to Include any complex Information
which can be expressed in the predicate calculus, More
Important, the complex Information Is expressed In the form of
procedures, which can Include all sorts of knowledge of how to
best go about proving things. The languagé Is "goal-orliented",
Iin that we do not have to be concerned about the detalls of
interaction between the different procedures. |f at different
places in our knowledge we have theorems which ask whether an
object is sturdy {for example in a theorem about support, about
bullding houses, etc.) they are not forced to specify the
program which wil) serve as sturdiness~-inspector. Instead they
say something like "Try to find an assertion that X Is sturdy,

or prove It using anythinz you can.” If we *now of speclal
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procedures which seem most likely to give a quick answer, we can
specify that these should be tried first, But if at some point
we add a new sturdiness-tester, we do not need to find out which
theorems use it. We need only add it to the data base, and the
system will automatically try It (along with any other
sturdiness-testers) whenever any theorem gives the go-ahead.

The ability to add new thecrems without relating them to
other theorems Is the advantage of a "uniform" notation. In
fact PLANNER is a uniform notatlon for expressing procedural
knowledge just as predicate calculus 's a notatlon for a more
limited range of informatlon. The advantage Is that PLANNER has
a hlerarchical control structure. |In addition to specifying
loglcal relationships, a theorem can take over control of the
deduction process,

We can have complete control over how the system will
operate. In any theorem, we can tell [t to try to prove a
subgoal using only certain theorems (i1f we know that the goal Is
bound to faii unless one of them woriks), we can tell It to try
things in a ce-taln order (and the cholice of thls order can
depend on arbitrarily complex calculations which take place when
the subgoal is set up) or we can even write a "spofler" theorem,
which can tell the system that a goal ls certain to fall, and
that no other theorems should even be trled.

Notice that this control structure makes It very difficult
to characterize the abstract logical properties of PLANNER, such
as conslistency and completeness. it Is worth polinting out here
that completeness may In fact be a dad property. |t means (we

belleve, necessarlly) that If the theorem-prover Is glven

something to prove which Is In fact false, It will exhaust every
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possible way of trylng to prove it. By forsaking completeness,
we allow ourselves to use good sense In deciding when to glve
up.

In a truly uniform system, the theorem prover is forced to
“"rediscover the world" every time it answers a question. Every
goal forces It to start from scratch, looking at all of the
theorems In the data base (perhaps using some subject-matter-
free heuristics to make a rough selection)., Because It does not
want to be limited to domain-dependent Information, !t cannot
use It at all, PLANNER can operate in this "blindman" mode if
we ask It to (and It is less efficient at doing so than a
procedure spec’ally invented to operate this way), but It should
have to do thkis only ravely ==~ Qhen discovering something which
was not known or understood when the basic theorems were
written. The rest of the time It can go about proving things
which It knows how to do. without a tremendcus overhead of
having to plece together a proof from scratch each time., As
mentloned above, It might be possible to patch 'strategy
programs'" onto theorems In conventlonal theorem-provers in order
to accomplish the same goal.> In PLANNER we have the advantage
that this can be done naturally using the notatlion, and the
strategy Is embedded In the PLANNER theorems, which themselves
can be looked at as data. In an advanced system a PLANNER
program could be wrltten to learn from expertence. Once the

"b1indman mode" finds a proof, the method It used could be

Y
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remembered and tried flrst when a similar goal ls generated
agaln., See section 5.1 for more discussion ¢¥ learning.

To those accustomed to unlform proof proceduras, this all
sounds like cheating. Is the system really proving anything If
you are glving It clues about what to do? Why Is tt different
from a simple set of programmed LISP procedures llke those
envisioned by Woods? Flrst, the language Is deslgned so that
theorems can be written Independently of each other, without
worrying about when they wlli be called, or what other theorems
and data they willl! need to prove their subgoals.

The language is destgned so that If we want, we can write
theorems In a form which Is almost ldentical to the predicate
calculus, so we have the benefits of a unltorm system, On the
other hand, we have the capabillty to add as much subjiect-
dependent knowledge as we want, telllng theorems about other
theorems and proof procedures. The system has an automatlic
goal-tree backup system, so that even when we are specifying a
particular order in which to do things, we may not know how the
system will go about doing them. {t will be able to follow our
suggestlons and try many diffarent theorems to establish a goal,
backing up and trylng another automatically If one of them leads
to a fallure (see section 3.3).

In summary, the main advance In a deductive system using
PLANNER Is in allowlng ourselves to have a data base of
procedures rather than formulas to express complex Informatlon.
This ccmblines the generallity and power of a theorem prover with
the ability to accept procedural knowledge and heuristics
relevant to the data. It provides a flexible and powerful tool
to serve as the basls for a language understsnding systenm. The
rest of this chapter describes the PLANNER language and the way

It ts vsed In our system,
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3.3 Programming In PLANNER
2.3.1 Baslic Operation of PLANNER
The easlest way to understand PLANNER is to watch how It
works, so In this section we will present a few simple examples
and explaln the use of some of lIts most elementary features.
Filrst we wlll take the most venerable of traditlonal
deductlons:
Turing Is a human
A1l humans are fallilble
so
Turing Is fallible,
it Is easy enough to see how this cculd be expressed In the
usual loglcal notation and handled by a uniform proof procedure.
Instead, let us express [t In one posslble way to PLANNER by
sayling:
(THASSERT (HUMAN TURING))
:This asserts that Turing is human.
(DEFPROP THEOQREM1

(THCONSE (X) (FALLIBLE $2X)

(THGOAL (HUMAN $7X)))
THEOREM)

;Thls Is one way of saying that all humans
sare falllble.
The proof would be generated by asking PLANNER to evaluate
the expression:
(THGOALv(FALLIBLE TURING) (THTBF THTRUE))
We Immediately see several points., Flrst, there are two
different ways of storlng Information. Simple assertions are

stored In a data base of assertions, while more complex

sentences contalnling quanttflers or logical connectives are



Section 3.3.1 -~ Page 240

expressed In the form of theorems.

Second, one of the most important polints about PLANNER Is
that It is an evaluator for statements written In a programming
language. It accepts input in the form of expresslions written
in the PLANNER language, and evaluates them, producling a value
and slde effects. THASSERT is a functlon which, when evaluated,
stores its argument in the data base of assertions or the data
base of theorems (which are cross-referenced In varlous ways to
give the system efficient look-up capabilitles). A theorem Is
defined with DEFPROP as are functlons in LISP,

In this example we have defined a theorem of the THCONSE
type (THCONSE means consequent; we will see other types later).
This states that If we ever want to establish a goal of the form
(FALLIBLE $?X), we can do thls by accomplishling the goal (HUMAN
$2X), where X is a vartable. The strange preflx characters are
part of PLANNER's pattern matching capabilltlies. If we ask
PLANNER to prove a goal of the form (A X), there Is no obvious
way of knowing whether A and X are constants (like TURING and
HUMAN in the example) or variabies. LISP solves this problem by
using the function QUOTE to Indicate constants. In pattern
matching this Is Inconvenient and makes most patterns much
bulkler and more difficult to read. Instead, PLANNER uses the
opposite conventlon -- a constant Is represented by the atom
itself, while a varlable must be indlicated by adding an

approprlate prefix. This prefix differs according to the exact



Section 3.3.1 - Page 2ul

use of the variable In the pattern, but for the time being 1=t
us just accept $? as a prefix Indlcating a varlable. The
definition of the theorem Indicates thatbit has one variable, X,
by the (X) following THCONSE.

The third statement [llustrates the functlicn THGOAL, which
calls the PLANNER interpreter to try to prove an assertlon, .
This can function In several ways. If we had asked PLANNER to
evaluate (THCOAL (HUMAN TURING)) it would have found the
requested assertion Immediately In the data base and succeeded
(returning as Its value some iIndlicator that It had succeeded).
However, (FALLIBLE TURING) has not been asserted, so we must
resort to theorems to prove it.

Later we will see that a THGOAL statement can glve PLANNER
various kinds of advice on which theorems are appllcable to the
goal and should be tried. For the moment, (THTBF THTRUE) Is
advice that causes the evaluator to try all theorems whose
consequent Is of a form whlch matches the goal. (i.e. a theorem
with a consequent ($?Z TURING) would be tried, but oné of the
form (HAPPY $?Z) or (FALLIBLE $?Y $?Z) would not; Assertlons
can have an arblitrary list structure for thelr format =- they
are not limited to two-member lists or three-member lists as.In
these examples.) The theorem we have just deflned would be
found, and in trying it, the match of the consequent to the
goal would cause the varlable $?X to be assigned to thé constant

TURING. Therefore, the theorem sets up a new goal (HUMAN
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TURING) and thils succeeds Immedlately since It Is In the data
base. In general, the success of a theorem will depend on
evaluating a PLANMER program of arbitrary complexity. In this
case It contains only a single THGOAL statement, so [ts success
causes the entlre theorem to succeed, and the goal (FALLIBLE
TURING) is proved.

Consider the question "Is anything fallible?", or In
loglc, (EXISTS (Y)(FALLIBLE Y)). This requlres a variable and
It could be expressed In PLANNER as:

(THPROG (Y) (THGOAL (FALLIBLE $?Y)(THTBF THTRUE)))

Notice that THPROG (PLANNER's equlivalent of a LISP PROG,
complete with GO statements, tags, RETURN, etc.) acts as an
existentlal quantifier, It provides a binding-place for the
variable Y, but does not Initl_llze it == It leaves It in a
state particularly marked as unassigned. To answer the
question, we ask PLANNER to evaluate the entlire THPROG
expresslon above, To do this It starts by evaluating the THGOAL
expresﬁlon. Thls searches the data base for an assertion of the
form (FALLIBLE $?Y) and falls. It then looks for a theorem with
a consequent of that form, slince the recommendation (THTBF
THTRUE) says to look at all possible theorems which might be
applicable. When the theorem defined above Is called, the
varlable X In the theorem Is ldentiflied with the variable Y In
the goal, but since Y has no value yet, X does not receive a

value. The theorem then sets up the goal (HUMAN $2X) with X as
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a variabie. The‘data-base searching mechanism takes thls as a
commard to look for any assertion which matches that pattern
(i.e. an instaﬁtlatlon), and finds the assertion (HUMAN TURINGJ.
This causes X (and therefore Y) to be assigned to the constant
TURING, and the theorem succeeds, completing the proof and

returning the value (FALLIBLE TURING).
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3.3.2 Backup

There scems to be something missing. So far, the data base
has contalned only the relevant objects, and therefore PLANNER
has found the right assertlons [mmediately. Conslider the
problem we would get if we added new Informatlion by evaluating
the statements:

(THASSERT (HUMAN SOCRATES))
(THASSERT (GREEK SOCRATES))

Qur data base now contalns the assertions:

(HUMAN TURING)

(HUMAN SOCRATES)
(GREEK SOCRATES)
and the theorem:

(THCONSE (X) (FALLIBLE $7X) '
(THGOAL - (HUMAN $2X)))

What If we now ask, "ls there a fallible Greek?" In PLANNER
we would do this by evaluating the expression:

(THPROG (X) (THGOAL (FALLI!BLE $?X)(THTBF THTRUE))
(THGOAL (GREEK $?X)))

THPROG acts like an AND, Insisting that all of its terms
are satisfled befrrz the THPROG Is happy. Notice what mlght
happen. The flrst THGOAL may be satisfied by the exact same
deduction as before, since we have not removed information. |If
the data-base searcher happens to run Intc TURING before It
finds SOCRATES, the goal (HUMAN $7X) wlil] su;ceed, assligning $7X
to TURING. After (FALLIBLE $?X) succeds, the THPROG will then
establish the new goal (GREEK TURING), which Is docmed to fall

since !t has not been asserted, and there are no appllicabie
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theorems. |f we think in LISP terms, this Is a serious problem,
since the evaluation of the flrst THGOAL has been completed
before the secord one Is calléd, and the "push-down list" now
contalins only the THPROG. If we try to go back to the beginning
and start over, it will again find TURING and so on, ad
Infinitum,

One of the most Important features of the PLANNER language

Is that backup I case of fallure Is always possible, and

~moreover this backup can go to the last place where a declsion

of any sort was made. Here, the declslon was to plck a
particular assertion from the data base to match a goal. OQther
decisions might be the choice of a theorem to satlsfy a goal, or
a declision of other tynes found in muire complex PLANNER
functlions such as THOR (the equivalent of LISP OR). PLANNER
keeps enough information to change any declsion and send
evaiuation back down a new path.v

In our example the decision was made inside the theorem for
FALLIBLE, when the goal (HUMAN $7X) was matched to the assertion
(HUMAN TURING). PLANNER wlll retrace its steps, try to find a
different assertion which matches the goal,‘ftnd (HUMAN
SOCRATES), and continue with the proof. The theorem wlll
succeed with the value (FALLIBLE SOCRATES), and the THPROG will
proceed to the next expression, (THGOAL (GREEK $?X)). Since X
has been assigned to SOCRATEZ, this will set up the goal (GREEK
SOCRATES) which will succeed immediately by finding the
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corresponding assertion in the data base. Since there are no
more expressions in the THPRCGG, It will succeed, returning as
its value the value of the last expression, (GREEK SOCRATES).
The whole course of the deduction process depends on the fallure
mechanism fof backing up and trying things ocver (this Is
actually the process of trying different branches down the
subgoal tree.) All of the functions like THCOND, THAND, THOR,
etc, are cohtro;led by success Vs. fatlure. Thus It Is the
PLANNER executlvé which establishes and manlpulates subgoals In

looking for a pfoof.
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2.3.3 Differences with Other Theorem-Provers and Languages

Although PLANNER Is written as a programming language, it
differs In several critical ways irom any.hing which Is normally
conslidered a programming language. First, It Is goal-dlrected.
Theorems can be thought of as subroutines, but they can be
called through a very general pattern-matcher which looks at the
goal which Is to be satisfied. This is llke having the abllitiy
to say '"Call a subroutine which will achieve the desired result
at this point." Second, the evaluator has the mechanism of
success and fallure to handle the exploration of the subgoal
tree, Other languages, such as LISP, with a basic recursive
evaluator have no way to do this. Third, PLANNER contalns a
bookkeering system for matching patterns and manipulating a data
base, and for handlling that data base efflcientiy.

How is PLANNER different from a theorem prover? What is
galned by writing theorems In the form of programs, and giving
them power to call other programs which manipulate data? The
key Is in the form of the data the theorem-prover can accept.
Most systems take declarative Information, as In predlicate
calculus, This Is in the form of expressions which represent
"facts" about the world. These are manipulated by the theorem=-
prover according to some flxed uniform process set by the
system. PLANNER can make use of lmperative information,
telling It how to go about proving a subgoal, or to make use of
an assertion. This produces what Is called hlerarchical control
structure. That Is, any theorem can Indicate what the theorem
prover [s supposed to do as It continues th2 proof. It has the
full power of a general programming language to evaluate
functlons which can depend on both the data base and the subgoal
tree, and to use lts results to control the further proof by
making assertions, deciding what theorems are to be used, and
speclfylng a sequence of steps to be followed.

What does this mean in practical terms? In what way does

it make a "better" theorem prover? We will glve several
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examples of areas where the appro:ch [s Important,

| First, consider the basic problem of decldling what subgoals
to try 1in attempting to satlisfy a goal. Very often, knowledge
of the subject matter will tell us that certain methods are very
likely to succeed, others may be useful If certain other
conditions are present, while others may be possibly valuable,
but not likely, We would llke to have the ablilty to use
heurfstic programé to determine these facts and direct the
theorem prover accordingly. 1t should be able to direct the
search for goals and solutions In the best way pos#!ble, and
able to bring as much Intelligence as possible to bear 6n the
declsion.  In PLANNER this Is done by adding to our THGOAL
statement a recommendation list which can épeclfy that ONLY
certaln theorems are to be tried, or that certaln ones are to be
tried FIRST in a specified order. Since theorems are programs,
subroutines of any type can be called to help make this decision
before establishing 2 new THGOAL. Each theorem has a name (in
our definition at the beginning of Sectlon 3.1.1, the theorem
was given.the name THEOREM1l), to faclillitate referring to it
explicitly,

The simplest kind of recommendation Is THUSE, which takes a
list of theorems (by names) and recommends that they be trled In
the order listed. A more generaf recommendation uses fllters
which look at the theorem and declde whether it should be tried.

The user defines his own filters, except for the standard filter



Section 3.3.3 - Page 249

THTRUE, which accepts any theorem,

The filter command for theorems Is THTBF, so a
recommendation list of the form:

({THUSE TH1 TH2)(THTBF TEST)(THUSE TH-DESPERATION))
would mean to first try the theorem named TH1l, then TH2, then
any theorem which passes the filter named TEST (which the user
would define), then If all that falls, use the theorem named TH=-
DESPERATION. In our programs, we have made use of only the
simple capabilities for choosing theorems =-- we do not define
filters other than THTRUE. However, there !s also a capabllity
for filtering assertions In a similar way, and we do use thls,

as explained in section 4.3,
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2.3.4 Controlling the Data Base

An important problem Is that of maintalning a data base
with a reasonable amount of materfal. Conslider *the first
example above. The statement that all humans are falllble,
while unambiguous in a declarative sense is actually ambiguous
In its imperative sense (i.e, the way It Is to be used by the
theorem prover). The first way is to simply use it whenever we
are faced with the need to prove (FALLIBLE $7X). Another way
might be to watch for a statement of the form (HUMAN $?X) to be
asserted, and to Immediately assert (FALLIBLE $?X) as well.
There is no abstract logical difference, but the Impact on the
data base is tremendous. The more conclusions we draw when
Information Is asserted, the easler proofs will be, since they
will not have to make the additional steps to deduce these
consequences over and over again. However since we don't have
infinite speed and size, It Is clearly folly to think of
deducing and asserting everything possible {or even everything
interesting) about the data when [t Is entered. [f we were
working with totally abstract meaningless theorems and axioms
(an assumption which would not be Incompatible with many
theorem=proving schemes), this would be an insoluble dilemma.
But PLANNER Is designed to work In the real world, where our
knowledge s much more structured than a set of.axloms and rules
of inference. We may very well, when we assert (LIKES $7X

POETRY) want to deduce and assert (HUMAN $?X), since In
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deducling things about an object, It will very often be relevant
whether that object Is human, and we shouldn't need to deduce It
each time. On the other hand, [t would be sllly to assert (HAS~-
AS-PART $?X SPLEEN), since there Is a horde of facts equally
Important and equally limited in use. Part of the knowledge
which PLANNER should have of a subject, then, Is what facts are
Important, and when to draw consequences of an assertion. This
Is done by having theorems cf an antecedent type:
(DEFPROP THEOREM2
(THANTE (X Y) (LIKES $2X $?Y)
(THASSERT (HUMAN $2X)))

THEOREM)

This says that when we assert that X llkes somethlng, we
should also assert (HUMAN $7X). Of course, such theorems do not
have to be so simple. A fully general PLANNER program can be
activated by an THANTE theorem, doing an arbltrary (that s, the
programmer has free chol.e) amount of deduction, asssertion,
etc. Knowledge of what we are doing In a particular problem may
indicate that it {s sometimes a good idea to do thls kind of
deduction, and othe: times not. As with the CONSEQUENT
theorems, PLANNER has the full capaclty when something Is
asserted, *o evaluate the current state of the data and proof,
and speciflcally decide whfch ANTECEDENT theorems should be
called. |

PLANNER therefore allows deductions to use all sorts of
knowledge ébout the subject matter which go far beyond the set

of axloms and basic deductive rules. PLANNER Itself Is subject-
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independent, but its power Is that the deduction processs never

needs to operate on such a level of lgnorance. The programmer
can put In as much heuristic knowledge as he wanis to about the
subject, just as a good teacher would help a class to understand

a mathematical theory, rather than jus: telllng them the axloms

and then giving theorems to prove.
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2.3.5 Events and States

Another advantage In representing knowledge In an
Imperative form ls the use of a theorem prover In cealing with
processes involving a sequence of events. Consider the case of
a robot manipulating blocks on a table. It might have data of
the form, "blockl is on block2," "block2 Is behlind block3", and
"if x Is on'y and you put !t on 2z, then x Is on z, and Is no
longer cn y unless y Is the same as z". Many examples In papers
on theorem provers are of thls form (for example the classic
"monkey and bananas' problem). The problem Is that a
declarative theorem prover cannot accept a statement llke (ON Bl
B2) at face value, 1t clearly Is not an axiom of the system,
since fts validity will change as the process goes on. It must
be put in a form (ON Bl B2 S0) where SO Is a symbol for an
initial state of the world., See <Green 1969> for a discusslion
of such “state" problems.

The third statement might be expressed as:
(FORALL (X Y Z S)CAND (ON X Y (PUT X Y S))
(OR(EQUAL Y Z)
(NOT(CN X Z (PUT X Y S3)))))

In this representation, PUT Is ¢ functlon whose value Is
the state which results from putting X on Y when the previous
state was S. We run Into a problem when we try to ask (CN Z W
(PUT X Y S)) 1i.e. Is block Z on block W after we put.X on Y? A
human knows that If we haven't touched Z or W we could just ask

(ON Z W 3) but In genaral It may take a complei deductlion to
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decide whether we have actually moved them, and even [f we
haven't, it will take a whole chaln of deductions (tracirng back
through the time sequence) to prove they haven't been moved. In
PLANNER, where we specify a process directly, this whole type of
problem can be handled In an Intultlvely more satlsfactory way
by usling the primitive function THERASE,

Evaluating (THERASE (ON $?X $?Y)) removes the assertion (ON
$?X $?Y) from the data base. [f we think of theorem provers as

worklng with a set of axioms, It seems strange to have a

"function whose purpose Is to erase axioms. |If instead we think

of the data base as the "state of the world' and the operation
of the prover as manipulating that state, 1t allows us to make
great simpllifications. Now we can simply assert (ON Bl B2)
without any explicit mention of states. We can express the
necessary theorem as:
(DEFPROP THENREM3
(THCONSE (X Y Z) (PUT $?X $?Y)
(THGOAL (ON $?X $22))
(THERASE (ON $?X $22))
(THASSERT (ON $?X $7?Y)))
THEQREM)

This says that whenever we want to satisfy a goal of the
form (PUT $?X $7Y), we should flrst find out what thing Z the
thing X Is sitting on, erase the fact that It s sltting on Z,
and assert that it Is sltting on Y. We could also do a number of
other things, such as proving that It Is Indeed possible to put

X on Y, or adding a list of speclflc Instructions to a movement

plan for an arm to actually execute the goal.ln a more complex
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case, other Interactlors might be Involved. For example, If we
are keeping assertions of the form (ABOVE $?X $?Y) we would need
to delete those assertions which became false when we erase& (OM
$?X $?Z) and add those which became true when we added (ON $?7X
$?Y). ANTECEDENT theorems would be called by the assertion (ON
$7X $?2Y) to take care of that part, and a similar group called
ERAS I NG theorems can be called In an exactly analogous way when
an assertlon Is erased, to derive consequences of the erasure,
Agaln we emphasize that which of such theorems would be called
is dependent on the way the data base ls structured, and is
determined by knowledge of the subject matter. In this example,
we would have to decide whether It was worth adding all of the
ABOVE relatlons to the data base, with the resultant need to
check them whenever something [s moved, or instead to omit them
and take time to deduce them from the ON relatlion each time :hey
are needed.

Thus [in PLANNER, the changing state of the world can be
mirrored In the changing state of the data base, avoiding any
need to make explicit mention of states, with the requlisite
overhead of deductions. This Is possible since the Information
s given In an Imperatlive form, speclfyling thecrems as a serles
of speciflc steps to be executed.

. 1f we look back to the distlinctlon between assertions and
theorems made on the flirst page, It would seem that we have

establishnd that the base of assertlors Is the '"current state of
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the world", while the base of theorems [s our permanent
knowledge of how to deduce things from that state., This Is not
exactly true, and one of the most excliting posslbllftles In
PLANNER Is the capabllity for the program Itself to create and
modify the PLANNER functions whlich make up the theorem base.
Rather than simply making assertlons, a particular PLANNER
function might be written to put together a new theorem or make
changes to an exlsting theorem, in a way dependent on the data
and current knowledge. It seems likely that meaningful
"learning” Involves this type of behavior rather than simply
modifying parameters or adding more Individual facts

(assertions) to a declarative data base.
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2.3.6 PLANNER Functions

There are a number of other PLANNER commands, designed to
sult a range of problem~solving needs. They are described In
detail in <(Hewitt 1969, 1970> and We will descrlibe only those
which are of particular use In our question answering program
and which we will want to refer to later.

We have already mentioned the basic functlons and described
how they operate. THGOAL looks for assertions in the data base,
and calls theorems to achieve goals. THAND takes a list of
PLANNER expressions and succeeds only if they all succeed In the
order they are listed. THOR takes a similar list and tries the
expressions In order, but succeeds as soon as one of them does.
Remember that in case of a failure farther along in the
deduction, THOR can take back its decision and continue on down
the list. The other simple LI{SP functions PROG, COMD, and NOT
have thetr PLANNER analogs, THPROG, THCOND, and THNOT, which
operate just as thelr LISP counterparts, except that they are
controlled by the distinction between "féllure" and '"'success"
instead of the distinction between NIL and non=NiL. THPROG acts
like THAND, failing If any one of Ilts members fails.

One of the most useful PLANNER functlions Is THFIND, which
is used to find all of the objects or assertlons satisfylng a
given PLANNER condition. For example, If we want to find all of

the red blocks, we can evaluate:
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(THFIND ALL $2X (X)

(THGOAL(BLOCK $7X))
(THGOAL(COLOR $?X RED)))

The function THFIND takes four pleces of Information.
First, there Is a parameter, telllng it how many objects to look
for. When we use ALL, it looks for as many as it can find, and
succeeds If It finds any. If we use an Integer, It succeeds as
soon as it finds that many, without looking for more. If we
want to be more complex, we car. tell it three things: a. how
many [t needs to succeed; b. how many It needs to quit looking,
and c. whether to succeed or fall If It reaches the upper limit
set in b.

Thus If we want to find exactly 3 objects, we can use a
parameter of (3 4 NIL), which means "Don't succeed unless there
are three, look for a fourth, but If you find 1t, fall",

The second bit of information tells It what we want In the
1Ist 1t returns. For our purposes, this will alweoys be the
variable name of the object we are interested ian. The third
item is a list of variables to be used, and the fourth Is the
body of the THFIND statement, It Is thls body that must be
satlsfied for each object found., It is Identlical to the body of
a THPROG, and can have tags and THGO statements as well as a
series of expresslions to be evaluated.

Another function used extensively by the semantlc
interr-eter Is THAMbNG. This takes two arguments, the second is

a list, and the first Is the name of a variable. |If the
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variable }s asslgned, THAMONG acts just llke LISP MEMQ,
succeeding if the value of the varlable is contalned In the
list. However, If the veriable is unassigned, THAMONG assigns
It to the first member of the list, then succeeds. |If this
causes a fallure to back vp to the THAMONG, it binds the
variable instead to the second member and trles sgain. Thls
continues tntil the entlire expression succeeds with some
asslignment or the 1ist is exhausted, in which case THAMONG
returns fallure. Using this, along with the normal bfndlng
mechanlsm In THGOAL statements, fallure can be used to run a
loop through a list of objects which are specifled by glving a

PLANNER goal ur arblitrary expression which they satsify.
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3.4 The BLOCKS Vorld

We need a subject to discuss with ocur language-
understanding program which glives a varlety of things to say and
In which we can carry on a discourse, contalnling statements,
questions, and commands. We have chosen to pretend we are
talking to a very simple type of robot (like the ones belng
developed In Al projects at Stanford and MIT) with only one arm
and an eye. It can look at a scene containing toy objects llke
blocks and balls, and can manipulate them with [ts hand.

We have not trled to use an actual robot or to simulate |t
In physical detall, Since we are Interested primarily In
complex language activity, we have adopted a very simplified
model of the worid, and the “robot" exists only as a display on

the CRT scope attached to the computer.
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X.4,1 Objects

First we musf decide what objects we will have [In the
world., In 3,1, we adopted some couventions for notation In
representing objacts and assertions. Any symbol which begins
with ":" represents a specific object, while anything beginning
with "#" is the rame of a property or relation,

The model begins with the two participants In the
discussion, the rcbot (named :SHRDLU), and the person (called

sFRIEND). The robot has a hand (:HAND), and manipulates objects

‘on a table (:TABLE), which has on it a box (:80X). The rest of

the physical objects are toys =-- blocks, pyramids, and balls,
We give them the names :81, :B2, :B3,...

Next we must décide on the set of concepts we will use to
describe these objects and thelr properties. We can represent

these In the form of a tree:

’ #TABLE
#BOX #B1.0CK
#PHYSOB ~~<4 #MAN| P #BALL
#ROBOT #HAND #PYRAMID
#PERSON #STACK

#COLOR
#PROPERTY
#SHAPE

Figure 54 =-- Classliflcation of Objects and Precperties

The symbol #PHYSOB stands for "physical object™, and #MANIP for

“"manipuiable object" (1.e. something the robot can plck up).
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We could use these as simple predlcates, and have
assertions 1ike (#ROBOT :SHRDLU), (#HAND :HAND), and (#PYRAMID
:B5) to say that Shrdlu is a robot, the hand is a hand, and :BS
Is a pyramid. In sectlon 4.4.3, we describe the way the
language programs choose an English phrase to describe an
object. In order to db so, they need a baslc noun -- tae one we
would use to say “this Is a ...". |If we represented the
‘concepts in the above tree using simple predicates, and then
used the same form for otnher picdicates, such as coiors (for
example, (#BLUE :B5)), the language generating routines would
have no easy way to know which was the "“basic" property. 1t
would be necessary to keep llists and continually check.

Instead, we adopt a different way of writing these concepts, Ve
use the concept #IS to mean "has as its basic description”, and
write (#1S :SHRDLU #ROBOT), (#ISv:H\ND #HAND), and (#1S :BS
#PYRAMID) . |

Looking at the tree, we see that the propertieé #PHYSOB and
#MANIP cannot be represented in this fashlon, since any object
having them also has a baslic description, We therefore write
(#MANIP :BS5) and (#PHYSOB :TABLE).

Next, we would like to asslign physlical properties to these
objects, such as slze, shape, color, and location. Shape and
color are handled with simnle assertions llke (#COLOR :BOX
fWHITE) and (#SHAPE :B5 #POINTED). The possible snapes are
#ROUND, #POINTED, AND #RECTANGULAR, and the colors are #BLACK,
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#RED, #WHITE, #GREEN, and #BLUE. Of course It would Involve no
programming to Introduce other shape or coclor names =-- all that
we would do Is use them in.an assertion, 1}li:e (#COLOR :Bll
#MAUVE), and add an assertion telling what tvype of thing they
are, The property names themselves can be seen as objects, and
we have the concepts #COLOR and #SHAPE, to make assertions like
(#1S #BLUE #COLOR), and {#IS #RECTA“GULAR #SHAPE).

Size and locaticn are more complex, as they depend on the
way we choose to represent physical space. We have adopted a
standard three-dimensional coordinate system, with coordinates
ranging from 0 to 1200 In all three directions. (The number
1200 was chosen for convenlence in programming the display).

The coordinate point (0 0 0 Is in the front lower left=-hand
corner of the scene, '

We have made the simplifying assumpticn that objects are
not allowed to rctate, and therefore always reep their
orientaticn allgned with the coordinate axes. Wwe can represent
the position of an object by glving the coordinates of its front
lower left-hand corner, and can specify its size by giving the
three dimenslions. We use the symbols #SIZE and #AT, and put the
coordinate triples as a single element in the assertions. For
example, we might have (#AT :85 (400 600 200)), and (#SI1ZE :BS
(100 100 300)).

Since we assume that the robot has an eye, the system

begins the dlialog with complete Information about the cbjects In
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the scene, thelr shapes, sizes, colors, and locations. In
addition to the PLANNER assertions, the system keeps a table of
sizes and locations for more efficient calculation when looking

for an empty space to set something dnwn.
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2.1,2 Relatlops

The baslic relatlons w: will need fur this model are the
spatial relatlons between objects. 3lnce we are Ilnterested In
moving objects around In the scene, one of the most Important
relations is #SUPPORT. The Inltlal data base contains all of
the appllicable support relations for the iInftlal scene, and
every tlme an object Is moved, an antecedent theorem removes the
old assertlon abeut .'hat was supporting it, and puts in the
correct new one. We have adopted a very simplified notion of
support, In which an object Is supported by whatever s dlrectly
below Its center of gravlity, at the level of Its bottom face.
Therefore, an object can support several otners, but there is
only one thing supporting tt, Of course this Is an extreme
simpliflication since It does not recognize that a simple brlidge
Is supported, If this program were to be adapted to use with an
actual robot, a much more general ldea of support would be
necessary. Along with the #SUPPORT relatlcons, we keep track of
the property #CLEARTOP. The assertlon (#CLEARTOP X) will be In
the data base If and only If there Is no assertion (#SUPPORT X
Y) for any object Y. It is also kept current by antecedent
theorems which are called whenever an object Is moved. This
happens automatlcally whenever an assertion of the form (#AT 0BJ
(XY Z)) is made. The theorems make the approprliate check to
see whether the #CLEARTOP status of any object has changed, and

If so the necessary erasures and assertions are made.
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A second relation which is kept In the data base Is
#CONTAIN. The first participant must be the box, since this Is
the only container In the scene. The Information about what is
containeu in the box Is also kept current by an antecedaent
theorem., The relation #GRASPING Is used to indicate what
object (If any) the robot's hand is grasping. It Is
theoretically a two-place predicate, relating a grasper and 2a
graspee, as In (#GRASPING :SHRDLU :82), Since there is only one
hard in cur scene, It s clear who must be dolng the grasping,
so the assertion is reduced to (#GRASPING :B2).

The other relation which is stored in the data base is the
fPART relation between an object and a stack. We can glve a
name to a stack, such as :S1, and assert (#PART :B2 :S1). As
objects are moved, the changes to the data base are agaln made
automatically by antecedent theorems which notice changes of
location.

As we explained In section 3.3.3, we must declide what
relations are useful enough to occupy space In our data base,
and which should be recomputed from simpler Informatlion each
time we need them, We have Included relations 1lke #SUPPORT and
#CONTAIN because they are often referenced in deciding how to
move objects. We can think of other relations, such as the
relative position of two objects, which can be computed from
thelr locatlons, and are not used often 2nough to be worth

keeping In the data base and partlally recomputing every time
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something is moved. We r2present these relations using the
symbcls #R|IGHT, #BEHIND, and #ABOVE. (These repres=nt the
direction of the positive coordinate axis for X, Y, and Z
respectively). We do not need the converse relations, since we
can represent a fazt like ":Bl Is below :B2" by (#ABOVE :B2
:Bl), and our semantic system can convert what is sald to this
standard format. The symbol #0N Is used to repre:zent the
transiiive closure of #SUPPORT. That Is, Z Is #ON A If A
supports B, B suprorts C,...supports Z.

The three spatial relatlons'use & common consecuent theorem
called TC-LOC which decides If they are true by lookirg at the
coordinates and sizes of the objects. The #ON relation has a
consequent theorem TC-ON which looks for chains of support.
(Wotice that the prefix TC- stands for Theorem Ccnsequent, and
Is attached to all of our consequent theorems. Similarly, TA-
and TE- are used for antecedent and erasing theorems.)

The measurements of #HEIGHT, #WIDTH, and #LENGTH are
represented as a simple assertlion, like (#HEIGHT :83 100), but
they are not stored In the data base. They are computed wheﬁ
needed from the #SIZE assertlion, and can bo accessed by using
the theorem TC-MEASURE, or by using a functional :otatlion. The
expression (#HEIGHY X) evaluates to the heignt of whatever
object the vartable X Is bound tc. |If #S!ZE is used In this
way, It returns a measure of "overall size" to be used for

comparisons like "blgger". Currently it returns the sum of the
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X, Y, and Z coordinates, but it could be easlly changed tc e
more In accord with human psychology.

In order to compare measurements, we have the relation
#MORE. The sentence ":Bl is shorter than :82" Is equivalent to
the e.sertion (#MORE #HEIGHT :B2 :Bl). Agaln, we do not need
tﬁe relation "less" since we can simply reverse the order of the
objects. The reiation #ASMUCH Is used In the same way, to
express 'greater than or equal', instead of "strictly greater
than'", None of these assertions are stored (If we have ten
objects, there will be almost 400 relationships), but are
computed from more basic information as they are needed.

One final relationship is #LIKE, which relates a person or
robot to any object. There Is a theorem which shows that the
robot likes everything, buti knowledge about what the human user
Vlkes Is gathered from his statements. The semantlic programs
can use statements about lliking to generate further PLANNER
theorems which are used to answer questlions about what :FRIEND

likes.
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34,3 Actions

The only events that can take place In our worid are
actions taken by the robot In moving 1ts hand and manipulating
objects, At the most basic level, there are only three actlons
which can occur -- MOVETO, GRASP, and UNGRASP, These are the
actual commands sen* to the display routines, and could
theoretically be sent directly to a physical robot system,

The result >f callling a consequent theorem to achieve a
goal requiring rotion, 1tke (#PUTON :B3 :B4), Is a plan -~ a
list of Instructions using the three elementary functions.
MOVETO moves the hand and whateverilt Is currentiy grasping to a
set of specifled coordinates. GRASP sets an Indlcator that the
grasped object ‘s to be moved along with the hand, and UNGRASP
unsets It, The robot grasps by moving its hand directly over
the center of the object on Its top surface, and turning on a
"magnet". It can do this to any manipulable object, but can
cnly grasp one thing at a time. Using these elementary actlions,
we can bulld a hierarchy of a2ctions, Including goals which may
involve a whole sequence of deductlions and actlions, llke
#STACKUP.,

The semantic prcgrams never need to worry about detalls
Involving physicalJcoordlnates or speb!fic motion Instructions,
but can produce Input for higher-level theorems which do the
detailed work.

¢

At a slightly highaer level, we have tﬁe PLANNER concepts
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#MOVEHAND, #GRASP and #UNGRASP, and corresponding consequent
theorems to achieve them. There Is a signiflicant difference
between these and the functlons listed above, Calling tne
function MOVETO actually causes the hand to move, On the other
hand, when PLANNER evaluates a statment llke:

(THGOAL(#MOVEHAND (600 200 300))(THUSE TC-MOVEHAND))
nothing Is actually moved. The theorem TC-MOVEHAND 1s called,
and It creates a plan to do the motion, but If this move causes
us to be unable to achieve a goal at some later point, the
PLANNER backup mechanism will automatlicaly erase it from the
plan. The robot plans the entlre action before actually moving
anything, trying all of the means it has to achieve lts goal.

The theorems also do some checking to see If we are trying

to do something impossible., For example, TC-MOVEHAND makes sure
the action would not involve placing a block where there Is
already an object, and TC-UNGRASP faills unless theré is

something supporting the object it wants to let gc of.
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2.04.4 Carrying Qut Commapds
Some theorems, like TC-GRASP, are more complex, as they can
cause a serles of actlons. |In this section we will follow
PLANNER through such an actlion, using the simplified thecrems of
figure 55, |If PLANNER tries the goal:
(THGOAL (#GRASP :B1)(THUSE TC-GRASP))

the theorem TC-GRASP can do a number of things. |t checks to
make sure :Bl is a graspable objiect by looking In the datz base
‘for (#MANIP :Bl). |If the hand is already grasping the object,
it has nothing more to do. |If not, It must first get the hand
td the object. This may invoive complications == the hand may
already be holding something, or there may be objects sitting on
top of the one it wants to grasp. In the flrst case, It must
get rid of whatever !s In the hand, using the the command #GET-
RID-OF. The easiest way to get rid of somethlng Is to set It
on the table, so TC-GET-RID-OF creates the goal (#PUTCN $7X
:TABLE), where the variable $?X Is bound to the object the hand
's holding. TC-PUTON must In turn find a big enough empty place
to set down Its burden, using the command #FINDSPACE, which
performs the necessary calculations, using information about the
sizes and locatlions of all the objects. TC-PUTON then creates a
goal using #PUT, which calculates where the hand must be moved
to get the object into the desrired place, then calls #MOVEHAND
to actually plan the move. If we look at the loglcal structure

of our actlive goals at thls point, assuming that we want to
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(DEFTHEOREM TC-CLEARTOP
(THCONSE (X Y) (#CLEARTOP $2X)
GO (THCOND ((THGOAL (#SUPPORT $7X $_Y))
(THGOAL (#GET-RID-OF $17Y)
(THUSE TC-SET-RID-0F))
(THGO GO0))
((THASSERT (#CLEARTOP $7X))))))

(DEFTHEDREM TC-GET-RID-OF
(THCONSE (X Y) (#GET-RID-OF $?X)
: : (THOR
(THGOAL (#PUTON $?X :TABLE)(THUSE TC-PUTON)).
(THGOAL {#PUTOM $?X $?Y)(THUSE TC=-PUTON)))))

(DEFTHEGREM TC-GRASP
(THCONSE (X Y) (#GRASP $7?X)
(THGOAL(#MANIP $2X))
(THCOND ((THGOAL (#GRASPING $2X)))
((THGOAL (#GRASPING $_Y))
(THGOAL (#GET-R!D-OF $2?Y)
) (THUSE TC-GET-RID-0F))))
(T

(THGOAL (#CLEARTOP $7X) (THUSE TC-CLEARTOP))
(THSETQ $_Y (TCPCENTER $?X!)
(THGOAL (#MOVEHAND $?Y)
(THUSE TC-MOVEHAND))
(THASGERT (#GRASPING $2X))2)

(DEFTHEOREM TC-PUT
(THCONSE (X Y Z) (#PUT $?X $?Y)
(CLEAR $7Y (SIZE $72X) $72X)
(SUPPORT $2Y (SIZE 3$72X) $?X)
(THGOAL (#GRASP $2?X) (THUSE TC-GR.::3F))
(THSETQ $_Z (TCENT $?Y (SIZE $?X));
(THGOAL (#MOVEHAND $?Z) (THUSE TC-MOVEHAND))
(THGOAL (#UNGRASP) (THUSE TC-UNGRASP))))

(DEFTHEOREM TC-PUTUN
(THCONSE (X Y Z) (#PUTON $2X $?Y)
(NOT (EQ $?X $2Y)) '
(THGOAL (#FINDSPACE $?Y $E (SIZE $?2X) $?X $_Z)
(THUSE TC-FINDSPACE TC-MAKESPACE))
(THGOAL (#PUT $?2X $?Z) (THUSE TC-PUT))})

Flgure 55 == Simplilfled PLANNER Theorems
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grasp :Bl, but were already grasping :32, we see:
(#GRASP :B1) -
(#GET=-RiD-0F :82)
(#PUTON :BZ :TABLE)
(#PUT :B2 (453 201 0))
(#MOVEHAND (553 301 10C))

After moving, TC-PUT calls PUNGRASP, and we have achleved
the first part of our original goal -- emptying the hand. Nocw
we must clear off the block we want to grasp. TC-GRASP sets up
the goal:

(THGOAL(#CLEARTOP :B82)(THUSE TC-CLEARTOP))

This Is a good exvmple of the double use of PLANNER goals to
both search the data base‘and carry out actions. |If the
assertion (#CLEARTOP :Bl) Is present, It satisfies this goal
Iimmediately withou: calling the theorem. However If :Bl Is not
already clear, this THGOAL statement calls TC-CLEARTOP which
takes the necessary cctlons.

TC~CLEARTOP will try to #GET~RID-OF the objects on top of
:tBl. This wilil In turn use #PUTON, which uses #PUT. But TC-PUT
may have more to do this time, since the hand Is not already
grasping the object It has to move. |t therefore sets up a goal
to #GRASP the object, calling TC-GRASP. We have gone full
circle, and are back In the theorem we started In., Of course
this is no problem in a recursive language, and the process
continues as {t should untll all of the goals have been
achfeved, or all of the methods Included in the theorems have

failed,
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Wle have gone through this example In some detail to glve a
feeling for the goal=-nriented programs used by PLANNER., The
programs are highlv recursive, with a clear subéoa\ structure,
and with theorems often calling themselves to achieve subgoals.
During all of thlis, PLANNER is keeping track of what Is belng
done In such a way that It can b#ck up and try something
different lfinecessary. For example, {f TC-GET-RID-OF puts an
object on the table, and it later is In the way of something
which must be done, a fallure will propagate back to TC-GET~RID~-
OF, and ‘it will try putting It somewhere else,

Figure 56 lists the different action concepts more

systematically, showing the form of the goal statements, and the

actlons taken by the theorems corresponding to them. In our

program, the names of the theorems are formed by adding the
prefix TC- for a consequent theorm, TA- for antecedent, and TE-
for erasing. This is strictly for programmer convenience In
recognizing the purpose of a theorem from Its name, All of
these goals can be used Internally within the BLOCKS system, and
most of them can be called directly by the semantlc programs, as

direct translatlions of English commands. Some, 1ike #MOVEHAND

cannot be called by the lingulstic programs, slince the semantlc

routines do not Include a way to speclify exact coordinates In

English,
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Command Effect

(#MOVEHAND (X Y Z)) liove the center of the hand to location
(XY 2). Anything beilng grasped goes
along automatically,

(#UNGRASP) Let go of whatever the hand is holding,
Fails If the object Is not supported.

(#GRASP X) Grasp object X, doing any manipulatlons
necessary to get to it,

(#PUT W (X Y Z)) Put W at location (X Y Z). Falls unless
the space is empty.

(#RA I SEHAND) Ralse the hand and whatever It holds as
high as It wlll go.

(#PICKUP X) ' Grasp X and ralise the hand.

(#PUTON X Y) Put object X on object Y. [|f there Is

not enough free space on Y, move
objects to make It.

(#PUTIN X Y) The same as #PUTON, except that Y must be
a box, and different methods are used
to find space.

(#GET~RID=-0F X) Try to put X on the table, and If that
falls put It on anything else.

(#CLEARTOP X) Get rid of everything which is on X.

(#STACKUP (X Y...)) Stack X, Y, ... on top of each other,
in order of slze.

(#FINDSPACE A (X Y Z) B $_C)

Thls goal can be achieved by two different
theorems. TC-FINDSPACE trles to find a
space of slze (X Y Z) on top of object
A, counting any space occupied by B as
empty., $_C Is a varlable bindlng used
to return the answer. |If this falls,
TC-MAKESPACE can create the space by
moving objects.

Flgure 56 == BLOCKS Commands
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2.4,5 Memory

In order to answer questlons about past events, the BLOCKS
programs remember selected parts of their subgoal tree. They do
this by creating objects called events, and putting them on an
EVENTLIST. The system does not remember the detalled series of
specific steps 1ike #MOVEHAND, but keeps track of the larger
goals llke #PUTON and #STACKUP., The time of events [s measured
by a clock which starts at 0 and s Incremented by 1 every time
any motlon occurs. The theorems which want to be remembered use
the functions MEMORY and MEMOREND, calling MEMORY when the
theorem Is entered and MEMOREND when it exits. MEMOREND causes
an event to be created, combining the origlnal goal statement
with an arbltrary name (chosen from El, €2,...). Recall from
Section 3.1 that a relation can iInclude its own name, so that-
other relations can refer to It, If we call TC-PUTON with the
goal (#PUTON $?X $?Y), with the variables X and Y bound to :Bl1
and :B2 respectively, the resulting event which Is put Into the
data base Is (#PUTON E1 :B1 :B2). The event name Is second,
Instead of last as described In 3.1 for unimportant technical
reasons which will be changed In later verslons. |

In additlon to putting this assertion In the data base,
MEMOREND puts informatifon on the property list of the event name
== the starting time, ending time, and reason for each event.
The reason Is the name of the event nearest up In the subgoal

tree which Is being remembered. The reason for goals called by
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the lingulstic part of the system Is a special symbol meaning
"because you asked me to'. MEMORY Is called at the beginning of
a theorem to establish the start time and declare that theorem
as the "reason" for the subgeoals it calls.

A second kind of memory keeps track of the actual physical
motlions of objects, noting each tlme one is moved, and recording
Its name and the locatlon it weat to. This list can be used to
establish where any object was at any past time.

When we want to pick up block :Bl, we can say:
(THGOAL(#PICKUP :B1)), and it Is Interpreted as a command. How
can we ask "Did you pick up :B1?"? When the robot plicked it up,
an assertion like (#PICKUP E2 :Bl) was stored in the data base.
Therefore If we ask PLANNER

(THPROG(X) :
(THGOAL (#PICKUP $?X :B1)))

it will find the assertion, binding the variable X ﬁo the event
name E2. Since the property list of E2 glves Its starting and

ending times, and its reason, this Is sufficlent Informatlon to
answer most questlions.

If we want to ask somethlng llke "Did you plck up :81
before you built the stack?" we need some way to look for
particular time Intervals. Thls Is done by uclng a modified
versicn of the event description, Including a time Indlcator.
The exact form of the time Indicator Is described in the sectlon
on semantics, but the way it Is used to establish a goal is:

(THGOAL (#P1CKUP $?X :Bl $?TIME)(THUSE TCTE-PICKUP))
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The preflix TCTE- on the name of a theorem means that It
Includes a time and an event name. Ordinarlly when such a
theorem is entered, the variable TIME would have a value, whlle
the variable X would not. The theorem looks through the data
base for stored events of the form (#PICKUP $?X :Bl) and checks
them to see If they agree with the time TIME,

For some events, llke #PUTON, this Is sufficlent since the
system remembers every ¥#PUTON It does. For others, 1ike #PICKUP
less iInformation Is kept. When #PICKUP Is called as a goal at
the top level, It Is remembered., But the system doas not
remember each time something was picked up In the course of
moving the toys around. The fact that a block was picked up can
be deduced from the fact that It was put somewhere, and the
theorem TCTE-PICKUP actually looks at a number of different
types of events (1ike #PUTON and #PUTIN) to find all the
occasions on which an object was really picked up.

For spatlal relatlions, we also need to be able to inclﬁde
time, €2r example, "Was the block behind the pyramid before...?"
In this case, no assertlons are stored, since the menmory of
moticn events Is sufficlent to reconstruct the scene. There are
speclial theorems with the prefix TCT~- which try to verify a
relation with a time conditlion. For example, we can ask "Is :Bl
on :B2?" with the goal

(THGOAL(#0ON :B1 :B2)(THUSE TC-ON))

To ask "was :Bl on :B2 before,..?" we bind the varlable TIME to
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the representation of the time we are Interested In, and ask
(THGOAL(#ON :B1 :B2 $?TIME)(THUSE TCT-0N)) ' -

The thecrem TCT-ON s the same as TC-ON except that 1t deals
with the specified time instead of the presenf. Similar TCT-
theorems exist for a'l of the spatial relations, and for
properties which change In time, such as #CLEARTQP and #AT.

Appendix C is a listing of parts of the BLOCKS program as
It was used in generating the sample dialog. PLANNER theorems
are sufficiently self-explanatory that only a few comments have
been Included. The auxilliary LISP functions {such as the one
which decldes whether a space is emgty) are not included, but
are available on request, along with the complete BL2CKS

listings.
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Chapter 4, Semantlcs

L.l What Is Semantics?

4,1.1 the Province of Semantics

The erld_of sémantlcs has always been a hazy swampland.
There Is little agreement among “semanticists" where Its borders
lle or what the terrain looks 1lke. Logicians, philosophers,
and lingulsts all approach it with the tools of their own trade,
and the problem of just defining “semantlcs" and "meaning" have
occupied volumes of debate.

In trylng to program computers to understand natural
language, It hzs been necessary toc have a more explicit and
complete notlon of semantics. The attempts 2t writling language
understanding programs have made It more clear just what a
semantic theory has to do, and how It must connect wi*h the
syntactic and logical aspects of language. In practlcal terms,
we need a ﬁransducer whlch can work with a syntactlc analysis,
and produce data which Is acceptable to a logical deductlive
system,

In the preceding chapters we have described the two ends of
a language system =-- a syntactlc parser with a grammar of
English, and a deductive system with @ base of knowledge 2bout a

particular subject. What does our semantic theory have to do to
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fill the gap?

In section 3.1.2 we outlined the basis for a theory of
semantics., It Includes a world of "concepts" and structures of
concepts which are postulated by the lingulist in trying to
explain llnguistic phenomena. These are not a psychologlical
reality, but a formalism in which he «an syztematically express
those aspects of meaning which are relevant to language use, By
manipulating structures In this formalism as a part of analyzing
sentences in natura! language, the theory can directly deal with
problems of relating ngan!ng to parts of the speaker's and
hearer'svknowledge which are not mentioned explicitiy In the
sentence being analyzed.

A sémantlc theory must describe the relatlonsilp between
the words and syntactic structures of natural language and the
postulated formalism of concepts and operations on concepts. In
our theory, thls relatlionship is described as a set of
procedures which analyze linguistic forms to produce
representations of meaning In the Internal conceptual formalism,
Just as with the grammar, this does not purport to be a model of
an actual process taking place in the hearer or speaker. The
process description Is used because It Is a powerful way to
describe "neutral" relationships, as well as belng
psychologically suggestlive.

The theory must describe relatlionshlps at three different
levels, Flrst, there must be a way to define the meanings of
words, We pointed out In the sectlon on "meaning” (sectlion
3.1) that the real "meaning" of a word or concept cannot be
defined tn simple dictlonary terms, but Involves its
relationship to an entire vocabulary and structure of concepts.

Howeve:, we can talk about the formal descriptlion attached to a
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word vihich allows It to be Integrated Into the systen. In the
rest of this chapter, we will use the word "meaning" In this
more 1Iimited sense, describing those formal aspects of the
meaning of a word (or syntactic construction) which are attached
to it as its dictionary definition.

The formalism for definitions should not depend on the
details of the semantic programs, but should allow users to add
to the vocabulary In a simple and natural way. It should also
be posslibie to handle the quirks and idiosyncracies of meaning
which words can have, Instead of limiting ocurselves to "well=~
bekhaved" standard words.

At the next level we must relate the meanings of the words
'n élsentence to each other and to the meaning of the syntactlc
structures. We need an analysis of the ways in which English
structures are desligned to convey meaning, and what role the
different words and syntactic features play in thls meaning.

Finally, a sentence In natural language is never
Interpreted In Isolation., It Is always part of a context. and
1ts meaning Is dependent on that context., A thecry should
explain the different ways In which the "setting" of a sentenze
can affect Its meaning. 1t must deal both with the linguistic
setting (the context within the discourse) and the real-world
setting (the way meaning Interacts with knowledge of non-

lingulstlic facts.)
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4.3.2 The Semantlc Svstem

With definite goals In mind for a semantic system, we can
consider how to Implement It. Flirst let us lookvat what It
should know about English, As we have been emphaslizing
throughout the paper, a language is not a set of abstract
symbols. It Is a system for conveying meaning, and has avolv:d
with very special mechanisms for conveying just those aspects of
meaning needed for human communication.

Section 3.1 discussed the person's "model of the world"
which Is organlzed around notions of "objects', having
"properties” and entering Into "relationships.” In 3.1.3, these
are combined to form more compllicated logical expressions.
Looking at the properties of English syntax (as descrited In
Section 2.3) we see that these basic elements of the "world
model" are just what English Is good at conveying.

For describing cbiects, there iIs the NOUN GROUP, It
contains a noun, which tndlcates the kind of object; adjectlives
and classiflers, which describe further properties of the
object; and a complex system of quantifiers and determiners
describing Its logical status -=- whether It Is a particular
object, ("the sun'), a class of objects ("people"), a
particular set of objects ("John's lizards'), an unspecified set
containing a specifled number of objects ("three bananas"), etc.
The details (described In section 4.2) are complex, but the

important thing Is the existence of a systematic structure.

4 =
W " LBy A



vy

Sectlon 4.1.2 - Page 284

For describing relatlonships and events, there are the
CLAUSE, PREPOS!TION GROUP, and ADJECTIVE GROUP, The CLAUSE 1is
especially suited for dealing with relationships having a
particular time reference, working in coordination with the VERB
GROUP, which functions to convey Informatlion about time, using
an ingenlous system of tenses. Clauses can also be used to
represent an event or relationship as an object (as In "Hils
golng pleased me."), or to modify a particular object within a
NOUN GROUP (in "the man who broke the bank"). The PREPG Is a
less flexible and simpler way of expressing relationships which
do not need modifiers such as time, place, and manner (such as
"the man i{n the blue vest"). The ADJG Is used In some
constructions to describe properties and some special kinds of
relationships of objects (such as '"Her gift was blgger than a
breadbox.")

The semantic system Is bullt around a group of zbout a
dozen programs which are experts at looking at these particular
syntactlic structures. They look at both the structures and the
meanings of the words to build up PLANNER expresslons which will
be uséd by the deductlive mechanism. |t iIs important to remember
that the parser uses systeml¢c grammar so the semantic prograhs
can look directly for features such as PASSIVE or PLURAL or
QUESTION to make decislions about the meanlng of the sentence or
phrase.

Since each of these semantlic “speclallsts" can work
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separately, there Is no need to walt for a complete parsing
before beginning semantic analysis. The NOUN GROUP specliallst
can be called as soon as a NOUN GROUP has been parsed, to see
whether it makes sense before the parser goes on. In fact, the
task can be broken up, and a preliminary NOUN GROUP specialist
can be called In the middle of parsing (for example, after
finding the noun and adjectives, but before looklng for
modifying clauses or preposlitional phrases) to see whether it lIs
worth continuing, or whether the supposed combination of
adjectlives and noun is nonsensical. The grammar Is In the form
of a program, so it Is just as easy to call a semantic routine
at any time as a syntactlc one. Any semantlic program has full
power to use the deductive system, and can even call the grammar
to do a special bit of parsing before going on w!th the semantic
analysls., For this reason it Is very hard to classify the
semantic analysis as “top-down" or “bottom-up". In general each
plece of the structure is analyzed as [t Is parsed, which is a
bottom-up approach. However whenever there Is a reason to delay
a part of the analysis untl] some of the larger structure has
been analyzed, it Is just as easy to wrlte the semantle
specialist programs In this top-down manner. In our system both

approaches are used.
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L 1.3 Words

A semanfic system needs to deal with two different kinds of
words. Some'words are lncluded in the general knowledge of the
English language. Words like “that' or "than", In "He knew that
they were madder than hornets." would be difflcult to define
except In terms of their place In the sentence structure., They
are belng used as signals of certaln syntactic structures and
features, and have no meaning except for this signalling (which
is recognized by the grammar). These are often called "function
words" In distinction to the "content words" which make up the
bulk of our vocabulary. This Is not a shurp distinctioan, since
many words serve a comblnation of purposes (for example, nuﬁbers
are baslcally "function words", but each one has Its unique
meaning). We can generally distlinguish between words 1llke
"that" and "than" whose meanlings are bullt Into the system, and
words )lke “snake", "under", and "walk", which surely are not.

The definitions of content words should not have to lnclude
"expert" knowledge about ke semanitlcs or grammar of the
language. In defining the word "mighty"”, we should not have to
worry about whether 1t appears In "The sword Is mighty," or

“"the mightlest warrlor'", or "a man mightler than a locomotive,"

We should be able to say "'Mighty' means having the property
represented conceptually as #MIGHT.", and let the semantlc

system do the rest.

We need a semantlic lanzuage for expressing definitions in a
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way which does not depend on the grammar or the particular
semantlc programs. Each of our "specialists" which looks at the
meanings of words should be able to interpret those statements
In the semantlic language which might be relevant to its job,

Section 4.2 describes simple formats for defining common
verbs, nouns, adjectives, and prepositions, and in fact,
these definitions do not look much like programs at 211, Why
then do we call this a "language" Instead of saylng that we have
a set of speclal formats for defining words? The dlstinction
becomes Iimportant for all of the irregular cases and the
Idlozvncracies that words can have. For example, in "The block
Is on the roof of the car.", "the roof of the car" is a NG
referring to a particular object which Is a roof. But [f we say
“"The block Is on the right of the box", we ~re not referring to
a particular object which Is a "right". The normal NG mechanlism
for describing objects Is being used Instead to describe a
relationship between the block and the box. We could reprogram
our NOUN GROUP semantlic specialist to recognize this speclal
case and treat It differently, but this Is a path lead!ng to a
roadblock. We will not be able to anticipate every case, and as
the program becomes more and more patched, it will become harder
to change and less llikely to work,

What we need Is a flexible way of defining words, so that
the word “right" Itself can cause the right things to happen In

semantlic interpretation, without changing the system. This Is
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achieved by letting the definition of each word be a LISP
program to be run at an appropriate time in the semantic
analysis. For simple céseé, there are standard functlons wlthaa
special format for usual types of definitions. In the complex
cases there is a platform from which to operate, doing whatever
calculations and changes of the environment are needed. This

flexiblillity Is Important In many places., For example, the word

one" vhen used as a noun (as In "the green one) has a special
use for referring back to prevliously mentioned nouns. It could
not be defined by a simple format, as could "block" or "dog",
since it Involves complex decislions about what Is really being
referred to, and needs access to the previous discourse, In our
system, its definition as a noun is compatible with the
definitlons of all other nouns ~- the semantic specialists don't
know anything about It. When the NG specialist Is ready to use
the definition of the noun, it calls It as & program. |In the
usual case, this program sets up a standard data structure., In
the case of "one'", it calls a heuristic program for
understanding back-references, and Its effect on the meaning
will depend on the discourse. Similarly, the verb "bé" Is
called like any other verb by the semantic speclallist, but In
fact Its definition Is a complex program describing Its
different uses. |

The use of procedures to represent meanlings of words glves

a flexibility which allows these exceptlonaf words to be handled
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as well as the more ordinary forms. At the same time, It
provides a strict test of representations of procedures for

particular words, since tae procedures can actually be run In

the system,
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4,1.4 Amblgu

A semantlic theory must have some way to account for
multiple meanings of words, phrases, and sentences. We would
1ike to explain not only how multinle interpretations can occur,
but also how the hearer sorts tnem out to pick a slingle meaning.

As a start, we must allow words to have several "senses',
and must be able to have multiple interpretaticns of phrases and
sentences to correspond to them. Next we must reallze that the
syntactic structures can also lead to semantic ambiguitles.
Sentences like the famous "Time flles 1lke an arrow." derive
some of thelr ambigulty from their ability to be analyzed
syntactlcallylln more than one way. Finally, we include some
ambiguities as a result of the semantic znalyslis. The sentence
"A man sitting In this room fired the fatal shot.'" will be
amblguous even If we agree on a single meaning for each word,
and a surface structure for the sentence. |f spoken by Perry
Mazon at a dramatic moment in the courtroom, It means "a man who
ds sitting In this room', but If spoken by the detectives when
they broke into the empty hotel room across the street from the
scene of the crime, it means "who was sitting In this room".
This could be treated as a syntactlic amblgulty In the deep
structure, but In our analyslis It Is Instead treated as a
semantic ambiguity Involving the time reference.

In describing the grammar it was pointed out that we do not

carry forward simul taneous parslings of a sentence. We try to
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find the "best" parsing, and try aother paths only If we run Into
trouble. In semantlics we take the nther aproach. |If a word has
twe meanings, then two semantlc descriptions are bullt
simyltaneously, and used to form two separate phrase
Interpretations.

We can Immediately see a problem here. There is dlre
danger of a comblinatorial explosion. |If words A, B, C, and D
each have three meanings, then a sentence containing all of them
may have 3x3x3x3, or 81 interpretations. The possiblliities for
a long sentence are astronomical,

Of course a person does not bulld up such a tremendous
list, As he hears a sentence, he "fllters out” all but the
most reasonable iInterpretations. We know that a "ball" can be
either a'Spherlcal toy or 2 dancing party, and that “green" can
mean elther the color green, or unripe, or Inexperlienced. But
when we see '"the green ball", we do not get befuddled with slix
Interpretations, we know that only one ma“es sense. The use of
“green" for "unripe" applies only to fruit, the use as
"inexperienced" applies only to people, and the color only to
physlcal objects. The meaning of "ball" as a party fits none of
these categorles, and the meanlng as a "spherlcal toy" fits only
the last one., We can subdivide the world Into rough c:asses
such as "animate", "Inanimate", "physical”, "abstract", "event',
"humar", etc. and can use thils class!flcatlon scheme to fllter

ocut meaningless combinations of interpretztions.
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Some semantic theories <{Fodor> are based almost completely
on this idea. We would lilke to use It for what It Is == not a
complete representation of meaning, but a rough classificatlon
which eliminates frultless semantic interpretations. Our system
has the ability to use these "semantlc markers" to cut down the
number of semantic Interpretations of any phrase or sentence.

A second method used to reduce the number of dlfferent
semantic interpretations Is to do the Interpretation
continuously, We do not pile up al! possible interpretations
of each piece of the sentence, then try to make logical sense of
them together at the ernd. As each phrase Is completed, it Is
understood. |f we come across a phrase ilke "the colorful ball"
in contex’., we do not keep the two different pcssible
Interpretations In mind until the utterance Is finished. We
immedlately look In our memory to see which Interpretation Is
meaningful In the current context of discourse, and use only
that meaning In the larger semantlc analysls of the sentence.
Since our system allows the grammar, semantlics and deduction to
be easily Intermixed, It Is possible to do this kind of
continuous Interpretatlion,

Finally we must deal with cases where we cannof eliminate
all but one meanling as ''senseless", There will be sentences
where more than one meaning makes sense, and there must be some
way to choose the correct one in a glven context. In the

section on context below, we discuss the use of the overall
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discourse context In assigining a plausiblility factor to a
particular interpretation. By ccmbining the plausibilitlies of
the various parts of a sentence, we can derive an overali factor
to help choose the best.

There will always be cases where no set of heurlstics w]l]
be enough. There will be multiple interpretations whose
plausibilities will be so close that it would be sfmply guessing
to choose one. In our sample dialogue, there Is an example with
the word "on". "The block Is on top of the pyramid.'" could mean
either "directly on tha surface" or "somewhere above". There is
no way for the hearer (or computer) fo read minds, The obvious
alternative Ic ro ask the speaker to explaln more clearly what
is meant. As a.flnal resort, the system can ask questions like
"By the word “on" In the phrase "on top of green blocks'" did you
mean 'directly on the surfacé' or 'somewhere above'?". The
methods used for handling ambigulty are described in mcre detail

In section 4.2.10
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L,1.5 Discourse

At the beginning of our discussion of semantics, we
discussed why a semantic system should deal with the effect of
"setting' on the meaning of a sentence. A semantic theory can
account for three different types c¢f context.

First, there is the local discourse context, which covers
the digéourse Immedliately preceding the sentence, and lIs
Iimportant to semantic mechanisms like pronoun reference, |If we
ask the question "Did you put Jt on a green one?" or "Why?" or
"How many of them were there then?', we assume that [t will be
possible to fill in the missing Information from the Immedlate
discourse.,” There are a number of speclal mechanisms for using
this kind of information, and they form part of a semantic
theory.

Second, there s an goverall discourse context. A hearer
will interpret the sentence "The group didn't have an identity.”
differently depending on whether he iIs discussing mathematics or
soclology. There must be a systematlc way to account for this
effect of general subject matter on understanding. In addition
to the effects of general subjact on choosing betvieen meanings
of a word, there Is an effect of the context of particular
things being discussead. If we are talking about Argentina, and
say "The government Is corrupt.', then It Is clear that we mean
"the government of Argentlna". If we say "Plck up the

pyramid.”, and there are three pyramids on the table, It wll}
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not be clear which one Is meant. But If this imnzdiately
follows the statement "There is a blo;k and a pyramid in the
box.", then the reference Is to the pyramid In the Jsox. This
would have been cliear e¢ven If there had been several sentences
between these two. Therefore this is a different problem than
the local discourse of pronoun reference. A semantic theory
must deal with all of these different forms of overall discourse
context.

Finally, there Is a context of knowledge about the world,
and the way that knowledge effects our understanding of
language. If we say "The clty couircilmen refused the |
demonstrators a permit because they feared violence.", the
nronoun "they" will have a different Interpretation than If we
s3td "The city counclilimen refused the demonstrators a permit
because they advocated revolution." We understand this because
of our sophlsticated knowledge of counciimen, demonstrctors, and
politics == no set of syntactic or semantic rules could
interpret this pronoun reference without using knowledge of the
world, Of course a semantic theory does not include a theory
of political power groups, but It must explaln the ways !n which
this kind of knowledge can 1nteract with lingulstic knowledge In
Interpreting a sentence. '

Knowledge of the world may affect not only such things as
the Interpretation of pronouns, but may alter the parsing of the

syntactlic structurns as well. |f we see the sentence 'He hit
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the car with a rock." the structure will be parsed dIfferently
from "He hit the car with a dented fender.", slnce we know that
cars have fenders, but not rocks.

In our system, most of thls discourse knowledge [s called
on by the semantic speclalists, and by partlicular words such as
“"one", "it", "then", "there", etc. We have concentrated
particularly on local dliscourse context, and the ways In which
English carries Information from one sentence to the next. A
number of speclal pieces of iInformation are kept, such as the
time, place, and objects mentloned In the previous sentence.
This information Is referenced by speclial structures and words
1lke pronouns, "then'", and "there". The meaning of the entlre
previous sentence can be referred to In order to arswer a
question like "Why did you do that?" or just "Why?",

There are two facilities for handllng overall dlscourse
context. The first Is a mechanism for ass(gnlng a
"plausability factor" to an interpretatlion of a word. For
example, the definition of the word "bank" might include the
fact that If we are discussing money, It Is most ltikely to mean

a financlal Institution, whlle If we are discussing river: It

. probably means the edge of the land. Our system allows the

definition of a word to include a program to compute a
“"plausabllity factor'" (an arbltrary additive constant) for each
Interpretation. This -omputatlion might Involve looking at the

rest of the sentence for key words, or might use some more
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general idea, like keeping track of the general area of
discussion (perhaps in some sort of network or block structure)
and lettling the plausiblility of a particular meaning depend on
its "dlstance" from the current toplc. This has not been
implemented since we have included only a single toplic of
discourse in the vocabulary. It Is discussed further In section
5.2,

The second type of overall dlscourse context involves the
objects which have been previously mentioned. Whenever an
object or one of its propertles Is mentlioned, elther by the
human or the computer, a note Is made of the time. Later, If we
use a phrase like "the pyramid", and the meaningils not clear,
the system can look far the one most recently menfloned.

Finally, the knowledge of the world can enter into the
semantic interpretation. We.have mentioned that the grammar can
ask the semantic Interpreter "Does this NOUN GROUP make sénse?"
before continulng the parsing. The semantlics pEogrq@s can In
turn call on PLANNER to make any deductions needed to decfde on
its sensiblility. Thus informatlon aont the world can guide the

v

parsing directly.
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4, 1.6 Geals of a Semantic Theory

We have set ourselves very broad goals In our definition of
semintics, asking for everything which needs to be done, rather
than limiting ourselves to those aspects which can be explained
and characterized In a neat formalism, How does thls compare
with the more limited goals of a semantic theory llke that of
Fodor and Katz <{Fodor>, which looks only at those aspects of
meaning which are independent of the "setting'" of a sentence?

We have seen tnat thelr theory of ''semantic markers" Is In
fact a part of the “filtering" needed for “exploiting semantic

relations In the sentence to eliminate potential ambigultlies"

~(<Fodor>p. 485)", and that the "semantic distinguishers" are a

rudimentary form of the loglcal descriptions which we bulld up
to describe objects and events. They state that ''the
distinction between markers an' distinguishers Is meant to
colncide with the distinctlon between that part of the meaning
of a lexical item which Is systematlic for the language and that
part of the meaning of the Item which Is not." (<Fodor> p. 498).
We belleve that much more of meaning is systematlic, and that a
semantic theor; can be of a much wider scope.

What about the more restricted goals a semantlc¢c theory
might achieve such as '"accounting for... the number and content
of the readings of a sentence, detecting semantic anomalles, and
deciding upon paraphrase relations between sentences."? In a
more complete semantic theory, these are not primary goals, but
by=-products of the aralysis. A phrase ls a semantic anomaly Iif
the system produces no possible Interpretations for tt, Two
sentences are paraphrases |f they produce the same
representation In the Internal formalism for meanling, and the
“"number and content" of the readings of a sentence are the
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Immedtate result of (ts semantic analysis. Which of these wil)
happen depends on the entlre range of ways In which language
communicates meaning, not on a restricted subset such as the
logi~zal relations of markers., Once we have a conceptual
representation for meaning, problems such as these are secondary
byproducts of the baslc analysls which relates a sentence to the
representation of Its meanling.

In addition, we can talk about sentences belng anomalies or
paraphrases "in context", as well as "without regard to
context', since we want the theory to Include a systematlic

analysls of those features of context which are relevant to

understanding.
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4.2 Semantic Structures

The previous sectlon outlined the structure of a semantic
interpreter, and described the use of semantlc "speclalists" in
analyzing different aspects of llngulstlc structure. Each
specialist is in the form of a procedure which describes the
particular asbect of semantics which wfth it Is concerned. Ve
can ‘look at its function as creating a part of a complete
description of the meaning of the sentence by bullding complex
list structures which we will call "semantic structures® to
describe objects and relationships. Events are a type of
relationship (involving time), and the class of "object"
includes anything which could be treated as an object In English
grammar, even If It Is as abstract asi"truth". There are two
basic types of structures used -- one to describe objects, (an
Object Semantic Structure, or 0SS) and *the other to describe
relatlionships (an RSS). In general, noun groups are Interpreted
to form object structures, while the other groups and c¢lauses
are interpreted to form relatlionship structures. Vords already
have a semantic structure of thelr own (their definitlon) and
are used In building up the structures for the larger unlts

which contaln them,
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ﬂﬁg‘i Qbject Semantic Structures

Let us first look at the semantic structures used to
describe objects, First, we need the actual PLANNER statements
which will be used In deducing things about the objects. An NG
like "a red cube" can be described using the formalism of

Chapter 3:

(THPROG (X1)
(THGOAL(#1S $7X1 #BLOCK))
(#EQDIM $2X1)
(THGOAL(#COLOR $?X1 #RED)))

Flgure 57 == Simpla PLANNER Description

The variable "X1" represents the object, and this
description says that it should be a block, it should have equal
dimensions, anc it should be red. (See sectlion 3.4 for the
details of representation). A phrase such as "a red cube which
supports three pyramids but is not contalned In a box" has a
more complex decrcription. This would be bulilt up from the

descriptions for the varlous objects, end would end up:

(THPROG(X1)
(THGOAL(#1S $2X1 #BLOCK))
(#EQDIM $?X1)
(THGOAL(#COLOR $?X1 #RED))
(THFIND 3 $?2X2 (X2) (THGOAL(#IS $7X2 #PYRAMID))
(THGOAL(#SUPPORT $7X1 $2X2)))
(THNOT(THPROG(X3) :
(THGOAL(#1S $7X3 #BOX))
(THGOAL(#CONTAIN $2X3 $?2X1)))))

Flgure 58 =~ PLANNER Descriptlion

We can learn how the semantic specialists work by watching

them bulld the pleces of this structure. Flirst take the simpler
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NG, "a red cube'. The first NG speclalist doesn't start work
until after the noun has been parsed. The PLANNER description
s then bulilt backwards, starting with the noun, and continuing

in right-to-left order through the classiflers and adjectlives.

The beginning of the NG, with the determiner, number, and
ordinal is handled by a part of the NG specialist described
later. The first NG spectallist Is named SMNGl =- all of the
names begin with SM (for "semantic"), followed by the name of .
the unit they work with, followed by a number Indicating the
order In which they are called. SMNG1 sets up an envirorment
(we will describe various parts of It as we go), then calls the
definitlion of the noun. (Remember that definitions are in the
form of programs). For simple nouns there Is a standard
function to define them easily. What should the definltlion
Include? First, a way to Indlicate the PLANNER ;tatéments which
are the heart of its meaning. The symbol "#»#+" |s used to
represent the object, so our deflnitlon of “"cube' contalns the
expression:

((#1S wee #BLOCK)(#EQDIM «#%))

The syntax of PLANMER functlons such as THPROG and THGOAL will
be added by the specialists, slnce we want to keep the
definition as simple as possible.

There |s one other part of the definition for a noun == the
semantic markers, used to fllter out meaningless

lntefpretatlons of a phrase. The definition needs to attach
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these semantic markers to each 0SS. The BLOCKS world uses the
tree of semantlic markers in Figure 59.

This Is the same type of dlagram used for grammars, In
which vertical bars represent choices of mutually exclusive
markers, while horlzontal lines represent loglcal dependency.
The symbol "#PHYSOB" means “physlical object", and "#MANIP'" means
"manipulable object'". The word "cube" refers to an object witr
the markers (#THING #PhYSOB #MANIP #BLOCK). lle shouldn't need
to mention all of these In the definition, since the presence of
#BLOCK Implies the others through the logical structure of the
marker tree.

The definition of the noun "cube'" is then:

(NMEANS ((#BLOCK) ((#1S www #BLOCK)(#EQDIM wx%x))))

NMEANS [s the name of the function for deallng with nouns,
and it accepts a list of different meanings for a word. In this
case, there is only one meaning. The first part of the
definition Is the marker list, followed by the reduced PLANNER
defin{tlon. When NMEANS is executed, [t puts thils informatlon
onto the semantic structure which Is being bullt for the object.
It takes care of finding out what markers are Implled by the
tree, and declding which predlcates need to te In a THGOAL
statement (like #1S), and which are LISP pfedlcates (like
$EQDIM) . We will see later how It also can decide what
recommendation llsts to put onto the PLANNER goals, to gulde the

deductibn.
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TH NG # emmmny

#MAME
#PLACE #SHAPE
#PROPERTY ==
#S1ZE
#LOCAT I ON
#COLOR
| #ROBOT
#ANIMATE
| #HUMAN
#BLUE
#RED
(#SPECTRUM
FBLACK
#IHITE
#GREEN
#STACK
#PHYSOB =~

#RELATION-—-1

#CONSTRUCT #PILE
#HAND #ROW

et # TABLE #PYRAMID

#MANIP #BLOCK

#B80X #BALL
#EVENT
#TIMELESS

Figure 59 -~ Semantlic Markers for the BLOCKS Vocabulary
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SMNG1 then calls the definition for the adjective "red".

We would like this definition to include the PLANNER assertlon
(#COLOR »*» #RED), and iIndicate that It applles only to physical
objects. We can use the same format used for nouns, defining
"red" as:

 (NMEANS ((#PHYSOB) ((#COLOR #+» #RED))))

Notlce that there Is no distlnction made between the use of
#PHYSOB Lere to Imply "applles only to physlical objects" and the
use of #BLOCK In the definition of "cube" to say "thls Is a
block". This is because of the way the markers are
implemented. The marker list in a defilnition is interpreted to
mean "this definitlion applies only if none of the markers here
are in rconflict with any of the markers already established for
the object". Since the noun Is the first thing Interpreted, Its
markers cannot possibly conflict, and are simply entered as the
initial marker 1ist for the object. The marker programs are
deslgned so that we do not need to limit ourselves to a single
tree == we.could classify objects along several dimensions, and
set up separate marker trees for each., For example, we might
classify objects both by thelr physical propertles and by their
use, -

The order of analysis of modifiers Is quite natural to the
use of "relative" modifiers. It Is Impossible to glve an
absolute definltion for "big" or "little"”, since a "big flea" Is

still not much competlitlon for a "llttle elephant”". The meaning

e e —————
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of the adjective is relative to the noun It modifies. In fact,
it may also be relative to the adjectives following It as well,
A "big toy elephant'" Is on a scale of Its own. Since our system
analyzes the MG from right to left, the meaning of each
adjective Is added to the description already built up for the
head and modiflers to the right. Since each definition Is a
program, It can just as well be a program which examines the
description (both the semantic markers and the PLANNER
description), and produces an approprlate meaning relative to
the object being described. This might be In the form of an
absolute measurement (e.g. a '"big elephant'" Is more than 12 feet
tall) or can remain in a relative form by producing a PLANNER
expression of the form '"the number of objects fitting the
description and smaller than the one being described Is more
than the number of sultable objects bigger than It is'.

In adding the meaning of '"red" to the semantic structure,
the spectalist must make a choice In ordering the PLANNER
-expresslons; We remember from section 2.3 that thg order of
expressions can be lmportant,.since varliable assignments are
done in the order encountered. |If we have the first sequence
shown In Figure 60, PLANNER will look through all of the blocks,
checking untll it finds one which Is red. However [If we have
the second, it will look through all of the red objects until It
finds one which is a block. In the robot's tiuy world, this

isn't of much Iimportance, but If we had a data base which could
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take phrases like "a man In this room", we would certalnly be
better off looklng around the room first to see what was a man,

than looking through all the men in the world tc see If one was

in the room.,

(THPROG(X)
(THGOAL(#1S $?X #BLOCK))
(THGOAL(#COLOR $2X #RED)))

(THPROG(X)
(THGOAL(#COLOR $?X #RED))
(THGOAL(#1S $2X #BLOCK)))

Flgure 60 =-- Ordering Goals

To make tﬁls choice we allow each predicate (like #IS or
. #COLOR) to have assoclated with It a program which knows how to
evaluate Its "priority" In any given environment. The program
might be as simple as a single number, which would mean "this
relation always has thls priorlty". It might on the other hand
be a complex heur!sflc program which takes Into account the
current state of the world and the discussion. In our
definltlons,.we have adopted the simpler alternatlve, assignlné
fixed priorities in the renge 0 to 1000 arbitrarily. By keeping
track of the priority of the expression currently at the top of
the PLANNER descriptlion, the functlon.NMEANS can declde whether
to 2dd a new expression above or below It,

| Let us now look at the actual structure which would be

bullt up by the program:

i
i
1
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¢ ¢ ((X1) 200 (THGOAL(#IS $2X1 #BLOCK))
(THGCAL(#COLGR $?X1 #RED)) PLANNER
(#EQDIM $72X1)) description
(0 #BLOCK #MANIP #PHYSOB #THING) merkers
(#MANIP #PHYSOB #THING) systems
X1 varlable
(NS INDEF NiL) _ determiner
NIL) ' ordinal
Figure 61 == 0SS for "a red cube"

Most of the parts of this structure (called an Object
Semantlc Structure or 0SS) have aiready been explalned, The
PLANNER description Includes a variable list (we will see its
use later), the priorlty of the flrst expression, and a llst of
PLANNER expressions describing the object. The "markers"
position 1llsts all of the semantlc markers applicable to the
object. The 0 at the beginning of the iist Is the
"plausability" of this interpretation. This factor was
discussed In section 4.1.4, and = set when we are faced with
more than one possible Interpretation of a word. Each semantic
structure carrles along with It an accumulated plausablility
rating. Thils will remain 0 unless It is set specifically by an
ambigulty.

The "systems" position is a list of all of the nodes In
the set of marker trees (remember that there éan be more than
one) which have already had a branch selected. It 15 used in

looking for marker conflicts. The "variable'" Is the variable

-,
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name chosen to represent this object. The system generates It
from the set X1, X2, X3,.., providing a new cne for each new

structure. The only two positions left are the determiner and

the ordinal. These are explained in sectlon 4.,2.4
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4,2,2 Relative Clauses

Let us now take a slightly more complicated NG, "a red cube
which supports a pyramid," and follow the parsing and semantlc
analysis. First, the NG parsing program flinds the determlner
("a"), adjective ("red"), and noun ('"cube"). At this point
SMNG1l Is called and creates the structure described In the
previous section. MNotlce that the NG Is not finished when SMNG1
is called == it has only reached a point where we can do a first
analysis, At this point, the NG might be rejected without
further parsing If the combinatlion of noun, classifiers, and
adjectives Is contradictory to the system of semantic markers.

Mext “he NG program looks for a quallfier, and calls the
CLAUSE part of the grammar by (PARSE.CLAUSE RSQ). The feature
RSQ (rank shifted qualifier) Informs the CLAUSE program that it
should look for a RELWD like "which". It does, and then looks
for a VG, succeedlng with "supports'. The VG nrogram calls Its
owri semantic speclalisf to analyze the time reference of the
clause, but we will ignore thls for now. Next, since "support"
Is transitive, the CLAUSE looks for an object, and calls the NG
program. This operates in the same way as before, producing a
semantic structure to describe "a pyramid". The definltion of
"pyramid" lis:

(NMEANS ((#PYRAMID) ((#1S =w+ #PYRAMID))))

so the resulting structure Is:
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X ( ((X2) 200 (THGOAL(#IS $?2X2 #PYRAMID)))
(0 #PYRAMID #MANIP #PHYSOB #THING)
(#MANIP #PHYSOR #THING))

X2

( (NS INDEF NIL)

NIL)

Figure 62 -- 0SS for "a pyramid"

At this point the first CLAUSE specialist Is called to
analyze the clause "which supports a pyramid'". We want to
define verbs in a simple way, as we do nouns and adjectives,
saying somethlng like "If the subject and object are both
physical objects, then "support" means the relation #SUFPORT
between them in that order'". This Is written formally usling the
functlon CMEANS, as:

(CMEANS((((#PHYSOB) ) ((#PHYSO0B))) (#SUPPORT #1 #2)NIL))

A1l of the oxtra parentheses are there to leave room for
fancier options which will be described later. The important
parts are the semantlic marker lists for the objects
participating in the relationship, and the actual PLANNER
expression naming 1t. The symbols "#1" and "#2" (and '"#3" |If
necessary) are used to Indicate the objects, and the normal
order 1s 1. semantic subject (SMSUB) 2. semantlc flirst object
(SMOB1) 3. semantic second object (SMOB2). Notlce that we
have prefixed the word "semantic'" to each of these. In fact,
they may very well not be the actual syntactlc subjgct and
objects of the clause. 1In this example, the SMSUB Is the NG "a

red cube" to which the clause Is being related. SMCL1 knows
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this since the parser has noted the feature SU3JREL., Before
calling the definition of the verb, SMCL1 has found the 0SS
describing "a red cube" and set it as the value of the varliable
SMSUB. Similarly it has taken the 0SS for "a pyramld" and put
it In SMOB1l, since it Is the object of the clause. The
definition of the verb "support" Is now called, and CMEANS uses
the Information In the deflinition to build up a Relation
Semantic Structure (RSS). First it checks to make sure that
both cbjects are cohpatible with their respectlve marker llsts.
The marker lists are In the same order as the symbols »*1, #2,
and #3, In this case, both the subject and object must be
physical objects.

Next SMCL1 substitutes the objects Into the relatlon. | f
it Inserted the actual semantic structures, the result would be
hard to read and time-consuming to print. lInstead, the NG
speclalists assign a name to each 0SS, from the set MNGl, NG2,
NG3,... We therefore get (#SUPPORT NG1 NG2) és the description
of the relationship. The final semantic structure for the
clause (after a second specialist, SMCL2 has had a chance to
look for modifiers and rearrange the structure into a convenlent

form) is:
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(NG (#SUPPORT NG1 NG2) NIL} (0))
rel relatfon neg markers

Figure 63 -~ Relation Semantic Structure 1

The positlion marked "rel" holds the name of the NG
description to which this clause serves as a moditflier. We will
see later that it can be used In a more general way as well.

The "relation" Is the materlal for PLANNER to use, and "neg"
marks whether the <lause Is negatlve or not.

The last element Is a set of semantlic markers and a
priority, just as we had with object descriptions.

Relationships have the full capabllity to use semantic markers
just as objects do, and at an early stage of building a relation
structure, It contalns a PLANNER description, markers, and
systems In the Identical form to those for object structures
(this is to share some of the programs, such as those which
check for conflicts between markers). We can classify different
types of events and relatlionships (for example those whlch are
changeable, those which involve physical motion, etc.) and use
the markers to help filter out interpretatlons of clause
modiflers. For example, the modifying PREPG "wlthout the
shopping list" In "He left the house without tiie shopplng 1ist"
has a different Interpretation from "without a hammer" in '"He
built the house wlithout a hammer." If we had a classification of

activities which Included those involving motion and those using
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tools, we could choose the correct Interpretation. A system cah
be constructed which operates much like Fillmore's ccse system,
assigning classes of verbs according to the type of modification
they take, and using this to find the correct relatlon between a
verb and Its modifying phrase. This will be discussed more In
the section or types of PREPG.

In our limited world, we have not set up a marker tree for
relationships and events, so we have not included any markers in
the definition of "support'. The marker list In the RSS
therefore contains only the plausibillity, 0. The BNILY In the
definition Indicates that there are no markers, and would be
replaced by a list of markers If they were used.

The clause Is now finished, and the specialist on relative
clauses (SMRSQ) Is called. Its task Is to take the Information
contained In the PLANNER descriptions of the objects Involved In
the relation, along with the relation itself, and te put It all
onto the PLAMNER description of the object to which the clause
is being related. The way In which this Is done depends on the
exact form of the different objects (particularly on thelr
determiners). In thls case, it Is relatively easy, and the

description of "a red cube which supports a pyramid'" becomes:
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¢« ((X1 X2) 200 (THGOAL(#IS $?2X1 #BLOCK))
(THGOAL(#COLOR $?X1 #RED))
(#EQDIM $?2X1)
(THGOAL(#1S $72X2 #PYRAMID))
(THGOAL(#SUPPORT $?X1 $?X2)))

(0 #BLOCK #MAN!P #PHYSOB #THING)
(#MANIP #PHYSOB #THING))

X1

(NS INDEF NIL)

NIL)

Figure 64 -- 0SS for "a block which supports a pyramid"

The only thing which has changed iIs the PLANNER
description, which now holds all of the necessary information.
Its wariable 1ist contalns both X1 and X2, and these variable
names hsve been substituted for the symbols NGl and NG2 ln_the
relation, which has been compined with the separate PLANNER
descriptions for the objects. Sectlon 4.2.4 describes how a

relative clause works with other types of NG <“escriptions.
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4,2.3 Prepositlion Groups

Comparing the phrase "a red cube which supports a pyramid"
with the phrase "a red cube under a pyramid, we see that
relative clauses and qualifying prepositional phrases are very
similar In structure and meaning. in fact, thelr semantlic
analysis Is almost Identical, The definition of a preposition
l1ike "under" uses the same function as the definition of a verb
like "support'", saying "If the semantlc subject and object are
both physical objects, then the object is #ABOVE the subject"
(Pemembe, that in our BLOCKS world we chose to represent all
ve tical space relations using the concept #ABOVE). This can be
formalized as:

(CMEANS((((#PHYSOB) ) ((#PHYSOB))) (#ABOVE #2 #1)NIL)

Again, the symbols #1 and #2 refer to the semantic subject
and semantic first object, but in the case of a preposition
group used as a qualifler, the SMSUB Is the NG of which the
PREPG is a part, while the SMOBl is the object of the PREPG (the
PREPOBJ). As with clauses, the situation may be more complex.
For example, In a sentence like "Who was the antelope | saw you
with last night?", the SMOBJ of the PREP "with" is the question
elerent "who" In the MAJOR CLAUSE. However, the PREPG
speclaltlst (SMPREP) takes care of all thls, and In defining a
preposition, we can deal directly with the SMSUB and the SMOB1.
Notlice that If we had been defining "above" Instead of "under",

everything would have been the same except that the relation
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would have been (#ABOVE #1 #2) instead of (#ABOVE #2 #1), |If
the PREPG Is an adjunct to a CLAUSE, the SMSUBJ Is the RSS
defining the CLAUSE. Tha definition of a preposition can then

use the semantic markers which are Included In an RSS.
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4,2.4 Types of Object Descriptions

In the examples so far, all of the objects described have
been singular and INDEFInite, like "a red cube", and the
semantic system has been able to assign them a PLANNER variable
and use it in building their properties into the description.
Let us consider another simple case, a DEFinite object, as In "a
red cube which supports the pvramid".

The analysls begins exactly as it did for the earller case,
bullding a description of "red cube'", then one of 'pyramid."
The "“pyramid" description djffers from 0SS 2 In having DEF iIn
place of INDEF In Its determiner. This Is noted at the very
beginning of the analysls, but has no effect until the entire NG
(Including any qualifiers) has been parsed. At that time, the
second NG speclialist SMNG2 checks for a definite NG and trles to
determine what It refers to before going on (we have pointed out
in varlous places how this Is used to guide the parsing). It
takes the PLANNER description which has been bullt up, and hands
It to PLANNER In a THFIND ALL expression, The result is a list
of all objects fitting the descriptlon. Presumably If the
speaker used "the", he must be referring to a particular object
he expects the listener to be aware of. |If more than one object
flts the description, there are various discourse heuristlcs
used to find the reference, (see Sectlon 4.3.3) and If nothing
succeeds, a fallure message Is produced and the paiser has to

back up and try something else to parse the NG.
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If SMNG2 is able to find the Jsbject being referred to, It
puts it Into the description (or the property list). When SMRSQ
relates the descriptions to build the meaning of '"a red cube
which supports the pyramid" it takes advantage of this. The
object found will have a proper name like :85., Instead of

building the PLANNER description of 0SS 3, It bu!ldé:

((X1) 200 (THGCAL(#!S $?X1 #BLOCK))
(#EQDIM $2?X1)
(THGOAL (#SUPPORT $?X1 :8B5)))

Figure 65 -- PLANNER Description 12
“a red cube which supports the pyramid"

The cbject itself s used In the relation rather than dealing
with Its description.

What If we had asked about "a red cube which supports three
pyramids"? In that case the PLANNER description would Include
an expression using the functlon THFIND with a numerical
parameter, as shown In Flgure 66. 1If we had said "a red cube
which supports at most two pyramids", a fancler THFIND parameter
would have been used, as shown, Here, the parameter means “be
sat.sfled If you don't find any, but If you find 3, immediately
cause a fallure." In addition &z numbers, the SMNGl and RSQ
programs can work together to relate descriptlons of quantifled
objects. "A red cube whlch supports some pyramid" Is handled
just like the original indefinite case. "A red cube which
supports no pyramid" and "a red cube which supports every
pyramid" are handled using the other PLANNER primitives. A

universal quantifier Is translated as “"there s no pyramld which
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(THGOAL(#1S $?X2 #PYRAMID))
(THGOAL(#SUPPORT $7X1 $7X2))

"which supports a pyramid"

(THGOAL(#SUPPORT $7X1 :B3))
"which supports the pyramid"
(THFIND 3 $7X2 (X2) (THGOAL(#1S $?X2 #PYRAMID))
(THGOAL(#SUPPCRT $72X1 $72X2)))
“"which supports three pyramids"
(THFIND (0 3 NIL) $?2X2 (X2) (THGOAL(#1S $?X2 #PYRAMID))
(THGOAL(#SUPPORT $?2X1 $?2X2)))
"which supports at most two pyramlds"
(THNOT
(THPROG (X2) (THGOAL(#I1S $72X2 #PYRAMID))
(THGOAL(#SUPPORT $7?X1 $7X2)))))
"which supports no pyramids"
(THNOT
{THPROG {X2) (THGOAL(#IS $7?X2 #PYRAMID))
(THNOT '
(THGOAL(#SUPPORT $72X1 $?2X2)))))

“"which supports every pyramid"

Flgure 66 == Quantiflers

Ry
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the red cube does not support'". For the robot, '"every" means
“"every one | know about'. This Is not a requlirement of PLANNER,
or even of the way we have set up our semantic programs. It was
done as a convenience, and will be changed when the system Is
expanded to discuss unliversal statements as well as the specific
commands and questions it now handles.

We similarly handle the whole range of quantifliers and

t,spes of numbers, using the logical primitives and THFIMND

parameters of PLANNER. The work Is actually done In two places.

SMNG1 takes the words and syntactic features, and generates the
"determiner'" which was one of the Ingredients of our semantic
structure for objects. The determiner cont;tns three parts,
First, the number is elther NS (singular, but not with the
specific number "one'), MPL (plural with no specific number),
NS=-PL (ambiguous between the two, as in "the fish"), or a
construction containing an actual arithmetlic number. This can
elther be the number alone, or a combination with '">", ", 6 or
“exactly". Thus the two NGs "at most two days" and "fewer than
three days" produce the tdentlcal determiner, contalning " (<
3", The second elemant of the determiner Is either DEF,
INDEF, ALL, NOU, or NDET (no determiner at all == as In "We llke
sheep.") The third Is saved for the questlén types HOWMANY and
WHICH, so It Is NIL in a NG which Is not a QUEST or REL.

ol od
\

A
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(EXACTLY 2)

Number

NS an apple

NPL some thougnts

7 seven slstars

(> 2) at least three ways

(< 5) fewer than five people

exactly two minutes

Determiner

DEF the law

INDEF a riot

ALL every ch);ld

NO nothing

NDET good intentions

Question Marker

HOWMANY how many years
VHICH which rocad
Flgure 67 =-- Examples of Determiner Elements

Other speciallsts such as SMRSO and the answerlng routlnes

use this infarmatioan to produce PLANMEZR expressions like the

ones described above. In addition, there are special programs

for cases like the OF NG, -as In "all of your dreams', fn this
case, the PREPQBJ following "of" Is evaluated as a WG first.
Therefore In "three of the blocks", we analyze "the blocks"
first, and since it Is definite, PLANNER Is called to find out
what

It refers to, !t returns a list of "the blocks", (e.g.

(:81 :B4 :B6 :B7)). The OF speclalist uses the PLANNER. function

THAMONG (which chooses its variable blndings from “among" a
given list) to produce an expression 1llke:

(THFIND 3 $?X1 (X1) (THAMONG X1 (QUOTE(:Bl :B4 :B6 :87))))



e
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Crdinals are treated specially, along with SUPerlative

ADJectives. |If we have a NG like "the biggest block which
supports a pyramid", it Is twpossible for SMIG1 to add the
meaning of "biggest'" to the description in the same way as It
weuld add an expression for “big". The biock Is "biggest" with
respect to a group of objects, and that group Is not fully
defined until the entire NG has been parsed, Including the
qualifiers. SMNGl therefcre does a partial analysis of the
meaning, looklng up the name of the measure that particular
adjective refers to, then hangs the result in the last niche of
the 0SS described in section 4.2,1 After all has been parsed,
SMNG2 finds It there and creates a full loglcal description. In
the case of "the biggest block which supports a pyramid', we

would get the PLANNER description:

((X1 X2 X3 X4 ) 200

(THGOAL(#1S $?2X1 #BLOCK))

(THGOAL(#1S $2X2 #PYRAMID))

{THGOAL{#SUPPORT $?X1 $?X2))

(THNOT

(THAND(THGOAL(#1S $7X3 #BLOCK))

(THGOAL(#1S $?X4 #PYRAMID))
(THGOAL (#SUPPORT $?7X3 $?Xu4))
(THGOAL(#MORE #SIZE $?X3 $?X1)))))

Flgure 68 ~- PLANNER Description 2
“the blggest block which supports a pyramid"

A similar type of description Is generated for other

superlatives and ordinals,.
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4.2,5 The Meaning of Questlons

So far, we have discussed the semantics of cobjects and the
relationships which are used to describe them In preposition
groups and relatlive clauses., Now we will deal with the overall
meaning of a sentence as an utterance -=- as a statement, 2
question, or a command. The sentence Is analyzed Into a
relationship semantic structure, and the system must act on It
by responding, taking an action, or storing some knowledge.

First let us look at questions. |In describing the grammar
of clauses (see section 2.3.3) we polnted out the similarities
between questions and relative clauses, which share a large part
of the system network and the parsing program. They also have
much In common on a semantic level. We can look at most
questions as belng a reolative clause to some focus element in
the sentence.

In the class of WH questions, thls resemblance Is easy to
see. First we can take a NGQ questlion, whose gquestion element
is a NG. The questlion "Which red cube supports a pyramid?" is
very closely related to the NG "a red cube which supports a
pyramid. The system can answer such a question by relating the
clause to the object, and bullding a description of Ma red cube
which supports a pyramid." It then takes this entlire PLANNER
description and puts It Into a THFIND ALL statsment, which is
evaluated in PLANNER. The result Is a list of cbjects fitting

the description, and Is In fact the answer to our question. Of
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course PLANNER might find several objects or no objects meeting
the description. In this case we need answers 1lke "noune of
them" or "two of them". Section 4.4 describes hew responses to
qguestions such as these are generated, depending on the relation
between the specific question and the data found. [If the
question is "how many" instead of '“which", the system goes
through the ldentical process, but answers by counting rather
than naming the objects found.

No matter what type of NGQ wz have (there is a tremendous
variety -- see section 2.3.3) the same method works. We treat
the MAJOR clause as a relative clause to the NG which is tne
question element, and which we call the focus. This integrates
the relationship intended by the clause Into the descrlptiQn of
that object. PLANNER then finds all objects satisfying the
expanded description, and the results are used to generate an
answer,

Next, we have the QADJ aquestions, like "when', "why', and
"how". In these cases the focus Is on an event rather than on
one element of the relation. |[f we ask "Why did you plck up a
block?", we are referring to an event which was stored in the
system's memory as (#PICKUP E23 :B5) where :85 Is the name of
the object plckéd up, and E23 is the arbitrary name which was
assigned to the event (see Section 3.4 for a description of the

way such information Is stored.) We can ask [{n PLANNER:
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(THFIND ALL S$?EVENT ($?EVENT $7X)

(THGOAL(#PICKUP $?EVENT $7X))

(THGOAL(#1S $?2X #BLOCK)))
In other words, "Find all of the events In which you p!ckéd.up a
block.'" 17This is clearly the first thing which must be done
before we can answer "why'. Once It has been donef answering Is
easy, since PLANNER will return as the value of THFIND a list of
names of such events. On the property list of an evenu we find
the name of the event for which It was called as a subgoal (the
"reason'"). We need only to describe this In English., Similarly
if the question is '"when'", the property list of the event glves
its starting and ending times. If the question is "how" It
takes a i1ittle more work, since the subgoal tree Is stored with
only upward links, But by looking on the EVENTLIST, the system
can generate a list of all those goals which had as thelr reason
the cne mentioned In the sentence.

This concept of a relation as a sort of object called an
"event" is useful In other parts of the semantics as well -~ for
instance in dealing with embedded clauses as in “the block which
I told you to pick up". This Is described In section 4.2.12.

"Where" Is sometimes handled clfferently, as It may be
either a constituent of a clause, such as a location object
(LOBJ) (in "Where did you put 1t?") or an ADJUNCT (as In '"Where
did you meet him?"). The first case Is handled just like the NG
case, making the'clause a relative, as If it were "the place

where you put it", then asking in PLANNER:
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(THFIND ALL $?PLACE (PLACE EVENT)
(THGOAL (#PUT $?EVENT :0BJ $?PLACE)))

The ADJUNCT case Involves thinking about a speclal #LOCATION
assertion, as In:
(THFIND ALL $?PLACE (PLACE EVENT)

(THGOAL(#MEET $2EVENT :YNU :HIM))

(THGOAL(#LOCATION $2EVENT $?PLACE)))
In this example, we have moved away from the BLOCKS world slince
It does not vet contaln any actions in Its vocabulary which
occur at a specific place without that place being mentloned In
fhe event, éuch as #PUT. However the semantic system is
perfectly capable of handling such cases.

So far, we have seen thet we can answer WH- questions by
pretending they are a relative to some object, event, or place,
and by adding the relationship to the description of this focus,
It Is an interestling tact about English that even in a YES-NO
question, where therc Is no question element there is usually a
focus. Consider a simple question llke "Does the box contaln a
block?" Someore might answer ''Yes, a red one.", as iIf the
question had been "Which block does the box contaln?'" Notice
that "Yes, the box." would not have been an appropriate answer.
Something about '"the box'" makes It obvious that It is not the
focus. It is not Its place as subject or object, since "ls a
block In the box?" reverses these roles, but demands the same
answer, Clearly It Is the fact that "a block" !s an INDEFiInlte
NG.

The fact that a speaker says "a block" Instead of Y“the
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block" Indi:ates that he Is not sure of a speciflc object
referred to by the description. Even iIf he does not inquire
about it speclflcally, the listener knows that the information
will be new, and possibly of Interest since he mentloned‘the
object. In answering "Does the box contain a block?", our
system does the same thing It would do with "How many blocks
does the box contain?”. [t adds the relation "contaired by the
box" to the description of "a block", and finds all of the
objects meeting this description. Of course the verbal answer
is different for the two types of question. In one case, 'Yes"
Is sufficient, while in the other Yone" is. But the loglca
deduction needed to derive it Is ldentical. In fact, our system
uses this extra informaticn by replying, "Yes, two of them: a
red one and a green one." This may sometimes be verbose, but 'n
fact gives a natural sound to the questlion-answering. |t takes
on the "intelligent" character of telling the questioner
Iinformation he would be Interested in knowing, even when he
doesn't ask for it explicitly.

In YES-NO questions, It Is not always easy to determine the
focus. Only an INDEF NG which Is not embedded In another NG can
be the focus, but there may be several of them In a sentence.
Sometimes there Is no way to chocse, but that is rare. |In
asklng a questlon, people are usually focusing thelr attention
cn a particular object or event. There are a number of devices

for Indicating the focus. For example a quantifier, like "any
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or a TPRON like "something' emphasizes the NG more than a simple
determiner like "a". In botk "Does anything green support a
block?", and 'Noces a block support anything green?', the phrase
"anything green'" Is the focus. When none of these cues are
present, the syntactic functlon of the NG makes a difference.

If we ask "ls there a block on a table", then "block” Is the
focus, since it Is the subject while "table'" Is Instde a PREPG.
Our system contains a heuristlic program which takes Into account
the kind of determiners, number features (singular Is more
lTikely than plural), syntactic position, and other such factors
In choosing a focus., If It Is in fact very difflcult to choose
in a glven case, it Is likely that the speaker will be satisfled
with any choice.

For sentences In the past tense, which contalin no focus HNG,
we can agaln have an event as a focus. |If we ask, 'Dld Jesse
James rob the stagecoach?", a possible answer, Interpreting the
event as the focus, Is "Yes, three times: yesterday, last week,

and a year ago." This ls closely parallel to answerling questlons

in which the focus Is an object.
There are some questions which have no focus, such as

present~tense clauses wlth only definite noun groups. These,

however, are even easfer to answer, slnce they can be expresssed

-in the form of a simole set of assertlons with no varlables.

The NG analysis finds the actual objects referred to by 3

definite NG, and these are used In place of the variable In
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"no" by mak!ng

relationships. We cun therefore answer "yes" or
a goal of the relatlonship and letting PLANNER evaluate It. The
questlion "Dces the red cube support the box?" would generate the
simple PLANNER expression

(THGOAL (#SUPPORT :B3 :BOX))
it :B3 Is the iInternal name for the red cube. PLANNER would

return a non-NIL value only If the answer were "yes'".
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4,2,6 Interpreting lmreratives
The system can accept commands in the form of IMPERATIVE

sentences. These are nandled somewhat differently from

questions. |f they contain only definite objects, they can be

treated in thoe way mentioned above’for questlions with no focus,
The command “Plck up the red ball.,", Is translated into the
relationship (#PICKU2 :B7) which can be evaluated directly by
putting [t in a THGOAL statement which will carry out the
action:

(THGOAL (#PICKUP :B7)(THUSE TC-PICKUP))

However, If we say "Pick up a red ball.", the slituation Is
different. VWle could first use THFIND to find a red ball, then
out this object In a simple goal statment as we did with "the
red ball"., This, however, might be a bad idea. In éhooslng a
red ball arbitrarily, we may choose one which Is out of reach or
which Is suppoitting a tower. The robot might fall or be forced
to_do a lot of work which it could have wvolded with a little
thought.

We want to send the theorem which works on the goal a
description rather than an objecct name, and let the theorem
chcose the specific object to be used, according to the criteria
which best sult it. This Is the method we have adopted.
Remember that each 0SS has a name like '""NG45", Before a clause
Is related to its objects, these are the symbols used in the

relatlionshlp.
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When we analyze 'Plck up a red balil", it will actually
produce (#PICKUP NG45), where NG4S names an 0SS describing '"a
red ball." We use this directly as a goal statement, calllng a
special theurem which knows how to use these descriptions. The
theorem calls a theorem named TC~-FINDCHOOSE, which uses the
description of the object, along with a set of 'desirable
properties" assoclated‘wlth objects used for trying to achleve
the goal. #PICKLP may specify that it would prefer picking up
something which doesn't support anything, or which is rear the
hand's current lccation. Each theorem can ask for whatever it
wants, Of course, 1t may be Impossible to find an nobject which
fits all of the requirements, and the theorem has to be
satisfled with what it can get. TC-FINDCHOOSE trlies to meet the
full specifications first, but if It can't find an object (or
enough objects In the case of plural), it gradually removes the
restrictions. It must always keep the full requirements of the
description input InVEngllsh In order to carry out the specified
command. The robot simply tries to be clever about choosling
those objects which fit the command but are also the easliest for

it to use.
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4,2,7 Accepting Declarative Information

In addition to questions and commands, the system can
accépt declarative sentences. We have Intentionally not
emphasized them, as there are theoretical problems and dangers
in designing a program to accept information In thls way. In
Chapter 3, we discussed the complex world-model a person has and
explained why we felt that Intelllgence needed a highly
structured and coordinated body of knowledge rather than a sect
of separate uniform facts or axioms. It is comparatively easy
to gét a program to add new information of the second type, but
very difficult to get It to add the first, since this Involves
understanding the relationship between the new Information and
whatever 1s already there.

Therefore, although we have Included declarative sentences
in our dialog (and they are fully handled In the grammar), we
believe fthat before trylng to '"tell" many things to a program,
we need to have a better ldea of how knowledge should be
structured, and the program should approach new information as a
problem solving actlivity rather than a clerical one,

When a human sees a new sentance, he does rot simply store
It away, but he relates It to what he already knows, perhaps
changling his "programs", or lgnoring the content of the sentence
and Interpreting something about the person who sald It. A
language understander needs to have an interpreter which looks
at each r v sentence and decides how to use {t, This may
Include checking It for consistency with what It already krows,

creating new data or types of data In its storage, mod:fying

theorems, and many oghe’ possibilities, This 1s discussed

-
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further In Section 5.1
In our system we have four different ways In which
information can be accepted In a declarative sentence, The

'marb!

first is a simple word definition facility. |If we say "A
is a red block which is behind a box.'", the system recognlzes
that we are defining a new word., 1t currently recognizes this
by the quote marks, but it could just as easily declare all
unfamiliar words as possible new words. e have not done this
as It would eliminate the feature that the system Immediately
recognizes typing errors without waiting to begin parsing the
sentence. |

In this kind of definitlon, the complement of the sentence
is a roun group, which has an 0SS. \le save this 0SS and
generate a new dictionary entry for the word, deflned
syntactically as a noun, and ~ith Its semantic definition being
the program "set the object description to this one we saved
earlier." Remember that all definitions are programs, so this

one fits In with no problem. When It is called on to build part

of the descriptic-~., It simply Inserts the description used to

.define it. |If we talk about "two big marbs'", the system will

bulld a description exactly like the one for "two big red blocks
which are behind a box."

The second kind of information the system accepts Is simple
assertions Involving a predicate for which It does not have

complete knowledge.' As we mentloned In Sectlion 3.4, the system
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has complete data about the physlical characterlistics of the
objects In the scena. We have selected #LIXE as an arhlitrary
relation about which the system krnrows nothing excapt what It Is
told in the dialog. If we say "l 1like ycu." this produces the
assevticn (#LIKE :FRIEND :SHRDLU) (the name of the robot is
:SHRDLU) which Is simply added to the data base. The system
also plays a trick with the adjective "nice". Instead of having
some concept of #NICE, it assumes that the use of "nice" In
describing something is really saylng more about the speaker
than the object, so the definition of “nice" Is
(HMEANS((#THING) ((#LiKE :FRIEND #»%=))))
In other words, the person who uses the word "nice” likes the
object he was referring to.

| f we use an object which Isn‘t definite, as In "| like red
blocks.", the system uses the object description to generate a
simple PLANNER consequent theorem. It creates a theorem of the
form:

(THCONSE (X1)

(#LIKE :FRIEND $?X1)
(THGOAL (#1S $?X1 #BLOCK))
(THGOAL (#COLOR $?X1 #RED)))

This theorem says '"Whenever you want to prcve that the user
likes éomethlng, you can do it by proving that It Is a block and
it is red." This Is added to the theorem data base, and can Be
used to answer questions or carry out deductlions Involving
objects described as '"nice". The system does not separéte types

of non-definite objects and assumes unliversal quantification.

. ——
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The resuli¢s would have been the same If the sentence used "any
red block", "every red block'", "all red blocks", or (wrongly) "a
red block." A rizre complete treatment Is one of the possible
extensions of the system,

It does notice the form "no red blocks" and uses this for
the fourth kind of information. It sets up an almost identical
theorem, but with a "kicker" at the end. |If we say "I 1ike no
red blocks.", It sets up the theorem:

(THCONSE (X1}
(#LIKE :FRIEND $7X1)
(THGOAL (#1S $?7X1 #BLOCK))
(THGOAL (#C0DI.OR $?X1 #RED)))
(THFAIL THGOAL))

When the system is trying to prove that we like something,
this toheorem is called just like the .ne above. But this time,
after it find= out that the object is a red block, it does not
succeed. instead, it uses the PLANNER functlion THFAIL in a
poverfu, way. Instead of just causing that theorem to fall, It
causes the ertire goal to'fail, regardless of what other
theorerﬁs theie are. We can also accept a sentence like this

with a positlive nNG but a negative clause, as In i don't like

the red block" or "! don't 1lke any red blccks."
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4.2,8 Time _ | "

One of the most corplex parts of Engllish semantics Is the
way of establishing temporal relationships., It was pointed out
carlier that one of the primary differences bhetween the clause
and other urits such as the NG or PREPG Is the special set of
mechanisms withln the clause for handling time, In this section
we will describe how those mechanlsms oreratc both within the
clause and at nther levels of syntax.

In our formalism for describing relatlions and events (see
section 3.1) there Is provision for including a time reference
in a relation. The sentence "Harriet saw the fllm last week."
might be represented as

(#SEE :HARRIET :FILM :[IME23)
where :TIME23 is an arbitrary name for a structure describing
the time reference "last week'. The semantic programs for
dealing with time can be described in three parts -- the form of
structures used to represent time, the way those structures are
created, and the way they are used ir understanding and
deductinn,

A, Time Semantlic Structures

For the purposes of our BLOCKS world, we have treated only
a simple part of the overall range of time references In |
Engllish. In particular we have dealt only with references to
actual events which have happened In the past or are occurring

In the present, without dealing with the many varletles of
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future events, possible events, conditional events, etc. With
this simplification the system can use a simple linear time
scale (like & clock), relating all events to specific numerical
times. This does nrot mean that a single event must occur at a
single time == it may continue for a period of time during which
other events are occurring.

cnglish makes a clear distinction between events which are
thouzht of as occurring at a particular time, and those which
are pictured as continuing over an Interval. This contrast is
expressed both in the choice of verbs and in the shape of the VG
containing the verb.

Verbs like "like", and "know'", are inherently progressive.
They express a relationship which continues over a period of
time. Verbs like "hit'", and "wrlte" are not progressive, but
indicate the completion of an action as a whole. Of course,
this action also involves a process, and there Is a way to
express this aspect by using a tense PRESENT IN... The sentence
"t brokz it." Is not progressive, gliving the feeling of a single
momentary act. "I was breaking It." emphaslzes the process of

breaking, to which other events can be related.

In the present tense, the distinction Is clear. The

present of a progressive verb has the expected meaning, as in "I

know your name." With a non-progressive verb, there Is a ipeclal ;
meaning of hablitual or repeated actlon, as In "l break bottles." #

In order to produce the meaning usually consldered "present",
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: A
the verb group must be PRESENT It PRESENT, as in ") am breaking
] bottles,"

d o

Ambiguitles can arise from verbs which are both progressive
and non-progressive. The question "DId the rad block touch the
green.one while you were bullding the stack?" has two
lnterpret;tions. One means "Was it In contact durlng that
time?", whflé the other asks "Did it make contact during that
time?" |If the verb were replaced by "support", only the analog
of the flirst meaning would be valid, while "hit" would Involve
the second. The representation for time references must take
this progresslivity into account in trying to Interpret time
modiflers.

The representation used for time has four elements: the
tense, an Indicator for progressive, 3 starting time limit, and

and ending time 1imit. Either or both of the limits may be

‘ommitted. Some examples of sentences and thei* corresponding

structures are shown In Flgure 69,

A supports B (PRES) T MOV TNOW

A supported B before time 23 (PAST) T NiL 23

A hit B before time 23 (PAST) NIL NtIL 23

You bullt It after time 24 (PAST) NIL 24 NIL , -

You were bullding 1t after time 24 (PAST) T 24 NIL

Filgure 69 == Time Semantic Structures

The difference between the last two examples In Flgure 69

can be visualized by drawing a tfme 1ine:
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You buillt it after time 24
-_d
time begin

You were bullding It after time 24

Non=-Progressive

’“

24 building

Progressive

time building
24

Figure 70 -~ Progresslive and non-Progressive Times

A non-progressive action must begin after the start time,

and end before the end time. A progressive one begins before

‘the start time and ends after the end time. The TSS “or "you

hit 1t during event 23" (assuming event 23 began at time 3 and

ended at 7) would be

(PAST) NIL 3 7

l.e. the hit began after event 23 started and ended before it

ended. The sentence "you were hitting It during event 23" would

be:

(PASTY T 7 3

i.e. the hitting began before event 23 was over, but ended after

It had begun. This covers all ways of having the two events

overlap. The deflinlitions of the relating words like "durlng"

and "bafore" do not have explicit menticn of this distinctlon,

but the semantlc analysis programs take Into account whether the

verb and VG are progressive Iin setting up the TSS.
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B, Setting up Time Structures

Time Semantic Structures are associated with clauses, and a
new one s generated each time a clause Is parsed. Its elements
are determined by different aspects of the clause structure ==
the tense depends on the form of the VG, the progressivity
depends on both the tense and the specific verb, ani the limlts
are set by modifiers such as bound clauses, adverbs, and time
NGs as well as by the tense,

No analysis Is done until after the VG Is parsed and the
tense establishéd. Some types of secondary clauses such as MG,
SUBING, TO, and SUBTO do not indicate a tense. There Is a A
potential amblgulty In determining the time reference. 'The man
sitting on the table baked the bread." might Indicate that the

man was sitting on the table when he bzked 1t, or that he Is

sltting on the table now.

Unless there Is a specific reference (llke "the man sitting
on the table yesterday...") the system should take becth
possibilities Into account and resolve them as |t would an
ambigulty caused by multiple senses of words. The current
system does not do this, but uses a simplifying heuristic. If
the secondary clause Involves PAST, and Is embedded In a PAST
MAJOR CLAUSE, the two times are assumed the same unless
specifically mentioned. 1If the secondary clause has no tense,
it Is assumed PRESENT. If It Is PAST, but Imbedded In a PRESENT

~AJOR CLAUSE, the system checks the time referencé of the
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previous sentence, If thls [s PAST, the new vne Is assumed to
be the same (Including whatever modifiers, Yimits, etc.
applied). |€ pot It sets up a general time structure for PAST,
with no beginning 1Imit., and an end 1imit of :NOW., A PRESENT
tense TS5 is represented by fhe sing.,e 2tom MOV, which Is
treated specially by the programs, and is often deleted from
relations which Interrogate the current siate of thea data base
(see below). 1t can be applied only to progresslive verbs and
tenses (no provislon exists for understanding habltual actlion).

Modals are treated like present tense as far as
establlishing time references. A more complete system would
account for future, different types of modals, more complex
tenses, and would Involve heuristics for finding the referents
of multiple tenses like "He will have been goling to go
immediately for a month by Tuesday."

The start and end limits are set by modifier:. Adverbs
1ike "yesterday" and TIME NG's like "the week he airlved" set
both 1imits. This can also be done by bound clauses 1'ke "whille

you were building the stack" or PREPGs llke "during the flood".

Other c¢lauses, prepositions, and groups set only the start limlt'

(1ike "after you hit it", "after the war'") while others (11k-~
"Sefore" and "untlil") set the end limit. In the current system
the event beling referred to In the modlfler s assumed to be
known along with Its exact time (It must be In the past.) The

exact beginning and ending time are used in setting the limits.
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The question '"Did you pick It up while you were bullding
the stack?" is answered by first fiading the event of buildirg
the stack (using a (SS for PAST tense with no other limlts),
then using the beginni-y 2nd ending of that event as limits for
the TSS In the relation #PICKUP,

There are discourse phenomena which Involve time referenc:.
First, there are specific back-references with words like '"then"
and ghrases like '"'at that time'. The system keeps track of the
major time reference of the previous sentence, and substitutes
it in the current sentence whenever such phfases are used. This
time !s also carried forward Implicitly. Conslder "Did you pick
up a red olock while you were building the tower?" '"No." '"Did
you pick up a green one?" In this sequence, the second question
involves a sceclific time interval although it Is not mentionéd
again. VYhenever there are two successive PAST sentences and the
secord does rot have any explicit time reference, the previous
TSS is used. Long dialogs can appear in which the same time
Interval is used throughout, but is mentioned only In the first
sentence.

C. Use of TSS

So far, all of our discusslion hasinvolved the clause with
its verb group and time modiflers. But In making use of tlme
information we must handle other units as well. The sentence
"The man sitting un the table baked the bread." has two

meanings, but the point would have been ldentical for "Tie man
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on the table baked the bread." The quaiifying prepositional
phrase "on the table" does not refer to time, but can be
interpreted either as meaning '"on thas table now" or "on the
table then". Adjectives can be affected similarly, Consider
the sentences:

a. Many rich men made their fortunes during the depression.

b. Many rich men lost thelr fortunes during the depression.

€. Many rich men worked In restaurants durlng the depression.

The flrst clearly means "men wno are now rich'", the second

"men who were rich"”, and the third might have elther
interpretation. The adjective "rich" iInvolves an implicit time

reference, as does any adjective which describes a state whlich

can be true of an object at one time, but false at another.

Nouns can also Involve states which are changeable, and the
problem would be identical If "rich men" were replaced by
“"millionaires'.

In a traditional transformationa! approach, this would be
used to show that evénva simple phrase such as "a rich man" or
"millionalres" Is generated by a series of transformations. The
possibility of two meanlings Is accounted for bQ two different
deep structures, lnvolang sentences corresponding to "The men
were rich.” and "The men a}e rich." This leads to a syntactic

theory'ln which the simplest sentence may Involve dozens of such

‘transformations, to account for each noun, adjective,

prespositlion, etc. The parser must be able to handle all of

S A
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these details using syntactic Information.

in our approach, these can be seen as semantic ambigulties
which arise within a single syntactic structure. Part of the
semantic definition of the word "millionaire" (or “student",
"bachelor", etc.) Involves a reference to time. Within the
language for writing semantic definitions, there Is a special
symbol #T{ME. Whenever the program for the meaning of a word iIn-
the dictionary is called, the semantic system will have
determined the appropriate Time Semantic Structure (or
structures) and have assigned a value to thls symbol
accordingly. If the time reference Is ambiguous, the definitlion
will be called once for each possiblllity. The noun millionalre"
might be defined:

(NMEANS  ((#PERSON) ((#1S =+« #PERSON)
(#POSSESS w#« $1,000,000 »TIME))))

Notice that not every relation involves time, Being a
#PERSON Is assumed to be a permanent characteristic. |f the
time Is PRESENT (indicated by the TSS :NOW), the system deletes
the time reference, so PLANNER will recelve the expression
(THGOAL (#POSSESS $7?X1 $1,000,000)), where $?X1 Is the varlable
assigned to the dbject belng described. |f the sentence were
“"During the war, many mlllionalres worked In restaurants.", the
time reference of the sentence wou'd te a structure like (
(PAST) NIL 1941 1945), and the PLANNER axpresslon for
"millionaire" would include:

(#POSSESS $7X1 $1,000,000 ((PAST) NiL 1941 194%5))
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A different theorem would be used for this case, since it cannot
look directly Into the data base to see what the person has, but
must look into Its past '"records'" to reconstruct the
Information. In our programs, a record ls kept of when and
where objects have been moved, so theorems can determine the
locatlon of any object at any time In the past.

Since adjectives can be defined with NMEANS, they are
treated identically. PREPositlons and verbs are usually defined
with CMEANS, which has the same coaventlions. The symbol *TIME
can appear in the PLAMNER description In the definlition, and lIs
deleted if the applicable time Is :NOW, and replaced with the
TSS otherwise. The time applicable to anything but a clause Is
that of the clause closest above !t In the parsing tree. This
is only an approximaticn, and does not take Into account
amblguitlies such as i{llustrated In sentence c. above. In fact,

2 PREP or NG can have Its own time reference, as In "¢ former
millionalre", "many future students", "my roommate lasi year",
"the man on the table yvesterday". Thls Is one of many places
where the current semantic system needs to me extended by making
the analysis more general. It seems that this could be done

within the framework of the current system.
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4,2.9 Semanti¢s of Conjunction

The semantic system does not handle conjunction as
generally as does the parser. A few cases have been dealt wlth
In a simplified way == noun groups, adjectives, RSQ clauses, and
MAJOR clauses which are not questions. The distinction between
“and" and "but" Is lgnored.

With MAJOR clauses, the conjunctlon must be "and", and the
components are processed as 1f they were completely separate
sentences, except that the response ("O0K." for IMPERatives, and
"I UNDERSTAND." for DECLARatlives) ls supressed for all but the
last., The system will not accept sentences joined with "or",
or "nor", and will misunderstand compounds which cannot be
separated into Indlividal actions (e.g. "Bulld a stack and use
three cubes in 1t¢.")

Noun groups can be connected with "and" wherever they
appear, and with "or" If they are part of an argument to a
command (11ke "Plck up a cube ggla pyramid."). An 0SS Is bullt
with the semantic markers of the first constitutent NG, the
conjunction itself, and a list of the.OSS for the components.
If all of the comronents are DEFInite and the conjunctlion is
"and", the conjoined NG s definite, and its REFERent Is the
union of the referents.

The use of the conjoined 0SS depends on lts‘place In the
sentence. If It Is the object or subject of a verb or

preposition, the definition of that verb or preposition can
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check explicitly for conjoined structures and treat them
speclally. For example, '"touch" can be deflined so that the
sentence "A and B are touching.'" will be represented as (THGOAL
(#TOUCH :A :B)). |If there Is no special check, the system
assumes that the desired object Is the list of referents. "A
and B support C." would produce (THGOAL (#SUPPORT (:A :8) :C)).
If the first element of the PLANNER expression (usually the name
of a predicate) has a property MULTIPLE on its property list,
the system mod!fies this to create the expression:

(THAND(THGOAL (#SUPPORT :A :C))
(THGOAL(#SUPPORT :B :C)))

I f tﬁe conjoined NG Is one of the arguments to a command,
the theorem TC-CHOOSE wlll choose the speciflc referents. |If
the conjunction Is "and", 1t willl combine the referents for each
of the components in a single list. If It Is "or", It will
first choose according to the first constituent, then [f a
failure backs up to the cholice, It will try the second, third,
etc. It does not lock at the varlious cholces In advance to
declde which Is most appropriate for the task belng done.

The other units which can be comblined witk "and" and "or"
are the adjective and RSQ clause, The semantic structure for
the conjoined unit is a 1lst whose flrst element is the
conjunction, and the rest are the indlvidual interpretattons for
the constlituents. In using these to modify an 0SS, the system

combines all of the descriptlions with THOR or Impliclt THAND.

For example, ™a block which Is In the box gnd Is red" becomes:
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(THGOAL(#1S $?X #BLOCK))
(THGOAL(#IN $7X :BOX))
(THGOAL(#COLOR $?X #RED))

while "a red or green block" becomes:
(THGOAL(#1S $?X #BLOCK))

(THOR(THGOAL(#COLOR $?X #RED))
(THGOAL{#COLOR 37X #GREEN)))

This could easlly be extended fo other modifiers such as

prepocition groups. Many other types of conjunctlion could be
handled wlthout major changes .to the system, usually by adding
two blts of program. One Would create a conjclined semantic -
structure approprliate to the unit, and the other would recognize
it and take the appropriatz action for its use.

Whenever the constlituents of a conjolned structure are
amblguous, the resultant structure simply multiplies the

ambigulity, taklng all possible comblinations of Interpretatlons.

RS T N T
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4,2,:0 More on Ambigulity

Section 4,1 described how the number of interpretations of
an ambiguous sentence can be reduced through the use of semantic
markers, and selectlon restrictions associated with verbs,
adjectives, and prepositions. Thls sectlon will describe the
mechanism for producing multiple Interpretatlions, assizning
plausiblilitles to them, and resolvlﬁg the ambligultlies through .
discourse heuristlics and interaction with the user,

Any word of the classes ADV, ADJ, %NOUN, PREP, PRON, PROPN,
VB, CLASF, or PRT can irtroduce an amblguity Into the semantlc

interpretation. The remaining classes (such as NUMber and
DETerminer} have very limited deflinitions, and are handled
differently.

In general, a word Is expected to produce a lilst of
semantic structures, based on its definition, and the other
lists of semantic structures to which It Is related. NOUN,
PRON, and PROPN set up llsts of Object Semantic Structures, ADJ,
ADV, and CLASF take one of these lists, and produce a new list

adding the modification (and possibily eliminating anomolous

combinations). The VS, PREP, and PRT (In conjunctlon with VB)
set up lists of Relatlon Semantic Structures, and other classes !

can modify these lists, |

Any of these definitlions can involve speclal programs for

producing the 1ist of structures. For example the SMIT program }
Is used for analyzing proncuns like "they" and "it"., It f
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contalns a complex set of heuristlcs and syntactic criterfa to
find the rossible referents of a pronoun and set up an
% interpretation for each one. For simpler words, the functlons
NMEANS and CMEANS have ways to deal with multiple senses of a
word,

First, they both take as an argument not a single
definition, but a 1ist of definirlons, each with lts own
semantic markers, PLANNER expressions, etc. Second, each of

them has mechanisms for looplng through each of the relevant

A\

"Input" 1ists, to produce multiple lnterbretatloﬁs. If the
subject and object of a clause each have.two interpretations,
and the verb has three senses, all twelve combinations wlll be
tried, and the result!ng 1ist of Interpretations for the clause
will contain as many of them as pass through the semantic marker
"filters". This Is all done by the function CMEANS wlthout
mention in the definitions. Third, the deflnftlon functions

have optional ways to esitablish a "“plauslibility” rating and

T

paraphrase for each meaning.

In the dictionary, the word "on" has a semartlic definition
1 : which uses the function #0N, which contalns:
(CMEANS ((((#PHYSOB)) ((#PHYSOB))) (#ON #1 #2 «TIME)
1 (265 (ANWHERE ON TOP 0)))
(CCC#PHYSOB)) ((#PHYSOB))) (;?EPPORT #2 #1 «TIME)

(0 (DIRECTLY ON THE SURFACE)))
(CCC(#PLACE)) ((#PHYSO0B))) (#ON #1 #2) NIL))
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This contains three different senses. The third definitlion
will never conflict with the first two, since it insists that
the subject be a place rather than a physical object. The first
two, however can be applied to the same cbjects, and therefore
can be involved In an ambiguity. Each of them is given an
additional argument, to help resolve ambiguitles. Thls argument
appears after the standard semantic filters, PLANNER relation,
and semantic markers for the relation. It Is composed of two
elements -- a LISP form to be evaluated for a "plausibility",
and a paraphrase of the meaning. In thls example, the
plausibiiitles are simply numbers. They could just as easily be
a form like (PLAUSCHECK), whlch would cali a special program
(defined by the user) which could do arbitrary calculations in
order to decide on a plausibility, This might involve PLANNER
deductiohs, checks on the exact syntax of the sentence, or other
schemes such as looking through a network or other modei_in
order to decide which meaning fits best with the the other words
in the sentence and the subject being discussed.

As a semantic structure {s bulflt, It takes on the sum of
the plausibillities of Its components, as its own plausibility.
No "pruning" is done to eliminate obvious low plausibilitles,
although this would be a simple additlon to the program. All
Iinterpretations are ~arried along untll the sentence Is totally
parsed.

If the sentence Is a command, the system trles to carry out
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the mcst plausible interpretation. |If that falls, {t tries the
next, 2ni so on until one succeeds or a total faltlure causes the
system to respond "I CAN'T", Questions are handled mcre
compietely. The system orders the lnterpretétlons by
plausibility and finds the answer for the most plausible. it
then tries again to answer It, using only Information mentioned
in the previous sentence and its answer., If It succeeds In
finding the same answer, it deducts 500 from the plausibiiity,
since it is unusual to ask a questlon to which the answer was
just given, elther explicitly or implicitly., |f the Information
In the previous sentence is not sufficient to answer it, the
system then tries to answer using only inform=tion which has
been mentioned previously in the discourse. |f thls succeeds jt
deducts 200. I1f the plausibillity Is higher than that of the
next interpretation by a large enough margin (a factor set by
the user and called TIMID) it gives the answer as found., |If
not, it saves the answar and repeats the process for the next
Interpretation. After all interpretatioas have been processed,
the answers are checked to see if they are ldentical. 1n this
case It doesn't matter which Interpretation is Intended, and the
system simply gives the answer, Flinally, iIf there are differing
answers, the user must be asked what he meant. Assoclated with
each interpretatlon Is a list of those places where It differed
from others. This Is produced automatically by each program

whlch accepts multiple definitlions (such as NMEANS and CMEANS).
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Each difference Is marked by two atoms =-- one whose properties
indicate the pléce in the sentence wher2 the ambiguity was
produced, and the other indicating the meaning selected. In
sorting out the ambiguities, the system looks for two such
structures with the same first atom but different second ones.
The flrst can be used to declde what phrase Is questionable,
while the second atoms carry the paraphrases., Speclial care Is
faken to make sure that the same senience Interpretation does
not invclve two different interpretations of a single element
(1ike "it").

Faced with an unresolvable ambligulity, the system looks
through the list of Interpretations for a conflict, then
generates a response like:

I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "ON
TOP OF GREEN CUBES ".

DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE
2 « ANWHERE ON TOP OF ?

The response (a typed number) Indlicates which Is meant, and
all interpretatlons which Involve the other meanings (there can
be more thén 2 assoclated with a single ambiguity) are
éllminated. If there arevstill confilcting interpretations,
another ambliguity Is selected and the process Is repeated until
al! those which have not been eliminated give the same answer,
and it can be used as a response.

For interpreting statements, much more subtlety Is needed.

In general the cholce between Interpretations depends on how
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"reasonable" an Interpretration Is. If we see "The book fell off
the table because It was slanted.', we avold believing that "it"
refers to the Hook, or that It was "slanted" by the author's
blas, It would not be reasonable for elther of these to be the
reason for falllng off of a table. |

Part of the Interpreter which looks at declaratlive
statements must be able to evaluate how "surprising" an
Interpretaticn Is, and to choose the one which fits best Into
the normal expectations, Including the hearer’s knowledge about
the world. This is not easy to formallze, and was not attempted
in this project. 1t could be extended to lower levels to check
sub~units for reasonablencss as they are formed, to avolid
carrying multiple Interpretations through the analysls of the
entire sentence. It seems clear that people do thl;, and a
truly intelilgent language-understanding program must do so as

well,
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4.2,11 To Be and To Have | |

The verbs "be" and 'have" are .two of the most common words
in Engllish, and have a complex varlety of uses. They appear In
the system In two ways. Flrst, In the grammar they are treated
specially since they can occur as auxllltary verbs, as in "y
would have been going". 1In thls use, they do not add any
semantic information except for helping to determine features of
the VG, such as lts tense. Thelr other use Is as main verbs In
clauses like "Do you have a matzh?" and "He ls wrong." As a maln
verb, "be" Is handled speclally in the grammar since [t can
enter into constructions such as '"there is" which do not appear
Qlth ahy other verb. However, the semantlc analyzer does not
know anything special about "be'" and "have'., Thelr meaning Is
included In thelir definitions, which are called as programs just
ltke any other verb definitions.
A. Be

The use of "be" depends on the specific constellatlion of
objects and complements in the clause. The definitlion is a
program contalning about 40 lines of LISP, which handles those
meanings relevant to the BLOCKS world (for example, It cannot
deal with a "role-playing" meaning, llke "Laurence Olivier was
Hamlet.")

Sentences with the feature THERE, 1nvolv|ng a construction
like "there is" are represented by the PLANNER expression

(#EXISTS #1 «TIME). This attaches the correct time, and might
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be important for objects which can be created and destroyed, as
In "Was there a stack...?".

The other meanings of '"be" involve INTensive clauses which
contain an object and a complement. One definltlon checks for
COMPQ questions like "What color Is the block?", to generate a
PLANNER expression (#COLOR :BLOCK $?X1). 1If the complement ls a
definite NG, as In "Is the green block the biggest obiect?" or
"yhat Is the blzgest object?", the referent will have already
been determined, and is inserted in a PLANNER expresslon
(THAMONG ###+ (QUOTZ(:0BJ))), where :0BJ is the referent. This
can function In two ways. |f the subject is also definite, as
in the first example, the *** will be replaced by its referent,
and the statement will succeed only if the two are ldentlical.

If the subject is Indefinite, the THAMONG statemen: w!i} cause
[t t> be assigned to the same reforent as the complement.

If the complement Is a PREPG or a complex ADJG, like

"bigger than a breadbox", "be" is only serving as a place-holder

which can accept a time reference. The semantlc interpreter In

" dealling with a phrase llke ''on the table" in "Is the block on

the table?" has already set up a relatlon of the form (#0ON
¢tBLOCK :TABLE) which includes the appropriate time reference.

In this case, the "be" program simply takes the RSS produced for
the complement, and uses it as the semantic interpretation of

the clause.

The other possibiilties for the complement are an



Section 4,2,11 - Page 358

indefinite NG, a simple ADJG (e.g. a single adjective), or a new
word., In the case of a NG, the complement NG contalns
additlional information to be ascribed to the subject, as in "a
large object which is a red block'". The PLANNER description of
the complement is stripped from its 0SS, and appended to the
PLANNER description of the subject. |f the subject is definlte,
as In "Is the bigsgeost thins a red block?", the referent lIs
known, and can be plugged into fhe PLANNER description of the
complement to see If the description applles. This is done
using a pseudo-concept calied #HASPROP which triggers the
mechanisms In the semantic [nterpreter,.

I1f the complement Is a simpie ADJG, the ADJG semantic
speclallst creates Its 0SS by takling the 0SS for the subject,
stripping away the PLANNER description, and using the rest as a
skeleton on which to place the PLANNER expression produced by
the adjective. Once this Is done, It can be treated exactly
1ike an Indefinite NG.

Finally, if the subject or complement Is a new word (as In
"A frob Is a blg red cube.” or "A biz red cube Is a frob.") a
new definftion |s created usling the function #DEFINE. The
deflnition must be In the form of an Indefinite NG, and the new
word is asusumed to be a noun., The semantlic definltion created
for the noun contains the 0SS which was created for the defining
NG, and sets this 0SS up as the meanling of the noun When It is

used.
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B. Have

The definition of "have" Is also used to handle the
possessive. For the limited subject matter (and for much of
English) this is a good approximation. There are cases where It
does not apply == '"the painting which John has' iIs not
necessarily the same as '"John's painting." The preposition "of"
also makes use of the same definitlon. A more complete
treatment would distingulsh between the three, and this would
involve only simple changes to the semantlic programs.

The Interesting thing about Yhave" Is that it Is not used
to indicate a few different relationships, but is a place-marker
used to create relatlonships dependent on the semantlc types 6f
the objects itnvolved. '"Sam has a mother." can be represented
(#MOTHER~OF X SAM), "Sam has a friend." Is (#FRIEND X SAM), "Sam
has a cér." Is (#0WM SAM CAR), “Sam has support." is (#SUPPORT X
SAM), "Sam has a hand." Is (#PART SAM HAND), etc. The
definition of "have" (or the possessive, or "of'") does not
Include within Itself all of these differant relations. A few
Interpretations (1lke have-as-part, owning, or having In
physical possesslion) can be reasonably considered distinct
meanings of "have', and are Included in Its definition. The
others, such as "mother" and "support" really are determined by
the subject and object. Some systems use this fact to find the
meaning of special phrases like "cllent's lawyer" without doing

syntactic analysls (see sectlion 2.2). Our system uses a

[PV VAU,
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different method, allowing a word tc be def'naed as a #ROLE.
"Mother" might be deflined as:
(NMEANS ((#PERSON #ROLE)
((#PERSON ww=»)
(#MOTHER=QOF w»» ?)
(#ROLE(C(#PERSON) ) (#MOTHER=-0OF #1 #2)))
There are two new tnings In this definition. First, the

semantic marker #ROLE is added to Indicate the type of

.definitlon., Second, a role definition Is included. 1t contalns

a semantic filter for objects which can be used In the relation
(in this case those which cculd have a rother), and a PLANNER
statement indlicatling the relatlon (In the same syntax used hy
CMEANS). If the word "mother" Is used In a phrase like "Carol's
mother" or 'Carol has a mother" or "the mother of Carol", the
system will insert the right 0SS to produce the PLANNER
description (#MOTHER-OF $2?X1 CAROL) If "mother" appears in any
other form, the 0SS will contain (#MOTHER-OF $7?X1 ?) which wll]
be satisfied In a PLANNER goal if X1 Is the mother of anyone at
all.,

Through the #ROLE mechanlsm, arbitrary relatlonships can be
expressed with "have" (or "of", or possessives) without bloating
Its definition. There could be more than one #ROLE assligned to
a word as well. For example "palnting" would involve different
roles for "Rembrandt's painting" "George Washington's painting

by Stuart", "the Modern Museum's palnting.", etc.
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4,2.12 Additicnal Semantlc Information
A. Using Clauses as Objects

In order to Interpret a sentence like "Find a block which
is taller than the one | told you to plck up.'" the system must
use a clause ("you to plck up") as the object of a verb
("tell"). It generates a pseudo-object of the type #EVENT, and
creates an 0SS for that object. In the example mentioned, the

clause "you to pick up" would have produced the RSS:

VING1  (#PICKUP NG1 ((PAST) NIL NIL NIL)) MIL) (0) )
rel

PLANNER expression ) neg markers

Figure 71 -- RSS for “vou to plck up"

NGl is an 0SS describing the cbject "the one", which rhe
system has set up as the object of the clause, and has

Iinterpreted as "block". The program SMCLL takes this structure

and produces a corresponding 0SS:

¢  (CEVX1) O (THGOAL (#PICKUP $?EVX1 $2X1 ((PAST) NIL NIL NIL))
(THUSE TCTE-PICKUP)))
(0 #EVENT #THING)
(#THING))
EVX1
(1 INDEF NIL)
NIL)

Flgure 72 =~ 0SS for "you to pick up"

A varlable was generatéd for the event, of thg form EVXn,
and a new PLANNER expresston for the event was generaled,
Including the event name as the second elemen%. The reason for
putting It second is technical, and should be changed sémeday

for programmer convenlence and conslistency with the scheme
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described In Section 2.1. In the expression, the name of the
0SS Is replaced with Its associated variable (In this case $7X1)
since the new structure will be used as part of the description
of that object. The recommendation lilst includes the theorem
which Is designed to deal with expressions Involving time and
event-names, and Is put in by the system, Ir working with the
rest of the sentence, this resultant 0SS can be used just like
any cther 0SS, as an object of a verb, preposition, etc.

When PLANNER evaluates the expression, It may have the

everit already stored away, or it may have to deduce that it

happened by looking at other events. This Is handled by the
theorem TCTE-PICKUP, and the name of the resultant event Is the
value which Is assigned to tne varlable EVX1.
B. Types of Modificatioun

There are a variety of ways In which a modifler can affect
the meaning of the phrase or clause {t modifies. Since the
definition Is a brogram, the user has great freedom to use
different types of modification. A time modifier like "now" or
"then" wll) modify the Time Semantlic Structure assoclated with
the clause, an adverb llke “qulckly" may set up a new relation
such as (#SPEED $?EV1 #FAST) using the name of the event, while
others may make changes directly to the relation belng
constructed. The semantic structures previously bullt can be
analyzed and modified by an arbltrary function which suits the

meanling of the modifier. One speclial facility exlsts for making

L U
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substitutidns within an expression., If the PLANMNER expression
of a CMEANS or NMEANS definlition is of the form (#SUBST al a2 bl
b2...), the effect will be to modify the existing semantic
structure by substituting the atom a2 for al, b2 for 51, etc.

No new expression Is added to the PLANMER description. The word
“"move'" might be defined using:

(CMEANS C (((#AMIMATE) ) ((#MANIP))) (#PUT #2 LOC =TIME) (#MOVE)))
This indicates that moving is done by an animate object to a
manipulable object, and involves putting it at the place "“LOC".
The atom LOC would be gliven a 0SS Indicating an unknown place.
The resulting RSS has the semanti{c marker #MOVE, The sentence
""Move a block." would create a goal (#PUT NGl LOC), where NGl is
a descriptisn of Ma block". The theorem for #PUT could then
choose a block and place. |If the sentence Iis '"Move a block Into
the box.", the final result should be (#PUTIN NG1 :BOX). The
modifying phrase makes a major change i{n the !rternal
representation of the meaning.

This change can be done by defining "into" to Include among
its meanings:

(CMEANS((((#MOVE) ) ((#BOX))) (#SUBST #PUTIN #MOVE #2 LOC) NIL))
If a PREPG with the preposition "into" modifles a clause with
the semantic marker #MOVE, and the object of thé prepositlon has
the marker #B0X, then the definition applies. The RSS for the
clause is changed by substituting #PUTIN for #MOVE, and the

object of the preposition for #L0C. The speclal symbols #1, #2,

e o
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#3, ***; and *TIME are treated as they would be in a normal
CMEANS or NMEANS definition, being replaced by the appropriate
object.
C. Using Evaluation In CMEANS and NMEANS

Although every definition has the power to use programs,
definitlons using the standard forms CMEANS and NMEANS are
forced into a rather rigid syntax which does not have a
procedural character. To avoid this, there Is an extra level of
evaluation, |If the PLANNER portlion of a definition Is of the
form (#EVAL s) where s is any LISP atom or s-expression, the
form will be EVALled before the description is used in the
definition, and its value used Instead. Thls value will undergo
the usual substitutions for #1, #2, *TIME, etc. This feature Is
of particular use In capturing the semantic regularities of the
language by using auxillliary functions In defining words. For
example, color adjectives like "red" and “blue" share most of
thelr characteristics. They apply to physlcal objects, Involve

a relation with #COLOR, etc. Rather than deflne them

separately, we would like a slngle function #CCLOR which needs
only to have the exact color specifled. The dictionary
definition of blue would then be (#COLOR #BLUE). The function {
#COLOR can be defined in LISP:
(D:FUN #COLOR FEXPR (A)
(NMEANS ((#PHYSO0B) (#EVAL (LIST(LIST (QUOTE #COLOR)

(QUOTE w=w)
(CAR A)))))))
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When (#COLOR #BLUE) is evaluated, the #EVAL will produce
the form {(#COLOR »*» #BLUE)), which will then be used by NMEANS

in the usual way.

As another example, the word "grasp'" can be used to mean
#GRASPING (an object beinz held) or #GRASP (the actlen of
closing the fingers around !t). The difference depends on
whether the VG is progressive or not. The function
(PROGRESSIVE) finds out whether the clause is progressive, by
looking at the verb and the tense. The définltlon of "grasp"
can be:

(CMEANS((( (#ANIMATE) ) ((#MANIP)))
(#EVAL (COND ((PROGRESSIVE) (QUOTE(#GRASPING #2 =TIME)))
(T (QUOTE (#GRASP #2 «TIME))))) NIL))
D. Somre Interesting Problems

There are many areas In which the semantlic analysls needs
to be refined and expanded. The system does not pretend to
contalin a complete analysls of English, but Is rather an
Il1lustration of how many aspects of semantlcs cquld be handled.
This section describes a few places where modification might
beglin.

1. Definite Determliners -

in our system, a definlte noun phrase Is Interpreted as
referring to a unique object of set of objects known to the
hearer. In more general language use,'deflnlteness'ts often
used tc convey new Information. The phrase “my brother who

lives In Chicago" can be sald to someone who Is not aware | have-
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a brother, and the effect Is to inform him that indeed | do, and
to tell him where this brother lives. Other nouns can describe
"functions", so that 'the title of his new book", or "my
address', are allowable even If the hearer has not heard the
title or address, since he knows that every book has a unigue
title, and every person an address. Superlative phrases like
"the tallest elephant In Indlana" also refer to a unique object,
even though the hearer may riot have seen or heard of this object
before.

Cases such as these can lead to problems of referential
opacity. |If your name Is '"Seymour', and | say "Excuse me, 1've
never heard your name.", It does not imply that | have never
heard the name Seymour. The sentence '"| want to own the fastest
car in the world." does not have the same meaning If we replace
the NG with its current referent -=- | don't want whichever car
It Is that happens to be fastest right now,

These and other such problems need to be handled in the
programs for Interpreting a definite NG, using syntactic,
semantlc, and world knowledge.

2. Verb Tenses

The current system Implements only a few of the possible
tenses =- PRESENT, PAST, PRESENT IN PRESENT, PRESENT IN PAST,
PAST IN PAST, and an elementary form of the MODAL “can".
Section 4.2,8 described some of the problems which can be

Involved In time reference, and a deeper anlaysis Is needed to
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account for Interactions between the order of phrases and the
possibilities for time reference. The modals, conditlonals,
subjunctives, etc. need to be handled. This may demand a
version of PLANNER which can temporarily move Into a
hypothetical world, or which has more power to analyze ‘?Sown
theorems to answer questions involving modals 1ike "can" and
"must'", |
3. Conjunction

Only the most elementary problems In conjunction have beer
déalt Qlth in the current system, Many conjolned structures do.
not yet have semanth analyzér progfam;, end no subtlety Is used
in deciding on the meaniﬁg of words l1ike "and". "And" can be
used té lnd{cate temporal sequence (Ve went to the clircus and
came hoﬁe.") causality ("We saw him and understood."), as a type
of conditlonall("Do that again énd 1'11 clobber you!™), in
specification of how to do somethfng ("Be a friend and help
me."), etc. Undefséaﬁdlng these 'uses will be related to the
discourse problem of the ordering of sentences. For example,
"The light Is on. He's there." fndicates a chaln of reasoning.

In addition, no attempt‘has been made to disamblguate
nested structures like “A and B or ", or "the old men and
women." Syntactic criteria are not sufficient for these
distinctions, and a powerful semantic pregram will have to be
used to ask *which !nte?pretation makes more sense !n.thls

1

case'.
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4. Non=-syntactic Relatlions

There are some piaces In English where the relation tetween
a set of words is not indlicated by syntactic clues, but Is
largely based on semantics. One example Is chain of class!fiers
before a noun. In "“strlct gun law'", the law Is strict, but In
"stolen gun law", the gun is stolen. |t Is poss!ble to combine
long strings llke "a hellcal aluminum soup pot cover adjustment
screw clearance sale“, In which a large amount cof semantic
information must bé combined with the ordering to find the
correct interpretation. The current system handles classiflers
by assuming that they all separately modify the head. This
needs to be changed, to use both the semantlc markers, and

;omplex deductions to find the real relationships.

R e s e A e
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4,3 The Semantics of Discourse

In section 4.1, we dliscussed the different types of context ,
which can affect the way a sentence Is Interpreted, In this
section we will descrihe the specliflc mechanisms used by our
program to include context in Its Interpretation of language. hd
We have concentrated on the "local discourse context!”, and the
ways In which parts oy the meaning of a sentence can be referred
to by elements of the next sentence, For example, pronouns 1lke
"1t" and "they" can refer to objects which have been previousiy
mentioned or to an entire event, as in "Why did you do 1t?",
The words "then'" and “there" refer back to a previous time and
place, and words like "that" can be used to mean "“the one most
recently mentioned", as in "Explain that sentence."

In addition to referring back to a particular object, we
can refer back to a description In order to avold repeating it.
We can say: "Is there a small grey elephant frcm Zanzlibar next
to a big one?". Sometimes instead of uslng "one" to avoid E
repetition, we simply omit part of a phrase or sentence. We can

reply to "Would you like a corned-beef sandwich?" with "Bring me

two." or we can respond to almost anything with "Why?" in these
examples, the second sentence :ncludes by Implication a part of
the first.

These are not really discourse features, since they ~an

appear just as well in a single sentence. In fact, there are

some sentences which would be almost Impossible to express
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without using one of these mechanisms, such as: '"Find a block
which Is blgger than anything which supports it." These
mechanisms can be used to refer back to anything mentioned
previously, whether In an earller sentence of the speaker, one
of the replles to him, or something occurring earlier In the

same utterance.
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4,3.1 Pronouns

First we will look at the use of pronouns to refer back to
objects. Since our robot does not know any pecple other than
the one conversing with It, it has no trouble with the pronouns
"you" and "I" which always refer to the two objects :SHRDLU and
tFRIEND, A more general brogram would keep track of who was
talking to the computer In order to find the referent of "I".

When the NG p.ogram In the grammar finds a NG conslisting of
a pronoun, it calls the program which Is the deflnition of that
pronoun, The definitions of "it" and "they" use a special
heurlistic program called SMIT, which looks Into the discourse
for all of the different things they might refer to, and asslgns
a plausibility value to each Interpretation. |If more than one
is possible, they are carried along slmultaneously through the
rest of the sentence, and the ambiguity mechanism decides at the
end which Is better, including the last-resort effort of
printing out a message asking for clarification. |If SMIT finds
two different Interpretations, and one Is chosen because of a
higher plausibility, the system types out a message to Inform us
of the assumption made In choosing one Interpretatlion, as in
Sentence 3 of Sectlon 1.3:

BY "IT", | ASSUME YOU MEAN THE BLOCK

WHICH 1S TALLER THAN THE ONE I AM
HOLDING.

If a response from the user is needed, the request !s typed

in the same format as the message used for other ambigulties, as

o e i e et b+ kit o
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in sentence 24 of Section 1.3. In the case of sentence 3, It
would be:

I'M NOT SURE WHAT YOU MEAN BY "IT" IN
THE PHRASE "PUT IT INTO THE BOX"

DO YOU MEAN:
1 - THE BLOCK WHICH IS TALLER THAN THE
ONE | AM HOLDING
2 - THE ONE | AM.HOLDING ?

A simple transformatlion ls used to switch "you" with 1%,
and make the corresponding verb changes, and the words are
torrowed directly from the input sentznces,

In our discussion of pronouns, we will use "it" as typical.
In most cases, '"they" (or "them") is treated identically axcept
checking for agreement with plural rather than singular. The
pronouns "he' and "she" never occur in our limlted subject
matter, but they would be treated exactly like "It", except that
they would make an extra check to see that their referent Is iIn
fact animate and of the right gender.

The first thing checked by SMIT Is whether "it" has already
appeared In the same sentence. We very rarely use the same
pronoun to refer to two dlfferentAobjects In the same sentence,
so It Is generally safe to adopt the same Interpretation we did
the flrst time. |If there were several pbsslble Interpretations,
the system Is careful not to match up one Interpretation from
one occurrence of "it" with a different one from another
occurrence in building an overall interpreiaiion of the

sentence.
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Similarly, 1f "I1t" was used in the previous sentence, It Is
likely that if used again It will refer to the same thing. In
either of these cases, SMIT simply adopts the previous
Interpretation.

Next, a proncun may be Inside a complex syntactic
construction such as "a block which is bigger than anything
which supports 1t." English uses the reflexlve pronouns, like
"Itself" to refer back to an object In the same sentence.
However, If In going from the pronoun to the referent on the
parsing tree, it Is necessary to pass through another NG node,
an ordinary pronoun like "it" is used, since "itself" would
refer to the intermediate NG. Notice that if we replaced "it"
by "itself" in our sentence, it would no longer refer to the

block, but to "anything".

SMIT looks for this case and other related ones., When such

a situation exists, the program must work differently,
Ordinarily, when we refer to "it" we have already flnished
finding the referent of the MG being referred back to, and "it"
can adopt thls referent. In this case, we have a circle, where
"It" Is part of the definitionof the object it Is referring to.
The part of the program which does variable binding In relating
objects and clauses Is able to recognize thls, and treat It
correctly by using the same varlable for "a block™ and "it",
The pronoun may also refer to an oﬁject In an emhedded

clause appearing earller In the same clause, as in "Befare you
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plck up the red cube, clear ]t off." SMIT looks through the
sentence for objects in such acceptable places to which "it"
might refer. If it doesn't find them there, it begins to look
at the previous sentence. The pronoun may refer to any object
in the sentence, and the meaning will often determine which It
is (as In our example about the demonstrators In the Preface).
We therefore cannot eliminate any of the possibilities on
syntactic grounds, but can only give them different ratings of
"plausibility". For example, in Section 4.2.5 we discussed the
importance of a '"focus" element in a clause, "It" Is more likely
to refer to the previous focus than to other elements of the
clause, Similarly, the subject {s a more likely candidate than
an object, and both are more likely than a MG appearing embedded
In a PREPG or a secondary clause.

The system keeps 2 list of all of the objects referred to
in the previous sentence, as well as the entire parsing tree.
By using PROGRAMMAR'S functions for exploring a parsing tree,
SMIT Is able to find the syntactic posliton of all the posslible
references and to assign each a plausibility, using a fairly
arbitrary but hopefully useful set of values (for example we add
200 for the fécus element beyond what it would normally have for
Its position as subject or object). In order to keep the list

of the objects In the last sentence, our semantlic system has to

do a certain amount of extra work. If we ask the question: “is |

any block supported by three pyramids?", the PLANNER expression

e+ e A e
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produced is:
(THFIND ALL $72X1 (X1)
(THGOAL(#1S $7?X1 #BLOCK))
(THFIND 3 $7X2 (X2)
(THGOAL(#1S 3$°?X2 #FYRAMID))
(THGOAL (#SUPPORT $7X2 $7X1))))

Once this iIs- evaluated, It returns a list of all tne blocks
satisfying the description, but no record of what pyramids
supported them. |f the next sentence asked "“Are they tall?", we
would have no objects for '"they" to refer to. Speclal
Instructions are inserted into our PLANNER descriptions which
cause 1ists like this to be saved., The actual PLANNER
expression produced would bhe:

(THPUTPROP (NUOTE X1)
(THFIND ALL $?2X1 (X1)
(THGOAL(= .S $?X1 #BLOCK))
(THPUTPROP (QUOTE X2)
(THFIND 3 $7X2 (X2)
(THROAL(#1S $?X2 #PYRAMID))
(THGOAL(#SUPPORT $?2X2 $?2X1)))
(QUOTE BIND)))
(QUOTE BIND))
This only occurs when the system s handling dlscourse.

Finally, "1t" can be used In a phrase llke "Do {tl" to
refer to the entire main event of the last sentence. This
LASTEVENT Is saved, and SMIT can use it to replace the entlire
meaning of "do 1t" wlth the description generated‘earller for
the event.

When "that'" is used In a phrase 1lke "do that", it Is
handled in a similar way, but with an Interesting difference.

1f we have the sequence "Why did you pick up the ball1?" "To
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bulld a stack." "How did you do 1t?", the phrase "do it" refers

to "Pick up a ball"., But if we had asked '"How did you ¢o

that?", it would refer to bullding a stack. The heuristic Is

that "that" refers to the event most recently mentioned by
anyone, while "it" refers to the event most recently mentloned
by the speaker.

In addition to remembering the participants and main event
of the previous sentence, the system also remembers those In Its
own responses so that it can use them when they are called for
It also remembers the last time reference,

by pronouns.
(LASTIME) so the word “then' can refer back to the time of the

previous sentence.
Spectal uses of "it" (as in “it Is raitning.") are not

handled, but could ecslly be added as further possibilities to

the SMIT program.
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4.5.2 Substitutes and Incompletes

The next group of things the system needs to Interpret
involves the use of substitute nouns like "ore", and Incomplete
noun groups like "Buy me two." Here we cannot look back for a
particular object, but must look for a description. SMIT looks
througn a 1ist of particular objects for its meaning. SMONE
(the program used for '"one") looks back Into the Input sentence
instead, to recover the Engllsh descriptlon. "One" can be used
to stand for part or all of that description,

As with "it", “one" can refer back to something In a
previous sentence, the previous reply, or earller in the same
sentence. Here though, there are no restrictions about where
In the parsing tree the description can lle. "0ne" depends more
on surface chafacterlstlcs than on structural differences. For
example, [t cannot refer back to a NG which Is a pronoun or uses
a TPRON 1like Yanything'". Our program for “one' Is not as
complex as the one for "it", It Is primarily based on the
heuristlic of "contrast". People often use "one" to contrast two
characteristics of baslcally similar objects, for exampie “the
big red block and the little one." The program must understand
these contrasts to Interpret the description properly. 'We
realize that "the 1itle one" means "the 1ittle red block", not
“"the 1ittle big red block" or "the 1ittie block™. In order to
do this, our systeh has as part of Its semantlc knowledge a list

of contrasting adjectlves, This Information Is used not only to



Section 4.3.2 - Page 378

decide how much of the description Is to be borrowed by '"one',

“"one" Is

but also to decide which description In a sentence
referring to. |If we say "The green blouck supports the big
pyramid but not the little one." It Is falrly clear that "one"
refers to "pyramid". But {f we say "The big block supports the
green pyramid but not the little one.", thon "one" might refer
to "block". The only difference Is the change of adjectlives =-
"big" and "1ittle" contrast, but "green'" and "1itt!»" do not.
Our program looks for such contrasts, and If it finds one, It
assumes the most recent contrasting description Is the referent.
If there Is no contrast between the phrase being analyzed and
any NG In the same sentence, previous answer, or previous
sentence, It then looks for the most recent NG which contalns a
noun,

A It Is Intercsting to note that SMONE causes the system to
parse some of Its own output. In order to use the fragment of a
NG It finds, SMONE must know which elements [t can use (such as
-noun, adjectlve, and classifler) and which It does not (such as
number and determiner). For the noun groups In previous Inputs,
the parsing Is available, but for the reply, only the actual
words are avallable and It Is necessary to construct a simple
parsing before understanding the meanling of 'one'". It does not
call the entire system recursively to do this, but uses a
simpllified version..

An Incomplete NG, contalning only a number or quant!fier Is

T e e
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used in much the same way as "one'"., In fact, If we l1ook at the
serles "Buy me three." '"Buy me two." "Buy me one.", we see
they are nearly identlcal. We can take the view that an
Incomplete NG actually has an lmpl!ed.substltute noun of "one".
This [s the way our program handles lncomplete noun groups.
Currently the set of contrasts Is stored separately as
speclal properties In the dictionary entrles of the adjectlives
Involved. It would be better to comblne thls with the semantic
marker systeis, or the actual systgm of PLANNER programs and

concepts,
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4,3.3 Qverall Disceurse Contex(

We have discussed several ways of using overall dlscourse
contex* In understanding. We have so far experimented with only
one of these =-- keepling track of what has been mentioned earlier
in the dlscourse, This Is not the same as looking back In the
previous sentence for pronoun references, as it may Involve
objects sevaral sentences back or occurring In separate
sentences. If there are many blocks are on the table, we can
have a conversatlion: '"What Is In the box?" "A block and a
pyramid." "What Is behind 1t?" "A red block and another box."
"what color Is the box?" "Green.," "Plck up the two blocks."

The phrase "the two blocks Is to be interpgreted as a
particular pair of blocks, but there may be others in the scene,
and nowhere In the dialog were two blocks mentioned together.
The system needs a way to keep track of when things were
mentioned, In order to Interpret '"the" as '"the most recently
mentioned" In cases like this.

To do so, we use PLANNER'S facllity for glving propertles
to assertions. When we mention a "green block", the semantlc
system builds a PLANNER description which Includes the
-expressions:

(THGOAL(#1S $?.1 #BLOCK)) (THGOAL(#COLOR $?X1 *GREEN))
After the sehrence contalning this phrase has been interpreted,
the system goes back to the PLANNER descriptlions and marks all

of the assertions which were used, by putting the current

sentence number on their property lists. Thls is also done for
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the assertions used In generating the descriptlions of objects In
the answer.

When the semantic programs flnd a definite NG like "the two
red blocks", the second NG specialist (SMNG2) uses PLANNER to
make a 1ist of all of the objects which fit the description. |If N
there are the right number for the NG, these are listed as the
"reference" of tiie NG, and the interpretation of that NG Is
finished., [If there are fewer than called for by the determiners
and numbers, SMNG2 makes a note of the Engilsh phrase which was
used to build the description, and returns a message to the
parse; that something has gone wrong.

If the parser manages to parse the sentence differently,
all Is well. !f not, the system assumes that the NG
Interpretation was the reason for the fallu:«¢, and the system
uses the stored phrase to print out a message "I don't
understand what you mean by..."

However, If there are too many objects which match the
description, SMNG2 tries to find out which were mentioned most
recently, It does this by using PLANNER to recheck the

description for the ltems It found, but this time using only

[ Y

those assertions mentioned In thls ¢r the previous sentence.
This Is easlly done by using PLANNER's abllity to put a "“fllter"
on the assertlons to be retrleved from the data base, allowing
only those which are accepted by a LISP predicate (which in this

case lovks for a sentence number in the appropirlate range on the



Secticn 4.3.3 - Page 382

property list of the asserticn. See <Sussman> for detalls,) If
it finds the right aumber, these must be the reference of the
NG. If it finds too few, It can reiterate the procedure, but
‘uslng all of the assertlions mentioned In the last two sentences.
This backward progress continues until at some point elfther It
finds the right number or the number found jumps from below the
right number to above it, |In this case a message of fallure Is

returned to the parser as before, but a marker Is set so that In

case the sentence cannot be understood, the message returned |s

"I don't know which... you mean", as In sentence 2 of Sectlon
A1.3:
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN,

Of course, a more sophlsticated program is needed for
determining the referents of definite NGs. |f the conversation
Is about a book, the NG "the title" is clearly acceptable and
must refer to the title of that book, even though no title was
previously mentlioned. If there Is a compllicated NG 'lke "the
biggest cat in the world" or '“the thingz | want to do most", the
program must deduce from the form of the NG that there Is only
one such object, even though It has not been previously
mentioned, and that it Is belng deflned by this descriptlion.
There Is a large area for expanslion In deallng with these and
similar problems.

It seems 1ikely that these and other similar aspects of

language can be handled systematically, using the fermallsm of

s et b
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_ procedures within a systrm like the one described !{n thls paper.

The semantic and deductive systems provide a framework withln
which we can formzllze and combine a varlety of aspects of
meaning and knowledge to deal with the real problems of

semantlic¢s.
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4.4 Generation of Responses
In this section we will describe how ocur larguage-
understanding system generates {ts lingulstic respenses. This
aspect was nct emphasized as much in the research as the protlem
of understanding language, and we have not developed a general
theory of discourse generation. The programs produce behavior
which seems reasonable for carrying on a dlalog about the robot
world. In particular we dealt with four different aspects of

disco'irse production -~ patterned responses, approprliate answers

to questlions, generatling descriptlions of objects and events, and

the production of fluent discourse,
Lo, 1 tterned Responses

The easliest way to get language behav!or from a computer
program Is to Include a set of fixed responses which are
appropriate for the situations it will encounter. These
responses can be made as complex and varled as we want, since
they are created by the programmer, and the program only repeats
them. Many language systems make heavy use of these flxed
responses to achleve "“good sounding" output.

In general, these responses are not flexible enough for a
true language system, but there are places where they are
appropriate == for example, when the program wants to
acknowledge that something has happened, or that 1t has reached
a certalnpoint in Its analysis. Our system uses several tybes

of patterned response. Flrst there Is a set of sIlmple responses
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for speciflic sttuations. The system responds "“0K." when a

command is carrlied out, "! UNDERSTAND." when a declaratlve

sentence Is analyzed, ! DON'T UNDERSTAND.'" when a sentence
cannot be analyzed, and "1 CAN'T." when a command cannot be
executed.

A sllightly more complex type of response Involves "filling
In the blark" with a phrase borrowed from the Input. The
simplest example In our system Is "SORRY, | DON'T KNOW THE WORD
"...", PLEASE TYPE TW) SPACES." The offending word Is taken as
it was Incut and Inserted in the blank. The "“two spaces" are to
clear the input buffer of characters typed after the message was
sent. Two slightly more complex types of response [nvolve
manipulating the determiners of the phrase which was tnput. 1I¥
the user types something llke "the three green pyramids', and
the system cannot flgure out what he Is referring to, it types
"I DON'YT KNOW WHICH THREE GREEN PYRAMIDS YQU MEAN." It has
simply replaced "the" with "which" before fi11ing the blank.
The "I assume'" mezhanism does the opposlite, replaclng an
Indefinite determiner with “the". |If we talk about "some green
pyramid" or "a green pyramid", then later refer to that pyramid
as "1t%, the system can notlify us of its Interpretation of *It"
by saylng "BY "IT' | ASSUME YOU MEAN THE GREEN PYRAMID." Here
the system has remdved the Iindefinlite determiner or quarntifler
("a" or "some") and replaced It with "the". [t uses knowledge

about varlous kinds of determiners to fIl1l in the pattern
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reasonably In a number of cases (for example, possessives are
left alone, since they are already definite). It can also
handle the use of "they" to refer to several objects,

Our most complex "blank=f111ing" response Is the one which
handles ambigulty. it uses parts of the Input sentence and
pieces of the definitions of words stored In the dictionary. In
the response to sentence 24 of the sample dialog (section 1.3):

24, how many thlngs are on top of green
cubes?

the system typed:

1'M NOT SURE WHAT YOU MEAN BY "ON TOP
OF "IN THE PHRASE '"ON TOP OF GREEN

cuses "

DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE
2 - ANWHERE ON TOP OF ?

The two phrases "on top of" and "on top of green cubes"
were taken directly from the input, and the paraphrases
"directly on. the surface" and "anvwhere on top of" were part of
the dictionary definltion provided for "on'". One of the answer
routines looks at the llst of places where the interpretations
differ, and generates this request for clarification. The
response must eliminate at least one possibllity, and the
program contlnues generating questlions like thls cne until only
one interpretation remalns. |f the amblgulty ls caused by
multiple Interpretations for a pronoun, the English text of the
phrases originally used to refer to the objects are used In the

response cholces.
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4,4,2 Answering Questions

In order to carry on a discourse, we need to know what types
of responses people expect to different types of questions., In
Sectlon 2.3.3 we classified varlious types of questions
syntactlically, and we can use ti.Is classificatlion to select
apnroprlate answers. The system answers whenever possible with
a complete phrase, providing as much Information as possible.
No attempt Is made to produce fu:.l sentences, slince In fact
people rarely answer questiors with sentences. The natural
response to "Which block Is in the box?" Is "the red block", or
“"the red one', certainly not "The red block is In the box." Ve
have tried to analyze what sort of phrases provide the most
Informative and natural responses.

The flrst case Is the WH~ question, and with!in that class,
the NGQ(see section 2.3.2), Involving a question NOUN GROUP,
such as "whlch block", "who", "how many pvramids'", or "what".
We can divide these Into three classes == "how many", "“vague",
and "speclific". |If asked "What is In the box?", we can answer
"a blue block and a pyramld" without belng more spacliflc at
ldentifying them. |If Instead we are asked "Which block Is In
the box?" we must use a more specific description 1lke “the

‘large blue cube which supports a pyramid." The program must
generate English descriptions of partlcular objects, and It must
be able to generate both devinite and indeflnite descriptions.

This part of the programn will be descrlibed in the next sectlon,

.....
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The use of Its results is straightforward for NGQ questions. |If
the NG is "what", we generate Indefin’te descriptions of the
object or objects., If It Is "which...", we generate a deflinite
description. '"Who" Is never a problem, since the system only

"vou'", and "I", There are also default

knows of two people,
responses, so that a question like "Which block supports the
table?" can be answered "NONE OF THEM."

HOWMANY questions are answered with the number of
appropriate objects, fnllowed by "OF THEM" to make the dlscourse
smoother. For example, the response to dlalog sentence 6, ''How
many blocks are not in the box?", Is “FOUR OF THEM."

The next type of question Is the QADJ, such as "why",
"when", "how", or "where". The only three which have been
implemented so far are "why" "when", and "how", but the others
can be done In an analogous fashion., A "why" question lIs
answered using the system's memory of the subgoals It used In
achleving'lts goals In manipulating toy objects. |If we can
decide what event Is being referred tc In the question, we can
see what goal called It as a subgoal, and answer by describing
the higher goal in English., |If the event was Itself a top level
goal, It must have been requested as a command, and the response
Is "BECAUSE YOU ASKED ME TO.".

We need a program which creates an English description of
an event from its PLANNER description 1lke (#PUTON :B3 :TABLE).

It must generate phrases which refer to the objects involved,

e e et e et et
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and combline them into a clause of the proper type with the
proper tense, Thls program [s also described In the next
sectlion.

We can use the same event-describer to answer 'how'"
questions by describling all of the events which were subgoals
used In achieving the evént mentioned. We say "BY...", then
list each event In an "ing" form, as In: “BY PICKING UP A RED
BLOCK AND PUTTING IT IN THE BOX." If the event was itself a
lowest-level goal, the system has no way of analyzing its own
programs for achieving that goal, and answars "1 CAN'T ANALYZE
HOW",

"When" questions are answered simllarly -- a time Is named
by describing thé top~level goal which was belng carried out at
the time, saying "WHILE | WAS,..." and using the "ing" form to
describe the event. This Is Inappropriate If the question
refers directly to the top-level goal (We can't answer "When did
you build the stack?" with “"WHILE | WAS BUILDING THE STACK."), -
and in that case we say "BEFORE..." and name the top-level gcal
Immedlately following In time. [f the goal mentloned was just
done, the system replies "JUST NOW.". In addition to the normal
responses, the system has a sét of fixed responses such as
"NEVER", and "1 CAN'T EXPLAIN A NON-EXISTENT EVENT." to answer
questions which demand them.

Finally we come to YES-NO questlons which, paradoxically,

are the most complicated. [t seems that a one word answer Is
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called for, but this is often Impossible and rarely the best way
to respond. |f we ask "Does the block support three pyramids?",
and in fact It supports four, what is the correct answer? The
system could ask for clarification of the Implicit amblgulty
betw2en "at least three'" and "exactly three", then answer ''yes"
or "no". But it is more efficlient and helpful to answer "“FOUR
OF THEM", leaving the speaker to Interpret his own question.

If there were only two pyramids, the system could respond '"NO",
but it would be more Informative to say '""NO, ONLY TWO OF THEM".
In any of these cases, we might be even more complete, and say
something 1ike "FOUR OF THEM: A BLUE CNE, TWO RED ONES, AND A
LARGE GREEN ONE,"

There are three parts we can include In the answes =-- "yes"
or "no", a number, and a descriptlon of the objects. Remember ;
that whenever possible a YES-NO question Is treated llke a MG
question by looking for a focus element (an iIndefinite NG In the
question). A questlon 1lke "Does the pyramid support a block?"
is treated logically like the question "Which block does the

pyramid support?" , or "How many blocks does the pyramld

support?" A1l three send a THFIND ALL request to PLANNER, asking
for all of the objects fitting the descriptlon:
(THPROG (X) ?
(THGOAL (#!S $2X #BLOCK)) !
(THGOAL (#SUPPORT :B5 $2?2X)))
whe e :B5 Is the system's internal hame for the pyramid being

referred to by 'the pyramid" (this would be determined in
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separate calls to PLANNER). In the case of the HOWMANY questlon
we answer with the number of objects found. For the "which"
question, we name the objects. In the case of a YES-NO
question, we answer with all three kinds of [nformation, sayling
"YES, TWO OF THEM: A LARGE RED OME AND THE GREEM ONE."

The first element Is "YES" If the answer Is clearly yes
(for example It the number is matched exactly, or the number In
the orlginal question was Indefinite as In this example), 'NO"
If it Is clearly no (for example If there are fewer than
requested, none at all, or the request was of a form

“ ate. and was not met),

"exactly..." "at least..." "more than...
and 1s omitted If there Is a question about its Interpretation
({as descrlibed above).

The second element, the number, Is cmitted |f the number
found matches the request (For example, "Ar2 there three
blocks?" iIs not answered redundantly, "YES, THREE OF THEM: A
GREEN ONE AND TWO LARGE RED ONES."). The phrase "OF THEM"
following the number Is changed to "THINGS" If the focus
contalns a TPRON like "anything", or "something®. !f the number
found Is less than that in the focus, lﬁ Is preceded by
"ONLY...", so the answer comes out "NO, ONLY TWO OF THEM:...")

At the end of a response, we put the description of the
objects found, uniess the request used a specfa] number format
such as "exactly...", "at least..." etc. In which case the

system assumes the number Is ~c -e important thzn the speclflc
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objects. We use the object~-naming program In lts Indeflinite
mode. lf‘the fccus origlinally appeared as the object of a
prepositinn, we repeat that preposition before the descriptlon
to clarify the answer. Thus, "Is the pyramld on a block?" Is
answered "YES, ON A LARGE GREEN ONE." The unknown agent of a
passive llke "Is it supported?" Is Implicitiy the object of
“"py", so the answer |s "YES, BY THE TABLE."™ If a YES=NO
questlon contalns no possfble focus since all of Its NGs are
DEFinite, as In "Does the table support the box?", the system

answers simply "YES" or "NO".
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b,u,3 Naming Objects and Events

The previous section covers all of the dlfferent types cf
questions the system can handle, and the types of phrases it
uses In response, Ve have not yet explained how It names an
object or describes an event. This Is done with a set of
PLANNER and LISP functions which examine the data base and find
relevant information zbout objects. These programs take
advantage of the fact that the subject matter Is limjted. In
general, the way an object Is named is highly dependent on what
the person belng spoken to Is Interested in and what he already
knows . Thls has not been dealt with yet. Certaln features of
objects, such as their color and size, are assumed to be the
best way to describe them in all contexts.

First we need to know how the object is baslcally
classified. In the BLOCKS world,.the concept #IS represents
this, as In (#1S :HAND #HAND), (#1S :B1 #BLOCK), and (#{S #BLUE
#COLOR). The naming program for objects first checks for the
unique objects In tis world, 1%, “you", "the table'", "the box",
and "the hand". |If the object !s one of these, these names are
used. Next It checks to see If It Is a color or shape, In which
case the English name Is simply the concept name wlthout the
"§", The gquestlion “What shape Is the pyramid?" Is answered
"POINTED." since it has the shape #POINTED. If the the object
I's not one of these and Is not a #BLOCK, #BALL, or a ¢PYRAMID

the program gives up. If It ls one of those three, the correct
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noun is used (Including a speclfal check of dimenslions to see If
e #BLOCK Is a "cube'), and a description is built of its color
and size. At each stage of bullding, the description Is checked
to see If it refers uniquely to the obiect belng described, If
so, the determiner "the'" Is put on, and the description used
without further addition. If there Is ohly one ball In the
scene, tt will always be referred to as ''the ball®,

If the description includes color and size, but still fits
more than the desired object, the outcome depends on whether a
speciflc description or an nonspecific one Is called for, |If It
Is nonspecific, the program puts the indefinite pronoun "a" or
“an® on the beginning and produces something 1ike "A LARGE GREEN
CUBE". If it is specific, more Information iIs needed If the
object supports anything, the program adds the phrase "WHICH
SUPPORTS..." then includes the English descriptions (indefinite)
of all the objects It supports. If the object supports nothing,
the program adds "WHICH IS TO THE RIGHT OF;.." and names all of
the objects to the left of the desired one. This still mav rot
characterize the object uniquely In some sltuatfons, but the
system assumes that It does. [If at any point In the d!alog, an
object is glven a proper name, It is referred to using only the
noun and the phrase "NAMED_,.", as In "THE BLOCK NAMED
SUPENBLOCK."™

Naming events Is relatlvely stralghtforward, VWlth each

event type (such as #PUTON or #STACKUP) we assoclate a small



Sectlion 4,4.,3 - Page 395

program which generates an English name for the event and
combines It properly with the names of the objects involved.
For example, the definition for #PUTON is:

(APPEND (VBFIX (QUOTE PUT)) OBJ1 (QUOTE (ON)) OBJ2)
VBFIX Is a program which puts the verb Into the right form for
the kind of clause needed to answer the questlon. (for example,
-ing for answering "how", or inflnltive for answering "why").
It takes into account the changes in spelling Involved In adding
endings. O0BJl1l and 0BJU2 are bound by the system to the English
names of the objects Involved In the event, using the object-
naming program described above. APPEND Is the LISP functlon
which puts together the four Ingredients end to end. We
therefore get descriptions like "BY PUTTING A LARGE RED CUBE ON
THE TABLE". There I5 a special check for the order of particles
and objects, so that we output "TO PICK UP THE SMALL BLUE
PYRAMID.", but, "TO PICK IT UP" rather thén, "To pPick up IT".
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4.4,4 Geperatipg Disccourse

The previous sectlons described a generating capabillity
which can produce reasonable English answers to different types
of questions, bu% used by themselves, the features described
would produce awkward and stilted responses which would at times
be Incomprehensiblé. Even though we have mentioned some
discourse-like patterns (like ",..0F THEM" following a number),
we have not yet discussed the real problems of discourse. The
system uses three different discourse devices In producing Its
answers. These are much more limited than the range of
discourse features It can understand, but they are sufficlent fo
produce fluent dialog.

The first problem Involves lists of objects. Our initlal
way of naming more than one object Is to sTmply string the
descriptions together with commas and "“AND", We might end up
with an answer like "YES, FOUR OF THEM: A LARGE BLUE BLOCK, A
SMALL RED CUBE, A SMALL RED CUBE, AND A SMALL RED CUBE." To
avoid this redundancy, the object-namer looks for identlical
descriptions and combines them with the approprliate number to
get "A LARGE BLUE BLOCK AND THREE SMALL RED CUBES." (Note that
Itvalsd must change the noun to plural).

The next problem Is the use of substitute nouns. We would
like to respond to "is there a red cub> which supports a
pyramid?" by "YES, A LARGE ONE." Instead of "YES, A LARGE RED

CUBE." By comparling the English descriptions of the objects wlth
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the wording of the focus in the lnput sentence, we ﬁan omit
those nouns and adjectives they share «nd replace them by "GNE",
The third problem is more serldus, as lignoring it can lead
to incomprehensible responses. Consider the answer to question
32 in the dlalog ("How did you do it?"). |If we did not use the
proncun "it" or the determiner "that", the response would be:
BY PUTTING A LARGE RED BLOCK OM THE TABLE, THEN LETTING GO
OF A LARGE RED BLOCK, THEN PUTTING A LARGE GREEN CUBE ON A
LARGE RED BLOCK, THEN LETTING GO OF A LARGE GREEN CUBE,
THEN PUTTING THE RED CUBE ON A LARGE GREEN CUBE, THEN
LETTING GO OF THE RED CUBE.
How many different blocks and cubes are involved? In describlng
events, we must have some way to Indicate that we are referring
to the same object more than once. We can do this using "it"
and "that", and at the same time can use these words to Improve
the smoothness of the discourse in other ways. The system has
heuristics which lead it to use "it" to refer to an object in an
event it Is describing whenever: 1. the same object was called
"{t" In the question. 2. the object was called "it" In the
questlion preceding the current one, and "it" was not used In the
current one. 3. the object has already been named In the
current answer, and was the first object In the answer 4. no
objects have yet been named In the current answer, and the
object was the only one named In the prevlious answer.
To refer to an object already named In the current answer,

other than the first, the program applies the determiner "that"

to the appropriate noun, to get a phrase llke '"BY PUTTING A
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GREEN BLOCK ON A RED CUBE THEN PUTTING THAT CUBE IN THE BOX."
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&*&;ﬁ Future Development

The generaticn of language Is a complex subject, wide open
to future development, Our current system Is just a beglhntng,
and has some major deficlencies., First, we would like to
descrlbe an object by using facts which are relevant to the
context. In our simple world, we have declared by fiat that
color, size, and support relationships are the important facts
about an object. We could just have well have used location to
get answers like "“the block nearest to the back of the table'.
With a wider range of subjects, we would need much more
sophisticated heuristics for declding what features of an object
will serve best to ldentify It to the hearer,.

Se 7nd, we do not have a way to turn an arbltrary PLANNER
expression Into English. We can handle only speciflic objects
and simple events, There are a number of applications for a
more powerful English generator. For example, in case of
ambigulty, we shoﬁldn't have to Inciude special paraphrases in
the definition. The system should be able to look at the two
PLANNUCR descriptions aﬁd describe the difference directly In
English. |

The system should be able to te)) us more about Itself and
how it does things. If we ask a auestion like "How du you bulld
stacks?", It should be able to loqk at lts own programs and
convart them to an English descripticr like "First | find a

space, then | choose biocks, tihen | put one of the bloc!s on
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that space, then...'" PLANNER's structure of goals and subgoals
Is Ideal as a subject for thls kInd of descriptlon, and a great
deal could be done along thls llne. In a more speculative veln,
the development of discourse generators which could convert an
Internal loglical format Into natural language might lead to

computer essay wrlters, or translators which could understand

the materlial they were working with.
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4.5 Comparison with Other Semantic Systems
s.5,1 JlIntroduction

This section compares our semantic system wlith two other
models for the semantics of natural language. Each has served
as the basls for computer programs which "understand" language,
and we will consider the usefulness of the models for this
purpose as well as thelr value as theoretlical models of a
natural process.

The three models can be labelled "categorlization",
"assoctatlon", and "procedure'. These do not represent a cross
section of semantic theories, but represent one particular type
of theory., They assume that it !s meaningful to postulate a
conceputal organization of human knowledge, related by semantics
to the linguistic forms used In expressing thoughts., This sets
them cff from traditional approaches which avoided postulating
mentalistic structures and dealt Instead with extra-mental
(gpresentat!ons such as logical truth conditions or stimulus-
response relationshlips,

These three models are orlented towards viewing language 2s
a human activity rather ﬁhan an abstract calculus of symbols.
They study the brocess in terms of human hodels, and. take Into
account the production and intepretation of language. One
possible reason why the current syntactic theories have been
weak In developing semantic theorles is thelr Insistence on a

"mautral" characterization of the competence ov a language user,
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without regard to the process carried ou: in an intelligent

speaker or hearer. Slnce semantlcs Involves the Interaction

between the structures of the language and the knowledge and

Intellligence of the language user, It cannot be understood

without tryling to deal with this intelligence directiy.
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The Categorization model of semantics was developed in Its

best known form by Katz and Fodor <Katz>, and has been a part of
many computer systems for understandlng natural language.

The basic principle Is a structure of categories, called
"semantic markers', dividing the conceputal worid much as the
Dewey decimal classificatlion subdivides the books in a library.
The usual sense of the word "bachelor" has the semantic markers
"male”, "human', Yanimate!, "physical object', etc. and the
final ‘distinguishing characteristiec ("never having been
married") is its “semantic distinguisher".

:n choosing between different senses of a word In a
particular sentence, these markers are comblned accordling to
"projéction rules", Fcr example, the word "colorful" would be
interpreted in on2 sense in "colorful cube'", another In
“"ecolorful party"”, while the rules would indicate that "a
colorful ball" has two posslible readlngs.

Further Information can be gleaned from the lczical
"relatlons between the markers such as the fact that '“male
'uncle" is redundant, while “female uncle® is anomalous.

Fodor and Katz did not attempt tc explaln the process of
producing cnd understanding language In terms of these markers,
preferring to see them as abstract neutral relatlionships
underiylhg the speaker's competence. They did not deal in any

systematic wav wlsth {L0s5e aspects cf meaning which cannot be
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dealt with through this typ=e of categorization.

tlevertheless, categorization has been used In many computer
programs for understanding natural language, to help choose the
right meaning for potentially ambiguous words. Schank <Schank
1959, 1970> has extended the applicaticon of this theory, using
semantlc relatlonships to parse sentences conceputally.
Assoclated with each sense of a word Is a conceptualizatlon{
specifying the semantic relationships of that word with other
words In the same structure, For example, one meaning of the
word "hit" would be an actlien of physical striking, whose
subject is a “person', whcse object Is a "physical object", and
which has a posslible instrurmaent of the category "wearon'". The
sentence "I hit the boy with a2 stick." would be parsed by
noticlng words In categories which could fll1l1 the roles, and by
setting up an appropriate structure. |t could also account for
the Interpretation In which "hit" Involves striking with a fist,
and "with" represents possession of a '"physlcal object" by a
"person', but thls would be found only on "prompting" (see
¢Schank 1970>, p. 26). |

The underlying bellef Is that humans make much use of this
sort of categorization In understanding sentences, rather than
doing a complete syntactlc parsing. The sentence:

"The window the ball the boy threw hit broke."

Is understood more easl!ly than:

"The man the woman the girl knew liked dled."
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Fodor and Garrett <Fodor 1967> studled sentences 1lke tnese, and
faund that they are more easi:y understood when the categories
assoclated with the verbs can indlicate the conceptual structure,
For sentence fragments and ungrammatical utterances, this

abllity seems vital,
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L.5.3 Asseclation

The second medel has Its roots more in psychology, and the
presence of "associatlons' between words In a person's mind., It
postulates a sprawling collectlion of words and concepts,
connected tc each other by simple links. If "goose" is
connected to "quill" and "quil1"” to "pen" and “pen" to "Ink",
there is a path of length three from ""goose" to "ink'". These
links would be present in Informatlion such as "A quill is a
goose feather", "Pens can be made of quills", etc. The
justification for this model Is that the course of a path
describes the relationship betweea the two nodes, and that its
lengtn Is a imeasure of thelir relatedness. The use of
assoctiation as a medel for computer langucze understanding has
been most influenced by the work ¢f Quillian <GQulliian 1964,
1969>. Information Is coded Into the network of concepts uslné
several types of links (for exampfe, the clarns-subclass
relatlionshi; used In the categorizat!on model). In
understanding a sentence, a search Is Initiated through the
network from each of the content words of the sentence, to find
the shortest paths linking them. The system uses the
Information along that path to decide what the sentence is
about.

It Is important to understand why | call this the
"assoclation" model instead of the "network" model. The word
“network" has been used to refer to every conceivable varlety of
data structure. The semantic markers In the categorization

model form a network , Schank <Schank 1969> refers to the
output of his parser as a "language-free conceptual network",
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recent parsers <Woods 1870> are called "augmented transition
networks'", while our parser uses systemlc grammar with "system
networks". Each of these '"newtorks'" represents a completely
different sturcture and use of data. Saying that a structure Is
3 "network" is not much more Informative than saying that It Is
represented by bits In a computer memory. What must be stated
is the way the network Is used,

A central commlttment of the assoclatlon nodel Is that
There Is a signiflcance to traéing along the links from: node to
node ignoring thel!r content. Once a nath is found, all sorts of
logical operations may be used to determine lts sltgniflcance and
make use of its lnformation, but in the propagation, = winin.un
of calculation is done at each node.

It Is difffcult to formalize a "minimum" of calculatioan,
but it Is tmpértant to have some understanding of its
!mplicatlbns. Any computation whatever, can be expressed as a
network by drawing a flow chart, with the blocks of computation
as nodes, and the transfers of control as llinks. The
computation then traces a path through the net. It might seem
that there Is something Inherently dlfferent between a program
following a single path through a flowchart, and a signal
propagating In all directions through a net. However the
difference disappears [f we allow some sor. of parallel
processing (for examgle the pseudo~simultarneous e’aluatlion of
several paths, as found In many simulatlion lunguages, ana some
theorem-provers such as new verslions of PLANNER <dewlitt 1970>).

This Is not the place to debate the merits of parallel vs.

serfal processing., The important thing Is to reallze that once
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networks carry out computations at each node, they move away
from the assocliation model, towards a model of semantics as &
program.

Some types of ratural language understanding do appear to
Involve simple assoclations. On hearing the words "fortune" and
"almond", a person w'll (1f he has eaten In Chinese restaurants)
think of the word 'cookle". 1t Is hard to describe Joglical
connectlons which lead to such a quick reactlon, and much more
appeailng to plcture a short assoclation path between "cookle"
and each of the original words. The model can also be used to
explain the choice of a single meaning for a potentially
ambiguous word In a sentence. |If a word Is connected by a 1ink
to each of the conrepts It might describe, the shortest path to

the other words In the sentence should be through the relevant

meaning.
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4.5.4 Progedurg

We can call the model of semantlics used In our system the
“procedure model”™. The primary organlzation of knowledge Is In
a deductlve program with :the power to combine information about
the parslng of the < 'ntrnce, the dictlionary mearings of lts
words, and non-linguistic facts about the subject belrng
discussed. Any relevant bit of knowlédge can Itself be In the
form of a program or procedure to be actlivated at an approprliate
time In the process of understanding. The program operates on a
sentence to produce a representation of its meaning in some
Internal language, In our case PLANNER. This language allows the
expression of a wide variety of the aspects of language ~-
loglcal connect:ves and quantifiers, time ref:rences (provided
by verb tenses and modlflers), different sorts of object~
modifler relatonships, types of object reference (e.g. the
difference between "the dog" and "a dog'"), etc.

In analyzling a sentence, the orogram can use Informatlon
about previous sentances In the discourse and about the subject
belng dliscussed. This allows It to deal wlith features of .
language such as pronoun reference, substitute nouns, the effect
of discourse on speclfic referents, and the disamblguation of
meaning through knowledge of non-llnguistic facts (like Bar- i
Hillel's classic example of the "box In the pen' <Bar-Hlllel)),

Other programs, such as <Woods 1969> also use the procedure

model. These programs use a complete syntactic parsing of the
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Input to provide a framework from which the program can declde
what aspects of meaning to deduce. The majority of the
language=~comprehending programs have used the procedure model in
a simplified form, performing on\y a few elementary types of
deduction In analysis, and having an Internal language tallored

to a specitic application,
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h.5.5 Evaluating the Models

There is no singlg set of criteria to judpge the success of
a model of semezntics or a computer program for '"comprazhending
language'". Success Is relative to the goals of the model, and
the aspects it wishes to describe. Four criterla seem to be of
importance both in coﬁputer language comprehenslion and !nv
develcping a theory oflsemantlcs. These are: ability to
combine syntax and meaning ; efficlency; ability tc explain
human performance; and the ability to understand \angdage in
context. These will be discussed separately,

A. Integrating Syntax

There are many facets to the meanlng of an utterance in a
natural language, and no mndel sheds equal light on ail of them,
In fact, two of the three models are limited to one part of the
meaning ~- the basic semantic relatlionships between the words
used in the sentence.

The Fodor-Katz version of the categorization model does not
attempt to deal with the part of meaning expressed by the
semantic distinguishers, analyzing only those aspects which can
be modelled by the markers. It does not work with other aspects
of meaning such as tense, mood, and reference to objects.
Schank's version attempts to model the way people understand a
sentence, describing an actual parsing process., However the
conceptual parsing does not actually find the "meaning". One

argument for the model is human abllity to understand utterances
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in a foirelgn language without a detalled knowledge of the
Jrammar, Only the meanings of words are needed %o find the
language-free conceptual connections (see <Schank 1%70>, p.%J.
Thic seems a good parallel to the type of understanding done by
the categorization model. Anyone who has tried to get along In
an unfamiliar foreign language will be famillar with the-
following experience. A friend says scirething which contalns
the foreign language equivalents of the words "like", '"see", and
"Film". The forelgn visitor knows the words and the!r "word-
concept couplings'", but is totally at a loss In trylng to
respond, since the sentence may have been any one of a vast set,
including:

"I 1lke seeing fiIlms." '"Have you s.en any Fllm; you 1iked?" "i
see you like films." "Would you like tc see a film?" "I saw a
film | liked." "Did you like seeing the f!Im?" etc.

Viithout the additional meaning provided by syntax, It iIs
impossible to understand the content of the sentence. If the
visitor responds "We are talking about a pers&n whp sees a film
and likes the film", hls foreign friend can rightfully reply
"oh, you didn't understand," Thls problem applies equally to the
associat!on model. Flinding the intersection of slgnals from the
nodes "see", "film", and'"Ilke" might produce the right
conceptual relationships, but none of the addltlona{
Informatior. Nelther of these two models has been the basls for
an actual guestion-answering system, slince tﬁey do not deal wlth

the ways in which syntax conveys meanling, and therefore lgnore
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those aspects of semantics In which syntax plays a large role.
The procedure mcdel pavs more attention to a complete
understanding of a senftance, trying to ihtcrweave syrntax,
semantics, and deduction In order to actually answer a questlon,
use a piece of new .: formation, or follow a command.
B. Efficiency
1t would seem reasoﬁable to look for capabliities of the
other two modeis not possible for the procedure mcdel. In une
sense, this quest Is a joke. Since a procedure system has
information in the form of programs, those programs can Include
simulations of any other model. The signlficant question [s not
what Is possible theoretlically, but what (s reasonable to do.
A program could play a simple game like NIM by using
standard strategies of minimax and look=-ahead. If it could win,
it would provide a successful model of NIM playing. However It
makes no use of the simple winning strategy, and therefore Is a
bad model for the speciflc game. Simllarly, the procedure model
approaches semantics In a general way, sayling that every part of .
semantics Involves powers of deduction and the abllity to
combline Information of a varlety of types., |If In fact, major .
parts of ilanguage comprehenslion can be explained by more
elementary approaches, the general procedure model Is not a good
description for those areas.
The Issue at stake fs more than computer efficiency. Since i

we are modelling a natural process, the criterlor of "Occam's
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razor" applles just as In any other sclience. The most
satisfactory explanatton is the lcast complex one which can
account for the facts.

The area of computational complexlty I§ barely charted, and
it Is nearly Impossible to determine that some computation Is
inherently "more complex" or "more difflicult” than another. It
Is especially dangerous to characterlize high-level processes
like deduction, since a computation which takes Impossibly long
using one scheme may be trivial for another. However, there Is
an Intuitive sense in which efficiency can be judged. A
procedure system could handle the "fortune ~-- almond" example by
systematlcally looking throuzh the things 1t knows about
fortunes and almonds, and using some sort of analogy program to
test for relationships. This seems cleariy more complex than
the presence of a simple association link. Those who advocate
the assoclational model feel that there will be many such cases
In which the deductive process needed to find the path would be
Impossibly torturous and lengthy.

There Is also a complexity of syntactic parsing. The
semantic connections might glve clues to the underlying
structure which would change the parsing task Into simply
checking the plauslibility of the relatlons, and cleaning up the
detalls., This Is the approach taken by both Schank and
Quilllan, The example Involving the boy, ball, and window

involves a complex syntactlc structure which could not be
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handled by most of the parsers which have been written for
computers, yet a simple set of semantic criterlia seem to analyze "
it directly without any complex syntax rules.

C. Modelling Human Behavior

lt Is difficult to find psychological experiments which »
could declde between one model and another, since the underlying
conceptual structure Is too complex to isolate a "single
Interaction", However, sone examples seem to suggest the
validity cf various models. In speech communication, people
understand sentence fragments, scattered words, and blurred
phrases which require filling In much of the meaning. In a
model requiring a complete parsing, thls woulu add a great deal
of complexity, since the parser would have to know about the
different types of fragments as well as the grammatical
sentences. A semantlc relation model suggests that the syntax
Is only used at the end of the process, to check on the
conceptual message. If the syntax Is lacking, the final check
Is gone, but the basic meanling ls stlll discoverable.

Speclal types of language use, 1lke poetry, puns, and jokes
seem to involve simple assoclatlional links. Often the punch
line of the joke comes from recognlzling the Inapproprlateness of
the link whlch was made, while the poem conveys meaning by
showing that a 1ink is not as lrrelevant as It outwardly seems,

but hints at deeper connectlons.
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D. Context

One of the most important facts about language
comprehension [Is that sentences do not appear In logical
isolation, but are always part'of a context, both of other
utterances and of the situation in which they are uttered. Some
semantlzcists try to avoid this problem, saying it goes beyond
the proper realm of semantics. Katz and Fodor believe that
"...a semantlic theory cannot be expected to account for the way
setting determines how an utterance Is understood." (<Katz> p.
48€) However, {f semantics Is to be a study of the way language
and meaning are actually related, we cannot lgnore the facts.

One of the maln strengths of the procedure model is Its
ability to Include all sorts of knowledge In making deductions
at any stage of semantic analysis. The program can call on the
contextual knowledge just as easlly as the dictionary
deflnitlonsror syntax. Within the framework of the baslc
procedure model, there can be a detailed model of those parts of
the context which are needed for undersfandlng (for example a
memory of the objects which have been mentioned, so pronouns can
refer back to them). The examples below show some of the
problems involved In other models when context enters Into
understanding.

Schank uses the sentence "! hit the man with a stick." to
Il1lustrate conceputal parsing. (<Schank 1970> p. 26) Slnce

"hit" takes an Instrumental of the type "weapon", the conceptual
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parser first assumes that the phrase "with a stick" has this

meaning., Let us look at two possible contaxts for the

sentence:
1. Three men attacked me. | hit the man with a stick.
2. A man attacked me. | hit the man with a stick.

The phrase "with a stick" Is interpreted differently In the
two cases, but this cannot be because of differing conceptual

relations. The relevant Informatlon 1s that a phrase like "the

man" will only be used when it is clear which particular man Is

meant, while "the man with a stick" will be used only In trying
to distinguish one particular man from others.

Another example used (<{Schank 1970> p. 11) is the
disambiguation of tne word "fly" depending on whether Its
subject is a "pllot" or not. If you know that Ed's father Is a
pilot, the sentence "Ed's father fles to Chlcago." should be
interpreted In the sense of "“operating a plane'. But there are
no categorization clues in the words "£d" or "father", for the
conceptual parser,

It seems that within the association model there should be
some way tc make use of thls Informatlon. |If there were a node
l1inked to "Ed", "father, and "“pllot", then the network search
Iinvolving Yed", "father", and "fly" would go through It, and the
retations could be determined from the path, This approach lIs
deceptive, as adding this type of knowledge creates a world of

false short paths. Thils Is a problem inherent to the approach.
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The earller example of '"goose' "quill" "pen'" "Ink" could be
extended one place further from "ink" to "spot". It Is
extremely uilikely that a sentence containing "“spot" and '‘goose"
would actually involve this connection. Yet It might be a much
shorter path than the one actually representing the connection
In "I spotted a goose." As the amount of knowledge grows, there
will be a ranidly expanding number o false paths, made up of
links which are individually very close, but which bear no
logical relation to each other. Since the assoclatlon network
does not check the logical relatlions of the 1lnks until after
the path Is found, there Is no immediate way to sort these out.

By including speciflc knowledgé, this problem is
exacerbated, since each node will have a large number of 1llnks,
of widely differing loglcal types.

There are varlous ways to sneak deduction Into the
association model, and for each slimple example, It s posslible
to design a trick which cuts ocut the Ilrrelevant 1inks
(Quillian's distinction hetween property and superset 1inks
<Quillian 1969> Is an example). As the amount of Information In
the net Iincreases, It needs more ad-hoc deductive schemes, and
In order to handle language generally, the association net will
become a full-fledged parallel processor using procedures to
find semantic relations.

in addition to swamping the system wlth Imblauslble 1inks,

the assoclation model can produce very plausible Incorrect
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1inks. I'f the sentence:

“He hated the landlord so much he declided to move into the
house on Harvard St."
were given to a system like TLC, it would be hard to restraln it
from saying "We are talking about a landlord who owns a house.
The house Is located on Harvard St...." The path from "landlord"
to “house" will be as strong as the path from "lawyer" to
"client" iIn the standard assoclatlornal example. But In this
case, deduction is needed to reallze that the assoclatlon Is
wrong. A person would move out of the house of a ltandlord he
hated, not into It.

These examples point out a serlous defect of non-deductive
models, Earler sections discussed the existence of areas of
language comprehension which could not be handled without syntax
and deduction., These examples Indicate that deductlon Is
necessary even for the tasks for which the other models are

designed =-- finding the semantic and conceptual relatlons

between the words In the sentence,
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4,5,6 Conclusions

Altiiough the procedure model seems to account for much more
of language behavior than elther of the others, there are some
parts of language understanding where they are especially
applicatbtie. There Is no one aspect of understanding which can
succeed without deduction, but the simpler models can be of help
In making appropriate daductions In many sentences.

In trying to understand language at a deep level, a system
cannot hope to simply throw together the advantages of these
different models, but needs a way to integrate them usefully.
This Is the primary advantage of the procedure polint of view,

It is flexlble enough to make use of the other models In a
systematic wayvln an integrated system. |f semantic criteria
can simplify parsing, a partial semantlic analysis can be
Included In the procedure before syntactic analysis. This could
involve category matching, or even a controlled search through
some sort of assoclation net. These might be used as well In
choosing between meanings of a word, or In finding information
applicable to a deduction about the subject matter In generating
a response.

The degree to which these speclal sub-models could be used
viould depend on the particular applicatlion and the subject belng
discussed.

A program to read poetry or retrieve documents cn the basis

of vague descriptions of subject matter may need a strong
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assnclation component. One written to answer questions aboun
airline schedules, or understand questlons and commands to a
robot will be more procedurally orlented. |In general, a use
involving detailed knowledge of any speciflc subject can rely on
deduction, while an application needing superficial knowledge of
a wide range of subjects can benefit from assoclation, and wil)
be correspondingly weak In Its ability to glve specific
responses.

Specliflic models such as assoclation and categorization are
subparts of a model of language understanding, while the
procedure model (s fundamentally an approach to integrating all
of the different sub-models Into a total semantic theory. It
represents a point of view that no part of the process can be
isolated from the basic computational power or "intelllgence" of
the language-understander (whethér human or computer).
Understanding of language, as well as other types of human
behavior, depends on this ability to see the operation of

intelllgence at every level of processling.
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Chapter 5. Conclusions

5.1 Teaching, Telling and Learning
Cne of the most Important requirements of a natural

language understanding system s generality. It should not be
based on special tricks or shortcuts which 1imlt It to one
particular SUEJect or a small subset of grammar, but should be
expandable to really handle the full diverslty of language. In
each of the three preceding chasters we have pointed out that
many approaches to language understanding are qulite limited, and
have tried to Illustrate the progression within each sub-area

towards .iore general approaches.
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2.1.1 ZIvpes of Kpowledge
In evaluating the flex!bllity of'a system, we must consider
the four divferent levels of knowledge It contalns.

First, there ls the "hard core'" which cannot really be
changed without remaking the entire system. This Is Its "Innate
capacity" -- the embodiment of Its theory of language. A: this
level we must deal with such questions as whether we should use
a top-down transformational parser, a semantic net, or some
other approach to the baslc analysis of a sentence, or whether
we should have special tables of Informatlon or a general
notation (such as the predlcate calculus) for representing
information.,

The second level of kngwledge is the complex knowledge
about the language and the subject belng discussed. Thls would
Include such things as the grammar of a language, or the
conceptual categories Into which the speaker dlivides hls model
of the world. If we thlnk about the human speaker, thls Is a !
type of knowledge which Is obviously not Innate (slince the

grammar would be different for English and Chinese and the set

e b b st - bt A

of concepts used would differ for talking about toy blocks and

talking about love stories). However It 1s not somethling which

he learns by being told, or whléh he changes very easily. Over

PRI

a perlod of years, he bullds up a store of very complex,
Interretated knowledge, which serves as a framework for more

speciflic Information.
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The third level Is our storehouse of knowiedge about the
detalls of our language and our world. It Includes the meanings
of words, and most of what we called "complex knowledge'" In
sectlon 3,1.3. This would include such things as "A house buflt
on sand cannot stand.", "If you want to plick up a block, first
clear off Its top.", or "Sunspots cause strange weather.", In
human terms, this Is the knowiedge we are continually learning
2il1 of our lives, and forms the bulk of what we are tauzht In
school. o

Finally, the fourth level Is the set of specific facts
vwthich are relevant to a dlscussion. Thils Includes facts such as
"Flight 342 leaves Boston at noon.", "The red block is 3 Inches
tall.", or "A banana is hanging above the chair.". This Is the
easlfest type to learn, since it does not demand forming any new
Interrelationships. It Is more like puting a new entry Into a
table or a new simple assertion Into a data base. There Is no
sharp distinction between levels three and four, but wlthin any
glven system there will usually be two different ways of
handling Information corresponding to thls distinctlion. Let us
look at the three areas of syntax, Inference, and semantlcs, and

see how these different levels of knowledge relate to language

understanding programs and the way they can learn.
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2.1.2 Syntax

In syntax 1t Is clear that-at the top level of knowledge
there will be & baslc¢ approach to grammar, whether It be
trénsformatlons, pattern matching, or finite state networks. In
addition, there must be some sort of built In system to carry
out the parsing.

Some programs (such as the early translatlon programs) had
the grammar bullt In as an Integral part of the system. In
order to add new syntactlic iInformation It was necessary to dig
into the degpest Innards of the system and to understand its
details. It was recognlzed julte early that this approach made
them Inflexible and extremely difflcult to change. The majority
of language systems have Insfead adopted the use of a "syntax-
directed" parser. A grammar ls descrlibed by a series eof rules
which are applled by a uniform parsing procedure. In handling
simple subsets of Engllish, this turns grammar into a third-level
type of knowledge. We can add new single rules (for example,
adding the fact that verbs can have a modlfylng adverb) In a way
similar to adding words to a vocabulary =- without worrying
about the interaction between rules. Thils simplicity Is
deceptive, since it depends on the simplicity of context-free
grammars for small subsets of natural language. Once we try to
account for the complexlities of an entlre language with
something like a systemic or transformatlonal grammar, we must

agaln pay attention to the complex Interrelationships between
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the rules, and the grammar becomes a tangied web Into which any
rew addition must be carefully fitted. For examples of the
complexity of current transformatlonal grammars for English, see
<{X1ima>. More recent programs which use transformational
grammars <Woods 1970>, <Bobrow 1970> <Thorne 1963, 1969>
recognize the fact that syntax is not really that simple, and
2dopt a more Interrelated representation such as networks.

In our system we have used programs to express the grammar,
as explained In chapter 2. This Is not a return to the original
first-level representation, since the grammar programs are
completely separate from the system itself, One of the
arguments for uslng syntax-directed parsers was that the grammar
rules could be expressed Iin a uniform way which did not depend
on the Jdetails of the parsing program. Therefore changes could
be made more easlly and the grammar was expandable. By
desligning a speclal language for wrliting grammars, we can use a
representation which Is just as general as syntax-rule tables,
but which allows greater flexibllity In designing a grammar, and
relating It to semantlcs.

How difficult Is It to change our grammar? For small
changes (like allowing noun groups to contaln only a number, as
in "Are there any books? | want three.") only one or two
additlional lines of program would be needed. For a more
substantlal change (1ike adding a new type of modlfylng clause)

we might need as many as a dozen small additions to the grammar
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in different places which would be affected. The flrst change
could be done with little difficulty by anyone with an
understanding of PROGRAMMAR and sectlion 2.3. The second would
take a deeper understanding of how the grammar Is written, but
would still involve only a small amount of programming, and of
course would not involve changing the basic system at all. The
vgrammér was written to be falrly complete and with expanslion In
mind, 1t seems flexlble gnough that we will be able to Include
as much of the the complexity of English as we want.

What is important In terms of learning Is that this Is
level=two knowledge =- It Is the type of knowledge which Is
learned once in a lifetime by a person (or computer program),
and should not need any major changes after chlldhood.
Therefore although It must be changeable, we do not need to
worry about "quick! learnlng technlques. |If any learnling ls
studled at this level, we must deal in a sophistlicated way with
the methods used to learn large.amounts of complex interrelated
materfal. Those computer programs which have '"learned" syntax
({McConlogue> <{Slklossy>) have done so by taking such an
oversimplified view of syntax that the results hardly have
significance for natural language.

At level three of our knowledge of syntax, we have our
knowledge of particular words, thelr grammatical categorles and
pecullarities. We need to ask, How easy Is It to add new words?

How much do we have to know about the grammar to lncrease the
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vocabulary? In most systems there are a few words (such as
"be", "there'", or "than") which have complex and unique
grammatical behavior. These are built Into the grammar
inftially at level two. The rest of the vocabulary, 1lke nouns
and verbs, can be specified In a simple format. Our system Is
no exception. To add the words "cat'", 'purple”, and "walk" to
the system, we would only need to know the right abbreviations
(from section 2,3) to enter In LISP:

(DEFLIST WORD (CAT (NOUN NS))(PURPLE{ADJ))(WALK(VB INF ITRNS)))

This says that "cat'" Is a singular (NS) NOUN, "pu-ple" Is
an ADJectlive, and "walk" is the INFInitive form of an
InTRaNSItlve VerB.

Can we glive this Information In English? It would be
stralghtforward to add the right terms to the vocabulary and set
up simple PLANNER theorems which would allow us to say "'Cat' Is
a noun." or "'walk' Is an Intransitive verb." 1t would be an
interesting project to see how far this could be extended. Some
programs have avoided gliving dictlionary entrlies to these "“open
class” words (1ike verbs, nouns, and adjectives) and let the
parser determine thelir part of speech from context. <Thorne
1969> This approach Is not generally meaningful for a complete
language understanding system, slnce.we need a dlctlionary of
meanings. It could be used when adding new words to the
system, and could be done so trivtaily In our input progvams, by

asslgning all unknown words to have all possible "open class"
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ones for the context.
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then letting the parser choose the correct
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5.1.: lnie;gngg

In the doma'in of Inference, there has been tremendous
variation In how different systems treat knowledge. In the
early programs, all of the complex Information was at level one
(built into the system), while the speciflc facts were at leve!
four, As we have discussed, this made It very hard tc modify or
expand the ccmplex Information held by the system. In the
theorem provers, all of the complex Information was treated at
the fourth level =-- as a set of Individual formulas which were
treated as isolated facts. At level one, they have a uni/’orm
proof procedure as the heart of the system. We have discussed
how this lack of information at other levels 7informatfon about
the interrelationships between different theorems) severely
limits this approach. In our system, only simple assertions

(such as '"Noah is the father of Jafeth.", or "Parent-of Is the

converse of Chlild-of.") are dealt with at the lowest level, The

rest of the knowledge Is In the form of PLANNER theorems which
have the abillty to Include information about thelr connectlons
to other theorems., Some of these, such as the examples In:
section 3.1.3 about canaries and thesls evaluatlon, are at the
third level, since they are not Interwoven Into complex
relationships with other parts of the knowledge. Other
theorems, such as the BLOCKS programs (sectlion 3.4) for keeping
track of a table full of cbjects, are at level two.

Agaln we can ask, how easy Is it to add or change

R Y VIR
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information at each of the levels. At the two ends, the answer
is clear. At the top we nave PLANNER and uvur committment to Its
kind of theorem-proving procedures. Any change In this !s a
major overhaul. At the bottom level, we have simple facts llke
“"The red pyramid Is supported by the green cube.'" These are the
facts which the system plays with whenever it Is conversing.
They can be changed by simply tellling information (elther In
Engllish or PLANNER), and are changed automatlically when things
happen in the world (for example If we move the red pyramid).
The middle lzvels form the much more Interestlng problem,

At the.second level we have our basic conceptual model of
the world. This includes our cholce of categories for objects,
ways of representing zctlions, time, place, etc, OCne of the
benefits of PLANNER .and of LISP, In which it [s embedded) is
that we have a variety of useful facllities to represent our
world efficliently. Section 3.4 described the BLOCKS world, and
it should be similarly easy to define new worlds of discourse
for the system (see below for examples).

The third level presents the most Interesting problems for
adding new information to the system., It Is simple to do so In
PLANNER by adding new theorems, but we would like to do It In
English as well, Of the previous systems, the only ones which
could accept ccmciex Information In English were the theorem
provers which dealt with It at the fourth level (as a set of

unrelated formulas). In our sample dlalog, we have some
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examples of telling the system simple and silightly complex
information in English. Saying "I 1lke blocks which are not
red, but | don't like anythling which supports a pyramid."
created two theorems. The flrst says, "If you want to pfove !
like something, prove that It Is a block and that it is not
red." This is no different from a formula for any theorem
prover, since It is not related to the system In any complex
:ay. The second theorem says, "If you are trying to prove that
| 1ike something, and you can prove that it supports a pyramid,
then give up." Thls Interacts with the other goals and theorems,
but in a very speclallzad way.

Much smarter programs could be bullt to accept complex
information and use it to actually modify the PLANNER theorems
already In the data base. For example, we mlight have a theorem
to plck up a block, but it falls whenever the block has
something on top of It. We would like to say in Engllsh, '"When
you want to plck up a block, first take everythlng off of It.",
and have the system add this Information to the theorem in the
form of an addltlona} goal statement at the beginning. In order
to do this, the system must have not only a model of the world
It talks about, but also a model of Its own behavlor,.so that It
can tréat Its own programs as data to be manlpuiated and
modffied. This Is one of the most fasclnating directions In
which the system éould be expanded.

Another Is the possiblility of letting the system learn frzi
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:xperience. This Is a complex problem and can be dealt with at
many levels., At a simplistic level, we can have It "learn"
specific facts. For example, we have a theorem which proves
that a block has its top clear (by proving it supports nothing).
As the last line of this, we have the PLANNER statement
(THASSERT (#CLEARTOP $?X)), which says that we shouid add to the
data base the assertion that this block Is clear. |If we then
need the fact again, we don't need to repeat the deduction, In
a sense the system has "learned" this fact, since it has been
added to the data base without being mentlioned In the dialog.
But in another sense, It hasn't learned any new Infcrmation,
since nothing can be deduced with this fact that couldn't have
been done before using the theorem that already exlsted, A more
Interesting type of learning would be shown by changing the j
PLANNER theorems for accomplishing a goal, depending on what had
been achieved in the past. For example, we might have a goal
statement with the recommendation (THTBF THTRUE) meaning try

anything you can., |If the goal Is achleved using some partlicular

theorem, we might have the system change the recommendatlion to
suggest trying that theorem first. At a more advanced stage, we
would have a heuristic program which tried to flgure out why a
particular chaln of deduction worked or didn't work in a !
particular case. |t would then modify the recommendations to

choose the best theorems In whatever environments came up In the

future, 1t might also reccgnize the need for new theorems In
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some cases, and actually build them. This is perhaps closest to

human learning. It does rot Involve juggling parameters or
adding new isolated bits of Information., Instead it involves
figuring out "How are my Ideas wrong (or right)?" and "How can |
change or generalize them?" It Involves a kind of '"debugging" of

ideas, and Is a key reason for representing knowledge as

procedures.
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al.t Semantlics
Since semantics Is the least understood part of language

understanding, It is difficult to find a clear body of "level

one' knowledge on which to base a system. Our system has a

basic approach to semantics, explained In chapter 4, but most of
the semantic work Is done at level two =-- the interrelated group
of LISP programs for handling particular semantic jobs, At this
level we have two separate areas of knowledge. The first Is
knowledge about the language, and the way [t is structured to
convey meaning. This Includes knowledge such as "In a passlve
sentence, the syntactic subject Is the semantic object.", "A
definite noun group refers to a particular object In the world
model." or "'1t' is more likely to refer to the subject of the
previous sentence than the object." This Is closely tled to the
grammar, and Is about as hard to modify as the grammar programs
themselves., The other tyvpe of level two knowledge 1s the
network of '"semantic features" described In sectlion 4.2, This
Is peculiar to the domaln belng discussed, and becomes more
compliex as the range of discussion increases. As we polnted
out, this Is currently separate from the network of "concepts"
used for inference by PLANNER, but the two could be combined.

As with level two knowledge In other areas, thls Is not
somethlng to bé quickly learned and changed, Our knowledge of
how language conveys meaning grows along with our knowledge of

Its syntactic structure, and Is just as seldom modlfled.
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At the third level we have the bulk of semantic Information
-- the meanings of Indivlidual words. This Is the part which
must be easy to change and expand. As In most language
understanding systems, tﬁis knowledge Is In the form of separate
dictionary entrlies, so that new wofds can be added without
changing others, The definition of each word Is a program In
the "semantic language" described In sectlion 4.2, and we gain
great flexibility from this program form. The writer of
semantic definitions does not have to be concerneﬁ wlth the
exact form of the grammaf, and If he wants to enter simple
words, he can use a standard functfon to cescribe them very
simply. Most words can be acded by using the functlons CMEANS
and NMEANS; or by using the particular simple semantic form
appropriate to the type of word (for example, we wouid define
"thirteen" by ((NUM 13))), If we come across a type of semantic
problem or relationship we hadn't antlclpéted, or which involves
relating things In an unusual Way, we can write a LISP function
as the definition of the word to perform the required |
operations. |
| We have trled to deslgn our system so that it would be
flexible and could be easlly adapted to handle other fields of
knbwledge.and to have a large vocabulary. 1t would be nlce to
enter new definitlions in English Insteed of having to use the
special semanfics language. In our sanple dialog, the sentence

"A "steeple" Is a stack which contains two green cubes and a
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pyramid." produced a new definitlon for a noun. This Is only
possible whiun we can express the definitlion of the new word In
terms of the old words and concents., It Is a blt deceptive for
2 language understanding system to allow new words to be added
so simply. If we wanted to define the word '"face', so that we
could talk about the faces of blocks, the system would be
lacking the baSSC'éoncepts and relationshlips necessary to use
the new word. This kind of knowladge is at the secord level,
anc¢ we cannot expect to add It through a simple defin!tion.
There must be a powerful heuristic program which recognizes the
need for a new conéept and which relates thls concept to the
entire model of the world. In this example, It would have to
reallize that a face Is a part of an object, 5ut Is not an object
Itself. Thls might have varied consequences throughout the
model, wherever relations such as "part" are Involved.

Thus although our system can acqept deflnltlons of some
words, It Is a worthwhile but untrled research project to design
programs which will realiy be able to learn new wqfds‘ln an
Interesting way. We belleve that this will be ﬁdch'easler
withlin the environment of a problem solving language iike.
PLANNER, and that such programs could Qell be added to our

system,
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5.2 DOlrections for Future Research

In the preface we talked about usling computers In a new way.
We speculated about the day when we wlill just tell our computer
what we want doune, and It will understand., This paper has
described a small step In that directlon. Where 1s such
research leading? What approaches should we take In the future?

Wle can see three baélc directions In which we could extend
our system. Flirst, at present It knows only about a tiny
simplified subject., Second, most of what [t knows has to be
programmed, rather than told or tiught. Finally, we can't talk
to It at all! Ve have to type our side of the conversation and
read the computer's.

The problem of widening the scope of knowledge Involves
much more than bulldirg bigger memories or more efficient lookup
methods., If we want the computer to have a large body of
knowledge, the information must be highly structured. The
critical Issue Is to understand the kinds of organlzation
needed, One of the reasons that.our system ls able to handle
many aspects of larguage whilich were not possible In carlier
systems is that it has a deep understanding of the subject It s
discussing., There Is a whole body of theorems and concepts
assoclated with the words In the vocabulary, and by making use
of thls knowledge In Its questlion-answering and action, Its
language behavior is more like ours. |In going to larger areas

of discourse we cannot give up this Insistence that the computer
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must know what It Is talking about,

We need a way to Integrate large amounts of heterogeneous
knowledge into a single system which can make use of it., At the
same time, we cannot let th§ system become coverburdened and
inefficient by Insisting on a stifling generality and
uniformlity. We want the advantages of speclallzed types of
knowledge and structure -that can come from limiting the subject
to a small érea, but at the same time we must have the
flexibillity that allcws knowledge of different types to
Interact. PLANNER~-11ke languages may be a beginnling toward
these new kinds of organization,

There are many different approaches which can be taken
towards higher organization of knowledge. We may want to think
in terms of a "block-structure" of coﬁtexts, eacn of which
carries Its own speclal vocabulary and information. We may
think of a network, In which we can conslder the "distance"
between two concepts or words. It might be possible to deal
with a set of speclallzed "szroutInes" for deallng with ’ ;
different kinds of situations. Even for something as seemingly
simple as childrens' stories, there are tremendous complexities
and a well~-structured apprcach Is necessary.

In section 4.1.4 we discucsad some of the ways our system
could take advantagé of this large-scale structure of knowledge.

The subject matter would influence the cholce of relevant
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ded:ction. This has been explored very little, and there are
many possibilities for further research.

The problem of learning Is of great Interest not only to
those working on practical comoutef systems, but also to
psychologlists Interested in understanding how learning takes
place in other intellligent systems, such as people. We need to
understand how the amount of knowledge we already have affects
the amount and the way we can learn. Working on a natural
language program offers several advantages for studying problems
of knowledge and learning. Language represents a body of highly
complex knowledge, which ltself can provide a rich field for
learning tasks with a wide range of difficulties. Also,
language Is a major vehlicle through which people learn about the
world. In studying the way that a computer could accept new
information In natural language, we are studying a key area In
learning. We need to understand the ways In which learning
depends on the organization of our'knowledge. We need to
explore In what ways knowlng about Its own mentallity could allow
a computer to really learn. This Is perhaps the most
interesting possibllity for research, and we have discussed It

at length In Section 5.1.

We have discussed the diffliculties involved In zccegting New

declarative knowledge In any but a superficlal way. One of the
problems most closely assocliated with this Is the use of world-

knowledge in unders;andlng declarative sentences., Compare the
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sentences:
! put the heavy book on the table and It broke,

| put the butterfly wing on the table and 1t broke.

The understarding of the referent of the pronoun "“1t" must
depend on the llkellhood of the different objects breaking or
causlng breakage. This could be handled by having the
declarative sentence “interpreter'" try out both lntérpretatlons
and see which leads to more “reasonable” conclusions.

Out system can currentiy do this only If the knowledge of
the world needed is a specific simple fact ("there is no block
In the box.") or a categorical fact ("table can't plick up
blocks.") A more complex system Is needed to accept general
declarative statements and explore thelr consequences. It must
seek the Interpretation which Is nelther trivial nor
incongruous, but which provides new (nformatiz.. as tne speaker
must have intended It to. Contextual factors play the major
role, The expectatlons might be completely reversed If the
sentence were preceded by "The strangest thing just happened!"

Finally we have the problem of speech communication with
computers., Agalin the [ssue Is not cne of more efflclent
hardware, but one of knowledge. Spoken language calls on the
listener to fill in a great deal from hls own knowledge and
understanding. Words, phrases and whole ldeas are conveyed by
fragments and mumbles which often serve as little more than a

clue as to what they Intend., The need for a truly vertical
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system is amrich greater for speech than for written language.
The analysis at even the lowest level depends on whether the
result "makes sense.' People can communicate under condltions
where it is nearly impossible to pick out Individual words or
sounds without reference to meaning.

In our system we tried tc integrate the syntactic, semantlc
and deductive programs in a flexible way. We allow meaning to
guide the direction of the parsing. Gur semantic Interpretation
s guided by logical deduction and a rudimentary model of what
the speaker knows. For spoken language this must be expanded.
Perhaps we might look for fragments of sentences and use thelr
meaning to help piece together the rest. Or possibly we could
create a3 unified system In which the deductlive portion could
look at the context and propose what It thought the speaker
mlight be saying, on the basis of meaning, and the audible clues
In the utterance. It might be possible to have a more multl-
dimensional analysis in which prosodlc features such as voice
Intonation could be used to recognlze important features of the
utterance. This Is not at all saying that we should throw
syntax overboard In favor cf some sort of vague relatlonal
structure, Often the most Important clues about what Is being
sald are the syntactlc clues, What Is neeeded Is a grammar
which can lcok for and analyze the different types of Important
patterns rather than getting tremendously Involved with finding

the exact details of structure in a fixed order, Systémic
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grammar ls a step In this direction, and the use of programs for
grammars glves the kind of flexlbility which would be needed for
doing this kind of analysis. It Is not clear whether our system
In Its present form could be adapted to handle spoken language,
but lts general structure and the baslc principles of Its
operation might well be used.

The challenge of programming a computer to use language ls
really the challenge of producing Intelligence. Thought and
languagze are so closely {nterwoven that the future of our
research In natural language and computers will be nelther a
study of linguistic principles, nor a study of "artiflcial”
intelligence, but rather an Iinquiry into the nature of

Iintelligence ltself,



Appendlx A = Index of Syntactlc Features

Underlines Indicate primary description of feature.

-0B 148
-0B2 148

ACTV 116, 119, 137,
#DJ 120, 121, 132, 139
ANJG 121, 131-132,

ADJQ 105, 107
ADJREL 105

ADJUNCT 105, 1239,

ADV 139-141
ADVADV 111

ADVMEASQ 105, 107

ADVMEASREL 105
AGENT 116, 119,
AND 150, 151

AS 131

AUX 146

BE 116, 137
BINDER 141
BOTH 150

BOUND 105, 109
BUTNOT 150
CLASF 120, 121,

CLAUSEADV 141

COMP 117-118, 123,

COMPAR 121, 131,
COMPONENT 151

COMPOUND 1549-152

COMPQ 105, 108

CuMPREL 105, 111,
DANGLING 105-107,

DECLARATIVE 105,

DEF 123, 124, 142
DEFPOSS 123, 127

DEM 123, 124, 142,
DET 120, 122-124, 141-143

DOWNQ 105, 109

DOWNREL 105, 111

DPRT 116, 119

EN 105, 110, 137, 138, 148

124, 141
CLAUSE 10u4-119, 121,
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FINITE 137
FUTURE 133, 134
IMPER 137

IMPERATIVE 104, 105,

INCOM 123, 125, 142

INDEF 123, 124, 125,
ING 105, 109-113,

INGOB2 1438
INGQ 105
INGREL 105

INT 116, 118, 148

1u3
1438
119

IT 116, 119
ITRNS 116, 117,
ITRNSL 116, 118,

ITSUBJ 105, 113,
LIST 150
LISTA 150

LOBJ 105, 117, 128,

LOBJQ 105
LOBJREL 105°
MAJOR 105, 106,
MASS 142, 143
MEASQ 105, 10c
MEASREL 105, 111
MODAL 133, 134,
NDET 123, 124
NEED2 145

NEG 123, 125, 137,
NFS 123, 127, 145

137,

107

148

138,
132

NG 120-127, 128-129,

NGQ 107
NOBJ 123
NONUM  1Lk2, 143
NOR 150
NOUN 120, 143

NPL 123, 127, 142-145
NS 123, 127, 142-145

NUM 120, 1b4hb
NUMD 123, 1Lt
NUMDALONE 144

129

106
142

138,

142

148



NUMDAN 1uk

NUMDAS 14b

NUMDAT 14k

NUMDET 125

0BJ 105, 126, 145
08J1 105, 112, 123
0BJla 105, 108
0BJ1REL 105, 111
OBJIUPREL 113

0BJ2 105, 112, 123
0BJ2Q 105, 108
OBJ2REL 105, 111
0BJQ 105

OBJREL 105 .
OF 123, 125, 128, 129
OFD 142

OFD-INCOM 142

OF0BJ 123, 126

OR 150

ORD 120, 122, 1u4b
PAST 133, 134, 148
PASV 116, 119, 135, 137, 138
POSES 123, 125, 126

POSS 123, 126, 143, 145
POSSDEF 145

PREP 128, 14k, 145
PREP2 1u5

PREPADV 141 '

PREPG 121, 128-130
PREPOBJ 105, 112, 123,
PREPQ 105, 106, 107
PREPREL 105, 110, 111,
PRESENT 133, 134
PRON 145

PRONG ~ 123, 124,
PRONREL 145
PROPN 124, 1u5
PROPNG 123, 124
PRT 116, 118, 119, 145
Q 120, 128, 129, 131

126,
113,

126, 127

128
129
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QADJ 146
QAUX 146
QDET 142
QNTFR 123,
QUEST 123,
QUEST!ON
RELADJ
RELDEL
RELPREPG
REPOB 148
REPORT 105,
RSNG 105, 109-113, 119,
RSQ 105, 109, 121
SEC 105, 106

SHORT 105, 107, 129
SHORTREL 111, 113
SUBING 105, 112, 148
SusJ 105, 112, 117,
SUBJFORK 151

SUBJQ 105, 107
SUBJREL 105, 111
SUBJT 116, 123
SURJTQ 105, 108
SUBJTREL 105, 111, 113
sSuBq 105
SUBREL 105
SUBTO 105,
SUBTOB 148
SUP 121, 1ul
THAN 131

THAT 105, 112
THERE 108, 116
TIML 143

TIME 123, 143
TIMEQ 105, 108
TIMEREL 105, 111
TO 105, 109-113, 137,
TODEL 137, 138

TPRON 124, 132, 146
TPRONG 123, 124

124, 125, 142
125, 128-132, 145
105-107, 146, 1us

111, 113
105, 111
128, 129

112, 148
128, ius8

123, 126, 145

112, 148

138, 1u8
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TRANS 116, 117, 1u8
TRANS2 116, 117, 148
TRANS2TOQ 105
TRANS2TOREL 105
TRANSL 116, 117, 148
TRANST02Q 108
TRANSTO2REL 111
UPQUEST 128, 129
UPREL 105, 113, 128, 129
V3PS 148

VB 146, 148

VBAD 141

VBFORK 151

VFS 148

VG 133-138, 148
VPRT 148

WH- 105, 106, 107
WHRS 105, 110, 113
WORD 139-148
Yes-No 105, 106
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Appendix B - Sample Parsings

~ HOW MANY EGGS WOULD YOU HAVE BEEN GOING TO USE IN THE CAKE IF
YOU HADN'T LEARNED YOUR MOTHER'S RECIPE WAS WRONG?

(((HOW MANY EGGS WOULD YOU HAVE BEEN GOING TO USE IN THE
ﬁAgE ;F YOU HADN'T LEARNED YOUR MOTHER'S RECIPE WAS
RONG
CLAUSE MAJOR QUEST NGQUES POLR2 ACTV 0BJ1Q TRANS)
((HOW MANY EGGS)
(NG QUEST HOWMANY NDEF NPL DET)
((HOW (QDET)) (MANY (QDET)) (EGGS (NOUN NPL))))
(WOULD (VB AUX MODAL QAUX))
((YOU) (NG SUBJ DEF NS NPL) ((YOU (PRON NPL NS SUBJ 0BJ))))
((HAVE BEEN GOING TO USE) (VG MODAL NAGR (FUT PAST MODAL))
((WOULD (VB AUX MODAL QAUX))
(HAVE (HAVE VB AUX INF TRANS))
(BEEN (AUX VB BE EN))
(GOING (VB IT8/NS ING))
(TC (T0))
(USE (VB INF TRANS MVB))))

(
(

((IN THE CAKE) (PREPG)
(CIN (PLACE PREP PLACE))
((THE CAKE)
(NG OBJ DET NS DEF)
((THE (DET NPL NS DEF)) (CAKE (NOUN NS))))))
(IF YOU HADN'T LEARNED YOUR MOTHER'S RECIPE WAS WRONG)
(CLAUSE BOUND DECLAR ACTV TRANS)
((IF (BINDER))
((YOU) (NG SUBJ DEF NS NPL) ((YOU (PRON NPL NS SUBJ 0BJ))))
((HADN'T LEARNED)
(VG VPL V3PS NEG (PAST PAST))
((HADN'T (HAVE VB AUX TRANS PAST VPL V3PS VFS NEG))
(LEARNED (VB TRANS REPOB PAST EN MVB))))
((YOUR MOTHER'S RECIPE WAS WRONG)
(CLAUSE RSNG REPORT 0BJ OBJ1 DECLAR BE INT)
(C((YOUR MOTHER'S RECIPE)
(NG SUBJ NS DEF DET POSES)
(C(YOUR MOTHER'S)
(NG SUBJ NS DEF DET POSES POSS)
(CC{YOUR) (NG SUBJ POSS)
((YOUR (PRON NPL NS SUBJ 0BJ PO0SS))))
(MOTHER'S (NOUN NS PO0SS))))
(RECIPE (NOUN NS))))
((WAS) (VG V3PS VFS (PAST))
((WAS (AUX VB BE V3PS VFS PAST MVB
({WRONG) (ADJG Q COMP) ((WRONG (ADJ))))))

(

))))
N
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PICK UP ANYTHING GREEN, AT LEAST THREE OF THE BLOCKS, AND
EITHER A BOX OR A SPHERE WHICH IS BIGGER THAN ANY BRICK OMN THE

TABLE.

(((PICK UP ANYTHING GREEN /, AT LEAST THREE OF THE BLOCKS /, AND
EITHER A BOX OR A SPHERE WHICH 1S BIGGER THAN ANY BRICK ON

THE TABLE)
(CLAUSE MAJOR IMPER ACTV TRANS)
(C(PICK) (VG IMPER) ((PICK (VPRT VDL INF TRANS MVB))))

(UP (PRT))

((ANYTHING GREEN /, AT LEAST THREE OF THE BLOCKS /, AND
'EITHER A BOX OR A SPHERE WHICH 1S BIGGER THAN ANY
BRICK ON THE TABLE) '

(NG 0BJ OBJ1 E{THER COMPOUND LIST NS)
(CCANYTHING GREEN) (NG OBJ OBJ1l TPROHN)
((ANYTHING (NS TPRCN)) (GREEN (ADJ))))
((AT LEAST THREE GF THE BLOCKS)
(NG 0BJ OBJ1 COMPONENT NUMD NUM NPL DET OF)
(AT (AT
(LEAST (NUMD NUMDAT))
(THREE (NUM))
((OF THE BLOCKS)
(PREPG OF)
((OF (PREP))
((THE BLOCKS)

(NG 0BJ DET NPL DEF)
((THE (DET NPL NS DZF)) (BLOCKS (NOUN NPL))))))))

(CA BOX)OR A SPHERE WHICH 1S BIGGER THAN ANY BRICK ON THE
TABLE _
(NG OBJ OBJ1 COMPONENT OR COMPOUND BOTH NS)
((CA BOX) (NG OBJ 0BJ1 COMPONENT DET NS INDEF)
(CA (DET NS INDEF)) (BOX (MOUN NS)))) .
((A SPHERE WHICH 1S BIGGER THAN ANY BR!CK OM THE TABLE) !
(NG OBJ OBJ1 COMPONENT DET NS INDEF) ’
((A (DET NS INDEF))
(SPHERE (NOUN NS)) _
((WHICH 1S BIGGER THAMN ANY BRICK ON THE TABLE) ; ‘
(CLAUSE RSQ SUBREL BE INT) : ;
(((WHICH) (NG RELWD DEF NPL) C((WHICH (NPL)))) 3 _
. (C(1S) (VG V3PS (PRES)) - .
((1S (AUX VB BE V3PS PRES MVB))}) o *
((BIGGER THAN ANY BRICK ON THE TABLE)
(ADJG Q COMP COMPAR THAN)
((BIGGER (ADJ COMPAR))
(THAN (THAN))
. ((ANY BRICK ON THE TABLE)
(NG SUBJ COMPAR DET NS QNTFR)
({ANY (DET NS NPL QNTFR))
(BRICK (NOUN NS))
((ON THE TABLE)

”»
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(PREPG Q)
((ON (PREP PLACE)) ”
((THE TABLE)

(NG 0BJ DET NS DEF)

((THE (DET NPL NS DEF))

(TABLE (NOUN NS)))33332)))))))0330)))
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Appendix C - Sample BLOCKS Theorems

(DEFTHEOREM TA-CONTAIN

(THANTE

(X vy 20

(#AT 82X ?)

(THGOAL (#MANIP 3$?X))

(THGOAL (#SUPPORT $?Y $?X))

(THOR (THAND (THGOAL (#1S $?Y #BOX))
(THVSETQ $_Z $7?Y))

(THGOAL (#CONTAIN $?Z $7Y)))
(THASSERT (#CONTAIN $72Z $2X))))

(DEFTHEOREM TC-MAKESPACE

(THCONSE

(DEFTHEOREM TC-MORE

(THCONSE

(DEFTHEOREM TC-ON

(THCONSE

(SURF SIZE OBJ SPACE X (WHY (EV)) EV)
(#FINDSPACE $?SURF $?S1ZE $?0BJ $?SPACE)
(THNOT (THGOAL (#1S $?SURF #B0OX)))
{MEMORY)
TAG
(THAND (THGOAL (#SUPPORT $7?SURF $_X))
(THGOAL (#GET-RID-0F $7?X)
(THUSE TC-GET-RID=-0F)))
(THOR (THGOAL (#FINDSPACE $7?SURF
$?S1ZE
$?08J
$?SPACE)
(THUSE TC-FINDSPACE))
(THGO TAG))
(MEMOREND (#MAKESPACE $?EV $?SURF))))

(MEASURE X Y)
(#MORE $?MEASURE $?X $?Y)
(THVSETQ $_MEASURE
(GET $?MEASURE (QUOTE MEASFN)))
(GREATERP ($?MEASURE $7X)
($?MEASURE $2Y))))

(X Y 2)
(#ON $?X° $2Y) A
(THOR (THGOAL (#SUPPORT $?Y $2X))
(THAND (THASVAL $7X)
(THGOAL (#SUPPORT $_Z $?X))
(THGOAL (#ON $7Z $2V) :
(THUSE TC=O0N))))))
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(DEFTHEGREM TC-PiCKUP
(THCONSE (X (WHY (EV)) EV)
(#PICKUP $7X)
(MEMORY)
(THGOAL (#GRASP $?X) (THUSE TC-GRASP))
(THGOAL (#RAISEHAND)
(THNODB)
(THUSE TC-RAISEHAND))
(MEMOREND (#PICKUP $?7EV $7X))))

(DEFTHEOREM TCT-PlCKUP
(THCONSE (X EV TIME)
(#PICKUP $?X $?TIML
(THOR (THAND (THGOAL (#PICKUPS?EV $7X))
(TIMECHK $?7EV $7TIME))
(THGOAL (#PICKUP $?EV $?2X $?TIME)
(THUSE TCTE-PICKUP)))))

(DEFTHEOREM TCTE-PICKUP
(THCONSE (X EV EVENT TIME)
(#PICKUP $?EV $?X $?TIME)
(THOR (THAND (THCGOAL (#PICKUP S$?EV $?X))
(TIMECHK $?EV $?TIME)))
(THSUCCEED))
(THAMONG $?EVENT EVENTLIST)
(MEMQ (GET $?EVENT (QUOTE TYPE))
{QUOTE (#PUTON #GET-RID-0OF)))
(TIMECHK $?EVENT $?TIME)
{THOR (THGOAL (#PUTON $?EVENT $?X 7))
(THGOAL (#GET-RID-OF S$?EVENT $7X)))
(THVSETQ $_EV (MAKESYM (QUOTE E)))
(AND (PUTPROP $?EV
(PUTPROP $?EV
(GET $?EVENT (QUOTE END))
(QUOTE START))
(QUOTE END))
(PUTPROP $?EV (QUOTE #PICKUP) (QUOTE TYPE))
(PUTPROP $?EV $?EVENT (QUOTE WHY))
(SETQ EVENTLIST (CONS $?EV EVENTLIST))
(THASSERT (#PICKUP $?EV $7X))))

(DEFTHEOREM TE~CONTAIN (THERASING (X Y)
(#AT $72X ?)
(THGOAL (#CONTAIN $_Y $2X);
(THERASE (#CONTAIN. $?Y $£?X))))
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Appendix D - Sample PROGRAMMAR Program
Excerpt from Noun Group Parser

DET1
(COND ((I1SQ H NS) (FQ NS)) (T (FQ NPL)))

(CR NN (AND (FQ NUMBER) (GO INCOM)))
NUMBER
(FQ DET)
((NQ OF) OF ADJ)
QNuUM
(C1SQ H NONUM) OF NIL)
((AND (PARSE NUM) (FO NUM)) NIL OF)
((COND ((EQ (SM H) 1) (AND (cQ NS) (RQ NPL)))
((CQ NPL) (RQ NS)))

NIL

(NUMD)

INCOM)

(éEQ (CADDR (NB H)) (Q NO)) ADJ NIL)
0

((AND (NQ OF) (PARSE PREPG OF)) SMOF NIL)
((EQ (CADDR (NB H)) (Q NONE)) INCOM ADy)
SMOF

(FQ OF)

((OR SMN (SMNGOF) (NOT (POP))) RETSM INCOM)
ADJ

é(PARSE ADJ) ADJ CLASF NIL)

PR

((OR (1SQ H suP) (1sSQ H COMPAR)) NIL REDUC)
(FQ ADJ)

(AND (EQ (CADDAR N) (Q OF))

(PARSE PREPG OF)

(OR SMM (SMNGOF) (AND (ERT NOUN SMNGOF3) (GO FAIL)))

(FQ OF)

(GO RETSM))
(GO INCOM)
CLASF

((OR (PARSE VB ING (CLASF)) (PARSE VB EN (CLASF)) (PARSE CLASF))

CLASF

NIL

REDUC)

NOUN

((PARSE NOUN) NIL RED2)

((AND (CQ TIME) (NOT (I1SQ H TIM1))) RED1 NIL)

(SETQ T1 FE)

(COND ({AND (1SQ H MASS) (OR (CQ PART) (NOT (CQ DET))))

(FQ MASS)))
(COND ((NOT (1SQ H NPL)) (RQ NPL PART))) -
(COND ((NOT (1SQ H NS)) (RQ NS)))
(COND ((AND (NOT (CQ DET)) (NOT (CQ NUMD)))

(» H)
(TRNSF NPL MASS)))
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((MEET FE (Q (NS NPL PART MASS))) NIL REDG)
SMNG
((OR (NOT (CQ OFOByY)) (CQ DET)) WIL FAIL)
(OR SMN (SMNG1) (AND (ERT NOUN SMNG1) (GO FAIL)))
((NOT (1SQ H POSS)) NIL POSS RETSM)
(CAND (NEXTW TO)
(MEET FE (Q (COMP SUBJ)))
(PARSE CLAUSE RSQ TC)

(OR SMN (SMRSQ (SM H) SM) (GO POPRET)))
RETSM

NIL)
((AND (OR (NEXTW AS) (NQ COMPAR))
(PARSE ADJG THANNEED)

(OR SMN
(AND (NMULL N)
(cQ susY)
(1SsQ (» C PV) AUX)
(1sq PT BE)

(GO PQOPRET))
(SMPREP (QUOTE ADJ))
(GO POPRET)))
RETSM
NIL)

.
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Appendix E - Sample Dlictionary Entries

Syntactic Definitiens

(deflist word
(LITTLE (ADJ))
(LONG (ADJ))
(MAKE (VB INF TRANS))
(MOVE (VB INF TRANS))
(NAME (NOUN NS VB INF TRANS))
(NARROW (ADJ))
(NICE(ADJY))
(OBJECT (NOUN NS))
(OFF (PRT))
(OUT (PRT))
(PICK (VPRT VB INF TRANS))
(PUT (INF PAST VB TRANSL VPRT))
(POINTED (ADJ))
(PYRAMID (NOUN NS))
(RED (ADY))
(RELEASE (VB TRANS INF))
{RIGHT (NOUN NS))
(ROUND (ADJ)))

(DEFLIST VWORD1
(BEGAN (BEGIN (PAST) (INF)))
(GAVE (GIVE (PAST) (IKF)))
(SAW (SEE (PAST) (INF)))
(TOLD (TELL (PAST) (IMF))))
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Semantic Definitions

(DEFLIST SMNTC

(A ({DET T)))
(ABOQVE ((PREP ((T (#LOC #ABOVE T))))))
(AFTER ((BINDER {END NIL))))
(ALL ((DET (COND ((CG oF) (Q ALL))

((MEET (Q (NUM DEF)) FE) (Q DEF))

((Q NDET))))))
(BALL ((NOUN (NMEANS ((#MAN!P #RQUND)

((#1S www #BALL))))I))
(B1G ((MEASURE ((#SIZE (#PHYSOB) T)))
(ADJ (NMEANS ((#PHYSOB #BIG)
((#MORE #SIZE w#w= (200 200

20032330
(BLACK ((ADJU (#COLOR #BLACK))))
(BLOCK ((NOUN (NMEANS ((#MANIP #RECTANGULAR)
. ((#1S === #BLOCK)))I)))))
(BLUE ((ADJ (#COLOR #BLUE))))
(BY ((PREP ((T (CMEANS ((((#PHYSOB)) ((#PHYSOB)))
(#NEXTO #1 #2 =TIME)
NIL)XIXD))
(COLOR ((NOUN (NMEANS ((#COLOR) ((#1S #=w»» #COLOR)))))))
(CONTAIN ((VB ((TRANS (CMEANS ((((#BOX)) ((#PHYSOB)))
(#CONTAIN #1 #2 «TI[IME)
NIL)
(CCC(#CONSTRUCT))
((#THING)))
(#PART #2 #1 »TIME)
NIL))IDD))
(CUBE ((NOUN (NMEANS ((#MANIP #RECTANGULAR)
(C(#1S »=% #BLOCK)
(#EQDIM w#%)))))))
(EVERYTHING ((TPRON (QUOTE ALL))))
(FEWER ((NUMD (LIST (Q <) NUM))))
(FOUR ((NUM u)))
(FRIEND ((NOUN (NMEANS ((#PERSON)
((#1S =»> #PERSON))I)III))
(GRAB ({(VB ({TRANS (#GRASP))))))
(GRASP ((VB ((TRANS (#GRASP))))))
(1 ((PRON (SETQ SM (Q (FRIEND))))))
(LT C(PRON (SMIT (Q IT)))))
(NICE ((ADJ (NMEANS ((#THING)
((#LIKE :FRIEND »w»%})))))’
(NOW ((ADV (OR (EQ (CADR (ASSQ (QUOTE TIME) FE))
(QUOTE :NOW))
(ERT NOW DEFINITION)))))
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(THE ((DET T)))
(THEY ((PRON (SMIT (Q THEY)))))
(THICK ((ADJ (NMEANS ((#PHYSOB) ((#MORE #THICKNESS

LA 2
‘ (0 200 0))))))
(MEASURE ((#THICKNESS (#PHYSOB) T)))))

(THIN ((ADJ (NMEANS ((#PHYSOB) ((#MORE #THICKNESS
(6 200 0)

*ww)))))
(MEASURE ((#THICKNESS (#PHYSOB) NIL)))))
(THING ((NOUN (NMEANS ((#THING #VAGUE #PHYSOB)
((#1S ==% 2)))))))
{WHO ((PRONREL (SETQ SM (QUOTE (ANIMATE))))
(PRON (SETQ SM (QUOTE (ANIMATE))))))
(WHY ((QADJ (FQ ¥HY)))))

T e e e e et . Pt S st - s i pe Sttt T

o N i e

ST



Appendlix F - PLANNER Data for Dialog In Section 1.3

(#1S :B1 #BLOCK)

(#1S :B2 #PYRAMID)
(#1S :B3 #BLOCK)

(#1S :B4 #PYRAMID)
(#1S :B5 #PYRAMID)
(#1S :B6 #BLOCK)

(#1S :B7 #BLOCK)

(#1S :B10 #BLOCK)

(#1S #RED #COLOR)

(#1S #BLUE #COLQR)
(#1S #GREEN #COLOR)
(#1S #WHITE #COLOR)
{#1S #BLACK #COLOR)
(#1S #RECTANGULAR #SHAPE)
(#1S #ROUND #SHAPE)
(#1S #POINTED #SHAPE)
(#1S :SHRDLU #ROBOT)
(#1S5 :FRIEND #PERSON)
(#1S :HAND #HAND)

(#AT :81 (100 100 0))
(#AT :82 (100 100 100))
(#AT :B3 (400 0 0))
{(#AT :Bh (640 640 1))
(#AT :B5 (500 100 200))
(#AT :B6 (0 00 0))
(#AT :B7 (0 240 300))
(#AT :B10 (300 640 0))
(#SUPPORT :B1l :B2)
(#SUPPORT :B3 :B5)
(#SUPPORT :B6 :B7)
(#CLEARTOP :B2)
(#CLEARTOP :B4)
(#CLEARTOP :85)
(#4CLEARTOP :B7)
(#CLEARTOP :B10)
(#MANIP :B1l)

(#MANIP :B2)

(#MANIP :B3)

(#MANIP :BY4)

(#MANIP :BS5)
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(#MALIP :B6)

(#MANIP :B7)

(#MANIP :B10)

(#SUPPORT :TABLE :Bl)
(#SUPPORT :TABLE :B3)
(#SUPPORT :B0X :B4)
(#SUPPORT :TABLE :810)
(#SUPPORT :TABLE :B6)
(#SUPPORT :TABLE :B0X)
(#AT :BOX (600 600 0))
(#1S :BOX #BOX)

(#1S :TABLE #TABLE)
(#CONTAIN :BOX :B&)
(#SHAPE :Bl1 #RECTANGULAR)
(#SHAPE :B3 #RECTANGULAR)
(#SHAPE :B2 #POINTED)
(#SHAPE :B4 #POINTED)
(#SHAPE :B5 #POINTED)
(#SHAPE :B6 #RECTANGULAR)
(#SHAPE :B7 #RECTANGULAR)
(#SHAPE :B10 #RECTANGULAR)
(#COLOR :B1 #RED)

(#COLOR :B2 #GREEN)
(#COLOR :B3 #GREEN)
(#COLOR :BL4 #BLUE)
(#COLOR :B5 #RED)

(#COLOR :B6 #RED)

(#COLOR :B7 #GREEN)
(#COLOR :B10 #BLUE)
(#COLOR :BOX #WHITE)
(#COLOR :TABLE #BLACK)
(#CALL :SHRDLU SHRDLU)
(#CALL :FRIEND YOU)

Some of the data is =ntered Inltlally. The rest can be
deduced and asserted by simple antecedent theorems.
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