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ANNOTATION 

This book discusses algorithmic methods of plapnin? of 
flight vehicles using electronic digital computers. 

One such method of optimal planning is developed and investigated, 
including a presentation of the variational problem (strict mathematical 
definition of the required conditions of optimization) considering 
analysis of the flight vehicle as a structure which receives various 
loads in flight, and as an object of control, plus an algorithm for its 
'•'lution with a mathematical foundation for the algorithm itself. A 

multistage flight vehicle is used as an example to show the peculiarities 
of this algorithm when independent maneuver of the vehicle is possible 
after separation of initial stages or when the external and internal 
problems are analyzed together during interplanetary flights. In the 
algorithm, the criterion for improvement of the vehicle depends on the 
flight time, kinematic parameters of the vehicle at the end of the 
flight, its launch weight and the payload which it transports. 

Combining the theory of the variational problem and of the computer 
algorithm for its solution provides us with a logically complete algo¬ 
rithm for optimal planning of a vehicle. This allows us, with properly 
selected power and aerodynamic systems of the vehicle, to determine its 
optimal planning parameters and flight characteristics. 

As an example, appendices present algorithms for optimal planning 
of various vehicles corresponding to the effectiveness criterion selected, 
and several results of computer calculations. 

The book is designed for scientific workers and engineers in the 
rocket and aviation industries. 

Four t bles; 66. figures; 46 bibliographic references. 



FOREWORD 

During the process of designing of a flight vehicle , the designer 
does not limit himself to development and analysis of any single plan. 
The planning process involves a number of compromise solutions, result¬ 
ing in the creation of an effective (optimal) plan for the flight 
vehicle. There are many different criteria, characterizing the degree 
of perfection of a flight vehicle in some way. However, a n’unerical 
evaluation of the main purpose of planning can be expressed only by some 
single criterion. We will refer to thl- criterion as the criterion of 
effectiveness. The optimal plan for a vehicle must be considered that 
which corresponds to the highest (or lowest) value of the effectiveness 
criterion, while all remaining criteria should fall within certain 
limits. 

During the rough development stage, the criteria most commonly 
used to express the evaluation of a vehicle are the total flight time, 
value of one of the kinematic parameters at the end of the flight (for 
example, final velocity or final flight range, etc.), the launch weight 
and payload, etc. If one of these criteria is accepted as the criterion 
of effectiveness, the values cf the other criteria are either fixed or 
limited within certain ranges on the basis of the tactical and technical 
assignment. 

In this work, by "optimal flight vehicle" we will mean a vehicle, 
the plan of which corresponds to the highest value of the criterion of 
effectiveness characteristic for the initial stage of rough planning. 

The increasing interest in problems of optimal planning of vehicles 
has resulted from the demands of practice. Various trends and even 
"schools" have appeared, developing various methods of optimization. At 

*In this work, the term "flight vehicle" refers to a pilotless 
vehicle which is used only once. 



the present time, in addition to the precise mathematical methods of 
optimization, approximate methods have also been developed and are being 
used: direct methods of variational calculus methods of mathematical 
programming and random search methods. 

It is too early as yet to acknowledge superiority of any given 
method of planning an optimal flight vehicle. Each method has its own 
positive and negative aspects, and the great variety of methods allows 
us to penetrate more deeply into the essence of the problem and to find 
methods to solve it. 

The variational methods of planning an optimal vehicle were born 
of the demands of practice and are now themselves influencing practice 
and the development of the mathematical theory of optimization. 

The works of the pioneers of these methods, A. A. Kosmodem'yanskiy, 
A. M. Letov, D. Ye. Okhotsimskiy, I. V. Ostoslavskiy, S. V. Rumyantsev, 
B. I. Rabinovich, T. M. Eneyev, P. Chikal, A. Miyele, J. Leytman and 
others head a list of works which has grown tremendously1, which have 
placed the mathematical theory of variational calculous in the service 
of the practice of flight vehicle planning. 

The introduction of mathematical methods of optimization to the 
process of flight vehicle planning is possible only when electronic 
digital computers are used. This requires algorithmization of the 
methods of optimal planning of flight vehicles. Algorithmization facili¬ 
tates the introduction of methods of optimal vehicle planning to practice, 
making them more usable. 

In this work, we have studied and developed one algorithm for opti¬ 
mal flight vehicle planning. We present the solution of two problems 
faced by designers in optimal planning. 

The solution of the first problem involves the strict mathematical 
definition of the necessary conditions for optimization of a flight 
vehicle. Development of the necessary conditions is based on the appa¬ 
ratus of variational calculus. However, the practice of planning of 
flight vehicles has set forth variational problems which have not been 
fully formulated in the mathematical theory of variational calculus. 

'A very incomplete conception of this list can be obtained from 
the bibliography in works [12, 23, 24, 29, 30]. 



The specifics of the problem of optimal planning of a flight 
veucle required the analysis of the theoretical principles of the 
solution of the variational problem stated (sec appendix). The most 
important works here arc those of the School of L. S. Pontryagin (281. 
the works of G. A. Miss (7] and M. R. Khestens [36]. This portion 
. investigation was also influenced by the works of V'. F. 
Krotov [20, 21] and V. A. Troitskiy [32, 33, 34]. 

The proper mathematical expression of the variational problem 
of optimal planning of a flight vehicle is determined by its physical 
content, i. e. by the extent to which the actual conditions of opera¬ 
tion of the vehicle as a design and as a control object are properly 
represented. Therefore, § 1 of Chapter I is essentially dedicated to 
the methodological principles of the statement of the variational prob¬ 
lem of optimal control. 

It has historically developed that most publications dedicated 
to the application of methods of the mathematical theory of variational 
calculus [12, 23, 24, 30] have been written on problems of the flight 
dynamics of vehicles, analyzing only problems of optimization of the 
control functions. At first, this approach to the solution of the 
problem could have been justified to some extent, although the assump¬ 
tion that the planned parameters of the vehicle and the power unit were 
fixed in a number of cases rendered the problem of optimization sense¬ 
less. However, any process of planning is difficult to imagine without 
discovering and studying the internal relationships between the problem 
ot selection of a control program and the problem of selection of 
vehicle and power plant pc ameters. 

Thc Prohlcm °f optimal planning, methodologically properly formu¬ 
lated, allows the necessary conditions for optimization of a flight 
vehicle to be studied completely. This is performed in §2 d 3 of 
Chapter I. 

The mathematical theory of variational methods of optimal planning 
ot a tlight vehicle might remain an independent end in itself unless it 
is analyzed together with the computational problem. The problem is 
that the solution of the variational problem of an optimal flight vehicle 
is generally reduced to a multipoint boundary problem, the solution of 
which requires its own mathematical apparatus. The multipoint boundary 
problem hinders the introduction of variational optimal planning methods 
to practice. 

Therefore, the second problem was reduced to determination of 
a gorithm for solution of the multipoint boundary problem suitable 
computer realization, and its mathematical justification. 
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The mathematical theory of the algorithm is presented in 5 7 of 
the appendix. It was developed using [42] and [43]. 

I he mathematical theory af the algorithm of the multipoint 
boundary problem finds its concrete application in the development of 
t le algorithm of the variational method of optimal planning of a flight 
vehicle and power plant The specific content of this algorithm, given 
in j 4 of Chapter I and § 3 of Chapters II and III, is presented con¬ 
sidering its performance by universal digital compute’s. 5 4 of 
Chapter I presents flow charts of the algorithm and Us individual com¬ 
ponent parts (blocks). This algorithm will be referred to in this work 
as the computer algorithm for the variational method of optimal planning 
of a flight vehicle and power plant. Thus, the algorithm for the 
variational method of optimal planning of the flight vehicle synthesizes 

c theon of the variational problem of optimal planning of a flight 
vehicle and its computer algorithm and thereby achieves logical com¬ 
pleteness. ° 

The mathematical theory of the variational method of optimal plan¬ 
ning of the object is presented in the appendix. It is included in 
order to make the hook easier to read. 

The algorithm for optimal planning of a multistage flight vehicle 
in many cases has its own peculiarities. For example, the algorithm 
for the variational method of optimization of the principal plan 
parameters and control of the flight modes of a multistage flight vehi¬ 
cle considering the possibility of independent maneuver of the stages 
does not fall within lho framework of the general problem analyzed in 
Chapter I. The specifics of this problem are not so much found in the 
multistage nature of the vehicle as in the possibility of independent 
maneuver of stages after their separation. Chapter II is dedicated to 
the study of this problem. 

The planning of spacecraft for trips to the planets of the solar 
system has its own peculiarities and complexities. Therefore, investi¬ 
gation of the variational method and algorithm for optimization of the 
principal plan parameters and flight control of a multistage spacecraft 
arc discussed in a separate chapter -- Chapter III. 

In this fhapter. in the investigation of the problem of optimization 
ot tie principal plan parameters and modes of movement for interplanetary 
Mights, the external and internal problems are analyzed in combination. 
As a result of the solution of the problem, p "single" optimal reference 
phase trajectory can be found. This is one of the main distinctions 
)etween this investigation and works published earlier in the scientific 
and technical literature. 

-4- 
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The first and second chapters have appendices, in which the varia¬ 
tional method and optimal planning algorithm of various flight vehicles 
are presented as examples. 

Unfortunately, the terminology used in works on the optimization 
of flight vehicles has not yet been crystallized; therefore, each new 
term is explained as it is introduced. 

All comments on the contents of this book should be sent to: 
Moscow, K-51, Petrovka, 24, Mashinostroyeniye Press. 
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CHAPTER I. VARIATIONAL METHOD OF OPTIMAL PLANNING OF A 
FLIGHT VEHiCLE AND POWER PLANT 

§ \. Statement of the Varl-tional Problem of Optimal Planning 

A flight vehicle and power plant can be characterized by the plan 
parameters, design loads and design stresses, phase coordinates and 
control functions. 

The plan parameters refer to the parameters determining the weight 
characteristics, form and dimensions of the flight vehicle and >ts 
design elements. They also include the thrust of the power plan., spe¬ 
cific loads on design elements, design fuel reserve, etc. 

The design loads express the calculated cases of loading of the 
flight vehicle and power plant. 

The design stresses are the stresses in load bearing elements of 
the design, above which operation of the structure is not planned. 

The phase coordinates refer to the parameters determining the posi¬ 
tion of the vehicle in space, '.s velocity, trajectory angle and weight 
at a given moment in time, etc. 

The control functions refer to the parameters of regulation of the 
power plant and the control functions of the flight vehicle. 

Generally speaking, the evaluation of the plan as a whole should be 
performed considering the influence of the aerodynamic and power design 
plans of the flight vehicle, the physical and chemical properties of the 
fuel and the physical and mechanical characteristics of the material., 
economic-production and operational factors (cost of fuel and materials 
used, technological workability of design, reliability, avaUability o 
domestic raw materials and industrial base, etc.). However, this global 
approach to evaluation of a flight vehicle plan presently involves great 
difficulties, which become practically insurmountable when it is 
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attempted to place them within a single computer algorithm. These diffi¬ 
culties result from the different levels of knowledge of these character¬ 
istics, the inability of contemfDiary mathematical methods to consider 
the entire combination of requirements for the planning problem anu the 
shortcomings of available computers. 

In the present work, the development of the method of optimal pi in¬ 
ning of a flight vehicle and power plan* is performed on the assumption 
that the type of power plant has been fixed, the type of aerodynamic 
and strength design of the flight vehicle have Seen selected and the 
characteristics of the fuel and material have been determined. 

This charter is directed towr.rd solution of the problem when the 
flight vehicle and power plant as objects of investigation are character¬ 
ized only by the plan parameters, design loads and design stresses, the 
phase coordinates and control functions. The problem of selection of 
an effective combination of these parameters can be solved by quantita¬ 
tive evaluation of the effectiveness of the flight vehicle, which can be 
performed using the effectiveness criterion. In this work, the criterion 
of effectiveness, represented by I, is taken in general form as a 
function dependent on the value of the vector of phase coordinates at 
the final point * (Vfc, Mg, Lg, tg), the payload Gpj and the 
launch weight Gq: 

/-/(*., G*).. 

This somewhat generalized description of the effectiveness cri¬ 
terion allows us to avoid particular evaluations of the planning goal. 
However, in solving a concrete problem of optimal planning of a flight 
vehicle, the criterion of effectiveness should be fixed in explicit 
form. For example, the payload or launch weight, one of the most 
capacious criteria for the improvement of a flight vehicle, is frequently 
used as the criterion of effectiveness. 

In this chapter, we will study the problem of determining tie nec- 
ccssary conditions, the set of which may he sufficient for determination 
of the plan parameters, design loads, design stresses, phase coordinates 
and control functions as functions of time leading to the highest value 
of the criterion of effectiveness. These values will also be referred 
to as optimal in the following. 

In order to solve the problem of optimization of parameters, we 
must expose the relationships between them and place certain limitations 
on their ranges of change. 
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Suppose n is the vector of a plan parameter. Then, by definition 

n = <r’ Çf. G0. Gt „, Gfc, Gw, 

:v •*>.<•• *0/. A)". 

Mere 
T is the "geoinetric" vector, determining the dimensions and form 

of the flight vehicle as a whole, the power plant and othei units, 
and their relative dimensions, i. e. 

r-ic. /;p. C s.v 
em Ç* F' . 

Sem' «■’ s;. 

where the component elements of the vector are: 
1J -- the fuselage length; 
l£p-- the full wing span; 

1£ -- the full span of the stabilizer; 

C* -- the relative thickness of the profile measured in the cross 
section parallel to the plane of symmetry of the flight 
vehicle; 

n* -- the reduction in the wings with the portion covered by the 
fuselage; 

SJ -- the area of characteristic cross section of the fuselage; 

S£p-- the area of the wings; 

S*m-- the area of the empennage; 

FJ -- the area of the output cross section of the motor nozzle; 

F£p-- the area of the critical nozzle cross section; 

Tp -- the vector of the design, characteristic thermodynamic param¬ 
eters of the power plant, influencing the size and weight of 
the fuel tanks, motor, turbine-pump unit and other units of 
the power plant, i. e. 

In Chapter I, scalar quantities, except for gg and g, phase vari¬ 
able V(t), 0(t), ll(t), L(t), s(t) and the control functions a(t) and 
<4t) will be marked by an asterisk. 

FTD-HC-23-591-70 
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Pi, p'a> p'm> • • • ). 

where the component elements of the vector are: 
p£ -- the pressure in the liquid-fuel rocket motor combustion 

chamber; 
p£ -- the pressure in the output cross section of the motor nozzle; 

p£ -- the pressure in the fuel tanks; 

pj^ -- the pressure at the output of the turbine pump unit; 

T* -- the gas temperature before the turbine; 

QÇ -- the vector of specific heat flux, determining the specific 
heat fluxes to the characteristic points on the surface of 
the flight vehicle; 

pmax”t*le vector the maximum thrust, determining the maximum 
thrusts, corrected to the corresponding conditions, of the 
power plants of the stages of the flight vehicle; 

J0 -- the vector of specific thrust corresponding to Pj^ and 
determining the specific thrusts of the power plants of the 
stages corrected to the fixed conditions; 

ifc -- the vector of the relative final weight of the stage or the 
vector of the relative final weight determining the relative 
final weights of the stages, i. e. 

K.. 

Vt.0--the vector of relative design reserve of working fluid, 
determining the relative design reserves of working fluid of 
each stage, i. e. 

IV„~(P (>>• 
T.» • * * • .P ): 

Gjj -- the vector nf the final weight of a stage or the vector of 
the final weight determining the final weights of the stages, 
i. e. 

.OÍa): 

Gq -- the vector of the initial weight of a stage, or the vector of 
initial weight determining the initial weights of the stages, 
i. e. 

00=(0¾.0M); 

Gqj -- the 
of 
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G0J " the vector of the payload (cargo) of the stage or the vector 
of the payload (cargo) determining the payloads of the 
stages, i. e. 

on out • • •. 

G-Po— the vector of design working fluid reserve, determining the 
design reserve of working fluid for each stage, i. e. 

ao -- the thrust/weight ratio vector, determining the thrust/weight 
ratio of the stages, i. e. a0 « (afl.,..., ag.); 

'’Oi vector of the specific midship section, characterizing 
the specific loads from the initial weight of the stage on 
the component parts of the vehicle, i. e. 

It is important to keep in mind that the vector components noted 
must be mutually independent. 

For a proper understanding of the geometric vector or plan parameter 
vector, we must note the strength vector Í. The strength vector is a 
vector, the component elements of which are the parameters characterizing 
the strength properties of the load-bearing structural elements related 
to their dimensions and form. For example, its components might be the 
thickness of the skin over the fuselage 6$, the wing ¿fy, the thickness 

of the fuel tank shells ÍJ and 6*. etc., i. e. 5 « (6*. 6*p, ôg, 6|,...). 

The range of change of the plan parameter vector is limited. The 
limitation may result from conditions of arrangement of the parts of the 
flight vehicle, the level of technology, technological difficulties, etc. 
Thus, the selection of the vector of a plan parameter is related to the 
following condition of limitation of the plan parameter vector: 

nozzle; 

“tifie 
ice of 

:imum 
if the 

md 
of the 

or the 
•elative 

id, 
luid of 

of 

ector of 
stages. 

nMia<n<nMa. 

Furthermore, the following relationship obtains: 

C*« = C, + C», or 

product. 
Viere and in the following, a product should be considered a tensor 
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*,=*,(<??. Tt, r, a0, Gu, 70)=(*{*'•) 

(s is the number of the fuel sector) is a vector function considering 
the difference between the design fuel reserve and the operational 
reserve due to losses to evaporation and the requirement for a guaranteed 
fuel reserve, the fuel reserve required to fill the fuel lines, etc. 

Due to this condition and the definition of the thrust/weight 
ratio vector, the vector of the plan parameter can he represented as 
follows: 

H—(F, TQf, G0, l*p¡ • I4*« ao- ^0/, 

although in this case we must keep in mind the relationships 

Go.“».»G,A/ —F^O, 

which will be referred to as equations of plan parameter vector relation¬ 
ships . 

In designing a flight vehicle for strength, the problem arises of 
selecting design loading cases, i. e. conditions under which the vehicle 
is most heavily loaded. If the vehicle is sufficiently strong in the 
design cases, we can be sure that it will be strong in all other cases of 
operation. The design loads are determined by the design loading cases, 
which penerally occur among the following groups of loads: 

a) loads on the vehicle in flight; 
b) loads on the vehicle when being transported by a carrier (air 

to air and air to ground vehicles, etc.); 
c) loads on the vehicle when launched; 
d) loads on the vehicle during operations on the ground. 

Generally sneaking, for the class of vehicles which we are consider¬ 
ing (pilotless single-operation vehicles), the design loading cases are 
primarily determined by the loads on the vehicle in flight. In this 
work, we evaluate the design loading cases of a flight vehicle which car. 
appear only in flight. Furthermore, for greater definition we analyze 
only progr-.m-controlled apparatus, in which the maneuver loads are not 
random functions. 

In the process of preliminary planning of a vehicle, establishment 
of the design loading cases and particularly determination of the 



parameters of the design loads is one of the most complex, cumbersome 
and important tasks. The responsibility of this task results from the 
fact that the loads fixed must provide a satisfactory but not excessive 
level of structural strength. This requires, in addition to a know¬ 
ledge of all loads acting on the load-bearing elements of the apparatus 
at each point in its trajectory, a precise conception of the operating 
conditions of the load-bearing elements which influence their strength 
end provision of -he ability of the structure to accept these loads 
without rupture. The difficulty of determining the design loading 
cases of a flight veh le in flight are particularly increased if the 
phase trajectory is not known in advance, and even more so if a 
phase trajectory of the vehicle is such that the technical assignment 
is performed with the optimal value of the effectiveness criterion, 
since determination of the optimal phase trajectory must be closely 
related to an evaluation of the load-bearing capacity of the structural 
elements of the vehicle, in this work we will use the design load 
vector N as the quantity to be varied, indicating the design cases of 
loading 

Two methods of construction of the system of design cases are 
encountered in practice: rhe method of the dominating loading and 
the method of the arbitrary loading. 

The essence of the method of the dominating loading is that the 
stress rate resulting from the influence of a combination of load¬ 
ings at those moments in time when one of the component loadings 
reaches its greatest value is studied. However, this method does not 
fully consider the specifics of the operating conditions of the struc¬ 
ture. The approximate nature of this method also results from the 
fact that in the general case (with combined loadings), the maximum 
equivalent stress, taken as the criterion of danger o^ the complexly 
stressed state of the load-bearing element actually has no influence. 

True, in this case in order to eliminate a possible misunderstand¬ 
ing in designation of design loading cases and particularly confusion 
in the interpretation of sufficient strength, the design cases of 
loading are fixed by the "strength norms," composed on the basis of 
the experience of planning, building, testing and operation of flight 
vehicles, accumulated constantly and systematized on the state-wide 
scale. 

The "strength norms" establish the obligatory level of strength 
of a flight vehicle. Generally speaking, this is done by stating 
the maximum value of operational load; the maximum permissible value 
of negative acceleration; the maximum permissible velocity head and 
the safety factor, considering the number of times by which the desi 
load should exceed the operating loads. 

fin 
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The essence of the method of arbitrary loads, which does not 
have these defects, is that the design load used in this case is the 
load at the moment in the flight when a certain arbitrary load reaches 
its maximum. The value of this load is determined considering the 
effective combined influence of forces and the effect of heating of 
structures. 

The appeal 
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the weight ref] 
the apparatus i 
the plan param« 
of pennissible 

Regardless of the method of construction of the design cases of 
loading, in this work the design loads will be represented by the 
design load vector N^. It is related to the operating vector of design 
loads by the following relationship: 

In calculations for the strength and weight of structures in a 
flight vehicle, it is insufficient to know the vector of a plan 
parameter and the vector of the design loads; the distribution of 
external loads, temperatures and specific or summary heat fluxes must 
also be fixed. It is assumed in this work that the vector of spe¬ 
cific heat flux and the design load vector are fixed on the basis of 
known distributions of external loads, temperatures and specific heat 
fluxes. They are determined on the basis of the vector of design loads, 
using the strength norms. Knowledge of the vector of the plan parameter, 
the vector of design loads, the distribution of external loads, tempera¬ 
tures and specific heat fluxes with a fixed rule of change of permis¬ 
sible stiesses (allowing the strength vector to be determined) makes it 
possible, considering the empirical coefficients, *o calculate the 
weight of the flight vehicle and its component parts. The weight 
equation for the flight vehicle can be written in general as follows: 

“C+*:)«;,+|w+*;+ • • • +»o* 

• '< <•;(>-. 

.1 V 
where j = 1,..., m is the number of the load-bearing element of the 

flight vehicle; 
Pt is the equivalent power function acting on the 
J jth element; 

o*. is the equivalent design stress of the jth element; 
e) 

Y* is the specific weight of the material of the jth 
J element; 

kg, k*,...,k| are empirical coefficients., produced statistically 
and considering the weight of the units, non¬ 
load-bearing parts, structural and technological 
peculiarities. 
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The appearance of empirical coefficients results from the fact that 
the share of the weight of nonload-bearing elements and the share of 
the weight reflecting the structural and technological peculiarities of 
the apparatus in question are not expressed in functional form using 
the plan parameter vector, the design load vector and the'distribution 
of permissible stresses, but rather can be expressed only statistically. 

Since the distribution of the external load, heat fluxes and temp¬ 
eratures is generally a function of x and since the inertial loads 
depend primarily on the weight of the structures (which is being deter¬ 
mined), it is not difficult to see that any attempt to take the integrals 
in the weight equation by ordinary methods will be extremely difficult 
or quite impossible [40]. In one particular case, determination of 
these integrals in closed form can be performed only with a large number 
of simplifying assumptions. The most important step in the development 
of reliable methods for solution of the weight equation is the creation 
of a system allowing integration by simple methods considering the 
influence of all the most important variable quantities. 

During the solution of other problems stated in this work, we will 
not analyze the various possible methods for solution of the weight 
equation considering the most important variables, but will simply 
assume that these solutions are available. 

Suppose, using known methods, a solution to the weight equation 
is produced in the form: 

¡ír-r’ co. tfo. *«»•*)» 

or 

= f 0?» **• Gn, i»,, a0, bol, Jq, k\ 

where R * (T, T ) is the design parameter vector; 

oP is the design stress vector, determining the design 
stress on the structure in its characteristic cross 
sections; 1 

k is the vector of the empirical coefficients. 

'Vector a*1 is similar to the vector of permissible stress. It 
should not be confused with the actual equivalent stresses arising in 
structural elements in flight. 



This dependence will be referred to as the plan equation1. 

It should be kept in mind here that the design stress vector 
has an upper limit. Therefore, we should introduce the condition of 
limitation of the design stress vector, expressed in the form 

where omax is the vector of maximum permissible stress. 

This type of plan equation is rather broadly used for analyst 
of the effectiveness of various types of flight vehicles and various 
power plants, the difference between these equations for vehicles of 
a given class being not so much in the structure and form of the 
independent variables as in the number of terms included in the formula, 
the degree of their detailed development and the clarification of the 
empirical coefficients. 

By the same method, we can produce 

R, QP, jp, G0, b0l, 7,. *). 

Vectors n", o'3, and R allow us to calculate the strength vector 
6. It is determined from the strength vector equation 

® —/.»(A'p, 9r, /f.Qpy, 

where f0fi = (ff™5) is the vector function of the strengths 

of the load-bearing elements of the structure, the number of which is 
assumed equal to m. 

The interval of change of strength vector 5 is limited: 

®ml« < ® ^ ®mi*- 

The lower limit 6m^n is determined by the design cases of loading 
of the vehicle before flight (55 b-d, see loading groups) or by the 
production conditions. The upper limit 6max is dictated by conditions 

of arrangement and placement of the load. Sometimes these conditions 

JIn the technical literature, it is sometimes called the weight 
equation or the equation of existence of the flight vehicle [8]. 



lead to limitation of the corrected strength vector 6: 

* < 

Generally speaking, the design load vector or the design stress 
vector can be replaced by the strength vector. Then the variable 
quantities will be Í and oP or Np. This replacement does not introduce 
any significant changes to the course of solution of the problem or 
influence its solution, due to the presence of the strength vector 
equation. 

The placement of the operational reserve of working medium 
places certain requirements on the dimensions of the flight vehicle and 
must be reiated to the thermodynamic characteristics of the power plant 
and fuel compartment. Therefore, this interrelationship must be con- 
sidered, which we will express as the following condition for placement 
ot the working medium: 

fG*.o, k„ £#) = 0, 

or considering the equations relating the plan parameter vector 

/P», £#)=o, 

where kR is the vector of the coefficients considering the free volume 
in the tanks, the volume of tank equipment, the free volume between 
tanks, etc; 

^m = (^m ) th® vector functi ion. 

If the mutual relationships between the plan parameters, design 
oads, strength characteristics and design stresses in the characteris¬ 

tic cross sections are limited to the relationships produced, it will 
be impossible to estimate the effectiveness of the flight vehicle to 

to* the1fixed*TA ability t< Perforni a required maneuver and correspond 

Full determination of the physical and functional relationships 
requires determination of the interaction of the phase coordinates of 
the control function, plan parameters, effective loads and stresses. 

inri, ?1C-KhaSe c°?rdinates determining the phase state of the vehicle 
include the coordinates of the apparatus in the corresponding systems 
of coordinates, velocity and weight, required specific heat fluxes to 
structural elements and their temperature at the fixed moment in time 

16 
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They change with tiire. In the following, we will investigate the 

movement of the vehicle only in the plane of a great circle. The com¬ 

ponents of vector x, characterizing the phase state of the vehicle, 

will be V, 6, H, L, s, and Q , T . The phase variables V(t), 6(t), 

H(t), Lit), s(t), QT(t), Tw(t) will be assumed continuous and piece- 

wise-differentiable throughout the entire attainable phase space. 

In the following, the investigation of optimization of the param¬ 

eters and control of a flight vehicle and power plant is performed 

without considering the dynamic characteristics of the control organs, 

i. e. only the static characteristics of the motor and balancing aero¬ 

dynamic characteristics of the flight vehicle are analyzed. This 

removes the limitations on the inertial nature of the control systems 

and allows non-inertial changes in the control function. Therefore, 

we will use the balancing angle of attack a, the angle between the 

velocity vector and thrust vector u and the motor adjustment parameters 

as the control functions. 

In this chapter, we study the motor as an object of control with 

several degrees of freedom. The control functions used are the motor 

control parameters, with which the thrust and working medium flow 

rate per second are changed. Therefore, the number of control functions 

or the number of motor control parameters is equal to the number of 

its degrees of freedom. This approach to the motor as a control object 

allows the application of the investigations performed in this chapter 

to concrete types of power plants, for «ample jet engines and solid 

and liquid fueled rocket motors. The motor control parameters will be 

divided into two types: parameters choking the flow rate of working 

medium per second dg (s = 1,..., n) and parameters directly controlling 

the thrust of the motor r* (p = 1,..., R). 

The parameters choking the working medium flow rate d£ will refer 

to control parameters which influence changes in the thrust by changing 

the flow rate of working medium per second. Parameters directly 

regulating thrust r* are parameters which, whe. changed, do not lead 

to a change in the flow rate of working medium per second, but rather 

influence only the thrust. For example, they include the area of the 

critical or output cross section of the nozzle, the input area of the 

diffuser, etc., changes in which within certain limits lead to no 

change in the fuel flow rate. 

Of course, this division of control parameters is quite arbitrary. 

It depends on the regulators used and the conditions of stable opera¬ 

tion of the power plant when regulated. It must be noted that one 

of the requirements placed on control parameters is that they be 

autonomous, i. e. independent of each other. 
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Will i'™ in Valucs ar® detemuned to a great extent by the condi¬ 
tions not allowing unstable operation of the power plant (surgine of 
he compressor, diffusor, pulsating combustion chamber operation, etc ) 

of a limiting (maximal or minimal) control vector is related to the 

r; ;n?orr01 ronditi°/' Which in thc ^eral cas- -n be repieLted by the following vector function: 

.C;)a, d, r. ». V. H, R)~0, 

where 1 is the number of the control functions; 
u,,, is the vector of limiting values of the control functions: 

um =(a»„. “„i.. dmtt, dmta, rmtt, rmH, u)m|0). 

Then the condition of peimissible control will be the inequality 
; >• 0, represented in the following as 

:>o. 

rnnf^Tie/ff!-tiVC l0ads ^ effective stresses, acting through the 
control function, in the final analysis "organize” the required tra¬ 
jectory, ovef whic.. the flight vehicle performs its assigned maneuver. 

nlTa’K Î PrOCeSS °f flight the Chan8es in these quantities are 
limited by the vector of design loads and the vector of design stresses. 
The vector function of effective loads N,determining the effective 
loads acting on the vehicle in flight, can be represented ir the 
general case as the vector function 

,V -= (jVj, ..., AT,) =./*(/!*, /i*, a, », d, r, (»*, 

-I»,. 7*., (?,, 1/,//. /?, G,. 8) 

or 

,V=/_v(«*, //;, a .«, d, r , i»*, Tv, Q„ V, H, R, G0, «. C^), 

where m is the number of design load parameters. 

The flight should always be organized so that the condition of 
limitation of the effective load vector is fulfilled: 

•V«-> .V or Ar«> /*. 



During the flight, various surface and mass forces may act on the 
flight vehicle, including a variable temperature field. Although each 
effective load may not reach the design values, combinations are pos¬ 
sible which exceed the design stresses defined considering heating of 
the structure. 

Let ’ be the vector function of effective stresses, determining 
the stresses in the load-bearing elements of the structure arising in 
flight (effective stresses). It can be functionally represented as 
follows in the general case: 

’ = Q; G0, ft, 8). 

then, a maneuver of the flight vehicle can be performed if the condi¬ 
tion of limitation of the effective stress vector is not disrupted, 
as written considering changes in the design stress as functions of the 
temperature of the structure in the form 

>/.(», /■.)" 

or 

«'>/.(«. d. r, «*. «*. !*, V', 7*». Go. 77. *. 0^). 

In evaluating the change in the effective stress vector, one 

should assume that all possible measures have been taken in the struc¬ 
ture (use of compensators, multilayered panels, heat insulation, etc.) 
to decrease the harmful influence of aerodynamic heating on the elements 
of the flight vehicle. 

During flight, the interaction of aerodynamic, inertial and elastic 
forces resulting from the finite rigidity of the structure of the 
flight vehicle leads to deformations. Therefore, the phenomena related 
to aerothermal elasticity can lead to undesirable processes in flight 
under certain conditions -- flutter, divergences, reversal of control 
surfaces, etc. -- which are very dangerous for the structure of the 
flight vehicle. These dangerous phenomena arise at the critical velocity 
head, the value of which depends on the geometric parameters of the 
flight vehicle, its arrangement, the temperature of the skin and is 
related through cj to the velocity and flight altitude [5, 6). However, 

1 Depending on the statement of the problem, only this or the pre 
teding condition of limitation should be used; however, this cannot 
always reflect the actual complex stressed state of the structure. 
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where 1¾ = ( U 

♦ 

if certain requirements (rigidity norms) are followed during planning, 
the dangers can be avoided. On this basis, the conditions for elimina¬ 
tion of dangerous aerothermal elasticity phenomena, which have been 
called the conditions of limitation of structural rigidity, can be 
represented in the general case as follows [6, 13]: 

/r(/?. Q„ 7V, V, H, *,A>)<0. 

Here fr = (f^ ,..., fr ; ) is a vector function, where k is 

equal to the number of dangerous aerothermal elasticity phenomena. 

In connection with the changes in external conditions and loadings, 
inertial forces arid aerodynamic heating of the structural elements 
during the flight, various changes in the nature of thermodynamic param- 
e*ers °f power plant are possible, some of which in many cases may 
result in unstable power plant operation (cavitation in the fuel pump, 
unstable operation due to excessive expansion in a nonadjustable 
nozzle, etc.). Therefore, conditions must be created which allow 
unstable operation of the power plant in flight to be avoided. We 
will represent these conditions as limitations on the vector function 

/» (d, r, o. «, i»*, V, H, TV, Q„ C0. /?) < 0 

and will refer to them as the limiting conditions for stable operation 
of the power plant. 

A flight vehicle is maneuvered under certain predetermined condi¬ 
tions with respect to the phase coordinates at the beginning and end 
of the flight. Fixation of the Klationships between phase coordinates 
(or simply fixation of the phase coordinates) at the beginning and end 
of the flight will be represented as the following boundary conditions: 

(U •('•>. a(/,). /,)=-0. 

t(fu\ //(/,), no, s(/.). /.)=0, ( 3 

(* — 1» • • 6). 

Furthermore, for a multistage flight vehicle, the following 
dependences must be observed at the beginning and end of operation of 
each stage: 

' Po-1-0. 

*f=Q‘'„>-Qi=o, 
(i.i.i) 
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where ^ = (vfít^ ' 1}) is the vector of the relative initial weight 
of each stage, or the vector of the relative 
initial weight; 

\ s (^(t1)) is the vector function of the relative final 
weight of each stage; 

QTk is the vector of required specific heat fluxes to the struc¬ 
tural elements of a stage. 

. T,ecf}”í,eíluatlon determines the relative initial weight of each 
stage. Fulfillment of the second condition indicates the end of the 
active sector of each stage. For the last stage (in the case of a multi¬ 
stage apparatus') when a passive sector at the end can be allowed, the 
second condition reflects the limitation on the phase variable p*(t) 
Since the function is identical to zero, when the phase trajectory 
reaches the boundary‘of the phase variable if(t), its derivative with 
respect to time is also equal to zero: 

or, since 

'a* 
=o. 

This last condition should be added to (1.1.1). 

Therefore, when the condition « 0 is reached in the last 

stage, the optimal phase trajectory passes along this boundary to the 
final point, and in this sector of the phast. trajectory 

«0 and ==0. 

Thus, we have looked at all possible relationships between the 
plan parameters, design loads, strength characteristics and design 
stresses, considering various limitations, and have shown their inter¬ 
actions with the control functions and phase coordinates; the boundary 
conditions for maneuver of the flight vehicle have been considered. 
However, these relationships are insufficient - there are no dependences 
revealing the change in the phase coordinates with time resulting from 
the influence of the control functions and considering the influence of 



T 1 

the plan parameters on the aerodynamic forces and choke characteristics 
of the power plant. This requires that we use the differential equations 
of motion of the center of mass of the flight vehicle and the kinematic 
couples. We shall make the following assumptions (system of coordinates 
and diagram of forces shown on Figure 1.1): 

the flight vehicle is looked upon as a material point; 
the movement of the flight vehicle occurs in a vertical plane; 
the movement of the flight vehicle occurs without slipping, i e 

the velocity vector is located in the plane of symmetry; 
during the entire period of movement, the flight vehicle is balanced 

as to moments; 
-- there are no turbulent disturbances of the atmosphere and its 

parameters in this sense are stable; 
-- the earth is spherical and its rotation about its axis is ignored. 

the kinematic cob 
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Figure 1.1. System of Coordinates and 
Diagram of Forces Acting on Flight Vehicle. 

We write 
the equations of motion 

?!53 »' sin * -f r ) - £^1* -) 

+ 
#,+// 

cos •. 

(1.1.2) 

(1.1.3) 

(1.1) 
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the kinematic couples 

ÿjæ //' œ y sin 8, (1.1.4) 

iiL5} 

or (1.1.6) 

>• 

Here 

y-=Q‘(^t b0ll K, fí0,a\ 

Y’=:Y'iV.H,b0h R, G0, a), 

g=g(H). 

The introduction of equation (1.1.6) results primarily from the 
possible requirement for production of a fixed average velocity during 
maneuvering of the flight vehicle. This requirement is sometimes 
placed on certain types of flight vehicles to assure "controlability." 

The choking characteristics of each type of power plant have their 
own peculiarities. However, it is characteristic that these character¬ 
istics depend on d, r and R. Furthermore, for some types of motors 
(jets), these characteristics are related to velocity V and altitude H 
of flight, while for others (liquid fueled and solid fueled rockets) 
they are influenced only by altitude. Therefore, generalizing the pos¬ 
sible dependences, relative thrust and relative expenditure of working 
medium per second, we can represent them as the following functional 
dependence: 

/>• = /,•(</. r, V'. //, R, G0. a,,, ^ bol), 

/V. V, H,R, G0, a0./„.*„,). 
/(M 

From which, since = -dvVdt, we have 

V 

<// 
= - >L/V. V'. H, R. G0. a* J0, ¿>0,). , , 

/Oi 1.1. 7) (1.1) 

It was noted above that the "behavior" of the structure of a flight 
vehicle must be evaluated not only on the basis of the actual surface 



and mass forces, but also on the basis of the temperature of its elements 
and the heat fluxes acting on them. This is particularly important at 
high flight velocities. The principal forms of transmission of heat to 
flight vehicle structural elements are convection radiation and conduc¬ 
tion. The transmission of heat to the skin of a flight vehicle occurs 
due to convection and radiation. Usually, the physical processes related 
to transmission of heat to the structure are described in this manner. 
However, analytic representation of the processes accompanying heat 
transmission is very difficult, which reinforces the instability of the 
phenomena still more. In order to make the suggested method of solution 
more flexible and allow it to be applied regardless of the selected 
method of calculation of the specific heat fluxes and temperatures, let 
us represent their changes with time by the most general functional 
dependence 

HQ, 
¿I* f * fa*. T"*, V", H, R, Í), 

¿I* 7\r, H, R, i), 

,(1)1 which is typical at the present time. Here Q = (Q^ 
fl)* Í01* T ' Tw - (T¿ ••••» T* ) are the vectors of actual specific heat flux 

and actual temperature of the structural elements, fa = (f(l)*,.... 

f(Q)‘) and fw (f. (1)' (Q)* ^ *1 fw ) are the corresponding vector functions. 

Analysis of calculation of structural temperatures and heat fluxes to 
the structural elements shows that the greatest volume of computational 
work is that involved in determining the heat conduction coefficient 
aT from the surroiinding medium (boundary layer) to the surface of the 
structure with unstable heating. Therefore, a number of methods have 
been suggested for the calculation of oT, based on the semiempirical 
theory of turbulence, and a number of purely empirical formulas pro¬ 
duced on the basis of experiments. Generalizing them, we can represent 

by the following functional dependence: 
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In the functions f and 
q 

we do not find the blackness coefficient. 

Stephan-Boltzman constant, heat conductivity coefficient or other physical- 
mechanical characteristics of the structural materials, since they are 
known parameters. The relationships produced are correct under the con¬ 
dition that the measures allowing reduction in heat flux to the structures 
do not require a change in the weight of the flight vehicle as a result 
of carrying away of the mass of heat insulating materials or cooling 
agents. In this case, equation (1.1.7) is correct as well. Since the 
influence of aerodynamic heating can appear only at rather high M numbers 
of flight, equations (1.1.8) and (1.1.9) should be used only after the 
flight vehicle has reached a certain velocity. 

As the flight vehicle moves, as we have noted, we should not dis¬ 
rupt: 

-- the condition of permissible control 

C>0, (1.1.10) 

-- the condition of limitation of the actual (effective) load 
vector 

N*>frfS, or N>>fsfJs. (1.1.11) 

the condition of limitation of the effective stress vector 

(1.1.12) 

the condition of limitation of the stable operation of the power 
plant 

/.., <0, (1.1.13) 

-- the condition of limitation of structural rigidity /r<0 

Since vector function fr does not depend on the control functions, 

the conditions of limitation of structural rigidity essentially reflect 
the conditions of limitation on changes in phase coordinates. Ne 

^Generally speaking, one of the conditions (1.1.11) or (1.1.12) can 
be replaced by the condition of limitation of the vector of effective 
strength 6 > where ^ vector °f effective strength. 
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introduce for analysis the vector function z equal to the plan equat 

where 

r' 

• • • »Qt« 7"»)« 

.. ?•!* 

If the structure "works" at the rigidity boundary, then 

♦r -/r- 
and therefore 

*r=0. 

In the case where fr < 0 and zr i 0. In the following, we will 
assume 

and 

í7<0. (1.1.14a) 

where the equality occurs when 

<V=0. (1.1.14b) 

Equation (1.1.14b) for the phase trajectory sectors, one of which 
lies within the closed area of change of ff, the other being at the 
rigidity boundary, acts as a sort of boundary condition. 

The limiting conditions (1.1.10)-(1.1.14) should be formulated so 
that with the corresponding values of phase coordinates and plan param 
eter vector, the number of simultaneously occurring boundaries (equali 
ties) will not exceed the number of control functions. Otherwise, the 
"extra" limiting conditions must be looked upon as conditions on the 
ends. 

Furthermore, the plan parameters, strength characteristics or ship 
strength parameters, design loads and design stresses in the character¬ 
istic cross sections are interrelated by the following relationships: 
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the plan equation 

5°* 
I 

the equations relating the plan parameter vector 

(1.1.15)(1.1) 

-c;r °' 
(1.1.16)(1.1) 

the condition of placement of the working medium 

•W„=o. 

the strength vector equation 

- /m=0, 

and their selection should not disrupt: 
the plan parameter vector limiting condition 

(1.1.17)(1.1) 

(1.1.18)(1.1) 

the design stress vector limiting condition 

the strength vector limiting condition 

(1.1.19) 

(1.1.20) 

(1.1.21) 

the adjusted strength vector limiting condition 

(1.1.22) 

ship Ó? thedían ^raleJeJ6^^^ 0ther Cquations of the relation- 

Vr. = l-|S. 
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In th 

t 

which need not be analyzed in the problem as relationships, since n0 
and Gt0 are not included in the remaining equations. 

We can now formulate the problem of optimal planning of a flight 

vehicle and motor installation. It consists of the following: among 

the permissible values of the phase state vector x and control functions 

d, r, a and u, plan parameter vector n, design load vector NP, design 
stress vector oP and strength vector 6, satisfying boundary conditions 
(1.1.1) and, possibly, (1.1.14b), coupling equations (1.1) and limita¬ 

tions (1.1.10)-(1.1.14a) and (1.1.19)-(1.1.22), find values for which 

the criterion of effectiveness of the flight vehicle 

control fu 

vector par 

reaches the precise upper boundary 

/*=sup. 

This problem is a variational problem, and therefore its solution 

must be sought on the basis of the mathematical apparatus of variational 

calculus. This is done by using the equations (see appendix) 

?t C — v,r, =*0. ) 

?,0 a /> - D — w=0, f 
Pou ** (H««*—n)(iï—n_j-~o, 
fo* “ (%•*—°')—=o, 

“I*«,! ~ •swi ^=0, 

iW *■ (9»,,P — 9) — =0 

(1.1.23)(1.1) 

(1.1.24) (1.1) 

to make a transition from the closed to +he open area of permissible 

changes of control functions, design load vector, design stress vector 

and plan parameter vector, strength vector and relative strength vector. 

Here DP » (NP, oP, 0, Oy) is the design parameter vector; 

D * (fk.bN* fr» zr> *<)•/) *s vector function of the required 
parameter; 

vu(t), v(t) are the vector functions of the conditional 

controls, which are arbitrary functions of 

time; 

id,, wo, u¿, iDf are the vectors of conditional parameters 

which are independent of time. 

In connection with this, the variational problem can be formulated 
as follows. 

conditiona 

permissibl 

(1.1) and 

phase vari 

(1.1.27) f 

reaches it: 

In thi 

trajectory 

and vector 

this variât 

The ma 

of which de 

parameters, 

not been fu 

and technic 

solutions o 

sufficient 

problem of 

its solutio 

It can 

extreme of 

the uncondi 
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(1.1.25) 

In the class of phase variables 

l/(M, &(/). //(/). *(/), !‘(/)*. 

control functions 

</(/), '’(Z). a^' 

vector parameters 

n. Nf, 

(1.1.26) 

(1.1.27) 

conditional control functions and parameters 

',(/), v(/), <•>*. «•>(. ai„ (1.1.28) 

permissible in the interval t0 < t < tk, satisfying the relationships 

(1.1) and boundary conditions (1.1.1) and possibly (1.1.14b), find 

phase variables (1.1.25), contal tunctions (1.1.26) and vectors 

(1.1.27) for which the expression 

p;,) (1.1.29) 

reaches its maximal value. 

In the following, control u(t) (o(t), w(t), d(t), r(t)). phase 

trajectory x(t) 3 (V(t), 6(t), H(t), L(t), s(t), /(t), ^wi1^ 
and vector parameters n, NP, oP ar.d 6, satisfying the solution of 

this variational problem will be referred to as optimal. 

The mathematical model of this variational problem, the functional 

of which depends not only on the phase coordinates, but also on the 

parameters, considering the relationships ar.d limitations outlined, has 

not been fully discussed in the mathematical literature. The scientific 

and technical literature has contained analyses only of certain partial 

solutions of this problem [16, 29, 30]. Proof of the necessary and 
sufficient conditions of the maximum of the functional of this variational 

problem of optimal planning of a flight vehicle and the algorithm for 

its solution are presented in the appendix. 

It can therefore be stated (see appendix) that the conditional 

extreme of functional (1.1.29) is reached on the same curves on which 

the unconditional extreme of the expression 



(1.1.30) 

is realized, where Cq, e^, e^, e^..., cjq are the vectors of constants 
of the Lagrange factors; 

* • ( ^i(t),..., >„(t), Vi(t)) is the vector function of the 
variable Lagrange factors. 

Í 2. Necessary Condition for Optimization (Stability Condition) 

The first necessary condition for the maximum of functional 
(1.1.30) is the condition of stability. As will be seen below, it 
includes the conditú of optimal contiol of the flight vehicle and 
the power plant, the condition of discontinuity at the moment of a 
sudden change of control and in the case of arrival at the rigidity 
boundary, the condition of discontinuity at the moment of separation 
of stages for multistage flight vehicles and the condition of optimi¬ 
zation of parameters. Furthermore, the condition of transversality 
follows from it. 

The stability condition is contained i. the equality of the first 
variation of functional (1.1.30) to zero (see appendix): 

Wr* and throughout the following, the product of vectors should 
be looked upon as a scalar product. 

-11- 
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.<*» 
t)f* 
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A^+ 

,(lsT-t(lsT* 
{('•-'£)"+H,,-|('w£)"+x*U+ 

l> ‘i?» 

■î 
1^^.+. 

(ls'h(î-') A*f 

where 

-K'-'rh+H..-* 

^ ”(^1« • • • • *Hh *«• • *•• 

>=(S,.V ?o.. ?•. ÎW ÎW): 

1=(1/, •, H, L, t, T+, Q,k 

(1.2.1) 

tî is the 
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T 

1 

>.=(>.J, ÂJ, Âj. ».J, ¡-y Kfi 
• • • 

u =(o, »,d,r, v„ v): 

*£_*£_ dlL *ÏL\ 
"Tñ * ¿«o ’ o*« ’ ’ A'* ' 

* 

tí is the moment in time at which the control function undergoes a 

first order discontinuity; 

t^' is the moment of separation of the ith stage. 

For simplicity in recording the stability condition, we have 

assumed that a first order discontinuity in the control functions 

occurs once and that the flight vehicle has two stages. 

Placing the corresponding requirements on the Lagrange coeffi¬ 

cient \ and applying the main lemma of variational calculus to the 

integrals with free variation Au (see appendix), we produce the 

Euler-Lagrange equation 

df d dr* _0 
dx di »X' 

dm 

(1.2.2) 

Since F* in its explicit form is independent of time, system 

(1.2.2) has the first integral 

.2.1) or /r=-c^ (1.2.3) 

where 

H* 

V 

p*cos — Q*) - * sin «j + >4 [-“-Ky s|nr + >'*>- 

+¡C^L]+^’"“+k:^r “••+ 

11 ¡ 

CJ is a constant quantity. 
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(1.2.2)Uatl0n f* ” ‘ ^ Can rePlace a"y of the differential ertuations in 

e«pli*irío™.;0fÕnÒ":íl ')’ (1-2-2) Ca" b» ™p«sented in 

where 

_ \9 \ ^?3 . df4 A, __ A, 
oV 

_ t k. ft* àfi . 

1 oV 6 ~oV dV ** 
àft 

ÓV 

dV ■ 
^TlO 
dV *D% 

x;'= »x;ÜL-xi*L-K*± _rÜi_ 

ÓTio ^ 
D> 

X!'= iÍL _x* Í!* _*• ÍÜL _*• ** __ 
1 ' M * iH *dtf * dH 

—éïl X* _ An ). ) ' ^)o t 
a« « a// • dH “ a« 

XJ’ = 0 or XJ = const, 

X¡'r=0 or XJ = const, 

_ _ ï« afio 
‘ * a>.’ ** "i7 ~ ^7A£ 

(1.2.5) 

(1.2.6) 

(1.2.7) 

(1.2.8) 

(1.2.9) 

*0» (1.2.10) 

(1.2.11) 

(1.2.12) 

^+^+¾ £+£‘.+2vo. a.*.«, 

i^+ii^ + 5-,. + $-,1P-». 0-2-,4) 

• oTw « oTm 
ario ; 
oTm 

,,+4,.+¾.^ 1 e« 1 ao n da 

x;ÜL +x:iî*4-iü 
a« ^ » a. ^T-7r^' 

atio. 
=0. 

*.v,=0, *ov=0. 

(1.2.15) 

(1.2.16) 

(1.2.17) J 

(l.II) 
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solutions ( 
value of D. 
concepts of 

« 

d*7 — _ ^/■ ^Tio 

ar» = or» ’ cr. ^ ar. ' dr. a ¿r. ’ 

"Tl fo«Q| "P 
àd í1"” dtf 

COS •*, 
^Í» /0 a0i àp 

dd** pV öd 
sin« 

öff dg df iff dt dfio ÖD 

~~¡li ~öd' ~öd öd' Hd ^ ~dd 

«» • • • » • - • 
‘»i _ tt“v àp _ df, 
-a-COS •, - 
ör p% ör dr 

»r ör’ 

toao, dp 

•»V 
sin« 

df, _ f, dQ df, ^ f, ÖY 
da ” n* da ' da ™ ^ da 

ia.s.iZs. £ü 
da da ' da da da 

df2 «/> 
• * ST* 

dO . 

.tü 
da a ’da 

dfio im ÖD 

• • 
ft*« COS« 

dn^dt^ 

da “da ' 

The control programed defined on the basis of the solutions of the 

Euler-Lagrange equations (l.II) and the coupling equation (1.1) will be 

called the optinal control program, and the corresponding phase trajec¬ 

tory will be called the optimal phase trajectory. The Euler-Lagrange 

equations (1.2.13)-(1.2.17), related to the presence of control func¬ 

tions in the coupling equations should be interpreted as the optimal 
control conditions. 

The solutions of equations (1.2.17) separate the areas of pos¬ 
sible optimal controls. They can be as follows: 

v./O, ^-0. v/0. (,.2.,8) 

^ o, V, - n, xDn0, v=n, (,.2.,9) 

À,«aO, v,o»0, ÀoaaO, v^-0, (,.2.20) 

VE30, 1, »0, V,/0, (,.2.21) 

Ad-0, V-0, l.»0. vry. 0 (,.2.22) 

0T À.-0. v.=0. 

Solutions (1.2.18)-(1.2.20) determine a control not involving 

the limiting value of the vector of the required parameter D, while 

Optima 
from the Eu 
solutions ( 
limiting va' 
while the e 
function: 

Here we 

come to deg< 

The con 

(1.2.16) con 

control. In 

ing values a 

(1.2.16) bee 

öd 
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solutions (1.2.21), (1.2.22) define a control involving the limiting 
value of D. In connection with this, let us introduce a number of 
concepts of optimal control. 

Optimal control will refer to stable control, if it is determined 
from the Euler-Lagrange equations (1.2.13)-(1.2.16) according to 
solutions (1.2.18). Thus, the control function found falls within its 
limiting values and is not limited by the limiting value of vector D, 
while the equations appear as follows for the corresponding control 
function: 

'5?ÎL/x*cos«+)4-Ü1-JlîL = o, i»» V * ^ ' V ) àd Jh dd 

0. 
dp» 
dr 

«L(x:i91_iLinV 
^ V > d« V da J 

to' à/, 
da 

*.=0, 

X. sin« —X cos« «0. 

(1.2.23) 

(1.2.24) 

(1.2.25) 

(1.2.26) 

Here we have assumed XJ cos X £ —ÿ— ^ since otherwise we 
come to degeneration of the variational problem. 

The control determined from the Eu1er-Lagrange equations (1.2.13)- 
(1.2.16) considering (1.2.19) is referred to as the optimal limiting 
control. In this case, the control function takes on one of its limit¬ 
ing values according to the condition ç * 0, while equations (1.2.13)- 
(1.2.16) become 

(XjCOSw+X,—Ï-) 
dp* 
d<t 

àf* 
M 0, (1.2.27) 

Or 
COS«.-;-)-; 

»’"“ I t>/>* _n 
V ) dr (1.2.28) 

_o, 
V da ) da ^ da 9 

(1.2.29) 

P* 
(/.;sin«-)‘ 

£01 « \ 

V J «0. (1.2.30) 
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Equations (1.2.20) characterize the conditions of possible switch¬ 
ing (transition) from the stable to optimal limiting control or 
back. 

The control defined from the Euler-Lagrange equations (1.2.13)- 
(1.2.16) considering (1.2.21) is called the optimal coupled control. 
In this case, the control function takes on values resulting from the 
boundary of the required parameter vector according to equation DP - 
D = 0. The Euler-Lagrange equations (1.2.13)-(1.2.16) become 

tfoflo, 
(*•’ 

COSU) -f>4 
sim» ^ dp* ., 

v; dd dd dd (1.2.51) 

g^ó) (/.; cos 
sin i» \ dp* 

~\~) dr 

dD 
dr '•D 0. 

da 

>4 dy* \ ^ */* d/m 
y da J 9 da da 

I*' 
U’sinu»—/.J 

COSm\ I 

y ) ' 

0, 

(1.2.32) 

(1.2.33) 

(1.2.34) 

Equations (1.2.22) characterize the conditions of possible transi¬ 
tion from optimal coupled control to stable control or to optimal 
limiting control. 

Thus, the optimal operating modes of the power plant are possible 
with maximum and minimum modes corresponding to equations '1.2.27) and 
(1.2.24) or (1.2.28), with a choked mode corresponding to equations 
(1.2.23) and (1.2.24) or (1.2.28). If the maximum, minimum or choked 
mode of the power plant determined by equations (1.2.23) and (1.2.24) 
or (1.2.28) leads to disruption of the limiting conditions of the vector 
of the required parameter D [conditions (1.1.11)-(1.1.14)), the operating 
mode cf Ihe power plant will be determined by the boundary of the required 
parameter vector. In this last case, the thrust is generally less than 
its maximum value. Therefore, the thrust of the power plant on the 
optimal phase trajectory of the flight vehicle is a piecewise-continuous, 
piecewise-smooth function and in the general case, possibly, consists of 
the following different sectors: the maximum thrust mode, the choked 
and "coupled" (choked) modes, the minimum thrust mode. 

Optimal control a includes its limiting values and stable control, 
defined by equation (1.2.25). If this control a causes disruption of 
the limiting condition of the vector of the required parameter P, con¬ 
trol a is determined from the condition of location of vector D at the 
boundary where a has values less than the limiting values. Thus, con¬ 
trol function a on the optimal phase trajectory may be piecewise- 
continuous, piecewise-smooth and in the general case, possibly, consists 



of sectors of the limiting control, sectors of stable and "coupled" 
control. 

The optimal control w includes its limiting values and stable 
control, defined by equation (1.2.26). In the case when this control 
disrupts the conditions of limitation of required parameter vector 
D, control a, will be coupled to the boundary value of D, at which w 
generally takes on values within its limits. Therefore, control 
function ui on the optimal phase trajectory of the flight vehicle may 
be piecewise-continuous, piecewise-smooth and in the general case, 
possibly, consists of sectors of limiting control, sectors of stable 
and "coupled" control. 

With certain simplifying assumptions, we can produce certain 
quantitative relationships between values of a and w with stable con¬ 
trol. Suppose the required maneuver of the flight vehicle is such 
that the slight aerodynamic heating of the vehi'le can be ignor d. 
Then, by simultaneous solution of the Euler-Lagrange equations (1.2.25), 
(1.2.26), we find 

tg“> = 

dQ, 

da 

ôV 

da 

(1.2.35) 

since 
aq* = 3Qi 1 
3a Ta" 

At supersonic flight velocities in the area of 
* 

y 
linear dependence of aerodynamic lift on a, we have ^Cy = ca" and 

da 

’Cy a, which, with low values of u>, leads to the equation 

..¾¾. (1.2.36) 

Consequently, during stable control a and w, while the angle of 
attack is low, angle ui is equal to twice the angle of attack. We can 
note that approximately the same relationship between a and id is 
retained with larger values of a. For example, with values of angle 

1 Although at supersonic flight velocities the drag resulting from 
the lift consists of wave and inductive drag, it is methodologically 
simpler not to separate the two [22]. Therefore, both here and below 
inductive drag will be taken to mean all drag resulting from lift. 
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of attack near the critical values 3Y*/3a=0, and therefore according 
to (1.2.35) id * ir/2. However, according to experimental data [44] for 
wings of various geometries and M numbers between 1.3 and 2.5, a^p = 
40-45®. Thus, with stable control, relationship (1.2.36) is approxi¬ 
mately retained between a and id up to the maximum angles of attack 
(up to ajjp)• Furthermore, taking the angle between the direction of 
thrust anfl the chord of the wing or approximately the axis of the 
flight vehicle as y*, considering (1.2.36) we find 

Y*-«. 

that is with stable control the angle of attack is equal to the angle 
of deflection of the thrust force from the axis of the vehicle. These 
considerations indicate a number of conclusions. Whereas in many 
cases the maximum angle of attack of a flight vehicle can be assumed 
close to ajtp, the limiting angles y* are frequently low. In this 
connection, we can state that the limiting control to, following stable 
control a and «, occurs earlier than limiting control o. This con¬ 
clusion always retains its force where anaxHjmax and 1^,,1 > |<*>minl- 
Then the optimal control of a flight vehicle, in addition to the 
optimal coupled control, can in the general case consist of sectors of 
limiting control a and u, sectors of limiting control u> and stable 
control a and id. 

We note that when the dependence of Q* on a is ignored, the 
Euler-Ugrange equations (1.2.25), (1.2.26) become 

X|»0 and u>a0. 

In this connection, it can be assumed that if the aerodynamic 
lift is fully "sufficient" for the performance of a required flight 
vehicle maneuver, with the optimal control tie use of thrust to create 
additional lift should be contemplated only with a decrease in induc¬ 
tive aerodynamic drag by decreasing the required a. 

The Euler-Lagrange equations do not exhaust the condition of 
stability. It also includes the condition of discontinuity of Lagrange 
coefficients X at the moment of a sudden change in the control function 
t|. Since a non-inertial change in the control function does not 

cause a disruption of continuity of the phase coordinates, in order to 

observe equation (1.2.1) we will have 



or 

o’" .|4]--l4|*. 

(1.2.37) 

The discontinuity conditions (1.2.37) are analogues of the Erdman- 
Weierstrass conditions [7]. They require that the Lagrange factor 
Y and constant Cg be continuous at all control break points. 

In studying the conditions of discontinuity of the Lagrange coef¬ 
ficients at moments of stage separation, let us agree on a number of 
assumptions which do not lead to disruption of the accuracy of the 
solutions ietermined by the assumptions made earlier. As the main 
assumption, we assume instantaneous separation of the "spent" stage, 
corresponding to the condition 

/Ot m. fin. 

and we will arbitrarily assume that separation of the stage introduces 
no perturbation to the motion of the vehicle and does not change its 
orientation. This allows us to consider the phase coordinates V, 6, 
H, L, s, Qt and Tw to be continuous at moments of stage separation. 
Then, for fulfillment of the condition of stability we produce 

¿r]*/» or lCol,<u“lCo)i<0. 

IMho-IMi«» ot [>ï] ” ft] .. 

Pil.to-ra.tM. 

(1.2.38) 

Figure 1.2. Diagram of Entry of Optimal 
Phase Trajectory to Boundary of Rigidity 
Limitation and Departure from It. 
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T*e*f equations indicate that at points of srnaration of the 
stages, continuity of the lagranfe coefficients l, ^ 

and constant first integral C; should oe retained. The Lagrange corf- 
fit ient ^ My undergo first Ärder discontinuities at points of stage 

separation, its value to the right of the point of discontinuité being 
determined by (1.:.3). 

Thu*, the possible first order discontinuities in the control 
functions and vectors B. *P. nP and S should not disrupt the continuity 
of the Lagrange coefficients «. r, l \ -nd the constant first 

CJ. ' 

In the case of "operation” of the structure at the Snjndan of 
the rigidity Imitation at the points of entrv t'1* and departure 

t'* , where the phase trajectory aoves fro« the area determined by 
inequality yr * 0 to the boundary determined by the equation sr • 0 
and back (Figure 1.2), in order to satisfy the «ability condition, 
the following condition of discontinuity of Lagrange coefficients at 
the rigidity boundary should occur according to (1.2.1): 

to the intrrngi are 
ficients Vt^-’j rn 

retains its value. 

iurther. due t 
(1.1.30) to 0, acco 

qjt> 

or, since Qt0 • 0 as 

I r-M’ 

+ 

or 

where 

1¾ -rj,.;.. 
.o—‘(«»--S»#,-«, 

(1.2.39) 

(1.2.40) 

(1.2.41) 

where 

Placing the con 

*òc J,Hi ek« Mnd %rtti 
phase coordisates equ 
and (1.2.41) the cond 

Thus, upon arriving at the rigidity limitation boundary at the 
points of entry tf1», the integration constant retains its value, while 
the Lagrange coefficient » may generally he discontinuous, keeping in 
nind (1.2.40) however, upon departure (to« the rigidity li»itation 
boundary at the points of departure t*71 (points where the phase tra- 

icctory goes over from the boumlarv determined by the equation ,r » 0, 

One of the pecul 
is that the parameter 
selected so that the 
conditions of ontin.il 

usdit Ion of tabti>’ 

. - a ,. determined 
H V 
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to the internal jrea by the inequality *r < 0), the Lagrange coef¬ 
ficient* Vr * ' r roa in continuou*, ami the integration constant C*0 

retain* it* value. 

Further, due to the equality of the firtt variation of functional 
(1.I.S0I to 0, according to (1.2.1) the following condition* obtain: 

Q", ri^lYt + ^ r*y». f + 

V * ! 

or, »iiicf Qt0 • 0 ind T|g0 i* fiànl iw idvann*. w produce 

cyt4 r-yr. , r f 

4-iy*,-V e^-O. 

Qw. + »>V. + + VL. + 

(1.2.42) 

where 

//.: 4.: 

V-w) ‘KC)...., ^(/.)), 

(1.2.45) 

(1.2.44) 

Placing the corre*nonding requireaw-nts on the Lagrange coefficients 
ejp and e*o and «etting the coefficient* with free variation* of the 

nba*e coordinate* equal to :ero, we can produce fro« equation* (1.2.42) 
aiîd (1.2.45) the condition* of transversality (see appendii). 

line of the peculiaritie* of the solution of the problr* fomulated 
i* »hat the parawter* of the vehicle are not fiaed. They Mist he 
selected *o that the condition* of their opt’nality are satisftid. The 
condition* of optinality of flight vehicle »wiriiiseter* follow fro« the 
onditinn of stability (1.2.1), if the Lagrange coefficient* ej. ej^ 

«•q. e( »re determined in the prop«-r ».inner with variation of s<m»e of the 

# 

44- 



« 

parameters, while the coefficients with the variations of other param¬ 
eters are set equal to tero. We will then have 

■0. 

x.r'+ u.r’+ «. ^+-^7 '•+-¡5-'*+ 

(1.2.45) 

(1.2.46) 

*. 

#*+ #»+^ o. 

(1.2.47a) 

(1.2.47b) 

(1.2.41) 

(1.2.49) 

*r-?-+-5-*f+-5-«I+-5-s+-$-«Í+-J-•>+ 

+-5- **+15 ^ 
4 

(1.2.50) 

(1.2.51) 

(1.2.52) 

(1.2.53) 

11.2.S4) 
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larafli- 

(1.2.45) 

(1.2.46) 

(1.2.471) 

(1.2.47b) 

(1.2.4t) 

(1.2.49) 

(1.2.50) 

(1.2.51) 

(1.2.52) 

(1.2.55) 

« «K 

(1.2.55) 

(1.2.56) 

(1.2.57) 

(1.2.58) 

(1.2.59) 

Excluding the Ugringe coefficients ej,..., e6, ew«nd eq fro« 

equations (1.2.44)-(1.2.59), ue produce the condition of optimality of 
P‘an P*ra«eters t^], Gp), Gq, P|nax> sq, h^j, Jq, r, Tp, Of ®^d the 

design load vector NP, the design stresi vector c** and the strength 
vector 6. The solutions of equations (1.2.59) allow us to detcruine 
whether the optiaal value of the paraawter is equal to its liatiting 
value or lies within the area. 

Analyzing equations (1.2.45)-(1.2.58), we can draw certain conclu¬ 
sions. In the general case in equation (1.2.53), the algebraic su« 

4N* 4M* ' 4M* *') 
or at least one of its terns cannot be equal to zero. This indicates the 
obligatory inclusion in the optiaal control of «odes of coupled control 
resulting fro« the presence of liaitations on the effective load vectors*. 
Similarly, in equation (1.2.57) the integral is generally not equal to 
zero, since the algebraic su« included in the equation or at least one 
of its tenas in the general case cannot he equal to zero. Consequently, 
the optiaal control aust include «odes of coupled control resulting fro« 
the presence of liaitations on the effective load vector*. For exaaple, 
suppose Cpi is in the open area. Then, according to (1.2.59) and (1.2.‘5) 
and (1.2.46), we produce e2 ■ e7 » 0 and ey • -aiVí^pj ¿ 0. Further- 
■ore, the dependence of *• on NP and oP is always such that 4 0 

an<* ^p/*0^ ^ Therefore, if even ey, e^, eg are equal to zero, the 
expressions *** **** *f* 4/Î* are always not equal to zero. 

Of** "a,» 
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1 See footnote on page 19. 



which anows us t° affirm that the integral in equations (1.2.SS) and 
d.is in the general case not equal to zero. 

Thus, preliminary analysis of equations (1.2.4S)>(! 2 59) means 
that in the general case the optimal phase trajectory of'a'flight 
vehicle always includes a sector with coupled control, resulting from 

(Figure*!"^ °f limitations on thc vector effective stresses8 

fian nl ^in connection that the statement and solu- 
Üîue of P#rfomancf °f a required maneuver with maximum 

off ni i '"T rÍterÍOn ^ pr0dUCed “Pti-i^tion of the control functions and plan parameter vector alone, generally leads to 

dii eld 5Cr ‘‘ unnecessari ly heavy or its structure will he 
damaged upon perfomance of certain maneuvers due to excessive loading. 

(I 2 it quations fl.ll), conditions of tram versal itv 
y.2.43) and discontinuity conditions (1.2.37)-fl 2 41) 

lllllul “ r.r’T10"? ^- ^-^.2.59) determine the condition of 
stability of the functional (effectiveness criterion) 1*. 

Mqure I.J. Schematic Représentât ion 
«F Optimal Phase Trajectory. 

. i , n *fÍK ,0fi hC ^on^,tion of *t»Mlity and boundary conditions 
• . ) >n the solution of the system of coupling equations (l.l) con- 

Mdenng the limitations introduced allows us to find the optimal 
program of the control functions ait), d(t), r(t), w(t), the optimal 

îtron ÎIÙir'T Vítí* !ít)¡ ,(t)* ^(»). Q^t) and 
0t l*V, P n ^ram'tvr ^tor the vector of design 

C K : !î r °f dc*iR'' »he strength vector ), 
for which the criterion of effectiveness I* reaches its maximal value 



I 3. Optimal Control of a Flioht j « 

We,*r,,r*” 

t K)n allow us to produco^h^optimal 'control0 >fÍrSt necessary cond* 
Phase trajoctorv, which «av be a ^.thereby the optimal 
Therefore, additional necessarv condition^' or »»ddle curve 
confident max.mitation of functional M \ ■'ZV r^uircd' a*li>wing more 
cessary conditions are the nëcessaî! ili ' V’ "ec- 
( lebsch condition which follows from it foí ëb” Coni,,tion and thc 
control functions and the maximul^t i . ,h/ Cpen area of ch3nRc of 
Principle) for the closed Te«Z [IZ? * ^ ^ ^ thc 
probable that investiaation of the í Í*** apPendi*)- It is quite 
minimum principle will produce additiòüll IT COnd,Tion or tht- 
condition of formation of the limirin 1 ,nfo™atl°n concerning the 
dm and rft) on the onHmn, J i 8 and StaMe control x(t), wft) 

leading to the maximum value of the'fWt°f flÍRht vehiclc. 
Since the Clchsch condition follows from ih ’ ^ hef0re coraPutation. 
condition, which is 

Rive additional^nformat'i'on'^n th^oi5> 0r principle can 
°! thl I •■iting and ^ëblTcëët^/^;110^ffÍOn and --»once 
the necessary Keierstrass condition or th rhcrefore* Investigation of 
P«»nt in question in the interval in t Ï -TÍ?1!!*" princiP,c at the 
assumption that the eormcn^ a ^0' ** W' performed on the 

not related to the required^r^et^^^'t^r'0" at thÍ5 is 
¡n advance that at thosÎ Îolî"^" ^ / ? Umitat ion. We note 
conditions of limitation of thr r P III* contTOl is restricted bv 
detenained fro. tic ^tîon îp T!^ VeCt°r* ^ 
principle we can find only euuatinrs « ’i?" *he k**1* of thc "»ximiiin 
equations with cown.ed contri of the’^^ín^ 

n.1.5) Sietr^r;ë™ COndïUon ln *hc ca*«* of max,mum value of function. 

where 

H /7 If. 

l-(K.W). 

.?.). 

.ï«). 

.4 H . 

t 



4 corresponds to values of ♦ with permissible control functions. 

By permissible control functions, we mean values of the functions 
within the framework of the limiting values for which the coupling 
equations (1.1) are satisfied, while a permissible phase trajectory is 
a phase trajectory which is realized with a permissible change in the 
control function and satisfies the boundary conditions. 

Due to the continuity between angular points, the existence of 
wbich results from separation of stages, functions V(t), 6(t), H(t), 
L(t), s(t), V*(t), Q (t) and Tw(t), the conditions 

V'-V, 0-5. H-Ñ, L=*L I»*“?*. Q«-&. r.-f. 

are observed. 

Thus, function E can be reduced to the form E* * H* - H*, thereby 
producing 

(1.3.1) 

where 

rm 

In order to expand the area of existence of possible optimal con¬ 
trols, we will perform our investigation of the beierstrass condition 
under the assumption .of the existence among the permissible controls of 
a zero control, i. e. a control for which the corresponding control 
function is equal to zero. 

Condition (1.3.1) should be fulfilled with any permissible control, 
i. e. H* with optimal control is always less than or equal to H* with 
any permissible non-optimal control, including thî zero control. There¬ 
fore, the condition 

(1.3.2) 

occurs, where H® is the value of H with the zero control. 

Thus, condition (1.3.2) follows from the beierstrass condition 
(1.3.1) and, like it, is local. In the following, condition (1.3.2) 



r 

functions 
ling 
ctory is 

in the 

will be called the control condition or the condition of permissible 
non-zero control. It shows that with any non-zero control the value 
of H* should be less than or equal to the value of H . If th<* control 
condition (1.3.2) throughout the range of permissible non-zerj values 
of the control function is not fulfilled, the optimal control satisfy¬ 
ing the Neierstrass condition (1.3.1) must be assumed to be the zero 
control. 

ce of 
H(t) , 

f- 

thereby 

(1.3.1) 

mal con- 
ondition 
ntrols of 
>ntrol 

V control, 
,H* with 
il. There- 

(1.3.2) 

dition 
(1.3.2) 

The control condition is a weak condition in comparison to the 
Neierstrass condition. Its fulfillment does not indicate satisfaction 
of the Neierstrass condition, but only shows the possibility of its 
fulfillment by a non-zero control. Therefore, the control condition 
does not allow us to judge the optimal control, hut in many cases helps 
us very simply to determine the area of possible optimal control. 

In order to determine the optimal control, we must use the mathe¬ 
matical theory of the maximum principle [28], a generalization of the 
necessary Neierstrass condition to cover the case when the optimal 
control being determined is related to limitations based on inequali¬ 
ties. The maximum principle (since the maximum value of the functional 
is determined) consists in that with the optimal control determined 
among the permissible values of control functions d, r, a and id, func¬ 
tion H* reaches the precise lower boundary at ear*» moment in time: 

m* inf IH * N*,*)\• 

dmm<d<dmm, 
(1.3.3) 

Condition (1.3.3) allows us to determine the optimal control. In 
this sense, condition (1.3.3) is the condition of optimal control. It 
does not contradict condition (1.3.2). The control condition, being 
"weaker," facilitates and in many cases greatly simplifies determination 
of the optimal control from the maximum principle. Therefore, investi¬ 
gation of the optimal control according to (1.3.3) should be performed 
on the basis of the control condition (1.3.2). 

If the control function is determined unambiguously at each moment 
in time from (1.3.3), the optimal mode of motion within the fixed 
boundary conditions is unique and the phase trajectories satisfy the 
systems (1.1) and (l.II). 

It has been demonstrated in [11, 20], that the condition of optimal 
control (1.3.3) does not always have a unique solution. If the non¬ 
uniqueness of solution (1.3.3) is retained in sector (t|, 12) the 
interval Iq t 1 tg, a slipping mode occurs. Then, generally 

-V>- 

àá 



speaking, there is no control with which it is possible to realize motion 
along the phase trajectories of the equations of motion of the system 
(1.1). Therefore, there is no maximum of the functional in the class 
of permissible control functions. However, there is almost always a 
sequence of phase trajectories of equations of motion which converges 
to a certain sequence of limiting curves, satisfying the fixed boundary 
conditions, while the values of the functional approach their up’er 
boundary. Thus, determination of the maximum of the funcionai is 
essentially reduced to determination of this sequence, '-ctermining it, 
we can realize the optimal mode as accurately as desired while remain¬ 
ing in the class of permissible control functions. The general theory 
of slipping optimal modes and the method of their calculation were first 
developed in detail in [11, 20]. 

Approximation of the slipping mode even with low accuracy leads to 
a control, the realization of which requires the use of regulators 
with high over-control factors, requiring that the problem be stated 
once more considering the dynamic characteristics and the dependence 
of the over-control factor on the plan parameters and design load 
parameters. If this is inconvenient for any reason, we can go over 
to approximate solution of the slipping optimal mode, the method of 
which is given in [20]. 

Therefore, the problem of investigation of (1.3.3) is determination 
of the optimal controls using the control condition (1.3.2) and location 
of any possible area of non-uniqueness of the solutions of (1.3.3.), 
leading to slipping modes. 

The control functions a, w, d and r are autonomous, i. e. are 
independent of each other. Due to this, condition (1.3.3) considering 
(1.3.2) can be analyzed separately for each control function. 

For the thrust vector, the control condition has the form 

Furthermore, for the control function w 

If « 0, then, taking inertial flight as the zero control u, 
b — 

control condition (1.3.2) and the condition of optimal control can be 
represented as 

(1.3.4) 

(1.3.5) M* ini . 

“min *m< 
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WV must nute hero that the zero control u -- 
is a singular control 1») or a singular solution of 
in connection with the possibility of cutoff 

inertial flight -- 
(1 -3.5),appearing 

of the power plant. 

in order to determine the conditions under which (1 3 5) is 
fulfil led and clarify the .ambiguity of control w, let us study the 

UfrT° reSpeCt t0 ^ with arbitrary fixed values of Ay and A? and V. Thus, we have 

From (1.3.7), according to (1.3.4), we produce 

<r>H' 

(1.3.6) 

(1.3.7) 

rhus, the dependence of H* on w at each moment in time is 
expressed by a curve which bulges downward (Figure 1.4). Therefore 
(1.3.^) where P* i 0 cm be fulfilled both with stable control and ’ 
with limiting control w but, significantly, at each moment in time 
only by one of these. fonse.|uently, at each moment in time there is 
an unambiguous control with respect to u. Let us now study the area 
of values of >* and f°r which stable or limiting control w ( - tt/2 < 

I \2)* With P* ^ °- For this* we analyze (1.3.6), keep- 
ng in mind (1.3.4). Conditions (1.3.4) can be fulfilled with the fal¬ 

lowing values of and *: 

*;<o. > ;<n. 

à;<o, > j>o, 

**sin».<0 

(1.3.8) 

(1.3.9) 

or > 0, >* < 0 

>•>0. > ; >0 

where «• > (\ 

«<0. 
where 

(1.3.10) 

(1.3.11) 

Among the conditions (1.3.8)-(1.3.11), we shall study values of 
w with which a precise lower boundary of H* is possible. To do this, 

we analyze cases of change in the sign of tbe derivative 3H*/»uj. If 

(1.3.8) and (1.3.9) occur, the precise lower boundary of H* can be 
lit 



« 

reached with 

—X*sin —— — «=0, 
(1.3.12) 

which corresponds to stable control with respect to u. In order to 
produce equation (1.3.12), expression 3H*/3w must change its sign 

from minus to plus upon movement from to Therefore, in 

the area of positive values of u (1.3.12) is possible only with 
(1.3.8) , while in the area of negative values of u> it is possible only 
with (1.3.9) (see Figure 1.4). However, (1.3.8) and (1.3.9) also per¬ 
mit retention of the sign of leading to fulfillment of the 

condition of optimal control (1.3.5) with limiting control. Thus, 
(1.3.8) retains only 3H* /3u < 0, while (1.3.9) retains 3H*/3w > 0, 

correspondingly leading to w , io = « . . Thus, in the area of r max min 
values 

*ï<0, -|X;|slgn(sin«) (1.3.13) 

the condition of optimal control (1.3.5) has an unambiguous solution, 
corresponding to the stable or limiting control with respect to w, 
permitting transition from stable to limiting control and back. 

Undei con 
respectively 

Therefore 

and u * r 
max 

where 

the precise lot 

Keeping it 
XJ, we produce 

Then, acc< 

the condition < 
control u oi max 
quently, where 

condition of oj 
corresponding t 
tion from one 1 
achieved at th< 

Figure 1.4. Change In H* as a Function of 

Angle u Under the Condition Xj < 0: 

- Xj < 0» 0 < w < u.MX, 

.• \ > °' “min " “ " 0 
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Under conditions (1.3.10) and (1.3.11), we produce from (1.3.6) 
respectively 

à< <0. 
ÔH\ ->o. 

(1.3.14) 

Therefore, the precise lower boundary of H* is reached at w = u . min 
and in respectively (Figure 1.5). Thus, in the area of values 

>1= 

*;>o. 
II sign (»In «.). (1.3.15) 

where 

sign (sin w) I I 
where 

where 

the precise lower boundary of H* is reached only with limiting control. 

Keeping in mind (1.3.13) and (1.3.15), regardless of the sign of 
wv produce 

Then, according to (1.3.6) and (1.3.7) where 1Ç * 0 and AÍ / 0, 

the condition of optimal control (1.3.5) is fulfilled only with limiting 
control u or “hen ^ < 0 and > 0 respectively. Conse¬ 

quently, where >£ >( 0 in area (1.3.15) of the values of XJ and )£, the 

condition of optimal control (1.3.5) has an unambiguous solution, 
corresponding to one of the limiting controls w. Non- transi¬ 
tion from one limiting control u> to the other in case (1.3.15) is 
achieved at the moment 

i;-0 and x;=o. 

If the last condition is retained with respect to time, i. e. 

X;s0 and ^.0, 

we arrive at an infinite sequence of limiting controls w. The identities 
decrease the order of the system of Euler-Lagrange equations (1.11) by 
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1 

! 

two units and lead to degeneration k = 2 of the variational problem 

Sici/to^er Ca"CS.the>' Ca“sc 311 thl‘ ^grange coefficients to he 
problem*1 8 t0 fuI1 of the variation:,! 

Mgure 1.5. tnange tn H" as a 
u 

function of angle w where > 0: 

\, < 0, u » ui 2 — max, 
— >ot w.wM|n 

Let us now determine the area of values of 9Ç and * satisfying 

Uej«îr?' C°ndit-0n (,-3-4)’ With whlch °Ptimai control of angle u, 
is possible if it is limited by the interval 1/2» < w <3/2». These 

i^oîve0deceîerr,tïIfi],edrf°rhdTCndinS vehic1”* ^en maneuve, involve deceleration due to the force of gravity. Then w and u 

fall within the limits "aX ",n 

a < < — ». y-t < ■ < 3». 

to the^iïs/ür^r* th^ nCW an8lfS “* reducinR the first values of u 
f,rst P°*itive and negative quadrant by substituting «•»♦«. 

Then the control condition (1.3.4) is corrected to the form 

— (»Irosw-f /Jsln w) <0. 

»/2 

are 

Therefore, all preceding conclusions produced for values 
are retained also for u, (-»/2 < u < »/2) when the signs of 

reversed. Thus, in the area of values 

-w/2 < u 
and 

< 

A 

k, ■ 0, )j I ).j I sign (sin m) 
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the optimal control condition (1.3.5) has an unambiguous solution, 
corresponding to the stable or limiting control u., while in the area 

>-í =|*í|sign(s¡n¿) 

it has an unambiguous solution with the limiting control, 

kepresenting 

I*. 
* dm ’ 

an the basis of the results produced, we can formulate the following 
conclusions: the maximum principle with limiting and stable control .., 
will be satisfied if in addition to the inequality 

,'(i;cos.+i;-íí^co 

one of the following conditions 

' 0 where 

i;<0 where 

l->0 where 

(1.3.16) 

is fulfilled, and where < 0 the optimal control may be eit ier the 

limiting or the stable control, while where > Q it can only be 

the limiting control (where -w/2 < w < w/2). 

This conclusion is correct for the condition ’g < 0. 

the inequality 
If I > ». 

COS m f 
. «in 

V 
0. 

is possible, and does not disrupt the control condition of the thrust 
vector where p* t 0. However, it occurs only where *• > 0, since other- 

wise in the area of u. ~ 0 it will be disrupted or transformed to 

thu"?!‘ty Í!;3,4 * In ordcr t0 cxPlain thf condition of formation of 
this inequality, let us e.tpand the area of change of u slightly, 
assumi 

Then where 1Ç < 0 or where AÇ > 0 in the area of w. « n/2 or w * 

-t/~ respectively, this inequality is disrupted and the condition (1 3 4) 
occurs. Thus, if ,t is possible to satisfy the condition of optimal 
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control (1.3.5) with this inequality, it is only possible where .n > 

-»/2 and u < */2. Furthermore, since in this case max 

the optimal control condition (1.3.5) corresponds to limiting control. 
Here when the condition 

arises and is retained over a certain time sector, it is possible in 
principle to have a slipping mode as the optimal control u. 

Consequently, where ^ > 0 and X* > 0 in the limited area of 

change of «(«„j,, > -«/2, < */2), the inequality cos w ♦ 
sin w/V > 0 is possible, satisfying the thrust vector control condi¬ 
tion where p* i 0. In this case, the optimal control condition is 
satisfied only by limiting control, which when the equation (H*) ■ 

“ “max 
(H*) is retained over a certain time sector can in principle be 

“ “min 
transformed to a slipping mode of w. However, it must be noted that 
with a sufficiently "broad" limiting area «("»„^ 1 */2 and -*/2), 

this case does not occur. Therefore, in the following (unless specific¬ 
ally stated otherwise) we will use only control condition (1.3.4) for 
qualitative evaluation of optimal control in our investigation of the 
condition of optimization of the other control functions a, r and d. 

Let us now present a certain geometric interpretation of the 
results just produced. For simplicity, we shall use the function sin 
id in place of w for the control function. Then the Euler-.agrange 
equation (1.2.30) becomes 

4.iL, 
*• 1 4»ia. * V 

where 

In the interval 0 < cos w ^ 1, the dependence cos « - ♦(sin id) is 
such that the tangent is” always located above the curve (Figure 1.6). 
Therefore, where id 0, the following condition occurs 

|(coi«—cos»)—(sta"—•ta") 

where u corresf 
id corrcsj 

rum 

t»<* 

The Weiers 
becomes 

Considerin 
corrected to th 

From this, 

only where XJ < 

tion is fulfill 

This last 
Based on these 

Thus, with 
corresponds 
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where u corresponds 
<u corresponds 

to the value of sin w at the point of contact; 
to the value of sin w at an arbitrary point. 

Figure 1.6. Geometric Interpretation of the 
Necessary Weierstrass Condition for Angle u 

The Neierstrass condition (1.3.1) relative to control function u 
becomes . , ■% 

(cos »—cos ») + -—- (s!n»—sln^) <0. 

Considering the Eu1er-Lagrange equation, this inequality can be 
corrected to the form 

f(cos» — cos»)—(sinm — stn») —-f—— -f- —— X 
"I xj 

X (sin «-sin ^)] <0. 

From this, we see that stable control for which X* * 0 is possible 

only where < 0. At the same time, the necessary Neierstrass condi¬ 

tion is fulfilled with the limiting control if where 

*;<0 orlî>° 

— (sin »—sin «) > 0. 

This last condition is easy to reduce to inequalities (1.3.16). 
Based on these results, we note that with stable control u we always have 

<o. 

Thus, with stable control u, the necessary Neierstrass condition 
corresponds to the control condition (1.3.4). 
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For control function « we have 

Then the control condition and optimal control condition are pro 
duced in the form 

(i.3.18) m, --Ini H% , 

where f 
0 

f° are the functions 
w 

f and f where a 
q w 

0. 

Investigation of possible solutions of (1.3.18) with various fixed 

V ^ q V V arK* H' ^ should be performed considering r1.3.17). 

The dependence of and on the angle of attack a is very difficult 

to determine, and it appears differently under the influence of various 
factors. In connection with this and in order to simplify study of 
(1.3.17) and (1.3.18), we will assume a very weak dependence of f^ and f^ 

on a, such that f^ -f^, f^ = f^. Therefore, (1.3.17) and (1.3.18) are 

reduced to the form 

••I»****»»! 

(1.3.19) 

(1.3.20) 

We can formally arrive at these same conditions when the coupling 
equations (1.1.8) and (1.1.9), considering the rfluence of aerodynamic 
heating on the "operation” of the flight vehicle structure, are omitted. 
However, essentially the assumition of weak dependence of f^ and f^ on a 

and ignoring the coupling equations (1.1.8) and (1.1.9) represent a dif¬ 
ferent approach to evaluation of maneuvers of the flight vehicle. In 
the first case, a certain approximation is used in determining indicators 
of aerodynamic heating T^ and , while in the second case the influence 

of aerodynamic heating on the load-bearing work of the structure of the 
flight vehicle is ignored, which is possible in principle only with 
relativelv low values of T and Q 

W T 
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Aicordinc to the definition of H*, we will have 

.> *Q‘ +Ji.^n 
.in) ' .in' 

(1.3.211 

íH»1 

(1.3.22) 

The aerodynamic characteristics of the flight vehicle are such that 
hi the general case where a < we have (22] 

aa ’ 
or >0. (1.3.23) 

Furthermore, based on the experience of planning flight vehicles 
(10, 22, 26], we can assume that a and a . will always be in the 

max min 
range of values of a for which it is possible to produce the linear 
dependence of Y* on a with great accuracy, particularly where M > 1. 
Then, we can practically alwtys assume 

t*T* 

da* 
0. (1.3.24) 

The error caused by using the linear dependence of Y* on a and therefore 
by condition (1.3.24) in an investigation of the optimal control condi¬ 
tion (K3.20) can be significant for the estimation of the sign of 
^‘H*/3a‘, but only where VJX » XJ, since always S‘Qi/Ja‘ > 9-Y/ia2. 

'towever, if X£/R is greater than V*, this is possible only with limiting 

contre, a. For example, suppose (a ) < 30-40*. In the case of stable up — 
control, the Eu1er-Lagrange equation (1.2.25) indicates that 2a = ^ 'l 

i. e. at the beginning ot the range of limiting values of a, the ratio 
X^/V cannot be greater than one. 

riqi', with a linear dependence of Y* on n, the sign of the deriva¬ 
tive >‘H* is determined by the sign of the Lagrange coefficient 

XÎ. Then we produce 



doí 
>0 

— •- <0 
do* 

where k;<0, 

where 

(1.3.25) 

(1.3.26) 

while the derivative 3^H*a/3a2 can be equal to tero only where Xi « 0. 
In the case of (1.3.25), the curve expressing the dependence of H*a on 
a bulges downward, while in the case of (1.3.26) it bulges upward. 
Therefore, fulfillment of the optimal control condition (1.3.20) is 
possible at each moment in time with (1.3.25) with fully defined control: 
stable or some limiting (see Figure 1.7), while with (1.3.26) it is pos¬ 
sible with limiting control (see F4gure 1.8). In the latter case, the 
proof of unambiguity of the solution requires additional analysis. 

Let us investigate the area of values of XJ and for which stable 

or limiting control is possible, keeping in mind 

-jr>° ” ^>o 

da 

or 

- <0 <0 
C¡*=0, ——3=0 where 

where 0 < « < o„„ 

where a1.i.<a^0t 

a—0. 

(1.3.27) 

According to the control condition (1.3.19), the following 
inequalities should be observed: 

*.*«> and *r<° 
*,*<0. >;<0, 0<m, (1.3.28) 

*;<0. 3i>0. m<0, (1.3.29) 

(1.3.30) 

*î>0. i;>0. (1.3.31) 

Keeping in mind (1.3.21) and (1.3.27), we note that cases (1.3.28) 
and (1.3.29) permit solution of the optimal control condition (1.3.20) 
with the equality 

d* 
de +T- 

dr* «0, 

which corresponds to stable control a; in the area of positive values of 
a < 0, while in the area of negative values a > 0. Therïfore, the 

transition through a - 0 with stable control is pjssiblc onlv with X*2 * 0. 



Furthermore, (1.3.28) and (1.3.29) do not exclude the possibility of 
retention of constant sign by 3H*a/ 3o. Thus, 3H*a/3a < 0 can occur 

only with (1.3.28), while 3H*a 3a > 0 can occur only with (1.3.29). In 
these cases, the condition of optimal control (1.3.20) is satisfied 
with a * a and a * a . respectively. The equation max min 

ini «*.*=ln(Wl 

in connection with (1.3.28) and (1.3.29), is possible only where ^-0, 
and therefore, according to the control condition, we produce Xj * 0. 
Consequently, the non-uniqueness of the solution of the optimal control 
condition (1.3.20), resulting from the non-inertial transition from one 
limitirg control to the other, is allowed only with equations Xj * 0 
and X, ■ 0, which, if retained in time produce X = 0 and L ï 0, lead¬ 
ing tö degeneration k * 2 of the variational problem and frequently 
even to its full degeneration. In the case Xj * 0, the optimal control 
condition (1.3.20) is satisfied where X* < 0 over a « amax, while where 

> 0 it is satisfied over a « “„i,,* 

Thus, in the area 

x;<o. 
x;- - IKI slpn a 

(1.3.32) 

the solutions of the optimal control condition (1.3.20) are unambiguous 
and correspond to the stable or one of the limiting controls (Figure 
1.7). In conclusion we no\e that since in the area of non-linear 
dependence of Y* on angle a with large values but »here a < akp we find 

-^“-«<0 where a >0, 

~^~T >0 where «<0. 

the conclusions produced earlier concerning satisfaction of the optimal 
control condition a are fully retained with (1.3.32) 

In the case both of linear and of non-1incur dependence of Y on 
a, with large values we retain the condition 

aC, 



figure ).7. Change in H* as a 
a 

function of Angle of Attack -ï 
with the Condition < 0: 

__ ^'0, 0*a<a 
1 — — it. ax, 

amin — a — 0 

figure 1.8. Change in H* as 
a 

a function of Angle of Attack 
a with the Condition ^ > 0: 

where \, < 0 a - a ~~ 2 — max 
— where V > 0 a ■ a . 

2 — min 

write 
Therefore with (1.3.30) and (1.3.31). according to (1.3.21) we can 

0H[ 
-£-<0 where a>0, 

àH* 
~>0 where a<0 

(1.3.33) 

Thus, where ^2.°* the optimal control condition (1.3.20) is satis¬ 

fied only with limiting values of a (Figure 1.8). We represent 

A*=* 

We then produce the following conclusions: the principle of the 
minimum with limiting and stable control a will be satisfied if in 
addition to the inequality 

where with V ^ 1 

the stable contri 

control. 

These conch 
Suppose in place 

Then the Eul 

where 

The characte 

It is such that t 
fore, we have 

where Qf is the v; 

Y*; 
QÎ is the va 

The Weierstra 
Y* can be written 

Using (1.3.35 

E\ 

where a 

one of the following conditions is also fulfilled: 

We can sec th 

with < 0. Lim 

dit ion if where 

U where aaia<a<aawn 

i.*<0 where u ua,„ 

where n ^111- 

where AJ > 0 
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whore with XJ < 0 the optimal control a can he either the 

the stable control, while where ^ ^ 0 it can only he the 

control. 

limiting or 

limiting 

These conclusions can be given a definite physical explanation. 
Suppose in place of a, the control function is Y. 

Then the Euler-Lagrange equation (1.2.29) becomes 

"V/ 

where 

: -X 

0>» 1 

at 
áY» 

(1.3.35) 

«• 

The characteristic dependence Q? * **(Y*) is shown on Figure 1.9. 

It is such that the curve ♦*(¥*) is always above the tangent. There¬ 
fore, we have 

Of • 

where Q* is the value cf Q* at the point of contact, corresponding to 

Y*; 
Q* i* the value of Q* with arbitrary Ÿ* ¿ Y*. 

The Weierstrass condition (1.3.1) relative to the control 
Y* can be written as follows: 

£:=[x;ítf-Q;)_ JL (p._K.)]<0. 

function 

Using (1.3.35), let us convert it to the form 

£-x; ^0. 

We can see that the stable control, when >* - 0, is possible only 

with XJ < 0. Limiting control wil! correspond to the Weierstrass con¬ 

dition if where X* < o 

where XJ > 0 

x:(F* -k*)>o. 

>!()'* >r»)<o. 

-()4 - 



These conditions can be easily reduced to inequalities (1.3.34). 

Thus, the possibility of stable control a where X* < 0 and its 

absence where X* > 0 is detenained by the process of interaction of 

the aerodynamic lift and its inductive drag in the form of dependence 
Q» * ♦*(Y*), given on Figure 1.9. 

r-1 
Figure 1.9. Characteristic Dependence of 
Aerodynamic Inductive Drag Q| on Lift Y: 
V ■ const, H * const 

Inequalities (1.3.30) and (1.3.31) do not exclude non-uniqueness 
of the solution of the optimal control condition (1.3.20). It occurs 
where 

lnf w*=.inf m! 
t—*» 

from which 

(1.3.36) 

Then equation (1.3.36) can be fulfilled under the following condi¬ 
tions: 

rmn>\yL<- ^>°* 

(1.3.37) 

(1.3.38) 

(1.3.39) 

Equation (1.3.36) is the condition of transition from one limiting 
control to the other. If it is retained over some interval (tj, t2)# 



I J ' ). 

d its 

on of 

endence 

queness 
occurs 

1.3.36) 

ng condi- 

1.3.37) 

1.3.38) 

1.3.39) 

: limiting 
r t2)* 

a slipping mode arises, consisting of an infinitely gr*at sequence of 
limiting control a and a . . Kith this control, the movement of the max min 
flight vehicle occurs with the maximum i' ductive drag, which may result 
from the requirement of maximum controlled deceleration. Therefore, 
slipping mode a will be interpreted as one form of maximum controlled 
deceleration. Equation (1.3.36) decreases the order of system (l.II) 
by one in the slipping mode. 

Furthermore, we must note that where 0 < a < a with (1.3.30), ^ 1 max 
(1.3.31), according to (1.3.21) and control condition (1.3.19), the 
solutions of (1.3.20) are the limiting control a = a and the zero 6 max 
control. Transition from the limiting control to zero control is 
determined by the equation 

Thus, where > 0 when the following inequalities are fulfilled 

(1.3.40) 

the solution of (1.3.20) is always unambiguous and corresponds to one 
of the limiting controls, while where conditions (i.3.37)-(1.3.39) are 
fulfilled, the solution may not be unique. Ke should discuss par¬ 
ticularly the conditions of formation and retention of the slipping 
optimal mode. The existence of a slipping mode is related to retention 
over a fixed time interval (t , t^) of the condition 

y" 
=3 SV, „„-H, ~v 

rl 
— x’O* -L)* '‘m.l, . 'l y 

mle 

Therefore, the slipping mode will correspond at each moment in 
time to the optimal control a when the following condition is fulfilled: 

The slipping modes of control a (and other control functions) 
introduce a number of difficulties to the solution of variational pro¬ 
blems. The possibility of their formation creates particular diffi¬ 
culties of a computational nature. Although there are certain approxi¬ 
mate methods for solution of variational problems with slipping modes 
[11, 20], it must be noted that there are as yet no sufficiently general 
methods for solution of this problem. 

It is very important here to be able to solve the variational 
problem within the framework of one computation algorithm with and 
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Without slipping modes. Another difficulty is the difficulty of tech¬ 
nical achèvement. Of course, sliPpinR modes cannot beRealized 
íelaèd lf the solution of the variational problem is 

aniw to f i C!- 3 sliPPinß mde’ we must ejther return 
resulîin! íróü'ih • î°nS °f the Pr°ble,n t0 introduce a limitation 
resulting from the inertial nature of the control system, or go over to 
apprt nmate methods of calculation of the slipping mode. 

Thus, retention of unambiguity of the solution of (1.3 201 with 

tim:;,cad?emer to thc necessitv °f introduiti0; ^ "eï 
calcuLîuon Líods n ^3^1 P^1-- to approximate 

ronHii-1 S°,utio"* fo,ind in the investigation of the optimal control 
! Üénnth a n-3-20)’ have heen Produced with no relation to control 
Solomons Ío^th" "T™, f,inctions they must not contradict the 
solutions for the optimal control condition for io (1.3.51 in their 

a andC! wnînhflCaT' Iheref?!e* the investigation of optimal control 
and ui will be performed considering their mutual influence. 

We have 

(flacos.-Q;)+X¡ Il (a¿p'stn*+y). 

The condition of optimal control of a and u, simultaneously is 

m* = Inf /y*. . 

“min 
(1.3.41) 

It can be fulfilled when the control conditions are realized 

(1,42) 

as well as the control conditions relative to a where p* > 0 

+ (1.3.43) 

These two conditions lead to yet another condition: 

Wx:cos«>+>*-iaL“)<0 
\ 1 r ' V - (1.3.44) 

Suppose |ui| ti/2. Then the value of expression (a*.p* cos w - Q*) 

is independent of the sign of m and a, and is determined only hy their 
absolute values. The value of expression (a*, p* sin to ♦ Y*) depends 
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both on the absolute values of a and w and on thcir si^ns. The-efore, 
with any defined values of a and a>, the value of the expression 
/ alp* Mn u, | \ / _y» \ 

\ K» / or \ "^ Oq(/>” *m J / ,>cc°mes greatest when the signs 

correspond. 

or 

Optimal control condition (1.3.41) will be represented in the form 

m*=in(|x; -fl (û^Vos— 

“min 

inf cossin« ( i + 

_iCiL/ , , «i./’**'"“ 'll 
Mr\ ^ y. /]• 

“min*“«“«.» 

tf* p»sinu 

These conditions of optimal control can be determined if according 
to (1.3.43) and (1.3.44), we have 

where XJ<0. 

Xj sincu^O where 

tl) Based on these inequalities, we note that according to (1.3.42) the 
condition of simultaneous optimal control a and w can be fulfilled if 
Y*/sin ^ 0 or sin u/Y* ^ 0, i. e. if the directions of the thrust 
vector and aerodynamic lift vector correspond. Thus, regardless of the 
sign of theLagrange coefficient the condition of simultaneous optimal 

■vj control a and m can be fulfilled when the inequality 

*JK*<0 

y, is fulfilled, and the directions of the thrust vector and lift vector 
correspond. In this connection, in the active sector of an optimal 
phase trajectory of a flight vehicle, slipping mode a cannot be encoun¬ 
tered. If it is possible, it will occur during the passive sector, when 
condition (1.3.44)is not fulfilled. Therefore, in the active sector of 

H an optimal phase trajectory, the optimal control condition for a and u> 
(1.3.41) is satisfied where >* < 0, both with stable control a and id 

• Qi) anti with limiting control a and u, while where A* > 0 it will be satis- 

ir fied only with limiting control a and ui. 
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For control function r we will have 

Assuming the possibility of the zero control for the force of 

gravity, when p* = 0, the control condition and optimal control condition 

for function r can be represented *.n the form 

p*(x;coSM+x;-^-)<o, 
(1.3.45) 

(1.3.46) 

Usually, the permissible values of r^ and rmax are such that 

when they occur, p* > 0. Then the control condition (1.3.45) for r 
becomes similar to control condition (1.3.4) for w. In this connection, 

the optimal control condition (1.3.46) will be fulfilled with those 

values of r for which p* * (P*Bax)r- Therefore* only in the case of 

an upward-bulging dependence p a 4(r) and the given V, H and d is 

stable control r possible with ropt I rmax (Figure 1.10), the stable 

control defined by the condition 

(1.3.47) 

In other cases, the optimal control r will be its value with the 

given V, H and d for which p* reaches its maximum. In the following, 

it is this value of r which we will consider the maximum rBax (Figure 

l.H). Thus, optimal control r is possible either with its stable 

value r determined from (1.3.47), or with its maximum value rmax. 
opt 

However, this conclusion is correct only until stable operation of the 

power plant is disrupted. Otherwise, control r will be related to the 

condition of stable operation of the power plant. 

For control function d we produce 

The minimum value of d can be various. For a more precise physical 

representation of the role of optimal control d, we assume dm.n such that 
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p* = 0. Then the control condition for d can be represented in the form 

The presence of u* . t 0 where p* = 0 results from the existence 
r ts mm 

of thermodynamic losses in every actual power plant, which must be 
covered by the expenditure of a certain quantity of fuel. However, for 
simplification of our investigations we can assume ^ = 0. This 

assumption is quite correct where p* > 0. Therefore, control condition 
d can be represented as 

"Hr (l 5-4(l) 

Figure 1.10. Determination of 
Stable Control r: 
Vi am ¥ U m ¿‘«inet H m rOHC t const. H » 
r_. < opt 

- const, d ■ const, 
r 3Zp/3r2 < 0 max 

Figure 1.11. Determination of 
Optimal limiting Control: 
V - const, H ■ const, d - const, 
r ^ “ r opt max 

hysical 
uch that 

The optimal control condition for d is written as follows: 

m*- inf alp' (*;cos,..+x; /*] . (1.3.49) 

Since the choking parameters d* are independent, control condition 

(1.3.48) and optimal control condition (1.3.49) can be analyzed for each 
choking parameter separately, considering the other parameters constant. 
Then in place of choking parameter d we can use p* as the control function, 
expressing function f* as the following formula: 

/•“/• (P\ S,. V. H, 00. «0. K M. 
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where dj are the re(>ulation parameters except 

Therefore, the optimal control condition 

represented as: 

*>•(>.; cos .u-h; 

for d* (1 = 1,..., n - 1). 

(1.3.49) for d* is now 
s 

-X! 

(1.3.50) 

fl t ïot ÎnH n X co!h Adentlcal nature of the control conditions 
(1.3 49) and (1.3.50). However, (1.3.50) can be used to produce the 
solution more clearly. Investigation of the solitions of the optimal 

T°Îîtl0,î (1-?-50) wil1 be performed considering control condi¬ 
tion (1.3.48) and optimal control w and a, considering r*. d* (1 = 1,. 
n - 1), V, H, V», w, >*, ^ and ^ constant. Keeping in mind^hc control’ 

fn?F-îî°n fr “ we find that control condition (1.3.48) will be rulrilled where 

K>o. 

K<o. 

We have 

or, since 

dp* 

f , • 
i-=4«i (»;cor»+g ^.)-¾ 

' Jat*P* 

/-£11 

( 'sV ' ^sp ( 
then 

^sp dP* 

(1.3.51) 

(1.3.52) 

(1.3.53) 

-f-À * a*°' 

tJ*oidp*2 
or 

(1.3.54) 

(1.3.55) 

On the basis of (1.3.51) and (1.3.52), let us determine the possible 
solutions for the optimal control condition (1.3.50). In the case of 



(1.3.51), with control condition m (1.3.4), accordinc to (1.3.53) we 
have 3ll*/3p* < 0. Thereforr, the solution of (1.3.50) or (1.3.49) is 

only control P* = (P*m;lx)d . referred to in the followinR as the maximum 
s 

thrust mode and represented simply bv p* rather than (n* ) 
ro*™ ‘max;d ' 

Thus, in order to satisfy (1.3.49) 
points, where the Lagrange coefficient 

or (1.5.50) at the extreme 
is greater than or equal to 

zero, control function p* should tale on its 
it also follows that if under control condit 
modes of operation of the power plant occur, 
the case ^ < 0. Lt. us now investigate the 

maximum value. From this 
ion ai (1.3.4) the choking 
they are possible only in 
solution of the optimal 

control condition (1.3.50) with (1.3.52). 

Here first of all we must note the possibility of production of 
two equivalent solutions. Thus, at a certain moment in time with p* 
0, the equation r 

f--¡Sr-)-s —(--o. 
4¾. 

(1.3.56) 

is possible, which with the choking mode, according to (1.3.54) 
characterizes the cruising thrust mode (p* = p*^), for which p*’ = p* 

If at a subsequent moment in time control condition (1.3.48) is disrupted 

ierSatiSfy!ng (1-3-56)' two controls ^ possible in principle: 
fl ght by inertia (zero control) or the slipping mode reflecting the 
pulsating thrust mode p* = or p* = p*p and p* = 0. They satisfy 

condition (1.3.50) identically and correspond to H* = 0. In this 

nnxe4Aihe ^ solu^ons are equivalent. In the first case, equation 
11.3.66, is the condition for transition from mode p* = p* (or p* = 

pj*p) to inertial flight, while in the second case it is the condition 

for transition to the slipping mode while retaining (1.3.5b) with 
respect to time From the point of view of simplicity of performance, 
he zero control (inertial flight) is more acceptable than the difficult 

pipping mode. However, after satisfying equation (1.3.56), preference 
should be given to the control for which the effectiveness criterion is 

Since we are interested only in modes up to n = p 
ÍH3 X 

what the choking characteristic, throughout this range of 
increasing thrust p* increases. Therefore, where > 

no matter 

p* with 
< 0, accord- 

.•»‘i 



ingto (1.3.55) we produce 

(1.3.57) 

which indicates the opposite nature of the signs of and 
“Vti • 

The solution of (1.3.50), characterizing the optimal modes of oper¬ 
ation of the power plant, will be determined after preliminarily dividing 
the possible choking characteristics into two standard groups. This 
allows us to order and generalize the results of the solution of (1.3.50) 
depending on the group of the choking characteristic. 

The first group includes choking characteristics for which the. 
value of the maximum possible thrust P^ax practically corresponds with 

the value of the cruising thrust p£p, corresponding with the given V and 

H to the maximum p*p (Figure 1.12-1.14). For choking characteristics of 

the second group, the value of p* is significantly greater than that 

of P*p (Figure 1.15). 

T 

Figure 1.12. Choking Characteristics of First 
Group: H - const, V ■ const, d, » const, r - const 

» Hi * 
Figure 1.13. Choking Chracteristics of First 
Group: h - const, V ■ const, d. » const, r • r * const 



1.3.57) 

of oper- 
dividing 
This 
(1.3.50) 

Figure 1.14. Choking Characteristics of First 
Group: H ■ const, V ■ const, dj • const, r ■ 
const 

the 
s with 

en V and 

sties fl* 

n that 

Figure 1.15. Choking Characteristics of 
Second Group: H ■ const, V » const, d. ■ 
const, r ■ const 

Let us analyze the solution of (1.3.50) for the first group of 
choking characteristics. In this group, the choking characteristics in 
the range 0 < p* < p* can have varying curvature (see Figure 1.13 and 

1.14), leading to certain difficulties in the investigation of (1.3.50). 
In order to eliminate these difficulties, we must turn to the 'method of 

>nst improvement" of choking characteristics. It consists in replacing the 
arbitrary form of the choking characteristic with a characteristic having 
a constant curvature and a value of thrust for each value of fuel flow 
rate per second iÇs and constants r*, dj, V and H, equal to or greater 

than the true value. Thus, the "method of improvement" allows us to 
give the choking characteristic a constant curvature by increasing the 
specific thrust at certain points on the characteristic with constant 
fuel flow rate per second. I*, then becomes obvious that if with the 
improved choking characteristic the choking modes of operation of the 
power plant do not correspond to the condition of optimal control (1.3.50), 
they do not correspond to it with arbitrary form of the choking character¬ 
istic. 

>nst 
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In ordor to produce information from condition (1.3.50) on the 
optimal operating modes of the power plant, let us "improve" the arbi¬ 
trary form of the choking characteristic, replacing the characteristic 
while retaining the values of p 

upward by increasing p 
kp 

p’ bv characteristics which bulge ‘max n 

sp 
(see Figures 1.13 and 1.14). In this connec¬ 

tion we see that for all choking characteristics in the first group 
within the limits of 0 p p^, 3p*^/3p* > 0. This can be immediately 

seen, since the tangent of the angle connecting the coordinate origin 
to the point of the choking characteristic is equal to the specific 
thrust p* corresponding to this point. 

Since >* (3p*p/3p*) < 0 and in view of control condition (1.3.48), 

within the range p* > 0 according to (1.3.54) we will have 3H*/3p* < 0 

(Figure 1.16). Therefore, for the first group of choking characteris¬ 
tics, the solution of (1.3.50) corresponds only to the maximum thrust 
mode. If in the maximum thrust mode condition (1.3.48) is disrupted, 
the optimal control will be the zero control (p* = 0 and ~ 0). The 

condition of transition from the maximum thrust mode to inertial flight 
(zero control) then becomes equation (1.3.56). 

Figure I 

Thrust p 

16. 

(le 

Dependence of Function H'v on 
P 

ft, where V ^.0; others, where 

Relative 

k < °- 

Among the choking characteristics of the first group, the linear 
choking characteristic corresponding to the ray (1.1.17) occupies a 
special position. However, the linear choking characteristic is not 
realized in practice. Due to various thermodynamic losses (change- in 
heat liberation coefficient, index of polytropy, etc.) for a given 
altitude H and control function r*, the specific thrust drops with 
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decreasing flow rate of the fuel (slightly with high degrees of choking, 
considerably with lower degrees of choking) . Therefore, it can be 
fully approximated by an upward bulging choking characteristic for 
whiih Pmax !’kp and which, with high degrees of choking, :s quite 

similar to the ray connecting the coordinate origin with the point 
P* • Thus, for power pi ints in which the choking characteristics are 
in'the first group, the optimal control is the maximum thrust mode or 
inertial flight, the transition between which being performed by 
equation (1.3.56). 

Let us study the conditions of optimal control (1.3.50) for chok¬ 
ing characteristics in the second group (see Figure 1.1.15). Here, 
as in the preceding case, we apply the "method of improvement" to the 
portion of the choking characteristic with the value p* < p*^, allowing 

us to represent it as an upward bulging curve by increasing the cor¬ 
responding points of p*p. Then, according to (1.3.48), where p* ^0, 

it follows from (1.3.54) that in the interval 0 <_ p* < p* , ail*/3p* < 0 
*P P 

and 3H*/3p* > 0 arepossible only where p* p*^. Therefore, the optimal 

control of the power plant corresponding to (1.3.50) occurs where pj* 
kp 

P* i P^ax or wittl the zero control (p* = 0, = 0). 

Figure 1.17. Actual Linecr Choking Character¬ 
istic : H « cons t, r » cons t 

If where p Pkp the choking characteristic is upward convex 

1 The degree of choking is the ratio of the instantaneous thrust 
value p* to the maximum thrust value n* 

1 max 
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(Figure 1.15) throughout, then since (see Figure 1.16) 

-^>0 dp** 

solution of (1.3.50) with 

dH\ 

«P9 Jldf 
(xícc.+í; 

is possible. 

At point p* * pjp we have 

JS- (x;c<».+>; vV“0- 

which leads to H* = 0. If subsequently condition (1.3.48) is disrupted, 
p 

after p* » p^ two controls are possible: the zero control (inertial 

flight) and the slipping mode, reflecting the pulsating thrust mode 
p* = pkp and p* * 0, Th®/ correspond identically to H* = 0. 

Therefore, preference must be given to the control for which the cri¬ 
terion of effectiveness is higher. 

Thus, for choking charecteristics in a second group, bulging upward 
where p* 1 p£ . the solution of (1.3.50) is unambiguous at each moment 

in time and corresponds where 3H*/3p* > 0 to the maximum thrust mode, 

where p* > p£p and 3H*/3p* * 0 -- to the choking mode and where (1.3.48) 

is disrupted -- to the zero control (l£s = 0, p* * 0) V The conditions 

of transition from the maximum thrust mode to the choking mode and from 
the choking mode to inertial flight are the following equations, respect¬ 
ively • 

«01 
(1.3.58) 

Among the choking modes, the mode with p* * p£p, corresponding to 

the value of maximum specific thrust, occupies a particular position. 

1 Similar results for one particular ptoblem were produced in (21]. 



It is the most economical mode. Therefore, in contrast to the other 
choking modes, it is usually referred to as the cruising mode. Then, 
the remaining choking modes with optimal control p* can be inter¬ 
preted as transitional modes from the maximum thrust mode to the cruis¬ 
ing mode, or as transitional modes from lower thrust to the maximum 
thrust. This is the "physical" sense of the choking modes of operation 
of the power plant with optimal flight modes of the flight vehicle. 
For certain power plants, they are not used during the flight, although 
it is operationally possible to achieve the operation of the power plant 
at thrust values less than the cruising mode. However, as the solutions 
of (1.3.50) show, these operating modes of the power plant do not cor¬ 
respond to optimal control p*. In this sense, the cruising mode is 
the minimum thrust mode. 

The conclusions which we have produced concerning the conditions 
of optimal control p* can be extended to each parameter of regulation 
d* (1 = 1,..., n - 1). 

Let us now give a geometric interpretation to our conclusions. 
First of all, it is characteristic for the "improved" choking character 
istics of the first group where p* 1 P*ax (Figure 1.18) that 

and 

(1.3.59) 

(1.3.60) 

with permissible control p* = 0, while for downward-bulging choking 
characteristics, the following condition is always maintained (Figure 
1.19): 

^“]>°* (1.3.61) 

For choking characteristics of the second group where p*p i p* 1 P*ax, 

if they are upward-convex, we have (Figure 1.20) 

(1.3.62) 

where as if they bilge downward, we have (1.3.61). 

The necessary Weierstrass condition for the control function p* 
(or d*) becomes 



(1.3.63) 

Figure 1.18. Geometric Interpretation of Necessary 
Weierstrass Condition for Control Function p and 
Upward-Convex Choking Characteristics of First Group 

In the case of the choking mode of operation of the power plant, 
the Euler-Lagrange equation (1.2.23) is produced in the form 

*0^ 

I»* 
(k;cos«.+x; ■K 4 àp* 

(1.3.64) 

Then with the choking mode of operation of the power plant, the 
necessary Weierstrass condition (1.3.63) becomes 

_(i; -^-1 <o. 

Keeping in mind the control condition for o> (1.3.4), we have 

(S'ft.)-2?-<o. (1.3.6b) 

Figure 1.19. Geometric Interpretation 
of Necessary Weierstrass Condition 
for Control Function p and Downward- 
Convex Choking Characteristic 
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Figure 1.20. Geometric Interpretation 
of Necessary Weierstrass Condition for 
Control Function p and Upward-Convex 
Choking Characteristic of Second Group 
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to cm,, without disrupting the control condition for p- (1.3.48), 

ÍJeoStu-f-X* _«in. 
V 

>0. 

Then, based on the values of derivatives 3H*/9p* and 32H /3n*2 

according to (1.3.54) and fl 5 551 ^ t • • P p ’ 

Show that the power plant with chiklng c^arâítèíisUcs ^f^e^i^t'3" 
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Thus, with the limiting control for w and > 0, ^ > 0, for power 

plants with choking characteristics which bulge downward where p* < p£p, 

a choked mode is possible as the optimal control p. This choking of 

thrust, obviously, results from the "requirement" of a certain curvature 

of the trajectory. 

Up to this point, we have studied the necessary Weierstrass condi¬ 

tion considering the deflecting of the thrust vector from the axis of 

the vehicle, resulting from the presence of control function w. Suppose 

the thrust vector is always directed along the longitudinal axis of 

the apparatus and the control functions are a, d and r. Then 

U. «oW’roso-QÎ . 

H =Xi-^-+S-^-‘"z* ' (13-66) 

It follows from (1.3.66) that 

, ,. roí a-Qj «;,p*«inq+r^ 
— i--,- fcj 

The optimal control condition a becomes 

m = lnf^ -**1— 

*.i.<■<».... 

In the investigation of this condition, we must keep in mind the 

following zero controls: 

rota —Q* , al/p* **na+ K* ^ 
“*» /’ (1.3.67) 

aand ^*«0, 

a/0, p'^O, 

(1.3.68) 

(1.3.69) 

which are singular points for expression (1.3.67). Zero controls (1.3.68) 

and (1.3.69) allow us to write the following control conditions where 

Çi05 

a\p* cot a — Q* , alftina+y 

S p>V ^ * 

_X* J. ^ Q 
i pp T*l p,y ^ ' 

(1.3.70) 

(1.3.71) 
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P* 

ing of 
curvature 

ss condi- 
axis of 

Suppose 
;is of 

(1.3.661 

(1.3.67) 

If p* > 0 and |a| > 0, then it follows from the control condition 
that 

W*;coso4-*;-^)<o. 
' ' (1.3.72) 

Inequality (1.3.72) can be analyzed in place of (1.3.70) as the 
control condition. Thus, where p* = 0 the optimal control condition 
(1.3.67) will be satisfied by the solutions produced earlier in our 
analysis of control condition (1.3.19) and optimal control condition 
(1.3.20). Therefore, where p* = 0 and ^ < 0, optimal control condi¬ 

tion (1.3.67) is satisfied both with stable and with limiting control 
a, while where p* = 0 and A* >_ 0 it is satisfied only with the limiting 

control. If p* ¿ 0, control conditions (1.3.71) and (1.3.72) are ful¬ 
filled if 

and *;slna<0. (1.3.73) 

linder these conditions and with p* f 0 in the ratine !ui 
the slipping mode cannot be produced on the optimal phase trajectory. 
Thus, in the active sectors of the optimal phase trajectory v-here 
|a| < t»/2, the rendition of optimal cc.itrol (1.3.67) cannot he satis¬ 
fied by the slipping control mode. 

On the basis of the expression for H*, we find 

mind the 

(1.3.68) 

(1.3.69) 

rols (1.3.68) 
>ns where 

(1.3.70) 

(1.3.71) 

dH\_ 

da 

«tf//! 

a0¡p* sin a + 
*?; 
da 

¿r* 
àa 

(1.3.74) 

•PQÏ 

(i;'«•«+*; -^r-+s 
d»y* 
da» 

(’.3.75) 

In practice, over a very broad range ol M r" bers beyond the limits 
of the linear dependence of Y* on a, according to [22], v.-c can assume 
that 

r.y 
<C ^¡.ere o>0 and 2^i_>o wherc «<0. 

do* 
Then where p* 0 and ^ 0, according (1.3.73) 

da* 
>0. 
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whi(h leads to fulfillment of optimal control condition (1.3.671 with 
stable or limit-mg control n, and produces 

--=0 where am,.<a<amin 
• da 

X.<0 where 

where a==a«»i«- 

If where p* i« 0, > 0, then according to (1.3.74), optimal con 

trol condition (1.3.67) is satisfied only by limiting control a. 

Consequently, when |a| < tt/2 where i* <0, optimal control condi¬ 

tion (1.3.67) in the passive and active sectors of the optimal phase 
trajectory is satisfied both by the stable and by the limiting cont 
«, while where ^ ^ 0, optimal control condition (1.3.67) is satisfii 

tisrieo noth hy the stable and by the limiting control 
^ 0, optimal control condition (1.3.67) is satisfied 

only by limiting control a. 

For control functions r and d we have 

' '0/ 

Therefore, the optimal control conditions for these functi ions are 
respectively 

m* «Inf H\, (1.3.76) 

(1.3.77) 

It is not difficult to show that where p* > 0, in connection 
with the control condition for a (1.3.72), the optimal control condi- 
tions for r and d are satisfied with optimal control a in the same solu¬ 
tions for which the optimal control conditions for r and d- (1.3.46) and 
(1.3.49) are satisfied with optimal control w. Therefore, optimal 
control conditions (1.3.76) and (1.3.77) for r and d will not be 
studied here. 

Thus, the conclusions concerning optimal controls r and d are not 
related to the presence of control functions for w or u. 

I 
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or, iy.noring the terms with sin'a in v* .• 
an expression for H* in the foin. ’ dCC0rdinR [22] we produce 

H'- .. alp* co* a ., (»liP* + K*J sin a 
I - -T', — 

^•V r. 

where 
(1.3.78) 

sr 1-* 

oí, 
r** r if • 

end U can he'wî-mén'a.r"111''0'' anJ cP''*"1 control condition for p* 

>; We i-.. . 
K ii*v ~S - 

-i; (w* + P*),i„. 

m’= inf A* j j. ««/»•»Ina 

^ ‘ ^ T' 

v-4 

*—infi;.; + N>+?*)<inq ] 

^ 7 iíñ1 ~~J- 

(1.3.79) 

(1.3.80) 

If the inequality 

(1.3.81) 

(1.3.82) 

not 
fi* * j»»y ^0, 
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occurs, then control conditions (1.3.79) and (1.3.80) for nonzero con¬ 
trol are satisfied with 

i;>0 and *;>0. 

2 2 
while the optimal control for a, in view of the fact that 3 H*/ 3a < 0, 

is the limiting control, which in principle, when the equality H* max = 

H* is retained, can go over to a slipping mode. 

If the inequality 
**aô/eos a + X¡ (a«//»’ 4->7') < 0. 

is correct, then where 32^/30^ > 0, optimal control condition (1.3.82) 

can be satisfied ether with stable or with limiting control, the 
latter always occuring where 0, if sin a < 0. 

Thus, in the case < 0, the optimal control condition for a is 

satisfied either by stable or by limiting control, while where ^ 0, 

it is satisfied only by limiting control. 

Due to the formal adequacy of the control conditions and optimal 
control conditions for a (1.3.80) and (1.3.82) for the control conditions 
and optimal control conditions for o, the conclusions of optimal 
control for r and d will be similar to those produced above. 

Up to the present, the construction of optimal controls for a 
w, d and r on the basis of the condition of optimal control and the 
control condition has been performed within an open area of values of 
the vector of the required parameter. However, if one of the controls 
is coupled due to the location of the required parameter vector at the 
boundary, investigation of the necessary Weierstrass condition and the 
maximum principle relative to this function, expressed by conditions 
(1.3.1) and (1.3.3), should be performed considering the equation 

D* -D-0. 

In this case, turning to the Lagrange coefficient on the basis 

of the condition of optimal control for a coupled control function, we 
produce equations similar to the Eu1er-Lagrange equations (1.2.31)-(1.2.34) 
with coupled behavior of the corresponding control function. 



§ A. Computer Alaorithm for Va-'-t'cnal Method of Optimal Planning 

In the preceding sections, we formulated the problem of the vari¬ 
ational method of optimal planning of a flight vehicle and power plant. 
Its solution has produced the first order necessary conditions: the 
conditions of stability (Ruler-Lagrange equations, condition of opti¬ 
mality of parameters, condition of transversality and discontinuity con¬ 
dition) and the Weierstrass condition or the maximum principle. The 
production of these results has required that we overcome a number of 
difficulties arising due to the necessity of working out the theoretical 
principles of the solution of the problem as stated. In this sense, 
the preceding sections can be looked upon as a finished work, leading 
to the solution of a complex variational problem. 

However, the concrete expression of the solution of this problem 
consists of the numerical results, allowing us to understand and 
evaluate the solution in the form of numerical values of optimal con¬ 
trols and parameters, the optimal phase trajectory of a flight vehicle. 

In this connection, another problem arises: the problem of 
organizing a computational procedure using a universal electronic 
digital computer, allowing us to carry the solution produced through 
to numerical results. 

The problem of organization of the computational procedure using 
the universal digital computer is primarily a problem of development of 
an algorithm. The difficulty of this problem lies in the fact that 
the algorithm developed must allow us to use a universal digital com¬ 
puter to solve an extremely broad range of problems following from the 
variational problem of optimal planning formulated earlier (i 1). Then 
the peculiarities of any given program will be determined by the pro¬ 
perties of the concrete programming task, not by the algorithm itself. 

Since the solution of the variational problem of optimal planning 
of a flight vehicle and power plant has led only to the definition of 
first order necessary conditions, it is desirable to develop an algorithm 
for a computational procedure such that it includes definition and satis¬ 
faction (simultaneously with completion of computer calculations) of the 
second order necessary conditions, which would allow us to consider the 
solution sufficient as well. All of this taken together allows us to 
affirm that the development of an algorithm for the computational pro¬ 
cedure is another, independent work, no less difficult than the preceding 
work, requiring its own special investigation. 

True, it will be more correct, on the basis of the essence of the 
planning process and the requirements which follow from it, to analyze 
the variational problem of optimal planning of the flight vehicle and 



power plant and the problem of its computational procedure (development 
of the algorithm and actual computation) together. This urit 
the problem of the variational method of optimal planning of the flight 
vehicle and power plant. Its solution will lead to the logical com¬ 
pletion of the variational method of optimal planning of a flight 
vehicle and power plant using universal electronic digital computers. 

In this sense, the solution of the variational problem of optimi¬ 
zation of parameters, control of the flight vehicle and power plant 
should he looked upon as the first stage, and development of the 
algorithm for its computation as the second and final stage of the 
investigation of the variational method of optimal planning of the 
flight vehicle. 

We make use 
optimality of pa 
related to the pi 

Let us now go over to the second stage in our investigation -- 
presentation of the algorithm for the computational procedure, the theo¬ 
retical bases of which are presented in the appendix. 

First of all, for compactness of our notations and computations, 
we must introduce a number of new symbols, the usage of which will 
allow us, based on equation system (1.1)-(1.II) and the conditions of 
optimality of the parameters (1.2.45)-(1.2.58),to write the new system 
as 

=/ C,a). 
’»'“Xt-M.C.«). 

S(*.«.Q.a)=0, l1-41) 

where 

t t 

X 

q=(X>iX0), 

u =(o,ui,</,r,v„v)t 

/ / dH 
/ . 

dF* àf™ ÒF* dF* 

dOo ’ 0*<v ’ dp. ’ dr ’ 

dH \ 

dr*)’ 
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dTr 

dF* 

dD> ' 

dF* 
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i?£l dF* \ 
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dF* dF* \ 

d<?! ’à')' 
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We make use here of the 
optimality of param<-teis, »e 
related to the parameters II, 

tact th^t, by tisinß the conditions of 
can write tne Fnler-Iagrange equations 
Np, aP and 5 (see appendix) as follows: 

T)' __y fo?  y __ d?io 

1 ! doo daD 

1 a*o/ ■= döo, 

. à?; 

da0 
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rD* 

fhî ^ 

1½ >*0, 

■ . 5¡| <Î3.n^ , 
f ' í— '!)* 

< JQ ^/0 
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dA 

dO, a/ 

n:= -X* 
s 1 dr 

•X!.*’ 
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svstelhnenr* Wîen ^hC a!«orithm is llsei' in a computer, equation 
eouition* ' j, ?roduLed eaTlier should be supplemented by this sytem of 
ontimaHtv nf !h ^ ^ S,r,pllfies calculation of the conditions of 

31 C fn Cri:aramrerSi convertinR them to purely boundary condi- 
Íuh ¿he Hff the integrals in (1.2.45)-(1.2.58) can be replaced 
with the difference in the boundary values of n. 

In the following, 

of system (1.4.1), will 
tory in contrast to the 

x* (t) will be referred 

curve x(t) =(V(t),..., >w(t), produced by solution 

be referred to as the conditional phase trajec- 
phase trajectory x(t) = (V(t). Tw(t)), while 

to as the conditional phase variables. 



Furthermore, boundary conditions (1.1.1), equations (1.1.15)-(1.1.18) 
and the transversality conditions produced from (1.2.42)-(1.2.43), the 
conditions of optimality of parameters (1.2.45)-(1.2.58), after exclu¬ 
sion of the constant Lagrange coefficients e from this, will be written 
as follows: 

Ko(*('o» = (Kn*('o)>)“0 (/>~1.T). 

Jf(/,), *(/<'■). n</,), ní/íí»), a)= 

=(/£•(/„ jc(/,), X(/<'»), n(/,), null*). a^)=0 

(«»l.n—t). n(/<!>)=(»i('o). um.T>(/V",)))==,°- 

(1.4.2) 

(1.4.3) 

(1.4.4) 

Equation system (1.4.1) contains r parameters and 1 variables 
x(t), where r ♦ 1 = n. The last equation of this system unambiguously 
defines the dependence of u and p on x(t) and a. Therefore, its solu¬ 
tion requires n boundary conditions. However, at the initial point 
t = tn there are only, in addition to (1.4.4), t < n conditions, 
whilethe m additional conditions required are fixed at certain inter¬ 
mediate points in the interval (t^, t^). 

Thus, definition of the optimal parameters and controls, the 
optimal phase trajectory involves the solution of a multipoint 
boundary problem, in which the system of differential equations and 
boundary conditions are generally nonlinear. 

In this connection, we can formulate the basic requirement for 
the computer algorithm for the optimal parameters and controls. 

First of all, it must include a "strategy" for solution of equa¬ 
tion system (1.4.1) with which, in addition to fulfillment of the 
necessary Weierstrass condition or the condition for optimal control 
and the conditions of limitation on the vector of the required param¬ 
eter along the conditional phase trajectory x(t), the boundary condi¬ 
tions (1.4.2)-(1.4.4) are satisfied. Furthermore, the solution of 
this problem by universal computer must be time-limited. 

What is the essence of the algorithm and whatare the initial 
positions in the construction of its mathematical model? 

The essence of the algorithm is reduction of the multipoint 
boundary problem to a Cauchy problem hy fixation of the parameters and 
the missing initial conditions in the corresponding manner and produc¬ 
tion on this basis of a series of solutions in which, generally speaking. 
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the boundary conditions (1.4.3) may not be fulfilled. However, the 
logic of the algorithm leads to adjustment of the fixed parameters 
and missing boundary conditions in an arbitrary manner so that finally 
a solution appears which satisfies boundary conditions (1.4.3). 

The 1 strategy' of the algorithm includes the solution of three 
'tactical1' problems, the presentation of which can be made more clear 
if we introduce for convenience a number of new symbols Let x(t_) = 
— ill* Í2)* ft)* U 
x0 = (Xp , Xq . Xp ) be the vector of conditional variables, 

fixed at the initial point, çr the vectoj of fixed initial coordinates, 

and = xo = ^X/)T * ^ . x^0 ^ be tbe vector conditional 

phase variables missing at the initial point or the vector of desired 
initial coordinates *. 

We further represent 

PH*.P'.)=(W*"V.(W’> 

P\-% Pr 
i-i 

(1.4.5) 

(1.4.6) 

here pi is a functional; 

p* is the summary functional. 

In these symbols, the strategy of the algorithm can be formulated 
as follows: determine vectors x^ and a for which p = 0. 

Let us now assume that the vectors a^ and have been fixed 

for which, generally speaking, the boundary conditions of (1.4.3) are 
not satisfied and p = . Now, in order to perform our accepted 
strategy at point (xq > a^0), p^ , we must organize search for the 

direction of movement which, at least in a small area around this-, 
point, leads to the new point (x^P, aH), p(^), where p^ * P^n- 

This direction at point (Xq°\ a^ \ p^) will be referred to as 

the direction of swiftest descent. Further, if we do not use special 
measures, at point (x^ , aO), p(^), we must organize search for the 

direction of swiftest descent again, in order to arrive in small area 

1 Here for simplification, the initial conditions of (1.4.2) are 
expressed as fixed phase coordinates (p = 1,..., x), while 
1 < n. 
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ication at these defined points of search for the direction of swiftest 
descent. Construction of the mathematical model of the algorithm 
basically involves solution of this problem. However, if we move to 

of which involves search for the direction of swiftest descent in order 
to minimize functional p, the ’cost" (In time) of the path may be 
relatively high. 

Therefore, the problem arises of the expediency of using the 
dilection ot swiftest descent which has been found, determination of 
which usually requires considerable computation, for movement in con¬ 
siderably larger steps, as far as possible. This procedure can have a 
positive effect, resulting in the achievement of a deeper descent in 
each direction with a smaller volume of computation, essentially, we 
are speaking of the determination of the local minimum with the direc¬ 
tion of steepest descent determined at a given point. This is the 
sense of the second tactical problem, the solution of which should 

min 
for the direction of descent in question. 

In the process of solution of these two tactical problems, a 
certain amount of information appears on the structure of the function 
p(x0> a). It is quite natural to desire in some way to use this infor¬ 

mation for the organization of further descent with lower expenditures. 
This is the third tactical problem, the problem of self-teaching of 
the machine for organization of further rapid descent. 

The course of performance of the computational procedure algorithm 
.or the multipoint boundary problem by universal omputcr can be fol¬ 
lowed on the flow chart shown on Figure 1.21. 

After this general characterization of the algorithm, let us go 
over to a detailed description. 
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Hgure 1.21. Flow Chert of Algorithm for Computation 
of Optimal Controls, Parameters and Optimal Phase 
Trajectory. 

KEY: a, Initial Formation Processing Unit; b, Unit 
Calculating Coupling Equations and Optimization Con¬ 
ditions; c, Information Analysis and Transmission 
Unit; d,. Discreet Parameters Unit; e, Initial Condi¬ 
tions Unit; f. Descent Self-Teaching Unit; g, Infor¬ 
mation Storage Unit; h, Separation Operator; i 
Descent Direction Optimization Unit; j. Step Optimization 
Uni t 

Mathematical Model of the Algorithm 

If we Rive a Rcomctric interpretation to the task before the 
alRorith, its solution must he directed toward location ir an m 
dimensional space of the point of intersection of the hypersurface pi 

(x0, a) = 0 (j = 1,..., m) consider!hr events in the sector [1 , t l' 

descnbed by system (1.1 1). n0wcv ., in constructing the mathematical 
^ . 0 P.or,fhm. due to its o.mnlexity, we must give preference 

to analytical methods. Then the multipoint boundary problem is 
reduced to the solution of the following variational problem: 

among permissible values of x0 and a, defined by the inequalities 

-r0 mla x'l huí» 

fln.lO a ^ am<i‘ 

-<12- 



WT 

I 

considering the presence of equations (1.4.1), more properly (1.1)-(1.11), 
in variations and determination of x0, find values for whicn 

P/’==lnf, 

where 
Pj'K Ayi/= 1,...,/— 1,/-f 1,...,1)1), 

where 
A/>0. - 

Omitting the intermediate calculations, given in the appendix, 
let us write the necessary conditions for the minimum of pt, expressed 

by the following system of conjugate equations: 

»V 

IT 

—dL._*L 
W 9 dV 

-ÎL,-*L 
m * dt 

dH ¥ dH 

vV 

y't 

y, 

y\ 

y'ñ 

y*i 

y\y 

y\\ 

V« 

V*i: 

y\, 

=o, ¡/;=o, 

,-iz. 

-*L 
y- 

y- 

df 

àf 
-*T'- 

-IL 

-y~v- 
dh * 

-*Lu- 

-*Lu- 
dis * 

-*Ly- 
di, ¥ 

-ÈLu- 
d>. 9 

¿k*' 

ÈLZ 
dX, 

e,- 
dV 1 

_di_ 

<¥ 
dt 

dQ, y" 
at 

TT V: 

dX, 

dL 
dX4 

dX 

dt 

dX, 

dt_ 

dX, 

_d{_ 

dX« 

dt 

y.. 

y.. 

dXt *•* 

_^L v 
dX| v'’ 

y.. Oia 

(i.iii) 
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(l.II), 

jin 

• à f d* 
y»=-±y-itz'- 

dt 

’ ax. 
at 

¿Hi 
• a/ ax z =-— ÿ-—4- z, 
1 aril aril 

and similarly 
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Merc 

<)a na 
AL 
<»a 

à/ 

da 
di 

du» 

^v+Ä^+^v. d«, ' dA« 

-0, 

■0, 

'»z 
, - // + « 

ö'd 
<J/ . ¿X 
-¿- «/ t—- 

<h 

d( 
dv, tAv, dv. 

0 or 

•^.Vu ~ y»^* 0, 

» + -S-^ + -^-A-"0" 

2i/iov — 

(1.111) 

y = (yj, >’2» yy •... >'g. yj ■•• yîg) is the vector of conjugate 

coefficients corresponding to the coupling equations (1.1.2)-(1.1.9) 
and the Hulcr-Lagrange equations (1.2.5)-(1.2.12): 

V = (yt. V* , V*,.,..., y*) is the vector of conjugate coef- 
n y’lu iy ¿¡4 

ficients corresponding to coupling equations (1.1.23) and Euler- 
Lagrange equations (1.2.13)-(1.2.17): 

= (z*. z*. zJq) is the vector of conjugate coefficients 

corresponding to the Fuler-Lagrange equations presented above, coupled 
with optimization of parameters. 

Keeping in mind the Etil er-Lagrange equations (1.2.17) and the 
latter two equations, we produce 

Vav.=0, j/Mv=0. 

Equation system ().111) is conjugate to equation system (1.1)-(1.11) 
in variations. In this system, the coefficients with 

y~(y'’ y*.^ and .*h) 

are determined in the process of integration of equation system (1.1)- 
(l.II). Therefore, in order to determine the direction of swiftest 
descent at point t«, equation system (1.111) must be integrated simul¬ 
taneously with system (1.1)-(1.11) from points t^ and t^*' to point 

tn. The conditions at points t. and t^ for integration of equation 
0 K f i ) 

system (1.1)-1.11) from t^ and t ' to tfl are determined in the pre¬ 

ceding integration 

integration of the 
determination of fi 

respect to the com 
points t and t*¡) 

K f * i 
values of t and 

points are fixed h> 
the corresponding f 

mining the intcrmci 
selection of an art 
computational procc 
universal stop func 

If point tj, i^ 

tions (1.4.3), the 
the stop function 

Then in order 
point tß, equation 

system (1.1)-(1.11) 

conditions at point 

of the conjugate sy 

1 It is assumei 
end point. Otherwi 
any situation must I 
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ceding integration from t„ to tM and tk, while the conditions for 

integration of the conjugate system (1.ÏII) are determined after 
determination of functionals pj and their partial 'derivatives with 

respect to the cpnditi.nal phase variables and the' parameters at 
points rk and^t *) respectively. However, generally sneaking, the 

values ot t and t^ aie unknown, while the intermediate and final 

points are fixed by relationships (1.4.3). Therefore, we can select 
the corresponding functions from (1.4.3) as the functions *9*, deter¬ 

mining the intermediate and final points. Experience has shown that 
selection of an arbitrary function from (1.4.3) can complicate the 
eomputational procedure. The following can he recommended as almost 
universal stop functions: 

(*''>>-iC«0 (/=.1..,-1). (1.4.7) 

H point tk is not fixed in explicit form in the boundary condi¬ 

tions (1.4.3), the final point frequently must he determined through 
the stop function 

-íLv—O1». (1.4.8) 

Then in order to determine the direction of swiftest descent at 
point tp, equation system (l.III) must he integrated together with 

system (1.1)-(1.II) from points - 0 and = 0 to point t(J. The 

conditions at points = 0 and *?* = 0 for performance of integration 

ot the conjugate system (l.III) are determined as follows (see appendix) 

‘'■’srU *■—H' 
00 If ^ ' g' If 

(1.4.9) 

1 It is assumed here that the active sector is analyzed at the 
end point. Otherwise, a function which can he satisfied in practically 
any situation must he selected as i|;l) . 



Here 

— ••••.If)* 

.. i!/u' ¡y»* ... «»it«^* 

2, —(i*u»*"* |*Î1«. «*3«^ 

*71« =(l*77«*"**mZ77«^' 

In the process of integration of system (1.1)-(1.IH, the phase 

variables undergo first order discontinuity at points 4/9 = 0, while 

lP changes suddenly. Therefore, at these points, the conjugate 

Representing the value of y(t) coefficient y?(t) changes suddenly 

0 0* (il 
ct the right of <|». * 0 by y(t ) (we should consider that in this 

1 0* 
,u 0 to case integration is performed from t^ or, at least, from ^ 

t0), we produce 

(—i.m). '‘•,10) 

0* 0* 
Knowledge of the initial conditions at points s 0 and iJk 0, 

determined by relationships (1.4.9), and the discontinuity conditions 

yî(t 
(i) ) according to (1.4.10) allows us to integrate system (1.1)- 

0* ,0* 
(l.III) from i|»k « 0 or i|-i * 0 to t0 and thereby to find y(t0) and 

z(t0). Furthermore, due to the property of the conjugate system of 

equations (l.III) and equation system (1.1)-(1.11) in variations (see 

appendix), the following system of linear equations occurs: 

^P\ — tV \^o) ®-*b "H r* ®at 

ApJ,—»»((#) 

(1.4.11) 

Here ix0 is the variation of the vector of conditional phase vari¬ 

ables missing at the initial point; 

6a is the variation of the vector of parameters; 

Now, 
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1/(^0)=(1^1(/0)1-1 1(/^(/0)1--1 m//)0(/0))1 

*(/») = (1^(/0),.,^(/0)1 ,^(/0),- .^,(/0). .4(/o)). 

- ^ (/»»))-(- ^ (/u)) (n- (/M.) _ j (/=i,...«). 

Now, solving the system of linear equations (1.4.11), we can deter¬ 
mine 6xn and 6a, allowing us to find the direction of swiftest descent 

at (x^, a^.pO)). 

Thus, by integrating system H.1)-(1.II) ÿith properly selected 
xQ and a, we can find at points ^ « 0 and ^ = rt the values of 

discrepancies and the functionals of the multipoint boundary problem 

p, making it possible on the basis of the equations of initial condi¬ 
tions of the conjugate system (1.4.9) and the conditions of discontinuity 
of the conjugate coefficients (1.4.10) to integrate system (1.1)-(1.111) 
f 0* 0* 
from ^=0 and <Ji. * 0 to tQ and determine y(tQ) and z(t0); after 

this, turning to the system of linear equations (1.4.111. we can deter¬ 
mine the direction of swiftest descent at the point (xP), ad), p^1)). 

This is the essence of the model of the algorithm for calculation of 
the direction of swiftest descent. 

The flow chart of the algorithm for the computational procedure 
of the multipoint boundary problem shown on Figure 1.21 shows the 
solution of system (1.1)-(1.11) with the properly selected x„ and a 
r 0* 0* ® 
from tQ to ^ = 0 and i)»k = 0, determination of discrepancies and 

functionals p in the unit for calculation of coupling equations and 
optimization conditions and the unit for processing of results of 
integration, while calculation of the initial conditions of the con- 
jugate^system, integration of system (1.1)-(1 .III) from points = 0 

and i|/j = 0 to tQ and solution of linear equation system (1.4.11), 

showing the direction of swiftest descent, is performed by the unit for 
optimization of the direction of descent (BONS). 

A flow chart for the unit for calculation of coupling equations 
and optimization conditions and the unit for optimization of the 
direction of descent is shown on Figure 1.22. With continuous transi¬ 
tion from the first unit to the second (represented by the character 
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a on the figurei, these two units should be interpreted as a single unit 
of rapid descent fBBS). Therefore, the diagram shown on Figur«' 1.22 
can be looked upon as a flow chart for the rapid descent unit. 

In the process of completion of the computational procedure for 
the multipoint boundary problem, the requirement arises of estimating 
the deviation of the criterion of effectiveness I from its maximum 
value. This estimate can be performed (see appendix) if the conditional 
phase trajectory produced in a given iteration lies near the extreme 
passing through the neighborhood of the fixed boundary conditions, while 
the values of parameters a are near optimal. 

In this case we have 

d! * y (/„) lxa + jz^) 8a. 

Here the values of the conjugate coefficients yfty) and z(tQ) 

are determined by integration of the system of conjugate equations 
(1.111) along the corresponding conditional phase trajectory, with the 
initial conditions 

u - d/* I /ÿ« —— ,0*, 
àx K 

Z. = t>/* 
da I*« 

(»'• It 

/'• 

M 

0». 

Thus, using the values of 6x and ia found by solving the system 
of linear equations (1.4.11), we produce the value of dl*. 

Step Optimization Algorithm 

In the ideal case the optimization algorithm should lead to deter¬ 
mination of the step AxW and AaOO in the.calculated direction of 
swiftest descent from pSint (xl>), a(Y} pnrJ) which would ]ead t0 
„(Y ♦ 1) ^ (y) . (y + 1) fvl 
pj Pj and Pj * Pj * sup. This step will be called 
the maximum step. 

However, it is not as yet possible to coistruct a stiict mathe¬ 
matical model of the algorithm for calculation of the maximum step. 
An important role here is played by the difficulties in considering the 
nonlinearities of the equations of system (1.1)-(1.H) and the boundary 
conditions (1.4.3) with respect to the phase coordinates, controls and 
parameters. Furthermore, it must be kept in mind that not only is the 
dependence of pj on xQ and a unknown, but it is also related to events 



:n the sector lt0, tk] described by system (1.1)-(1.11). Therefore, the 

algorithm for step optimization can be constructed only for search for 
the maximum values of and Aa(v). y ‘‘aren tor 

Generally speaking, several algorithms can be constructed for 
search ot the value of a step near the maximum, hut preference must 
be given to algorithms with: r 

1) simple machine search logic; 

2) a cost (in the sense of volume of main memory and machine time) 
of search not higher than the seaich cost of swiftest descent 

sten ‘¡l ngrfat POSSlbiUty for determination of the maximum value of a 
\lllrhneVf f maX}YT i?v? li?iîe(l an,ount of machine time; 

basica iv f y (XÍ ,.a r PÎY Î is a ^ca. minimum, nasi cal ly leading to the condition pj,Y + 11 < p(>'. 

preference5for°thp t,JmhCy °{.S^P optimization algorithms has indicated 
preteríntc tor the two algorithms described below, correspondin' to 
the requirements formulated. The realization of ihese aigoH^ms by 

pu er requires the construction of the step optimization unit (BOSH). 

whir-i/fK flrSt alg°rithm is the algorithm for step optimization, in 
which the summary functional p* is represented as a function of one 

awSmnînVtrahle K‘- ^ Step 0Pt*m*zation unit realizing this 
algorithm in the computer will be referred to as the unit for single¬ 
parameter step optimization (BOOSH). R 

In the second algorithm, the summary functional p* is represented 

as a multidimensional function of independent variables t* (j = i. m). 

The step optimization unit realizing this algorithm in the computer will 
c ern to as the unit for multi parameter step optimization ÍVMOSH). 

Unit for Single Parameter Step Optimization lBOOSH; 

tinn J® primary feature of the algorithm of this unit is reduc¬ 
tion of the summary functional p{ to a function of one dimensionless 
ndependent variable e*. Introduction of the dimensionless independent 

letni fr a "S ,0 aVOid 3 numI,cr of difficulties related to step 

a faction oîCra y *P?J,!inR,ith'COnCePt °f the stcP in 'Minimization of 
to the d?!f^- T •iníCpCndent variables (each a function of pr, due 
firsí gÎaÎcc * PhyS‘Cal natUrc- is not as sin,Ple as i* night seem at 
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The value of a step in the direction of swiftest descent is to be 
calculated as a share of the length of the limiting step, equal to the 
difference between the corresponding values of x* and a* in the given 

xu p 
iteration and their limiting values. 

The current, jth step for each quantity is 

(1.4.12) 

HeT? is a coefficient determining the current step as a fraétion 
of the limiting permissible step in the direction of swiftest descent, 
where 0 a <0; 

are the limiting permissible steps, equal to 

=(^o •*« ) where 
or 

A*:;*«« K-'.T.i« -*0) where Ko<°. 
«here ' 

(1.4.13) 

or 
=(a;Cin - «v’*)where < o: 

Sk’ Sap are the scalin8 factors, generating 5x*0 and 6a* in the internal 
area of the limiting steps and having the following form: 

where û* is the maximum value of the ratios 

ax7* and ■6 «1*1 
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f-unct ional p isa vector function with the components ^ 
(j)* 1 ' 1 ' ’ " ’ 

Pm . Therefore, in order to simplify calculations, the values of íxü 

and 5a produced from the solution of the system of linear equations 
11.1.11) may he used only for determination of the direction of swiftest 
descent, rathci than looking upon them as a criterion of the measure of 
the step. 

This approach to estimation of the step measure in the direction 
of swiftest descent in order to determine its optimal value has a number 
of advantages over other methods. First of all, it allows us to probe 
in the direction of swiftest descent the entire path from the fixed 
values of and a*T) t0 the limiting values; secondly, it is located 

in the e*-area of point (pfYl, x¿y), a(Y)); third, it allows us to 

reveal a difficult situation (location at the point of the local 
minimum) and either move as far as possible from the dangerous point or 
shift control to a different unit in the algorithm. 

Generally speaking, search for the optimal step can be performed 
among the jth.§teps calculated according to (1.4.12), comparing the 
values of p^J . However, this approach to determination of Ax and Aa 

absolutely fails to consider the multidimensionality of p 

Therefore, it may hinder the search 

<i>. (po)- 
1 

= Ini 
np rp 

*0 mln<'r«<x0 mti* 
rp rp 

since the change in components x^and influences the change in 

components p ’ differently. Thus, the change of any component of 
element x or a at a given step will influence the components of 

vector p - differently: some will decrease, others will increase, 
and depending on this the value of may either decrease or remain 

as before, or even inc/ease. In this connection, it is very important, 

in determining the step to consider the multidimensionality of p(^ in 
some way. This requires that each component element of vectors Ax„ and 
Aa have some individual influence on the change in each component of 

vector P(-^. This requirement cannot as yet be fully satisfied. However, 
in the algorithm which we suggest the value of each component of vectors 

Ax0J and Aa^ is organized to a certain extent in consideration of its 

individual influence on the component of vector p^^. 



Calculation of the value of each component element of vectors Ax(j 

and Aa -considering its individual influence on the components of ° 

i» ¡¡ass «¡S-As: : s-«csa 
«fE“ “ ms c 

Then, according to (1.4.11), we produce 

~ iVi'^Io or — ,2;^;. 

I rom this, since 4p* < 0, we ha-'e 
1 

ii/Xo<° or 

of any^m i s s i ng Wcond i t i on a 1 °phas e ' va r i ab 1 edx|| ) or 'a n^par ame t er ïtf' 
<* + P = 1,..., m) on any functional p* (s = 1.m), it win Lifest 

itself positively, 1. e. decrease p| with a corresponding change in 

Xk0 or ap the direction determined from the condition 

< 0, , 

(1.4.14) 

.i».^";0:h:yi"cn°: n1sdif,", “'r""foünd ^ °f 
of «x%0 o, «a; acudir" “'aT»)'0 íí:,:x 

defined by the value of c* accordine to n ¿ toi 1 .. . 

^‘îîîîjîj"" '"«jr' ^ b* 
•¡ncd öfter eocH 

1Jr.T ’ix.?:..,-.»:,;1')'':"- .here K,>0 
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^-K/.L-^íi’VÍ” Where K0<0. 

where K>° 

A«r-(a;,i..-an'r where S<°- 

The coefficients e* e* allow us to consider the individual 

influence on the components of p(i) in calculating the value of each 

component element of vector step Ax'-}Jand Aa 

Based on the preceding discussions, we can construct the follow¬ 

ing formulas 
m 

pul*sign[1 -slgn(fi/;(/0l»Vo)). 
Pt ÍÜTi 

r(i)* =,11- V pn>*slgn [l-slRn^;^)*«;)]- 
• I* >-i 

1.4.15) 

Calculation of e^Y)* and e™* is planned to be perfomed in the 

"e" unit (B-"e"). 

However, it is hardly always expedient to J"*“1”*®*”* f",,ph*nd 
maximum step AxQ nax and Aa^ in the area of the limiting step Ax and 

max 

Aa^. For example, with low values of p 
(Y) it is obviously incorrect to 

move far from the point (x(y). a(Y\ P(y)). Furthermore. for some 
components of x0 and a it is sometimes difficult to imagine their limiting 

values in advance (for example, the initial values of the Lagrange 

coefficients). Therefore, it would be desirable to ch^e the area of 

search with the corresponding change in the value of p P£f™nce 

of this task must be assigned to the computer, in order that 11 ^11 

occur automatically. This is achieved ^ * 1) 
(BOP), in which calculation of the instantaneous limiting va x^^ 

and aiY * ^ is performed using the following relationships: 
up 



T T 
1 

each 

1 low- 

1.4.15) 

n the 

or the 
Ax'P and 

iorrect to 

>me 
r limiting 

ige 
rea of 
ormance 
will 

“(ri'i) 
'Oirp 

= Jr,,, (l - V,/»*'1 sign 

aLV’^fl'^O signa«”) 

-Asigna«”). 

where k , k . k , k are fixed coefficients. 
A X d a 

The BOP allows us to "hold" a reduction which has been achieved, 
narrowing the area of search and decreasing the functional, and gives 
the search the property of positive feedback (Figure 1 23), practically 
forbidding search at the point of optimal values of x^ and a«Y^ (at 

the point of equilibrium) and expanding the potential capabilities for 
search by a large stop in the case of a considerable mismatch (large 
value of functional p*) . 

The presence of feedback, deforming the area of search for the 
maximum step depending on the values of the functionals is the third 
specific feature of the algorithm for single-parameter optimization 
of the step. 

However, the output parameters of the BOP, 

should not go beyor.d the limiting values of x^ 

.(y ♦ 1) 
Oirp 
ard ."P 

ai d a (Y ♦ 1) 
irp 

Therefore, 

comparison of the output parameters of the BOP with their limiting 
values must be performed. This is performed in the comparison operator, 
which outputs the final judgments concerning x^ and a^ for the 
instantaneous search. 01,P ^P 

Figure l.23. Diagram of Feedback for Determination of 
Search Area. 

Then the instantaneous value of the step of the conditional phase 
variable x^ and parameter ap in the instantaneous value unit (BTZ) is 

calculated as follows: 
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or 

or 

AJc'.r" = (-floitK—-KÍi1 )^11 '* where í.rüo<í-0 | 

1X,Q — V-t«0mln “”^»0 / "» * 

Aar-(^nUn-a‘T,,)e«1 

where , 

where 8aí>ü 

where 6a' ^ 

(1.4.16) 

M)* 
where r* = c* or r* = f J , 

W —‘o/i 

j is the step number; 

.•■AD* : lo?5 (1.4.1-) 

1, > 1 
£ * ß(j)* ß(j)1 m. 
0’ 1 '2 are the fixed coefficients, where ß,J < 
T* T* 1 " 

x n x n • afe the instantaneous maximum and minimum values of x* <U max k0 mm . ., . . . ., ___ k 
T* T* at the input to the BTZ; 

3 3 
are the instantaneous maximum and minimum values of p max p min 
a* at the inrut to the BTZ. 
P 

Hie instantaneous value of the conditional phase variable x ß and 

parameter a* in the BTZ is 
P 

a^a^ + Aa; </i* 
(1.4.18) 

A flow chart of the single-parameter step optimmatjon unit is 
shown on Figure 1.24. In it, calculation of e^Tl*, e'Y' , f* and, 

m* m* m* m* * p 
therefore, Ax^^ , Aa^ , x^' , a^ is performed according to 

relationships (1.4.15)-(1.4.18) in the initial conditions unit (BNU), 
while the unit for calculation of coupling equations apd optimization 
conditions (BRUSIUO) in the unit for calculation of pp)* are rep¬ 

resented by the following two symbols 

Following this flow chart, we can fully comprehend the logic of 
the step optimization algorithm and the operation of the unit. It is 
as follows. 



After leaving a given iteration (rapid descent unit), e^ . e^' 
‘ K p 

and the instantaneous limiting steps Ax„ and Aar are calculated in 
(jTrp ■»rp 

the BNU as functions of the sign of 6x* and 6a*. Then, using the 

fixed coefficient e*, we determine Ax 
0 < 

After this, we go over to the BRUSIUO and calculate p’u' and p 

and x(0)* ,(0)’ 

(0)’ 

The comparison unit compares pj;0^ with p!>-1*. If p^Y^* < p(0^*, the 

computer repeats this cycle of operations until pi^*< P^*. calcu¬ 

lating in the BNU at each ith step e* = and x(^ , a^^*. If 
j 0 1 icO p 

the result is achieved, the problem arises of either going back to 
repetition of the operation to find a p* even less than pl.i)*, or 

accepting the result produced and going over to a new iteration or, 
"sing the information produced concerning function pî(e), constructing 

it by an approximate method and ysigg this approximate construction of 
p*(e) to determing coefficient einf in the interval 0 < r* < e* 

inf* — — J - 1 
corresponding to p 

In the first case, each time the favorable situation (pfl + ^* < 

(y)* 
Pj. ) arises, the temptation will always arise to make one more step, 

while with the unfavorable situation (p!.Y + 11 > P^*)» doubt can 

arise as to the correctness of the step selected. Therefore, in the 
first case in order to produce satisfactory results we must either 
plan in advance a large number of steps, requiring a definite expendi¬ 
ture of machine time, or suffer from doubts as to the unused capabilities. 
In the second case, as in the first, the question arises as to whether 
the results produced is achieved at too high a price. In the third 
case, the results of preceding steps arc used for approximate-construc- 
ticn of the function p*(e). With a successful approximation, it helps 

to judge the true nature of the dependence p*(c) with high probability 

and without great expense, thereby allowing us to determine tinf* with 
inf* 

p . The advantages of the third case are obvious: it does not 

require advance planning of a large number of unnecessary steps, as is 
required in the first case, but an increase in the number of steps in 
comparison with the second method of only one or two significantly 
increases the reliability of the selection of p,’.nY*, near the true 

value. True, the greet advantages of the third method depend to a great 
extent on the method of construction of the approximate version of p;(0 
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a) 
tu 

The construction of an approximate pî(e) can be performed using 
1 m* an interpolation polynomial, using the points (pi-1 , et) as points of 

L J 
interpolation. Generally speaking, the interpolation polynomial can be 
of any order of up to (j 1). Of course, increasing the order of the 
polynomial increases the accuracy of the interpolation formula. How¬ 
ever, an unnecessary increase in accuracy does not produce any notice¬ 
able effect and may complicate the logic of construction of the poly¬ 
nomial, cause.unjustified expenditures and complexities in seeking out 
the point (emln*, p5^n*), resulting in loss of the possibility of A* 
using this portion of the program for similar cases. Therefore, 
among the interpolation polynomials, preference should be given to the 
quadratic polynomial 

¿;-vlV*+'BV+c\ 
(1.4.19) 

The quadratic polynomial has a simple logical structure for compu¬ 
ters, in many cases can give good coincidence with the true curve p£(c). 

allows us to organize search for the point (emin , p”in ) rather simply 

and rapidly. Furthermore, the section in which the algorithm for con¬ 
struction of the quadratic polynomial and search for this point are 
performed can be used in similar situations in other portions of the 
algorithm for solution jf the multipoint boundary problem. 

The coefficients A*, B* and C* of the quadratic polynomial (1.4.19) 
are calculated in the section -»fA,B,C1 •*- using the following relation¬ 
ships: 

A' 

B* 

C* 

(.>-?•) (¡’-T) (•*-••) 
Pi 

• + 

+ 
(ï*-«*) (« -«•) 

~ • **• 
fx~h 

~p'i''-~pÍ' 

¿•C*+~0. 

+ ¿ V T\ 

(1.4.20) 

In the case in question, we have 

p\~pK?\ 

»-'if'" 

-pi* pr. 

0. 

-• • 
( =*»l- 
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Since pjj)* < pW* < pJJ - H’ 
then A* > 0 and B* <r 0. 

Therefore, we produce 

{»pi* = 
VA* ’ 

After calculation of r0^* in the section ont*- Ln 
made from c ' to BNU and further to rr—i 

opt 

opt 
1 J" 

and 

(1.4.21) 

a transfer is 

Pi" 
Then 

condition p^. > js made. This test is necessary, since poor 

interpolation of the true function p*(c) is quite possible using the 
quadratic polynomial (1.4.19). If p opt* „ nM) tK * . . 

E* t^,e true dependence 
pflt) is of comp les structure, not suitable for interpolation usins the 

simple polynomial. In this situation, . tompier alyorith. is required 

to construct good interpolation and perform search for (r'"’"*. pmin*). 

these sitSuatnín!>dUCtÍOn ÍS UnjV5Ífied due t0 ,he prohability^of 
situations, we assume CJnf * c* and return to the BNU for sub¬ 

sequent transfer to the BBS. If popt* . p(j)\ the ¡nterpolation has 

been organized satisfactorily, and we can immediately transfer to the 

complet™'»;,IÜÍ!!!™ "r ‘».«Mf *»• cycle is. 

emO)* 

^(Y) 
This 

. * . , . .miiin ine cycle is 
h C. = c0 minimal in the sense of cl, while still p(Y)* < 

tu , . situation sometimes arises when the point (x^* 
r j. ) is located near the local minimum In this case,0« must go’ 

to the operations indicated on line ® . One specific feature of this 

portion of the step optimization section is the search for p* < p(r) 

Here the search is 
on the first side of c0, i. e. where t - E(^ 

completed either »ith pM* > pO>* ,lth a transf„ ^ _ or 

when we roach t } = 1 by an exit to the BBS with pW* > plY^*. The 

exit to the BBS with p^* > n(Y)* and p(j)* * i i. ï- , PE 'r ano c * 1 is torced. However, 
some consolation can be found with these poor results in the fact of 

movement to the maximum distance from the difficult point. 

If where e* * r* we find n^Y^*> e , . l0 lnd Pj: s Pj; » we should go over to the 
sequence of operations indicated on^the flow chart by ®. its logic 

allows us to select one 
is clear. Here the comparison p*^ > .(0)- 

< h 

path of two. » 

i nd it, at od ahovt 

However, if p^1 

‘p is performed 

the flow chart 

the direction o 
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T 

r1' 
r is 
cn 

or 

p 

the 

I S 

path of two. Who p pi1'* < -i0)’ 
, usii.p the interpolation of pv(e) * T 9 —•••*« v, ,‘ am wvi |n/i ai lui 

indicated above we determine the point (einf*, plnf*) (iine ). 

However, if pE - Pr ’ , further search for the feast p* witTc* » 

t* is performed. This search is organized accotrling to the portion of 

the flow chart represented by 0 . With each new t^\ the step in 

(n)* „ fn - 1)* 

Í")* > p(n -ri)* 1 

Usuro 1.24). Then • transfi-r Is »ade to the operations connected^ 

the diaitram by line ® . p„¡„t (e'"f, pl-f*, ,s dcte„ln,^ 

to the precedin, .othod after interpolation of fonction Me, by qo.drn.lc 
- --- (n)* , _in - n* 

the direction of swiftest descent increases, until p •' > p 

which is tested in the comparison unit pjn)* Í pJn ^1)4 (set, i,ne0 

polynomial (1.3.19). if always p( f ¿ \ + * * T 
rO)* 

. after reaching t* = 

1, a transfer is made to the BMI and further to the BBS. 

partiJul .rlvWfhhart ?f SÍn*le*P>ra,eter S^P optimization section, 
particularly the portion producing optimization of "r*" i Rn 'vn i,m 
strate, the fourth specific featoïc if its ^Mth^ li^piùtsT' 
the construction by performance of a number of experiments of an annmx 
■mate dependence p*(c), which allows rather inexpensive and frcqueïuy " 

quite accurate prediction of the determination of point (einf*, pinf*) 

in the calculated direction of swiftest descent. 

On the flow chart for BOOSH, there is «orne uncertainty in tl„. 
selection of the fits, step defined hr the value ifi-atl Z 
selection of coefficient, í¡j)’ and ej»*. Houever. the raines of 

and determine the strategy for the search for einf*. 

...haCde=io°„ 

cient means, i. e. optimization of the very method of optimization of 

In order to select an efficient strategy for search we must intrn 

the*strafrgies befor^h^í^it3ker 0n " definite analysis of the K)os beforp hi.RlnninR of calculation of p. as a function of 

«*• It is hardly possible to perform an objective estimation of the 
search ftratCRy u„ the basis of the ..i of M ¡h". «îiiLitlon 
would depend nK>re on luck. ^ 
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Generally speaking, the effectiveness of the search strategy S 
can be represented as a dependence of the quantity of information J 
concerning the structure if tne minimizing function pj and the possible 

location of the area of its minimum and as a dependence of the number 
of experiments m, on the basis of which the information was collected. 
Then, the criterion of effectiveness can be expressed as follows: 

A=*-.(nax |S (m, ./)). 

The criterion of effectiveness h reaches its optimal value h* when 
the following equation is satisfied: 

A* = min IA (ml) =*mln max (S (m, 7)). 
■ ai 

Actually, the optimal search strategy must be considered that which 
provides the maximum information concerning the position of the minimum 
point in the minimum number of experiments. This minimum estimation of 
the search strategy is quite careful, but corresponds to the requirements 
of the search problem. 

Unfortunately, this optimal strategy does not exist for all func¬ 
tions. For unimodal functions -- functions having one peak (or one 
dip) -- we can select a similar objective criterion of effectiveness of 
the search strategy, using the quantitative estimate. 

Suppose pî(c) is a unimodal function and 0 ^ t* ^ 1. We note that 
the conditions of continuity and differentiability are not applied to 
the function, which is quite important. Let us select a search strategy 
for the minimum if p* for which the value of cj is defined as the func¬ 

tion of the preceding values of arguments cj and the values found for 

p*(Cj). Then with fixed cj we can write 

*). 

Furthermore, let us assume that knowledge of allows us in some 

way to determine the lower bound s and the upper bound r of the interval 
containing the minimum value of p*. i. e. 



Strategy S is expressed as follows: 

•5 — 1*1. ?).•••. ?«. *• rl- 

If we introduce the length of interval 1 = r - s, a function of 
Sn, then optimal strategy S* in the sense defined earlier should have 

the following property: 

¿•(5*l*tnin max |£,(S,)|. 
• •» 

or in other words 

sup £, (SÜ) < inf sup (5,) + An. 

This optimal strategy S*, for which the worst result (in the sense 

of the length of interval Ln) is better with arbitrarily small tolerance 

A* > 0 than the worst results of other strategies, can be determined 
for all functions p*(e) belonging to the class of unimodal functions. 

Since the value of L is intentionally selected for the worst case, 
n 

there is no undesirable dependence on the results of tests, so that 
sup L (S ) c-m be looked upon as an a priori criterion of effective- 

r n n 
ness of the strategies, the minimum of which determines the optimal 
strategy. 

The Fibonacci method (43, 46], must be looked upor as one of the 
most effective sequential strategies of search for the minimum of a uni- 
modai function having the optimal value of the criterion of cffectiven- 
ness which we have introduced. 

An important point in the use of the Fibonacci method is jroper 
selection of the number of experiments. In planning search, one 
should select the minimum shift A for which the results of two experi¬ 
ments can be differentiated. The condition of differentiability deter¬ 
mines the limiting number of tests, after which a further increase is 
useless. Suppose the maximum number of experiments for the Fibonacci 
method is ». We can then produce 

^•♦1 < ™ ^a.t, 

' 1 . • 

1 Determination of strategy Sn and proof of its optimality in this 
sense are presented in (43). 
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where F ^ F . is the Fibonacci number for (m ♦ 1) and (m ♦ 2). 

If we take the value of A in the limit 0.03 ^ e < 0.05, we must 
consider the valu« of m = 6 to be effective, since according to the 
inequality there is no reason to perfonn more than six experiments. 

h'here n = (,, it would he possible in principle to produce twelve 
minimum search strategies p*S* = . S^l-1*), which could he 

used to perform search by the Fibonacci method. All of these strategies 
are equally probable in the general case. 

Of course, the search algorithm can be realized by only one of these, 
which actually leads to the minimum value of the uniirodal function. If 
it were possible to perform search pj11** using each strategy siH*. 

S6 “ individually, the probable values of would be equal to 

those shown in Table 1.11. 

Table l.l 

1 2 3 4 S « 7 « 9 10 11 12 

« 
! 

n.OT7|0.211 0.231 
I 

O.W«6 1 0,IMS 0..5380,538-0.092 
! ! 

0.»V| 0.7090.Twjo,923 

Judging from the dwea of Table 1.1, we note that the search results 
repeat for various strategies. Therefore, according to the Fibonacci 
method where m * (>, we can arrive at the following values of c*. equal 
to 0.0?.T; 0.231, 0.385, 0.538, 0.P92, 0.769 and Q.923, near one of which 
in the interval i* - A* t* «_ c* ♦ A* we find r.inf 

This result is possible only for unimoda) functions p*(t). However, 

the true.dependence of p* on c* is unknown. In this connection, we 

must investigate the entire interval of r* from zero to one, but with 
the least possible number of experiments. Therefore, as the reference 

In order to simplify calculations. A* was assumed equal to zero. 1 



values of t* we must take those whieh were prodiico! earlier (see Table 
1.1) f >r various strategies of search SU^ using the Fibonacci method. 

Then in the case of unimodal function p*(e), it will be possible to pro¬ 

duce the value of p* relatively rapidly and at least less than with the 

remaining values of e*; otherwise, the BOOSH algorithm will find the 
least values of p* in the interval of t * from zero to one, based on 

inf* 
the reference values of r*. This approach to the search for e 
requires, regardless of the form of function p*(e), performance of a 

number of tests which is less than or equal to the number of tests of 
the guaranteed most effective sequential search strategy -- the Fibo¬ 
nacci method. 

The reference values of e* produc 1 allow us to select values of 
' J and pj) , fi,-1' . It should be k°pt in mind here that the most 

probible determination of p,'nt is where 0.1 < e* < 0.5. Therefore, 

we can accept t* - 0.231 or e* * 0.385, and take the corresponding 

’* and from Table 1.2. 

Table 1.2 

i?» 

n.tw 
n.?3i 

0.6 
n,.\t 

0.2 1.4 
1.66 

Ml 
r. »'i* 

i,R 

2.23 
2.4 
3.3 

2.6 
4 4.3 

Mult¡parametric Step Optimization Section (BM0SH) 

The single-parameter step optimization unit (BOOSH) performs 
search for Ax*^ and Aa* for which p* reaches values closest to inf by 

representing p* as a function depending only on one independent vari¬ 

able f *. This 
plifies search 

initial pjYl . 

Therefore, any 

organization of the step optimization unit greatly sim- 
in the reouirod direction of values of p* less than the 

However, by its nature p* is a multivariate function. 

BOOSH strategy is limited in its possibilities. 



If we now assume that the direction of search of » inf 

has been correctly determined, the possibilities of the algorithm of 
the section for multiparametric step optimization in which the summary 
functional p* is represented as a multidimensional function, can be 

practically unlimited. The result of operation of this section would 
depend to a great extent on the strategy for search of the maximum step 
value on the basis of each component of the vectors x^ and a. However, 

it must be noted that it is practically impossible to find a measure 
of effectiveness of a search strategy osing many variables for the 
minimum of a function which docs not depend on luck to a great extent. 
Therefore, it is as yet difficult to find an objective method of compar¬ 
ing strategies for multiparametric step optimization and we cannot 
determine a strategy for multiparametric optimization which is optimal 
in any sense. Figuratively speaking, whereas we must write "unidimen¬ 
sional limitation" across the BOOSH, the BHOSH suffers from "excessive 
dimensionality." All of this, plus the great cumbersomeness of the 
BHOSH, limits the capabilities of this section and requires that its 
usage be approached carefully. True, there is some hope that in the 
near future the "excessive dimensionalities" will be less oppressive 
for experimental programners, since investigations in the solution of 
the problem of multidimensional search are being conducted on a broad 
scale. 

Let us analyze one poss.'ble BHOSH algorithm. Its idea is based 
on a suggestion by S. S. Lavrov for the use of bancentric coordinates 
for the production of simple formulas and effective methods for the 
solution of a number of computational problems for functions of many 
variables l. 

One advantage of the BHOSH algorithm presented below is its 
interrelationship with the BOOSH algorithm presented earlier. Con¬ 
struction of the search area section (BOP) remains as before; in the 
instantaneous values section (BTZ), the instantaneous value of the step 
of the arbitrary phase variables x*q and a* is calculated as follows: 

1 S. S. Lavrov, use of baricentric coordinates for the solution of 
certain computational problems, Zhurnal vychialitel'noy Matenatiki I 
Matematicheskoy fiziki Vol. 4, No. 5, 1964. 
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(1.4.23) 

Thus, the instantaneous value of the step for each component of 
the vectors x. and a is determined not onlv by the limiting step of 
this component, but also by the corresponding value of the coefficient 
et ( i = 1,..., m). In this connection, the summary functional will 

depend on the m independent variables et, each of which changes 

between 0 and 1 or 0 and e™ax . 

The BMOSH algorithm should provide for déterminâtjou.of values of 
et for which the value of p* is close to or equal to p*.n . The 

difficulty in construction of this algorithm is related not only to the 
multidimensional nature of p*, but also to the absence of any informa¬ 

tion on the structure of function p*(e^). Data can be produced on 

multidimensional function p£(0 only by experiment, i. e. by calcu¬ 

lating p* with various values of vector c * (e*,..., c*). 

Let us assume that in the direction of swiftest descent which has 
been determined it is actually possible to find values of et ( j * 1,..., 
m) for which p* reaches its minimum value pjn^. Then, if wé have suf¬ 

ficiently properly constructed our approximation (in some sense) of 
the multidimensional function p£(Cj), we can find, determining the 

minimum of this approximating function, the value of e* for which pj * 

Therefore, the BMOSH algorithm must on the one hand provide for 
construction of the polynomial F* (c.), rather precisely approximating 

the summary functional pj as a .mltidimensional function of ct and, 

on the other hand, must include a simple method of determining the 
global extreme of the multidimensional polynomial F»(c.). Frequently 
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these requirement> are rather incompatible, so that sometimes thev 
’mist he purchased it the price of the accuracy of the aporoxim; . ion. 

If we use baricentric coordinates, we can rather simply construct 
an interpolation multidimensional kth power polynomial (where k 3) 
for the multidimensional function pf;(Ej). One of the specific features 

of the construction of the interpolation polynomial using bcricentric 
variables is that the problem of construction of the interpolation 
polynomial F* (t.) of power k for function pile.) is equivalent to 

• “ J 
the problem of interpolation of this function using a homogeneous poly¬ 
nomial F*(of the same power as the baricentric variables 

. Pm (see footnote on page 116). 

We select arbitrarily the m ♦ 1 base points pi'^* (j * 0,..., m), 

located at a common position, so that the determinant 

1 1 ... 1 

«* «* t* '«.Cull ’ ” mm 

is not equal to Zero, where e*.,..., t*. are the values of c* at point 

Pj.- , looked upon as cartesian coordinates in an m-dimensional 

euclidean space. Let us now place arbitrary mass if at each point, so 

that the summary mass is equal to unity 

(1.4.241 

Fhen, the center of gravity of this system of masses p* will have 

the cartesian coordinates 

+ + 2./n). (1.4.25) 

lhe quantities .are called baricentric coordinates of 

point p*. For arbitrary point p* with coordinates •*. *he ban- 
^ I ni 

centric coordina 
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centric coordinates v£ are determined from the system of equa¬ 

tions (1.-1.21) and (1.4.25) unambiguously, since determinant n of this 
system is not equal to zero. 

Let us now analyze the problem of construction of a second power 
interpolation polynomial for p*U.) with a special selection of inter¬ 

polât ion points. Let us divide the one mass into two equal parts and 
distribute them between the base points. The homogeneous polynomial 
' 1 H>. V can be written in the form 

F* (Hn.^ ÿ ^ (1.4.26) 
/-0 /»-• 

Equating the values of polynomial F* and functions p? at the poi 

of interpolation, we produce 
nts 

i pW) 
U> *”0, 1.m; ><*), 

(1.4.27) 

where 

^1/ fm/) (/—-d, 1,..., m) are the base values of r 
* 1’ 

„(/i* __ ft* ( *i/*1'*i* ‘l’‘o» \ j j k n i _ 
"t* 2 •".••• j J \Jt ..“ are the values of p* 

at the mid points of all sectors connecting the base points in pairs. 

fÍnd 5,0haI ■ini*'" of Polynomial F*. having in mind 
the limited area of change of vector c*. The existence of limitations 
on tht area of change of the components of vector e*. defined hv 
inequalities 0 < t* < , will be considered by introducing the 

following equations: 

■>) •(■r-ÍK-ílvi.;.;,-v -n(/ = 1. ,m). 

(1.4.28) 

Thus the global minimum F* should be defined considering relation¬ 
ships (1-4.-4) and (1.4.28), leading to the necessity of composing the 
new function 1 * 

\/-0 / /-1 
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Setting the partial derivatives of function Q* equal to ?ero with 
respect to the independent variables tg.- •« and v*, we produce 

àÇ: 
«v; 

aï»l»I+^ + (f=»0,..., «iX 

^A;-=0 (>—1,..., 

Keeping in mind the relationships (1.4.24), (1.4.27) and (1.4.28), 
we can reduce them to 

2 4^:+^ + 2aî* ^ i*-0* i.mi. 
*-• JZi 

where 

xj—o (y«i.«X 

2cir.:. 
*-o 

(1.4.30) 

(1.4.29) 

where, if as a result of solution of (1.4.29) we produce 

and (or) 2*;<« 

system (1.4.29) must be converted by replacing equations (1.4.30) 
with the following equations: 

¿lí'w“0 . 
and (or) i-t 

(/-1,..., «; where 

lI-O (*-l.. where Ifpft). 

(1.4.31) 

Thus, in order to determine vector c* for which the summary func 
tional p* possibly reaches its minimum, after calculation of the base 

points we mi 
find the val 

we produce 1 

and (1.4.31) 
In this 

limiting val 

polation pol 

reaches its 

y o ■ i 
xgPt* and a0 

Compari 

lation. Whc 

we will cons 

and therefor 

If ineq 

e?*51 within 

than the max 

then we go o 
F and determ 
points e*j ( 

..., m; i » 

point c"“* 

l,...m m) wi 

fixed maximui 
still noc sa 

correspondin 
min* points p^ 
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with 
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1.28), 

.4.29) 

.4.31) 

: une 
USf 

points we must first solve the system of linear equations (1.4.29) and 
find the values of (i * 0, 1,..., m). If with these values of 

we produce ** < 0, we must solve the system of linear equations (1.4.29) 

and (1.4.31) without equations (1.4.30), determining the new values of 
pj. In this last case, the minimum value of p* is reached with certain 

limiting values of ct. After calculating for which the inter¬ 

polation polynomial F0*’1 ( ) with the limitations used 

reaches its minimum, we return to equation system (1.4.25) and determine 

cj^t () = This allows us to determine the values of vectors 

x^P1* and a0*’1 , possibly corresponding to p°^1 . 

Comparing p°^1 with , we can judge the results of interpo¬ 

lation. When 

\Pr-F^\<c^ 

we will consider the interpolation satisfactory, i. e. 

(1.4.32) 

and 

and therefore the task of the BHOSH is performed. 

If inequality (1.4.32) is disrupted, then if there is at least one 

within the limit 0 < < c1?** , and with a \alue of p”^ less 
^ j j 'max* 

than the maximum value of the summary functional a^ the base point , 

then we go over once more tj construction of the interpolation polynomial 
F and determination of its extreme, replacing the previous system of base 
points c? ( j * I»-*., m; i ■ 0, 1,..., m) with a new system ct.(j ■ 1, 

0Dt* ” 
.... m; i ■ 0, 1,..., k - 1, k ♦ 1.m) and , in which the 

point e"*x with the value of p"^x is replaced by the point ( j « 

!,...■ m) with Pj**. This process can be considered cyclical, with 

fixed maximum number of cycles r. If after r cycles the inequality is 
still not satisfied, we take as the solution of £jnf the point e^in* 

corresponding to the least value of the summary functional at the base 

points p*^n . 

I 

/ 
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u tJn the case of disruption of inequality (1.4.32) and movement of all 

t”pt to their limiting values or with p“pt* > p^x*, we accept as the 

solution of E. the point i^'n corresponding to pü¿n*. 

In all case 1 ' related to disruption of inequality (1.4.32) 
a rare case is possible ior which (min* a cj y . j.j p tjle’ 

base point with the minimum value of the functional corresponds to the 
initial point, found in the preceding iteration. Then we must accept 
min* min* , K 

rj * cj as the solution. 

Furthermore, in the process of performance of this algorithm, 
the situation may arise when system 11.4.29) or (1.4.29) and (1.4.30) 
»«ill have no unique solution. The way out of this position can be 
found by an att mpt to replacj the old system of base points with a 

new system: cj, * c™>"\ rj*. 4 ,, = r*. ( j * ¡ * >.•••. *<• 

Fhese situations may be repeated with the maximum number of cycles 
not excedíng m. This position can be escaped by transferring each 
time from the preceding to a new system of base points 

«J,—-i-*•••*, ^((+1) = 0( (A ."»). 

where s * 1,..., m is the ordinal number of the cycle. 

A flow chart of the section for multiparametric optimization is 
shown on Figure 1.25. 
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figure 1.25. Flow Chart of Mu 11 ipr.ramet r I : Step 
Optimi* st ion Section. 
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APPENDIX TO CHAPTER I 

Variational Method of Optimal Planning of Single-Stage, Liquid-Fueled 
LRBM 

This appendix is primarily designed as an illustration of the 
general theory presented in this chapter. However, it is also of inde¬ 
pendent interest due to the specifics of the problem studied. 

As an example, we shall analyze the variational method of optimal 
planning of a single stage long range ballistic missile (LRBM) with 
a liquid-fueled motor, capable of delivering a known payload G^j over 

a fixed range with minimum launch weight G., i. e. the problem of 

optimizing the plan parameter vector 11, the vector of the parameter of 
design loads NP, the vector of design stresses oP, the strength vector 
5 and the controls p(t) and a(t). 

Figure 1.26. Diagram of Missile: I, power plant; 
2, tail section; 3« fuel tark; k, fuel section; 5, 
oxidizer tank; 6, warhead. 

The solution of this problem consists of several stages. First, 
we select the structural plan of the LRBM and the power plant; in our 
case, we will consider this stage to have been completed. We then 
select the component elements of the vectors n, NP, oP and Ä, the 



I 

Fueled 

the 
of inde- 

numher of which is necessary for performance of the preliminary 
of the LRBM, then fonnulate the variational problem. 

planning 

Suppose the structural plan of the missile is a "tank over tank" 
arrangement (Figure 1.26). Then the missile will consist of the follow¬ 
ing main parts: warhead, fuel section, motor section and tail section. 
The warhead contains the payload. Tht fuel section consists of the 
two tanks containing the main fuel components: fuel and oxidizer. The 
space between tanks is used to contain the control system apparatus. 
The power plant is placed in the tail sector. 

Furthermore, let us assume that planning is performed considering 
the following requirements: the nose portion must separate from the main 
body of the rocket in flight; the fuel tanks are load-bearing structures 
with separating ends; the fuel feed system is a turbine pump arrangement; 
the motor contains four combustion chambers. 

Considering the component parts of the missile, the structural 
formula for its launch weight is represented as 

optimal 
with 

,1 over 
lem of 

neter of 
i vector 

First, 
in our 

then 
the 

O0—Cu-r Gnn + G,y,+G 4+ -f G,., -f +G,. y -I- CUÄ. 

Here 

Crp is the wei8ht of i*»« no»« portion; 

G'o is the weight of the tanks of main fuel components and 
related structural elements; 

^bt *s wei8ht of the blow tank; 

Gxo is the wei*ht of the tail section; 

Gpp is the weight of the power plant; 

Gay is the wei8ht of the control apparatus; 

Gue *s t*'e we*8ht of the unnamed elements. 

The total weight of fuel placed in the tanks is 

G„ - 0?, + + G«*> + G*> 4- G«->. 

The summary design fuel weight gÇj. is directly expended in accel¬ 

erating the missile. The pre-launch fuel reserve G^.c^ is burned when 

the motor is started before liftoff of the missile from the launch 
platform. The portion of the fuel referred to as the fuel fill G|^ 

remains in the fuel lines after the motor is turned off. This portion 
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G'ír,--=*! is included in the final weight of the missile and in the weight of 
the power plant. Furthermore, there is always a guaranteed fuel 
reserve cjP', reeptired in case of a deviation from the planned flight 

mode. It is also a part of the final weight of the missile and is 
included in the weight of the fuel section. The weight of the air 
cushion in the fuel tanks is evaluated by the weight of the gas blow 

. It is also included in the final weight of the missile and con¬ 

sidered part of the fuel section weight. 

Thus, the structural formula of the final (passive) weight of the 
missile can be expressed as follows: 

G, = G V4-G„ + G^+Gf,* + G<"> -f G<r> 4- GIi0+G„p + G<’> + G^. 

then 
I 

G0=GII-4-G?j-(-Gi *• 

From this, in relative quantities we produce 

u =,. _fÇo-G^ , i?-*. Ot-Orfi 
[ Goo G0 1 Goo • O# 

, G;.u+G¿t + 0<r>+G<-> { G/y+G<»> ^,1 

G0 J ’ Of. 

or 

Go Go 

^=1-K-Gi*», 

P" ■Ml 

(1) 

= ---- K-[l*..y+l*«0J ÖT.o(l -!»« -"Si0)-1- 
- I**.» — •*"•» ^ 9 j 

-r (y^G,*1)a® f IS.oil* 

This equation (2) is the plan equation for a single stage liquid 
fuel missile. 

In order to reduce this plan equation to_"workjne" form, we must 
reveal the dependence of uue> a^, y^, vxo> G^ , G^ on G0, Jl, NP, 

o'1 and 6. 

Ordinarily, G^\ G^c'and G^^arc estimated as fractions of the 
fuel flow rate per second Oi , i. c. r t S 

1 For example, see [4, 18], 
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1 For example, 
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Gjr,i=*ir,Gt„ g«'’-*; ‘■'’’G. 

In this connection, we have 

o<f> 

Go A>2. 

G'r» 
G|r)—_!_*( 
°T Gfj ~*T 

lC) an 

^ (*) 

G‘r,= 

G'*' 
<P7 

A’vwïï or 

*(r' 

The analytic dependence of y 
(I ~M 1-. 

ao 

Í3) 

mën!sSofPfLrÎfl!tt0raSyStCn' ÍS r^ated t°”the selection of arrange- 
^ Plant S>— «‘th the selection o/the 

One of the important problems before a designer in the creation 

m!, si;« o„ ”n ,r,or is th' °f -'"'I»" o' l ltlTsyZ, 

^ T'LT'- r--iÄÄT'* 
..„.„on the ,„,,ytlc Jcpc„de„co of thc „eight ™aSHÍSk-s J 

»nd pover ch»r»c,eris,ic5 P and Psp of ,ho p„wer plant „„ lts p,ra„PP 

hiph'lv“^1 bc.Pefformed assuming the possibility of realisation of 

Î« nor'fz; E'a'" sys,c’s in "hich th"p - ¡ó"»», or 
î ;.gc,£ y r 

£i‘£!/Tr i 
With the liquid components. A concrete system with precombustion 5f 

and at0 on the parameters of the 

1 For example, see [17]. 
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In this connection, the principal units determining the weight of 
the power plant are the turbine-pump unit, gas generator, combustion 
chamber and nozzle, frame and fastening elements and accessory equip¬ 
ment. 

Let us study the weight characteristics of the turbine-pump unit. 
The component elements of this unit are the pump and turbine. The pump 
includes the following main elements: input portion of pump (weight 
and dimensions determined primarily by flow rate of component through 
pump); vane wheel body with spiral casing and vane wheel plus shaft 
(dimensions and weight of these elements determined primarily by 
required pressure beyond pump and rotating speed); pump diffusor 
(dimensions and weight depending on pressure beyond pump and flow rate 
of component); 

The dimensions and weight of the turbine unit are determined pri¬ 
marily by the temperature of the working medium at the input and the 
rotating speed of the pump. The temperature of the working fluid at 
the input is limited by the strength of the turbine blades and is 
generally fixed in advance. Therefore, the weight of the turbine unit 
is determined basically by the rotating speed of the pump. Thus, the 
weight of the turbine-pump unit is determined by the summary flow rate 
of fuel per second Gts, the pressure in the combusion chamber and 

the rotating speed of the turbine rotor end. It can be expressed 
as the following dependence: 1 

CTPlf *»CtA, Gtr P*' H' Y«)* 

We then produce 

y ffv 3s*Vr^( t Oo, Pff, Pt, H, Y,h 

On the basis of statistics and analysis of newly planned TPU for 
engines operating with precombustion, we can find the values of the 
coefficients kT**" (j * 1,..., m). 

The weight of the combusion chamber Gcc consists of the weight 

of the chamber head fiR and the cylindrical portion (the combustion 
cc 

chamber is assumed cylindrical in form) with the input to tie nozzle 

1 For example, see [39]. 



During operation of the motor, the individual elements of the com- 
bution chamber are subjected to various loads. The internal and external 
shells of the chamber carry loads which are particularly varied in their 
nature They are subjected to the effects of radial and axial hydro¬ 
static pressures, thermal loads arising due to heating of the internal 
shell, dynamic and vibration loads, etc. Therefore, in designing liquid 
fuel motors for strength, the most difficult and least developed task 
is design of the shells and head of the chamber, due to the difficulty 
of detailed determination of the stresses arising at these points during 
operation. Since precise consideration of the loads is quite difficult, 
chamber shell design is usually performed somewhat approximately. The 
thickness of the chamber head depends on the pressure in the combustion 
chamber p.. 

In this connection, let us represent the weight of the combustion 
chamber as follows: 

Ccc —Ccc {kf'’. Gr„ P» 1 cc ' T' Tc£ • 

The values of the relative flow stress qcc> time spent by the fuel 

in the chamber tcc depend primarily only on the components. Therefore, 

in planning a combustion chamber for known components, the parameters 
qcc and Tcc can be considered constant and fixed. Going over to the 

relative weight, we find 

k Cc kcc * Gq, Oqi 9 P** 

The possible values of static coefficients k?c (i = 1,..., 1) are 

found on the basis of planning experience. 

Using the assumptions made in estimating the weight of the combus¬ 
tion chamber, the weight of the gas generator G^ can be represented as 

“ GfjikP. G1t, Pjj, Aÿj, Tyf, 

Depending on the type of gas generator we will have: 
an oxidative gas generator 

r. (14- ♦(?») k,, ft 
Cutl —-i-I». 

(1 + 
a reducing generator 
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Then for the oxidative generator 

^ "I yk, , Ga, a, P,,, p^, kyy kjy, T.p P f, rf^). 

Let us now determine the parameters which detemine the weight 
of the output portion of the motor nozzle and its analytic depen¬ 

dence on them. We will assume the nozzle to be conical with fixed 
half aperture angle Generally speaking, the aperture angle of the 

output i supercritical ) portion of the nozzle influences its weight 
significantly, as well as the nature of the process in the nozzle and 
the specific thrust of the engine. However, the factors determining 
the optimal value of the aperture angle of the expanding portion of 
the nozzle are i|uite contradictory and can be considered only experi¬ 
mentally. Therefore, is assumed fixed from the experience of plan¬ 

ning of nozzles. 

The weight of the nozzle can be expressed as 

(/.-U 
sino. .»‘g-Trí + l 

• he 

From this we produce1 

V* in lh 

The weight of the frame and iastening depend only on the values of 
the maximum thrust and are exprès ;ed as* 

G p -- k\ klf’mat- 

All lines and valves of the motor installation are usually eval¬ 
uated on the basis of the flow rate of fuel per second. It is 

Oip = 

Here k^, k^ and k'^ arc static coefficients. 

1 For example, sec [3]. 
2 For example, see [4]. 
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where = PH/PH0» ?h and Pho are the relative pressure of the atmos¬ 

phere, pressure of the atmosphere at altitude H and H = 0. The analysis 

of these dependences indicates that with a certain increase in p^ the 

power and economy characteristics of the power plant improve. 

However, transition to high p^ results in a near proportional 

increase in the thermal fluxes through the walls of the motor. They can 

be reduced, but chis always results in losses in specific thrust, which 

may even result in a decrease in the effective specific thrust with high 

pressure in the combustion chamber. 

The influence of p on the power and economy characteristics is 
cl 

more complex. Its estimation is influenced by the effect of the height 

of the nozzle. True, generally speaking, for ballistic missiles of 

the types we are studying a decrease in p has a favorable influence on 

the power and economy characteristics of the power plant. Consequently, 

the change in P^» Pa. n and aQ Gp (or P*ax) influences the power, 

economy and weight characteristics of the power plant. 

The use of closed power plant systems (motors with precombustion) 

also allows effective utilization of high combustion chamber pressures 

p^. Therefore, the planning of high pressure pumps with high efficiency 

and satisfactory weight characteristics allows us to achieve high p^ 

and consequently to create highly economical motors. Possibly, the 

planning of high speed turbine-pump units will be expedient, allowing 

the creation of pump units with low weight and small size. However, 

high speed pumps have low cavitation properties. They require higher 

pressure of components at the intake. High pressures at the intake to 

the pump unit may worsen the weight characteristics of the tank section. 

Thus, a change in the rotating speed of the pump unit n and pressure in 

the combustion chamber p^ influences not only the characteristics of 

the motor, but also the weight characteristics of the tank section. 

Therefore, the selection of n and must be made in consideration of 

their influence on the weight characteristics of the tank section. A 

change in p^ is limited by the upper limit p^ It is determined 

by the difficulties of creating high pressure pumps and by thermal 

losses in the combustion chamber and nozzle. Usually, this limit is 

established experimentally and on the basis of preliminary analysis of 

power plants. Experience and preliminary analysis also allow us to 

estimate the upper limit for the change in rotating speed of the pump 

unit n 
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Determinating of the pump unit rotating speed n, pressure in the 
combustion chamber p^ and fuel flow rate per second Gts determines the 

O p 
pressure at the input to the oxidizer pump pBC and the fuel pump p“^. 

In order to assure operation of the pumps without cavitation, as they 
are planned the condition p^ > p°c min and p¡c i p|c min must be 

maintained. However, any "excess" increase in pressure at the input 
to the pump may lead to worsening of the weight characteristics of 
the tank section. Therefore, the pressure at the input to the pumps 
should be selected from the condition p°c = pgC min and p|c = p|c 

The pressures at the outputs of the pumps for the main components, 
determined from the condition of operation of the pumps without cavi¬ 
tation will be 1 

where 

(8) 

For the pump units of liquid fueled motors, the critical cavi¬ 
tation factors are determined experimentally. 

During flight of a missile, in order to assure operation of the 
pump unit without cavitation, the pressures at the inputs must corres 
pond to the condition 

Pat ^ ■i*' (9) 

Since the pressure at the input to the pumps (in the direction of 
increasing pressure) can be regulated only by blowing into the tanks of 
the main components, condition (9) in turn leads to a limitation on the 

1 
For example, see [25]. 
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T 1 

lower value of blowing pressure in the oxidizer tank pl"in and fuel 
, ni n 

t;iIlk rhg ' The CT^ti0" of conditions under which the pumns will oper¬ 

ate without cavitation is one of the purposes of blowing of the tanks. 
Therefore, during flight of a missile in order to retain operation of 

I the pumps without cavitation throughout the entire trajectory, the 
following condition must be fulfilled: 

- Y*C’« 

9t» 
(10) 

where (.BX is the velocity of a component as the input to the pmp. 

In many cases, in order to decrease the values of pL and p, with- 
r bo rbg 

out worsening the operation of the pump and without reducing its rotat¬ 
ing speed, the required minimum pressure at the input of the pump is 
achieved by using special devices before the pump, increasing the pres¬ 
sure before the intake to the main pump. These devices are usually 
liquid ejectors or supplementary pumps l If we allow the possibility 
ot the use of liquid ejector-type devices before the pumps in our power 
plant, we must estimate the weight of these devices. At the present 
time, sufficient experimental data have not been accumulated to pro¬ 
duce acceptible statistical factors for estimation of the weight 
characteristics of pre-pump ejectors. However, we can assume that the 
weight of the ejectors depends on their characteristic parameters Gt , 

PBi: min* pBC min' *ej and Pk’ ^ e- 

Then 
,®i»» Pk Pit’•m’ P*< mli.)* 

— Y,, (d'fio’ ' Pk ***_/• •"'Î'J» Pk min* 

In this connection, the following conditions should be fulfilled 
of the input to the ejectors 

p? > nt ^ 

1 
For example, see [25, 39]. 
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and therefore, the followinj condition* should also he ohscreed: 

A„ > - '-„“L + 
9/ 

p^> ríe min 
A/i*-/i,tAjYt.r 

(11) 

.he .r^'oTÂ « % ÄrL-.Ä r 
¿; .rr‘ 

"“'h0; "«„iîLàüuy'd^^ed?!“"*^ ly^i ï\iz:'sït 
the siuO of the nozzle and thereby decreases its weicht but thr> 

zle ^over-exoand "MT' ^ ^ that when the Rases ^ the noz- uver-expand to a nressiiT-f. t>r>i^ „ to a pressure below pa < pa the Sas flow will 

, ., a ’■ ’ 'a max - -- .. 
ess than atmospheric pressure at sea level. Thus, the change in p 

must be limited to 

At tn in ^ Po ^ Pa mu' 

Using experimental 
assume data and preliminary calculations2, 

(12) 

we can 

Pa rnm 29/^., pa „ 

that ti!1"11"8 °f the n0Z2le should be Performed considering tl 
that the summary area of the output cross section of tíenozÍ] 

(13) 

fact 
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1 For example, see 
7 For example, see 

(3, 17). 
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should not exceed the raid-ship section of the missile. Therefore, the 
selection of pa and p^ (more accurately of the ratio Pg/Pjj) is limited 

also by the following: 

C 0,255. (14) 

Production of an analytic expression atQ allows us not only to per¬ 

form an estimate of the weight of the fuel sector, but also to determine 
the input parameters characterizing its dimensions. The structural 
formula >f the weight of the fuel sector G can be represented as fol¬ 
lows: 

C,.»=G*.f f Ot.. + G¿ + G,,.*-t G*-i- Gl“’ -f 0/- 

We usually assume 

=«**Gú> 

Then 

The relationship between the volumes of tanks of the main com¬ 
ponents and the quantity of fuel placed in the tanks is usually expressed 
in the form1 

W-*i—. VV—4 —, 
Tr.* Vuf 

where k^, k* are empirical coefficients. 

Generally speaking, the volume of the tanks of the main components 
is 

1 For example, see (4]. 
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O ß where AV^, AV* represent the difference between the volume of the 

cylindrical bases and their actual volumes in the oxidizer and fuel 
tanks. 

Suppose the base forms of the oxidizer and fuel tanks are planned 
identical and depend only on I), i. e. 

Then 

vi^n-2iv». 

Furthermore, using the preceding dependences, we can write 

Here 

Gf #t* 
tX = 

ï + Afr* 

*;=«i +(*?> +*{*» +*<•») 

*i=*1 

Inconnectio.i with this, we have 

(I 4- 

where 

v;=k;c%. v'f-^cïs. 

*;=*v« 
A r/i 

(l4-»MeVT^’ 

I 
O+V/J Y^' 

Keeping in mind the relationships produced, we find 



or 

.1/0’ 
4íJ0 

fl*, T V ü , 

il'*—"„«H«1+/10-1-.-3!"), (15) 

where 

where 

>! 

Will Wei8ht °f the ShellS 0f the tanks of the ma>n components 

^ =C*0^Ct,-Y-' «o [2*; ^- + 2(^-1).-,^4-.-,0^ + 

~Y*'? [24^ + 2(^-1).^0^ + nO/j]. 

shellHofef^d Ín,ttK foll^win« is assumed that the thickness of the 
ShC 1 °f the °XldlZer ta"k Äo and thp thickness of the shell of the fuel 

tank 6r are identical . Furthermore, from the condition of placement, 

and collection of fuel we will consider the relative height of the base 

hb - îr°/D and h« = RS/d fixed. 

Then, keeping in mind the identical form of the bases, we produce 

<4 -(y'.% + YÍf 8f) (4 +4(^-1 )*>#] + 

+ i.O()í*&0Ç+Y^tf) 

or, considering the values of 1° and 1*. we find 

t»V =~j-. J() «i 80 + Y« f 4 — 1) A^] + 
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From thi wo hav'e 

xíV 
a" Ä7t(! |(v“‘ \+ vi*^) C+ 

: ï+ rl<<X n-Z>(YtV'.*'M]j 
or, ccnsidering fis) 

ab- 
?*?n + X) 

where 

Olh _ \ l(V" v"fVCbi + 
1 ' ' n£»’y 

rf¡ +vt*\)l«J - yi'tjjj. 

(16) 

(17) 

"A/ ¡***(^^< 

bio, system^']ot ^',¡2 f“™"" “f «»- «ol«ht of ,he 
is blown through a rrductr am] Tir'nr tank blowl"Ä PIan: ch<' fuel t.i 
oxtditer tank 1, by aa" taÍL^™ (w “«-"••«.r, while the 
the weight of the blowing (vntm^mT hC 8''' uenerator. Therefor 
«as and the blowin« cylinder for th„ /0?S!St,.0f thl weiRht of the 

accessory equipment. We therefore produce^" ^ thC WCÍKht °f 

where 

(18) 

JOïf-OiUéHJf** 
l 2-3* 

The volume of compressed 
,s dett‘rniinod by transforming the 
“ritten in the form 

«as (volume of the blow cylinder) V(H) 

state equations and energy equation, 
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At the end of the powered flight sector, the blow pressure p^ J 

fkl t0 
and p^ ' are fixed so as to provide cavitation-free operation of the 

puaps. Therefore, we can assume 

since 

(20) 

The values of pressure p^ and temperature T^ are usually fixed on 

the basis of planning experience. 

Thus, we produce 

*?,-**•> 
t 

(21) 

where 

«„j-»*'. 

f (r—kT)M. 
&• 

where G(| is the weight of the blow gas in the fuel tank at the end of 

.. operation; 

GgO> Gilr is the weight of compressed gas in the blow tank at the begin¬ 
ning and end of operation; 

T^g) is the temperature of the blow gas in the fuel tank at the beginning 

of operation; 
T is the instantaneous gas temperature before the reducer. 

In order to estimate the change in temperature At occuring upon trans 

ition of the gas through the choking device due to the Joule effect, we 

used an equation similar to that used by Linde [3]: 

773* 



The weight of the control apparatus G consists of the weight 
ay 

of the control organs (steering wheel, steering machines, trimmers), 
the weight of the control devices (on board electric power supplies, 
timing mechanisms) and the weight of the instrument section itself. 
Generally speaking, can be estimated in preliminary planning only 

on the basis of statistical data. 

It is usually assumed that 

>n 
or 

(22) 

where Kay is the statistical coefficient, depending on the fixed flight 

range. 

The nose portion consists of the payload, shell, payload heat 
insulation, external heat-insulating cover, etc. The weight of the 
nose portion includes the weight of the devices used to retain it, 
separate it and stabilize it. If due to technical conditions the 
total weight of the nose portion Gnp is not fixed in planning, but 

rather only the weight of the payload Gpl, usually the total weight 

of the nose portion is determined in preliminary planning from the 
relationship 

** V ’ 

of 

gin- 

nning 

trans- 
we 

where kpj is a static coefficient depending on the fixed flight range 

and design factors. 

To achieve some simplification in the presentation of the solu¬ 
tion of this problem, we will estimate the weight of the nose portion 
using this dependence. Then 

% ” W* (23) 

In estimating the weight or the tail section of the missile G . 
xo* 

it should be kept in mind that the design case for the tail section is 
the launch (25], when the body receives the wind load and the weight 
of the missile. Furthermore, it must be kept in minci that in missiles 
having no stabilizing devices, the body of the tail section is usually 
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m.-uo cylindrical or near cylindrical, 
tion can be assumed qual to Then the weight of the tail 

* 'l.O* 

follows: lenKth °f thC b0dy °f th0 tail can he estimated a: 

/.-l)i tBnc, 

where lxo is the portion of the length cf the body of the tail sei 
tion to the nozzle. 

The calculation of ^ and ,»P ,. vory difficult. Ttte vaiuct 

Ot these parameters can be more properly selected rm w • 
planninf ctpcticncc ,,i„E in»,, °< 

I JGo 
where 

(25) 

The weight oí the unnamed 

fairings, haches, guards, paint 

after design development of the 
will calculate Cue on the basis 

elements Gu{i includes the weight of 

’ CtC‘ ^ue can on,y he estimated 

units of the nissile. Therefore, we 
of statistical data as a fraction of 

Then 
-ut "ut 

Puf • 

equation for ^a ^sinell’ and :ir24^ all°w us to write the plan 
explicit form: * S mi?'slle with liquid fueled engine in 

■>V»o- 

1 —£s «•. 
ao > f 

+ c,f.4 + 
(26) 

sec- 
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' ni» ) 

i- ríi[('v<A+1<.'V'.- '^-'n -x)x 

X(v:'»,- vi-OII - rlrf ,..1, 7. -,)1¾0.] »1. 
’ 1 '»•» loj (26) 

rhU*’ the Plnn equation in qencral form . 
qencral form can he represented as: 

•/< - a-,. />., püt n, «r /Ä)( 

'■ *• 'he ‘»o„d„ ,he mmKtm 0 
D* ^O' ’’g and lt 0 0' Pk* Pa' n> 

as Ä,n* ,0 ,he ,0rm"‘',0'>' - > *- .hoy con bc c,..sificJ 

V Pl' n',1'' r* «:rC,™mT;;',™cn,s °f “« P'«. r.»™- 
* ^ponen.'o.cn,, of th0 stren£th o 

;io °ff :hhr -o ,cc r IT '«•<* niü"vdry ^ 
cr »l"lo lho compnnonr olomonl, of ,ho vector of I ^ 

»cs of thomodynanic por™,or, „f the ch"»«ori,. 

- «* foonetric vector n I f Z TT" *” ^ ' V » 
parameters is that with n ^ * PetlflC teat»re of these 

S that Wlth fixed component constants c 

cs only the weight but also th ap t’ .. Cxo' 
us of the units and of the miSsile as i whoî Re°"etric Caracter.s- 

V pa- - p. rt andetíeS ^"t 
lh. c»„ allows us fn n.s.c_,.. »‘‘«nrs c 

on 

.. lxo a*Iows us to perform full nr i Sip•t 
,,.. ... , fUU ’’"'■■"•»ry PlanninR of ïho 

c 

»issile once th. . ■ . K^nminary pianninj 
esiKn and power system have been fixed. 

joading of t he°m Í ss i 1 ^i n °f ¡ i gh t * a re^ he "t¡ "k d0Sißn Cases of 
of îh ‘lnd.ox,dizer tanks), ibis resultî fr"kS ^ the main components 

* the main components are used as a th° fact that »he tanks 
»ones acting on the missile, ioí * *oad*b«,ar.ng body, receiving the 

the^f^r^""^ the design ' loadingn' 

.. “hlrh '* — 
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parameters. Possible design cases of loading of the nose portion, as 
planning experience has shown, can be determined only during the flight 
of the nose after separation in the passive sector. Due to the dif¬ 
ficulties of calculation arising as a result of difficulties in pre¬ 
cise calculation of the temperature fields of the shell of the nose 
portion, it is assumed that the nose withstands the loads acting on 
it, and its weight characteristics are estimated by the approximate 
method indicated earlier. Furthermore, this assumption allows us to 
simplify somewhat the presentation of the solution of our problem. 
This assumption introduces no errors in principle to the results of 
the investigation, while the quantitative error which does arise 
hardly influences the summary error of the plan equation, resulting 
from statistical and other coefficients. 

Generally speaking, the fuel tanks should be designed for strength 
in several sections. Generally, the most heavily loaded sections of 
the tank are the sectors where the base connects to the cylindrical 
portion1. Therefore, we will use the cross sections A-A and B-B 
(Figure 1.27) at the junction points between the cylindrical shell and 
base as the design sections. Also, we will analyze tanks of equal 
thickness, determined by the thickness of the shell in the design cross 
sections 6 and 6 . Thus, in this example the variable parameter is 

8 0 
strength vector 6, or more accurately its components and 6o> not 

the design load vector N**. 

F "'ll rr" 
i ? a 

2 
( • "S 

LJ _ ' -__ 
u— ->»—-—^ 
Figure 1.2?. Schematic Piegram of Fuel end 
Oxidizer Tanks 

We will calculate the tanks for the rupture loads. In connection 
with this, the design stress vector with fixed temperature will be a 
known quantity. Its components are 

1 For exaaq>le, see [S, 35]. 



During the flight of a missile, the following conditions should 
be fulfilled 

I (28) 

where fi", are the actual thickness of the fuel and oxidizer tank 

skins respectively. 

Fulfillment of these conditions with fixed loading of the missile 
is related to a certa n extent to the selection of the blow pressures 
for the fuel tank ptR and oxidizer tank pto, the changes in which are 

limited by the lower boundary determined from the condition of cavita- 
tion-free operation of the pump units 

P*-*~ p"»* — A' ml« -f Ap*--, 

2*0 

a=piï = pi' .1. r \p* - «„aÎYt.. - Vt'#fk 
2*0 

or from the condition of stability of the envelope with the meridianal 
compressive stress 

p*., = p*!»’ 

It should be kept in mind here that the actual thickness of the 
fuel and oxidizer tank shells at any point on the phase trajectory will 
be minimal if Ptg. Pt0 and are determined for p^P > pm*n from 
the conditions 

M I 

I (29) 

where omg, are the meridianal stresses experienced in the calculated 

cross section of the fuel (or oxidizer) tank. 



I 

whore 

where 

Thi r, fore, folfni.„„t of condition, (;», „ust bc chccltd 

K" 'p~'' pS’-wv ,;m) 

p?n>p't* /»«*/»;'• <„■!). 

is fulIni1erSaíLtvaíucn!1írpthí^eÍtídththrínsTrtCOndÍtÍOn i28) .-,, 't :>eiectoa» the instantaneous value 

'knPr"Srr ptja'’ » any loi el thc ra„BC ,-«» . 
. i PÏP or n‘p > „■»». o, . . ..«in . »in JJ' '« 

pt - "t' «r Pr i P, • »P P7“ I P, I P, " «hero p*~ , p-r, „„d 
1 t 'to in(i nmax , J • 1 - rt - Pt i’t * and 

PtR e determined from equations (27). This freedom in the 
„ .ai 

7 11 t-v-uum m t no 
»election of p( ,Uo»» u, detcmine the »i.ple», re»lit„i„„ of p^,. 

condition» (28) can he replaced with the equivalent condi,on» 

H- . . 
nfn 

•i» I 

<“ 
3».o fl. (30) 

tank s^â^ÎL^h^he*^'"' *" 5heM "f a 'vlindric, 
forces N and bend né moment M t Prps<iu™ Pr. axial 

lng m0n,ent Mbnd> usin« the "lomentless theory of shells. 
'TV* __i J i _ . 
The meridiana! stress is 

N_ 
’ 4» 

+ ~.h^\ it 
nO* *02» 

The circular stress, determined from the Laplace equation is 

- -J'O 
where 21 

Pß==-frf (Pi - />, -f )• 

In a shell loaded 
pos i ti ve ( U). 
and sij¡n of the hi 
compress i ve. 

•Sine«* the cri 

tion of stahi1itv ^ 

from the equation 

where k is the c 

If with the 

then, by usinp th 
determine the act 

or 

Then condition ( 

»«, L 

*o ® I , 

■'~.^7lA® 

fuel ’i" thàS and th<? foIlow»n)! equations the indices represent 
fuel and oxidizer tanks are omitted for brevity. Resent 

or 
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i"'1'*"1'-1 íôr'"r'',,r"* *» »•»».« 

SUS«,?.*' b™dl"‘ -*-»• «- -.-.1- 
■‘’inn , he critical compressive stress n i_» 

tion of stahi, ity of the shel. is ^ determ,nÍ th“ 

ff,« 

trom the eiiiiation - * r< ^ 
kP n-v m * n2am we Prod'^e 

Wh?fe k° ÍS th° CXPCri"ental Critical compressive stress coefficient. 

It »ith the River loadine, condition of the missile > n",in 

determine ^ c.n 

or 
B#r =r*t —0., 

or 

ir SÍW rf,v 
-t, A’.*’. t.1 2*4 J* 

Then condition (30) becomes 
j y . .fim nD7 

4o 
u X 

«. » 
n/X A’. 4: —^ + nt.- /».) 

V ■> A' 
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where 
■O* îii 

> % 

is the strength indicator of a 
tank considering the influence 
of teieperature; 

are the strength indicators of 
the fuel and oxidizer tanks; 

Nf-N —th* cross section of the 
O t tanks: 

«01 
is the actual equivalent load in 

tanks; 

AT, ■M 
is the actual equivalent load in 
the design cross section of the 
fuel and oxidizer tanks. 

The tank strength indicators change on the phase trajectory of the 
■issile only as a result of changing the strength characteristics 

o£t and e| of the Material of the fuel tanks as a function of tempera¬ 

ture. If the influence of teaiperature on o* and E* is not considered, 
t B 

then £ ■ £, and the strength indicator remains constant throughout 
the phase trajectory. 

The actual design load of the fuel tanks N and N changes 
"PR 

over the trajectory and depends on the coefficients of axial and 
transverse loadings, the instantaneous weight of the missile or the 
instantaneous weight of the fuel, the flight altitude and velocity, 
etc. Let us expand the values of N, .rd h' for the cross sections 

A-A of the oxidizer tank and B-B of the fuel tank. In this connection 
WC HflV9 

*4- /t* I-* (Cr. + fli.) + J. *. 

Alá). 

4- 

Aiw a-/#(*î+Ml) 

Thus, the functional dependence of N on the phase coordinates and 

parameters in generalized form looks as TSllows: 



If under thi» loading condition of the Missile p"in > p^p, we 

Must at first calculate the meridiana! stress 

^ pro. 
,—/if ——- 

N . 

•t* ncm’ 

n the case < 0, the equivalent stress, according to the hypo¬ 

thesis of maxiMUM tangential stresses, is defined as: 

Then condition (30) becoaws 

where 

fi-âi-à'. 

In the case > 0, the equivalent stress is equal to the maximum 

stress. Usually for the cross sections A-A and Í-B, the aa imum stress 
is ot *. Then 

Therefore, condition (30) is reduced to the form 

£¡r+ /îf(T. >>.+4j-(A -. - ^ >« 

1 For exaaple, see (35J. 



where 
f ~ (ßmmM ! AP') —J’'»*.. 

n?A> 

Kith these last relationships, our analysis of posible relation- 
sh.ps between the vector of pían parameters, strength vector, design 
stress vector and various limiting conditions for a singlr-staec 
ha list.e m.ssile is basically completed. Summing up our analysis, 
let us present the relationships and limiting conditions sequentially 
as in § 1 using the terminology of this paragraph. Thus, we have the 
plan equation 

!*iwV P.. «o, /\. /».. H. D, lt, a#)«*o. 
(!) 

Here the function f^ is equal to the right portion of equation 

the coupling equation of the plan parameter vector 

(26); 

(I) 

(1S)| 
the condition of arrangement of the working medium [see equation 

¡V--1-0; 
‘ + -Oj°) (i) 

the condition of limiting of the plan parameter vector 

/». .i. <P.<K 

P* < P. ... 
^.<0.ÎVÎ. 

d<+dmx. 



the condition of limit.it ion of the strength vector 

*r<K 

The condition of limitation of the actual vector 

V-Ar;,>0; 

where p^‘n 

min Kp 
whore * Pt 

if a. <n. 

or 

3*(>o. if .>0; 
the condition of limitation of stable operation of the power plant 

0.2V*.-* A <0. 

pi, PvmH ( pit ^ pit Ml. 

/»«,> pïf, /»#.,>^7?. 
However, on the basis of the last two limiting conditions for 

stable operation of the power plant, as we can see from the preceding 

considerations we have based the selection of pressures at the input 

to he pumps and constructed one of the conditions of limitation of the 

rea strength vector. Therefore, in the following thev will not be 

included in the number of limiting conditions. Furthermor , it should 

■"TÎTr »ha/ n many cases when it is not possible to maintain the 
ndition of limitation of the actual strength vector throughout the 

active sector of the phase trajectory by controlling the angle of 

attack «(t) ( for example, with a concrete assignment for a change in 
ang c of attack i . a (V. H); flight in airless space) thev must he 
looked upon as final conditions. 

c*. 11,0 quations of motion of a missile in the phase 
-P », o, H, L, T^, uconsidering the assumptions made in Í 1, can 

he represented as follows: 
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/It*'.«. y. fj - r..- /itv'.«. r^ V).

GcMTally tpMking. c^ and c^ depend on a, V. H, D, T and the 
geoMetric foia of the nose portion. The dependence of on a where
a < 20* is very slight and therefore will not be considered in the 
following. On the basis of theoretical and experinental investiga­

tions, we can represent the analytic dependence of c^ and c^on these
paraaeters, but it is usually ciabersone and contains certain inaccu­

racies. Therefore, in solving this problen it is nore convenient to 
use the known depeiwience c^ • c^^ (V, H) and c^ « c^ (o, V, H) of
%ame prototype, the geoawtric diaeiisions of which lie within the 
fixed range of variable paraaeters of the aissile being planned. Of 
course, this leads to certain errors in the estiaation of the aero- 
dynaaic coefficients and c^. However, since the drag is auch less
than the thrust, the errors arising will have little influence on the 
estiaation of the flying characteristics of the aissile. Furtheraore, 
with a rather narrow range of change of variable geoaetric paraaeters, 
the deviation of the true values of aerodynaaic coefficients froa their 
values in the prototype nay fall within the Units of accuracy of the 
theoretical calculations of the aerodynaaic coefficients.

The control ftaKtioas p(t) and o(t) have certain liaitations, 
leadii^ to the presence of the peraissible control conditions, written

/0<a<iu.(»'. /a
In connection with the presence of various liaitations, let us 

introduce according to i 1 the conditional control functions and condi­

tional paraaeters, allowing us to nake a transition froa the closed to 
the open area of peraissible changes of the control fiaictions, strength 
vector and plan paraaeter vector. Vc then produce

idiera pj** >

-her. pf" > 
Tw 
tl'

or in place

For a bi 
follows:

initial point 

final point

* For exaaple, see [22].
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he

here 
I the
g«-
hese

laccu- 
It to
if

Of

(TO-

I less
>n the 
?T»ore, 
leters, 
m their 
jf the

IS,

*ritten

t us
d condi- 
Dsed to 
strensth

?»• * j (I)

-her. >_ pf

(z- .
-here pf" > JP.

If ..<Bt
ri-i «,>ot

or in place of the last three conditions we introduce one condition

tu^{P.-P.^)iP,^-pJl0.2Sk^-F,)-mi -0. 
fW •I»0|,

— W—•{—o,
-^-o.

fca-(*k-.-W(*k-- irf-0.
L-0,

L-e.

m,
For a ballistic uissile, the boundary conditions are fixed as 

follows:

initial point

final point

/,-Q. /f,«o. 4-0.

Fa-1:
(31)
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on ,0 Pr*‘"K' of condl.lon, 

whpre fro« the moment of arrival at boundary .,, • i ft ) - u . 0, the 

power plant should be turned off. 

a v.r!ü»!!l!lS.COnn^t,t,n: *!?* prob|e* 't>ted ‘•ariier can be reduced tu 
a variational problem which is formulated as follows: in the interval 

*0 - - V in thc cU®* permissible phase variables 

V(0. «(/), HU), LU), mo. 7.,(0. r.,(0. 

control functions 

•(0. pU). 
and parameters 

«•. P»> 6«. Pa, p.. It, O. f*. ^ ft* 

(321 

(33) 

(34) 

vIrí¡bí«*f5?i*tÍOn^h,í,S»(I) conditions (31), find phase 
variables (32). control functions (33) and parameters (34) for which 
Gq reaches the minimum value with fixed G 

Pi 

solution0«^! í° SOlVf ÎÎ1* var,atlon*1 Problem. usinK the general 
olut ion of 1 as a guidance, we compose the expression 

+*01%! + 40l%, + + f e^X + 

+ '%!«• + Vvf +4b\, + 4«, +rÄ-l- 

+mw+ r^. i5s) 
where *• 

^- f,)i, + (r-,,)!,+(//'_ ?i)i>^ 

+^-^1,+^-,1)1^+(^.^)^.. 

— — fiXt ~ Pn*m- 

of fuñct iona?°T TI*“ th* fir,t necessary conditions for the maximum 
of functional (- G0) or the mminum G0 ~ the stability condition. 

The Euler-Lagrar 

l OH ),k 

-, ** 
*011 '* 

1* »O or ¿ 

-Á, «. i 
«h» 

I*» — 1,, 

''»î 

-r,, 

Ä + 

Let us analyze tf 
the optimal control of 
1 1 in the investigati 
Weierstrass condition 
control condition it w 
liquid fueled motors t 

minimum thrust node p 

■Therefore, in the 
P * Ph and p . 0 a* tf, 
characterized by the c 

//,- 
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The F.uIrr*Lagrange .Hiuation-i will he as follows 

•Ni » ff. 

4 •v' v 

*i ~ À i, *»» _ , __ ^ 
«» ' ff« ’ 

'W'» *<»« 

dH *" <>H ®\ »H }'Krm 

+Í 

ro/f 

*«-0 or i4. consl< 

S« —À, £*l _ i *fT _ ^ 
•h* ^ 

(11) 

^ 'V^ • 

‘--J+^+vJ+^+s.^-a 

*. *■ + ». *+^ f ).4n-H oa a« #a *a 

0. 

thr oítiai'í control of'théWÍÜÜÍ 71;,t'uns- J«*^-ni,ning 

« 1 in th« investigation of *'* °f attack a,t>- In 
Weierstrass coSitîôn » cc,nditi^ ” the 
control condition it was deawnstratii*»»! ""ni"u* Principle and the 
muid fueled ^torl Z ^ 

- --.. as urmti 

' ’“l ”1"1 --- “-"p - P«,. • P, and ,n, 
..n.-n. .hnm n^, „ . „ ihould n, „ ,h, ^tnl p(t) 

■!>t.r,,L h, ,h/„/T.‘" • * C’ °f * P***‘*P .«ctor bn.n,: characterised by the condition 

cos« + i, ÍÍ?J _ s > o. 

(Sb) 
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However, fron the ronent of arrival at boundary when the condi¬ 
tion i » nr'se*, the optinal cotmled control n is fonred, which, 

regardless of condition (36), leads to p « 0. 

The optinal control of angle of attack a(t) accordir.r to the Euler- 
Lagrange equations nay be stable control, optinal Uniting control or 
optinal coupled control. 

Thev correspond to the Euler-Lagrange equations: 
stable control 

"Q <>Q 

OT 

k, - ^ iinu #.. r’ (a/»roía ^-0. 
J» W» " ' iVi ’ 

«■ 0, , (h 
limiting control 

k. — ííiiu (j puna '-A,--), 
P a* \ ‘ »a ' 

kw—0. V.-.0; 

coupled control ,., 1,, slna-^-^fu/>co* u b/L 
[ n a \ f 

•+. 0. vt ■» 0, 

where 
)-. V (am.« + °nl« — 

Kith coupled control, corresponding to Euler-Lagrange equation 
(39), the angle of attack is determined from the equation 

(37) 

(38) 

(39; 

Af,=0. 

In this case we have 

(40) 

T’ ~ A\ or i: 1/?; ».. 

i. e. the required thickness of the fuel or nxidiicr tank shell teches 
its limiting value and diffe-s fron the actual thickness onlv by f 
tines. Adjustment the angle of attack by counled control allows 
the design of the tanks for the oain corponents to withstand all loads 
arising on the phacc trajectory of the nissilc. 



t com! i - 
Ich, 

he Ful er¬ 
ro 1 or 

(3?) 

(38) 

r59. 

t ion 

(401 

re -ches 

\ fsf lOW'' 
I loai's 

t, 

Since 6. 
i 

system (II) 

(j « 1,..., IP) is not dcnemlcnt in cxnlicit form on 

has the first intentai 

(41) 

where (p is the integration constant. 

The desiyn plan of the missile is such that after conpletion of 
the active sector the no«e portion must he separated. Therefore, from 
the condition of stability we produce the condition of discontinuity 
of the Lagrange coefficients at the moment of senaration of the nose 
portion (in the terminology of i 1, the condition of discontinuity at 
the moment of separation of a stage). Considering the assumptions 
made in 5 1, they can he written as 

IA.1 _ -VI«, > ... I A?1 X* I 1 1 »,.I m7 i-.J». • 

¡CV ’|CV 
( 'Tl » — e.. 

(42) 

(43) 

Wr must keen in mind here that in tie sector [t*. t, ] the coupl- 
n k 

mg equations do not include the phase coordinate g and therefore ï 

0. Turther-i re. the conclusions produced in the analysis of the condi¬ 
tions of discontinuity (1.2.37) allow us to affirm that the Lagrange 
coefficients »j,..., >4, an.' the intecratior constant C^ 

are continuous with a sudden change in the control functions n(t) and 
u(t). 

Thus, in the sector [tg, tk¡ the Lagrange coefficients 

and the integration constant Cn are continuous throughout, while 

the Lagrange coefficient ^ is continuous th~oug.hout the sector [tg. 

Hase.l on this conclusion of continuity of the integration constant 
i„, we can write the following eciuality for the moment of separation of 
the nose portion of the missile, corresponding to the moment when the 
houndan i = ^ *s reached: 
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Then, »'f'epir, in nind the discontinuity condition (42), ue find 
t .at this euuatior can be fulfilled onh when 

it/’or -if. ro< a • /., llü\_ ) _2ä£_j _-o, 
-1-/ ‘ P> (41. 

I*« fi'o.^o, 

hhich corresponds to the condition of transition from the optimal 
limiting contr 1 ;> = nmax to the optimal limiting control p = 0 (36). 

Consequently, the transition to coupled control •> = o upon reach- 
inc the boundarv- of phase variable \ at the boundary ; - x o 
corresponds to *hc moment of •'optimal" cut-off of the power*niant. 
Therefore, in the sector (r, tjJ, coupled control p will correspond 

to the optimal limiting control n x o. 

The condition:- of optimality of the parameters become 

i’, -i-ij —0, 

_ 1 • ' ^ t > , ''¿-t I , f’-MI« ' * ^ , f,"'< '*'0. 1, 

'•l/O l/y I'o l'o e(/Q iAjq 

— Cl 
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1 Oü0 
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> ’ - Ij + '' -> '*-£ "..T «Cl.* -‘»s» .»J,, í’J, 
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-^,--- + /. Le, -2-==0. 

ot*« <í*. 

«•ai»! 

«’¡«•o., 

Analysis of 
conclu-ior . wi'ic, 
e| t o. 
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of stronr 11r i r . 
then since ¡() 
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# 0, the optimal values of the tank shell thickness for the 

fuel and oxidizer tanks will he Ä"'n and *"*n» while the optimal valm- 

of the rotatinf! speed of the puaip unit will be the limiting permissible 
speed on the basis of experience of planning of such rump units, n 

this result is a result of the fact that with the assumptions mad..', 
the design cases of loading of the tanks of the rain components are 
not related to flight of the missile. Therefore, if cases are |>ossihle 
when the opt imp values and are such that 6”nt > 6^ '*i and 

*£***> should always be a sector on the nhase trajectory 

over which the optimal control a is coupled control, determined from 
equation (40). This result occurs in connection with the fact that 
the design cases of loading of the tanks of the main corponents arise 
in the powered sector of the trajectory of the rocket. Thus, at 
the extremes, in addition to stable control <*(t), determined by the 
F.uler*Lagrange conation (37), there should always be coupled control 
n, expressed by the conditions 6 ■ f*fi* and 6 • f*?*" ’T equation g sr g o sf p 
(40). This conclusion corresponds with the conclusion drawn earlier 
in 1 1. 

Furthermore, if the situation » p"in and p!" * n7'n is tg tg to to 
always realized on the phase trajectory, the optimal values of «„ and 
<o will be equal to the greatest minimum value of the real thickness 

of the shells of the fuel and oxidizer tanks expressed by conditions 
(29) and determined by satisfaction of equations (46) and (47). In 
this case the optimal value of n is n However, this situation can 

arise primarily only with low values of p*L , and . . Thus. 

if we can produce values of pjj and p®^ for which at the 

extreme where 4. ■ f1?*" and 6 • f^é*, the conditions p*n > p"in 
ko min K K ° 0 

and pt^ » pto always occur, the weight of the pump system and tank 

section and therefore the launch weight C. estimated as a function of 
the parameters and n will be produced minimum for fulfillment 

of the maneuver. Therefore, there is reason to organize various 
measures and introduce the corresponding design improvements to the 
pump unit correspo. ding to a decrease in p__ , . h'e can see fron w. ñin 
(§) that the minimum pressure of the input to the pumps, determined 
from the condition of cavitation-free operation of the pumo unit, will 
always be greater for the oxidizer purm, since the volumetric flow 
rate of oxidizer is always greater than the volumetric flow rate of 
fuel, and p“ > p*. 
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In this connection, the situation is possible on the phase tra¬ 
jectory when the condition pj^ > is created for the fuel tank, 

while for the oxidizer tank in »one sectors pj*1 » nn*,l\ while in 

other sectors nto » pt£. Then, the optinal thickness will be 

equal to the greatest nininum value of the actual thickness of the 
shell of the fuel tank expressed by conditions (29), while the optinal 
thickness will be greater than the greatest nirinun value of the 

actual thickness of the oxidizer tank and n < n , since the increase 
’ffl X 

in the rotating sneed of the punn will he United b> the conditions of 
cavitat ion-free operation of the oxidizer punp. 

Excluding the coefficients e . e^ fron the conditions of 

optimality of the naraneters, we produce 

l-f 
** * "«i +-0K9 

^— - —.. ■■O, 
(»V. - l>». »•»to. 

«»to. -1» *, 

1 -.-™:f-+ ——— ^---»0, 

1 + —— + _k_L ?_?!_, o. 
dv.-i>«^ »^n* 

(»V. ->* »p »0»tn. 

_ *-?«_+ ‘•f'-t*? ..0. 

Oto» — I)*« ».»tow 

,o. 
‘ »!%• 

"0 , V ’Tí o. 
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In order to produce *hr partial derivativ«» lf with re«pevt to 

the various nararwtrrs, we p«ust us» the relationship ■ s - 0. 

Suppose the optimal values of the parameters are found within 
their area of limitation. Then we wilt hive 

1+ o. 
(•Vw — I) m« 

1 _ — **)*• 
V»,. 

(49) 

(50) 

or, vonsiderine (44) and the mode p . p . pL, w<. produce 
rax ^ 1 

fl, * * ' , „.a i - f0)]». 

n 

n ,m, 

«’„»li. 

n 
míli. 

• • a 

o. 

*li» 

n».i 
i - 

j r,.* 

r^l'« 

*- a 

1 - ’ ^ o. 
* li. 

(50) 
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Since at the end of the powered sector fixation of T , T and r wg wo 
at the final point fixation of V^, and t^ is free (i. e. these 

phase coordinates are not fixed), the condition of transversality is 
produced in the tona 

'ar* “O- 

C,-0 (S3) 

(Si) 

(s:) 

or, considering the first integral in t^, we find 

sin 1, + 3,0)51,-0. (54) 

It should he kept in mind that due to the continuity of Cq, 

throughout the sector ft0> t^], condition (S3)need he satisfied only 

in one point. Since t*e first integral can be replaced by any of 
the Fuler-Lagrange differential equations, after performance of this 
replacement condition (53) will always be satisfied, since it is 
used at each point for solution of system (II). In the following the 
first integral will be replaced by the Euler-Lagrange equation, 
related to phase coordinate v. Then, excluding the Lagrange coeffi¬ 
cient from the remaining Euler-Lagrange equations and optimization 

conditions of the parameters, we could consider condition (S3) always 
fulfilled. However, at point tn, due to the continuity condition C0 

(44), X is not included in the first integral. Therefore, /cannot 
O 

be excluded from f.he conditions of optimality of the parameters using 
the first integral and this requires use of the continuity condition 
Cq (44), due to which it can be considered always fulfilled in the 

following. Then, condition (S3) will also he always fulfilled if con¬ 
dition (54) is satisfied at t^. 

Thus, at points t and t. we must satisfy the following sixteen 
conditions: , 

(49)-(52), (54) and v (t ) - ^ • 0, L(tfc) - Lj . H(tk) - Hk . 0 

For the solution of system (1)-(11) at point t^, in addition to 

condition (31), we nust fix the eight narameters a0> i^, pk, n^, n, 

V «"d th* *ix Lagrange coefficients >8f;0, ^ 
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the values of which nre unknown, and the two stop functions to deter¬ 
mine point* tp and t^. It is assumed here that the values of r»0 and 

ït are determined from the equations Pj ■ 0 and 6,. ■ 0. However, one 

of the coefficients )J0, >4, ^k0, > äo0 can he excluded, 

for exannle hy dividi nr it into the equations of system (II), the 

conditions of optimality of parameters (49), (SO) and the conditions 
of tnnsvcrsality (51), (52) and (54). Then equation (49) is con¬ 
verted to the condition 

which in the following can always be considered fulfilled, while 
system (II), a portion of the conditions of optimality (50) and the 
condition of transversality (51), (52) and (54), due to their homo¬ 
geneity relative to the Lagrange coefficients, remain unchanged. 

Consequently, determination of the optimal values of parameters 
*0* n. P** Pa. Tt* n» ir ■i**’ í0» optimal equations o(t) and p(t) 

and thereby the optimal phase trajectory, op the basis of which the 
planned single-stage ballistic missile will be able to deliver the 
known navload C. . over the fixed range L. with minimum launch weight 

1 » 
r,0 is reduced to solution or the multipoint (three point) boundary 

problem presented in general form in I 4 and in the appendix. 

The multipoint ( three point) boundary problem produced as a 
result of solution of the variational nroblen can be formulated as 
follows: determine parameters 

•o. “«• O, fi,, p" H, 1., 

Cm K 

and Lagrange coefficients 

*»• '■» 

(55) 

(5b) 

(57) 

for which the solution of t%e system 
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Systen (III) is written considering the conclusion nade earlier 
that the ontinal nodes of the novor plant are the maxinun thrust node 
n = and the node n « n. It is further assumed that on the hasis of 

the fixed parameters (55) usine exnression (59) is always possible 
to determine condition (56) unambiguously. Therefore, in the follow¬ 
ing we will consider condition (59) always fulfilled. As stop 
functions we select functions ii>y and i^, in connection with which 

condition (6P) can also be considered always fulfilled. Thus, we 
must, usin" the thirteen constants (55) and (57), while solving 
systen (III) reduce the thirteen functionals (58) to 0. 
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TI _ i.lisi ntinuity o.n.li t ¡ons -f t Ti orín« itr corff icienfs ,it 

, nf ..1 ' in ’l" ' 1,11 conjugate cwfficients, with the excer- 
tien ot vs. .ire cortmuons. ('oniiiKnt. eoeffuient v.ít ) is 

' 5 n 

y'»"(1Kl‘(O-1/(O) f-vi"(c>(»(/;)- hc))+ 

41/;:.'(cj('(/7)) - /,(/7)] 

t*’« lu.13). 

The svstem of linear equations allowinr us to Jet. 
■* L 

, ■ • ..» "■ temune ií >ig, * >iq, 
50’ 80O* 'spO' V ^k’ <n* '5p> is reduced to 

the following forn 

¿Pi ii|ic^^+</^-.0+ '/li’/'nr j i «Ü0S..0 + 

(/»1. 9). 

AP. !/¡i^io 1/11(/+ , + '- Vli?.Vo -/11^,,(,+ 

(-ví'mc) ('n,;)-%'(/7))+c (/.-)(+(/:) - 

Pn (if 
r o 0 * • p 

• + (/7)) i-v!rr-)(',(/;) -^(/.-))) ---/^,+ 
«n mG '-!»» 1 

"P. •(«-. ;* ^.W+u.-ülíí2.i, 

r5* ««• P/ / 5 ' 0 mc~ un f ~ 

(«a- 5 ^)«.+(*»-^K /^c ^ *r V (fro / 

-1^. 
(*=10.13). 



In order to estimate the deviations of G0 fror the optir.al value 

near the extreme, we should additionally integrate system (IV) from 

■ 0 to tp with the following initial conditions: 

./Ih«’" • • • /Vis»“* • • • -*/Vm^-*°» 

y*, . . . ’“y*»»'“ • • • “/fita*®* 

Ne then produce 

dC, »yViooW'io -I yVn ^Ji + yVii ■{•/Vu#^»»#-}' 

+ /^40^.0 + (/^190-^ --)^+ 

+{/*...-[/v.(C)^(/;)-^(/r))+/^('r)(*(':)- 
- » (^7))+/V» (^r) (*. (<;) - (':)) /y.» (• :)(;s (/;)■ 

. -^'7>>]^-'-2ri£K+ 

+ 

/*00 */»> 
«O da 

*/» 

^i« + 

This relationship allows us to estimate AGp near the defined 

solution. 

This concludes basically the description of the mathematical 
model of the algorithm for the solution of the formulated multipoint 
(three point) boundary problem. It remains only, following the flow 
chart presented in § 4, to compose the computer program, the computer 
realization of which allows us to perform the necessary combination 
of calculations determining the minimum value of and the optima! 

values of the parameters a0> Pmax, 0, lb, pk, p^, n, 6g, «q and 

optimal controls p(t) and o(t), therehy making it possible to perform 
preliminary planning of the LPBM capable of delivering the payload 
over the fixed range with minimum launch weight. 



If wc assumo the pravitatiomil fielet to bo homor.encous and do not 
consider aerodynamic forces, this variational nrohler can be solved 
completely. This idealization of the problem bn* certain advantages 
and disadvantages. However, one thinp is definite: the solution pro¬ 
duced can he used as a good ' zero’ solution of the multipoint boundary 
problem. Therefore, there is some reason to present the results of 
the solution of the thus idealized variational problem of optimization 
of plan parameters, design loads and controls of a single-stage liouid 
fueled missile, canable of delivering a certain payload to a fixed 
range with minimum launch weight. These results are presented for 
ranges « 1000-2000 km on figures 1.211-1.49. In the calculations, we 

used typical plan epiation coefficients for the current stage of 
development. 

As general conclusions, we can note tbat first of all, in the 
powered stage the optimal onerating mode of the engine is only the 
maximum thrust node, i. e. there are no intermediate passive sectors in 
(to* t^): secondly, the entimal pitch control is that in which the pitch 

angle is constant. 

Furthermore, it should be hent in mind that for these ranges the 
optimal values of thrust to weight ratio, pressures in the combustion 
chamber, rotating speeds of the pump unit and pitch angle are such that 
they can be averaged and assumed to be: ap * 2.2, p^ * 125 kg/cm2, 

n ■ 25-103 rpm, 0 * 48.2*. This will result in a deviation of from 

the optimal value by pot over 0.5%. 

Fioure 1.2P. Optimal Launch Weight as a Function 
of hange and Relative Flieht hange 



f 1 

«# 

Fi-urp 1.2?. Optimal Thrust to Weight Patio as 
* runction of Range and Relative Flioht Panae 

Houre 1.30. Optimal final Weioht as a Function 
of Panoe and Relative Flight Range 

Fiqi 
r.hnr 

Fli 
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ri<iure I.3I. Ootina! Thrust as a Function of 
Fanqe and Relative Flight Range 

Figure 1.32. Optimal Pressure in Combustion 
Chamber as a runction oC Tange and Relative 
Flight Faroe 

1RO - 



Figure 1.33- Optimal Potating Speed of Pump 
Unit as a Function of Range and Relative Flight 
Range 

Figure I.3I». Optimal Diameter of Body as a 
Function of Range and Relative Flight Range 



Figure 1.35. Optimal Thickness of Oxidizer Tank 
Shell as a Function of Range and Relative Flioht 
Ranne 

Figure l.3f. Ontimal Thickness of fuel Tank Shell 
as a Function of P.anoe and Relative Flioht Range 
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Fioure 1 ^7. Optimal Pitch Zonale as a 
Function if Fange and Relative r):0h; Ranpe 

riourt I.38. Oeviatîon of Initial Weight 
cron Optimal Value with Oeviation of Paran 
etens ^ and a^ from Optimal "alues 
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Tinure 1.3?. Opt i nal Relative Velocity at 
Fnd of Powered Sector as a Function o* Rancie 
and Relative r!ioht °ance [v = ''( t )] 

n 

•: 

r inure l.ifO. Ont i ma I Final Pow.;r Anele as 
a runc tion of panne andPeI at ive Flieht panoe 

I 84- 
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Figure 1.41. Optimal Relative Heioht of 
End of Powered Sector as a Function of Range 
and Relative Flight Range 

Figure 1.^2. Optimal Relative Ranoe at 
End of Powered Sector as a Function of Ranoe 
and Relative Flight Ranoe 
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Figure 1.^3- Optimal Angle of Attack as a 
Function of Time of Powered Sector 

Figure I.Ak. Optimal Relative ’•'•■¡locity in 
Active Sectors as a Function of neiative Tire 
of Active Sector f. i. 

r(*'" )' 
• ».- 

,(p" )- 
1.5. -- 

«Kr 
1 

-186- 



1 

*/*. 

Figure l.*»5. Optmai Relative Power /'ngle 
as a Function of Relative Time of Pov-ered 

i Sector: 
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Fiaure I.A7. Optimal Relative Ranne of 
Powered Sector a* a Function of Relative 
Time of Powered Sector: 

Ficiure I./»8. Ontimal Relative Weight as 
unction of Relative Tine of Powered Sect 

f* 

or : 
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a Function of Relative Time of Powered 
Sector: 

I 

Our attention is drawn by the fact that for various ranges Ly on 

the optimal phase trajectory, the curves 

practically corresnond (Figures 1.44-147J. 

The curves shown on Figure 1.38 allow us to estimate the devia¬ 
tion from the minimum value of launch weight of a missile ns the 
parameters ^ and a^ deviate from their optimal values. 
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V i n - 

y?u!ATI0,,AL METH0D 0F optimization of 
MULTISTAGE FLIGHT VEHICLE CONSIDERING POSSIDIIITY 

OF INDEPENDENT MANEUVER OF STAGES 

s I. Statement of Problem 

ni-,nrln»|the in*îial staRe of banning of a flight vehicle and nower 

eters,andethe0nÍs!ihrSeSI0f dfcnnirin^ at ]c^ the main niai param- 
the TA of the f?^hÍ1C i0d?S °f !"0tl0n ProvidinR for fulfillment of 
of effectiveness I Onl^th Mt- th^ n,aximun' value of the criterion 
are usL ühis staei ^ ^ P,an para,neters and "«des of motion -s; - r'“ 
rtifi • ?l'.’rd TO“er -n >•<•' in oxiMerce (aid ixriicSl,rW 
o,.l¡ in ¡’î*"" ln nn;ilvtie for"l is » problem wHch is vary c'iffiy 

- !: — 

naramrtcrs? piLsVfT'PnJb'fTv'™,>la" 
of .bo nrr o.ao. ^ “o" 

In this chapter, we study the problem of determining the main 

”* >*«* «' -"vorcn, of n o,„.,is,a™o !?or Xïïui,, 

-ïn0. 



we assume two stages) flight vehicle, capable of fulfilling a formu­

lated TA with the maximum value of the criterion of effectiveness 1 cr, 
more accurately, where 1 - sun, which in general form will be assumed 
equal to

where

assumed that the second stage, after senaration from the 
"main" vehicle, can perform independent maneuver (return to the ini­

tial base, travel to a fixed destination, etc.).

The problem is analyzed of optimization of the main nlan parameters 
and modes of movement of several objects moving along various traiec- 
tories in order to perform the t\ set before them and nrel iminari'lv 
accelerated by a single object (booster), the parameters and modes'of 
movement of which .are also optimized. It is considered that the struc­

tural-power and aerodynamic plans of the flight vehicle, the tvpe and 
characteristics of the power plant are fi.xed, the phvsical-chemical 
ch.iracteristics of the materials and fuels are known.'.

Both rocket and jet motors may be analvzed as power plants for 
the stages. The problem at hand has certain specific features. There­

fore, solutions ire possible which may fall outside the framework of 
the solution of the \ariational problem of Chapter I. Therefore, the 
necessity arises of special analysis of this problem, and there is 
reason for greater definition and concreteness to study its solution 
individually.

The main plan parameters of the multistage flight vehicle will be
f.I 7T I 1 T ^ — r' ____I ^

^oi 1. JOi’
G„, II), where G„ = C„j, and

’’oi- ' k ■

The other plan parameters are considered fixed from the experience 
of planning or the technic.il and operational requirements.

The plan equation and other weight relationships can be represen­

ted in general firm as follows;

;*.j" Coil—G<jhii “G.

I*'-'"

(2.1.2)(2.I)

The coupling 
also in the form

The relations 
missible range of 
number of other re 
tions, conditions i 
of limitation of p

The beginning 
the boundary cop.dii

At the beginni 
following eauatinns



■•■hcr-' 

• r r 

!loi 

Hum 

'ik„v-», iî0, (?,)„), 

/"'p M..|. frji, / ,. :1,,1, g0), 

/‘¿’K.-. A.(î,Cou). 

P‘- lin.* equations of the plan parameters will ho expressed 
a I so in the form 

- 

^>i. i 

K- u. 
S(h 

^7 

u (/ -1,2), 

(2.1.3)(2.1) 

-.»-.'.a «.m« .i.h„ th, „r. • I . ,. . .~ V - • • • • / « i V ^ w I I et. t W I I 

miss,hie range of change of the nain parameters. For this and a 

tioír °-L7hrVV rearnK Jictat0li b> tochr.ical and operational candi- 
° L ‘T ? ■,rr'nRt‘n’cnt' eu - we consider the condition ot limitation of plan parameters 

'-Mioji. "C G.,y < G 

a')l in 10 ^ flu/ 

(Pm,x /imlO^/’.n.,,, ^ (/^,, , 
J... 

\ 

/q; Jt) 

bty m i,• 

‘/ralo ^ j0l m t< 

b'll mío b 

ÇM 
mm 

(2.1.4) 

V'-nm r 

The beginning a.ul end of flight of the vehicle are related hy 
the boundary conditions which can he written in general form as: 

fo -°. l*i 1. ^vd'i. %, //,./„) 0 , 

(e -i.. .. m 4), I 

\4V,. //,. /,. /,1 0 

(o- r. . . ,/j < 5). 

(2.1.5) 

dt the beginning in,' end of the 'operation' of each stage, the 

11(/-0) .¡i>y o. 

following eoii.it inns must he fulfil le( 

l*u (/'’*) 1. 

(2.1 51 
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These last equations also express the limitation on the phase 
variable v in the form 

(21 
If after achieving the equality v(t )= further flight is 

possible in principle, then as was shown in Chapter 1, 51, it should 
be performed with the power plant switched off. 

After separation, the booster and second stage perform independent 
maneuvers, the purposes of which are different. Therefore, at the end 
of the independent flight of the booster, the boundary conditions 
which must be fulfilled are generally different from (2.1.5), and rep¬ 
resented in the form 

0 = 0 
(Ji = l, . . . ,/<5). 

(2.1.6) 

Ke have introduced the tilde here in order to distinguish the 
phase variables of the booster from the phase variables of the second 
stage after separation. 

Furthermore, the following conditions should be observed: 

5;"»- IMÒ iC =0. 

(2.1.6) 

This latter equation expresses the limitation on the pha:e vari¬ 
able V in the form 

possible in principle, it should occur with the newer niant turned off. 

Conditions (2.1.6) follow from the requirements placed on the 
flight of the booster after separation. They can be formulated from 
the TA, dictated by the track of the flight vehicle or a number of 
other factors. 
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Figure 2.1. Arbitrary Representation of 
Branchino of Phase Variable x. and Absence 
of Double Discontinuity at Po'lnt t^'' 

In the following, we will assume, as in Chapter 1, § 2, that sep¬ 
aration of the stages occurs instantaneously and without perturbations. 
This allows us to assume the phase variables V(t), 9(t), lift) and 
Lft) at the moment of separation to be continuous, indicated bv the con¬ 
ditions 

= 0(/01)-0, 

(t'")-H (H") - 0, 

V-£('!!')-W) =-('- 
if, =/0)-/0) (), 

31/(/0))-171 (/0))-^0, 

õkc=i )1(/0))-¾ (/0)) n, 

V.-.//(/0))-//(/0)) .0, 

^ /(/^)-7.(/^)-0, 

i 1,/0)-^/0)=0. 
* — T 

(2.1.7) 

Condition (2.1.7) reflects the absence at point t^ of a first 
order double discontinuity -- the first discontinuity and the second 

lively*" t0 which the phase variables are, respec- 

V(•?)./(/;'') •« ‘7(/*,”).¿toifi«-2- 

Making the assumptions introduced in Chapter f, § 1, we write 

The names first discontinuity’ and ''second discontinuity' are 
arbitrarily assigned. 
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the 0'|u;it it • ' ; "lot ion 

' l" ' (rt „(>?><■ H h'ij'l') ; .¡n'l, 
* U 

(' 1, 
, . Cii I i r ;,v * ■ 'I I* 1 11 '1 

* r rWi-7. 

kinomatii. couplings 
c.l) 

ï'!- //’ l'-111(/, 

;l ‘ • / ’ —' - f’l ‘i, 
<r« ; II 

diver’/MKi eharaetcristic: equation 

rj" i1* - ^/'"(V.A ), 

and the couplin. equations for the booster after separtion of the 
stage sre ur t tin as : 

equations ^ motion 

? V" A- (ß ¡pro‘(î-t/.v)-jTsju^n 

(/' 

SMi, I 

/Cl, i'COSl, - 7. hiu-f b,¡y) + 

kinematic ounlines 

T, H‘~ Î’ sin5, 

T(r /- 

divcrgcnc. haracteristic equation 

'’A1, 7 

fl.i /(U. 
/(.. 

(2.1) 

Here O'" V* ri,i P,,) ?vj’ rq. 
j jr ' T • 

or.' - o ñr.' 
V w r <„ > 

Here for simplification we assume p'1 1 x I’1111 and S11^ * S111 
max max 



«ho re 

■ r W. //H-//.«). 

^(l'. + 

?» ^(^./7.5). 

/," /"’(i7, //. À. y0I, ,j01) 

p(t, nóVwítMp're •b?"’* ln O’ntro1 Kt), n( 11 «nd ,ft), 
dit ion! 'tS OXPri'S:U''1 hv remissible control con- 

Cnl^. “»/) U'^,1/, //,, 

<>< p''\t)* p“^vt H), 

“mi.d’. /7) «(/) .<«„„(i?, //)t 
0 ' /»(') <>.(^. /7). 

(2.1.8) 

Generally sncaHm-, a chanyo in the phase variables nav also be 
related ,o eert.un h.i,ri,.v Juc " the ‘or™^ 

reqtiirerent: er the flieht trajectc.ri.e ,.r are dirtatrd hv ihi. ït 
or simnl'tican.tn, we v i 11 as sun, that limitations on changes in’the 

nhase variables can exist onlv dnr-ny the fli-ht of t-e fiîst an 
second stapes. Suppose they are represented as follows: 

(2.1.9) 

chanter c""cr‘-'"1v f«.«tl«e the task f„r»„l.,te,l le tlti. 

It is rediieiv t,. deteminat ier ,,f th,. paræeters , , j 
r"', h c'1» , (H) ^ ^ oí- oí* 

n'x (’' V.I’ kl* Ti • '‘oj* 'pj ;,r>d controls a(tl and 

;>(t. of tbepulti-tare f.ipht vehi,le, capable with limitations (2.1 8) 

Jlllu'n! ■ TZ'** ":PnUV“rK \ith,M the ^ boundary 
la ^kit suc^ t^«1t *he phase trajcctorv of the 

booster at the end of its flight satisfies the Knindary conditions 
Ur 0. fhile the criterion of effectiveness , reaches its rax.nuim 

value (mom accurately, the preci e .inner boundary). 
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T 1 

Controls a(t), p(t) and a(t), p(t), as in Chapter I, are in the 
class of piecewise continuous^funçtions* while the phase variables 
V(t), 6(t), H(t), L(t) and V(t), 0(t), H(t), L(t) are in the class 
of piecewise-snooth functions. Phase variable i<t) undergoes one 
first order discontinuity at point p(l)t its value to the right of 
the discontinuity being fixed [see (2.1.S) and (2.1.6)]. 

Essentially, this is a variational problem. However, this problem 
is stated for the first time as a variational problem, so that its 
solution has not yet been found. Pue to its specific peculiarity of 
branching at points tfi) of the phase trajectory into several trajec¬ 
tories it is somewhat different from the general variational problem 
given in Chapter I, and therefore should be individually analyzed. 

Following the mathematical theory presented earlier (see appendix), 
let us go over from the closed to the open area of change of the main 
plan parameters and control functions a(t), p(t) and à(t), n(t). To 
do this, we introduce the following equations in system (2.1) 

,«< »■. (• - «¡n ) - a) - ^»- (0-0, 

rlßiü.-p)- *;*' (0-°. 
Hi’ * ~ aia)(Coy — Goj)~ ” 0, 

Hi’ - - (^)-.] [(^U - - < -°- 
S'»* — (*w - b0l M. - *«)-«« 

rii* " (^Oi— -Aw nii«MAf an — — 

vn rn (Stn _ 5^.)-f")- < - o. 

(5-â.,.Xõ„, —«) 

(1.Î) 

If the nhase trajectory of the flight vehicle reaches the boundary 

(2.1.10) 

then this eauation must act as the final conditions for the sector of 
the trajectory which lies within the area and is immediately adjacent 
to the sector on the boundary. Furthermore, at this time the control 
»«ill be determined from the condition of equality of fundier fj1* to 

zero, leading to the equation 

in which c 
system (2. 

where v(t) 
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ty of 
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oblem 
:ed. 

impendix), 
)c main 
I. To 

(2.1) 

(l.i) 

boundary 

(2.1.10) 

n.tor of 
id iaccnt 
control 
f(H to 

«T 

*<'> j ~l*— ?•'»+- r'f> -o, 
4 rfT f‘ T a* r* ^ 1 

in which controls a(t) and p(t) appear in explicit form. Then in 
system (2.1) we introduce the equation 

-o. 

where v(t) is an arbitrary function of time, \> 0 where 

/tf’-O. 

(2.1) 

After all of these transformations, we can formulate the vari¬ 
ational problem which follows from this problem. It consists in the 
following: 

in the interval t^ ^ t ^ t^, in the class of permissible 

phase variables 
V(t). 0(1). H(t). L(t), ,1(0. 

control functions 

a(0.P(‘>. 

plan narameters 

G'j, a*. Pmt" yWf éw.S<Mf Kt 

arbitrary control functions and nrameters 

^0(/),^)(/), ^o(/), tt,,. tew. wv. •«. ww, 

satisfying couplings (1.1) and boundary conditions (2.1.S), find phase 
variables (2.1.11), control functions (2.1.12) and narameters (2.1.13) 
with which, in the interval t(^<^ t < t^, in the class of permissible 

phase variables 

P(OJ(0.//(0. r(f). MO. (2.1.IS) 

control functions 

a(t),p(i). (2.1.15) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2.1.14) 
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plan paramot rs 

arhit rar> 

ti'»> 
' K 

cortrol 

• aot. *oi. Jm, •S'”, Pmtl,, 

function^ and paranett'rs 

(M.lã) 

V, 1/), V,.(/), K'j,. tr4l, Ü-5,, cg i, 

satisfying the boundary comlit i.)ns(2. ! .fcj ami counlinps n n the 
expression ' * 

/ ( 1 *i, ^1(, //.,, /.;, Gpf, Go) 

reaches its maximum value. 

We compose the expression 
7 

<i> /- r;0');0' -4- e\'»>«" + «>.>, f V c'1 >><' > 
l-l 

+ 2 <’>1'’ + 2 X + ^ + 
i.i y-ii-i 

X ''«'Vo V rk>>k. -f V «.o » j. 
o-i .-i i""I 

X 2 + + V* + VrV + 
« - 1 

-f- '“e^v es'*, + iV* + e,/yw r„lH -f 

+ -f + «VW +^,¾ + 

'1" T », 
- -í- \ /",<// - J />(// f- f Fw//. 

». ,<*• 

where 

F' ^ 2(í)-’»)'/■ 
/i /i 

, • j iro ’le variable Lagrange coefficients, 

o,0>. °t ••re the constant Lagrange coefficients, 
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r, 1. //. ;i; •r/ I \ ft, ï, £. 

Relationship (.. J (?) ¡s .,|u.,vS Sm h th.it 

' ......*..«M» 

§ 2. 

«eeMsjr, -o«dltiom for dpi in,; iat ion of Criterion of Effective- 

Jr nr ÎÏÏ ; r/ ,S'*rbi",V' “"'"’•f-» Condition and Mai Prinotple Considering Control Condition) 

The necessary conditions for the maxinun- value of the criterion 
• tfcctnenoss of a mu 11istaKo flirht vehicle will include the 

ZtilZ ’►» üe I erst rar s candi,,.,,, and the eaxin,«, 
I" iminle, eh,ch ec „,]! analyte conelderlnp the control condition. 

from the condition of stahilitv, 
the I uler- l.agranKe equations and the 
parameters, discontinuity conditions 
of sta.i-e separation and the condition 
to their determination, we write 

i. e. d* r t'( wo produce: 
conditions of opt imitation of 
and hranchiny conditions at points 
« of transversality. (loin,’ over 

j.j, j/ rl'y.}" eji, t 

1 t 6 ? 

f V cl."«/--'" V « .■lJ;v, 4- V V !- 
3 3 4 4 o> 'Of 

/-1 / 1 ¡ -1/-1 m * 

1 V. -i; T” 2'-^ ^ t’k. dy,, |- 
9-1 n-l 

V cy-í/vo i vr.edvv 
ñ“i 

; «>•'/•*, , l'yd'iv r ' i t + «*»//%+• 

f ''„(/-d,, •’i^L 1 

f’i </ÿ| I t’i </'>| 
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where 

, U is “4 
* 0 onh 

appearing as 
on the phase 
.ex 

kl • 

Accordin 
bility (2.2.^ 
be written a- 

L i 



where 

a',’==°o> •o«* !*«i- A.I. *ui: «* Mt). p{'), v'(/), v(/), »'(/); 

«• -* oi/). Ã'/». »,(/), >//). 

f2l 11 is assumed hcre that tt’P Phase trajectory reaches the boundary 
* 0 only once in the sector (tí1), t ) at point t*. the boundary' 

appearing as a result of the existence of the condition of limitation 
on the phase coordinates (2.1.9), then leaves the boundary at point 

According to the appendix, on the basis of the condition of sta¬ 
bility (2.2.1), the Ruler-Lagrange equations in the sector ft„, t,1 can 
be written as 0 k 

» 1 ¿j / • àv 

-V' 
àp\ ,»o 

"•*->.(0. 
il' ♦ OV' 

/-i 
i 

t/a 
rli'- i-i'»' =■-- - V /.'■ » ^ - _/.U» - 
T,> * 7j / • ÒH 

01 

.ito_*-*‘ _;,to 
* oH * 

n'" 
oH ' 

çO'ai/.OI’tjü or /.tO^const, 

To 

.10 
->;o -0, 

.io 

(2.2.2) 

¿-in a»0> 
,.o^x*o + /.;o„±_ + ^.-_ + 

+ 'j 
.«O 

+>;•> 
*P 

= 0. (2.2.3) 

to 

•It 

ii'»* - - --— 'i" ~ - - *v* *,n 
du 

/«o^o =^(1, /.tOv'O.-0, /.‘O/o* 0 (2.7.4) «• 'PP r 

(2.II) 
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The luler-l.HMnrye equntions (2.;.:» and (:.:.1( allow us to 
determine the or:j al values 'f control tan rion <(t1. Kith stable 
control, when n ; a* p 0. >U> o. o, and 

t herefore 

r\ï~- '^a-j f 

, '1° I , . \ r —K,/»cosa * b,tt -^-1==0. 

(:.:.5) 

I f a * a 

Then 

Tp then V ii( 0. X‘i} , 0, : 0. 

r!V -= - M‘1 y ( a >iP sin «1 bo, + 

+ >ï' ~(«„Pcosan> f bm).('> ^0. 
(2.2.6) 

In the cas, of movement of the phase trajectory alone the boundary 
formed by th, cnditions of limitation on the phase variables f(/> . 0 

the coupled >ont rol of the angle of attack (t) will be determined 

from the equation > x)= 0, where v[lj = 0, Xii) - o, 0> anii wo 

therefore product' 

?!i’ ” “; !' ’y [a>,sin u 4- 60>. 4- 

/1)+,,,, y=n. 

We must now determine permissibility of the stable control 0 as an 
optimal control where < , < JO by studying the Weierstrass condi¬ 

tion or the maxi :11m principle (minimum principle). 

Let us represent 

.V'0 o /tcosa-j-ftJ1V<'’. Z{i' a+ipslna 1-6«^ 
< * I 

md accept .(< control function : in place of 1 (here we arbitrarily 
ass,,;, control p to be fixed). In this case the Weierstrass condition 
becomes (see appendix) 

t.i° 
(2.2.8) 

-20X- 

where 
(i) . 

I s t 
1 I ^ z(i) 

V I i ) 

Then with 
con-ider i nr lui 
tlie replacement 

can he written 

Since when 

(^ * ) will a 1 w ,- 

Thus, when 

trol a to be sta 
fore, if the any 
Lagrange cquatio 

optima) control 
the condition f 

The ful er-1, 
dett rminr ttu’ on 
sectors where th, 
not in force, ,i- 
optimal operatin', 
satisfying the h, 
he the follow ini’ 

modes of jet cm: i 
Wei erst rass eord( 
thrust mode, the 
which depends >n 



where (.^ 

-n, \(i;; thc value of control function zm, 

X(i) r X1’5[;(‘1 ) . 

where 

Ihen isith the stnhle 
consider in»’ huler-l.i -ranj-r 
the replacement of , hv 

control , 
equation 
neromes 

the Woicrstrass condition (2.2.8) 
f-which, in connection with 

nX'1' 

a/1 
..4-. 

can be written as follows: 

tx<"¡-—a'" ¿'"J <0 

(Z 
(i) 1,tC Whtri * */2 ' a T/2' rhe tangent to the curve X(l) = X(íík 

• will always be located above it, we find 

MO. rt.V </) 

Thus, where 
"l ' °' U iS ^ible *" Principle for the optimal con- t . ‘ 1 .mie ror the opt 

fore, if the anHe^f^tUck 'i^t^ 'n'/h0 Wcierstrass condition. There 
grange equation 12.2^ 

—' --- min u - tho optimal control is stable whiln «»w . ^ ‘-max' 

the condition fH) ■ 0 should he satisfied!1 ^ tontrol- and 

dot. r^ne^írõn^H^^ir^oniroí f'r ’ ^ ¡t ^ 
sectors where the .„nd.tiün of i 1 i t w ' "0wcver- 
not in force, as the inves, ¡,.at ,on^ in n,'ant os I* 
optimal operating modes of the rock t Pt°r 3 havt‘ shown, the 
sat is tying the We,e,strass aWmon „ ^ 

IV ... p 1 Vix »hip ...wh:rthper,:;;iei 
- -> -i-Mng the 

t^us, mod, . the mínimum tí „ ? 1",T 17'"'V'ï 7* bc th‘‘ maX i mum 
which depends on the type of ^ Z 
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1—1 

I 

However, according to the control conditioni flight with the enpine 
operating will be optimal where 

ílííí 
i» 

tV0«’- (2.2.91 

Invent 
the maximum 
note that t 
similar to 
coupled con 

Of course, it is assumed here that the phase trajectory does not 

extend along the boundary f(l) - 0. Otherwise, the control condition 

Thus, 

may be disrupted in order to assure fulfillment of the 1’ ..iting condi¬ 
tion on phase variables (2.1.9). If with optimal p > 0 we can assure 

control, s^ 
of attack ¿ 

r(i) = 0 by the corresponding control a, then the optimal control a will 

be the coupled control, while amin a <_ a^. If, however, with optimal 

p > 0 it is impossible to provide f^ > 0 by some control a, then where 
$ 

f[^ = 0 we must go over to coupled control p, determined by the - V -V ...» 

equation 0. 

From stability condition (2.2.1} we can also produce the Euler- 
Lagrange equations in sector (tí1), tk]. They are produced in the 

form 

lies withir 

while othei 
\ lo¬ 

in coi 

form on t, 
respective 

- .-. «Ir t » -r 0Pm,l 

/-1 

1-1 
S 

-s 
no 

.“V 
■V 

r <*?y r 
/.1 1 .- — /^ 

1 nH 

da. i 

dH «H 

ni =-=0 or r4=: const. 

- . r dfl . r 'Hj 
nr«'.+> ,+'2-5 

r , , d?| , f'f* r f •« - 

or 

(2.II) 

r l'T, 
' "vT «s 

/^v, —0, i.p\f—0. 

wher. C (i) 

In or 
conditions 



Investigation of equations (2.ÏI), the Weierstrass condition and 
the maximum principle considering the control condition allows us to 
note that the optimal control conditions p and a for the booster are 
si«*lir to the°condi' ions (2.2.51-(2.J.9) determined earlier «.thou, 
coupled control. 

Thus, where \ < 0, the optimal control can possibly be stable 

control, satisfying the Weierstrass condition. Therefore, if the angle 
of attack determined from equation 

-7,(ûo.P»'n ô+*oi S) r ^(«o,>cos«x»u. 5)=°- 

lies within the limits ¿min 1 a <_ amax , the optimal control is stable, 

while otherwise it is the limiting control which exists only with 

*1 10- 
in connection with the independence of 4> ■ (i) and in explicit 

form on t, systems (2.II) and (2.11) have fi/st integrals which are 
respectively 

ri/r J2Í'- Êf i- C<n 

F- 

or 

V).iMn= -ci1’. 

—Co¬ 

il. 2 AO) 

(2.2.11) 

wher. are the integration constants 

In order to satisfy the conditions of stability, the fo”owing 
conditions of optimality of the main plan parameters must be fulfilled 



T 1 

,'Ot '»i,i? o! «i; .11,,- 
+d«' + 

c«i^7 ‘pj 

o! r lh\ 
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O'-, 

w, 
■<•’!" J—- 

t*;0 

rfSj" -¿.111 
r^0! 

-=0, 

.|Ol 
r»iO) 

Oaui i>a,,i oj0i 

.-i1* 
°t'J7 

üa(,i 

.1*1 
;iu 

r —*— <// -j- f 
J Moi J daoi 

,0> 

^.(01 

/M• » —?-j. ¿»‘H —-.'l— iO 
' óP. ^ mill 

,1«' 

dP ■mil 
1-(-) 

di«» d5¡u' , dV," oh . ... --4 
..id . 1-Ut''" —---i-p,-l'í’i — 

* ôb()i 1 ôb(í\ * Ob,jx Obf\\ 

otJJ' 
...III 1,4 ■ 

04 0«„ 

H» 
r»lO) 

. r ^.-(// + r 
r J 0h,\ J d^oi 

d>!'> dl'01 
<>'01 1 4-f") —— 

1 dim ' ^^'ii 

i 

d3j 

(II 

d3, ill 
•0) 

OS 

.1*1 ;n> 

+ f JFjl.c1i+ I* -JL-dt^o, 
J d/oi J aJn 

,(ii 

d>lî' 
..in -i. gin -^.-=0. 

1 C(« d«î"» ' 

^(0) 
ri 

dS"' 

^(01 
03',°' 

p( 1 ) 

dS'" 

d?«'» 

^,1 ' d|ikl 
' +^-^--^=0, 

fa. 

d|*k| J du,, 
<// — 0, 

,(1) 
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Excluding the constant Lagrange coefficients e2' cj^ 

and e^ from these equations, we produce the conditions of jptimality 

of the main plan parameters in the following converted form: 

where 

+ 

ßW — ßg^O, 

1 + 

1- 

dîj" 
dS"» 

1 + 

1 + 

1 + 

l- 

(.*1” + «i1» 

in"+V») 

-ti'* 
i n" -r fli») a.?7 

+ a»;1’ 

Or + ai"’)-!" 
Kb + ai") a.;-» 

(*? + *?)*? 

+ ai/' 

(Al" + a)!>)Mp 

0. 

■0. 

0. 

'0. 

■0. 

>0. 

0, 

0. 

(2.^.13) 

(2.2.14) 

(2.2.15) 

dQpj ' 

a?}» X\" 
dOg OGg 

«I*1 / d»!1* 
a*, I \ dCg 

^11 41» \ 
40, 4»m /A 
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ßLn, iin . 
Oí 

,,-.(1) "_0J 

na-1 

O-ü'/'-P I» f™ nml 
..H) 
’'1 

W ^"/cP.n.U "fl0l 
Ö0U, 

Al» ’Tj, - ^011 . 
- <*., J "H.! 

fl"» 
^,11) 

1 — flou, 

<«, - aï!” 

''»"’“lii“» ^ ' «¥,i 

():{»* 
fl0ll, 

/^011 + 
,(«) 

as, ~ 
Aij" = ’li» -!- ñík 4- ~tL Aon- —n*. 

^ 01 w oi 

à‘W 

àJ„i 

d>i»> 

âJo'. 
fl, Ollt 

a»!1* 
as"7 (¾1 4-n 

Ji (I) 1 
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aï» ~ \ 
7ürnî‘)* fl,.,^..,^l ôo(, 
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,115)-,111) «(»)=*-(») _f^L. 
7 1te' ' M a/oo • 

i») 
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wh ore 

T'» 

ñ,.~ i' --- dt, n3k -- f >tt, % - f -f- 
J •’■'oí J,.'Kii ■'..‘"'«I 
n*> 

1 
C “? 

n^"-' J <Vi*> ’ 
7i,) 

I»') 

'I1'1 O 'oo 'N 

'C-o, 

n, -, o. 

Hio —O, 

n..0 — o, 
ñaa-O. ’W-O. 

I quations r:.:.12) allow us to determine whether the optimal 
values of the main plan parameters are located on the boundary of 
the area of limitation, when 

C0j * 0> c07 = 0 and wji = 0. V * 0 (i * 1, 2; j = 1,..., b), or 

within the area, when w / 0, w.. t fl and eil' = 0, e = 0 

u,ww.SUirSe thC Timal Values of the main Plan parameters are located 
within the area of limitations. Then the conditions of optimality of 
parameters (2.2.13)-(2.2.15) become 

~ Mi.1» 
£»/ 

i ■> ^ .16) 

,+4¾. 

oS,x> ~ A1, 

1 

r-, 

-A 
U* 

i-i—:*—a_—o 
T Mi'»*«-» U* 

.0, I -1- \ „0 
.i'V 0> 

.-Ä 
’«v mj oy 

(2.2.17) 

(2.2.181 
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The condition of stability (2.2.1) can be fulfilled if the so- 
called branching conditions are fulfilled, i. e. the conditions allow 
ing us to determine the Lagrange coefficients at points t^ to the 

right of the first discontinuity (/(* * ^ (t^)) and the right of 
(i) ^ the second discontinuity (^(t^ )) of the phase variables 

According to (2.2.1), we produce 

^(<-’)+ii+7»=»o, 

'•j (*-’)+*»+*#•“ 0, 

7,(/(10+7^-0, i,(/VO+^“0; 

>«(^0 +et +7^-0. 

7, (/VO+*1=0, (/V0+»i=O; 
Q (^-0++=0, 

£,(4'0+?i«o, c,(/V0+*i=o. 
From this, after excluding the Lagrange coefficients ev, 

et, èt, we find the branching conditions 

M'VO-W)-3^")-0* 

*»( /VO - ^(/VO -^VO*0» 

^(/VO-M^O-^i^”)"“0* 
^(/oO-M'VO-V^O-0* 

q» (/o))_ q*)(/!>0 -£o(*VO=0- 

(2.2.19) 

The last equation of branching conditions (2.2.19) can, based on 
the expressions of the first integral (2.2.11), be reduced to the form 

qsi (/<i>)«.qi>(/2»)+2(¿/ (/VO-W-O) V+ 
/-1 

.('VO?« (2.2.20) 

Thert 

values of 

Bran 
and const 
first ord 
they are 

second dis' 

point t 

Thus, 
(1) 

Cq undergo 

peculiariti 

The m 
is insuffi< 
coefficient 

to the rigl 
discontinu] 

N. 
right of tl 
pendent of, 
G. to the 1 

t^V Thiit 
I 
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\c so- 
^ allow- 
o the 

:ht of 

Therehy, determination of X) (i ♦ D 

values of (t^1^), >.(t 

and CjjftJ0). 

(1) 
). ijl 

t = 

) and Xj(t^^) with known 

unambiguously determines 

Branching conditions (2.2.19) show that the Lagrange coefficients 
and constant of the first integral at point t”' can undergo double 
first order discontinuity, and to the right of the first discontinuity 
they are ^(tH),..., ^(tiO), C^2)(t|17) and to the right of the 

second discontinuity ^(t^),..., 'x^(t^), C0(t^) (Figure 2.2). 

(2.2.19) 

based on 
o the form 

(2 2.20) 

Figure 2.2. Arbitrary Representation 
of Double Discontinuity of Lagrange 
Coefficient Xj at Point t'!' 

Thus, although the phase variables V(t), 0(t), H(t), and L(t) at 

point t^ arc continuous, the Lagrange coefficients X.,..., X4 and 

Cq undergo double first order discontinuity. This is one of the 

peculiarities of the branching condition. 

The number of relationships in the branching condition (2.2.19) 
is insufficient for unambiguous determination of the values of Lagrange 
coefficients Xj,..., Xj. and the constant of the first integral both 

to the right of the first discontinuity and to the right oc the second 
discontinuity. Therefore, at point tU) the Lagrange coefficients 
Xj,..., Xj either to the right of the first discontinuity or to the 

right of the second discontinuity may take on arbitrary values, inde¬ 
pendent of the values of the corresponding Lagrange coefficients and 
C« to the left of the discontinuity and the phase coordinates at point 
Vp 

tl J This is another peculiarity of the branching condition. It 
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;i 11 ows, as we will see helow, satisfaction of the fixed houndar-, condi¬ 
tions for the rooster and the conditions of transversal ity at pómts 

tkn anJ ?k. 

If the phase trajectory strikes the boundary fj1!= 0, existing 

due to the exi-tence of the limiting condition on phase coordinates 
1-.1.91, at points of entry and exit from the boundary in order to 
satisty the stability condition, the following equations must be fui- 
filled: 

(/--=1.mi 

(ÍÔ 

df\¿' 

=0. 

(:.:.:1) 

>+’(';-)c¿"(/;_)-c¿'y;j-=o, (2.:.22) 

*!'’('íl)->¡'’(^)=o, -o, 

(/)1)-^^(^)=°. 'í"(/)1)-'i1’(/)1) -o. 
;¿"(/íl)-M'’(^)=o, WíD-QWHO. 

After conversion of expressions (2.2.21), we find 

àf'J'làV 

(2.2.23) 

(2.2.24) 

(2.2.25) 

Consequently, upon transition through the entry point t*. some 

Lagrange coefficients -- Xj, and ^ -- according to (2.2.25) may 

undergo first order discontinuity, while others -- )^, and (' -- 

remain continuous according to (2.2.22) ?nd (2.2.23). At points of 
departure from the boundary tÇx [points where the phase trajectory 

transfers from the boundary fixed by equation f^ = n to the internal 

aiea fixed by inequality (2.1.9)), the Lagrange coefficients ^. ^ 

and (.g, according to (2.2.24), are continuous. Furthermore, it must he 

noted that, 

c'11 at the 

tj), we can i 

(t; i to t 

equations (2 
(2.2.22)-(2. 
of the Lagrai 
boundary of 

'Ve will' 
coefficients 

Pft), product 
similar to t! 
tinuity .ondi 

and ( at 

lhe corul 
condition -- 
ablcs of the 
flight vehic 1| 
booster are n 
follows: 

at point 

at point 

at point 

-215- 



noted 

tp. 

th.it, tixinu the value of the l.aRiar e loctfieient >^(t*tl or 

at the entr»' points t* to the rip.ht of the discontinuity (point 

we can dot' mine the value of I arranco ci efficients Mt* ) and 
t I ♦ 

to the right of the discontinuity according to (2.2.25), and 

equations (2...22) and (2.2.25) should ho fulfilled. Conditions 
t 2.2.22) - ( 2.2.25) wüi he referred to as the conditions of discontinuity 
of the Lagrange coefiicients at the points of entry and exit from the 
houndary of limitation on the phase variables. 

<ve will not analyze the condition1 of di-Hont inuitv of Lagrange 
coefficients and ( at points of discontinuit; of control .(t) and 

n(t), produced from the condition of stahilit' (2.2.1), since they are 
similar to the conditions presented in Chanter I, § 2. These discon¬ 
tinuity conditions require continuity of the Lagrange coeffcients. 

and C(1 at the break points of control functions v(t) and p(t). 

The condition of stability (2.2.I) leads to another important 
condition -- the conditWn of transversality. Since the phase vari¬ 
ables of the initial and final points of the phase trajectory of the 
flight vehicle and the final point of the phase trajectory of the 
booster are not interrelated, tin conditions of transversality are as 
fo11ows: 

at ooint 

/¡J,* JVQ+ >■'"d%+ «///- -i-XJ'VI, - V ,>tf i/-iov = n; ( a. 2.26) 
c-i 

at point tj. 

at point tj 

Co +'u </f, + ^ + + 



at points t m 

at point tj^ (1) 

(2.2.29) 

(2.2.30) 

Selecting coefficients ep (p = 1,..., m <_ 4) , eko (o * 1,..., n 

5) and ê. (» « 1,..., 1 < 5) such that the expressions before the 

corresponding phase variable differentials in equations (2.2.26)- 
(2.2.28) are equal to zero, we produce 

Mi'-r, ^=0. M'.’-'t l?-0’ a*o 

}'"-e'£=0' *1+ 

(2.2.31) 

wem*k=0, 

J,(î) ---L g , - — =3 0, 

« * dL. dLt 

cy+Z+e^o. 

^0, ** 

(2.2.32) 

(2.2.33) 

Thus, we have found and analyzed all necessary first order condi¬ 
tions, the fulfillment of which allows us to determine the optimal 
values of the main plan parameters and the optimal mode of motion of 
the multistage flight vehicle, capable of maneuvering with boundary 
conditions fixed for it and for the booster with the maximum value of 
the criterion of effectiveness. This requires integration of equation 
svstems (2.1), (2.ï) and (2.11), (2.1l) so that the boundary conditions 
(2.1.5) and final conditions for the booster (2.1.6), as well as the 
conditions of optimality of the main plan parameters (2-2-12)-(2.2.15) an . 
the conditions of transversality (2.2.31)-(2.2.33) are fulfilled while 
the branching condition (2.2.19), discontinuity condition (-.2.22)-(-25) 



« 

.2.29) 

:.:.30) 

., n < 

the 

2.2.31) 

2.2.32) 

and condition of discontinuity at points of discontinuity of the con¬ 
trol functions must be fulfilled. This problem is a multipoint boundary 
problem, the algorithm of which was analyzed in detail in Chapter I, 
5 4 and the appendix. Therefore, our presentation of the construction 
of the computational procedure of this multipoint boundary problem 
will be performed considering the results produced in Chapter 1,54. 

5 3. Computational Algorithm for Variational Method of Optimization 
of Multistage Flight Vehicle Considering Possibility of Indepen¬ 
dent Maneuver of Booster and Vehicle 

Proper construction of the procedure for calculation of the optimal 
values of the main plan parameters and optimal control of the multi¬ 
stage flight vehicle is possible only after precise formalization of 
the multipoint boundary problem, to which the variational problem stated 
in 5 i of this chanter has been reduced. Approaching its formulation, 
we introduce a number of assumptions which simplify our presentation 
but do not change the essence of the probier. 

Suppose at the initial point t^ the concrete phase variable values 

are fixed, i. e. the following conditions obtain: 

•),i»i'o“ Vi" “0. -0, 

•i .or /V0 - H¿ - 0, ^ *e £0 - = 0. 

2.2.33) 

• r.ondi- 
imal 
ion of 
idary 
ilue of 
'quation 
éditions 
is the 
(2.2.15) and 
cd, while 
.22)-(2.2.25) 

Then equation (2.2.31) becomes 

k|n_4.,«n, >4» -r,~0. /.< <H =0. 

(1) and therefore the Lagrange coefficients are unknown. 

Since the first integral of (2.2.10) can be replaced by any of 
the differential equations of system (2.11), suppose it is replaced 
by the Euler-Lagrange equation coupled to the phase variable \s (seventh 
equation and system (2.11)]. In this connection, according to (2.2.10), 
we represent 

(2.3.1) 
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whore tiuit ,i< ,i rc 

;<'• 1(11 J.WítiíOJ.WO-lílJ 00» 

Usinft equntion (2.3.1) to exclude La”ranp,c coefficient >'11 from 

equation svstem (2.11), let us reduce the order of this svstem hv 
unity. Now at point t(^ we will have the unknown Lagranye cocffi.ients 

. 'j1' and the consent of the first integral 

Iurtheim-ce, the final conditions (2.1.3) and conditions of 
transversality 2.2.32) after exclusion of the coefficients e, at 

ko 
point tk and the expression of the first integral for this point, giving 

us only six relationships, can ho expressed in general form as follows: 

W.>J5’, ./,. 4o,. (‘./.Co, 0^)-0 , 

(»"1.5), U-3-2) 

^ -O, (2.3.3) 

where (2.3.3) represents om of the conditions (2.1.5) not included in 
)2.3.2) (for example, the condition with index 1). 

The final conditions (2.1.6) and the conditions of transversality 
'2.2.33), after exclusion of coefficients e^ at point t^ and the 

expression of the first integral for this point, making up only six 
relationships, can be represented in general form as fellows: 

Pm • • -/^1.1^,.10=-0 

(0i=*!,. . . , 5), 

(2.3.1) 

(2.3.:i 

where (2..3.5) represents one of the conditions (2.1.6) not includ'd in 
relationship (2.3.4) (for example,the condition with inde: 1). 

After these transformations, we can now formulate the multipoint 
boundary problem. It c 

0 
t he 

-- \ ÍU 
1,, . • 

main plan 

,,n 
n s i s t s 

(1) and f 
0 

"arameters a 
Oi ’ Oi 

of 

at point 

J 

the following: 
(1) t 

determine 
J2) 

at 

Oi 
(I!) 

10 ’ 

1.1 30,1 
H)or 

point 
J2), 
0 

C, , are such 
Pi 

.mi) system 

from t1 ' 1 t o' 

optimality o 
considering 

timet ions. 
parameters C, 

(2.1.2)-(2.1 

Thus, i 
and (2.3.2), 

c(1), o ’ in*’ 

to speak of 
as stated. 

In ordei 
the number ol 
(2.11 I and ( 

by 

* V mu-i ui\ I 
conditions i 
hv anv one o 

,(1)( n 
J10 ‘ 

1 ic within t 
dit ions in ri 
and the convi 
will not be i 
ficients X., 

J 
(2.2.16) and 
(2.3.2) us in: 
( 2.2.16) heci 

while conditi 
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timt .is i result of integration of system (2.1)-(2.11) from t to t 
0 k 

.im* system (2.1)-(2.11. cons i der i nr, the branch in;’ condition (2.2.19) 

from t to tk. conditions (2.3.2)-(2.3.4) and the condition of 

optimality of the main plan parameters (2.2.13)-(2.2.15) are fulfilled, 
considering (2.2.12), using ip" and (2.3.3), (2.3.5) as the stop 

functions. It is considered hery that the remaining principal plan 
parameters (.()), s 1 and can he determined using equations 

(2.1.2)-(2.1.3). 

’hus, in order to satisfy the twenty conditions (2.2.131-(2.2.15) 
•hk, (_.3..!, i 2.. 11, there are twcnt\ unknown parameters iiO 
,(1),(2) (t) iH) 10 * * 

' it ’ K> . L0 ,nd ao,* J0i * h0i’ VJ* lV * Gpl* i,llowinP us 
to sneak of the possibility of solvin' the multipoint boundary problem 
as stated. 1 

In order to decrease the number of unknown parameters and thereby 
the number of boundary conditions, we can use the homogeneity of systems 
(2.11) and (2.11) »elative to the Lagrange coefficients . For this, 

we must divide the equations of vstem (2.II) and svstem (2.11), the 
conditions of optimality of the main plan parameters (2.2.16)-(2.2.18) 
by any one of the Lagrange coefficients ij//,..., 1 ', for example 

*’•' |i) • lss,|miny that the optimal values of the main plan parameters 

lie within the permissible area, and the converted transversality con¬ 
ditions in relationships (2.3.2), (2.3.4). Then condition (2.2.18) 
and the converted transversality conditions in relationships (2.3.4) 
will not he changed due to their homogeneity relative to Lagrange coef¬ 
ficients , while coefficient j(|’ will hi' excluded from condition 

(2.2.10) and the transformed transversality conditions in relationship 
(-.3..) usiii)’, equation (2.2.1'). After those transformations, equation 
(2.2.10) becomes 

\ •'Ili’Opj 

I lil <K¡r 

while conditions (-.3.2) are represented as follows: 

(2.3.0) 

M'u’.'V. A?. m'm", C*»», Vk.. . 

(1,. G, ,) n. 

• ^. ■ ^ i1, j% 

(2.3.7) 

.•Jin 



T 

,(1.. .(1) Thus, we have produced twelve unknown parameters ,..., , 
Í21 Í21 fHl ' 

>Jo.c¿ , aoi, boi> Joi, ^ ' and r,pl, usinp which we must 

satisfy the twelve boundary conditions (2.3.6), (2.2.18) and (2.3.4), 
(2.3.7), since condition (2.2.17) can now be considered always satisfied. 

If these boundary conditions are represented as functionals 

Pi-' 

('+m 

B=,e(x y 
* e*V npípi* 

Pi-Cfi\ (/-6.10), . 

. J* 

i*\x' 4,,«n* 

(»"-1.5), 

(2.3.8) 

then the alporithm of the multipoint boundary problem constructed accord¬ 
ing to the anpendix and Chapter I, § 4, allows us to determine the 
following main plan parameters: 

«W. Jo* ^o/> hi*’. (/¡» y .¾. 1,2) 

and the following Lagrange coefficients 

MV- MV - MV- *i°. c*n (/-1.3). 

(2.3.9) 

(2.3.10) 

with whic 

and over 
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! 

). 
sficd. 

with which over [t0> t^] the solution to system 

V"-?}'». V *r«-\ 

I*' ^rj0, 0=»^°, Os*;}'1, 0^s¿'>, 

ÃJ'»’—r¿Ot /i¡'’-r¡í>. 0--r¡'», 

c * ^T* 

J.8) 1!‘}« 
/-> s«u 

(1) 

(2.III) 

and over [t , tj considerinjj (2.2.19), the solution of the system 

rt'—h. £'-= ?«. i*7—?», 
0-¾. 0=-¾. 

_"Z T* “ ■n ~ n «> _ 
H> S”?»» S“?«* *« *“0. 

ccoid- 

9) 

0-^ 

di* 

- J*, ■% 

id 

«'I*« I 

n;-*.« -V/./ ~- ¡j 
/-• * 

(2.Ill) 
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1 (Md to :orc' 

Por thi> 
wo "’list cofflni 

over It. 

\.il u- of functions (2.3.S), 

, iccordi nr to the mythcmat ical model of the .ilgorit 1» 
si thi coniuRatt system in the form: 

‘0 

rmO 

à:11 ¿O) * 
i») 

/ • rmO 
I — If-., 9,..., 12, 18: at * -1,... ( 19 / =.- ] 0. 

',■»11. #.//./., ^ i,. C,|). 

>-l fl-0 
fit (fe f O 

Ly"«r4 “■ >=0, 

/-1 #1—0 * ^ 

JÍ, dylO 

L -r^W-o, <y;/» ,0, 
y-i ^. 

rU = const, const, 

’&■ 
‘0.W v'"w, 

const, const, 

,¾ - ^/ * 

H 'y " »o j u - -1*„ • 
/-1 ...g 

*<•.* = — > // </> —/-\1 C " 1 —— 
¿J ,M 0JU ¿J ••" „/ • 
/-I r.O 

.UÍI) 3 
- y y(n üi._y ." 

/•• Ä-0 

j./'/ ^ * =» 
<0 ñ 

"\n 

ov 

,0. - = 0; 
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▼ T 

i 

over [t ^, t U). 

■’/ /. — / i HI ** ~ /.‘‘am *- «M, <U| 
i-l *1-0 

(/ 1. 5, R.11, IK; m -1. 19: 

•T/ ï Ï-. 1*. *j. ^ï. ^3* A4t ^nl)» 

^ 'a AJ i)a 
/-I 

13 

»-0 

^ ' y U mv’ =^' 2(^m V, — 
/Í * 

S-f+S^-f^ /-1 n-o 

»5 - 
y] f o, ^o, 

î-l ' 

70„-const, rlw -const, 

Zj„ —const, const, :im -const, 

^ " “ E •"/•", ¿ “ E'- à- ’ 
/-1 n-0 

) -1 «0 

M "'M AJ •'(•►i 
/-I f.-0 

U - 4 
_ V ù, 5Ll _ V ; üii 

^ ¿j *L *'**v‘" *-l n-0 * 

» - 4 
"Ü 

'na oi J''""— ^2* 'nd4.", .’ 
n • 0 

4 

10.m -o. 

-2:t- 

(2.IV) 



The initial conditions for the conjugate systems (2.IV) and (2.IV) 

are determined at moments * 0, * 0 and = 0 and according to 

the appendix are equal to 

where i|/£ ■ 0 (t « t^) 

(-1.-..10./-1.., 

Jfi “ V*,.. , JC« ** L), 
y&-o. 

(^“9.•••« 12; ..., Xj 

»8. 

4; 

(2.3.11) 

4* 
■jmj" (4™* 1.14) 

(/ *“ 1» • • •, 4; JT| 
iari-o, 
yW-O (p-8.II, 18), 

*%« 

;w-ífí-0L 

>4^* Z), 
(2.3.12) 

The h 
déterminât 
ficients f 
;(D The 

conditions 
properties 

‘.It 

lk or *k 
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(2.IV) 

ing to 

. ^. i n 

r(«* 

r«» 
?*.» = 

;«■ 

ï«« 

= 0 (/-5, 6, 7), 

«^1 ^*1 ' 

, *?. r. *»! . ... ., 
^ **î .«.y-i.4). 

■o. 

(p™8,..., II; 

?!«.■ 

îtt 

*K« 

ÍK- 

îfc’. 

,4s 
3S* 

-° (/-0....,4.6,7), 

à\ 
' «»*»1 ’ 

SF* 

(2.3.12) 

3 12) 

The bra.ichin" conditions lead to certain peculiarities in the 
determnation of the discontinuity conditions of the conjugate coef¬ 
ficients for conjugate system (2.IV) and (2.IV) at points JiJ and 

tk . Therefore, let us analyze the conclusion of the discontinuity 

conditions of the conjugate coefficients in more detail. Hue to the 
properties of the conjugate systems analyzed in the appendix we produce1 

Ap. - (2^ 22 'jp *'*'*' "f" Vw.m'CŸ ~f + 
\l-l *-• 

+ T V*jU 

V *rm 4. 

••I 

—- (2.3.13) 

t ftrVt*5h?U,d be con,idered here «hat integration is performed from 
*k 0r *!< t0 *0’ 
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“¿Tîî ^«n+^-ía +^_íy 
yja' a;,, ^ 

12 
f .«.s.«r'î*i:,+ V ír«2» 

“p m J*pti 
P-9 

6 

> ’» + „ÏÎ7. 

j * ./.i 

1-0 

/•4 

12 
4-V, 

+<T '-»ü1 + 
/ 4 

+ ^.mïcr+V í,.nín¡2'+2,, >.aj’'+ 
»-o /3 ' * + 

Í¡ ^-«•!"+/^.+_42l),fu_ 
'-‘ ' \*u í‘*> y ^ 

'^"•uí:,+s-w"+|v.‘4':+,,.«rr+ 

' -í’,; ■+1+.¾ l"+^.*cry)|,,„+ 

+(,l '" ^+4^-^-+^^.+ 

+í-'ííV+'--t;>«+í.1.>í#+2í,.tíi’>+ 
/-5 

«í"»4 ~ V/-I ys" r* 4-yii.^Co-j- 

+ Í *íñ,.-f ;~JI))| , / y ~ ~ 
*-0 (TJ Jfrl”' + 

-227- 

2.3.13) 



where 

il 

'■ r.l ^ m 3-^ 4- 
^ /1-0 

i«') +(— 4- r/i^Äui1’.}-V „l"mt,x<ÿ + 
/>-» 

Zl.n^a'l" 

fi-S 

V ¿ 
» l-m '**1 
l-S 

(l> *,->(1» 
2 

V 
/1-0 

*,.«*1$ r 

6 

V 
í-4 (:.3.15) 

a«í) .ai5,=yoj; 02’ 

.-í»..: ai’» ^0|.a«'> 
hui _. 

Furthcrmope, ., mii„ts „W , 0 anJ ■ , due the 

nuity of the phase coordinates [see (2 ! ^il -..1,1 tt, . k u 
t i on > iQi thf il • -. . . j and tht branch inp condi 
t>on l-ly), the following relationships obtain: 

where d“* = <) (t = t^“^i 

'*%'*- ”V33“ 

(/ = 1.4. 9.12), 

H« =- --rrrr1- 

mW = HW'-K„). 
6C¿j'L;» -=',C¿;)L2) ; 

where = 0 (t - t^^) 

r . O *Jk xiÒ /, ()) . \ '.a;u -xK),- 

,). 

.■.u) 

(/ = 1.41. 

- ^ s - 



itt) 
*"* = TÍn- W - *I\|) (« *0, 1. 2), 

i''*—"i 
t**=>--^nr^(/-Í.•♦). 

*Ã» — (8l^n -^.1) + ^«i. 

rig-1/« (^-^,) 
(/=1,..., 4), 

%C0=íC¿,’-íC¡,,1 

jT|«o = -TTtT-*1*«») 1« =0,..., 3); 

where « 0 (t * t^) 

Îxjî’ = 0 = 1.4W 

f dl _•{(■) 
eji»=äü» - V *>- (iR»-^»). 

rl^ 

«ña’-m'i-^’r^y («"-»t*) i«-». 31. 

Furthermore, keeping in mind the weight relationships (2.1.2), we 
find 

T 1 )^1**1 ■f' 

+ + «»’'WoJ + + «I ^/(fl + «i” *13,11, 

where 

(o/=l&oi, flop ^n> |3.i* ^ *))» 

1}«> dij» tfij*» 

dCg 0C0 <lCoil 

1M/ 
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(A/ = 

,1» ^ ' - . 

“■i "* A0 

¡fr#:. ûji. Aj* Pi.ii* ^-^i)* 

Using the relationships produced, we can convert (2.3.13) to 

V.-Í2 (*a- ïr^J *«»+(Æ - »».) *cr+ 
+ ~».l^,a»,,) frfrjj T- (*i?* + Zl.«ta«,)) 4* 

-f (**.'<« -(■ T ~ÿlî« ~r 2t.mal + 

S vM +yii.,-*ci,>+(*i,i r^-4,,)»fr.l+ 

2$.* + z^ai") iflo,+(zlii + Wqi -f 
-f-izf:+¾. («y- o] «P,,+(zi'i+z,.^) w,.,4- 

-f (z,,.-7/j.»»¡l+ Z».^i*') =* 1 ,0). (2.3.14) 

where 

In this connection, the discontinuity conditions of the c. njugate 
coefficients of (2.IV) and (2.IV) at points t^J can he rep: -ented as 
follows: 

where ■ 0 (t ■ t^S 

Ar/, (/ ^1.4. 9.11: 

*r. ' -t» *t|. 

«1*1 .4/-.1 

* /or'«** ."ii.n '«i?) l‘J»- 
(2.3.15) 



r T 
1 

L 

O'n "’O-n' 'I.t 
<<: 

¿r.'~ *iîi ~,}p.TL f!£i. - :i n 
V- * t 1 'T.» U* 

-lît 
s.m 8twi* 

(2.3.15) 

whi rc .-1 ' ' - o ( t = t ^1 * ) 

ri ct ~ 
-- !<;.ii H!.m —1,..., 4). 

ur.L^Zr-i.m (^=-9. 12), 
.,(U ~ 
i*- ^16.m. 

•’Pm 
11) l«-0. 1, 2), 

~iii 
I.m f £yn- (/ = 4. 5. 6: fl<"=-¿>01, a'1 =<, 

01. 
-(1) -.- :> 

»Ä - 4r [s vKW-^.-)+ »1M”+ 

¿„h 
»-0 1-] 

IÏ » 

T [Iß~\.m (^/K> "T •*p~\ *>) T w 
r-9 «-0 

c+-t-k! 

whore i - o t ~. t ' * 1. 
_V_k_ ’ 

rm!,U) 
mi; 

1* 

2.3.1(,) 

: ’<1 m- 

f t - UD m — 

0 = 1...., 4), 

(p «.11. 16). 

I* ly-i P-* 

-.Í¿V) ¿g*_(n¿# 
(2.3.1-) 

23! 

‘.■-it-*/ 

' •■>* " m-, 

In tho slimo m 
the conjup.ito coot 

functionals n (n 
1 n 

whoro = i' 
i 

V'„. --«(> 

y p »+-="> 

Vs«* -= * 

— A 

+ *, 

!./♦ ■ 

whore il. 

z\ It 

(1) 

= 0 

yu 

y'rV Ür-i 
id 

.Vim - Vis / 

^ m.l cn * 1 
T<"^n »«./ 

f) *M =1(, 

Vs’i 
1 

mi) 



j Pm *1 

:t IT :'l rn~ (I ".3,5, 

i).»_ ' (Ir _ 
Z M+ - -Í- - 

•'ni, "»12« 

»). 
(2.5 17) 

¡n thi sime manner, we can produce thriiiscontinuity conditions of 
the conjuRate eoefficier»* of system (2.IV1 corresnondinj’ to the 
functionals n (n = 1. 5) in the form 

n 

where . * 0 11 * t ^1 * ) 

Vj»+=*yjr- . 

y, ^ Up,- (^=»8,..., 11, 16), 

'Jin* Ü Vl.a- ^ ■*^> ~ ^ ^ “ 
/-1 

íl'íi+'o.-ííW-’lV.S 1 .-,.-( ñ.o- 

kVÍ!V|. 

(ffl “O, 3, 5.8), 

^2.1+ 

whi-re = 0 (t = t^^) 

2.3.18) 

yW- y/i (/ == 1,..., 4). 

yV.’ 'v-u ip -9. 12), 
in 

.Vl».l =//14.1. 

"I**m+u ("'-4,5,6), 

ii'J-0 (/1-0, 1, 2), 

»M ^0, 

i r4 - '* 4 
||") (^/0 -t}«)'f" //,-1./ ( V-I O I* Vv/ 

•-/-i P-» (2.3.19) 
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T 1 

+x\2 - 4',')+i- í.A, I. 
*-• J 

*♦!)- -VÜI+ ¥*-■ 
«V.I 

(2.3.19) 

Then, keeping ir mind (2.3.12), (2.3.18) and (2.3.19), we produce 

(il 

— ^ + -j- ¿i.jai*1*«« + 

r i* 
+ + + ÿÜ’ktJo + V!Í.«&C¡" + 

- Ir-i» 

+(*«!■!+**.«o»") Wo, + (^J!« + *1.«®« ) ^oi (rí'ñ— ^, .0^0^0,+ 
+ K"+*. .(4” - 01 K,+2!!°o«>.,+ 

+ -'»4i4”)VL"‘)#.. (2.3.20) 

Performing similar calculations, we can find at point t the 
following initial conditions of the conjugate system (2.1V), correspond¬ 
ing to the functionals Pj (1 * 11,..., 14): 

!/).V = If/.,+ 7^ (./ = 1,••• • 4; /=11,..., 14; 
»*! 

jr, ■= 1^1,..., x,®*¿,). 

«o. y?.! Í^M+ (/>- V • •. 12; xt=A". 

•Aj -TTir Í£ W.|( Î/» - ^i«) + 
^ Ui 

+£ ^,.1(^.0 + ^-^)+ 

+ !/i.|l*» +5^ --./^1 + ^--^7. 
«•o ' •* 

(2.3.21) 

<,-^5 +7/..,. ». 2). 

while the d 
* * 0 are : 

V 
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9) 

T oduce 

fi.V àrj , r 
T 

c»*, 

'Wl Ü/(,| 

Jla.-:.-À-.. 
« 

^*«1 

1Î 

MH 
l* rl» J-> (2.3.21) 

■f" 2m Vf-M ( U o 4" ■*/* -V «) ■f’ 
r-» 

,1 
r.W»i«o + .i?,, ,»!,,, , 

--o J 

4V- àft 
*¡,.7 ' 

;.:o) 

the 
•respond- 

3.21) 

while the discontinuity conditions of the conjugate coefficients for 
¢=0 are produced in the form 

V f 

yit+~~Ui.i— (7“U 2, 3, 4; /-“It 2, 3), 

V/.4+ it:s yt.i~ + (■*! “ ^t • • • t = ÎX 

y,.i+^y,j- (P“8.>U 

!/#.44 + 3 . ... 'J^t oxß 

y».** “ 1/11.4—t 

- Í¿’í)+^-( niV - nil') ( niV - nl‘:)+ 

+2^-(¾1 - ^i) +*.- ( ^ - í;'i)+ 
ß~* 

(2.3.22) 
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!-*«,-ni-.’]- 

i* -’ii -31. 3i Í I. Z|.i*. =*—, 
»’ll. 

/’* 711) 
I *♦ 

T _ ¿Pi 
*2.1+ — X'- • 

<”)2k 

‘m / + (m 3, 5,, 8). 

Í2.3.J2) 

In connection with (2.3.21) and (2.3.22), we will have 

*Pl *[- ~ -ÿ,,.,«Ci1* - ?, fi?'u,0].f. 

+ w'ASv h + 

ixji1 -f //¡¿.'(ïCi1* -f (*i?) f. pi11) iboi + 

In order to < 
ni‘,i r the ■ \ t n ine. 

•k r 0 t0 ro cons 
coct'fic lent s such 

conditions when 

‘U 

rs; 

.»/ 
<)rA 

0. 

^==0 

*. K .)/ 
oh 3 

We should kei 

coefficients of sv 

(*i.V r^s.(^«l),;aaiT(íÍ.V +• + 

+ ! WoM,, - 

-M^/-Í/m¡.í!> (/=11.H). (2.3.23) 

The discontinuity conditions of the conjugate coefficients at 
the points where the phase trajectory strikes the boundary of Imita¬ 
tion of phase variables t| and at the departure points tÇ* will not 

he analyzed here, since they will differ depending on the form of 
limiting conditions (2.1.9). Ip principle, they are determined in 
the same manner a- it points 111) (the general expression for the 
discontinuity conditions is given in the apnerdix). 

System (2.3.11), (2.3.20) and (2.3.23), consisting of twelve 
linear equations, allows us to determine the twelve unknowns /, ) (1) 

,(2) mi i 20 
‘<0 and ‘ A V ^ ji ''JQj • <boi. . Mpj and thereby to find 

the direction of swiftest descent for improvement of the results of 
the preceding iteration. The discontinuity conditions (2.3.15), (2.3.19) 
and (2.3.22) make it possible to perform integration of conjugate 
system (2. IV) and (2.1V) from (.oints ¢9 = 0, *(1)= 0 and v® _ ,^,0 _ () 
to t X V V k 

Therefore, u 
coefficients of s\ 

< •») 
where 
_V 

y)j u¡ 
*wl?ï 
"o.y 

£yj 
dai 
I 
I ■ ) 

*.* 

O' 
*0 r 

where ii'f 11 x v 

y]j 11ÏÏ 

r«'>- 0 
n.J 

-ip 
«♦An 

..1 u 
"■■I 
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In on it to i 'tii'i.it the ik'vi it ion >t I tri'in its runxinuni value 
nc.ir f'c • '(tremo, m Iv 'Id adi'iti n.il 1\ into rate ; vs ter C.1V1 from 

0 
1' to t() eons ider ini; tie discort inuity corilitions of the coniugatc 

eocttieients '¿lieh is ■. s. 151 - ( J. 3.1 ^ ) with the foil ow i nr initial 

conditions '.»herí 0 

«» ..: Vrt: o i 
• V» y. e«/, 

7} = o, 

'Jp.j ~ " ip «,.12, 18), 

ol *. k 
'» y -<* - -(H) 

4: 

‘i'/^O (/(= •>, 1, 2, 3), 

JL , . .jSL 
'’H.ll "J àüpj 

+ (*' 

' ’ % «1*1 We should keep in i.iind here that where 

coefficients of system (2.IV) are equal to zero 

Therefore, usinp the discontinuity conditions of the conjugate 
coefficients of system (2. IV) in the form: 

where 12) 
0 (t = t(‘J) 

yf>- ?)■; ty =1.4.1».1-’, 18). 

;(t| -- 01 
tJ da., 

I 

*s / --7-. ;}’j =<'. *yj 

'‘■J , . 
~ A 

V iiTj (.rjo*1 - >);') + V (x^' - + 
/-1 p -t 

x¿k;('t,'v-ii¿r) !-4V’iiv]: 

where y m . 0 (, . ,"») 

I/JI/ Ii'fj (y 1.4), .'//,!/ 

2,'>; o (/1=0, 1, 2), 4'j 

.<'• 0 [p 9.12, 18), 

öl 

oh'l iJ da, i 

., u 
'’"y ' dl„ 

.,u .i») ..i, _,.in JL. 
*'./ 7«./’ '7./ Î/5J ■ d;s| 

' * 7 • 11 • 

4 

tijj (a‘;o —) ,-h j'M' 

./-1 «-o 
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we produce 

r .víiu8Ci:> +4,JWoj+ís‘J*«o3-; ‘ó^ojj^u + 
L/»«i 

-.«!!))<» Kii + f ^ Í/í''^Cò0 --Vj^oi + 
*- b-io 

,, + WJoi + (-!!>.! + *1"tG 

This relationship after solution of systems (2.3.14), (2.3.20) 
(1) <5C (2) and ^0., <aoi, <Joi, « v kJ, «Gpj, and (2.3.23) for <5 ^ 

3Vallows us to find the value of dl near the extreme. 

The further course of the computational procedure can be deter¬ 
mined from the *Trw chart (see Figure 1.22). 

As an example, Appendix 1 co Chapter II analyzes the algorithm 
for optimizat'e;. of the parameters and control of a hypothetical three 
stage missile with liquid fueled notor, capable of delivering a known 
payload into a fixed orbit, whiW Appendix 2 to Chapter II analyzes 
the algorithm for optimisation o' ’he parameter:-, and control of a 
hypothetical two stage ballistic missile with a liquid fueled motor, 
capable of delivering a known payload over a fixed range considering 
limitations on the trajectory angle. 



APPENDIX I TO CHAPTER I I 

Alqorithm for Variational Method of Optimization of Parameters and 
Movement Modes of Three Stage Liquid Fueled Rodet Capable of Placing 
a Known Pavload in a Fixed Orbit 

Let us analyze ♦he algorithm for the 'ariatiennl method tor 
optimization of the ■ ain plan parameters i j and (i = 1, 2, 

3; J = 1, II, I 111 and control functions p and nRrr a hypothetical 
three stap.e liutiid fueled rocLet, capable ■ f elaciny a known payload 
G j into a fixed orbit (V^, , fi.vedi ui’h minimjm launch weiRht 

V 
'In* Molutiuii of the p. " 1 ‘•—..i -.r c m • * p*»rf rned n the 

basis of the investigations pet l or. ect in » », -u .. II. 

In the nlan equations f’.l 21, wo rn ivse»’ 
01’ 011 

and 

as follows: 
’pl 

Poi 

Poll =-J_-■ -.J„C • -i- ' 
I— ¿¡'“'i «/ L • \ 'a.ii /J 

(*• a 3 
V“ r.- a' + t*’ -o''-.«./»•*'» X 

m 

where A 
( i ) „III 

aie con-.t at statistical coefficients. 



1,1 ¡’ if' i. Mitions ;ii issiimod :is fol lows: 

tj ' . ,H"' 1, ■), 'ut )- * , //(/,) 0. 
i J ) 

i-urthiTt ir' , will consider that up 
tlies v rticall ’i'.’ and its departure 
performed on I . • • tcx. 

fo t = t'V, the rocket 
from vertical lift can he 

Thus, ir 

variable *t. 

er t »cx »i t , then a 1imit ati on phase 

fho final conditions are fixed in the form 

4(.' 3 i . 
fe) 

»n J,1"',Pr0M0m 1 analyzed in cersiderat ion of the fact that durinc 
the tlipht, anrh ¡i attack < .na; change within fixed limits. 

Then, ’hi a n system of equations fcoupling equations and Tuler- 
Lagrange equate ■, accordin' to conditions (2.H and (2.111 become 

t-i 

atoP0 

PY‘ 

(4) 

when. 

I ) In the 

but if t > tcx, 

’) In cas 

while where a 
op 

where 

lurthermon 

en 1 
I nt er rat iot 

methods if 
eters a 

111 
md 1 

M) 

kd 
at 

These valtn 
ditions of opt¡n 
we will ana 1yze 

where t 
I) 

whci e 
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whr 

I) In tho case t t'x ami h = r/l 

>s = --> j, sin a 0, p, 1, 

I’lit if t t , we should po over to case 2. 

) Tn case t - 0 tnd where if * 
•> nu n 

I i '• 
» 

' <\ 

ein a cn <i 

while where a > a'1* or a ,1^ 
opt max opt min 

i a ^ n a or «inn -«stna^J,, 

where 

u'" •on«! and '‘¡¿i—const. • nai " 

Furthermore, if 11^ then p() = 1. whiK th U. r 0. 

Integration of system (4) can l>e performed h> one of t nureri- 
cal methods it wi fix, in a<lditi<.n to the values of the main plan param- 
cters ‘ni • 1 |^j an‘* (hj* the val ic« of the Lagraruy ■..1ts 5 

*20 ’’"J '*n !'t t„. 30 

These values shoulil -ati fy the final conditions [3) and the ; on 
dit ions of optimality of the main plan parameter . \ stop functions 
we will analvze: 

where t() < t t f 1) 

,nt ,, 
Ve ;i ’‘.i o. 

where t 1 i 
t t 

! 2) 

•!*'” !‘ ".II I*. 
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where < t < 

Using the homogeneity of system (4) relative to the Lagrange coef¬ 
ficient, we assume Aj0 = -I and thereby reduce the solution of the multi 

point boundary problem to determination of the main plan parameters 
a0i’ v kJ and the values of LaßranRe coefficients >2Q and at point 

tp, in which case the functionals: 

at point t^ 

at point t (2) 

at point t (1) 

are equal to zero. 

Here 

*-('+$)* 

<1*01 

dooi 

Functi« 

the main nil 
(2.2.15). 

The va 

ously by so 
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c cocf- 
hc multi- 

ors 
point 

X" - <' + C. fe [nm + (hM + 0„ ÄL) ,tf]. 
<Voill 
^Krlll 

irn 

**01 

^*CIII 

from 
dam 

d*n 
WDI fdan 

Functionals p^,..., Pg, which are the optimization conditions of 

the main nlan parameters an. and P.., were produced from formulas 
(2.2.15). 0 KJ 

T..e values of are determined from dependences (1) unambigu¬ 

ously by solving the plan equations. They are 

^0111 
Km — B'3' — «ojC1*’ 

Gou 
,.1^+(1-3^+p«»>)Cn„, 

n --A"’***'« (i-bw + d'") 
° i*«(—fl"’ — aoiC’1* 
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» f 

The conjugate cqu.ition system 
system of equations together with 
form in this problem: 

, making up the supplementary 
equations (4), has the following 

where: 

* 

®. //. I*. *1, >-j, re \ »li'’, Gdj, a0l; 

m=*j**\.11: / = 1.8), 

(S) 

in case 2 

and where > a > 
max min 

!/uj = 0 

*i,,~ ¿ y ~ôt y,>' 
da 

and where a = 
max 

in case 1 

or 

/-i 

a = a*}) 
min 

i/ii.j—0; 

1/1,1 o^idv yu+ dt yt‘^ dJ/ y,r: ¿7 ft-»+"».»). 
da 

yij.i= 

The initial conditions of the conjugate system (point t^3)) are 
determined according to the following relationships: 

y'-'~%r' (/-1. 2, 3), 
P' 
lit 

Hqi .// 

‘ ,,erc ^10 = ( ^ + V — + ^ = fí¬ 
ela ía 

-24S- 

!/ 

// 

y* 

¡i 

i 

Um 

II 

M 

At points t 
filled. 

point t, 

y*A(~ 

+ y, 

-L 

Un 

!K, 

I 

L 



I,'2 J = 

9m i 

Hr. S 

//M 

Hm.l 

//»« 

//•J- 

//. • 

(b 
dr, 

//3,---. 

= 0 (//1 = 1, 2, 3, 5.11; /^1, 2, 3: m//), 

(jr|="r.-f* Jfii“/»«. 

"'-I. 2, 3, 5.11), 

z-PL 
o*m 

*ñ ■//’^ 
iV!31 

Wl _ ^ , ^ 
*M " ^¿3’ a,,., <// 

0 (/+6. 7, 8: »1 = 1.7), 
dpa 

37 • //9.6 -0. i/|r),6 =0, Dll.»-=0, 

zlPl 
«)n¿ AS) ’ 7, 7 "°’ 

_ 

'/Out 11 

<>P» _ (|n*31 • //9.1 -0. //in»- —, i/||,|=- 
^ fWoill dag, 

filled: 
At points t2 and tj, the discontinuity conditions should be ful- 

point t. 

+ ^(/^)(72(/^)-^(^))+^,(/1:0(7.,(/^)-,,(/^))+ 

+ 1 ‘¿oT )|/ v”=74, ' ^+^(/ ^1.8)* 

"mA'^^iuA*-) ('// = 1, 2, 3, 5, 6, 7; t~\.5). 

/^.1(^^) = 0 (m = 8.11; / = 1,..., 4), 

//„(/,!0 = O, 
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dßoil.. ' *“« 

r.An-v.AMrpi*,-*'. 

= ^ji • • • » «^ii338 ®oi^* 

(m —1,...,7), 

»..('?)-S^T' »m('Ï')-0, 

0104 ' 

point tj 

0.4^+0-0..,(^-2l 3* 5’ 6’ 7; /œ1.7)* 

04|(<V»)- -,,,(/ü')^^ 0,,(^0(9,(/‘i’)- r. 

+ 0,,(/^(^0-^0^^0..^-)(7.(^0-^^))+ 

+ 0,., (t1-’) («?» ('-) - ?» ('"')) -r 0.., ('-) ?. ('-)+ 

+0^,(^-)7.0-)] i2’)l.v,,“,'4*,(<4*,)+ 

+ ÿfo O“1»-'-' 8)’ 

0..,0+0)^0 (m—S,..., 11;/=1.---. ^). 

0^,(/+0-=0. 00.10+1) 

0.4(/+0=0 (m=*8.11): 

¢,,((^)=0. »►.('*') "4^' 

0.4 

004 ( 

Assumin; 

mentary equa 

geneous line 

0« 

where 

Here 
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OX m 

Xt ~ )•], X3 : >■)!’', XO—G0, Jf„^ïfl0|), 

Assuming Ap. = -c.p., we produce after integration of the supple- 
* * * /■ T*\ 

mentary equation system from tl ; t0 *0 t^ie f0^0W^nß system of hetero¬ 

geneous linear equations: 

y..ii/«H>í9-!-.i/íii/6*l'í<>+ + ^1,+^,"+ 

4 Kiv»«0, + Kff/-««-!- 1/=1.81. (6) 

where 

I ^ * m m * w -r» 

yij)-, d« d|«cni 
r t*< 7--uom -r; 5-a. 

= yu.i (/»1 — Vim (4). 

Ktf=Vim (/^) " ^ g ^ ^ 

(7=-/-2. 3). 

Here 

Ä|=*l*oy+ (/=7 = 1, 2, 3), 

»J')= 

.i» = 

AiAjlj' 

A.A,’ f'-i. 

M*’ 
»|>> = _l_ 

4. 
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T 

ÏÏH' solution of system (6) after calculation of Y(i) and Y(i) 
Vi al 

allows us to determine the values of 6 JL f, J ;!nj ¢,,1 , 
<-u ¿o Qi f kJ‘ 

Thi; algorithm was run on the BFSM-3M computer. The proeram 

nm aídl0mtat^0n 0f the 0ptimal ph;Jse Rectory, optimal controls 
1(t) and a(t) and optimal values of the main plan paramete-s of •. 
three stage rocket, placing a fixed pavload into a se e- ed oríi't with 
minimum launch weight C0. e,eciea °rhit with 

,.n i calculations were performed for a homogeneous, plane-parallel 

and without raV1ÍatÍOnal field °f thc earth. in the vJt case^Hh 
and w thout consideration of the atmosphere. The results of the 

TonTrlV'Z oÍtinnÍanhWÍthrt OPtÍmÍ7ÍnK th° thrust as a function of control, the optimal phase trajectory and the optimal values of the main 

paraileíaêrlvU tf ^ determined with the homogeneous plane-' 
a?mo ih!rf T1 f,eld °f thc earth without considering the 
values of theC Sîmilar to thc °Ptl,nal Phase trajectory and the optimal 
wi h ñ hf- J" P an Paramcters determined with a central field 
with and particularly without considering the atmosphere 

value!tofStÍermnant,that thC °Ptirnal Phase trajectory and optimal 
alues of the main plan parameters of a multistage rocket with a 

ÛÎ “uP tnrpar'''i‘<’' rrCS,rU" fi'îd" the cal- culdtion of which can be performed during the course of solution of 

Îc ,b0‘"'d;ry pr0b1"’ ar“ a S°°d appro»«;": for 
(,ï ,, i iT !Î f opt lei cation of control an.l thc main plan parameter. 
fa multistage rocket, placing a fixed payload into a selected orbit 

with minimum launch weight. * cu a selected omit 

ontJ; IiS 2-4.Prcsent nomograms for determination of the 
optimal values of the main plan parameters of a hypothetical three 
tage rocket and values of Lagrange coefficients ^ and calcu- 

tationll fi’^HaSCMf a homo«cneous Plane-paral lei terrestrial gravi- 
ational field without considering the atmosphere for an orbit with 

« hcifh, Hk ■ 350 k. (or H, . 200 ln for » cart“ "il l 0 

as functions of thc values of V, 
V 

Table ¿.1 is presented in order to illustrate thc course of thr 
itérâtlonal process of this algorithm for optimization of the three 
stage rocket. It shows how p^ and pftn changed from iteration to 

iteration; nr 

fixed houndar 

sidered. Thc 
of the optima 
rocket, >_ 

" 
and 2.4. The 
typical for t 
fully sat is fa 

At the ; 
culations we 
modes of the 
in the case t 
fields. Anal 
that the opti 
the actual cl 
fixed point i 

plane-paralh 
thrust mode, 
optimal opera 
character ist i 
field cannot 
be found onlv 

a 

Value 
bummar 

Functip 
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iteration; up to = 0.02, only the functionals related to the 

fixed boundary conditions = V^, 0k = 0 and llk = 200 km were con¬ 

sidered. Ihe initial solution (N = 0) for these calculations consisted 
of the optimal values of the main plan parameters of the three stage 
locket, and taken from the nomograms shown on Figures 2.3 

and 2.4. The course of the iterational process shown in Table 2.1 is 
typical for the algorithm presented in Chapter I, § 4 and shows the 
fully satisfactory convergence of this process. 

At the same time, it must be noted that as a result of the cal¬ 
culations we noted a difference in principle in the optimal operating 
modes of the liquid fueled power plant in the optimal phase trajectory 
in the case of a homogeneous plane-parallel and central gravitational 
fields. Analytic investigations demonstrate and calculations confirm 
that the optimal operating mode of the liquid fueled power plant with 
the actual choking characteristics used to place a fixed pavload at a 
fixed point in the phase space (Vk, ñk = 0, llk) in a homogeneous 

plane-parallel field with minimum launch weight is only the maximum 
thrust mode. This sort of namhiguous answer to the question of the 
optimal operating mode of a liquid fuel engine with realistic choking 
characteristic as a rocket moves through a central gravitational 
field cannot he analytically produced. In this case, the answer can 
be found only by calculation. 

Table 2.1 

Value of 
Nummary 

Functional 

Iteration Number 

0 1 2 3 4 5 

7»in 1 

1 

0.29 

1.23 

1,9-10-3 

0.K2 0,ii9 0,()2 0.27 
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Figure 2.3- Nomogram for Determination of Optimal 
Values of Main Plan Parameters of Hypothetical Three 
Stage Rocket as Functions of Final Flight Velocity: 

It has been determined by calculations that with the optimal 
flight modes of a multistage rocket in a central gravitational field, 
an intermediate passive sector generally arises in the motion of the 
last stage, beginning after some acceleration of the last stage and 
ending with negative values of 6. 
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Figure 2.4. Nonogram for Determination of 
Initial Values of Lagrange Coefficients >J0 
and as Functions of Final Flight Velocity: 

»„-IM««. 

Figure 2.5. Deviation from Maximum Relative 
Payload as a Function of Deviation of Initial 
Thrust to Weight Ratio of ith Stage from Optimal 
Value: _*•„. 

-— M*t. 
-H,l 
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This difference in the optimal operating modes of a liquid fueled 
power plant apparently results fror differences in the nature of the 
central and the homogeneous plane-parallel gravitational fields. 

Various deviations from the optimal values of thrust to weight 
ratio of the stages are possible during the process of planning an 
optimal multistage rocket, furthermore, thcr" is independent interest 
in estimating the steepness of the surface (;() = ('^ (a(). , i ^ ^ near 

the point of the global minimum of launch weight (!„ . (or the point 

of the maximum relative payload p ). Therefore, calculations 
Ml liitl X 

were performed to determine the influence of deviations in thrust 
to weight ratio of the stages of a three stage rocket from the optimal 
values on the deviation in the relative payload from the maximum value. 
The calculations were performed so that as the thrust to weight ratio 
deviated from the optimal value for any stage, the fixed boundary condi- 

tl0ns Vk = Vkp’ V Mk Wcre fulfilled in thl' class of optimal equations 
p(t) and ft(t1, satisfying all necessary conditions. 

The results of these calculations are shown on Figure 2.5. We 
can see that with the selected a}*) and yM), a deviation in thrust to 

weight ratio of any stage from the optimal value of !l5”<, or less 
causes a decrease in payload of less than 2%. Therefore, we can state 
that the surface t.0 = CQ (aQ.) does not slope sharply near the point 

of the global minimum (;o True, this surface is asymmetrical: 

as the thrust weight ratio increases over the optimal value, the rel¬ 
ative payload decreases to a lesser extent than when the thrust weight 
ratio changes in the direction of lower ¿ .. 

Oi 

Usually the specific gravity of the power plant of a stace 
PP 

and the coefficient of the fuel sector of the stage aj’* are used as 

the determining coefficients of a plan control. In the initial stage 
ot planning of a multistage rocket, these coefficients are assumed con¬ 
stant and tixed due to statistical considerations. This fixation of 
the specific gravity of the power plant and fuel sector coefficient of 
the stage may result in deviations of the initial values of y-1' and 

;'to from thc ;Kt,lal values achieved as a result of planning. There¬ 

fore, it is important to estimate the influence of deviations of y*‘* 
( i ) PP 

.un! ato trom their initial values on themaximum value of relative 



p;iyIo.'ul anil the ontinal values i>f the main plan parameters. Calcula¬ 
tions were nerformei1 so that as y* 1 * or a• ’ ’ Jeviateil from the initial 

PP to 
values, the conditions of optimization of the main plan parameters and 
the boundary onditions were once more fulfilled in the class of 
optimal controls oft) and «(t). 

These calculation results, shown on Figures 2.6-2.11, show the 
possible values of deviations of maximum relative payload and optimal 
values of main plan parameters as and yj’ vary from their 

initial values. The deviations of the maximum value of relative pay- 
load and optimal values of the main plan parameters do not exceed 
^21. as or a;1 varv bv 115¾ or less, 

pp to 

In this connection, for the initial stage of planning of a multi¬ 
stage rocket we can consider the results of solution of the algorithm 
for optimization of the main plan parameters and control of the multi¬ 
stage rocket to place the required payload in the selected orbit with 
the minimum value of launch weight quite reliable with constant values 
of power plant specific gravity and stage fuel section coefficient. 

Figure 2.6. Change in Maximum Relative Payload and 
Optimal Values of ’<ain Plan Parameters of Hypothetical 
Three Staoe Rocket as Functions of Deviations in the 
Specific Gravity of the Power Plant of the First Stage 
from its Initial Value: 

-*. - — <- 
—.. — i *, -/. <-*o„ 
— • • —h *, —— Y » X —— in,, % 

-‘Mil** 
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Figure 2.7. Change in Maximum Relative Payload 
and Optimal Values of Main Plan Parameters of 
Hypothetical Three Stage Rocket as a Function of 
Deviations of Specific Gravity of Power Plant of 
Second Stage from Its Initial Value: 

--*-**•• * 
-**. i *- -X X-% 
-*.»* —X** — *•"* 

Hi * 

Figure 2.8. Change in Maximum 
Relative Payload and Optimal Values 
of Main Plan Parameters of Hypo¬ 
thetical Three Stage Rocket as a 
Function of Deviations of Specific 
Gravity of Power Plant of Third 
Stage from its Initial Value: 

-%./*• 

j H * 
N III* 

-X-*•„ % 
- X , -u„ % 
-XXX -*«.. \ 
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Figure 2.9. Change in Maximum 
Relative Pa/load and Optimal 
Values of Main Plan Parameters 
of Hypothetical Three Stage 
Rocket as a Function of Devia¬ 
tion of First Stage Fuel Sector 
Coefficient from Initial Value: 
-»*rj \ • — X --*«.. *. 
--* X-*«., *. 
-*,„% -'-XXX — *#„•; 
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./ 
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/ 
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l 
* 
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/d I ues 
JO- 
i a 
:if lc 
rd 

Figure 2.10. Change in Maximum Rela¬ 
tive Payload and Optimal Values of 
f’ain Plan Parameters of Hypothetical 
Three Stage Rocket as a Function of 
Deviation of Second ftage Fuel Sector 
Coefficient from Initial Value: 

— —• — **. i • 
_ . . II 
_.. .-â». in*: 

-— V •* 

- < y-*i 
— S y V. ——- *• 

Figure 2.1i. Change in Maximum 
Relative Payload and Optimal 
Values of Main Plan Parameters of 
Hypothetical Three Stage Rocket 
as a Function of Deviation of 
Third Stage Fuel Sector Coeffi¬ 
cient from Initial Value: 

—v; i* 
-% 

ui« 

—.— y-*«.. % 
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where 

APPENDIX 2 TO CHAPTER I I 

Algorithm of Variational Method of Optimization of Parameters ard 
Modes of Motion of Two Stage, Liguid Fuel Ballistic Missile Capable 
of Delivering Known Payload at Known Range Considering Limitations 
on Trajectory Anale 

Ko will analyze the algorithm for the variational method of 
optimization of the main plan parameters n()1, a(n, v k], l-j-j]. G0 j] 

and control functions p and a of a hypothetical liquid fueled two 
stage ballistic missile, capable of delivering a known payload G j 

over fixed range 1.. considering limitations on trajectory angle 0, 

with minimum launch weight G. . . 
'' u nitn 

In solving this problem, we will consider a number of assump¬ 
tions usually made in planning of long range ballistic missiles. 

After completion of the powered flight sector (point t*“*), the 
missile (warhead) travels the greater portion of its path in practically 
airless space. Therefore, we need not consider the influence of the 
atmosphere over the passive flight sector to achieve accuracy suffi¬ 
cient or the initial stages of planning. This allows us to use known 
relationships between kinematic parameters at point t(“) in evaluating 
the passive portion of the flight1 

thereby 0 

At pci 

Thus, 
in expanded 

In com 
the values 
takes on th 

( 

I rom tí 

/., tg- V2 — 21R 9, tg >/2-/7,=-0. 
(1) 

(2) Since 

See [2) and [27|. 
then where 



where 

/ • ’ - -//, -2, 
n2 ros- 0¿ 

fh 

thereby opt inilinj; the phase trajectory in the sector [t^, 

At point t(1 = 0, the foil'winy are usually fixed: 

mo) 1. •>, ---, r, o, //0 =o, ¿o=o. 
(3) 

Thus, relationships (1)-(5) are the boundary conditions (2.1.5) 
in expanded form. 

In connection with conditions (1), (2) and the assumption that 
the values of 0 are optimal, within i‘s limits equation (2.2.27) 
takes on th' followinr form: 

from this we find 

3J+ri2 ~0, 

^12 ài °’ co^a 

S i nc e 

^11 
d» 

ic-L, 
f n^- ^ 2 

then where , 0, since |27|, we always have 

d'. 

-256- 



in which the equality is possible for ranges for which the trajectory 
contacts the surface of the earth. In the last case, we produce >4 = 0. 
In the following, we will analyze only ranges corresponding to the 
condition 

/: tg >°- 

Therefore we can write 

( 
If at point t the cpti-al stable control is possible, we 

have 

The denor.ir.atcr :f this fractitr. is finite. Then equation 02 * 0 
is possible only where 

This equation corresponds to the passive sector of the trajectories 
of maximum range for the se'. of trajectories of identical velocity V2 
or trajectories of minimum velocity for the set of trajectories of con¬ 
stant range L [2, 27]. 

T» at 

Thus, the trajectories of maximum range for the set of trajectories 
of identical velocity or trajectories of minimum velocity for the set 
of trajectories of constant range known from the theory of Kepler 
motion can be related to the optimal trajectories in the passive sector 
only when the condition of transversality is fulfilled with = 0 

or with zero value of the optimal angle of attack at the end of the 
active flight sector. 



After transformations, wn produce 

)^= - >, 

_, sin* i/2_ 

4 «,r;ce$î S (ï, lg ty2 — tf •*) 

Ä, *in i(~~ '8 •} 18^2-1^ 

'37* _Ü. 
/.3 '8 5 2 - Ige, 

(/3*8 r''2-lg HjJroiî», 

[—^—+1] 
lfl>!(t-f 7?]) rostí* J 

Fith the optimal stable control a (within the limits -n/2 < a < 

w/2), according to Weierstrass condition (2.2.8), we have Xp < 0. In 

this case we produce 

Usine the homogeneity of the Euler-Lagrange equations relative 
to the Lagrange coefficients, we assume * -1. We then will have 
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Pue to the first integral of (2.2.10) and the condition of trans 
versality C0 = 0, we can write 

,, »»I .— I tX 
«TW "Sv‘" 'i 

... , . . ros I* 

Substituting the values of Xp, ^2 an<* t*1'5 equation 

according to (4), we produce 



Thus, at point t^,, the condition of optimal disconnection of the 

power plant occurs. 

The main 
I-iRrange equal 

where 

Here 

I ) where 

system of equations -- the coupling equations and Euler- 
10ns according to (2.1), (2.II) is as follows: 

’?»• = ™ H'~ ?3. ¿' ''O ^ = 

r __'Ty , àf, . 
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,-, , ( U (1) while where rx -a ^ or a . > a 
max — opt nun — opt 

sin a--sin ^ slna^sina^, 

where we assume = const and = const; 
max min 

I'urthermore 

2) where 6 

if 11^ <_ 0, then P() = 1, while otherwise p(1 = 0; 

or 0 = e 1 !1 
max m^n 

rn ('«-}■ Oa 
àii 

0a 

or 

\n 

sinu sina. 
(», + HY R, + H 

jiros* 

ea(°r./1 + 

where in the case 9 = and sin > sin acb we should go over to 

condition 1, while in the case 9 = G^1' we should go over to condition 
max 6 

1 with sin a 
opt cb 

In order tc perform integration of system (5) by one of the 
numerical methods, we must know, in addition to the values of the rain 
plan parameters . , i ^ and the values at the initial point 

t^ of the Lagrange coefficients and which would satisfy 

conditions (1), (4) (after exclusion of parameter h from them using 
(2)) and the optimality conditions of the main plan parameters, or , 
the values of any three phase coordinates V,, 9,, H,, L, at point t ” 

which would satisfy the initial conditions (3) and the conditions of 
optimality of the main nlan parameters. 

It is formally insignificant at which point t(1 or t, tie Initial 

conditions are fixed for solution of the multipoint boundary problem 
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produced. However, on the basis of the physical conditions of flight, 
the area of search for the unknown phase coordinates at point t^\ 
V2 » 9' H2’ L2 can be precisely determined than the area of 

search for the Lagrange coefficients at initial point 

0' 

Therefore, the solution of the multipoint boundary problem is 
reduced to determination of the main plan parameters aA., p . . and 

the phase coordinates at point tl \ 02, H2 and L2> for which the 

functionals 

at point t0 

p4=l¿, 
(6) 

at point t (1) 

I T (7) 

are equal to zero. 

The functionals p^, p and p_ reflect the conditions of optimi¬ 
zation of the main plan parameters. 

The values of G0 and ^ will be determined from the plan equa¬ 

tions. 

The stop functions will be taken as 

^ = 1=.0. (8) 

The supplementary system of equations, in audition to equations 
(S), includes the conjugate system 
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where: 
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The initial conditions (point tn) of the conjugate system are 

determined as follows: 



u Ùp' f/., -- !h.i 

dp» 
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(10) 

,(D At point t11 , the discontinuity conditions must be fulfilled 
in the form 

After integra' 
solution of the 1 il 
problem is 

Mere 
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After integration (>f the supplementary system, we can po over to 
solution of the liner.r system (2.3.14) and (2.3.23), which in this 
problem is 

A:llH2 r A3l*>L2 ^ 1-.Aj./Ogi-f- 

r "■ ^7./^01 
(/ = 1.7)- 

(12) 

Mere 
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As a result of solution of the syster of linear equations (12), 
we find 602> äU^, ÓL^, ía^, ¿V^j. Further calculations sh k id be 

perforacd according to the BOSH algorithm (flow chart shown on Figure 
1.24). 

A program was composed for the BF.SM-3H computer for this algo¬ 
rithm for calculation of the optimal velues of the main plan parameters 
and the optimal mode of motion of a two stage LRBM capable of deliver¬ 
ing a known payload over a known range with minimum launch weight and 
limitations on trajectory angle. 

Figure 2.12. Nomogram for Determination of Optimal Values 
of Flan Parameters of Hypothetical Two Stage Ballistic Hlsslle 
as a Function of Final Flight Range: 
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Hi 

Calculaiior 
the optimal pha* 
modes and optimi 
LRBM. 

Calculation 
central terresti 
in the latter a 
The final -assi' 
gravitational f: 
that the optimal 
phase coordinate 

and L., détenait 
powered flight ! 
as a good zero : 

Figure 
Values 
Flight 

Bal Iis 

-265- 



Calculations performed using this program allowed us to determine 
the optimal phase trajectory of the active sector, optimal flight 
modes and optimal values of main plan parameters of the two stage 
LRBM. 

Calculations were performed for a homogeneous plane-parallel and 
central terrestrial gravitational field over the active flight sector, 
in the latter case with and without consideration of the atmosphere. 
The final passive sector was always calculated considering the central 
gravitational field. Analysis of the calculation results produced show 
that the optimal values of the main plan parameters and the values of 
phase coordinates at the end of the powered flight sectoi V2, 6^, 

and L-, determined with the homogeneous plane-parallel field over the 
powered flight sector without considering the atmosphere car be used 
as a good zero approximation. 

Figure 2.13. Nomogram for Determination of Optimal 
Values of Kinematic Parameters at the End of Powered 
Flight Sector V2 and of Hypothetical Two Stage 

Pallistic Missile as a Function of Final Flight Range 
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Table 2.2 

Value of 
Summary 

runctional 

k Î n 
t’t 

rr-P, 
'Pt-r, 

IteratIon Number 

V,-IÎ4> .* 
: 

«.-■•vs 
1,- 04 «■ 

1., 

' t- « ■ /,- '19 « 

0.(3 ! M 

•- y.-o u «■*.«.v.-r.ai ; 

I «.-si jK-q.u m 
t,- III a 1/,-(,1 a 

• V *.«r 1 0.1’J 

^¡f|ure 2.IJ. Devi at ¡ < n of *t«jxlTiun 
Relative Payload as a Function of 
Deviation of Initial Thrust to Weight 
Ratio of ith Stage from Optimal Value 
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Table 2.2 can be used to determine the course of the i'erational 
process of this algorithm for the multipoint boundary problem consider¬ 
ing a central gravitational field, when the initial solution (N * 0) 
was the data taken from the nomograms shown on Figures 2.12-2.14 for 
a final range 1^ » 10,000 km. The data of Table 2.2 confirm the 
conclusion made earlier in Appendix 1 to Chapter II that the iterational 
processes performed by the computer according to the algorithm for 
optimal planning of the flight vehicle and presented in detail in 
Chapter I, 14, produce satisfactory'convergence. 

Calculations were also performed to determine the influence of 
deviations in thrust to weight ratio of the first and second stage- 
of a rocket from the optimal values on the deviation of the relative 
payload from its maximum value. Calculations were performed so *hat 
as the thrust to weight ratio of any stage deviated from the optimal 
value, the fixed final flight range was always fulfilled in the class 
of optimal controls p(t) and a(t). 

The results of these calculations are shown on Figure 2.15. 



CHAPTER III. VARIATIONAL METHOD OF OPTIMIZATION OF MODES OF 
MOTION AND MAIN PLAN PARAMETERS OF MULTISTAGE SPACECRAFT 

I I. Statement of Variational Problem of Optimization of Modes of 
Motion and Principal Plan Parameters 

In the initial stage of rough planning of a spacecraft, we must 
determine the main plan parameters and modes of motion allowing us to 
create a vehicle satisfying the requirements placed upon it in the 
optimal manner. 

A spacecraft must perform the following maneuvers: separation 
from the planet, interplanetary flight, approach to the target planet, 
entry into orbit .-iround the target planet or landing on it, adjustment 
of trajectories, etc. Each of these maneuvers has its own specific 
peculiarities. 

The evaluation of these maneuvers, in addition to the other 
requirements, should always call for the fulfillment of the require¬ 
ment of deliver)' of the fixed payload to the target planet or to 
some designated orbit. Therefore, these maneuvers have the task either 
of delivery of the required payload to the designated planet or to 
some orbit with the minimum launch weight of the spacecraft, or deliv¬ 
ery of the maximum payload with a fixed launch weight. The importance 
of this problem is obvious. 

In this chapter, we will state the problem of determination of 
the modes of motion and main plan parameters of a multistage space¬ 
craft capable of delivering either a fixed useful ma*M . with minimum 

P* 
launch mass M . or the maximum useful mass M . with fixed 

u mi" pi max 
launch mass to the target planet with intermediate orbiting around 
the earth (before travel to the target planet). These modes of motion 
and the nain plan parameters will be referrt ' to as the optimal 
modes of motion and the optimal main plan parameters of the multi¬ 
stage spacecraft. 



As power riant* for the stajjcs of the spacecraft, wo .hall analco 
MnKlc-mode power plants, 1. e. power plants operating only at maximum 

I here are a number of factors speaking in favor of the use of 
single-mode power plants in solving the present froblem. For example 
in preceding chapters we demonstrated that if a power plant has a 
choking characteristic which is near linear with a certain drop in 
specific thrust as the fuel flow rate per second is decreased, only 
the maximum thrust mode of the power plant, in combination with iner¬ 
tial tlicht, will appear in the optimal modes of motion of the flight 
vehicle. Therefore, power plants with these characteristics will act 
as single-mode power plants in the optimal modes of motion. 

»n this connection, the primary single-mode power plants an* 
liquid fuel rockets. 

Theoretical and experimental investigations of electric rocket 
power plants have shown that these power plants are technically feas¬ 
ible and that their application in spacecraft is expedient. They 
have indicated the main principles of the design of electric rocket 
power plants, allowing comprehensive evaluation of spacecraft using 
electric rocket motors to he performed. By "electric rocket motors" wc 
refer to three types of electric rocket poser plants, currently in the 
development stage: electrostatic or ion motors, motors using an electric 
arc and magnetohydrodynamic motors, sometimes called "plasma" motors. 
The simpler organization of the stable operating process forces us at 

tinK' ,0 USC tiri’"arlly single-mode electric rocket motors 
URM). Therefore, we should analyze various types of (RM as possible 
single-mode power plants. 

Thus, the investigation of the optimal modes of motion of 
multistage spacecraft is performed on the assumption that the permis¬ 
sible operating modes of the power plants of the stages (liquid fuel 
motors or I RM) are the maximum thrust mode and p ■ 0. No limitations 
will he placed ..n the dynamic characteristics of the motors, and there¬ 
fore the control function I- (or p » P/P .,.) will be analyzed in the 

class of piecewise continuous functions with finite number of first 
order discontinuities. 

Ihe spacecraft as an object of control can he characterized by 
the control functions i, 8 and y ( guiding ensues of reactive force), 
the values of which are not limited. 

The time of the transient process in the case of maximum possible 
iate of change of thrust vector a-hl consequently of », « and > is 
very brief in comparison with the time of the powered sector, allowing 



us to assume it equal to zero with ureat accuracy, thereby clininatirg 
consideration of limitations based on inertia of the control system 
and to analyze control functions i, and y as piecewise continuous 
functions with a finite number of first order discontinuities. 

Planning and theoretical studies of spacecraft with PPM have 
shown that the main plan naramet-'rs for a spacecraft stage with PPM 
are the specific newer of the power plant N , the thrust to weicht 

sp * 
ratio of the stage a()., the exhaust velocity of the products of the 

working medium . or the specific thrust P^., mass M(1J and the 

relative final mass ' ^ j * ^kJ^pi stage. Ke should discuss 

specifically the selection of V . Its "nature" is such that N 
*r sp 

should be as great as possible. However, its ragnitude depends on 
the level of develonncnt of space science at the given stage [41). 
Pherefore, in the following we will consider the value of N fixed 

sp 

Por a spacecraft stage with a liquid fuel rocket motor (I.RM), 
the main plan parameters are the thrust to weight ratio a 

and 
or mass moj 

Thus, the main plan parameters of a multistage spacecraft with 
single-mode power plants for each stage, including LPM and PPM, will 
Kr» KÀ <1.1 kJ ,, . > . be M0J (J - 1,..., N), M. 

Pp . sm 
P«‘ * k.r aoi (i * i, n). P. 

maxi Oi 
or 

Therefore, the plan equation and other weight relationships for 
the multistage spacecraft with single-mode power plants are 

-0. (3.1.1) 

-- — .Wvisy 0 

(7 -/.A’: i 1 n). (3.1.2) 
(3.1) 

In the following, for gen. ralitv we will assume 

Pfj / ,(" O •*./. w’i) 



According to the definition of thrust to weight ratio, we must 
also consider the coupling equation of plan parameters in the form 

(3.1.3) 

Since the range of change of the main plan parameters for the 
corresponding types of spacecraft and power plants fall within defi¬ 
nite limits, the following conditions of limitation of the plan 
parameters obtain: 

¿'o, -V M.tj 'N M'jj a.,, 

av < a0l Ml 

/ml» '•W /4% Mp jma. 

(3.1.4) 

Figure 3.1. Diagram of Course of Inter¬ 
planetary Fl'ght 

In studying the optimal modes of motion of a multistage spacecraft, 
we will consider that the launch is performed into a predetermined 
intermediate orbit, located at a distance from the earth such tha" it 
allows the aerodynamic drag of the atmosphere to be ignored (Figure 3.1). 



Furtheraore, in order to ranee the problem more general, we assume 
that the interplanetary flight will be completed with arrival of the 
spacecraft at the target planet (Venus, Mars, etc.)- We will assume 
that arrival of the spacecraft at the target planet will involve either 
a probe flyby at a predetermined distance from this planet or entry 
into an orbit around the target planet, etc. It is assumed that 
these maneuvers are performed at a distance from the target planet 
sufficient that the drag of its atmosphere can be ignored. 

Generally speaking, in calculating the trajectory of a spacecraft, 
it is necessary to consider the force of gravity of the Sun and all 
planetary systems. However, in the stage of preliminary planning of 
a spacecraft, involving preliminary selection of the main plan param¬ 
eters and modes of motion, consideration of all forces of gravity leads 
to unnecessary complexity of the calculations. Therefore, the problem 

.4) of determination of the course of the interplanetary flight of the 
spacecraft with optimal modes of motion from the intermediate orbit 
around the earth to the target planet will be divided into internal 
and external problems. 

The internal problems are divided into two: the first problem 
is the problem of separation, involved with investigation of the motion 
of the spacecraft from the intermediate orbit to the sphere of influence 
of the Earth, while the second problem is the capture problem, involv¬ 
ing investigation of the motion of the spacecraft from the sphere of 
influence of the target planet to the final maneuver. In solving the 
problem of separation, we use geocentric coordinates, while the solu¬ 
tion of the capture problem is performed in planetocentric coordinates. 

The external problem is related to the investigation of the motion 
of the spacecraft from the sphere of influence of the Earth to the 
sphere of influence of the target planet. In solving the external pro¬ 
blem, we will use heliocentric coordinates. 

In an analysis of the optimal flight nodes of a sprcecraft travel¬ 
ing to the moon, the over-all problem is divided into two problems. 
One problem is related to the investigation of the notion of the space¬ 
craft from the internet..ate orbit to the sphere of influence of the 
moon, the other -- from the sphere influence of the moon to the final 
maneuver, which could be performed using selenocentric coordinates. 

However, the division of the problem of dctcrriining the course of 
I raft, an interplanetary flight into three problems (the external and two 

internal problems) docs not result in separation of the problem of 
it optiniiation of the main plan parameters and modes of motion into three 

t 3.1). variational problems. In this sense, in our investigation of »he 
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problem <f opt¡m;;"tion of tic main plan parameters and modes of 
motion for Interplanetary 'li^hts, the external and internal problems 
ire analyzed jointly. Therefore, the result of the solution of the 
variational problem i, the determination of a single optimal phase 
trajectory. This is one of the primary distinctions of this work 
from works published in the scientific and technical literature (see 
(l’| and the bibliography which it contains). 

Analysis of the external and internal problems is performed on 
the assumption that the only force of gravity acting on the space¬ 
craft is the force of gravity of the central body barth , Sun, etc.). 
Hu origin of tin geocentric and planeiocentric systems of coordinate 
is located at the center of the planet (barth, target planet). The 
svstem of coordinate axes will be selected as required for the time, 
related to the fixed launch date. 

Suppose the fixed intermediate orbit around the barth, Iving in 
a plane fixed in space, is elliptical. Then, assuming the geocentric 
astern of coordinates to he rectangular and equatorial, we have [14| 

Voj sin (u3 — <*>)-}- 

+ d«o~(,+ec05<“«—» ]=0. 

*01 a vrj- j J8jisln(«0— 

-£7(1 + ÍCOS(«0-,,)) j = 0, 
(.1.1.5) 

=3 -^o — c09, 0, aa i/0 — 

- r09, =0, ^ sa zg — r093 =,0, 

where 

«i=cos a„ cos 2—itner0 sin 3 cos {, 

% =-ros a0 sin 2 -f sin u„ cos 2 cos i, 

9j--sin Ug sin i. 



Uh tmal rancuver of the spacecraft near the target planet, let 
MS M,pPOSl’ W,n ,nvolvo filiment of the following final conditions: 

(f XK» V > ^'/«t i/«, ^1,) —0 
(3.1.6) 

Note. [| the task of the final maneuver of the spacecraft is 

im th‘-nní1netóX rfÍm,! l™""* the Planet* th™. assum¬ ing th. planetocentric system of coordinates to be rectangular and 

JH!™« final 0rt“' »"-»c« the final conditions 

V,- K — -3- I 1, # n,n t.'. —. . 

P l 

where 

-»i 

* o«. n +*">'Ca<-Z)) 

h 1 (uK~u) -(. 

0. 

~ tv, _ -j *(„ (Uii _ + 

dHf _ 
+ ^í, + *^0, ("«-»)) |-0. 

il1 
na ~ vJt 

ifr fin (uk — u) 

d*, _ 
+ tí.<l + ,rn' (“* -*))j -- o. 

n4 = r _Oh*, » 0. ¿k5-e,h- „ 0. 
Vh6 s ^11 — 0» »3 0. 

(3.1,6N ) 

"i- «»««, rofO-,in7, »¡nãro«r. 

", -ros L, fin ij+ in 7, cos Cro»/-. 

*.i= fin (7k sin Í 

Here the system of elements of the intermediate orbit is related 
to the plane of the equator of the Earth, while the svsten of elements 
of the final orbit around the target planet is related to the plane of 
the equator of that planet. 
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If we assume the geocentric and planetocentric systems of coordi¬ 
nates to be rectangular and eclíptica], then, relating the system of 
elements of the intermediate and final orbits to the ecliptic plane, 
we can retain the formal inscription of equations (3.1.5) and (3.1.6N). 

Further, let us assume the heliocentric system of coordinates to 
be rectangular and ecliptical. In this case, at the moment when the - 
spacecraft passes through the sphere of influence of the earth (t = ^), 

corresponding to the condition 

(3.1.7) 

the geocentric rectangular equatorial coordinates should be transformed 
to heliocentric rectangular ecliptical coordinates, using the following 
formulas for conversion of the phase coordinates: 

n,«*»—(*„+**(/?))-o, n^K,- 
— (i/kcosi-f 

IIj =• Z0 — (*„ cos i — j/, sir. t)=0, 
»4« (/?))=«, 

n* « ^*0 - (** COS « + sin « + »/ ® (/®))=0, 

H, Vtü—(i*,, cos « — rA sin 0 =• 0. 

(3.1.8) 

At the moment of passage of the sjxicecrnFt through the sphere of 
influence of the target planet (t * tGor t = tf!1), corresponding to 
the condition ^ 0 

(3.1.9) 

the heliocentric rectangular ecliptical coordinates should be converted 
to planetocentric rectangular equatorial coordinates, using the follow¬ 
ing conversion formulas: 
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H, a 

n.’ ™ Ö-fr* fos T~ Z, sin 7- Y?) ^0, 

n3 eos «> Y, sin 7- Z?) =0, 

ñ3s COS «"- V" sin 7- r;í)=0, 

n6 H3 r„ _ (K~ eos r+ v^, sin T- V'?í) -0. 

Note. The dependence of the ecliptical coordinates 
components of the earth on and the dependence of th£ 
coordinates and velocity components of the planet on 

centric system can be expressed as follows [38]: 

^ r dP* 1 
=■ «3 ^/(c»* B? - e$) + to* sin £® J. 

I 3 "T 
p’(fose®-#3)+ -i-eotT3Slfl£«j_ 

~-i*co,£? [- ^ *ifl £? + «• T® «* *?]• 

^ e? [~P?,in£? + «”%«?] • 
OP"** 1 

X*‘ ■« f/^/fCO* fif4 — *^ ) + — co* ç,/sin fiÇ' . 

^ - a»i[^(w* £? - v) + «osMslnÄj41. 

(co,ß5*—v)+ 

A!#/ 
+ d^rfo*wíM£í 

“ i - /¿^h? [-pí'íin£:'+—^ f"‘ ï- zoo« ef'J. 

[.. . iip^ i 
-Prsin£" + —— ro*TMcosPîy , 

^ alt"rÍ 
**“ I —«a/cosi 

(3.1.10) 

and velocity 
ecliptical 
in the helio- 

(3.1.11) 
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where 

I 

in the planetoccntf 

Pj -~ ros u> sin S — sin u> sin Si cosi, 

Py — cos oi sinti + sm <• cos 2 cos i, 

Pt~ sinwsin/, 

COSf r: I'']—*3. 

The differential equations of motion and kinematic 
expressed in the form 

(3.1.12) 

<f2mV'ii-H2-~0, (3.1.13) 

(3.1.14) 

(3.1.15) 

?s-íí'-^s=0. (3.1.16) 
<^^1' —Hi=0, (3.!.IT) 

c,= a*+(3.1.18) 

where in the geocentric system of coordinates 

a-k9 -f, 
1 f& r* p r* 

//•=^L y-K-j-. //? = *•,. H?-Vy,. 

Hf = v,\ 

in the heliocentric system of coordinates 

//•'-. 

Hf'—i 

couplings are Equations (3.1 
the Sun, Earth and 1 
spherical distribut1 
a force which is ini 
between the spacecr, 
is taken as a body I 

The right port 
order discontinuiti 
the planet due to t| 
nates resulting froi 
within the spheres 1 
of coordinates, the! 
portions of equation 
continuities only ij 
in the control funcj 

The relationshi 
second, thrust and | 

where the piecewise 

Hf.JSLt 0_,s i., s _ <0 X.. 

R' 
Here we assume 1 

ERM and it is nrhitd 

exhaust velocity of 
equal to the exhaust! 
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in tho planetocentric system of coordinates 

a — kij 
V3 

"î'“-;'-'-*./ «r'-ï». «K-'.- 

Equations (3.1.12)-(3.1.17) are written on the assumption that 
th< Sun, i-.arth anil target planet are material points or spheres with 
spherical distribution of density, attracting the spacecraft with 
a force which is inversely proportionaI to the square of the distan 
between the spacecraft and the corresponding body. The spacecraft 
is taken as a body of "zero" mass. 

The right portions of equations (3.12)-(3.1.17) undergo first 
order discontinuities at the spheres of influence of the Earth and 
the planet due to the first order discontinuities of the phase coordi¬ 
nates resulting from the planned coordinate conversions. However 
within the spheres of influence and within the heliocentric system 
of coordinates, the phase variables are continuous, while the right 
portions of equations (3.1.12)-(3.1.17) undergo first first order dis¬ 
continuities only in connection with possible piecewise linear changes 
in the control functions and the main plan parameters. 

The relationship between the flow rate of working medium per 
second, thrust and parameters is expressed by the flow characteristic 

(3.1.19) (3.1) 

where the piecewise continuous change in thrust is fixed by equation 

(3.1.20) (3.1) 

Mere we assume ll7 = a0.p/W0. for an I.RM or lt7 = - a .p/W for an 

ERM and it is arbitrarily assumed that where p - 0, W = W , i. e. the 

exhaust velocity of the products of the working medium where p = 1 is 
equal to the exhaust velocity of the products of the working medium 



where p = 0. This assumption assumes the possibility of immediate 
discontinuation of thrust ( or for ERM of the power level) while 
retaining maximum exhaust velocity of the products of the working med¬ 
ium. Although actually, this type of regulation of the power plant is 
hardly possible, it does simplify the problem and introduces no errors 
since it is related to inertial flight. 

At the beginning and end of operation of each stage, the following 
relationships obtain: 

The equations <|»^ = ') reflect the limitation on the phase vari¬ 
able V, which is 

(3.1.21) 

Cl 

•II 

•11 

% 

•i.’] 

'# 

The va 
formulated i 

in the 

Therefore, when equality i(t^) « ^ is reacned, the maneuver 

of the spacecraft should be completed or must be completed with a 
passive sector. 

In connection with the above, we can more precisely formulate the 
problem analyzed in this chapter. It consists of determining main 
plan parameters a0i> v ^j, M0J and and controls o(t), 6(t) and 

Y(t) of the multistage spacecraft such that the solution of system 
(3.1) is performed while satisfying the boundary conditions (3.1.5), 
(3.1.6), (3.1.21) and therefore also the conditions for travel of the 
spacecraft to the sphere of influence of the Earth (3.1.7) and on to 
the sphere of influence of the target planet (3.1.9) such that with 
the fixed M ., we achieve Mn * inf or with the fixed M., we achieve M , » 
sup. pi 0 0 pi 

This problem is a variational problem, the mathematical theory of 
which is presented in the appendix. Then, according to the theory, we 
go over from the closed to the open area of change of the main plan 
parameters by introducing the following relationships: 

contro 

main p 

and art 

permissible 
boundary coi 
from the spl 
version of i 
(3.1.23), c< 
such that tl 
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ite 
t 
ig med¬ 
iant is 
errors 

3llowing 

¿¡’*» (Moj - M'jjml.)(.1foy -^)-^=0, 

“ (aoi - a3l mm) (a0l mtt_ a0/)- =»0, 

L 

V' 

V* 

or:<-nml')(nmu-K)-"i=o. • 

! ^ f-Mf./mlu) - Af^-trj-o. 

.j 
a (3.1.22) (3.1) 

3.1.21) 

vari - 

The variational problem following from this problem can now be 
formulated as follows: 

in the class of phase variables 

*(/), //(/), »l/). MO* 
A’ (/). K(/). ¿(/). V*^ 

J(/). «(/). ^(/). ‘',(0. ''‘W*’ 

(3.1.23) 

euver 

a 
control functions 

ate the 
lain 
e(t) and 

«(/). HO. v(') and p. (3.1.24) 

main plan parameters 

tern 
1.5). 
of the 
on to 
with 
lieve M , * 

Pi 

Mv. Mf /. «o,. W'i. P'J„ 

and arbitrary parameters 

•u. **/. *3/. =’«/. *«. 

(3.1.25) 

(3.1.26) 

leory of 
‘ory, we 
plan 

permissible in the interval tQ ^ t ^ t. and satisfying couplings (3.1), 
boundary conditions (3.1.5), T3.1.6), b.1.21), conditions of exit 
from the sphere of influence (3.1.7), (3.1.9) and conditions of con¬ 
version of coordinates (3.1.8) and (3.1.10), find phase variables 
(3.1.23), control functions (3.1.24) and main plan parameters (3.1.25) 
such that the criterion of effectiveness 

/{Mo. Mm r) (3.1.27) 



reaches its maximum value. 

This variational problem has a number of peculiarities differen¬ 
tiating it from those analyzed in Chanters I and II. First of all, 
we are studying the motion of a vehicle in different phase spaces, 
as a result of which functions H (m = 1 ,..., 6) have first order 

m 
discontinuities due to the conversions of the phase coordinates. 
Therefore, the phase variables are analyzed in the class of piecewise 
continuous functions. Secondly, within interval (t^, t^), certain 

boundary conditions are fixed in the form of conditions of contact 
with the sphere of influence of the earth and the target planet and 
equations for conversion of the phase coordinates. 

Let us now go o 
of the maximum of fil 

5 2. Necessary Cone 
and Control (C 
and Maximum Pr 

In this section 
mization of the mail 
the condition of sta 
studied considerin': 

Due to these specifics, this variational problem Jiffers from the 
other variational problems studied in the scientific and technical 
literature (see bibliography in [121. 

Let us compose the expression 

« * n 4 

l-l 1-1 i-1 /-1 

4 fot/os 4 2 '’«’ta + 2 '’“"ta^ 2 + + 
o-l «-1 4-1 

6 f? til 

4^14^^, + 27,5,+ ^/^+^0^-4^ (3.1.28) 
,-i ,-i f. ;<p 

where 

/V 

* 

:V 
m— 1 

. m rn* 
V 'f®A. 
m- 1 

> , A , > are the variable Lagrange factors; m m m & s 

ej°\ e|'\..., ls arc the constant Lagrange factors 

Expression (3.1.28) defines ¢=1. Therefore, according to the 
appendix we can state that the conditional extreme (maximum) of cri¬ 
terion of effectiveness 1 corresponds to the unconditional extreme 
(maximum) of functional ¢ 

The condition o 
discontinuity condit 
cicnts at points of 
and the target plane 
conditions can be fo 

d'h <11 

n 4 

.-1 i-1 

+ r*i//4,i 

; 

». 

y on* 
L OUrj 
l-l 

X \U7 

y 
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Let ns now ¿jo over to detemination of the 
of the maximum of functional ¢. necessary conditions 

’ anH r« tV Í /J'1',?'15 f0r 0Ptîmîzatlon of Main Plan Parar,letcrs 
aní Í v-r° of Stability, Weierstrass Condition 
and Maximum Principle Considerinq Control Condition) 

nti’-ition^fMirm1011' T Wil1 StUdy the necessar>' conditions for opti- 
m. ution of the main plan parameters and control, in which we include 

studieT-o,10n|0, •St',1,wllty’ ;,cierstrass condition and maximum principle studied corsidertne the control condition. 1 p e. 

The condition of stability includes the Eiier-Lacrance euuarion 
discontinuity condition, condition of conversion of La«ranee coeffi-’ 

h,.a rr,°{ »f influence "f ,hT";,h 
.. arRlt planet and conditions of transversality. All of these 

conditions can be found from the equation 

~ & 5 

- V V 4-^^ + V ^\,-L V f y *»</*«> + 
Ä .-íí 11 ^ 

* « _ / 

T"ftidpu + ^ y //n,- [ — 
i^i t?\ \ 

i® i# • 

-f V dT- s -1 i. w ^ 'J. k i. H fn 

X .in* -i- ( ¿ Y--),. - (_ H®i"+ 

i, fí¡K+€)^fi¡ 
1 r? 

- A«. X 



"-Î i ¿ c- S -%-x ,p ÿ ffl ^ £ /-1 

Xiff¿rf/+(~w®^+2 A4 

X±u/H- 
iP • 

í s 
iC"-* 

w ^'-í g ^ «■*- 

Í9? à 7 

S i<ri*+(-«Kí/+V l^f.) -o, 
¿tí "" V "l /'« 

(3.2.1) 

where 

*«=**. y, z, vM, v„ v„ n; 

S*J(, K, Z. ^ V„ K„ K 

• £»=*■*. y. *. »„ 5* |K 

*#0«. !>. y. # 

//*«2//•).., //® = y//®.A., /y^y/y^ 

"-l *-• mit 

Keeping in mind (3.1), the system of Euler-Lagrange equations 
according to condition (3.2.1) can be represented as follows: 

Here fd 

coefficients 

The las 

where when p 

The Eul 
of the direc 
its magnitud 
(3.2.6), the 
achieved by 

Since H 

depend exnli 
form 

).¡«yy,= _/.4t /j^/y^^ — i,, 

»W« •• u àH 
OX •ty 

//„=- «<// 

<*/ 

(3.IT) 

A spent 
separated. 
are continue 
win make a 
of the solut 
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.1) 

S r 0, 

-uit *» — - -0, /, ^ 

iu -r ? »? + *jY)—'i -¿r—>-,(1 —2p)-^*0. 
ï* »*■ 

Here for brevity, we use x, y and z to represent the Lagrange 

«.^efficients and phase variables in the various systems of coordinates. 

The laït five equations, after certain transformations, become 

a 

where when p * 1, when p 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

The Euler-Lagrange equations (3.2.3) are related to determination 
of the direction of the force of gravity, while (3.2.4) are related to 
its magnitude. However, keeping in mind the dependence of (3.2.5) and 
(3.2.6), these equations have no unambiguous solution which might be 
achieved by introducing additional necessary conditions. 

Since H does not contain the functions H ( m * 1,...6), which 
in 

depend explicitly on time, system (3.II) has a first integral of the 
form 

tf MO yysp)r,_cj>-)t2 7) 

3.11) 
A spent stage of the spacecraft can be either switched off or also 

separated. At the moment of cutoff of a stage, the phase variables 
are continuous. In studying the conditions of stage separation, we 
will make a number of assumptions which will not reduce the accuracy 
of the solutions, determined by assumptions already made. A> our main 
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assumption, we will assume instantaneous separation of a spent stace 
corresponding to the condition t_fi) = tH), and will assume that 

a Staßf causes no Perturbation in motion of the space¬ 
craft and does not change the orientation of the spacecraft. AH of 
this allows us to consider the phase variables x. V. continuous 

at the moment of stage separation. 

Then, due to the 
nates at the moment of 
cients should he equal 

"dependence of the variations of phase coordi- 
separation (cutoff) of a stage, their coeffi- 
to zero. Therefore we produce 

. 
(3.2.8) 

,tao„IheSe Rations mdfcate that at points of separation (cutoff) of 
stages, continuity should he maintained for the Lagrange coefficients 
1. 'h and first ‘"tegral C0 should be maintained constant. 

Lagrange coefficient ^ may undergo first order discontinuities at 

uîüîtVLr^T; and i?/alues at the rißht ot' thc Point of discon- 
t ons (3 2 ^-2-7) ^cording to (3.2.8). Condi¬ 
tions (3.2.8) in the following will be referred to as the disconti- 
n ity conditions of the Lagrange coefficients upon stage separation. 

Furthermore, stability condition (3.2.1) indicates that first 

nuUv 0t Contro1 Actions do not disrupt conti- 
ty of the Lagrange coefficients ^ or constancy of first 

integral Cy. 

In order to fulfill (3.2.1), we select Lagrange factors e¿ , e , 

ls' ’s = 1 »•••* such that the coefficients in the coupled varia- 

tions of the phase coordinates at the çheres of influence of the 
earth and the target planet are equal to zero. The coefficients with 
tree variations should also be equal to zero. Then, when the geocen¬ 
tric system of coordinates is converted to n heliocentric system of- 
coordinates (at the sphere of influence of the earth) at point t = t+ 
we prod"ce ’ k ’ 



VK-¿M4-~0. 
on. 

Ovn 
an« 

at-L» 

>„+/, 
anr, 

*„ ^ s-»- 

^+^,^+^7-0-x* :-^r- "*» iUJt» i>yK 

ai, 
7« + —+1, -i- + /, ^üi 

ax. 'oí. ‘ J ¿i-. 
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Oí, 
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0. 
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■c?+S 

5-1 

~0. 
a/:s 

while when the heliocentric system of coordinates is converted to 
fhe planetocentric system of c-ordinates at point t = t we find 

■K 

alii ,- all. 
0, •'s«+^> ; /2 «>. e>', „>■, 

\ ' /. ais; , - où. , j all. 

*- -n. ^,-¾ 7, -/, 'Ji" ,0. 
aVj/i; ()O/0 
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After excluding the constant Lagrange factors c.,, e.^, 1 and 1 
Al S S 

(s « 1.6) from these relationships, we produce the following condi¬ 
tions for conversion of the Lagrange coefficients and constant C^: 

where t * ^ 

co* «+** »In », 
•i*> = — Xj, sin * -L co* «, 

'»j ^^cos i-j-Xteslni-f ~t4*- (y( co* i + e, sin i), 

'»j ^ sin » -j- cos » -|- " ——( ~ y, sin «+e, cos «), 

'^Cf-C» - \,0.4» - A„,4* - AÄV'* - A^« = 0; 

(3.2.9) 

where t ■ èj' 

'•»“•'i»cos * — A,, sin «, 

• jt—A,, sin T-j- Afc cosí, 

AfcCOiA*, sini-j- — [(^- 

Xcosî —(ZB— 2Ç^) slni], 

Afc sinT ~ Ata cos 7-1 ^(K, - rrt slni -f 

— (Z.—Zf^cosT)] , 

A^Cf'-c® - 

+1»'. - KfO X ( Z. - zr ) ^++ 
+ > aAÿ1 -T So Ai'-f -f 

(3.2.10) 



where and 1 s 

np condi- 

f 3.2.9) 

(3.2.10) 

¿4*' — 

x ar® * ar® • 

ar* 

*.• : 
ar 

a»® 

The conditions of conversion of the Lagrange coefficients and 
constant C« (3.2.9) an<W3.2.10) allow us to determine the Lagrange 
coefficients at point in the heliocentric ecliptical system of 

coordinates, and at point tV in the planetocentric equatorial s)*tem 

of coordinates. They show that when the systcr of coordinates is 
converted at the moment of passage through the sphere of influence of 
the earth and the sphere of influence of the planet, the Lagrange 
coefficients \ am* integration constant CQ may unoergo first 

order discontinuities, while the Lagrange coefficients and \j are 

continuous. Furthermore, we should note that at points t^ and tjj , 

the values of some one of the Lagrange coefficients A and 1 
pio ino 

(m = 1,..., 6), for example A4() and is not determined and may 

take on an arbitrary value. This fact will help in the solution of 
the boundary problem. 

Furthermore, for fulfillment of the stability condition (3.2.1) 
we select the factors e^®', e|* + 1), etc. so that the coefficients 

with the variations of certain parameters are equal to zero, while 
with others they are equal to zero due to the independence of the 
variations of these parameters. 

He will then have 

_ïL. 4. ei«*—+ « 0, 
<*V/ <»‘W «LM.V 

., ai“*» j."> 
M L ..IÔI 0 1 . L ^ * -i- e‘" * _Í!- 

' 1 1 aMt 1 o.V,, e.M 

(i — ), 

(3.2.11) 

(3.2.12) 
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(3.2.14) 

the correÍpon!liÍgaí(^l^o0fwhich,,'fòllowrfPara?rr reachcs thc fundar) fi) *• Oj f U( whlch Allows from (3.2.14). Otherwise. 

In this sense, equation (3.2.141 allows the limiting values ^ . • -- V..V i mil ling va 

f™,hi — 
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6 
'„/'j - V <v/:o« -0. 

(3.2.15) 

-- ^ 
+ '-Jy* -- V e>,J\, = o. 

Í-1 
(3.2.16) 

Considering the initial conditions (3.1.5) and the fixation of 
t(), tron (3.2.15) we produce 

,n-e\ °. -=0. 'jo — 0. 

=0, , 

(^,+^+^,)-^-+^(^ ^-+,, ^+e **_U 
oun ) '»«o ™«o * du(l r 

c ~ |(i,9i + e2*i + <’j6,) « COS (ri0 — ui) + 

'0 \ 1 
^ j (1 + Í COS («0 —,..)1 . 

+ /e, £h.x- 
\ ««« flui •I’ll 

to: 
Irom this, we will have the following condition of transversality 

7- j*w|vco»(«o —) +-^-(1+ecos(«fl-,.,)) J + 

+ ^ J Vcos(u0-,.,) + -^.() + i cos(tta - «,)) J+ 

+ )-30 I ^ COS («0 —,.,) + ( 1 + c COS (tig — iu„I + -^2- + 

J?!. 
i'tfQ 

àrg_ / 

rt“0 + a ^)+'v*(V—+ r0 ^-) =0. 
rtllo / 

(3.2.17) 
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Considering (3.2.16) and the final conditions (3.1.6), we produce 

the following relationship at point t^: 

(3.2.18) 

excluding the constant Lagrange coefficients e^ from this relation¬ 

ship, we produce the corresponding conditions of transversality at the 

end point. 

Note. If an orbit around the target planet is the final condi¬ 

tion, the conditions of transversality at point t^ are as follows: 

(3.2.18N) 

Conditions of transversality (3.2.17) and (3.2.18) are the final 

necessary conditions for the maximum of the criterion of effectiveness 

I, following from stability condition (3.2.1). 

We noted above (see foimilas (3.2.5) and (3.2.6)] that the condi¬ 

tion of stability gives no unambiguous answer concerning the sign of 

the Lagrange coefficients X and ) This is caused by the fact that 



the conditions of stability give a broad class of extremes which are 
maximizing, minimizing or saddle curves. Therefore, we must have 
additional necessary conditions to be certain that functional I has 
reached its maximum value. The Weierstrass condition is such a condi¬ 
tion, and it has the following form for this problem (see appendix): 

H<n‘ (3.2.19) 

whre H corresponds to permissible control. 

Then, considering (3.2.3), we Tind the following for the control 
functions a(t), 6(5) and v(t): 

Ifl —(ua + pf. -yy)1‘'0. 

which is possible only where 

X<0. 

Thus, in order to satisfy the Weierstrass condition, Lagrange 
coefficient X must be nonpositive, so that equation (3.2.5) should be 
written in the form 

(3.2.20) 

Since there are only two permissible modes of operation of the 
power plant (p * p^^ and p * 0), in order to determine the optimal 

operating mode of the power plant we must turn to the control condition 
(see Chapter I, S 3) which in this case, following the Weierstrass con¬ 
dition (3.2.19), will correspond formally with the maximum (minimum) 
principle. With the maximum thrust mode, according to this condition, 
we should have 

“-or X'<0' (3.2.21) 

Otherwise, passive flight of the spacecraft should be realized. 

Thus, in order to satisfy the minimum principle and the control 
condition where < 0, the optimal mode or operation of the power 

plant must be the maximum thrust mode, while where > > 0, the optimal 
p ' 

mode of motion is passive flight. Switching of the power plant either 
off or on (p = p_) should be performed where X * 0. max « 



T f 

Fulfillment of the necessarv conditions (3.2.JO) and (3.2.21) 
;,llows 1,10 production of optimal control modes a(t'.p t<(t), y(t)';md 
|’(t). corresponding to attainment of the maximum varie of’I. 

determination of the condition of stability [includine the Euler- 
LaRranRe equations (3.II) and the condition of optimization of the 
main plan parameters (3.2.11)-(3.2.13). condition uf conversion of 
the agrange coefficients and quantity (3.2.9) and (3.2.10), condi- 

tions of transversality (3.2.17) and (3.2.18)), Keierstrass condition 
3.2.20) and maximum Principle (3.2.21) results in the production of 

íroh.LrSL°í f ne-C?Ty COmlitions- in this s«™*, the variational problem stated in S 1 is solved. 

5 3> Mutational /Mqorithm for Variational Method of Optimization 
ot Main Plan Parameters and Modes of Motion 

. t ,,f the solution produced in § 2 for the variational problem formu- 
< cd in ■ 1 is to be used to determine the concrete values of optimal 

main plan parameters and optimal modes of motion of the spacecraft 
we must perform numerical integration of system (3.1)-(3 il) satisfy¬ 
ing the conditions for arrival at the sphere of influence of’the 
earth and target planet (3.1.7) and (3.1.9) at points and t6, sat¬ 

isfying conditions (3.1.21) at points t(i) and satisfying the final 
conditions (3.1.6), the conditions of optimization of the main plan 
parameters (3.-.11)-(3.2.13) and the conditions for transversalitv 
(3...18) at point tk. However, the values of the main plan parameters 

M0I or Mn I ’ for example M . and _M -, u 1ni1 h.c 
P1 pi Oil’ ’ ON’ Oi ’ I.) and "oi Jro 

unknown, the argument of the lattitude of the launch point u0 has not 

been determined, the values of the Lagrange coefficients X > 
'lO***** fiO * 

^70 or S) hnve not hcen defined at point t0 and the values of the 

Lagrange coefficients A4() and have not been fixed at points f’ and 
f P1 0 
0 • 

tn concrete solution of the variational problem is reduced 
If f°Iutl°? of a m"lt'P'’int boundary problem. Numerical integration 

,,r M1' Var^10na [,r,,hl0,r 15 therefore solution of the computational 
problem of the multipoint boundary problem, formulated a> follows. 

Kc must determine values <f the main plan parameters M()J (with- 

°Ut 'W’ Mpl’ a0i ’ and •'oi* the argument of the lattitude of the 

launch point ufH 

for which the nn 

over [tn, t*) 

over [^. t^l 

over (tj1, tf1 
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launch point u0, Upranpe coefficients >1(1. >4o and C* 

for which the numerical integration of the system 

over [t0, t*| 

vt //?, V, H? 

* HT/y H?, 

K H?, >, -H?0, 

>» ^//n. >s MX Ãj 

'C? n* -o, ñi" =//^°. 

over 1^, t^| 

V, -HÎ. Ht 

* Hf, y H?. / //?, :» J1?. 

A. nt \. uf, \j //®, 

\ «U. -V, //®. \~H\ C® //¾ -0, 
»i,®‘0 //¾1 --//®'"; 

(3.Ill) 

over (tj1, tf1! 

nrt 7v=/< tv- //!' 

=//^, .7 //?', j ,n*t u //5' 

//!' /. //S' 
/*/ r 

..nt 
II !0i 

>; //^. /. //:'. 

^ //;/ o, 

13.111) 



leads to satisfaction of the following conditions: 

5»r-0, ?!'>=<), ^,-0 (0-1,..,7), (3.3.1) 

.^0=,0(/-1.«—IX (3.3.2) 

t«“0, ¿ii=0, fci=0, ¿/1=0, (3.3.3) 

ft,.—0 (o — l,...,7), (3.3.4) 

/?,=t0 (* —l,...,2« + rt»), (3.3.5) 

where n is the nianber of stages 
ne is the number of stages with ERM, 
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(3.3.1) 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 
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ulicrc Lagrange coefficient ^ is determined from the expression of 

nsCfonoÍs!nteRral WhÍCh replaCeS ^‘"-Laßranse equation (3.2.21 

'> — -r0< f aniP 
<>0/ l i> ,r+ -V^+QI. 

~ + -'ll'* + Ajl/, : CSJ. 

aj [ V' -*£r (** • * f >-2?/ -t- + x>", -}- 

+ V* 4-Off^) • 

pun ÏÏZiZÏÛ* »V’ï1"1«“-" °f f'c »=.r 
from (3.2.11)-(3.2 13) constant Lagrange coefficients 

In the following we will consider that equation (3 3 n i he satisfied n. c«<udt ion can always 
, determining the corresponding values of M when the 

** “ 11 * *  *»». value, of «... or ,, . fixcJ 8nJ „pri.sslng th, scvc.n'“nln„wn quan 
L'l pi ■ cy - ----.. UMIMIUWI! quan- 

«i^uÄ for exa.pl. 
'60 anc uo* ^lll,ation (3.3.2) will 

(cmõmVíhV^r fr™â?ín,jhr “r,s °f «n-f«'« 
dit ion, fulfilled ^ în?'’"’ I" ^ ,hp «-kt of co„. 
to the laeraneí cóefíiè "''«¡ve 
f "z i t i ^ i * ^ this connect ion, we divide sv'stoi^ 
3.1.1) and equations (3.3 51 bv one of the lograre coefficient 
i n * • • • * ^. tor examnl#» K\» \ -ri  ... 10’ 

' , V IV V nt ' «ßranpo coefficients 
’ o«' r exan,rle h-v ^io' ‘ 71,0,1 ■ excluding Lagrange coeffi- 

cent )10 fron (3.3.5), we produce (2n ♦ nf - 1) conditions for opti- 

iniïîarPoÎnÎhe ^ parametcrs and six independent unknowns at the 



Kitt i tude^arpumonr u0 and l.agranRo coefficients , , "l[ 
\0 and r0 for which the numerical intcí:rution of system ( s'.'í 11 leads 

to satisfaction of conditions (3.3.3)-(3.3.5), where y * 2n ♦ ne - 1. 

We represent 

• *• P 

P> - W. 

P 

(’=*1.7), 

(*"7 f-x*a7, • • • . : «•’-I fi), 

(/ 2/1 + /iflT 7), />, - .¾ l> ^+1 ). 

(,n'-r n. p, (-t /« d. 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

i'- >ng it on a computer, we can calculate main plan param^ers a X 
..«a • Oi ’ kJ 

X 
60. 

ç —... ,..un |>ai nineiers 

and W0., 1 attitude argument un and Lagrange coefficients 

A40- X40 and fí for which the solution of system (3.Ill) leads to zero 
values of functionals (3.3.6)-(3.3.9). 

which'r^Âaiïd0 rr:thm ofth°mnitir,oint “r>' ^bi- 

(.ïï.9frtions - ----- - ^1.:^,¾ ïï 

root linSihe0seise,ofeßiliÖMliT.a%SIhP funCtions ir win b‘‘ "«re cor- 
possihle confusion in the realization ofSflIUti0n andrfre°d0n fr°m any 
select relationships such as * ’e °RK' of calculation) to 

•T’-/*-/-0, 

•jÇ-it~> — o, 

/-0. 

1 V H ''7 thl ffi"c<l time of arrival of the spacecraft at the 

t1’1 is th0 ‘J f?n â"cncc of th0 oar‘h and of the target planet 
k with fixed'" tV'^t t0rnin;,,i('n of ‘»'c Hii’ht. where 

I1 ’ K k ’ 
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Of course, in this case conversion of the coordinates will occur 
not at the moment of arrival of the spacecraft at the sphere of 
influence of the Earth and at the sphere of influence of the target 
olanet, hut rather where t ■ t^ and t * t^ respectively. However, 

as a result of the solution the transition from one system of coordi¬ 
nates to the othei will occur only at the sphere of influence. 

Let us compose, following the mathematical theory of the algo¬ 
rithm, the conjugate system, the equations of which will be conjugate 
to the equations in variations (3.Ill) as well, in the form 

(3.IV) 

where 

over 

over 
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occur 

rget 

►r, 

oordi- 

over [tj\ t[l) 

\ß^=Vjgi Vg\ X". y: z\ "^¡i* 

.'11» =^1'.'11»- 

1ro- 
iuRate According to the appendix, the initial conditions for.the conju- 

Rate system (3. IV) at moments i|i9 » 0 ( j * 1,..., 3) and V »1 * - 0 
,. 3 V 
U « 1,..., n - 1) can he represented as follows: 

3.IV) 

r ‘»A, 
(/“I, • • • , 14; OaaJ, , , ., 7), 

vji;=o (/-i. «). 

• 

^ “ -r 
(/=1,. . ., /i*). 

ill- 
#»/ 

* 
(>“1.6,8.14) 

v(0 (»=»8.2«+«»-j-6) 

6, -=¾¾_ft_ I 

^ •> w, <o » 

. '«¡-¿Sri • "’ll. Lio ‘'’V -to Tia 

vii > — -2ft- ! viO—-ft-1 
^ L.o ,M **i1 * 

<n 

v«'»^ ift_ft- • ito 
> * (O 

(3.3.10) 

(3.3.11) 

-3ft?- 



(3.3.12) 

U-l.14; / 1~K r 9): 
‘ ',0 ¡,0 

< “OI 

«n 
'ai>i oV: 

¡t» =r^«- 
^ ^5f. 

(y»1.14; m r-¡l,r + 2); 

O V«1''» V®'" 
!»« í>m 5«m • '..m > 4«» ’ 

(3.3.13) 

The properties of the conjugate equations allow us to conpose the 
following system of linear equations: " 

where 

+(-¾ 5^-+^)^+(-¾ 52:+^+ 
+ ^4^+^4,^+ ^ '40 \-P¿K'+pfiff rP¿t?+ 

+ ^ ^0, + V v<¿¡ w¿ -L V + 
l-I * • /-1 

+v 
4J ÒM 

h.M *P. 

j ai 
0/ I 8;H 

>•4 
(3.3.14) 

(a = l.2/1 + ^+10), 

iï>4- - »10, +Ñno, — »i«», . 
V'tu e'4C "/40 

:*s ^ h® ,>T' - + ft?. . _ »0 .€l 
*4> ‘«O' -.4,. T .e ,Ml0 . 4^40 ' V |Q 1 ('A4/) 

”- 

! — _ í»1' u /i/i,' u _ 1 ..1, + 111),. -11 _l vi. - __ 
(«/ 30, V /0 1 /, / • 10, ':0 '.O, 20 i II) < 

yi 
•'4' " ^4, , - (7tros s - //^ ,in i). 

?/ -+ '4.« + 'y+?.. 

* ;r 

V'j 
'fl 
A 

+ + 

+ s 

Ap. 

C ( are nrhitrarvl 

In system ( 

using the cqunti1 

system (3.3.14) 

Integrat ion 
fi liment at poin' 

anil discontinu it 

wrhere t 

0® ,,0, 

Ô® ¡4 • in v! 

»® » 

,.-,I 
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?1 (^ - ^/) C0S‘J. 

-x^v» f (^.-^^+ 

+^'ii i7«^. 

c;t are arbitrary weight coeffiiients. 

In system (3.3.14) we must exclude S't or .‘M . and 6M„...5M 
(0) in * I11 0'* 

us,nß tne equations dnj * 0 and d^J ' = 0. After this, *e can solve 

system (3.3.14) for 6tl*. 4 >30.6(^ and 4a(M, Ä 
‘v.r 

5K ,e 
ni* 

Integration of yonjygate system (I\) becomes possible due to ful¬ 
fillment at points t1^, and t*1' of the conditions of conversion 

and discontinuity of the conjugate coefficients in the form: 

where t 

»^sinc. It® *M,ros» — I. 

ft-4 »,:o. -Ä. im. 4m «0* 

Ka ”30» KJ9 » ”40’ 

riXi (*Ak 140. 
oAft 

1)3 
5k. »O.COS! =• »W. sin t -• »r0, 

or. ,Mt TiT“®140' 

»® 
• N » ^„(•osT-»W! sinTi ¡>u-o.-~--1-Ó,*, -^-»„o. 

sin (, 

¿IK 
fir, ’ 

~L' 
«2, ' 

*» o.. Uso. O^.^íoo.CüS i-f-d¡nBlsiiii - 

- »MO. 
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•^“••ioo.coíT—¡i¡o,$!n 7—i,«o, 
ÖA* 

dA. 

*tL“iri»«co«7+‘iIÄ1*in7_'|l-l Jîl, 
<Aj, 

•S5«. =-¥'»- ^7- »in7- »l4(h ^Lt 8©^^, 

'ti0 “'1Ü. x2i'»=-^>, 

where t ■ t. 

•Î5.1 

•2.’ 

»2.> 

•2.’ 

•2.' 

•8.. 
8© . IJ«. 

8« = 

r'?.,= 

“0i- ®iit = •§, coi i — 8^ rin », »2, »8^ COM+ 

-8g,cos.-8© sin,+ + 
*9u 

*8§1 cos. + 8g,sin,+ 8^,^1-+ ^ ^tL, 

■°8.. ,Ä,=Ä2.-*15«.^-. ' 
«*!■ 

^S-Cosi-Og^sin., ^0,. = 1^008.+8g,«in., 

= ®8o. C°S* — sin,— •t.5-. 

“ fttSo. c« « + ‘IL sin « - 8®, . 8^ « 8®,, 

"%• '2,-sg,. 

!'8.. s2. = s^.: 

where t * t ii) 

8j««»jui) (y_,.fi8.I4K 

ft}« = +0 + •>( tV »n _ 

- ^)+( >'7i+"- V'ÜO+V"* »hii* *>+ 

> vj;.ni _JL + _ . tuo 
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It is now possible, usinR initial conditions (3.3.10)-(3.3.13) 
and the conditions of transformation and discontinuity of the conju¬ 
gate coefficients, to perform integration of system (3.IV) together 
with (3.Ill) from t^ to t^. In order to determine the coefficients 

in the system of linear equations (3.3.14), this must he performed 
(2n ♦ n ♦ 10) times. 

Further construction of the computational procedure should be 
organized as in S 4 of Chanter I. 
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APPENDIX. MATHEMATICAL THEORY OF VARIATIONAL METHOD OF 
OPTIMAL PLANNING OF AN OBJECT 

5 I. Definitions and Statement of Problem of Optimal Planning of Object 

The object of study is the process of selection of the controlled 
motion of an object and its structural state, represented as planniny 
o! the object. Furthermore, we formulate certain definitions and 
present a mathematical statement of the problem of planning of an 

object' 1endÍnS tU th° variational problem of optimal planning of the 

Suppose there are real vector spaces Y^, X^, 1^' and nj respectively 

with elements y = (y,. y^, x ^ (x,.xj , u = u,), a * 

*al. ar^- Let us take a sector on the time axis [tp, t^] durinp 

which we will study the motion of the object as set T, where t^T. 

The components of the vectors y and x will be referred to as the 
Phase coordinates of the object. Therefore, spaces Y and X are called 

n m 
phase spaces. The phase coordinates determine a nhase point or phase 
state of the object and thereby fully characterize the position of the 
object in the phase space. The motion of the object is fixed in space 
i » 1 n and T * Xm< It will be defined if for each t fT we define 

y = Y ft) in Yn or x = xft) in Xm. The curve described by the phase 

point as it moves is referred to as the phase trajectory of the motion 
of the object heinp studied. In the following, the components of 
vector (unction y(t) y ft),..., yn(t) and vector function x(t) x ft),..., 

he ca*)t>l< Phase variables. 

Vectors u and a are called the controlling action and the param¬ 
eter. Usine vector u we can represent the controlling action or the 
motion of the object. Using parameter a we can influence the structural 



st;ite and n.ïturf of notion of the object. 

In spaces Y , X , n’,’ and J wo fix areas R, (', 1' and X respectively 
n m 1 r 1 

Generally sneakinp, R, f, II pad À are closed areas, since in applied 
problems the course of the phase trajectories in the corresponding 
phase spaces can be limited to a definite area and the values of con¬ 
trol and parameters of the object have certain limits. However, 
considering the boundaries of closed area P and C’ in spaces Y^ and 

smooth and piecewise smooth hypersurfaces, and areas II and ' compact, 
without reducing generality of the problem, we can study the motion of 
an object in open areas R, (’, H and A of spaces Y^, X^, and T‘r 

respectively. However, in this latter case additional couplings appear 
[24, YO, ,Y.Y|, limiting the motion of the object. Keeping this note in 
mind, we will analyze the motion and structural state of an object in 
open areas B, f, 1' and A of spaces Y^, X^, ny and í¡£ respectively. 

Function u = u(t), defined in T and taking on its value in the 
area of control II will be referred to as the control or control func¬ 
tion. Each control 

u(t) (u,(t).ujt)) 

is a vector function fixed in T and the values of which lie in the area 
of control Each control u(t) defined in T and taking on values in 
II will be called a permissible control if it relates to the class of 
piecewise continuous functions satisfying the following condition for 
definition at points of discontinuity 

u(t) -u(t—0), 

and is continuous at points on the sector [t^, t^]. 

Function aft), defined in set T and taking on values in A, takes 
on the same value a for all t from T, i. e. it is constant in T. 
Therefore, function aft) is defined by the following functional relation 
ship aft) = a. This is the formal distinction of a parameter from a 
phase variable. Any parameter defined in T as a constant function and 
taking on values in A will be called a permissible parameter. A per¬ 
missible parameter determines the structural state of the object. 

If in sets T * B x|| and T * C > I! we define the vector functions 
yft), uft) an>i xft), u(t) respectively, where t fT and y ffi, xfc and 
U fII, each ordered pair (yft), uft)) and (xft), uft)) will be called a 



mode of motion of the object, meaning that a mode of motion of an 
object consists of control u(t) and two pieces of the phase trajectory 
y(t) and x(t). The set of pairs (y(t), u(t)) (x(t), u(t)) make up 
subset M which is the set of modes of motion. 

Suppose there is a set P = M * A such that p » (z(t), a) f P and 
z = (y(t), u(t)) f M and z = (x(t), u(t)) f M and a fA. The process 
of selection of an element p ■ (z, a), pfP corresponding to the fixed 
requirements and limitations is called planning of the object. This 
is the mathematical definition of the essence of planning. In other 
words, planning of an object refers to the process of selection of 
its mode of motion and structural state, corresponding to fixed require¬ 
ments and limitations. 

Let us now explain the requirements and limitations on the mode 
of motion and structural state of the object which may be encountered 
in planning of an object. 

The hypersurface (manifold) fixed in T * B * A by the equations 

V, (^). #,(*;). «)*o (¢.-(¾.*j), 
n<Ji-f-r+l), (1.1) 

is distinguished in advance and is smooth with respect to its elements 
tq’ ^q* ^q am* a> An object reaching this hyperplane in its movement 
can change its structural state and the number of control actions. The 
change in the properties of the object is planned in advance. There¬ 
fore, it is assumed that sets U and A have two subsets UjCII, I^CU and 

A.CA, A,CA with elements u^ « (u,,..., u ..., u ), u^ * (u . 
1 ¿ ill 1 ?21 5 s * 

.... U,) and a1 . ^.an.aj. aU) » (am. , ,.ar) 

respectively, where rt and Aj f) cannot be calculated. Thus, 

hypersurface subdivides subset Py*T *B *U * AciP into two 

subsets: P^ * T * B * U. * A, c P and P^2) = T * B * II- * A„ " P y llyy 22 y. 

Area P is divided into two areas P »T*B*U*A and P * 
y » 

T * C » U X A by the smooth hypersurface (manifold) S fixed in P by 
W 

the equation 



orv 

nd 
s 
xed 
s 
r 

uire- 

e 
ed 

tions 

1) 

nts 
nt 

The 
e- 

and 

s' ♦ 1, 

P 
y- 

by 

The phase trajectory of an object should intersect hypersurfacc 
Sff. After the object "passes through" hypersurface it enters 

area P with its new system of phase coordinates in space X • Conver- 

sion of coordinates of phase space to coordinates of phase space 

is performed according to the equations 

Qj(/r. yiv, xj.)-0 (j-1,.... /n; i-1. •••. «)• (1.3) 

Suppose set P is such that with all t fT we have: 

0Ver ty tqi 

¿=”r(y. «<»»X 

¿‘»-O. 
î(y, ««» a<'»)=0; 

WT [tg, t~1 

’y=f(y,u™, a,:,X 

a=.0, 

y (y. 

over ft*, tk] 

jf---y(x, «<»», «<*»), 

¿=0, 
C(x, «(*», a<«)=0, 

where 

?•-“(?!.t.v. .d<r, 

/M/i./A Y«(Yi.Y») *</—*': 

.rJ. C=»(C.C.î 

The real scalar functions ¢. and f. (i * 1,..., n), g. (j * 1,..., 

m) are defined and continuous together with the partial derivatives with 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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respect to their arguments to the order necessnrv for further contri¬ 
bution« respectively in p(-) and P.. The phase variables y.(t) 

in the intervals [t,,. t']', [t^‘t‘] and x.(l) at [t*. tj are assumed 

continuous and piecewise differentiable respectively on the strencth 
of (1.4), (1.7) and (1.10). 

The motion of an object is described in the phase space V by 

equations (1.4), (1.7), and in phase space X hy equation (1.10). 

Introduction of the dependences (1.6), (1.9) and (1.12) involves 
a transition from the closed area of permissible control to the open 
area of permissible ontrol (I and with certain additional conditions 
[28], of permissih’. v .lues of phase variables of aren P. '"he vector 
functions f and • a? » defined and cpntinuous together with their 
partial derivatives at 1 and P^-1 respectively, while vector func¬ 

tion ç is defined and continuous at P . 
X 

The introduction of the dependences 

. —0 a,^Al 
(/=1. . . . , m; i=l.e<m\ 

r:* (Gm' ♦ i* • • ,,^,) = 0 .^2 

(X««'--!.r * = 1.f + e^r) 
(1.13) 

allows us to look upon the permissible area of parameters A as open. 

It is assumed that vector functions •' and y, ç and ß, satisfy 

all requirements of the theorem for existence of an implicit function. 

Suppose S and S, are smooth manifolds fixed in snaces Y and X 
u K 1 n m 

respectively by the equations 

'rtl/o. i/o. —0 (¾=(^o|, . . . ]*,*): 0<_/i-j-r —e —1), 

^(/..x,)=0 (-4,=11,,.-4.,): d <« -i-1 ). 
(1.14) 

(1.15) 

Acceptance of manifolds S^, , and as smooth allows us to 

state that the ranks of the matrices 

!do“ djf ♦ da if (1.16) 

are o, e, m and 

Suppose fur 
with its partial 

Functiona1 
feet ion or the c 
J, the better thi 
capahilitios of - 

Thus, each < 
projections y(t) 
equations (1.4)-( 
(1.14) and (1.15 

conditions (1.3) 
defining the valu 
element p. We ca 
of an object Rive 
cess of determina 
p P and ; (t) = ( 
unambiguously def 

In other wor 
the object must s 

The initial 
object are determ 
while the final p 
(1.15) ; the mot i o 
hypersurface (1.2 

space X , the con m 
shins (1.3); the 
x(t), permissible 
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•»V \<>rlf ¿y." 

|> <** ^' ii i|^. ^ n 
Wo <>!/,(, Ai<|1 I ’ j¡ ,)/„ ¿jJI 

I I .17j 

(1.18) 

are n. <•, m and ‘ , i respectively. 

Suppose further functional .1 is defined and continuous together 
with its partial derivatives over P(t|J, such that 

J~J{a. xK.tH). (1-19) 

Functional J must be analyzed as the criterion of planning per¬ 
fection or the criterion of effectiveness of the object: the greater 
d, the better the planning of the ohiect and the more fully the 
capabilities of the object arc therefore used. 

Thus, each element p = (zft), a) pip should he such that its 
Projections y(t) .-B. x(t) (c, uft) c U and a f A are interrelated bv 
equations (1.4)-(1.12) and satisfy the relationships (1.1) and (1.2), 
(1.14) and (1.15), defining the manifolds S and S^, S0 and Sk> and 

conditions (1.3) and (1.13). Any such element p, p£p unambiguously 
defining the value of functional J will be referred to as permissible 
element p. We can now clarify the mathematical definition of planning 
of an object given earlier: planning of an object refers to the pro¬ 
cess of determination of the permissible element p = (z(t), a) where 
P P and z(t) = (y(t), uft)) .. M and z(t) = (x(t), u(t)) 7 M and a ,-A, 
unambiguously defining the value of functional J. 

In other words, each mode of motion and each structural state of 
the object must satisfy the following requirements. 

The initial and intermediate phase and structural states of the 
object are determined by equations (1.14), (1.13) and (1.1) respectively, 
while the final phase state of the object is determined by equation 
(1.15) ; the motion of the object must be such that the object reaches 
hypersurface (1.2) and passes from phase space Vn to the new phase 

space Xm, the conversion of coordinates occurring according to relation¬ 

ships (1.3); the phase trajectory of motion of the object yft) and 
x(t), permissible control u(t) and permissible parameter a must be 
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interrelated by the equations (1.4)-(1.12). Any mode of motion and 
any structural state of the object satisfying these conditions and 
unambiguously determining the criterion of effectiveness of the 
object J will be referred to as a permissible mode of motion and per¬ 
missible structural state of the object. These notes and the mathe¬ 
matical definition of planning of an object allow us to state that 
planning of an object is the process of determination of the per¬ 
missible mode of motion and permissible structural state of the object 
unambiguously defining the criterion of effectiveness of the object J. 

There is a set of permissible elements p * (z(t), a), where 
P 6 P» z(t) i M and a c each of which unambiguously defines func¬ 
tional J in Pft^). 

The process of determination of the permissible element p, p£P, 
for which functional J reaches its maximum value in Pit^) will be 

referred to as optimal planning of an object. Permissible element 
pfP for which functional J reaches its greatest possible value in 
P(t.) be called the optimal element p , while its projections 
(ï°Tt)» x°(t)) £ B *C will be called the optimal phase trajectory, 
u°(t) the optimal control and a® £ A the optimal parameter or 
optimal structural state of the object. 

In other words, optimal planning means the process of determi¬ 
nation of a permissible mode of motion and permissible structural 
state of the object for which the criterion of effectiveness of the 
object J reaches its greatest possible value. 

These definitions reveal the essence of optimal planning of an 
object. Optimal planning is a process consisting of investigation of 
plans for the object and determination of the plan for which the cri¬ 
terion of plan improvement J reaches its greatest possible value. 

These definitions of permissible element p, p^P and therefore 
of the permissible mode of motion and permissible structural state 
of the object, within the framework of the requirements and limita¬ 
tions formulated, are rather broad. Therefore, these definitions of 
planning and optimal planning of an object are rather broad. It is 
possible in principle, using some one of the known methods of construc¬ 
tion of optimal processes, to construct a rather general mathematical 
theory of optimal planning on the basis of these definitions. In this 
work, wc have not set ourselves the task of selecting an optimal method 
for construction of optimal processes; this is a significant independent 
problem requiring independent analysis. The mathematical theory of 
optimal planning of an object analyzed in this work is based on 
indirect methods of variational calculus, including methods of classi¬ 
cal variational calculus and the new method of the mathematical theory 



of optimal processes -- the L. S. Pontryagin maximum principle. In 
this sense, the mathematical theory of optimal planning which we 
present is a mathematical theory of variational methods of optimal 
planning of an object. The development of the mathematical theory 
of variational methods "f optimal planning of an object has required 
a certain modification of the theoretical basis of known indirect 
methods of variational calculus. Furthermore, the indirect methods 
ot \ariational calculus generally lead to a multipoint boundary pro¬ 
blem. Therefore, the mathematical theory of variational methods of 
optimal planning of an object can be considered complete only when it 
also includes theoretical development of a definite method of solution 
of the multipoint boundary problem. The mathematical theory of vari¬ 
ational methods of optimal planning analyzed in this work combines 
the theory of indirect methods of variational calculus and the theory 
of a definite method of solution of the multipoint boundary problem 
and thereby attains logical completeness. 

For convenience in our further presentation, we shall now pre¬ 
sent definitions of optimal planning of an object in terms convenient 
for use of the methods of variational calculus. It is stated that 
curve Cinann*m*r* 1-dinensional space lies in the area R * 
T * B *C * A and is permissible if phase trajectory (y(t), x(t)), 
the structural state of the object a and the corresponding control 
u(t) arc permissible. We represent by D the class of permissible 
curves C. Then, the definition of optimal planning of an object of 
equivalent form is formulated as follows: optimal planning of an 
object means determination of curve C in class D, considering the 
numerical realization, on which J(C) attains its maximum possible 
value. 

This variational problem of optimal planning of an object differs 
quite a bit from the variational problems of classical variational 
calculus such as the problem of Mayer and Boltz and from the known 
problems of the mathematical theory of optimal processes using the 
L. S. Pontryagin maximum principle. For example, the functional 
depends not only on the phase coordinates of the final point, but 
also on the parameters; the right portions of the coupling equations 
(1.4), (1.7) and (1.10), which undergo first order discontinuities, 
are functions not only of the phase variables, Ljt also of control -- 
functions having no derivatives in the coupling equations, and of the 
parameters; the phase variables undergo first order discontinuities at 
manifolds S and S , fixed by equations (1.1) and (1.2). The control 

T TT 

functions which undergo a finite number of first order discontinuities 
over the interval tQ ^ t < t^ and the parameters are assumed fixed in 

closed areas, etc. 
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«-'•'il princinl-s of cl isvini • , 111 ho based on the theorcti- 

'Rin maximum principle', most ful Iv^xnressed"!^!^1!'1 Pontr-v- 
use will also he made of [îo Sï xii ,. . . f ^ '1^, I*-8!, although 
provide a theoretical bas s for ih 1' C°nsiderin« works, we 
planning of an object which r ^ ,UC0^ar-v conditions of optimal 

Proof is further given íír ïh S'JffÍCÍenr in combination, 
boundary problem one necul iari^ f* i° ''nlut'r)n the multipoint 

multipoint boundârvTrühiëm s 'Lk íS.that S0,uti(in * tb< 
order necessary conditions. C InC< Wltl sat'sfaction of the second 

planning of an oh^ect^inchideflC*vnriar‘onal methods of optimal 

necessary and sulh^erlt Stls f"r tht‘ 

of «.i, .h«;“ X ft ,S°u";rrpr<>M™- Th'' 
of optimiil plannine allowinp ns Eorjthmi:c t,lc variational methods 

Hon of pJtic^fjr'S fptfmTfi^ff’! ^ »«'<- 

VARIATIONAL METHOD 

5 2. Variations and Equations in Variations 

The corner points of curve f will to. ■ *. 

discontinuities of functions vft) x(t) um ënH°ti! ^*1* °rder of a. • m* MtJ. u(t) and the point of change 

curved”" the f°"<’"ine ""oooontacf conditions arc correct on 

nr 7 K Jtft 01,0 
"Il ' o r 

(/1, /-1. . . ., m). 

-I 
Ot. 

+ 2± i- , ^r 

à/o y»/0- 

condition if th^hvDersurfarê^6 0f u1jS^ D satisfies. the noncontact 

hypersurface defined in arca R hv^th ° ir¡.arc,‘ R !l> lts Cnc's and the 
no common tangení dirictîons. ' C°ndltlons the ends have 



Here and in the followin«, indices encountered twice will he added, 

The set 

b), Xi(t. b), ut(t. A). an(b) [/„(*)</</,(*); |A|<t) 

.. .* -1, . . . .r) 
(2.1) 

is such that y.U, b) in Py(t) and xj(t, b) tn Px(t) have the deriva- 

tlVeS 'i11’ b)’ Xjit’ b) belween the corner points, and these deriva- 

Uves and functions yb), tq(b), tv(b), t^b). y.ft, b), x.(t, b), 

l'k * b)’ anfb) have continuous derivatives between the corner points 

dèfined^hy11he°inequaHtÍes In Îïe S^cketV^Th?' °ftP0ÍntS (t* h)- 

t t ', where 

‘'<'oV»<r, 

ne™*- 

The differentials of set (2.1) can he represented as 

dt0-1„db, dt'-=tqbdb, dt9~tvbdh> dtt bdb, 

df)i — y i dt -f ly, dh, dx, -Xjdt-Y f‘*j db, 

da la „db, 

di y i - ll.d-t + y,dt¡ 4- 2ly, db dt -f Vy, db\ 

p'x, -x,dy +Xjdt*+2?.}cjJbdt 'yVxjdb*. 

(2.2) 

Any pernissible set has differentials placed 
equations of (2.2). It may not have J-y. and d'x 

í^ând r thiS 5et d0es not include tht> requireme 
- i j • 

tne first seven 
since the defi- 

for existence of 



The variations of a set along curve E refer to the quantities 

«'o-'o»«». V='«*(0). *.=',.(0). 

tog-UkbU. 0). t>am-a„t(0). 

It follows from the properties of set (2.1) that functions iy.(t), 

¿u^(t), 6an have the same properties of continuity over the 

intervals 

4>(0)</</7(0). /-(0)</</7(0) h /;(0)</</.(0). 

corresponding to curve E as the functions y.(t), x.(t), u.(t) and a . 
i _ * J K n 
defining permissible curves. The set of quantities it„, 6t . 5t , 6t. . 

0’ q* v’ k* 
äuk, 6an, having these properties, is referred to as the 

permissible set of variations along E. 

Since all curves of the permissible set satisfy equations (1.4)- 
(1.12), variations 6)’^» óa^ along curve E of the set cor¬ 

responding to the value of the parameter b = b. satisfy the following 
linear system of equations: u 

over_JVji 

<M, • ‘ a-. ' ■«* da, 
(^-MU ¢=1,. ., 

/=1. 
s; 

m). 

8¿,=0, 
K, , , ‘ dL dl 

..d); 

over ft , t ] 
1 q vJ 

(2.4) 

(2.5) 

(2.6) 



I 

3) 

4}- 

ing 

I 
I 
I 
,) 

dv, . 
îâ.r^O, 

ÍV# ». . . 
0--=1. .A) 

(2.8) 

(2.9) 

over 1%* tfcJ 

»•_ , àg, dfi 
ftXjzs--^.ty-i--2(1,,- —JUr //-.1 mv 

cixy ou p p ' oat 1 1,1.. 

K-O. 

*«, ^"'«7 ^ “¿Tîa* ’° (v=l. • ,K). 

(2.10) 

(2.11) 

(2.12) 

Here the arguments in the derivatives are functions y^ft, bQ), 

UqO* V am^h0^’ b(P* ax^b0^’ xjft* bo^’ defininfi curve E. 

Linear equation system (2.4)-(2.12) is referred to as the system 
of equations in variations along E. The coefficients of these equa¬ 
tions are fully defined by curve E, regardless of the set containing it. 

Since the curves of the permissible set satisfy equations (1.1)- 
(1.3) and (1.13)-(1.15), the variations of the set along E satisfy 
the equations 

r _/*** . • ¿M,, . tom 
(*. ' y"àvJ 

=o 0,r ‘ C v OXjJ v rit/,, Oxlf " 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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B t r> *»S-, 

(2.18) 

--Í? ~°T\;'ïlhl IT" "T°i'T' - directly extended 
e„ .. ~ .. i ne results produc» 
to the case of set (2.1), when h = {b ,... hi 

1 ’ P 

5 3. Inclusion Lemma 

Suppose permissible curve F. is fixed citiec..» 
U.12) and conditions (1.1)-(1.2) and fl’lS) n 'i c?K ei,“at*ons U-4)- 
«her such curves, the pro!;,;, es'fe 1 ^ .'f -° 
we must use the followinß lemma. trivial. Therefore, 

and ¿rV; «f.Tl”Íbl'{r"LE (1.4)-(1.,2) 
9 ^ V k’ -i* j* and i5an is the permissible set 

of variations satisfying the variational equations f’ 41 r? nï r 
then there is a permissible single-paramet2ï sèî (2 Í) • 0n E* curve fc with b = n r »meter set (2.1) containing 

n.12), such that :'t 6t 4t°f Æt^ Sf.isf-^in« eq"ations (1.2)- 
, . .. 0* Ätq* 5V 5tk* ^(t), 6x.(t), 6a are 
variations of the set along E. ■ n 

Fi~vu a,=a® (y««-|-</-|-1, . 

G,.=®„ ai=aJ (a=/i4-A-f l, . 

(?=i/n + *-f 1,. . 

• •n +/), 

. n+l). 

(3.1) 

(3.2) 

(3.3) 

The functions F (v u -> i r f.. u. 
T i* q’ 1 ’ a • 1’ Up* ax^’ ^ß^xj> un> O between 

ofetir^ of'elements f^T T'lV'ZT”* ^1° VÍCÍnÍt^ * y,, Xj , an), belonging to curve E. The 

functional determinant of the system of functions f , F , Y , G , ; , 

f»»mht[onsCvMí).Vvr!í'Í>le,í! r!S)d°!! V \™l*h E. Substituting tiie functions v.(t), x (t) u (h -ind lO" j’l'  '’uosmurinf 
1 ’ jlT;> an‘, dn> determining curve F, into 

equations (1.4)-(1.12) and M 11 rt ti ^ ■ 
VV- a"‘l =,. correspondine to cLJr tk?" th° Actions 

• - wi- can uetermine the functions 
zg. corresponding to curve E. They will be continuous »every¬ 

where with the 
the systems of 
(2.10)-(2.12) i 

The syst» 
detines functi 

E and functior 

iw (t) and 6Z 

corresponding 
theorem of im| 
(112), (3.3) 

ever [t 
0’ 

over fy g 

over 
ftv* V 
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where with the exception of the corner points of 
the systems of variational equations (2.4)-(2.6), 
(2.10)-(2.121 are supplemented by the following 

curve H. Furthermore, 
(2.7)-(2.91 and 

variational equations: 

,)Fi . 'tf7, 

ÏT*»' ^ 

dH, 

dx, 

'■U, -’‘Ur Oil, p 

fiai 

(HJ 

oa 

fr • , "r*i . 

- ïdj'-Zw, 
i 
dH, 

¡tu. da. 
'.g.. 

(3.4) 

(3.5) 

(3.6) 

The system of variational equations (2.4)-(2 12) and (¾ 4) ft m 
defines functions 5v (t) fiw ft) and fti Li (4.4)-(3.6) 

y11 ' * ‘,n ô‘‘íí f ’ corresP°nding to curve 
functions >.(t), -Sx^d), vSUj.ft) and 6an. Functions 6v (t), 

Sw^ft) and are continuous everywhere except for values of t 

corresponding to the corner points of curve F. Accord irr to the 
heorem of implicit control functions (1.6), (3.1, or (19), (32) or 
-1-), (3.3) can be solved for u,., and therefore we produce: 

over V ‘„1 

Ut ?/ ((. y¡, 

¿1—0, 

=/^(^ y„ fj, A?): 

over [t+, t'l 

ij,. aj). 

¿,=0. 

"p =8/,«. y i- w.. aj): 

over JV tki 

•f/ =?/('. Jfy. a?)' 

at --0, 

«P 'pV'Xi' -îj. aj). 

(3.7) 

(3.8) 

(3.9) 
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where the functions 8^, , ^ ^ have continuous partial 

derivatives between the comer points in the area of the set of 
values (t, y,, x^, w^, z^, a®) of curve E, since the functions 

♦j» ftt> ' . f»a and g^, Cv an-1 Hg have continuous partial 

derivativ -r'- .ir points. 

Suppose t^^ is the first value of variable t following t^, 

corresponding to a comer point of curve E. Súpose further Ej is 

another curve E corresponding to the interval (t0, t(1^). Functions 

v^ and iv^ , if analyzed only in the interval (t0, t^), can be 

arbitrarily continued so that they remain continuous over a slightly 
greater interval. Then the right portions in equations 

h, V,(0 +Mo,(/). «•), (3.10) 

B« "Z, (/. ft. f, (0 + Mo, (0, aJ) ( 3.11 ) 

are continuous with respect to t, y^, aj, b and have continuous par¬ 

tial derivatives with respect to variables y., a^, b in th" vicinity 

of the values (t, y., aj, b = 0) corresponding to arc Ej. It follows 

from the theorem of existence for differential equations that equa¬ 
tions (3.10) have the solution 

ft / (/. /e. ft#. à), 
and therefore 

^#^/^(/. /o* ^)- 

Functions Y., Ÿ. are continuous and have continuous partial 
derivatives with respect to variables y.0, a^, b in the area of the 

set of points (t, t0, y.0, a^, b), corresnonding to arc Fj. The func¬ 

tions 

ft y i (/. /'.. y¡ (/o' b'-y, (/«). r Mrt^l ij, (/, b). 



then determine the elementary set, the curves of which satisfy equa¬ 
tions (1.4)-(1.6) in the interval containing interval (t^, t^*)). 

The functions y.d, h), iyt, b) and 3,(6) from (3.12) where t = 

t0 take on the following initial values: 

Vi ('o. - Hi Uo) + Vo). 

•fV. *>=--«,(/,)-I M«, (/,), 
a,=a* + Ma,t 

and consequently their variations y.b(t, 0), Uqb(t, 0), alb(0) along 

E where t ■ t0 have the initial values «y^tj,), «uq(t0), 6a,. Further, 

functions (3.12) satisfy equations (3.10), (3.11) and therefore also 
equations 

y, «,(/)+¢^,(/).01+^,). 

¿,-0. 
i.(y,(/)+My((/). «,(/)+Wi«,(/))=0, 

Thus, derivatives yib(t. 0), uqb(t, 0), a]b(0) satisfy equations 

(2.4)-(2.6), (3.4)-(3.6) on E, and should he respectively identical 

with variations óy^t), 6uq(t), 6a,, since these variations make un 
the unique solution of equations (2.4)-(2.6), (3.4)-(3.6) with the 
initial values of ^(1()).^,(/,,), 6a,. Consequently, an elementary 

set is defined, fixed over interval (t0> tn)), the curves of which 

satisfy equations (1.4)-(1.6), and the variations of this set along 
r, correspond to the fixed functions 6y,(t), 6u (t), 6a,. 

Continning 
can produce the 
requirements of 
tion of the new 

this process of construction of elementary sets, we 
single parameter set (2.1) of set F satisfying .ill 
the lemma. We must particularly mention the constnic- 
elementary set in the intervals with origins t* and t* 

q v‘ 



\ccording to 'he conditicn of the rrohlefi, t'-e furctional 
déterminant 

Then we can represent in the a.ea of solution (1.1) 

a (tj) ;(yi (t* ). flj, 

and therefore along F we have 

By analog) with (3.12), we write the functions 

*<=>'/«. yAt'")+bt.yiO,è')% a» blai b) 

a' + bla,, bjt 

<*i 0° J- bla,. 

(3.13) 

(3.14) 

F rom this, ,i 

^h1^- 
from (3.14), sine 

\ccordinr to 

Therefore, w 

and alone F we ha^ 

f.Xjt 

By analogy w < 

defining the elementary set. the curves of which satisfy equations 
(1.4)-(1.6) in the interval containing interval (v* , t*). They 

take on the following \ ’lues where t * t • 
q 

M'7'M'7)+ 

b) (3.1 

a, -a®-f-Ma(. 

Substituting the values of (3.IS) in the right portion of 
(3.13), we have 

"„ < • h) Hy,< ( ) ( i;), a® • Va,. /,. by 

determining the cl 
(1.6)-(1.9) in the 

take on the folio 

Subst i tut in.’ 
(3.16), we find 
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From this, nfter differontintior this equation, wo find that 

>ihltq’ ’ a]h^ü) ani' •vjh^t(|’ alonR I;k ate identical to variations 

from (3.14), since there is a unique solution of equations (1.4)-(1.9). 

Accordinp to a condition of the problem, functional determinant 

"Qi 

0*1 
/*»• 

fherefore, we can write 

-t/,, 

and alonp F we have 

M-i.-ri* 

(3.16) 

(3.17) 

By analogy with (.A.1’1, we write the functions 

Vi (/./'*', y, (/^)4-^ (/',*), a' + b’^.b). 

ur u0(n . b'.u,(t{,)). \ br.avb), 

ai 4-w*,. 

determining the elementary set, the curves of which satisfy equations 
(1.6)-(1.9) in the interval containing interval (tls', t'). They 

take on the following values where t = t~: 

M'r.'’) «,(/.-) 
Oj aj ( Ma,. 

(3.18) 

Substituting the values of (3.18) into the right portion of 
(3.16), we find 

-*6 (/;./') Qi(yi(ç) (”'//,(/r)./„/»). 
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Th«>n after differentiation of this equation v*it!i respect tu i», 
uo find that » a ^ (°) ant^ xih^tv’ al°nR arc identi¬ 

cal to the corresponding variations of (3.17), since there is a 
unique solution to equations (1.4)-(1.12). 

The functions tq(b)> ty(b) and t^ib) can be determined 

by the equations 

/,(*)=/, 1wV 

/, (¢)= 

where t^, ty and t^ correspond to the points of curve E. 

Result 1. If permissible curve E satisfies equations (1.4)- 
(1.12) and if variations it_ , 6t , it , 6t. , 6v. (t), 6x. (t), Oa qa va ka 7 ln ja 
^l*ka(t)» ®anci represent the p permissible sets of variations satis¬ 

fying variational equations (2.4)-(2.12) along F, there is a per¬ 

missible p-parametric set (2.1), containing curve F with values of 
parameters b^ * 0 (a » 1,..., p), consisting of curves satisfying 

equations (1.4)-(1.12) and »**cîi iîi«t ♦'or any n * 1,,.., p, the values 

°f 6t0a' 6tqa' 6tva’ 6tkait)* 6xja(t)' ÎUkaU)* 6ana are variations 
of this set along E with respect to parameter b^. 

The proof of this statement is quite similar to the proof of 
the preceding lemma. Therefore we will omit it. 

$ 4. Stability Condition 

Suppose 6 ♦ .9 ♦ n ♦ c-e-f*2 is the parametric permissible set 
of curves 

j//(f. ^|. • • • • ^p) (i 1« • • • » *) ( 4 1 

(P-1.# + 1 + 1 + + ¾ (4‘2 

.»^0 — 1. 

UtV.à.bß) ./). 
.*,) (/»-1.r). (4.4) 

Th«r for this set of curves we produce 

/(6)-/(6,.6,) (4.5) 



ti- 
Substitiitinp the values of (4.1)-(4.4) into the left portions of 

equations (1.1), (1.2) and (1.14), (1.15) and considerinp (4.S), we 
find 

J(b. 

.V=°* Ub. 
M.V=0- .^)-0, 

• • • i bp)—0, 4}t(fr|, . , . , bß)-~0 
(<~1.i). 

(*-1./)• 

(4.6) 

s- 

>f 

I lues 
>ns 

These equations have the solution (h, n) = (0, 0), corresponding 
to the curve F. which gives the functional its naxintuís. The functional 
determinant of the left portions of these equations with respect to 
parameters h 

dJ job, 

à-jjcb, 

Mrldb. 

d'hjdb. 

IJÇJ, «y,, ijt/.la,) 

'ru;v, ly,.la,) 

I «!«/. «y,.*«,) 
(4.7) 

1) 

2) 

3) 

>) 

3) 

for curve E is equal to zero at point (b, n) * (0, 0) with any selection 
of variations. Otherwise, according to the theorem of implicit func¬ 
tions, there is a unique system of functions b (n), continuous in the 

a 
area n = 0, satisfying conditions b (0) * 0 and converting equation 
(4.6) to an identity. Then curve F cannot give a maximum to .1(0), 
since J(n) > J(0) where n > 0. 

Thus, if the greatest possible rank of the matrix of the deter¬ 
minant (4.7) is q, then q < p. Therefore, the system of constants 
Ip, Cp, ct, e^, c^, c^, e^^ is found, not simultaneously equal to zero, 

satisfying the system of homogeneous linear equations 

/u%y. W0T*.f edl\,-i-<v»r:. euR\„ -0 

|u -1.p). 

-t?6. 



thi^coefíicientü of which correspond to the columns of determinant 

lor these constants, the equation 

!‘J : ^ r *'«'1'. f • r2kB2t -(, 
(4.8) 

^ho,jl'1 obtain witt> arbitrary permissible set of variations 6t , 6t , 
fV* ‘^k’ iyi* 6xj- \< ‘‘‘V satisfying variational equations’ ^ 

(2.1)-(2.12) along F. 

It we multiply each of the variational equations (2.4)-(2.6) in 
turn by the Lagrange factors >}l1(t), nJlMt), g'*)(t) and add the 

products produced, then after integration within limits from t(. to 

wo will have 

f |(S «<+S- -.) -;■■«-»] * - 

'^i , , ,)F, 

0*1 

S-'-s *mJ f*Um * 
tf-t 

i//=0 (/ = 1.ffi<r;v =1.s /), 

(4.9) 

where 

4-1 4-1 

In the same manner we produce 

f 

where 

Since 

we have the equation 

If now after mul 

equations (4.9)-(4.1) 
multiplied by the cor 

of this equation, whi 
then, after substitut 
have 



T 

ECS s-* 

U-i 

riF 

Euí^' i- 

’*■)* É S*«- 

H K y 

^-■0, (4.101 

(4.11) 

where 

<-i «-I 

" -1 *-l 

Since 

y-p*. 

we have the equation 

U - fay ay,//. 

If now after multiplication by 10, we add the left portions of 

oquations (4^)-(4.1]) and the ,eft portions of expressions (2.17) 
multiplied by the constant l.aRranRe factor e( . to the rieht nortion 

thoihi!#r,Uatiwn,iWhifh l,OCS not chan!:o the ™UlQ of thc ripht portion, 
thin, after suhstltutinp the value of 1()VI produced in (4.8). we will 

-t?s. 
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This equation is equivalent to condition 

where 

«V+#01b + - em\ -f ej, -j- + ^}.¾.H- (,/), -f. 

(4.12) 

(4.13) 

For each permissible curve E Rivinp functional J its maximum and 
satisfying equations (1.4)-(1.12) and conditions (1.1), (1.2), (1.13)- 
(1.15), (1.19), condition (4.12) should be fulfilled. It is 
referred to as the stability condition. 

In expanded form, stability condition (4.12) can he written as 
follows : 

</4'=IJJ J- d% + c.d\ - r.rf% 4 rud\ -f eud'iu -i- eud}¡. -f 

+v^/+ J((^—j; 

+^“.+¿-77 $)“•]"+ 

+ f.-sr, 
[( 

+1((2:-77 
(4.14) 



dy,=^Xy,^y,dl, by,^lytdb, . 

da, — \ah bU'—hi'db. 

For the other time intervals we can write expressions similar 
to those presented above. 

In order for equation (4.12) to he true, a number of requirements 
must be fulfilled. First of all, the Lagrange coefficients >{^(t), 

TÍO. M‘^0. ni5'(0. ^»>10. V) will be selected so that they satisfy 

the following differential equations: 

Here 

(4.19) 

(4.20) 

(4.18) 

(4.1b) 

(4.17) 

(4.15) 

H.i*J"-Mini". 
//j*=/iM” f ¿.ni". 

+ c#<" -f ¿.ni". 
Í4.21) 



Further, as a result of the independence fl 
.(2) 

d) of variations 

and Í1 - 11 .,f variations Au (3) Au , (1 - h) of variations Au 
. P P 

the coefficients with them should he equal to zero according to the 
main lemma of variational calculus. The Lagrange factors p1*, 

(2) , (3) ., t ' 01 
tj, >nd ; v will he selected so that the coefficients with dependent 

d of variations Au , h of variations Ai/“1 and k of variations Au^1 
up p 

are equal to zero. Therefore we produce 

dlL 
Ótlf 

ùFi 

«F, 

=0 

—o 

,0 

or 

or 

or 

Wfi 
<‘Uq 

()//, 

dlln 

-0, 

n. 

-o. 

(4.22) 

(4.23) 

(4.24) 

Then condition (4.14) becomes as follows: 
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Here for simplification we have assumed set Aj f\ A., to be empty. 

The coefficients with 6» '♦n*E*e+fof the dependent 
sets dt0, dtk, dy.itp). dy^t'), dy.(t*), dy.(tv), dx.(tv). etc. 

will be set equal to zero by the corresponding selection of Lagrange 
factors Iq, Cq, e^. e^. The coefficients with the remaining 

independent variations must be equal to zero. 

Thus, we produce 

■F\ — !/,o ”0 or /fu 
«V/0 . «3 «0 

*¿—*'7?-^ or lj-)-e02S-=0 (i«l.n\ 
°*n c*i9 °*n 

+/,r-==0 
«X. iU 

or 

.0 or ^+..^-+4^-0. »/ 

dx ix, dx., 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

or 

or 

¿I 

"J 

u «te, 0‘*, d», 1 4¿, j * 

ir• __n i - i ^ ^*i/ • ° or/oIT —+ ^M—r oa. I / I 

(/=1. 

Here 

(4.30) 
Furt 

coefficic 



4.25) 

empty. 

nt 

range 

£ 

(4.26) 

[4.27) 

[4.28) 

14.29) 

¢/ , dr, i dr, 
■0-T V ‘ ' *T" .• ,• 

‘»•i . ‘»“i ““iLr 

i.d4L| _ 

«♦ 

or 

(X ;* 1* • • • « ^)* 

f'-«-.^+'^-^+'^-° 

-T— 4-e, —~ == 0 or ifl*4-eT~—z =^0 (Í —!*• • • • fl)» 
dir, *7' ' 

dit. dr, . d*t 

„ .dr, , 0>J, , dQ, . dr. • 

or 

dl. dQ, 

dQ 
*1-0 

d*t, dxl. 

0. 
OJTl 

Hero it is considérée) that t = t^. t = t*. 
a q V V 

14.30) 
Furthermore, due to the possibility of free selection of 

coefficients n( . from (4.SO) and (4.31), we have 
40 * 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.381 

Lagrange 
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f 
1 

<«1/ n 

—_n 
if ^ ^ 

nj;>+/0^-0. 
°*i 

<?+4~ t =o. 

(4.59) 

(4.40) 

(4.41) 

(4.42) 

re.Jd'^r'T (4 ^1:14 ^ M'lkt‘ “P ^ transversality conditions, 

(4 3 oí Í W r°S ?! !h° CndS- R^atiOT* f4 J«) ^nd 
ofth! ?tr, ; i 1 Ca^ e Ca,led thc cond>t'ons of opt lisa 1 i ty 

the stnictural states of the object or thc conditions of optimalitv 

Eonation5*^4*32) k* tho ‘’Pti^l parameters .1 '. 
nn??! ^ (4 5‘)-i4.3*) can be called thc conditions for disconti- n 

io dítcÍiícnírS.,0n LafHn^ «efficients. They Mke it possible 
to detcnrinc the U^range factors to thc right (or thc left) of thc 
discontinuity point in t and t . 

q V 

It is demonstrated in {24, 30) that at the first order disconti- 
nuity point of the control function, Lagrange faetón ) ,n and the 
expression F - VjiF/Äyj should be equal left and right. This should 

always be kept in mind. 

.0 0.0)-(4.M) (4.22)-(4.24) »HI ho „(erred 
to as thc Ful er-Lagrange equation system. 

i tF‘l"a*i0" (4. IS)»- (4.20) , (4.22).(4.24) and system of 
relationships (4 .6).(4.37) express the stability condition of func¬ 
tional .1 1„ solving the problem of optimization of the functional 
he coup ,,,g equations (1.4)-(1.12) and dependences (1.1)-(1.3). ííe 2MM attached to It. Thus, in order to calculate 

the 2,, ♦ 2m ♦ r constants appearing as a result of i .tegrat ion of 

!.-■ ? r.i,r,T Hrd<,r ‘qu»4>ons (1.4), (1.7), (1.10) and 
(4.15)-(4..0), the r parameters a and 6 4.7* n ♦ c 4 e 4 f 4 m ♦ 1 
Ugrange factors e0> ek. lo together with uantitics t(|, t . t , 

'»• h"" J» • ^ • 2r . . . . , . , . , . , . 5 conl,;im: 

¡‘iü'15!. d -1.4)-( 1.15) .rd (4.26)-(4.37). (..uation. (4.26)- 
(4.3 ) are homogeneous relative to the Lagrange factors l(|, e(). 

of‘,ll,t,í™0re W° Ca? “"T ‘o l- ^ ,hcn Prod“« the number 
f unlnow,,s •* «,««1 to the number of conditions. Therefore, solution 

of the problem oí 
tion system (1.4 
(4.22)-(4.24) ant 
for satisfaction 
(4.37). 

Furth« more, 
explicit form on 

from which from [ 

Ry analogs w< 

In conclusion 
the variational pr 
functional J, cons 

connection with th 
sible oiecewise-sm 

ing Lagrange facto 

thc discontinuity 
(4.37). The extr« 

»S i • >. - 

values of u locate 

We formulate 
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i’!'™«"";;1" íí-neiTiT,:f,'.!w/2!rd ,o „f 
(I I \ í4.15)-(4.20) considcrirr conditions 

for sat isfict ion^ Î S<;hlt,OP °f th° ^undarv prob Ion for satisfact.on of conditions (1.1)-(1.3). (1.13)-(1.15 and 1.25)- 

cxpl icF'i‘rí;í n<”<' ^ '» *•» ^ *, ^ 

fr” “hlch ,rr" I«». >,l ^)-0. 

” y‘ 1 °r ™ ~ 

By analogy we produce 

(4.43) 

//,--c. 

at 

at 

í<;. Ç). 

k. /j. 

(4.44) 

(4.45) 

in« LapranKo factors I 

% «nd e,,. satisfy,n>, equations (1.4)-(1.13)^ (4J5)-(4.23) and 

the discontinuity conditions and transforation (1.1)-,1 3) ,4 3>, 

: n' '“T™ is "»'«» nonsin.ular if the detenainí;. ^ 
Mfc. 

Iirr 
I i 

values of u located within the close.) area, 

ho fomulate the following; thoorom. 

I ire* F r J . I.- - I” mia- 
®ívcurv*‘ F and the correspond- 

•• ’! • 
equations (1.4)-(1.13) and (4.15)-(4.23) and 

itions and transformation (1.1)-() 3) ,4 t., 
■ c.llrt non.in.ular if ih, 

1-..1.:. J) dm-, „01 „„ i, hoi.orn forn.r point, for 
k ' 

I #S IÎ / » 4* ■< I _ a. _ ■ I . a . 
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Theorem 1. Inclusion Theorem. Any nonsingular extreme E with 
fixed factor 10 is contained with values of 

^ -1¾ fg« 0|4, • • • , ¡I|0, ..,, 

in a 2p-parametric set of extremes 

«. r). «,(«. ¡!). e, k), «, fi) 

over /,</<17; 

*'('• «• ». «.(«. P). M”(/. a, niw(/, «, p) 

over tf</<C; 

//«. «. P). «.(«. P). ^(/. «, ?\ *?(/, «. p) 

over C < 

o — (0|,... i e^l, P*®(9j». • Pg). 

'nr1“;/!-'if *}; “í”1' ‘ii1’ (. ■ >•« 
*J’ *jt* * Xjt * ns * ’’It ^av# COf,t^nuous derivatives in the 
area of the set of values (t, a, 6) corresponding to arcs E- , E v and 

Eyfc of curve E. The determinants 

9>'t l*tt «■, «»i#| 
^ mi; na; «i^l 

and xht *l>t 

.¾ ■z -.¾ < 
(«.47) 

do not vanish on a-cs of E. 

Since the extreme of E is nonsingular snd due to the conditions 
of the problem related to vector functions i; y and Ç, the determi¬ 
nants 



th 

are not equal to zero on the arcs of extreme E. In this connection, 
the right portions of differential equations (4.15)-(4.20) can be 
represented as dependent only on the phase variables, the parameter 
and the Lagrange coefficients X't' and n”* (y ■ 1, 2, 3) respectively. 
Then, application of the theorems of existence for differential 
equations of systems (4.15) and (4.16), (4.17) and (4.18), (4.19) and 
(4.20) of the theorem with the exception of the affirmation concerning 
the determinants is proven. Transition from one arc of the extreme 
to another is achieved by satisfaction of equations (1.1)-(1.3) and 
the discontinuity equations (4.32)-(4.37). 

Differentiating the identities 

n,-*,(/,. •. ». W-M'V.. «. ft 
a, » and^-^V*. «. » 

and 

rhe with respect to variables a. • yi0 (i ■ 1.n), et • « <*5 

„ --1 “ * 1.r; I . . . nj” 
me find that the first determinant from (4.47) is equal to one where 
t - V 

It can be «hown that this determinant is not equal to zero through- 
,47) out (t0, t*J on Ej if we differentiate system (4.15), (4.16) with 

respect to and use a known theorem from the theory of linear dif¬ 

ferential equations concerning the Vromskiy determinant in the pai- 
tial Interval. Similar proofs can be given for the other determinants 
(4.47). Thus, the theorem of inclusion is fully proven. 

ons 
mi - 
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5- The Necessary Weierstrass Condition and the Minimum Principle 

Suppose the permissible curve I is a normal curve realizing the 
maximum of functional J. This curve satisfies the stability condi¬ 
tion with the uni pie system of factors 1„ = 1, l^ft). >(^(t) 

(3) , (j) 0 i i ' ' * 
Jj (t** nj (tl,..., Cq, eT. e^.. Let us select an arbitrary 

point on curve K, t^, Ivin« in the interval t* ^ t^ • t^, for example. 

Suppose 'b is a series of number ^ f". such that clement (t., x (t,), 

a>’ is permissible and satisfies equations (1.10).(1.12). Using 

§ 5, we can affirm that the following set of permissible curves exists: 

ViU. H *j(f. *1. «»(/. *), — í</</,: )*(<,(, (5.1) 

*'1'. *'• «|(*> (',</</, fr. |fr|<«. (e|<i), (5.2) 
•»/('. *). u,{t. 6). a,(*) (/»f «<<</. K. |é|<s 

(5.5) 

satisfying differential equations of the form (5.7)-(3.9) in the first 
and third of these time intervals, and the following equations in 
the second interval: 

*1 *?/('. *1. Z), a,). 

¿, — 0, 

*#-*,('. **/, *>, «,). (5.4) 

Where e 0, 
(r ♦ l)-parameter 
elementary sets, 
prove that the fun 
derivatives with r 
only with respect 
[mints. 

Where b * e 
curve F. Actually 

tions satisfy equa, 
between corner poii 
the corresponding 

equations (5 7)-(3 
defined, as we havl 
(5.1), (53) along 
tional equations (, 
relationships (5.5' 
solution of variai 

funpose 

<V¿ 

represents the var 
parameters b^ (a » 

where ^ refers to any permissible control. Furthermore, sets (5.1)- 

(5.3) were constructed so that they must satisfy the following initial 
conditions : 

ß' 

t») 
• -i 

/ 

a«(*l u, 
• •I 

ß 

• •I 

Xt(b, /,) x^b, t,), xj{b, e. t, I « I .V, (A, ti e). 

(5.5) 

dt 

represents the ana 

Rased on (5.1 

ftj 

Further, we il 
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h'(.to c 0, '■cts (5.1)-(5.5) together make up one permissible 
(p ♦ l)-parameter set, consisting of a finite sequence of adjacent 
elementan s0ts. Based on the proof of lemma 1 (53), we can similarly 
prove that the functions defining sets (5.1)-(5.3), as well as their 
derivatives ith respect to t have continuous partial derivatives not 
only with re pect to h. hut also with respect to e between the corner 
points. 

hhere h ■ e * o, sets (5.1) and (5.3) produce functions defining 
curve F. Actually, like functions y^t), ^(tl, «¡(t), these func¬ 

tions satisfy equations (3.7)-(3.9) where b * ft, are continuous 
between corner points and on the basis of conditions (5.5), take on 
the corresponding initial values where t - tp, while the solution of 

equations (3.7)-(3.9) satisfying the fixed initial conditions is 
defined, as we have shown, unambiguously. The variations of sets 
(5.1), (5.31 along F with respect to parameter h satisfy the varia¬ 
tional equations (2.4)-(:.12) and (3.4)-(3.0). “differentiating 
relationships (5.5), we find that the variations produced make up the 
solution of variational equations (:.4)-(2.12) and (3.4)-(3.6). 

Suppose 

represents the variations of sets (5.1) and (5.3) with respect to 
parameters h^ (a - 1.p), while 

represents the analogous variations with respect to parameter I . 

Rased on (5.1), (5.3) and (5.5), we have 

- * < ' < ',). i/(f,) ( *Jt, (/,) - Á’, (/,). 

Further, we introduce 
' ß 

'..(*> '»-fj, M's.. /,(6) f 
•-» 9-1 

M*. Z /. ! ^ 6X,. 
•-I a.I 

(5.6) 

(5.7) 
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where t , t and t. correspond to curve E. If we substitute func- 
u q V K 

lions /j, Xj, uk, an and Iq, t^, tv, tfc according to (5.1), (5.3) and 

(5.7) into conditions (1.1), (1.2) and (1.13)-(1.15), they will appear 
as follows: 

%(b)~0, >,(#1-0. >.(#)-0. ?„l#>--0, 11,,(6)=-0. (5.8) 

•*,(», e)-0. (5.9) 

Since curve E realizing the «axirnuw satisfies conditions (1.15), 
equation (5.9) has partial solution (b, e) ■ (0, 0), for which the 
functional detenainant 

\d%làb.\ (5 j0) 

is not equal to zero, since the curve is assu«ed nonaal. Therefore, 
equations (5.9) detenaine the functions 

#.-0.(4 (5.11) 

which vanish where e « 0 and have continuous partial derivatives in 
the area of this value. Here for brevity, functions (5.8)-(5.9) are 
represented by the corresponding * Then where e • 0, the following 

relationships can be fulfilled: 

(5.12) 

where the subscript 0 indicates calculation of derivatives where e - 0. 

If the values of b^ according to (5.11) are substituted into 

functions (5.1)-(^.3), (5.7) and (5.8), we produce a single-parameter 
set of curves containing curve E where e ■ 0. With sufficiently 
small e ^ 0 all curves of this set are permissible curves, satisfying 
equations (1.4)-(1.12) and conditions (1.1), (1-2), (1.13)-(1.15). 
Thus, they all belong to class D. Curves (5.1)-(5.3) are not per¬ 
missible with small, negative e. Actually, each value from the 
interval t^ ♦ e < t < tj correspond in this case to three points on 

this curve. If functional J reache: its maximum on curve E, the value 



func- 

{3) and 

) appear 

(5.8) 

if 5.9) 

1(1.15), 
the 

(5.10) 

■efore, 

(5.11) 

(es in 
9} are 
»llowing 

(5.12) 

re e • 0. 

Into 

«raweter 
tly 
it isfying 
15). 
per- 

Ne 
ints on 

the value 

of J on the curves of this set cannot increase as e increases from zero. 
Therefore, the necessary condition for the maximum of functional J 
will be the inequality 

(5.13) 

where 

/(». »)-J- (5.14) 

Adding expressions identical to zero to the left portion of 
(5.14), we produce 

V/* V* I. I... K /“/+ \ Ftdty J J Í Í A>/. 
••ft» •,(*» i,U 4 ti». 

Differentiating this expression with respect to b , we find 01 
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whore 

In the case of fulfillment of the stability condition and where 
e « 0, the equation produced can he represented as 

(5.15) 
Then accordi 

where c^ represents the LaKranRc coefficients e0.« correspondinR 

to ♦v 

Now we can similarly determine the derivative 

^ ^ X,. V ni**. »0&/-M;,. j»;. 

«o ’ll”. I + + 
»•** 

+ f Í fö-iZf)'"' 
•$ 

Thus, we hav 
Í5.18) for the no 
tj lyinR he,ween 

function I: may urn 
first order discoi 
(1.7), (1.10). n 
tested twice for 

Theorem 2. ! 
T, satisfying the 
and equations (I. 
dit ion if for any 
between the corne 

Keeping in mind the stability condition and deivcrdonccs (S.b)* 
(5.'), where e ■ 0 we will have 

,i»i r,'»» 
x-- 

is fu1f111ed with 
h) or (t, a, a. ' 
Any normal curve 

x,t ur o,, ï,", ti;1». (,V/ x/)!f-| F\, 
<*»/ J«. * 

(5.1b) HxpandinR tin 
the correspondinp. 
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where 

15.17) 

is the Weierstrass condition. 

Expression (5.1b) considering (5.12) and (5.15) can he represented 
as 

I» 

Then according to (5.13) we produce 

(5.18) 

Thus, we have proven the necessity of fiifiliment of condition 
(5.18) for the normal curve I which realires the maximum at any point 
tj lying he,ween the corner points of curve E. At points t^ and tv> 

function F. may undergo first order discontinuities as a result of 
first order discontinuities in the right portions of equation« (1.4), 
(1.7), (1.10). Therefore, at these points loe inequality should he 
tested twice for the left and right limits of function E. 

Theorem 2. Necessary Weierstrass Condition. Permissible curve 
F, satisfying the stability condition with factors 1 « 1, Mt), nit) 
and equations (1.1)-(1.13), satisfies the necessary Weierstrass con¬ 
dition if for any element (t, y, a, u) or (t, x, a, u) of curve F 
b'tween the corner points, the inequality 

is fulfilled with all possible, permissible (t, y, a, t ) f (t, y, a, 
u) or (t, x, a, • ) f (t, x, a, u), satisfying equations (1.1)-(1.13). 
Any normal curve I realizing tlrmaximum satisfies this condition. 

Expanding the Weierstrass function I, let us represent it for 
the corresponding time interval as 



*«-//,(*. «r iJ". ’lí". •„ ni", pi") 

or 

(5.19) 

or 
£,-//,(*. V xi", nj". ^)- /?,(»,. 4". ni". 

(5.20) 

or Et-Ht(xh «„ a,. X>»>. nf. pi") - /?,(^. V ®1. ni*’. 

£,-M- 
(5.21) 

where 

/Yí_xíVA/i~xry,. tñ^Tn- (5.22) 

We have kept in mind the identity to zero of ¿n ■ 0 and functions 

V >e andçv- 

Then inequality (5.18) can be represented as 

(f-l, 2, 3). (5.23) 

Fixing the phase coordinates yA or x^, parameter an and Lagrange 

coefficients x|s^ in (5.23) and placing arbitrary permissible controls 

in the right portion of the inequality (¢/^ fu). can interpret 

the Weierstrass condition as the L. S. Pontryagin maximum principle 
(in this case a minimum principle), described in considerable detail 
in [28]. 

Suppose us(t) (where tg^t^t^, s * 1 • • • • • 1 *d; where lq i 1 

< t^, s - 1,..., 1 - h; where t^ ^ t ^ t^, s * 1,..., 1 * k) is the 

permissible control of the system, where u (■U. The area of control 

is an arbiti 

fixed value! 

becomes a fi 
the values i 

We rep! 
tion and th< 
We can then 

Result 
ing arbitra; 

satisfying | 
element (t, 
ing conditil 

i 

The co 
condition ( 

individual! 
are control 

Assumi 

and conside 
we can writ 
small highe 
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is an arbitrary compact set of all points us(t), t <. With 

fixed values of or x^, an and function ( s * 1, 2, 3) 

becomes a function of parameter u* 11; the precise lower bound of 
the values of this function will be represented by 

'Mil. *. a. Inf//;(*. jr. a, k{,\ u) 

u(:U. 
We represent by the symbols I and l' the full stability condi¬ 

tion and the stability condition without equations (4.22)-(4.24). 
We can then formulate the following result. 

Result 2. Minimum Principle. The permissible curve E satisfy¬ 
ing arbitrarily I' with sets 1^ * 1, XÍsl(t) and equations (1.1)-(1.13) 

satisfying the necessary Weierstrass condition everywhere if for any 
element (t, x, y, a, u) of curve E between comer points, the follow¬ 
ing condition is fulfilled: 

H)(y, x, a, X“’, u) = m(y, x. 

The control functions of the system 
condition (5.24) must be tested for each 

individually, thus producing from (5.23) 
are control functions of the system. 

Assuming 

• (/)=« (0+Ab(/) (h, *£U) (5.25) 

and considering Au infinitely small, on the basis of the Tailor formul 
we can write relationships (5.19)-(5.21) with an accuiacy to infinitely 
small higher order terms as 

(5.24) 

are autonomous. Therefore, 
control function uíU. 

as many relationships as there 

«1« 
*»«<*»» 

Ab.Ah,; ¢,= 

ifiH. 

c/>H, 
A«,*««: 

«H^U, 
\M/LKm 



with nny (AUj.AUj) 

.iccording to (5.J51 and 

t (0...., 0), 

(1.6), (1.9), 

satisfying tho following equations 

(1.12): 

^Vs 
du. 

Thus, the following theorem occurs. 

(5.26) 

Theorem 3. Necessary Clebsch condition. Permissible curve E, 
satisfying the stability condition with factors 1() = 1, >ls)(t) and 

equations (1.1)-(1.13), satisfies the necessary Clebsch condition 
with these factors if for any element (t, y, a, u) or (t, x, a, u) of 
curve E, the following inequality is fulfilled between corner points: 

(5.27) 

with any (AUj,..., AUj) i (0,...,0), satisfying equations (5.26). 

Any normal curve realizing the maximum should satisfy this condi¬ 
tion, tested at points of discontinuity twice for the left and right 
limits of function e. 

§ 6. Sufficient Condition 

Suppose there is a set of extremes fixed by functions such as 

!//('. a. '?), 'i'V. '?). IPV. «». ?). 
a=jai,..., ap‘), ?—iVti*^1’ 

a. r). (/. a, í¡); 

ni.'*(/, a, í¡). ni” (/, a. ï), niJ> (/, a, 9, ¢7,(0, 9, 

(6.1) 

having between co,ner points, together with their derivatives y , x , 
,(D ,(2) (3) r 1 
At > At ,-.., nt , continuous partial derivatives at least to the 

second order inclusively at all points (t, u. 6) for which (a, ß) 
lies within G and t^fa, 0) t < tk^a’ tl'e determinants 

are not equal to zi 

Here G is an , 

»OÍ«. B), t («. 0)' 

are unambiguous, c< 

Set (6.1) cor; 

Suppose set (( 
T x B x A and T x ( 
that for values of 

/0-€ 

one and only one c 
a) or (t, y, a) frc 

Let us now go 
be affirmed for pro 
unambiguous, contir 
derivatives in area 

2(0. 

•*/1*1«, 9. 

'('„’’[¿(a 

define hypersurface 
(6.1) at a point dt 
curved integral of 
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y¡* y if 

dr% dn'fi 
(6.2) 

are not equal to zero. 

Here (■ is an area on hyperplane aö, while concerning functions 
tpf«, B), B), tv(a, ß) ami t^fa, ß), it is assumed that they 

are unambiguous, continuous and different in this area. 

Set (6.1) corresponds to the set of controls 

(6.3) 

Suppose set (6.1) covers the singly coupled area fl in space 
T *B *A and T *C *A one time. This corresponds to the condition 
that for values of (t, a, ß) satisfying the inequalities 

la-aoKc, |?-Po|<‘. 

one and only one extreme of the set passes through each point (t, x, 
a) or (t, y, a) from n. 

Let us now go over to proof of the supplementary lemmas which must 
be affirmed for proof of the sufficient condition. If z(a, ß) is an 
unambiguous, continuous function, having continuous first order partial 
derivatives in area G, the functions 

define hypersurface S. This hypersurface intersects each extreme of 
(6.1) at a point defined by the condition t = z. Let us compose a 
curved integral of the form 

-3.18- 



+í l(f’ ~ +^ +^ ^ "y 1+ 
Ca 

(6.5) 

where C^, C^, Cj are arcs of permissible curve C in (t0> t‘], [t*. t*] 

and [t*, respectively. On the hyperplane t = t* (ty < t* < t^), 

considering (6.4), interval (6.5) can be brought to the form 

/* “ P íiL+íCí-*î-.+. 
dx/ do ^ Ai, do T do/ T 

+ /d^ d^^d^id«, 

\dj dx¡ di da. Ïr+ÏH 
In order for this integral in area IT to be independent of the 

path, it is necessary and sufficient that the following condition be 
fulfilled: 

âx/ à dFx i din d df, dx/ à dq, d dA, ^ q 
do di dx/ ^ do di do, dl do; dir/ d^ do dr. 

Generalizing this result, we find that the necessary and suffi 

cient condition for independence of integral (6.5) on the path on 

hyperplane t * t* (t0 ^ t* ^ t^) consists of the inequalities 

dy, ¿M*1 i da/_ ^i'1 _ dr_ ^î'* _ *Oj_ ^)11 
do d3 do di di do Oi da 

dy, ^}11 . dan ^ dy, di}11 ^ dn**1 

do dî do di d) do yi do 

dx/ 4>/>l «J, dn(31 _ djr^ d/j*!_da, 

do di oo di di »0 di do 

-o (/,</• </7), 

-o (/;</</d. 

—o (C </</.). 

(6.6) 

(6.7) 

(6.8) 

-349- 



It is not difficult to see that conditions (6.6)-(6.8) are where 
t » t* an analog of the conditions 

¿a;1» nay1 
d>. dy; 

dC!“ 
«w- do, 

da;" III 

up. 

da)’» da*51 dt-;*» de;*' da;*» de'*' 

st1-«-- 

dal3» daí3' ocj3» dciv uß,>> «c;31 

where Äit» dF] —d) vF\ nF» —dt oFm 
i —T-—. t*« - TÎ-. ai - -¡J- . l*x - 1 

dj»/ da. Oy« 

nl3) _ or, -(J) OTj 

Ä( 3^'c« --5:- 

(6.9) 

(6.10) 

(6.11) 

The necessary and sufficient condition for independence of I* on 
the path of integration in the entire singly coupled area G consists 
of (6.9)-(6.11) plus the equations 

dA<" ^ dB}» 

dy, dt ' 

d/»*** da},, 
-=- 

dy, dt 

d^1** da}*> 

dyl“» ^ dC}» 

do, dt 

d^«*> 
da. 

dCi*» 
dt 

dAm dC}** 

(6.12) 

where 

Expressions dA^fdy, — and dAt" 
as follows: dt do, dt 



cyi 

àâj’> 

àt~ 
• d àf: 

~ Uk •—- •—I 
â»t dt di,, y>~ ->-+ 

d.V* dy. 

+ yt (dBl} _ _?*!!) = or, . ¡ dB¡" 

'»‘t *y> ^^+yk(^r~i~b 

--ÓC-L==‘*L^±àJ’L • d . 
da. co, 

fiiiÆ_*aiLia._ia i • / ' M, ! J, ,5, + ^ 

oC)" 

<// 

ds;1' 

Oa, 

àt da, J dy, oh, 

dy, 
OB}» \ 

da, )' 

further by analogy we produce 

«M 

'k* du, dt ôy, 
_1 OF, , . / dß<’> 

vi/*l oy7~-^r)' 
l^^'^ or, ,t 0F . ^dcj" ,/a;’^ 

^ * % * ^'Ur-^r)* 

_d . /„a)5» da«'i 

rfí +jr 
04ry dry 

<M<»> éCj» ^ 
_ ,/ dA, . IOCJ1* dfli3>\ 

»r (6.6,-,6.,, 

■Hu», the following loma is correct. 

‘s/‘*^”«hichs“?ng?y :„^?r,7r"ori °j, "tr“es °f ,h*'f»» «•■ 

of the path in n. ‘ 8 X couPlea' integral 1* is independent 

«■« - stated earner coafi™ thc corr„t„css of 

LCfTTfTlQ At 0Xt roin*» I« ^ ■ 
n defincd in lemma 2, I* (£)^ ^(Fi;)P"Parameter set of extremes of an 

respo„Ad,”'iy- '».'• « th< ex,rones i„ area n cor 
obtains : <• Fî ^ fJ -»Pbct.ve,,, ,ha, the fol lo." Ration 

■Suppose thi 

0VCr "o' ♦o' 

Î/Ol, 

0v0r ^q’ t;i 

îf/a 

í/pi, î/K1, S 

which are relate«1 
of equations in v] 

ovlrjv_¿: 

ti,- 

íá.=Q 

ÍÀÍ'»» 

C.tji, f 

over ft!, t'] ! 
- s v 

0/t — — ^ 

8ñ‘5,= - 

G.>f/. f r>,¡ /•(f)«0)(£). (6.14J 



T 1 

Suppose there are p sets of variations: 

over tv o 

(6.15) 

l,°" *Xi'V). Î«.; 

°vor K’ \] 

'“'W. «n¡»(/), w»(0, 

0Ver ity. tk] 

*4», «/,„ î.r,(/), 8//,(0, 8/^^(/), îi|i3)(/), 8(4^(/), la, 

of equations in variâtions"SingUlar eXtrc,me !: ^ the following system 

°Ver tt0, tj 

I C.8«, (a.-:I.p)t 
«a.=0, 

ô|ïÿ. -(- £,8//, -f- --o, 

tk. =* - AM"-F^a.-GM.-Kty.-üfol"' 

- .If,8a,-- f*M". 
GM 4- ¿M. Í-^,8//, f 

(6.16) 

0V!likJ¿]. 
ty. - A J.y, 4-ß28a, ¡-C/«., 

r f/ÏM. f P,8a. =0, 

_ G¿u,-k¿y. - Djíp:*», 
Sn:’» = F*y. - B'M.” - LM, - M/,a. - /^8^, 

C/Í//. f CjS/.*” f LStii, -)- H2tu, f 
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and 

over [t^, tk] 

Jjr.=A¿xt + -)- 0,4«., 

«¿.=0, 
DJty. 4- EJiu, -J- Pj8a,=0, 

íii*1 - - ¿iwi*’ - /=-,80. - 3,8«. - KAx. - ZV^3', 
* (6 11 

8¾31 =* - F\ly. - ÂiîXi3' - ¿,8«. - Af,8a, - 

C^Jt.+Cisxi*» + ¿}8a. + RtlU'+E'M" - 0. • 

where the index ,u represents transposition of the matrix; 6ya> 6a( 

5u , 6x^, Ä > , in , 6v are matrix columns, a a a a a 

In equations (6.16)-(6.18), the matrices 

D, 

r, 

it 

d»//, 

dlÿ'du, 

dw, 

àn^dyi 

VH, 

áy\áa¡ 

VH, 

da,dU' 

. fi, 

. fl 

. c, 

. -wT 

I 

dy¡dU' J 

, G, 

. Py 

. 

VH, 

^rll* 

àyiàyk I 

VH, 

toyda* 

VH, 

àvytom II 
(V»l. 2) 

and the similarly written matrices A,,..., R. are calculated on E. 
•J Ò 

It should be kept in mind that the matrices and R^ (y =1,2, 3) 

are nonsingular, the former according to condition of the problem, 
the latter due to the assumption of existence of nonsingular extreme 
E. 

Since 

by substi tu 
of the equal 

J_ 
it 

We ha. 

Two arbitrary independent solutions of the p sets of variations 
(6.15) along E for the system of equations (6.16)-f6.18) will be rep 
resented where a = i and a = j (i / j) as 
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11,(/), tt-M(/), în,T,(/). t*"' (/), la, U (/) 

*5(0. ^T,(0. **i(T,(0. *5<T,(0. *â. *î(/), 
(Y-l. 2, 3) 

Since 

(íy'8A<,) -f 8c'8r¡m -8ÿ'8X,,, - 8a'8n<,,)=s*5'*^,' + 

+ 8y'8A0> -f-8a'8n' - 8^8^^-87^^- «â^’, 

by substituting the values of Sÿ, 6>(1) and íñ(1) into the right portion 
of the equation from the variational equations (6.16), we find 

■j- (8ÿ'8T,,,-f Sa'q«1» - 1¡¡'IX(,) - 8d'8n<u)-(^,8^ + Ä,8fl + 
ttt 

+ 0,8«)' lV" ~ly'(A\8A<n -L /",8« + C.8« -U /f ,8y + D\l^0))— 

-8a' (F ,8^ + fi’, Ä«“ -f Lfiu + A^,8a H- Pl87,)) - (A ,8y+ 

+ BM 4-0,8«)' BX014- 87 (MÍ8X,,) +^,83 + 0,8« J- Ktly + 

•f £)V})) -)- 8À' (F'tly -)- BW" -f ¿,8« + .M,8a -)- />;8^i<,,) = 

b—ly'F,8a 4-Sa'/7¡ly—8ÿ'/f,8y-)-8i/ K\ly — Ba’fjSy-)- 

-f 87/r,8a-8a'.Vf18à-f. 8a'.W,8e-)- 8«'C;8I,,,-8ÍC’,8X<',— 

-^8y'G,8Í + 87G,8«-8a'£I824_8Í'¿,8«-8y'OÍS¡¡;(,,+ 

-f 870,8^^-Sa'Piîi"’ + 8«'/>|8|»< 1 ’ « 8«'O*, 

-BttOlS/."’ - 8y'C,8« -)- li/G^u-Sa'A.îà-)- laLfiu - 

-8y'D¡?.7"-f87D¡Vn. 

We have kept in mind here the equality of the rows 

(ly'F^Y^ly'Ffi, \fÿ'FM***~>‘Ff*, 

(WK^.yY = 8//'/f,8y, (8aMf,8a)' =- 8a',M,8a. 



Further, substituting the values of C'5 >(1) and D 6y in the right 

svs;::n(6fi6?cw:qïï;io^vrcordinR to rhe third -d ^at10n or 

~ (ÏV'87"> -Í-«a'íñ^ _ _ ïà-în"*, ty C^U - ly'Gfu + 

-j- *07,8« - la'L^ù — lu’G\l¡¡— — 

— 8tt'£iíii<" -ía73,8ÍI(l,-f-íái'Plí(i<!,-j-8«'C!íy-f-íá'¿;ía .}. 

+8a'p;8j:(,>_85'A>;ín«»«0, (b-20^ 

since the rows of the matrix are equal 

(8y'G,8a)' «Bÿ'CjBu, l8«'G,8Ü)' = 8y'G,8«t 

{tia'Lfiu)'—la'Lfiu, (la’L^Z)' 

(8«'/?,8«)'*,8Î'Â,8a. 

Thus we have 

^(8^^ + ^^^-80^-8^8^)==0 

or 

81/\’7( 1 > + 1 ’ - 8y'8X( ^ - 85-8^1 ' = </„ 

where dj is a constant quantity. 

Similarly according to (6.17) and (6.18) we find 

(6.21) 

8¿/'8X<,> -J- 5a '5n«*> _ 8y’8X,*> - 5a'8.)(i> =rf„ 

8 a:' 8a(1) + 8a '6 îjÜ1 Sjc^X'3’—=rf,. 

(6.22) 

(6.23) 

(1..)-(1.3) ard 



ÒÍC::£ÜL*' ^ ... ,hr f„r Jisruption 

flF r d*';m0' (ft.24) 

.4 ». . 
, . * ?, .. . cr >, 
+ ‘-^r ,/f'+‘*-—:•/!/- ■ e, 

"i vtjiu,- '■> '*"»¡0 ',v «V*,; ^4- 

+ 

*■+'- +'• h 

d?V, ^ 
4í, ——df A.^. df -^O n / —j i . 

«'V,«"'« ' dy^ y'J 1.. 

- tfl-í? + <*, - **1— J,j- L (. , f . a»>. 

- 0y>*dV)i 1 

. ^*4, . âi 

+'■^'". ' ¿»7;*. ’0 ('. /-1.n). 

^.-0. JQy^O. 

+M+'- v^-n- 

"*+'- '*-+ w*.+ 

(6.25) 

(6.2<)) 

(6.27) 

(6.28) 

(6.29) 

+'*'^^+'.'^-'.+vvI-".+ 
■ ^0/ . 

0>;, «' ' •.••., •. «). 

í/À (3) . 

'-r, 

(6.50) 

(6.31) 
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Furthermore, at the discontinuity point defined by conditions 
(1.1), according to (4.38) we have 

<’ ~ nî? (no "iil* / 0, ñlj* =0) (/ = 1.m'), 

therefore 

(6.32) 

and according to (4.40) 

—rf’ijy+e, — dyii+*' -^v1» • dy*i+c' ~¡¡¡¡~7— 

T e' 

•ld»ï' tà*l 

*1*. 
dt. de, =-0 (6.33) 

Ö£u/aa/H 't*^****» ^)* 

In equations (6.24)-(6.33) we accept: 

where t = t 
_3. 

dyï,*= yib,lt,, + MyJÜ, da,~b.la„ 

dyU- ¿;m/„ + ífC + bM¡", 

di\i'" = Ttl')b,U„+b.lvÿ,\ dUa^XjbMf+bjnp, 

</»iJîi==Mn)Ji, d'ilî’,—níJÍM/f.+ Wniîi; 
where t «> ty 

dyw.~ywkJUr,Jrb.lyr%, da.~bM^ ¡ (6 S4) 

</<»=ñli'b,«, , H- fr.i’iî?,, dn}îi=Mnjîi. 
dxn=b,bxm, 

d*£!=i?'bjun + 

The set of variations (6.15) should be such that both independent 
solutions (6.19) along E for variational equations (6.16)-(6.18) 
satisfy the discontinuity conditions of the variations (6.24)-(6.33) 



IIS 

I 

..32) 

Let us multiply the left portions of equations (6.25)-(6.27) and_ 
(6.32), (6.33) which satisfy one solution (with the tilde) by dt^, dyi£J. 

dy*q, daj and da ^ respectively, then add the expressions produced, 

then multiply the left portions of the equations satisfying the other 
solution (without the Hide) by dt^, dÿt^, dãj, dã^ and also 

add the expressions produced. Then, subtracting the second sum from 
the first sum, we produce 

&. 33) 

Tdflidnii*—dyild'Vi — äa, ¿ní«')— 
-(<///,>'■!? datfliï daL(iï\$ -tTy^W - 

- da MV - d\d'\'X) -i- WijTidt' - dyTfdt,) - 

- ÿ7'(d~',>'-difldl,) 'Adòtdt, - )-^-- 

- (d'yndt, - dytfi') -£r -f W'di, - d’W't,) - 
•Vit 

6.34) 

pendent 
) 
6.33) 

Keeping expressions (6.34) in mind, the equation produced after 
simple calculations can be reduced to 

lytl K -f ^1^11 — ÔÿüîXÎi’ — «à,«! a 

\ V • 3 S ) 

Thus, according to (6.21) and (6.22) we produce 

dl * d2’ (6.36) 

Conditions (6.28)-(6.31) can be supplemented according to (4.38) 
with the equations 

dnj’—dn‘l!—tí, 

where 
^1.=0, h,,/ 0. 
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. . Then, niultiplyiriR the left portions of these equations and equa- 

'¿Z r dv (dh-3n iatiSf^K un° 0f thc so'utions (with the tild" 
• V* dyiv* dxiv' dal :,nd da y respectively and addins the expressions 

ZtCCrt 'Z mU,îip!yin? the lcft P°rtions of the equations satis- tvinii the other sníntinn fui+h/Mi+ «-u^ i.-v i_. .. 

solutions w 
the system c 

»i , • V — -v.i i ne equations satis- 
t>ins thc other solution (without the tilde) by dtv, dy.v, dx. , dãj, da 

let us 

respectivoh and also adding the expressions produced, after subtracting 

tS th^se pr^dínT Z'n*?' ^ 

Lemma 5 
an attached 

(b.18) along 

-f »a.itli’r - Í.V/, w./,!’ - íã.íqj,*' =, -f. 

+ - Ú). 1>)Ï - «íx-• 
not vanish in 
singly coveii 

Thus, according to (6.21)-(6.23) and condition (6.35), we produce 

d^dj^dt-d. (6.37) 

i.e. the right portions of equations (6.21)-(6.23) along E are equal 
to constant number d. ' B rc equal 

itioÍstÍOnS f6‘35) and f6'37) arC Called the attached discontinuity cond containing E w 

We can thus affirm the follow! nR. 

For any nonsingular exireme E, there are p independent 

Í6 16W6amtlT if,:15).COUpled alonR E by variationa' equations 
(6. 6)-(6.18) and satisfying the attached discontinuity conditions 
while expressions (Wk+OaM-ty’t».-^) 
retain a constant value equal tc d over the sector tn <’t < t * * 

0 — — k ‘ 

Functions 

have continuou 
area of the se 
variations of 

extreieTihcr/? ^ inclusion ^eorem (theorem 1) along nonsingular 
extreme E there is a p-par=meter set of variations satisfying the dis- 
continuity variation conditions and coupled variational equations 
(6.16)-(6.18). Then, it follows from the preceding that each pair of 
p-parameter sets of variations has an attached discontinuity condi¬ 
tion, while expressions (6.37) retain a constant value equal to d over 
T0 I 1 i V ^emn,a proven. 

Let us introduce the cone pt of attached solutions and attached 
systems of solutions of variational equation system (6.16)-(6.18) Two 

if ¡6w£ solutions of tht> variational equation systems 
(6.16)-(6.18) will be called an attached solution if constant d is 
equal to cero. This system of linearly independent paired attached 

For proof 

yi^=i 
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T f 1 

N 

solutions will be referred to as the attached system of solutions of 
the system of variational equations. 

Let us formulate the following lemma. 

> Lemma 5. Suppose K is a nonsingular extreme for which there is 
an attached system of solutions Zlt, A¡1», \¡J», yJt% a}1,'. 11^, H'*', niî», 

A,k (/”r..m: .f: .n+r) of equations (6.1h)’- 
(h.18) along E, with determinants detj = and !VjkA.k| = det., 

not vanishing over F. Then F. is an extremally singly coupled area F, 
singly covered with the (n + r) parameter set of extremes: 1 

yt^yid.n,) (/-1.n\ / * I.n+r). 

a,) (/,,1.m)t i 
a, a, (a ¡), 

^=).^(/,0,) (p = |, 2), 

a,), 

C-»lí1»*/, a,) (1- = 1,2,3), 

'i) 

containing F with the following values (t, a): 

U/ ~0 (/--=1,..., n \-r). 

Functions y., y,,, X.. x.,, .,, »Ir), ,0>_ , „M_ J») 

have continuous partial derivatives between the corner points in the 
area of the set of values (t, o) corresponding to curve E, and the 
variations of the set along F are 

0)-=^,,(/), x¡,t(í, 0/-=V 

)-^(/. ())= A!£>(/), ).^(/, 01= a;5,1 (/), 

1¾ (/. 0) = 111^(/), a„~Atk. 

(6.381 

For proof, let us analyze the 2(n ^ r)-parameter set of extremes 

y,~y,v. y. A a, (y, A k'f' >r'(/. Y, », Ar) Y. A 

(6.39a) 

Y. •-). =)y'(/, Y. :-). ni” -ni”(/. V, », 
v " ' (6.39b) 

Tr.o , 



containing E with 

y i ■- Y®- (/■“It ..«t «+0 

and having the properties discussed in the inclusion theorem (theorem 1). 

Without limiting generality, we can consider that the following 
values have been taken as the constants Yj and 

Y. M (/-1.n), 
Yf—®«(Vt ?) (®—l*»«», r; //=/i-}*i). 

Y. » (/-1.** ; (6.40) 

P,—hi'V/j, y. P) r, p=an + *)t 

where t_ is generally a certain number of the t-interval corresponding 
to E. 

From equations (6.40) we find 

where 

*/»=- «(1,(4. Y. P). y, P) 

(/—l,«.«, /•; * —1,...,/i+r), 

p). 0=.»li{»(^Y. P) 

(*—l...., r; /i-fi), 
0“y/»4(/o. V, ?1. Y. ?). 

0-«rt4 (Y. ?). * lî^/a. Y. P). 

In-1, «w-l| if //*| ///*. 

(6.41) 

Let us define the two functions C(o) and B(a) as follows: 

2C (a) - Syj.o, + Zit (4)0,0, -f /4,10,.0, 

(/-1.« + r), 

25(0)-2:1,.0, + .^(/,)0,0,-1- H'l^o,. 

(6.42) 



(1 - 1...., n ♦ r) ví 11 Then set (6.39a) where y, * C , R, * B. 
J O] 1 Bj 

be an (n ♦ r)-parameter set of extremes 

9/= Vt(^. C«. a,) (/=* 1,..., /1 -f-r), 
at**a,{p„ B.)=^a,(at\ 

C.. Ä.)-Mn(/. <».). 

ni” (/, c., s.)-li0(/. a,). 

• • • • • 

(6.43) 

containing E where («j. + r) * (0,..., 0), the variations of 

which with respect to parameter are 

V/.4 - y.,/;, (/o)+y<,/rt+y/,, A jl> (/,)+y(^It<l> (/,). 

a*4—ûr, jZhVo)+anfA,t -)- a«, yA^> (/0) 4- (/0), 

m:; =* %*)> {(0)++XJ» a}'> (/,) -i- x/>. H<i> (/,), 

For '•urve E, these variations where t * t0 have the values 

Z„(/,)t A)‘> (/,)(1-l^...*;*-l..^*fr). ( H(y (/,)(1-1..^), 

which follows from relationships (6.41), and they satisfy variational 
equation system (6.15). The determinant 

according to (6.41) is equal to one. 

Thus, along E they are identical to Z.k(t), Hsk^^ and 

Ask, as was stated in the lemma. 



T 1 

Sine» the determinant ly^.^l - |2lk(.0)A5l| 1, eq„a| to one 

and the déterminant j:.k(t)Asl(| does not vanish anywhere in the interval 

^ I 1 I ‘k on curvc i;> according to the theorem on implicit functions 
in space T > B > A, there is an area T of 
(6.43) has a unique solution ^(t, y. a), 

curve E in which equation 
vanishing on I and having 

continuous first order partial derivatives in area r. Then area f 
singly coupled and singly covered by the set of extremes (6.43). 

is 

It remains to be shown that 
I* formed by functions (6.43) is 
On hyperplane t ■ t 

in sufficiently small area r integral 
independent of the path of integration. 

/’“j" F»,da>)^J 

4 ’ (/o.« (/0.!/.<»)) da, [/0,a (/„,y,a)]|. 

! 

In cornel 
attached systt 

becomes an iib' 

Thus, I* 
plane t = t(). 

t > t* from th( 

The arbit 

r of curve E, i 
setting hyperpl 

figuration as 

It also follows from equations (6.40), (6.41) and (6.43) that 
on this hyperplane 

! ~j ll’To 1* A//(/o)ail^/»(/o) +!8^o f Ww(/o)“/! dat*= 

= '«z/» ('c)a* + ÿ An Vo) Zu Vo) + ,» + 

+Y n*/('oM,»«A»,]. 
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In the rig 
if we fix point 
integration on 
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'"I ‘iTr* H WatShCOnS!dC-d th;it ^ the 
ik* ' ik an<l Ask* sk ’ thc eM“atit ion 

('Agjllgi A<;Z(n—«’O 

becomes an identity. 

pi.-.,,0°f ,hP ,K,,h of ¡"'WOO" OP hyper- 
+ 0- Sinular discussions can be performed for any value of 

t i t() from the t-interval corresponding to curve K. 

no arbitrary PurVo B)(i. Ivin, i„ the 5uffieiCTtly „ca 

«« "f iPtor- lb .pirpiant t t0 at the po.nts of curve f forminj- a con¬ 

juration as shown on Figure 1. We then have 

S [('W' 
* 1 djci ' àx, t.¿f 'J 

If »f';*;.5“1“''»", Ofh 'on. is fully def.ped 

integra,loS Tnl ' T,'5 ‘Âí"' °f 'h- i“»" »f 
independent of the path of int^.r ,9 trt'tore, the integral I* is 
lemma is proven integration on the entire area r. The 

rondltíoñs XiThaTfl^r ^ T’"* *• - necessary 
the sufficient condIM» fw f"™'la.io„'of 

-.Tiirc-u- 'n."- N ir‘ 
symbols I, P and HI represent the following conditions: the 

'or the open area 

iln this case the minimum principio) f5 ^ '’»ntryagin 
penalssible ron.ro,.. .sV n^eL^lieh^h'^!^ ^ 

"» if'fór ::li ToLiTT; \’Ti'nA “„di,,»,, 
mg equations 0.1)-(,.13, „nj tho >r^ * U 
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elements corresponding to curve E, the inequality 

£<& f, M.m. t)>0 

is fulfiled between comer points with arbitrary permissible (t, y. 
) ^ (t, y, X, u), satisfying equations (1.1)-(1.13). If the 

equality sign is excluded, the preceding condition is called the 
reinforced Weierstrass condition II'. 

N 

III' represents the reinforced Clebsch condition, produced 
from III by exclusion of the equality sign. 

The theory of the main sufficient condition for the strong rel¬ 
ative maximum can now be formulated as follows. 

Theorem 4. Sufficient condition for strong relative maximum. 
Suppose E is a normal curve of class D. If curve E satisfies the 
conditions I, II' and III' and if there is no attached system of 
solutions satisfying the conditions of lemma S for it, then E is a 
nonsingular extreme and in space T *B *A and T * C * A there is 
an area F of curve E such that for any curve C of class D lying in 
r and not corresponding with E, the ends of which lie sufficiently 
close to the ends of E, the inequality J(E) > J(C) is fulfilled. 

Since according to a condition of the theorem curve E is a 
normal class D curve, satisfying conditions I and III', by defi¬ 
nition (see I 4) it is a nonsingular extreme. The normal non¬ 
singular extreme E can be included in the 2p-parameter set of 
extremes, in which case the determinants (4.47) on arcs of E are not 
equal to zero. This follows from the inclusion theorem (theorem 1). 

According to lemma 4 for the nonsingular extreme E, there are 
p independent sets of variations (6.15) coupled along E by equations 
(6.16)-(6.18) and satisfying the attached discontinuity conditions, 
where the expressions (6.21)-(6.23) are equal to the constant value 
of d. Due to the existence, according to the condition of the problem, 
of an attached system of solutions, this constant d is equal to zero. 
Then, keeping in mind the conditions of the theorem and lemma 5, we 
can affirm the existence of a singly coupled area F, covered by a p- 
parameter set of extremes, containing the given nonsingular extreme E. 
Therefore, there is an integral I* (E), independent of the path of 
integration over the entire area F. Since according to lemma 3, I*(E)* 
♦(E), for any curve C having the properties stated in the theorem we 
have 
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Each integral is negative and vanishes only when C is an extreme in 
area T. Therefore the difference I(n-(I(E) is negative, except 
for the case of coincidence of curve C with curve E, since only one 
curve can pass through the point corresponding to the ends of curve 
E. The theorem is thus proven. 

It is shown in [7] (see lemma 88.1) that conditions II' and III' 

are equivalent to condition 11^ and the condition that curve F. is non¬ 

singular. For any necessary extreme, according to result 2, condition 
II' is equivalent to condition 11^. Therefore, the following result 

obtains. 

Result 3. Suppose B is a normal curve of class D. If nonsingular 
curve E satisfies conditions I and 11^ and there exists an attached 

system of solutions for it, satisfying the conditions of lemma 5, then 
E is a nonsingular extreme and in space T *B »A and T * C * A there 
is an area T of curve E such that for any curve of class D lying in T 
and not corresponding with E, the ends of which are sufficiently 
close to the ends of E, the inequality J(E) > J(C) is fulfilled. 

Suppose on the normal curve E, which is an extreme and there¬ 
fore satisfies the discontinuity conditions (1.1)-(1.3) and (4.32)- 
(4.37), the condition at the end (1.1S) and transversality conditions 
(4.28), (4.29) and (4.41), (4.42) are fulfilled. Let us «sume 
further that along E there exist p-permissible independent solutions 
of the equations (6.16)-(6.18), satisfying the variational discontinuity 
conditions and thereby the attached discontinuity conditions, and 
also satisfying the following final variational conditions 

^.=0, (6.44) 

-366- 



▼ T 

1 

./ Y L j àF, , rtF, , 
l*xU xiji —-(- dal -}- e dxj. dxj <ta. ütKdxjt - dx/, + 

(ftj + #, dt% -L*±-de i- 
<ttK “ ‘ (i/.djry. + ^û/4- Ot,dat 

MJ j , <fi] . 
--¿ai+—r <i/ = o, 

d/» 

(6.45) 

^ (jx ,c & 

4 
(»y 

àxjKdxn 
dxik I 

dxi'dxn 

#] 
-dal f- 

dxj,dt. 
dt„ 

àxj. 
det 4- 

dxj,dai ‘ ' ôxjkàal 

(y,s = !,..., m), 

da i <*J ^ n 
1'"»ïiiïra'~° (h-4<>) 

rfni? +~- dxh , 
da¡dxjt ((aida p da,-)—^I—dtt=Q 

àaida^ ôatdt, * (6.47) 

1 àatdxj 

(A/»3»!.< r), 

<PJ 
dxl» 4* "rf"— da, , 

'« da^ila, da da¡ ^ da,+-J!L-di' + 
<taldtK 

4- + ^ di, =Q 
4a. (6.48) 

(Z, i--- m -}- l,...r), 

produced for the conditions from the ends (1.15) and the transversal in 
conduion, ,t the end point (4.2»), (4.29) ond (d!“)' (4 55) d" ! 
their identical fui fi liment. Furthermore, it should be kept in mind 
that according to (1.13), dß,. = o. 1 

«• K 

Let us multiply the left portions of equations (6.45)-(6.48) 
satisfying one of the solutions (with the tilde) by dt , d . , d 

(3) (3) k x^k' al 
da^* d>jk ' dnnk resPectively and add the expressions produced, 

muí ' 
(V 
multiplying the parts of the equations satisfying the other solution 
(without the tilde) by dt,., dx daj, da d > dnj^ respectively 
rind al<Rn adHinn ~:___._» and also adding the expressions produced. Then, subtracting the 
second sum from the first sum, we find 

dxJ*d'jl) -f da,<yi|^' - d~xj¿1>.u - dandr\^ -f lOl. (dxKd/k - 
Ary, 11 

- dxudt\) - Xj.Wl'dtk - dr'jlW,,) - (dã.df, - da,dr) -dF± .=o. 
uat 

if we now go over to variations, we produce 

,,xu yn' r — '■•t/.'a jJ1 — 0. 

From to 

i. e. along 
(6.23) arc ei 
singular ext 
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(6.49) 

Fron, this, keeping in mind (6.23) and (6.37), wo have 

d = 0 

f; alon« the Riven curve E the right portions of equations (6 21) 
(6.2o) are equal to zero. Thus, if on the normal o.rv f T l6,21J* 

(¡Tn ?tarnT(4an^)thMre3f?rhSa^ryinR thp ‘iiscontinuiiy^i'tion. 

conditions, there is an attach*) „ 1 c -»nalyzcd as initial 
equations 6.16^(6 18 a!nn f Y. * ?f soll,tlons of variational 
conditions Similarly ir V sa*lsfyi[’R thc attached discontinuity 
.. , Mmi larly, it can he shown that if on normal curve r 

(1.1)-( K 3) aandX(4^2) !?4 37^^/3 >*fy‘SC°nt 'nui ty cond ^1 ion 

are5 fu If in ^ t,,P i^ÿ^aiity^ondit1 lo^'tî. 26)^^^7) ^‘(4.39 

transversalitv°condît^n*^^h°°^n°^ '^"coíduÍoírfor'the'eídTa^f 

sísíSíSsâ“““™“"»»:--' 

.in„5 a, ,hc 1„nL;h:„;iLr„iM>r,a,,“ai «»n- 

We have thus proven the following lemma, 

the eidT^hÄfill'tV rml‘ extreme, in Cass D 

™d (4.39?: ??( .‘Tih™1 :i,rf :ion5 
solutions of the conditions for th, i f)'1fnenrly independent 
conditions of the initial and fin-.i onds and variational transversality 
them as the initial eoíd rinñ/ " P°?tS respectively, then, taking 
of solutions of the variational' Wt ^^0t,KC alopR I: two attached systems 
the attached '»'■ -.„fvine 

condiÃ .:hi?r™r?e??;',?," f0r l1’- -ff'O-t 
i;Sm.ho„re. for the suffice, coUU 
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Theorem 5. Suppose E is a normal curve of class D. If curve E 
satisfies conditions I, II' and III' and there exist p-linearly 

independent solutions of the conditions for the ends and the variational 
transversality conditions at the initial or final points respectively 
with detj i 0 and det^ i 0, then E is a nonsingular extreme and in 
space T V B X A and T *C xa there exists an area r of curve E such 
that for any curve C of class D lying in r not corresponding with E, 
the ends of which lie sufficiently close to the ends of E, the 
inequality J(E) >_J(C) is fulfilled. 

Lemma 6, theorem 5 and result 3 confirm the correctness of the 
following. 

Result 1». Suppose E is a normal curve of class D. If nonsingular 
curve E satisfies conditions I' and 11^ and there exist p-linearly 

independent solutions of the conditions for the ends and variational 
transversality conditions at the initial or end points respectively, 
with detj i 0 and det^, ¿ 0, E is a nonsingular extreme .'.nd in space 

T xB X a and R xc xa there exists an area T of curve E such that 
for any curve of class C lying in r and not corresponding with E and 
the ends of which lie sufficiently close to the ends of E, the inequa¬ 
lity J(E) > J(C) is fulfilled. 

MULTIPOINT BOUNDARY PROBLEM 

5 7. Mathematical Theory of Algorithm of Multipoint Boundary Problem 

In order to determine the extreme and optimal controls providing 
the maximum value for functional J, we must solve system (1.4)-(1.12) 
and (4.15)-(4.20) considering (4.22)-(4.24), satisfying the conditions 
at the initial point (1.14), (4.26), (4.27) and (4.39), the conditions 
at intermediate points (1.1)-(1.3) and (4.32)-(4.37), (4.40), the 
conditions at the final point (1.15) and (4.28), (4.29) and (4.41), 
(4.42) and conditions (1.13). It was shown earlier (S 4) that the 
number of conditions at the ends and in the intermediate points cor¬ 
responds fully to that necessary for integration of system (1.4)- 
(1.12) and (4.15)-(4.20) considering (4.22)-(4.24). Therefore, deter¬ 
mination of the extreme and optimal control giving functional J its 
maximum value with the fixed boundary and intermediate conditions 
is reduced to solution of a multipoint boundary problem. 

For completeness of the solution of the variational problem which 
we have stated, it is desirable to find an algorithm for solution of 
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the boundary problem such that, while providing rapid convergence of 
iterations, it allows fulfillment of the conditions of theorem S or 
result 4. Then the solution of the multipoint boundary problem con- 
sidering fulfillment of the necessary Keierstrass condition allows us 
o atfirm that the variational problem has been solved and that the 

necessary and sufficient conditions are fulfilled. 

Suppose the solution 

*10=/lO rMy(/)+0(6./) ii6|<»,iim -2^=0 

where ^l/o,/«|), , 

a: (/)=jc° (/) 1-Mjc (/)+0(6A 

« (/)=u'(/)+6Î« (/)+0 (¿./), 

a —a° f 6£a +0(6) 

and the corresponding 

1.(/)-^(/) + 68).(/) + 0(6,/), 

>!(/)=tl°(/)+681)(/)+0(6,/), 

(»(O (Io (/)+6^(/)+0(6,/) 

satisfy equations (1.1)-(1.12) and the stability conditions. Here the 
vector functions yO(t), x0(t), u°(t), a0, >0(t)> u0(t) are a rossiMe 
initial or "zero" solution of equation system (1.4)-(1.12) and (4 15)- 
(4.20) considering (4.22)-(4.24). 

The intial solution satisfies the equations 

0. 1+-0. 
(7.1) 

which are equations of the system of eouations (1.1)-(1.2) and (1 15) 
respectively, where the function is selected from the components 

of vector functions 1)»^ which depend only on t , y" and a^, where A 

We will call functions (7.1) the stop functions. Generally speaking, 
the left portion or the remaining equations except for (7.1) of system 
(1.1), (1.2), (1.15) and equations (4.26), (4.29) and (4.32)-(4.37), 
(4.40)-(4.42) may not he equal to zero. 
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Vector function Ay(/), fix(t), fia. 0>.(Í), /^(/), AM{/), independent 
of b, will be determined by the system of variational equations (b.lh)- 
(6.18) a 1 onj; the curve of the "zero" solution C0. Let us write the 
system of equations conjugate with the system of variational equations 
(6.16)-(6.18) as follows: 

at ty ^ 

i'*'a“», 

/«»' =-. -ä1z<» i- /qv«" }-Afla«'»-Ply.‘i>. 

;•(•>_, -¡-ß.adi-C.fs«'*, 

a(i,==0, 

-ciz«"-^"» fc;v<>» K;a«>»-/?;?“) =.0, 

D,v,n - /T,?^ -f P,am =0: 

¿t*> = - Dl/.«5' -f ^2V<*’ -i Fja»**—0,^*». 

/(*» =_Ä;2l*>-fFiv^*>-^-Afia<,,-¿a¾',,-p»X(,^ 

u<s»=0, 

— ^ — f Gav*1' -f ¿ja111 —/?îíi<,, =0, 

Djv ’* — j Pja,*) == 0; 

at K’ tk1 

= - A'3Z(*> - Dlyj1* + Kt*" -r Ffl™ - 
/0)=-^1^1 f/Mla«1»-!,'!»»»-/>«<»>, 

¿i<’>-^0, 

- Clr^» - fly«1' r Glv'-f ¿ju'3' - 0. 

/V43’- F,;'!’3' ' P3a<3»==0. 



Systems (6.16)-(6.18) and (7.2)-(7.4) are conjunate, since the 
matrices with coefficients Sy and z or Sx and z, ia and 1, 6u and x» 
S y and V, and a, Æ i and ? are produced from each other hy trans¬ 
portation and sijtn changihr. 

Linear equation ■ystem (7.2)-(7.4) is called the conjugate system. 

Let us now show that if W(t), 6x(t), 6a, 6>(ti, Sn(t) is an 
arbitrary solution of system (6.16)-(6.18) along the curve of zero 
solution C°, while z(t), l(t), v(t) and a is an arbitrary solution of 
conjugate system (7.2)-(7.4), the scalar derivative 

\ • ■ z'ly ¡'T-a v'ô/. j a 6»1 

constantly correspondingly between t^ and the hypersurface 

and 0,^=0 and «-0. 

Actually, between t^ and hypersurface * 0 we have 

(z'íy ; Via v'ÍÁ -a'ôtl) z’iy-rz'iy )- Via -f Via -(- 

.- v'4/. v'i/. ) a’ît)-}-a'fcn. 

Substituting values of z, ^y, 1, 6a, v, f>\ (i, íñ in the right 
portion of this equation according to variational equation system 
(6.16)-(6.18) and conjugate system (7 2)-(7.4), we produce 

JL(;0) iy 10) ia , , ( 
tit 

K\x"> G,JH»)'; òy f Btia fC.t«)-}- 

. j f)V<i)-i ,m;u‘ 1 >-¿f(,v<')4- 

C,>“>)' U'1’ v< "' ( — >4, x> — F ¡ia- G ¡lit — K fly— 

— Dj,yi)) (tnr ^ _ t\iy— B\W')—LxlM—M¿‘a — P'WX))=* 

= —/> 'l)\ly — (j\iy 2<M C,tu —v»1» Ojòa — 

— v' " 0,y » - a' » >• £,?.« — ¡s«1 » li*« • 

i *('> I 
/(/) 
v(<) 

lyKt) 

la 
I'M) 

in (/) 
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Keeping in mind the third equation from (6.16) and the third 
equation from (7.2), we have 

. ,-//•)• P,««— 

=( -C,z‘'> r Givi'» T ¿ja«»- p,;««))- r4, i-yOrp^. 

Substituting the value of Djiy in the right portion of 

the preceding equation, we find 

- >o>¿;ía _ - ^'»û; ï^n» -uorpj^d). 

Further, substituting the value of R.Su here, according to the 
last equation of (6.16) we produce 

- vO)'D¡í|»")= - (ü.vO) + P^»'>_ £,;:(!))■ 8^(1)=:0, 

Since the coefficient with matrix column 5 is zero according to 
the last equation of (7.2). Thus, between tn and hypersurface i)»® 1 0 
we have 1 

z<)> iy+ _j-vO'k ^ a"> eii 1^=0, 

or the scalar product 

(7.5) 

Similarly we produce 



I /“»(Z) 
I '<’>(/) 
V a<»(/) 

/'**(0 

ÍJ/tO 
lia 
*).'»)(/) 

8^(/) 

ijt(0 
ta 
tÀ<J)(0 
tn<*>(0 

-o. 

■o. 

(7.6) 

(7.7) 

Therefore the following lemma is correct. 

Lemna 7- Suppose 1(/(/). ta»'». WV) and ia<”. »nMO 

and WHO. ^"(O i* uit arbitrary solution of variational 
equation system (6.6)-(6.18), while i'-H 

is an arbitrary solution of conjugate system (7.2)-(7.4) along the 
curve of the "lero" solution C°, which satisfies equation system 
(1.4)-(1.12) and (4.15)-14.20) considering equations (4.22)-(4.24) 
and the stop functions <p = 0 (s * 1, 2, 3), and the end of which 
satisfies the initial conditions (1.14) anc (4.26), (4.27), (4.39), 
and conditions (4.13). Then the scalar products 

/1 -"V 
i I /«"(0 
1 ! v<"(0 

\| 

«1/(0 
la<'» 

l/.<»(/) 
în"'(0 

/'•’HO 
^*'(0 
qU) 

! 8y(0 
; la*’» 

WHO 
I I'f’HO (i‘*H0 

0(0 
s4»»(0 
„(3. 

8-t(0 
«a«7» 
8/.«» (/) 
£»1*3)(/) 

are equal to the corresponding constant quantities in the correspond¬ 
ing sectors of the time number axis between the stop functions where 
t fT. 

Conditions (4.29), (4.32-(4.38), (4.40)-(4.42) after exclusion 
of the Lagrange constant factors e(|, , c^, together with 

equations (1.1)-(1.3) and (1.15) without conditions (7.1) can be 
divided into two groups. 
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rh,> first «roup includes the expressions 

:"v;). ni"(/,-)i-*oc. i.s:¡^].p) 
WH';). n«’»(/-)) o (; ,s + i.*>, 

a,. ,,o)^)) 0(m-*4.l.n + r), t 

“5!;f Sr^iT""on ,h0 ',yp",urf'’"' «*- ^ 

The second t’roup should include the equations 

UUfi !>itf7).y,Vt), a,. 

l*~l- ,2n + r-p: i /¡=1.,,. 
X-V + l r), 

n'H'vii. (fv\ ï/i/,). xj*1 (/,), /y>(/.)). o 
./-=1.m), 

(7.8) 

equations 

(7.9) 

píasrrcooídÍ¡ate¡SvCOntÍnUÍtÍÍ f°nditions ;ind transformation of the 
pnase coordinates y.. Xj and Lagrange coefficients >. respectively 

on surfaces i),“ * o and v” « 0. 

not fÜîfined"Tithf "T0" solution CS* conditions (7.8) are 
lied, although on hypersurfaces = 0 and ^ = o, discon- 

°f the Phase coordinates ami Lagrange 
i1 n • k*'iys occurs according to the corresponding 

iïo^iîTV."*?!; /" COnn¢,Cti0,; With this* the left portion of equa- 
(7.81 w] ho represented as discrepancies written as follows: 

(*i)W!,\ (^=^. 
(7.10) 

FU"Ctt0"5 ^ p"’ “111 be C*1 led ,hc honndary pr„ble. 
functionals in the following. 

Furthermore, we will assume that conditions (7 9) with knnwn 
phase coordinates and Lagrange coefficients >. to the left of the 
J.scon.imuty and fixa,,™ of „ , or ■, 

determine the phase coordinates and Lagrange coefficients X., n 

of °ní the discontinuity. Then according to the theorem 
eX,Stencc of '^‘»cít functions, the ranks of the matrices 



-ill? -<ll? ,»11? 

'"i, 

oil? 

dr). 

,(111] 

-l’» 

should he Jn ♦ (r - p) and 2 m respectively. 

tionsLet "S M0W WrÍtC thC fÍrSt 0(1uati0" of »ystcm f7.9) in varia- 

where B. 

]8< 

«ni» 

B. 

tiiij ^ilf 

àyT, <»»}¿‘ 

lv7 

V 

; C, 

- C'la - 

dll* 

oa„ 

«** I ’ II «njí ar^ ^hc matrix columns of variations of 6y. , & y 6a 
iind 6ri respectively; lil iq * 

1,9 jq withmrtriX "olumn.üf th‘’ fu'l derivatives of functions ny with respect to time. 

that 
From this, keeping in mind that matrix Aq is nonsingular and 

occurs, we produce 

8i/+ 

V 

8n'3* * 

n. 
itr 

8a") 
« 

(7.11) 

-37(,- 



where 

-V ( + -jf S' fi") "’'i") • 
system of 
sidering r 

We ca 
It consist 
of the vec 

Similarly we find 

where 

I **' 
I *'>” (7.12) 

D.-vf-'.+Jj-1".). e.- 

an7 »"71! 

A;'c„ 

for which 

give the ( 

To do 
the form 

Thus, equations (7.11) and (7.12) allow us to determine the 
variations of the phase coordinates Sy or <5x and the variations of 
Lagrange factors f > ,Sn to the right of discontinuities arising at 
the moment of satisfaction of the stop functions il/O * 0 and iK * 0, 

according to the values of variations of phase coordinates and 
Lagrange coefficients <5 >to the left of the discontinuity and *a. 

Equations (7.11) are the altered conditions of discontinuity 
of variations, while equations (7.12j are the conditions of trans¬ 
formation of the variations. 

6 V (3) 
If w 
, 6n 

e assume that there are 
,0 and «y, « >(2} 

(n + r) independent sets ix, ia, 
6n(2) I .0, then, integrating 

variational equation system (6.16)-(6.18) conditions (7.11) and (7.12) 
along C® (n * r) times, we can.produce (n ♦ r) independent relation¬ 
ships 6y„, 6a, 5> ÍD and ini , However, for determination 

0 0 0 q (1) (1) , (2) 
of the (n ♦ r) independent sets iy^, 4a, 5 > 0 and 4ng , 6"^ , we 

can, using lemma approach by a different path, integrating the 

and the re 
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r) times con- system of conjugate equations (7.2)-(7.4) along Cu (n ♦ 
sidering relationships (7.5)-(7.7) and (7.11), (7.12). 

We can now more precisely formulate the purpose of this problem. 
It consists in the determination of the deficient (n ♦ r) values 
of the vector functions 

*!/('„', **('<>). la, 

for which the newly produced solutions 

//(0 M*(/). 

a=<j°T-Ma, *l(/>-='l0l0-r«n(0. /.(/)->.«(/) f «>.(/) 

give the (n ♦ r) functionals p, p^, p^3^ the minimum value. 
ç Í m 

To do this, considering variational equations (7.10), which have 
the form 

/ ly 

l.o =-1 gradpl1*! o, 
1 l»! I ¡*i 

o==| gradp!1* |.o, 

^L3’|,o-( gradp'*'j o. 

and the relationships 

/’i" g,ad^'^-gradp‘*>|(--grad, 

grad /»!** |vo=grad p«*>| --— grad^j-. 

grad p'? ■= grad |(j - grad 4$ 

-378- 



which convert them to 

• ’(J) I! J 

V '' ¡I 51-,(1) 

1 £»’,<*> 

d,ú- 
(?.141 

we should take 

*ÍW 

"W,) 

WV 

W(t.) 

viW 

*ŸM~ 

v}5J(/.) 

/ ij1» 

\ dí" ¿® 

Vi” 

dp. 

d/}'» _• an 

dyi 

d? 

Oai 

àA" 

)'# ’ 

a- 

o .- ’ 'i 

-( 
¿ís> 

dyi 

0p{» 

¿s 

,(5) 

«•«i. 

(2) 

Pi 
¿o da 

àPj 

óM5> 

Jd^__ 

\ ò*i ÖXJ 

¿Pi" 
da„ 

Pm 
:.o 
í'a 

¿s 

d/7'» 
-^"î- U(J)^ 
<)x<» L ^ 

/ lie 

% /17 

*" j'7 

àp^ I 

^i7’ JC* 

*1) 
dxj K 

H.- 

« 

d 

da, 

ÓP? 

*>?> 

(7.IS) 

Í7.16) 

(7.17) 



Relationships (7.15)-(7.17) arc the initial conditions for the system 
oi conjugate cquations. 

dp"' 

-,3>(0 
/>3»(/l 

v<s>(/) 
i 

'>■<(/) l|\ 

|| j 
^^(/)1)/ ♦s . (7.19) 

further, adding the left and right portions of equations (7.5)- 
(7.7) and keeping (7.19) in mind, we find 

/1 

‘'PL3'- 

\ 

¿<*'(/) 
/«5»(/* 
v<3>(/) 
a«1» 

/!;«•>(/) 
' /«’>(/) 

v<?,(/) 
!a<5’ \ 

-I 

'il 

1 1 /<"<0 

a«> 

W 

»y(0 
lia 

51)(11(/) 

— 

U(/) 
Da 
5/.<3'(/) 
ir,H)(/) 

/|z<?,(/) 

- 

/'!>(/) 

a12* »*» • i 

j«ÿ(/) 
¡?íi 

¡í'¡«:'(/)| o 
+t •- 

,0 V fl- \ 

V<»{/) 

,,11) 

I ^(0 
ha 
5/.( 1» (/) 
5.)") (/) 

from this, considering relationships (7.11) and (7.12) and the 
equation 
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a<s> 

/il/«1» 

ia 

180 (i,.-« :r u-„d 
a-» 

+i- 

where 

we produce 

ÎÎ=|£a,+,.iû,), W5>(V=*IK>>.W}’'}. 

IXDNIgstl». 
||Îÿ(0 

^LIÄNn 
/<*!(/) Il 

UE,* 

Sa 
S«i':,(/) 

1% 
£n¿”(/o) 

'"?♦ 4. 

Here 6y Sa0=;ia,.Sa^|, Sn”’^ are the variations 
of the vector functions deficient at tQ. 

Assuming 

D. 

z‘*> 
v(>) 

>(î) 
a(}) 

♦?+ = 

0 

Z<}) 

ll’5-. 

^"11 u?_ 

vO» I 
(7.20) 

we produce 

■4* 

./11^(4). 
H'mvD 

(m — * +1,..., a + r). 

'Ill a««» u, ¡1 
(7.21) 



Similarly in place of (7.18) we will have 

0=1-1-1.*), 

«-i.*). 

la0 

(7.23) 

Generally sneaking, system (7.21)-(7.23), consistinf of (n ♦ r) 
^equations, has 2(n ♦ r) unknowns «y(t0), i>’”(t0), 5a, 6n(1J(t0) linear 

am) in using the initial conditions in variations produced 

the in/tioi from the transversality conditions at 
* f. p0int f4,26^ and (4-27) and from conditios (1.13), (4.39) 

(7 211 \l U/6 Th" epClude in.+ independent variables from system 
. ^erefore in the following we will consider that 

+ r) independent unknowns i''(t0), f X^^to), 
;'2Ô ( ( 9 "H {n(2)(y: relationships produced (?. is) - (7 ll?) ! 

with which the31 °W US' W!th the initial or "2ero,: solution available, 
ith which the sequence of iterations begins and which satisfies 

an limitations, to complete the solution of the problem 

va i„»íC!rai1ínba!ef??n the iT}\}ia] solution, we can fine (n ♦ r) 
lues of dpy , dp(2) an(1 dp^J), setting them equal to 

(7.24) 
«//>>’> =dpW^. — C* 

where C C^, are arbitrary weight coefficients. 

We should then go over to integration along C° of the coniucate 
system of matrix equations corresponding, to conjugate system (7^2)-(7.4): 
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—Z¡A] — X,0; -L N,/fl I >4^, - 

U-1.2.3). 

n, ^ _ / Ä( _ x,p; f n^;+a,,m; - b1¿( , 
4-.A, 5,-^0,. 

Á;=0. 

- - x,f; -f N^ci -f a,¿; - b,/?;=o, 
-\Di -VP.-B.F^-.O. 

(7.25) 

preliminarily having determined the initial values of the matrices 
at points «K = o. v, = 0 and ^ = 0 according to the following 

relationships 

¿r. 

I ^ I! 
ï") 

!i 

Z") I II • y: • nt . \ 

v«o 
Jm 

\U) 
K 

(/»1.2.3), 

where zí‘\ 1 v(i) „(i) ,, 
Jm nm ’ jm ’- * vj f are the conjugate coefficients 

for initial condition, 

h.2oi if lll ^ conditions 

Thus, we produce system (7.21)-(7.23) of fn ♦ ri ii„„ 
t.ons with (n * r) independent unknowns ( ^ eqUa- 

*!/(/„>. îa„ îni". (/u), i«T«J»(/f), Da. 

vxhz,ic"°rF*: ^ 1 .It the solution of the problem exists. 
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between the cc 
by definition 
proven. 
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equivalent to 
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(6.18). Let it 

Matrix Y. 
i 

conjugate syst 
matrix of coni 
determinant de 



the sequence Of values of functionals f7.10} converses to the absolute 
minimal of the functionals, equal to zero, and thereby to satisfaction 
of .oiHlitiom, (q.8) and (7.9) correspondins to conditions (1.1)-(1 3) 
(I IS) and (4.:9), (4.32)-(4.3'), (4.40)-(4.42). 

minim'’ by sequence of derations of the absolute 

ir or‘lI r r1:^7-101/5 “CCOm»,anied.by checkins of conditions 
N tt » the result of the solution of the multipoint 

boundary problem will be determination of the normal nonsinRular 
ex reme f, which satisfies boundary conditions (1.14) and (1.13) and 
conditions I, or r, 11^ and III'. ' 

Thus, the following theorem obtains, in which the suggested 

sc'nted bv aT S° lltl°n °f the boundary problem is repre- 

theorem 6. Suppose A1 leads to a solution in which functionals 

F w, r,,eq t0 Z?r°- Then alK°rithm A1 determines normal curve 

¡oí II 4 and^n'm riCXtTe WhÍCh Satisfies rh£> boundary condi¬ tions (1.14) and (1.15) and conditions I and 11' or I ' and 11 
N n ' 

Actually, if the iterational 
of functionals (..10) which convei 
the normal curve F. which satisfies 
(1.15). Therefore, by definition 
boundary conditions (1.14) and (1. 
and the optimality conditions for 
one normal curve F conditions 11^ 

between the corner points, at the 
by definition (see § 4) extreme F 
proven. 

process leads to sequences of values 
ge on zero, it allows us to determine 
condition I and equations (1.1)- 

F is the extreme which satisfies 
15), the transversality conditions 
the parameters. Furthermore, if 
or and III' are fulfilled 

corner points to the left and right, 
is nonsingular. The theorem is 

The solution of the conjugate system of matrix equations (7 25) 
corresponding to conjugate system (7.2)-(7.4) along anv curve is 
equivalent to solution of the system of matrix equations in varia- 

ion^ corresponding to the svstem of variational equations (6.16)- 
lo.ifij. Let us compose the matrix 

I1 »/ ! 
(« - 1.2.3). 

Matrix Y. d = i, 2, 3) produced as a result of solution of the 

conjugate system of matrix equations (7.25) will be called the Y 
mutr.x of conjugate system (7.25) in the interval (*?, t | if its 
determinant det Y i 0 for all t f T between the cornei* poCs Any 

-3.S4- 

( 



Y matrix of the conjugate system of matrix equations (7.25) is deter¬ 
mined as a result of determination of a certain fundamental system 
of solutions of the conjugate system (7.2)-(7.4). This leads to 

Theorem 7. If the algorithm A1 leading to the solution is such 
that along the normal nonsingular extreme E we determine the existence 
of a Y matrix of the conjugate system of matrix equations (7.25), then 
J(E) reaches its maximum in the sense of theorem 5. 

Algorithm A1 leading to the solution gives functional (7.10) its 
zero value. Then according to theorem 6 we can assume determination 
of normal curve E which satisfies conditions I, II' or I', II and III'. 

The existence of the Y matrix, the conjugate system of matrix equations 
(7.25) indicates that the sign of detj and det2 of the system of 

matrix equations in variations is unchanged and therefore that detj i 0 

and det2 i 0 for a certain fundamental system of solutions of the 

system of variational equations (6.16)-(6.18). Thus, the conditions 
of theorem 5 are observed. The theorem is proven. 

When algorithm A] is realized on a high-speed computer, a 
number of its specific features must be considered. They are related 
to the selection of the value of the optimal direction of increments 

^*('o). fci'Vo). «CíV. to*. làk, tñi” (/,), 

represented in the following by vector function s^, and to the selec¬ 

tion of the length of the increment step Ayh(t0), A ^ (t0), An^(t0), 

Aah’ ûah * ûnh^^tq^’ rePresented following by vector function 
A^, the vector functions deficient at t^ and t^ for performance of 

the subsequent integration (h ♦ 1), where h = 0, 1, 2,... etc. is the 
ordinal number of the iteration. The value of the direction of 
increment is related to the length of the step of an increment as 
follows: 

A» — 

where is an arbitrary weight coefficient for the selection of the 

length of an increment step or the weight coefficient for the incre¬ 
ment step. 

Bv analogy with k, , the weight coefficients C. = (C1' , CV, , }, 
n h fn çh mh 

regulating the direction of the increment, will be called the weight 



coefficients of the direction of the increment. 

Suppose , , „w-j 

Pi^ ÿ •!* 2 rt}‘ 
i j » 

• l1116 Process wil1 converge if with the corresponding 
weight coefficient of the increment step the final direction of the 
increment s^ is always such that 

PUhrV^P1* 
(7.26) 

since the vector functions deficient at t0 and t , giving ph + ^ its 

minimum value, have been found. 

The computer program for A1 will lead to the minimum expenditure 
of machine time on the iterational process if in the program for 
each iteration selection of and are made to produce 

Pu» i> = M 

c,ec 
(7.27) 

where K is the compact set of permissible k. , 
C is the compact set of permissible CT. 

h 

Therefore, in composing a program for A1, a definite algorithm 
should be drawn up for the selection of kh and Ch> allowing results 

close to condition (7.27) to be produced at each iteration. 

S 8. Estimation of Deviation of Functional from Maximum Value Near 
Extreme 

Generally speaking, it is hardly possible to realize solution of 

ar!v) tlp01nt h0Undary Problcni on a computer, achieving p = (p^, pi'), 

P } = °* 0n tbe other hand, the question of whether it is expedient 
to achieve this precise solution by computer is justified. Therefore, 
the computational procedure for the multipoint boundary problem 
according to A1 will be more definite and the criterion for its termi¬ 
nation will have a definite sense if we can estimate the deviation of 
functional J from the maximum value, when the solution is ne.r the 
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extreme, which sufficiently satisfies the boundary conditions. The 
solution of this problem can be produced on the basis of the formalism 
ot A1 already presented. 

We have 

,// -- 
.•'0 
-» 

grad-i" 

Then, assuming 

we find 

(/,)-0, 

I).: 
a- 

à.\j 

à? 

ca, (8.1) 

/ «',(/o) Il N «a 

[ U"’(V |y< |¡í«V,(/o) 

! »I/o ||\ 

I ||J^ 
(8.2) 

.H) 
Here the conjugate coefficients zí3^(t), v*3\t),.. .(D 

(Íq) . .(1) 

J VV,, ,J .J 

are determined as a result of solution of 

(t0), 

the system of conjugate equations (7.2)-(7.4) with the initial 
tions (8.1) along curve CJ near extreme E. 

condi- 

Relationships (8.2) allows us to estimate the deviation of 
functional from the maximum value with slight deviation y(t0), Ain(t()), 

r * r ÍTq), a from their values corresponding to the extreme 

passing ir the neighborhood of the fixed boundary conditions. It 



should he kept in mind here that if intepration of system (6.46)- 
(6.48) is performed along cJ, then dJ ■ », if along E, then d.J > 0. 

Equation (8.2) and system (7.21)-(7.23) can he represented as 

dJ^-Sîj 

>¡P ~p\ 

la 

8 Vo 
Wo) 

ín 

la 

»«/o('o> 
I! Ku «'o) 

in 

where fij is a matrix row of 1 * (n + 4) order, equal to 

il ¿(O) I 
\ (3) 

o i. -(¾) r,> (.o 
•: ]| -1 i -)(. 

T VC> 
. ul’) Ij 

v*J) • a, ï!: 

r-y -I- 

fl is a matrix of (n ♦ r) * (n + r) order, equal to 

o 

r -(3) 
n ~ 
!; x(3) 

/()) 
o 

0 
-?(■ 

-(1) 
‘0 

2(¾) 

V<») 

a«7» 
F 

* ¡ 

2(5) 

v(;) 
a15) 

o 
’■it 

« 

: i 

V,., 

/(5)1 .L 

.0 
-l- 

Qll) 

/(3) 

'r 

I'o" 

ri 

i ) 
0 

-(1) 
*0 

il'r 
: it 

»! 

a»') 

vj" 

dp is a matrix column of (n + r) * 1 order, equal to 

d /)(3) 
<//>(*> 

dp<'> 
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« 

From this we find 

dJ = 2jQ-'dp=ZjQ-' 

dpW 
dpm 
dpi') 

(8.3) 

This relationship makes it possible to determine the deviation 
of a functional of J from the maximum value with slight deviations 
from the final conditions, from the transversality conditions and 
from the conditions of optimization of the parameters produced in 
any, jth iteration. 

Thus, after any jth iteration and supplementary solution of 
system (7.2)-(7.4) along CJ with initial conditions (8.1), it is 
possible to use equation (8.2) or (8.3) to estimate the deviation 
of functional J from the maximum value either with slight changes 
in y(t0), >”)(t0), n^djj), n(^)(t ) and a on their values at 

the extreme or with any changes in final conditions, transversaljty 
conditions and optimization conditions of the parameters along 
respectively. 

1. Avdi 

2. App 

3. Bar 

4. Bas 

5. Bel 

6. Bi s 

7. Bli 

8. Bol 

9. Bon 

10. Bor 
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SYMBOLS USED 

¡y 

hanics, 

b0i 

dP 
D 
d 

'O’ 

fsf 

- vectors of constant Lagrange factors; 

OJ 

wh 

wh 

Pi 
H 
I 

• thrust vector, component elements of which are thrust to 
weight ratio of stages; 

■ vector of specific mid-ship section, component elements of 
which are specific mid-ship sections of load-bearing elements 
of stages; 
design parameter vector; 

■ vector function of actual parameter; 
- vector of choking parameters of flow rate of working medium 

per second: 
E. , e , e , e”,... 
k q u 1 

- safety factor; 

- gravitational acceleration at the surface of the earth; 

launch (initial) weight of flight vehicle; 

- vector of "dry" weight of booster or vector of dry weight, 
component elements of which arc dry" weights of stages of 
flight vehicle; 

- vector of initial weight of boosler or vector of initial weight, 
component elements of which are initial weights of stages of 
flight vehicle; 

- vector of payload of booster or pavload vector, component 
elements of which are payloads of stages of flight vehicle; 
vector of design working medium reserve, component elements 
of which are design working medium reserves of flight vehicle 
stages ; 

vector of operational working medium reserve, component ele¬ 
ments of which are operatioal reserves of working medium for 
stages; 

- payload of flight vehicle; 

flight altitude; 
criterion of effectiveness; 



k 
L 

n'1 

.0 

max 

Q 

QÇ 

0(i) 
'tk ‘ 

r 
R 
R, • 

t 
T - w 
V 
y(n. 
Y 

specific thrust vector corresponding to P^, component elements 

to HxeS conditions;4" °f StaRe POWCr pli*nts -"^ted 
im[)erical coefficients vector; 
flight range; 

design load vector, component elements of which are desien 
modes of load-bearing elements of flight vehicle- ^ 

SÎiSs1ofd.VC?K^, ':'ninpOn0nt olomonts of Which are opera- 
tiona oads of load-hearing elements of flight vehicle- 
loadsM0?on7ht0r: comP°nent elements of which are actual 

relative 1^™« °f fIiRht Vehic1^ 
summary functional; 

jth functional; 

tnrusts of power plants of flight vehicle stages, corrected to 
corresponding conditions; corrected to 
aerodynamic drag related to <;(); 

vector required specific heat flux; 

specificfheatCfi1C heat f¿UX’ t'0mP0"ent dements of which arc 
surface^ 5 t0 chiir;«t"istic Points on flight vehicle 

ofCstagesf;aCtUal SpeCÍfÍC heat fluxes t0 structural elements 

vector of parameters of direct regulation of motor thrust- 
structural element vector; 
radius of the earth; 

length of flight trajectory; 

vector of design characteristics of thermodynamic power plant 
parameters, component elements of which are thermodynamic 
parameters xntl eming weight and dimensions of fuel tanks tur- 
hino-pump unit and other power plant units- 
time of motion; 
vector ol actual temperature of structure elements; 

Might vehicle velocity; 
-iO - vector function of conjugate factors- 
aerodynamic lift related to <’; ; 

i* N’ WT * vectors of arbitrary parameters; 
angle of attack; 
heat transfer coefficient; 

C0,np0m'nt elements of arc parameters 
tending dimensions and form of flight vehicle, power 

plant and ¡ 
Æ - strength vc 

characteriz 
elements; 

^ - relative st 
e - trajectory 
Ht), n(t) - vecto 
1^ - rel at i vc we 
Vrs - relative fui 

^ - vector of rt 
••eight vect^ 
we.ghts of < 

vwh ' voctor of n 
elements of 
flight vehic 

^ - vector of re 

relative ini 
,(1) 
^ - vector of rt 

weight »ecto 

kpl 
U,1 = - - relati 
p % 

vu» V - vector funct 

n - plan paramett 
p 

o - vector of des 
design stress 

w - angle between 

The letters w 

To save space, all v 

1111- quantities in rh- 
difference between tl 
the vector multipliet 
a vector mult ip Ijed - 

Partial deriv. 

The scalar or 
aye represented h> pi 
f,(x, a). 
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Plant and individual units, their relative dimensions; 
strength vector, component elements of which are parameters 

elements'"12 ’ Strc”sth Proper t ies of load-bear in,- structural 

- relative strength vector; 
- trajectory angle; 

Mt). -.(1) - vector function of variable Lagrange factors; 

- relative weight of flight vehicle: 
relative fuel consumption per second; 

vector of relative "dry- weight of booster or relative dry 
■eight vector, component elements of which are relative ' drv" 
weights of stages of flight vehicle; 

t,CSiKn workin« fIllid reserve, component 
e oments of which are relative reserves of working fluid of 
flight vehicle stages; 

vector of relative initial weight of booster fer vector of 
relative initial weight; 

rs 

*wh 

Hi 

,(i) 

Pi 

G 

vectoi of relative final weight of booster or relative final 
weight »ector; 

Pi 
relative payload of flight vehicle; 

0 

vu, V - vector functions of conditional controls; 

n - plan parameter vector; 

vector of design stresses, component elements of which are 

w ? !°ad'bear,nP elt‘ments of flight vehicle; 
- angle between velocity vector and vector of force of gravity. 

The letters without the * represent vectors: n, a(), x, u, etc. 

ÍXji It, - V- 
To save space, all vectors are vector-rows: 

diffeïîü^^t Ín ThI; Parentheses aro rhl* componentÍ of‘vector x. The 
difference between the row and column form is not considered. Usually 
the vector mu t,plied by the matrix to the left is a vector row w l e 
a vector multiplied h> the matrix to the right is a vectoî c^ain 

Partial derivatives marled with the * are matrices: 

!/_ 
dr 

?L tu 

•ire rendent'V/'h <>r1V0Ctor ,functi°ns “f scalar or vector variables 
;.‘(x in c"r‘l1 b' pl-ing tr.e argument in parenthesis ; x(t), ffx, u), 



cj; o
 

« 

The arguments t and t+ represent the left and right limiting 

values of the function of t: x(t_) * lim x(t ♦ e) and x(t^) = lim 
x(t ♦ c). ' e-K) e^O 

e<0 

The symbol sup is the supermum (least upperbound) of all u. 
u 

The symbol inf is the infimum (greatest lowerbound) of all u. 
u 1 where a > 0 

The symbols sign is the sign operator: sign a = 1 where a < 0 
0 wh*:re a = 0 

Appendix to Chapter I 

“kp 
D 

Et 
F 
f 

tj; 

G?r 

ts 

Gwh 

bt 
T 

n 

ind 

fraction of weight of structural elements (see indices) of G^; 

thrust to weight ratio; 

specific mid-ship section; 

critical cavitation coefficient (speed cavitation coefficient); 

mid-ship section diameter; diameter of other elements (see 
indices); 
modulus of elasticity at fixed temperature; 

area (see indices); 
relative area of output cross section of nozzle; 

safety factor; 

total fuel reserve; 

design summary fuel reserve; 

weight of structural elements, portion of fuel (see indices); 
fuel flow per second; 

weight of tanks of main components and itlatcd design elements; 

relathc height of tank bottom; 

distance from liquid surface to design cross section; 
distance from liquid surface to turbine pump; 

weight ratio of main components in engine combustion chamber; 

weight ratio of main components in gas generator combustion 
chamber; 
adiabatic indicator; 

statistical coefficients; 

N 
n , - 

xl 
n , - 
yi 

co 
sui 
le 
re 

he; 
fo 
se 
beJ 
Poj 
ac( 

at 
ax 

tr 

ro 

ma 

rc 

sp 
Pk - P- 

Pa - Pr 

P * pr 
PH - pr 

P5 - sa 

PH * at 

pP - de 
of 

q - re 

V rH * 
K - ga 

Ro - " of 
S - mi 
T T wr, wo 
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coefficient considering difference in midship section area from 
summary area of output cross section of nozzle; 
length (see appendices); 
relative tank length; 

bending moment in design cross section from normal aerodynamic 
force component acting on lateral surface of rocket between 
section 0-0 and design section; 
bending moment in design section from force of weight of 
portion of rocket between 0-0 section and design section; 
actual bending moment; 

actual axial force; 
axial load (coupled coordinate system); 

transverse load (coupled coordinate system); 

rotating speed of t’Trbine-pump unit, rpm; 

maximum thrust in a vaccuum; 

relative maximum thrust; 

specific thrust in a vaccuum; 

pressure in combustion chamber; 

pressure at nozzle output cross section; 

pressure (see indices); 
pressure at output of turbine-pump units; 

saturated vapor pressure; 

atmospheric pressure at altitude H; 

design value of summary gauge pressure in design cross section 
of tank; 
relative flow strength of combustion chamber; 

- extern.il and •'ternal radii of blow tank; 

gas eons ; ,,r.t ; 
axial component of aerodynamic forces acting on lateral surface 
of rocket between section 0-0 and liosipn section (see indices); 
midship section; 

- temperature of fuel, oxidizer tank shells at design ^ross 
sect ion; 

-598- 



T 
V. 

' th 
v_„ » 
PP 

temperature indices); 
tank volume; 

force of chamber pressure; 

’TUA* Y.™,., Y , yc - specific weights of motor unit, turbine-pump cc 

y 

6g' 
5 
Ap 
n. 

cj 
7bt 

;kp 

m 
a 
T 

r 

»C 
* 11 

unit, combustion chambers, nozzle; 
specific gravity of material of structural elements (see 
indices); 
specific gravity (see indices); 

j - thickness of fuel, oxidizer tank shells; 

thickness of structural elements (see indices); 
hydraulic losses (see indices); 

stability rs=erve for tank; 
strength reserve; 

relative final weight; 

relative weight (see indices); 
degree of increase of pressure in ejector; 

temporary drag at fixed temperature; 

critical stress; 

mcridianal stress; 

tangential stress; 

time spent by fuel in chamber; 

coefficient of completeness of pressure in combustion chamber 
of engine not considering cooling; 
nozzle coefficient; 

loss coefficient to cooling; 

loss coefficient to dissipation o£ velocity at output of nozzl 

IndIwCS 

a - nozzle output rrosv section; 

ap - equipment; 
pp - control apparatus; 
b - tank; 
bt - blow tank; 
Bf - section at input pump; 
g - fuel; 
gg - gas generator; 



np - nose portion: 
pp - motor; 
kp - critical cross section of nozzle; 
cc - combustion chamber; 
H - blow; 
ue - unconsidered elements: 
0 - oxidizer 
p! - payload; 
p - design; 
c - nozzle; 
F - fuel; 
fg - gas generator fuel ; 

- fuel section; 
tail section; 

b - beams ; 
ej - ejector; 

Chapter I I 

Oi 

b0i 

thrust to weight ratio of irh stage; 

specific midsection of ith stage; 

,10' .(il .lil 
#}. *4. e^. eu , . .0) 

'(H) 

Pi 
II 
II 
I 

.1 

L 
L 
I’ 

Oi 

max 1 

P 

t 
V 

c cv. ot - constant Lagrange factors; 

launch (initial) weight of flight vehicle; 

payload (load) on flight vehicle; 

flight altitm 
flight altitude ot booster with independent maneuver; 
criterion of effectiveness; 
specific thrust of power plant at ith stage at P 

max i 
flight range; 
flight range ot booster with independent maneuver; 
- maximum thrust of power plant of ith stage; 

rclat he thrust ; 
.ith functional; 

summary functional; 

area of characteristic urface of ith stage; 
flight time; 
flight velocity; 
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C
D

 i
 X

- 

V - flight velocity of booster with independent maneuver; 

Wli’ w2i’ w i * arbitrary parameters; 

/jit), tjd), y.(t), Zjtt) - conjugate coefficients; 

a - angle of attack; 
V - instantaneous relative weight of flight vehicle; 

- trajectory angle; 
- trajectory angle with independent maneuver of booster; 

^(t), n(t), n(t) - temporary Lagrange factors; 

G 

"Pi 
-Ei . relative payljad of flight vehicle; 

- total weight of second stage; 
Oil 

Mi _ ®S1L - relative payload of booster; 
Go 

- relative final weight of Jth stage; 
- relative weight of booster after separation of second stage; 
- relative weight of booster at end of independent maneuver; 

vj,,t - arbitrary control functions. 

Chapter III 

V - thrust to weight ratio of ith stage; 

.10» .11» 
'» '»!• 

A21 

* *0/ * 

- constant Lagrange factors; 

M 
Pi 

MO 
M 
Oi 

N 
sp 

s’ s 
mass of payload of spacecraft; 

initial mass of spacecraft; 
initial mass of ith stage; 

specific power of ERM; 

thrust of power plant; 
relative thrust of power plant; 
summary functional; 

jth functional; 

y 

V 
component like velocities of spacecraft on x, y, z axis 
of geocentric equatorial coordinate system; 
component velocities of spacecraft on X, Y, Z axes of 
heliocentric ecliptic coordinate system; 
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’—1 

I 

çe; 

V Vyr* vz * component velocities of spacecraft on x, y, z axes of 
• ^plajet^entric equatorial system; 

x’ y* z* ^ » Y'> ^ * component velocities and coordinates of 
earth in heliocentric ecliptic system; 

Vx ’ * ^2 » Z” - component velocities and coordinates 
of target planet in heliocentric 

e ecliptic system; 
W0i * exhaust velocity of working medium products of ERM, ith stage; 

x> y» z ■ coordinates of spacecraft in geocentric equatorial system; 
X. Y, Z - coordinates of spacecraft in heliocentric ecliptic system: 
x, y, z - coordinates of spacecraft in planetocentric equatorial system; 
a, 6, y * directing cosines of gravity vector; 
a, p, e, w, n, i - parameters of planet orbit (index0 relates to 

_ earth, index pi relates to target planet); 
e e - inclinatirn of planes of equators of earth and target planet 

to ecliptic; 

f’V* c'! “ y* 

V m’ nj’ '’J * variable Lagrange factou; 

p - relative mass of spacecraft; 
- relative final mass of ith stage; 

Vra’ Vm " coniu8ate coefficients; 

Appendix 

{a.} - set with generating clement a.; 

= - equal; 
/ - not equal ; 
= - identical to; 
<( 2.) ” less (greater than) or equal to; 
<( >) - less than (greater than); 
l' - union 

- intersection; 
- is a subset of 

6 - is an element of 
» - product 
[t', t") - closed interval t' ^ t * t "; 
(t', t") - open interval t' <t < t~'; 
(t', t"l - semiopen interval t' < t < t". 
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This book discusses algorithmic methods of planning of flight 
vehicles using electronic digital computers. One such method 
of optimal planning is developed and investigated, including 
a presentation of the variational problem (strict mathematical 
definition of the required conditions of optimisation) consider¬ 
ing analysis of the flight vehicle as a structure which receives 
various loads in flight, and as an object of control, plus an 
algorithm for its solution with a mathematical foundation for 
the algorithm itself. A multistage flight vehicle is used as 
an example to show the peculiarities of this algorithm when in¬ 
dependent maneuver of the vehicle is possible after separation 
of initial stages or when the external and internal problems 
are analyred together during interplanetart/flights. In the 
algorithm, the criterion for improvement of the vehicle depends 
on the flight time, kinematic parameters of the vehicle at the 
end of the flight, its launch ight and the payload which ^t 
transports. Comtining the thee of the variational problem and 
of 1:.-=1 computer algorithm for it. solution provider. ue/ with a 
logically complete algorithm for optimal planning of a vehicle. 
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