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ABSTRACT

This report describes in detail the technical progress made in
studies of strong infrared light scattering from coherent spin wav
during the second six months of a three year interdisciplinary research
program titled: "Steerable Volume and Surface Spin Waves in Ferri-
magnetic Films'". One major goal of the program is the growth of
yttrium-iron garnet (YIG), single crystals of high quality in both thin
film and bulk form; Another 1s the developnent of novel techniques for
controlling and studying energy propagation characteristics of volume
and surface spin waves. One promising technique for accomplishing the
latter involves the use of optical techniques to probe the dynamics of
spin wave propagation. Since YIG is opaque to visible light but trans-
parent in the infrared, this form of radiation has been employed in
these experiments.

Coherent light scattering from coherent microwave spin waves in
yttrium iron garnet (YIG) is studied theoretically and experimentally.
The method is then utilized, in conjunction with standard microwave
techniques, to prébe the propagation of spin waves and magnetoelastic
waves, in spatially-and/or-temporally-varying magnetic fields.

The dispersion of magnetoelastic waves propagating parallel to
saturation magnetizaticn when the latter is in an arbitrary crystallo-
graphic direction, first presented by Morgenthaler, is rederived. For
this important case, spin wave defocussing is reduced and, when properly
employed, allows variable delay of magnetically injected spin/longitud-
inal elastic waves, and conversion from longitudinal elastic waves to
spin waves in spatially varying fields to be studied. Frequency shifts,

and pulse compression of longitudinal elastic/spin waves subjected to



pulsed magnetic fields are also reported, as are some preliminary exper-
iments on the spatial conversion of shear/longitudinal elastic waves via
spin wave coupling.

We also report the first direct observation of strong Bragg Scattered
infrared light (1150 nm wavelength) from coherent microwave spin waves.
The latter were generated in YIG through efficient spatial conversion of
injected longitudinal elastic waves. The maximum scattered light inten-
sity is found to be at least five times stronger than that of the longi-
tudinal elastic waves of comparable power. In contrast to elastic wave
scattering, spin wave light scattering is unique in that the diffracted
light intensity is observed to depend on the incident light polarization
and whether the diffracted light is upshifted or downshifted in frequency.
These characteristics are in complet; agreement with a revised theory
that is found to be necessary after a critical review of previous work.
The revision is shown to be capable of interpreting adequately not only
our experiments but also observations that previous authors have reported

as "anomalous."
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I INTRODUCTION

The Microwave and Quantum Magnetics Group and the Crystal Physics
Laboratory, both within the M.I.T. Center for Materials Science and
Engineering, have undertaken a three year interdisciplinary program in
the area of "microwave magneto-ultrasonics' aimed at further developing
several novel concepts which may lead to new and/or improved solid
state devices employing electromagnetic/spin/elastic wave coupling.
Device possibilities include multi-tapped delay lines, magnetoelastic
beam switches énd pulse compression filters. In particular, the research
program will concentrate on the growth and exploitation of improved
single crystal yttrium iron garnet substrates in which volume and surface
spin wave propagating at microwave frequencies can be magnetically steered
and/or otherwise controlled.

In order to produce crystals of yttrium iron garnet of the quality
needed for the research envisioned in this program, two major constraints
must be dealt with., First, the crystals must be of the necessary high
quality to avoid introducing extraneous effects due to grain boundaries
and strain inhomogeneities. The chemical purity is of major importance
since rare earth impurities drastically increase spin wave relaxation
rates. Second, the growth technique should permit ready fabrication of
the types of structures desired, suck as multi-layer configurations and
thin slabs. Consequently, both chemical vapor deposition (CVD) tech-
niques and top seeded solution (TSS) growth appear attractive and both
will be employed throughout the entire contract period. Thin films and
bulk crystal substrates will be evaluated optically, magnetically and

acoustically for purity, homogeneity and low losses. Promising specimens



will be used for magnetostatic wave and exchange dominated spin wave
propagation experiments at microwave frequencies.

A surface spin wave propagating parallel to an air-crystal boundary
of a thin film has its energy largely confined within some characteristic
distance that under certain conditions should be magnetically controllable.
In one instance causing the energy to be closely confined to the surface
and in another allowing it to spread out and fill the entire film. Vol-
ume spin waves are also subject to magnetic control. For example, beam
steering is possible due to dipole-dipole interactions that in turn can be
influenced through directional changes in the magnetizing field.

A high power (50 mw) He~Ne laser operating continuously at 1.15u
has been obtained for use in producing Bragg scattering from elastic and
spin-elastic microwave packets within YIG crystals. This high resolu-~
tion system which is now operational forms the basis for studies of spin~
elastic conversion in spatial and/or temporal gradients of magnetic field.

The doctoral thesis of Benedict Hu has been completed and forms the
basis of this report.

Dr. A. Linz has been assigned responsibility for overseeing the top-
seeded solution crystal growth and chemical vapor deposition program,
Professor D.J. Epstein for crystal evaluation with respect to magnetic
properties and Professor F.R. Morgenthaler for microwave spin wave
propagation studies; as principal investigator the latter has overall

résponsibility for coordinating the various phases of the research.




STUDIES OF MAGNETOSTATIC WAVES AND MAGNETOELASTIC WAVES

IN YIG USING OPTICAL PROBING AND MICROWAVE TECHNIQUES

by

Hung-Liang Hu

The material which follows is identical in content to a thesis submitted
to the Department of Electrical Engineering, Massachusetts Institute of
Technology, on January 29, 1971, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Electrical Engineering.
This thesis is also available as Microwave and Quantum Magnetics Group
Technical Report No. 25, February, 1971.
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LIST OF SYMBOLS

(other ad hoc notation is explained in the text where it occurs)

Place of symbol o

Symbol Definition first ocourrence
a half length of major or minor axis of Egs. (2.16) and
the elliptical spin wave polarization (2.17)
a height of the light beam cross section |[Fig. 4.2 and
Eq. (4.14)
: k2 .
i
A w3+(N11+—k—§)wM+>\ek W Eq. (2.11Db)
b half length cf major or minor axis of [Egs. (2.16) and
the elliptical spin wave polarization (2.17)
bfi'k first order (in strain) magnetoelastic |Eq. (A2.1)
J constants
bi‘k small signal first order magneto- Egs. (1.3d) and
] elastic constants (A2. 8).
b,, b, non-zero first order magnetoelastic Eq. (A2.6)
constants of cubic crystals
bﬁ’ bs z-directed longitudinal and shear Eq. (2.37)
magnetoelastic frequency splittings,
respectively
bi, bz z-directed longitudinal and shear Eqg. (2.28)
magnetoelastic couplings, respectively
i dielectric impermeability tensor Eq. (4.22)
6B.. small change of dielectric imperme- Eq. (4.23)
1 ability .
. k
i 2 2
B w3+(N22+;§)wM+>\ek Wy Eq. (2.11Db)
Cijkl second order elastic constants Eqg. (1.4)
11+ C1 9 non-zero second order elastic con- Eq. (1.4)
stants of cubic crystals
c
44
c velocity of light in free space Eq. (4.1)




-7-

Place of symbol oy

Symbol Definition £i
irst occurrence
c =| width of the light beam cross section Fig. 4.2 and
Eq. (4.14)
c =1 a proportionality constant Eq. (4. 31b)
- 2
C = | wpg (Ny g + kyko/K%) Eq. (2.11d)
D, =| mass density of the medium Eq. (1. 4)
D =| diameter of a YIG rod Eq. (3.1a)
P =| rf electric field vector Eq. (1.1)
-
E = | optical electric field vector Eq. (4.1)
1-51 =| electric field of the incident light Eq. (4.7a)
47 -
E;, Eg = | electric fields of the incident and Eq. (4.11) and
diffracted light, respectively Eq. (4. 30).
E®) = | profile of the light beam Eq. (4.11)
Et’, E;I = | vertically polarized (along x-axis) and | Fig. 4.2 and
horizontally polarized (along z-axis) Eq. (4. 30)
electric fields of the incident light,
respectively
Edi, E?ﬁ = | vertically polarized (along x-axis) and | Fig. 4.2 and
M horizontally polarized (along z-axis) Eq. (4. 30).
electric fields of the diffracted light,
respectively; the subscript () denotes
whether the diffracted light is upshifted
(+) or downshifted (-) in frequency with
respect to the incident light
7 = | magnetoelastic force density (related Eq. (1.4)
to h')
me . ,
f = | small signal magnetoelastic force Eq. (1.5)
density
0
f b frequency
f, fk = | "linear'' magnetooptic coefficients Eqs. (4. 40c)
s and (A3.9)
B:i ) 8 ""quadratic'' magnetooptic coefficients Eqgs. (4.40b)
ijkf’ "mn and (A3.13)
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Place of symbol or

Symbol Definition first ocourrence
h' =| small signal effective magnetic field Eq. (1.2)
-ﬁan' -ﬁex, _| small signal effective magnetic aniso- Eq. (1.2)
pme tropy, exchange and magnetoelastic
fields, respectively
R =| small signal Maxwellian magnetic field Eq. (1.1a)
-
H =| optical magnetic field vector Eq. (4.1)
-
Hi(?'), Hi(z) =| internal bias magnetic fields Eq. (1. 3a)
-»
Ho, H0 = | external bias magnetic fields Eq. (1. 3a)
dem .. . .
H = .| demagnetizing field along the static Eq. (1. 3a)
-N. M magnetization direction
M
an ..an . . . .
H3 , HM = | effective static anisotropy fields along Eqgs. (1. 3a)
the static magnetization direction and (Al. 5c)
(z-axis or x3-axis)
H (HS) the value of the applied field for which| Section 3.3a
a longitudinal (shear) magnetoelastic
crossover point is in the mid-point of
the long axis of an axially magnetized
YIG rod or bar
H'(z) = | spatial field gradient at coordinate z Eq. (3.3)
]
H::lrit’ Hcsrit = | critical spatial field gradients for Eq. (3.2)
longitudinal and shear magnetoelastic
coupling, respectively
il . = | critical temporal field gradient for Fig. 5.13
longitudinal magnetoelastic coupling
HT = | height of a YIG bar Eq. (3.1Db)
deff _ . .
J = | effective current density Eq. (4.2b)
'lz(k) = | wavevector (wavenumber) of the Egs. (2.7)
elastic waves, spin waves, or elastic/| and (2.21)
spin waves
-ﬁL(kL) = | wavevector (wavenumber) of the Eq. (4.7)

incident light
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Place of symbol on

Symbol Definition first ocourrence
1 !
?{L (kL) = | wavevector (wavenumber) of the Eqgs. (4.12)
diffracted light and (4,13)
Kl’ K2 = | magnetic anisotropy constants of cubic | Eqgs. (Al.1)
crystals and (2.15)
L = | length of a YIG rod or bar Eq. (3.1a)
L. os(scros) longitudinal (shear) magnetoelastic Fig. 3.2
r crossover point
I“;l(-.‘f", t) = | small signal magnetization vector Eq. (1.1c)
-»>
(m, M = 0)
m = | small signal magnetization amplitude Eq. (4.41)
M = | saturation magnetization Egs. (1.2) and
(4.1)
n = | index of refraction in an isotropic Section 4,1 and
medium Eq. (4. 20)
ng, Ny = | index of refraction pertaining to the Eqs. (4.6) and
incident and diffracted light (4.7)
polarization, respectively
N = | small signal anisotropy tensor Eqgs. (1.3b) and
g (Al.6)
N'i?n = | small signal effective anisotropy tensor| Eq. (Al.9)
P, = | acoustic power density Eq. (4. 36)
Py = | power of a circular acoustic beam Eq. (4. 37)
* .
P = | polarization Eq. (4.1)
-
Peff = | effective polarization Eq. (4. 3b)
P.. ., = | photoelastic constants Eqgs. (4.23)
ijke’ " mn and (4. 24)
Peff = | effective photoelastic constants Eq. (4. 36)
i = | position vector from an origin tc the Eq. (4.6) and
observation point Fig. 4.1




-10-

Symbol

Definition

Place of symbol or]
first occurrence

Skﬁ’ Sn

(L

S
cros cros

position vector from an origin to the
illuminated volume

unit vectors

small signal total Poynting vector

small signal Poynting vectors of
elastic, magnetic and magnetoelastic
waves, respectively

syminetrical strain tensor
shear (longitudinal) magnetoelastic
crossover point

time

retarded time

transformation matrix and its
transpose

21 Tp +iTg + 2k Tpat £ Tgg

time taken by a longitudinal and shear
elastic wave packet to travel the
fength of a YIG rod

round trip time of flight of a longi-
tudinal and shear elastic/spin wave
from and back to the turning point

turning point

group velocity
group velocity of spin waves

group velocity of (longitudinal or shear)
elastic waves

group velocities of longitudinal and
shear elastic waves, respectively

Eq. (4.6) and
Fig. 4.1

Fig. 4.1

Eq. (1.10)

Eqgs. (1.11)
and (1.193)

Egs. (4.23),
(4.24) and (A2.1)
Fig, 3.2

Egs. (1.1) and
(4.1)

Eq. (4.6)

Eqgs. (2. 4) and
(2.2)

Eq. (3.4)
Eq. (3.4)
Eq. (3.4)
Fig. 3.2
Eq. (3.5)
Fig. 2.5
Eq. (3.3)

Eq. (2.26) and
Fig. 2.5
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Place of symbol o

Syl Dieiitatislen first occurrence

w', w = | width and effective width of the Egs. (4.14) and
acoustic or spin wave in the plane of (4.21)
incidence, respectively

‘WD = | width of a YIG bar Eq. (3.1b)

Wiotal = | small signal total energy density Eq. (1.12)

an’ V'’ small signal anisotropy, magnetic, Eqgs. (1.3b),
= | magnetoelastic and elastic energy (1.6), (1.8) and
Woer Welag | density, respectively (1.7)

wv__,W = | anisotropy and magnetoelastic energy Egs. (Al.1) and

= density, respectively (A2.1)

?c, (Xl’ Xg x3), a coordinate system transformed from | Eq. (2.1) and

_ | the "cubic-edge' coordinate system Fig. 2.1
(x,y,2) through the Euler Angles (¢, 8,y)
, = | coordinate of either longitudinal or
Er 3 shear magnetoelastic crossover point;

2’ Zop = |coordinates of longitudinal and shear Eq. (3.6) and
magneotelastic crossover points, Fig. 3.2
respectively;

ztp = | coordinate of the turning point Eq. (3.3)

M

S

GX(— M ):

M Eqs. (4. 40Db),
o (=—ﬁ), =| the direction ~osines of the magnetiz- (4. 40c) and (4. 41)

y ation

M,
az(= —M')
o = | spin wave loss in db/usec Eqgs. (3.7) and

(3.11)

o = [the angle between the diffracted light Eq. (4.15) and
beam and the wavefronts of elastic or Fig. 4.2
spin waves

B = [the angle between the diffracted light Eq. (4.15)
beam and the plane of incidence
(y-z plane)

y = ! gyromagnetic ratio Eq. (1.2)
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Definition

Place of symbol on
first occurrence

small change of the effective dielectric
tensor

small change of the effective dielectric
susceptibility tensor

an abbreviated 6¢ie1.ff
J

811 " 812~ 284
permittivity

dielectric constant

effective dielectric tensor
an abbreviated'{eff

spatial or temporal magnon-phonon
conversion efficiency

spatial magnon-longitudinal phonon
conversion efficiency

the efficiency of conversion from shear
elastic waves to longitudinal elastic
waves via spin wave coupling

incidence angle or Bragg angle

exchange constant

wavelength of light in free space
wavelength of spin or elastic waves
free space permeability

permeability of the medium

Eq. (4.12b)
Eq. (4. 8)
Eq. (4.21)
Eq. (4. 46b)
Eq. (1.1)
Eq. (4.1)
Eq. (4. 3c)
Eq. (4. 22b)
Eq. (3.6)
Eq. (3.7)
Eq. (3.11)
Egs. (4.15),
(4.20) and
Fig. 4.2
Eq. (1. 3c)
Section 4.1
Section 4.1 and
Eq. (4.19)
Eq. (1.1)
Section 4, 2
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Place of symbol o

Sprase Dl o first occurrenceq
E, (¢,n,¢) =|the coordinate system in which the Eq. (2.1) and
axes are along the cubic edges of cubic| Fig., 2.1
crystals
3 = | small signal elastic displacement Eq. (1.4)
vector
(0,0,9) = | the Euler Angles Eq. (2.2) and
Fig, 2.1
';(eff = | effective dielectric susceptibility Eq. (4. 3a)
tensor
w = 2qf = | microwave angular frequency Eq. (2.21)
W, = | spin wave angular frequency Eq. (2.7)
Wy = | -yp M Eq. (1.2)
wé =17 Hy Eq. (2.10a)
. 2 ) 2, A1
w, = |Acos”y+ Bsin"y - C sin"2y Eq. (2.18)
_ 2 . 2 o B 9
w, = |Acos"y - Bsin"y+ C sin"2y Eq. (2.18)
w,, W = |angular frequencies of longitudinal and | Eq. (2.26)
2 s g
shear elastic waves, respectively.
Wy w'L = fangular frequencies of the incident and | Eqgs. (4.7) and

diffracted light, respectively

(4.13)
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Oscillograms showing the spatial conversion from
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via spin wave coupling.  The horizontal traces
are from left to right (time scale 1 ysec/cm).
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The geometry of light diffraction from spin waves;
the internal field profile H; of the bar is also
indicated. e

Light diffraction from coherent magnetostatic
waves,

Block diagram of the optical experimental setup.
Optical experimental sctup.

Diffracted light pulses from a 1,3 GHz shear
elastic wave pulse propagating along a (100)
direction and polarized along a (110) direction in
YIG. The graph was recorded with the sigral
from the PAR boxcar integrator. The insert is
the scope trace,

Diffracted light intensity (in arbitrary units) of
shear elastic/spin waves as a function of

external magnetic field; the light beam is incident
near the mid-point of the long axis. The insert
is the scope trace swept from right to left when
Ho = HE, indicating small group velocity
dispersion. A full explanation is given in the
text.

Diffracted light intensity (in arbitrary units) of
shear elastic/spin waves as a function of external
magnetic field; the light bearn is incident near

the mid-point of the long axis. The insert is the
scope trace swept from right to left when Hy = H,
indicating the peak diff ~acted light intensity
(marked "spin" on the curve) and a slight decrease
of the group velocity.

Diffracted light intensity of shear elastic/spin
waves as a function of external magnetic fields,
illustrating the effect of homogeneity of the
applied field. e e e e

Diffracted light intensity of shear elastic/spin
waves as a function of external magnetic fields,
illustrating the effect of homogeneity of the
applied field. e e e

Diffracted light pulses from a 1.5 GHz longi-
tudinal elastic wave pulse propagating along a
'"22, 50" YIG bar. The graph was recorded
with the signals from the PAR boxcar
integrator, The insert is the scope trace.
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Scope traces indicated with signals from the micro-
wave circuitry and the photomultiplier as a function
of external magnetic field. The upper and lower
traces are synchronized; the upper traces are
from the microwave receiver and the lower traces
are from the photomultiplier, The diffracted lig'..
signal is polar1zed at n/2 with respect to the
incident light (E} In (a), the upper trace
indicates the fert leakage pulse, and two longi-
tudinal elastic echoes whose amplitudes saturate
the receiver. In (b), the longitudinal echoes are
strongly attenuated due to the magnetoelastic
coupling., In (c), the longitudinal echoes are still
attenuated; the lower trace now indicates a strong
diffracted light signal from coherent spin waves
(compare the diffracted light pulse with that in

Fig. 5.7). . .

Scattered light intensity (in arbitrary units) of

spin waves and longitudinal elastic waves as a
function of external magnetic field. The insert is
the oscilloscope trace showing the peak intensity

of the diffracted light pulse (compare with the
diffracted light pulse of the scope trace in Fig. 5. 7).

Diffracted light intensity as a function of input
microwave power,

Diffracted light intensity (E E +) from coherent
spin waves as a function of the timing of the
pulsed bias field; the spin waves are generated
through temporal conversion from longitudinal
elastic waves (time scale 0.5 ysec/cm). A full
explanation is given in the text.

(a) diffracted light pulses from longitudinal
elastic waves (EL, E9) (time scale 0. 5 ysec/cm).
(b). to (f) - an expanded version of Fig, 5.11
(E1 ) (time scale 0. 2 gec/cm). .

Magnetoelastic (phonon + magnon) conversion

efficiency versus inverse temporal field gradient.

He | . '
crit

Page

138

140

141

144

146

147



-18-
INTRODUCTION

In the recent past, the propagation of magnetoelastic waves in low
loss, saturated ferrimagnetic crystals has been a subject of great
interest because of their potential uses in compact microwave signal
processing devices, For example, frequency filtering, variable delay,
gating, pulse compression and expansion are all possible operations.
However, their practical development requires additional information
about the spin wave channel of power flow, together with its coupling to
the well understood elastic wave channel. In 1961, Schlbmann83
predicted that spin waves could be excited in non-uniform magnetic bias
fields. Shortly afterwards, Eshbach84 reported, on experiments with
a normally magnetized yttrium iron garnet (YIG) disk in which the
magnetic field is non-uniform, the excitation of spin waves by rf magnetic
fields. He further indicated that the excited spin waves travel toward
lower magnetic fields with increasing wavenumbers and eventually
convert into shear elastic waves. Since then, extensive studies in YIG
have been carried out on the shear elastic/spin waves propagating in

both the spatially varying magnetic fieldsg' AT, A

8,18, 20

and temporally varying
magnetic fields. It was later found that when the applied field is
not along the propagation direction of the shear elastic/spin waves, the
losses increase tremendously. This led to work on the stability of spin
wave trajectories, These studies were, however, handicapped by the
lack of a powerful experimental tool. Light probing appears to be a
convenient and potentially powerful method, since the technique has

already been widely developed to investigate elastic waves. However,

in the case of YIG, which has a transparent window between 1.1 and 6
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microns, the technique is of much reduced power due to the compar-

atively weak light sources and low sensitivity detectors available in this
wavelength range.  Besides, in contrast to the exhaustive work already

done on elastic waves, very 1itt1056’ (kA

has been done with optical
spin wave interactions. Accordingly, one of the prime goals of this
thesis is to provide improved understanding of such interactions,

A study of the coupling of the longitudinal elastic waves and spin
waves is also a major topic, since in practice it is easier to fabricate
an efficient longitudinal piezoelectric transducer than a shear one., The
lack of prior experimental investigations in this case is attributable to
the fact that in a cubic crystal the coupling vanishes identically whenever
the wave propagation is simultaneously parallel to the magnetization
vector and any one of the three commonly employed principal
(100,110, 111) crystallographic directions, along which the elastic waves
propagate as pure modes, Transverse30 or obliquely magnetized14
YIG rods of appropriate orientations do provide the longitudinal coupling
but the defocussing effect513 limit this approach.

Morgenthaler, e in view of the fact that YIG is nearly elastically
isotropic, first proposed that the longitudinal magnetoelastic coupling
for waves propagating along the dc magnetization vector may be obtained
if th - propagation direction is not chosen along any one of the principal
directions (100,110, 111) but rather along a direction chosen to optimize
the longitudinal magnetoelastic coupling. He found that the direction
is in a {110} planc at an angle of 25, 52° from a (100) axis. Subsequently
in our experiments, 2 using a rod oriented in a {100} plane at (22. 50)
from the (100) axis which provides about 90% of the maximum frequency

splitting, we have indeed observed the spin/longitudinal elastic wave



-20-
propagation. Similar observations were also reported kty Lewis, e who
used a YIG rod oriented in a {100} plane at 20° from the (100) axis. This
opened up the possibility of studying not only the various phenomena of
longitudinal elastic/spin waves in spatially and/or temporally varying
fields, similar to the shear wave case, but also the csnversion of longi-
tudinal elastic waves tu shear waves, and vice versa, via spin wave
coupling., This is the second topic to which this thesis is devoted.

In Chapter I, the equations of motion for the coupled magnetic and
elastic system are reviewed, in order to provide all the necessary
equations needed in the following chapter. In Chapter II, Morgenthaler's
results are rederived and summarized. In Chapter III, extensive
experimental studies of longitudinal and shear elastic/spin waves, in
spatially and/or temporally varying magnetic fields, are described.
Topics include variable delay of magnetically injected spin/longitudinal
elastic waves, and conversion from the longitudinal elastic to spin waves
in spatially varying fields. Frequency shifts, and pulse compression of
the longitudinal elastic /spin waves subjected to pulsed magnetic fields
have also been obtained. Some preliminary results on shear /longitudinal
elastic wave spatial conversion via spin wave coupling are presented
and discussed.

In Chapter IV, a review of light diffraction is given. It is then
followed by a new theory78 describing the phenomena of coherent light
diffraction from coherent spin waves. The theory, in contrast to prior
work of Auld and Wilson, = has appropriately taken into account all the
terms linear in the small signal spin amplitudes for the perturbed
dielectric tensor; the latter is the one that gives rise to the light

scattering from spin or elastic waves, As a result, the theory predicts
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that the intensity of the light diffracted from spin waves, unlike that from
elastic waves, depends on the incident light polarization and whether the
diffracted light is upshifted or downshifted in frequency. This appears
to explain satisfactorily not only our experiments described in Chapter V

57,58

but also observations that previous authors reported as ""anomalous.

In Chapter V, experimental work on light diffraction from elastic

58,74 4n light diffracted

and/or spin waves is reported. Smith's work
from shear elastic/spin waves was repeated here, but, unlike his work
in which he used large microwave power input and therefore non-linear
interaction probably occurred, the microwave power we used was much
reduced and within the linear interaction. From the experiments, we
showed that the anomaly he reported indeed comes from the interaction
of light and spin waves.

In section 5.3, we report the first direct observation of strong
Bragg scattered infrared light (1150 nm) from microwave coherent spin
waves, 78 The experiments utilized coherent spin waves generated
through efficient space-gradient conversion from longitudinal elastic
waves; the spin waves have negligible change of wavenumber, are
converted more rapidly (therefore with less loss) and the scattered light
can easily be distinguished from that due to longitudinal elastic waves.
The scattered light intensity is found to be dependent on the incident
light polarization and the sign of frequency shift, again in accord with
our theory.

Finally, light scattering from spin waves has been used to measure

the temporal conversion efficiency of longitudinal elastic waves to spin

waves.
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CHAPTER 1

SMALL SIGNAL EQUATIONS OF MOTION OF A
MAGNETOELASTIC FERROMAGNET

In this chapter, small signal equations of motion for the electro-
magnetic, spin, and elastic system in a lossless magnetoelastic
ferromagnet are reviewed briefly so as to provide all the necessary
equations used in the later chapters. Conservation theorems for small
signal power flow are also discussed. For more detailed, in-depth

discussion one may refer tc many excellent articles. S

1.1 Small Signal Equations of Moticn” ™6

In a lossless saturated ferromagnet insulator, small signal equations

of motion governing the magnetization vector and elastic displacement of
the medium are described in terms of the interaction amocng electro-
magnetic, spin, and elastic systems,

For the electromagnetic system Maxwell's equations are:

vx N - ¢ 9% = 0 (1.1a)
vx e+ yo:—t('1§+ m) = 0 (1.1b)
v- B+ = 0 (1.1c)
V. (€€ = 0 (1.1d)

where the conductivity has been assumed to be zero, the permittivity

¢ is assumed to be a strain independent scalar, and the

dilational variation of the small signal magnetization m is neglected. 3, €
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The vectors .ﬁ ¢ are the smal) signal Maxwellian magnetic and electric
field vectors and M, is the free space permeability.

The linearized torque equation for the small signal magnetization ™

is given by: 1 2
B, 8 _ 3 ('Ii'llv[
M

: -
3t = -wpdy X +h') (1.2)

>¢

-
m +

-
where M = iMM is the static magnetization vector, r-l.n(?‘, t) the small

Y
deviation from equilibrium (and m-M = 0), W S --yyoM and y

gyromagnetic ratio (negative for electron), ﬁi(?) the total static magnetic
field (applied ?Io’ anisotropy I_-’Ii/?, plus demagnetizing -NMI-\’/I) inside the
medium and -ﬁ Maxwellian rf field; the vector -}:' is an effective field
which gives rise to torque density from magnetic anisotropy -ﬁan,

>

exchange Hex, magnetostriction ™ and anything else. The effective

magnetic field components have been discussed in great detil by

2 & In the simplest case, where isotropic exchange

Morgenthaler.
interaction is assumed and high order interactions neglected, they can

be written as (with the static magnetization vector in the +z direction):

3 _ _ - an
H, = H - NyM+ Hy (1. 3a)
pan. oL ®Wan = % (-Nm) G=1,2) (1. 3Db)
L by 2 j=1 W)

an _ ..an . 4 .

N < N (i#3j)
he¥ = A v2m (i=1,2) (1.3c)
i e i ! '

W 3 3p;

pre- -1 _me 1 ¢ 4 0O (1. 3d)
i B, om Ho k=1 ijk 3%,

le = bikJ (1 = 1, 2; J:k = 1: 2: 3)

The quantity N?jn is the small signal anisotropy tensor, xe the isotropic
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exchange constant, Woe the small signal magnetoelastic energy density,

Wan the small signal anisotropy energy density, 3 the displacement

vector, and bi' the first order (in strain) magnetoelastic tensor. The

jk
small signal anisotropy tensor and the first order magnetoelastic tensor
are discussed in detail, respectively, in Appendix I and Appendix II.

For the elastic subsystem, use of the linearized Newton force law

gives: 2

—)+f'i (i=1,2,3) (1.4)

where Do is the mass density of the medium, Cijld second order elastic
constant tensor, and T the magnetoelastic force density (related to )
that includes first order electromagnetic and interaction forces. In the
cubic ferrimagnetic YIG, terms such as the magnetic body force are
negligible; therefore f' is dominated by the linear magnetoelastic
coupling and can be well approximated as:

3 aw 3 am
! o fn]e = - me\ _ k
fi_ i -E ax.( )—2 b (1.5)

j=1 J@ J» k=1 kijﬁ

Equations (1.1), (1.2), and (1. 4) are a set of time-dependent
coupled differential equations, and in general are very complicated to
solve, Since in this thesis we are primarily concerned with the
magnetoelastic region of the spectrum, values of the wavenumber k are
on the order of 104 cm'l. In this range electromagnetic effects are
small and the electric field & in Eq. (1.1a) can be neglected to the first
approximation. This results in the so-called '"magnetostatic

approximation'', v which we will use throughout the thesis.
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1.2 Small Signal Power Energy Conservation Theorems’ 6, 8

The contributions to the small signal energy d:nsity of the system
described by Eq. (1.2) arise from magnetic, elastic, and magnetoelastic
terms. The magnetic energy resulls from Zeeman, anisotropy, exchange,

and dipolar contributions.

H, 2
ol iy A2 1 an
Vi - o) 117 ¢ Zho B Nij M
(1.6)
1 2 2 1 @12
+ 5 b N Imel + Ime| ) + E“OIhI
The elastic term contains the kinetic and potential energies
-+,2 3 3p; 3
elas %Do %% +3 L Cijkl axl aik (L.7)
i,j,k, £=1 A
The magnetoelastic component is
2 3 3p.
- 1

me -1 j, k=1

Notice that the energy associated with the small signal electric field
?is of higher order and is not included here. In the Poynting vector,
however, the electromagnetic term is of first order and must be taken
into account. Therefore Maxwell's equations (1, 1) give rise to the
small signal electromagnetic Poynting theorem
vo@x B+ G R%+ tp IR = - B am (1.9)
at (o] o at
and (1. 4) to the small signal elastic Poynting theorem

->
-Oelas+é_ -o.é2

9.5 (1.10)
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where
3 3, 2p
gtlas: . _ ¢ . Wi § (1.11)
j Ll g-y ke dx, BT

In addition to the above two Poynting theorems governing the electro-
magnetic and elastic energy subsystems, one may also introduce other

Poynting theoremsl' s

for a material and a magnetoelastic subsystem,
These conservation theorems will not be discussed here because no use
of them will be made later,

Finally the Poynting theorem fcr the total system is found by

summing the contributions of all the subsystems, In a time-varying

but spatially uniform magnetic bias field, the result is:s' :
stotal  3Wy5057 ) e
o 30 D g (BTN

where

“total +elas =m <me
S =(@xR)+S +S +S (1.13)

Yiotal © Van * Velas + “me (1.14)

The other small signal conservation law, namely the Stress-

5,6 and

Momentum Conservation, has been discussed by Morgenthaler
will not be repeated here. It is sufficient to summarize the conclusions
that one may draw from these conservation laws . In a time-varying
but spatially uniform magnetic bias field the propagation of either
magnetostatic or magnetoelastic waves occurs at constant wavenuimber
and constant average small signal momentum but with variable frequency,
average power and average energy. On the other hand, in a time

invariant but spatially varying magnetic bias field the propagation of the

waves occurs at constant frequency, average power and average energy
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. . . 6,8
but with variable wavenumber, and @verage small signal momentum, ™
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CHAPTER 1II

PROPAGATION OF Z-DIRECTED MAGNETOELASTIC WAVES
IN A GENERAL CRYSTALLOGRAPHIC DIRECTION

In the past, numcrous studies of shear elastic/spin wave interactions

o D L comparatively few

in single crystal YIG have been reported;
seem to have been reported of the longitudinal clastic/spin wave coupling,
and none until the recent work of Morgenthaler et al. Le for the important
case of wave propagation parallel to the magnetization vector (z-directed
magnetoelastic waves)., This dearth of experiments is attributable to
the fact that whereas in a cubic crystal the shear magnetoelastic coupling
is present regardless of the crystal orientation, this is not true for the
longitudinal magnetoelastic coupling. In fact, the latter vanishes
identically whenever the wave propagation is simulatneously parallel to
the magnetization vector and any one of the three commonly employed
principal crystallographic directions (100,110,111). Transversely
magnetized rods of appropriate orientations can provide longitudinal
magnetoelastic coupling but do not appear to be very useful because of
strong defocusing effects. ie Although slight tilting of a (100) rod with
respect to the magnetic field (magnetization vector) does allow the
observation of a longitudinal clastic/spin wave interaction1,4defocusing
fields limit this approach;13 in addition, such experiments are not
easily analyzed,

Morgenthaler1 > first pointed out that these problems may be over-
come if the waves are allowed to propagate along the magnetization
vector (z-directed) when the latter is parallel to some non-principal
crystallographic direction chosen so as to optimize the longitudinal

magnetoelastic coupling, Although in this case the acoustic branch
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clastic waves arc in general neither purely longitudinal nor transverse

(shear), the clastic anisotropy of YIG given by16
2¢c, A
1 - c——7— = 0.053
11 712

1s small enough so that they may be approximated as pure modes.
Subsequently we12 reported the first experimental observations of
longitudinal elastic/spin wave interaction. These detailed experimental
results will be given in Chapter III.

In this chapter we will rederive the dispersion relations of magneto-
elastic waves propagating in an arbitrary crystallographic direction
assuming elastic isotropy but magnetoelastic anisotropy. This greatly
simplifies the mathematical calculation and also provides a very good
approximation insofar as longitudinal elastic /spin wave and/or
degenerate shear elastic/spin wave interactions are concerned,
However, in the case where two non-degenerate shear elastic modes are
involved, the calculation of shear elastic/spin wave coupling neglecting
elastic anisotropy is quite poor owing to the comparable magnitude of
elastic and magnetoelastic frequency splittings.

We begin by studying the frequency spectrum of the uncoupled spin
waves propagating in an arbitrary crystallographic direction, After
introducing magnetoelastic coupling and obtaining the dispersion
relations of z-directed magnetoelastic waves, we look for the particular
crystallographic direction which will give the maximum value of the
square of the longitudinal magnetoelastic splitting of frequencies
(henceforth referred to as longitudinal magnetoelastic coupling). This

direction turns out to lie in a {110} plane, at an angle of (25, 52°) from
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a (100) axis. However, the experiments to be described in the next
chapter were done using a different crystallographic direction, i.e., in
a {100} plane at an angle of (22, 5% from a (100) axis. In this direction
the longitudinal magnetoelastic coupling is approximately 809% of the
maximum value. The latter direction was chosen because, for
simplicity, the derivation was first carried out for the magnetization i’l
constrained to lie in a {100} plane; in this case (22, 5°) is the optimum
angle. Finally it is shown that the longitudinal magnetoelastic coupling
is proportional to (b1 - bz)2 (b1 and b, being the ordinary magnetoelastic
constants), and therefore vanrishes identically in the case of magneto-

elastic isotropy, i.e., b1 = b2.

2.1 The Euler Angles17

Throughout the entire thesis, we always use a coordinate system
((x,y,z) or (xl, Xo) x3)) in which the magnetization vector I-\’fl is along the
positive z-axis (or x3—axis as the case may be), This coordinate
system is then related to the usual coordinate system (¢,7,{) in which the
cubic edges are chosen as the coordinate axes by the Euler Angles

(p,0,¢). The latter are defined in Fig. 2.1 as:

-
X

-
R, (4) R..(6) Rlp) ¢

It

-+ 0
where X (x,y,z) or (xl, Xg,) x3)

E = (6.,1.0)

The operator R, (¢) denotes a rotation through ¢ about the £-axis, and

4

thus gives rise to a coordinate system (x",y'

1

,2'"); the operator Ry..(e)
denotes a rotation through 8 about the y''-axis and thereby transforms to

a coordinate system (x',y',z'); finally, the operator RZ,(gp), a rotation
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€[100) -—

Fig, 2.1

The Euler Angles

] [010]




_:-,2_
through y about the z'-axis takes one to the coordinate system (x,y, <).

Corresponding to these three operators, one defines a transformation

matrix Tt as:

T = o800 (2.1)
where
™ (0.6.4) = R, (¥) R0 Re(0)
cosy siny O cosg 0 -sine- cos¢ sing l
= |-siny cosy O 0 1 0 -sinp cosp 0
0 0 1 sing 0 cosB 0 0 1

(2.2)

cosycos@cosp- sinysin cos{ycos@sinp+ sinycos -cosysing
© © { ® ©

-cosysing- sinycos@cosg +cosycosy-sinycos@sing  sinysing

sin@cosgp sin@sing cos@

Since ’T‘t is orthonormal, the inverse of ’f‘t is equivalent to the transpose
of '.f‘t, i.e., "I“.

£ = Tloa ) (2.3)

where for ¢ = 0:

cos@ cosgp -Sinp sin@ cosgp
’f‘((p, 6,0) = |cos@ sing cosg sing sing (2. 4)
-sin@ 0 cos@

and in general for ¥ 0:

T(p,6,9)
cosycos §cosp- siny sing -sinycos@cosp- cosysing sinfcose
cosycos@sinp+ sinycosep -sinycos@sing+ cosycosyp sin@sing | (2. 5)

-cosysin@ sinysing cos@



-23-

2.2 Kigenvalues and Eigenraodes of Spin Waves Propagating

along an Arbitrary Crystallographic Direction

In this section, the magnetoelastic interaction is neglected so that

one may concentrate on the spin waves. From Eq. (1.2), one may write

)

(neglecting pme

1 - i _1 - _ an _ ex
3 Ym ¥ ( M Clg " hg - hy - hy ) (2. 62)
am H.
2 i .an . ex 4
5= wa(—Mm1+hl4h1 +h1> (2. 6b)

-+
The magnetization M is clong the positive x3-a::is (or z-axis) and the

coordinate system (x x3) used here is related to the "cubic-edge"

1’ x2’
coordinate system (g,m,{) by the Euler Angle (¢, 8, 0) (i.e., with y=0).
The quantities Hi’ h;an and hfx are given before in Eq. (1. 3)

an an , ) -+
M -+ N3 and HM -vHB ). The Maxwellian field h can be found

through Eqs. (1.1). Since we are concerned here only with the eigen-

(with N

value problem, we assume;

-

o L, dwt-k7)
m(r,t) = Re[n_le :l (2.7a)
*> =
jlw t-kr
RE 1) = Re[Be © ] (2.7b)
T
jlw t-ker
3(?‘,t) = Re[ge k ] (2.7¢)

where Wy is the angular frequency and k= (kl’ k2’ k3) the wavevector,
Substituting Eqs. (2.7) into Eqgs. (1.1) and (2. 6), while using the

"magnetostatic approximation'' mentioned earlier, one obtains:
- (m,k, +myk.)
ho=-dmlh o 11 22 o33 (2.8)

i k2 i k2




-34-

aml klkz i kg 2
3 MmNt Tm '[“’3+(N22+;?)“’M”‘k wyy | m, (2.9a)
2
3t L3 N TPy S s B VAL PR B :
where
wi=_ H. = - (H _NM+Han) (2 10a)
3 YHoti T "V Wy 3 3 )

an
3

(¢,0,0) and the anisotrcpy constant Kl‘ Furthermore, it is shown there

In Appendix Lboth H, and N?jn are derived in terms of the Euler Angles

that one may write

i = - - - -
wy = -4 H; = -y (H - NM) (2.10b)

1
provided that N%n is replaced by Ni?n defined in Appendix I. We rewrite

Eq. (2.10) into a matrix form:

m, -C -B m,
.(% m ] A C m Holil)
2 2
i K} 2
where A = Wy + (N11 + -k—z) Wi +Xek Wag (2.11b)
i kg 2
B = wg+ (sz + -k—z) Wi +A k Wi (2.11c)
k1k2
CcC = wM(N12+_kT) (2.11d)

In order to find the major and minor axes of the elliptical spin
polarization, it is helpful to introduce the third Euler Angle y, i.e., a

rotation through y about the z-axis. We thus write:
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m, cosy -siny i m‘l)
= | - (2.12)
m2J l'sm;p cosy | m2'i
where mll) and mg are along the major and minor axes of the ellipse.
Substituting Eq. (2.12) into (2.11a), one obtains:
[ p . .
; m cosy +siny -C -B cosy -siny m?
dt o :
mg -siny cosy A C siny cosy mg_J
L “
§ 2 2 i
-Ccos2y - ;sin2y (A-B)  -(Acos“y+Bsin%y-Csin2y | [m]
= (2.13)
Asin®y+ Beos®y+ Csin2y  Ccos2y+Lsin2y(A - B) mb

We now demand that the diagonal elements of the above matrix be equal

to zero. Thus: k1k2
2(N + )
2C 12 k2 \
tan2y = A - k2 k2 (2.14)
2 1)
(N3 N11>+('k" 2
where, from Appendix I, |
|
2K
_ 1 .8 .. 2 C1a5.2 )] |
Ny, = M2[ 5 sin 29(1 25in" 2¢ (2.15a) |
Ko
2K
o “™Mrs..2, .2
Nyg = ——2[ 7 sin” @ sin 2(p:| (2.15b)
poM
2K
o “™iros .o :
N12 = —Mz[ 8s1nes1n2951n4(p:| (2.15¢)
Ko

From Eqs. (2.14) and (2, 15), one realizes that the angle y in general is a

complicated function of §,¢, and the direction of propagation -ﬁ/ |-1§| :
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Solving Eq. (2.13) subject to the condition of Eq. (2.14), one obtains

->
AP =7 acos(wt-B-P)+i,bsin(wt-%7) (2.16)
1 k 2 k
where
W, .3
a _ INE
and
2 , o2 .
w, = Acos'y + Bsin"y - Csin2y (2.18a)
w = Asin2 + Bcos2 + C sin 2 (2. 18b)
D) ) ) ) .
i wiwe = AB-C° (2.18¢)
k 172 :
A plot of wk vs k (with k1 and k2 as parameters) is shown in

Fig. 2.2, It can be shown that the lower bound of the spin wave manifold
is the z-directed waves (i. e,, kl = k2 = 0), For YIG, Nlle’ szwM
and lewM are usually small compared to w?; at microwave frequencies.
Therefore one may deduce from Eq. (2.18c) that the upper bound of the

spin wave manifold is approximately the waves with wavevector k

-4
perpendicular to the dc magnetization M,

(28

Fig. 2.2 Dispersion diagram for spin waves.
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2.3 Dispersion of z-Directed Magnetoelastic Waves in an Elastically

Isotropic but Magnetoelastic Anisotropic '""Cubic'' Medium

We assume here that the coordinate system (xl, X, x3) used here has
been vransformed through the Euler Angle (¢, 6,¢) from the 'cubic-edge"
coordinate system (g,n,{), so that the dc magnetization is along the
z-axis and the major and minor axes of the elliptical spin wave polariza-
tion are along the x, and x, axes., Then from Egs. (1.2) and (1. 3), the

1 2

coupled spin wave equations of mnotion are written as:

am 3 w ap;

atl - —wmy+ I —sz.k SB'!' (2.19a)
i k=1 Ho 0¥ 9%y

am 3 w 3p;

‘5?'2‘ = wymy - L X bl 3 (2.19b)
jo k=1 Mo HIE 9%y

where w; and wy are given by Eq. (2.18) and bijk are given in Appendix IIL,

IFfor the isotropic elastic case, we can write from Eqg. (1. 4)

2
3'p; 2 3 (% 3P 3p3
Do'a? = CyyVopptleggt C44)axi (ax1 + 3%, g Bx3>
(2.20)
3 amk
+ L b, —X (i=1,2,3)
j k=1 K 9%

where C110 €19 and Cyy are the elastic constants and 11 = Cig* 2 c44for YIG.

As in Eq. (2.7) we assume

. »> »

I-':l(?‘,t) = Re[(ée‘](wt_k'r):l (2.21a)
. . - -

o, t) = Re[_(aeJ(wt-k'r)] (2. 21b)

-
where k = (kl, k2’ k3).
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Substituting Egs. (2.21) into Eqs. (2.19), we obtain:

B ! : 3w 5y s '3 Wy,
jw w L j=—Dby, kL j==b,, k I j=—Db,, k [Im
| 2 | 21k7k) 1y 22k7ki 7 @ 28Kk =L
- _IA — — = — .r < 6 = > -’. - - -—— . I - ——— — - — -
! 3 w 13w 13w
. M W wm
w | -jw | ZTji—b,.,k!'T j—b .k, T j—b . k[lm
1 | kel Mo 11k k:k=1 u, 12k k: kel Mo 13kkfl =2
L _ | . . : -~ ——
| ' '
3 ;3 ! 9 | |
3?3_13 Br1j%j | jz_lJ bo1kk; : “Dowteggk” 1lepgregglkykyl (egpteygdky Kol | 0
- I J- i
| l 2 '
| Herzteaddy |
- — - —1 ——————— l—- D = o B & > o > oS > —-i — -_— - — 4 -
. | |
3 |3 ; | . 2|
JEIJ by 95%; : J.z:lJbZijj | (cggteyqdkky ~Dowre k™ (e grey Jkokaflpg
‘ | |
| | | Hepgteg gy |
I N R R RN |
| i |
3 | 3 | : | 9 k2
L jbygiki ' I jbygiki (e greygyk Ky (e otey Jkokq) ~Dow +e, k- 1o
j=1 1 | j=1 [
| i 2
: : | , Flerateqqdks ||

(2.22)

The eigenvalues can be found by equating the determinant of the square

matrix in Eq. (2.22) to zero. Here we are interested only in z-directed

waves; therefore k1 = k2 = 0, but k3 = k, and

w w w
. W wM @p
jw wy Jﬁgbzmk J',gbzzsk J,;"’233k
w w w
. Y ey Y
wy jw Jo Pk IgTPiagk I7TPiask
det (o] (o] (o)
‘b, k  iba..k  -Dwitc, k2 0 0
19913 JP213 o 44
ib.o Kk jboooK 0 2 2
123 223 Dow +c44k 0
. . 2 2
-J b133k Jb233k 0 0 -Dow +cllk
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Recall an identity of determinants
w X -1
det = det (W - XZ "Y)det 2 (2. 24)
Y Z

where W and Z in the diagonal must be square matrices. Using (2, 24)

one obtains:

(wz -w) “’2) (wz -wj) (w2 -wi)z

2
w l\ ¢ ‘ ]
I T N N O S RO 2 2 2
" Do (W -w) (w” - w Nw; b] 54 twybyaq) + (w-w))
W2 2 7 “’Mk“ ‘
wy (b 3+ B3 5g) + wiplByy 5+ Bga) | } + (D0y0> ' o B8

9 2.1 2
{(“‘ ~wg) | (bygqbgy - byygb 233) + (by 33Dy 33 - bygsb 123’1

2 2}
+w “’Jz) (b)53bg13 =0y 3bgg3)
where
C
a N 11
wp T vk = D, : (2.26a)
—
_ _ 44
w, = vsk = ) D k (2. 26b)
o)
w k2 2
Note that the term containing (D m ) in Eq. (2. 25) is of fourth power of
oo

the magnetoelastic constants bijk and usually negligible, For YIG,
even near the region where either w= w, (longitudinal crossover) or

W= wg (shear crossover) the value of this term is at most 5% of that of
other terms at miicrowave frequencies, From Eq. (2.25), one therefore

has:
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2 2

w! -wi)(wz-wi)(wz-wg) = (wz-wz)wfwk b§+(w2-w§)wswk b (2.27)
where N kz
by = Dlzlpo w;uk () b g5 + wy by ) o Bt
w k?
b - Dlzlpo w_s%sk‘ Ly (b5} 5 + bpg) + wylbyy 4 + bgzs)] (2. 28b)

Notice in Eq, (2,27) that when w = Wy i. e., near the longitudinal cross-
over, the term containing bi is dominant on the right-hand side, while

. . 2,
when w = wg, 1.e., near the shear crossover, the term containing bs is,

2
£

shear magnetoelastic couplings, respectively.

The quantities b, and bz are, thercfore, defined as the longitudinal and

Now let us proceed to maximize the longitudinal magnetoelastic
coupling bi by choosing an appropriate propagation direction with respect
to the crystallographic axis (i.e., a particular sct of the Euler Angles
(p,0,y)where y is a function of (¢, ) given in Eq. (2.14)). In general,

this prchlem is quite involved. However, the simple approximation
::—2 = 1 may be made for zu;directed vaves in YIG at microwave
frequencies. The l'atio“Tzl2 is the square of the ellipticity of the spin
waves (Eq.(2.17)) which, for the z-directed waves, is due to the aniso-

tropy field alone and therefore very close to 1. Using this approxi-
mation one obtains:

w, o= wl o= wz (2.29)

The quantities bi and bz can be rewritten as;

wk2
~ _M _l_(b2 +b2

. 12 )
) D w, 1337 P233

(2. 30a)
oo
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2 . “m* 1.2 2 2 2
b = D o a. ((byy3 * Pyag) + (by) 3 + bygg)] (2. 30b)
o0 S
Thus we are left with the problem of maximizin b2 = w—_Mk2 R (bz +b2 )
| l ‘ €5 " D_p, i, °133%P233

which, according to Appendix II, (A2.14), is independent of y,i.e., of
rotations around the dc magnetization (z-axis). From (A2,14) in

Appendix II we have: 9

2 OME iy L2

by = (oo o) by (2.31a)
oMo %y

where 9
SRR 2 2 2
A ——r—[%sin 49+ 3in® 2¢(1 sin%gsin2@sin 46
ol (2. 31b)
+ isin®2¢sin’gsin’2e) + & sin%gsin’4g |

A numerical analysis to maximize bgff in Eq. (2. 31b) by choosing angles

(p,0) gives:

2 “°2'b1)2
(bSee) . = 1.26x- 5 (2. 32a)
4M
when
(@) 0y = 45° (2. 32b)
(6) = 25,52° (2. 32¢)

max

From Eqs. (2.32b) and (2. 32c), one realizes that the propagation
direction that optimizes the longitudinal magnetoelastic coupling for
z-directed waves is in a {110} plane (@) ay = 45%at 25.52° from a
(100) axis; the coupling is independent of the magnetic anisotropy
(within the approximation of small spin wave ellipticity) and directly
proportional to the (b1 - b2)2, which is a measure of magnetoelastic
anisotropy. When b1 = by, corresponding to magnetoelastic isotropy,

then the coupling vanishes identically.
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Let us conclude this chapter by working out explicitly both the
longitudinal and shear magnetoelastic coupling in the {100} and {110}
planes,

First of all, we rewrite the angle y in Eq. (2.14) in terms of (¢, 6)
explicitly from Eq. (2.15) and under the condition of z-directed waves

*_?
(k = 13k) as:

cos Bsin 4y
2 . 2 2 (2.33)
4cos"g - sin"2¢p(1 + cos™p)

tan 2y =
Then we have for

(1) {100} plane (¢ = 0)

From Eq. (2.33), ¢ = 0, letting w := Wy OF w == w in the appropriate

places, and obtaining bijk's from Appendix II, Table 2A.2; the result is:

2 2
(w-wk)(w-wﬂ)(wws) = i-l'.(w-ws)bﬁ + (w-w;)b_ ] (2. 34)
where 9 9
9 (b2-b1) sin” 44 Wy &
b,(p=0,8) = 5 (2. 35a)
4c,,u M
11%0
. (b2 + [by, + (b, - by) sin>26) Jwy
b; (9=0,6) = 5 (2. 35b)
Cqq o M

and use has been made of:

w k
o (2. 36a)
11 Dgw,
and . k2
> (2. 36b)
C4q D,wg

A plot of bi( 0,6) and bz(O,e) is shown in Fig, 2.3 where values of b1 and

b, for YIG at room temperature are used for Fig. 2.3b, Notice the

2
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maximum bi in the {100} plane occurs at sin24e =1lor§ =% ((22. 5°) from

a (100) axis) and the value of b2 in this case is 80% of the absolute

£
maximum (bi)max in Eq. (2.32a). Because of availability, this ''22, 591
direction is choser in the experiments described in Chapter III. For shear
magnetoelastic coupling, the minimum value in the {100} plane occurs at
sin22e =1ore =% ({(110) direction). The numerical values of bg
(longitudinal magnetoelastic frequency splittings) and bS (shear magneto-
elastic frequency splittings) for YIG at room temperature in the ''22, 5%
direction are given by:

5.53/T (MHz) (2. 37a)

m
b, (0,5)

45.5/f  (MHz) (2. 37b)

n

T
21rbs(0,—)

where f is the frequency (in GHz).
(2) {110} plane (¢ =%)

From Eq. (2.33), y = 0, letting w= wy OF W = wg in the appropriate

places and obtaining bijk's from Appendix II, Table 2A, 2; the result is:

2 2
(w-wk)(w-wf)(w—ws) = i—[(w-ws)bf + (w-w,) by ] (2. 38)
where 9
(by-by )" wa,w
b2 (p=L,6) = —2—F— 2 (sin4g+ sin®gsin26)° (2. 39a)
4Cll“‘oM
W W
bz (=7, 8) = -——M—z—[(bz +%(b1 ] bz)sin22 6)°
C4qHoM (2. 39b)

+ (b2 + (b - by) sin29)2]

A plot of bi (%, 6) and bz (%, @) is shown in Fig. 2.4, where values of b1

and b2 for YIG at room temperature are used for Fig, 2.4b, The
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numerical values of bﬂ and bs for YIG at room temperature at § = 25, 52°
are given by:

6.20/f  (MHz) (2.40a)

217b£(ﬂ-, 25, 52°)

2nb_(J, 25.52°) 36.1vT  (MHz) (2. 40b)

Finally, the dispersion of z-directed waves (Eqgs. (2. 34) or (2, 37)) is

shown in Fig. (2.5), where both longitudinal and shear magnetoelistic
splittings are indicated. Note from Fig. (2.4) or Eq. (2. 31b) that the
longitudinal magnetoelastic coupling (or frequency splittings) vanishes
identically when the propagation direction of z-directed waves is along

any of the three principal crystallographic directions (100, 110, 111),
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Fig. 2.5

Dispersion diagram for z directed magnetoelastic
waves; the spin/longitudinal and spin/shear wave
splittings (b!2 and bs) are shown very much
exaggerated. The quantities Vo Vg and vy are,
respectively, group velocities of longitudinal
elastic, shear elastic and spin waves; the branch

numbers are referred to in the text.
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CHAPTER III

EXPERIMENTAL RESULTS OF Z-DIRECTED MAGNETOELASTIC
WAVES USING MICROWAVE TECHNIQUES

In this chapter, microwave experimental results are reported for
both longitudinal and shear elastic/spin waves propagating in spatially
and/or temporally varying magnetic fields. The calculations made in
the last chapter are used to interpret the results,

In the past, a number of authors have studied shear elastic/spin

waves in YIG using either spatially1 2 &l

8,18

or temporally varying magnetic
fields. Here similar studies on the previously-unexplored longi-
tudinal elastic/spin waves were carried out, (Some results have been

L2 19) Both magnetic injection from ''fine Wire”10 and
g J

reported,
acoustic injection from piezoelectric transducers were employed.
Variable delay and conversion of longitudinal elastic/spin waves in
spatially varying fields are reported. Frequency shifts and pulse
compression of the longitudinal elastic/spin waves subjected to pulsed
magnetic fie%ds have also been obtained., Finally, some preliminary
experiments on shear /longitudinal elastic wave spatial conversion via
spin waves are presented and discussed., Results of laser probing of
magnetoelastic waves through infra-red Bragg scattering are reported
laster in Chapter V.

In all the experiments described here, either a YIG rod or a
rectangular bar, with the symmetry (or long) axis oriented in a {100}
plane at an angle of (22. 50) from a (100) direction, hereon referred to

as the ""22. 5°"" direction, was used. From the results of the last

chapter it is shown that this crystallographic direction provides nearly
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80% of the maximum z-dirccted longitudinal magnetoelastic coupling
(nearly 90% of the maximum longitudinal magnetoelastic splittings in

frequency).,

3.1 Experimental Setup

Static bias magnetic fields were provided by an electromagnet and
the pulsed magnetic fields were produced by means of a coil wound
around the sample and driven by a current pulser, All experiments
were done at room temperature,

The Li-band microwave apparatus used is identical to that of
Re":endeZO and is shown in Fig, 3.1, It consists basically of a signal
generator (Alfred 650 main frame and 651A rf head, 1-2 GHz) followed
by two attenuators (HP 354A and Alfred E101) in tandem, and a PIN
modulator (HP 8731B). The PIN modulator is capable of producing rf
pulses as short as 100 nsec, A circulator (Sperry D52Lzl1) was used
when reflection measurements were made. A stub tuner (Weinschel
DS109) which follows the circulator for matching load impedances
was taken out of the éircuitry when short rf pulses were employed. The
receiver system consists of either a narrow-band superheterodyne or a
wide-band system. The former is composed of a local oscillator
(GR 1021-P2), a balanced mixer /preamplifier (LEL LAC-3-60-12-50,
bandwidth 12 MHz) and &« 60 MHz IF amplifier (LEL IMM-2-7480, band-
width 10 MHz). The wide-band system is formed by a transistor
amplifier (Avantck AM-1000-0, G=25 db, NF=6 db), followed by a TWT
ampglifier (HP 489A, G =35 db, NF =30 db), and finally a tunnel diode
detector (Aertech D104B). The output of the tunnel diode is amplified

by 40 db before being fed into a Tektronix 585 scope.
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Fig. 3 1 Block diagram of L-band microwave circuitry.
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3.2 Experiments with Spin Wave In ections

The propagation of shear elastic/spin waves in an axially magnetized

YIG rod has been studied theoretically by SchiBmann and Joseph, B

9
Auld et al,, 24 and experimentally by Eshbach and Strauss. ie The
internal field Hi(z) in a YIG rod or a rectangular bar is nonuniform and

given before by Eq. (1. 3a):

dem

_ an
Hi(z) = HO+H3 + H (1. 3a)

where Ho is the externally applied field, Hgn is the effective anisotropy
field and HI®™ is the demagnetizing field. The variation of the latter
along the axis of the rod or the long axis of the rectangular bar is given,
respectively, to first order in M/Ho by the Sommerfeld formula22 for

the rod:

Hdem ..M {2 _ L-z _ Z } (3.1a)
2 p2l .2 D°.i
[(L-Z) +—4-]2 [Z +—4—]2

where z = 0 is taken at one of the erd faces, L i the length of the rod,

and D the diameter, and for the bar:23
O -%[cot'lf(o; 0,2) + cot (0, 0, -z)]
with (3.1b)

2 2 2
_ WWD)" +(HT)" + (1.-22)" Y L.-22)
10,0,2) = Z(WD) x (HT)

where z = 0 is taken at the center of the long axis, L is the length of the
long axis of the bar and HT, WD the transverse dimensions. The axial

internal field profiles in each case are shown in Fig, 3.2.

3.2a Spin/Longitudinal Elastic Wave Conversion12

The room temperature experiments were carried out at 1.5 GHz
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Fine wire
He (2)

Z=L
(a) Axial internal field profile of a YIG rod.
ZnO Ho
transducer - B >
longitudinal
elastic waves
iniecti
tnjectrion T/-—\T
N Lecros
N Scros
N w
b 7ol
|
Z=-L/2 2=0 Z:=L/2

(b) Axial internal field profile of a YIG bar

Fig. 3.2 Internal field profiles of a YIG rod and a YIG bar,
showing turning points (T) and crossover points
(L and S ). The distances between these

cros cros
points are very much exaggerated.
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using a single crystal YIG rod (L = 0.99 em, D = 0.3 cm) with its
symmetry axis oriented along the ''22. 5°" direction and both end surfaces
optically polished; fine wire excitation was used. The results are best
explained with the use of the dispersion curve shown in Fig, 2.5 and the
interral field profile shown in Fig. 3.2a. Within a certain range of
values of the applied field, there exists a point on the axis, the internal
field of which corresponds to gTw = 0 in the spin wave dispersion curve.
This is the so-called ""turning point' marked T in Fig, 3.2a, and is given
by Hi(ztp) = w/ |yy0|; the quantity w is the frequency of the input micro-
wave power. The pulsed rf magnetic field generated by the input fine
wire couples electromagnetic energy to spin wave energy at the turning
point via magnetostatic waves, 28 giving rise to a spin wave packet
(branch 1 with k +0 in Fig. 2.5). This wave packet then travels from
the turning point toward the end of the rod with constant frequency and
increasing wave number, accelerating as it encounters lower bias field
values, As the wave packet reaches the region of coupling with longi-

in

tudinal elastic waves (longitudinal crossover point marked L‘cros i

Fig. 3.2a), a fraction of the energy is converted into phonon form

(i.e., stays on branch 1 in Fig, 2. 5) and the rest stays in the magnon
state (branch 2), According to Schl8mann and Joseph, 43 the fraction of
energy which stays in the magnon state decreases when the ratio between

the field gradient at the crossover region H'(z2 ) and the critical

cros
gradient II;‘QPit increases. The latter is given by:12
"2 - m 2
Hcrit = mbﬂ/vﬁ (3. 2a)
!
Similarly for the shear wavess, the critical gradient Hcsrit is given by:
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_o_m .2 ,
Herit = 2Tya] %s/Vs (3.20

For values of the applied field such that the longitudinal crossover
region is near the center of the rod (sniall gradient), most of the magnon
energy excited at the turning point is converted into longitudinal phonon
energy, which is reflected at the end c¢f the rcd and therefore returns to
the turning point. The cnergy which remains in the magnon state is
later converted almost completely (because of the large shear critical
gradient) into shear elastic form (at the shear crossover region marked
Scros in Fig. 3.2a) to give rise to another reflected echo. If the
applied field is increased so that the crossover regions move toward the
rod end, the spatial field gradient at the longitudinal crossover region
increases and the fraction of the energy which is scattered to branch 2
increases, resulting in a gradual trade-off between the amplitudes of the
longitudinal and shear wave echoes, Over the range of echo time delay
(0.8 to 6.5 sec) we have been akle to employ, the spatial gradient of the
field at the longitudinal crossover region varies from about the value of
the critical gradient to ten times larger. This allows the measurement
of the magnon-phonon conversion efficiency vei'sus field gradient in
ranges not attainable before. The results are reported in section 3. 3b.
Typical data of delay time T versus dc magnetic field of the first longi-
tudinal and shear echoes obtained at 1.5 GHz are shown in Fig., 3.3
together with the theoretical curves calculated with the assumption of
zero frequency splittings at the crossover points. The latter is given
by:25
(3.3)

z
; tp f
e 2(gR TN H'(ztp)>
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Fig. 3.3 Measured time delay nf the first longitudinal (LO1)
and shear (S01) echoes versus dc magnetic bias
fields at 1, 5 GHz.
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where Vs (phonon velocity) is either vy (longitudinal phonon velocity) or
Ve (shear phonon velocity) as appropriate, ztp is the distance measured
from the end surface to the turning point, f(= ‘2‘)—") is the frequency of the
input microwave power, and H'(ztp) is the field gradient at the turning
point T, As can be secn, the agreement is very good for the longi-
tudinal elastic waves.

Further endorsement of the interpretation given to the observed
echoes is provided by experiments with pulsed bias magnetic fields,
The oscillograms of Fig. 3.4 illustrate some typical results., The lower
traces represent the video-detected microwave pulses from the super-
heterodyne receiver and the upper traces show the current steps applied
to the coil wound around the sample, and both traces are synchronous,
In Fig. 3. 4(a) the first longitudinal and shear echoes can be seen with
delays of 2.0 and 3.6 sec, respectively, corresponding to a static
applied field of 735 Oe. (Notice for this applied field strength, at the
unsaturated rod end, the magnetoelastic wave is dominated by elastic
wave characteristics and hence hardly affected by the unsaturated
magnetic medium. Iiowever, in the neighborhood of turning point and
crossover points where the medium is essentially saturated, the
magnetoelastic wave is dominated by spin-wave characteristics and
hence the theory is still applicable.) The insertion loss of the longi-
tudinal echo is 50 db., Higner-order echoes from longitudinal and shear
branches which are discussed in the next section can also be seen at
small delays, In Fig., 3,4(b) a 10 Oe positive field step is applied when
the branch 1 wave is on a return trip as a magnon (i, e,, toward the
point T in Fig, 3.2a) and the branch 2 wave is still in the shear clastic

state (i.e., near the end surface in Fig, 3.2a; notice also that the
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(a)

(b)

(c)

(d)

(e)

Fig. 3.4 Magnetoelastic echoes affected by a pulsed magnetic
bias field, The first pulse in each lower trace is
due to leakage; the second and third are, respectively,
the longitudinal (LL01) and shear (S01) magnetoelastic
echoes (time scale 1 ysec/cm). A full explanation of

cases (a) - (e) is given in the text,
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receiver delays the echoes by 0. 3 ysec, so that the scope traces show the
field steps advanced with respect to the echo time scale). The result is
that the field step produces a frequency-shifted echo, because the spin
waves subjected to a pulse field undergo a frequency shift with constant
wavenumber,8while the phonon-like branch 2 wave is virtually unaffected,
In Fig. 3.4(c) the local oscillator is retuned to receive only the frequency-
shifted echo. In Fig. 3. 4(d) the field step is applied when the branch 1
wave is in the longitudinal elastic state (away from the point Lcros in
Fig. 3.2(a)) and the branch 2 wave is in the magnon from (at the position
between L and Scros) resulting in a frequency shift of the latter, In

cros

Fig. 3. 4(e), the recovery of the frequency-shifted pulse is shown,

3.2b Identification of Echoes

In addition to the two echoes due to longitudinal and shear elastic/
spin waves shown in Fig. 3.4, there are a number of echoes whose

spacings change in an orderly manner as a function of the strength of the

applied field Ho' This is quite analogous to what Strauss and Eggers, A

using an experimental arrangement similar to that of Spencer et al., 21

have observed; they reported, in a (111) YIG rod, pulse sequences
associated with both shear elastic and shear elastic/spin wave propa-
gation, In our case, however, there are many more p'ulse sequences
because of the presence of both longitudinal and shear magnetoelastic
coupling. A typical echo pattern from reflection measurements, using
the wide-band detection system, is shown in Fig, 3.5. Following

Strauss, e let Ti’ denote the arrival time of reflected echoes for an

jk2
input pulse at t = 0, The observed pulses then arrive at the times

Tijke = 21 Ty, +iTgp, + 2k Tpg+ £ Tgg (3. 4)
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REFLECTED PULSES
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Fig. 3.5 A typical magnetoelastic echo pattern observed with
one-port fine wire excitation. The first pulse in the
trace is due to leakage; the other two pulses are due
to the longitudinal and shear magnetoelastic coupling
(time scale 1 ysec/cm). A full explanation is given
in the text,



where

|] = 112131 *
k = 0,1,2,3, + « +«
£ = 1,2,3, ¢+« « « oo

The quantity T, is the time taken by a shear elastic wave to travel the

ES
length of the rod, TSS the round trip time of flight of a shear elastic/spin
wave from and back to the turning point, TEL and TSL the corresponding
times for the longitudinal waves, There are two sequences of echoes,
one originating from the longitudinal crossover point, the other the shear
crossover point, as indicated in Fig. 3.5 and Fig, 3.6. Each sequence
consists of a primary pulse (j = 1 or £ = 1) followed by satellite pulses of
smaller amplitudes (j, £ = 2,3,..:), As the external magnetic field is
varied at a fixed frequency, the spacing between the primary pulses

remains constant (i.e., 2T and 2TEL), but the spacings between the

ES
satellite pulses and the primary pulses in different sequences change.
Indeed, the behavior of the pulse spacings as a function of Ho permits the
identification of the various echoes, In particular, in the sequence
originating from the shear crossover point, the echo (0110) (the dashed
line in Fig. 3.6) starts as a shear elastic/spin wave from the shear

crossover point Scr , converts to a longitudinal elastic wave at the

0s
longitudinal crossover point Lcros on its return trip from the end surface,
and finally, after traversing the length cf the rod, returns back to the
turning point (Fig. 3.2(a)). Since the internal field profile is concave
downward, the corresponding echo (1001) does not exist,

The echo sequence (00kf) can be interpreted as due to incomplete

conversion between branch 1 and branch 2 in Fig, 2,5 at the longitudinal
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Fig. 3.6 An echo pattern of Fig. 3.5, reconstructed from
theoretical considerations,
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crossover point. The echo sequence (ij00) corresponds to what Strauss

and !:ggem26

have reported. While they suggested that the origin of
the sequence they observed is due to the polarization reversal of the
elliptically polarized shear elastic waves at the end surface of the (111)
YIG rod, we do not understand very well about the origin of the sequence

(1j00) we observed in the "22.5%" YIG rod.

3.3 Experiments with Acoustically Injected Longitudinal
Elastic /Spin Waves

3.3a Propagation of Longitudinal Elastic/Spin Waves

in Spatially Varying Magnetic Fields

The room temperature experiments were performed using a YIG
bar which measured 4 mm x 4 mm x 12 mm and had its long axis
oriented along the ''22, 5% direction mentioned earlier, A longitudinal
elastic wave packet at 1,5 GHz, 100 nsec duration, was launched using a
sputtered ZnO thin film piezoelectric transducer. For Ho < Hﬁ,
where Hg is the applied field value for which the longitudinal crossover

point L in Fig. 3.2(b) is at the middle of the long axis (z = 0 in this

cros
case), the wave character becomes more spin-like as the wave
propagates toward the center of the bar. The delay difference T'SL
between the longitudinal elastic/spin waves and the longitudinal elastic
wave can be calculated by:

3 L/2 dz _ 2L
T 4 So d (3. 5)

g 4

where the group velocity of the longitudinal elastic/spin wave vg (of
branch 1 in Fig. 2.5) can be derived from the dispersion relation in
Eq. (2.34). Numerical integration of (3. 5) for the YIG bar yields the

curve for the delay difference and group velocity versus applied magnetic
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fields shown in Fig, 3.7, Notice the extremely small range of H0
required for the change of wave character from longitudinal elastic to
spin-like, compared to that of shear waves. L This is expected because
the magnetoelastic coupling of the longitudinal waves is approximately
two orders of magnitude smaller than that of the shear waves. Experi-
mentally it was also observed that the longitudinal elastic/spin waves,
unlike the shear ones, did not experience appreciable changes of the
delay time because the change of group velocity is too abrupt to be easily
observed (Fig. 3. 7).20 In fact, the wave packets only showed some wave-
form distortion because of dispersion, as shown in Fig, 3.8. In
Fig. 3.8(g) and the lower traces of Fig. 3. 8(h), (i) and (j), the input
power has been increased by 13 db to show the distorted wave-form,
The quantity H£ pertaining to Fig. 3.8 is estimated to be 716 Oe and is
within 6% of the theoretical calculation, For H0 2 Hﬁ, i.e., when the
longitudinal crossover point is inside the bar, strong Bragg infrared
light scattering from spin waves has been observed and will be described
in Chapter V. For H0 > Hﬁ, branch hopping between the upper branch
(branch 1 in Fig, 2.5) and lower branch (branch 2 in Fig. 2.5) takes
place (Fig. 3.8, (h) to (p). We have taken advantage of this fact to

measure the spatial spin/elastic wave conversion to be described in the

next section.

3. 3b Spatial Longitudinal Elastic/Spin Wave

Conversion Efficienciesl?

In this section we present the results of direct measurements of the
longitudinal elastic/spin wave conversion efficiencies at room tempera-
ture in a single crystal, axially magnetized YIG rod; the rod used here

is identical to the one described in section 3. 2.
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Fig. 3.7 Delay of elastically injected longitudinal elastic/
spin wave packet and group velocity at the bar
center as a function of applied magnetic field for
a "22,5%" YIG bar which measures 4 mm x 4 mm

x 12 mm,
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Although shear elastic/spin wave conversion has been studied

11,21 experimental investigation has

10, 25, 28

theoretically by previous authors,
been limited to the case of nearly complete conversion, This

!
is due to the fact that critical field gradients Hc&;i of shear elastic;spin

t
waves (Eq. (3.2b)) in YIG are much larger than those obtainable in

'L

orit’ of the longitudinal magnetoelastic splitting

practice, while that, H
(Eq. (3.2a)) are much smaller and well within the reach of our experi-
ments,

We have used two different ways to measure the conversion
efficiencies, one with magnetic injections in which only the weak coupling
region can be investigated, and another with acoustical injections, in
which case nearly the entire range of interactions was covered; the
results in both cases are in reasonable agreement with the previous

theory,

I. Experiments with Magnetic Injections

The experimental arrangement is identical to that described in
section 3.2a., The mechanism of the wave propagation has also been
described in detail there, It is sufficient to say here that when the spin
wave originating at a turning point first reaches the longitudinal cross-

over point (marked L‘cr - in Fig, 3.2a), a fraction of the energy is

0o

converted into phonon form and the rest remains in the magnon state,

The conversion efficiency was first studied by Schl8mann and Joseph11

and later also by Kirchner et al, Al Their results indicate that the
conversion efficiency n is related to the field gradient H'(zcr) at a

crossover point in the following manner:

!
crit

'H' ZCI' l

n = 1l-e (3.6)
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where H'C is the critical field gradient for either longitudinal and shear

rit
waves (Eqgs. (3.2)) and H'(zcr) is the field gradient at either longitudinal
(zﬁcr) or shear crossover point (zir). In our YIG rod, at 1,5 GHz and
room temperature, the critical gradients for longitudinal and shear
waves are, respectively, 225 and 28, 500 Oe/cm. The trade-off between
the amplitudes of the longitudinal and shear wave echoes described

earlier in section 3. 2a can best be described in terms of longitudinal

elastic/spin wave conversion efficiency nﬂ in the following equation:

a-1H7% _ s T )2

(=] - B, sl (Tgg - Tgr ) 7573 ] (3.7)
where PS/PL is the power ratio between shear and longitudinal elastic/
spin wave echoes, 2TSS and 2TSL are, respectively, the total time
spent in the magnon state for shear and longitudinal elastic/spin waves,
and & is the magnon loss (in db) per unit time, We have neglected the
phonon loss which is very small. Figure 3.9 shows the measured
results, using a = 12 db/ysec (full spin-wave linewidth 0,16 Oe) to fit
the theoretical curve, 21 Here the field gradients have been determined
using the well-known Sommerfeld formula in Eq. (3.1a). Although the
field strengths applied in the experiment were fairlly low (from 650 to
1200 Oe) the assumption that the magnetization of the YIG rod is
saturated by the applied fields is in reasonable agreement with the
argument given previously in section 3,2a, Note that the experimental
points fluctuate about the theoretical value., The fluctuation of the
amplitudes of the magnetoelastic echoes, both longitudinal and shear,
has been observed experimentally, but its origin is not yet understood.,
The trade-off between the amplitudes of the longitudinal and shear

elastic/spin wave is vividly demonstrated in Fig. 3.9.. However, the
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excessive magnon loss prevents us from going to the strong coupling
region in this type of experiment, because a small spatial field gradient
(therefore a strong coupling) causes excessive attenuation due to long
magnon delays. Nevertheless, we have managed to measure the
conversion efficiency in a strong coupling region by using acoustically

injected longitudinal elastic/spin waves,

II. Experiments with Acoustically Injected Longitudinal
Elastic/Spin Waves

In order to obtain the conversion efficiency throughout the entire
range of the interaction, experiments using acoustical injections were
carried out, The room temperature experiments were also performed
at 1.5 GHz using a ZnO transducer bonded to one of the two polished rod
end surfaces. The longitudinal acoustic echoes were observed as a
function of the strength of applied field Ho’ In both the low and high
magnetic field values, where the magnetoelastic interaction is small,
the amplitude of the echo is marked, As the magnetic field increases

from zero to a point where the longitudinal crossover region is placed in

the middle of the rod, i,e., H

- Hc’ the elastic echo disappears

(or rather is attenuated by more than 30 db) as a result of (almost)
complete conversion into spin waves, A further increase of the
magnetic field moves the crossover region toward the end of the rod,
thus also increasing the spatial field gradients. The longitudinal
elastic /spin wave conversion efficiency starts to decrease, as observed
by the increase of the amplitude of the longitudinal elastic wave echoes
(refer to traces (h) to (p) in Fig, 3.8). In addition, very weak spin/
longitudinal elastic echoes were also observed. Therefore, by

measuring the attenuation of the first longitudinal elastic echo as a
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function of the magnetic field strength, one obtains the conversion
efficiencies in nearly the entire range of the interaction, Since there
are actually two longitudinal crossover points in an axially-magnetized
rod, a longitudinal elastic disturbance makes conversion to spin waves
at four occasions in making a round trip throughout the rod. The
experimental results are plotted in Fig, 3.10, where use has been made
of

_ 2.4
P = P (1-7) (3. 8)

Again the field gradients have been determined using the Sommerfeld
formula in Eq. (3.1a). The quantity P, is the power of the longitudinal
elastic waves in the absence of the magnetoelastic interaction and Po is
the one with interaction. The result indicated in Fig, 3.10 is in fair

agreement with the theory.

3.3c Propagation of Longitudinal Elastic /Spin Waves

in Temporally Varying Magnetic Fields

Frequency shifts and pulse compression of the wave packets subject
to pulsed magnetic fields are discussed below,

Measurements of the frequency shifts of longitudinal elastic/spin
waves subjected to both positive and negative pulsed fields were made
using the axially magnetized YIG bar described earlier in section 3, 3a,
A polycrystal YIG bar with identical saturated magnetization was
attached to one end of the single crystal YIG bar to reduce the field
gradients inside the sample, while a thin film ZnO transducer was
sputtered on the other polished end surfaces. Positive frequency
shifts of up to 3 MHz, and negative frequency shifts of down to 1 MHz

have been observed with a 95 Oe/Amp coil wound around the composite
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structure. The frequency shifts were observed with a Tektronix IL 20
spectrum analyser used to study the first longitudinal elastic echo which
was gated. The small longitudinal magnetoelastic coupling makes the
frequency modulation effect of the spatially non-uniform internal fields
(with this composite structure) much stronger than in the case of shear
waves, o Consequently no very meaningful quantitative data have been
obtained. =
Pulse expansion and pulse group velocity modulat.ion8 with the
longitudinal elastic/spin again was not successful, The failure is
believed to be due to the same causes that complicate the frequency shift
measurements, as stated above, i,e., non-uniform internal fields and
the comparative smallness of the longitudinal magnetoelastic coupling.
Pulse compression of up to 10 db (considerably larger than with
shear wavesB) has been achieved when the strength of the applied field
is either H,<H,orH > H.. The mechanism of pulse compression
with acoustic wave injections can be described in the following manner.
A longitudinal elastic wave packet of spatial iength ALi (and duration
AT, = ALi/Vl) is generated by the ZnO transducer at the rod end. As
it propagates toward the center of the rod of increasing magnetic fields
at fixed frequency but variable wavenumbers, its character becomes
more spin-like, its spatial length shortens because of its decreasing
group velocity, but its duration ATi remains unchanged. When a
negative pulsed field that opposes the dc niagnetic field is applied, then
the duration of the wave packet suddenly decreases (hence pulse
compression) as its group velocity increases abruptly to that of
longitudinal elastic waves Ve The duration ATf of the compressed

pulse can be found according to:
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v
AT L’ »

[
where Vg is the group velocity of the elastic/spin wave packet at the time
the pulsed fiekd is applicd,  Equation (3,9) can also be derived from
consideration ol the Fourier spectra of the wave packet in wavenumbers
and frequencies.  Notice that Eq. (3.9) indicates that the pulse
compression ratio (A’I'i/A’l‘r) is always larger for the case of longi-
tudinal waves than for the shear wave case.

A typical case in which llo > "c is shown in Fig. 3.11. The lower
trace of Fig. 3.11(a) indicates a longitudinal elastic echio which has gone
through both crossover points inside the samyp.le. The upper trace of
Fig. 3.11(a) indicates a negative ficld pulse of 80 Oe that opposes the
dc bias field, In Fig., 3.11(b), the field pulse is applied after the wave
train has been reflected from the free end of the bar and returned to the
crossover point tetween the center and the free end of the bar. In this
case only the trailing edge is compressed since the trailing edge is still
spin-like (on branch 1 in Fig. 2.5), while the leading edge has hopped
(to branch 2 in Fig., 2.5) and is therefore elastic-like. Similarly in
Fig. 3.11(c), the field pulse is applied when the waves have left the
transducer for the first time and reached the crossover point between
the transducer end and the center of the bar. Again the trailing edge
(on branch 1 in Fig. 2.5) is more spin-like than the leading one (on
branch 2 in Fig. 2.5) and therefore is compressed. This kind of
compression again illustrates the small longitudinal magnetoelastic
coupling and the comparatively larger effect of non-uniform internal
fields on the longitudinal waves as compared to the shear waves.

When "o < Hc, a typical case is shown in Fig. 3.12. In
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(b)

Fig. 3.11

(¢c)

Pulse compression of longitudinal elastic/spin

waves subjected to pulsed magnetic fields. The
static magnetic field here is high enough so that
there are crossover points inside the YIG bar

(i, e., H, > HC). Horizontal sweeps are from
left to right with scale 0. 5 ysec/cm (frequency
1.5 GHz).
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(b) Ho =713 Oe

(c)

Pulse compression of longitudinal elastic/spin
waves subjected to pulsed magnetic fields, when
H0 < HC. Horizontal sweeps are from left to
right with scale 0. 5 ysec/cm (frequency 1.5 GHz).
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Fig. 3.12(a), the upper trace indicates the first longitudinal elastic echo
(marked with an arrow) which emerged after passing through the length
of the bar in the absence of longitudinal magnetoelastic coupling, and the
lower trace shows the negative field pulse of 10 Oe that opposed the dc
bias field, In Fig. 3.12(b), H, is increased so that the longitudinal
elastic echo (marked with an arrow) has been strongly attenuated. In
Fig. 3.12(c), the negative field pulse is applied just as the wave packet
reaches the middle of the rod for the first time; therefore the longi-

tudinal echo is compressed as a whole for a compression ratio of 10,

3.4 Preliminary Results on Longitudinal/Shear Elastic Wave

Conversion via Spin Waves in Spatially Varying Fields

Comstock and Wigen30 first proposed the spatial conversion from
shear to longitudinal elastic waves, and vice versa, via spin waves in
transversely magnetized rods. Morgem:haler31 also suggested longi-
tudinal /shear elastic conversion via spin waves by means of time-varying
magnetic fields. Experimental studies of these two cases have not yet
appeared in the literature. Here we report some preliminary results on
spatial longitudinal/shear elastic conversion via spin waves in axially
magnetized single crystal YIG rod oriented along the ''22, 5°"" direction.
The room temperature experimental arrangement is shown in Fig. 3.13,
where a polycrystalline nickel ferrite rod with a saturation magnetization
of 3000 Gauss is placed at one end of the YIG rod to obtain a mono-
tonically increasing internal field profile. A decreasing field profile,
however, exists at the end of the YIG rod near the air gap between the
rods. A CdS thin film on each end of the rod served as an input shear
wave and output longitudinal elastic wave transducer; the input trans-

ducer unfortunately does not have good discrimination against the
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excitation of longitudinal elastic waves and therefore generates both
shear and longitudinal waves at the same time. A shear elastic wave
packet (and also a longitudinal one), launched at the input transducer,
travels toward the center of the rod. When it reaches the shear cross-

over point (marked Scr in Fig. 3.13 and corresponding to branch 2 in

os
Fig. 2.5), it is nearly completely converted into spin waves; the latter
then proceed to the longitudinal crossover (marked L‘cros in Fig. 3.13),
whereupon part of the energy is converted into lougitudinal elastic waves
(corresponding to staying in branch 2 in Fig. 2.5), which then move
forward and reach the other transducer. The delay time T, can be

t
deduced from Eq. (3. 3) as:

T, = Tp*tTg (3.10a)
z L-2
= tp tp

f 1 1

where & is the time duration spent in the elastic wave state, while TS is
the time duration spent in the spin wave state, The conversion

efficiency ng,, can be written as:

ll |s
- _Hcrit _Hcrit
_ TST, 343 3Ty |H"|>(1 |H'S|>
Ngap, = © -e -e
. (3.11)
"2
a _Hcrit
T 343 2
- TSEIW( )

where the phonon loss is neglected and & is the magnon loss (in db/nsec),
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Fig. 3.13 Arrangement used to observe spatial conversion
from shear elastic waves to longitudinal elastic

waves via spin wave coupling,

f 1
H 4 the field gradient at the longitudinal crossover point, H S the corres-

ponding shear one. Both the delay times and the conversion efficiencies

as a function of H'l are plotted in Fig., 3.14, using
o = 5 dbj/usec (3.13)

and the values of the critical field gradient are given in Eq. (3.2),
Notice that as the external field (and hence the ficid gradient) increases,
the delay time approaches the time required for the elastic waves to
traverse the length of the rod. Also there is a peak in the conversion
efficiencies NSal, corresponding to an optimum H' (or HO). The experi-
mental observations are shown in Fig. 3.15. Figure 3.15(a) shows the

reflection echoes from the input transducer, where echoes marked L
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(b) 345 Oe L”(f) 6732?e

(c) 554 Oe {g) 756 Oe
L St L K] 2 4 L

(e) 627 Oe (i)1125 Qe

Fig, 3.15 Oscillograms showing the spatial conversion from
shear elastic waves to longitudinal elastic waves
via spin wave coupling. The horizontal traces
are from left to right (time scale 1 ysec/cm),
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are longitudinal elastic ones while the echo marked S is the shear one,
In Fig. 3.15, from (b) through (i), are the echo patterns picked up at the
receiving transducer as a function of the external applied field Ho' All
the transmitted pulses marked either L or S nre the purely elastic longi-
tudinal or shear echoes. In Fig. 3.15(c), the crossover points come in
the center of the rod and therefore almost all echoes except that corres-
ponding to the shear one disappear as a result of conversion to spin
waves, In Fig, 15, (d) through (e), there are two echoes marked by
arrows; the first one (with 1 on the arrow) is believed to come from
shear/longitudinal conversion and does show a maximum amplitude in (f)
as predicted in Fig. 3.14; the second echo (with 2 on the arrow), which
is always spaced at exactly one round trip time required for longitudinal
elastic waves, is thought to come from the reflection of the first echo

at the receiving transducer. In addition, notice from (h) and (i) that the
first echo (with arrow marked 1) eventually approaches the transmitted
longitudinal echo and these two echoes disappear at the same time when
the fields are increased further, as in (i). Notice that the decreasing
field profile at the receiving transducer end merely inflicts some
additional loss., The loss is caused by the conversion from the trans-
mitted longitudinal waves to spin waves at the longitudinal crosspoint
near the receiving end.

We are unable to make any quantitative comparison with the
theoretical curve in Fig, 3.14 because of the unknown internal field
profile for this composite structure and the poor qualities of the
transducers, However, we do not believe that these two echoes could
come from the input longitudinal elastic waves for the following reason,

In order to have variable delay times as a function of the external fields,
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the longitudinal wave would have to make a round trip to and from the
turning point plus a one-way trip as a longitudinal elastic wave from the
transmitting transducer to the receiving one. In this case the waves
would spend more time as spin waves, go through three times the longi-
tudinal conversion point and therefore suffer more loss than the shear/
longitudinal elastic waves mentioned earlier. Furthermore, we do not
expect to see a maximum amplitude of the echo, such as in Fig. 3.15(f),
for this case. For all these reasons, we believe the first echo, whose
delay time varies with the external applied field, does come from shear/

longitudinal elastic wave conversion via spin waves,
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CHAPTER 1V

THEORY OF LIGHT DIFFRACTION FROM COHERENT
ELASTIC AND SPIN WAVES

4.1 Introduction

Scattering of light by means of elastic waves in liquids and solids
has been extensively studied since the effect was first predicted by
Brillouin in 192232 and observed by Gross33 in 1930 in liquids where only
longitudinal elastic vibrations are allowed. In 1932, Debye and Sears34
and, independently, Lucas and Biquard, a3 performed the first succes:ful
diffraction of light from coherent ultrasonic waves, This phenomenon,
light inelastically scattered from an acoustic elastic wave, has come to
be known as Brillouin scattering, while light inelastically scattered from
optical phonons, discovered in 1928 by C. V. Raman, ot is known as
Raman scattering, Early work on Brillouin scattering37 was used to
determine elastic constants and to study thermal phonon distributions in
various materials, The advent of the laser in the sixties has greatly
revived the interest in light scattering and made the technique useful to
probe not only elastic waves but many other elementary excitations such
as plasma waves and spin waves,

For Brillouin scattering, it is necessary to distinguish between
diffraction at the Bragg angle (Bragg scattering) and Raman-Nath type
scattering, after Raman and Nath38 who explained the spatial form of the
scattered light in the experiments of Debye and Sears and Lucas and
Biquard, In Raman-Nath type scattering the light enters the medium

parallel to the wavefronts of the elastic waves and the diffracted light

appears on both sides of the primary beam in the form of equally spacec
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lines,  Willard”" discussed the distinction between these two cases and
showed that Bragg scattering results whenever the acoustic column is
sufficiently wide such that the product of the optical wavelength in the

medium (A /n) and the acoustic beamwidth (w) is greater than the square

A
— g
n

of the acoustic wavelength (A) (i, e., v > Az), Indeed, Rytov40 has

shown that the diffracted light will appear in a single spot and will be a
maximum when the light is incident at the Bragg angle. This is also
indicated in Brillouin's original work, and it is the only case with which

this thesis will be concerned., There have been many excellent review

41-48

articles on Brillouin scattering, on its theories, its application as

49-55 ]
and its practical applications such as in optical

91-55

a research tool,
signal processing,

In this chapter, the main objective is to review the theory of light
scattering and gencralize it to include the theory of coherent light
scattering from coherent spin waves, The generalized theory presented
here has cssentially revised Auld and Wilson's (A-W) calculations56 by
using the perturbed dielectric tensor, which is linecar in small signal
spin vave amplitudes rather than in total crystal magnetization., It
appears to explain adequately not only our experimental results
descri' ed in Chapter V, but also observations that previous author557' 2
rcpprtcd as ""anomalous, " unexplained by A-W theory.

Our new theory indicates that the characteristics of light scattering
from coherent spin waves are quite different from scattering from
elastic waves, Unlike the case of coherent eclastic waves, the scattered
light intensity from coherent spin waves is found to be dependent on both
the incident light polarization and the sign of the frequency shift (Stokes

or anti-Stokes lines). Also the intensity is independent of the direction
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of the applied magnetic field.

The chapter begins with a rather extensive review of the macroscopic
theory of light scattering, followed by a description of the characteristics
of light scattering from coherent elastic waves., Finally, the theory of
coherent spin wave light scattering is presented.

Because of convention and convenience in comparing with the optics
literature, the c,g.s. unit system is used throughout this and the next

chapter,

4.2 The Macroscopic Theory of Light Diffraction

Before starting our discussion, a few words regarding magnetooptics
in general are appropriate here, Following Landau and Lifshitz, 2
Pershan60 discussed in great detail that fact that, especially at optical

frequencies, the propagation of an electromagnetic wave in any material

can always be described in terms of an effective dielectric permittivity

:eff andy =1, This :eff‘ which incorporates whatever magnetic
characteristics a particular material has, can be defined in the following
manner, Maxwell's equations in c. g.s. unit system for a nonconducting

and current-free medium are:

vx B - -Lall aralt (.1
vx i = 13%%*%% (4. 1b)
v BranP) = v.(eB) =0 (4.1c)
v . (H+4e) = o (4.1d)"

where ﬁ, B are the magnetic and electric field vectors. The vectors M

and B are the magnetization and polarization of the medium and c is the
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velocity of light in free space; the quantity ¢ is the dielectric constant of

the medium,

From Eqs. (4.1a) and (4. 1b), one obtains

2 eff
1 3 E 4n 33
- —5 E - (vx 9x B - (4. 2a)
c2 at c2 at
where
Qeff _ aB »
J = § + cVx M (4. 2b)

Equations {1, 2) indicate that the effect of the magnetization can be

-»
incorporated with an effective current density Jeff.

Therefore one may
define an effective dielectric susceptibility ;Zeff which takes account of

the effect of magnetization M as

'jeff - BA_ »eff C B (4. 3a)
An effective polarization B! then is defined as:
igeff _ -eff }-L! (4. 3b)
Similarly, an effective dielectric tensor :eff is then defined as:
:eff -7 4 4‘"_;('eff (4. 3¢)
Substituting Eq. (4. 3a) into Eq. (4. 2a), one ;btains
(v lz 2)1':3( = -v(R.1n )+4"3-2L2f""‘” (4.4)

at

where use has been made of v . ]:f = -}-':.t - Vlne¢. Notice that Eq. (4.4)

-
can also be obtained from Eq. (4.1) directly by setting M = 0 (ory = 1)

jSeff

and P = This means that whatever effect the magnetization has is

included in the effective diclectric susceptibility ;Eeff or tcnsor ?eff.
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. . 60
A more detailed account has been given by Pershan,
If we consider ﬁ(?‘, t) in Eq. (4.4) as a superposition of plane waves
of wavelength \/n, and the elastic or spin waves are of wavelengthA,
the term ©¢ (ﬁ 1n ¢) is of the order 6‘K times the term Vv E Under usual
experimental conditions, é¢ (the change of ordinary dielectric constant)

is much smaller than unity, and % at most of the order of unity, This

term can usually be safely neglected. Then we have

2 24
(v2 -5 3—2) B2t - % a—ﬁ-(zﬁﬁ (4. 5)
ot c at

It is important to recognize that the medium contains as many as
109 atoms in a region as small as a cube of the light wavelength and
therefore can be regarded essentially as a continuum. A light wave
passing through such a medium produces an effective polarization igeff
at the point ?'.  This polarization, in turn, radiates or scatters
electromagnetic energy in all directions. Suppose we are interested
only in the radiation in the far field (Fraunhofer region). From Eq. (4. 5),
the electric field dﬁd scattered (or diffracted) at point T by the effective

polarization ﬁe within a volume (d r' ) << ()\/n) 41 61

lx(1 -+ -»,lxa ﬁeff(r' t)/at' 3 ]

2d -o _ 1 [ T- . i
* ) Ir- 7| i t'=t-lrrlncl
c
(4.6)
whereé r T' and the unit vectors _i.l-b -O,I and 1r are shown in Fig, 4.1.
[#-?|ng

The quantity t' (=t - ) is the retarded time, c is the light velocity
" infree space given before and ny is the index of refraction pertaining to
the diffracted electric field in the medium. For simplicity we have taken

the field point T to be within the medium. If it is outside the medium,

one may find the field there by using the laws of refraction at the
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illuminated volume

observation
point

Fig. 4.1 Radiation from an illuminated volume.
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boundaries. However, one must be aware of the fact that sometimes

there may be additional contributions to the scattered electric field dEd
frorn the multiple reflection of the undiffracted light at the boundaries. =

The electric field of a monochromatic incident light of frequency

- ey s . o
wL and wavevector kL within the medium can be writien as:

D
. jlw. t-k. .r)
By - Be L L (4.7a)
where
27n, n.w
K, = — = ch (4.7b)

and n, is the index of refraction pertaining to the incident electric field

ﬁi inside the medium. In general, when the polarization of the incident
light is different from that of the diffracted light, n, ¥ n g The quantity
Befl in Eq. (4.6) is to be found by substituting the total (incident and
diffracted) electric field R into Eq. (4.3b). However, since ')Zeff is
modulated slightly by coherent elastic waves or spin waves and the
interaction between light and coherent elastic waves and spin waves is
very weak, one may approximate B in Eq. (4. 3Db) with the incident electric

field B in Eq. (4.7a) only (the '""Born approximation, " well known in

scattering theory63). From Eqgs. (4.3b) and (4. 7a), one obtains the

polarization l-seff at point T as:

. '_-0 -0'
J(th kLr)

peff 2 4y - [(ieff)+5§eff(?',t')]-Eie (4. 8)

where (X°T) is the time average part, and 8% °

the modulated part of
the effective susceptibility. Since 6;(°eff(?",t') is usually modulated by a
sinusoidal elastic (or spin) wave, it can be decomposed into the Fourier

spectra of the elastic (or spin) wave:
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; - =
k
where |'l:| = ZX- and w('lz) are, respectively, the wavelength and frequencies

of the coherent elastic or spin modes; the quantity x‘k('r"') is the trans-
verse profile of the mode '12; the + sign is placed in front of w(k) to
account for the degeneracy in the dispersion relation for positive and
negative angular frequencies. [Equation (4. 8) and Eq. (4.9) are to be
substituted in Eq. (4. 6) to evaluate the diffracted electric field Ed. A
furth-r simplification may be made when one realizes that the frequencies
of microwave elastic waves (or spin waves) are very small (< 1010Hz)
compared to the light frequency ( ~ 1014 Hz). Therefore one may
approximate 321-?3'(af‘f/at2 in Eq. (4.5) as:

aa—ztge—ff = -wiﬁ(?',t') (4.10)
On substituting Eqs. (4. 8), (4.9) and (4.10) into Eq. (4.6), and

integrating over the illuminated volume V, one obtains:

o2 j[wL:tw(k)t-'lz'L- 3
d,» L2 3 3 eff . i e
E(r,t) = -C—z 1rx{[1rxgdk(6x (k)ﬁ0 =
(4.11)
S xk(r') E(r') e d r'}
v

SR
where the term arising from () is dropped and B - E; E(?"); E(-r.")
accounts for the profile of the light beam. We have used the fact that

if |?| >> [¥|, then
?l-r.'-?"l - -l’r
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n

-1 _ d <5

kL = (wLi w(k)) 1

n,w n,w

Cl PRI N P SR 2
C C r

?-7'| = |F| in the denominator of Eq. (4.8)

Using the fact that égeff = % 6§eff from Eq. (4.3c), one rewrites
Eq. (4.11) as:
w2 :
B0 = ()2 x 2 de3kLé_J (4.12a)
dme r r r

where N A
jUwp tuwlk)t) -K; -1 ]

3 = Bl (4.12b)
e N
-j(k, -k +K).r

D = Se L™ E(-r.")xl{r.")d3r' (4.12c)

The vector product (?rx?rx) merely ensures that the diffracted light is
polarized perpendicular to the vector ?r" the vector @ determines the
scaitering light amplitude; the diffraction integral, D, the diffraction
pattern. The diffraction pattern has been discussed by McMahon, 64
Gordon®® and others. ¢ In our case, assuming both E(*') and xk('z") are
constant throughout a volume much larger than optical wavelength, we
immediately obtain the phase matching (momentum conservation)
conditions:

ko= K o+ K (wy =w *w) (4.13)
However, assuming a small illuminated rectangular volume a x w' x ¢

(the interaction geometry is shown in Fig, 4.2), and that the incident

light is almost parallel to the wavefronts of the elastic or spin waves
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(eB = 0 in Fig. 4.2), the diffraction pattern B at the observation point ?

can be written as:

D = aw'eD,D,D (4.14)

g A B .
where the observation point r is at a small angle a from the y-axis and

B from y-z plane, and use has been made of:

- 9 - .

kL = 1y kL cos eB 1 kL sin 913 (4.15a)

* _ . L ] ? .

k'L = 1 kL sin B + lykL cos Bcosa+ 1, kL cosBsina (4.15b)

k= Tk (4.15c)
The quantities Dl’ D2 and D3 are given by:

sin (3 ki asing)
Dl } %k'L asing (4.16a)

sin[é—(k'L cosfcosa - kL cos eB)w']

D, = T - ; (4.16Db)
2 z(k'L cosfcosa kL coseB)w
sin[ (k! cos@sina+k, sing -k)c]
D, = J LR (4.16c)
3 %(k'L cosf sinm+kL sineB- k) c '

As expected, the Fraunhofer diffracted field pattern in Eq. (4. 14)

resembles the Fourier transform of the illuminated rectangular volume.

nk

In Egs. (4.16), the familiar term 512 is maximum when L= 0. One

then obtains:

k' asing = 0

L
!
ki cosBcosa - k; cos@p = 0 (4.17)

' . ] _
kLcosﬁsma+ kLsmeB = k
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w4
incident light beam
with cross section P
axec —
o —
KL 913 ———— o :ﬁ._-—k—-L
—_— _ _ =
e f /_L—/
| ———

(20 8

Fig. 4.2 Geometry of light diffraction.

Fig. 4.3 Bragg condition for ﬁ'L F ?{L + k.
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or
g = 0
t
kLcosa-kLcoseB = 0 (4.18)
1 . . -
kLsma+kLs1neB = k

Equations (4.18) can be represented geometrically in Fig. 4,3 and can

easily be solved as:67

2
i = L A_ 2.. 2
sin GB = 3 niA [1 + )\2 (ni nd)] (4,19a)
A A 2 2
Sin & = m[l +:2- (ni -nd):l (4.19b)
21rni ' 21rnd o
where k_ = - kL = and k = A have been used. Notice that

we have neglected the small difference in length between ﬁL and ﬁ'L In
the case when n; = ny = n, the usual Bragg condition, Eq. (4.19) reduces
to:
sing = sinfy = Fai (4. 20)

A-W were able to find the ratio of the intensity of the diffracted light Id
and the incident light I by integrating Eq. (4.12a) and (4. 16) approxi-
mately. Under the conditions of:

(1) n, = nyg = n

(2) small Bragg angle = eB =0

(3) a rectangular illuminated volume a x W' x c,

they obtained:

2
d _ (mw' . eff
d . (m e ) (4.21)
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fr determined by the

where 6¢iejff is the appropriate compwnent of 6€°
vector é in Eq. (4.12b) and w' is the illuminated width of elastic (or spin)
wave in the y-z plane in Fig, 4.2, As shown by McMahon, 64 one may
always replace w' by an effective w, so that the effect of arbitrary

cross sections of light and/or elastic waves (or spin waves) can be
accounted for,

In the following sections, we will concentrate on the quantities 6‘ij
and Q in Eq. (4.12b) to study the characteristics of light scattering from
elastic and spin waves, The intensity calculation can then be calculated
from Eq. (4,21), Since it is understood that the effective dielectric

tensor ?eff is the one we are concerned with, the superscript "eff" is

dropped.

4,3 Characteristics of Light Diffraction from Coherent Elastic Waves

The wave propagation, at optical frequencies, inside a crystal is
best described by the well-known indicatrix, which is an ellipsoid whose
coefficients are the components of the relative dielectric impermeability
68

tensor Bij’ namely

3
T B..x.x,. = 1 (4.22a)
ij=1 ¥ 1

where
).. (4.22h)

and ¢ is the effective dielectric tensor. Thus, in general, a small
change of refraction index or dielectric impermeability 6Bij produced by
strains sk! in the elastic waves (photoelastic interaction) can be
described in terms of a change in the shape, size and orientation cf the
indicatrix, The change is conveniently written with photoelastic

constant Pijkl as:
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3

5B, =kz£=1Pijk£ Sig (1,j =1,2,3)  (4.23)

where 6Bij = 6Bji, and the quantities 6Bij, Pijkl’ Skl are all dimension-
less, Since both <SBij and Skl are symmetrical tensors, the Eq. (4.23)

can be contracted into the matrix form:

6
6B, = I PS8 (m=1,2,.--6) (4.24)
n=

where the indices are contracted according to the Voigt notation:

11+ 1 23+ 4
22+ 2 13+ 5
33+ 3 12+ 6

Pmn = Pijkl (m,n=1,2,3...6) (4. 25a)
(i,j,k,£=1,2,3...)
_51311 6B, 6B31~ [ 8B, 6Bg 5135-
6B, 8By, 6Byq| * | 6B 6B, 6B, | (4.25b)
han 6B, 6By, ) 6B, 6B, 6B,
and
BT Sa1 S 1 [ 8 #Sg 18]
Sy Sgq Soq | %ss S, %54 (4. 25¢)
| S13 Sz Sy | |35 S, 53,

For a cubic crystal (class m3m), like YIG, the photoelastic matrix Pmrl

has the following form when referred to the axes along the cubic edges
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68
(principal axes):

Pjy, Pig Pip 0 0 0
P, P;y Pjy O 0 0
P, Py Py 0 0 0
(P..] = (4.26)
mn 0 0 o P, 0 O

Since we are interested in the small change of dielectric tensor,

6‘ij' we want to express 6‘ij in terms of Pmn' From Eq. (4.22b), 6‘ij
can be written as:
3 o .
6‘ij & -ajﬁpﬂ ‘ia 6Bdﬁ‘ﬁj (i,j=1,2,3) (4.27)

For a cubic crystal, the unperturbed dielectric tensor ‘ij is a scalar or

(ij = b..¢€ (4.28)

where by is the kronecker delta function.
Combining Eqs. (4.24), (4.26), (4.27) and (4. 28), the photoelastic
interaction, when referred to the principal axes of a cubic crystal

(class m3m), can be described as:



i 7 [ . 7] "
b€, Pjp Pig Pig 00 0 511 (Sl)-.]
]
Sego Pig Py Pig 0 0 0 Sgg  (Sg) |
b€3q o | P12 P12 P12 0 0 0 S35 (S3)
= =€ I (4- 29)
ey 4 0o o o P, 0 0 2554 (S,)
b¢s, o 0o 0 o0 P, 0 2S5, (Sy)
KN \. o 0 0 0 0 P44J 25,5 (Sg)

In terms of Eqs. (4.12a), (4.12b) and (4.29), assuming the Bragg

angle > 0 (Fig. 4.2), the interaction between an elastic wave

O
propagation along a principal axis and an incident light polarized also
along a principal axis can be easily determined in the following manner
(Fig. 4.2).

Since fp = o= 0, and if we assume that the y-z plane of incidence is

horizontal, the incident E(I) and diffracted Egi electric fields can be

written as:

i 9 i >
1350 =1 B, + 1 Eg (4.30a)
Egi =3 Effi + 1 Egﬁ (4. 30b)

where the (1) sign indicates whether the frequency of the diffracted light
is upshifted (+) or downshifted (-) from the frequency of the incident
light as determined by the phase matching conditions (4,13). From

Eqgs. (4.12a), (4.12b) and (4. 30), we obtain

-i’ =7 (4.31a)
r y
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" _d iy ) [~ i
EV:I: 8:'g’xx 6‘xz Ev
=c (4. 31b)
d i
EH:t J 6€zx 6€zz EH
. . k. J e J

where c is to be determined by Eq. (4.12a). For our purpose, the
explicit form of c is not important because we want to find out 6€ij in
Eq. (4.21) only. Note that Eq. (4. 31b) is valid even in a coordinate
system which is oriented in an arbitrary crystallographic direction, as
long as eB =a= 0. Here, since x,y,z axes are assumed to be the
principal axes, Eq. (4.31) and Eq. (4. 29) reveal that:

(a) when longitudinal elastic waves propagate along a principal
axis (thereby producing 833 in Fig. 4.2), the incident light
and diffracted light are polarized along the same principal
axes;

(b) when shear elastic waves propagate along a principal axis
(thereby producing either S 3 Or Sgq in Fig. 4. 2), the
incident and diffracted lights are polarized along two
perpendicular principal ax2s. Besides, the shear strain

S, , does not scatter any light at all.

23
Notice that as 6€ij is real for the photoelastic interacticn, the diffracted
light intensity is independent of the sign of the frequency shift. As we
shall see, this is not the case for the coherent spin wave scattering,

In case elastic waves do not propagate along a principal axis or the
light is not polarized along a principal axis, one merely uses the method

of superposition to find the nature of the interaction, Two examples

are used to illustrate this.
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Example 1

The interaction geometry of the photoelastic interaction is shown in
Fig. 4,4. Longitudinal (with the strain SZZ) or shear elastic waves
(with the strains SXZ and Syz) are excited by a transducer. Again notice
from Eq. (4.11) or Eq. (4. 31Db) that the strain Syz does not scatter any

light.

*——— sample

+ 1

MN%-— ___ piezoelectric
z[001] transducer

y(110]
X
(1103

Fig, 4.4 Geometry of the photoelastic interaction,

Since the plane of incidence is not a {100} plane (therefore the light is not,
in general, polarized along a principal axis), one may either work out
the photoelastic interaction in the principal axis coordinate system by
transforming all the quantities expressed in the present ()'{, y, 2)
coordinate into the principal axis coordinate or transform the photo-
elastic constants Pijkl into the present coordinate system and use
(4.31b). In the present case we do the latter. The transformation
from the principal coordinate system (''cubic-edge' coordinate system)
is discussed in Chapter II in terms of the Euler Angles (¢,6,{§). From

Fa. (4.29) and Eq. (2.4) with@ =0, § =0, buty ¥ 0, we obtain:



XZXZ Pay

P = P

XXZZ 12 independent of ¢ (4. 32)
Pzzzz 3 Pll

P = P = 10

— 2ZXZ

We therefore conclude that for a small Bragg angle, the photoelastic
interaction here is independent of ¢, the rotation around the {107} axis in
YIG. Inthis case, the relation between the polarizations of the incident
and the diffracted light can also be readily obtained from Eqgs. (4. 32) and
(4. 31b)

Assuming that the polarization of the incident light is at an angle §
from the x-axis (Fig. 4. 4), then:

(a) for shear elastic waves {thz strain sz), the polarization of

the diffracted light is at an angle (g - §) from the x-axis;

(b) for longitudinal elastic waves (the strain S,,), the polarization
of the diffracted light is at an angle tan'l((Pll/Plz) tan §) from

the x-axis.

Example 2

The geometry is shown in Fig., 4.5. Again when we use Eq. (2.2)

withp = 0, y= 0, but ¢ 0, we obtain for the strain S, _:

= lgin® Gy 2 2
Pyxzz = 28N 20P  + (1-zsin 29)P12 sin 29P44
P = (1-1sin®29) P, + 1sin’29P, , + sin’2g P (4. 33)
2Z2Z z 11 7 2 12 44 |
- I _
Poxzz = Pxzzz = %810 46( Py + Pt 2P44)

and for the shear strain sz:
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(001]
[}

{100]
-12]
—— ] ———
\ - -
GQ%K.. ey ~ =8 =
—4— [*———sample
e piezoelectric
z transducer
y (100]

Fig. 4.5 Geometry of the photoelastic interaction and orientation
of the long axis (z-axis) of the sample.
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= 1lgai -
Pzzxz = gz sin 48 ( P11 +I’12+2P44)

mg 5o - -
Pxxxz = 4s1n4e(P11 P12 2P44) (4. 34)

= - 1 . 2 .1 2 2
P,exz = Pyzxz = z5IN°20 P, - zsin"20 P;, + cos"26 P,

In particular, for a longitudinal strain Szz, and @ =%:

b€,y O, Pi1+¥3P19-2Py,  -P +P 5 +2P

Xe (4. 35)
Se,, O, "Py+Pp+2Py, 3P+ P +2P,,

Equation (4. 35) is used in Chapter V.

From these two examples, one realizes that the intensity of the

diffracted light can be calculated by using Eq. (4.21):

SRR e

2; the quantity peff is the appropriate photoelastic

3
=1

where P =3 D, vp S
constant, vp the velocity of elastic wave (longitudirial or shear),

Pa acoustic power density, Do the density of the medium and S is the

appropriate strain,

For a circular acoustic beam of an effective diameter w, Eq. (4. 36)

becomes:
6.2
I n P
T - B(—5)r, (4.37)
(o) A Dov

where P, = %nwz P, and is the total acoustic power.

71, 73

For YIG at A = 1150 nm:
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r

d

(0]

6

= 1.67x10 PA(mW) (4. 38)

A

for the longitudinal elastic waves propagating along a {100} direction and
Peer = Py
I
L= dq0x10”
(o)

6 P, (mW) (4. 39)

for the shear elastic waves propagating along a {100} direction and

Poi ™ Pag
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4,4 Characteristics of Light Diffrac.ion from

Coheren! Spin Waves

In previous work, Auld and Wils\on56 (A-W), following the derivationr
of Landau and Lifshitz, % calculated the intensity of light diffracted from
coherent spin waves, using a perturded dielectric tensor restricted to

terms linear in the total crystal mangetization., For many magneto-

optic experiments, this is sufficient to interpret the observations.
However, when the dielectric tensor is modulated by a coherent spin

wave, one must look for all terms that are linear in the small signal spin

wave amplitude, not just terms linear in the total magnetization M. For

example, when the magnetization is along the plus z-axis, terms like

m M, and myMg, although of higher order, are linear in the small
signal spin wave amplitudes m_ and my. Our derivation of the perturbed
dielectric tensor, detailed in Appendix III, is straightforward and
essentially follows that of Landau and Lifshitz, with the exception that all
linear terms in m_ and my are retained. The result for a cuhic crystal
(class m3m), like YIG, is of the form, when expressed in the 'cubic

edge' coordinate system:

étij()\) = éc'ij()\) + jé"i'j()‘) (i,j=1,2,3) (4. 40a)

- . - , -
Sy | (8110 g0 g0 0 0 0 | la;

' 2
by, | (8,0 g g ) 0 0 0 | |a

. (4. 40Db)
étyz 0 0 0 84 4()\) 0 0 ayqz

1
6€ZX 6 0 0 0 g44()‘) 0 azax

1
“xy 0 0 ¢ 0 0 g44(x) axay
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where 6"ij = 6(‘..

i’
- _ ) -
6cxx 0 0
o 0 0 0 -
(yy B o
| X
6¢|zz 0 0 0
= ay (4. 40c)
1
o f(\ 0 0
€ (\) .
" ZJ
6‘zx 0 f()) 0
1
0 0 f(n
6¢Xy ) |
1 1"
where 6‘ij = -6¢ji

For simbvlicity we have assumed that the medium is lossless and
therefore 6:()\) is Hermitian. The quantity f()) is the linear coefficient,
gmn()‘) the quadratic coefficients, ax(= Mx/M), ay(= My/M), and
az(= MZ/M) the direction cosines of the magnetization; both f(\) and
gmn(x) are a function of optical frequencies or wavelength A\, When

g = 0, the tensor 6? reduces to that of A-W, Note that €mn is

mn

identical in form to Prnn in Eq. (4. 29).

The calculation of the intensity of light diffracted from spin waves
can be made using Eqgs. (4.21), (4.31b) and (4.40). Notice that in
Eq. (4. 40) the perturbed dielectric tensor is now modulated by z-directed
spin waves (wavevector ' parallel to the dc magnetization vector, which
is along the z-axis), with frequency w. Furthermore, for simplicity,
let us assume that the z-directed spin waves are circularly polarized so
that o, and ay can be written from Eq. (2.16) with (wk =w)as:

x _m

o« = Jr - Mcos(wt-kz) (4. 41a)
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M
- __y - m i -
Oty i 3 Sin (wt - kz) (4. 41b)

Here the x,y, z axes do not necessarily coincide with the principal axes,
We are now ready to do the calculation, Just as in the last section,
we use two examples to illustrate this.
Example 1
The geometry of light diffraction, identical to Fig. 4.4, is shown in

Fig. 4.6; the spin wave amplitudes are given in Eq. (4. 41).

— z=L/2
— |
eB_' T —| |H, & z=0
_ik
z=-L/2
z[001]
> y{110]
X
(110

Fig. 4.6 The geometry of light diffraction from spin waves;
the internal field profile H; of the bar is also
indicated.

“Since the plane of incidence is not a {100} plane, we obtain from

Eq. (4.40) and Eq. (2.2), with§ =9 = 0, but ¢ # 0;
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6‘.\'){ = 0
%
6¢” = 0 independent of ¢ (4.42)>
se., = o€, -

Xz 72X Bhq 9% * ) fmy

where only terms linear in o ay are kept, and @, = 1. Substituting

Eq. (4.41) into Eq. (4.42), we obtain;

. m o fal) e 6 @ B g -
6‘zx = [g44achos(wt ku)+Jstm(wt kz)J
(4. 43a)
.om jlwt - kz) } -j(wt-kz)J
ROV AL +leggn, -De
G‘XZ : 6‘le
(4. 43b)
. m _y od(wt - kz) -j(wt-kz):l
- ohi(Egg®, " De *legqn, th)e

Substituting Eqs. (4. 43) into Eq. (4. 31b), and noting the phase matching

condition in Eq. (4.13), we obtain:

al 1[a
Evi g 8449, +f E,
- o
J C2M ; (4, 44)
EHiJ g44azif 0 EHJ

where a subscript v or H denotes whether the polarization of the electric
field vectors is perpendicular (x-axis) or parallel to the horizontal (y-z)
plane of incidence. The plus or minus sign indicates whether the

frequency shift is upward (anti-Stokes line Wy, +w) or downward (Stokes

" The asterisk on 6';:2 denotes complex conjugation.
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line w, - w).

From Eq. (4.44) one can deduce that the maximum diffracted light
intensity depends on the incident light polarization and the sign of the
frequency shift, If f and 844 have the same sign, Et will give the
maximum diffracted light intensity for the upshifted case, whereas E;I
will for the case of downshifted diffracted light. Furthermore,
reversing the direction of the magnetic field changes the sign Ofo‘z and
the sense of the spin wave circular polarization, Consequently, the
above situation remains unchanged, because the ratio (g44azax/fay) still
has the same sién.

The "anomalous'" experimental observations that Collins and
Wilson57 have reported fit precisely this description, provided one
remembers that low to medium wavenumber magnetostatic waves are
backward waves with the wavevector direction opposing the direction of
the power flow. They found that, with a laser beam polarized
perpendicular to the plane of incidence, the scattered beam was always
strongest on the left side of the beain when using the left-hand antenna,
but was always found on the right side of the main beam when using the
right-hand antenna. These two cases correspond to frequency upshifted
diffracted light, as indicated in Fig, 4.7. The converse effects,

i.e., frequency downshifted diffracted light when the input laser polar-
ization was parallel to the plane of incidence, are also similarly
explained.

Other experimental evidence is furnished by Smith's work58 in
which he found similar situations for light scattering from shear
magnetoelastic waves with a large mixture of spin waves, Again he

reported it as "anomalous.'" Section 5.2 gives a more detailed account.
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left-hand antenna right-hand antenna

YIG bar

upshifted— diffracted light

-1
power flow 7 o kL power flow
L ?(L 159 —-—
p : -
gl - Birig,, a,)E
H+ 2M 44 "z" Tv

downshifted diffracted light

power flow ?

4 e

_cm i
E,o = am +80,) By

Fig. 4.7 Light diffraction from coherent magnetostatic waves.
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Example 2
The geometry of light diffraction is identical to Fig. 4.5 where the

applied magnetic field is along the z-direction. Again when we use

Eq. (2.2) with ¢ = § =0, but § # 0, we obtain:

begx = 15In48(gy - 819 - 28,4) 00,
= 1lgj -
é¢,, = 3sin 49( g7 * 812 * 2g44)azax (4. 45)
% 1 . 2 1 2 2 .
by, = b€, = [5sin 26g,, - z5in"28g, , +cos 26g44]azax+3fay
In particular, for 6 =%, we obtain:
i T T .
O€, « S€yz rgaa, (811781 9%284) 0,0, 4Jfay
6‘zx 6€zz L(gl 1 -gl 2+2g44)axaz + 4jfmy -Agaxaz
(4. 464a)
where
Ag = 8yy 7 B1p T 2844 (4. 46b)

68, 69 the medium

Notice that when Ag = 0 (Cauchy relation),
becomes ''isotropic, "' i.e., X,y,z axes are determined by the dc magnet-
ization (= az) and small signal spin wave amplitudes o and ay only,

Substituting Eqs. (4. 41) and (4. 46a) into Eq. (4. 31b), as in Example 1,

we obtain:
KEe | | 1, g, -g..+2g, )o 5 f1 —.F‘fl
vt m g C8Q, 4 g11 B197eB44/Q, + v
oM
d 1 _ - 1 1
EHiJ 1(g) )-8 g*28 )0, £ £ Aga, g J EHJ
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Except for the diffcrent g's, Eq. (4.47) is similar to (4. 44), and
therefore most of the characteristics discussed there are applicable here,

When Ag = 0, Eq. (4.47) is identical to Eq., (4. 41).
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CHAPTER V

EXPERIMENTAL RESULTS OF LIGHT DIFFRACTION FROM
COHERENT ELASTIC AND/OR SPIN WAVES IN YIG

In this chapter, experimental results of light diffraction from coherent
shear elastic/spin waves, and longitudinal elastic/spin waves in YIG are
presented, Of particular interest is the strong infrared Bragg scattering
from coherent spin waves reported in section 5. 3.78 The experimental
results in this case appear to be in good agreement with the theory on
light scattering from coherent spin waves derived in the last chapter.

The chapter begins with a review of previous experimental work on
light diffraction in YIG, followed by a description of the optical experi-
mental setup. In section 5.2, results of Bragg diffraction from shear

74,175,786
are

elastic/spin waves similar to the work of Dixon73 and Smith
described. In the last section of the chapter, 5.4, we report on measure-
ments of temporal longitudinal elastic/spin wave conversion efficiencies,
which are difficult with conventional microwave techniques whenever
intrinsic non-uniform fields due to demagnetizing effects occur inside a
ferrimagnetic sample,

Dixon and Matthews71

first employed coherent light scattering from
shear elastic waves to measure the photoelastic constants of YIG. In a
later paper, Dixon, e using an optical heterodyne system, reported large
Faraday rotations of shear elastic waves and a substantial frequency
dispersion of shear elastic/spin waves in YIG. Smith reported light
scattering from shear elastic/spin waves that had been excited both

4,75

:zxcousticatlly7 and magnetically, ve Of necessity, he employed rf

magnetic and electric field excitation at high microwave power inputs of
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5 to 300 watts; therefore, nonlinear interactions probably occurred. He
also observed the dependence of the scattered light intensity on the
incident light polarization and diffracted light frequency shifts, Based
on Auld and Wilson's (A-W) theory, £e he interpreted this dependence
qualitatively as due to the interference of the scattered light from elastic
and spin waves. Subsequently, A-W77 observed the field dependence of
scattered light intensity for longitudinal elastic/spin waves in an
obliquely magnetized YIG bar, but their experimental data were not

56

accurate enough to either prove or disprove their calculation. Collins

and Wilson57 studied the light scattered from magnetostatic waves; they

"anomalous behavior'' unexplained by the A-W theory which,

reported an
however, can be interpreted quite satisfactorily by our new theory

described in section 4.4, Most recently, Desormiere et al. i reported
on related experiments on light diffraction from megnetostatic waves and

observed '"anomalous behavior" similar to what Collins and Wilson had

reported.

5.1 Setup for Light Diffraction Experiments

The experimental setup shown in Fig.5.1la comprises a microwave
system which is used for injecting and monitoring coherent elastic waves
via piezoelectric transducers in YIG, and an optical system for sending
a coherent laser beam and detecting the diffracted light from the elastic
and/or spin waves in the sample.

The microwave system is similar to that in Fig. 3.1, except that
a TWT (HP 489A, maximum power output = 2,0 watts at LL band), capable
of amplification of ysec pulses, is used following the PIN modulator to
boost the power output of the signal generator, When using bulk

transduccrs, which arc less cfficicnt, have narrower bandwidth, but cau
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handle more power than the thin film transducer, a power oscillator

(a modified AIL 125, externally pulse modulated),capable of 20 to 50 watts
power output, was sometimes used to facilitate the location of the
diffracted light signal. A peak power meter (Narda AGA3A) is used to
measure the input pulse power to the transducers, The microwave
receiver system is essentially the same heterodyne system described in
section 3.1, but with a limiter and an attenuator preceding the mixer/
preamplifier to prevent an excessive power loading of the mixer. The
receiver system is used to measure the transducer losses, optimize the
stub tuner (which was as close to the load as feasible), monitor the
acoustic echo from the sample and provide supplementary information
regarding the interpretation of the optical signal,

The samples used in the optical experiments are rectangular YIG
bars with two end surfac.s as well as two opposite long surfaces optically
polished, The orientation of the crystals is described separately in each
section, No optical antireflection coating is used on the long polished
surfaces, The piezoelectric transducers used in the experiments for
injecting elastic waves into the sample are either bulk transducers or a
sputtered ZnO thin film transducer. The bulk transducers are X-cut
LiNbO3 plates for generation of linearly polarized shear elastic waves,
or Z-cut Li-doped ZnO plates for generation of longitudinal elastic
waves, The dimensions of the bulk transducers are 0,005" in thickness
and about 0,120" in diameter, For the bulk transducer bonded with
phenyl benzoate, L typical insertion loss (i.e., the power ratios of the
input pulse to the first echo) is 50 db or more at 1 GHz. The sputtered
thin film ZnO transducer (courtesy of Dr. N, F. Foster of Bell

Telephone Labs., Inc.), onthe other hand, has a very large bandwidth
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and initially exhibited only a 20 db insertion loss but, unfortunately,

deteriorated later to about 36 db.

The optical system consists of the following components (Fig. 5.1a):
(a) A laser: Spectra-Physics Model 125A modified to give maximum
power output at 1150 nm; power output, 50 mW; transverse

mode, TEM,,; dc excitati(m.T

00

(b) A set of three mirrors mounted on micro-positioners for
coarse and vernier movements in the horizontal and vertical
directions. The mirrors are dielectric-coated and give 99%
reflectance at 45° incident angle for "p- and s-polarized"
light. One of the three mirrors is not used at 45° angle of
incidence and probably should be replaced by a more suitable
mirror,

(c) Two Glan-Thompson polarizers mounted on rotating stages
to allow selection of the polarization of the transmitted light.
The polarizers, with an extinction ratio of 105;1, prove to be
extremely useful in improving signal-to-noise ratio when the
diffracted light is polarized at 90° with respect to the incident

light, as in the cases of diffraction from shear elastic waves

and spin waves,

sk

++

A1 mW 1150 nm laser was used in the early stages of the work and
we did observe diffracted light signals with 10 watts microwave
power into a LiNbOg transducer (~ 50 db insertion loss) after three
hours of integration time with a PAR 160 boxcar integrator,

An rf excitation gives more power output and stability but may cause
electromagnetic interference with other instruments in use. There-
fore a dc excitation sometimes is more desirable.

The phrase ''p-polarized' refers to light polarized in the plane of
incidence, while '"'s-polarized' refers to light polarized perpendicular
to the plane of incidence. One should beware that some manu-
facturers may, without warning, supply dielectric mirrors which
give 99% reflectance at 45° angle of incidence for only s-polarized
light,
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(g)

(h)
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Three lenses are employed, as shown in Fig. 5.1la. One is used
for focusing the 5 mm laser beam onto the surfaces of the
sample, the other two for collecting diffracted light and
focusing it into a slit in front of the photomultiplier.
An iris in front of the first collecting lens and a slit in front of
the photomultiplier, as shown in Fig.5,1a, are found to be very
nelpful in reducing the scattered background light.
An Amperex 150 CVP photomultiplier (S-1 photocathode,
operating at 1, 500 V) is cocled to the dry ice temperature in a
housing (Products for Research Model TE-200), Cooling of
the photomultiplier to dry ice temperatures is necessary here
because of the high dark current, low quantum efficiency of the
S-1 cathode, and the low level diffracted light signal obtained
in the experiments. A heated ring is installed ¢n the outer
surface of the viewing window of the photomultiplier housing to
prevent the formation of dew on the cold surface. A low pass
filter (transmittance 80% at 1150 nm and above, from
IR Industries) is also placed in front of the viewing window to
prevent any stray room light from getting into the photo-
multiplier.
A mica half-wave plate for 1150 nm is also used between the
laser and the polarizer to rotate the polarization of the incident
light. A Kodak IR Phosphor Card, which converts the near
infrared to visible red light, is useful for optical alignment
but is not sensitive enough to observe the diffracted light.
A sample stage placed in the airgap of the pole pieces of a

Varian 6" magnet can be used to position the samples properly
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with respect to the incident light beam. When experimental
data are taken the sample is not moved with respect to the
applied magnetic fields. Other details of the optical experi-
mental setup are shown in Fig, 5.1b,

The electronic system following the output of the photomultiplier

contains (%ig, 5.1a}:

(a) Load Resistor RL' Either a 1 K ohm resistor for better
signal-to-noise ratio or a 50 ohm resistor for faster risetime
of the diffracted light pulse is used.

(b) For R, =1 K, an amplifier with 10 MHz bandwidth and an

L
amplification of 100 is adequate for the input of the boxcar

integrator, However, for R. = 50 ohm, an amplification of

L
1, 000 and a larger bandwidth (70 MHz) are needed to observe
the fast diffracted pulse.

(¢c) A PAR Model 160 boxcar integrator is used to measure the
diffracted light signal and take the experimental data, The
output of the boxcar integrator is fed into a digital voltmeter
for display and an x-y recorder for permanent records. The
display of the digital voltmeter is found to be very helpful for
optimizing the signal in a dark room,

The experimental difficulties in performing optical probing of
elastic and/or spin waves are dominated by the poor signal-to-noise
ratio, worsened in particular by the poor quantum efficiency of the
S-1 photocathode and comparatively low power laser available at
1150 nm, If one is working in the visible spectrum, a factor of 1,000
improvement in photocathode quantum efficiency can be obtained and, in

addition, perhaps a factor of 10 increase in laser power output before



(a) Laser beam incident system, the
laser (not shown) is at the lef?
of the picture.

(b) The magnet and sample holder (d) Microwave apparatus

(c) Optical detection system

Fig. 5.1(b) Optical experimental setup.
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problems of heating the sample under investigation occur. Wilson, =
following Anderson, 82 gave a simple calculation of the minimum
detectable intensity of an optical signal diffracted from either a square
wave or a pulse modulated elastic or spin wave. There is nothing
further we want to add, except to point out that under our experimental
situation (with laser power 50 mW and acoustic power inside the medium
less than 1 mW) the noise is always dominated by the background noise,
which comes either from scattering from imperfections on the surface
or from inside the crystal. While the signal intensity is proportional to
the incident laser power, the background noise due to scattering from
the crystal imperfections is proportional only to the square root of the
laser power. Consequently a high power laser is still helpful even in

this case. Of course when the noise is dominated by the dark current,

the high power laser is even more helpful.
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5.2 Infrared Bragp Scattering from Shear

Elastic/Spin Wave:

Bragg scattering from shear elastic/spin waves in YIG has been

71,72 58, 74-76 3
Dixon

studied extensively, first by Dixon, then by Smith.
has exhausted almost all the experiimental cases of interest with this
kind of light scattering, with the exception of the dependence of the
intensity of the diffracted light on the incident light polarization and the

S 0 first reported this depend-

the sign of the frequency shift, Smith
ence and, based on the A-W theory, interpreted it qualitatively as the
interference between the light diffracted from elastic waves and from
spin waves. However, he found an "anomaly' which his interpretation

o The "anornaly' occurs when the light is scattered by

fails to explain.
the shear elastic /spin waves with a large mixture of spin waves. He
thought this "anomaly'' might be due to the large amplitude of the shear
elastic/spin wave signal used in his experiments. In fact, he did
report some nonlinear behavior of light scattering from shear elastic/
spin wavcs.75

In this section we report some results on light scattering from
shear elastic/spin waves under essentially the same experimental
conditions as Smith's, but employing a much reduced microwave power
input. Within the range of microwave power which we operated, no
nonlinear behavior in the light scattering was observed,

Our experiments were performed using a rectangular YIG btar
which measures 4 mm x 4.6 mm x 12. 7 mm and is oriented at a (100)
axis (Fig. 4.4 0or 4.6). A MNbO3 shear wave piezoelectric transducer

with a 50 db insertion loss was bonded to the YIG bar and used to excite

shear clastic waves, The peak power of a 1.0 ysec, 1.3 GHz micrn-
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wave pulse used was between 100 mW and 500 mW (versus Smith's
5-300 W).

Figure 5.2 shows typical diffracted light pulses obLserved with the
light beam near the free end of the bar. A diffracted light pulse results
each time the shear elastic wave packet, which is reflected back and
forth in the sample, crosses the path oi the light beam. In the figure
the inusert is a trace from a Tektronix 585 scope, while the graph was
plotted from the cignal conditioned with the PAR boxcar integrator.

The quantities F.‘i and Ed
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