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ABSTRACT 

This report describes In detail the technical progress made In 

studies of strong Infrared light scattering from coherent spin wav 

during the second six months of a three year Interdisciplinary research 

program titled: "Steerable Volume and Surface Spin Waves in Ferrl- 

magnetlc Films". One major goal of the program Is the growth of 

yttrium-iron garnet (YIG), single crystals 01 high quality in both thin 

film and bulk form. Another is the development of novel techniques for 

controlling and studying energy propagation characteristics of volume 

and surface spin waves. One promising technique for accomplishing the 

latter Involves the use of optical techniques to probe the dynamics of 

spin wave propagation.  Since YIG is opaque to visible light but trans- 

parent in the infrared, this form of radiation has been employed in 

these experiments. 

Coherent light scattering from coherent microwave spin waves in 

yttrium iron garnet (YIG) is studied theoretically and experimentally. 

The method is then utilized, In conjunction with standard microwave 

techniques, to probe the propagation of spin waves and magnetoelastic 

waves. In spatiallj'-and/or-temporally-varying magnetic fields. 

The dispersion of magnetoelastic waves propagating parallel to 

saturation magnetization when the latter is in an arbitrary crystallo- 

graphlc direction, first presented by Morgenthaler, is rederived. For 

this Important case, spin wave defocusslng is reduced and, when properly 

employed, allows variable delay of magnetically injected spin/longitud- 

inal elastic waves, and conversion from longitudinal elastic waves to 

spin waves in spatially varying fields to be studied.  Frequency shifts, 

and pulse compression of longitudinal elastic/spin waves subjected to 



pulsed magnetic fields are also reported, as are some preliminary exper- 

iments on the spatial conversion of shear/longitudinal elastic waves via 

spin wave coupling. 

We also report the first direct observation of strong Bragg scattered 

Infrared light (1150 nm wavelength) from coherent microwave spin waves. 

The latter were generated in YIG through efficient spatial conversion of 

injected longitudinal elastic waves. The maximum scattered light inten- 

sity is found to be at least five times stronger than that of the longi- 

tudinal elastic waves of comparable power.  In contrast to elastic wave 

scattering, spin wave light scattering is unique in that the diffracted 

light intensity is observed to depend on the Incident light polarization 

and whether the diffracted light is upshlfted or downshifted in frequency. 

These characteristics are in complete agreement with a revised theory 

that is found to be necessary after a critical review of previous work. 

The revision Is shown to be capable of interpreting adequately not only 

our experiments but also observations that previous authors have reported 

as "anomalous." 



I INTRODUCTION 

The Microwave and Quantum Magnetics Group and the Crystal Physics 

Laboratory, both within the M.I.T. Center for Materials Science and 

Engineering, have undertaken a three year Interdisciplinary program In 

the area of "microwave magneto-ultrasonics" aimed at further developing 

several novel concepts which may lead to new and/or Improved solid 

state devices employing electromagnetlc/spln/elastlc wave coupling. 

Device possibilities include multi-tapped delay lines, magnetoelastlc 

beam switches and pulse compression filters. In particular, the research 

program will concentrate on the growth and exploitation of improved 

single crystal yttrium iron garnet substrates in which volume and surface 

spin wave propagating at microwave frequencies can be magnetically steered 

and/or otherwise controlled. 

In order to produce crystals of yttrium iron garnet of the quality 

needed for the research envisioned in this program, two major constraints 

must be dealt with. First, the crystals must be of the necessary high 

quality to avoid introducing extraneous effects due to grain boundaries 

and strain inhomogeneitles. The chemical purity is of major Importance 

since rare earth impurities drastically increase spin wave relaxation 

rates. Second, the growth technique should permit ready fabrication of 

the types of structures desired, such as multi-layer configurations and 

thin slabs. Consequently, both chemical vapor deposition (CVD) tech- 

niques and top seeded solution (TSS) growth appear attractive and both 

will be employed throughout the entire contract period. Thin films and 

bulk crystal substrates will be evaluated optically, magnetically and 

acoustically for purity, homogeneity and low losses. Promising specimens 
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will be used for magnetostatlc wave and exchange dominated spin wave 

propagation experiments at microwave frequencies. 

A surface spin wave propagating parallel to an air-crystal boundary 

of a thin film has its energy largely confined within some characteristic 

distance that under certain conditions should be magnetically controllable. 

In one Instance causing the energy to be closely confined to the surface 

and In another allowing It to spread out and fill the entire film. Vol- 

ume spin waves are also subject to magnetic control. For example, beam 

steering Is possible due to dlpole-dlpole Interactions that in turn can be 

Influenced through directional changes in the magnetizing field. 

A high power (50 mw) He-Ne laser operating continuously at 1.15y 

has been obtained for use in producing Bragg scattering from elastic and 

spin-elastic microwave packets within YIG crystals. This high resolu- 

tion system which is now operational forms the basis for studies of spin- 

elastic conversion in spatial and/or temporal gradients of magnetic field. 

The doctoral thesis of Benedict Hu has been completed and forms the 

basis of this report. 

Dr. A. Linz has been assigned responsibility for overseeing the top- 

seeded solution crystal growth and chemical vapor deposition program, 

Professor D.J. Epstein for crystal evaluation with respect to magnetic 

properties and Professor F.R. Morgenthaler for microwave spin wave 

propagation studies; as principal Investigator the latter has overall 

responsibility for coordinating the various phases of the research. 



STUDIES OF MAGNETOSTATIC WAVES AND MAGNETOELASTIC WAVES 

IN YIG USING OPTICAL PROBING AND MICROWAVE TECHNIQUES 

by 

llung-Liang Hu 

The material which follows Is Identical in content to a thesis submitted 
to the Department of Electrical Engineering, Massachusetts Institute of 
Technology, on January 29, 1971, in partial fulfillment of the require- 
ments for the degree of Doctor of Philosophy in Electrical Engineering. 
This thesis is also available as Microwave and Quantum Magnetics Group 
Technical Report No. 25, February, 1971. 



TABLE OF CONTENTS 

LIST OF SYMBOLS       6 

LIST OF FIGURES      Ik 

INTRODUCTION          IS 

CHAPTER I   SMALL SIGNAL EQUATIONS OF MOTION OF A MACNETOELASTIC 
FERROMAGNET      22 

1.1 Small Signal Equations of Motion        22 

1.2 Small Signal Power Energy Conservation 
Theorem         25 

CHAPTER II  PROPAGATION OF Z-DIRECTED MACNETOELASTIC WAVES IN A 
GENERAL CRYSTALLOGRAPHIC DIRECTION         28 

2.1 Tho Euler Angles         28 

2.2 Eigenvalues and Eigenmodes of Spin Waves 
Propagating Along an Arbitrary Crystallographic 
Direction      33 

2.3 Dispersion of Z-Directed Magnetoelastlc Waves 
in an Elastically Isotropie but Magnetoelastlc 
Anisotropie "Cubic" Medium        37 

CHAPTER III EXPERIMENTAL RESULTS OF Z-DIRECTED MACNETOELASTIC 
WAVES USING MICROWAVE TECHNIQUES      48 

3.1 Experimental Setup       49 

3.2 Experiments with Spin Wave Injections   ...     51 

3.3 Experiments with Acoustically Injected 
Longitudinal Elastic/Spin Waves         62 

3.4 Preliminary Results on Longitudinal/Shear 
Elastic Conversion via Spin Waves In 
Spatially Varying Fields        76 

CHAPTER IV  THEORY OF LIGHT DIFFRACTION FROM COHERENT ELASTIC 
AND SPIN WAVES      83 

4.1 Introduction      83 

4.2 The Macroscopic Theory of Light Diffraction .  .     85 



4.3 CharMtcrUilcs of Light Diffract loo fro« 
CohorMt KUttle Utvoo       •••••••• f5 

4.4 Choracctrltclct of Lithe Dlffroccloo fro« 
Cohorvoc Spin Uavot        •••••••••        10) 

CliAPTEK V   LXPUlMmAL RESULTS OF LICHT DimuaiO» FRON 
OOHCROT CLASTIC AXD/OR SPIN WAVLS III YIC .  .  .  .   11) 

3*1 Sotup for Light Dlffroccloo Csptrlaoota • • •   114 

5.2 Infrared Brau Scattering froa Sbaar Elaatic/Spln 
w.vc»    122 

5.3 Strong Infrared Brngg Scattering fro« Cohoroot 
Spin  Waved ••••••.••••• 132 

3.4 Moaaureacnts of Tcoporal Longitudinal 
Claatlc/Spln Uava Convaralon Efflclanciea      •    .        143 

Appenolx I      Effective Anlaotropy Field« and Small Anlootropy 
Tenaor Nan for Cubic Cryatala    ........        148 

Appendix II The Firat Order Heipietoelaatic Conetanta for an 
Arbitrarily Oriented Coordinate Systes in Cubic 
Crystals   152 

Appendix III Dielectric Tenaor of a "Cubic" Magnetic Mediua      .    .        163 

REFERENCES   168 

BIOGRAPHICAL NOTE  174 



I . 



■4- 

TABLE OF CONTENTS 

Page 

ABSTRACT  2 

ACKNOWLEDGEMENTS  3 

TABLE OF CONTENTS  4 

LIST OF SYMBOLS  6 

LIST OF FIGURES            14 

INTRODUCTION  18 

CHAPTER I        SMALL SIGNAL EQUATIONS OF MOTION OF A 
MAGNETOELASTIC FERROMAGNET       ... 22 

1.1 Small Signal Equations of Motion      ... 22 

1. 2   Small Signal Power Energy Conservation 
Theorem  25 

CHAPTER II      PROPAGATION OF Z-DIRECTED MAGNETO- 
ELASTIC WAVES IN A GENLRAL CRYSTALLO- 
GRAPHIC DIRECTION  28 

2. 1   The Euler Angles  28 

2. 2 Eigenvalues and Eigenmodes of Spin Waves 
Propagating Along an Arbitrary Crystallo- 
graphic Direction  33 

2. 3   Dispersion of Z-Directed Magnetoelastic 
Waves in an Elastically Isotropie but 
Magnetoelastic Anisotropie "Cubic" Medium 37 

CHAPTER III     EXPERIMENTAL RESULTS OF Z-DIRECTED 
MAGNETOELASTIC WAVES USING MICROWAVE 
TECHNIQUES  48 

3. 1   Experimental Setup  49 

3.2 Experiments with Spin Wave Injections 51 

3. 3   Experiments with Acoustically Injected 
Longitudinal Elastic/Spin Waves       ... 62 

3. 4   Preliminary Results on Longitudinal/Shear 
Elas*ic Conversion via Spin Waves in 
Spatially Varying Fields  76 



-5- 

Page 

CHAPTER  IV 

CHAPTER  V 

THEORY OF LIGHT DIFFRACTION FROM 
COHERENT ELASTIC AND SPIN WAVES    .     . 83 

4. 1    Introduction  83 

4. 2   The Macroscopic Theory of Light 
Diffraction  85 

4. 3   Characteristics of Light Diffraction from 
Coherent Elastic Waves   95 

4. 4   Characteristics of Light Diffraction from 
Coherent Spin Waves         105 

EXPERIMENTAL RESULTS OF LIGHT 
DIFFRACTION FROM COHERENT ELASTIC 
AND/OR SPIN WAVES IN YIG  113 

5. 1   Setup for Light Diffraction Experiments 114 

5. 2   Infrared Bragg Scattering from Shear 
Elastic/Spin Waves   122 

5. 3   Strong Infrared Bragg Scattering from 
Coherent Spin Waves  132 

5. 4   Measurements of Temporal Longitudinal 
Elastic/Spin Wave Conversion Efficiencies       143 

Appendix I Effective Anisotropy Fields and Small 
Anisotropy Tensor Nan for Cubic Crystals 148 

Appendix II         The First Order Magnetoelastic Constants for 
an Arbitrarily Oriented Coordinate System in 
Cubic Crystals   152 

Appendix III       Dielectric Tensor of a "Cubic" Magnetic 
Medium  163 

REFERENCES  168 

BIOGRAPHICAL NOTE  174 



-6- 

LIST OF SYMBOLS 

(other ad hoc notation is explained in the text where it occurs) 

Symbol Definition 
Place of symbol or 
first occurrence 

a                      - half length of major or minor axis of 
the elliptical spin wave polarization 

Eqs,   (2. 16) and 
(2. 17) 

a height of the light beam cross section 

k2 

Fig.   4. 2 and 
Eq.   (4. 14) 

A Eq.   (2, lib) 

b half length of major or minor axis of 
the elliptical spin wave polarization 

Eqs.   (2.16) and 
(2.17) 

bfijk 
first order (in strain) magnetoeiastic 
constants 

Eq.   (A2.1) 

V small signal first order magneto- 
elastic constants 

Eqs.   (1. 3d) and 
(A2.8). 

bl'b2 
non-zero first order magnetoeiastic 
constants of cubic crystals 

Eq.   (A2.6) 

Vbs z-directed longitudinal and shear 
magnetoeiastic frequency splittings, 
respectively 

Eq.   (2.37) 

h2   h2 
z-directed longitudinal and shear 
magnetoeiastic couplings,   respectively 

Eq.   (2.28) 

BiJ 
dielectric impermeability tensor Eq.   (4.22) 

6B.. 
1J 

small change of dielectric imperme- 
ability 

i                   k2                      2 
w3 + (N22 + k2)wM + Xek   WM 

Eq.   (4.23) 

B Eq.   (2. lib) 

cijki 
second order elastic constants Eq.   (1.4) 

cll'c12' 
C44 

non-zero second order elastic con- 
stants of cubic crystals 

Eq.   (1.4) 

c                      = velocity of light in free space Eq.   (4.1) 
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Symbol Definition Place of symbol oi 
first occurrence 

c                     = width of the light beam cross section Fig.  4. 2 and 
Eq.  (4.14) 

c a proportionality constant Eq.   (4. 31b) 

C *M{Nl2 + klk2/k2) Eq.   (2. lid) 

D o mass density of the medium Eq.   (1.4) 

D diameter of a YIG rod Eq.  (3.1a) 

e rf electric field vector Eq.   (1.1) 

E optical electric field vector Eq.   (4.1) 

s1 
electric field of the incident light Eq.  (4.7a) 

Eo'   Eo 
electric fields of the incident and 
diffracted light,  respectively 

Eq.  (4. 11) and 
Eq.   (4.30). 

E^') profile of the light beam Eq.   (4.11) 

K' 4    ■ vertically polarized (along x-axis) and 
horizontally polarized (along z-axis) 
electric fields of the incident light, 
respectively 

Fig.  4. 2 and 
Eq.  (4.30) 

Ev±' EH± 
vertically polarized (along x-axis) and 
horizontally polarized (along z-axis) 
electric fields of the diffracted light, 
respectively;   the subscript (±) denotes 
whether the diffracted light is upshifted 
(+) or downshifted (-) in frequency with 
respect to the incident light 

Fig.  4. 2 and 
Eq.  (4. 30). 

r maenetoelastic force density (related 
to K') 

Eq.  (1.4) 

? me small signal magnetoelastic force 
density 

Eq.  (1.5) 

f 2^- frequency 

f'  fkM 
"linear" magnetooptic coefficients Eqs.   (4.40c) 

and (A3. 9) 

^ijki' ^mn 
"quadratic" magnetooptic coefficients Eqs.  (4.40b) 

and (A3. 13) 



Symbol Definition ^lace of symbol or 
first occurrence 

«' small signal effective magnetic field Eq. (1.2) 

■{►an ^ex 
h    , h    , small signal effective magnetic aniso- 

tropy,  exchange and magnetoelastic 
fields,   respectively 

Eq. (1.2) 

t small signal Maxwellian magnetic fiele Eq. (1.1a) 

H optical magnetic field vector Eq. (4.1) 

H^r). H^z)  = internal bias magnetic fields Eq. (1.3a) 

So' Ho external bias magnetic fields Eq. (1.3a) 

Hdem = 

-NMM 

demagnetizing field along the static 
magnetization direction 

Eq. (1.3a) 

„an     an 
H3 'HM 

effective static anisotropy fields along 
the static magnetization direction 

Eqs.   (1.3a) 
and (Al. 5c) 

(z-axirf or x -axis) 
•5 

Hc (HcS)         = the value of the applied field for which 
a longitudinal (shear) magnetoelastic 
crossover point is in the mid-point of 
the long axis of an axially magnetized 
YIG rod or bar 

Section 3. 3a 

H^z) spatial field gradient at coordinate z Eq. (3.3) 

"crit'    crit" critical spatial field gradients for 
longitudinal and shear magnetoelastic 
coupling,   respectively 

Eq. (3.2) 

Hcrit critical temporal field gradient for 
longitudinal magnetoelastic coupling 

Fig. 5.13 

HT height of a YIG bar Eq. (3.1b) 

Jeff effective current density Eq. (4.2b) 

t(k) wavevector (wavenumber) of the 
elastic waves,   spin waves,  or elastic/ 

Eqs.   (2.7) 
and (2.21) 

spin waves 

VkL)          = wavevector (wavenumber) of the 
incident light 

Eq. (4.7) 
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1        Symbol Definition f Place of symbol or 
i     first occurrence 

fh ^l)         = wavevector (wavenumber) of the 
diffracted light 

Eqs.   (4.12) 
and (4.13) 

Kj. K2 magnetic anisotropy constants of cubic 
crystals 

Eqs.   (Al.l) 
and (2.15) 

L length of a YIG rod or bar Eq.   (3.1a) 

L        (S         ) cros    cros 
longitudinal (shear) magnetoelastic 
crossover point 

Fig.   3.2 

\m(r,t) small signal magnetization vector 

(m, M ^ 0) 

Eq.   (1.1c) 

m small signal magnetization amplitude Eq.   (4.41) 

M saturation magnetization Eqs.   (1. 2) and        \ 
(4.1) 

h index of refraction in an Isotropie 
medium 

Section 4, 1 and      j 
Eq.   (4.20)                1 

rr nd index of refraction pertaining to the 
incident and diffracted light 
polarization,  respectively 

Eqs.   (4. 6) and        j 
(4.7) 

k small signal anisotropy tensor Eqs.  (1.3b) and     \ 
(Al. 6)                        j 

N:an 

1J 
small signal effective anisotropy tensor Eq.   (Al. 9)                i 

Pa 
acoustic power density Eq.   (4.36)                j 

PA 
power of a circular acoustic beam Eq.   (4,37)                 1 

r polarization Eq.   (4.1)                   j 

peff effective polarization Eq.   (4.3b)                1 

p   p   = photoelastic constants Eqs.   (4.23) 
and (4. 24)                | 

Peff 
effective photoelastic constants Eq.   (4.36)                | 

u r position vector from an origin to the 
observation point                                            j 

Eq.  (4. 6) and 
Fig.  4.1 

J 
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Symbol Definition Place of symbol or 
first occurrence 

-♦i r 

.4     -¥ 

position vector from an origin to the 
illuminated volume 

Eq.   (4. 6) and 
Fig.  4.1 

-» 
1 -♦ -»1 r-r 

unit vectors Fig.  4.1 

^total small signal total Poynting vector Eq.   (1. 10) 

^elas ^m s      .s   .   _ small signal Poynting vectors of 
elastic,  magnetic and magnetoelastic 
waves,  respectively 

Eqs.   (1.11) 
and (1.13) 

skr Sn symmetrical strain tensor Eqs.   (4.23), 
(4.24) and (A2.1) 

S        (L        ) cros    cros shear (longitudinal) magnetoelastic 
crossover point 

Fig.   3.2 

t time Eqs.  (1.1) and 
(4.1) 

t' retarded time Eq.   (4.6) 

f.   T* transformation matrix and its 
transpose 

Eqs.   (2. 4) and 
(2.2) 

T                                            B 2iTEL+JTSL+2kTES^TSS Eq.   (3.4) 

TEL' TES    = time taken by a longitudinal and shear 
elastic wave packet to travel the 
length of a YIG rod 

Eq.   (3.4) 

TSL' TSS      = round trip time of flight of a longi- 
tudinal and shear elastic/spin wave 
from and back to the turning point 

Eq.   (3.4) 

T turning point Fig.   3.2 

Vg 
group velocity Eq.   (3. 5) 

vk group velocity of spin waves Fig.   2.5 

v                     = 
P 

group velocity of (longitudinal or shear) 
elastic waves 

Eq.   (3. 3) 

vrvs group velocities of longitudinal and 
shear elastic waves,   respectively 

Eq.   (2.26) and 
Fig.   2, 5 
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Symbol Definition Place of symbol or 
first occurrence 

\v',  w width and effective width of the 
acoustic or spin wave in the plane of 
incidence,   respectively 

Eqs.   (4.14) and 
(4.21) 

|WD 
1 

width of a YIG bar Eq.   (3.1b) 

Wtotal 
small signal total energy density Eq.   (1. 12) 

w     , w     , 
an     m 

me     elas 

small signal anisotropy,  magnetic, 
magnetoelastic and elastic energy 
density,   respectively 

Eqs.   (1. 3b), 
(1.6),   (1.8) and 
(1.7) 

W     , W an      me 
anisotropy and magnetoelastic energy 
density,  respectively 

Eqs.  (Al. 1) and 
(A2.1) 

(x, y. z) 

a coordinate system transformed from 
the "cubic-edge" coordinate system 
through the Euler Angles ((p.Q,^) 

Eq.  (2. 1) and 
Fig.  2.1 

zcr' 

z^,  zs        - er      cr 

Ztp 

coordinate of either longitudinal or 
shear magnetoelastic crossover point; 
coordinates of longitudinal and shear 
magneotelastic crossover points, 
respectively; 
coordinate of the turning point 

Eq.  (3. 6) and 
Fig.  3.2 

Eq.  (3.3) 

Mx 
ax(=   M^ 

M 

VT   = 
M

z 

the direction ^osines of the magnetiz- 
ation 

Eqs.   (4.40b), 
(4.40c) and (4.41) 

a spin wave loss in db/^sec Eqs.  (3.7) and 
(3.11) 

a the angle between the diffracted light 
beam and the wavefronts of elastic or 
spin waves 

Eq.  (4.15) and 
Fig.  4.2 

ß the angle between the diffracted light 
beam and the plane of incidence 
(y-z plane) 

Eq.   (4.15) 

y gyromagnetic ratio Eq.   (1.2) 
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Symbol Definition Place of symbol or 
first occurrence 

A eff 
6eii l2 small change of the effective dielectric 

tensor Eq.   (4.12b) 

Äveff 

6xij small change of the effective dielectric 
susceptibility tensor Eq.   (4. 8) 

^ 
eff an abbreviated 6f.. 
1J 

Eq.   (4.21) 

Ag ^11 ■ g]2 ■ 2g44 Eq.   (4.46b) 

€ permittivity Eq.  (1.1) 

€ dielectric constant Eq.   (4.1) 

-»eff 
C effective dielectric tensor Eq.   (4.3c) 

e an abbreviated c Eq.   (4.22b) 

T? spatial or temporal magnon-phonon 
conversion efficiency 

Eq.   (3. 6) 

/ spatial magnon-longitudinal phonon 
conversion efficiency 

Eq.   (3.7) 

^L 
the efficiency of conversion from shear Eq.   (3.11) 
elastic waves to longitudinal elastic 
waves via spin wave coupling 

eB 
incidence angle or Bragg angle Eqs.   (4.15). 

(4.20) and 
Fig.   4.2 

Xe 
exchange constant Eq.   (1. 3c) 

\ wavelength of light in free space Section 4.1 

A wavelength of spin or elastic waves Section 4. 1 and 
Eq.   (4. 19) 

Mo free space permeability Eq.   (1.1) 

ß permeability of the medium Section 4. 2 
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Definition Place ot symbol or 
first occurrence 

«. (i.n.0 

((p.d.iii) 

«eff 
X 

w = 2jrf 

00 M 

to.. 

CO, 

COr 

wr ws 

WL'  ^L 

the coordinate system in which the 
axes are along the cubic edges of cubic 
crystals 

small signal elastic displacement 
vector 

the Euler Angles 

effective dielectric susceptibility 
tensor 

microwave angular frequency 

spin wave angular frequency 

-yu   M 

-Vu   H. 'po    i 

2 2 2 
A cos  ij> + B sin ^ - C sin 2^ 

2 2 2 
A cos  ^ - B sin  ^ + C sin 2ty 

angular frequencies of longitudinal and 
shear elastic waves,  respectively. 

angular frequencies of the incident and 
diffracted light,  respectively 

Eq.  (2. 1) and 
Fig. 2.1 

Eq.  (1.4) 

Eq.  (2.2) and 
Fig.  2.1 

Eq.  (4.3a) 

Eq.   (2.21) 

Eq.   (2.7) 

Eq.   (1.2) 

Eq.  (2.10a) 

Eq.  (2.18) 

Eq.  (2.18) 

Eq.  (2.26) 

Eqs.  (4.7) and 
(4.13) 
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INTRODLJCTION 

In the recent past,  the propagation of magnetoelastic waves in low 

loss,   saturated ferrimagnetic crystals has been a subject of great 

interest because of their potential uses in compact microwave signal 

processing devices.     For example,  frequency filtering,   variable delay, 

gating,  pulse compression and expansion are all possible operations. 

However,  their practical development requires additional information 

about the spin wave channel of power flow,  together with its coupling to 
DO 

the well understood elastic wave channel.     In 1961,  Schlbmann 

predicted that spin waves could be excited in non-uniform magnetic bias 

84 fields.     Shortly afterwards,  Eshbach      reported,  on experiments with 

a normally magnetized yttrium iron garnet (YIG) disk in which the 

magnetic field is non-uniform,  the excitation of spin waves by rf magnetic 

fields.     He further indicated that the excited spin waves travel toward 

lower magnetic fields with increasing wavenumbers and eventually 

convert into shear elastic waves.     Since then,  extensive studies in YIG 

have been carried out on the shear elastic/spin waves propagating in 

both the spatially varying magnetic fields  '     '       and temporally varying 
o   i o   of) 

magnetic fields.   '     ' It was later found that when the applied field is 

not along the propagation direction of the shear elastic/spin waves,  the 

losses increase tremendously.      This led to work on the stability of spin 

wave trajectories.     These studies were,  however,  handicapped by the 

lack of a powerful experimental tool.     Light probing appears to be a 

convenient and potentially powerful method,   since the technique has 

already been widely developed to investigate elastic waves.      However, 

in the case of YIG, which has a transparent window between 1. 1 and 6 
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microns,  the technique is of much reduced power due to the compar- 

atively weak light sources and low sensitivity detectors available in this 

wavelength range.      Besides,   In contrast to the exhaustive work already 

56  74-79 done on elastic waves,   very little'   ' has been done with optical 

spin wave interactions.      Accordingly,   one of the prime goals of this 

thesis is to provide improved understanding of such interactions, 

A study of the coupling of the longitudinal elastic waves and spin 

waves is also a major- topic,   since in practice it is easier to fabricate 

an efficient longitudinal piezoelectric transducer than a shear one.     The 

lack of prior experimental investigations in this case is attributable to 

the fact that in a cubic crystal the coupling vanishes identically whenever 

the wave propagation is simultaneously parallel to the magnetization 

vector and any one of the three commonly employed principal 

(100, 110, 111) crystallographic directions,   along which the elastic waves 

propagate as pure modes.     Transverse      or obliquely magnetized 

YIG rods of appropriate orientations do provide the longitudinal coupling 

1 3 but the defocussing effects      limit this approach. 

1 5 Morgenthaler,       in view of the fact that YIG is nearly elastically 

Isotropie,  first proposed that the longitudinal magnetoelastic coupling 

for waves propagating along the dc magnetization vector may be obtained 

if th    propagation direction is not chosen along any one of the principal 

directions (100, 110, 111) but rather along a direction chosen to optimize 

the longitudinal magnetoelastic coupling.     He found that the direction 

is in a fl 10} plane at an angle of 25. 52    from a (100) axis.     Subsequently 

in our experiments,       using a rod oriented in a {100} plane at (22. 5  ) 

from the (100) axis which provides about 90% of the maximum frequency 

splitting,  we have indeed observed the spin/longitudinal elastic wave 
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propagation.     Similar observations were also reported by Lewis, u    who 

used a YIG rod oriented in a [100] plane at 20    from the <100) axis.     This 

opened up the possibility of studying not only the various phenomena of 

longitudinal elastic/spin waves in spatially and/or temporally varying 

fields,   similar to the shear wave case,  but also the conversion of longi- 

tudinal elastic waves tu shear waves,  and vice versa,   via spin wave 

coupling.     This is the second topic to which this thesis is devoted. 

In Chapter I,  the equations of motion for the coupled magnetic and 

elastic system are reviewed,  in order to provide all the necessary 

equations needed in the following chapter.     In Chapter II,   Morgenthaler's 

results are rederived and summarized.     In Chapter III,   extensive 

experimental studies of longitudinal and shear elastic/spin waves,  in 

spatially and/or temporally varying magnetic fields,  are described. 

Topics include variable delay of magnetically injected spin/longitudinal 

elastic waves,  and conversion from the longitudinal elastic to spin waves 

in spatially varying fields.      Frequency shifts,   and pulse compression of 

the longitudinal elastic/spin waves subjected to pulsed magnetic fields 

have also been obtained.     Some preliminary results on shear/longitudinal 

elastic wave spatial conversion via spin wave coupling are presented 

and discussed. 

In Chapter IV,  a review of light diffraction is given.      It is then 

7 R 
followed by a new theory      describing the phenomena of coherent light 

diffraction from coherent spin waves.     The theory,   in contrast to prior 

'if? 
work of Auld and Wilson, ^    has appropriately taken into account all the 

terms linear in the small signal spin amplitudes for the perturbed 

dielectric tensor;   the latter is the one that gives rise to the light 

scattering from spin or elastic waves.     As a result,  the theory predicts 
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that the intensity of the light diffracted from spin waves,  unlike that from 

elastic waves,   depends on the incident light polarization and whether the 

diffracted light Is upshifted or downshifted in frequency.     This appears 

to explain satisfactorily not only our experiments described in Chapter V 
en     en 

but also observations that previous authors    '       reported as "anomalous. 

In Chapter V,   experimental work on light diffraction from elastic 

and/or spin waves is reported.     Smith's work    '       on light diffracted 

from shear elastic/spin waves was repeated here,  but,  unlike his work 

in which he used large microwave power input and therefore non-linear 

interaction probably occurred, the microwave power we used was much 

reduced and within the linear interaction.      From the experiments,  we 

showed that the anomaly he reported indeed comes from the interaction 

of light and spin waves. 

In section 5. 3,  we report the first direct observation of strong 

Bragg scattered infrared light (1150 nm) from microwave coherent spin 

7 R 
waves. The experiments utilized coherent spin waves generated 

through efficient space-gradient conversion from longitudinal elastic 

waves;   the spin waves have negligible change of wavenumber,  are 

converted more rapidly (therefore with less loss) and the scattered light 

can easily be distinguished from that due to longitudinal elastic waves. 

The scattered light intensity is found to be dependent on the incident 

light polarization and the sign of frequency shift,   again in accord with 

our theory. 

Finally,  light scattering from spin waves has been used to measure 

the temporal conversion efficiency of longitudinal elastic waves to spin 

waves. 
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CHAPTER  I 

SMALL SIGNAL EQUATIONS OF MOTION OF A 

MAGNETOELASTIC FERROMAGNET 

In this chapter,   small signal equations of motion for the electro- 

magnetic,  spin,   and elastic system in a lossless magnetoelastic 

ferromagnet are reviewed briefly so as to provide all the necessary 

equations used in the later chapters.     Conservation theorems for small 

signal power flow are also discussed.      For more detailed,   in-depth 
1 - R 

discussion one may refer to many excellent articles. 

4-6 1. 1  Small Signal Equations of Motion 

In a lossless saturated ferromagnet insulator,  small signal equations 

of motion governing the magnetization vector and elastic displacement of 

the medium are described in terms of the interaction among electro- 

magnetic,   spin,  and elastic systems. 

For the electromagnetic system Maxwell's equations are: 

-♦ 
7 x li -   c|f   =    0 (1. la) 

7 x e + u Ir (1*+ m)    =    0 (1.1b) 

7 •   (A + m)    =    0 (1. 1c) 

7 •   (ce)    =    0 (1. Id) 

where the conductivity has been assamed to be zero,  the permittivity 

C is assumed to be a strain independent scalar,   and the 

■♦ 5   6 dilational variation of the small signal magnetization m is neglected.   ' 
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The vectors h,   e are the smalJ signal Mixwellian magnetic and electric 

field vectors and^   i« the free space? permeability. 

The linearized torque equation lor the small signal magnetization m 

is given by: 

"hi "   -"M'M   *   [ M—   ^ + h + h'j (1.2) 

where M = UTM is the static magnetization veccor,  m(r, t) the small 
.»     -♦ 

deviation from equilibrium (and m • M  =0),  w     = -yp M and y 
-♦   .+ 

gyromagnetic ratio (negative for electron),   H.(r) the total static magnetic 

-» ■♦an ■* 
field (applied II ,   anisotropy H,. ,  plus demagnetizing -N^M) inside the 

medium and h Maxwellian rf field;   the vector h' is an effective field 
dtAn 

which gives rise to torque density from magnetic anisotropy n    , 

■♦ex ^m(a 

exchange h     ,   magnetostriction h     ' and anything else.     The effective 

magnetic field components have been discussed in great de*   il by 

Morgenthaler.   '        In the simplest case,  where Isotropie exchange 

interaction is assumed and high order interactions neglected,  they can 

be written as (with the static magnetization vector in the +z direction): 

Hi   "   Ho-NMM+   HM (1-3a) 

.   aw 2 
h
an.   . J_       an      =      j;  (.N

an
m )     (1 = 1,2) (1.3b) 

Na.n =   Nan     (i ^ j) 

hfx=   \   V2m. (i = 1,2) (1.3c) 

hmez    . J_       rne    3   . i_   j;       b      A. (1,3d) 

^o   ami ^o ,(k = l    1JKaxk 

bijk   ^   bikj     (i = 1'2''   j'k = 1'2'3) 

The quantity N..   is the small signal anisotropy tensor,   \   the Isotropie 
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exchange constant,  w       the small signal magnetoelastic energy density, 

w     the small signal anisotropy energy density, p the displacement 
ein 

vector,  and b...  the first order (in strain) magnetoelastic tensor.     The 

small signal anisotropy tensor and tlie first order magnetoelastic tensor 

are discussed in detail,   respectively,   in Appendix I and Appendix II. 

For the elastic subsystem, use of the linearized Newton force law 

gives: 2 

Do—5-=   L       57-(ciiki ä?-)+f   (i^2'3)   d-4) 0 ar     j,M-i Bxj N ^^ aV    1 

where D   is the mass density of the medium,  c... . second order elastic 

constant tensor,  and f' the magnetoelastic force density (related to h') 

that includes first order electromagnetic and interaction forces.     In the 

cubic ferrimagnetic YIG, terms such as the magnetic body force are 

negligible;   therefore f is dominated by the linear magnetoelastic 

coupling and can be well approximated as: 

3     ^     ,   fcw      N       3 am, 

1 x 3 = 1^  Vi(^;    j.k.l  ^ 
(1.5) 

Equations (1.1),   (1. 2),  and (1.4) are a set of time-dependent 

coupled differential equations,  and in general are very complicated to 

solve.     Since in this thesis we are primarily concerned with the 

magnetoelastic region of the spectrum,  values of the wavenumber k are 

4        -1 on the order of 10    cm     .     In this range electromagnetic effects are 

small and the electric field e in Eq.  (1.1a) can be neglected to the first 

approximation.     This results in the so-called "magnetostatic 
7 

approximation",    which we will use throughout the thesis. 
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5 8  8 
1. 2   Small Signal Power Energy Conservation Theorem  '   ' 

The contributions to the small signal energy djnsity of the system 

described by Eq.  (1.2) arise from magnetic,  elastic,  and magnetoelastic 

terms.      The magnetic energy results from Zeeman,  anisotropy,  exchange, 

and dipolar contributions. 

w       .   1     (^)|r^|2 + 1        z     Na.nm.m. 
m        2nD\ M/ '     '        2 ^o.   .   ,    ij      i   j 

^■J  J "* -^ 

+ |Moyl^x|2+|vmy|2) + lMo|^|2 

(1.6) 

The elastic term contains the kinetic and potential energies 

w ,       --   ^D elas        2    o 
Sfi. 
at 

,    3 ap. ap. 
+ 5   L       ciikiäF-är- (1-7) 

The magnetoelastic component is 

2     3 ap. 
w-= ^ ^ Vmi st ^ 

Notice that the energy associated with the small signal electric field 

e is of higher order and is not included here.     In the Poynting vector, 

however,  the electromagnetic term is of first order and must be taken 

into account.     Therefore Maxwell's equations (1.1) give rise to the 

small signal electromagnetic Poynting theorem 

and (1. 4) to the small signal elastic Poynting theorem 

^elas      a '♦An 
at     elas at (1.10) 
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where 

In addition to the above two Poyntinjj theorems governing the electro- 

magnetic and elastic energy subsystems, one may also introduce other 

12  5 Poyntintr theorems '   '    for a material and a magnetoclastic subsystem. 

These conservation theorems will not be discussed here because no use 

of them will be made later. 

Finally the Poynting theorem for the total system is found by 

summing the contributions of all the subsystems.     In a time-varying 

5  6 
but spatially uniform magnetic bias field, the result is:  ' 

^|2. ?»H 

where 

„   "total    8wtotal     ,      ,J^|2 M^ 
7'S +--ät -2*o\M)*- (1-12) 

-♦total     .»     H      •♦elas   •♦m   -»me 
S = (e x h) + S        +S    +S (1.13) 

w.   .  ,   =   w       +   w ,       +  w_ (1.14) tote- an elas me 

The other small signal conservation law, namely the Stress- 
c    g 

Momentum Conservation, has been discussed by Morgenthaler '    and 

will not be repeated here.     It is sufficient to summarize the conclusions 

that one may draw from these conservation laws .     In a time-varying 

but spatially uniform magnetic bias field the propagation of either 

magnetostatic or magnetoelastic waves occurs at constant wavenumber 

and constant average small signal momentum but with variable frequency, 

average power and average energy.     On the other hand,   in a time 

invariant but spatially varying magnetic bias field the propagation of the 

waves occurs at constant frequency,   average power and average energy 
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6   8 hut with variable wavenumber,   and average small signal momentum,   ' 
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CHAPTBR II 

PROPAGATION OF Z-DIRECTED MAGNETOELASTIC WAVES 

IN A GENERAL CRYSTALLOGRAPHIC DIRECTION 

In the past,  numerous studies of shear elastic/spin wave interactions 

in single crystal YIG have been reported;" '      '        comparatively few 

scfin to have bcrn reported of the longitudinal elastu/spin wave coupling, 

1 2 and none until the recent work of Morgenthaler et al.      for the important 

case of wave propagation parallel to the magnetization vector (z-directed 

magnetoelastic waves).     This dearti of experiments is attributable to 

the fact that whereas in a cubic crystal the shear magnetoelastic coupling 

is present regardless of the crystal orientation,  this is not true for the 

longitudinal magnetoelastic coupling.     In lact, the latter vanishes 

identically whenever the wave propagation is simulatneously parallel to 

the magnetization vector and any on».» of the three commonly employed 

principal crystallographic direction:? <100, 110, 111).     Transversely 

magnetized rods of appropriate orientations can provide longitudinal 

magnetoelastic coupling but do not appear to be very useful because of 

1 3 strong defocusing effects. Although slight tilting of a <100) rod with 

respect to the magnetic field (magnetization vector) does allow thv.- 

1 4 observation of a longitudinal elastic/spin wave interaction,  defocusing 

13 fields limit this approach;  '    in addition,   such experiments are not 

easily analyzed. 

1 5 Morgenthaler     first pointed out that these problems may be over- 

come if the waves are allowed to propagate along the magnetization 

vector (z-directed) when the latter is parallel to some non-principal 

crystallographic direction chosen so as to optimize the longitudinal 

magnetoelastic coupling.     Although in this case the acoustic branch 
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elastic waves are in general neither purely longitudinal nor transverse 

(shear),  the elastic anisotropy of Y1G given by 

2 c 
-—      =     0.053 

Cll " 212 

is small enough so that they may be approximated as pure modes. 

12 
Subsequently we      reported the first experimental observations of 

longitudinal elastic/spin wave interaction.     These detailed experimental 

results will be given in Chapter III. 

In this chapter we will rederive the dispersion relations of magneto- 

elastic- waves propagating in an arbitrary crystallographic direction 

assuming elastic isotropy but magnetoelastic anisotropy.     This greatly 

simplifies the mathematical calculation and also provides a very good 

approximation insofar as longitudinal elastic/spin wave and/or 

degenerate shear elastic/spin wave interactions are concerned. 

However,   in the case where two non-degenerate shear elastic modes are 

involved, the calculation of shear elastic/spin wave coupling neglecting 

elastic anisotropy is quite poor owing to the comparable magnitude of 

elastic and magnetoelastic frequency splittings. 

We begin by studying the frequency spectrum of the uncoupled spin 

waves propagating in an arbitrary crystallographic direction.     After 

introducing magnetoelastic coupling and obtaining the dispersion 

relations of z-directed magnetoelastic waves,  we look for the particular 

crystallographic direction which will give the maximum value of the 

square of the longitudinal magnetoelastic splitting of frequencies 

(henceforth referred to as longitudinal magnetoelastic coupling).     This 

direction turns out to lie in a (110} plane,  at an angle of (25. 52  ) from 
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a (100) axis.     However,  the experiments to be described in the next 

chapter were done using a different crystallographic direction,  i. e.,  in 

a {100} plane at an angle of (22. 5  ) from a (100) axis.      In this direction 

the longitudinal magnetoelastic coupling is approximately 80% of the 

maximum value.      The latter direction was chosen because,   for 

simplicity,  the derivation was first carried out for the magnetization M 

constrained to lie in a {lOOj plane;   in this case (22. 5  ) is the optimum 

angle.      Finally it is shown that the longitudinal magnetoelastic coupling 
2 

is proportional to (b1 - bp)    (b..  and b^ being the ordinary magnetoelastic 

constants),  and therefore vanishes identically in the case of magneto- 

elastic isotropy,  i.e.,   D1 = b2. 

2.1   The Euler Angles17 

Throughout the entire thesis,  we always use a coordinate system 
-» 

((x, y, z) or (>:1, x„, x„)) in which the magnetization vector Mis along the 

positive z-axis (or x„-axis as the case may be).     This coordinate 

system is then related to the usual coordinate system (4,T],f) in which the 

cubic edges are chosen as the coordinate axes by the Euler Angles 

(<p.6,^).      The latter are defined in Fig.  2.1 as: 

x   =    Rzl(0) R „(8) RJp) J 

where       x    =    (x, y, z) or (x., Xg, x,) 

i =  (i.v.O 

The operator RJcp) denotes a rotation through cp about the J-axis,  and 

thus gives rise to a coordinate system (x",y",z");   the operator R ,,(6) 

denotes a rotation through 9 about the y"-axis and thereby transforms to 

a coordinate system (x^y^z1);   finally,  the operator R   t(^),   a rotation 
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Fig.  2.1     The Euler Angles 
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through 0 about the z'-axis takes one to the coordinate system (x, y, z). 

Corresponding to these three operators,  one defines a transformation 

»t matrix T   as: 

x    =    f^p.MVf (2.1) 

where 

Tl((p.e^)   =   Rz,(^) Ry'M Bj<p) 

cos0   sin^      0 

•sin0   cos0     0 

0 0        1 

cos©     0    -sinQ 

0        1 0 

_ sin9      0      cosQ 

cos<p   sincp     L 

•sincp   coscp    0 

0 0        1 
(2.2) 

cos^cosQcosp-sin^sin<p       cos^cosesin(p+sin^cosp     -cos^sine 

•cos^sinp-sini/jcos8cos^)    +cos0cos<p-sin^cosSsinp       sin^sing 

sinftcosp sinösinp cos9 

♦•t fft Since T   is orthonormal,  the inverse of T   is equivalent to the transpose 

of T*.   i.e.,  T. 

4     =     T(fl, d, \li)x (2.3) 

where for ^ = 0: 

f(<p,e.O) 

cos6cos<p    - sinp    sing cosp 

cosQ sinp      cos(p   sin© sirup 

■sinQ 

and in general for ^0: 

fiip.e.^)   = 
cos^cosScos^)- sin0sin<p 

cos4)Cosesin«p+ sin^osp 

-cos^sinö 

0        cosQ 

(2.4) 

-sin^cosecoscp- cosi/jsincp     sinecos<p 

-sin^cosesin(p+ros^cos<p     sinOsinp 

sin^sine cose 

(2.5) 
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2. 2   Eigenvaluea and Eigenmodes of Spin Waves Propagating 

along an Arbitrary Crystallographic Direction 

In this section,  the magnetoelastic interaction is neglected so that 

one may concentrate on the spin waves.      From Eq.   (1.2),   one may write 

(neglecting h       ) 

Sm. .H. v 

TT =   "WMXbrm2 -h2 -h2    -h2  J (2-6a) 

am« ,   H 

^t -%ix(-imi+Vhin + hix) ^6b) 

The magnetization M is rlong the positive x„-a}:is (or z-axis) and the 

coordinate system (x.., x„, x  ) used here is related to the "cubic-edge" 

coordinate system (4, TJ, C) by the Euler Angle ((p.Q.O) (i.e.,  with^ = 0). 

ex The quantities H.,  h.     and h.     are given before in Eq.  (1.3) 

(with NM -♦ N3 and H^J1 -»Hg" ).     The Maxwellian field t can be found 

through Eqs.   (1.1).     Since we are concerned here only with the eigen- 

value problem,  we assume: 

m<r,t)    =    Reime     K j (2.7a) 

R(r,t)      =    Re^he     K j (2.7b) 

** r-» j(wkt-^r)1 
e(r.t)      =    ReLle     k J (2.7c) 

where cü,   is the angular frequency and k = (k1, k„, k„) the wavevector. 

Substituting Eqs.  (2. 7) into Eqs.  (1.1) and (2. 6), while using the 

"magnetostatic approximation" mentioned earlier,  one obtains: 

h. = - ^Ä. = - —1   1    ™2  2 k     (i s 1. 2) (2. 8) 
1 k^     1 k^ 1 



-34- 

IT 
i _ 

k, k 

V^^-^r^l -[wl3 + (N2L'+7l)wM + Kk2wM]m2 (2-9a) 

am . k k k 

n1=[a,3 + (Nll+7)u5M+Vk2w]Vl]ml+WM(N12+-7!)m2 {2.9b) 

where 

an w3 = -^oHi = -yM0(H0-N3M + Hp (2.10a) 

In Appendix I.both H„    and N..   are derived in terms of the Euler Angles 

(<p,6, 0) and the anisotrcpy constant K..     Furthermore,  it is shown there 

that one may write 

4 = -yM0Hi = -yM0(Ho-N3M) (2.10b) 

Tan . 'an provided that N..   is replaced by N..    defined in Appendix T.     We rewrite 

Eq. (2,10) into a matrix form: 

where 

_d 
dt 

ml -C            -B 

m2 A              C 

i     = 
^ 

"1 

m, 

m. 

•M 

(2.11a) 

(2.11b) 

B    "    4 + <N22 + rl^M ^ WM k 
(2.11c) 

1    9 
c  = wM(Ni2 + ^2r> (2. lid) 

In order to find the major and minor axes of the elliptical spin 

polarization, it is helpful to introduce the third Euler Angle ty,  i. e.,  a 

rotation through ^ about the z-axis.     We thus write: 
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m. 

ni.. 

COS^j 

I sinäj 
L 

-sin^ 

COS^j 

m 

m 
(2.12) 

where m^ and m^ are along the major and minor axes of the ellipse. 

Substituting Eq.   (2. 12) into (2. Ha),   one obtains: 

_d^ 
dt 

ni 

m 

cos^  +sin^ 

sin^j     cos0 

■C 

A 

-B 

C 

cos0    -sin^j 

sin^       cos^ 

m 

2 2 
-C cos 2^ - | sin2ili (A- B) -(Acos ^+ Bsin ^- C sin2^ 

2 2 
A sin ^+ Bcos 4) + C sin2^        C cos 2 0 + |sin20(A - B) 

m! 

r 
m 

m 

(2.13) 

We now demand that the diagonal elements of the above matrix be equal 

to zero.      Thus: .   . 

'(Nl2^) 
tan20   =   1^- 

.2    ,2 

(N22-Nll) + (4-4) k      k' 

(2.14) 

where,  from appendix I, 

2K 
N11    =    \ [-|sin22e(l - isin22<p)] 

u M 

2K 
N 22 

y  M Mo 

2K 

1   r   3    .  2 n    •  20   1 ^ I-Tj-sm   9 sm   2(p\ 

N1 „   =    2    - ■ösin6sin28sin4^j 

(2. 15a) 

(2.15b) 

(2.15c) 

From Eqs.  (2.14) and (2.15),  one realizes that the angle ^ in general is a 

complicated function of 6,(p,  and the direction of propagation k/ | k|. 
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Solving Eq.   (2. 13) subject to the condition of Eq.  (2.14),  one obtains 

where 

mp = ii a cos (w, t - k- r) + i2 bsin(a), t - k- r) 

a 
b 

IV 
J 

(2.16) 

(2.17) 

and 

w. 

a) 

w, 

2 2 
A cos   ^i  +   15 sin  ^   -   C sin 2^ 

2 2 
A sin  I/J   +   Bcos  ty  +   C sin 2^ 

WjWg AB - C 

(2.18a) 

(2.18b) 

(2. 18c) 

A plot of W,   vs k (with k.  and k2 as parameters) is shown in 

Fig.  2.2.      It can be shown that the lower bound of the spin wave manifold 

is the z-directed waves (i.e.,  k.   = ^o = ^'     For YIGj   ^^ll^IVl1   N22ü;M 

and N.gWj^. are usually small compared to too at microwave frequencies 

Therefore one may deduce from Eq.  (2. 18c) that the upper bound of the 

spin wave manifold is approximately the waves with wavevector k 

-i 
perpendicular to the dc magnetization M. 

ciiM    (kj =k2=ü) 

Fig.   2. 2     Dispersion caa.gram for .«pin waves. 
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2. 3   Dispersion of z-Directed Magnetoelastic Waves in an Elastically 

Isotropie but Magnetoelastic Anisotropie "Cubic" Medium 

We assume hen1 that the coordinate system {x.,x^,Xr,) used here has 

been transformed through the Euler Angle (cp, 6,4)) from the "cubic-edge" 

coordinate system (4,77, j^K   so that the dc magnetization is along the 

/.-axis and the major and minor axes of the elliptical spin wave polariza- 

tion are along the x,  and x^ axes.     Then from Eqs.   (1. 2) and (1. 3),  the 

coupled spin wave equations of motion are written as; 

8 m. 

j, k=l Ko        J k 
(2.19a) 

3m. 
a;2mi - .\ 1 M-bijkärv j, k=l po       J k 

(2.19b) 

where u)1  and cüo are given by Eq.  (2.18) and b...   are given in Appendix II. 

For the Isotropie elastic case,  we can write from Eq.  (1.4) 

D »'Al 2      , v a /^i    ^2    *fiz\ 

3 
+    L 

am. 
.   ,    ,      kij Jx- J,k=l J  0  j 

(i = 1,2,3) 

(2.20) 

where c. .,   c. „ and c., are the elastic constants and c,,  — c. „ + 2 c44for YIG. 

As in Eq.  (2. 7) we assume 

A/I ^ m(r, t) 

p(r,t) 

R. [(Ä j(wt-k"r)" 

Re (fi. e 
j(«t ■t?>] 

(2.21a) 

(2.21b) 

where k = (k1, k», k-). 
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Substituting Eqs.  (2. 21) into Eqs.  (2,19), we obtain.• 

k = l ''o 

to. 

Z j b,, .k. 
j=l    11J J 

t 

-JUJ 

L Jb9ii,k. 
j-l 

21k"j 

1''1
Ju     "21k k 

k=l po 

^J^-^l^k k = l **o 

r>oa,2+c44k2 

+(c12"ta44)kl 

1 J
ir"

bi2kkk k=i M0     ^k  K 

(c12+c44)klk2 

J 

,   / u     2ok k 
k=l Ho 

3     ^M 
* J;rbi3kkk k=l ^o 

(c12+c44)k1k2 

m. 

"a 

^i 

£ jb19,k 
j-l 

12j  J 
L jb99.k. 
j = l 

22j j (c12+c44)klk2|-Dow2+c44k2 

l+(c12+C44)k2 
 i.  

(C12+C44)k2k3 8-2 

J=l        J  J      J=l J 
(C12+C44)klk3|l(cl2+C44)k2k3 Dow2+C44k2 

+(c12+c44)k3j 

fi-3 

(2.22) 

The eigenvalues can be found by equating the determinant of the square 

matrix in Eq. (2. 22) to zero.     Here we are interested only in z-directed 

waves;   therefore k,  = k2 = 0,  but k„ = k, and 

det 

Jw ^2 JMo
b213k JMo

b223k V0 
b233k 

wl -ju> 
Ho Cb"'k 

Jb113k Jb213k -DoW
2+c44k2 0 0 

Jbl23k Jb223k 0 
-Dow2+c44k2 0 

^b133k Jb233k 0 0 -D0a,2+c11k2 

(2.23) 
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Recall an Identity of ilctrrminants 

det 
W X 

Y Z 

det (W - XZ^Y) det Z (2.24) 

where W and Z in the diagonal must be square matrices.    Using (2.24) 

one obtains: 

u)  -GOjU-^Jiu;  -üO^) (w  -ws) 

k2 

oT) 

2 2 2 2      "1 "1      /   1 
.Wl(b113 + b123)+'*}2(b213 + b223)J;+b 

ui   k 
M 

2 2 

o^o 
(2.25) 

i(uJ'!-ws)L(b133b2i:rb113b233)2"f(b233b133-b233b123)2] 

4)(b123b213-b113l        ^ + (u;   -cu,) (b100b01 , - b, ^^223)''j 

where 

W/ V 11 
D (2.26a) 

cc v k 
s 

44 
/   D 

(2.26b) 
o 

/OÜn.tk' 

Note that the term containing {-=: j    in Eq.   (2. 25) is of fourth power of 
o^o 

the magnetoelastic constants b...   and usually negligible.      For YIG, 
1JK 

even near the region where either w— a),, (longituHinal crossover) or 

oo— oü, (shear crossover) the value of this term is at most 5% of that of 

other terms at microwave frequencies.    From Eq.  (2.25),  one therefore 

has; 
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OJ -u)k)(üj -UJ^XU; -Wg) = (co -40s)w^u)kb^ + (u) "W«)^^^ (2.27) 

where 9 
Lr 

o^o       i   k 

k2 

bs   =   üVd^T^l^lS^Ls^^^l^^S^       (2-28b) 
o^o      s   k 

Notice In Eq.  (2. 27) that when a) ^ to»,   i. e.,   near the longitudinal cross- 
2 

aver,  the term containing b, is dominant on the right-hand side,  while 
2 

when to — co ,  i.e.,   near the shear crossover,  the term containing b    is. 

2 2 The quantities he and b   are,  therefore,   defined as the longitudinal and 
Jt s 

shear magnetoelastic couplings,  respectively. 

Now let us proceed to maximize the longitudinal magnetoelastic 
2 

coupling b. by choosing an appropriate propagation direction with respect 

to the crystallographic axis (i. e. , a particular set of the Euler Angles 

(<p,e,^)where0 is a function of ((p, ö) given in Eq.  (2.14)).     In general, 

this problem is quite involved.      However,   the simple approximation 

'^1 — si may be made for z-directed waves in YIG at microwave 
tO., 

2 «j 
frequencies.      The ratio — is the square of the ellipticity of the spin 

w2 
waves (Eq.( 2. 17)) which,  for the z-directed waves,  is due to the aniso- 

tropy field alone and therefore very close to 1.     Using this approxi- 

mation one obtains: 

tok  fc Wj   s UJ2 (2. 29) 

2 2 The quantities b. and b^ can be rewritten as: 

k2 

'       bl " T,V ui: (b13. + ^ (2-30a) 
oro      P 
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^s " 15irjr[(bn3 + br23, + (b213 + b«3^ (2-30b) 

,2 
2  ,.   WM        1   P/U2       .  L2     v .  /L2       ,  L2 

o^o   ' 

.2     wMk2   1    „2 Thus we are Left with the problem of maximizing b, * •= — (b. oo+bp««) 

which,  according to Appendix II,  (A2.14),  is independent of ^, i. e., of 

rotations around the dc magnetization (z-axis).     From (A2. 14) in 

Appendix II we have: „ 

2   =   / V 
1 ^"o  -I 

where 

2      /ulMk    n.2 
iC (rT^ -)b2

ff (2.31a) \D„u    itiJ   eff 

ff" 

(bj-bj) 1     r 2 2 2 —5—   |sin'J4e+3in   2<p(|sin esin2esin40 
M 

2 4 2 ß 2     "I 
+ |sin 2<psin Qsin 2Q) + \ sin Qsin 4(p 

(2.31b) 

2 
A numerical analysis to maximize b f- in Eq.  (2. 31b) by choosing angles 

(<p,e) gives: 2 

<beff'max   '   1-26x-^^ ^^ 

when 

(cp) =     45° (2.32b) v max 

(e)max     ^     25.52° (2.32c) 

From Eqs.  (2.32b) and (2.32c),   one realizes that the propagation 

direction that optimizes the longitudinal magnetoelastic coupling for 

z-directed waves is in a fl 10} plane (((a) =45  )at25.52    from a i       it- »v 'max 

(100) axis;   the coupling is independent of the magnetic anisotropy 

(within the approximation of small spin wave ellipticity) and directly 
2 

proportional to the (b. - b«)  ,  which is a measure of magnetoelastic 

anisotropy.     When b1   - bn,   correspondinp to magnetoelastic isotropy, 

then the coupling vanishes identically. 
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Let us conclude this chapter by working out explicitly both the 

longitudinal and shear magnetoelastic coupling in the (100) and {110} 

planes. 

First of all,  we rewrite the angle ^ in Eq.  (2. 14) in terms of ((p,9) 

explicitly from Eq.  (2. 15) and under the condition of ^-directed waves 

(k= igk) as: 

tan 2^   =    2   
cose2Sin4cp __ (2> ^ 

4 cos ö - sin 2(p(l + cos Q) 

Then we have for 

(1)        {100} plane    {<p = 0) 

From Eq.  (2. 33), ty = 0,  letting co ~ ui* or w -- UJ   in the appropriate 

places,   and obtaining b...'s from Appendix II,  Table 2A. 2;   the result is; 

(üJ-ook)(w-u)i)(w-ws)   = ißw-ws)b^ + (oj-üj^bg] (2.34) 

where 2       2 
„ (b^-bj   sin   4rjoüMuJ 

b,(<p=0.e) =-^—^ 9     
M (2.35a) 

4cllMoM 

Jt      nc^     (b^C^Mb   -b2)  sin22 9l2}u;    u; 
hc((p=0,6) = ö        (2.35b) 

44 po 

and use has been made of: 

60 

Cll 

c44 

k2 

and 

Do^ 

k2 

DoWS 

(2.36a) 

(2.36b) 

2 2 A plot of hA 0, 6) and b (0,6) is shown in Fig.  2. 3 where values of b,  and 

b„ for YIG at room temperature are used for Fig.  2, 3b.     Notice the 
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maximum b. in the {100} plane occurs at sin 40 = 1 or 9 =-5- ((22. 5  ) from 
2 

a (100) axis) and the value of b. in this case is 80% of the absolute 

2 o maximum (bj in Eq.  (2. 32a).   Because of availability,  this "22. 5  " jf max MX/ J> 

direction is chosen in the experiments described in Chapter III.    For shear 

magnetoeiastic coupling,  the  minimum value in the {100} plane occurs at 

2 ff sin 2© = 1 orö=j((110) direction).     The numerical values of b. 

(longitudinal magnetoeiastic frequency splittings) and b , (shear magneto- 

elastic frequency splittings) for YIG at room temperature in the "22. 5""'' 

direction are given by: 

2ffbje(0,|)     =        5.53/7       (MHz) (2.37a) 

2jrb (0,|)     =        45. Sv7?       (MHz) (2.37b) 

where f is the frequency (in GHz). 

(2) {110] plane     (<p =|) 

From Eq.  (2. 33), il) = 0,   letting w ^ UJ,, or a) - a), in the appropriate 
X. Ö 

places and obtaining b.-.'s from Appendix II,  Table 2A. 2;   the result is: 
ijk 

(w-u^Kto-WjgKw-üJg)   =   K(w-ü38)b^  +  (co-w^bg] (2.38) 

where „ 

bj(<p=f,e)   =   —^ 11-(sin4e+ sinJesin2e) (2.39a) 
4 c. . u   M ll^o 

2 .     ff „v ^M'*'      r/u    ,3,.       u  v   .   20^2 
bg(p»J.e)   =    ^—^-[(bg+^bj -b2)sin'2e) 

+ (b2 + (bj -b2) sin2©)"] 

C44^oM " 2     2 (2.39b) 

2  ff 2 ff A plot of b. (j, 6) and b   ^-,6) is shown in Fig.  2. 4,  where values of b. 

and bg for YIG at room temperature are used for P'ig.  2. 4b.     The 
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numerical values of b. and b   for YIG at room temperature at 6 = 25. 52 

are given by: 

2^(1,25.52°)     =        6.20S1       (MHz) (2.40a) 

2frbs(|, 25.52°)     =        36. 1 v?       (MHz) (2.40b) 

Finally, the disoersion of z-directed waves (Eqs. (2. 34) or (2. 37)) is 

shown in Fig. (2. 5), where both longitudinal and shear magnetoelastic 

splittings are indicated. Note from Fig. (2.4) or Eq. (2.31b) that the 

longitudinal magnetoelastic coupling (or frequency splittings) vanishes 

identically when the propagation direction of z-directed waves is along 

any of the three principal crystallographic directions (100,   110,   111). 
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wk(k)M 

cük(0) 

Fig. 2. 5 Dispersion diagram for z directed magnetoelastic 

waves; the spin/longitudinal and spin/shear wave 

splittings (b. and b ) are shown very much 
x. S 

exaggerated.     The quantities v.,  v    and v,   are, 
x S K 

respectively,  group velocities of longitudinal 

elastic,   shear elastic and spin waves;   the branch 

numbers are referred to in the text. 
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CHAPTER III 

EXPERIMENTAL RESULTS OF Z-DIRECTED MAGNETOELASTIC 

WAVES USING MICROWAVE TECHNIQUES 

In this chapter, microwave experimental results are reported for 

both longitudinal and shear elastic/spin waves propagating in spatially 

and/or temporally varying magnetic fields. The calculations made in 

the last chapter are used to interpret the results. 

In the past,  a number of authors have studied shear elastic/spin 

waves in YIG using either spatially    '      or temporally varying magnetic 
Q      111 

fields.   ' Here similar studies on the previously-unexplored longi- 

tudinal elastic/spin waves were carried out.     (Some results have been 

12   19 10 reported.     '     )    Both magnetic injection from "fine wire"      and 

acoustic injection from piezoelectric transducers were employed. 

Variable delay and conversion of longitudinal elastic/spin waves in 

spatially varying fields are reported.     Frequency shifts and pulse 

compression of the longitudinal elastic/spin waves subjected to pulsed 

magnetic fields have also been obtained.     Finally,  some preliminary 

experiments on shear/longitudinal elastic wave spatial conversion via 

spin waves are presented and discussed.     Results of laser probing of 

magnetoelastic waves through infra-red Bragg scattering are reported 

laster in Chapter V. 

In all the experiments described here,  either a YIG rod or a 

rectangular bar, with the symmetry (or long) axis oriented in a {100} 

plane at an angle of (22. 5 ) from a (100) direction, hereon referred to 

as the "22. 5°" direction,  was used.     From the results of the last 

chapter it is shown that this crystallographic direction provides nearly 
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80% of the maximum /.-directed longitudinal magnetoelastic coupling 

(nearly l)0"o of the maximum longitudinal magnetoelastic splittings in 

frequency). 

3. 1   Experimental Setup 

Static bias magnetic fields were provided by an electromagnet and 

the pulsed magnetic fields were produced by means of a coil wound 

around the sample and driven by a current pulser.     All experiments 

were done at room temperature. 

The L-band microwave apparatus used is identical to that of 

20 Redende      and is shown in Fig.   3. 1.      It consists basically of a signal 

generator (Alfred 650 main frame and 651A rf head,   1-2 GHz) followed 

by two attenuators (HP 354A and Alfred El01) in tandem,   and a PIN 

modulator (HP 8731 B).     The PIN modulator is capable of producing rf 

pulses as short as 100 nsec.     A circulator (Sperry D52Lisl) was used 

when reflection measurements were made.     A stub tuner (Weinschel 

DS109) which follows the circulator for matching load impedances 

was taken out of the circuitry when short rf pulses were employed.     The 

receiver system consists of either a narrow-band superheterodyne or a 

wide-band system.     The former is composed of a local oscillator 

(GR 1021-P2),   a balanced mixer/preamplifier (LEL LAC-3-60-12-50, 

bandwidth 12 MHz) and a 60 MHz IF amplifier (LEL IMM-2-7480,  band- 

width 10 MHz),     The wide-band system is formed by a transistor 

amplifier (Avantek AM-1000-0,   G-25 db,   NF = 6 db),  followed by a TWT 

amplifier (HP 489A,  G = 35 db.   NF = 30 db),  and finally a tunnel diode 

detector (Aertech D104B).     The output of the tunnel diode is amplified 

by 40 db before being fed into a Tektronix 585 scope. 
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Fig.   3  1     Block diagram of L-band microwave circuitry. 



-51- 

.'i. 2   ExpiTinients with Spin Wave Irv ections 

The propagation of shear elastic/spin waves in an axially magnetized 

YIG rod has been studied theoretically by Schlbmann and Joseph, 

Auld et al.,       and experimentally by Eshbach and Strauss. The 

internal field H.(z) in a YIG rod or a rectangular bar is nonuniform and 

given before by Eq.   (1. 3a): 

H.(z)     =    H    +H^n+Hdem (1.3a) 

where H   is the externally applied field Ho'  is the effective anisotropy 

field and H is the demagnetizing field.     The variation of the letter 

along the axis of the rod or the long axis of the rectangular bar is given, 

22 respectively,  to first order in M/H   by the Sommerfeld formula      for 

the rod: 

rdem        M 
{2 L'Z     2 i ^-2^} (3.1a) 

where z = 0 is taken at one of the erd faces,   L is the length of the rod, 

23 and D the diameter,   and for the bar; 

Hdem = _ M£cot-lf(0j o z) + cot^fO), 0, -z)] 
IT " 

with (3.1b) 

UO n 7\    -   [(WD)2 + (HT)2 + (L-2z)21(L-2z) 
f(0'0'z)   "   — 2(WD)x(HT)          

where z - 0 is taken at the center of the long axis, L is the length of the 

long axis of the bar and HT, WD the transverse dimensions. The axial 

internal field profiles in each case are shown in Fig.  3.2. 

12 3. 2a   Spin/Longitudinal Elastic Wave Conversion 

The room temperature experiments were carried out at 1. 5 GHz 
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Fig.  3. 2    Internal field profiles of a YIG rod and a YIG bar, 

showing turning points (T) and crossover points 

(L and S ).     The distances between these cros cros 
points are very much exaggerated. 
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using a single crystal YIG rod (L = 0. 99 cm,   Ü = 0. 3 cm) with its 

symmetry axis oriented along the "22. 5  " direction and both end surfaces 

optically polished;   fine wire excitation was used.      The results are best 

explained with the use of the dispersion curve shown in P'ig.  2. 5 and the 

internal field profile shown in Fig.   3. 2a.     Within a certain range of 

values of the applied field,  there exists a point on the axis,  the internal 

field of which corresponds to -TJ— = 0 in the spin wave dispersion curve. 

This is the so-called "turning point" marked T in Fig.  3. 2a,   and is given 

by H.(z    ) = ui/ \yß \;   the quantity w is the frequency of the input micro- 

wave power.      The pulsed rf magnetic field generated by the input fine 

wire couples electromagnetic energy to spin wave energy at the turning 

24 
point via magnetostatic waves,       giving rise to a spin wave packet 

(branch 1 with k -♦ 0 in Fig.  2. 5).     This wave packet then travels from 

the turning point toward the end of the rod with constant frequency and 

increasing wave number,  accelerating as it encounters lower bias field 

values.     As the wave packet reaches the region of coupling with longi- 

tudinal elastic waves (longitudinal crossover point marked L in 6 ^ cros 

Fig.  3.2a),   a fraction of the energy is converted into phonon form 

(i.e.,   stays on branch 1 in Fig.  2. 5) and the rest stays in the magnon 

13 state (branch 2).     According to Schlömann and Joseph,      the fraction of 

energy which stays in the magnon state decreases when the ratio between 

the field gradient at the crossover region H'fz ) and the critical 

gradient H    .   increases.     The latter is given by: 

H*        =   -■ ff   ,  h2Jvn (3.2a) crit 2\yß \    i'   t 

's Similarly for the shear waves,  the critical gradient H    .. is given by: 
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H'S.f     =    öT
1—rb2/v (3.2b> 

For values of the applied field such that the longitudinal crossover 

region is near the center of the rod (small gradient),   most of the magnon 

energy excited at the turning point is converted into longitudinal phonon 

energy,  which is reflected at the end of the rod and therefore returns to 

the turning point.     The energy which remains in the magnon slate is 

later converted almost completely (because of the large shear critical 

gradient) into shear elastic form (at the shear crossover region marked 

S in Fig.  3.2a) to give rise to another reflected echo.     If the 

applied field is increased so that the crossover regions move toward the 

rod end,  the spatial field gradient at the longitudinal crossover region 

increases and the fraction of the energy which is scattered to branch 2 

increases,  resulting in a gradual trade-off between the amplitudes of the 

longitudinal and shear wave echoes.     Over the range of echo time delay 

(0. 8 to 6. 5 sec)   we have been able to employ, the spatial gradient of the 

field at the longitudinal crossover region varies from about the value of 

the critical gradient to ten times larger.     This allows the measurement 

of the magnon-phonon conversion efficiency versus field gradient in 

ranges not attainable before.     The results are reported in section 3. 3b, 

Typical data of delay time T versus dc magnetic field of the first longi- 

tudinal and shear echoes obtained at 1.5 GHz are shown in Fig.  3. 3 

together with the theoretical curves calculated with the assumption of 

zero frequency splittings at the crossover points.     The latter is given 

.     25 
by: 

z 

H2 % rerW >) (3-3) 
p ''^o1 tp 



-55- 

600 700 800 900 
H0 (0e) 

1000 MOO       1200 

[22.5°] rod,  f= 1.5 GHz 

Fig.  3. 3    Measured time delay of the first longitudinal (L01) 

and shear (SOI) echoes versus dc magnetic bias 

fields at 1. 5 GHz, 
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where v    (phonon velocity) is either v. (longitudinal phonon velocity) or 

v    (shear phonon velocity) as appropriate,  z     is the distance measured s xp 

from the end surface to the turning point,  f(= «—) is the frequency of the 

input microwave power,  and H'fz    ) is the field gradient at the turning tp 

point T.     As can be seen,  the agreement is very good for the longi- 

tudinal elastic waves. 

Further endorsement of the interpretation given to the observed 

echoes is provided by experiments with pulsed bias magnetic fields. 

The oscillograms of Fig.  3.4 illustrate some typical results.      The lower 

traces represent the video-detected microwave pulses from the super- 

heterodyne receiver and the upper traces show the current steps applied 

to the coil wound around the sample,  and both traces are synchronous. 

In Fig.  3.4(a) the first longitudinal and shear echoes can be seen with 

delays of 2.0 and 3. 6 sec,  respectively,  corresponding to a static 

applied field of 735 Oe.     (Notice for this applied field strength,   at the 

unsaturated rod end,  the magnetoelastic wave is dominated by elastic 

wave characteristics and hence hardly affected by the unsaturated 

magnetic medium.     However,  in the neighborhood of turning point and 

crossover points where the medium is essentially saturated,  the 

magnetoelastic wave is dominated by spin-wave characteristics and 

hence the theory is still applicable. )    The insertion loss of the longi- 

tudinal echo is 50 db.     Hignor-order echoes from longitudinal and shear 

branches which are discussed in the next section can also be seen at 

small delays.     In Fig.  3.4(b) a 10 Oe positive field step is applied when 

the branch 1 wave is on a return trip as a magnon (i.e.,  toward the 

point T in Fig.  3. 2a) and the branch 2 wave is still in the shear elastic 

state (i.e.,  near the end surface in Fig.  3.2a;   notice also that the 
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(a) 

(b) 

(c) 

(d) 

(e) 

Fig.   3. 4    Magnetoelastic echoes affected by a pulsed magnetic 

bias field.     The first pulse in each lower trace is 

due to leakage;   the second and third are,  respectively, 

the longitudinal (L01) and shear (SOI) magnetoelastic 

echoes (time scale 1 ^sec/cm).     A full explanation of 

cases (a) - (e) is given in the text. 
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receiver delays the echoes by 0. 3 ^sec,   so that the scope traces show the 

field steps advanced with respect to the echo time scale).     The result is 

that the field step produces a frequency-shifted echo,  because the spin 

waves subjected to a pulse field undergo a frequency shift with constant 
Q 

wavenumber,  while the phonon-like branch 2 wave is virtually unaffected. 

In Fig.  3. 4(c) the local oscillator is retuned to receive only the frequency- 

shifted echo.     In Fig.  3. 4(d) the field step is applied when the branch 1 

wave is in the longitudinal elastic state (away from the point L in 

Fig.  3.2(a)) and the branch 2 wave is in the magnon from (at the position 

between L       _ and S ) resulting in a frequency shift of the latter.     In c r o s c r o s 

Fig.  3.4(e),  the recovery of the frequency-shifted pulse is shown,, 

3. 2b   Identification of Echoes 

In addition to the two echoes due to longitudinal and shear elastic/ 

spin waves shown in Fig.  3. 4,  there are a number of echoes whose 

spacings change in an orderly manner as a function of the strength of the 

2 fi 
applied field H .     This is quite analogous to what Strauss and Eggers, 

27 using an experimental arrangement similar to that of Spencer et al., 

have observed;   they reported,  in a (111) YIG rod,  pulse sequences 

associated with both shear elastic and shear elastic/spin wave propa- 

gation.     In our case, however,  there are many more pulse sequences 

because of the presence of both longitudinal and shear magnetoelastic 

coupling.     A typical echo pattern from reflection measurements,  using 

the wide-band detection system,  is shown in Fig.  3. 5.      Following 

26 
Strauss,       let T.., « denote the arrival time of reflected echoes for an 

input pulse at t = 0.     The observed pulses then arrive at the times 

Tij^ =2iTEL + JTSL + 2kTES+iTSS (3-4) 
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REFLECTED    PULSES 

(0001) ORIGIN FROM  LONGITUDINAL CROSSOVER 

(0100) 

ORIGIN FROM SHEAR CROSSOVER 

Fig.  3.5    A typical magnetoelastic echo pattern observed with 

one-port fine wire excitation.     The first pulse in the 

trace is due to leakage;   the other two pulses are due 

to the longitudinal and shear magnetoelastic coupling 

(time scale 1 ^sec/cm).     A full explanation is given 

in the text. 
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where 

i   =   0,1,2,3.. 

j    =    1,2,3,-   • 

k   =   0,1.2,3, 

l    =    1.2.3. >   "■*   WJ 

The quantity T^q is the time taken by a shear elastic wave to travel the 

length of the rod.  Too the round trip time of flight of a shear elastic/spin 

wave from and back to the turning point,  Tp^   and T^T   the corresponding 

times for the longitudinal waves.     There are two sequences of echoes, 

one originating from the longitudinal crossover point,  the other the shear 

crossover point,  as indicated in Fig.  3. 5 and Fig.   3. 6.     Each sequence 

consists of a primary pulse (j = 1 or Ü = 1) followed by satellite pulses of 

smaller amplitudes (j, i = 2, 3, • • • ).     As the external magnetic field is 

varied at a fixed frequency,  the spacing between the primary pulses 

remains constant (i. e,, 2Tir,0 and 2TT7,T ),  but the spacings between the 

satellite pulses and the primary pulses in different sequences change. 

Indeed,  the behavior of the pulse spacings as a function of H   permits the 

identification of the various echoes.     In particular,   in the sequence 

originating from the shear crossover point,  the echo (0110) (the dashed 

line in Fig.  3. 6) starts as a shear elastic/spin wave from the shear 

crossover point S ,  converts to a longitudinal elastic wave at the r cros • 

longitudinal crossover point L on its return trip from the end surface, 

and finally,  after traversing the length of the rod,   returns back to the 

turning point (Fig.  3.2(a)).     Since the internal field profile Is concave 

downward, the corresponding echo (1001) does not exist. 

The echo sequence (00kj?) can be interpreted as due to incomplete 

conversion between branch 1 and branch 2 in Fig.  2. 5 at the longitudinal 
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crossover point      The echo sequence (ijOO) corresponds to what Strauss 

26 und Eggers     have reported.     Whil*.* they suggested that the origin of 

the sequence they observed is due to the polarization reversal of the 

elliptically polarized shear elastic waves at the end surface of the (111> 

YIG rod, we do not understand very well about the origin of the sequence 

(ijOO) we observed in the "22. 5°" YIG rod. 

3. 3 Experiments with Acoustically Injected Longitudinal 

Elastic/Spin Waves 

3. 3a   Propagation of Longitudinal Elastic/Spin Waves 

in Spatially Varying Magnetic Fields 

The room temperature experiments were performed using a YIG 

bar which measured 4 mm x 4 mm x 12 mm and had its long axis 

oriented along the "22. 5 " direction mentioned earlier.     A longitudinal 

elastic wave packet at 1. 5 GHz,  100 nsec duration, was launched using a 

sputtered  ZnO thin film piezoelectric transducer.     For H   < H , 

where VT is the applied field value for which the longitudinal crossover 

point L in Fig.  3. 2(b) is at the middle of the long axis (z = 0 in this 

case), the wave character becomes more spin-like as the wave 

propagates toward the center of the bar.     The delay difference TöT 

between the longitudinal elastic/spin waves and the longitudinal elastic 

wave can be calculated by: 

r       .-   4^L/2  dz   ,   2L (3_5) 

g 
4 

where the group velocity of the longitudinal elastic/spin wave v   (of 

branch 1 in Fig.  2. 5) can be derived from the dispersion relation in 

Eq. (2. 34).     Numerical integration of (3. 5) for the YIG bar yields the 

curve for the delay difference and group velocity versus applied magnetic 
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fieldfl shown in Kig.  3.7.     Notice the extremely small range of H 

required for the change of wave character from longitudinal elastic to 
o 

spin-'.ike,   compared to that of shear waves.        This is expected because 

the magnetoelastic coupling of the longitudinal waves is approximately 

two orders of magnitude smaller than that of the shear waves.    Experi- 

mentally it was also observed that the longitudinal elastic/spin waves, 

unlike the shear ones,   did not experience appreciable changes of the 

delay time because the change of group velocity is too abrupt to be easily 

20 observed (Fig.  3. 7).     In fact, the wave packets only showed some wave- 

form distortion because of dispersion,  as shown in Fig.  3.8.     In 

Fig.  3. 8(g) and the lower traces of Fig.  3. 8(10,   (i) and (j),  the input 

power has been increased by 13 db to show the distorted wave-form. 

The quantity H   pertaining to Fig.  3. 8 is estimated to be 716 Oe and is 

within 6% of the theoretical calculation.     For H     a H ,  i. e., when the o c 

longitudinal crossover point is inside the bar,  strong Bragg infrared 

light scattering from spin waves has been observed and will be described 

in Chapter V.     For H   > H ,  branch hopping between the upper branch 

(branch 1 in Fig.  2. 5) and lower branch (branch 2 in Fig.  2. 5) takes 

place (Fig. 3. 8,  (h) to (p).     We have taken advantage of this fact to 

measure the spatial spin/elastic wave conversion to be described in the 

next section. 

3. 3b   Spatial Longitudinal Elastic/Spin Wave 

Conversion Efficiencies^ 

In this section we present the results of direct measurements of the 

longitudinal elastic/spin wave conversion efficiencies at room tempera- 

ture in a single crystal,  axially magnetized YIG rod;   the rod used here 

is identical to the one described in section 3. 2. 
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676-»- 
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Fig.  3. 7    Delay of elastically injected longitudinal elastic/ 

spin wave packet and group velocity at the bar 

center as a function of applied magnetic field for 

a "22. 5 " YIG bar which measures 4 mm x 4 mm 

x 12 mm. 
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Although shear elastic/spin wave conversion has been studied 

11  21 theoretically by previous authors,     ' '   experimental investigation has 

been limited to the case of nearly complete conversion.     '     ' This 

's is due to the fact that critical field gradients H    .. of shear elastic/spin 

waves (Eq. (3. 2b)) in YIG are much larger than those obtainable in 

practice, while that,  H    ..,  of the longitudinal magnetoelastic splitting 

(Eq.  (3, 2a)) are much smaller and well within the reach of our experi- 

ments. 

We have used two different ways to measure the conversion 

efficiencies,  one with magnetic injections in which only the weak coupling 

region can be investigated,  and another with acoustical injections,  in 

which case nearly the entire range of interactions was covered;   the 

results in both cases are in reasonable agreement with the previous 

theory. 

I.   Experiments with Magnetic Injections 

The experimental arrangement is identical to that described in 

section 3. 2a.     The mechanism of the wave propagation has also been 

described in detail there.     It is sufficient to say here that when the spin 

wave originating at a turning point first reaches the longitudinal cross- 

over point (marked L in Fig.  3. 2a),  a fraction of the energy is 

converted into phonon form and the rest remains in the magnon state. 

The conversion efficiency was first studied by Schlömann and Joseph 

21 and later also by Kirchner et al. Their results indicate that the 

conversion efficiency 77 is related to the field gradient H'fz    ) at a 

crossover point in the following manner: 

H'     ,. cnt 

Tj    =    1 - e (3.6) 
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wherc H1    .   is the critical field gradient lor either longitudinal and shear 

waves (Eqs.  (3.2)) and H^z    ) is the field gradient at either longitudinal 

S. s (z     ) or shear crossover point (z     ).     In our YIG rod,  at 1. 5 GHz and er cr 

room temperature, the critical gradients for longitudinal and shear 

waves are,   respectively,  225 and 28, 500 Oe/cm.     The trade-off between 

the amplitudes of the longitudinal and shear wave echoes described 

earlier in section 3. 2a can best be described in terms of longitudinal 

elastic/spin wave conversion efficiency 77   in the following equation; 

m^']2   =  S-PC^TSS-T^)^] (3.7) 

w here Pq/Py   is the power ratio between shear and longitudinal elastic/ 

spin wave echoes,  2Tq„ and 2TqT  are,  respectively, the total time 

spent in the magnon state for shear and longitudinal elastic/spin waves, 

and a is the magnon loss (in db) per unit time.     We have neglected the 

phonon loss which is very small.     Figure 3. 9 shows the measured 

results, using a -- 12 db/^isec (full spin-wave linewidth 0.16 Oe) to fit 

21 the theoretical curve. Here the field gradients have been determined 

using the well-known Sommerfeld formula in Eq. (3. la).     Although the 

field strengths applied in the experiment were fairly low (from 650 to 

1200 Oe) the assumption that the magnetization of the YIG rod is 

saturated by the applied fields is in reasonable agreement with the 

argument given previously in section 3. 2a.     Note that the experimental 

points fluctuate about the theoretical value.     The fluctuation of the 

amplitudes of the magnetoelastic echoes, both longitudinal and shear, 

has been observed experimentally,  but its origin is not yet understood. 

The trade-off between the amplitudes of the longitudinal and shear 

elastic/spin wave is vividly demonstrated in Fig.  3.9, .     However, the 
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excessive magnon loss prevents us from going to the strong coupling 

region in this type of experiment,  because a small spatial field gradient 

(therefore a strong coupling) causes excessive attenuation due to long 

magnon delays.     Nevertheless,  we have managed to measure the 

conversion efficiency in a strong coupling region by using acoustically 

injected longitudinal elastic/spin waves. 

II.    Experiments with Acoustically Injected Longitudinal 

Elastic/Spin Waves 

In order to obtain the conversion efficiency throughout the entire 

range of the interaction,  experiments using acoustical injections were 

carried out.     The room temperature experiments were also performed 

at 1. 5 GHz using a ZnO transducer bonded to one of the two polished rod 

end surfaces.     The longitudinal acoustic echoes were observed as a 

function of the strength of applied field H  .     In both the low and high 

magnetic field values,  where the magnetoelastic interaction is small, 

the amplitude of the echo is marked.     As the magnetic field increases 

from zero to a point where the longitudinal crossover region is placed in 

the middle of the rod,  i. e.,   H    = H , the elastic echo disappears 
o        c 

(or rather is attenuated by more than 30 db) as a result of (almost) 

complete conversion into spin waves.     A further increase of the 

magnetic field moves the crossover region toward the end of the rod, 

thus also increasing the spatial field gradients.     The longitudinal 

elastic/spin wave conversion efficiency starts to decrease,  as observed 

by the increase of the amplitude of the longitudinal elastic wave echoes 

(refer to traces (h) to (p) in Fig.  3. 8).     In addition,  very weak spin/ 

longitudinal elastic echoes were also observed.     Therefore,  by 

measuring the attenuation of the first longitudinal elastic echo as a 



-70- 

function of the magnetic field strength,  one obtains the conversion 

efficiencies in nearly the entire range of the interaction.     Since there 

are actually two longitudinal crossover points in an axially-magnetized 

rod,  a longitudinal elastic disturbance makes conversion to spin waves 

at four occasions in making a round trip throughout the rod.      The 

experimental results are plotted in Fig.   3.10,  where use has been made 

of 

Po   =   P. (1  -TJV (3.8) 

Again the field gradients have been determined using the Sommerfeld 

formula in Eq.  (3. la).     The quantity P. is the power of the longitudinal 

elastic waves in the absence of the magnetoelastic interaction and P   is 

the one with interaction.     The result indicated in Fig.  3.10 is in fair 

agreement with the theory. 

3. 3c   Propagation of Longitudinal Elastic/Spin Waves 

in Temporally Varying Magnetic Fields 

Frequency shifts and pulse compression of the wave packets subject 

to pulsed magnetic fields are discussed below. 

Measurements of the frequency shifts of longitudinal elastic/spin 

waves subjected to both positive and negative pulsed fields were made 

using the axially magnetized YIG bar described earlier in section 3. 3a. 

A polycrystal YIG bar with identical saturated magnetization was 

attached to one end of the single crystal YIG bar to reduce the field 

gradients inside the sample,  while a thin film ZnO transducer was 

sputtered on the other polished end surfaces.     Positive frequency 

shifts of up to 3 MHz,  and negative frequency shifts of down to 1  MHz 

have been observed with a 95 Oe/Amp coil wound around the composite 
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structure.     The frequency shirts were observed with a Tektronix EL 20 

spectrum analyser used to study the first longitudinal elastic echo which 

was gated.     The small longitudinal magnetoelastic coupling makes the 

frequency modulation effect of the spatially non-uniform internal fields 

(with this composite structure) much stronger than in the case of shear 
i it 

waves. Consequently no very meaningful quantitative data have been 

29 obtained. 
■ 

Pulse expansion and poise group velocity modulation   with the 

longitudinal elastic/spin again was not successful.     The failure is 

believed to be due to the same causes that complicate the frequency shift 

measurements, as stated above.  I.e., non-uniform Internal fields and 

the comparative smallness of the longitudinal magnetoelastic coupling. 

Pulse compression of up to 10 db (considerably larger than with 
o 

shear waves ) has been achieved when the strength of the applied field 

is either H   < H   or H   > H .     The mechanism of pulse compression o c o C i- r 

with acoustic wave injections can be described in the following manner. 

A longitudinal elastic wave packet of spatial length AL. (and duration 

AT. = AL./vJ is generated by the ZnO transducer at the rod end.     As 

it propagates toward the center of the rod of increasing magnetic fields 

at fixed frequency but variable wavenumbers,  its character becomes 

more spin-like,  its spatial length shortens because of its decreasing 

group velocity, but its duration AT. remains unchanged.     When a 

negative pulsed field that opposes the dc magnetic field is applied, then 

the duration of the wave packet suddenly decreases (hence pulse 

compression) as its group velocity increases abruptly to that of 

longitudinal elastic waves v..     The duration AT, of the compressed 

pulse can be found according to: 
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v 
^Tf    »    ^ATj (3.9) 

vvluri' v i is Uu- >:i-»ii|) v.lm ity Df thi- rlusti» /spin wave packet at the time 

thi- pulsiMj iTliI is appliiil.      Kqiiatmn (:!.!») i an also bf derived from 

misuU'i »tu»n n   thi   I   •.   i. i  speit IM of the wave packet in wavMHUnbtri 

and fr-equeruies.     Notier that Eq. (3.9) indicates that the pulse 

rompression ratio (SI' /STA is always larger for the .ase of longi- 

tudinal waves than for the shear wave case. 

A tvpieal ease in whuh 11    > 11   is shown in Fig. 3.11.     The lower T o c " 

trace of Ftp. 3.11(a) indicates a longitudinal elastic echo which has gone 

through both crossover points inside the sample.     The upper trace of 

Fig.  3. 11(a) indicates a negative field pulse of 80 Oe that opposes the 

dc bias field.     In Fig. 3.11(b), the field pulse is applied after the wave 

train has been reflected from the free end of the bar and returned to the 

crossover point between the center and the free end of the bar.     In this 

ease only the trailing edge is compressed since the trailing edge is still 

spin-like (on branch 1 in Fig. 2. 5), while the leading edge has hopped 

(to bramh 2 in Fig. 2. 5) and is therefore elastic-like.     Similarly in 

Fig.  3. 1 He),  the field pulse is applied when the waves have left the 

transducer for the first time and reached the crossover point between 

the transducer end ind the center of the bar.     Again the trailing edge 

(on branch 1 in Fig. 2. 5) is more spin-like than the leading one (on 

branch 2 in Fig. 2. 5) and therefore is compressed.     This kind of 

compression again illustrates the small longitudinal magnetoelastic 

coupling and the comparatively larger effect of non-uniform internal 

fields on the longitudinal waves as compared to the shear waves. 

When II    < H,, a typical case is shown in Fig. 3.12.     In 
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(a) 

(b) 

(c) 

Fig,  3.11     Pulse compression of longitudinal elastic/spin 

waves subjected to pulsed magnetic fields.     The 

static magnetic field here is high enough so that 

there are crossover points inside the YIG bar 

(i. e.,  H   > H ).     Horizontal sweeps are from 

left to ri^ht with scale 0. 5 ßsec/cm (frequency 

1.5 GHz). 
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(a) 

(b)   Ho  ■ 713 Oe 

(c) 

Fig.  3.12    Pulse compression of longitudinal elastic/spin 

waves subjected to pulsed magnetic fields, when 

H   < H .     Horizontal sweeps are from left to o        c 
right with scale 0. 5 ^sec/cm (frequency 1. 5 GHz). 
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Fig.  3.12(a), the upper trace indicates the first longitudinal elastic echo 

(marked with an arrow) which emerged after passing through the length 

of the bar in the absence of longitudinal magnetoelastic coupling,  and the 

lower trace shows the negative field pulse of 10 Oe that opposed the dc 

bias field.     In Fig.  3.12(b),  H   is increased so that the longitudinal 

elastic echo (marked with an arrow) has been strongly attenuated.     In 

Fig.  3. 12(c),  the negative field pulse is applied just as the wave packet 

reaches the middle of the rod for the first time;   therefore the longi- 

tudinal echo is compressed as a whole for a compression ratio of 10. 

3. 4  Preliminary Results on Longitudinal/Shear Elastic Wave 

Conversion via Spin Waves in Spatially Varying Fields 

30 Comstock and Wigen     first proposed the spatial conversion from 

shear to longitudinal elastic waves,  and vice versa,  via spin waves in 

31 transversely magnetized rods.     Morgenthaler      also suggested longi- 

tudinal/shear elastic conversion via spin waves by means of time-varying 

magnetic fields.     Experimental studies of these two cases have not yet 

appeared in the literature.     Here we report some preliminary results on 

spatial longitudinal/shear elastic conversion via spin waves in axially 

magnetized single crystal YIG rod oriented along the "22. 5 " direction. 

The room temperature experimental arrangement is shown in Fig.  3,13, 

where a polycrystalline nickel ferrite rod with a saturation magnetization 

of 3000 Gauss is placed at one end of the YIG rod to obtain a mono- 

tonically increasing internal field profile.     A decreasing field profile, 

however,  exists at the end of the YIG rod near the air gap between the 

rods. A CdS thin film on each end of the rod served as an input shear 

wave and output longitudinal elastic wave transducer;   the input trans- 

ducer unfortunately does not have good discrimination against the 



-77- 

excitation of longitudinal elastic waves and therefore generates both 

shear and longitudinal waves at the same time,     A shear elastic wave 

packet (and also a longitudinal one), launched at the input transducer, 

travels toward the center of th<' rod.     When it reaches the shear cross- 

over point (marked S in Fig. 3.13 and corresponding to branch 2 in 

Fig.  2. 5), it is nearly completely converted into spin waves;   the latter 

then proceed to the longitudinal crossover (marked L in Fig.  3.13), 

whereupon part of the energy is converted into longitudinal elastic waves 

(corresponding to staying in branch 2 in Fig.  2. 5), which then move 

forward and reach the other transducer.     The delay timer, can be 

deduced from Eq.  (3. 3) as: 

Tt    =   TE+TS (3.10a) 

TE = ^+ ^ (3-10b, 

Ts ■   W%T (^ - ^ (3- '^ 

where Tp is the time duration spent in the elastic wave state, while Tg is 

the time duration spent in the spin wave state.     The conversion 

efficiency TJC^T  can be written as: 
a   L' 't 's 

crit "crit _a_        -_—■   

"S.L-^^-elH'lX.-elH8!) 
(3.11) 

crit 

m   ^84,343^.^1) 

where the phonon loss is neglected and a is the magnon loss (in dh/nsec\ 
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transmitting 
shear wave 
transducer 

receiving 
longitudinal 
wave 
transducer r brass 

^^'-^^^^^^^ 5^ 

Ni Ferrite 

^^^^v^v'^^^^^ 

pressure contact 

Fig.  3.13     Arrangement used to observe spatial conversion 

from shear elastic waves to longitudinal elastic 

waves via spin wave coupling. 

'f 's 
H the field gradient at the longitudinal crossover point, H the corres- 

ponding shear one. Both the delay times and the conversion efficiencies 

as a function of H    are plotted in Fig.  3.14, using 

5 db/jisec (3.13) 

and the values of the critical field gradient are given in Eq.  (3.2). 

Notice that as the external field (and hence the ficid gradient) increases, 

the delay time approaches the time required for the elastic waves to 

traverse the length of the rod.     Also there is a peak in the conversion 

efficiencies nCT   corresponding to an optimum H' (or H  ).     The experi- 

mental observations are shown in Fig.  3. 15.      Figure 3. 15(a) shows the 

reflection echoes from the input transducer,  where echoes marked L 
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(c)   554 Oe 
L      Stl    L 

(d) 609 Oe. 
L     14 L    21 

(g) 756 Oe 
I* 2 ♦ 

(h) 873   Oe 
L       S        L 

(e)  627 Oe 2 5  Oe 

Fig.  3.15    Oscillograms showing the spatial conversion from 

shear elastic waves to longitudinal elastic waves 
via spin wave coupling.     The horizontal traces 

are from left to right (time scale 1 ^sec/cm). 
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are longitudinal elastic ones while the echo marked S is the shear one. 

In Fig.  3.1 5,  from (b) through (i),  are the echo patterns picked up at the 

receiving transducer as a function of the external applied field H .     All 

the transmitted pulses marked either L or S ire the purely elastic longi- 

tudinal or shear echoes.     In Fig.  3. 15(c),  the crossover points come in 

the center of the rod and therefore almost all echoes except that corres- 

ponding to the shear one disappear as a result of conversion to spin 

waves.     In Fig.  15,  (d) through (e), there are two echoes marked by 

arrows;   the first one (with 1 on the arrow) is believed to come from 

shear/longitudinal conversion and does show a maximum amplitude in (f) 

as predicted in Fig. 3.14;   the second echo (with 2 on the arrow), which 

is always spaced at exactly one round trip time required for longitudinal 

elastic waves,  is thought to come from the reflection of the first echo 

at the receiving transducer.     In addition,  notice from (h) and (i) that the 

first echo (with arrow marked 1) eventually approaches the transmitted 

longitudinal echo and these two echoes disappear at the same time when 

the fields are increased further,  as in (i).     Notice that the decreasing 

field profile at the receiving transducer end merely inflicts some 

additional loss.     The loss is caused by the conversion from the trans- 

mitted longitudinal waves to spin waves at the longitudinal crosspoint 

near the receiving end. 

We are unable to make any quantitative comparison with the 

theoretical curve in Fig. 3.14 because of the unknown internal field 

profile for this composite structure and the poor qualities of the 

transducers.     However, we do not believe that these two echoes could 

come from the input longitudinal elastic waves for the following reason. 

In order to have variable delay times as a function of the external fields. 
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the longitudinal wave would have to make a round trip to and from the 

turning point plus a one-way trip as a longitudinal elastic wave from the 

transmitting transducer to the receiving one.     In this case the waves 

would spend more time as spin waves,  go through three times the longi- 

tudinal conversion point and therefore suffer more loss than the shear/ 

longitudinal elastic waves mentioned earlier.      Furthermore,  we do not 

expect to see a maximum amplitude of the echo,   such as in Fig.   3. 15(f), 

for this case.      For all these reasons,  we believe the first echo,  whose 

delay time varies with the external applied field,  does come from shear/ 

longitudinal elastic wave conversion via spin waves. 
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CHAPTER  IV 

THEORY OF LIGHT DIFFRACTION FROM COHERENT 

ELASTIC AND SPIN WAVES 

4.1   Introduction 

Scattering of light by means of elastic waves in liquids and solids 

has been extensively studied since the effect was first predicted by 

32 33 Brillouin in 1922      and observed by Gross      in 1930 in liquids where only 

34 longitudinal elastic vibrations are allowed.     In 1932,  Debye and Sears 

35 and, independently,  Lucas and Biquard,      performed the first succe:   ful 

diffraction of light from coherent ultrasonic waves.     This phenomenon, 

light inelastically scattered from an acoustic elastic wave, has come to 

be known as Brillouin scattering, while light inelastically scattered from 

optical phonons,  discovered in 1928 by C.   V.  Raman,      is known as 

37 Raman scattering.     Early work on Brillouin scattering     was used to 

determine elastic constants and to study thermal phonon distributions in 

various materials.     The advent of the laser in the sixties has greatly 

revived the intci est in light scattering and made the technique useful to 

probe not only elastic waves but many other elementary excitations such 

as plasma waves and spin waves. 

For Brillouin scattering,  it is necessary to distinguish between 

diffraction at the Bragg angle (Bragg scattering) and Raman-Nath type 

38 
scattering,  after Raman and Nath     who explained the spatial form of the 

scattered light in the experiments of Debye and Sears and Lucas and 

Biquard.     In Raman-Nath type scattering the light enters the medium 

parallel to the wavefronts of the elastic waves and the diffracted light 

appears on both sides of the primary beam in the form of equally spacec 



liiii's.     \\ illai'd '   (liscussi'il ihf dislitution between these two eases and 

showed thai  H' ;i)4n sralteriny results whenever the acoustic column is 

suffieiently wide sueh that the product of the optieai wavelength in the 

medium (\/ii) and the aeoustic beamwidth (w) is greater than the square 

oi the aeoustie wavelength (A) (i.e., -w >A ).     Indeed,  Rytov     has 

shown that the dil'fi ;u led light will appear in a single spot and will be a 

maximum when the light is ineident at the Mragg angle.     This is also 

indicated in Hrillouin's original work,  and it is the only case with whioh 

tnis thesis will be concerned.     There have been many excellent review 

41 -48 articles on Brillouin scattering,  on its theories, its application as 

49- r)r) 
a research   ool, '  and its practical applications such as in optical 

51 -55 signal processing. ' 

In this chapter,  the main objective is to review the theory of light 

scattering and generalize it to include the theory of coherent light 

scattering from coherent spin waves.     The generalized theory presented 

56 
here has essentially revised Auld and Wilson's (A-W) calculations'    by 

using the perturbed dielectric tensor, which is linear in small signal 

spin    ave amplitudes rather than in total crystal magnetization.     It 

appears to explain adequately not only our experimental results 

57   58 
descri' ed in Chapter V,  but also observations that previous authors   ' 

reported as "anomalous, " unexplained by A-W theory. 

Our new theory indicates that the characteristics of light scattering 

from coherent spin waves are quite different from scattering from 

elastic waves.     Unlike the case of coherent elastic waves, the scattered 

light intensity from coherent spin waves is found to be dependent on both 

the incident light polarization and the sign of the frequency shift (Stokes 

or anti-Stokes lines).     Also the intensity is independent of the direction 
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of the applied magnetic field. 

The chapter begins with a rather extensive review of the macroscopic 

theory of light scattering, followed by a description of the characteristics 

of light scattering from coherent elastic »vaves.     Finally, the theory of 

coherent spin wave light scattering is presented. 

Because of convention and convenience in comparing with the optics 

literature, the e.g. s. unit system is used throughout this and the next 

chapter. 

4.2   Die Macroscopic Theory of Light Diffraction 

Before starting our discussion,  a few words regarding magnetooptics 

59 in general are appropriate here.     Following Landau and Lifshitz, 

60 
Pershan     discussed in great detail that fact that,  especially at optical 

frequencies,  the propagation of an electromagnetic wave in any material 

can always be described in terms of an effective dielectric permittivity 

C       and^ = 1.     This c     , which incorporates whatever magnetic 

characteristics a particular material has,   ^an be defined in the following 

manner.     Maxwell's equations in c.g.s. unit system for a nonconducting 

and current-free medium are- 

7  •    (S+ 4ffi^    =    7- (eS)   =   0 (4.1c) 

7 •   (lU 4trM)   ■    0 (4. Id) 

where H, E are the magnetic and electric field vectors.     The vectors M 

and P are the magnetization and polarization of the medium and c is the 
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velocity of light in free space;   the quantity c is the dielectric constant of 

the medium. 

From Eqs.  (4. la) and (4. lb),  one obtains 

~    ^ 3  -   (v x 7x Ö)   =  i}  ^- (4.2a) 
c2     M2 '   "   c2    at 

where 

lf{   =   —  +   cv x A (4. 2b) 

Equations (I. 2) indicate that the effect of the magnetization can be 
-»eff 

incorporated with an effective current density J      .     Therefore one may 

••eff define an effective dielectric susceptibility x      which takes account of 

the effect of magnetization M as 

Jeff   =   !_ (~eff , gj (4j 3^ 

An effective polarization P      then is defined as: 

?eff   =    x^ ' I (4. 3b) 

«eff Similarly,   an effective dielectric tensor f       is then defined as: 

**eff       «        .   «eff ,.   „  . 
C =   1  +   4irx (4. 3c) 

Substituting Eq.  (4. 3a) into Eq.  (4.2a),  one obtains 

(v2   i liig^, = .7(S.i„,) + ifÄ£i) 
c   at c       at 

(4.4) 

where use has been made of v •   E  =   -E • Vln c .     Notice that Eq.  (4, 4) 

can also be obtained from Eq.  (4. 1) directly by setting M = 0 (or ^ = 1) 

and P-- P     .     This means that whatever effect the magnetization has is 

included in the effective dielectric susceptibility x       or tensor c 
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60 

A more detailed account has been given by Pershan. 

If we consider E(r, t) in Eq.  (4. 4) as a superposition of pkne waves 

of wavelength X/n,   and the clastic or spin waves are of wavelength A, 

the term V (E • In c) is of the order 6cr times the term 7   E.     Under usual 
A 

experimental conditions,  6c (the change of ordinary dielectric constant) 

is much smaller than unity and r- at most of the order of unity.     This 

term can usually be safely neglected.     Then we have 

c   3t c      at 
(,2-j,4)e(?,t, = ifi!%) ,4.5, 

It is important to recognize that the medium contains as many as 
9 

10   atoms in a region as small as a cube of the light wavelength and 

therefore can be regarded essentially as a continuum.     A light wave 

passing through such a medium produces an effective polarization P 

at the point r'.     This polarization,  in turn,  radiates or scatters 

electromagnetic energy in all directions.     Suppose we are interested 

only in the radiation in the far field (Fraunhofer region).    From Eq. (4. 5), 

the electric field dE    scattered (or diffracted) at point r by the effective 

,     .     ,.      ^eff    .... ! / ,3     '       /, /  v3 .    41, 61 polarization P      within a volume (d r1) « (X/n)   is: 

dE (r.t) . 7[-> L— ä r,Jt,=t JllK 

(4.6) 

where r,  r' and the unit vectors i (-•  -•, i and i   are shown in Fig. 4.1. 
|lM»'|nd lr-r| r 

The quantity t' (= t ) is the retarded time,  c is the light velocity 

in free space given before and n, is the index of refraction pertaining to 

the diffracted electric field in the medium.      For simplicity we have taken 

the field point r to be within the medium.     If it is outside the medium, 

one may find the field there by using the laws of refraction at the 
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illuminated volume 

observation 
point 

Fig.  4.1     Radiation from an illuminated volume. 
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boundaries.     However,  one must be aware of the fact that sometimes 

there may be additional contributions to the scattered electric field dE 
CO 

from the multiple reflection of the undiffracted light at the boundaries. 

The electric field of a monochromatic incident light of frequency 

U)T   and wavevector kT  within the medium can be written as: 

IVr, t)    =    ß e      L       L (4.7a) 

where 
2irn.        n.ui 

kL     .    -T-I    .   Jlk (4.7b) 

and n. is the index of refraction pertaining to the incident electric field 

E   inside the medium.     In general,  when the polarization of the incident 

light is different from that of the diffracted light,   n. ft n ,.     The quantity 

P      in Eq.  (4. 6) is to be found by substituting the total (incident and 

diffracted) electric field E into Eq.  (4. 3b).     However,  since x       is 

modulated slightly by coherent elastic waves or spin waves and the 

interaction between light and coherent elastic waves and spin waves is 

very weak, one may approximate E in Eq. (4. 3b) with the incident electric 

field E   in Eq. (4. 7a) only (the "Born approximation, " well known in 

scattering theory    ).     From Eqs.  (4. 3b) and (4. 7a),  one obtains the 

polarization P      at point r' as; 

t^&.V)    ■    [(xe,f> + 6r',(?',f)]-gieJ(WLt'4L?,)      (4.8) 

where {^      ) is the time average part,  and 6x      the modulated part of 

**eff •* the effective susceptibility.     Since 6x     (r'.V) is usually modulated by a 

sinusoidal elastic (or spin) wave, it can be decomposed into the Fourier 

spectra of the elastic (or spin) wive; 
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öx^r't)   -   \d3k6xef%X   (^)eJ(±w(k)t^'^ (4.9) 
J k 

where |k| = -r— and w(k) are,  respectively,  the wavelength and frequencies 

of the coherent elastic or spin modes;   the quantity Xi,^1*') is the trans- 

verse profile of the mode k;   the ± sign is placed in front of ui(k) to 

account for the degeneracy in the dispersion relation for positive and 

negative angular frequencies.     Equation (4. 8) and Eq,  (4.9) are to be 

substituted in Eq.  (4. 6) to evaluate the diffracted electric field E .     A 

further simplification may be made when one realizes that the frequencies 

of microwave elastic waves (or spin waves) are very pmall (s 10   Hz) 

14 compared to the light frequency (~ 10      Hz).     Therefore one may 

2"*eff      2 
approximate a  P     /at   in Eq. (4. 5) as: 

^-5—     ^    -^P(r.t') (4.10) 

On substituting Eqs.  (4.8),  (4. 9) and (4. 10) into Eq.  (4.6),  and 

integrating over the illuminated volume V,  one obtains: 

2                                                         j[uJT±w(k)t-l<;-r] 

Ed(?,t)   -   -^trx{prx^k(5X^)g^-^ —y 

rt    t.     !h  - (4-11) 
r H +       -j(k   -k'   +k).r     3    . 

where the term arising from {\) is dropped and E   = E   E(r,);   E(r,) 

accounts for the profile of the light beam.     We have used the fact that 

if |r| » jr1!,  then 

■♦ ■* 

r- r' r 
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n 

K   =   Jt^vMrt, 

    r- r1     —     T    •   (r   r1) c        ' ' c r 

|r- r'l    s;    |r| in the denominator of Eq,  (4. 6) 

Using the fact that 6c        = Iw 6X      from Eq.   (4.3c), one rewrites 

Eq..   (4.11) as; 

2 

ed(?. t) ■ -(^r) % * [tr x $ «i'k -^J (4.12a) 

where 

(4.12b) Q   =   6e     (k) • E0e 

D    =   \e        L      L E^^x/r') d r' (4.12c) 

The vector product (i  xi   x) merely ensures that the diffracted light is 

polarized perpendicular to the vector i ;      the vector Cj determines the 

scauering light, amplitude;   the diffraction integral,   D,  the diffraction 

64 pattern.     The diffraction pattern has been discussed by McMahon, , 

Gordon     and others. In our case,  assuming both E(r') andx, U ') arc 

constant throughout a volume much larger than optical wavelength,  we 

immediately obtain the phase matching (momentum conservation) 

conditions: 

tL    =    tL ± t (w^ =üJL±U;) (4,13) 

However,  assuming a small illuminated rectangular volume a x w'   x c 

(the interaction geometry is shown in Fig. 4. 2),  and that the incident 

light is almost parallel to the wavefronts of the elastic or spin waves 
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(9o - 0 in Fig. 4. 2), the diffraction pattern D at the observation point r 

can bo written as; 

D    =     a w'c D^gDg (4.14) 

where the observation point r   is at a small angle a from the y-axis and 

ß from y-z plane,  and use has been made of; 

^L     =     V kL COS eB " 'z kL Sin eB (4'15a) 

k'      =    i   k'    sin/3+i   k'  cos^cosa+i  k'  cosflsina (4.15b) 
Li XL/ V     Li ' Z     Li 

izk (4.15c) 

The quantities D1,  D2 and D, are given by: 

sin (|k'  a sin/3) 
Dl   =      i kL a sin^ (4-16a) 

sin[|(k'  cos/3cosa-kT cos©^w'] 
D2 ^k^cos^cosa-^cose^W (4.16b) 

* 
sinQ(k'  cos/3sina + kT sin9R-k)c] 

D3   = IfSP cos/3sina + kL sineB - k) c (4.16c) 

As expected, the Fraunhofer diffracted field pattern in Eq. (4.14) 

resembles the Fourier transform of the illuminated rectangular volume. 

In Eqs.  (4.16),,  the familiar term —=— is maximum when L= 0.     One 

then obtains; 

k' asin/3   »   0 

klcoSjScoso - kjCOsQ-    =    0 (4.17) 

kT cosßsinoc + k, sinöp    =    k 
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hw -4 
incident light beam 
with cross section 
axe 

x 
-^ 

Fig.  4, 2     Geometry of light diffraction. 

Fig.  4. 3     Bragg condition for k'    = kT   + k. 
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or 

ß    =    0 

kT cosa- k    cosö       =    0 (4.18) 

k'   sina + kT sinö—     =    k 
Li L/ .□ 

Equations (4.18) can be represented geometrically in Fig. 4. 3 and can 

easily be solved as: 

2 
sin9B = ra L1+^ <ni ■ "a'] ,4-19a' 

sin0   ■ 2i7A[1+7(ni-"d>] <4-19b' 

2trni      |      2Trnd 2 
where k    = -r—, kT   ■ —r— and k = -r— have been used.     Notice that 

-♦ -41 
we have neglected the small difference in length between k,  and kT .     In 

the case when n. = n , = n, the usual Bragg condition,  Eq.  (4.19) reduces 

to: 

sin a =   sin Sg   =  jnk ^' 20^ 

A-W were able to find the ratio of the intensity of the diffracted light I, 

and the incident light I   by integrating Eq. (4.12a) and (4.16) approxi- 

mately.     Under the conditions of: 

(1) n.   =   n,    =    n i d 

(2) small Bragg angle = 0    s: 0 

(3) a rectangular illuminated volume a x w' x c, 

they obtained: 

r - l2^6€ij ; (4-21) 
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where 6c-    is the appropriate component of 6?      determined by the 

vector Q in Eq.  (4.12b) and w1 is the illuminated width of elastic (or spin) 

64 wave in the y-z plane in Fig. 4. 2.     As shown by McMahon,       one may 

always replace w' by an effective w, so that the effect of arbitrary 

cross sections of light and/or elastic waves (or spin waves) can be 

accounted for. 

In the following sections, we will concentrate on the quantities 6c.- 

and Q in Eq.  (4.12b) to study the characteristics of light scattering from 

elastic and spin waves.     The intensity calculation can then be calculated 

from Eq.  (4. 21).     Since it is understood that the effective dielectric 

**eff tensor c       is the one we are concerned with, the superscript "eff" is 

dropped. 

4. 3 Characteristics of Light Diffraction from Coherent Elastic Waves 

The wave propagation,  at optical frequencies,  inside a crystal is 

best described by the well-known indicatrix, which is an ellipsoid whose 

coefficients are the components of the relative dielectric impermeability 
go 

tensor B..,  namely 

where 

I       B.. x.x.     =    1 (4.22a) 

Bij     =     BJi    "    (rl)iJ (4-22b) 

andc is the effective dielectric tensor.     Thus,  in general,  a small 

change of refraction index or dielectric impermeability 6B.. produced by 
J 

strains S, - in the elastic waves (photoelastic interaction) can be 

described in terms of a change in the shape,  size and orientation cf the 

indicatrix.     The change is conveniently written with photoelastic 

constant P.., „ as: 
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^r-J^m8™ ^J-1.^3)        (4.23) 

w here 6B.. = 66-,  and the quantities 6B..,  P... ., S, „ are all dimension- 
ij Ji ^ ij      ijki'    kit 

less.     Since both 6B.. and S, . are symmetrical tensors,  the Eq.  (4.23) 
IJ Kü 

can be contracted into the matrix form- 

6B m 

6 
Z    P 

n=l 
S mn  n (m = 1.2. ..-6)     (4.24) 

where the indices are contracted according to the Voigt notation: 

11 -♦ 1 23 -♦ 4 

22 -♦ 2 13 -♦ 5 

33 -»  3        12 -♦  6 

mn ijki (m, n = l,2, 3 • • • 6)        (4.25a) 

(i.j.k.i = 1,2.3...) 

and 

6B11 6B12 6B31 

6B12 6B22 6B23 

6B13 6B32 

11 

'12 

'13 

'21 

'22 

'23 

6B 33 

31 

'23 

'33 

6B, 

6B, 

6B, 

r 

6B, 

6Br 

6B. 

6BC 

öB, 

6B, 

(4.25b) 

sl 2S6 is5 

*S6 S2 ia4 

iS5 is4 S3 

(4.25c) 

For a cubic crystal (class m3m), like YIG, the photoelastic matrix P mn 

has the following form v/hen referred to the axes along the cubic edges 



(principal axes): 68 
■97- 

tpmn3 

pu P12 P12 
0 0 0 

P12 
pn P12 

0 0 0 

P12 
PIJ Pll 

0 0 0 

0 0 0 P44 
0 0 

0 0 0 0 P44 
0 

0 0 0 0 0        P 44 

(4.26) 

Since we are interested in the small change of dielectric tensor, 

6c.., we want to express 6c.. in terms of P      .     From Eq. (4.22b),  6c.■ 

can be written as: 

6c 
ij a,/3=l ^ Pi 

For a cubic crystal, the unperturbed dielectric tensor c.. is a scalar or 
J 

6.. c (4.28) 

where 6.. is the krontcker delta function. 

Combining Eqs.  (4.24),  (4.26),  (4. 27) and (4. 28), the photoelastic 

interaction, when referred to the principal axes of a cubic crystal 

(class m3m), can be described as: 
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6tn Pll P12 P12 0 0 0 Sll (Sj) 

6f22 P12 Pll P12 0 0 0 S22 (s2) 

6f33 2 
P12 P12 P12 0 0 0 S33 (S3) 

6*23 

- ~C 
0 0 0 P44 0 0 2S23 (s4) 

6c31 
0 0 0 0 P44 0 2S31 ^ 

. 6Cl2 . 
0 

u 
0 0 0 0 P44 _2S12 

(s6) 

(4.29) 

In terms of Eqs.  (4. 12a),  (4. 12b) and (4. 29),  assuming the Bragg 

angle 9R 2: 0 (Fig,  4. 2), the interaction between an elastic wave 

propagation along a principal axis and an incident light polarized also 

along a principal axis can be easily determined in the following manner 

(Fig.  4.2). 

Since Q^, = ot^ 0,  and if we assume that the y-z plane of incidence is 

horizontal, the incident E   and diffracted E   , electric fields can be ' o o± 

written as: 

IE1      +   t   < xv z    H (4.30a) 

^d    ^ ^   „d     ,   ■*   „d E^^i   E^   +   i   E„. o±        x    v± z    H± (4. 30b) 

where the (±) sign indicates whether the frequency of the diffracted light 

is upshifted (+) or downshifted (-) from the frequency of the incident 

light as determined by the phase matching conditions (4.13).     From 

Eqs.  (4.12a),   (4. 12b) and (4. 30),  we obtain 

r       y 
(4.31a) 
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v± 

= c 

Fd 
EH± 

fir XX 
6C xz 

6c zx 6c zz 

'   E1  " 
V 

(4.31b) 

where c is to be determined by Eq.  (4. 12a).      For our purpose,  the 

explicit form of c is not important because we want to find out 6c.- in 
J 

Eq.  (4.21) only.      Note that Eq,  (4, Mh) is valid even in a coordinate 

system which is oriented in an arbitrary crystallographic direction,  as 

long as 9R = tt - ()•     Here,  since x, y, z axes are assumed to be the 

principal axes,   Eq,  (4. 31) and Eq,   (4, 29) reveal that: 

(a) when longitudinal elastic waves propagate along a principal 

axis (thereby producing So., in Fig.  4, 2), the incident light 

and diffracted light are polarized along the same principal 

axes; 

(b) when shear elastic waves propagate along a principal axis 

(thereby producing either S1 „ or S™ in Fig. 4.2),  the 

incident and diffracted lights are polarized along two 

perpendicular principal axes.     Besides, the shear strain 

S„„ does not scatter any li^ht at all. 

Notice that as 6c•• is real for the photoelastic interacticn,  the diffracted 

light intensity is independent of the sign of the frequency shift.     As we 

shall see, this is not the case for the coherent spin wave scattering. 

In case elastic waves do not propagate along a principal axis or the 

light is not polarized along a principal axis,  one merely uses the method 

of superposition to find the nature of the interaction.     Two examples 

are used to illustrate this. 
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Example 1 

The interaction geometry of the photoelastic interaction is shown in 

Fig.   4.4.      Longitudinal (with the strain S    ) or shear elastic waves 

(with the strains S      and S     ) are excited by a transducer.     Again notice xz yz J 6 

from Eq.  (4. 11) or Eq.  (4. 31b) that the strain S      does not scatter any 

light. 

e B 

? 
sample 

iv\""W—- .- piezoelectric 
iz[001]      transducer 

[fl 0] 

■^y[110] 

Fig, 4. 4    Geometry of the photoelastic interaction. 

Since the plane of incidence is not a [100) plane (therefore the light is not, 

in general,  polarized along a principal axis),  one may either work out 

the photoelastic interaction in the principal axis coordinate system by 

transforming all the quantities expressed in the present (x, y, z) 

coordinate into the principal axis coordinate or transform the photo- 

elastic constants P--K.A into the present coordinate system and use 

(4. 31b).     In the present case we do the latter.     The transformation 

from the principal coordinate system ("cubic-edge" coordinate system) 

is discussed in Chapter II in terms of the Euler Angles (tp,$,ty.     From 

En. (4. 25) and Eq.  (2. 4) with 0 = 0, •/; = 0, but p ^ 0, we obtain: 



■101 - 

p 
xzxz 

= P44 

p 
xxzz 

= P12 
independent of<p (4.32) 

p zzzz 
B Pll 

p 
xxxz 

= P zzxz =    0 

We therefore conclude that for a small Bragg angle,  the photoelastic 

interaction here is independent of«p,  the rotation around the {10°} axis in 

YIG.     In this case, the relation between the polarizations of the incident 

and the diffracted light can also be readily obtained from Eqs.  (4. 32) and 

(4.31b) 

Assuming that the polarization of the incident light is at an angle 0 

from the x-axis (Fig. 4.4), then; 

(a) for shear elastic waves (th? strain S    ), the polarization of 
JCZ 

the diffracted light is at an angle (s- - 6) from the x-axis; 

(b) for longitudinal elastic waves (the strain S    ), the polarization 

of the diffracted light is at an angle tan'  ((P.. /P. „) tan 9) from 

the x-axis. 

Example 2 

The geometry is shown in Fig.  4. 5.     Again when we use Eq.  (2.2 ) 

with<p =0, ü)= 0, but 6^0, we obtain for the strain S 

Pxxzz   =   isin^ePjj + (1 -isin22e)P12-sin22eP44 

Pzzzz   =   d-isin^Pj! +isin22ePl2 + sin22eP44 (4.33) 

P =P =   isin 4e(-P«, + P10 + 2P..) zxzz        xzzz        4 w        11 12 44 

and for the shear strain S xz 
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L'oo] 

[100] 

♦z 

sample 

piezoelectric 
transducer 

•y[l00] 

Fig.  4. 5    Geometry of the photoelastic interaction and orientation 
of the long axis (z-axis) of the sample. 
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PzzxZ   =   isin4e(-P11+P12 + 2P44) 

xxxz isin4e(P11 - P12-2P44) 

Pzxxz = Pxzxz   '   ^Sin22e Pll " ^in22e Pi 2 + cos22e P44 

(4.34) 

tr In particular, for a longitudinal strain S    ,  and 9 *jr. 

6e xx 

6c zx 

^ 

*%: 

ic2 
4« 

P11 + 3P12-2P44 

■P11 + P12 + 2P44 

■P11 + P12 + 2P44 

3P11 + P12 + 2P44 

(4.35) 

Equation (4. 35) is used in Chapter V, 

From these two examples,  one realizes that the intensity of the 

diffracted light can be calculated by using Eq.  (4. 21): 

I ,2 .^P2 

mi^* (4.36) 
v   D 

P   © 

3 „2 where Pa ■ jD  v   S ; the quantity P ff is the appropriate photoelastic o p eff 

constant,  v   +he velocity of elastic wave (longitudinal or shear), 

P   acoustic power density,  D   the density of the medium and S is the 

appropriate strain. 

For a circular acoustic beam of an effective diameter w,  Eq. (4. 36) 

becomes: 

I n6P2 Ld 2ff fn    efn p 
lo    =    X2^D   v3   )    A 

0   p 

(4.37) 

where P. = ^irw   P   and is the total acoustic power. 

For YIG71' 73 at \ = 1150 nm: 
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T 

p   2=    1.67 x 10'6 PA(mW) (4.38) 
o 

to.:' the longitudinal elastic waves propagating along a {100} direction and 

P P 
eff     t12' 

I, f. 
~   ^   4.0x10  D FA(mW) (4.39) 
lo A 

for the shear elastic waves propagating along a {100} direction and 

P P efl        44' 
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4. 4  Characteristics of Light Diffracäon from 

Coherent Spin Waves 

In previous work,   Auld and Wilson      (A-W),   following the derivatior 

59 of Landau and Lifshitz,       calculated the intensity of light diffracted from 

coherent spin waves,  using a perturbed dielectric tensor restricted to 

terms linear in the total crystal mangetization.      For many magneto- 

optic experiments,  this is sufficient to interpret the observations. 

However, when the dielectric tensor is modulated by a coherent spin 

wave,  one must look for all terms that are linear in the small signal spin 

wave amplitude,   not just terms linear in the total magnetization M,      For 

example, when the magnetization is along the plus z-axis,  terms like 
2 

m  M   and m  M  ,   although of higher order,   are linear in the small 

signal spin wave amplitudes m    and m  .     Our derivation of the perturbed 

dielectric tensor,   detailed in Appendix III,   is straightforward and 

essentially follows that of Landau and Lifshitz,  with the exception that all 

linear terms in m    and m    are retained.      The result for a cubic crystal x y J 

(class m3m),  like YIG,   is of the form,  when expressed in the "cubic 

edge" coordinate system; 

6<i;.(X)   =   6f;;).(X) +jöf^X)        (i,j = 1,2,3) (4. 40a) 

6c xx 

6c 
yy 

'ZZ 

6€ 
yz 

6C zx 

6c xy 

g11(x) g12(x) g12(x)    0      0      0 

g^M  SnM gi2(X)     ooo 

g11(\) g12(x) g11(x)    ooo 

ooo     g44(x)  0       0 

coco    g44(x) 0 

oo ooo    g44(x) 

y^ 

azax 

a ot x y 

(4. 40b) 
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whcre öf 
ij 

6'ji- 

11 

XX 

11 

6C 
yy 
11 

6C zz 
11 

V 
1! 

6'zx 

ö,xy 
— 

0 0 

0 0 

0 0 

t(\)     o 0 

a. 

a. (4.40c) 

0       f(X)        0 

0 0        f(X) 

where 6c- ■   =   -6c-- 

For simplicity we have assumed that the medium is lossless and 

therefore 6c (X) is Hermitian.     The quantity f(>) is the linear coefficient, 

g      (X) the quadratic coefficients, a  (= M  /M), a (=M  /M),  and 

a, (- M /M) the direction cosines of the magnetization;   both f(\) and 

g      (X) are a function of optical frequencies or wavelength \.     When 

g       - 0. the tensor 6c reduces to that of A-W.     Note that g       is bmn &mn 

identical in form to P       in Eq.  (4.29). 

The calculation of the intensity of light diffracted from spin wavep 

can be made using Eqs.  (4.21),  (4. 31b) and (4. 40).     Notice that in 

Eq.  (4. 40) the perturbed dielectric tensor is now modulated by z-directed 

spin waves (wavevector k parallel to the dc magnetization vector, which 

is along the z-axis), with frequency co.     Furthermore, for simplicity, 

let us assume that the z-directed spin waves are circularly polarized so 

that o    and a    can be written from Eq.  (2.16) with (w, =u;) as: x y K 
M 

x        m /   ,     i   \ 
IT   =   M cos (a)t " kz) (4.41a) 
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a. M 
m 
M sin (cut - kz) (4.41b) 

Here the x,y,z axes do not necessarily coincide with the principal axes. 

We are now ready to do the calculation. Just as in the last section, 

we use two examples to illustrate this. 

Example 1 

The geometry of light diffraction, identical to Fig. 4. 4, is shown in 

Fig.  4. 6;   the spin wave amplitudes are given in Eq.  (4. 41). 

b 
 

f 

1 

Hc   Hj 

/, -L/2 

z = 0 

z - -L/2 

z[001] 

y[ii0] 

[110] 

Fig.  4. 6    The geometry of light diffraction from spin waves; 
the internal field profile Hj of the bar is also 
indicated. 

Since the plane of incidence is not a {100} plane, we obtain from 

Eq.  (4. 40) and Eq.  (2.2), with 0 = 9 = 0,  hut <f> ? 0: 
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*€ \x 

6| /,/ independent ol'(g (4.42) 

h44    Z   X     J       > 

where only terms linear in a , a    are kept,  and o    — 1.     Substituting x     y • z 

Eq.  (4. 41) into Eq.  (4.42),  we obtain: 

6czx   =   [g44az M cos(aJt ' kz) + J f M Sin(c0t ' kz)] 
(4.43a) 

_m 
2M 

a r, , o.    j(wt - kz) . / -.   -i(u)t-kz)"l 
VfL(g44az+f)e / + (g44az-f)e JVW        'j 

6C =    6cv 
XZ ZX 

(4.43b) 

=   ^[(g4A-Oei^-kz' + ,g44«z+,)e-^-^)] 

Substituting Eqs.   (4. 43) into Fq.   (4. 31b),  and noting the phase matching 

condition in Eq.  (4.13), we obtain: 

v± 

'H± 

C2M 

0 g44a
Z+

f 

g440(z ± f 0 

E1 

V 

E1 

(4.44) 

where a subscript v or H denotes whether the polarization of the electric 

field vectors is perpendicular (x-axis) or parallel to the horizontal (y-z) 

plane of incidence.     The plus or minus sign indicates whether the 

frequency shift is upward (anti-Stokes line w, +üJ) or downward (Stokes 

The asterisk on 6c '"r   denotes complex conjugation. 



-109- 

line u3L - w). 

From Eq.  (4.44) one can deduce that the maximum diffracted light 

intensity depends on the incident light polarization and the sign of the 

frequency shift.     If f and g.. have the same sign,  E   will give the 

maximum diffracted light intensity for the upshifted case,  whereas EH 

will for the case of downshifted diffracted light.      B\irthermore, 

reversing the direction of the magnetic field changes the sign of»   and 

the sense of the spin wave circular polarization.     Consequently,  the 

above situation remains unchanged,  because the ratio (gAAa Ot ./foiv)  >till 44 z  x       y 

has the same sign. 

The "anomalous" experimental observations that Collins and 

57 Wilson     have reported fit precisely this description, provided one 

remembers that low to medium wavenumber magnetostatic waves are 

backward waves with the wavevector direction opposing the direction of 

the power flow.     They found that, with a laser beam polarized 

perpendicular to the plane of incidence,  the scattered beam was always 

strongest on the left side of the beam when using the left-hand antenna, 

but was always found on the right side of the main beam when using the 

right-hand antenna.     These two cases correspond to frequency upshifted 

diffracted light,  as indicated in Fig.  4.7.     The converse effects, 

i. e., frequency downshifted diffracted light when the input laser polar- 

ization was parallel to the plane of incidence,  are also similarly 

explained. 

Other experimental evidence is furnished by Smith's work     in 

which he found similar situations for light scattering from shear 

magnetoelastic waves with a large mixture of spin waves.     Again he 

reported it as "anomalous. "    Section 5.2 gives a more detailed account. 
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k'ft-hand antenna 

YIG bar 

upshifted diffracted light 

power flow •*< 

right-hand antenna 

power flow 

„d cm ts , „ \ r-,i EH+   =   2M(f + «440(z)Ev 

downshifted diffracted light 

power flow -♦ 
 ^    kL 

i    pcvor flow 
L   •*  

Ev-    ■   2ffi(f + «44V4 

Fig.   4. 7     Light diffraction from coherent magnetostatic waves. 
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Example 2 

The geometry of light diffraction is identical to Fig.  4, 5 where the 

applied magnetic field is along the z-direction.     Again when we use 

Eq,  (2. 2) with p = ^ = 0,  but 9 / 0,  we obtain: 

Kx   -   i-sin4e<g.u -gl2-2g44)Qza> 

bt i 'zz tsin4e(-g11 +gi2 + 2g44)azax (4.45) 

6€xz = 6€zx   =   ^sin 2eg11-isin 2eg12 + cos 2eg44]azax + j fa 

ff In particular,  for 9 = o-, we obtain 

xx 'xz 

zx 5ZZ 

where 

^gaxaz (girgi2+2«44)cw4Jf0S 

(g11-g12+2g44)axaz + 4jfa •Agaxaz 

Ag    =    gjj - g12 - 2g44 

(4. 46a) 

(4.46b) 

fi ß    CO 
Notice that when Ag = 0 (Cauchy relation),     '       the medium 

becomes "Isotropie, " i.e.,  x, y, z axes are determined by the dc magnet- 

ization (s; ot  ) and small signal spin wave amplitudes a    and o    only. z x y       ' 

Substituting Eqs.  (4.41) and (4.46a) into Eq.  (4.31b),  as in Example 1, 

we obtain: 

Ee ' v± 

Ed EH± 

m 
2M 

iAgaz ^gii-gi2+2g44)az+f 

i(g11-g12+2g44)az±f •Agazi 

EJ 

'H 

(4.47) 
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Except for the different g's,  Eq.  (4.47) is similar to (4,44),  and 

therefore most of the characteristics discussed there are applicable here. 

When Ag = 0,   Eq.  (4. 47) is identical to Eq.  (4, 41). 
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CHAPTER  V 

EXPERIMENTAL RESULTS OF LIGHT DIFFRACTION FROM 

COHERENT ELASTIC AND/OR SPIN WAVES IN YIG 

In this chapter,  experimental results of light diffraction from coherent 

shear elastic/spin waves,  and longitudinal elastic/spin waves in YIG are 

presented.     Of particular interest is the strong infrared Bragg scattering 
7 R 

from coherent spin waves reported in section 5. 3. The experimental 

results in this case appear to be in good agreement with the theory on 

light scattering from coherent spin waves derived in the last chapter. 

The chapter begins with a review of previous experimental work on 

light diffraction in YIG, followed by a description of the optical experi- 

mental setup.     In section 5. 2,  results of Bragg diffraction from shear 
no 747R7ß 

elastic/spin waves similar to the work of Dixon      and Smith    '     '       are 

described.     In the last section of the chapter,  5. 4, we report on measure- 

ments of temporal longitudinal elastic/spin wave conversion efficiencies, 

which are difficult with conventional microwave techniques whenever 

intrinsic non-uniform fields due to demagnetizing effects occur inside a 

ferrimagnetic sample. 

71 Dixon and Matthews      first employed coherent light scattering from 

shear elastic waves to measure the photoelastic constants of YIG.     In a 

72 later paper,  Dixon,      using an optical heterodyne system,   reported large 

Faraday rotations of shear elastic waves and a substantial frequency 

dispersion of shear elastic/spin waves in YIG.     Smith reported light 

scattering from shear elastic/spin waves that had been excited both 

74  75 76 acoustically    '      and magnetically. Of necessity,  he employed rf 

magnetic and electric field excitation at high microwave power inputs of 
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5 to 300 watts;   therefore,  nonlinear interactions probably occurred.     He 

also observed the dependence of the scattered light intensity on the 

incident light polarization and diffracted light frequency shifts.      Based 

on Auld and Wilson's (A-W) theory,      he interpreted this dependence 

qualitatively a^ due to the interference of the scattered light from elastic 

77 
and spin waves.     Subsequently,  A-W      observed the field dependence of 

scattered light intensity for longitudinal elastic/spin waves in an 

obliquely magnetized YIG bar, but their experimental data were not 

accurate enough to either prove or disprove their calculation. Collins 

57 and Wilson     studied the light scattered from magnetostatic waves;   they 

reported an "anomalous behavior" unexplained by the A-W theory which, 

however,  can be interpreted quite satisfactorily by our new theory 

79 described in section 4. 4.     Most recently,  Desormiere et al.      reported 

on related experiments on light diffraction from magnetostatic waves and 

observed "anomalous behavior" similar to what Collins and Wilson had 

reported. 

5. 1   Setup for Light Diffraction Experiments 

The experimental setup shown in Fig.5. la comprises a microwave 

system which is used for injectinicr and monitoring coherent elastic waves 

via piezoelectric transducers in YIG,  and an optical system for sending 

a coherent laser beam and detecting the diffracted light from the elastic 

and/or spin waves in the sample. 

The microwave system is similar to that in Fig.  3.1,  except that 

a TWT (HP 489A,  maximum power output =2.0 watts at L band),  capable 

of amplification of ßsec pulses,  is used following the PIN modulator to 

boost the power output of the signal generator.     When using bulk 

tr ansduccrs,  which arc less efficient,  have narrower bandwidth,   but can 
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handle more power than the thin film transducer,  a power oscillator 

(a modified AIL 12 5,   externally pulse modulated),capable of 20 to 50 watts 

power output, was sometimes used to facilitate the location of the 

diffracted light signal.     A peak power meter (Narda fi6A3A) is used to 

measure the input pulse power to the transducers.     The microwave 

receiver system is essentially the same heterodyne system described in 

section 3. 1,  but with a limiter and an attenuator preceding the mixer/ 

preamplifier to prevent an excessive power loading of the mixer.     The 

receiver system is used to measure the transducer losses,  optimize the 

stub tuner (which was as close to the load as feasible),  monitor the 

acoustic echo from the sample and provide supplementary information 

regarding the interpretation of the optical signal. 

The samples used in the optical experiments are rectangular YIG 

bars with two end surfae   s as well as two opposite long surfaces optically 

polished.     The orientation of the crystals is described separately in each 

section.     No optical antireflection coating is used on the long polished 

surfaces.      The piezoelectric transducers used in the experiments for 

injecting elastic waves into the sample are either bulk transducers or a 

sputtered ZnO thin film transducer.     The bulk transducers are X-cut 

LiNbO„ plates for generation of linearly polarized shear elastic waves, 

or Z-cut Li-doped ZnO plates for generation of longitudinal elastic 

waves.     The dimensions of the bulk transducers are 0. 005" in thickness 

and about 0. 1 20" in diameter.      For the bulk transducer bonded with 

80 
phenyl benzoate,       typical insertion loss (i. e.,  the power ratios of the 

input pulse to the first echo) is 50 db or more at 1 GHz.     The sputtered 

thin film ZnO transducer (courtesy of Dr.   N.   F.   Foster of Bell 

Telephone Labs. ,   Inc. ),  on the other hand,  has a very large bandwidth 
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and initially exhibited only a 20 db insertion loss but, unfortunately, 

deteriorated later to about 36 db. 

The optical system consists of the following components (Fig.  5. la): 

(a) A laser:   Spectra-Physics Model 125A modified to give maximum 

power output at 1150 nm;   power output,   50 mW;   transverse 

mode,   TEMnn;   dc excitation. ' 

(b) A set of three mirrors mounted on micro-positioners for 

coarse and vernier movements in the horizontal and vertical 

directions.     The mirrors are dielectric-coated and give 99% 

reflectance at 45   incident angle for "p- and s-polarized" 

light.        One of the three mirrors is not used at 45    angle of 

incidence and probably should be replaced by a more suitable 

mirror. 

(c) Two Glan-Thompson polarizers mounted on rotating stages 

to allow selection of the polarization of the transmitted light. 
5 

The polarizers, with an extinction ratio of 10  ;!,  prove to be 

extremely useful in improving signal-to-noise ratio when the 

diffracted light is polarized at 90   with respect to the incident 

light,  as in the cases of diffraction from shear elastic waves 

and spin waves. 

A 1 mW 1150 nm laser was used in the early stages of the work and 
we did observe diffracted light signals with 10 watts microwave 
power into a LiNbOs transducer (~50 db insertion loss) after three 
hours of integration time with a PAR 160 boxcar integrator. 

'    An rf excitation gives more power output and stability but may cause 
electromagnetic interference with other instruments in use.     There- 
fore a dc excitation sometimes is more desirable. 

+   The phrase "p-polarized" refers to light polarized in the plane of 
incidence, while "s-polarized" refers to light polarized perpendicular 
to the plane of incidence.     One should beware that some manu- 
facturers may, without warning,  supply dielectric mirrors which 
give 99% reflectance at 45° angle of incidence for onlv s-polarized 
light. 
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(d) 'Three lenses are employed,  as shown in Fig.   5. la.    One is used 

for focusing the 5 mm laser beam onto the surfaces of the 

sample,  the other two for collecting diffracted light and 

focusing it into a slit in front of the photomultiplier, 

(e) An iris in front of the first collecting lens and a slit in front of 

the photomultiplier,   as shown in Fig.5. la,  are found to be very 

nelpful in reducing the scattered background light. 

(f) An Amperex 150 CVP photomultiplier (S-l photocathode, 

operating at 1, 500 V) is cooled to the dry ice temperature in a 

housing (Products for Research Model TE-200).     Cooling of 

the photomultiplier to dry ice temperatures is necessary here 

because of the high dark current,  low quantum efficiency of the 

S-l cathode,   and the low level diffracted light signal obtained 

in the experiments.     A heated ring is installed en the outer 

surface of the viewing window of the photomultiplier housing to 

prevent the formation of dew on the cold surface.     A low pass 

filter (transmittance 80% at 1150 nm and above,  from 

IR Industries) is also placed in front of the viewing window to 

prevent any stray   room light from getting into the photo- 

multiplier. 

(g) A mica half-wave plate for 1150 nm is also used between the 

laser and the polarizer to rotate the polarization of the incident 

light.      A Kodak IR Phosphor Card,  which converts the near 

infrared to visible red light,  is useful for optical alignment 

but is not sensitive enough to observe the diffracted light. 

(h)    A sample stage placed in the airgap of the pole pieces of a 

Varian 6" magnet can be used to position the samples properly 
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with respect to the incident light beam.     When experimental 

data are taken the sample is not moved with respect to the 

applied magnetic fields.     Other details of the optical experi- 

mental setup are shown in Fig.  5. lb. 

The electronic system following the output of the photomultiplier 

contains (^ig.   5. la); 

(a) Load Resistor R   .     Either a 1 K ohm resistor for better 

signal-to-noise ratio or a 50 ohm resistor for faster risetime 

of the diffracted light pulse is used. 

(b) For RT   = 1 K,  an amplifier with 10 MHz bandwidth and an 

amplification of 100 is adequate for the input of the boxcar 

integrator.     However,  for R.   = 50 ohm,  an amplification of 

1, 000 and a larger bandwidth (70 MHz) are needed to observe 

the fast diffracted pulse. 

(c) A PAR Model 160 boxcar integrator is used to measure the 

diffracted light signal and take the experimental data.     The 

output of the boxcar integrator is fed into a digital voltmeter 

for display and an x-y recorder for permanent records.     The 

display of the digital voltmeter is found to be very helpful for 

optimizing the signal in a dark room. 

The experimental difficulties in performing optical probing of 

elastic and/or spin waves are dominated by the poor signal-to-noise 

ratio, worsened in particular by the poor quantum efficiency of the 

S-l photocathode and comparatively low power laser available at 

1150 nm.     If one is working in the visible spectrum,  a factor of 1, 000 

improvement in photocathode quantum efficiency can be obtained and,  in 

addition,  perhaps a factor of 10 increase in laser power output before 
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(a) Laser beam incident system, the 
laser (not shown) is at the left 
cf the picture. 

(b) The magnet and sample holder (d) Microwave  apparatus 

(c) Optical detection   system 

FiR.  5.1(b)    Optic al experimental setup. 
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81 

problems of heating the sample under investigation occur.     Wilson. 

82 
following Anderson,       gave a simple calculation of the minimum 

detectable intensity of an optical signal diffracted from either a square 

wave or a pulse modulated elastic or spin wave.     There is nothing 

further we want to add,  except to point out that under our experimental 

situation (with laser power 50 mW and acoustic power inside the medium 

less than 1 mW) the noise is always dominated by the background noise, 

which comes either from scattering from imperfect;ons on the rurface 

or from inside the crystal.    While the signal intensity is proportional to 

the incident laser power, the background noise due to scattering from 

the crystal imperfections is proportional only to the square root of the 

laser power.     Consequently a high power laser is still helpful even in 

this case.     Of course when the noise is dominated by the dark current, 

the high power laser is even more helpful. 
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5. 2   Infrared Bragg Scattering from Shear 

Elastic/Spin Wave;. 

Bragg scattering from shear el »stic/spin waves in YIG has been 

studied extensively,  first by Dixon,     '       then by Smith.     ' Dixon 

has exhausted almost all the experimental cases of interest with this 

kind of light scaltoring,  with the exception of the dependence of the 

intensity of the diffracted light on the incident light polarization and the 

the sign of the frequency shift.     Smith    '       first reported this depend- 

ence and,   based on the A-W theory,   interpreted it qualitatively as the 

interference between the light diffracted from elastic waves and from 

spin waves.     However,  he found an "anomaly" which his interpretation 

58 fails to explain. The "anomaly" occurs when the light is scattered by 

the shear clastic/spin waves with a large mixture of spin waves.     He 

thought this "anomaly" might be due to the large amplitude of the shear 

elastic/spin wave signal used in his experiments.     In fact,  he did 

report some nonlinear behavior of light scattering from shear elastic/ 

75 spin waves. 

In this section we report some results on light scattering from 

shear elastic/spin waves under essentially the same experimental 

conditions as Smith's,  but employing a much reduced microwave power 

input.     Within the range of microwave power which we operated,  no 

nonlinear behavior in the light scattering was observed. 

Our experiments were performed us'ng a rectangular YIG bar 

which measures 4 mm x 4.6 mm x 12. 7 mm and is oriented at a <100> 

axis (Fig.  4.4 or 4.6).     A I.iNbOg shear wave piezoelectric transducer 

with a 50 db insertion loss wan bonded to the YIG bar and used to excite 

shear elastic waves.     The peak power of a 1.0 psec,   1. 3 GHz micro- 
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«ave pulse used was between 100 m\\ and 500 mV\ (versus Smith's 

5-300 W). 

Figure 5.2 shows typical diffracted light pulses observed with the 

light beam near the free end of the bar.     A diffracted light pulse results 

each time the shear elastic wave packet,  which is reflected back and 

forth in the sample,  crosses the path oi the light beam.     In the figure 

the insert is a trace from a Tektronix 585 scope,  while the graph was 

plotted from the signal conditioned with the PAR boxcar integrator. 

The quantities EH and E    ,   defined in Eq.  (4. 30),   denote the polariz- 

ations of the incident and diffracted light;   the minus sign following the 

subscript v indicates the downshifted diffrarted light.      The quantity H 

is the external applied magnetic field.      Figure 5. 3 is a plot of the 

diffracted light intensity as a function of the external applied magnetic 

field H ,  when the light beam is incident near the mid-point of the long 

axis of the sample at the time when the shear elastic/spin v/ave packet 

crosses the path of the incident light beam for the first time.     The solid 

curve was obtained when the incident light was polarized in the horizontal 

plane of incidence (hence EH) and the downshifted diffracted light, 

polarized perpendicular to the plane of incide;i'-e (hence E     ).     On the 

other hand,  the dashed curve was obtained when the incident light was 

polarized vertically (E  ) and the downshifted diffracted light,  polarized 

horizontally (E..  ).     The Bragg angle for the shear elastic waves 
ri- 

outside the sample was 13.3° (Eq.  (4.20)). 

The sample was then rotated 180    arouni an axis perpendicular to 

the horizontal plane of incidence so that the upshifted diffract« d light 

ould be obtained.     The position of the sample was readjusted so that 

the light beam was incident near the mid-point of the long axis again. 
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A plot of the diffracted light intensity as a function of the external applied 

fields with either horizontally or vertically polarized incident light gave 

exactly identical curves in reverse order.      In contrast to the previous 

case,  the solid curve was obtained when the incident light was vertically 

polarized (E ) and the upshifted diffracted light,  horizontally polarized 

(Ej.  ),  while the dashed curve was obtained when the incident light was 

horizontally polarized (E.,) and the upshifted diffracted light,   vertically 

d TR 
polarized (E     ).      These results are,   in fact,   identical to those Smith 

has obtained with high microwave power input.      Therefore we conclude 

that the "anomaly" he reported is not due to the nonlinear effect,   but is 

intrinsic with the light diffraction from spin waves. 

S      S Notice in Fig.   5. 3 that when M    > H    in    is the applied field value 
e> O C C 

for which the shear crossover point    '       is at the mid-point of the long 

axis),  the diffracted light intensity becomes independent of the incident 

light polarization,  which is expected,   since only the negative rotating 

72 S shear elastic wave is present here.   "     In the case of H    < H    (and the r or 

downshifted diffracted light),   E   gives a systematically larger diffracted 

signal E„   than the E...     (The intensity oscillations in Fig.   5. 3 result 

72 
from the acoustic Faraday rotation.     )    This is consistent with Smith's 

theory,  in which he pointed ou* that this effect is due to the interference 

of th;> light diffracted from elastic waves and spin waves.     This also 

checkr with our new theory,  derived in section 4. 4 (Examplt   1),  when 

our calculations (rather than A-\\'s) of the contribution of the diffracted 

light intensity from spin waves are used in Smith's theory. 

When H    s M    (and the downshifted diffracted licht),  the shear o        c 

elastic/spin waves contain a large mixture of spin waves.     In this case, 

E.. gives i larger diffracted signal (a peak marked "spin" in Fig.   ft. 3) 
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600       620       640      660       680        700       720       740 
EXTERNAL   MAGNETIC  FIELD   (0«) 

760       780 

Fig.  5. 3    Diffracted light intensity (in arbitrary units) of shear 

elastic/spin waves as a function of external magnetic 

field;   the light beam is incident near the mid-point 

of t' i long axis.     The insert is the scope trace swept 

f:   . i right to left when H    ■ H8,  indicating small 

group velocity dispersion.     A full explanation is 

given in the text. 
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which Smith was not able to explain (the "anomaly").     According to our 

theory for spin wave scattering,  detailed in section 4. 4,   Example 1,  the 

incident electric field E.. should indeed give a larger diffracted signal 

for the downshifted diffracted light. 

Ail the phenomena of the converse case,  i, e. ,  the upshifted case, 

can be similarly explained. 

In order to ascertain that the peak (marked "spin") in Fig.   5. 3 does 

result from light diffracted from coherent spin waves,  another plot of 

the diffracted light intensity as a function of external magnetic fields 

was made (Fig.   5.4).     In obtaining Fig.   5.4,  the incident light was 

polarized at an angle of %ir from the x-axis (Fig.  4. 4 or 4. 6) and the 

diffracted light was always downshifted in frequency.     The solid curve 

was obtained when the polarizer in front of the photomultiplier was set 
3 

to transmit only the diffracted light polarized at an angle of jtr from the 

x-axis, while the dashed curve,  only the light polarized at an angle of j 

from the x-axis.     According to Example 1 in section 4. 3,  the diffracted 

light from the elastic waves must be polarized in the same direction as 

the incident light;   consequently the diffracted signal of the solid curve 

could only result from the light diffracted from spin waves.     Further- 

more;   (1) the applied field value at the peak of the solid curve is equal 

to II  ;   (2) there is a small observable decrease in the Bragg angle 6 

due to ;he decreasing wavenumbers of the spin waves in the non-uniform 

internal field;   the inserts in Fig.  5.4 indicate a small increase of the 

delay time of the diffracted light pulse due to the decreasing group 

velocities of the waves;   and (3) th.* diffracted signal disappears when 

o        c 

Figure ft. 5 and Fig.  5.6 show plots of diffracted light intensity as a 
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70 

60 

SHEAR  ELASTIC WAVES   (1.36Hz) 
POSITION   NEAR THE CENTER 

' ^M* E3»/4- 

 E ' 
3%' ■3%- 

600       620       640      660       680       700        720       740 
EXTERNAL   MAGNETIC FIELD   (Oe) 

760 780 

Fig.  5. 4    Diffracted light intensity (in arbitrary units) of shear 

elastic/spin waves as a function of external magnetic 

field;   the light beam is incident near the mid-point 

of the long axis.     The insert is the scope trace swept 

from right to left when H   k H ,  indicating diffracted 

light intensity (marked "spin" on the curve) and a 

slight decrease of the group velocity. 
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function of the external applied field.     The solid and dashed curves in 

both figures correspond,   respectively,  to the waves propagating parallel 

and antiparallel to the applied field.     The curves in each figure were 

obtained by reversing the applied field only and leaving all other experi- 

mental conditions,  including the sample location in the air gap of the 

magnet,   unchanged.     Notice in these figures that the shape of the 

curves is the same for a given incident light polarization and diffracted 

light polarization and frequency shift.     Thus,   light diffraction from spin 

waves is not affected by the direction of the applied field,   in agreement 

with our theory.     However,  the magnitude of the diffracted signal or 

the height of the curves in the same figure differs slightly.     Since the 

applied field was the only condition that had been changed,  the conclusion 

is that the sample in the air gap experienced different applied field 

homogeneity for the two opposite directions of the applied field. 

Finally,  from all tl.ese observations we conclude that the intensity 

of light diffracted from coherent spin waves depends on the incident 

light polarization and frequency shift of the diffracted light.      This 

characteristic is intrinsic for the interaction of light and spin waves 

and is not due to the interference between the light diffracted from 

elastic waves and spin waves. 
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SHEAR FLASTlC WAVES (l3GHt) 
POSITION  NEAR THE CENTER 

E'     E- 

  H0 PARALLEL   WITH   IT 
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600      620      640      660      680       700       720      740 

EXTERNAL   MAGNETIC FIELD   (Oe) 
760       780 

Fi^.  5.6    Diffracted light intensity of shear elastic/spin 

waves as a function of external magnetic fields, 

illustrating the effect of homogeneity of the 

applied add. 
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5, 3 Strong Infrart'd Bragg Scattering from Coherent Spin Waves 

In this section wo report tht- first direct observation of strong Bragg- 

scattered infrared light from coherent spin waves.     The maximum 

scattered light intensity is found to be at least five times stronger than 

that from longitudinal elastic waves of comparable power.     The 

coherent spin waves were generated through efficient space-gradient 

conversion from longitudinal elastic waves;   the latter were excited by 

the sputtered ZnO transducer.     The scattered light intensity is,  again, 

found to be dependent on the incident light polarization and the sign of 

frequency shift (Stokes or anti-Stokes lines),  and independent of the 

direction of the applied magnetic field.     All these observations are in 

agreement with our nc N theoretical results derived in section 4. 4, 

Example 2. 

Before outlining our experiments,  it is deemed helpful to review the 

underlying physics of microwave spin/elastic wave conversion. 

A ferromagnet subject to a spatially varying internal magnetic field 

has a non-uniform refractive index insofar as spin wave propagation is 

11  21 concerned.     As discussed in detail by numerous authors,     '      a spin 

wave traveling in such a medium will undergo variation of its wave- 

number.     In crossover regions where the frequency and wavenunber of 

the spin wave match those of an appropriate elastic wave,  conversion to 

the elastic wave or vice versa wil? occur with an efficiency t] given 

approximately by: 

Tj   =   1 - e (3. 6) 

The quantity H'te    ) is the value of the magnetic field gradient in the 

crossover region;   H1   .. is a critical field gradient that is,  in simple 
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cases, proportional tc the square of the magnetoelastic splitting frequency. 

Longitudinal elastic v/aves launched at an end surface of an axially 

magnetized bar,  experience an increasing magnetic field as they approach 

the center of the bar.     '     ' If an appropriate external magnetic field 

is applied such that there are crossover regions inside the sample, 

conversion to spin waves will occur at those regions,  with efficiencies 

being determined by Eq.  (3. 6).     After conversion,  the wavenumbers 

start to decrease as the spin waves encounter the increasing magnetic 

fields.     Subsequent conversion from spin waves into shear elastic waves 

is therefore not possible.     On the other hand,  if one starts from shear 

elastic waves,   subsequent conversion from spin waves into longitudinal 

elastic waves would be possible (Chapter III). 

For YIG at room temperature and with the magnetization lying in a 

{100} plane at an angle of (22. 5 ) from a <100) axis, the values of H1   .. 

for the longitudinal and shear crossover regions are,  respectively, 

150 Oe/cm/GHz and 19, 000 Oe/cm/GHz.15    Owing to the small longi- 

tudinal magnetoelastic splitting, the transition from longitudinal elastic 

to magnetic character is very abrupt.     Therefore,  in a fairly uniform 

magnetic field the spin waves can be locally excited through the spatial 

conversion and essentially frozen with a well defined wavenumber, 

before they eventually spread into spin waves with dissimilar wave- 

numbers. 

Our experiments with longitudinal elastic/spin wave scattering 

utilized the geometry shown in Fig.   5. la.    The rectangular single 

crystal YIG bar measures 4x4x12 (mm) and was cut so that its long 

axis is oriented in a {100} plane at an angle of (22. 5  ) from a (100) axis 

(Fig.  4. 5).     Two end surfaces,  as well as two opposite long {100} 
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■urfaceSj  of the bar were polished optically flat.     The sputtered ZnO 

transducer w". one-way conversion loss of approximately 1 5 db at 

1. 5 GHz was used to excite longitudinal elastic waves.     The peak power 

of a 0. SpteCj   1. 5 GHz microwave pulse used was between 10 mW and 

200 mW.     The half-wave plate and Glan-Thompson polarizers were used 

to obtain various combinations of incident and diffracted light polariz- 

ation.     The Bragg angle for the longitudinal elastic waves outside the 

sample was 6. 9   . 

Initially,  experiments (Fig.  5. 7) were done at fairly high magnetic 

fields (2700 Oe) where at 1. 5 GHz the magnetoelastic coupling is 

virtually zero.     Notice that as the long axis of the sample is not along 

any principal crystallographic direction, the photoelastic parameters 

involved are a linear combination of the photoelastic constants,  and the 

polarization of the light diffracted from the longitudinal elastic wave will 

not be in the same direction as that of the incident light.     The electric 

fields of the diffracted light (E , £„) are related to those of the incident 

light (E^E^),  according to Eqs.  (4. 31b) and (4. 35), by: 
V      rl 

'H 

2 
P11+3P12-2P44 

•P11+P12+2P44 

•P11+P12+2P44 

3Pii+pi2+2P44 

E' 

'H 

(5.1) 

where c is a constant that can be calculated,  if necessary, from 

Eq.  (4.12a).     The absolute values of the photoelastic constants P.. for 

71 YIG are reported by Dixon and Matthews     as: 

1P11I     -    0.025 

121 

441 

0.073 

0.041 
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The signs of the photoelastic constants are not known.     From the 

measurements of the intensity of the diffracted light with an incident 

light polarized either horizontally (in the plane of incidence) or virtically 

(perpendicular to the plane of incidence),  we obtain (from Eqs.   (4. 36) 

and (5.1)): 

(P11+3P12-2P44)2-(3P11+P12+2P44)2:(-Pli + P12+2P44)2-?55:4:1 

If one assumes:   p1i
:Pi2:P44  = 25:75:("41)'  then 

(P11+3P12-2P44)2:(3P11+P12+2P44)2:(-P11+P12+2P44)2   =  91:4:1 

On the other hand,  other possibilities exist such as: 

P11:P12:P44  =  25:<-73H1 

then 

(P11+3P12-2P44)2:(3P11 + P12+2P44)2:(P11-fP12+2P44)2  =  300:27.5:1 

orif P11:P12:P44  =  25:73:41 

then 

(P11+3P12-2P44)2:(3P11 + P12+2P44):(-P11+P12+2P44)2  =  i-^^.O:! 

orif PirP12:P44 = -25:73:41. 

then 

(P11+3P12-2P44)2:(3P11+P12+2P44):(-P11 + P12+2P44)2  =  2:1:5 

From these results we conclud that it is most likely that: 

P11:P12:P44  =  (0-025):(0.073):(-0.041). 

We do not expect our measurements to be in good agreement with 

Dixon's since the total error in the measurements tends to become 

larger when linear combinations of the measured quantities are formed. 
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Nevertheless.  in all cases using either horizontally or vertically 

polarized incident light, the component of the scattered light (either 

downshifted or upshifted in frequency) with polarization perpendicular to 

that of the incident light is always much smaller than the one with the 

same polarization as that of the incident light. 

Next,  the magnetic field was slowly decreased until the longitudinal 

crossover region occurred near the middle of the bar.     Under these 

conditions H'(z    ) is small and efficient longitudinal elastic wave/spin 

wave conversion occurred,  as indicated by the strong attenuation of the 

elastic wave echoes observed with the microwave circuitry (Fig. 5. 8(b)). 

When the laser was focused on the crossover region,  nigh intensity 

diffracted light was observed to coincide with the time of arrival of the 

longitudinal elastic waves at the crossover point,  as is shown in the 

lower trace of Fig.   5. 8(c). 

As observed in the experiments,  the polarization of the diffracted 

light was perpendicular to that of the incident light only when the latter 

was either horizontally or vertically polarized.      This indicates that 

Ag ^ 0 in Eq. (4. 47).     There were no observable changes of the Bragg 

angle from that of the longitudinal elastic waves.     This excludes the 

possibility that the scattering was due to shear elastic waves, for 

otherwise the Bragg angle would be almost twice as large.     Further- 

more,  the downshifted diffracted light intensity was maximum when the 

incident light was horizontally polarized and minimum when the incident 

light was vertically polarized,  the ratio of maximum to minimum 

diffracted light intensities being approximately 8.      For the upshifted 

case,  the reverse was true.     Again this kind of asymmetry cannot be 

expected from shear elastic waves,  but can be easily explained in terms 
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(a) H0 = 720 Oe 

(b) Ho = 722.4 Oe 

(c) H0 = 736 Oe 

HORIZONTAL    TRACE    lM SEC/CM 

Fig.  5. 8    Scope traces indicated with signals from the micro- 

wave circuitry and the photomultiplier as a function 

of external magnetic field.     The upper and lower 

traces are synchronized;   the upper traces are from 

the microwave receiver and the lower traces are 

from the photomultiplier.     The diffracted light 

signal is polarized at 7r/2 with respect to the incident 

light {Eyj, E  _).     In (a),  the upper trace indicates the 

first leakage pulse,   and two longitudinal elastic 

echoes where amplitudes saturate the receiver.     In 

(b),  the longitudinal echoes are strongly attenuated 

due to the magnetoelastic coupling.     In (c),  the 

longitudinal echoes are still attenuated;   the lower 

trace now indicates a strong diffracted light signal 

from coherent spin waves (compare the diffracted 

light pulse with that in Fig.   5. 7). 
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of Eq. (4. 47) if one assumes that f and (g.. -gio42^^ are of the same 

sign at 1150 nm.     When the magnetic field was reversed,  all the above 

situations remained unchanged in agreement with Eq. (4.47). 

Figure 5. 9 is a typical plot (in arbitrary units) of the intensity of 

the light diffracted from spin waves and elastic waves as a function of 

the external magnetic field;   the intensity of the light diffracted from 

both waves was proportional to the microwave input power within the 

power range (10 to 200 mW) used in the experiment (Fig.  5. 10).     The 

incident light here was vertically polarized,  the light spot position was 

approximately in the middle of the bar,   and the diffracted light was 

upshifted in frequency.     The polarization of the light diffracted from the 

spin waves was horizontal;   from the elastic waves,  vertical.     There 

was negligible contribution from longitudinal elastic waves to the 

horizontally polarized diffracted light intensity,  as supported both by the 

calculations and experiments done at higher magnetic fields. 

Specifically in this case, the polarization of the incident light and the 

frequency shift of the diffracted light were arranged so as to give the 

strongest possible diffracted light intensity,  not only from spin waves 

(Eq. (4.47)), but also from longitudinal elastic waves (Eq. (5.1)).     Note 

that the scale has been amplified by a factor of 5 in the case of much 

weaker vertically polarized diffracted light from the elastic waves. 

Also, the minimum and maximum of these two diffracted light 

intensities do not coincide due to the very small conversion region and 

the comparatively large size of the light spot.     The minimum of the 

vertically polarized diffracted light is not exactly zero, which may be 

due to the non-zero magnetic field gradient at the crossover point 

caused either by a large chip in the sample at the opposite end of the 
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tran*UuiH<r or by ihr trannverap flcU aradlmtn.     Ihr n atlini; iiitfr i»f 

the curvv Ubrltf«!   limgliutllnal «•ImitU' «Fives" uf Fig. 5. 9 it. of course, 

iiui* to rentduai «onvrraion     to «pin wave form aa the croaaover point 

movra toward the end of thr aampie.     In Ihia caae. the apin wavett had 

!ilr«-.uly bcrn rut off and did not diffract any light.     Aaauming full 

convrraion from rlantic wavea Into apin wavea, and uaing the relative 

diffrat ti*d intrnitity of eiaatir wavea and apin wavea, with either 

horizontally polarixrd or vrrii« ally polarl/i-d Ini idnni li.-ni. wv obtnin. 

at x  • llf»0 nm, rlthrr f • 1.08 x 10    .|(8||-£12*2*44) »2.15 x 10     or 
••fMs. .-S.j^g ) 

vice veraa (beeauae lb«- t»ign ofji   1 '   .,.    .n,- %couid not be determined 
™ •|«ir»l2 '»44' 

from the intei.aity data),     itenolution of thi« at .higuity and the valuea of 

g      muitt await preeiae magneto-optic measure.ttenta of f and 

<KI 1 '81 9* ^44). ^-g» from Faraday rotation and Voigt effect.    We alao 

obaerved t^r intrnaity of light diffracted from coherent apin wavea aa a 

function of the light poaition along the bar and external applied field 

strength.     For «pin wavea of a fixed frequency, the atrength of the 

external applied fielda haa to be of auch a value that the light beam 

position coincides with the longitudinal croaaover point.     Therefore in 

principle one ha« a good way of meaauring the internal field profile by 

using light scattoring from coherent apin wavea.     Of courae if the fiel.« 

gradient at the crossover point is large, weak converaion from "lastic 

waves to spin wavea occurs and the scattering intenaity is reduced, aa 

was indeed obaerved.     Since there ia a large chip on the aampie, 

theoretical calculation!« of the internal field profile are not feasible. 

Therefore no results on internal field profile probing are preaented here. 
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5. 4 Measurements of Temporal Longitudinal Elastic/Spin 

Wave Conversion Efficiencies 

Optical probing of longitudinal elastic/spin waves subjected to pulsed 

magnetic fields was used to measure the temporal longitudinal elastic/ 

spin wave conversion efficiencies by directly observing the scattered 

light intensity from the converted spin waves.     It is difficult to make 

the measurements with conventional microwave techniques whenever 

intrinsic non-uniform fields due to demagnetizing effects occur inside a 

ferrimagnetic sample.     The experiments were performed under identical 

conditions and using the identical sample as in section 5. 3.     The sample 

used here, however, has a 38 Oe/Amp coil uniformly wound around it, 

except for a space near the center of the long axis where the light beam 

was focused.     The lower trace of Fig.  5.11(a) shows the light pulse 

diffracted from coherent spin waves (H   = 726 Oe).     The upper traces 

(synchronous with the lower traces) in Fig.  5. 10 show a positive field 

pulse that is in the direction of the applied field.     In Fig.  5.11(a) the 

small field pulse is applied after the spin waves cross the light beam 

and therefore has no effect on the diffracted light.     In Fig.  5.11(b) the 

do u,as field is decreased by 15 Oe and the field pulse is increased by 

15 Oe And is applied before the elastic waves are launched at the bar end. 

The result is that the elastic waves still convert to spin waves at the 

light beam position through a spatial gradient and therefore a diffracted 

light pulse from coherent spin waves can be seen, as in 5.11(a).     Now 

the field pulse is increased by another 23 Oe while still being applied at 

the same time,  as in Fig.  5.11(b).     Therefore no spin waves could be 

observed at the original light beam position,  as shown in the lower 

trace of Fig.  5.11(c).     We then changed the timing of the field pulse 
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Fig.  5.11     Diffracted light intensity (E^, £„,) from coherent V      H+ 
spin waves as a function of the timing of the 

pulsed bias field;   the spin waves are generated 

through temporal conversion from longitudinal 

elastic waves  (time scale 0. 5 ^sec/cm).     A full 

explanation is given in the text. 
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while maintaining its amplitude.     In Figs.  5. 11(d) through 5. 11(g),  the 

diffracted light signal was observed at a fixed delay following the 

application of the field pulse.      Figure 5. 12 is an expanded version of 

Fig.   5.11. 

These two figures not only give further endorsement to the interpre- 

tation of the light scattering from coherent spin waves,  as discussed in 

the last section,  but also enable us to measure the efficiencies of 

temporal spin/longitudinal elastic wave conversion.     The results are 

indicated in Fig.  5. 13 where the field gradients are determined from the 

risetime and amplitudes of the field pulse.     These results do not agree 

very well with the theory.     The discrepancy may be caused by the 

non-uniform internal fields inside the sample. 
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(a) (d! 

(f) 

Fig.  5.12    (a)   diffracted light pulses from longitudinal 

elastic waves (E , E ) (time scale 0. 5^sec/cm). 

(b) to (f) - an expanded version of Fig.  5.11 

(E , E-T ) (time scale 0. 2 ^sec/cm). 
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Appendix I 

Effective Anisotropy Fields and Small Anisotropy 

Tensor N     for Cubic Crystals 

We here discuss the effective anisotropy fields and small signal 

anisotropy tensor N      for cubic crystals in a coordinate system in which 
-♦ 

the static magnetization M is along the z-T.xis (referred hereon to the 

transformed coordinate system),  but otherwise arbitrary with respect to 

the crystallographic directions. 

In a coordinate system (^, TJ, £) with axes along the cube edges,  the 

anisotropy energy density W      of a cubic crystal can be written as: 

1 9       9 9 9       9       9 w__ = -i. s    MJMI, +-4 M:M~M; (Ai.D 
M^ ^m^l    *     m      M' 

i >m 

As we are only concerned with the effective anisotropy field portion 

an 
H.    which is at most linear in the transverse small signal magnetization 

components in the transformed coordinate system,     the term of W 

containing K„ in Eq.  (Al. 1) can be safely neglected.     Equation (Al. 1) 

can then be written as: 

K1      3 „    „       -K       3       4     Ki 
Wan2:-4S MiMm = -J4  ^   Mi + T (A1-2) 

an      M    je,m»l     M    m     2M   £=l    *■ 
jf >m 

Suppose the transformed coordinate system is oriented at the Euler 

Angles ((p, 9, 0) from the "cubic-edge" coordinate system.     Expressing 

W      in terms of the transformed coordinate system,  one obtains: an J 

K,     K 
W an y—V[L  L     ^fVii^k^i^k] (A1-3) 2

    2M4 Li = l f, i.j, k=l     ^J    *i   ^J    ^k    !    i   J    ^ 
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where T is given in Eq.  (2. 4).     The effective anisotropy field in the 

transformed coordinate system (where the static magnetization M is 

along the z-axis) can then be written down as; 

1    aW 2K1       3       3 

''o  ö   i        ß M*  l-lf.j.k»!   n   ^J   *K   *i    i   J   K 

2K        3 

—4[L Tn u M  Li=l   X1 u M po 

TlBMl + 5fml
TiiTiiT2nMiMl (Al. 4) 

3 
£ + 3 E   T^.T^T^M^:;] +Om2

v M2
2. M^^ 

Only terms which are at most linear in M   and M   are retained in J x y 
2      2 Eq.  (Al. 4) and higher order terms like 0(M.. M-, MjJVL) are to be 

dropped.     Furthermore, in the expressions H!    and H«    (i = 1,2 in 
2K.     3 ?       7 

Eq.  (Al. 4)), the term ^ L   T..T.„ M, (i = 1, 2) does not contribute 
-an M0M4Ü=1   n   i3    3 

to h      in the small signal equations of motion Eq.  (1.2).     On the other 
2K,     3       ,       „ I 4       3 an 

hand,  the term 5   L   Tfl„ M„ in H„    is the only one that enters the 

equations of motion and is in fact equal to HM in Eq.  (1. 3a).     We 

th erefore write (using M„ - M,   M1   = m ,  and M« = m»): 

an 2K, 

u J {**   Tn TLml + 3  2   Til Ti2TLm2) (Al.5a) 

an 
-^2 (3 s/ii TnTMmi+$ t^iA*™*) (Al. 5b) 

2K      3 
an _      an   m    1   r   T4 

Hß     -   H3     -   MoM /=1 
Ti3 

(Al.5c) 
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Recall the definition of the small signal anisotropy term N(Eq.  (1. 3b) 

as: 
2 

han   =L   -N*.nm.    (i= 1.2) (Al. 6) 
1       j-1      1J      J 

Using (Al. 5),   (Al. 6) and the T from Eq.  (2. 4) (with ^ = 0),  one obtains; 

2K 
Nf"    =    + ^[-fsin2 2 6(1 -isin22<p)]        (Al. 7a) 

11 u AT L  ^ J 

^o 

Nan 2K1  T   3 „..„2„ _..„2 

^     "    MM2 
[-| sin2esin22(p] (Al. 7b) 

2K 
Nan    =    Nan    _ 1 r   3 

]9     -     i^j -gl-g sinesin2esin4^J   (Al. 7c) 

2K 
Hg" = H^J1 =-^[1 -i(sin22e + sin4esin22<p)] (Al. 8) 

•*an Since in the small signal equations of motion,  N     is always 

multiplied with the magnetization M and H„  /M, with m   or ITU.     In 
M' an 

view of this,  sometimes it is found convenient to define an effective N 

such that H„  /M and N     are combined as follows: 

H^^ 2K 
N]T = ll" + Nn = —11L1' * (sin22e+ sin4e sin22<p)] 

U M Ko 

- |sin22e(l -isin22<p)} 

(M.9a) 

Han 2K, „'an        3    , ,Tan           1 I Fi     1/  •  2_. ,    . 4„ . 2n  .1 N22   = ^T       22 = 2l L  " ^sin 29+ sin 9sin 2<^j 

3   •  2a    .  2. \ 
- 2sin Ö sin %m 

(Al. 9b) 
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2K 

MoM 

^r-|sine sin 26 sin 4<p1    (A1.9(:) 

'an 9*   3rl 
Using this effective anisotropy tensor,  N     ,  the internal magnetic 

field H. in the small signal equations of motion is just the sum of the 

applied and demagnetizing fields only. 
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Appendlx  II 

The First Order Magnetoelaatic ConNtanta for an Arbitrarily 
Oriented Coordinate System in Cubic Cryatala 

The first order (in strain) magnetoelaatic conatants. b-. . 

pertaining to the small signal magnetoelaatic equationa of motion in an 

arbitrarily oriented coordinate ayatem in cubic cryatala, are derived 

here.     The connection between the magnetoelaatic constants b. . 

defined in Eq. (1. 3d) aui b.. .  is alao diacuaaed. 

In general, the first order (in strain) magnetoelaatic energy 

density W       of a cubic ferromagnet can be written in terms of the first 

order magnetoelnstic constants b.. .  as 

Wme   ■  if £ £k*n*UW$k (A2•1, 

(f, i. J ana k - 1. 2. 3) 

where S .  is the symmetrical finite strain tensor and therefore the 

magnetoelaatic constants b-. . have the symmetry properties- 

hfijk    '    blfjk    *    bfikj    '    blfkj (A2-2a) 

With cubic symmetry, the b-.^.'s have the additional symmetry 

properties: 

"fijk ■ "jkfi (M-W 

* 
Consequently there are at most 18 independent b.. .'s for an arbitrarily 

oriented coordinate system in cubic crystals. 

Since we are mainly concerned here with the small signal 
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fqiiatlons of nu»tion, tho finlt«' strain tensor S .  can be approximated by 

the small signal strain tm^or and can be written as: 

sjk ■ KSb4 &) t^« 
J 

whfiip is the t'laatio displarcment. 

Suppose the transformed coordinate system is oriented at the Euler 

Anylcs (p, 9, 0) with respect to the "cubic-edge" coordinate system.    We 

rum want to proceed and find the bf. .'s in terms of the ordinary first 

order magnetoelastic constants b   and !>   and the Euler Angles. 

If W     , is expressed in the "cubic-edge" coordinate system there 

are only two different bf. . ,  i.e.,  b. and b« since 

b1     =    biiii (i = 1. 2. 3) (A2.4a) 

l2b2   -   bm   '   bm   S   V   '   Vj       »^.^»1.2.3) (A2.4h) 

All other bfljk    «    0 (A2.4c) 

We can then rewrite (A2.1) as: 

3 » 3 

^2 [=, blM2iSU +    *mml 
b2MlMmS|m] (A2-5a) 

lfm 
me       -  u ,•        .     i    .. M      f=l l,m = l 

-r- 
b2   / 3      2 3 \ 

W        =-4y(E   M.S..   +      E M-M   S,    ) me     ll?V-l    l   "        t,m-l    *   n lmJ 

I fl a 
(b, - b9)    3       9 

ivr     i=\   * '* 

(A2. 51)) 

Since the first term of Eq.  (A2. 5b) is invariant under rotations, only 
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the second term has to be transformed into the new coordinate system. 

Let uo define hL|. as the invariant part and b^.'..,  as the transformed part 

of the b,...  in the new coordinate system. 

b2 
bllll    =   b2222   =   b3333   =   ^2 (A2-6a) 

M 

h' (b1 b1 or b' ) D1212 ^D122i.' D2112 or D212l' 

b' (b1 b' or b'        ) D13i3 lD133r D3113'  0    D3131; 

b' (b1 b' or b'        ) 
2323 v 2332*  D3223' 3232' 

b2 

(A2.6b) 

and 

2M' 

all other (b^'s =   0 (A2. 6c) 

(b. - b9) 3 

^fijk   =  ^^ ^ Tif T.i ^ T.k <A2-7) 

where T is given in Eq. (2.4).     Note that from Eq. (2, 7), the b'j.-^'s 

are invariant with the interchange of all four indices and thus at most 

take 15 different values.     The first order magnetoelastic constants 

b.,.. can then be easily obtained from Eqs.  (A2. 6) and (A2. 7).     The 

results are indicated in Table A2.1. 

For small signal magnetoelastic problems,  b,...'s are not very 

convenient to use.     Now let us choose a particular sot of the Euler 

Angles (tp, 61 0) such that the z-.txis of the transformed coordinate system 

coincides with the static magnetization M,  i.e.,  M = i   M,..     Then 

working in this particular coordinate system, we note from Eqs.  (1. 3d), 

(1. 5) and (A2. 1), that the only energy terms that contribute to the 
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effective magnetoelastic torque are ^hose with one and only one 1VL. 

Consequently we may define a small signal magnetoelastic energy density 

w       with the corresponding small signal magnetoelastic constants b...   as: 

1     3 to 
w =    TJ    2        b...   M. 5- (A2.8) 

MiJ^ = l    ljk     1ÄXk 

Rewrite (A2. 1) as: 

M„   3   ^ 2 
W 

(A2.9) 

me   -   M2j ^hsjk M3 + *£ "sijk MiJ ' Kj^    S3r) 

. 2        3 
+    -^     Z      E     b....  Mf M. S.. 

,.2   • TT , ■  ,    ,    fiik     f     i   ik 
M     i, f=lj, k=l      J J 

M       3 2 ap 

. 2        3 
+    -^22       bfiikM   M  S 

M^   i,f=l j,k=l    n;,k    1     l   Jk 

By comparing (A2, 8) and (A2,9), and letting M„ - M,  one obtains 

V   =   b33jkM (J'k = 1'  2'   3) 

bijk   =   2b3ijkM        (i = l,  2;k:1.2,3) 

and 

b...    =   b... (A2.ll) 
ijk ikj 

According to Eq.  (A2.ll),  there are in general 18 different b...'s 

with cubic symmetry,  at most 12 independent b...'s.     These are the 
ljk 

ones corresponding to the first 12 in Table A2.1.     Using Eq.  (A2, 10) 

and Table A2,1, we obtain Table A2. 2. 

(A2.10) 
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Finally,  using Eqs,  (A2. 7),  (A2. 10),   and (2. 5), we want to express 

specifically b2„„ and b _„ in a coordinate system which lies at the Euler 

Angles ((p, B, ty) with respect to the "cubic-edge" coordinate system; 

12    f T 2 2       1 b233   =   —M— \sin^  - |sin2€i(cos 29 + |sin Qsin   2<p) 

(A2.12) 

I     cos ' ! !/;[- ^sin e sin 4(p j j 

(bj-b-) r r   .        3 -i 
b133   =    S^ i81"^^*31"  e sin 4<pJ 

r ?       2      n i 
-   cos 0 | - | sin 20 (cos 26-1-| sin  9sin  2<p)J| 

(A2.13) 

It may be interesting to note from Eqs.  (A2.12),  (A2.13),  and 

2 2 Table A2. 2 that the term (b, „„ + b2no) is independent of ty and can be 

written as „ 

2 2 21      r 2 2 2 b133 + b233   =    2—l4sin   49+sin  2^(| sin 9sin29sin49 

(A2.14) 

2 4 2 6 2      "1 
+ ^ sin  2^ sin 9 sin   29) + ^ sin 9sin  4^ 

It is also useful to express some b..  's in the present coordinate 

system; 

b232   =   b223   -   4 + ^r-i^^sinhBil-^sinh^ 

+   s in2|/)r|sinösin29sin4(pj (A2.15) 

+   cos   Jl sin^'e sin  2pJ | 
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9 1 "   2 f      2   r 2 2     ^ 
i    \,    |sin%;U sin Qsin 2(p| 

+  sin r i i in 2^  - ^ sin 0 sin 26 sm 4(p I 

+   cos2^r2-sin22e (1 - isin22<p)] ]■ 

(A2.16) 

b123" b132      b213        b231 M 

r      2   r 1 "1 
jtin ^1 ■^sinesin29sin4(p 

2   P 2 2 2 1 +   sin 2^ sin Q   ^ sin '2(p(l + cos 6) - cos Q 

(A2.17) 

+   cos  J --^sinQ sin2esin4(p I j 
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Appcndix III 

Pii'lectric Tensor of a "Cubic" Magnetic Medium' 

■' >»  60 
As pointed out by many authors    '      and discussed briefly in 

Chapter IV,  magneto-optics can always be described, macroscopically, 

in t^rms of an effective dielectric tensor f by setting the permeability 

p = 1.     Once this c is specified, one can substitute it into Maxwell's 

equations and proceed to solve the equations with suitable boundary 

conditions. 

The dielectric tensor c is defined,  for the electric field of a single 

frequency w. ,  as 
L 3 

Di(wL)    ''    Z   cij(tt)L) ^"J     (i s ' • 2' 3)        (A3-l > 

In a non-polarized medium, f.   is symmetrical;   however,  in a 

magnetic illy saturated medium with magnetization M the generalized 

59 principle of symmetry of kinetic coefficient     requires 

C^M)   =   fj^-M) (A3. 2) 

Furthermore,  since we are only concerned with sinusoidally varying 

fields, we can use complex notation,  i. e.,  D, E ~ e        ,     Therefore c 

is now complex.     Assuming media is optically lossless, f must then be 

Hermitian. 

where 

(A3. 3a) 

'ij   =   Clj + j'ij (rt3•3b, 

Using (A3.1;,  (A3. 2» and (A3. 3), we then obtain: 
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cJjCÄ)   =   Cj^M)   =   fJj(-M) (A3. 4) 

Cy(M)   =   -^'.(M)   -   -c^-M) (A3.5) 

Following (A3. 4) and (A3. 5),  one concludes that f.. is symmetrical 

and an even function of M.  while c-   is antisymmetrical and an odd 
J 

function of M. 

Using antisymmetrical unit tensor e.... j.. can then be written in 

terms of a vector G. 

««   =   eijkGk (A3-6) 

i. e., 

'czy      fyz x 

-*xz = h*    -   Gy (A3-7) 

"Czy ' cyz Z 

D.   =   (c!. + ic-'.) E. 

n  c'.E. + i e... G. E. (A3. 8) *ij   j ijk   k   j 

-  CyEJ + c (fix 3). 

A medium in which the relation between E and D is of this form is 

said to be gyrotropic. 

As magneto-optical effects are fairly small,  one can expand f into 

power series of M or direction cosines (a ,0 .0 ) of M x    v    z 

3 3 ab •  i fk a  + oto15) (A3.9) 
u=l       "   ** 'k 
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rlj   '-  ^ij + k» .j «Ukl«k«i + ote > (A3. 10a) 

ß ijk^ gjikj? K ijfk B jlik 
(A3.10b) 

.vhero f.    and g.i.« contain all the s/mmetry properties of a crystal. 

For example, when Mis along a [00 ] direction in a cubic crystal,  one 

can simplify (A3. 9) by keeping only the linear term of a   and using the 

symmetry properties of the crystal.     One obtains,  in the "cubic-edge" 

coordlrnte system (or principal axes): 

C   = 

JK 

-Jftt. 

2  2 
€• + g a 

(A3. 11) 

This is the well known dielectric tensor whose off-diagonal terms give 

rise to Faraday rotation and diagonal terms magnetic birefringent effect 

(Voigt effect). 

In the case of spin wave scattering with the static magnetization M 

along z-axis direction, one should l:eep all linear terms of a   and a x y 

which may also come from second order or higher order terms such as 

2 3 
o Of , Ot a   and a a . x z'    x z x z 

Notice from Eqs. (A3. 9) and (A3.10) that f.    is a 2nd rank polar KM 
69 tensor and g-k* a 4th rank polar tensor. For a cubic crystal 

(class m3m), like YIG, using the "cubic edge" coordinate system one 

obtains:69 

kp kji (A3.12) 
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where 6^    is the kronecker delta function,  and 

[g]   = 

hi g12 g12 0 0 0 

g12 gll g12 0 0 0 

g12 g12 gll 
0 0 0 

0 0 0 g44 0 0 

0 0 0 0 g44 
0 

0 0 0 0 0 £. 44 

(A3.13) 

where g--. ^ is written in the matrix form as in the case of the photo- 

elastic tensor in Eq. (4. 25a).     The higher order terms which contain 

2 3 a first order term of a   or a   such as a a   and a a   do not exist in a x y z"x z x 

cubic crystal and therefore need not be considered.     In a crystal with 

2 3 less symmetry, where terms like o a   and a a   do exist, we can 

always lump them into effective g       or f. 

Combining Eqs. (A3. 6) (A3. 9),  and (A3.10a), the small change of 

the dielectric tensor,  6t.- = 6t'.. + i 6c ••, can be expressed as: 

— 

Kx 

^ 

*;* 
=            '- 

äv 
<x 

it' xy 

gll g12 g12 u 0 

g12 gll g12 0 0 

g12 g12 gll 
0 0 

0 0 0 g44 0 

0 0 0 0 g44 

0 0 0 0 0 

0 

0 

0 

0 

0 

g44 

k' 
A. 

ay 

*l 
y z 

MzMx 

a öL TTy 

(A3.14) 

where 5c.- = 6c... 
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0 Ü 0 

0 0 0 

0 0 0 

f 0 0 

0 f 0 

a. 

a. 

a. 

(A3.15) 

where 6c.. = -6c-..     The quantity f is related to the Faraday effect, 
J J 

while the matrix g       is related to the birefringence effect.     Besides, 

f and g      ,  in general,  are a function of optical angular frequency ui-, or 

wavelength \. 

59 The derivation here, following Landau,      is similar to that of Auld 

and Wilson,      but the result is quite different.     They failed to take 

account of the terms g       in Eq.  (A3.14);   therefore the effect of a   on 

6c _ is nil.     We will see that these terms are essential in interpreting xz 
57 our experimental results as well as Collins and Wilson's      "anomalous" 

experimental observation.     Besides, the origin of g comes from 

birefringence.     In an experiment like coherent spin wave light 

scattering, by looking at the geometry of the interaction one would 

expect the scattered light to depend as much on a   through the 

birefringence effect as on a   through Faraday rotation. 81 
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