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1.0   SUMMARY 

This report studies the accuracy of calculating the total drag of two- 

dimensional and axisymmetric bodies and the accuracy of calculating the loca» 

tion of turbulent boundary-layer separation in flows past such bodies. 

The drag calculations were made by using the Douglas boundary-layer 

method. This is an implicit finite-difference method applicable to both 

laminar and turbulent boundary layers. The method also accounts for the 

transverse curvature effects. In general, comparison of calculated and 

experimental drag coefficients for both two-dimensional and axisymmetric 

bodies are in good agreement with experiment. 

The separation calculations were made by considering four different 

separation-prediction methodr.    They are the Douglas boundary-layer method, 

Head's method, Stratford's method and Goldschmied's method.    Comparisons of 

calculated and experimental results for several flows indicate that predic- 

tion of separation by the first three methods is quite good. 
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4.0 PRINCIPAL NOTATION 

A damping length or frontal area, wherever applicable 

A ,A damping constants 

c chord 

c-r local skin-friction coefficient,    x /(l/2)pu 

CD total drag coefficient 

Cp total skin-friction coefficient 

C lift coefficient 

C pressure coefficient 

D maximum diameter 

h shape factor,    QJ&t 

H shape factor,    9/6* 

k mixing-length constant 

i mixing length 

L reference body length 

n exponent of power law velocity profile 

p pressure 

p pressure gradient parameter, Eq. (6.8) 

r radial distance from axis of revolution 

r local radius of body of revolution 

R chord-Reynolds number,    u^c/v 

RD diameter-Reynolds number,   uJVv 

R. Richardson's number, Eq. (6.17) 

R, length-Reynolds number,   u L/v 

R maximum radius of body of revolution 
o 

R local Reynolds number,   u x/v 
A C 

AffCOOANV«.!. OOUat-A»   COHfOR/KTIOM 

8 

■■--- — - ■. ^.   ...    ^    >   i   i 



w—mmmm 

Rg Reynolds number,    i^J^o-d^^ 

5 wall curvature term, Eq.  (6.17) 

u,v x and y components of velocity, respectively 

u^v' fluctuating components of   u and v, respectively 

u* friction velocity,   /XJP 

u dimensionless velocity,    u/u* 

x streamwise distance 

y distance normal to the surface of the body 

y dimensionless y-coordinate,   yu*/v 

a angle of attack, or angle between   y and r, wherever applicable 

Y intermittency factor, Eq. (6.10) 

6 boundary-layer thickness 
oo 

6* displacement thickness,      / H ~ u/u )dy 

o 
6i displacement area, Eq. (7.9) 

e eddy viscosity,    -pu'v' = pe •— 
00 ■' 

6.So H  momentum thickness, / u/u (1 - u/u )dy 
o 

0.     momentum area, Eq. (7.12) 

0. momentum area, Eq. (7.8) 

~e Polhausen parameter, Eq. (6.19) 

A streamwise radius of curvature 

U dynamic viscosity 

v kinematic viscosity 

p density 

T shear stress 
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$ angle from stagnation point 

y stream function 

Subscripts 

e edge of the boundary layer 

i inner region 

£ lower surface 

m minimum pressure point 

o start of adverse pressure gradient, or outer region, wherever 

applicable 

t turbulent 

tr     transition 

u      upper surface 

w      wall 

free-stream conditions 
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5.0    INTRODUCTION 

Two very important problems in fluid mechanics are the prediction of 

viscous drag of a body and the location of flow separation, that is, the 

location at which the flow "stalls" or separates from the wall.    Knowledge 

of these two quantities can be very useful  in numerous problems.    For example, 

an accurate prediction of the drag of a body can give a valuable insight into 

the performance of a vehicle or assist in the design of improved shapes.    Like- 

wise, a knowledge of the separation point is vital  in many design problems of 

aerodynamics or hydrodynamics. 

This report, which deals with the calculation of these two quantities in 

two-dimensional and axisymmetric flows, is written in fulfillment of the 

requirements of U.S. Navy Contract N00014-70-C-0099.    The contract is  a one-year 

"level-of-effort" type and the objectives are covered by the following work 

statement, taken from the contract. 

1.      Make a detailed study of calculation of total drag of two-dimensional 

and axisymmetric bodies by considering various computational schemes. 

Review the available methods, together with the Douglas boundary- 

layer method [1]    for predicting flow separation and investigate 

the accuracy of predicting separation in turbulent flows. 

3.      Check the results for both drag calculation and separation for a 

large number of test cases. 

The present report describes the work accomplished during the contract. 

It also describes the further work that requires studying. 

Sections 6 and 7 describe the drag calculations.    Section 6 describes 

three possible approaches for calculating the total drag of two-dimensional 

and axisymmetric bodies and two transition-prediction methods.    Section 7 

presents comparisons of calculated and experimental drag coefficients.    These 

calculations were made for a given pressure distribution by using the Douglas 

boundary-layer method described in reference 1.   When the pressure distributions 

were not known experimentally, they were obtained by using the Douglas Neumann 

method [2]. 
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Sections 8 and 9 describe the separation calculations.    Section 8 presents 

a review of the four separation-prediction methods considered in this study, 

and Section 9 presents comparisons of calculated and experimental separation 

points for a number of flows. 

Section 10 summarizes the results of drag and separation calculations and 

discusses the further work that should be done in this very important area. 
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6.0   CALCULATION OF VISCOUS DRAG OF TWO-DIMENSIONAL AND 
AXISYMMETRIC BODIES IN INCOMPRESSIBLE FLOWS 

At high Reynolds numbers, the viscous drag of streamlined bodies is 

amenable to theoretical treatment and can be calculated by the boundary-!ayer 

theory [3-7],   According to this almost standard procedure, laminar and tur- 

bulent portions of the boundary layer along the body are calculated by methods 

which are generally of momentum integral type, and the location of the transi- 

tion is calculated by an empirical method (if the transition is not known 

a priori).    Then using boundary-layer parameters, such as momentum thicknesst 

shape factor, and velocity ratio, all at the trailing edge of the body, the 

total drag of the body is calculated by a formula.    For two-dimensional bodies, 

the total drag is usually computed by the Squire-Young formula [3].    For axi- 

symmetric bodies, the total drag is computed either by Granville's formula [5] 

or by Young's formula [8].    These formulas are, in a way, a three-dimensional 

version of the Squire-Young formula. 

In reference 4, Cebeci and Smith investigated the accuracy of a particular 

method for calculating the total drag of airfoils.    This method consisted of 

the calculation of (1) pressure distribution by any suitable method, (2) 

laminar boundary-layer flow by Thwaites' method [9j, (3) location of transi- 

tion by Michel's method [10](if the transition is not known a priori), (4) 

turbulent boundary-layer flow by Head's method [11], and (5) total drag by 

means of the Squire-Young formula.    That study showed that the method was 

quite accurate for predicting the total drag of airfoils except at very high 

Reynolds numbers .   Because of the inaccuracy of Head's method used for 

turbulent boundary layer calculations, at high Reynolds numbers, the calcu- 

lated drag values began to deviate from those of experimental values.    For 

example, computed local skin-friction values and momentum thickness values 

for a turbulent flat-plate flow at various Reynolds numbers showed that the 

computed results agreed quite well with the experimental values at low 

Reynolds numbers,   Rg < 13,000.    On the other hand, at Reynolds numbers 

Rg > 13,000, the computed results began to deviate significantly from the 

experimental values. 
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The calculation of the total drag of bodies of revolution is somewhat 

more difficult than that of two-dimensional bodies for several reasons.    Kirst, 

the accuracy of the methods available for computing turbulent flows over bodies 

of revolution is not as well established as those of two-dimensional methods. 

i'-.i    the available methods do not account for the transverse-curvature 

, which becomes quite important on slender bodies where the boundary- 

layer thickness can be of the same order of magnitude as the body radius. 

Third, the accuracy of calculating drag either by Young's or by Granville's 
formula has not been investigated thoroughly. 

The drag calculations for both two-dimensional and axisymmetric bodies 

thus have one common feature:    it is necessary to calculate the transition 

point (if it is not known a priori) and the boundary-layer growth as accurately 

as possible to make an accurate drag calculation.   The boundary-layer method 

used in this report provides accurate boundary-layer calculations and elimi- 

nates most of the disadvantages of the methods discussed above.   This method, 

which is based on the numerical solution of the boundary-layer equaticns in 

their differential form, is applicable to both laminar and turbulent flows. 

It has been well tested for both laminar and turbulent flows about two- 

dimensional and axisymmetric bodies including the effects of transverse 

curvature.    In general, the method is found to be quite satisfactory [1,12,13], 

In this report two transition prediction methods have been considered: 

those of Michel [10] and Granville [5].    The calculated drag values reported 

in reference 4 were obtained by using Michel's method.    For this reason, in 

the present study Michel's method was used initially in order to compare the 

earlier drag results of reference 4 in which the boundary-layer calculations 

were made by using a combination of Thwaites' and Head's methods.    By using 

Granville's method the drag of several airfoils was also computed and the 

results are compared with those obtained by Michel's method.    The results are 

discussed in Section 7» 

6.1    THREE DIFFERENT APPROACHES FOR CALCULATING THE DRAG OF STREAMLINED BODIES 

In general, the flow around a streamlined body can be divided into four 

regions.    Starting at the forward stagnation point A (see figure 1)there is at 

14 



Figure 1. Boundary-layer flow along an airfoil. 

first a region in which the flow is laminar. After a certain distance, AB, 

which is mostly governed by the streamwise pressure gradient and Reynolds 

number, there is a region, BC, in which transition from laminar to turbulent 
flow takes place. In the third region, the flow from C to the trailing edge 

D is fully turbulent. Finally, at the trailing edge, the boundary layer of 

the upper surface joins that of the lower surface to form the turbulent wake*. 

The total drag of a two-dimensional body such as the one shown in figure 1 

is generally obtained by measuring its velocity profile in the wake of the 

body and using, for example, Jones' formula [3] which is given by 

mi ue 
'1 - 

1/2 

dy (6.1) 

This formula is usually applied to measured velocity profiles located at short 

distances behind the body. 

The total drag can also be calculated theoretically by computing the 

boundary-layer development around the body.    One popular approach uses the 

Squire-Young formula [3] given by 

0.5(HT c +5) 

•■«: 
(6.2) 

♦Here, we assume that the boundary layer does not separate from the surface. 

MCI 
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According to (6.2) it is necessary to calculate the momentum thickness, 

0,    and shape factor,   H,    for a known velocity ratio    u /u^   at the trailing 

edge.    However, before these quantities at the trailing edge can be calculated, 

it is necessary to calculate the complete flow field, which is rather difficult. 

Another way of calculating the drag is to extend the calculations into the 

wake and calculate the velocity profile in that region.    This approach, although 

less empirical than the other,  is much more difficult; the wake just behind the 

trailing edge is ccmposed of two boundary layers back to back, and little is 

known about the way they interact or the accuracy of the turbulent calculations. 

A third possibility for calculating the total drag is by computing the 

components of drag, namely, skin-friction drag and pressure drag, separately. 

The skin-friction drag can be obtained by the boundary-layer theory.    For a 

given pressure distribution (whether it is experimental or theoretical does 

not make much difference, except possibly at the trailing edge), one can solve 

the governing boundary-layer equations, calculate the local skin-friction 

coefficient, and integrate it around the body to find the total skin-friction 

coefficient.    For the pressure-drag calculations, however, it is necessary to 

know the experimental pressure distribution.    In this case, the pressure forces 

can be resolved into chordwise and normal components.    The sum of the latter 

forces gives the pressure drag.    In case the experimental, pressure distribution 

is not known, we can calculate the pressure distribution, say, by the Douglas 

Neumann method [2], and try to find the actual pressure distribution.    This 

can be done by first calculating the displacement thickness around the body for 

the given pressure distribution.   When the calculated displacement thickness 

distribution is added to the body coordinates, a new theoretical pressure dis- 

tribution can be calculated by the boundary-layer theory.   The iteration proc- 

ess continues until the change in the calculated pressure distribution is 

negligible. 

In the present study the first approach is considered in detail and has 

been used to compute the drag of several two-dimensional and axisymmetric bodies. 

According to this approach the total drag of two-dimensional flows was computed 

by Squire-Young's formula or by Jones' formula.    For axisymmetric flows, both 

Young's and Granville's formulas were used.   The other two approaches have also 
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been studied but not a^ completely as the first approach. Because of the 

limited time available under the contract these studies were not finished. 

6.2 MODIFICATION OF DOUGLAS BOUNDARY-LAYER METHOD TO ACCOUNT FOR FLOWS AT 
LOW REYNOLDS NUMBERS 

Since an accurate calculation of boundary-layer development is essential 

for an accurate drag calculation, it is also necessary to investigate the 

accuracy of a turbulent boundary-layer method at low Reynolds numbers. Almost 

all the prediction methods for turbulent boundary layers, including the Douglas 

boundary-layer method, are based on empirical data obtained at high Reynolds 

numbers (Ra > 6000). According to several recent experiments [12-13], there 

is a definite Reynolds number effect for Rg < 6000. For example, in refer- 

ence 14, Coles observed that his law of the wake formulation failed for low 

Reynolds numbers; the strength of the wake component, which stayed constant 

for momentum Reynolds numbers greater than 6000, showed a large variation at 

lower Reynolds numbers (see figure 2). 

In the present study, such an effect becomes quite important when the 

drag of two-dimensional bodies is calculated at chord Reynolds numbers,, P , 
6 

ranging from 3 to 9 x 10 . Usually, for such flows the momentum-thickness 

Rey olds number at transition is of the order of 500 to 1000. An accurate 

calculation of boundary layers at the trailing edge, and consequently, an 

4r 

2 - 

ALT 

■     i     i i i i i i i i 
W0 5000 10,000 

R9 
Figure 2.    Variation of strength of wake component with Reynolds number. 
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jccurdte calculation of the drag by (6.^) depends upon the accuracy of calcu- 

lating turbulent houndary layers from the point of transition.    For this 

reason, studies were conducted in order to modify the present eddy-viscosity 

formulation to account for low Reynolds number flows.    This was done as follows. 

According to the present Douglas boundary-layer method the turbulent 

boundary  layer is treated as a composite layer consisting of Inner and outer 

regions.    In the inner region, we use an eddy-viscosity expression that Is 

based on Prandtl's mixing length theory; that Is. 

■r-'2 3U 

ay 
U.3) 

where ., the mixing length, Is given by i = ky. we use a modified expres- 

sion for . In (6.3) to account for the viscous sublayer and the transitional 

region close to tha wall. This modification, suggested by Van Driest [17] for 

flat-plate flows. Is 

'  = ky[l -exp(-y/A)] (6.4) 

-1/2 where    k = 0.4   and   A   is a damping length defined by   26V(IW/D)       .    As it 

stands, it cannot be used for flows with pressure gradients and for flows with 

mass transfer.    For this reason, the expression given by (6.4), which can also 

be written as 

/ = ky+[l -exp(-yV+)] (6.5) 

was modified to account for flows with pressure gradient and mass transfer 

(see reference 18).    This was done by defining   A   in terms of its friction 

velocity based on the sublayer thickness rather than its wall friction; that 

is, 
•1/2 

(6.6) 

The sublayer friction velocity was obtained from the momentum equation approxi 

mated in the sublayer by the following equation 

18 



The solution of (6.7) with   y   = 11.8   enables the damping constant   A++    to 
be written as 

A++ = A+ i -^[expOl.Sv*) -1] + exp(11.8v^) 

w 

■1/2 

where 

(6.8) 

--^ (u*) I A   = 26, +      Vw 
W       U* 

The expression for eddy viscosity in the outer region is based on a 

constant eddy viscosity 

e„ = 0.0168 
0 J   (ue - u)dy 

0 

(6.9) 

modified by Klebanoff's intermittency factor   y,    which is approximated by the 

following formula: 

Y  = i + ^(f) 
1-1 

(6.10) 

It Is Important to recall at this point that the constants   k   = 0.4   and 

A   = 26   appearing in the inner eddy-viscosity expression were obtained for 

experimental data at high Reynolds numbers.    For flows at low Reynolds numbers, 

they vary.    One approach by which this variation can be obtained is the 

following: 

Consider a flat-plate flow.    Close to the wall, the momentum equation 

can be approximated by 

dx . 

or 

If we denote 

T   -    T w 

du _     - ,       du 
T " T£ + Tt - y By + pe 3y 

MCOOMMSUU  OOUGUA»   COHfORATIOM 
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and use (6.3) for & with i   given by (6.4), it can be shown that (6.12) 

can be written as 

diT 

dyH 

1 + 
2 + 2 

1 + 4kZ(y+) 1 - exp(-y+/A+) 

m (6.13) 

Integrating (6.13) for various values of   k   and   A     for a given   Rg-flow 

and comparing the results with the experimental data, one can easily obtain 

the variation of these constants with Reynolds number. 

Figure 3 shows a comparison of calculated and experimental velocity dis- 

tributions for various    Rg   values for the experimental data of Simpson [14] 

30r 
o    EXPERIMENTAL DATA 

OF SIMPSON 

Figure 3. Comparison of calculated and experimental velocity distributions for 
turbulent flows at low Reynolds numbers. 
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which was taken at low Reynolds numbers.   On the basis of this curve-fittinq 

procedure, we find that   k   and   A     can be satisfactorily expressed as func- 

tions of   Rg   as shown in figures 4 and 5, respectively, and by the formulas 
that follow. 

k = 0.40 + 0.19 z > 0.3 
1 + 0.497' 

(6.14) 

A   = 26 + 14 

1 + z' 
z > 0.3 (6.15) 

where 

z = 10 -3 

Figures 6 to 8 show comparisons of calculated skin-friction coefficients 

obtained by using the low Reynolds number correction with experimental results. 

Figure 6 compares the calculated   c^-values with those given by Coles' pre- 

diction [19] and the experimental values of Uieghardt [20].    Here the calcula- 

tions were started as laminar at the leading edge and the flow was specified 

to be turbulent at the next x-station. 

Figure 7 shows the results for Schubauer and Klebanoff's airfoil-like body 

designated as 2100 in reference 20.   Again, the calculations were started as 
ceor 

O.S6- 

0.52- 

0.48- 

0.44- 

0.40 

50 

40 

30 

20 J 
6 

Rfl x IÖS 

Figure 4. Variation of mixing- 
length constant with 
Reynolds number. 

Figure 5.    Variation of damping 
constant with Reynolds 
number. 
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Figure 6.    Comparison of local skin-friction coefficients for a flat-plate 
turbulent flow at low Reynolds number. 
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Figure 7.    Comparison of calculated and experimental skin-friction coefficients 
for the data of Schubauer and Klebanoff [20 ].    Calculations were 
made with and without the low Reynolds number modification. 
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Figure 8.    Comparison of calculated and experimental skin-friction coefficients 
for the data of Moses [20]. 

laminar at the leading edge .md the flow was specified to be turbulent at the 

next x-station.    Calculations with a flat-plate flow assumption continued until 

the experimental    Rg   was matched.    From this point on, we have used the 

experimental pressure distribution.    The results show that when the Reynolds 

number is low    (Rg * 8000   at   x = 8 feet) the modifications to the eddy- 

viscosity formulation improve the cf-values. 

Figure 8 shows the results for the experimental data of Moses designated 

as 3700 in reference ?0.   Here the calculations were started by using the 

experimental velocity profile.    This flow is a low   Rg-flow.    For example, 

at   x = 0.4 feet,    Rg = 1000,    x = 2.4 feet   Rg = 6300.    As a result the 

improvement in calculated cf-values is more pronounced than that of Schubauer 

and Klebanoff's data.    Shown in the same figure is a comparison of calculated 

and experimental Rg-values.   Again the calculated results with the low Reynolds 

number correction agree better with the experimental data than those without 

this correction. 
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6.3 MODIFICATION OF DOUGLAS BOUNDARY-LAYER METHOD TO ACCOUNT FOR THE 
STREAMWISE WALL CURVATURE 

Boundary-layer theory is based on the assumption that the pressure 

gradient normal to the wall can be neglected. If the wall has a streamwise 

curvature, this assumption is not always valid. This wall curvature may 

increase or decrease the intensity of the turbulent mixing depending on the 

wall curvature and can strongly affect the skin friction and heat transfer 

rates. For example, in reference 21 Thomann showed that the rate of heat 

transfer in a supersonic turbulent boundary layer on a concave wall was 

increased by the streamwise curvature of the wall. For the arrangement he 

investigated, the pressure was kept constant along the wall, and the increase 

of about 20 percent was therefore only due to the wall curvature. For a con- 

vex wall, he found a comparable decrease, also with constant pressure along 

the wall. 

In this report we have attempted to make a correction to the present 

eddy-viscosity formulation in order to account for the wall curvature since 

such an effect can be quite important on thick airfoils and on the forward 

part of a blunt body. The expression suggested by Bradshaw [22] has been used. 

This expression is based on an analogy between streamline curvature and buoy- 

ancy in turbulent shear flows. With this wall curvature modification, the 

eddy-viscosity formulation becomes 

:r-M?-V-eM-yW+)]2(§fs2 
(6.16a) 

e0 = 0.0168 f  {ue - u)dy (6.16b) 

where 

TTTi*: ' R. =^i- 
i äu/äy 

The radius of curvature, A is positive for a convex surface (ß 

negative for a concave surface (ß = •)). 

(6.17) 

= 7) and is 
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According to Bradshaw the effects of curvature on the mixing length or eddy 

viscosity are appreciable If the ratio of boundary-layer thickness 6 to 

radius of curvature  A exceeds roughly 1/300. 

Figure 9 shows the effect of wall curvature modification on the computed 
cf-values for the experimental data of Schubauer ard Klebanoff [20], In this 

case 6/A Is around 1/150 and a correction such as the one given by (6.16) 
seems to Improve the results. 

6.4 PREDICTION OF TRANSITION POINT 

One of the most important factors in the drag calculations is an accurate 

prediction of the transition point when it is not known experimentally. 

Probably the ideal way of predicting this point is to calculate the growth of 

the disturbances that build up in the boundary layer until they reach the 

condition at which transition is known to occur. Two strong factors that influ- 

ence the position of transition are the streamwise pressure gradient and the 

turbulence in the freestream so that any calculation of the boundary-layer 

disturbance growth should account for them. However, because of the complexity 

of the problem, it has not, thus far, been possible to successfully account 

for such factors. Theoretical work has been limited largely to the criteria 

for stability of the boundary layer and the growth of small disturbances under 

particular flow conditions. 

cf xlO 

4r 

3- 

2 - 

I - 

AOIFEET 

EXPERIMENT 
 WITH CURVATURE CORRECTION 
 WITHOUT CURVATURE CORRECTIOI 

-L. 

12 16 
X-'FEET 

20 
_Q^ 

24 28 

Figure 9.    Comparison of calculated and experimental skin-friction coefficients 
for the data of Schubauer and Klebanoff [20].    Calculations were 
made with and without the curvature correction.    The low Reynolds 
number correction was included in both cases. 
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At the present time there are several empirical methods for predicting 

the transition point.    These are the method of Van Driest and Blumer, the 

method of Crabtree, the method of Granvllle, the method of Smith and Gamberonl, 

the method of Van Ingen and the method of Michel.    In this report we consider 

two of these methods.    They are the method of Michel[10] and the method of 

Granvllle [5].    These two methods are briefly described below. 

6.4.1    The Method of Michel 

Michel's method is based on the correlation of transition momentum- 

thickness-Reynolds number,    RQtrt   with x-Reynolds number,    Rx.    The reason 

for such a "universal" curve is mostly due to the data used in the correlation. 

The experimental results used in this correlation came from particular types 

of airfoils having similar pressure distributions and In such cases the values 

of   Rg   and   R     would, to some extent, define a simple curve.   Consequently, 

use of this method for airfoils with pressure distributions significantly 

different from the ones used in this correlation may introduce errors into 

the prediction of transition.    In spite of this it is a useful relation. 

As seen in figure 10, the range of the applicability of Michel's correla- 

tion is limited to values of   R     between   0.4 x 10     and   7 x 10 .    For this 

reason, in the present study we have used Smith's e -correlation curve [23] 

for values of   R     greater than   7 x 10 .   The resulting transition correla- 
tion curve may also be conveniently described by the following formula: 

vl.174(, .^   R0;46 (6.,8) 

for 

0.1 x 106 £ Rx ^60 x 106 
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Figure 10.    Transition-correlation curves of Michel and Smith 

6.4.2   The Method of ^ranville 

Granville's methoo consists of a single curve of    (Rg -Rg.)    against 

the parameter   Xg   as a transition criterion.    See figure 11.   The Pol hausen 

parameter   !"„   is defirud as 

An   = 
02due 

/ 

är 

9 /v(du /dx)dx 

x - x. (6.19) 
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Granville, by using approximations of the same order as those used In Thwaltes' 

method [9 ], reduced (6.19)  to 

4 
'8 = TC 

1 
7 

i'K^Wi 
«x-iv^iis (6.20) 

To predict transition by Granvllle's method, It is necessary to calculate 

the critical momentum-Reynolds number,   R0 ,    This value can be calculated by 
'1 

using the curve given in figure 12.    Once   R«     is known, then the values of 

(Rg - Re )    and "ü   are calculated from the point of instability,   Rx,,    along 

the body until they intersect the universal transition curve given in figure H, 

Granvllle's method also accounts for the effects of free-stream turbulence 

on the transition point.    However, it is restricted to flat-plate flows.    Little 

is known about the effect of freestream turbulence on flows with pressure 

gradient.    For this reason, we have neglected the freestream turbulence effect 

on transition point.    It is believed that this assumption is a satisfactory 

one since flows for the bodies considered in this report were measured in low- 

turbulence tunnels. 

For the cases studied In this report, Michel's method was initially used. 

The reason for this choice was to be able to make comparisons. 

Figure 11. Granvllle's transition- 
correlation curve. 

Figure 12. Variation of critical Reynolds 
number, RQ., with shape factor 
according to stability theory. 
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between the results obtained by a previous study that utilized Michel's 

method [4].    However, In the present study we have also used Granvllie's 

method and made comparisons with those obtained by using Michel's method. 

These are discussed In Section 7. 

The curves given in figures 11 and 12 are represented by the following 

equations: 

R9 " R0. 
(1=0 

A9 -0.04 < xe ^0.024 (6.21) 

where 

C0 = 0.820571 x 10^ 

C1 = 0.282738 x 10* 

C2 = 0.707219 x lO6 

C3 = 0.516769 x 10' 

C4 = 0.223023 x 10f 

7 
R9    = exP   ]C V" 

'i n=0 

2.45 < H < 3.4 (6.22) 

where 

Cn = 493.906 

407.017 

53.9041 

24.1642 

C4 = -0.104478 

C5 = -2.81454 

C6 = 0.355919 

C7 = 0.0120270 

6.5    PROCEDURE FOR CALCULATING BOUNDARY-LAYER DEVELOPMENT ABOUT STREAMLINED 
BODIES 

In the calculation of drag of streamlined bodies according to any of the 

three approaches discussed in Section 6.1, it is necessary to calculate the 

complete boundary-layer development from the leading edge to the trailing edge. 

Let us consider the general case and assume that only the pressure distribution 

is given.   This means that we need to calculate the laminar boundary-layer flow, 
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locate the position of fransltion, and then calculate the turbulent boundary 

layer.    Each must be cjiculated to the same degree of accuracy 1f the drag 

calculations are to be as accurate. 

In the results reported here, we have first calculated the laminar flow 

up to transition, which was assumed to take place at a point rather than in a 

region.    Transition was computed by either Michel-Smith's transition- 

correlation curve or by Granville's method.   Then at this point the turbulent 

flow calculations were started by activating the eddy-viscosity expressions in 

the governing boundary-layer equations and have continued the calculations up 

to the trailing edge.    However, in some cases the calculations indicated 

laminar separation before the transition point was reached.    In this case the 

wall shear became very small and prevented the solutions from converging.    In 

such cases the laminar separation point was assumed to be the transition point 

and the turbulent flow calculations were started at that point. 

It is also important to note that the computed boundary-layer parameters 

at the traillng-edge -momentum thickness in particular - showed a strong 

dependence on bie streamwise spacing in the vicinity of the transition point 

unless the spacing is uniform.    With uniform spacing, the dependence was 

removed and, at least for the cases studied in this report, consistent results 

were obtained. 

The accuracy of calculating the complete boundary-layer development by 

the procedure that has been discussed was investigated for the experimental 

data of Newman [20].    The measurements, made on an airfoil, include experi- 

mental pressure distribution, transition point, and turbulent velocity profiles. 

The calculations were started at the leading edge.   The experimental transi- 

tion point was at   x = 1.169 feet, but at   x = 1.009 feet   the calculations 

predicted laminar-flow separation.    Consequently, the transition point was 

shifted to   x = 1.009 feet.    Calculations were made with and without the 

modification for low Reynolds number flow (e.g., at   x = 2.009 feet,   where 

the first experimental velocity profiles were reported, the    Rg-value was 

5500) the calculated Reynolds number at transition is    R« = 600,   and the 

calculated results show a slight Improvement with this modification.     See 

figure  13).    But more Important, when the calculations are started at   x = 2.009 
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by using the Initial experimental velocity profile, the results are almost 

exactly the same as those obtained by the modification.   This is rather 

significant, since it shows that the present method is capable of calculating 

a complete boundary-layer development and gives justification for extending 

the calculation procedure to the dreg calculations. 

o     DATA OF NEWMAN 
WITH MODIFICATION FC« LOW 
REYNOLDS NUMBER EFFECT 

 WITHOUT MODIFICATION 
CALC. 

40.0 r 
ÖXIO5 

-^FT 
20.0- 

Figure 13.    Comparison of calculated and experimental results for Newman's 
airfoil [20]. 
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7.0   COMPARISON Or .ULATED AND EXPERIMENTAL DRAG COEFFICIENTS 
OF TWO-'JIMENSIONAL AND AXISYMMETRIC BODIES 

In this section we present comparisons of calculated and experimental 

drag coefficients of several two-dimensional and axisymmetric bodies.   The 

calculations were made by the procedure described in section 6.5.   The drag 

coefficients, however, were calculated only by the first approach discussed 

in section 6.1.    According to this approach, the drag of two-dimensional 

bodies was calculated by the Squire-Young formula and the drag of axisymmetric 

bodies by a three-dimensional version of this formula.    Jones' formula was 

also used to compute the drag of two-dimensional bodies.    In using chis formula 

we used the velocity profiles at the trailing edge of the body and did not 

extend the calculations into the wake. 

It is important to note at this time that use of either the Squire-Young 

formula or the Jones formula requires the value of   (u /uj   at the trailing 

edge together with the boundary-layer parameters at the same location.    If the 

experimental velocity distribution is used, this presents no problem in calcu- 

lating the drag by these formulas since the velocity ratio is known at the 

trailing edge.    However, with an inviscid velocity distribution these formulas 

are meaningless since one will always get a stagnation point at the trailing 

edge (for finite-trailing-edge angle).    For this reason, when the inviscid 

velocity distribution is given, it becomes necessary to extrapolate the 

velocity distribution from the 95%-chord to the trailing edge.   This procedure 

enables the calculations to be carried out up to and including the trailing edge. 

The error arising from this extrapolation of inviscid velocity distribution can 

be shown to be negligible as follows. 

In reference 24 [p.182, eq.(9)], the expression for the drag coefficient 

Cp.   for both laminar and turbulent flow is 

1.422 W^i 3/5 
0.02429 
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Now, consider only the contribution of the turbulent flow.    Then 

V 
0.02429 

1      /,. \4 

•x    /cX oo/ 

5/6 

(7.2) 

Assume that the velocity distribution between the 95^-chord point and the 

trailing edge is linear (fig. 14).    Then the velocity distribution is given 

by 

ue/u<» = a + 20^b ~ a^x/c ~ 0*95^ 0.95 < x/c < 1 (7.3) 

where   a   is the value of the velocity at the 95%-chord point, and    b   is the 

value of the velocity at the trailing edge.    Since Eq. (7.2) can be written as 

CD = 
0.02429 

Vc c 0-95V ^     X 

5/6 

(7.4) 

the term 

0.02429 Iß 41 (7.5) 

00 

Figure 14.    Velocity distribution near the trailing edge. 
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can be considered to be a "correction" or error term (assuming the exponent 

5/6 ~ 1) if we make an assumption for the velocity distribution between the 

95%-chord point and the trailing edge.    Substituting the expression for the 

velocity ratio from (7.3) into (7.5) and integrating gives an estimate of 

this quantity 

CD   = (2.429/Ry5)10"4 (b4 + ab3 + aV + a3b + a4) (7.6a) 

For   b = a    (7.6a) becomes 

Cn   = (5 x 2.429/Rl/5)10_4a4 (7.6b) 
UE c 

6 -5 If   a = 1    and   R   = 10 ,    the correction term is approximately   5 x 10    , 

which is relatively small.   At higher chord Reynolds numbers, the correction 

term becomes even smaller.   Thus, extrapolating the inviscid velocity distri- 

bution to the trailing edge in the manner done in this study is justified. 

7.1    DRAG COEFFICIENTS w TWO-DIMENSIONAL BODIES 

In most of the two-dimensional bodies considered in this report, the 

position of transition was not known and was calculated by using either 

Michel's or Granvilie's method.   At first, the drag of a number of airfoils in 

which transition was obtained by Michel's method was calculated.    These values 

were compared with those obtained in a previous study [4] in which transition 

was again calculated by Michel's method but the boundary-layer calculations 

were made by a combination of Thwaites' and Head's methods.   After these com- 

parisons, some of the calculations were repeated with Granville's transition- 

prediction method and in this way theeffects of different transition prediction 

methods on drag were studied.    Results obtained by using Michel's method are 

presented first. 

Figure 15 shows the results for the NACA 65(2i5)"114 ai^foi1  C25] at 
chord Reynolds numbers varying from 6 x 106    to 40 x 106 together with the 

calculated results obtained earlier [4],    The drag values which were obtained 

by using the Douglas boundary-layer method show a marked improvement over 

earlier results, which were obtained by using a combination of Thwalte's 
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Figure 15.    Comparison of calculated and experimental drag values for the 
NACA 65(215)-114 airfoil at   C£ = 0.14 [25].    Transition points 
were calculated by Michel's method. 

laminar boundary-layer method and Head's turbulent boundary-layer method. 

This is quite significant since, although good agreement was obtained at 

lower Reynolds numbers   (R   < 9 x 10 )    according to the study described in 

reference 4, the agreement was poor at high Reynolds numbers, and the dis- 

crepancy was attributed to the inaccuracy of calculating turbulent boundary 

layers at high Reynolds numbers. 

Figure 16 shows a comparison of calculated and experimental drag coef- 

ficients for the NACA 4412 airfoil at various lift coefficients.    The experi- 

mental pressure distribution was given for   R   = 3.1 x 10     for a wide range 

of angles of attack [26],   The experimental drag values were obtained from 

reference 27.    However, the unseparated flow ranged from   a = -6   to   a = 8°. 

For this reason, calculations were made for angles of attack of -6, -4, -2, 0, 

2, 4 and 8 degrees for three chord-Reynolds numbers   3 x 10 , 6 x 10 ,   and 

9 x 10     using the same experimental pressure distribution.    Transition data 

was not given.    Although not shown in this report, it is important to note 

that a comparison of present calculations with those that were obtained 

earlier [4] shows that the present drag values are in much better agreement 

with experiment. 

Figure 17 shows the results for the NACA 64A010 airfoil.    In this case 

the pressure distributions were given for a slightly compressible flow 
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Figure 16. Calculated and experimental drag coefficients for the NACA 4412 
airfoil [26,27]. Transition points were calculated by Michel's 
method. 
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Figure 17.   Calculated and experimental drag coefficients for the NACA 64A010 
airfoil [28].   Transition points were calculated by Michel's 
method. 
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(M^ = 0.3) at Rc = 0.95 x 10° [28j tor an airfoil with 6-inches chord, 

for angles of attack up to and including stall. The calculations were made 

for three-chord Reynolds numbers, R = 0.95 x 10 , 3 x 10  and 6 x 106 

for angles of attack of a = -1.8, -0.8, 0.2, 1.2, 2.2, 4.2 6.2 and 8.2. It 

is important to note that at higher angles of attack, it was necessary to 

input the experimental pressure distribution near the nose in considerable 

detail because of the high C  values. This was done by fairing a curve 

through the available experimental points in that region. 

Figure 18 shows a comparison of calculated and experimental monentum- 

thickness values [29] for the RAE 101 airfoil for a chord Reynolds number of 

Rc = 1.6 x 10 . The calculations were made for two angles of attack, a = 0 

and 4.09. In the calculations the experimental pressure distribution was 

used. The total drag values of this airfoil were not given. For this reason, 

comparisons were limited to values of momentum-thickness only. 

5 r 

I»'*3 

RAE   101   AIRFOIL 

Rc = 1.6 X 10 

EXPERIMENTAL 

CALCULATED 

a = 4.09 
O 

8 10 

C 

Figure 18.    Comparison of calculated and experimental values of momentum 
thickness for the upper surface of RAE 101 airfoil [29].   Transi- 
tion position was calculated by Michel's method. 

MCOONNBUL.  DOUGI.A»   CORfORATION 

37 



Comparison of calculated and experimental drag coefficients were also 

made for the NACA 66,2-420 airfoil [30] at zero angle of attack.   The calcu- 

lations were made for three chord Reynolds numbers,    R   = 6.67 x 10 , 
fi ft 

9.30 x 10     and   11.30 x 10     in which the experimental free-stream Mach 

number was 0.194, 0.269 and 0.385, respectively.    In the   calculations the 

experimental pressure distribution, which was obtained at   M^ = 0.194, was 

used.    In addition, in the calculations it was necessary to extrapolate the 

experimental pressure distribution to the trailing edge because the experi- 

mental pressure distribution was given only up to the 90%-chord point.   The 

boundary layer was tripped at 10%-chord point, and the total drag coefficients 

for the three Reynolds numbers were obtained from wake measurements.   A 

comparison of the calculated and experimental results is given in Table 1. 

Table 1 

A COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG C0EFFICIFNTS FOR 
THE NACA 66,2-420 AIRFOIL [30] 

Rc x 10"6 CD   x 103 

exp 
CD   x 103        1 

cal           | 

6.67 

9.30 

[       11.30 

10.85 

10.65 

10.70 

9.57          ] 

9.02           | 

8.74           j 

Calculations were also made for the NACA 35-215 airfoil [31].    For this 

airfoil, the total drag coefficient of the upper surface was calculated for 

a pressure distribution obtained from reference 31 at a chord Reynolds number 

of 26.7 x 106.   The experimental transition point was specified as the 43.5%- 

chord point.    The calculated and the experimental  (flight) values are 

2.32 x 10"3   and 2.30 x 10"3, respectively.    It is interesting to note that 

when the drag of the same airfoil was calculated in reference 4, the same 

drag coefficient, as the one computed in the present study, was obtained. 

Figure 19 shows a comparison of calculated and experimental results for 

the NACA 63,-018 airfoil [27,32],    For this airfoil the experimental pressure 

distributions were given for    Rc = 5.8 x 10     at angles of attack of 

., = 0 - 10   in the unstalled regime.    In the calculations, the transition points 
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Figure 19.    Calculated and experimental results for the NACA 63,-018 airfoil [32], 
Transition points were calculated by Michel's methoa. 

were calculated by Michel's method since the experimental points were not 

given.    In addition, the velocity distribution was extrapolated linearly from 

the 95%-chord point to the trailing edge since the experimental velocity 

distribution was given only to the 95%-chord point. 

Finally, we present the results for the symmetrical NACA four-digit 

airfoils with thicknesses from 6 to 12% for zero angle of attack.    Except for 

the 12%-thick airfoil the calculations were made by using the inviscid pres- 

sure distribution given in [27].    Again, the velocity distributions were 

extrapolated linearly from 95%-chord point to the trailing edge.   The calcula- 

tions for 0006 and 0009 airfoils were made for chord Reynolds number of 6 x 106. 

For the 0012 airfoil calculations were made for chord Reynolds numbers of 6 x 106 

and 10.25 x 10   for the experimental distribution given in [33],    in these 

calculations the transition points were calculated by Michel's method.    A 

comparison of the calculated and experimental drag coefficients for these 

airfoils is given in Table 2. 
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Table 2 

A COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG COEFFICIENTS FOR 
THE NACA OO-SERIES 

Transition Positions were Calculated by Michel's Method 

Airfoil Rc x lO"6 CD        x 103 

exp 
CD    Z10' cal           ! 

0006 6 5.00 5.10              1 

j             0009 6 5.50 5.52 

0012 6 5.70 5.62 

0012 10.25 5.60 5.30 

We have also calculated the drag coefficients of several airfoils by 

using Granville's method for predicting the position of transition. It is 

important to note that when we calculate the boundary-layer parameters around 

the airfoil (one surface) we use about thirty chord stations. This means 

that each chord station is approximately three to four-percent-chord apart 

(in some cases, a little more). In calculating the transition point we first 

calculate the Rg at each chord station and check whether the value at that 

station, defined by a certain Rx, satisfies the RQ, Rx relationship of 

Michel. In following this procedure, a three- to four-percent error is intro- 

duced into the transition calculations. Such an error can, of course, be 

eliminated if one introduces more chordwise stations (which means longer compu- 

tation times), or if a search is made for the transition point by extrapolating 

the calculated Rg-values from one station to another. In using Granville's 

method, the error may double since this time it is necessary to search for the 

R-. -value as well as for the RQ -value. This means that it is necessary to yi Htr 
introduce additional interpolation schemes into the numerical method if the 

transition is to be predicted accurately. 

At the writing of this report, drag calculations using Granville's method 

are not finished. Because of the time available in the present study, we have 

not been able to introduce the proper procedure of calculating transition into 

the numerical method. For this reason, preliminary results will be presented 

only for three airfoils. 
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Figure 20 shows a comparison of calculated and experimental drag 

coefficients for the NACA 4412 airfoil for which the drag coefficients were 

obtained earlier by using Michel's method.    The results indicate better agree- 

ment with experiment when the transition points are calculated by Granville's 

method.    Table 3 presents a comparison of calculated transition points by 

each method as well as a comparison of calculated and experimental drag 

coefficients. 
8 

cDxicr 
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C, 

Figure 20.    Comparison of calculated and experimental drag coefficients for 
the NACA 4412 airfoil at   Rc = 6 x 106.   The calculated drag coef- 
ficients were obtained by using Michel's and Granville's methods. 

Table 3 

COMPARISON OF CALCULATED TRANSITION POINTS AND DRAG COEFFICIENTS FOR 
THE NACA 4412 AIRFOIL AT R = 6 x 106 

Angle 
of 

Attack 
a 

Calculated Transition 
Points 

Drag Coefficients 
CD x 103 

Michel Granville Calculated 

Experimental (tl (t)t (tl (^ 

Transition 
by 

Michel 

Transition 
by 

Granville 

-6 
-4 
-2 

0 
2 
4 
8 

0.70 
0.65 
0.574 
0.500 
0.45 
0.35 
0.126 

0.03* 
0.03* 
0.07* 
0.15 
0.25 
0.52 
1.00 

0.65 
0.574 
0.50 
0.475 
0.40 
0.325 
0.126 

0.03* 
0.03* 
0.07* 
0.25* 
0.225 
0.400 
1.00 

6.69 
6.31 
6.11 
5.83 
5.79 
5.96 
7.27 

6.86 
6.52 
6.31 
5.49 
6.01 
6.04 
7.27 

6.90 
6.45 
6.30 
6.25 
6.20 
6.20 
7.60 

♦laminar separation 
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Calculations were also made for the NACA 35-215 and 65/215\-114 airfoils. 

For the first airfoil  the calculated transition point by Granville's method 

agreed exactly with the one calculated by Michel's method and with the one 

obtained experimentally    [(x/c).    = 0.435],    On the other hand, the transition 

points  for the NACA 65(215r114 changed slightly from those predicted by 

Michel's method.    The difference in transition points affected the calculated 

dray coefficients as shown in Table 4. 

Table 4 

COMPARISON OF CALCULATED AND EXPERIMENTAL TRANSITION POINTS AND DRAG 
COEFFICIENTS FOR THE NACA 65/215x-114 AIRFOIL AT Ce = 0.14 [25] 

Calculated Transition Drag Coefficients                  | 
Points CD x 10«* 

Experimental 
Transition 

Rcx 

lO"6 

Michel Granville Points Calculated 

Experimental in <H (f) i ^ (H 
Transition 

by 
Michel 

Transition 
by 

Granville 

6 0.55 0.575* 0.525 0.55 0.567 0.562 4.22 4.54 4.40 

8 0.525 0.55 0.5 0.525 0.562 0.555 4.12 4.46 4.26          ] 

10 0.525 0.525 0.5 0.525 0.558 0.552 4.03 4.23 4.10          | 

15 0.50 0.50 0.475 0.50 0.534 0.532 3.97 4.10 4.00          I 

20 0.45 0.50 0.45 0.475 0.483 0.507 3.99 4.05 4.10          | 

30 0.35 0.40 0.39 0.425 0.391 0.447 4.38 4.16 4.40         | 

40 0.30 0.325 0.35 0.40 0.334 0.372 4.63 4.27 4.80          | 

*laminar separation 

We note that the calculated drag coefficients in which the transition points are 

predicted by Granville's method are in better agreement with experiment than 

those obtained by Michel's method at lower Reynolds numbers. On the other hand, 

th? trend is reversed at higher Reynolds numbers, the calculated values using 

Michel's method a^e in better agreement with experiment than those using Granville's 
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method. The discrepancy, however, can be also due to the inaccuracy of the 

procedure used to predict transition by Granvilie's method. Before a definite 

conclusion can be reached, it is necessary to improve the transition predic- 

tion procedures discussed before. 

7.2 DRAG COEFFICIENTS OF AXISYMMETRIC BODIES 

The total drag coefficient of an axisymmetric body can be calculated by 

using Young's formula [8] 

29. /u \(h+6'/2 

:) 
%-M^ <"> 

- ü 9. is the mompntum area given by 

OP 

0^2. /rH-fl-Mdy (7.8) 
-e \      uey 

and h is a stupe factor defined as the ratio of displacement area 6t to 

the momentum area 0«. The former is given by 

■!7'H) 6* = 2Tr / rfl -Mdy (7.9) 

In (7.7) A is the frontal area based on the maximum radius R  of the body, 

A = TTR^ (7.10) 

and throughout this report it is used to normalize the drag coefficients. As 

in Squire-Young formula, the quantities 9«, u /u^ and h in (7.7) are all 

to be evaluated at the tail end of the body. 

A formula similar to Young's formula which can also be used to calculate 

the total drag coefficient of an axisymmetric body is Granvilie's formula [5], 
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'D " T" fe) 
Cn=^l^l (7.11) 

where q is a constant equal to 7. The difference between the two formulas 

(7.7) and (7.11) lies in the exponent of the u /u^ term. 

In the case of axisymmetric bodies with large r
0(
r
0
>>(S). ^e momentum 

area 0^ becomes 

9a = 2.roe2_d (7.12) 

In such cases, the shape factor reduces to its two-dimensional definition, 

H =  ,s*/9.    Then (7.7) and (7.11) become 

4r 9. . /u \(H+5)/2 

ft 
CD=-^(^1 (7.13) 

and 

4r8, WuV^*2'7^8 
■o82-d /ueY C^.-V-I^j (7.!, 

A relation between (7.8) and (7.12) can be obtained by assuming a power law 

profile for the velocity profiles and by integrating (7.8) with this assump- 

tion.    See reference 5.    If we denote the two-dimensional definition of momentum 
1 /n 

area by 9a and use the relations u/u = (y/t) ' , r = r + y cos a in 

(7.8), we obtain 

Q 
A  1 .  n + 2  cos a /, ,r\ 
^T" ' + 2(2n + 1) Tjr (7J5) 

Figure 21  shows the variation of   9fl/9     with    rj6    for   n = 5   and 10. 3 Mao 
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Figure 21.    The variation of   Ofl/03   with   r /6   for two values of    n, 
Ma 0 

The total skin-friction coefficient of an axisymmetric body,    Cp,    is 

ined by integratir 

body.    It is given by 

obtained by integrating the local skin-friction coefficient   cf   around the 

2 ■f" "'$ dx (7.16) 

where 

cf = 
w 

1/2 pu 
(7.17) 

In the study reported here, the total drag coefficients and total skin- 

friction coefficients of several axisymmetric bodies were calculated. We 

first present the results for some of the DTMB bodies measured by Gertler [34]. 

These bodies, which were all all 9-feet long, were tested in a water towing 

tank for a Reynolds number range of 2 x 10  to 26 x 10 . The boundary layers 

were tripped at x/L = 0.05. 
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The drag calculations were performed for three bodies with fineness ratios 

of 4, 7, and 10. In the calculations we used the inviscid pressure distribution 

obtained from the Douglas Neumann method [2] because the experimental values 

were not given. However, in the case of the body with the fineness ratio of 4, 

viscous corrections were made to the inviscid pressure distribution (see 

Section 6.1). Figure 22 shows a comparison of two pressure distributions for 

this body. The results show that viscous effects have negligible effect on 

the pressure distribution up to 86%-chord point which corresponds to zero Cp. 

INVISCID  P.D. 

EXTRAPOLATED   PD 

VISCOUS   CORRECTION 

80 100 120 

Figure 22.    Pressure distribution on DTMB body 4154 with and without viscous 
correction    RL = 4 x 10^. 

Between 86% chord-point and the tail end of the body, however, the pressure 

distribution with the viscous correction significantly changes from the inviscid 

pressure distribution.    The calculated drag coefficients using the pressure 

distribution with and without the viscous effects at several chord points also 

vary significantly.    Figure 23 shows the calculated total drag coefficients at 

several axial locations for the two pressure distributions.    For the inviscid 

pressure distribution the drag calculations were only performed up to 89% chord 

point since flow separation was observed past this point.    However, for the 

pressure distribution with the viscous corrections, no flow separation was 

observed, and the calculations were continued up to the tail end of the body. 

The results in figure 23 indicate that the drag formulas show great sensitivity 
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Figure 23.    Variation of total drag coefficient with axial distance for the 
DTMB body 4154 at   RL = 4 x 106 [34].    The total drag coefficient 
was calculated by using Granville's formula (7.14). 

to the choice of tail end when inviscid pressure distribution is used. On the 

other hand, the sensitivity to the choice of the tail end disappears when the 

calculations are made by using the pressure distribution with viscous correc- 

tions. The results also indicate that the calculated drag values obtained by 

either (7.7) or (7.11) differ significantly from the experimental value. How- 

ever, when the calculations are made by using (7.13) and (7.14), that is, by 

using equations that employ the two-dimensional definition of momentum area, 

0 ,   a better agreement is obtained with experiment.    It is interesting to note 
a 

that when the inviscid pressure distribution is used, the chord-point where 

Cn = 0   seems to give drag values which agree satisfactorily with experiment, 

at least for this body.   At this point the wake correction term in the drag 

formula makes no difference because   ue/uo 1.0. 

Figure 24 shows a comparison of calculated and experimental drag coeffici- 

ents for the same body. The experimental values are not corrected for wave 

making resistance of the body. In this case, the calculations were made by 

using the inviscid pressure distribution. However, the calculated total drag 

coefficients were obtained by taking the tail end to be the point where C = 0. 

This is a reasonable approximation for this body since the inviscid pressure 

distribution does not deviate from the actual pressure distribution up to this 

chord point. In these calculations we have used the two-dimensional definition 

of momentum area. In this case, the total drag coefficient is given by 
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Figure 24. Comparison of calculated and experimental drag values for the DTMB 
body 4154 [34],    The total drag coefficients were obtained by using 
Granville's formula (7.14) and by taking the point where Cp = 0 as 
the tail  end. 

CD = 

4roe2-d (7.18) 

The calculated total drag values deviate a little from the experimental values. 

They can probably be improved if one obtains    a viscous correction to the 

inviscid pressure distribution at each Reynolds number and then calculdtes 

the drag at the tail end of the body.    However, this is not done in this study. 

Figure 24 also shows the total skin-friction drag coefficient for this 

body.    Calculations were made by using the inviscid pressure distribution in 

which the velocity distribution from the 95% chord point was extrapolated 

linearly to the tail end. 

Figures 25 and 26 show the results for the bodies with fineness ratio of 

7 and 10, respectively.    In these cases,  the calculations were made by using 

the inviscid pressure distribution.    The total drag coefficients were again 

computed by using C.IS) and the total skin-friction coefficients by using 

(7.16).    The calculated total drag coefficients and total sKin-friction 

coefficients agree well, indicating that the pressure drag is negligible. 

This is reasonable since both bodies are quite slender. 

We next present the results for a 285-foot long airship [35] with a 

fineness ratio of 4.2.    For this body the pressure distribution and boundary- 

layer measurements were made in flight at speeds from 35 to 70 miles per hour. 
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Figure 25.    Comparison of calculated and experimental results for the DTMB 
body 4165 [34]. 
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Figure 26.    Comparison of calculated and experimental results for the DTMB 
body 4159 [34]. 
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No transition data was given, but from the configuration of the airship it 

was implied that the boundary layer was tripped at approximately   x/L = 0.05. 

Calculations were made for the conditions corresponding to four different 

speeds for the airship envelope in its "original" configuration:    u^ = 35, 50, 

60 and 70 miles per hour corresponding to nominal length — Reynolds numbers, 

R. ,    of 94,  135, 162 and 188 million. 

Figures 27 and 28 show a comparison of calculated and experimental results 

for the airship.    According to figure 27, the agreement in calculated and 

experimental    &*   and   0-values is very good at high Reynolds numbers. 

The experimental  total drag coefficients in figure 28 were obtained both 

from extrapolations of the velocity profiles at   x/L = 0.96    into the wake and 

from the horsepower requirements of the airship envelope.    The calculated total 

drag coefficients were obtained by using Granville's formula (7.14) and the 

calculated total skin-friction drag coefficients were obtained from (7.16). 

In applying Granville's formula, the total drag values were calculated at 

several chord points near the 96% chord point because the experimental pres- 

sure distribution was given up to the 96% chord point.    The total drag of the 

body was obtained by extrapolating the results to the tail end. 

Figure 27.    Comparison of calculated and experimental results for the XZS2G-1 
airship at   RL = 188 x 106    [35]. 
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Figure 28.    Comparison of calculated and experimental drag values for the 
XZS2G-1 airship [35].    Total drag coefficients were obtained by 
Granville's formula (7.14). 

Finally we present the results for the boundary-layers measured by 

Murphy [36].    In this reference, Murphy presented quite detailed experimental 

data on bodies of revolution of different shapes.    The experimental data 

included experimental pressure distributions, skin friction coefficients, 

velocity profiles and separation point locations. 

The calculations were made for three different shapes which represented 

a combination of one basic nose shape {A-2), a constant area section, and 

different tail shapes (Tails A-2, C-2, and C-4).    Transition was tripped at 

an axial location of'31 inches from the nose of the body by a two-inch wide 

porous strip, which was used for mass transfer measurements and was sealed 

for zero mass transfer.    The skin friction coefficients were obtained by 

Preston tube, and experimental total drag coefficients were obtained from the 

wake profile. 

Figure 29 shows a comparison of calculated and experimental    cf   and 

Re-values.    It is important to note that the agreement is quite good consider- 

ing the fact that the calculations were started at the stagnation point and 

transition was specified at 31 inches.   The calculated values in this manner 

match the experimental values and a little discrepancy in skin friction may 

be attributed to the effect of the porous strip. 
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Figure 29.    Comparison of calculated and experimental results for the Murphy 
bodies of revolution [36]. 
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Figure 30.    Comparison of calculated and experimental  velocity profiles for 
the Murphy bodies of revolution [36]. 

Figure 30 shows a comparison of calculated and experimental velocity 

profiles for two tail shapes, namely, A-2 and C-2.    Except for one station 

the results are in agreement with experiment.    The discrepancy in the velocity 

profile of shape C-2 at   x = 57 inches may be due to flow separation since 

separation in this case was reported at   x = 58.3 inches. 

Table 5 presents a comparison of calculated and experimental drag coef- 

ficients for the Murphy bodies.    The calculated drag coefficients obtained by 

Granville's formula (7.14), include both total drag and total skin-friction 

coefficients.    It is interesting to note that the experimental total drag 

coefficients which were obtained by the wake profile method agree well with 

the calculated total skin-friction coefficients and not with the calculated 

total drag coefficients.    The nose pressure distributions of these bodies 

are not representative of those on a body located in an undisturbed stream 

because In the tests the nose of the body extended about 1.5 feet into the 

wind-tunnel contraction section.    For this reason. It is possible that the 

calculated drag coefficients may give the correct total drag of these bodies. 
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Table 5 

COMPARISON OF CALCULATED AND EXPERIMENTAL DRAG COEFFICIENTS 
FOR THE MURPHY BODIES [36] 

Id 11  Shdpe 

A.2 

C-2 

C-4 

Experf '«ntdl 
Totdl Drag 

Calculated 
Total Drag 

Calculated 
Total 

Skin-Friction 

0.072 ♦ 0.003 

0.071  +0.002 

0.072 + 0.002 

0.075 

0.076 

0.075 

0.072 

0.068 

0.069 

ftfCCM 
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8.U    CALCULATION OF TURBULENT BOUNDARY-LAYER SEPARATION ABOUT 
TWO-DIMENSIONAL AND AXISYMMETRIC BODIES IN 

INCOMPRESSIBLE PLOWS 

8.1   METHODS FOR PREDICTING TURBULENT BOUNDARY-LAYER SEPARATION 

In many problems It Is necessary to know whether the boundary  layer, 

either laminar or turbulent, will separate fro«) the surface of a specific body, 

and If so, where the flow separation will occur.    This Is quite Important 

since In many design problems, such as for example. In the design of hydrofoils 

or airfoils, It Is necessary to prevent flow separation In order to reduce 

drag and to obtain high lift. 

For steady flows, the separation point Is defined as the point where the 

wall shear stress.    TW,    IS equal to zero, that is, 

With high-speed computers, the governing boundary-layer equations for laminar 

flow can be solved exactly, and consequently the laminar separation point can 

be determined almost exactly.    In addition, there are several "simple" 

methods which do not require the solution of the boundary-layer equations In 

their differential form and can be used to predict separation point quite 

satisfactorily.    The momentum integral method of Thwaite^ and the method of 

Stratford are examples of two of such methods.    The latter method does not 

even require the solution of the laminar boundary-layer equations.    For a given 

pressure distribution, for example,    C (x),    the expression 

is calculated around the body.    Separation is predicted when it reaches a 

value of 0.102. 

The prediction of separation point in turbulent flows, on the other hand, 

is a much more difficult job.    Due to the presence of the time mean of the 
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fluctuating quantities appearing In the governing equations, an exact 

solution of the boundary-layer equations for turbulent flows Is Impossible. 

Consequently, when the equations .ire solved with son« suitable assumption for 

these quantities,  the solutions contain empiricism and must be checked against 

experiment. 

The current prediction methods on the subject can be divided Into two 

groups.    In one group we have methods that require the detailed solution of 

the boundary-layer equations.    These methods are either of differential type 

(meaning that partial-differential equations are solved) or of Integral type 
(meaning that momertum Integral or energy Integral equations are solved). 

Reference 20 presents a critical evaluation of these methods for two-dimensional 

Incompressible turbulent Mows.    In differential methods the parameter used to 

predict the separation point Is the zero wall shear stress.    In Integral methods, 
on the other hand, the shape factor H ■ s*/0 Is usually used to locate the separa- 

tion point.    In Integral methods as the flow approaches separation, the value 

of   H   Increases.    Separation of the flow Is assumed to occur when   H   reaches 

a value between 1.8 and 2.4.    In some cases, however, the value of   H   increases 

rapidly near separation and then begins to decrease.    In such cases*, the point 

corresponding to the maximum value of   H    is taken as the separation point. 

In another group, we have methods that do not require the detailed 

boundary-layer calculations.    Separation is predicted by simple formulas or 

by "simple" differential equations that are very fast and easy to apply. 

These methods also utilize the composite nature of the turbulent boundary layer. 

For example, Stratford [37] divides the turbulent boundary layer into inner and 

outer regions and bases his analysis on the assumptions that in the outer 

region the pressure forces cause a direct reduction in dynamic head and that in 

the inner region the pressure force is balanced by the shear-force gradient. 

Goldschmied's method also treats the boundary layer consisting of inner and 

outer regions.    His analysis is based on the assumptions of inner-region similar- 

ity under any pressure gradient and of a constant total-head line at a fixed 

distance from the wall. 

*These cases correspond to flows for which the calculations are made using an 
experimental pressure distribution. 
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In this report we study the accuracy of the several current methods for 

predicting the turbulent boundary-layer separation point.    In particular, we 

consider a differential method (Douglas boundary-layer method), a momentum 

Integral method (Head's method) and two "simple" methods, namely, the methods 

of Stratford [37] and Goldschmledt [38].    These methods are briefly described 

below.    Since the Douglas boundary-layer method has already been discussed In 

a previous section, the discussion Is presented only for the othei metliuds. 

Results obtained by these methods are described In Section 9. 

Ü.1.1    Head's Method 

Head's method Is an Integral method that can be used both for calculating 

the boundary-layer parameters as well as for predicting the position of sepa- 

ration In turbulent flows.    It uses the momentum Integral equation 

^♦("♦^ar-r (S.D 

and two auxiliary equations, namely, Ludwleg-Tlllman's expression for the 

skin-friction coefficient, 

Cf = 0.246(10r0-678HR-0-268 (8.2) 

and a shape factor  G(H)   relationship obtained from the entrainment properties 

of the turbulent boundary layer.    The latter is also related to another shape 

factor   H,.    The entrainment and the shape factor relationships are as follows: 

Entrainment relation 

JTlx^e9^ = 0-0299(Hi -3.0)-0-6169 (8.3) 
e 

Shape Factor relation 

H}  = G(H) 
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where 

G(H) 

ü.a234(H - l.l)"1,287 

1.5&01(ll -0.6778)'3,064 ♦ 3.3 

H 1 1.6 

H >  1.6 

(8.4) 

This method like most Integral methods, uses the shape factor   H   as the 

criterion for separation.   Although It Is not possible to give an exact value 

of   H   corresponding to separation, when   H   Is between 1.8 and 2.4, separa- 

tion Is assumed to exist.   The difference between the lower and upper   limits 

of   H   makes very little difference in locating the separation point, since 

close to separation the shape factor quickly Increases. 

The momentum Integral equation (8.1) has within It the assumption that 

the Reynolds normal stresses can be neglected, a fact that has been disputed 

by & number of authors.    The validity of this assumption has been questioned, 

for example, see reference 39.    with the normal-stress terms, the momentum 

integral equation Is 

f+(h + 2'^ = r (8.5) 

T T 
The term   u'     comes directly from the x-momentum equation.   The   v' 

term enters the equation because of static-pressure variation across the 

boundary layer. 

In reference 40 calculations were made to investigate the importance of 

the Reynolds normal stresses.    It was found that in general 

Ik^^^fh^ dy 
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Based upon this approximation, the following formula was obtained for the 

normal-stress correction (NSC) 

NSC • 0.0365(H - D j-p (8.6) 

This correction depends on the derivative of    ••   and leads to a singularity 

In the momentum Integral equation.    When   H    Is approximately 5.7,   dO/dx 

becomes Infinite.    However, the singularity should not he a practical  limita- 

tion, since separation occurs for values of   H   well below 5.7. 

In the study reported here we have added the NSC term to Head's method 

and have compared the results with those obtained without this correction 

for several test cases.    Although In some cases the addition of NSC-term 

Improved the results, the improvement was not significant.   Consequently, 

addition of the NSC-term to Head's method was omitted in the present study. 

8.1.2   Stratford's Method 

Stratford's method for turbulent flows is a simple method that uses only 

the pressure distribution to predict boundary-layer separation.    It does not 

require the detailed boundary-!ayer calculations like the Douglas boundary- 

layer method or Head's method. Presently there are several methods based on the 

ideas set forth in this method [41,42]. However, the accuracy of these methods 

is similar to Stratford's method and are not considered in detail in this .i-port, 

Stratford's method is based upon the ideas of dividing the boundary layer 

into outer and inner portions. It follows the principles successfully adopted 

for laminar flow.   Briefly, the method can be described as follows. 

Consider a flow in which the pressure is constant between   0 ^ x ^ x 
and a fairly sharp pressure rise from   x > x .    The boundary layer is divided 

into outer and inner portions.    In the outer portion the flow is nearly 

inviscid so that we can write Bernoulli's equation as 

p + Jjpu2(x^) = p0 + ^)U2(xo,^) + AH1 (8.7) 
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where the stream function * is given by 

^ ■ / u dy (8.8) 

and   ..H.    denotes a (small) correction for the effects of viscosity. 

For a constant pressure flow    (p ■ p ),   which Stratford calls the 

"comparison" flow, the loss of total head   AH0   is 

AH2 - 7^(x,v) -7PUg(x0.*) (8.9) 

If we now assume that   AH   = AH.    and substitute (8.9) Into (8.7), we obtain i 2 

^ pu2(x,ii;) = ^ pu2(x,^) - (p - p0) (8.10) 

since   u = u,.   for   x < x,,. c —   o 

Differentiating (8.10) with respect to   tj;,   yields 

or 

9y    3yc 
(8.11) 

Assumption of a power-law profile for the "comparison" velocity profile, that 

is, 

and use of (8.8) and (8.11) yields the following expressions for the outer 

portion of the boundary layer: 

Wc-£[rj (8-13> 
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/yAl/r. 
"c • uo [r) 

*c     n+TVö J 

(8.14) 

(n*l)/n 

(8.15) 

In the Inner portion of the boundary layer close to the wall, since   u   and   v 

are small, the momentum equation can be written as 

Integrating the above expression, we get 

t-V&y (6.17) 

At separation   T   - 0.    Equation (8.17) then becomes 
W 

T-|£y (8.18) 

We now represent the shear stress   T   by PrandtTs mixing-length expression 

T = p(ky)2(du/dy)2   and write (8.18) as 

3y 

Successive integration of (8.19) gives 

du     /l   J_d£Y/2 
(8.19) 

"-(yitf* ^ 
♦ '4^^r.V3/2 (8.21) T m 
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We next usi- the appropriate joining conditions, namely, continuity of 
, u,    and     u/ y   and obtain 

C 

where 

l'' (" tA   ■ ^ - 2>n"''" * ,>•n*, IcV2 (^)' (8.22) 

P-P0 u. 

If we assume that the "comparison" boundary-layer thickness Is given by 

^■0.37R;1/5 (8.24) 

then substitution of (8.24) Into (8.22) with   n - 6   gives 

J/2 
CP (^) =^^Ry10 

or 

%vA^r^-^ 
or since   (2.5/0.64) = 100,6 

J/2 
CP 

/      dCn V fi "VIC 9   c 
(xBr]       (10 A) =%2.k.F(x) (8.25) 

The above analysis assumes an adverse pressure gradient starting from the 

leading edge as well as fully turbulent flow everywhere.   When there is a region 

of laminar flow, or a region of turbulent flow with a favorable pressure gradi- 

ent, Stratford makes the assumption that at the minimum pressure point,    x = x , 

the velocity profile is approximately that of a flat-plate turbulent boundary 

layer starting from a false origin   x = x'.    Thus we replace   x   by    (x — x') 

in (8.25) and take the value of   R     as   u (x - x')/v.    We determine the x m 
appropriate   x1    as follows. 
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In the Initial region of laminar flow the momentum thkknfiss cat  be 

calculated by Thwaltes' method, that Is, 

(i x 

o.45vu;Y"; 

1/2 

dx (8.26) 

so that at the transition polnti 

'tr dx 

1/2 

(B.27) 

Downstream of transition we calculate the momentum thickness for turbiJent 

flows by the expression given In reference 24, 

W'v 
str 

= 0.0106  f Ug dx 

xtr 

(8.28) 

where   R« = u O/v.    At the minimum pressure point,    x = x ,    (8.28) becomes 

... .4 

'8.29) e
m

Rü/5 " 0 
m B„ m •010Ö/m&)dX + V 

1/5/ etr 

tr \    m 
vtr 

If we now assume that   9   is continuous at transition, then we can substitute 

(8.27) into (8.29) and obtain 

8mR9/5 = 0'0106 

m 

x 4 -m   /u ' fft-t-*/ 
vtr 

x-tr /u0\
5 

e 
u, 

dx 
m> 

3/5 

'8.30) 

But for a flat-plate turbulent boundary layer the value of   0   at a distc ice 

(x   -x')    from the leading edge, with   u   = \     according to (8.28) is 

emRy5 = o.o^e (x  -x1) m e„ m m 
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By equaling (8.30) and (8.31) we obtain the result 

x+     ,     ,5   13/5 

xn - x'  - Ds --■ m u 
m 

u.       /"tr /u  V 
-^   /      l-^jdx (8.32) 

With  the expression given by (8.32). e^jation (8.25) can be used to 

predict the reparation point in turbulent flows.    In order to do this, how- 

ever, it is necessary to assume a value for   k,    which according to the mixing 

length theory, is 0.4.    This means that the right-hand side of (8.25) should be 

of order 0.5, but a comparison with experiment, according to Stratford, sug- 

gests a smaller value of    r(x;    around 0.35 ..nd 0.40.    For a typical turbulent 

boundary-layer   flow with an adverse pressure gradient, it is found that    F(x) 

increases as separation is approached and decreases after separation.    For this 

reason, after applying his method to ^sveral flows with turbulent separation, 

Stratford observed that  if the maximum value of    F(x) 

a. is greater than 0.40f separation is    redicted when    F(x) = 0.40; 

b. lies between 0.35 and 0.40, separation recurs at the maximum value; 

c. is less than 0.35, then separation   oes not occur. 

SJ.j    Goldschmied's Method 

Goldschmied's separation criterion [38], like Stratford's method, is based 

on the existence of inner ana outer regions , ■> the turbulent boundary layer. 

Goldschmied assumes that there is a line in thö inner region at a constant 

distance   yr   from the wall with constant total .iead,    h ,    such that 

hc = P + lpuc (8*33^ 

Furth^rwtr'1. •-•ir.r* s-m 'line  is in a reston whert the law of the wall applies, 

he assumes it to be independent of pressure distribution and selects the outer 

edge of the inner region at the start of the adverse pressure gradient as the 

starting point of the line.    He assumes that the outer edge of the inner region 

is characterized approximately by   u/u* = 20   and   yu*/v = 500.    Then the total 

head at the start of adverse pressure gradient can be written as 
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ho = po + 7P(20u
r;)

2 (8-34) 

Then from (8.33) and (8.34), 

Po-p^°or = K2 (8•35, 

since   u^ = /"r^/p.    Dividing both sides of (8.35) by u     and rearranging 

gives 
m 

r)   =-^-4+400\ (8.36) 

If the following terms are defined, 

Tw A                   r         P-PQ cf   = " A and C    =  y 
Tm     l/2pu; p     1/2 pu„ m m 

Equation (8.36) becomes 

^= (200cf   -C )1/2 (8.37) 
m m       H 

Making use of the laminar sublayer and the law of the wall, he further shows 

that at separation the expression u /u = 1 

it can be neglected. Then (8.37) reduces to 

that at separation the expression uc/um = 1/3.45 [cf /2] '  is so small that 

C  = 200 cf (8.38) 
ps     m 

and becomes the separation criterion for Goldschmied's method. 
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9.U   COMPARISON OF CALCULATED AND EXPERIMENTAL TURBULENT BOUNDARY-LAYER 
SEPARATION IN TWO-DIMENSIONAL AND AXISYMMETRIC FLOWS 

In this section we consider several experimental pressure distributions 

which include observed or measured boundary-layer separation, and apply the 

four separation-prediction methods discussed in Section 8 to these pressure 

distributions.    It is important to note that near separation the behavior of 

f-ese methods with an experimental pressure distribution is quite different 

from that with an inviscid pressure distribution.    The pressure distribution 

near the point of separation may be a characteristic of the phenomenon of 

separation and inclusion of it in the specification of the flow is equivalent 

to being told the position of separation [41].    For this reason, use of these 

separation-prediction methods with an experimental  pressure distribution will 

only show their behavior close to separation and indicate whether the theoret- 

ical assumptions used in these methods are self-consistent.    When one considers 

an experimental pressure distribution with separation and uses the Douglas 

boundary-layer method, it is quite possible that the wall shear stress at the 

experimental separation point may not approach zero.    It may decrease as the 

separation is approached and may start to increase past the separation point. 

Similarly, the shape factor   H   in Head's method may not show a continuous 

increase to the position of separation.    Depending on the pressure distribution 

which is distorted by the separation flow, the shape factor may even start to 

decrease after an increase.    All that can be learned from a study such as the 

one conducted here is how these methods behave close to separation, and whether 

they predict an early separation or no separation at all. 

In the study reported here, we have tested these methods for a number of 

two-dimensional and axisymmetric flows with separation.    During the study it 

became necessary to make certain assumptions in applying Goldschmied's method. 

According to this method it is necessary to calculate the local turbulent skin- 

friction coefficient at the minimum pressure point.    In the cases studied here, 

however, the flow is generally laminar at the minimum pressure point and 

becomes turbulent downstream of that point.    In these cases, the calculated 

local skin-friction coefficient for turbulent flow was extrapolated to the 

minimum pressure point. 
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It was also observed that Stratford's method gave better agreement with 

experiment provided that the range of    F(x)    was slightly changed from that 

given in Section 8.1.2, namely if the maximum value of   F(x); (a) is greater 

than 0.50, separation is predicted when    F(x) = 0.50; (b) lies between 0.30 

and 0.40, separation occurs at the maximum value;  (c) is less than 0.30, then 

separation does not occur. 

9.1    RESULTS FOR SCHUBAUER'S ELLIPTIC CYLINDER 

Figures 31  and 32 show the results for Schubauer's elliptic cylinder 

[43], which has a 3.98-inch minor axis,    D.    The experimental  pressure distri- 

bution was given at a free-stream velocity of   u^ = 60 feet per second, cor- 

responding to a Reynolds number of   RD = 1.18 x 10 .    The extent of the 

transition region was between   x/D = 1.25    and    x/D = 2.27,    and experimental 

separation was indicated at   x/D = 2.91. 

I.4r 

1.3 

1.2 

if« 
Uoo 

I.O- 

EXPERIMENT 

PREDICTION OF SEPARATION BY 

•    EXPERIMENT 
0    DOUGLAS METHOD 
A    HEAD 
O    STRATFORD 

X 
D 

Figure 31.    A comparison of predicted separation points with experiment 
Schubauer's elliptic cylinder,    Rn = 1.18 x 105. 
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O  EXPERIMENTAL,RD = I.I8XI0 

 EXPERIMENTAL, Ue/Uoo 
 EXTRAPOLATED.Ue/Uoo CALC. 

8 1.2 1.6 2.0 

X/D 
Figure 32.    Comparison of calculated and experimental local skin-friction 

coefficients for Schubauer's elliptic cylinder [43].    The calcu- 
lations were made by the Douglas boundary-layer method. 

In the calculations the transition point was assumed at   x/D = 1.25. 

Figure 31 shows the results.    It is interesting to note that while three 

methods predicted separation, the fourth method, Goldschmiedt's method, did 

not predict any separation. 

Figure 32 shows a comparison of calculated and experimental local skin- 

friction values.    The calculations were made by using the Douglas boundary- 

layer method.    It is important to note that when the experimental pressure 

distribution was used, the local skin-friction coefficient began to increase 

near separation due to the pressure distribution which was distorted by the 

flow separation.    However, when the calculations were repeated by using an 

extrapolated velocity distribution which could be obtained by an inviscid 

method, the skin friction went to zero at   x/D s 2.82. 

Figure 33 shows a comparison of calculated and experimental velocity 

profiles at various    x/D   locations for the same body.    In general, the agree- 

ir-it for both laminar and turbulent boundary layers seems to be quite 

satisfactory. 
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Figure 33. 
y~FEET 

Comparison of calculated and experimental velocity profiles for 
Schubauer's elliptic cylinder [43]. The calculations were made 
by the Douglas boundary-layer method. 

9.2    RESULTS FOR ROSHKO'S CIRCULAR CYLINDER 

Figure 34 shows the predicted separation points together with the experi 

mental points for Roshko's circular cylinder [44] for two diameter Reynolds 
5 6 numbers,    RD ■ 6.7 x 10     and   8.4 x 10 ,    that are within the so-called 

"supercritical" and "transcritical" Reynolds number ranges. 

5 
According to Roshko, at    RD » 6.7 x 10     a separation bubble exists for 

angles between 100 and 120 degrees.    This can be inferred from the pressure 

distribution.    However, it is difficult to find the exact location of 

turbulent reattachment point.    Also, the turbulent separation point in this 

case must be very close to the reattachment point.    Thus, the extent of 

attached turbulent flow is probably very small,possibly between 115 and 

120 degrees. 
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Figure 34.    Comparison of predicted separation points with experiment for 
Roshko's circular cylinder [44]. 

At higher Reynolds number,    RD = 8.4 x 10°,   on the other hand, the laminar 

separation region is much smaller and the extent of the turbulent flow region 

is fairly large as evident from the forward movement of the minimum pressure 

point and the smaller pressure peak. 

For both Reynolds numbers, Goldschmied's method did not predict separation. 

On the other hand, in both cases the Douglas boundary-layer method and Head's 

method predicted separation.    For    RD « 6.7 x 105,    Stratford's method predicted 

separation and for   RD » 8.4 x I06    it did not.    In the latter case    F(x)   was 

less than 0.2.    However, when the velocity distribution was  ectrapolated (see 

figure 35),  then separation was predicted. 

Figure 35 shows the variation of shape factor for the experimental and 

extrapolated velocity distributions at    RQ ■ 8.4 x 10^.    The calculations were 

made by Head's method.    As expected with the extrapolated velocity distribution 
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Figure 35.    Variation of shape factor with two pressure distributions for 
Roshko's circular cylinder [44].    Calculations were made by Head's 
method for   R0 » 8.4 x 10^. 

(which is similar to Invlscld velocity distribution), the shape factor quickly 

Increases close to separation.    On the other hand, with the experimental 

velocity distribution, the shape factor reaches a maximum and then starts to 
decrease. 

9.3    RESULTS FOR SEVERAL AIRFOILS 

Figures 36 through 41 show the results obtained for several airfoils 

where flow separation was observed.    The results for the pressure distribution 

of Schubauer and Klebanoff are shown in figure 36.    This pressure distribution 

was observed over an airfoil-like body at a Reynolds number per foot of 

0.82 x 10 .    The experimental separation point was given at   25.7 ♦ 0.2 feet. 

The predictions of all Methods are quite good. 

As shown in figure 37, agreement between the Douglas boundary-layer method 

and experiment is also very good for Newman's airfoil.    On the other hand, the 

other methods predict an early separation. 
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For the pressure distributions of figures 38 through 41, the experimental 

separation points were not given.    The results show that, except at very high 

angles of attack, both boundary-layer methods predict separation at approximately 

the same locations and generally close to the characteristic "flattening" In 

the pressure distribution curves.    Stratford's method predicts a slightly 

earlier separation than that given by the boundary-layer methods.    On the 

other hand, Goldschmied's method shows results that are somewhat inconclusive, 

predicting early separation in some cases and late separation in others. 

9.4    RESULTS  FOR AXISYMMETRIC  FLOWS 

For axisymmetric flows. Head's and Stratford's methods cannot be used to 

predict the position of separation in their present form.    For this reason 

only the Douglas boundary-layer method and Goldschmied's method were used to 

predict the separation points        suck flows. 

Table 6 shows tne results for the Murphy bodies [36].    The experimental 

separation points were obtained by the "oil-talc" technique.    The calculated 

separation points by the Douglas boundary-layer method were obtained by 

extrapolating the skin-friction values to zero.   The agreement is excellent. 

Table 6 

COMPARISON OF CALCULATED AND EXPERIMENTAL SEPARATION POINTS FOR THE 
BODIES OF REVOLUTION OF MURPHY [36] 

'   Tail Shape RL x 106 

xsep ^nches)                                | 

Experiment Douglas Method 
Goldschmiedt 

Method 

!        A-2 

C-2 

1         C-4 

6.0 

6.0 

6.6 

59.1 

58.3 

no separation 

59.4 

58.3 

no separation 

no separation 

no separation 

no separation    j 
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Figure 36. Comparison of predicted separation points with experiment for the 
airfoil-like body of Schubauer and Klebanoff [45]. 

u«   x 
• •10 5* 

US 
U«. 

Figure 37.    Comparison of predicted separation points with experiment for 
Newman's airfoil [39]. 
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Rc»2.67XI0?a-8 r 
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Figure 38.    Predicted separation points for the experimental pressure distri- 

bution on the NACA 65(216)-222 airfoil  [46]. 

xia>0) 

X(a<0) 

Rc'StlO* 

PREDICTION Of SEPARATION BY 

O   DOUGLAS METHOD 

•-   HEAD 
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O   STRATFORD 

Figure 39. Predicted separation points for tne experimental pressure distri- 
bution on the NACA 4412 airfoil [26], 
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Figure 40.   Predicted separation points for the experimental pressure distri- 
bution on the NACA 66,2-420 airfoil [30]. 
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x/c 
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Predicted separation points for the experimental pressure distri- 
bution on the NACA 65,2-421 airfoil [47]. (a) Negative angles of 
attack. 
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Figure 41.    Concluded,    (b) Positive angle of attack. 
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10.0    CONCLUDING REMARKS 

The accuracy of calculating the total drag coefficients of two-dimensional 
and axisymmetric bodies, and the accuracy of predicting the location of 

turbulent boundary-layer separation in incompressible flows past such bodies 

has been studied. 

In the drag calculations boundary-layer development was calculated by 

using the Douglas boundary-layer method.    The inviscid pressure distribution 

was obtained by the Douglas Neumann method when the experimental pressure 

distribution was not given.    In the boundary-layer calculations the location 

of tranaition was obtained by using Michel's or Granville's methods when it 

was not known.    For two-dimensional bodies the total drag coefficient was 

calculated by using Squire-Young's formula.    Jones'  formula gave almost 

identical  results.    For axisymmetric bodies, the total drag coefficient was 

calculated by using Granville's formula.    Similar results were also obtained 

by Young's formula. 

Based on the calculations reported here, the following remarks can be made 

on the accuracy of calculating the total drag coefficient and the location of 

turbulent boundary-layer separation of two-dimensional and axisymmetric bodies: 

1.     The total drag coefficient of two-dimensional bodies can be calcu- 

lated quite accurately provided that the angle of incidence is small, 

> < 6°.    Although the boundary-layer development can be calculated 

very accurately by the Douglas boundary-layer method, at high angles 

of incidence    (a > 6°)   without boundary-layer separation, use of the 

Squire-Young formula   introduces an error into the drag calculations. 

This is to be expected since the Squire-Young formula is applicable 

only to a symmetrical wake.   With increasing incidence, the assumption 

of a "symmetrical" wake becomes worse.   As an example, in figure 42 

we show the variation of   (CDeXp -COcai) with an9le of incidence 
for three airfoils. 

The calculated results also Indicate that (see figure 15) the drag 

of a body can be calculated at high Reynolds numbers.    This is quite 

significant since, although good agreement was obtained at lower 
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Figure 42.    Variation of   CD_V„ - CDrai    
with angles of Incidence for three 

airfoils. exp al 

Reynolds numbers    (R   < 9 x 10^)    In the study described In refer- 

ence 4, the agreement was poor at high Reynolds numbers, and the 

discrepancy was attributed to the Inaccuracy of calculating turbulent 

boundary layers at high Reynolds numbers. 

Figure 43 presents a comparison of calculated and experimental  total- 

drag coefficients for angles of Incidence less than 6°.    Considering 

the various  factors that Influence the calculations, the results are 

very good.    The rms error based on the 57 calculated drag values is 

2.9%.    It is interesting to note that in the previous study,  the rms 

error was 2.7%.    However, this was obtained by multiplying the 

Squire-Young formula by an empirical  constant of 1.1  (for one surface). 

In the present study, no need for such a "correlation" constant was 

necessary. 

2.     The total-drag coefficients of axisymmetric bodies can be calculated 

with less accuracy than the total drag coefficients of the two- 

dimensional  bodies.    For axisymmetric bodies, the calculations show a 

great sensitivity to the choice of tail end location on the body and to 
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Figure 43. Conparison of calculated end experlaenUI results for two- 
dlaenslonal bodies. The results ere shown for 57 drag values at 
angles of Incidence less than 6 degrees. 



the use of Invlscld pressure distributions in the drag calculations. 

Although with viscous correction to the pressure distribution, the 

sensitivity was somewhat reduced, further work should be done in 

this area.    This will later be discussed in Section 11. 

The results also indicate that in applying either Granvilie's or 

Young's formulas, it is necessary to use the two-dimensional defini- 

tion of momentum area,    Ö .    Furthermore, as in two-dimensional 
9 

bodies, the results indicate that the boundary-layer development can 

be calculated quite accurately at high Reynolds numbers on axisym- 

metric bodies.    See figure 27. 

3. The location of turbulent boundary-layer separation on two-dimensional 

bodies can be calculated quite satisfactorily by the Douglas boundary- 

layer method, Head's method and Stratford's method.    Goldschmied's 

method is inconclusive.    This is probably due to the very questionable 

assumption about the total pressure at the edge of the viscous sub- 

layer. 

The results indicate that both boundary-layer methods predict the 

location of separation at approximately the same location.    However, 

In some cases the predictions of the Douglas method a^ree better with 

experiment than the predictions of Head's method.    Stratford's method 

is slightly conservative In its prediction. 

4. The location of turbulent boundary-layer separation on axisymmetrlc 

bodies can be calculated quite accurately by the Douglas boundary- 

layer method.    Head's method and Stratford's oiethod In their present 

form are not applicable to such flows.    The predictions of Goldschmied's 

method, although this method is also applicable to axisymmetrlcal 

flows, did not agree well with experiment. 
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11.0    FUTURE WORK 

At the writing of this report, the studies concerning the drag calculations 

are partially completed and further work is needed to complete the studies. 

As it was described in Section 6.1,  there are three different approaches 

one can use to calculate the total  drag of a body.    In this report only one 

approach was studied completely.    According to this approach the total drag of 

a body was calculated by a formula once the development of the boundary layer 

at the tail end of the body was calculated.    This approach worked well for 

two-dimensional bodies provided that the angle of incidence is small.    The 

approach, on the other hand, did not work as well for bodies of revolution. 

The formulas showed a great sensitivity to the location of the tail end and to 

the use of inviscid pressure distribution. 

It appears from the results obtained by the first approach that in order 

to calculate the total drag of two-dimensional bodies at higher angles of 

incidence (without any boundary-layer separation, and the total drag of bodies 

of revolution at zero Incidence at zero Incidence) it is necessary to carry 

the calculations from the trailing edge Into the wake.    This is the second 

approach discussed in Section 6.1. 

The wake calculations can be made by Identifying two regions.    The first 

Is a region very close to the trailing edge.   Here there are two boundary layers 

back to back, and not much H known about the way they Interact.    According to 

reference *8, the extent of this region from the trailing edge Is about 76 

where    ■    Is the boundary-layer thickness at the trailing edge.    Recent calcu- 

lations for this region reported by Bradshaw appear to give satisfactory results 

for the case of symmetrical airfoil wakes UsJ«    For nonsymmetrical wakes (the 

wakes of airfoils at an angle of incidence or airfoils with camber), more 

experimental wake data showing the variation of Reynolds shear stress and 

velocity profiles are needed before the calculations can be made for such cases. 

The second region is the region far beyond the trailing edge, where the 

effects of trailing edge are negligible.    Here the calculations seem to be 

somewhat easier to perform, and part of the efforts In the study reported here 

•7 



were devoted to the accuracy of calculating turbulent wake profiles in this 

region.    The calculations were made by using the same eddy-viscosity expression 

that is used in the Douglas boundary-layer method.    That is, 

or 

)dy (11.1) 

Several preliminary calculations with . = 0.0168 and 0.0336 showed that 

predicted results improved slightly with . = 0.0336, a value slightly lower 

than the value commonly suggested in the literature ( . = 0.036). The calcu- 

lated results are shown in figure 44 for the experimental data of Hill et a1, 

[49], The agreement is fair. More comparisons with experiment are necessary 

in order to study the accuracy of the extension of the Douglas boundary-layer 

method to such flows. 

X«I2FT 

O.60- 

0.4 

o   DATA OF HILL ET AL 
— PRESENT METHOD 

2 3 
y~lN 

Figure 44. Comparison of calculated and experimental wake profiles in adverse 
pressure gradients. 
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A third approach by which the total  drag of a body can be calculated is 

one in which the pressure drag and skin-friction drag are calculated separately. 

In an inviscid flow, there is no pressure drag.    It can be obtained as follows: 

1.      Calculate the inviscid pressure distribution on the basic body. 

L.     Calculate the boundary-layer development for the pressure distribution 

of 1. 

3.     Modify the basic shape by adding on the displacement thickness and 

calculate a pressure distribution for the new effective shape.    The 

body is now open ended and yields a pressure force. 

It should be pointed out, however, that in performing the boundary-layer 

calculations it may also be necessary to carry the calculations into the wake, 

although not too far (possibly   76   where    6   is the boundary-layer thickness 

at the tail end).    The region of the tail end of the body is a "problem" region 

and careful attention must be paid to the assumptions made in this region. 

An alternate method which is not rigorous but may have essentially the 

same accuracy with much more economical calculation time is as follows: 

1. Calculate   the inviscid pressure distribution of the basic body. 

2. Calculate the boundary-layer development for the pressure distribution 

of    1. 

3. By means of well-known relations, recalculate the inviscid flow about 

the original body but now with outflow through the walls sufficient 

to displace the inviscid streamlines by an amount equal to the dis- 

placement thickness.    Now there is a net yield of fluid and the 

streamlines do not close. 

4. The Douglas Neumann method solves the flow field problem by using 

surface source-sink distribution.   Then the pressure drag correction 

is equal to this inviscid momentum flux which is 

AD = ZTTPV^    / odS (11.2) 

surface 
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where o is the surface source density. It is believed that when the total 

drag coefficients are calculated by the third approach, it is not necessary to 

repeat the boundary-layer calculations for the viscous-corrected inviscid 

pressure distribution. The latter method of the third approach has two sig- 

nificant computational advantages. Potential flow solutions are always made 

for the same body so that the influence coefficient matrix is never changed, 

even if one considers several angles of attack. The changes occur only in the 

right-hand column of the matrix equation in order to account for the effective 

outflow through the surface. In the first method of the third approach, each 

time the boundary layer is changed, the entire inviscid problem must be solved 

anew. The second significant advantage is that it is much easier to compute 

adS over the body than to determine the net pressure drag component. 
/ 

This method should be equally valid for axisymmetric or two-dimensional 

flow. Because the potential flow problem is elliptic, flow processes downstream 

of the shape can influence results upstream. Therefore, there remains the 

possibility that the near wake flow must still be solved if the highest 

accuracy is desired. 

In the calculations reported here, the position of transition on the 

airship for the case of R. = 94 x 10 , was predicted at the 45%- 

chord point. The actual transition point was approximately at 5%-chord point. 

According to the study reported by Granville, the methods of Michel and 

Granville are not satisfactory for predicting the position of transition on 

axisymmetric bodies [50]. This is due to another variable that enters into 

the transition calculations. It is the body shape. It enters directly because 

the shape has a direct stretching or shrinking effect on the boundary layer 

in addition to determining the pressure distribution. Therefore, it should 

not be expected that correlation methods, especially Michel's, should be as 
o 

accurate as for two-dimensional flows. The e  method is indeed a correla- 

tion method but it bypasses the body of revolution difficulty. It attempts to 

trace carefully the growth of various Tollmien-Schlichting waves along the body 

and the procedure is equally applicable to axisymmetric and two-dimensional 
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flows. Recently, a very general computer program has been developed that 

first computes accurate laminar boundary layers for numerous stations along 

a body for both axisynnietric and two-dimensional flows. The stability of the 

boundary layer is computed for a variety of disturbance frequencies for the 

boundary-layer profile computed at several stations. Then the growth of the 

worst frequency is computed. The method is described in reference 51t and it 

seems to promise rather good precision. However, it has never been carefully 

studied for axisymmetric flows, partly because the labor is large and partly 

because the computing time is considerable. Since this treatment is the most 

promising lead now known, it should be explored to make a good assessment of 

its accuracy for axisymmetric flows. There is an adequate supply of suitable 

experimental data for such a study [52]. 
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