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1.0 SUMMARY

This report studies the accuracy of calculating the total drag of two-
dimensional and axisymmetric bodies and the accuracy of calculating the loca-
tion of turbulent boundary-layer separation in flows past such bodies.

The drag calculations were made by using the Douglas boundary-layer
method. This is an implicit finite-difference method applicable to both
laminar and turbulent boundary layers. The method also accounts for the
transverse curvature effects. In general, comparison of calculated and
experimental drag coefficients for both two-dimensional and axisymmetric
bodies are in good agreement with experiment.

The separation calculations were made by considering four different
separation-prediction methods. They are the Douglas boundary-layer method,
Head's method, Stratford's method and Goldschmied's method. Comparisons of
calculated and experimental results for several flows indicate that predic-
tion of separation by the first three methods is quite good.
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4.0 PRINCIPAL NOTATION

damping length or frontal area, wherever applicable

damping constants

chord

local skin-friction coefficient, rw/(1/2)pu§

total drag coefficient

total skin-friction coefficient

lift coefficient

pressure coefficient

maximum diameter

shape factor, OA/GK

shape factor, 0/8&%

mixing-length constant

mixing length

reference body length

exponent of power law velocity profile
pressure

pressure gradient parameter, Eq. (6.8)
radial distance from axis of revolution
local radius of body of revolution
chord-Reynolds number, u_c/v
diameter-Reynolds number, u D/v
Richardson's number, Eq. (6.17)
length-Reynolds number, u L/v

maximum radius of body of revolution

local Reynolds number, uex/v

MCDONNELL DOUGLAS CORPORATION




Ry Reynolds number, (ueoz_d)/v

S wall curvature term, Eq. (6.17)

u,v x and y components of velocity, respectively
u',v' fluctuating components of u and v, respectively
u* friction velocity, vﬁa;ﬂ;

u+ dimensionless velocity, u/u*

X streamwise distance

y distance normal to the surface of the body
y+ dimensionless y-coordinate, yu*/v

o angle of attack, or angle between y and r, wherever applicable
Y intermittency factor, Eq. (6.10)

8 boundary-layer thickness

&% displacement thickness, f(l - u/ue)dy

8% displacement area, Eq. (7.8)

€ eddy viscosity, -EUTV: = pe %5

8,8, ;  momentum thickness, / u/ug (1 - u/ue)dy
Oa momentum area, Eq. (7?12)

OA momentum area, Eq. (7.8)

Xb Polhausen parameter, Eq. (6.19)

A streamwise radius of curvature

u dynamic viscosity

v kinematic viscosity

0 density

T shear stress
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¢ angle from stagnation point

y stream function

Subscripts

e edge of the boundary layer

i inner region

2 Tower surface

m minimum pressure point

0 start of adverse pressure gradient, or outer region, wherever
applicable

t turbulent

tr transition

u upper surface

W wall

® free-stream conditions
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5.0 INTRODUCTION

Two very important problems in fluid mechanics are the prediction of
viscous drag of a body and the location of flow separation, that is, the
location at which the flow "stalls" or separates from the wall. Knowledge
of these two quantities can be very useful in numerous problems. For example,
an accurate prediction of the drag of a body can give a valuable insight into
the performance of a vehicle or assist in the design of improved shapes. Like-
wise, a knowledge of the separation point is vital in many design problems of
aerodynamics or hydrodynamics.

This report, which deals with the calculation of these two quantities in
two-dimensional and axisymmetric flows, is written in fulfillment of the
requirements of U.S. Navy Contract NOOO14-70-C-0099. The contract is a one-year
"level-of-effort" type and the objectives are covered by the following work
statement, taken from the contract.

1. Make a detailed study of calculation of total drag of two-dimensional
and axisymmetric bodies by considering various computational schemes.

2. Review the available methods, together with the Douglas boundary-
layer method [1] for predicting flow separation and investigate
the accuracy of predicting separation in turbulent flows.

3. Check the results for both drag calculation and separation for a
large number of test cases.

The present report describes the work accomplished during the contract.
It also describes the further work that requires studying.

Sections 6 and 7 describe the drag calculations. Section 6 describes
three possible approaches for calculating the tctal drag of two-dimensional
and axisymmetric bodies and two transition-prediction methods. Section 7
presents comparisons of calculated and experimental drag coefficients. These
calculations were made for a given pressure distribution by using the Douglas
boundary-layer method described in reference 1. When the pressure distributions

were not known experimentally, they were obtained by using the Douglas Neumann

method [2].
MCDONNELL DOUGLAS CORPORATION
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Sections 8 and 9 describe the separation calculations. Section 8 presents
a review of the four separation-prediction methods considered in this study,
and Section 9 presents comparisons of calculated and experimental separation

points for a number of flows.

Section 10 summarizes the results of drag and separation calculations and
discusses the further work that should be done in this very important area,
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6.0 CALCULATION OF VISCOUS DRAG OF TWO-DIMENSIONAL AND
AXISYMMETRIC BODIES IN INCOMPRESSIBLE FLOWS

At high Reynolds numbers, the viscous drag of streamlined bodies is
amenable to theoretical treatment and can be calculated by the boundary-layer
theory [3-7]. According to this almost standard procedure, laminar and tur-
bulent portions of the boundary layer along the body are calculated by methods
which are generally of momentum integral type, and the location of the transi-
tion is calculated by an empirical method (if the transition is not known
a priori). Then using boundary-layer parameters, such as momentum thickness,
shape factor, and velocity ratio, all at the trailing edge of the body, the
total drag of the body is calculated by a formula. For two-dimensional bodies,
the total drag is usually computed by the Squire-Young formula [3]. For axi-
symmetric bodies, the total drag is computed either by Granville's formula [5]
or by Young's formula [8]. These formulas are, in a way, a three-dimensional
version of the Squire-Young formula,

In reference 4, Cebeci and Smith investigated the accuracy of a particular
method for calculating the total drag of airfoils. This method consisted of
the calculation of (1) pressure distribution by any suitable method, (2)
laminar boundary-layer flow by Thwaites' method [9], (3) location of transi-
tion by Michel's method [10](if the transition is not known a priori), (4)
turbulent boundary-layer flow by Head's method [11], and (5) total drag by
means of the Squire-Young foermula. That study showed that the method was
quite accurate for predicting the total drag of airfoils except at very high
Reynolds numbers . Because of the inaccuracy of Head's method used for
turbulent boundary layer calculations, at high Reynolds numbers, the calcu-
lated drag values began to deviate from those of experimental values. For
example, computed local skin-friction values and momentum thickness values
for a turbulent flat-plate flow at various Reynolds numbers showed that the
computed results agreed quite well with the experimental values at low
Reynolds numbers, Rg < 13,000. On the other hand, at Reynolds numbers
R0 > 13,000, the computed results began to deviate significantly from the
experimental values.,
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The calculation of the total drag of bodies of revolution is somewhat
more difficult than that of two-dimensional bodies for several reasons. First,
the accuracy of the methods available for computing turbulent flows over bodies
of revolution is not as well established as those of two-dimensional methods.

1 the available methods do not account for the transverse-curvature
- -, which becomes quite important on slender bodies where the boundary-
layer thickness can be of the same order of magnitude as the body radius.
Third, the accuracy of calculating drag either by Young's or by Granville's
formula has not been investigated thoroughly.

The drag calculations for both two-dimensional and axisymmetric bodies
thus have one common feature: it is necessary to calculate the transition
point (if it is not known a priori) and the boundary-layer growth as accurately
as possible to make an accurate drag calculation., The boundary-layer method
used in this report provides accurate boundary-layer calculations and elimi-
nates most of the disadvantages of the methods discussed above. This method,
which is based on the numerical solution of the boundary-layer equaticns in
their differential form, is applicable to both laminar and turbulent flows.

It has been well tested for both laminar and turbulent flows about two-
dimensional and axisymmetric bodies including the effects of transverse
curvature. In general, the method is found to be quite satisfactory [1,12,13],

In this report two transition prediction methods have been considered:
those of Michel [10] and Granville [5]. The calculated drag values reported
in reference 4 were obtained by using Michel's method. For this reason, in
the present study Michel's method was used initially in order to compare the
earlier drag results of reference 4 in which the boundary-layer calculations
were made by using a combination of Thwaites' and Head's methods. By using
Granville's method the drag of several airfoils was also computed and the
results are compared with those obtained by Michel's method. The results are
discussed in Section 7,

6.1 THREE DIFFERENT APPROACHES FOR CALCULATING THE DRAG OF STREAMLINED BODIES

In general, the flow around a streamlined body can be divided into four
regions. Starting at the forward stagnation point A (see figure 1)there is at

MCDONNELL DOUGLAS CORPORATION
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Figure 1. Boundary-layer flow along an airfoil,

first a region in which the flow is laminar. After a certain distance, AB,
which is mostly governed by the streamwise pressure gradient and Reynolds
number, there is a region, BC, 1in which transition from laminar to turbulent
flow takes place. In the third region, the flow from C to the trailing edge
D is fully turbulent. Finally, at the trailing edge, the boundary layer of
the upper surface joins that of the lower surface to form the turbulent wake¥*.

The total drag of a two-dimensional body such as the one shown in figure 1
is generally obtained by measuring its velocity profile in the wake of the
body and using, for example, Jones' formula [3] which is given by

u g u 2 2 12
Cp = %(ﬁ.)fuu? 1- h "(EE) $ (3__) ‘ dy (6.1)
[} 0 = E

This formula is usually applied to measured velocity profiles located at short
distances behind the body.

The total drag can also be calculated theoretically by computing the
boundary-layer development around the body. One popular approach uses the
Squire-Young formula [3] given by

0.5(HT.E_+5)
Cp = 2 (—2—) <:—°> (6.2)
T.E \e/y g,

*Here, we assume that the boundary layer does not separate from the surface.

MCDONNELL DOUGLAS CORPFPORATION

15




According to (6.2) it is necessary to calculate the momentum thickness,
8, and shape factor, H, for a known velocity ratio ue/um at the trailing
edge. However, before these quantities at the trailing edge can be calculated,
it is necessary to calculate the complete flow field, which is rather difficult.

Another way of calculating the drag is to extend the calculations into the
wake and calculate the velocity profile in that region. This approach, although
less empirical than the other, is much more difficult; the wake just behind the
trailing edge is ccmposed of two boundary layers back to back, and little is
known about the way they interact or the accuracy of the turbulent calculations.

A third possibility for calculating the total drag is by computing the
components of drag, nameiy, skin-friction drag and pressure drag, separately.
The skin-friction drag can be obtained by the boundary-layer theory. For a
given pressure distribution (whether it is experimental or theoretical does
not make much difference, except possibly at the trailing edge), one can solve
the governing boundary-layer equations, calculate the local skin-friction
coefficient, and integrate it around the body to find the total skin-friction
coefficient. For the pressure-drag calculations, however, it is necessary to
know the experimental pressure distribution. In this case, the pressure forces
can be resolved into chordwise and normal components. The sum of the latter
forces gives the pressure drag. In case the experimental pressure distribution
is not known, we can calculate the pressure distribution, say, by the Douglas
Neumann method [2], and try to find the actual pressure distribution. This
can be done by first calculating the displacement thickness around the body for
the given pressure distribution, When the calculated displacement thickness
distribution is added to the body coordinates, a new theoretical pressure dis-
tribution can be calculated by the boundary-layer theory. The iteration proc-
ess continues until the change in the calculated pressure distribution is
negligible.

In the present study the first approach is considered in detail and has
been used to compute the drag of several two-dimensional and axisymmetric bodies.
According to this approach the total drag of two-dimensional flows was computed
by Squire-Young's formula or by Jones' formula, For axisymmetric flows, both
Young's and Granville's formulas were used. The other two approaches have also
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been studied but not as completely as the first approach, Because of the
limited time available under the contract these studies were not finished.

6.2 MODIFICATION OF DOUGLAS BOUNDARY-LAYER METHOD TO ACCOUNT FOR FLOWS AT
LOW REYNOLDS NUMBERS

Since an accurate calculation of boundary-layer development is essential
for an accurate drag calculation, it is also necessary to investigate the
accuracy of a turbulent boundary-layer method at low Reynolds numbers. Almost
all the prediction methods for turbulent bourdary layers, including the Douglas
boundary-layer method, are based on empirical data obtained at high Reynolds
numbers (R0 > 6000). According to several recent experiments [12-13], there
is a definite Reynolds number effect for Ro < 6000, For example, in refer-
ence 14, Coles observed that his law of the wake formulation failed for low
Reynolds numbers; the strength of the wake component, which stayed constant
for momentum Reynolds numbers greater than 6000, showed a large variation at
Tower Reynolds numbers (see figure 2).

In the present study, such an effect becomes quite important when the
drag of two-dimensional bodies is calculated at chord Reynolds numbers, Pc,
ranging from 3 to 9 x 106. Usually, for such flows the momentum-thickness
Rey nlds number at transition is of the order of 500 to 1000. An accurate

calculation of boundary layers at the trailing edge, and consequently, an

4r

aut

1 ] I ! ] | | l I ]
o) 5000 10,000

Figure 2, Variation of strength of wake component with Reynolds number,
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accurate calculation of the drag by (6.2) depends upon the accuracy of calcu-
lating turbulent boundary layers from the point of transition. For this

reason, studies were conducted in order to modify the present eddy-viscosity
formulation to account for low Reynolds number flows. This was done as follows.

According to the present Douglas boundary-layer method the turbulent
boundary layer is treated as a composite layer consisting of inner and outer
regions. In the inner region, we use an eddy-viscosity expression that is
based on Prandtl's mixing length theory; that is.

. 2]y

5 “{ayl 16.3)
where ., the mixing length, is given by ¢ = ky. We use a modified expres-
sion for . 1in (6.3) to account for the viscous sublayer and the transitional

region close to the wall, This modification, suggested by Van Driest [17] for
flat-plate flows, is

. = ky[1 —exp(-y/A)] (6.4)

where k = 0,4 and A 1is a damping length defined by 26v(rw/o)-]/2. As it h
stands, it cannot be used for flows with pressure gradients and for flows with
mass transfer, For this reason, the expression given by (6.4), which can also
be written as

JFoe kgt - exp(-ytath)] (6.5)

was modified to account for flows with pressure gradient and mass transfer
(see reference 18). This was done by defining A in terms of its friction
velocity based on the sublayer thickness rather than its wall friction; that

V7.
A = 2&({_—5) (6.6)

The sublayer friction velocity was obtained from the momentum equation approxi-
mated in the sublayer by the following equation

is,

d: v
S W _d !
T & (6.7) |
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The solution of (6.7) with y+ = 11.8 enables the damping constant 43 to
be written as

+ -1/2
At = at 2; [exp(11.8v ) — 1] + exp(11.8v ) (6.8)
v
W
where
feo At = 26 e
p H.E u*) 2 VW-F

The expression for eddy viscosity in the outer region is based on a
constant eddy viscosity

= 0,0168

f (ue ~ u)dy (6.9)
0

modified by Klebanoff's intermittency factor y, which is approximated by the
following formula:

6171
= [1 + 5.5 (%1) ] (6.10)

It is important to recall at this point that the constants k = 0.4 and
A* = 26 appearing in the inner eddy-viscosity expression were obtained for
experimental data at high Reynolds numbers. For flows at low Reynolds numbers,
they vary. One approach by which this variation can be obtained is the
following:

Consider a flat-plate flow. Close to the wall, the momentum equation
can be approximated by

dr _
r. 7 0
or
TE T, (6.11)
If we denote
TET, + T T M Eﬁé %Pi (6.12)
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and use (6.3) for ¢ with 2 given by (6.4), it can be shown that (6.12)
can be written as

+
du _ 2
Y 2, +,28 +, 42
1+41 + 4k"(y') |1 —exp(-y /A")

Integrating (6.13) for various values of k and At for a given Rg-flow
and comparing the results with the experimental data, one can easily obtain
the variation of these constants with Reynolds number.

Figure 3 shows a comparison of calculated and experimental velocity dis-
tributions for various Rg values for the experimental data of Simpson [14]

30

O EXPERIMENTAL DATA
OF SIMPSON

4 1 b a3 1 1 L 1 L1 1 1114

2 10 y* 10° Tox

Figure 3. Comparison of calculated and experimental velocity distributions for
turbulent flows at low Reynolds numbers.
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which was taken at low Reynolds numbers. On the basis of this curve-fitting

procedure, we find that k and A" can be satisfactorily expressed as func-
tions of R9 as shown in figures 4 and 5, respectively, and by the formulas

that follow.

0.19

k = 0.40 + 2> 0.3 (6.14)
1+ 0.49z
A =26+ — 1 z > 0.3 (6.15)
1+ 2
where

7= 10'3RO

Figures 6 to 8 show comparisons of calculated skin-friction coefficients
obtained by using the low Reynolds number correction with experimental results.
Figure 6 compares the calculated cf-values with those given by Coles' pre-
diction [19] and the experimental values of Wieghardt [20]. Here the calcula-
tions were started as laminar at the leading edge and the flow was specified
to be turbulent at the next x-station.

Figure 7 shows the results for Schubauer and Klebanoff's airfoil-like body

designated as 2100 in reference 20. Again, the calculations were started as
0.60

0.56
50 —
0.52
k
048 40
A’
0.44 30[~
0.40 ] 20 | 1 | | 1 |
0 0 () I 2 3 4 5 6
Ry x 16" Raxld’
Figure 4. Variation of mixing- Figure 5. Variation of damping
length constant with constant with Reynolds
Reynolds number. number.
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Figure 6. Comparison of local skin-friction coefficients for a flat-plate

turbulent flow at low Reynolds number,
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(0] EXPERIMENT
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Comparison of calculated and experimental skin-friction coefficients
for the data of Schubauer and Klebanoff [20]. Calculations were
made with and without the low Reynolds number modification.

Figure 7.
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Figure 8. Comparison of calculated and experimental skin-friction coefficients
for the data of Moses [20].

Taminar at the leading edge and the flow was specified to be turbulent at the
next x-station, Calculations with a flat-plate flow assumption continued until
the experimental Rg was matched. From this point on, we have used the
experimental pressure distribution. The results show that when the Reynolds
number is low (Rg £ 8000 at x = 8 feet) the modifications to the eddy-
viscosity formulation improve the cf-va1ues.

Figure 8 shows the results for the experimental data of Moses designated
as 3700 in reference 20. Here the calculations were started by using the
experimental velocity profile. This flow is a low Rg-flow. For example,
at x = 0.4 feet, Rg = 1000, x = 2.4 feet Rg = 6300. As a result the
improvement in calculated cf-values is more pronounced than that of Schubauer
and Klebanoff's data. Shown in the same figure is a comparison of calculated
and experimental Rg-values. Again the calculated results with the low Reynolds
number correction agree better with the experimental data than those without
this correction,
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6.3 MODIFICATION OF DOUGLAS BOUNDARY~LAYER METHOD TO ACCOUNT FOR THE
STREAMWISE WALL CURVATURE

Boundary-layer theory is based on the assumption that the pressure
gradiant normal to the wall can be neglected. If the wall has a streamwise
curvature, this assumption is not always valid. This wall curvature may
increase or decrease the intensity of the turbulent mixing depending on the
wall curvature and can strongly affect the skin friction and heat transfer
rates. For example, in reference 21 Thomann showed that the rate of heat
transfer in a supersonic turbulent boundary layer on a concave wall was
increased by the streamwise curvature of the wall. For the arrangement he
investigated, the pressure was kept constant along the wall, and the increase
of about 20 percent was therefore only due to the wall curvature. For a con-
vex wall, he found a comparable decrease, also with constant pressure along
the wall.

In this report we have attempted to make a corraction to the present
eddy-viscosity formulation in order to account for the wall curvature since
such an effect can be quite important on thick airfoils and on the forward

part of a blunt body. The expression suggested by Bradshaw [22] has been used.

This expression is based on an analogy between streamline curvature and buoy-
ancy in turbulent shear flows. With this wall curvature modification, the
eddy-viscosity formulation becomes

2 2

e = ()% [1 = exp(-y*/A)T" ()67 (6.16a)

8
€ = 0.0168 f (ue —u)dy| vy 52 (6.16b)

0

where
2 1 _ 2u/A

S TT R Ry = 3y (6.17)

The radius of curvature, A is positive for a convex surface (g = 7) and is

negative for a concave surface (8 = ).
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According to Bradshaw the effects of curvature on the mixing length or eddy
viscosity are appreciable if the ratio of boundary-layer thickness & to
radius of curvature A exceeds roughly 1/300,

Figure 9 shows the effect of wall curvature modification on the computed
cf-values for the experimental data of Schubauer ard Klebanoff [20], In this
case 6/A is around 1/150 and a correction such as the one given by (6.16)
seems to improve the results.

6.4 PREDICTION OF TRANSITION POINT

One of the most important factors in the drag calculations is an accurate
prediction of the transition point wnen it is not known experimentally.
Probably the ideal way of predicting this point is to calculate the growth of
the disturbances that build up in the boundary layer until they reach the
condition at which transition is known to occur. Two strong factors that influ-
ence the position of transition are the streamwise pressure gradient and the
turbulence in the freestream so that any calculation of the boundary-layer
disturbance growth should account for them, However, because of the complexity
of the problem, it has not, thus far, been possible to successfully account
for such factors. Theoretical work has been limited largely to the criteria
for stability of the boundary layer and the growth of small disturbances under
particular flow conditions.

4 ™ un x
]? As3IFEET
3 o
Cy x10®
2 -
O EXPERIMENT

——— WITH CURVATURE CORRECTION on]

----- WITHOUT CURVATURE CORRECTI
) X
0 1 1 I L 1 L% J

0 4 8 12 6 20 24 28

X~FEET

Figure 9. Comparison of calculated and experimental skin-friction coefficients
for the data of Schubauer and Klebanoff [20]. Calculations were

made with and without the curvature correction. The low Reynolds

numb orrection was included in both cases
:s;c%gn%su.agoual.as canpos‘inou
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At the present time there are several empirical methods for predicting
the transition point, These are the method of Van Driest and Blumer, the
method of Crabtree, the method of Granville, the method of Smith and Gamberoni,
the method of Van Ingen and the method of Michel., In this report we consider
two of these methods. They are the method of Michel[10] and the method of
Granville [5]. These two methods are briefly described below.

6.4.1 The Method of Miche!

Michel's method is based on the correlation of transition momentum-
thickness-Reynolds number, Rgtr' with x-Reynolds number, R,. The reason
for such a "universal” curve is mostly due to the data used in the correlation.
The experimental results used in this correlation came from particular types
of airfoils having similar pressure distributions and in such cases the values
of Rg and Rx would, to some extent, define a simple curve. Consequently,
use of this method for airfoils with pressure distributions significantly
different from the ones used in this correlation may introduce errors into
the prediction of transition. In spite of this it is a useful relation,

As seen in figure 10, the range of the applicability of Michel's correla-
tion is limited to values of Rx between 0.4 x 106 and 7 x 106. For this
reason, in the present study we have used Smith's ed-correlation curve [23]

for values of Rx greater than 7 x 106. The resulting transition correla-

tion curve may also be conveniently described by the following formula:

_ 22400\ 0.46
R = 1.174 <1 + T) Ry (6.18)

for

0.1 x 10° <R <60 x 10°
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Figure 10. Transition-correlation curves of Michel and Smith

6.4.2 The Method of “ranviile

Granville's methoa consists of a single curve of (R9 - Rgi) against

the parameter g asa {ransition criterion. See figure 11, The Polhausen
parameter Te is devin.d as

X
_ fOz/v(due/dx)dx
2 du Xs
- _ e _ i
Ny & TR (6.19)

1
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Granville, by using approximations of the same order as those used in Thwaites'
method (9 ], reduced (6.19) to

2 2
rRO -(ue/uei)Rgi

- .4 ]
= = 6.20
W /T le = UV, ) Fx (620)

To predict transition by Granville's method, it is necessary to calculate
the critical momentum-Reynolds number, R9 . This value can be calculated by
using the curve given in figure 12, Once Ro is known, then the values of
(RQ —-Rgi) and _Tb are calculated from the point of instability, in’ along
the body until they intersect the universal transition curve given in figure 11,

Granville's method also accounts for the effects of free-stream turbulence
on the transition point. However, it is restricted to flat-plate flows. Little
is known about the effect of freestream turbulence on flows with pressure
gradient, For this reason, we have neglected the freestream turbulence effect
on transition point, It is believed that this assumption is a satisfactory
one since flows for the bodies considered in this report were measured in Tow-

turbulence tunnels,

For the cases studied in this report, Michel's method was initially used.
The reason for this choice was to be able to make comparisons.
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Figure 11, Granville's transition- Figure 12, Variation of critical Reynolds
correlation curve, number, Rg., with shape factor
according to stability theory.
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between the results obtained by a previous study that utilized Michel's
method (4]. However, in the present study we have also used Granville's
method and made comparisons with those obtained by using Michel's method.
These are discussed in Section 7.

The curves given in figures 11 and 12 are represented by the following

equations:
4
- =N -
Ry --Rgi - :E: c, T -0.04 < T, <0.024 (6.21)
n=0
where
Cy = 0.820571 x 103 C; = 0.516769 x 10’
C, = 0.282738 x 10° C = 0.223023 x 108
C, = 0.707219 106
«
R, = exp ¢ H" 2.45 < H < 3.4 (6.22)
% C U - -
n=0
where
C, = 493.906 C, = -0.104478
¢, = 407.017 C; = -2.81454
C, = 53.9041 Cg = 0.355919
Cy = 24.1642 C, = 0.0120270

6.5 PROCEDURE FOR CALCULATING BOUNDARY-LAYER DEVELOPMENT ABOUT STREAMLINED
BODIES

In the calculation of drag of streamlined bodies according to any of the
three approaches discussed in Section 6.1, it is necessary to calculate the
complete boundary-layer development from the leading edge to the trailing edge.
Let us consider the general case and assume that only the pressure distribution

is given, This means that we need to calculate the laminar boundary-layer flow,
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locate the position of transition, and then calculate the turbulent boundary
layer. Each must be caiculated to the same degree of accuracy if the drag
calculations are to be as aLcurate,

In the results reported here, we have first calculated the laminar flow
up to transition, which was assumed to take place at a point rather than in a
region, Transition was computed by either Michel-Smith's transition-
correlation curve or by Granville's method. Then at this point the turbulent
flow calculations were started by activating the eddy-viscosity expressions in
the governing boundary-layer equations and have continued the calculations up
to the trailing edge. However, in some cases the calculations indicated
laminar separation before the transition point was reached. In this case the
wall shear became very small and prevented the solutions from converging. In
such cases the laminar separation point was assumed to be the transition point
and the turbulent flow calculations were started at that point,

It is also important to note that the computed boundary-layer parameters
at the trailing-edge — momentum thickness in particular — showed a strong
dependence on !ie streamwise spacing in the vicinity of the transition point
unless the spacing is uniform. With uniform spacing, the dependence was
removed and, at least for the cases studied in this report, consistent results
were obtained.

The accuracy of calculating the complete boundary-layer development by
the procedure that has been discussed was investigated for the experimental
data of Newman [20]. The measurements, made on an airfoil, include experi-
mental pressure distribution, transition point, and turbulent velocity profiles.
The calculations were started at the leading edge. The experimental transi-
tion point was at x = 1,169 feet, but at x = 1,009 feet the calculations
predicted laminar-flow separation. Consequently, the transition point was
shifted to x = 1,009 feet., Calculations were made with and without the
modification for low Reynolds number flow (e.g., at x = 2.009 feet, where
the first experimental velocity profiles were reported, the Rg-value was
5500) the calculated Reynolds number at transition is R0 = 600, and the
calculated results show a slight improvement with this modification. See
figure 13). But more important, when the calculations are started at x = 2.009
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by using the initial experimental velocity profile, the results are almost
exactly the same as those obtained by the modification. This is rather
significant, since it shows that the present method is capable of calculating
a complete boundary-layer development and gives justification for extending
the calculation procedure to the driyg calculations,

8.0 | o DATA OF NEWMAN
WITH MODIFICATION FOR LOW
sol REYNOLDS NUMBER EFFECT | caLc.
: — — — WITHOUT MODIFICATION
cf :Id'
40t
2.0}
u, ]
400
0 x10°
~FT
20.0}
n - |
0O 10 20 30 40 50 60

X~FT

Figure 13, Comparison of calculated and experimental results for Newman's
airfoil [20].
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7.0 COMPARISON Of LULATED AND EXPERIMENTAL DRAG COEFFICIENTS
OF TWO-JIMENSIONAL AND AXISYMMETRIC BODIES

In this section we present comparisons of calculated and experimental
drag coefficients of several two-dimensional and axisymmetric bodies. The
calculations were made by the procedure described in section 6.5. The drag
coefficients, however, were calculated only by the first approach discussed
in section 6.1. According to this approach, the drag of two-dimensional
bodies was calculated by the Squire-Young formula and the drag of axisymmetric
bodies by a three-dimensional version of this formula. Jones' formula was
also used to compute the drag of two-dimensional bodies. In using chis formula
we used the velocity profiles at the trailing edge of the body and did not
extend the calculations into the wake.

It is important to note at this time that use of either the Squire-Young
formula or the Jones formula requires the value of (ue/um) at the trailing
edge together with the boundary-layer parameters at the same location, If the
experimental velocity distribution is used, this presents no problem in calcu-
lating the drag by these formulas since the velocity ratio is known at the
trailing edge. However, with an inviscid velocity distribution these formulas
are meaningless since one will always get a stagnation point at the trailing
edge (for finite-trailing-edge angle). For this reason, when the inviscid
velocity distribution is given, it becomes necessary to extrapolate the
velocity distribution from the 95%-chord to the trailing edge. This procedure
enables the calculations to be carried out up to and including the trailing edge.
The error arising from this extrapolation of inviscid velocity distribution can
be shown to be negligible as follows.

In reference 24 [p.182, eq.(9)], the expression for the drag coefficient

CD for both laminar and turbulent flow is
Ve, $e/€ 7y NS /7\]3/5 | sl il
o = (Ld22 | “tr (57 (Te ) fx\(, 0.02429 %) 4fx
D 3/5 |u u c o 1/5 u_ c (7.1)
R o © R
c 0 ¢ xtrfc
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Now, consider only the contribution of the turbulent flow. Then

c, - 002429[ < \ dx/c (7.2)

Rc

Assume that the velocity distribution between the 95%-chord point and the
trailing edge is linear (fig. 14). Then the velocity distribution is given

by

ug/u, = a + 20(b — a)(x/c — 0.95) 0.95 < x/c < 1 (7.3)

where a is the value of the velocity at the 95%-chord point, and b is the
value of the velocity at the trailing edge. Since Eq. (7.2) can be written as

0.02429 BTAN >/
£ X
/c< > <> Rc”5 f <“w> d<°> BEC

0.95

0.9
C - 10.02429
xtr

the term

Figure 14. Velocity distribution near the trailing edge.
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can be considered to be a "correction" or error term (assuming the exponent
5/6 ~ 1) if we make an assumption for the velocity distribution between the
95%-chord point and the trailing edge. Substituting the expression for the
velocity ratio from (7.3) into (7.5) and integrating gives an estimate of
this quantity

1/5

¢, = (2.429/R] 11074 (6% + abd + 222 + a% + Y (7.6a)
E
For b=a (7.6a) becomes
¢y = (5 2.429/Rl/5)10'4a4 (7.6b)
E

If a=1 and R, = 106, the correction term is approximately 5 x 10'5,

which is relatively small, At higher chord Reynolds numbers, the correction
term becomes even smaller. Thus, extrapolating the inviscid velocity distri-
bution to the trailing edge in the manner done in this study is justified.

7.1 DRAG COEFFICIENTS wr TWO-DIMENSIONAL BODIES

In most of the two-dimensional bodies considered in this report, the
position of transition was not known and was calculated by using either
Michel's or Granville's method, At first, the drag of a number of airfoils in
which transition was obtained by Michel's method was calculated. These values
were compared with those obtained in a previous study [4] in which transition ;
was again calculated by Michel's method but the boundary-layer calculations {
were made by a combination of Thwaites' and Head's methods. After these com- i
parisons, some of the calculations were repeated with Granville's transition-
prediction method and in this way theeffects of different transition prediction
methods on drag were studied. Results obtained by using Michel's method are
presented first.

Figure 15 shows the results for the NACA 65(2]5)-114 airfoil [25] at
chord Reynolds numbers varying from 6 x 106 to 40 x 106 together with the
calculated results obtained earlier [4]. The drag values which were obtained
by using the Douglas boundary-layer method show a marked improvement over
earlier results, which were obtained by using a combination of Thwaite's
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Figure 15. Comparison of calculated and experimental drag values for the
NACA 65‘2]5)-114 airfoil at Cy = 0.14 [25]. Transition points
were calculated by Michel's method.

laminar boundary-layer method and Head's turbulent boundary-layer method.
This is quite significant since, although good agreement was obtained at
lower Reynolds numbers (Rc <9 x 106) according to the study described in
reference 4, the agreement was poor at high Reynolds numbers, and the dis-
crepancy was attributed to the inaccuracy of calculating turbulent boundary
layers at high Reynolds numbers.

Figure 16 shows a comparison of calculated and experimental drag coef-
ficients for the NACA 4412 airfoil at various 1ift coefficients. The experi-
mental pressure distribution was given for RC = 3.1 x 106 for a wide range
of angles of attack [26]. The experimental drag values were obtained from
reference 27. However, the unseparated flow ranged from o = -6 t0 o = 8°,
For this reason, calculations were made for angles of attack of -6, -4, -2, 0,
2, 4 and 8 degrees for three chord-Reynolds numbers 3 x 106, 6 x 106, and
9 x 106 using the same experimental pressure distribution. Transition data
was not given. Although not shown in this report, it is important to note
that a comparison of present calculations with those that were obtained
earlier [4] shows that the present drag values are in much better agreement

with experiment.

Figure 17 shows the results for the NACA 64A010 airfoil. In this case

the pressure distributions were given for a slightly compressible flow
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Figure 16. Calculated and experimental drag coefficients for the NACA 4412
airfoil [26,27]. Transition points were calculated by Michel's

method,
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Figure 17. Calculated and experimental drag coefficients for the NACA 64A010
airfoil [28]. Transition points were calculated by Michel's
method.
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(M_ =0.3) at Rc = 0,95 x 106 [28] for an airfoil with 6-inches chord,
for angles of attack up to and including stall. The calculations were made
for three-chord Reynolds numbers, Rc = 0.95 x ]06, 8 X 106 and 6 x 106
for angles of attack of « = -1.8, -0.8, 0.2, 1.2, 2.2, 4.2 6.2 and 8.2. It
is important to note that at higher angles of attack, it was necessary to
input the experimental pressure distribution near the nose in considerable
detail because of the high Cp values. This was done by fairing a curve

through the available experimental points in that region.

Figure 18 shows a comparison of calculated and experimental monentum-

thickness values [29] for the RAZ 101 airfoil for a chord Reynolds number of
Re = 1.6 x 106. The calculations were made for two angles of attack, o = 0°

and 4.09? In the calculations the experimental pressure distribution was
used. The total drag values of this airfoil were not given. For this reason,
comparisons were limited to values of momentum-thickness only.

{RAE 101 AIRFOIL >

5 = o
Re = 1.6 X 108 a=4.09
80l O EXPERIMENTAL
Z X 10
CALCULATED

Figure 18, Comparison of calculated and experimental values of momentum
thickness for the upper surface of RAE 101 airfoil [29]. Transi-
tion position was calculated by Michel's method.
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Comparison of calculated and experimental drag coefficients were also
made for the NACA 66,2-420 airfoil [30] at zero angle of attack. The calcu-
lations were made for three chord Reynolds numbers, Rc = 6.67 x 106,

9.30 x 106 and 11.30 x 106 in which the experimental free-stream Mach
number was 0,194, 0.269 and 0.385, respectively. In the calculations the
experimental pressure distribution, which was obtained at M_ = 0.194, was
used. In addition, in the calculations it was necessary to extrapolate the
experimental pressure distribution to the trailing edge because the experi-
mental pressure distribution was given only up to the 90%-chord point. The
boundary layer was tripped at 10%-chord point, and the total drag coefficients
for the three Reynolds numbers were obtained from wake measurements, A
comparison of the calculated and experimental results is given in Table 1.

Table 1

A COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG COEFFICIENTS FOR
THE NACA 66,2-420 AIRFOIL [30]

R, X 107 Gt 108 ¢y 108
exp cal ‘
6.67 10.85 9,57
9.30 10.65 9.02
11.30 10.70 8.74

Calculations were also made for the NACA 35-215 airfoil [31]. For this
airfoil, the total drag coefficient of the upper surface was calculated for
a pressure distribution obtained from reference 31 at a chord Reynolds number
of 26.7 x 106. The experimental transition point was specified as the 43.5%-
chord point. The calculated and the experimental (flight) values are
2.32 x 1073 and 2.30 x 10'3, respectively. It is interesting to note that
when the drag of the same airfoil was calculated in reference 4, the same

drag coefficient, as the one computed in the present study, was obtained.

Figure 19 shows a comparison of calculated and experimental results for
the NACA 633-018 airfoil [27,32], For thissairfoil the experimental pressure
distributions were given for Rc = 5,8 x 10° at angles of attack of
+=0=10 in the unstalled regime. In the calculations, the transition points
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Figure 19, Calculated and experimental results for the NACA 63.-018 airfoil [32].
Transition points were calculated by Michel's method.

were calculated by Michel's method since the experimental points were not
given, In addition, the velocity distribution was extrapolated linearly from
the 95%-chord point to the trailing edge since the experimental velocity
distribution was given only to the 95%-chord point.

Finally, we present the results for the symmetrical NACA four-digit
airfoils with thicknesses from 6 to 12% for zero angle of attack. Except for
the 12%-thick airfoil the calculations were made by using the inviscid pres-
sure distribution given in [27]. Again, the velocity distributions were
extrapolated linearly from 95%-chord point to the trailing edge. The calcula-
tions for 0006 and 0009 airfoils were made for chord Reynolds number of 6 x 106.
For the 0012 airfoil calculations were made for chord Reynolds numbers of 6 x 100
and 10.25 x 106 for the experimental distribution given in [33]. In these
calculations the transition points were calculated by Michel's method. A
comparison of the calculated and experimental drag coefficients for these
airfoils is given in Table 2.
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Table 2

A COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG COEFFICIENTS FOR
THE NACA 00-SERIES

Transition Positions were Calculated by Michel's Method

Airfoil R x 1078 ¢, x10° ¢,  *x10°
exp cal

0006 6 5.00 5,10

0009 6 5.50 5,52

0012 6 5,70 5,62

0012 10,25 5.60 5.30

We have also calculated the drag coefficients of several airfoils by
using Granville's method for predicting the position of transition, It is
important to note that when we calculate the boundary-layer parameters around
the airfoil (one surface) we use about thirty chord stations. This means
that each chord station is approximately three to four-percent-chord apart
(in some cases, a little more). In calculating the transition point we first
calculate the Rg at each chord station and check whether the value at that
station, defined by a certain Rx’ satisfies the Rg, Rx relationship of {
Michel. In following this procedure, a three- to four-percent error is intro- |
duced into the transition calculations. Such an error can, of course, be
eliminated if one introduces more chordwise stations (which means longer compu-
tation times), or if a search is made for the transition point by extrapolating
the calculated Rg-va1ues from one station to another. In using Granville's
method, the error may double since this time it is necessary to search for the
Rgi-value as well as for the Rg r-va]ue. This means that it is necessary to
introduce additional interpolation schemes into the numerical method if the
transition is to be predicted accurately.

I —S———

At the writing of this report, drag calculations using Granville's method '
are not finished. Because of the time available in the present study, we have
not been able to introduce the proper procedure of calculating transition into
the numerical method. For this reason, preliminary results will be presented
only for three airfoils.

MCDONNELL DOUGLAS CORPORATION

40




Figure 20 shows a comparison of calculated and experimental drag
coefficients for the NACA 4412 airfoil for which the drag coefficients were
obtained earlier by using Michel's method. The results indicate better agree-
ment with experiment when the transition points are calculated by Granville's
method. Table 3 presents a comparison of calculated transition points by
each method as well as a comparison of calculated and experimental drag

coefficients.
eF

CDXIO3 I /
D A 0
6 = -

©  EXPERIMENT T

———— TRANSITION BY MICHEL S .METHOD CALCULATED
lTRANSITIOP BY GRA:WILLE S ?AETHOD 1 \
4
-4 =12 0 2 .4 .6 .8 1.0

Cy

Figure 20. Comparison of calculated and experimental drag coefficients for
the NACA 4412 airfoil at R. = 6 x 106, The calculated drag coef-
ficients were obtained by using Michel's and Granville's methods.

Table 3

COMPARISON OF CALCULATED TRANSITION POINTS AND DRAG COEFFICIENTS FOR
THE NACA 4412 AIRFOIL AT RENS 6 x 106

Calculated Transition Drag Coefficients
Points Cp x 103
Michel Granville Calculated
Angle
of Transition | Transition
X X X X
retack | (8) |(B) | () |(B) |, by .
o u L u L Michel Granville Experimental
-6 0.70 {0.03* | 0.65 |[0.03* 6.69 6.86 6.90
-4 0.65 |0.03* | 0.574 | 0.03* 6.31 6.52 6.45
"2 0.574 0.07* 0050 0.07* 6.]] 6.3] 6.30
0 0.500 {0.15 0.475 | 0.25* 5.83 5.49 6.25
2 0.45 |0.25 0.40 |0.225 5.79 6.01 6.20
4 0.35 |0.52 0.325 | 0.400 5.96 6.04 6.20
8 0.126 | 1.00 0.126 | 1.00 7.27 7.27 7.60

*laminar separation
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Calculations were also made for the NACA 35-215 and 65(2]5)-114 airfoils,
For the first airfoil the calculated transition point by Granville's method
agreed exactly with the one calculated by Michel's method and with the one
obtained experimentally [(x/c)tr = 0.435], On the other hand, the transition
points for the NACA 65(2]5)-1]4 changed slightly from those predicted by
Michel's method., The difference in transition points affected the calculated
drag coefficients as shown in Table 4.

Table 4

COMPARISON OF CALCULATED AND EXPERIMENTAL TRANSITION POINTS AND DRAG
COEFFILIENTS FOR THE NACA 65(2]5)-114 AIRFOIL AT CQ = 0.14 [25]

Calculated Transition Drag Coefficjents
Points Cp 103
Experimental
Transition
Michel Granville Points Calculated
R x Transition|Transition
c X X X X X X
|3 ) 1E) () @) |(2) | by by .
10 Gl N u ¢ u ) Michel |[Granville {[Experimental
0.55 [0.575%0,525]0.55 | 0.567|0.562 4,22 4,54 4,40
8 ]0.525]0,55 (0.5 ]0.525 0.562|0.555 4,12 4,46 4,26
10 {0.525/0.525 0.5 [0.529 0.558]0.552 4.03 4,23 4,10
15 10.50 [0.50 0.475(0.50 | 0,534]0.532 3.97 4,10 4.00
20 10.45 [0.50 [0.45 |0.475 0.483]0.507 3.99 4,05 4,10
30 [0.35 |0.40 |0.39 [0.425% 0.391]0.447 4,38 4,16 4,40
40 |0.30 |0.325(0.35 |0.40 | 0.334]0.372 4.63 4.27 4,80
*laminar separation

We note that the calculated drag coefficients in which the transition points are

predicted by Grarville's method are in better agreement with experiment than

those obtained by Michel's method at lower Reynolds numbers. On the other hand,

the trend is reversed at higher Reynolds numbers, the calculated values using

Michel's method are in better agreement with experiment than those using Granville's
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method. The discrepancy, however, can be also due to the inaccuracy of the
procedure used to predict transition by Granville's method. Before a definite
conclusion can be reached, it is necessary to improve the transition predic-
tion procedures discussed before,

7.2 DRAG COEFFICIENTS OF AXISYMMETRIC BODIES

The total drag coefficient of an axisymmetric body can be calculated by
using Young's formula [8]

(h+5)/2
20
. A ue> (7.7)

Co‘T(U;

e @ QA is the momentumn area given by

9, =2r | r L 1—u—>dy (7.8)
A 1!~ Uo < Ug

and h is a shupe factor defined as the ratio of displacement area GK to
the momentum area QA‘ The former is given by

[+ <]

a;«\=2n/r<1—3->dy (7.9)
e

0

In (7.7) A is the frontal area based on the maximum radius Rj of the body,

A= nRg (7.10)

and throughout this report it is used to normalize the drag coefficients. As
in Squire-Young formula, the quantities OA, ue/uoo and h in (7.7) are all
to be evaluated at the tail end of the body.

A formula similar to Young's formula which can also be used to calculate

the total drag coefficient of an axisymmetric body is Granville's formula [5].
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(7.11)

h+2)q+3 1
o ng (ue>[( + )q+ ]/q+

D~ A \u_

u
o

where q is a constant equal to 7. The difference between the two formulas
(7.7) and (7.11) lies in the exponent of the “e/“w term.

In the case of axisymmetric bodies with large ro(ro>>6), the momentum
area @, becomes

8, = 2 8, (7.12)

In such cases, the shape factor reduces to its two-dimensional definition,
H = s*/@, Then (7.7) and (7.11) become

(H+5)/2

4r O u

_ 02-df e

CD = ——RZ——(U;> (7.13)
0

and

. =_02-df e
D RZ u
0

ir 0. \[H+2)7+31/8
( ) (7.4,

oo

A relation between (7.8) and (7.12) can be obtained by assuming a power law
profile for the velocity profiles and by integrating (7.8) with this assump-

tion. See rererence 5. If we denote the two-dimensional definition of momentum

area by 6, and use the relations u/u, = (y/c)]/n, r=r,tycosa in

(7.8), we obtain

e
_ n+2 cosu
D-; =1+ 2(2n 17 Y‘o/d— (7.]5)

Figure 21 shows the variation of OA/Oa with ro/é for n=5 and 10,
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Figure 21, The variation of OA/Ga with ro/d for two values of n,

The total skin-friction coefficient of an axisymmetric body, CF, is
obtained by integrating the local skin-friction coefficient Ce around the

body. It is given by

om *t.e. Uo 2
CF ol w Cely U:' dx (7.16)
0
where
Tw
Cf =—-",——12- (7.]7)
1/2 pUg

In the study reported here, the total drag coefficients and total skin-
friction coefficients of several axisymmetric bodies were calculated. We
first present the results for some of the DTMB bodies measured by Gertler [34].
These bodies, which were all all 9-feet long, were tested in a water towing

tank for a Reynolds number range of 2 x 106 to 26 x 106. The boundary layers
were tripped at x/L = 0,05,
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The drag calculations were performed for three bodies with fineness ratios
of 4, 7, and 10, In the calculations we used the inviscid pressure distribution
obtained from the Douglas Neumann method [2] because the experimental values

were not given,

However, in the case of the body with the fineness ratio of 4,

viscous corrections were made to the inviscid pressure distribution (see

Section 6.1).

Figure 22 shows a comparison of two pressure distributions for

this body. The results show that viscous effects have negligible effect on
the pressure distribution up to 86%-chord point which corresponds to zero Cp.
= 'a —
alf e INVISCID P.D. -
——— EXTRAPOLATED P.D.
¢ — — VISCOUS CORRECTION
\
\
€ : I
R T - -
2R,
) 1 I 1 1 1 J
0 20 40 60 80 100 120
X~ INCHES
Figure 22. Pressure distribution on DTMB body 4154 with and without viscous

correction R_ = 4 x 106,

Between 86% chord-point and the tail end of the body, however, the pressure
distribution with the viscous correction significantly changes from the inviscid
pressure distribution. The calculated drag coefficients using the pressure
distribution with and without the viscous effects at several chord points also
Figure 23 shows the calculated total drag coefficients at
For the inviscid

vary significantly.
several axial locations for the two pressure distributions.
pressure distribution the drag calculations were only performed up to 89% chord
point since fiow separation was observed past this point. However, for the
pressure distribution with the viscous corrections, no flow separation was
observed, and the culculations were continued up to the tail end of the body.

The results in figure 23 indicate that the drag formulas show great sensitivity
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Figure 23. Variation of total drag coefficient with axial distance for the
DTMB body 4154 at RL = 4 x 106 [34], The total drag coefficient
was calculated by using Granville's formula (7.14).

to the choice of tail end when inviscid pressure distribution is used. On the
other hand, the sensitivity to the choice of the tail end disappears when the
calculations are made by using the pressure distribution with viscous correc-
tions. The results also indicate that the calculated drag values obtained by
either (7.7) or (7.11) differ significantly from the experimental value. How-
ever, when the calculations are made by using (7.13) and (7.14), that is, by
using equations that employ the two-dimensional definition of momentum area,
Qa, a better agreement is obtained with experiment. It is interesting to note
that when the inviscid pressure distribution is used, the chord-point where

Cp = 0 seems to give drag values which agree satisfactorily with experiment,
at least for this body. At this point the wake correction term in the drag
formula makes no difference because u,/u, = 1.0.

Figure 24 shows a comparison of calculated and experimental drag coeffici-
ents for the same body. The experimental values are not corrected for wave
making resistance of the body. In this case, the calculations were made by
using the inviscid pressure distribution. However, the calculated total drag
coefficients were obtained by taking the tail end to be the point where Cp = 0.
This is a reasonable approximation for this body since the inviscid pressure
distribution does not deviate from the actual pressure distribution up to this
chord point. In these calculations we have used the two-dimensional definition

of momentum area. In this case, the total drag coefficient is given by
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Figure 24, Comparison of calculated and experimental drag values for the DTMB
body 4154 [34]. The total drag coefficients were obtained by using
Granville's formula (7.14) and by taking the point where Cp = 0 as
the tail end.

4r B
¢y = =224 (7.18)
R
0
The calculated total drag values deviate a little from the experimental values.
They can probably be improved if one obtains a viscous correction to the
inviscid pressure distribution at each Reynolds number and then calculates

the drag at the tail end of the body. However, this is not done in this study.

Figure 24 also shows the total skin-friction drag coefficient for this
body. Calculations were made by using the inviscid pressure distribution in
which the velocity distribution from the 95% chord point was extrapolated
linearly to the tail end,

Figures 25 and 26 show the results for the bodies with fineness ratio of
7 and 10, respectively. In these cases, the calculations were made by using
the inviscid pressure distribution. The total drag coefficients were again
computed by using (7.18) and the total skin-friction coefficients by using
(7.16). The calculated total drag coefficients and total skin-friction
coefficients agree well, indicating that the pressure drag is negligible.
This is reasonable since both bodies are quite slender.

We next present the results for a 285-foot long airship [35] with a
fineness ratio of 4.2. For this body the pressure distribution and boundary-
layer measurements were made in flight at speeds from 35 to 70 miles per hour.

MCDONNELL DOUGLAS CORPORATION

48




2 ——=—= INVISCID P.D. |
EXTRAPOLATED P.D. i
cp 4
&
8
o | J
0 20 120
X ~ INCHES
or M
6.0} G
A el e ao—o—a
Gip) .10 © EXPERIMENTAL
a0l
Cr
CALCULATED
2.0F -——-¢p |
0 1 1 1 1 1 1
0 4 8 12 16 20 24
R X 1076

Figure 25.

body 4165 [34].
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Figure 26.

body 4159 [34].
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No transition data was given, but from the configuration of the airship it
was implied that the boundary layer was tripped at approximately x/L = 0.05.

Calculations were made for the conditions corresponding to four different
speeds for the airship envelope in its "original" configuration: u_= 35, 50,
60 and 70 miles per hour corresponding to nominal length — Reynolds numbers,

RL’ of 94, 135, 162 and 188 million.

Figures 27 and 28 show a comparison of calculated and experimental results
for the airship. According to figure 27, the agreement in calculated and
experimental s* and @-values is very good at high Reynolds numbers,

The experimental total drag coefficients in figure 28 were obtained both
from extrapolations of the velocity profiles at x/L = 0.96 into the wake -and
from the horsepower requirements of the airship envelope. The calculated total
drag coefficients were obtained by using Granville's formula (7.14) and the
calculated total skin-friction drag coefficients were obtained from (7.16).

In applying Granville's formula, the total drag values were calculated at
several chord points near the 96% chord point because the experimental pres-
sure distribution was given up to the 96% chord point. The total drag of the
body was obtained by extrapolating the results to the tail end.

i x
2. XZS26-! AIRSHIP
20

iop
X -
| B t'l‘ T S
(]
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Figure 27. Comparison of calculated and experimental results for the XZS2G-1
airship at R =188 x 106 [35],
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Figure 28. Comparison of calculated and experimental drag values for the

XZ52G-1 airship [35]. Total drag coefficients were obtained by
Granville's formula (7.14).

Finally we present the results for the boundary-layers measured by
Murphy [36]. In this reference, Murphy presented quite detailed experimental
data on bodies of revolution of different shapes. The experimental data
included experimental pressure distributions, skin friction coefficients,
velocity profiles and separation point locations.

The calculations were made for three different shapes which represented
a combination of one basic nose shape (A-2), a constant area section, and
different tail shapes (Tails A-2, C-2, and C-4). Transition was tripped at
an axial location of’'31 inches from the nose of the body by a two-inch wide
porous strip, which was used for mass transfer measurements and was sealed
for zero mass transfer. The skin friction coefficients were obtained by
Preston tube, and experimental total drag coefficients were ohtained from the
wake profile.

Figure 29 shows a comparison of calculated and experimental Ce and
Rg—values. It is important to note that the agreement is quite good consider-
ing the fact that the calculations were started at the stagnation point and
transition was specified at 31 inches. The calculated values in this manner
match the experimental values and a little discrepancy in skin friction may
be attributed to the effect of the porous strip,
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Figure 29.
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Comparison of calculated and experimental results for the Murphy
bodies of revolution [36].
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Figure 30, Comparison of calculated and experimental velocity profiles for
the Murphy bodies of revolution [36].

Figure 30 shows a comparison of calculated and experimental velocity
profiles for two tail shapes, namely, A-2 and C-2. Except for one station
the results are in agreement with experiment. The discrepancy in the velocity
profile of shape C-2 at x = 57 inches may be due to flow separation since
separation in this case was reported at x = 58,3 inches.

Table 5 presents a comparison of calculated and experimental drag coef-
ficients for the Murphy bodies. The calculated drag coefficients obtained by
Granville's formula (7.14), include both total drag and total skin-friction
coefficients. It is interesting to note that the experimental total drag
coefficients which were obtained by the wake profile method agree well with
the calculated total skin-friction coefficients and not with the calculated
total drag coefficients. The nose pressure distributions of these bodies
are not representative of thoseon a body located in an undisturbed stream
because in the tests the nose of the body extended about 1.5 feet into the
wind-tunnel contraction section. For this reason, it is possible that the
calculated drag coefficients may give the correct total drag of these bodies.
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Table 5

COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG COEFFICIENTS
FOR THE MURPHY BODIES [36]

T R
Calculated
Experinental Calculated Total
Tail Shape Total Drag Total Drag Skin-Friction
A-2 0.072 + 0,003 0.075 0.072
C-¢ 0.071 + 0,002 0.076 0.068
C-4 0.072 + 0,002 0.075 0.069
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8.0 CALCULATION OF TURBULENT BOUNDARY-LAYER SEPARATION ABOUT
TWO-DIMENSIONHAL AND AXISYMMETRIC BODIES IN
INCOMPRESSIBLE FLOWS

8.1 METHODS FOR PREDICTING TURBULENT BOUNDARY-LAYER SEPARATION

In many problems 1t 15 necessary to know whether Lhe boundary layer,
either laminar or turbulent, will separate from the surface of a specific body,
and {f so, where the flow separation will occur. This is quite important
since in many design problems, such as for example, in the design of hydrofoils
or airfoils, it is necessary to prevent flow separation in order to reduce
drag and to obtain high 1ift,

For steady flows, the separation point 15 defined as the point where the
wall shear stress, L) is equal to zero, that is,

(§y) =0

W

With high-speed computers, the governing boundary-layer equations for laminar
flow can be solved exactly, and consequently the laminar separation point can
be determined almost exactly. In addition, there are several "simple"

methods which do not require the solution of the boundary-layer equations in
their differential form and can be used to predict separation point quite
satisfactorily. The momentum integral method of Thwaites and the method of
Stratford are examples of two of such methods. The latter method does not
even require the solution of the laminar boundary-layer 2quations. For a given
pressure distribution, for example, Cp(x), the evpression

dC
1/2
CFI' (H H-K-E)

is calculated around the body. Separation is predicted when it reaches a
value of 0.102.

The prediction of separation point in turbulent flows, on the other hand,
is a much more difficult job. Due to the presence of the time mean of the
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fluctuating quantities appearing in the governing equations, an exact

solution of the boundary-layer equations for turbulent flows 1s impossible.
Consequently, when the equations are solved with some suitable assumption for
these quantities, the solutions contain empiricism and must be checked against
experiment,

The current prediction methods on the subject can be divided into two
groups. In one group we have methods that require the detailed solution of
the boundary-layer equations. These methods are either of differential type
(meaning that partial-differential equations are solved) or of integral type
(meaning that momentum integral or energy integral equations are solved).
Reference 20 presents a critical evaluation of these methods for two-dimensicnal
incompressible turbulent flows., In differertial methods the parameter used to
predict the separation point is the zerc wall shear stress. In integral methocs,
on the other hand, the shape factor H = 5*/@ {s usually used to locate the separa-
tion peint. In integral methods as the flow approaches separation, the value
of H 1increases. Separation of the flow is assumed to occur when H reaches
a value between 1.8 and 2.4. In some cases, however, the value of H increases
rapidly near separation and then begins to decrease. In such cases*, the point
corresponding to the maximum value of H 1s taken as the separation point.

In another group, we have methods that do not require the detailed
boundary-layer calculations. Separation is predicted by simple formulas or
by "simple" differential equations that are very fast and easy to apply.
These methods also utilize the composite nature of the turbulent boundary layer.
For example, Stratford [37] divides the turbulent boundary layer into inner and
outer regions and bases his analysis on the assumptions that in the outer
region the pressure forces cause a direct reduction in dynamic head and that in
the inner region the pressure force is balanced by the shear-force gradient.
Goldschmied's method also treats the boundary layer consisting of inner and
outer regions. His analysis is based on the assumptions of inner-region similar-
ity under any pressure gradient and of a constant total-head line at a fixed
distance from the wall.

*These cases correspond to flows for which the calculations are made using an
experimental pressure distribution.
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In this report we study the accuracy of the several current methods for
predicting the turbulent boundary-layer separation point. In particular, we
consider a differentia) method (Noualas boundary-layer method), a momentum
integral method (Head's method) and two “"simple" methods, namely, the methods
of Stratford [37] and Goldschmiedt [38], These methods are briefly described
below. Since the Douglas boundary-layer method has already been discussed in
a previous section, the discussion is presented only for the othe methods .,
Results obtained by these methods are described in Section 9,

8.1,1 tead's Method

Head's method is an integral method that can be used both for calculating
the boundary-layer parameters as well as for predicting the position of sepa-
ration in turbulent flows. It uses the momentum integral equation

du c
de [* e °f
ErURE o i & (8.1)
and two auxiliary equations, namely, Ludwieg-Tillman's expression for the
skin-friction coefficient,

-0.678H0-0.268 (8.2)

= 0.246(10) 0

Ce

and a shape factor G(H) relationship obtained from the entrainment properties
of the turbulent boundary layer. The latter is also related to another shape
factor H]. The entrainment and the shape factor relationships are as follows:

Entrainment relation

(ug8H,) = 0.0299(H, - 3.0)"0.6169 (8.3)

1d
Ug dx

Shape Factor relation

Hy = G(H)
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where

0.823a(1 = 1,1)""+287 H 1.6
G(H) (8.4)
15501 (1 = 0,6778)"3:064 4 3.3 N> 1.6

This method like most integral methods, uses the shape factor H as the
criterion for separation, Although it is not possible to give an exact value
of H corresponding to separation, when H {s between 1.8 and 2.4, separa-
tion is assumed to exist, The difference between the lower and upper limits
of H makes very little difference in locating the separation point, since
close to separation the shape factor quickly increases.

The momentum integral equation (8.1) has within it the assumption that
the Reynolds normal stresses can be neglected, a fact that has been disputed
by a number of authors. The validity of this assumption has been questioned,
for example, see reference 39. With the normal-stress terms, the momentum
integral equation is

du c y J—
%%+(H+2)-3-ax—e-=2i+%§f(u'd—v—'z)dy (8.5)
e
0
The term ;T?' comes directly from the x-momentum equation., The ;TZ

term enters the equation because of static-pressure variation across the
boundary layer.

In reference 40 calculations were made to investigate the importance of
the Reynolds normal stresses. It was found that in general

92 _1/9_7
./-37". dy-az- axul dy
0 0
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Based upon this approrimation, the following formula was obtained for the
normal-stress correction (NSC)

NSC = 0.0365(H — 1) g&i (8.6)

This correction depends on the derivative of ‘* and leads to a singularity
in the momentum integral equation. When H i< approximately 5,7, d@/dx
becomes infinite, However, the singularity should not be a practice! limita-
tion, since separation occurs for values of H well below 5.7,

In the study reported here we have added the NSC term to Head's method
and have compared the results with those obtained without this correction
for several test cases. Although in some cases the addition of NSC-term
improved the results, the improvement was not significant. Consequently,
addition of the NSC-term to Head's method was omitted in the present study.

8.1.2 Stratford's Method

Stratford's method for turbulent flows is a simple method that uses only
the pressure distribution to predict boundary-layer separation. It does not
require the detailed boundary-layer calculations like the Douglas boundary-
layer method or Head's method. Presently there are several methods based on the
ideas set forth in this method [41,42]. However, the accuracy of these methods
is similar to Stratford's method and are not considered in detail in this i zport.

Stratford's method is based upon the ideas of dividing the boundary layer
into outer and inner portions. It follows the principles successfully adopted
for laminar flow. Briefly, the method can be described as follows.

Consider a flow in which the pressure is constant between 0 < x < X,
and a fairly sharp pressure rise from x > Xoe The boundary layer is divided
into outer and inner portions. In the outer portion the flow is nearly
inviscid so that we can write Bernoulli's equation as

p+ %puz(x,w) =Pyt %ouz(xo,w) + OH, (8.7)
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where the stream function ¢ 1s given by

v -[u dy (8.8)

and zH] denotes a (small) correction for the effects of viscosity,

For a constant pressure flow (p = po). which Stratford calls the
“comparison" flow, the loss of total head AH2 1s

tHy = % oul(xy0) = 5 oul(x, ,0) (8.9)
If we now assume that AH] = AH2 and substitute (8.9) into (8.7), we obtain
v]; oul(x,u) = % oug(X.w) = (p = p,) (8.10)

since u =u. for x <x

0

Differentiating (8.10) with respect to vy, yields

au_\ /oy
AU\/JY\ - E WS
“<8y>(aw> Ue <ayc><'aw >
or
ou
U _ C
T (8.11)

Assumption of a power-law profile for the "comparison" velocity profile, that
is,

u y.\1/n
u-c- = <?°-> (8.12)
0

and use of (8.8) and (8.11) yields the following expressions for the outer
portion of the boundary layer:

1/n)=1
Ly ”_0<Y_C>( " (8.13)
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Ye 1/n
Uc . Uo (6_) (8.‘4)

(8.1%)

In the inner portion of the boundary layer close to the wall, since u and v
are small, the momentum equation can be written as

9T d
= F (8.16)

Integrating the above expression, we get
TE g, t ggy (8.17)
w o dx
At separation T, = 0. Equation (8.17) then becomes
_d
r=y (8.18)

We now represent the shear stress t by Prandtl's mixing-length expression
T = p(ky)z(du/dy)2 and write (8.18) as

1/2
du _f1 1 d
dy - (;2' X, X) (8.19)
Successive integration of (8.19) gives
1/2
_[(4 d
u = (;za%f) (8.20)
1/2
_ 4/ 1 d 3/2
v = g(p—k-H§> K (8.21)
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We next use the appropriate joining conditions, namely, continuity of
.» U, and /'y and obtain

n-2 dc : n-¢ -n+l .4 -2 5c @
(;p (x 3&.2 = 3(n=2)"%n+) k'n = (8,22)
where
C —7p —% | u‘z’
P 1/2 ou - :2 (8.23)
0 0

If we assume that the “"comparison" boundary-layer thickness is given by

8

¢ . -1/5
— = 0.37 R, (8.24)

then substitution of (8.24) into (8.22) with n = 6 gives

ac |\ /2 0.64)k .1/10
Cp (x 3?2) == Rx

or

dC_\1/2
2.5 -1/10 _ 2.5
<m>cp<"x> ity ptt

or since (2.5/0.64) = 1000

1/2
dc -1/10
¢t <x 372> (10'6Rx) A 275- k = F(x) (8.25)

The above analysis assumes an adverse pressure gradient starting from the
leading edge as well as fully turbulent flow everywhere. When there is a reyion
of laminar flow, or a region of turbulent flow with a favorable pressure gradi-
ent, Stratford makes the assumption that at the minimum pressure point, x = X
the velocity profile is approximately that of a flat-plate turbulent boundary
layer starting from a false origin x = x'. Thus we replace x by (x —x')
in (8.25) and take the value of Rx as um(x — Xx')/v. We determine the
appropriate x' as follows.
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In the initial region of laminar flow the momentum thicknass car be
calculated by Thwaites' method, that is,

1/2

X
Q= (o 454 6[ ug dx> (8.26)

so that at the transition point,

0 0.45 — = <ue >5 d " (8.27)
- . _— —— X 827,
tr Ut A Uy

Downstream of transition we calculate the momentum thickness for turbulent
flows by the expression given in reference 24,

X X

<9R;/5u4> - o.mos/ u? ax (8.78)

e/ e
tr xtr
where Rg = ueO/v. At the minimum pressure point, x = X (8.28) becomes
1/5 fn fu,\ 1/5 4
- - e '
y m r m

tr
If we now assume that © is continuous at transition, then we can substitute
(8.27) into (8.29) and obtain
X X 5 3/5

1/5 m utr tr ue
0 R = 0,0106 dx + — 10,45 — — | dx "3,30)

Un i 0 Un

X

tr

But for a flat-plate turbulent boundary layer the value of @ at a distecuce
(xm — x') from the leading edge, with u, = Yy according to (8.28) is

o RI/®

! g = 0,0106 (xm — %™ (6.3
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By equating (3.30) and {(8.31) we obtain the result

Xen /“m\5 3/5 X 4

X =x'* 58 Al tr / (_."_:. 1 dx + fm (U_E) dx (8 32)
in UP] v \U“D/ Ium

¢ xtr

With the expression given by (8.32), e~iation (8.25) can be used to
predict the separaticn point 1n turbulent flows. In order to do this, how-
ever, it is necessary to astume a value for k, which according to the mixing
length theory, is 0.4. This means that the right-hand side of (8.25) should be
of order 0.5, but a comparison with experiment, according to Stratford, sug-
gests a smaller valus of r{x) around 0.35 .nd 0.40. For a typical turbulent
boundary-iayer ¥low with an adverse pressure gradient, it is found that F(x)
increases as separation is approached and decceases after separation., For this
reason, after applying his method to :everal flows with turbulent separation,
Stratford observed that if the maximum value of F(x)

a. is greater than 0.40, separation is redicted when F(x) = 0.40;
b. lies between 0.35 and 0,40, separation recurs at the maximum value;

c. is iess than 0.35, then separatioin .'oes not occur,

8,1.3 Goldschmied's Method

Goldschmied's separation zriterion [38], like Stratford's method, is based
on the existence of inner ana outer regions .~ the turbulent boundary layer.
Goldschmied assumes that there is a line in the inner region at a constant
distance Yo from the wall with constant total .ead, hc’ such that

h, = p+ 5 ot (8.33)

Furtheprges  cinez dho Sina 3 10 a region where the law of the wall applies,
he assumes it to be independent of pressure distribution and selects the outer
edge of the inner region at the start of the adverse pressure gradient as the
starting point of the line. He assumes that the outer edge of the inner region
is characterized approximatel:' by wu/u* = 20 and yu*/v = 500. Then the total
head at the start of adverse pressure gradient can be written as
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hy = P, * % p(20u;1)2 (8.34)

Then from (8.33) and (8.34),

] Wo_1 2 (8.35)
po—p+-2-p4005-— ?—OUC

since uf =/ TW7E. Dividing both sides of (8.35) by ué and rearranging
gives

2
u p.—p T
¢\ _ 'o W
<T> = + 400 — (8.36)
m 1/2 U pUp,

If the following terms are defined,

w d C P %
C = an =
fo 1/2pum2 P2 pum2

Equation (8.36) becomes
u
C _ 1/2
— = (200c, —C.)
Un fm P

(8.37)

Making use of the laminar sublayer and the law of the wall, he further shows
that at separation the expression uc/um = 1/3.45 [cfm/z]‘/z is so small that
it can be neglected. Then (8.37) reduces to

C, =200 c (8.38)

P fm

and becomes the separation criterion for Goldschmied's method.
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9.0 COMPARISON OF CALCULATED AND EXPERIMENTAL TURBULENT BOUNDARY-LAYER
SEPARATION IN TWO-DIMENSIONAL AND AXISYMMETRIC FLOWS

In this section we consider several experimental pressure distributions
which include observed or measured boundary-layer separation, and apply the
four separation-prediction methods discussed in Section 8 to these pressure
distributions. It is important to note that near separation the behavior of
these methods with an experimental pressure distribution is quite different
from that with an inviscid pressure distribution. The pressure distribution
near the point of separation may be a characteristic of the phenomenon of
separation and inclusion of it in the specification of the flow is equivalent
to being told the position of separation [41]. For this reason, use of these
separation-prediction methods with an experimental pressure distribution will
only show their behavior close to separation and indicate whether the theoret-
ical assumptions used in these methods are self-consistent. When one considers
an experimental pressure distribution with separation and uses the Douglas
boundary-layer method, it is quite possible that the wall shear stress at the
experimental separation point may not approach zero. It may decrease as the
separation is approached and mey start to increase past the separation point.
Similarly, the shape factor H 1in Head's method may not show a continuous
increase to the position of separation. Depending on the pressure distribution
which is distorted by the separation flow, the shape factor may even start to
decrease after an increase. All that can be learned from a study such as the
one conducted here is how these methods behave close to separation, and whether
they predict an early separation or no separation at all,

In the study reported here, we have tested these methods for a number of
two-dimensional and axisymmetric flows with separation. During the study it
became necessary to make certain assumptions in applying Goldschmied's method.
According to this method it is necessary to calculate the local turbulent skin-
friction coefficient at the minimum pressure point. In the cases studied here,
however, the flow is generally laminar at the minimum pressure point and
becomes turbulent downstream of that point. In these cases, the calculated
local skin-friction coefficient for turbulent flow was extrapolated to the
minimum pressure point.
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It was also observed that Stratford's method gave better agreement with
experiment provided that the range of F(x) was slightly changed from that
given in Section 8.1.2, namely if the maximum value of F(x): (a) is greater
than 0.50, separation is predicted when F(x) = 0.50; (b) lies between 0.30
and 0,40, separation occurs at the maximum value; (c) is less than 0.30, then
separation does not occur.

9.1 RESULTS FOR SCHUBAUER'S ELLIPTIC CYLINDER

Figures 31 and 32 show the results for Schubauer's eliiptic cylinder
[43], which has a 3.98-inch minor axis, D. The experimental pressure distri-
bution was given at a free-stream velocity of u_ = 60 feet per second, cor-
responding to a Reynolds number of RD = 1.18 x 105. The extent of the
transition region was between x/D = 1.25 and x/D = 2.27, and experimental
separation was indicated at x/D = 2.91,

1.4r
1.3l
HD =|.18x 0%
12k EXPERIMENT
Ye
Uoo
E
EXTRAPOLATION
PREDICTION OF SEPARATION BY
1.OF ® EXPERIMENT y
O DOUGLAS METHOD Y
&  HEAD .
O STRATFORD
of
8 1 1 1
o] I 2 3

ol

Figure 31. A comparison of predicted separation points wigh experiment for
Schubauer's elliptic cylinder, RD = 1,18 x 10°.

MCDONNELL DOUGLAS CORPORATION

67



8 © EXPERIMENTAL,Rp=1.18XI0°

— EXPERIMENTAL, U, /U CALC
-—----EXTRAPOLATED,UQ/Uoo ;
E."
4
Efllﬂ'a
2.F
0
0

X/D

Figure 32. Comparison of calculated and experimental local skin-friction
coefficients for Schubauer's elliptic cylinder [43]. The calcu-
lations were made by the Douglas boundary-layer method.

In the calculations the transition point was assumed at x/D = 1.25,

Figure 31 shows the results. It is interesting to note that while three

methods predicted separation, the fourth method, Goldschmiedt's method, did

not predict any separation.

Figure 32 shows a comparison of calculated and experimental local skin-
friction values. The calculations were made by using the Douglas boundary-
layer method., It is important to note that when the experimental pressure
distribution was used, the local skin-friction coefficient began to increase
near separation due to the pressure distribution which was distorted by the
flow separation. However, when the calculations were repeated by using an
extrapolated velocity distribution which could be obtained by an inviscid
method, the skin friction went to zero at x/D = 2.82.

Figure 33 shows a comparison of calculated and experimental velocity
profiles at various x/D locations for the same body. In general, the agree-
m=nt for both laminar and turbulent boundary layers seems to be quite
satisfactory.
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Figure 33, Comparison of calculated and experimental velocity profiles for
Schubauer's elliptic cylinder [43]. The calculations were made
by the Douglas boundary-layer method.

9.2 RESULTS FOR ROSHKO'S CIRCULAR CYLINDER

Figure 34 shows the predicted separation points together with the experi-
mental points for Roshko's circular cylinder [44] for two diameter Reynolds
numbers, R, = 6.7 x 105 and 8.4 x 106, that are within the so-called

D
“supercritical" and "transcritical" Reynolds number ranges.

According to Roshko, at Rp = 6.7 x 105 a separation bubble exists for
angles between 100 and 120 degrees. This can be inferred from the pressure
distribution. However, it is difficult to find the exact location of
turbulent reattachment point. Also, the turbulent separation point in this
case must be very close to the reattachment point. Thus, the extent of
attached turbulent flow is probably very small,possibly between 115 and

120 degrees.
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Figure 34. Comparison of predicted separation points with experiment for
Roshko's circular cyvlinder [44].
At higher Reynolds number, RD = 8.4 x 106. on the other hand, the laminar
separation region is much sm3iler and the extent of the turbulent flow region
is fairly large as evident from the forward movement of the minimum pressure
point and the smaller pressure peak,

For both Reynolds numbers, Goldschmied's method did not predict separation,
On the other hand, in both cases the Douglas boundary-layer method and Head's
method predicted separation. For RD = 6.7 x 105, Stratford's method predicted
separation and for Rp = 8.4 x 106 it did not. In the latter case F(x) was
less than 0.2. However, when the velocity distribution was extrapolated (see
figure 35), then separation was predicted.

Figure 35 shows the variation of shape factor for the cxperimental and
extrapolated velocity distributions at Rp = 8.4 x 106, The calculations were
made by Head's method. As expected with the extrapolated velocity distribution
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Figure 35, Variation of shape factor with two pressure distributions for
Roshko's circular cylinder [44]. Calculations were made by Head's
method for Ry = 8.4 x 106,

(which is similar to inviscid velocity distribution), the shape factor quickly
increases close to separation. On the other hand, with the experimental
velocity distribution, the shape factor reaches a maximum and then starts to
decrease.

9.3 RESULTS FOR SEVERAL AIRFOILS

Figures 36 through 41 show the results obtained for several airfoils
where flow separation was observed. The results for the pressure distribution
of Schubauer and Klebanoff are shown in figure 36. This pressure distribution
was observed over an airfoil-1ike body at a Reynolds number per foot of
0.82 x 106. The experimantal separation point was given at 25,7 + 0.2 feet,

The predictions of all nethods are quite good.

As shown in figure 37, agreement between the Douglas boundary-layer method
and experiment is also very good for Newman's airfoil. On the other hand, the
other methods predict an early separation,
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For the pressure distributions of figures 38 through 41, the experimental
separation points were not given. The results show that, except at very high
angles of attack, both boundary-layer methods predict separation at approximately
the same locations and generally close to the characteristic "flattening" in
the pressure distribution curves. Stratford's method predicts a slightly
earlier separation than that given by the boundary-layer methods. On the
other hand, Goldschmied's method shows results that are somewhat inconclusive,
predicting early separation in some cases and late separation in others.

9.4 RESULTS FOR AXISYMMETRIC FLOWS

For axisymmetric flows, Head's and Stratford's methods cannot be used to
predict the position of separation in their present form, For this reason
only the Douglas boundary-layer method and Goldschmied's method were used to
predict the separation points =~ suc™ flows.

Table 6 shows tne results for the Murphy bodies [36]. The experimental
separation points were obtained by the "oil-talc" technique. The calculated
separation points by the Douglas boundary-layer method were obtained by
extrapolating the skin-friction values to zero. The agreement is excellent.

Table 6

COMPARISON OF CALCULATED AND EXPERIMENTAL SEPARATION POINTS FOR THE
BODIES OF REVOLUTION OF MURPHY [36]

Xsep (inches)
6 Goldschmiedt
{ Tail Shape RL x 10 Experiment Douglas Method Method
A-2 6.0 59.1 59.4 no separation
C-2 6.0 58.3 58.3 no separation
C-4 6.6 no separation no separation no separation
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Figure 36. Comparison of predicted separation points with experiment for the
airfoil-like body of Schubauer and Klebanoff [45].
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Figure 37, Comparison of predicted separation points with experiment for

Newman's airfoil [39].
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Figure 38. Predicted separation points for the experimental pressure distri-
bution on the NACA 65(216)-222 airfoil [46].
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Figure 39. Predicted separation points for tne experimental pressure distri-
bution on the NACA 4412 airfoil [26].
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Figure 40. Predicted separation points for the experimental pressure distri-
bution on the NACA 66,2-420 airfoil [30].
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Predicted separation points for the experimental pressure distri-
bution on the NACA 65,2-421 airfoil [47].
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(a) Negative angles of
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Concluded. (b) Positive angle of attack.
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10.0 CONCLUDING REMARKS

The accuracy of calculating the total drag coefficients of two-dimensional
and axisymmetric bodies, and the accuracy of predicting the location of
turbulent boundary-layer separation in incompressible flows past such bodies
has been studied.

In the drag calculations boundary-layer development was calculated by
using the Douglas boundary-layer method. The inviscid pressure distribution
was obtained by the Douglas Neumann method when the experimental pressure
distribution was not given. In the boundary-layer calculations the location
of transition was nbtained by using Michel's or Granville's methods when it
was not known, For two-dimensional bodies the total drag coefficient was
calculated by using Squire-Young's formula. Jones' formula gave almost
identical results. For axisymmetric bodies, the total drag coefficient was
calculated by using Granville's formula, Similar results were also obtained
by Young's formula.

Based on the calculations reported here, the following remarks can be made
on the accuracy of calculating the total drag coefficient and the location of
turbulent boundary-layer separation of two-dimensional and axisymmetric bodies:

1. The total drag coefficient of two-dimensional bodies can be calcu-
lated quite accurately provided that the angle of incidence is small,
' < 6°, Although the boundary-layer development can be calculated
very accurately by the Douglas boundary-layer method, at high angles
of incidence (a > 6°9) without boundary-layer separation, use of the
Squire-Young formula introduces an error into the drag calculations.
This is to be expected since the Squire-Young formula is applicable
only to a symmetrical wake, With increasing incidence, the assumption
of a “symmetrical" wake becomes worse. As an example, in figure 42
we show the variation of (CDexp — Cpa) with angle of incidence
for three airfoils,

The calculated results also indicate that (see figure 15) the drag

of a body can be calculated at high Reynolds numbers, This is quite

significant since, although good agreement was obtained at lower
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Figure 42. Variation of C(p

- cha] with angles of incidence for three
airfoils,

exp

Reynolds numbers (Rc <9 x 106) in the study described in refer-
ence 4, the agreement was poor at high Reynolds numbers, and the
discrepancy was attributed to the inaccuracy of calculating turbulent
boundary layers at high Reynolds numbers.

Figure 43 presents a comparison of calculated and experimental total-
drag coefficients for angles of incidence less than 6°, Considering
the various factors that influence the calculations, the results are
very good. The rms error based on the 57 calculated drag values is
2.9%, It is interesting to note that in the previous study, the rms
error was 2.7%. However, this was obtained by multiplying the
Squire-Young formula by an empirical constant of 1.1 (for one surface).
In the present study, no need for such a "correlation" constant was
necessary.

2. The total-drag coefficients of axisymmetric bodies can be calculated
with iess accuracy than the total drag coefficients of the two-
dimensional bodies. For axisymmetric bodies, the calculations show a
great sensitivity to the choice of tail end location on the body and to
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Figure 43, Comparison of calculated and experimental results for two-
dimensional bodies. The results are shown for 57 drag values &t
angles of incidence less than 6 degrees.
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the use of inviscid pressure distributions in the drag calculations.
Although with viscous correction to the pressure distribution, the
sensitivity was somewhat reduced, further work should be done in
this area. This will later be discussed in Section 11,

The results also indicate that in applying either Granville's or
Young's formulas, it is necessary to use the two-dimensional defini-
ticn of momentum area, Oa. Furthermore, as in two-dimensional
bodies, the results indicate that the boundary-layer development can
be calculated quite accurately at high Reynolds numbers on axisym-
metric bodies. See figure 27.

The location of turbulent boundary-layer separation on two-dimensional
bodies can be calculated quite satisfactorily by the Douglas boundary-
layer method, Head's method and Stratford's method. Goldschmied's
method is inconclusive, This is probably due to the very questionable
assumption about the total pressure at the edge of the viscous Sub-
layer,

The results indicate that both boundary-layer methods predict the
location of separation at approximately the same location. However,
in some cases the predictions of the Douglas methed aqree better with
experiment than the predictions of Head's method. Stratford's method
is slightly conservative in its prediction,

The location of turbulent boundary-layer separation on axisymmetric
bodies can be calculated quite accurately by the Douglas boundary-

layer method. Head's method and Stratford's method in their present
form are not applicable to such flows. The predictions of Goldschmied's
method, although this method is also applicable to axisymmetrical

flows, did not agree well with experiment,
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11.0 FUTURE WORK

At the writing of this report, the studies concerning the drag calculatioas
are partially completed and further work is needed to complete the studies.

As it was described in Section 6.1, there are three different approaches
one can use to calculate the total drag of a body. In this report only one
approach was studied completely. According to this approach the total drag of
a body was calculated by a formula once the development of the boundary layer
at the tail end of the body was calculated. This approach worked well for
two-dimensional bodies provided that the angle of incidence is small. The
approach, on the other hand, did not work as well for bodies of revolution,
The formulas showed a great sensitivity to the location of the tail end and to
the use of inviscid pressure distribution.

It appears from the results obtained by the first approach that in order
to calculate the total drag of two-dimensional bodies at higher angles of
incidence (without any boundary-layer separation, and the total drag of bodies
of revolution at zero incidence at zero incidence) it is necessary to carry
the calculations from the trailing edge into the wake. This is the second
approach discussed in Section 6.1.

The wake calculations can be made by identifying two regions. The first
is a region very close to the trailing edge. Here there are two boundary layers
back to back, and not much is known about the way they interact. According to
reference 48, the extent of this region from the trailing edge is about 75
where 5 1s the boundary-layer thickness at the trailing edge. Recent calcu-
lations for this region reported by Bradshaw appear to give satisfactory results
for the case of symmetrical airfoil wakes [48). For nonsymmetrical wakes (the
wakes of airfoils at an angle of incidence or airfoils with camber), more
experimental wake data showing the variation of Reynolds shear stress and
velocity profiles are needed before the calculations can be made for such cases,

The second region is the region far beyond the trailing edge, where the
effects of trailing edge are negligible. Here the calculations seem to be
somewhat easier to perform, and part of the efforts in the study reported here
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were devoted to the accuracy of calculating turbulent wake profiles in this
region. The calculations were made by using the same eddy-viscosity expression
that is used in the Douglas boundary-layer method. That is,

¢ = ;l/ (ue — u)dy v (11.1)
0

Several preliminary calculations with . = 0,0168 and 0.0336 showed that
predicted results improved slightly with « = 0.0336, a value slightly lower
than the value commonly suggested in the literature (. = 0.036). The calcu-
lated results are shown in figure 44 for the experimenta)l data of Hill et al,
[4%]). The agreement is fair., More comparisons with experiment are necessary
in order to study the accuracy of the extension of the Douglas boundary-layer
method to such flows.

xsi2 FT
1.0

1

x=I3FT

O DATA OF HILL ET AL
— PRESENT METHOD

o
O.Gﬁ%
04 1 1 1 i |
o) I 2 3 4 5

Figure 44, Comparison of calculated and experimental wake profiles in adverse
pressure gradients.
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A third approach by which the total drag of a body can be calculated is
one in which the pressure drag and skin-friction drag are calculated separately.
In an inviscid flow, there is no pressure drag. It can be obtained as follows:

. Calculate the inviscid pressure distribution on the basic body.

. Calculate the boundary-layer development for the pressure distribution
of 1.

3. Mcdify the basic shape by adding on the displacement thickness and
calculate a pressure distribution for the new effective shape. The
body is now open ended and yields a pressure force.

It should be pointed out, however, that in performing the boundary-layer
calculations it may also be necessary to carry the calculations into the wake,
although not too far (possibly 76 where & is the boundary-layer thickness
at the tail end). The region of the tail end of the body is a "problem" region
and careful attention must be paid to the assumptions made in this region.

An alternate method which is not rigorous but may have essentially the
same accuracy with much more economical calculation time is as follows:

1. Calculate the inviscid pressure distribution of the basic body.

2. Calculate the boundary-layer development for the pressure distribution
of 1.

3. By means of well-known relations, recalculate the inviscid flow about
the original body but now with outflow through the walls sufficient
to displace the inviscid streamlines by an amount equal to the dis-
placement thickness. Now there is a net yield of fluid and the
streamlines do not close.

4, The Douglas Neumann method solves the flow field problem by using
surface source-sink distribution. Then the pressure drag correction
is equal to this inviscid momentum flux which is

aD = 2anw / odS (11.2)
surface
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where o 1is the surface source density. It is believed that when the total
drag coefficients are calculated by the third approach, it is not necessary to
repeat the boundary-layer calculations for the viscous-corrected inviscid
pressure distribution. The latter method of the third approach has two sig-
nificant computational advantages. Potential flow solutions are always made
for the same body so that the influence coefficient matrix is never changed,
even if one considers several angles of attack. The changes occur only in the
right-hand column of the matrix equation in order to account for the effective
outflow through the surface. In the first method of the third approach, each
time the boundary layer is changed, the entire inviscid problem must be solved
anew. The second significant advantage is that it is much easier to compute
J-odS over the body than to determine the net pressure drag component.

This method should be equally valid for axisymmetric or two-dimensional
flow. Because the potential flow problem is elliptic, flow processes downstream
of the shape can influence results upstream. Therefore, there remains the
possibility that the near wake flow must still be solved if the highest
accuracy is desired.

In the calculations reported here, the position of transition on the
airship for the case of R = 94 x 106, was predicted at the 45%-
chord point. The actual transition point was approximately at 5%-chord point.
According to the study reported by Granville, the methods of Michel and
Granville are not satisfactory for predicting the position of transition on
axisymmetric bodies [50]. This is due to another variable that enters into
the transition calculations. It is the body shape. It enters directly because
the shape has a direct stretching or shrinking effect on the boundary layer
in addition to determining the pressure distribution. Therefore, it should
not be expected that correlation methods, especially Michel's, should be as
accurate as for two-dimensional flows. The e9 method is indeed a correla-
tion method but it bypasses the body of revolution difficulty. It attempts to
trace carefully the growth of various Tollmien-Schlichting waves along the body
and the procedure is equally applicable to axisymmetric and two-dimensional
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flows. Recently, a very general computer program has been developed that
first computes accurate laminar boundary layers for numerous stations along

a body for both axisymmetric and two-dimensional flows. The stability of the
boundary laver is computed for a variety of disturbance frequencies for the
boundary-layer profile computed at several stations. Then the growth of the
worst frequency is computed. The method is described in reference 51, and it
seems to promise rather good precision. However, it has never been carefully
studied for axisymmetric flows, partly because the labor is large and partly
because the computing time is considerable. Since this treatment is the most
promising lead now known, it should be explored to make a good assessment of
its accuracy for axisymmetric flows. There is an adequate supply of suitable
experimental data for such a study [52].
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