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ABSTRACT 

Equations are derived for the species concentrations in coupled 
chemical equilibria in the gas phase.    This is done both for the method 
of the direct minimization of the free energy as well as for the equilib- 
rium constant method.    The relations developed are such as to allow for 
the inclusion of detailed real gas effects.    The emphasis is on practical 
problems encountered in the actual calculation of the species and the 
thermodynamic properties.    Expressions are derived for the direct cal- 
culation of the concentration derivatives with respect to temperature 
and density required for the calculation of the derived properties (i. e. 
specific heats,   sound velocities,  etc. ).    Considerable space is given to 
discussion of the non-linear numerical methods available for the solu- 
tion of the non-linear equations for the species concentrations. 

in 
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1.  INTRODUCTION 

In this report we shall discuss the determination of the properties of 
a gaseous mixture capable of changing composition through chemical reaction. 
Our approach will differ somewhat from the usual textbook approach in the 
sense that we shall go beyond the development of the fundamental thermodynamic 
relations to discuss some of the practical problems which arise in the actual 
calculation of the thermodynamic properties and compositions for such mixtures. 
We shall restrict our discussion to homogeneous gas phase reactions, the 
interested reader being referred to the appropriate literature for extensions 
which include condensed phases." 

In the derivations that follow, the usual assumption is made that 
chemical reactions can be frozen at any point in their approach to equilibrium. 
In other words, our system can be In thermal and mechanical but not chemical 
equilibrium. The reasonableness of treating such systems within the framework 
of thermodynamics is based essentially on the fact that the functions which 
describe the properties of the system when it is not in chemical equilibrium 
reduce to those for complete thermodynamic equilibrium on substitution of the 
equilibrium compositions, no other changes being required.' 

The analysis of the chemical equilibrium problem ultimately results in a 
set of non-linear equations which have to be solved.  Since these equations can- 
not be solved in closed form, numerical procedures for their solution must be 
developed. These numerical procedures then form an integral part of the overall 
solution of the problem. For this reason, a portion of this chapter has been 
devoted to the discussion of appropriate numerical methods. 

Of primary importance in chemical equilibrium calculations is the selec- 
tion of a subset of species concentrations to be a basis set (in the sense of 
vector analysis)2 for the mathematical description of the problem. 'There will 
be a minimum number of concentrations which span the space of all species 
concentrations. The choice of particular species concentrations for this basis 
set is somewhat arbitrary. The species whose concentrations have been selected 
to be that set will be referred to as reference species, all other species 
being designated derived species. Since the number of reference species is 
intimately connected to the number of distinct atomic species, a certain sim- 
plicity is obtained if the atoms (and free electrons) are chosen as reference 
species. This particular choice of reference species is not always convenient 
from a computational point of view however. That problem is discussed below and 
simple matrix methods are presented for the transformation of species from 
derived to reference species and vice versa. In most of our discussion, we 
shall consider the gaseous mixture to consist of 2. chemical species made up of 
free electrons, c-1 atomic species, and m(=£-c) other species, the atomic species 
together with the electron being designated as reference species and all other 
constituents being designated derived species. 
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as 
The chemical formula of any given species can be written, symbolically, 

c 
s, =   n (p.)      i « l i (l) 
1 ~ j-i * viJ 

where the P. refer to the formulae of the reference species only (since we take 
these to be the atoms and free electrons). It should be noted that the 
reference species have also been included among the S .  For these species, 

however, (1) becomes an identity, since for them v.. = 5 ., the Kronecker 
delta. The subscripts v  represent the amount of -"reference species j con- 
tained in one molecule ofJspecies i. 

A chemical reaction connecting the four species S. , S„, S~ and S, can 
be written 

Vl + a2S2  = a3S3 + \\ U) 

According to convention, the left hand members, S- and S_ are called reactants 
while the right hand members , S- and S,, are called products. In what follows, 
it will be convenient to replace the stoichiometric coefficients a. by 
coefficients t. whose magnitudes are equal to those of the corresponding a., 
but which are negative for reactants and positive for products. Equation *2) 
becomes 

I \  S±  = 0 C3) 
i«l 

The coefficients ,t and hence the t., are chosen so that (3) is balanced for 
every reference species. This balancing can be simply expressed 

y t v     -  o <4> 
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where j runs over all the reference species. 

Equation (3) has been written for the single reaction (2) involving the 
species S,. Its generalization tc 

arbitrary numbers of species is simply 
four species S,.  Its generalization to simultaneous chemical reactions for 

I  'ik Si 
O) 

where k runs over all the reactions and i over all species. Equation (4) is 
essentially unchanged by the addition of the second subscript to form t., . It 
will be noted that t_f^  is zero when the ith reaction does not contain trie ktn 

species.  In other words, the matrix T (whose elements are the t.. ) is defined 
such that each column is associated with one species and each row with one 
reaction ordered in some arbitrary fashion. Each row column position of such 
a matrix is then associated with a particular chemical reaction, and a particu- 
lar chemical species which takes part in that reaction. 

■ 

The specification of the thermodynamic state of a heterogeneous mixture 
requires the specification of two thermodynamic variables, e.g.» temperature 
and pressure, along with the specification of the composition of each phase. 
Since we shall restrict ourselves to the gas phase, it is only necessary to 
specify the pair of thermodynamic variables along with the composition for the 
single phase. The specification of the path by which this thermodynamic state 
was obtained is totally irrelevant to the specification of the state. For 
systems capable of undergoing composition change through chemical reactions, 
this is equivalent to stating that the particular chemical reactions by means of 
which the equilibrium composition was attained need not be stated.  In fact, 
in describing any particular such state, one is free to choose any convenient 
set of possible reactions which includes all species of interest. The Results 
of all discussions are then independent of such a choice.  In the initial parts 
of what follows we shall consider all molecules and ions, which we take as 
the derived species, to be built up from their constituent atoms and free 
electrons, which we take as the reference species. This has computational 
advantages particularly for systems consisting of molecules containing small 
numbers of atoms. Practical considerations related to the numerical finite- 
ness of computers will require the modification of this approach when the 
concentrations of the atomic species and electrons become extremely small.  In 
any event, we shall always assume that each chemical reaction equation contains 
only one derived species, all other species in the equation being reference 
species which in our discussion we shall consider to be atoms and electrons. 

The formation of all derived species from the reference species reaun'b 
in a simplification in the T matrix.  In particular, a column which refers to a 
derived species will contain zeros except for that one row position corresponding 
to the chemical reaction for the formation of that particular derived species, 
since that derived species cannot appear in any other reaction equation. Further- 
more, this single non-zero matrix position will contain the number plus one. In 
what follows we shall, therefore, redefine the T matrix to omit such columns, that 
is, such that only columns associated with the reference species are included, it 
being understood that t = +1 is associated with the derived species itself. There 
will be no confusion on this latter point since we shall shortly explicity insert 
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t « +1 for the derived species in all the working relationships. An example 
ofJsuch a T matrix, as redefined, appears in Appendix A. 

Any extensive property of a mixture can be written as a weighted sum 
over the corresponding partial molal quantities for each species, each such 
quantity being weighted by the number of moles of the specie9.  The Gibbs free 
energy is such an extensive property and since the partial molal Gibbs free 
energy is just the chemical potential, the appropriate weighted sum takes the 
form 

I 
G " I n4Vi 

i-1 ±  i (6) 

u being the chemical potential and n. the number of moles of the i  species. 
At equilibrium, the Gibbs free energy must be a minimum with respect to all 
virtual variations consistent with any constraints on the system.  In the ab- 
sence of nuclear transformations, it is clear that any variation carried out 
must be such as to preserve the total number of reference species, whether 

bound or free.  This is a constraint and leads to conservation equations 
which can be written in the form 

I  v^i" X, = 0       j - 1, .... e ■ '7> 
i-1      2 

For reference species other than electrons,XJ is the concentration of the 
j  reference species, whether bound or free, in units consistent with the 
n..  For the electrons, the analagous conservation equation is most conveniently 
expressed in terms of net charge conservation, i.e.x.» in this case, represents 
the net overall charge of the gas. In particular, for a neutral gas.Xj^O. 

The problem with which we shall be occupied can thus be stated as being the 
determination of the composition variables n., such that the free energy given 
by (6) is a minimum under all virtual variations, subject to the constraints (7). 
There have developed two numerical approaches to the solution of this problem. 
In one of these, the problem is numerically attacked directly as stated and, in 
fact, composition variables are sought which result in a stationary value of G, 
subject to the stated constraints.  This method is referred to as the direct 
minimization of the free energy.  In the second approach, the formalism is 
allowed to proceed further before the numerical attack is mounted. Thus, formal 
variation of (6) is carried out, subject to the constraints (7).  There results 
a series of equations each of which connects composition variables with the 
composition independent parts of the chemical potentials for those species appearing 
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in the equation.  Since these composition independent terms can be combined 
to define an equilibrium constant, this second method is referred to as the 
equilibrium constant method. We shall now proceed to derive the working 
equations for the two methods.  In what follows, we shall formally carry along 
in the derivation terms containing various departures from the ideal gas. 
Having derived the required relations, we shall then specialize them to the 
ideal gas in discussing methods for solution. The detailed way in which the non- 
idealities are calculated is contained in Appendix B. Modifications in the 
methods of solution as required by these non-idealities will be indicated but 
not discussed in detail. 

2.  DIRECT MINIMIZATION OF THE FREE ENERGY3*5'6'11 

In principle, the equations associated with this method have been derived, 
namely, (6) and (7).  For an ideal gas, these can be written more explicitly 
in terms of the mole fractions of the species. Thus, the chemical potential 
for a constituent in a mixture can be written 

-RT— *  -ST— + lnxi + ln\ <8> 

it 
where x is the mole fraction of the species in the mixture, u.  (T, P) the 
chemical potential of the pure species i at the same temperature and pressure, 
and y    the activity coefficient of species i in the solution, y    contains 
all departures from Ideality. For a real gas, y.  depends on T,P, and the 
concentrations of the various constituents. For an ideal gas y=  1, In which 
case the concentration dependence reduces simply to the natural logarithm of the 
mole fraction, u.,* can, of course, be written 

U?(T,P)    u.° (T) 

RT RT + InP (9) 

in which the standard state is taken as 1 atm. (101325.ON/m ) and where u.° (T) 
depends only on the temperature. In what follows, it will be convenient to write 
the free energy, G, in dimensionless form by dividing it by RT. Substitution 
of (8) into the dimensionless form of (6) then yields 

tl^l    -RT If    "     J|ni|-RT    +     ln  C -&J     +    lnYi (10) 
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The chemical equilibrium problem is then solved, by the method of the direct 
minimization of the free energy, when the set of composition variable n, is 
found which minimizes (10) subject to the c equations (7) being satisfied.  It 
should be noted that when real gas effects are included, the y.   can depend on 
the concentrations of all species. This will complicate certain of the 
numerical methods used in the solution for the direct minimization of the free 
energy. 

3.  THE EQUILIBRIUM CONSTANT METHOD 

As we have already stated, this method starts with the formal variation of 
(6) subject to (7). The fact that the n. appear in both (6) and (7) indicates 
that the formal variation of the n in (6) cannot be carried out independently. 
These variations can be made independent by the elimination of the proper number 
of variables. This can be accomplished by the method of Lagrange multipliers13 

in which a sum over the c equations (7), each multiplied by an unknown multiplier 

X  ,  is added to (6). When this is done and the variation carried out, there 

results 

(11) 

*       c 

i-1  1 j =i i *-3        ± 

c   I 
I    ( I  Vt,n - X, ) to. 

j=l i-1 1J *   J    J 

where the unknown Lagrange multiplies A. are defined so as to eliminate the 
proper number of coefficients of the 6n;j. All remaining variations then become 
independent. The two sets of variations in (11) can then be carried out 
independently. This leads to the set of equations 

c 
V± + I    A-V  - o 1 = 1, Jt 

and   I  v n -x  - 0 j - 1 c 
i«l *J J   J 

The first of these can be used to evaluate the Lagrangian multiplies X and 
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to determine their meaning.     Since y - -£A v    ♦  it follows from (6)  that 

G    "    I Vi    "    "    I Vifi 
i i,j  J    J 

But, from the second set of relations above 

I 
i 

v, n, = X . 1J1     j 

so that 

G = - I  A_X. J J J 

and -A. can be considered to be the contribution of reference species j 
(whether bound or free) to the free energy.  Since 

-xi ' cf:> 
1    I.f.Xi.i+i 

it follows that -X.  is, in effect, the chemical potential of the reference 
species whether bound or free. 

Equation (11) contains the £ variations 6n.. The fact that these are 
subject to the c constraints (7), means that there must exist £-c variables 
which can be varied independently. This is equivalent to the statement that 
there exists at least one set of £-c chemical reactions for the attainment of 
the thermodynamic state.  One such set of reactions can be obtained by considering 
each derived species to be a product and requiring it to be built up from its 
constituent reference species, the latter considered to be reactants. One ob- 
tains, thereby, Jt-c chemical reactions for the derived species (along with c 
superflous identity chemical reactions for the reference species).  Clearly 
any other set of reactions containing more than l-c  reactions must contain 
redundancies. 

Having reduced the number of reactions to Jl-c, one can obtain an equal 
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number of variables by defining a variable to go with each reaction.  This is 
the sense of de Donder's* introduction of the degree of reaction variable. 
This variable is defined in terms of the change in the number of moles of 
a species produced by a particular chemical reaction. Thus, the change in the 
number of moles of species j as a result of the i  reaction is given by 

where £. is the degree of reaction of chemical reaction i.  By definition, the 
same value of <5£. must apply to each species in the i  reaction, the scale 
for each such species being given by t...  The total change in the number of 
moles of the j  species for the mixture can be calculated by summing these 
changes over all reactions.  This yields 

On  - I  t. 86 (12) 
J    .  JO.  l 

which can be used in (11) to demonstrate the independence of the variations 
55-,  Thus, substitution of (12) in (11) yields 

6G 

c   I 

i-1  i  j=l J lJ A ** k 

+    I    C I viini - X ) 6i  = o 
j-1 i-1 J X   J   J 

But, according to the generalized form of (4), 
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i 

go that 

I V^'ik " .'0 

i,k  li£ K   j=l i lj J   J   J 
0 

The fact that the A have disappeared from the first term on the right means 
that the variations have been uncoupled. Independent variation of the terms 
in this last equation then leads to the relation 

JVij ■ ° J -i... 2-c (13) 

(the so-called equations of reaction equilibrium) as well as the c equations 
(7). The Ä-c equations (13) along with the c relations (7) also completely 
specify the system. Equations (13) will form the basis for the derivation 
of the working equations of the equilibrium constant method. 

Let us again consider the derived species to be formed only from 
reference species. As previously mentioned, for such chemical reactions the 
coefficient of the derived species must be plus unity so that (13) can be 
written 

\ 
+ .1  Mij " ° i s l,...,Jt-c (14) 

where i now refers only to derived species and j referes only to reference 
species and where there no longer remains the possibility for confusion with 
regard to the removal from the T matrix of the columns corresponding to the 
derived species. 

Equations (14) are valid for all values of temperature and pressure 
for which the system is in thermodynamic equilibrium. The explicit dependence 
of these equations on composition for the ideal gas becomes clear on the 
substitution of (9) into (8), setting y = 1, and substituting the result 
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into (14). We choose, however» to carry along the activity- coefficient 
for the present.  (14) then becomes 

RT 
i I* 

+ I *n tt" + lnP + "^ lnP + lnx, + It,.It« + lay + {Vi1"*! 
j *J «* ,- ij        1  j ij  j     1  j *J  J 

0 (15) 

The first two terms depend only on the temperature.  It is. customary to com- 
bine such terms into an equilibrium constant K, for the i  reaction (and 
hence for the i  derived species) by the definition 

lnKi " w + fu-n (16) 

Substitution into  (15)  leads  to 

(Ztj 4+1) t, . t. . 
- InK     +    lnP       J +lix +2>x.   itoy. + Iln pf 1J]    * 

3- 1  i   J     1  v     J 

which can be written 

Ki = n Y, •ij 
Yi <p 

-Ui 
(17) 

where u>.  = [Et. .+1] is the increase in the number of particles in the 
reaction in going from derived to reference species. In what follows it 
will be convenient to introduce an activity coefficient for the reaction 
by defining 

10 
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v.   - 
1 

r ~Hn 

(17) can then be written 

Vl "ui[~Hx. ^ (17a) 

We shall now restrict ourselves to the ideal gas, taking Y. ■ 1 a» required. 
Real gas effects can be included through the introduction of explicit 
expressions for y'  as described in the appendix. 

For the ideal gas, (17) can be rewritten so that the mole fraction of 
the derived species appears on the left and only reference species appear on 
the right. Thus, by transposition (17) becomes, for y! ■ 1 

x = K-P05! nx, 1J 

i   i   j * 
(17b) 

Since, for reactants t.. =-v. ., (17b) can now be simply written in terms of 
the stolchlometric coefficients, i.e. 

ui Vij 
*i-=Kip   JV 

while the activity coefficient for the reaction becomes 

(18) 

J  j J  1 

Equation (18) will form the basis for computations within the framework 

11 
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of the equilibrium constant method. Because we have chosen to write the 
chemical reactions entirely in terms of atoms and the electron as reference 
species, (18) contains v.. in an unambiguous manner with regard to sign.  In 
what follows, we shall also continue to use t  on occasion in order to 
maintain complete generality. 

Equation (18) is appropriate for calculations in which pressure is a 
thermodynamic state variable.  If, for some reason, partial pressures are 
preferred over mole fractions, use can be made of the definition P =x P where 
P is the partial pressure and (18) is then written 

Pi- Kin.Pl J 

Quite often density is a more convenient state variable than pressure. 
Conversion of (18) to the corresponding density form requires the explicit 
use of the equation of state which connects pressure and density.  Thus 
since P is expressed in bars (or atmospheres), this can be written 

x, - K.(P/P0) ill* *■! 
j J 

where P is understood to refer to the pressure at specified reference 
conditions (usually T- 273.15 K and P- 1 bar (or 1 atm.)).  The equation of 
state can be written P = pZRT where Z is the compressibility factor. For 
the one component ideal gas, Z is unity with departures from unity being 
due entirely to non-ideality.  We shall use the same form for the equation 
of state for the reacting multicomponent gas.  In that case, it is 
convenient to let 1/p be the volume per mole of the reaction mixture so 
that, for the ideal gas, Z becomes the number of moles, a quantity which 
depends on the thermodynamic state parameters. Naturally, for the multi- 
component real gas, Z also contains the effect of non-ideality. Now, the 
equations of state are P = pZRT for the conditions of interest and P -p Z RT ■» r o o o o 
at the reference state so that 

(18) can then be written 

12 
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T a ft  W.     VJJ ci = Ki (h 1<f-) inc- iJ 
1
     1  To     P0    J J 

where C = x. Z/Z is the concentration of species j in moles per mole of 
equilibrated gas°at the reference conditions. It should be noted that the 
reference state is being used for purposes of scaling all results and not 
as a standard state in the usual chemical sense. The use of this particular 
reference state may be inconvenient in some systems in which case, if 
solutions are still desired at specified densities, either other definitions 
of the variables subscripted zero should be used or calculations at the desired 
densities carried out in a pressure formulation for which no such reference 
state is needed with an iteration inserted so that the particular pressure 
which corresponds to the desired density is determined. 

Since, in what follows a reference state will always be used for 
scaling, the dropping of the Z should result in no confusion. With this in 
mind, Z/Z can be replaced by Z and the concentrations defined C.=x Z, it 
being understood that these are with respect to one mole in the reference 
state. 

It is convenient to combine the factors which depend only an temp- 
erature by defining an equilibrium constant 

i     i  V 

One obtains,   thereby, 

c.   =   K^p/poAnc.^J (19) 

For consistency  (7) should be expressed in the same units as   (19).    Thus 
(7) becomes 

I      Vij Ci- Xj «0        j = 1 c (20) 

i-1 

13 
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where x., is now in moles per mole of gas at the reference state. Since, 
for the-'electrons, C20) represents the net charge conservation equation 
(with positive and negative charges balancing each other), for them v  in 
(20) is replaced by t .. 

Equations (19) and (20) are the working equations for the equilibrium 
constant method. These equations consititute a set of i  equations for the 
concentrations of all of the species, (i.e. both the reference and derived 
species). As mentioned earlier, these i  concentrations are completely 
determined once the concentrations of the c reference species have been 
specified.  The problem can be viewed, therefore, as requiring the solution 
of the c simultaneous equations (20) subject to the £-c conditions (19).  The 
meaning of this view of the problem will become somewhat more transparent 
when expressions are derived below for the calculation of the derivatives of 
the concentrations. The validity of this view can be demonstrated on 
substituting (19) into (20).  This yields the set of equations 

2yiA(^Wi-;cJiJ - xj - °      j-i c        (2D 1*1        o   2 

which is a set of c equations in c unknowns, i.e. the c reference species. 

Equations (21) are a set of highly nonlinear equations.  The nonlinearity 
arises both from the exponents v.. on the unknown variables as well as from 
the appearance of products of theJunknowns. The question of the existence of 
multiple solutions naturally arises in such cases.  Such problems are beyond 
the scope of this report.  The interested reader is referred to recent 
literature  addressed to this problem. 

We have now obtained the working equations for the two approaches to 
the problem. These are (7) and (10) for the free energy minimization method 
and (19) and (20) for the equilibrium constant method.  Both methods require 
as input the chemical potentials of the individual chemical species (see 
equations (10) and (16)). In the ideal gas limit appropriate to our calcula- 
tions, these and other thermodynamic properties of the individual species 
can, in..principle, be simply calculated by summation over the species energy 
levels.   In practice, there can be problems, however, as we shall mention 
below. 

4. TRANSFORMATIONS AMONG SETS OF REFERENCE SPECIES 

Either of the two sets of equations obtained, i.e. (7) and (10) or (19) 
and (20) can, in principle, be solved for the concentrations of the various 
constituents in the mixture.  These equations contain the assumption that 
there is available a complete specification of the system for input, i.e. 
the temperature and density of the mixture, the thermodynamic properties of 
the constituents, and the specification of the mixture itself (through the 

14 
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values assigned to the X,)»  We have formally assumed that all derived species 
are obtained directly from the chemical combining of the atomic species. 
Because of this, the solution is specified in terms of the concentrations of 
these atomic species. This will become somewhat clearer below. As mentioned 
earlier, the specification of a precise set of chemical reactions from which 
the species are derived is irrelevant to the specification of the thermodynamic 
state of the system. The particularization of the reactions is needed only 
for converting the thermodynamic formalism into a computational structure. It 
follows, therefore, that changing from one set of reactions to another produces 
no fundamental thermodynamic changes in any of the results obtained. 

Now a particular set of chemical reactions will be convenient, from a 
computational point of view, for only a limited set of thermodynamic condi- 
tions. Thus, for example, for chemical reactions in the system H„0, H„, 0^, 
H, and 0, the use of the atomic species H and 0 as reference species, while 
thermodynamically correct, will not be convenient from a computational point 
of view at temperatures sufficiently low that little dissociation occurs« 
While equation (19) in terms of atomic reference species is correct for the 
reaction 

2H + 0 Z H20 

under all conditions, computational difficulties occur at low temperatures 
where the concentrations of the atomic species, C _, become extremely small 
and where the equilibrium constants K, (and hence K ) become extremely large. 

Despite the fact that the C. obtained for H,0 at low temperatures by solving 
(19) must be of reasonable magnitude, it is possible, in the process of carry- 
ing out the multiplications required in the right hand side of (19), for 
numbers to be produced whose magnitudes are outside the limits set by the com- 
puter design. This can often be avoided by changing the order of multiplication 
so that small numbers like the C alternately multiply large ones like K.  or by 
taking logarithms. A second problem is associated with the magnitude of K.. 
While this too Is a soluble problem, solutions are always artificial (e.g., by 
representing K. as a product of factors). 

A much more reasonable and more physical way to solve both these problems 
exists, namely the replacing of the arbitrarily chosen set of chemical reac- 
tions used by another set from which reference species can be defined whose 
magnitudes are within the limits set by the computer. For example, at low 
temperatures it is obvious that H-0 should be formed from molecular oxygen 
and molecular hydrogen.  That is, the computational framework should be based 
on H^ and 0- as reference species with the H-0 reaction becoming 

H2
+i°22 H20 

It should be noted that the coefficient of the derived species has been kept 
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equal to unity to be consistent with the definition of the T matrix. 

In this section we shall indicate how such transformations of reference 
species may be carried out. We shall merely describe how the elements of the 
T matrix are to be changes, the details required to make the transformation 
part of a computational program being left to the interested reader. 

Equation (14) can be written 

Hi  - -I tu ,  i - 1 1 C22a) 
j-1 1J J 

where j referes to the reference species and i to the derived species. 
Equations (22a) include the c identity equations for the reference species 
since these also undergo transformation. In matrix notation (22a) can be 
written 

v'    = -T ■ u (22b) 

with JJ' an £ element column vector and u a c element row vector. T is, of 
course an I  element row by a c element column matrix. 

In carrying out a transformation of reference species, it is essential 
that the number of final reference species be the same as the number of orig- 
inal reference species.  In Brinkley's terminology this requires that the 
dimension of the vector space (i.e. the rank of the T matrix) be invariant 
under the transformation. This requires the equations connecting the new 
reference species with the old to contain as many equations as unknowns, i.e. 
the matrix associated with the transformation must be-square.  In other words, 
if double primes refer to the new reference species, there is a subset of 
equations (22a) which can be written 

• t 
c 

J    k=l 
v, =  "I fcv4uk J "  * c 

where the t  are now the elements of a square matrix.  This can also be 
written in the vector notation of (22b). Thus 

w" 
u "-J. * " (22c) 
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where the subscript s is meant to indicate the square matrix associated with 
the two set§_ of reference^species. Since T issquare, (22c) can formally be 
solved for u tn terms of y" by multiplying By T  from the left.  There 

"S 
results 

r-1    ** * T"1  • V - 'V <22d) 

(22b) can now be writteg. in terms of the new reference species by 
substituting (22d) for u in (22b). There results 

y'  =  T ■ T-1 •  U  ■  T 
I 

with the elements of T- constituting the new coefficient matrix. It should 
be noted that the elements associated with the previous reference species 
will no longer be Kronecker deltas, whereas those associated with the new 
reference species will become Kronecker deltas. As will become clear below, 
these transformations must be accompanied with various changes in the 
identitites of rows and columns In the original T matrix. 

The transformation is not complete until the constants x.  have been 
transformed to those appropriate to the new reference species»  In matrix 
form, (20) can be written 

-*■       * C • T =' X 

Multiplication by the square array T  from the right yields 
Mi 5 

C . T • T"1 ■ X • T_1 
#M     S ^6 

But T • T  = Tn so that this becomes -s   -1 

C • ?i - X • T-l 

and it is clear that the transformations of the ^ constitute the elements of 
the vector equation 
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X*  -  X  -1-1 
-.8 

In order to clarify the mechanics of the transformation, let us take, 
as an example, the set of reactions among the species CO«, CO, 0_, C, and 0. 
When the atoms C and 0 are taken as reference species, the elements of the I 
matrix are given by 

C    0 

CO, 

CO 

°2 
c 
0 

Suppose, now, that it is desired to transform to CO and 0. as reference 
species.  The transformation matrix T and its Inverse are easily seen to be 
given by 

C 

0 

CO 

C   '.) ~s 

with the new matrix T.  calculated from 

CO 

_ _1 
2 

1 
T 

co2 

CO 

°2 
c 

0 
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where the shift of reference species is indicated by a shift in the location 
of the diagonal unit submatrix between the dashed lines. 

To illustrate the transformation on the x.,» suppose there to be 1 mole 
of CO, present so that, for C and 0 as reference species, x^ " 1» Xj  = 2* 
Thus 

X' - (1  2) (I) 
and, for CO and 0 as reference species, the values Xi = 1P X2 " ~ 

are 

appropriate.    *~ 2 

Clearly transformations of this kind can be carried out automatically 
within the framework of any computer program designed to solve the equations 
for the concentrations. We shall not describe how this might be done in 
practice. A word of caution is in order, however, and that is that, as should 
become clear in the next section, since the reference species are changed, 
these transformations must always be accompanied with a shift in the energy 
differences (i.e. heats of reaction) used to produce derived species from 
reference species. 

5.  SOME PROBLEMS IN THE CALCULATION OF IDEAL GAS FUNCTIONS FOR 
THE INDIVIDUAL SPECIES 

The only microscopic information that has thus far been included in the 
formalism is contained in (1) and is merely the labeling of each derived 
species in terms of its constituent reference species. The points of entry 
for the detailed microscopic properties of individual constituents have al- 
ready been passed.  These are (10) for the free energy minimization method ■ 
and (16) for the equilibrium constant method. For a pure component, the chem- 
ical potential is the same as the free energy per mole so that in (9) 

^(T) = (G° - E0) + E^ 

RT      RT     RT 

where G is the ideal gas Gibbs free energy for-the species and (E ) is the 
reference energy at zero kelvin. The expression for the equilibrium constant 
(16), becomes 
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ML - - (<-<) i + ^ *ij (C° - E°) J - (E^ + « (jjjj 
RT       J       RT RT   J   RT 

Both methods, therefore» require the Ideal gas Gibbs function relative to the 
energy of a reference state, E_ for the individual species. 

Since only energy differences have physical meaning, the choice of E.. 
values would appear to be entirely arbitrary.  In a reacting system, 
however, the difference between EQ for reactant and products is physically 
meaningful and is, in fact, the reaction energy AEQ/RT - ^Q^±~  Evi^Eo^1 

RT   ^   RT 
at absolute zero.  For this reason, the choice must be made in a manner which 

o 
is consistent among species.  In most cases, taking E_ to be zero for the 
reference species avoids complications.  Of course, all choices are valid 
provided only that they are consistent.  It should perhaps be pointed out 
again that whatever reference point is taken for the energy must be examined 
carefully after any transformation to new reference species is carried out. 

The quantity (G - E )/RT can be calculated for each species using 
statistical mechanics and the details of the internal structure of that species. 
The Gibbs free energy for an ideal gas species is related to the partition 
function through the relation 

(GT - V _ 
= - InQ 

RT 

where Q is the ideal gas partition function.  Q contains translational and 
electronic contributions for all species (except for the electrons for which 
only a translational part is appropriate).  For molecular species there are 
additional contributions from vibrational and rotational energies. A 
discussion of methods for the evaluation of such partition functions is out- ., 
side the scope of this report and the interested reader is referred elsewhere 

for such details.  In this report, we assume that the Gibbs free energies 
have been calculated properly and are available as input to the calculation. 
We shall, however, mention some problems associated with the evaluation of the 
partition functions since such problems are not always described in the 
literature. 

Perhaps the most serious such problem has to do with the actual diver- 
gence of these partition functions.  There are an infinite number of energy 
levels just below the ionization limit of an atom.  These terms, if included 

20 



AEDC-TR-71-52 

In the summation, would cause the partition function to diverge. At moderate 
temperatures,which can be as high as several thousand kelvins this causes no 
trouble since the contribution of successive energy levels, starting from 
the lowest, tends to drop off rapidly and goes through a broad minimum starting 
with a relatively small quantum number.  The series can therefore be treated 
as an asymptotic series and cut almost anywhere after the contribution of 
successive levels has become negligible. As the temperature is raised, however, 
the breadth of this minimum narrows until ultimately there is no level at 
which the contributions of successive levels become small. As soon as this 
happens, the advantage of an obvious cut-off point is lost and, in fact, the 
partition function begins to depend strongly on the choice of cut-off. This 
is obviously a signal that the theory on which the calculation is based has 
become inadequate, and this is indeed the case. Care must be taken even when 
this problem does not appear to exist.  Exact partition function expressions 
are often approximated by series which are cut-off in a manner appropriate 
for low temperatures. When these series are extended to high temperatures, 
they sometimes give convergent, albeit wrong, results due to the neglect of terms 
not needed at low temperatures but needed at higher temperatures.16°  These 

neglected terms contain the divergence problem. 

An interesting way of handling these divergences has been devised by 
Woolleyl7 and studied in some detail by several others.18 jn this approach, 
sometimes referred to as physical cluster theory, no distinction is made be- 
tween a molecule whose constituent atoms are bound together by means of 
covalent bonds and a physical cluster of these atoms for separations and 
conditions for which the weaker van der Waals interactions are appropriate. 
Reflection indeed leads one to the conclusion that any distinction which might 
be made between these would indeed be artificial. 

The divergence which arises from the summing of the energy levels of 
atoms and atomic ions over highly excited states of the outer electron has been 
considered in a number of different ways in the literature.  Clearly, the 
representation of the partition function of the atom in the mixture as a sum 
over energy levels of the isolated atom is an approximation to the actual many 
body problem. At ordinary temperatures, this approximation is reasonable 
since the number of atoms in any but the lowest lying energy levels is quite 
small. Using semi-classical arguments, it is easy to see that the Bohr radii 
for such levels are quite small and that, therefore, the "paths" of the outer 
electrons of different atoms do not overlap.  As the temperature is raised, 
the situation changes and the Bohr orbits become sufficiently large for there 
to be overlap even at ordinary densities. The problem has therefore become a 
many body problem whose partition function can no longer be approximated by 
a product of one particle functions. 

19 20 21. 
Several workers  '  '  nave devised density dependent cut-off methods 

which are essentially variations of an approach due to Urey22a} Fermi22b"and 
also contained in some unpublished work of Bethe22c,  In these approaches, the 
.energy levels are summed only through those quantum numbers for which the Bohr 
radius is less than some function of the average interparticle distance. The 
problem now becomes density and temperature dependent, the density determining 
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the average interparticle distance and the temperature the Bohr radius of the 
outer electrons as well as the probability of there being close collisions. 

There are thus two main approaches to the problem of calculating the 
ideal gas partition functions of atoms and atomic ions depending on the 
temperature range of interest and the ionization energy. Up to moderately high 
temperatures, the sums can be cut-off at a relatively low lying level based on 
the amallness of successive contributions. At high temperatures, a cut-off 
can be taken which depends on temperature and density and which may vary for a 
given atomic species from mixture to mixture. 

Since the quantum number takes on discrete values, it is possible for 
the summation to take on discontinuities as a function of temperature and 
density2!. These discontinuities occur where a change occurs in the final 
quantum number accepted under the cut-off criterion. A way to reduce this 
problem has been proposed by Woolley1? (and independently by Gilmore*^) ,  in 
these approaches, the partition function is divided into a sum of two parts. 
One of these is the contribution due to states below some quantum number n. 
which is always less than n , the density dependent cut-off.  The other is due 
to the contribution of the levels between n. and n considered now to be the 
levels of one electron oh an ionized atom.  The levels between n. and n are» 
in fact, considered to be hydrogen-like on the ionic core. This methodTias the 
advantage of allowing one to use tables of ideal gas partition functions and a 
cut-off criterion which depends on the species only through the nuclear charge. 
It is»therefore, of considerable computational advantage. Woolley's method 
is designed particularly for treating the ionized gas as an ionic solution 
within the theoretical framework set up by Mayer^^a and Poirier.23b 

It should be clear from the preceding discussion that there are several 
ways in which one can approach the divergence problems which arise in the sum 
over states associated with the calculation of the ideal gas partition functions 
of the individual species in a chemical reacting mixture.  It is Imperative, 
no matter which of these methods is used, that the counting of states for a 
given species above the dissociation or ionization limit for its constituents 
be done in a manner which is consistent with the counting of the states for 
these constituents themselves. If this is not done properly, a portion of the 
phase space for the mixture will have been included at least twice in the 
statistical mechanical development for the mixture thermodynamic properties. 
Thus, one might mistakenly include the states associated with the separated 
atoms as a molecular state with a van der Waals intermolecular potential and 
include the same states as free atoms with a correction for nonideality.  A   ._ 
consistent way in which this problem can be avoided has been described by Haar. 

6.  THE THERMODYNAMIC PROPERTIES OF THE MIXTURE 

Once the thermodynamic functions for the Individual species have been 
calculated at the temperature of interest and once the energies AEQ/RT have 
been chosen, it is possible, In principle, to solve for the species concentrations 
using either the method of, free energy minimization (minimization of (6) subject 
to (7)) or the equilibrium constant method (solution of (19) subject to (18)) 

22 



AEDC-TH-71-S2 

and co determine the concentrations of all species at that temperature as a 
function of the most useful thermodynamic variable (e.g. pressure, density, 
etc.).  Given these concentrations and the properties for the individual 
species, one can then calculate the thermodynanic properties of the ideal gas 
mixture.  In this section, we shall indicate how this can be done.  Real gas 
corrections to these expressions are included below in an appendix. 

According to our definitions of concentration and compressibility 
factor, the compressibility factor for the ideal gas relative to that at 
standard conditions is simply a sum over species concentrations, the sum 
going over both the derived and reference species. Thus, 

Z - 
PV 
RT 

i 

1=1 
(23a) 

where, as stated earlier, C. is the number of moles of specfes i relative 
to one mole in a reference state and Z is the compressibility factor, defined 
to include the number of moles, elso with rebpect to a reference 9tate, As 
stated eerlier, the choice of the reference state is a matter of convenience 
in scaling these quantities. 

The internal energy can be calculated from 

E     5 
RT " I  ' 

i=l 
i RT (23b) 

where E± = (E° - E°)±  + (E°)± and 

where (E _ E°) is calculated from statistical mechanics. 

The entropy is given by 

S        r   S P 
£ = Z [ l  x^-r—)  - I x.lnXl - ln( ---) ] 

i=l   Ä ± ±=l x r (23c) 

where P is the pressure of the thermodynantic standard state.  All other 
thermodynamic potentials can be written in terms of combinations of (23a,b,c). 
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Among the gas properties of interest are the derivatives of the 
thermodynamic potentials. These lead to such properties as the specific 
heat and sound velocity. Such properties are often obtained by numerical 
differentiation of tables of the thermodynamic potentials.23 The beat of 
such methods requires considerable caution in its application.  It is 
necessary to be careful in handling the end points and care must be taken 
to ensure that the data points are neither too close together nor too far 
apart. Numerical differentiation is entirely unnecessary, however, since 
the derivatives can be obtained as the solutions of sets of c linear 
equations in c unknowns, c being the number of reference species in the 
mixture2ci26,274  Several authors28,29 have developed similar approaches in 
which, however, the derivatives are expressed in terms of the solutions of Jt 
linear equations in Ä unknowns, S. being the total number of species in the 
mixture. The difference between c and I  is generally quite large. For high 
temperature air, for example, I =  30 while e = 6.  It should be understood, 
however, that the reduction from a  equations to c equations occurs only under 
ideal gas conditions (i.e. y.  = 1). When real gas effects are included, it 

is always necessary to solve a set of i  equations in Ä. unknowns for the deriva- 
tives. We shall proceed to derive the linear equations for the derivatives 
within the framework of the equilibrium constant method. The results obtained 
are, of course, valid in either approach. 

The derivatives required can in all cases be written in terms of the 
derivatives of properties which are additive functions of the properties of 
the individual constituents. This means that it is only necessary to calculate 
the derivatives of functions of the form 

v - |c±T * C24) 
1-1 

where Y.  is an arbitrary ideal gas property for the i  constituent. 

Thus, for the specific heat at constant volume one has 

C I 

? -  < f >     Where E - XCiEi B.     x 8T P i=l 

The difference in the specific heats is given by 
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c -c 
P v 

l + I Ä z ^arp 
i + £ (i£) 

where Z 
£ 

i-1 Z 

and the ratio of specific heats is then obtainable from y = C /C .  The 
sound velocity can be written 

a 

o 

29 
Useful in aerodynamic calculations  are the following 

P.P 

,31nP. 

^ 3P  S 
Y  U + f (f )T] 

T,P 

1 a. 1 Ä 
(31nT)  = 1 + -1  Z kaT;p 
81nP S Cv/R 

and 

T,P i- (üs£) 1  l31nP s 

-1 

T WT'O u z ^arp 
1 +  ri+£.c«) ]V* 1   Z ^3p^TJ 

The above expressions contain derivatives of additive functions as in 
(24) which are either with respect to temperature at constant density or are 
with respect to density at constant temperature. 

Let us first consider the derivatives at constant density, i.e., we 
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SY 
shall consider the evaluation of the quantity (■??):• Now, from (24) 

OL    p 

'iTp        £in    Pi      ±ti ig). ■ J. #'. 'f   + A.h^\ C2» 

3Y° 
The second term contains the species ideal gas function (- •£?•)  which can be 
computed directly from the partition, function of the ith species. The C. are 
obtained as solutions of the equilibrium equations. The second term is 
therefore simply a cumulative sum involving known quantities. Since the Y 
which appear in the first term are also known, the problem of evaluating 
(25) reduces to the determination of the concentration derivatives. We shall 
do this for the ideal gas (i.e., y    = 1.) only, the extension to conditions 
where this is not appropriate (i.e. y.  ?  1.) being left to the interested 
reader. Taking the derivative of (19; yields 

31nC        31nK        c       31nC 
<__)  . (_^)  +  s v   (—4-j (26) 

P P    j=l  J        P 

where j runs over the reference species only. There are also the conservation 
equations (20), 

l Z-c c 

*      i-1 1J *   1=1 ij 1 i^.^   U  1 

Since v.." &.**  the Kronecker delta for reference species, this can be written 
1 j   ij 

I 
X1 - Z vt,C + C 3 « 1 c (27) 

3    i-1 lJ x   j 

where, again, j runs over the reference species only. Differentiating (27) 
and using (26), there results 
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ainc, 

J .:-,   "Jk 3T 
B,  -    -  Z    A,,.   ( 

k=l 
j - l»...»c (28) 

where 

and 

31nK. 
J    - -    E  v    C     (—-^-) 
J i=l    J ( 

and where 

31nK 
/ £) 

Ajk = Jx 
vij uikCi + 6kjC k 

_1 
T RT 

j-1 
lj  RT 

(29) 

th is a known quantity, with E, the internal energy of the i  species.  The c 
31nCk 

unknowns, (——— )  , i.e. the derivatives of the reference species, constitute 
the unknown vector in (28). Having solved these equations, e.g., by inverting 
the matrix A, (26) can be used to calculate the derivatives of the ordinary 
species. 

Let us now consider derivatives with respect to the density at constant 
temperatures, i.e. (91) . Differentiation of (19) leads to the relations 

dp T 

u     c      31nC. 
4 — +  Z v..  ( d~- ) 

8p  T   P    J-1  j     P 

81nC. 
(-TT1) 

(30) 

On the other hand, differentiation of (27) yields 

I 81nC SlnC. 

, -  1J 1 , 9p .   j      9p 
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Combining the latter with (30) leads to 

c ainc 

j k=1       Jk 9P x 

where 

B4        " Z      ft  
^ 1-1 P 

and where A.. is again given by (29). Since the coefficient matrix A., is 
identical in ooth cases, once can use essentially the same computer program 
to solve (28) and (31). These solutions are then substituted into (26) and 
(30) to obtain the derivatives of the remaining species. 

It should be noted that equations (28) and (31) are each c linear 
equations in the derivatives of the c reference species. At this point it 
should be clear that, fundamentally, the equilibrium constant approach to the 
problem is one of solving c non-linear equations in c unknowns. 

As mentioned above, the ability to express the derivatives in terms of 
c equations in c unknowns is peculiar to the ide'al gas approximation. As 
soon as concentration dependent terms are introduced in the activity co- 
efficients, concentrations of derived species appear on the right hand side 
of (19) and hence on the right hand sides of (26) and (30).  This, then, 
requires the solution Df  linear equation in  lunknowns for the evaluation 
of the concentration derivatives,  It may still be possible, however, to 
use these ideal gas expressions for the derivatives under conditions where 
the concentrations include real gas effects. This can be done when y.   <f>  1. 

3 8 
Yi        Yi 

but ( -r—) and (   ) are negligible for major constituents. This can even 
dp  1        dip 

be extended to situations in which these derivatives are small but not 
negligilbe by developing additive expressions for corrections due to the 
contribution of these derivatives of the y,, These expressions could then 
be evaluated by an approximate numerical scheme. 

7.  NUMERICAL METHODS 

A.  INTRODUCTION 

We now turn to the central problem of this report, namely that of 
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solving for the species concentrations. This can be done within the frame- 
work of either the free energy minimization method or the equilibrium 
constant method.30 These are, of course, entirely equivalent methods-*1 and 
the decision to choose one over the other is mainly a matter of taste.  For 
the purposes of this report, numerical methods will mean those methods 
appropriate to digital calculators.  It is interesting to note that chemical 
equilibrium equations have been solved using analog computers.32 Such 
methods are considered to be outside the province of this report, however. 

Within the framework of the two methods the literature can be further 
divided between numerical approaches which are specifically tailored to a 
particular chemical problem and those which are general purpose approaches. 
Special purpose approaches mainly predate the advent of high speed electronic 
computers. At that time the carrying out of involved algebraic operations 
was much to be preferred over long and tedious numerical calculations which 
had to be done on a slide rule or desk calculator. These special purpose 
approaches, in the main, consist of the reduction of the c equations (21) to 
one or two equations by successive substitution. With the increasing 
availability of large scale high speed computers whose main purpose is just 
the carrying out of tedious repititious numerical operations, the need for 
the development of such special purpose schemes has disappeared. 

Intermediate between these special purpose schemes and general purpose 
methods are a number of approaches 33 which apply to systems for which the 
concentrations of those derived species which contain more than one reference 
species is small. These approaches are based on the fact that the neglect 
of such species serves to uncouple equations (20) thereby converting the 
problem into that of solving a set of c independent non-linear equations. 
Such approaches, where they are appropriate, can be useful in preliminary 
studies of chemical systems. 

It is interesting to note that, from a numerical point of view, both 
the free energy minimization and the equilibrium constant methods, require 
the determiniation of a set of values of the concentrations of the reference 
species which minimizes some function of these concentrations. This is 
obvious for the free energy minimization method for which the free energy 
itself is being minimized.  In the equilibrium constant method, on the other 
hand, the exact solution of a set of equations is required. From a 
numerical point of view, this can also be cast into a form requiring a 
minimization, namely the minimization of an error function which represents 
departures from the solution.34 Thus, the solution of an arbitrary set of 
equations 

i!;i(x1>...,xn) = 0 1 n (32) 

is equivalent to the minimization of the function 
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* - E |*±| 
i-1 1 

(33) 

with respect to the parameters x (i = 1, ..., n). This replacement by a 
minimization problem is not unique, however.  In particular, if a.. are the 
elements of any positive definite matrix a, then the solution of the set of 
equations (32) is also equivalent to the minimization of the function 
d> = S 0. a.,. liK with both minima being identical.  (33) is thus seen to be 

the special case where gt = I the unit matrix.  Since both methods lead to a 
numerical minimization problem, it is possible to describe the solution of 
the equations appropriate to either in the same numerical mathematical 
language. 

Non-linear problems generally cannot be solved in closed form. In the 
present case, the fact that the problem is non-linear can perhaps best be 
seen in equations (21) of the equilibrium constant method where the unknowns, 
C,, appear as products raised to powers (some of which are negative). Non- 
linear equations of this kind will certainly not be soluble in closed form, 
particularly in such a way as to be capable of handling different chemical 
systems. It should be noted in this regard, that each chemical system 
requires the use of a different T matrix and hence a different set of 
exponents V  in (21). This, in turn, requires the solution of a different 
set of non-linear equations. In the absence of a general closed form method 
of solution, therefore, it is necessary to develop a purely numerical 
approach to the solution of the problem of minimizing $ in (33). 

Such methods start with a guess at the set of variables x. x in 
(32). This guess is substituted into $ in (33) and generally found not to 
be the set of variables which minimizes $. Procedures are then invoked to 
improve on the guess in a systematic way. If the improvement procedure is 
properly designed, that set of values of the variable x..,,.,,x is ultimately 
determined which does in fact minimize the function i|> within a preassigned 
tolerance. 

Clearly, whether use is made of the free energy minimization method or 
theequilibrium constant method, and, in fact,- regardless of whatever 
numerical method is chosen, there must ultimately result a minimum value of <f>. 
Since the function <J> describes a surface in the n-dimensional space whose 
coordinate axes are the concentrations of the reference species, all 
numerical methods which can be devised for finding the minimum of <j> must be 
geometrically equivalent to starting from some initial point on this <j) sur- 
face and searching for the surface minimum. For this reason all such methods 
are referred to as search methods. The function being minimized (i.e. $ in 
(33)) is referred to as the objective function. 

Non-linear problems which are fundamentally difference from each other 
make use of different objective functions. As will be seen below, it can 
also be true that different numerical approaches to the same non-linear 
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problem can be based on the use of different objective functions.  In the 
latter case, it should be obvious that the n-dimensional surfaces corres- 
ponding to the different objective functions should have the same 
corrdinates (but not necessarily the same value) for the objective function 
at their respective minima.  This can usually be shown to be trivially true 
since these objective functions most often differ from each other by functions 
which vanish at the location of the minimum.  Even when this is not so, they, 
of necessity, differ by functions whose surfaces also have minima at this 
same location. 

There are a number of objective functions which have been widely used 
in the numerical methods associated with the direct free energy minimization 
and equilibrium constant methods.  Consider the direct free energy minimiz- 
ation method. Here, the objective function can simply be taken to be the _^ 
free energy of the mixture.  In another numerical approach to this method, 
constants times the sum of the squares of the left-hand sides of (7) are 
added to the free energy and the total function taken as the objective 
function.  Since the left- hand sides of (7) vanish at the solution, this 
addition to the free energy has no effect on the solution.  In fact, since 
these added quantities are positive away from the solution, they tend to 
increase the magnitude of the objective function away from the solution over 
the value it would have if it were simply the free energy.  As a result, they 
tend to magnify the depth of the minimum in the objective function over that 
obtained lusing the free energy minimum alone.  Although other objective 
functions are possible, they will not be included in this discussion. 

While the equilibrium constant method can likewise be stated in more 
than one way according to the choice of objective function, 36 we shall re- 
strict ourselves to that based directly on satisfying the relevant equations. 
Thus, the set of equations (21) will be satisfied if and only if the proper 
values are used for the reference species. In the spirit of equation (33) 
it is possible to define a set of functions of the concentrations of the 
reference species 

,ui m-, Vci cc> ViVi(3/po)    -2 
1=1   J j 

The problem of solving  (21)   is  then equivalent  to the minimization of  the 
objective function 

c 
* = Z     \ty 

i-1 i1 

It should be noted that the addition of the Gibbs free energy to this- <)> 
results In yet another possible objective function and, In fact, is essent- 
ially one of the objective functions described for the direct free energy 
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minimization method. 

It should be obvious that the same search method can, in principle, be 
used for all minimization problems. For this reason part of what follows 
contains descriptions of and references to general search methods (i.e. not 
specific to the chemical equilibrium problem).  In practice, however, it is 
often found that search methods need to be empirically tailored to the 
particular non-linear'problem at hand. This Is not to say, in the problem 
under discussion, that the search methods must necessarily be tailored to the 
particular chemical system of interest.  Rather, these methods must be 
adjusted to handle the chemical .equilibrium problem in a manner different 
From an adjustment made for some other non-linear problem. This says, in 
essence, that variations of conditions within the same non-linear problem 
(e.g. the variation due to changing the chemical system in the equilibrium 
problem) will result in objective function surfaces which are much more 
nearly alike than are the surfaces associated with objective functions for 
quite different non-linear problems. 

Each chemical problem might be expected to have an optimum numerical 
method of solution.  The chances of there being such an optimum numerical 
method of solution for the wide range of chemical problems associated with all 
possible variations in the T matrix is quite small, however.  We shall, in 
fact, assume that no such general optimum method exists and shall aim at the 
description of general search methods which should have a high probability of 
converging to the correct answer for almost all chemical systems.  It should 
be pointed out, however, that there can also be considerable advantage to 
making small adjustments on the search method for each particular chemical 
system where such adjustments are feasible. A particular method with which 
the author has considerable experience and which has been found to converge 
rapidly in a manner which Is Independent of the initial guesses will be 
discussed below in some detail. 

A general philosophical point relating to search methods needs to be 
emphasized. That is, there are no restrictions on the procedures which can 
be devised for going from point to point on the «|> surface, provided only 
that a proper test Is used for the determination of when the surface minimum 
is reached. In particular, the precise method for the development of the 
path to the minimum need have no relationship to the chemistry of the problem 
and, for that matter, none to its mathematics.  In fact, it is not even 
necessary to follow a point having a particular value of $  by one with a 
smaller value of $, if this turns out to be convenient. As might be expected, 
however, search methods have been developed in which a sequency of points is 
'traced out on the surface in such a way that the $  associated with a given 
point is indeed guaranteed to be less than the <J> associated with the preceding 
point, The ability to do this guarantees convergence to the answer in the 
sense that successively decreasing <j> ultimately leads to Its minimum value. 
This guarantee is sometimes obtained at the cost of slow convergence, however. 

The starting point has no more a priori physical significance than a 
point used in any other iteration.  It follows, therefore, that the 
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particular method chosen for determining initial guesses need have no relation 
co the chemistry or mathematics of the problem just as for other iteration 
points. Many of the methods as described in the literature require starting 
from points which satisfy the mass balance equations (20).  Such a restriction 
is entirely unnecessary, however, since a proper test for the solution will 
automatically guarantee that the equations (20) are satisfied at the accepted 
solution.  In what follows, we shall have little to say about methods for 
choosing starting values. 

While it is generally not possible rigorously to prove convergence for 
a search method except in the vicinity of the minimum, empirically it is 
found that most search methods do converge even from points quite far removed 
from the solution. The ease with which this can be done for a particular 
method, or equivalently, the sensitivity of the method to the choice of a 
starting point, depends very strongly on the method itself. 

It should be clear from the preceding discussion that central to the 
solution of non-linear minimization problems is the proper choice of a 
criterion by means of which one determines that the solution has been found. 
Criteria for solutions which are appropriate to the problems of interest 
here are obvious. Despite this, they are not always used.  Clearly, every 
surface minimum, regardless of the problem, is characterized by the require- 
ment that the derivatives of the objective function with respect to the 
unknown variables are each less than some arbitrarily small value. This 
criterion would appear to be a natural one for the direct free energy 
minimization method. In the case of the equilibrium constant method, there is 
the further requirement that the equations (19) and (20) themselves must be 
simultaneously satisfied, (or equivalently, that <j in (33) is sufficiently 
small). An intermediate method can also be developed by using the direct 
free energy minimization method of solution but requiring that (13) be 
satisfied at the solution, the u. being given by (8).3^ Despite these 
rather obvious criteria, however, search methods all too often use as a 
criterion for solution the condition that changes in all the unknowns from 
one iteration to the next become vanishingly small at the minimum.3' Although 
the latter condition generally yields the same results as the former, it is 
not guaranteed to do so. 

B.  SEARCH METHODS 

In recent years, an entire literature has developed which deals with 
non-linear search methods.38 This literature consists mainly of-descriptions 
of various methods with occasional reports of experience with particular 
problems.  There is very little in the way of general proofs either for 
optimization procedures or for convergence except, perhaps, for points near 
the solution where linearization is valid. We shall only describe the 
general characteristics of non-linear search methods leaving the reader the 
option of going to the literature for more detailed reviews or for the details 
of specific methods. 

The decision to choose one particular search method over all others will 
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generally depend, at least in part, on such non-mathematical criteria as 
relative speed of attaining the solution and ease of programming. It will 
also depend on how often a particular problem is to be solved and for how 
many different chemical systems. As computing machines become faster, the 
need for a simply programmable method tends to outweigh considerations of 
machine speed. On the other hand, the availability of generalized subprograms 
for the complicated mathematical and logical details of a method tends to 
reduce the programming time required.™ It is clear from this, that criteria 
for the choice of one search method over another depend to a large extent, on 
the details of the computing facility available for the solution of the 
problem.  In the following, we shall describe a number of different search 
methods in general terms and shall include alternatives which might serve to 
reduce computing time.  The coverage of these methods is not meant to be 
exhaustive. More complete discussions will be found in the several review 
articles included among the references which deal with non-linear search 
methods. 

The problem of finding the minimum of a multidimensional surface is a 
special case within the general class of problems of finding extreme values. 
Any method developed for the express purpose of finding minima of surfaces 
can be applied, with at most minor modifications, to the problem of finding 
surface maxima and vice versa. The latter are more natural within the 
framework of the disciplines of economics and operations research. This 
correspondence was specifically taken advantage of in an approach developed 
at the Rand Corporation in which the equations appropriate to the method of 
the direct minimization of the free energy were solved by means of linear 
programming techniques originally developed for the solution of operations 
research problems. This approach is discussed quite lucidly in a series of 
Rand reports and will not be considered here. 

A non-linear problem in a set of unknowns can always be converted to a 
linear problem in a set of deviations from the current values of the unknowns. 
In order to do this rigorously, it is necessary to make the assumption that 
such deviations are negligible compared to the current values. This can be 
done in (19) near C '*>,  the kth iterate for the reference species. By taking 

fibKEV Ck) 
C = C - <SCJ and neglecting products of the    6C  ,  there results  a 
j      J     

J i 
set of linear equations for the 6'C.. These can be solved for the 6C and a 
new guess C (k+l)obtained. This method is rigorous very near the solution 
point. For points far from the solution, however, there is not even the 
guarantee that the corrections <5C will be In the proper direction. In 
spite of this the method has beetrused successfully.*^ 

Another method for linearizing non-linear problems is to take a Taylor 
expansion about the current values of the unknowns and neglect termB involving 
products and squares of deviations. This method differs from the simple ex- 
pansion in that the first derivatives at the current guess point appear in 
the linear equations. This latter method of linearization is essentially 
the Newton-Raphson method for the solution of sets of non-linear equations. 
We shall indicate several ways in which this method has been applied to the 
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chemical equilibrium problem. A common variation of this approach makes 
use of a Taylor expansion of the first derivatives about the minimum» In 
this approach, the linear terms in the deviations contain the second deri- 
vatives of the objective function.40 The latter approach is often referred 
to as the Gauss-Newton method. 

Search methods for the development of paths along the surface to the 
minimum can also be referred to as iterative methods.  This general class 
of numerical methods, starts with a guess value, which is substituted into 
the equations to be solved. On the basis of the result of this substitution, 
a new value is determined which then becomes the guess value for a repeat of 
this procedure. This process is continued until, given a convergent method, 
a solution is obtained.  Iterative methods can be written in terms af a 
function of the variables which gives a prescription for calculating the next 
guess from a given guess point. In particular, this function defines a 
sequence of operations 

.<kHrl)    _>(k+l) 

.    - r ex ) <3*> 

The functions r can be viewed as operators which, when operating on a guess 
value x , produce the next guess value x*,-, •    This operation can also be given 
a geometrical interpretation by writing the sequence 

x   ■ x. + Xy (35) 

where y is a unit vector in the direction of the next guess with X the magni- 
tude of the step in that direction.' (35) is generally used to describe descent 
methods, y then always being taken as a vector in the general direction of the 
minimum. 

Iteration methods are generally described as being either of the Newton- 
Raphson type or of the descent type, although the distinction is not always 
clear.  In the Newton-Raphson approach, T(x) is obtained from a truncated, 

Taylor series about the solution. For example, suppose that the surface minimum 

occurs at the point x °'  with x^  a point close by.  It follows, then, that 

V(x
(o)) = MxU)) + J (x(1)) (SCo) - x-(1>) where J(£) is the matrix of the 

partial derivatives of y(x), i.e. J  - ~-~W . .  If t>°>   is at the minimum, 

it follows that I|J(X 
})  = 0 so that, solving for xW, there results 
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*°* J(y r1 c?) nt P 

If in a sequence of Iterations the k.  point is sufficiently near the, 
minimum, it follows that the solution can be obtained as the (k + 1)  point 
by salving the equation 

j^.^w^(i(k))*{x(k)) (36) 

While this is only rigorously correct at the solution, it is used in the 
Newton-Raphson approach at all points on the surface as a means of determining 
a sequence of points x.^+1) t  X(K+Z)^ p>^ etc> wnicn define a path to the 
minimum. It should be noted that, for the Newton-Eaphson method the r 
operator is given by 

r(3 - x~ J-1 <X> <KS (37) 

Substitution of (37) into (34) and comparison with (35) shows that there is a 
descent version of the Newton-Raphson search method with the direction vector 
given by 

\v - -J"1 65 *<3 

At the solution, (37) becomes r(x.C6+1^ #k+1lo that x*k+2> x^^and the 
differences between successive iterations eventually vanish. As has been 
mentioned, this can be used as a basis for a criterion for solution. Thus, a 
solution is said to have been reached when the change between successive 
values of all components of the vector x become less than some fraction of 
their current values. Unfortunately, this is not a necessary and sufficient 
condition for a solution. Thus, while we have shown this property to hold at 
the solution, (necessary condition), it is possible that for a particular 
search method a point on the surface can satisfy this condition away from the 
solution. Thus, satisfying this criterion does not guarantee a solution 
(sufficient condition). 
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Mention has been made of a version of the Newton-Raphson method (often  ... 
referred to as the Gauss-Newton method) which makes use of second derivatives. 
This can be written in vector notation in a form similar to (36).  For 

x    - x   small, the matrix of first derivatives, J(x) can be expanded 

about the point x to terms linear in the difference x    - x      .    This results 

= i(x
(k))+H(x^) . <x<k+1> - x(k)) 

where H(x) is the matrix of second derivatives generally referred to as the 

Hessian matrix. If the assumption is made that x     is the solution point, 
-»■(k+1) 

it follows that J(x    ) = 0 and the above relation becomes 

0 = J(x  ) + H(x  )  • (x     - x  ) 

Hot00) x"(k+1) - HÖ0*«)^ - J(x<k)) 

from which 

quite analogous to (36).  In this case  (x) is given by 

r(x) = x - H_1(x) J (x) 

In what follows we shall discuss the Newton-Raphson method only in the 
form (36). 

Many variations of the Newton-Raphson search algorithm (i.e. (36) have 
been devised through variation of the definition of J(x).  These alternate 
methods are mainly used when the calculation of J(x) and its inverse either 
involves excessive computing time or is overly complex.  The simplest varia- 
tion involves a simple iteration.  In that case J(x") = XI, with I the unit matrix, 
and the algorithm for the choice of successive values 

r(x) - x -  (x) X+(x) 

which, at the solution becomes r(x. ..) = x, . As will be seen below this 
approach falls within a category of methods which we have designated direct 
search methods. An appropriate value of X can be found empirically.generally 
through monitoring the behavior of the x vector in successive iterations. The 
value of A used will depend strongly on the nature of the function.^(x).  For 
example, consider the one-dimensional problem ij>(x) = 0.  If Tp(x) is such that 

X^  < xtoJ implies ijKx) > 0 then clearly X > 0 is required.  If, on the 

other hand, x  > x   implies iKx) < 0, X < 0 is required.  These require- 
ments would easily be obtained empirically. 
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A more complicated variation of the Newton-Raphson method involves re- 
placing the "tangent" matrix J(x) by a "secant" matrix J(x).^2 In this 
approach, the partial derivatives in the J matrix are replaced by finite 
differences based on neighboring solution points. For an n dimensional <J> 
space (i.e. for n unknowns), the secant approximation requires having in hand 
n + 1 neighboring values. The method thus does not really get under way 
until the objective function has been evaluated at n + 1 points. The 
procedure can be started by choosing, somewhat arbitrarily, these n + 1 
points, evaluating the function, calculating the elements of the matrix J 
and proceeding to invert J as in the Newton-Raphson method. Since the 
derivatives of the function do not have to be evaluated, computing time is 
reduced. Since the secants make use of stored evaluations of the objective 
function at the n + 1 points, the programming is also simplified.  Since the 
method still requires a matrix inversion for determining J (x) from J(x), 
the saving in machine time will be modest. A dramatic reduction in computational 
time can be had by means of a variation on the secant version of the Newton- 
Raphson method in which each component x of the unknown vector x" is treated 
separately thus eliminating the need for matrix inversion. That approach is 
associated with the name of Wegstein^ ana- will be described below among the 
direct search methods. 

An interesting variation of the Newton-Raphson method has recently been 
described.^1 in that approach, the coordinate system in parameter space is 
rotated into the space spanned by the eigenvectors of J. In that space, J 
can be written in diagonal form. The advantage of this approach is that since 
the new "parameters" (i.e., the eigenvectors of J) are orthogonal, they do not 
interact with each other so that the minimization can be carried out 
indpendently for each. 

A number of methods have been developed for the solution of chemical 
equilibrium problems which make use of a Newton-Raphson search method. The » 
two most widely used are one due to Brinkley* and a second due to Huff et al. 
The relationship .between them is discussed in some detail in the review of 
Zeleenik and Gordon.* Each method is sufficiently well described in the 

literature to preclude the need for a description here. Brinkley's approach 
is, of course, built around the solution of a set of equations whose number 
is the same as the number of reference species. It is interesting to note 
that the method of Huff et al, as originally described, considers both the 
reference species and the derived species on an equal footing thus requiring 
the solution of I  equation for the £ composition variables. Since £ can 
become prohibitively large for matrix techniques, methods for reducing this 
requirement are of interest. Zelesnik and Gordon indicate that, as expected, 
the method can be converted to one in which only the reference species are 
required, thereby reducing the problem to that of solving c equations in c 
unknowns, where c < l  is always the case. They indicate, however, that this 
can result in convergence problems unless the reference species are carefully 
chosen so as to be major constituents or, if not, unless the initial guesses 
are good. This problem does not appear to arise when all I  equations are 
solved presumably since these always contain the major constituents. 
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C.  DIRECT SEARCH METHODS 

Search methods fall into two categories Dn the basis of the ease with 
which they can be applied to new problems. This can be of considerable 
practical importance in the chemical equilibrium problem. For example, after 
programming an ideal gas calculation» one might wish to add in real gas 
effects by relaxing the restriction y.= 1.  For some search methods this can 
pose a major reprogramming problem, while for others., the conversion is 
rather simple. These two classes of search methods can be described, roughly, 
in terms of the extent to which they depend on the content of the equilibrium 
equations. 

Search methods of the general Newton-Raphson type require considerable 
detail since they call for the calculation of first (and sometimes second) 
derivatives of the objective function in addition tD the evaluation of the 
objective function itself,  Reprogramming for such methods can call for 
considerable effort.  On the other hand, search methods exist which at each 
step require only that the objective function be evaluated.  Such methods we 
shall designate direct search methods since, in the case of the most obvious 
one, the minimum in the objective function surface is sought be a direct 
search in variable space.  The usual definition of direct search methods is 
much more narrow than this. We shall, in fact, include among our direct 
search methods certain ones that are variations of approaches not normally 
defined as being of the direct search type, e.g. variations of the Newton- 
Raphson method.  This underlines the arbitrariness of these classifications. 

There are several advantages to be had from the use of direct search 
methods.  Since only the objective function is evaluated, a minimum of re- 
programming effort is required when the objective function is altered. 
Furthermore, the simplicity of the search aspect allows for simple initial 
programming thereby reducing the time required for going from the develop- 
ment of the problem to the working computer program. Experience has also 
shown that direct search methods can be successful for problems which are 
poorly conditioned for the other methods.^^»  An example might be a problem 

for which the matrix of the derivatives of the objective function with 
respect to the unknowns is ill-conditioned in some part of variable apace 
even far removed from the solution. Since that matrix plays a key role in 
the Newton-Raphson method, there can be trouble with it if an interaction 
happens to come near such regions of ill-conditioning. 

Perhaps the simplest of the direct search methods is one that merely 
involves testing the objective function in a stepwise variation of the un- 
known parameters (perhaps on a grid), accepting only those changes which 
reduce that function.  The pattern search method of Hooke and Jeeves^ ±s 

an improvement over this simplistic approach.  Their approach makes use of 
information obtained but usually ignored in a simple step wise search on a 
grid.  In their direct search method, two kinds of multi-dimensional steps 
on the 4 surface are defined-an exploratory step which, when successful 
is followed by a pattern step. For the former, the unknown parameters are 
varied individually while for the latter, the parameters are all changed 
simultaneously. Exploratory steps proceed as follows. The objective function 
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is evaluated at the location of the Initial guess x^^-Cx;-  , x2° 
x

n 

and the result stored. Using a prescribed step size for x-, i.e. A^, 

the parameter x, is increased to xn  + A and the objective function evalu- 
1 1      -L f   \ 

ated.  Should this lead to a reduction in the objective function, x^ Is 

replaced by x' = x  + A so that the new guess point becomes (x!, x_ ,,..,x  ) 

and the same procedure is followed for x_  , using A„, the prescribed step 

size for x_.  If, on the other hand, replacing x °; by x° + A does not reduce 

the objective function, a change of direction is attempted, i.e. x.     1 
tried in place of x^° When this too does not lead to a reduction in <j>, h    is 

replaced by aA1(a<l) and the process is repeated from the start.  This is 
continued, each new A. being decreased when there is no success, until there 
is either a decrease in the objective function for some value of A, or until A^ 
becomes smaller than a preassigned limit. In either case, the same process Is 
carried over to x .  In the former case x.. is changed by the current value of 
A in the direction indicated by the decrease in * while in the latter case x£°) 

is used as x' and the guess point Is therefore not changed. This process is 
applied to each parameter in turn until each of x ,..., x has been varied. 
There are now two possibilities - either the new guess point x- ■ (x*,..., x') 

is identical with the initial guess point x  = (x -,...,x ) or these two points 
differ in at least one parameter. In the former case, the surface minimum has 
probably been reached.  At this point a proper test for solution is made to 
see if, indeed, the surface minimum has been reached. When x- differs from 

x   in at least one parameter a change vector x  - x  = A has been deter- 

rained which, when drawn from the initial guess point x   points In the general 
direction of the minimum. Hooke and Jeeves suggest that, on the average, this 
change vector indicates the direction to the minimum sufficiently well enough 
for the objective function to be still smaller at %^2'  - $'*■'+ t0-    The step 

x  = x '+ A is called a pattern step. Of particular importance is the fact 
that all parameters are varied simultaneously in a pattern step whereas in an 
exploratory step each of .the n parameters is varied at least once. The time 
required for a complete exploratory step for n unknowns can obviously be much 
more than n times than required for a pattern step. Hooke and Jeeves choose 
to restrict themselves to one pattern step after a successful exploratory 
step.  They then follow this single pattern step by a new exploratory step. 
Clearly, one might modify their method by making the number of consecutive 
pattern steps after a successful exploratory step a variable or even by continu- 
ing with pattern steps until there ceases to be a reduction In the objective 
function. 

A number of further variants of the pattern search method are possible. 
One might, for example, choose to vary each component step of the exploratory 

phase from the original guess point x * so that x' - x  + A where A = 
(A., A«, ... A ) as calculated. This does not hold for the method as we have 

outlined it above since each component X± is changed on a successful decrease in <fr. 
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->■   ->■ 

Thus, in other words, A i-  A. One might, furthermore, devise variations on 

the pattern step itself by replacing the vector A a9 determined by the explora- 
tory step by a different change vector t    for use in the pattern step. One 
might, for example determine £' as some kind of average over the Ap vectors 
used in several of the preceding pattern steps or one might simply take a 
fraction of J . 

Another approach which, according to our definition, can be included 
among the direct search methods is actually an Independent parameter version 
of a variation on the secant approximation to the Newton-Raphson method. The 
method is also referred to as the Wegstein method.  »   The basic algorithm 
for one dimension, is available among the basic library routines at many 
computer installations. The method has been used extensively by the author 
and his collaborators in the production of thermodynamic tables of atmospheric 
gases.^ This method has been found to produce rapid convergence even when the fi 

initial guess values differ from the answers by more than factors of 10+6 or 10 
When coupled with a method for automatically converting from one set of 
reference species to another, where necessary, the method should produce rapid 
convergence entirely independent of initial guesses and should therefore be 
a truly automatic approach. We shall describe the method in some detail in 
one dimension but shall not specifically relate it to the actual Newton-Raphson 
method.  The extension to multi-dimensional problems in the independent 
parameter approximation will then be shown to be straightforward. 

This method can best be described in terms of the iteration (34). It 
should be noted that (34) can also be applied to the solution of equations 
of the form iji(x) = 0 since one can take T(x) in the form 

where a is non-zero.  With this form for T(x), (34) reduces to the identity 

x   J=» x     at the solution where i^(x  ) = 0.  In the Wegstein method, which 
we shall describe in one dimension, (34) is modified by superimposing on it an 
in-out averaging algorithm.  Thus, rather than take x^  ' as given by (34) 
for the next guess, an average between the value xC^^into the iteration and 
x^  ^ out of the iteration is taken to obtain as the next guess 

"(k+1) = x(k+l) _ q(x(k
+l>- x

(k))  (38) 

This produces a value given by x    as calculated in (34) minu9 a fraction q 
(k)     (k+1) 

of the calculated change between x   and x    .It is easy to show that, in 

the secant approximation, q = —where m is the slope of the secant between 
(k-1)     (k) ra 

xv    and x '. This enables q to be calculated at each iteration step. We 
are, however, much more Interested in the advantages of using q as a fixed 
empirical quantity. 

The use of (34) by itself will lead to one of the following behavior 
patterns for successive values of xw, (i.e. as functions of k the iteration 
number), 
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(k) 
1. The values of x   oscillate and converge. 

(k) 
2. The values of x   oscillate and diverge« 

(k) 
3. The values of x   converge monotonically. 

(k) 
4. The values of x   diverge monotonically. 

It is also possible for the character of the behavior pattern to change as n 
progresses.  Generally» however, one particular kind of behavior should 
predominate.  Each of the above behavior patterns for (34) can be improved 
through the use of (38) with fixed q in the sense that convergence can be 
speeded up.  This can be done, in each case, by means of q values in the 
following ranges. 

1. Oscillatory convergence 0 < q < 0,5 
2. Oscillatory divergence .5 < q < 1. 
3. Monotonie convergence q < 0 
4. Monotonie divergence q > 1 

The reason , in each case, follows from the use of q in (38) as an in-out 
averaging parameter.  Thus, for the case where successive values oscillate 
with afvrrfd toward the answer superimposed on this oscillation, it is clear 
that x^ +"'w±ll lie between x^and x^  '.  This is what Is neant by^ . 
oscillation.  Each value will, however, on the average be closer to x 

than to x  ,  This, in turn, is what is meant by convergence.  Thus q must 
be so chosen that x^k+1)lles between x^- and x(k+l) Dut closer to x(k+l), 
than to xl  .  This, in turn, is what is meant by convergence.  Thus q must 
ao chosen that x^  ' lies between x^) and x(k+l) but closer to x^+I), 
This is clearly the case only for 0 < q < 0.5.  Examination of the other 

ranges listed for q values, shows them also to be designed to produce values 

of x^ ^  in the general direction of the solution from x^  '. Wegstein, 
with several examples, illustrates the damping effect this method has on 
oscillations, its ability to change divergent behavior into convergent behavior, 
and even to speed up convergence where there is monotonic convergence.  It 

should be noted that q = 1.0 causes the iteration averaging scheme (38) to 

become x(k+l)= xW which, destroys the ability to change x from one Iteration 
to the next and hence causes a false locking in on an answer. 

The extension of the Wegstein method to multi-dimeneional problems is 
particularly simple.  It is merely necessary to state such problems in such 
a way that the search method can be independently applied to each variable. 
In an approach used extensively by the author and his collaborators^ , n 
equations (38) were written» one being written for each variable with each 
equation having its own q parameter.' In this approach, the algorithm 

c (W-l) „    
Xj  CJW j e 1( ,..; c _ x (39a) 

j „(k)  j 

. ,  ij  i 

42 



AEDC-TR-71-52 

was taken for (34) for all species except the electrons, the superscripts 
referring to iteration number. A different scheme had to be used for the 
electrons since for them XJ " 0.  The algorithm 

c 0*« « . ^ t  Cf
k> J - c (39b) 

J        i-1  J 1 

was taken for the electrons, the sum extending over all species except the 
electrons themselves. It should be noted that, according to aur definitions, 
t,. for j»c is positive for negative ions and negative for positive ions so 
that the former substract from the sum while the latter add to it as required. 
Also note that (39b) is merely (20) for the electrons wfth X-=0« 

The iteration process proceeds as follows. Initial guesses for the 
concentrations of the reference species are substituted into (19) thereby 
producing initial guesses for the derived species.  The method has been 
found to be sufficiently independent of these initial guesses for the 
reference species to allow the same set of initial guesses to be used for 
all problems. The initial guesses thus calculated for the derived species 
are substituted into (39a) and (39b) yielding interim new guesses for the 
reference species.  These, are then substituted into (38) and new guesses 
obtained for the reference species.  These are used in (19) to start the next 
iteration.  This process is continued until the proper criterion for solution 
is satisfied. It should be noted that, according to (20) 

' _J_— = i 
I 
Z    v ,  C 
ML ij * 

(k+ll fkl 
at  the solution in which case  (39a)  becomes  C '■* c.. as  required. 

J       J i 

For the various systems studied by the author and his collaborators, 
the search method was found to be insensitive to the choice of each of the 
q except for a small sensitivity associated with the q of the electron 
concentration. This lack of sensitivity, particularly for the atomic 
species, persisted over an extremely large range of conditions. These 
included temperatures and densities for which the reference species were 
present in trace amounts with the major constituents being molecular species, 
those for which the reference species dominated, as well as those for which 
the reference species were again present in trace amounts with atomic ions 
being the main species. In all such cases the value q =0.5 was used for 
all atomic reference species, ■* 

The electron concentration behaved somewhat differently as a function of 
iteration number, as might have been expected since (39b) is of quite a 
different form than is (39a). For the electron concentration, there tended 
to be oscillatory divergence with q ■ 0.8 being required. Somewhat more 

43 



AEDC-TR-71-62 

rapid convergence was obtained by starting each problem with q = 0.5 for the 
electron concentration and increasing the value of q slightly with each 
iteration so as to reach q - 0.8 after a small number of Iterations.  It is 
important to point out that this scheme (i.e., q = 0.5 for all species except 
the electrons and a slowly increasing q value for the latter) once adopted 
was never modified regardless of the chemical system studied. 

A number of precautions, common to iteration methods had to be taken, 
A ceiling was placed on the relative magnitude by which the C, were allowed 
to change In one iteration.  Thus, for 

|Cj
(k+1) -c.<k>| 

J  > inn n-r <  _i > 100 or < -r^rr- the algorithms 
r(k)        

L  100 
C J 

r Ck+l)      (k)     (k+l)  S  
C     ■ 100 C    and C.     - *-■-■  were used. 

1 j       J       100 

In practice these restrictions were found to operate only for current guess 
points quite far removed from the solution. These ceilings in effect guide 
the iteration point into the neighborhood of the solution. They play an 
important role in making the problem independent of the initial guess values 
as they undoubtedly aslo would if applied to other search methods. 
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APPENDIX-I 

ILLUSTRATIONS OF THE MATRICES ASSOCIATED WITH THE STOICHIOMETRY OF REACTING 
GASEOUS MIXTURES 

A number of matrices having to do with the stoichiometry of coupled 
chemical reactions in gaseous mixtures have been defined in the text.  A 
completl understanding of these matrices and of their relationships to 
the chemistry of coupled chemical reactions is absolutely essential here. 
Without such an understanding, much of what appears in thi9 chapter becomes 
unintelligible.  For this reason, we include in this Appendix the matrices 
associated with a typical set of coupled reactions.  We have purposely chosen 
a set of reactions which include electron attachment and detachment (i.e., 
ionization) in order to illustrate our treatment of the electron as a 
reference species.  This treatment differs, in some respects, from standard 
chemical treatments, particularly with regard to notation. 

The set of reactions with which we shall be concerned in this 
Appendix are reactions among the following thirteen species: N , 0 , NO, 

_l_  _l_   j_   M   I 1   I I _        — 

N0„, N , 0 , 0„ , 0„ , N  ,0  , N, 0, and e , where e refers to the 

electron.  Equation (%.) of the text requires these to be written N_, 0„, 

N2°' N°2' Ne-1 ' 0e-l' °2e-l' °2e+l' Ne-2' 0e-2' N' °» and e~' where a 

negative subscript for the electron indicates the absence of an electron 
and a positive subscript the presence of an extra electron.  It should be 
noted that our notation differs from standard notation only in that the 
usual practice of writing ionic charge as a superscript on the chemical 
symbol has been replaced by specific reference to the presence or absence 
of the electron treated as a chemical species. 

This notation leads to the following v  matrix elements. 
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Species 

N2 

°2 

N20 

N02 

NeIl (N+) 

°M (0+) 

°2eIl «% 

°2<1 (0~) 

Ne^2 (N^) 

oe:2 
(O^) 

K 

0 

REFERENCE SPECIES 

2 

2 1 

1 2 

1 -I 

1 -1 

2 -1 

2 1 

1 -2 

1 -.2 
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It should be pointed out that this set of v..  matrix elements is 
associated with the chemical symbols of the various species and so is 
permanently associated with these species, regardless of the definition of 
reference species.  The elements of the various T matrices, on the other 
hand, depend very strongly on the choice of reference species. 

According to usual practice and notation, the chemical reactions to 
which we shall restrict this discussion might'be written, with atoms and 
the electron as reference species 

2N «■ N2 

2N + 0 t  NO 

N + 20 + KO, 

N «■ N^+e 

-> + - 
0 ■*■  0 +e 

20 «- 02+e 

20 + e ■*■ 02- 
-+ -H-  - 

N + N +2e 

-+■  i i.  — 

0 «- 0 +2e 

H + N 

0^0 

— -v - 
e *■ e 

The T matrix associated with equation (5) of the text was a square 
matrix and included both a row and a column for each species.  The reactions 
above define such a matrix as follows. 
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N2 °2 y N02 N+ 0+ V V N++ Of1* N    0 e 

K2 1 -2 

°2 1 -2 

N20 1 -2 -1 

wo2 .    1 'I -2 

N+ 
1 -1 1 

0+ 1 ~1 1 

h* 1 -2 1 

V i "2 -1 

rf** 1 -1 ■2 

0++ 1 "I 2 

H 1 

0 1 

e" 1 

where a blank position is used to indicate a zero matrix elements. 

Somewhat better symmetry can be obtained, in the sense that reference 
species always appear on the same side of the equation, if the ionization 
reactions are written 

N - e" t N+ 

- + + .0 - e ■*• 0 

°2 " e"> °2 

N - 2e"^ N1^ 

0 - 2e * 0 

It should be noted that this has no effect on the matrix element t... 
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■The second form of the T matrix defined in the text uses the fact that 
the column under a derived species contains an entry only for the row assoc- 
iated with that same derived species, with that entry always being +1. With 
this +1 understood (and, more important, supplied when needed) the T maxtrix 
can be written in terms of the reference species only. This results in the 
following matrix. 

»2 -2 

°2 "2 
N20 -2  -1 

N02 -1  -2 

H+ -11 

0+ -1    1 

02
+ -2    1 

0- -2   -1 

K**- -12 

0*+ -12 

N 1 

0 1 

a" 1 

It should be noted that, because atoms and the electron are used as reference 
species, these matrix elements correspond exactly to the v  ,  That this is 
not so for other choices of reference species is obvious on examination of the 
matrix elements in the text in the discussion of the matrix manipulations 
required for transformation of reference species.  As stated above, such 
manipulations do not affect the v... 
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APPENDIX II 

THE INTRODUCTION OF REAL GAS EFFECTS 

The expressions derived for the calculation of the species concentrations 
and those developed for the calculation of the properties of the mixture need 
to be modified to include real gas effects. In principle, these modifications 
should include both "internal" effects, i.e. modifications of the internal 
energy levels of individual species and "external" effects, I.e. those due to 
Interactions between particles. For particle densities of interest here, 
however, changes in the internal energy levels of individual species will be 
negligible. As a result, the thermodynamic properties of individual species 
can be written as the sum of an ideal gas part (calculated as indicated In 
the text) and a part due to particle interactions Involving the species. In 
this appendix we shall be concerned with the development of certain correction 
terms to the ideal gas expressions developed in the text. 

According to the formalism developed for the ideal gas, the inclusion of 
expressions for the species activity coefficients will automatically extend 
the calculations of the species concentrations to include real gas effects. 
Such expressions need to be included in equation (10) for the free energy 
minimization method and in (17a) for the equilibrium constant method. The 
extension of the calculation of the thermodynamic properties of the mixture 
to include real gases is then completed on adding to the relations (23) et seq. 
developed for the mixture properties of an ideal gas appropriate terms for 
real gas effects and using, in the resulting expressions, concentrations cal- 
culated using real gas activity coefficients. 

I. Real Gas Effects on the Calculation of the Species Concentrations 

The chemical potential of a species in a gas mixture can be written 

U1(T,Plx) = u° (T) + InP + lxa± +  E(AkVl)/RT 

KT        RT 

where x Indicates a dependence on the concentrations of all species and where 
each i]i is a different additive effect. An activity coefficient can be 
defined for each of these effects through the relation 

lny^  = Aky/RT 

leading to an expression for the chemical potential 
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<T,PfX)      0. . 
^1    ui u;  + InP + lnx + In [ly  w ] 

RT RT X     k 

The expression {10} on which the calculation of the concentrations in the free 
energy minimization method is based then need only be modified by taking 

(k) 
Y » Hy.    including as many of the k effects as desired. The modification 

k 
of (17a) is equally straight forward merely requiring the definition of ay1 

for each of the k effects. It should be noted that these effects can include 
such diverse items as quantum effects, higher virial coefficients, etc.  In 
short, the formalism includes all effects which produce additive terms in the 
chemical potential. 

The effect of second virial coefficients can be included immediately on 
writing down the appropriate correction to the chemical potential. Thus 

Oil) 

so that InY 
i 

*»±      2   * 
ETT?, kBik k=l 

2 
V 

k-1    k    ik 

ThiB can be substituted directly into (10) for the free energy minimization 
method. For the equilibrium constant method, it is necessary to calculate 

Yl- - [n Y^ij]/Y. 
j  3 

for the i      chemical reaction.    Thus 

2    * 
- exp  [—   t      CkBik J 

k«l 

so that 

V ftJ 2 * 2   * 
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and Yi = exP[ - p/pQ I v^ j^ ^ - ~ P/PQ t^ *^) CB2) 

where V is the volume of one mole at standard conditions. It should be 
noted that this Y! should be substituted into (19) as a factor multiplying 

V 
The limiting law Debye-Huckel correction to the calculation of the 

species concentrations can also be included in a straightforward manner.  In 
this case 

Ay 

~RT 

-n1/2(i2
2c) ll2 

* = (DfcT)3/2 

1/2    1/2  2 

where N is the number of particles per mole at standard conditions, V the 
corresponding volume, D the dielectric constant of the mixture and Z the ionic 
charge of each ion of type s. It follows then that 

1/2 

(B3) 

Substitution of this expression into (10) guarantees the inclusion of the 
limiting law Debye-Huckel correction. In the equilibrium constant method, 
this correction is inserted by means of the additional factor 

IT   vVLJ 
Y1     j     J exp -   IT 

1/2 

(DkT) -W%) fe < 4" 6 vs - -')] (B4> 

Where the reactions are written in terms of complete ionization to ions and 
electrons, this can be simplified slightly by making use of the identity 
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z v., z\  = Z. 
1  i] 1   J 

for that case. This follows from the fact that for such reactions v.. = 0 
except for the electrons while for the electrons v,.= ~Z*t   the ionic Jvalehce 
and Z.-l the electronic valence. lJ 

l 

Woolley has developed additional corrections for various other effects 
including third virial coefficients» the detailed calculation of the dielectric 
constant and the finiteness of the ionic core. 

At this point, the advantages of the direct search method should become 
apparent. We have defined direct search methods to include all those for 
which only the objective function needs to be evaluated. The addition of y' 
factors in (17a) as complex as (B2) and (B4) or Df ln-J terms in (10) of the^ 
complexity of (Bl) and (B3) would require much more complex reprogramming in 
methods involving the use of derivatives than is required in methods for which 
only the objective function is evaluated. Furthermore, the former requires 
some additional mathematical analysis in these cases whereas the latter 
approach does not. 

II. Real Gas Effects_ on the Calculation of the Properties of the Mixture 

In part I of this appendix, we showed how the species concentrations can 
be calculated including various real gas effects. These are the concentrations 
which must now be used in the expressions for the thermodynamic properties of 
the mixture In terms of the appropriate properties of the individual species. 
These expressions, however, are not simply those derived in the text for the 
ideal gas mixture,  In addition to these ideal gas terms there must be included 
terms which specifically refer to the real gas effects on the properties 
themselves.  Thus, the compressibility factor must now be written 

2 = PV = Z +   E A Z 
RT k 

where Z* Is the ideal gas value, I.e. Z* ■ Z    C. and the A, Z are expressions 
1 = 1 

for the various real gas effects. Thus, for the effect of the second virial 
coefficient 

1 p/p l        E   C  C0 B „ 
AZ = \T   °a=l 0=-! «  * ^ (B5) 
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where B „ is the second virial coefficient which describes the interaction 
Dip 

between species ot and species ß. For the limiting law Debye-Huckel effect 

AZ = 
-n 1/2 

(DkT) ̂ ■'•rii'.j'w (B6) 

where Z  is the ionic charge of species a . a 

The internal energy needs now to be computed using 

E 
RT 

E_ + Z  A 
RT 

k \RT/ 

where E* is the ideal gas value and, for the effect of the second virial 
coefficient, 

RT 
T ^ 

dT (B7) 

While for the Debye-Huckel effect, the correction for the internal energy 
is three times (B6), i.e. three times that for the compressibility factor. 
The entropy is to be calculated from 

S  S + Z  A. /s\ 
R"T k k^lJ 

where S* is the ideal gas value where the second virial effect is given by 

AR- v i °ya=i 
z 

8-1 
CaC0  Baß + T^ß (B8) 

and the Debye-Huckel limiting law effect ig  given by (B6). 

Corrections are easily derived for the various properties which depend 
on derivatives of these properties by differentiation of (B5) - (B8) as 
required. 
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