
00

CO
O

Q

App^ PiUiibution J

0 D C
fpfpM-prmnr?

JiiLb^Eircnsiyi
D.

Mttsachuttttt

COMPUTER ASSOCIATES
division of

APPLIED DATA RESEARCH, INC.

• •piodiK« by

NATIONAL TECHNICAL
INFORMATION SERVICE

lpfln»«.W, V» 12111 |t<

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

k
APPLIED DATA RESEARCH. INC.
IAKCSIDC ornce PARK, WAKCPICLO. MASSACHUSETTS oiaeo • ei? 248 8840

^
; ■' *Y '

FINAL P.IinWI - TAo.«'. MV. 1
•..'«•'uno J)

{?A June V'.:: •• 31 V.-a . i.'r '.r/O}

FO:'. TiiU MX),] CT
RKfitAKCH -. J i.I.'.CHl-...-!.-.Ji;i'. .-'. .J

SOnv\Atti: rU0G::/.Mlv',lNC .

Tnsk Area 1

Tosk /rcrt II

Contractor:

Contract No,:

Effective Date:

Expiration Data;

Amount:

^
,•-

.s*
y -

y.

<^\ ■

Principal Invortigator^.r

Carlos Chrjstcnsen (017) 2'l5-9540

Anatol W. Holt (6J7) ^45-9040

Project Manager:

Robert E. Millstcin (017) ?4&-9540

ARPAOrJer Number - ARPA 1228

Program Code Number - 8D30

Ma88achu9ett6 Computer Associates, Inc., Division of ADH

DAHC04-68-C-00'13

21 June 1968

30 Septeinbei 1971

$696,800.00

Sponsorod by

Advanced ','. lao."-'' i'joiccts Acis-ncy

ARPA Oi ;. i' N'j!n;..er - 1228

CA-7H)2- 2G1 '

APPLIED DATA RESEARCH, INC.
LAKESIDE OFFICE PARK. WAKEFIELD. MASSACHUSETTS 01880 («17! 245 9540

A RLl'O.M ON AKHIT/G
(VülUlIH! i-^"'

by
Carlos ehr»^^nsen

K'Jcliocl S. VVolfberg

Michael J. i'ischür*

CA-7102-2611
Fcbniary 2b, 19/1

* Consul i'iiit to Applied Data Kesearch, hie.
Address: Department of Mnthomatics, M. I. T.,

Cambridge, Massdchusetts

This is the first of four volumes of the firiül report on Task Area I
of the project "Research :'i Machino-Indopcndcnt Software
Programming". This rencarch was supported by the Advanced
Kesetirch Prcjrcts Agency of The Department of Defense und was
monitored by U. S. Army Research Office-Durham, Box CM,
Duke Station, Durham, Worth Carolina 27705, under Contract
DAHC04-68 C-0Ü43.

ABSTRACT

AMBIT/G is an experimental language for software programming. It is
oriented toward the manipulation of complicated data structures. Two-
dimensional directed-graph diagrams are used to represent the data, and
similar diagrams are used throughout the program as the "patterns" of
rules to modify the data. An AMBIT/G system has been implemented on
the Multics System at M.I.T, The implementation is ostensive and is
intended for experiments in the use of AMBIT/G. It is written partly in
AMBIT/G and partly in PL/I. This report begins with fundamental concepts
and then proceeds to describe the implementation in great detail. The

AMBIT/G programs for the AMBIT/G interpreter and the AMBIT/G loader
arc described and then displayed in full. Instructions for the input,
execution, and debugging of a user program are given. Many examples

are included, carefully chosen to illustrate and teach important features

of AMBIT/G.

CONTENi'S

Volume I

Abstract

1. Summary

2. Fundamentals
data graph, constraints, program, general philosophy
specific languagps.

i

3

3. Representation of Programs 15
overview, program syntax, correspondence between
program graphs and diagrams

4. The Interpreter 30
overview, the compiler, interpretation of 'linkrep's,
user-defined functions, error messages.

5. The Loader 48
overview, error messages, loader syntax, sample
encodement, sample error.

6. Initialization and the Built-in System 65
hints, built-in nodes, built-in links, built-in function
definitions, built-in rules, built-in data, built-in
functions, sample error.

7. The Debugging Facility 99
lexical conventions, statements, statement forms,
sample session.

8. The Implementation 114
credits and acknowledgements, internal view, files,
FL/I data formats, PL/I implementation of the inter-
preter and loader.

9. Further Work 152

10. Project Bibliography 157

Volume II

11. Examples of AMBIT/G Programs
observations, introductory examples: reversing a list,
two forms of input, function calling, LISP gar-
bage collector, another garbage collector, an inter-
active program, sorting, factorial computation and
recursion .

Volume III

12. The AMBIT/G Interpreter as an AMBIT/G Program
description, listing.

Volume IV

13. The AMBIT/G Loader as an AMBIT/G Program
description, listing.

CHAPTER 1

SUMMARY

This report is large. However, the casucil reader can obtain a useful

Introduction to AMBIT/G by reading a few page:* of the first two volumes.

Specifically, we suggest that he begin with the next chapter of this volume,

on fundamentals, and then read the first throe sections of the second volume,

concluding with the Introductory examples, three programs for reversing the

order of a list.

The report Is large because It contains many complete AMBIT/G pro-

grams and because these programs require diagrams rather than text for their

representation. The general trend of the report Is from general and philosoph-

ical discussion to detailed and practical specifications. At the beginning

we do not assume a prior knowledge of AMBIT/G, and at the end we give
listings of large and complicated AMBIT/G programs. Much of this Information

Is the unrefined output of our current research on AMBIT/G and therefore Is

not presented In a tutorial way.

After the chapter on fundamentals, the report proceeds to Its main

business, which is the definition and implementation of the AMBIT/G system.

The definition and Implementation are. In fact, partly Identical since some of

the Implementation Is written InAMBIT/G. Chapter 3 gives the representation

of AMBIT/G programs In the form of AMBIT/G data and provides the basis for

accepting a program as a data structure on which an Interpreter program can

operate. The chapter makes use of an Interesting formalism for the specification

of "grammars" for AMBIT/G data.

Once we have a way of thinking of a program as data, we can discuss

an Interpreter. Chapter 4 describes the AMBIT/G program (given in Volume III)

which Is our Interpreter. An especially Important part of this chapter Is a

discussion of the definition and use of functions In AMBIT/G.

Our Implementation of AMBIT/G requires that both data and programs

are presented to the system in an abstract input language (as textual descrip-

tions of diagrams). Chapter 5 describes an AMBIT/G program (given In Volume
IV) which "loads" pages of this Input to produce an Internal data graph. The

chapter gives a formal syntax for the Input language and Includes an example
of the use of the loader.

The AMBir/G System is not empty when a user program arrives for

interpretation. Certain information on the requirements of the program must
be submitted in advance. More important, a variety of nodes, links,
functions, rules, and pre-set data is built Into the system In order to give
the user a practical point of departure for programming. These facilities
are described in Chapter 6.

A special subsystem for symbolic debugging is included in the
AMBIT/G System, so that the user may Inspect the data in a natural and

interactive way. Chapter 7 describes the use of this subsystem In detail.

Although the interpreter and loader are both written In AMBIT/G,
there is necessarily an underlying foundation for our Multlcs Implemen-

tation. This foundation is composed of PL/I routines and Is described in

great detail in Chapter 8.

Chapter 9 contains some suggestions for further work on the imple-

mentation. The first volume concludes with an annotated bibliography of
the papers and programs which have been produced by the project or are
related to the project.

The second volume consists entirely of example programs. It Is
these examples which best display the concepts of AMBIT/G. In fact,
nearly every example was chosen to Illustrate a particular aspect of the
AMBIT/G System.

We have already noted that the last two volumes are the complete
program listings for the Interpreter and the loader. These listings are
Included in the report for three reasons: The programs contribute to the
formal definition of AMBIT/G, they form the basis for the implementation,
and they are large-scale examples of AMBIT/G programming.

The scope of this report is limited to the definition and implementation
of AMBIT/G and does not include other work done as part of the project. The
interested reader is directed especially to our work on character recognition

(Ledeen and Wolfberg), formal definition of BASEL (Jorrand and Hammer),

description of simple AMBIT/G (Henderson), constraints (Third Semi-Annual

Report), and the design of AMBIT/L (Chrlstensen).

CHAPTER 2

FUNDAMENTALS

The project "Research in Machine-Independent Software Programming"
Is devoted to the capture and analysis of the techniques of software
construction. By tradition and necessity, these techniques have been
expressed fully only In machine-language programs; and in that form they
are as obscure and exotic in our times as the operations of arithmetic were
In the European Middle Ages. We seek a significant remedy to this
situation by breaking away from current programming languages and
following a fundamentally new approach to software programming. The
practical results of this speculative venture are Incorporated in an
experimental programming system called AMBIT/G.

The AMBIT/G programming system Is, first of all, a high level
system for the construction of software. The term "high level" Is
often applied to a programming language to Indicate the use of some
combination of English and mathematical notation. We Intend a more
general use of the term. In our broader sense, a successful high level
system provides a complete framework of concepts and techniques for
programming In addition to a language; that Is, It channels and supports
the thoughts of the programmer as well as his utterances.

Our work on AMBIT/G has a simple underlying assumption. We
believe that the characteristic activity of software construction is the design
and use of complicated data structures, such as stacks, queues, rings,
lists, and special tables. Indeed, the most Important "construction" activity
seems to be the structuring of data rather than programs. Accordingly,
AMBIT/G is data-oriented to an unprecedented extent. At the beginning of
a new programming task, the AMBIT/G user establishes a formal and
"machinable" statement of the representation and properties of his data. Only
when his data design Is complete does he begin programming.

English and algebra, as used In COBOL, FORTRAN, and PL/I,
for example, are an effective combination for commercial and scientific

prognmrning. However, these textual, essentially linear notations are not

.) natural medium for the description of structure In general or software

data structures in particular. AMBIT/G rejects these notations In favor

uf another high level medium, the diagram.

The expository value of a diagram Is well known. Flow charts

of programs are very familiar and (more relevant to the present discourse)

Informal diagrams of data have been used for years to supplement program

documentation. On the other hand, the formal adoption of a diagram as
the "actual" data Is quite unique to AMBIT/G and has a powerful effect;

the diagram becomes an almost machine-like object, changing frequently

In certain places and relatively fixed In others, a passive machine

operated by a program but subject to Its own built-in constraints.

THE PATA GRAPH

An early use of Informal data diagrams was In the representation

of LISP lists, and many variations have since been used In papers on

software. We obtained a formal model for data by restricting and simpli-

fying the notation rather than elaborating It. The final result Is a precisely
defined form of diagram called a data graph. The following diagram is an
example of a (small) data graph.

The diagram is composed of nodes and links. A node is a rectangle with
a node name written inside; this node name is a type written above a
subname. There may be many nodes of a given type, and these are
distinguished from one another by their subnames. In the diagram above,
for example, there are eight nodes of type 'CELL1; their subnames are the
integers from '20' through 'Z?'. A link is a line which begins at an origin
node, passes close to its link name, and ends (with an arrowhead) at a
destination node. Every node of a given type has a similar set of links.
For example, every 'CELL' in the diagram is the origin of four links which
are named 'flag', 'r', 's', and 'd', and every 'SYM' is the origin of no links,

Th* typts, tubfwiin«». «nd link iwim»» us«d in UM dau graph

•r«» ftcl»ri«<j py thg pfoof mwr for JJI£|J parucuUr program. It It lh«

(•tcility for fewtl liDg »pacral d«u ttructurai. not th« ttructurat tham-

•«:y«t. which it built into th« AMIIT/C tytttm.

Every <f4U graph mutt bt luncuontl. that It, tgivtn nod«

(at origin of a link) and 4 giv«n id«nufl«r Ut link nam«) mutt tptclfy
no mora than on« nod« (at dattination ol Uw link). Thit allowt

th« u Mimbiguout pacification of a "walk" along th« linkt of a diagram

by givi:tg a tuning nod« nam» and a taguanca of link namat. Purpose-

ful link walking it an important activity of toftwara programt.

The <S*u graph mutt alto ba oarmanant.- that it. nodat and linkt

cannot b« craatad or Jattroyad during program avacutlon. In fact, tha

only parmittad oparatlon it th» 'twinging' of a link to that itt pointed

»nd movat from ona nod« to anothar. Thit rattneuon raflactt th« fact

that machinat (including memory hardwar«) tand ID b« parmanam.

Onca th« fundam«ntal data rapratantatlon hat been attabllthad,

certain tuparficul but utaful "abbraviationt' ara introduced. For

axampla, tha typa it dropped from within a nod« boundary and It indi-

cated by giving tha node boundary ittalf a dittlnctlva thapa. Or link

namat ara droppad by attablithing for each diffarant link a charactarlttlc

point of origin on tha node boundary. Such oonvanianca noutlont make tha
diagram much mor« raadable.

Wa do not intend that tha programmer wnta out a large data graph;

an architect doat not draw a vary brick and nail of hit building. However,
th« pottulatad exittenc« of th« data graph providat a rallabla batit for tha

programmer*t thinking. It it tha batlt for tha datign of eonatraintt on

data and the wriung of programt.

CQN8TM1NTS

If a data graph has n nodes, then each link In the data graph
has n states, one for each possible destination. Further, If the data

b
graph has a total of k links, then the entire data graph has n different
states.

The programmer uses formal statements called constraints to
stipulate that certain states of the data graph can never occur during
the execution of his program. A constraint may fix a given link to a
single destination for all time; or it may restrict the link to destinations
of a specified type; or it may establish a more general and dynamic
dependency of the link on other links. When a program is being debugged,
the program Interpreter (a human reader or computer executor) can check
for operations on the data which are Inconsistent with the constraints
and report these to the programmer.

Ultimately the data graph must be encoded in bits and stored in
some computer memory. The amount of computer memory required will be
a function of the number of states available to the d*ta graph; therefore,
constraint of the data graph reduces the memory required. Thus constraints
are useful both for debugging the program and for optimization of storage.
Constraints are a vital and growing aspect of AMBIT/G.

THE PROGRAM

An AMBIT/G program includes a collection of rules connected by
flow lines as In a flow chart. Each rule is itself a diagram and uses a
notation which closely resembles that of the data graph. An example of a
single rule Is as follows:

—*> VAR
Y

VAR
X ^H*

m

va I v

1
'al V 'all

T
?

F &
9
•

\

^

—& CELL r m CELL k-*- CELL
\r

d

! 1 1 d[|

7
INT
25

OP SYM
Al

This rule Is executed when "control" enters along one of the incoming
flow lines at the left; and its execution results in control exiting to
another rule along the success or fail flow lines to the right. The
inside of the rule can be interpreted in three paragraphs, as follows:

First frame the data graph as follows: Selact 'VAR Y', follow
the 'val' link, and call its destination cl. Is cl a 'CELL'
node? Select cl, follow the 'd' link, and answer: is its
destination 'INT 25'? Select cl, follow the 'r' link, and call its
destination c2. Is c2 a 'CELL' node? Select c2, follow the
'd' link, and call its destination ol. Select c2, follow the 'r'
link, and call its destination c3. Is c3 a 'CELL' node? (Should
the answer to a frame question be "no", you have detected the
consequences of a programming error; take the day off and get
undefined.)

Next test the data graph as follows: Is ol. an 'OP' node? Select
'VAR X', follow the 'val' link, and answer: is its destination
c3? (Should the answer to a test question be "no ", take the
fail exit from the rule.)

Finally, (if you haven't gone away) modify the data graph thus:
Select 'VAR Y' and set its 'val' link to point to c2. Select c3
and set its 'd' link to 'SYM Al'. (No questions are asked
during modification. When you are done, take the success exit
from the rule.)

The paragraphs Just given imply a total ordering of actions

which we now revoke: The actions (commands and questions) within
a given paragraph can be Interpreted in any order provided that each

variable (like cl) is associated with a node in the data graph (by a "call"
clause) before it is referenced (by a "select" clause).

Every (single-line) link in any rule must be a part of an
anchored walk. An anchored walk begins with a node whose full name

(type and subname) is given in the rule and repeatedly "steps" from one
node in the rule to another, each time following a link from origin to des-
tination. This restriction means that the pattern-match can be Implemented
very efficiently; in fact, none of the "searching" characteristic of
general pattern-matching is ever required.

To complete this discussion of programs, some remarks on program
structure (that Is, the framework In which rules are embedded) is necessary.

Since most of the unusual and novel concepts of AMBIT/G seem to be
confined to the rules, we seriously considered adopting the program
structure of some existing high level language and we decided that ALGOL 60

was the obvious candidate. The use of an ALGOL 60 framework presented
serious problems, however.

The first problem arose in finding an analog to the ALGOL 60 function

reference. At first it appeared that there was no natural place for functions
in a pattern-mctching rule. Eventually, however, we developed the idea

that the function reference and the data link are not in conflict but, rather,
are two aspects of the fundamental mechanism for assigning structure to data.
The function reference became a new and Important part of the notation

for rules.

Our second problem arose with block structure. The ALGOL 60
block structure is the basis for automatic storage allocation, and recursive
function evaluation. It has been extremely successful and has become a
classic component of high level languages. However, block structure
Implies hidden mechanisms for storage management which are in direct

I

i

conflict with the objectives of AMBIT/C, which seek to give the pro-
grammer close control over all his data. V\fe rejected block structure
because we could not find a simple and practical way to control its
machinery.

Other problems of a less fundamental nature arose and we
were forced, after all, to accept a minimal program structure, far simpler
than that of ALGOL 60, which involved the use of success and fail flow

lines to connect rules and a very general mechanism for function definition
and reference.

GENERAL PHILOSOPHY

The designer of a programming language soon leams that the goals

he has set for himself are in conflict. A language should be powerful yet

easily implemented, rich in expression yet easily learned, application-
oriented yet general purpose, concise yet readable, easily programmed in
yet efficiently compiled. Most existing languages are readily classified
along one or more of these dimensions and often are noteworthy because of
an extreme position with respect to one of them. PL/1 is noted for being
pc verful but difficult to implement; BASIC is at the other extreme. ALGOL 68
is rich in expression ; SNOBOL 1 is easily learned. SIMSCRIPT is application-
oriented; ALGOL 60 is general purpose. APL is concise; COBOL attempts
to be readable. EULER is easily programmed; FORTRAN can be efficiently
compiled.

The motivation in the design of AMBIT/G was not simply to decide
upon a position with respect to each of the above parameters and then build
yet another language, distinguished from the others only by the particular
combination of choices made. Rather, it was to study some of these apparent
conflicts in an attempt to see just how they influence language design, and

based on the insights so gained, to build a language which overcomes the
weaknesses and limitations which any compromise, no matter how carefully

chosen, necessarily imposes.

10

This seemingly Impossible undertaking has Indeed succeeded, at
least In Its Initial stages, and the particular solutions take one of two forms.
Some of the conflicts among goals disappear with radical changes In per-

spective. Other conflicts, which we were unable to so eliminate, can be

parameterized so that the user and not the language designer Is able to choose

the point of compromise.

Four main ideas emerged from these considerations:

a) Datd is of primary importance and should be designed
first with the care usually given to the language im-

peratives.

b) Two-dimensional representation permits humans to deal
with greater complexity than is possible with linear
representations.

c) People seem to have an ability to comprehend spatial
patterns of far greater complexity than temporal,

d) Redundant information in the form of constraints can be
highly useful both to people and to the machine.

How Is It that these ideas have been overlooked for so long? To some
extent, they are not new, LISP, PL/I, ALGOL 68 and BASEL certainly have
the ability to deal with highly structured data, SNOBOL owes much of its
success to the pattern-replacement idea. Certain explicit constraints such as
declarations of array sizes and data type are present in several languages.
But the exciting discovery is that the ideas are not independent and cannot
realize their full potential in isolation.

Many languages, as we have noted, can deal with highly structured
data. However, few languages make it convenient to manipulate data which

is not basically tree-structured (or at least acyclic). In LISP, for example,
one can create arbitrary structures through the use of the functions RPLACA
and RPLACD, but it is an exercise reserved for the expert.

11

An important reason for the preference for hierarchial data is that it
can be linearized in a fairly natural way using parentheses, precedence, and

other devices. But these methods do not generalize nicely to cyclic structures,

so a conceptual barrier arises between the two types ot data. The net result

seems to be that users are encouraged to force all their data into the often

inappropricite hierarchial moid. In two dimensions, however, cyclic graphs

are as easily represented as trees, and it becomes natural to break away
from tree titruclures wherever appropriate.

Pattern-matching gives SNOBOL a gestalt capability and in many
cases results in surprisingly perspicuous programs. However, string data
tends to have only limited sorts of interesting patterns, so many SNOBOL
programs use the pattern-matching facility mainly to emulate the structured
data found in other languages. By generalizing the types of data that can be
manipulated, many more interesting types of patterns become manifest and
the gestalt methods of programming can handle a far larger portion of the
computational task.

Designers of programming languages have often regarded declarations

as nuisances which are eliminated wherever possible and which are useful only
if a language is to be "compiled". It is true that such constraints enable

more efficient implementations of a language, but they also serve two other

distinct and equally important functions. First, they greatly facilitate de-
bugging by establishing a set of conditions under which the program must

operate; any attempted violation indicates an error. The subscript bounds

checking of PL/I and the type-checking of ALGOL are such conditions. Second,
declarations of constraint are a reliable form of comment and thus help con-
tribute to documentation. The programmer who says on a comment card that
his program never stores a number bigger than 100 into the variable X states

this as a matter of belief; the programmer who includes that statement as an
explicit constraint knows it to be true as a matter of fact. The significance
of this distinction cannot be overestimated in a typical program which is modi-

fied many, many times before completion.

While constraints can be extremely valuable, it is difficult with most
programming languages to envision very many different kinds other than the

12

ones alluded to above. However, once data with complicated and dynamically

changing structure is introduced, there becomes a much more pressing
need for constraints. The added generality provides more directions in which
program optimization is possible and necessary. But most important, con-
straints, together with the two-dimensional representation, are the tools

the user needs to control the greater complexity possible with the more general
data.

SPECIFIC LANGUAGES

AMBIT/G has been implemented several times in the past four years,
and these implementations are listed in the Project Bibliography included
in this report. Most of the remainder of this report is devoted to the

most recent of these implementations, an AMBIT/G system on Multics.

We have already stated that the AMBIT/G system is experimental and
is a vehicle for expressing basic ideas about programming. On one hand,
the system carries the use of diagrams to an extraordinary extreme, includes
very carefully developed facilities for definition and use of functions, and
endows the data with unprecedented independence. On the other hand, we
have excluded features which we considered to be trivial (rational arithmetic),

over-sophisticated (block structure), or peripheral (graphic input-output).
The resulting programming system is a theoretical model, not a practical

language for software programming.

The AMBIT/G language described in this report is the most Important
result of the project. It is the basis for future development of both theory
and practice. However, a very different language, AMBIT/L, has come to
light, rather unexpectedly, as part of the project.

AMBIT/L is the result of a vigorous specialization and simplification
of AMBIT/G to produce a practical language for list-processing. It has

an applications area quite similar to that of LISP, but it uses the diagrammatic
pattern-replacement style of AMBIT/G. The language Is described in a
separate paper listed in the bibliography and submitted with this report.

Under auspices other than this project, it was fully Implemented and then

successfully applied to the construction of a large software system for
interactive algebraic manipulation.

13

Thus two specific languages have resulted from the project: AMBIT/G,
an adaptable framework for testing principles of language design, and
AMBIT/L, a practical embodiment of the current results of our work on
diagrammatic programming.

14

CHAPTER 3

REPRESENTATION OF PROGRAMS

The diagrams with which the programmer represents his program are
represented in the AMB1T/G system as ordinary AMBIT/G data and are accessi-
ble to him in the same manner as any other data. This allows one to write
programs which construct other programs or which modify themselves. It also
permits the interpreter itself to be expressed as an AMBIT/G program, which
we have chosen to do in order to give a formal description of the semantics as
well as being an aid in the production of an implementation. The interpreter
and the implementation are described elsewhere in this report.

OVERVIEW OF THE PROGRAM REPRESENTATION

The description of the program representation is in two parts. First we
define a class of data graphs which we call program graphs and which consti-
tute the class of legal inputs to the interpreter. Second, we attempt to show
how to find a diagram which the program graph represents. We note that there
is not a one-to-one correspondence between program graphs and diagrams; a
given diagram may be represented by many different program graphs and con-
versely, many different diagrams may have the same program graph for their
representation (e.g. diagrams which differ only in the positions of the nodes
on the page).

Two diagrams with the same set of possible representations are se-
mantioally equivalent. However, we will see that it is possible for a diagram

to be represented by two or more distinct program graph» upon which the in-
terpreter will behave differently and perhaps produce differing results. This
may occur, for example, when a rule contains calls on functions which have
side-effects. Diagrams which lead to two or more Inconsistent interpretations,
even though syntactically correct, are considered to be semantically undefined
and not a part of the AMBIT/G language.

15

r
i
i

i

i

Briefly, a rule Is represented by a collection of nodes of a small
number of pre-defined types and certain of their links. The nodes In general
represent the pieces of the diagram such as the boxes and the arrows, while
the links represent the relationships among the pieces.

These same nodes carry other links which are used to record mis-
cellaneous Information generated during the process of execution of the pro-
gram. Such Information Includes the results of compilation of a rule, the calls
on user functions which are currently active« and the arguments and results
being passed to user functions. Further mention of these links is deferred to
the chapter on the interpreter.

PROGRAM SYNTAX

Shapes and Links in the Representation

A program graph is a collection of nodes of the pre-defined types
'rule', 'linkrep', 'noderep', 'diamond', and 'flag', called program repre-
sentation nodes, together with the links shown in the table below. The .
shapes used to picture these node types and the relevant links are shown
following the table.

lb

Links defined for a rule In state 'clear'

Node
Type Link Destination Meaning

rule success rule success exit.

fall rule fall exit.

contents Unkrep encoding of rule
contents.

Unkrep mode flag mode of the link
('frame', 'test' or
'modify').

org diamond list of tails.

name noderep link name.

dest diamond list of heads.

next Unkrep used to form list.

diamond next diamond next element In
heads or tails list.

value noderep the list element
Itself.

noderep variability flag tells whether or not
the node Is a dummy.

rep* user node the node of the data
graph represented by
this rule node.

♦Defined only If the 'variability' link points to 'flag fixed'

17

rule :

coiUonts

noderc.i

/arlabllity

18

llnkrep :

diamond

value

flag :

19

I
I
r

i

The syntax of AMBIT/G is specified by a "grammar" consisting of

special diagrams. As in BNF, we introduce meta-linguistic variables which

we call property symbols and represent by hexagons containing a character

string. However, unlike BNF, we do not think of our grammar as generating

a graph but rather as a means of testing a graph for certain well-formedness

properties. Given a data graph, our grammar rules allow us to assign one or

more properties to certain nodes of the graph. A hexagon from which emanates

a double arrow is a defining instance of that property. A given node of the

data graph is defined to have that property if the pattern beginning at the

destination of the double arrow can be matched to a subgraph of the data

beginning with the given node. For example, the syntax rule

:

foo

says that every node of type 'cell' has the property 'foo', whereas the rule

goo

integer

20

Says mat Only Ceii S wnose aown miK. ^UXIILB iw a nuue Ui. i.yHc micyci

have property 'goo'.

A property symbol may be used to qualify other nodes appearing in

the diagram. For example, the rule

hoc

r
goo

says that a 'cell' has the property 'hoo' providing that its 'down' link points
to a node with property 'goo'. This may be abbreviated as

hoo

Two other notations may be employed in writing syntax rules, A
section of the pattern may be enclosed In a dotted box to indicate zero or
more repetitions of the enclosed pattern. For example,

(
list next ^

21

specifies that a 'cell1 is a 'list* if either it is the node 'cell end1 or if
'cell end' can be reached from it via a chain of 'cell's along the 'next* link.

Finally, we allow an arrow of the pattern to branch, meaning an al-
ternative is allowed. For example.

terminator P\ cell next V
M -i

atom i

j

means that a 'cell' is a 'terminator' if its 'next' link points either to
'cell end' or to an 'atom'.

The Syntax of AMBIT/G

A collection of program representation nodes is by definition a pro-
gram if some 'rule' node in the collection is assigned the property 'rule*
by the following grammar. Any node with that property is a valid place at
which to begin execution.

22

Grammar for AM BIT/G :

rule

fail \contents

linklist

linklist P 1 next end

3

(
llnkrep

23

I

{ noderep_list node_representation/ \ noderep_list
)

noderep_llst

vnode representation.

24

node_representation

user node P (any node of the system)

25

I
I
i
I
:

I
i
i

Additional Restrictions

In addition to the restrictions Imposed by the grammar above, we
constrain the "sharing" that may take place among nodes. Informally, we
require that no node "belong" to the representation of more than one link.

More formally, we say that a 'diamond* D belongs to the 'org' ('dest')
list of a 'llnkrep' L If D Is not the node 'diamond end' and also D Is accessible
from L by a path beginning with an 'org' ('dest') link from L and then continuing
with zero or more 'next' links from 'diamonds'.

We say that a node N belongs to a 'rule' node R If either:

a) N is not the node 'llnkrep end' and N is accessible from
R by a path beginning with the 'contents' link of R and
continuing with zero or more 'next' links from 'llnkrep1

nodes; or
b) N is a 'diamond' which belongs to the 'org' or 'dest' list

of some 'llnkrep' node which belongs to R; or
c) N is a 'noderep' node which is the destination of the

'value' link of some 'diamond' which belongs to R; or
d) N is a 'noderep' node which is the destination of the

'name' link of some 'llnkrep' node which belongs to R.

We then require that each 'llnkrep', 'diamond' and 'noderep' node
belongs to at most one rule, and in addition, each 'diamond' belongs to the
'org' or 'dest' list (but not to both) of one 'llnkrep' node.

CORRESPONDENCE BETWEEN PROGRAM GRAPHS AND DIAGRAMS

In this section, we show how, given a program graph, to find a
diagram which that graph represents.

A 'rule' node together with the nodes which belong to it represent a
single rule, diagrammed by a rule box. The suoname of the 'rule' node is
written in the upper-left comer of the rule box. The success and fail

26

I
I
I
I
I

exits of the rule lead to those rule boxes represented by the destinations

of the 'success' and 'fall' links respectively.

Each 'noderep1 node belonging to the rule corresponds to a node

box in the rule. A dummy 'noderep' (i.e., one whose 'variability' link

points to 'flag dummy') is represented by a node box with no contents. A
fixed 'noderep' whose 'rep' link points to a named node corresponds to a

node box containing the full node name. At present, we have no way to
diagram a fixed 'noderep' whose 'rep' link points to an unnamed node.

Each 'linkrep' node corresponds to an arrow of mode specified by
the 'mode' link. The number of heads and tails of this arrow are determined
by the lengths of the lists of diamonds hanging on the 'dest' and 'org' links
respectively. The 'tails,' and 'heads' of this arrow are attached to the node
boxes corresponding to the 'noderep' nodes which are the destinations of
the 'value' links of the 'diamond's in the 'org' and 'dest' lists respectively.
The spur of this arrow is the node box corresponding to the 'noderep' node

at the destination of the 'name' link.

An example should help to make these ideas clear.

27

Examplc of Ruin Ruprosentntion

Sugared form of rule;

cell

x

f
right w

down
7

cell

y

cell K

<

Desugared form oi r rule *

A

type
cell

link

right B N

_^

jar\
cell

X
\

link
type

link
down

1 ~.- ______ J

^ C
>

cell

y

y
 . ,

28

I
I
I

Data ropresentcition of rule:

♦

29

CHAPTER 4

THE INTERPRETER

The AMBIT/ü interpreter Is an agent which, given an AMBIT/G data
qraph and the starting rule of a program represented within that graph, modi-
fies the graph in successive steps according to one of the many possible
interpretations of the AMBIT/ü language.

Not all AMBIT/G programs will produce the same results on all Imple-
mentations of the language; such programs we consider to be Ill-formed. The
decision to admit the possibility of certain syntactically correct programs whose
semantics are unspecified Is a compromise at best. It has the obvious disad-
vantage that it may be difficult or Impossible to determine mechanically
whether a given program is Ill-formed, so that one may unwittingly use an
Illegal program to produce correct results at one Installation and later have It
fall at another.

On the other hand, to attempt to specify completely the effects of ex-
ecution of all syntactically correct programs severely restricts the range of
possible implementations at perhaps a considerable cost of efficiency. More
seriously, one Is forced to define and describe the results of "tricky" or
pathological programs which should not be written anyway, greatly complicating
tne definition of the language.

Ours is not a new approach. FORTRAN for example does not specify the
value of a DO-variable after normal exit from a loop. PL/1 likewise has many
" implofr.pntat ion -dependent' parameters.

OVERVIEW OF THE INTERPRETER

This section gives an informal description of the operation of the inter-
preter. It presupposes the reader is familiar with the representation of programs.
It also uses the notation for describing paths through the graph that is defined
in the chapter on the AMBIT/C symbolic debugger. While some attempt was
made to be complete, this section should be regarded principally as an introduc-
tion to the formal definition of AMBIT/G.

30

The interpreter operates on a rule by rule basis, going through a
cycle of several phases for each rule.

Most of the information recording the progress of execution of the
program is stored in the several links originating from the 'rule' and 'noderep'
nodes which represent the program; hence this information is available dy-
namically for inspection and modification.

Each 'rule' node has a 'state' link which tells the current status of
execution of that rule. State 'clear' indicates a rule ready to be executed
for the first time. Such a rule must first be compiled, after which its state
is set to 'compiled'.

Execution then proceeds through the rule in three phases: 'frame',
'test', and 'modify', as indicated by the 'state' link. In each phase, 'linkrep's
of the corresponding mode are examined one at a time in the order specified by
the compiler and the appropriate action is taken, 'linkrep's of mode 'frame'
cause dummy nodes to be matched (bound) to nodes of the data graph; those of
mode 'test' cause the destinations of links to be tested, and those of mode
'modif-,' cause links in the data graph to be altered.

If any of the tests fall, the rule fails immediately — the remainder of
the 'test' phase and the entire 'modify' phase are then skipped, and the inter-
preter proceeds to the rule specified by the 'fall' link. If all the tests succeed
then the 'modify' phase is performed as described, after which another interpre-
tation cycle begins with the rule at the destination of the 'success' link. In
either case, the state of the rule lust executed is set back to 'compiled' to
indicate that compilation need not be repeated on subsequent executions of that
ml«. Of course, if a user modifies a rule, he should reset the 'state' link to
'flag clear' which indicates that rule is in the 'clear' state.

Two rules have a special interpretation associated with them;
'rule error' causes an error message to be emitted and execution to terminate;
'rule stop' causes a normal return from the currently executing user subroutine,
or if at the top level, a normal program stop. For both of these rules, the
action Is taken Immediately and any contents of the rule are Ignored.

31

THE COMPILER

The compiler is not invoked until just before a rule is to be executed,

and on each call, it compiles only the single rule which is its argument.

Compilation consists of sorting the 'linkrep's by mode and ordering
those of mode 'frame' so that later during interpretation every dummy node of
the rule will have been bound to a node of the data graph before it is referenced.
The compiler reports an error if such an ordering is not possible.

Compilation does not modify any of the links originally used to repre-
sent the rule. Rather, it adds information to the representation of the rule by

setting additional links on the nodes of type 'rule1, 'llnkrep', and 'noderep',
as shown in the following table:

Additional links defined for a rule in state 'compiled'

Node
type

rule

llnkrep

noderep

Link

frame

test

modify

nextl

sets

Destination Meaning

llnkrep Head of a properly ordered list
of the 'linkrep's of mode 'frame'.

llnkrep Head of a list of the 'linkrep's of
mode 'test'.

llnkrep Head of a list of the 'linkrep's of
mode 'modify'.

llnkrep Used to chain together the ele-
ments of the 'frame', 'test',
and 'modify' lists.

diamond If the node is a 'dummy', points
to the 'diamond' in the 'frame'
list which will bind the 'rep'
link during execution. If the
node is 'fixed', it points to
'diamond matched'.

32

The 'frame' , 'test' > and 'modify' links of the 'rule' node are set to point to

the three new lists of 'linkrep's which the compiler creates using the 'nextl'

link of the 'linkrep's. In addition, the compiler sets the 'sets' link of each
'noderep' to point to the 'diamond' of the 'linkrep' which is supposed to bind
it, if any. (All the other 'frame' links which locate the node should just
verify the prior setting.)

The compilation algorithm.is fairly simple. First, all of the 'noderep'

nodes belonging to the rule are marked as matched or unmatched according to
whether they are fixed or dummies. The 'sets' link is temporarily used for

this purpose. At the same time, the 'linkrep's are chained together in one
big list, called the active list, temporarily using the 'nextl' link.

The active list is then scanned for an entry which is eligible for

processing. An entry is eligible if the 'noderep's hanging from its 'org' and
'name' links have all been previously matched and, in the case of 'test' and

'modify' 'linkrep's, the destination 'noderep's have been matched as well.
Whenever such an entry is found, it is removed from the active list and pro-
cessed. The active list is then rescanned. When a complete pass over the

active list fails to locate an eligible entry, the scanning phase terminates.

The processing of a 'linkrep' depends on its mode, 'test' and 'modify'

'linkrep's are processed simply by placing them at the ends of the 'test' and
'modify' lists respectively, 'frame' 'linkrep's are likewise placed on their
respective list, but in addition, any destination 'noderep's are marked as
being 'matched', possibly making additional 'linkrep's eligible for processing.

At the termination of the scanning phase, a non-empty active list indi-

cates an error, for the rule then must contain a node that cannot be matched.
If there has been no error, the three new lists of 'linkrep's are then attached

to their respective points on the 'rule' node ard compilation of the rule is

complete.

In response to a successful compilation, the interpreter changes the

state from 'clear' to 'compiled'.

33

Below is .in ciugmontdtlon of the syntax of AMBIT/G to describe compiled

rules.

frame link list

►< test linklist

modifyj ink list

34

'modifyjinklist

node_representatior

35

XijE INTERPRETATION OF 'linkrep's

Each 'linkrep* appearing in a rule denotes an elementary action

which is either a call on a user-defined function or the execution of a

primitive operation. Which action is actually taken by the Interpreter when
it encounters the 'linkrep' L is determined dynamically and depends on:

a)

b)

c)
d)

the mode of L;

the number of arguments of L;

the types of the arguments of L; and

the f-name of L.

The mode of L Is the destination of Its 'mode' link and Is either

'flag frame', 'flag test' or 'flag modify'. The arguments of L are those nodes

of the user's data which are matched to 'noderep' nodes hanging off the
'org' link of L (see Figure 4-1). The f-n ime of L Is the node 'L/name/rep/'

(see Figure 4-2).

argl

next end

argn

Figure 4-1: Arguments of L

36

L :

f-nama :

Figure 4-2: The f-name of L.

The mode of L determines the class of the action to be taken: modes

'frame' and 'test' result in a class read action, while mode 'modify' signifies

a class write action. Basically, a read action is taken to obtain one or more

values and is the generalization of reading a link. A write action returns no

values and is executed solely for its side effects; it generalizes link writing.

For a 'linkrep' L of class read (write), a call is made by the interpreter

on the primitive function ,re,id_function' ('write_function') with the f-name

and list of argument types as parameters. This primitive returns a node of

type either 'rule' or 'builtin'. If the node is of type 'rule', the interpreter then

makes a class read(class write) call on a us'ar function with execution beginning

with that rule. Otherwise, the interpreter porforms the action corresponding to
that 'builtin' and class read (write). In most cases, this action is simply to

pass the arguments (and sometimes other information) to the corresponding

primitive routine.

37

Tor a clar.r. write action, there is nothing more to do. However, a
class read operation returns one or more results. These results are then
us' d by the interpreter either to sot or to test the value of the 'rep' link of

the 'nodorep's hanging off of the 'dest' link of L. In mode 'test', equality
must hold between corresponding results and 'rep' links or else the rule
fails. In mode 'frame', a given result may be used either to set the 'rep'
link or to verify a prior setting. Which of the two occurs depends on the
setting of the 'sets' link of the particular 'noderep'. If it points back to the
'diamond' through which it was located, then a setting action takes place
(see Tigurc 4-3) ; otherwise, a verification occurs (see Figure 4-4). An
inequality in the verification indicates an error which the interpreter then
reports.

2nd result

Figure 4-3 ; Conditions for the setting oi
the 'rep' link.

38

Some diamond

other than
d2 :

2nd result

Figure 4-4; Conditions for the verification
of the 'rep' link.

USER-DEFINED FUNCTIONS

There are three parts to a user-defined function: the definition, the

call, and the return.

Function Definitions

A user function is defined by associating a 'rule' node with a particular
call-class (i.e. read or write), f-name, and argument-type list. This Is per-

formed by a class write call on the primitive ,read_function' to define a class
read call, or on 'write_function, to define a class write call.

AMBIT/G docs not have any sort of block structure, and there is no

well-defined collection of rules which can be called the "body" of the function.

39

Rather, a given rule can be shared by any number of functions; this permits
multiple-entry functions as a special case.

Function Calls

Once Lhe Interpreter determines that a user function Is to be called,
it performs the following set of actions:

a) It sets up 'pipe's on the 'rule' node of the
caller for the transmission of values between
the caller and the function;

b) It sets 'ptr next_rule/value' to the starting rule
of the function to be called;

c) It saves its current status on the 'rule' node of
the caller;

d) It sets 'ptr ret/value' to point to the 'rule' node
of the caller, thus enabling the function to lo-
cate the call; and

e) It begins interpreting 'rule go*.

Thus, all of the information relevant to the call is saved with the caller. The
actual links used are shown below and summarized in the table which follows.

I
I

40

Links used In calling user functions

Node
type Link

rule tails

spur

heads

Destination Meaning

pipe

user node

pipe

state flag

savel linkrep

saveret rule

List of 'pipe's which contain the
actual tail arguments to the user
function called from within this rule.

The actual link name that caused
the user function to be invoked.

List of 'pipe's which contain the
actual head arguments or which
will receive the results of the user
function called from within this
rule« depending on the class of
the call.

The mode of the link causing the
call on the user function.

The actual link representation that
caused the call.

Used to save the old value of
'ptr ret/value'.

41

The arqumenti passed to the function depend on the clan of the call,
whether read or wrlto. In either case, the Interpreter builds two Hits of 'pipe's
equal in length to the org' and dest' lists of 'diamonds on the calling 'Unkrep'.
The actual origin arguments are then copied Into the value' links of the 'tails'
pipe's, i'or a cldsb write call, the actual destination arguments are similarly

copied Into the 'value' links of the 'heads' pipe's, but for a class read call,
these links are instead set to undefined (the node 'undef undef). In either
case, the (-name which caused the function to be Invoked Is stored as the des-
tination of the spur' link o(the 'rule' node of the caller, sometimes useful when
the same code is to be used to Implement several slightly different but similar
functions.

The Interpreter does not go directly to the desired function; rather, al)
function calls lead to 'rule go' which has a default definition which causes an
Immediate branch to the function. The reason for this Indirection Is to enable
the user to extend or modify the action taken by the Interpreter on a function
call, for the aser need only replace the default contents of 'rule go' with his
own. It is to be emphasized that 'rule go' exists In the user's data base and
is interpreted in lust the same way as any other user rule. An example of an
extension requiring modification of 'rule go' Is the recursion package which
extends the interpreter to handle recursive procedures. The reader Is referred
to the factorial example for more details on this (at the end of Volume II).

The status that is saved consists of the state of the Interpreter (whether
frame', test', or modify), the current Unkrep' (the one causing the call),

and the old value of 'ptr ret*. This information is saved on the links 'state',

'savel', and 'saveret' respectively.

The ordinary AMBITAJ programmer may ignore most of the above details.
He only needs to know that for a class read function, the arguments are to be
found in the list of pipe's located by 'ptr ret/value/talls' and that the results
to be returned by the function should be stored in the pipe's located by
'ptr ret/value/heads'. Similarly, for a class write function, both
'ptr ret/value/talls' ana 'ptr ret/value/heads' contain arguments.

42

function Retumi

To return from a function, It suffices to branch to 'rule stop', but
the progrdirmer Is Instructed to branch dlwjys to 'rule ret', which has a
default definition of always branching Immediately to 'rule stop'. In this
way, a modification of 'rule ret' will allow function returns tc be Intercepted
much In the same way as function calls can be monitored by altering 'rule go'.

When the interpreter Interprets 'rule stop', it performs almost an exact
Inverse of the five steps involved in a function call by doing the following:

a) It turns Its attention to the rule located by
ptr ret/value' and halts if that value also

happens to be 'rule stop1;
b) It restores the previous setting of 'ptr ret/value'

from the 'taveret' link;
c) It restores its previous status from the 'state'

and 'savel* links;
d) It processes any results produced by the

function and frees the pipe's for later use; and
c) It continues with the interpretation of the rule.

Recursion Faclti

During the execution of a function a rule may be encountered whose
state Is 'frame', 'test', or 'modify', indicating that the rule Is currently
suspended because It contains a function call which is now being processed.
This can occur only as a result of an attempted recursive function call. In
this case, the interpreter does not try to execute the rule but rather points
'ptr nextjule/value" at It and then branches to 'rule help'. AMBIT/G does
not support recursion, so 'rule help' normally branches immediately to 'rule error'.
However, the user may supply his own version of 'rult help' to save

the important information of the rule about to be executed. reset Its state to
'compiled', and then branch to it. This Is the final handle needed by the re-
cursion package.

43

i:\mm MtissAcns or THI. AMBIT, L. iNri:RPRETKK

The following Is a list of the various error messages which may be
typed out as a result of the interpreter's detectinr, an error condition. The
ust' ot thn e periods Is to Indicate a symbolic node name will be typed
according to tho state of th.^ data.

1. System implc lentation error in the interpreter probably due to
improper data; a frame does not match because " ... " is not
the same as "..."'.

2. System implementation error in the interpreter probably due to
improper data; a frame does not match because a link with origin

... and name " ..." points to destination " ..." instead
ot

3. System implementation error in the interpreter probably due to
improper data; a frame does not match because " ..." is not of
type " ... " .

4. System implementation error in the Interpreter due to an over-
sight by the implementor; a rule took an unexpected fall exit.

5. The interpreter is attempting to interpret i non-rule.

6. The interpreter is reporting a user-detected error.

7. The interpreter is attempting to interpret the rule " ..." which
is in an unknown state of * ..." .

44

8. The Interpreter is attempting to resume the Interpretation of
rule " ..." which Is In an unknown state of " ..." .

9. The Interpreter has detected an attempt to execute an undefined

reading function.

10. The interpreter has detected a wrong number of tails or heads on
a read-call on the bulltln "link".

11. The Interpreter has detected a wrong number of tails or heads on
a read-call on the bulltln "type".

12. The Interpreter hss detected a wrong number of tails or heads on
a read-call on the bulltln "read_functlor.' .

13. The interpreter has detected a wrong number of tails or heads on

a read-call on the bulltln "write_function" .

14. The interpreter has detected a wrong number of tails or head • on

a read-call on the bulltln "name"

15. The interpreter has detected a wrong number of tails or heads on
a read-call on the bulltln Mink*" .

16. The interpreter has detected a wrong number of tails or heads on
a read-call on the bulltln "char" .

17. The interpreter has detected a wrong number of tails or heads on
a read-cah on the bulltln "locate"

18. The interpreter has detected a wrong number of tails or heads on
a read-call on the bulltln " load" .

45

19. The Interpreter has detected a wrong number of tails or heads on

a read-call on the builtin "add" .

20. The interpreter has detected a wrong number of tails or heads on

a read-call on the builtin "subtract" .

21. The Interpreter has detected a wrong number of tails or heads on

a read-call on the builtin "multiply" .

22. The interpreter has detected a wrong number of tails or heads on

a read-call on the builtin "divide" .

23. The interpreter has detected a wrong number of tails or heads on

a read-call on the builtin "sign" .

24. The interpreter has detected that the frame is inconsistent with

the data graph.

25. The interpreter has detected an attempt to execute an undefined

writing function.

26. The interpreter has detected a wrong number of tails or heads on

a write-call on the builtin " link" .

27. The interpreter has detected a wrong number of tails or heads on

a write-call on the builtin ■,read_function" .

28. The Interpreter has detected a wrong number of tails or heads on

a write-call on the builtin "wrlte^function" .

29. The interpreter has detected a wrong number of tails or heads on

a write-call on the builtin "link1 " .

30. The Interpreter has detected a wrong number of tails or heads on

a write-call on the builtin "char" .

4o

31. The interpreter has detected the "success" exit from a rule leads

to " ... " , which is not a rule.

32. The interpreter has detected the "fall" exit from a rule leads to
" ... ", which is not a rule.

33. The interpreter has detected a wrong number of results returned

by a user function.

34. The compilation phase of the interpreter has detected the mode of
a link is " ..." , which is neither flag frame", "flag test", nor

" flag modify".

35. The compilation phase of the interpreter has detected that a rule

contains an unreachable node.

36. The compilation phase of the interpreter has detected that the

destination of a "variability" link is " ..." , which is neither
"flag fixed" nor "flag dummy" .

37. System implementation error in the interpreter or loader probably
due to improper data; a frame does not match because a link with
origin " ... " and name " ... " points to destination " ... ", which
is not of type " ... ".

47

CHAPTLP ■>

THE LOAJ.M'.U

The AMBII'/CJ loader lu called vis a built-in read fum-tion üS in

the following sample rule:

start

loud

Although ull other built-in functions are defined in English, the loader

was written as an AMBIT/G program, and thus its listing serves as a

precise definition of its characteristics. However, we shah describe

in this chapter its characteristics from a user or programmer viewpoint.

Volume IV of this report contains a description of the loader as an

AMBIT/G program. A programmer may wish to study the loader as an

example of a large AMBIT/G program, but studying the AMBIT/G interpreter

would also serve this purpose, and is probably more useful.

There is no important reason for the loader's being built-in other

than convenience and efficiency and the bootstrap problem of how to load

anything (the loader itself). As a function, however, the loader uses no more

facilities than any AMBIT/G user function. A similar statement cannot be

made, of course, for other built-in functions such as the primitives to read

and write links. As the system exists, however, the loader is known to the

-interpreter as a primitive and is also known to the system in the way In which

initialization leads to the start of execution. Namely, the initializer calls

48

upon the interpreter with an argument of 'rule start' shown as a sample rule
above. That rule is interpreted (and compiled); this amounts to an automatic

call on the loader, Notfr how 'rule stare' includes a modification link which

causes the modification of its own 'success' exit after loading to the first

rule of the loaded program (or data),

OVERVIEW OF THE LOADER

The loader is called as a function with no arguments and one result.
That result is a rule node which is meant to be the starting rule of the user's
program. If the loader is called other than by an interpretation of 'rule start'
the result may be used or not according to the programmer's fancy.

The loader reads source input one character at a time from the source
file (e.g., 'foo.ambitg') by making read calls on the built-in function 'char'.
It analyzes its input one statement at a time. Normally, a statement corre-

sponds to one input line; however, many statements may be included on one

line by using semicolons, and there is a method for continuing any statement

across any number of input lines.

As dictated by the statements it reads, the loader deals with one en-
coded page at a time. We consider the true input to the loader to be pages
of diagrams. Each page is hand-translated from these diagrams into several
statements which represent the diagrams, but do not include coordinate
(position) Information. Just those aspects of connectivity which are essen-
tial to the AMBIT/G meaning of the page are encoded.

As the loader processes a page, it does not create any data. Recall
that all AMBIT/G nodes were created at initialization, and their existence
Is permanent for the duration of AMBIT/G execution. All the loader does to
AMBIT/G data, therefore. Is connect various nodes by links which it sets.
Usually, any link set by the loader was undefined (pointing at 'undef undef),
but no check Is made for this. The loader is also capable of defining links ,
which It does by making write calls on the bullt-lns 'read_function' and
'write function*.

49

The loader makes extensive use of the built-in 'locate'# often to find
an unnamed node of a given type. In such a case, if that node is not linked to

be accessible from an accessible node it. is lost in the data base forever.

Although the loader is used to load data, data can include an AMBIT/G

rule as a inlorified node. The loading of programs makes extensive use of

this feature. The loading of a rule causes the representation of that rule in

AMBIT/G data according to the specifications given in the chapter on represen-

tation of programs . In making up the representation of a rule, the loader

links together a 'rule' node with unnamed 'linkrep's, 'diamond's, and 'noderep's

along with the various named nodes used in rule representations. Each named

node explicitly mentioned in a rule is located by the loader and ends up as the

destination of a 'rep' link of a 'noderep' in that rule's representation.

Since tho loader can be called by a user program as well as by the

initial 'rule start' it does not output anything to the terminal unless an error

condition is detected. An error causes an indicative message to b« typed

and execution to be terminated.

ERROR MESSAGES OF THE AMBIT/G LOADER

The following is a list of the various enror messages which may be

typed out as a result of the loader's detecting an error condition. The use

of three periods is to indicate a character string will be typed according to

the state of the data or the loader input. The following line Is typed along

with every loader error message except the last:

AMBIT/G Error: detected by the loader at statement n on page £

where n I«; «n Integer, and £ Is a page-title (string of characters).

1. System Implementation error In the loader probably due to improper

data; a frame does not match because " ... "is not the same as
tl M

... .

2. System implementation error In the loader probably due to Improper

data; a frame does not match because a link with origin " ... " and

name " ... " points to destination " ... " Instead of " ... " .

50

3. System Implementation error in the loader probably due to improper

data; a frame does not match because " ... "is not of type " ..." .

4. System implementation error in the loader due to an oversight by the

implementor; a rule took an unexpected fail exit.

5. The first statement read by the loader does not begin with a " - " .

6. " ..." is an unknown statement.

7. A type-name is missing on a node on a loader page.

8. A page-name is missing for a "-rule-" or "-ruleref-" on a loader page,

9. There is an unknown "-" line in a rule contents on a loader page.

10. There is an incomplete statement on a loader page.

11. " ..." is an extra special character on a loader page.

12. " ..." is an undeclared page-name on a loader page.

13. System implementation error in the interpreter or loader probably due
to improper data; a frame does not match because a link with origin
" ... " and name " ... " points to destination " ... ", which is not
of type " ... ".

51

AMBIT/G LOADER SYNTAX

In doslgninq the syntax for the loader, we established some require-
ments based on the readability of a loader page. A loader page is intended

to be a soquonco of text lines representing one physical page or sheet of

AMBIT/G diagrams. Such a page may be arbitrarily large and contain dia-

grams representing any mixture of rules, data, and link definitions.

We shall provide a grammar for the syntax in a BNF-like specification

language. However, we will first give informally the lexical conventions

which apply to loader input to produce the syntax of a statement.

The readability requirement affects the interpretation of spaces, tabs,

and new-lines (carriage returns) „ Since we can't determine by reading, spaces

and tabs are not distinguished; furthermore, to avcid a requirement for count-
ing, any amount of space on a typed line is treated as a single space. Since

a reader cannot see trailing space it is ignored. Similarly, since the exact
position of a left margin can be uncertain, leading space is Ignored, Since
line spacing is difficult to see, any blank line (even if it contains a space)
is ignored, A loader page should otherwise include only visible printing char-
acters of the ASCII character set.

Another requirement of the syntax is its ability to represent AMBIT/G
node names which may consist of any sequence of printing characters. Thus
when a special meaning is given to a character, such as semicolon, there
must also be a method of inputting a semicolon as a normal text character.

This has been accomplished by giving the dollar sign a special meaning as

a protection character. Namely, when a statement includes a dollar sign

which is itself unprotected, that dollar sign protects the very next character
fnm having special meaning. The following list presents all printable char-
actors which have special meaning in the loader syntax:

$;/!?():*.

Any of these special characters must be protected in order to be understood

as a normal text character. Any other character may be protected by a dollar

52

sign, but protection has no effect; this means a user can't go wrong if he

protects a character when he is not sure whether it has a special meaning.

When a dollar sign ends a text line, it can be considered as a pro-

tection of the new-line (or carriage return) character. Normally the end of

a line denotes the end of a statement. If a line ends with an unprotected

dollar sign, however, that special moaning is nullified, and instead the

statement is interpreted as continuing on the next line. Any number of

continuations may be given. Note that since leading and trailing spaces are

ignored, it may be necessary to protect a space at the beginning of a line

which is part of a continued statement.

We have described how an individual statement may spread over

several lines. The complementary ability to include several statements on

one line Is provided by using an unprotected semicolon as a statement term-

inator.

Input to the loader may include comment statements anywhere. A

comment statement begins with an asterisk and ends either at the end of a

line (which Is not continued) or at an unprotected semicolon. Within a

comment It Is not necessary to protect any other special characters.

The loader performs its inputting by calling a function named

'get^statement'. That function takes into account ^U the lexical conventions just

described. It reads the input stream character by character and produces an

output stream of one loader statement each time it is called. Its output does

not include null statements nor comment statements. Protective dollar signs

are removed, and unprotected special characters are converted into objects

which are not ASCII characters, but serve as an extension to the character

set. We will, however, denote these special objects in the loader syntax

by the corresponding ASCII character. Each space produced by 'get_statement'

Is also one of these special objects; It will be denoted by 'SP'.

Spacing and the use of separate lines are used in the loader syntax

grammar for readability and do not affect the meaning. Ends of statements

are denoted by a semicolon, but recall a semicolon is required to end a

53

statement only when more text follows on the same line, Meta-variables
(non-terminals) are underlined strings consisting of alphabetic characters
and hyphens.

A vertical bar In the grammar represents disjunction. A matching pair
of vertical brackets indicates they enclose an optional construct; namely, the
syntax allows for either zero or one occurrence. A matching pair of vertical
curly braces indicates they enclose a construct which may be repeated any
number o(times, including zero.

The grammar is designed nut to be minimal nor reflect its Implemen-
tation; it is supposed to be easily understood and to correspond to what It
represents. The grammar provides the definition of a 'loader-Input' which
la the string of characters which the loader processes as a result of one
invocation unless an error condition is detected. One 'loader-Input' consists
of any number of 'loader-page's finally followed by a 'start-statement'. Each
'loader-page' begins with a header which should contain a 'page-title' since
that title is typed when an error is detected by the loader on thit page. Then
any number of 'data-node's are specified; each one may either refer to a
'node' in the data of a given type (possibly unnamed) or a 'rule* or a refer-
ence of a rule Cnileref) . Next (and last) on a page are representation«
of links ('data-link's) to be initialized in the data. This includes 'success'
and 'fail' links connecting rules on the page.

A rule is an elaborate generalization of a node with a substructure
resembling the super-structure of a 'loader-page'. Namely, each 'rule' begins
with a header and then contains specifications of 'rule-node's followed by
'rule-link's . Unlike a 'page', the end of a rule is clearly indicated by an
'-endrule-' statement.

To permit the mentioning of 'data-node's in 'data-link's each node
specification includes a 'page-name' which is an Identifier whose scope is
the current page. (We njw realize this kind of identifier wauld have been

better named 'instance-name'« but 'page-name' is used throughout programs
and documentation so it has been kept; we apologize to the reader.) 'rule'
and 'ruleref specifications also Include a 'page-name' for the same reason.
The user should think of the page-name as corresponding to a box In the

54

AMBIT/G diagram: either a box representing a node, a larger one representing
a rule (with contentsJ, or a rounded rectangle representing a rule reference.
We have found It convenient to choose page-names In the spirit of encoding
AMBITA diagrams: the page may be thought of as having a grid of rows and
columns. Rows are named 'a'f 'b', 'c', etc., and columns are named with
the integers beginning at T. A page-name is then chosen according to the
coordinate position of the box it represents. For example, 'hi' is the third
column of the second row. The decision of whether tu adopt this suggestion
is at the user's discretion. Me may prefer to employ words of mnemonic value.

Within a rule, 'rule-paqe-name'■ serve the same purpose as

'p.iqft-numu's. but their scope Is only the current rulo. Thus if u page contains
more than one rule, each rule may include the very samr- rule-page-names,
and furthermore, they may be the sume at. page-nümes employed on the
louder-puge at large.

The syntax allows for specification of 'data-link's and 'rule-link's
in two different forms: using a textual 'link-label' or by referencing a node
by its page-name. The latter form corresponds to the more primitive view
of a link with a spur to a node. The loader processes a 'link-label' xvz by
treating it as a spur to the node 'link xvz',

These explanatory notes huve been intended to give the reader a
"push" into the grammar; we do not consider it necessary to discuss all of
Its details. Following the grammar is a small sample of the encodement of
a complete th i-page AMBIT/G program.

55

CiMmmur of Looclor SynUix

1, loodoi-lnput

2. loader-page

oaao-hcadrr

data-ncxlo

node

tVDod-nodo

namocl-nodo

rule

9, role-hoador

10. m^e-nodo

>

(lo>idor-paqe} start-statement

pane-header

(data-node)

f -iinks- ; { data-link) 1

-page- f [§?] page-title) ;

—^> node | rule | rulotef

—) typed-■node | named-node

—^ page-name sep type ;

—> page-name sep type sop subname ;

—> rulo-hoader

(rule-node)

T — ; (rule-Unk) 1

-endrulo- ;

—> -role- fSPl page-name f SP label 1 ;

—> unnamcd-rule-nodo I tested-tvnefl-rule-node |

typed-rulo-node | namedHrule-node

11. unnamed-rule-node

12. tested-tvped-rule-node

13. typed-rulo-node

14. named-rule-node

IS. rule-link —> nil

16.

17.

18.

rule-link-org

rule-link-name

rule-link-dost

rule-page-name ;

typed-rulo-node ? ;

rule-paqc-name sop type ;

rule-page-name sep type aep subname ;

rule-link-org sep rule-link-name sep rule-link-dest;

 ^ rule-link-org-dest

—) frame-rulp-link | test-rule-link

modify-rule-link

—> rulo-link-org-dest

56

19. fp»np-n|le-llnk

20. test-rule-link

21. modifv-mle-llnk

22. baslc-mle-link

23. labelled-mle-link

24. spurred-rule-link

25.

(fSP)

26. nlmi
27, Wd-unk

28. defllnks —^

-deninke-f^lina

29. link

30. lt"^-o^
31. link-n^me

32. la^U^<?-Unk

33. gpyntd-Unk

34.

35. BiMsDMif

36.

37. lahal

38. link-label

39. tvoe

40. sy^name

41. sep

42. llst-sep

43. page-title

44. limited-identifier

baslc-rule-llnk

t^stc-rv^-UnH ?

bagig-ryi?-iinK I

labelled-rule-link | lanadaBÜlaMlÜt

link-label

—> ! ftile-ij-MiO-Pcimc

f nile-

• rulo-paoo-name

paqe-namo flUt-sep nile-paoe-name) f^f] 1)

-nOeref-f 5f] paae-name f SP label I ;

dofllnks | link

flf 1 (f SP 1 link-name (Ust-sep link-name} fSPl) ;

—> link-org sep link-name sep Unk-dost ;

—> page-name

—> labelled-link | spurred-link

—> link-label

—* ; page-name

—> -start-ffSPl label! ;

—> limited-Identifier

 > limited-identifier

—> mfcam

 > subname

 > identifier

 ^ identifier

 > SPlJ/

 > SP | , fSP)

 > (any string without statement temrinator)

—^ (any identifier which does not begin

with a minus sign)

57

45. Identlflor —} (any string of printing characters)

(END)

A SAMPLE ENCODEMENT

Bolow is an actual listing of the file 'revorsol.ambitg' representing
the small yet complete three-page AMBIT/t program which follows.

rcversel.ambit« 12/30/70 2055.3 est Wed

-po*;o- 1 rl-1
-links-
-deflinl U- p (d)
-deflinl <s- end (r)
-deflinl *s- c (r#d)

-page- (rl-2
al p x
a5 p y
bl c
b2 c
b3 c
bk c
b5 end c
cl char P
c2 char 0
c3 char T
ci» char s

-llnks-
al d bl
a5 d b5
bl r b2
b2 r b3
b3 r bk
bk r bS
b5 r b5
bl d cl
b2 d c2
b3 d c3
bk d ci*

(Conf on next page)

58

•pdf«- rl- 3
-rul«- rl reverse-1
oJ p y
aJ p x
bl
52 c?
bS
■••

al d bl
al dl b2
a5 d b2
a5 dl b>
b2 rl bl
b2 r b3
-•ndrulo-

-ruleref- r2 stop

-llnks-
rl success rl
rl fall r2

-start- revorse-1

59

I
rl-l

reverse I

mm

60

rl-2

s char [< char j

I o I LT_J

61

rl-3

revorao- I

or,
i
stop

f reverse ^

y

62

A SAMPLE ERROR

The following poye is termlndl output of an AMBIT/G run on
Multlcs which causes o loader-detected error condition (number 12).
Tullowlng the listing of the run is ü listing of the program which
caused the error. The anows added tu the output Indicate lines typed
In by the user.

63

s
5

c

«I
a» T3
w n
ID o

i

s •
«*:

«
M w

4)

3 "O

: o

c
3

«/»

«A

<0 —

«A
i.

SI
3

s

00

"3 CM

S V

rH 00
• .*

■-• • O

ui a

*J ^ «- —
3 — r-l ^ CO
E 3 ES
£ 2 »- <0<

10 c
o

it
m
c

•- i
ai

V M
£ 10 w a

■a «i
k

•o 10
« —
«-» u
u «
01 "D
w C
41 3

"O
C
<0

3

oir

01 «

a *<
k
« M
M C
C —
•- M

M
« «I

» a

<M

IA

I
(0

«A

0 u
k

o

•O I« fH
01 10 ♦
i. J e
w

• 3 W
01 U 01 (M
»•Ü *< t»
10 O Of "i a w •

u a IA
O W r-l
W 01
%. *J
«I C r-l

~ 01 »H

I
§

I
10

8

a

1
•a
(0
01 §

X k. <-» 01

I I ^P- U 3 W
II • 0» «I W k
M— U U *TJ (0
10 3 I iH C W
a k r-l iH I (0 01 «A
I I <0 X I w I I

00
to
fA

CM

Jt

64

CHAPTER 6

INITIAUZATION AND THE BUILT-IN SYSTEM

To make an AMBIT/G run using the Multlcs AMBIT/G System a user
must prepare two source files. One file is for normal input to the system;
it will be read by the AMBIT/G loader and by the user's program callirg
upon the built-in function which reads from the input file. The other file
is read only by the AMBIT/G initializer early in the run and it plays no
further role after initialization is complete; this file is called the hint file
since its role in the system is considered to be outside of the definition of
the AMBIT/G language. We call the contents of the hint file "hint informa-
tion* or Just "hints".

This chapter describes the syntax and semantics of the hint file,
and a user's view of the initialization process is given. It also contains
a complete description of the initial state of the AMBIT/G System as seen by
a user's program. This includes all built-in nodes, defined links, initial
links, and built-in rules. All built-in functions other than the loader are
described and their built-in definitions are given.

HINTS

A hint file has three parts. It begins -vith any number (including
zero) of settings of hint variables which control the AMBIT/G System ini-
tialization. These variables have default settings for every run, but the
hint file can override the default settings. However, these overriding
settings must be consistent with initialization of the built-in data and
functions. The following table outlines this information;

smalle8t_integer
largest_lnteger

Default Value

-999
999

Meaning. Restrictions

'integer's are built-in nodes, and
these variables establish the range of
created 'integer' nodes.
'smallest_lnteger' must not be greater
than 'larges^integer'. Note that

65

function arguments 10

defns size 5000

names size 1000

name_length 25

'largest^nteger' should be greater
than the number of statements included
on a loader page, since the loader
tallies a count of statements using
'integer's.

This variable indicates the maximum
number of tail arguments which can
be included in a function call. It
also is an upper limit on the number of
of arguments for which a function may
be defined. It must be at least 2.

This variable is used to limit the size
of the segment used to store function
definitions. A larger number does not
raise costs, but It must be less than
65000. Its moderate setting may be
useful for catching errors in a program
which gets into a loop defining too
many functions. It must be at least
347 plus twice the value of
,function_argumentsl.

This variable indicates the maximum
number of names which may be accomo-
dated in the symbol table (names_seg-
ment). It must be at least 200.

This variable indicates the maximum
number of characters which may be used
in a name. It must be at least 14.

The second portion of the hint file specifies the names and counts of
all types of terminal nodes (having no links), which are to be created in
additon to the built-in nodes. The given count must be greater than zero. The
following list indicates the built-in terminal type names and the number of
nodes which are always created.

Terminal type

flag
link
builtin
undef
boolean
char
special

Count

13
36 (built-in) + 100 (for user)
15
1
2
128
9

66

Integer largest_integer - smallest_integer + 1

type (19 plus additional ones defined by the

user in the hints)

The hint file may include one mention of any of the built-in terminal

types other than 'integer' and 'type'. The given associated count will bfi

added to the built-in count» For example, if the user wishes to extend the

class of nodes of type 'char' by eight more nodes, he would include in the

second portion of the hint file the terminal type name ,rchar" and the integer

'8'. Thus 136 nodes of type 'char1 would be created.

The third portion of the hint file specifies the names, counts, and

maximum number of links of all types of non-terminal nodes which are to

be created other than the built-in nodes. The given count must be greater

than zero.

Since various non-terminal nodes are used to represent a user's pro-

gram and the need for certain other nodes varies according to the ways in

xvhich a program uses functions, the overriding mechanism is more complex

than for terminals. If the hint file does not mention a built-in non-terminal

type then the number of nodes of that type created is the sum of the built-in

count plus the default additional count. However, if a built-in non-terminal

is Included in the third portion of the hint file the given count is added to

the built-in count, thus overriding the default additional count. Furthermore,

the given number of links is added to the built-in number of links, The given

number of links for a built-in non-terminal may therefore be any positive

integer including zero. The given number of links for user-defined non-

terminal types must be greater than zero. The following list presents the relevant

information for built-in non-terminals.

Number of Links

12

6

2

2

2

Non-T 'erminal Type

■rule

Count Default Additional

6 50

linkrep 11 500

pipe 4 100
cell 4 + function_arguments functicii_arguments

charconn 103 1900

67

Ptr 2

noderep 13

circle 42

diamond 15

pname 2

0 1
500 3
0 1
10.0 2
100 3

A type name must not appear more than once in the hint file. Also,
a built-in terminal cannot be promoted to a non-terminal.

Hint Syntax

The syntax of the hint file corresponds to the requirements for
simple use of PL/Tinput functions. Below is given a grammar for the syntax

in a BNF-like specification language. Spacing is used for readability and
does not affect the meaning, Meta-varlables (non-terminals) are underlined
strings consisting of alphabetic characters and hyphens. A vertical bar in

the grammar represents disjunction. A matching pair of vertical brackets
indicates they enclose an optional construct; namely, the syntax allows for
either zero or one occurrence . A matching pair of curly braces indicates
they enclose a construct which may be repeated any number of times. In-
cluding zero.

68

Grammar:

1. hints —> { set-hlnt-varlable NL }

; NL
{ terminal-spec NL }
"" NL
{ non-terminal-spec NL }
"" NL

2. set-hint-variable —) hint-variable = integer

3. terminal-spec —> "type" J3P integer

4. non-teminal-spec —^ "type" SP integer SP Integer

5. hint-variable

6. integer

7. digit

8. type

8. SP

10. NL

—^ smallest_lnteger (large st__integer [
function_arguments [defns_slze |
names_size | name_length

—^ [-] digit { digit }

—» 0 [1 1 2 | 3 [4 | 5 [6 | 7 [8 | 9

—> (any (non-null) string of printing characters ,
except double quotes must be in pairs)

(space composed of any (non-pull) mixture
of spaces and tabs)

—^ (new-line (cartage return))

69

An Example

A rhort example of a hint file follows as an actual listing of the
file 'reversel .hints'. This file is the mate of the file listed as an ex-
ample In the chapter on the loader. Furthermore, the 'reversal' program
Is discussed In detail as the first example In Volume II of this report.

reversel.hints 12/30/70 2035.3 est Wed

mi

"p" 2 1
"end" 1 1
"c" U 2
mi

70

BUILT-IN NODES

As It reads the three portions of the hint file, the initializer creates

all nodes which can be used in the AMBIT/G run. It then attaches names to

the named built-in nodes« These are named nodes of the interpreter and

loader and other nodes which are part of the AMBIT/G System.

An AMBIT/G programmer should avoid using any built-in nodes in
his programs other than for their intended purpose. The programmer is ad-
vised not to use type names which are built-in for anything but their intended

use. For example, a programmer should not employ nodes of type 'circle' in
a program to represent an arbitrary variable.

The following is a compmhensive list by type of all named built-in

nodes. Clheir order corresponds to ordering in the implementation of the

'nodes segment'.)

flac

clear compiled frame test modify
ok no def undef fixed

dummy any general

link

heads
contents
savel
de st
variability
locate
subtract
node

spur tails

frame test

saveret mode

next nextl

rep link'

type char

multiply divide

state
modify

org

value

success
fall
name
sets

read_function wrlte_function

load add
sign pname

bulltln

link
name
subtract

link* read_function write_function locate

type char load add
multiply divide sign error

71

undef

undef

boolean

true false

char

NUL SOH STX ETX EOT ENQ- ACK

BEL BS HT LF VT FF CR

SO SI DT.E DC1 DC 2 DC 3 DC 4

NAK SYN ETB CAN EM SUB ESC

FS GS RS US SP ! H

$ % & 1 ()
* + i - o / 0

1 2 3 4 5 6 7

8 9 • • • < = >

? @ A B C D E

F G H I J K L

M N O P Q R S

T u V W X Y Z

r \
1 ä

_
\ a

b c d e f g h

i J k 1 m n o

P q r s t u V

w X y z ((}

""' DEL

special

SP / i ! ? ()
• • *

integer

(all integers between smallest_integer and largest_integer; e *g • •••

-5 -4 -3 -2 -1 0 1

2 3 4 5 • • •)

72

type

(any user-defined types plus:)

flag link bulltln

integer type ru le

ptr noderep circle

undef boolean char special

linkrep pipe cell charconn

diamond pname

rule

go stop error help ret start

linkrep

fl tl

pipe

free end

cell

free end

charconn

free end

ptr

ret next rule

ml begin end

noderep

(none)

circle

a b c d dl d2 end

f free dest 1 11 mode n

r ret rule fl ml tl proceed

char next_pname pname_llst pname node org name

prev_char findl find2 char_a char_b first_ ch last_ch

end line save_pname special find__pname paren page line

73

diamond

end matched unmatched

pname

end

BUILT-IN LINKS

The following is a complete list by node type of all defined links

which are built-in, tThelr order corresponds to ordering in the implementation
of the 'nodes_segmentl and ,defns_segment'.) All built-in link names are

nodes of type 'link', and therefore the given names are their subnames.

rule

state
spur

success fall saveret savel heads
tails contents frame test modify

linkrep

org name de st next nextl mode

Pipe

next value

cell

next value

charconn

next value

value

74

noderep

rep variability sets

circle

value

diamond

next value

pname

next pname node

BUILT-IN FUNCTION DEFINITIONS

Each of the built-in functions is initially defined as if write calls
has been made on 'read_function' and 'wrlte_function'. These built-in defi-

nitions are initialized (in the 'defns_segment') before built-in links are
defined. The following table summarizes these definitions. All built-in
link names are nodes of type 'link' and therefore the given names are their
subnames. (Their order corresponds to ordering in the implementation of
the 'defns_segment'.)

Read/ Write Link- Name Definition Tall Types
read load 'builtin load' (none)
read type 'builtin type' (any)
read sign 'builtin sign' intsger
read char .'builtin char' (any)
write char 'builtin char' (any)
read add 'builtin add' integer. Integer
read subtract 'builtin subtract' integer, int jer
read multiply 'builtin multiply' integer, Integer
read divide 'builtin divide' integer. Integer
read locate 'builtin locate' type, charconn
read name 'builtin name' (any),charconn

75

rc.\i
rfMii

rourl

wrlto

Wilt.;

writ.»

write

writ'

road function 'builtin
writ<i_fuiiction 'builtin

link' 'builtin

rotul_fmiction 'builtin

writo_function 'builtin

road function 'builtin

writc'_lunction 'builtin

link' 'builtin

read_function'
wrlto_f unction'
link"
read_function'
write_f unction'
read__function'
wrlto_f unction'
link"

cell, (any)

cell, (iiny)
(any), (any)

flaci, (any)

flag, (any)

cell, (any)

cell, (any)

(any), (any)

Althouyh all of thn abovo definitions are bui't-in, it is only necessary
that the fourth last ono be built-in. The existence of that one definition can
servo as a bootstrap to define all of the others.

BUILT-IN RULES

The initial AMBIT/G data graph includes six built-in rules. Two of
these exist only as 'rule' nodes since the interpreter never attempts to look
at their contents: 'rule stop' and 'rule error'. The other four built-in rules
are initialized in the 'clear' ätatc to be as follows. Note that the first two
rules have nc contents.

help
error v.

ret

go
ptr I

next_rule

f
Jsucces . r)

7b"

BUILT-IN DATA

The Initial AMBIT/G data graph Includes various nodes which are

Initially linked together In addition to the representations of the four

above rules. All other built-in nodes have their built-in links undefined

(pointing to 'undef undef). The following diagram shows the initial data.

77

r
cell

free
next -c^

cell
end

next cell next

a~^~>^KT ^ ">^{T
charconn

free

next charconn :i next ; charconn next

 M
^ j

100 nodes

78

BUILT-IN FUNCTIONS

A description of each of the built-in functions (except the loader)
of the AMBIT/G System is included here. Each description includes all
possible error conditions and messages. Although a built-in function will
normally be invoked by a call which depends upon its built-in defim^on,
a program may give e. built-in function as the definition of what is invoked
for any arbitrary link name, etc.. When the AMBIT/G interpreter processes
a link, it first finds out the definition of that link name as applied to the
tails of the link. If that definition is a built-in then the interpreter checks
for the number of tails and heads of the link; it reports an error if there is a
discrepancy. The interpreter then gathers the arguments of the built-in
function and performs a direct call on it as part of its interpretation.

To make it possible for the interpreter to be itself a legitimate AMBIT/G
program, two nodes of type 'builtin' are involved with the reading and writing
of links. The node 'builtin link1 should be given as the head argument of a
write call on ,read_function' (or ,write_function') to define for reading (or
writing) a particular link name as a true link on a particular type of node.
The node 'builtin link" is given as the head argument of such a call when
defining a link to invoke the primitive link reading (or writing) function. This
difference will be clarified for the reader by his observing the listing of the
AMBIT/G interpreter where it processes these built-in functions. There is
only one built-in function which is the primitive link reading function (and
one for writing), and it will be described below.

type (read)

This function is called with one tail argument and one head result.
The result of this function is the node of type 'type' which corresponds to
the type of the argument. Since every node has a type there are no error
conditions for this function,

link' (read)

This function is called with two tail arguments (argl and arg 2)

79

I
and one head result. The type of argl is first determined; If arg 2 Is not

I defined as a true link on nodes of that type, error condition 'rll' is sig-
nalled. Otherwise, the link with origin anrt and name arg 2 is read, and
its destination is returned as this function's result. If the sought link is
defined but has never been written, the result is the undefined node
'undef undef.

:

The error messages for this function follow.

rll: An attempt is being made to read an undefined link
with origin " ... " and name "...".

link' (write)

This function is called with two tall arguments (argl and arg 2)
and one head argument (arg 3) . The type of argl is first determined;
if arg 2 is not defined as a true link on nodes of that type, error condition
'wll' is signalled. Otherwise, the link with origin argl and name arg 2
is written to destination arg,3. The previous destination of that link is

lost.

The error messages for this function follow:

wll: An attempt Is being made to write an undefined link
with origin " ... " and name " ... "to destination " ... " .

locate (read)

This function is called with two tall arguments (argl and arg2) and
one head result. In general, argl is a 'type' node and arg 2 is a list of
printing characters; this function is used to locate by type (argl) and
subname (arg 2) a particular node. If a null rubname Is given a unique node
of the given type is located.

When initialization of an KMBIT/G run Is complete all nodes are
created according to the hints. During the execution, a call on 'locate'

80

either uses up a fresh node of the given type or it finds a named node
which has already been located for the first time. Normally, the loader
locates all nodes during the loading of data and rules, arg2 is supposed
to be a (possibly empty) list of connector nodes of type 'charconn1. These
are forwardly-linked by 'next' links, and 'charconn end' terminates the list.
Each other (if any) 'charconn' node of the list has a 'value' link which is
supposed to point to a node of type 'char' which represents a printing char-
acter.

!f argl is not of type 'type', error condition 'loc 2' is signalled. If
an element of the list of arg2 is not of type 'char*, error condition 'loc 3' is
signalled. If an element of the list of arg2 does not represent a printing
character, error condition 'loc 4' is signalled. If a connector of the list of
arg 2 is not of type 'charconn', error condition 'loc 5' is signalled. If the
length of the list of arg 2 exceeds the maximum length of a name (according
to hint variable 'name length'), error condition 'loc6' is signalled.

After all above checks are passed, if arg 2 is a non-empty list it
is treated ae a specification of the subname of the node being located. If
that node is already known, it is returned as the result. If it is not already
known (including the null subname case) a fresh node of the given type is
obtained to be returned as result. If, however, all nodes of the given type
have already been located, error condition 'loc?' is signalled. If a non-null
subname was given and & fresh node is to be obtained, but the system cannot
accommodate another name (according to hint variable 'names_size'), error
condition 'loc8' is signalled.

The error messages for this function follow.

loc 1: The first argument of a call on the builtin "locate" is
" ... ", which is not of type "type" .

loc 2: The second argument of a call on the builtin " locate" is
" ... ", which is not of type "charconn" .

81

I

loc 3 : The second argument of a call on the buillin " locate"
Is a list beginning with " ... " which includes a node
of type "charconn" whose "value" link points to " ... ",
which is not of type "char".

loc 4 : The second argument of a call on the builtin "locate"
is a list beginning with " ..." which includes " ... ",
which is an unprintable character.

loc 5 : The second argument of a call on the builtin "locate1"
is a list beginning with " ... " which includes a node
of type "charconn" whose "next" link points to " ... ",
which is not of type "charconn".

loc 6: The second argument of a call on the builtin "locate"
is a list of characters beginning with " ... " whose
length exceeds capacity.

loc 7: A call on the builtin "locate" is causing an attempt to
locate a new node of type " ..." with second argument
" ... ", and there is none.

loc8: A call on the builtin "locate" with arguments " ... " and
" ... "is causing an attempt to create a new name, and
that would exceed capacity,

name (read)

This function is called with two tall arguments (argl and are 2) and
one head result, argl is any node, and this function returns the subname
of the node as a list of its constituent characters. This result list Is
connected by 'charconn' nodes removed from a "free" Hat of 'charconn's
headed by the 'charconn' node arg 2. The list given as arg 2 and the result
list are forward-linked by 'next' links, and 'charconn end' terminates these
lists. Each other (if any) 'charconn' node of the list has a 'value' link for
pointing to a 'char' node.

82

If arg 2 is not a node of type 'charconn', error condition 'ml' is
signalled. If a connector node of the list given as arg 2 includes a node to
be used other than a 'charconn', error condition 'ml' is signalled. If the
given list of 'charconn's does not include enough of such nodes for return-
ing the subname, error condition "m 3' is signalled. If argl has no subnome,
the result is 'charconn end' and the given "free" list is not affected; other-
wise, this function has the side-effect of removing those 'charconn' nodes
which it uses from that "free" list.

Note this built-in function is available to a user program, but it is
not used anywhere in the system other than one call in the interpreter to
execute the function on behalf of the user's program.

The error messages for this function follow.

ml: The second argument of a call on the builtin "name"
is " ..." , which is not of type "charconn".

m 2 : The second argument of a call on the builtin "name"
is a list beginning with " ... " which includes a
node of type "charconn" whose "next" link points to
" ... ", which is not of type "charconn".

m 3: The second argument of a call on the builtin "name"
is a list of nodes of type "charconn" beginning with
" .. • " which is too short to accommodate the subname
oi

read_function (write)

This function is called with two tail arguments (argl and arg 2) and
one head argument (arg 3) . It is used to define a reading function whose
definition is arg 3. The link name which will later invoke that reading
function is arg 2. arg4 is used as an indicator of the number and types of
tail(s) which will be required to invoke that reading function. If there should
be no restriction on the tails, argl should be 'flag general' . Otherwise,

83

I
!

1

!

!

argi must be a list where nodes of type 'cell' are the connectors, 'cell's
are forwardly-linked by 'next* links, and 'cell end' terminates the list.
Each other (if any) 'cell* node of the list has a 'value' link to point at the
list element. Each given list element represents one tail argument of the
reading function being defined. If the element is 'flag any' that particular
tail argument may be any node. Otherwise, a list element must be a node
of type 'type' to indicate the type of that particular tail argument which is
required to invoke the reading function. If arg 2 is 'cell end' an attempt is
being made to define a reading function with no tail arguments.

If a definition is made when argl is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name # the newer
definition overrides the previous one for the overlapped domain. This is
discussed further in the section describing ,read_function (read)' •

arg 3 must be either a node of type 'builtln' or 'rule'. If aro3 is
'builtin link', this is an attempt to define a link for reading; therefore, argl
must be a list with exactly one element which is a 'type' node.

If arg 3 is neither of type 'builtin' nor type 'rule', error condition
'drfl' Is signalled. If argl Is neither 'flag general' nor of type 'cell', error
condition 'drf 2' is signalled. If an element of the list given as argl is
neither 'flag any' nor of type 'type', error condition 'drf 3' is signalled. If
a connector node of the list given as argl includes a node other than a 'cell'
error condition 'drf 4' is signalled.

If aro 3 is 'builtin link', then this is an attempt to define a link for
reading. If argl is not a list of one element, error condition 'drf S' is sig-
nalled. If another link cannot be defined for the given i.ype because that
would exceed the maximum number of links given in the hints, error condi-
tion 'drf 6' is signalled.

In defining any reading function, if the system cannot accommodate
that definition (according to hint variable 'defns_size') , an error condition
'drf 7' is signalled. If the number of elements of the list given as argl
exceeds the maximum number of arguments of a function (according to h'nt
variable 'functlon_arguments'), then error condition 'drf 8* Is signalled.

84

The error messages for this function follow.

drfl: The head pointer of a write-call on the builtin

"read_function: Is " ... ", which Is neither of
type "bulltln" nor of type "rule".

drf2: The first argument of a write-call on the builtin
"read_function" is " ... ", which is neither the

node "flag general" nor a node of type "cell".

drl3: The first argument of a write-call on the builtin
"read_function" is a list beginning with " ... ",
which includes a node of type "cell" whose "value"
link points to " ... ", which is neither the node
"flag any" nor a node of type "type".

drf4: The first argument of a write-call on the builtin
"read__function" is a list beginning with " ..."
which includes a node of type "cell" whose "next"
link points to " ... ", which is not of type "cell".

drfS: A write-call on the builtin "read_function" is an
attempt to define the link " ... ", and the first
argument is " .. • " f which is not a list of one

ode of type "type".

drf6: A write-call on the builtin "read_function" is an
attempt to define the link " ..." on nodes of type
" ... ", and another link cannot be defined for
this type.

6x17: A write-call on the builtin "read_function" is causing

an attempt to make a new definition, and that would
exceed capacity.

85

1
1

drf8: The first argument of a write-call on the builtin
"read_function" is a list beginning with " ... "
whose length exceeds the maximum number of

arguments allowed for a function definition.

write_function (write)

This function is called with two tail arguments (argl and arg 2)
and one head argument (arg 3) , It is used to define a writing function
whose definition is arg3. The link name which will later invoke that

writing function is arg 2 . argl is used as an indicator of the number

and types of tail(s) which will be required to invoke that writing function.
If there should be no restriction on the tails, argl should be 'flag general',

Otherwise, argl must be a list where nodes of type 'cell' are the con-

nectors, 'cell's are forwardly-linked by 'next' links, and 'cell end' ter-

minates the list. Each other (if any) 'cell' node of the list has a 'value'

link to point at the list element. Each given list element represents one
tail argument of the writing function being defined. If the element Is

'flag ifiy' that particular tall argumant may be any node. Otherwise, a list
element must be a node of type 'type' to indicate the type of lihat particular
tall argument which Is required to Invoke the writing function. If arq2 Is
'cell end1 an attempt Is being made to define a writing function with no tall

arguments.

If a definition is made when arg4 is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name, the newer
definition overrides the previous one for the overlapped domain. This is
discussed further In the section describing ' write_function (read).

arg 3 must be either a node of type 'builtin' or 'rule'. If arg 3 is

'builtin link', this Is an attempt to define a link for writing; therefore, argl
must be a list with exactly oae element which is a 'type' node.

If arg 3 is neither of type 'builtin' nor type 'rule', error condition 'dwfl'

is signalled. If argl is neither 'flag general' nor of type 'cell', error condi-
tion 'dwf2' is signalled. If an element of the list given as argl is neither

'flag any' nor of type 'type', error condition 'dwfS' is signalled. If a connect-

or node of the list given as argl Includes a node other than a 'cell', error

86

condition 'dwf'T is signalled.

If arg 3 is 'builtin link', then this is an attempt to define a link for
writing. If arg'I is not a list of one element, error condition 'dwf5' is
signalled. If another link cannot be defined for the given type because
that would exceed the maximum number of links given In the hints, error
condition 'dwfS' is signalled.

In defining any writing function, if the system cannot accommodate
that definition (according to hint variable 'defns^slze'), error condition
'dwf?' is signalled. If the number of elements of the list given as argl
exceeds the maximum number of arguments of a function (according to
hint variable 'function_a^guments,), then error condition 'dwfB' is sig-
nalled.

The error messages for this function follow.

dwfl: The head pointer of a write-call on the builtin
,write_function" is " , •, ", which is neither of
type "builtin" nor of type "rule".

dwf2: The first argument of a wrlte-call on the builtin
"wrlte-function" is " .., ", which is neither the
node "flag general" nor a node of type "cell".

dwf3: The first argument of a write-call on the builtin
"wrlte_function" is a list beginning with " .,, "
which includes a node of type "cell" whose "value"
link points to " .., ", which is neither the node
" flag any" nor a node of type "type".

dwf4: The first argument of a write-call on the builtin
"wrlte_function" is a list beginning with " ,,, "
which includes a node of type "cell" whose "next"
link points to " .,, " , which is not of type "cell".

97

dwf5: A wrlte-call on the builtin "wrlte^function" is
an attempt to define the link " ,., " # and the
first argument is " ... " , which is not a list
of one node of type " type".

dwf6: A write-call on the builtin "write_function" is
an attempt to define the link " ,,, "on nodes
of type " ... ", and another link cannot be de-
fined for this type,

dwf7: A write-call on the builtin "wrlte_function" is
causing an attempt to make a new definition,
and that would exceed capacity.

dwf8: The first argument of a wrlte-call on the builtin
"write__function" is a list beginning with " ... "
whose length exceeds the maximum number of
arguments allowed for a function definition 1

read_function (read)

This function is called with two tail arguments (argl and arg 2)
and one head result. It is used to determine the reading function which is
defined to be called for a given link name, arg 2 , and with a given sequence
of types of tail arguments. This sequence of types is represented as argl
by a (possibly empty) list where nodes of type 'cell' are the connectors,
'cell's are forwardly-linked by 'next' links, and 'cell end' terminates the list.
Each other (if any) 'cell' node of the list has a 'value' link pointing at a
list element which is a node of type 'type'. Each given list element represents
one tail of the link whose definition is sought. If there is no definition for the
given link name and sequence of types, the result is 'builtin error'. Otherwise,
this function's result is either another 'builtin' node or a 'rule' node.

Since overlapping domains might have been given for a particular link
name on various write calls on 'read_function', we include the following

88

complicated description. For the given number of elements (including zero)
of the list presented as argl , previous definitions are scanned for that

number of elements. The scan is performed starting with the most recent
definition and then working backwards towards the oldest definition. If a
definition included 'flag any', that argument position matches any given
type. If a match is found during the scan, no further scanning is performed
and a result is returned. If the scan did not result in any match, then those
definitions are scanned which were made for any general arguments as indi-
cated by a first tail argument of 'flag general' on a previous write call on
,read_function'. As before, general definitions are scanned newest to oldest.
There are no built-in general definitions. If a match is not found among the
general cefinitions, a result of 'builtin error' is returned.

This function is called by the AMBIT/G interpreter for every reading
link It processes to determine the definition of that link. It Is not expected
to be used within "normal" AMBIT/G programs.

If argl is not of type 'cell', error condition 'grfl' is signalled. If an

element of the list given as argl is not of type 'type', error condition 'grf2'

is signalled. If a connector node of the list given as argl includes a node
other than a 'cell1, error condition 'grf3' is signalled. If the number of

elements of the list given as argl exceeds the maximum number of arguments

of a function (according to hint variable 'function_arguments'), then error con-
dition 'grf4' is signalled.

The error messages for this function follow.

grfl: The first argument of a read-call on the builtin
"read_function" is "... ", which is not of type "cell".

grf2: The first argument of a read-call on the builtin
"read_function" is a list beginning with " ... "
which includes a node of type "cell" whose "value"
link points to " ... " , which is not of type "type".

grf3: The first argument of a read-call on the builtin
"read function" is a list beginning with " ... "

89

I
I

!

I
I

which includes a node of type "cell" whose "next"
link points to " ... " , which is not of type "cell"

grf4: The first argument of a read-call on the builtin
"read__function" is a list beginning with " ... "
whose lonqth exceeds the maxlmum number of
drguments allowed for d function definition.

wrlte_function (read)

This function is called with two tail arguments (argi and arg 2) and
one head result. It is used to determine the writing function which is de-
fined to be called for a given link mme, arg?, and with a given sequence
of types of tail arguments. This sequence of types is represented as arol
by a (possibly empty) list where nodes of type 'cell' are the connectors,
'cell's are forwardly-linked by 'next' links, and 'cell end' terminates the
list. Each other (if any) 'cell' node of the list has a 'value' link pointing at
a list element which is a node of type 'type'. Each given list element repre-
sents one tail of the link whose definition is sought. If there is no defini-
tion for the given link name and sequence of types, the result is 'builtin error'.
Otherwise, this function's result is either another 'builtin' node or a 'rule' node.

Since overlapping domains might have been given for a particular
link name on various write calls on lwrlte_function', we include the following
complicated description. For the given number of elements (Including zero)
of the list presented as argl, previous definitions are scanned forthat number
of elements. The scan is performed starting with the most recent definition
and the working backwards towards the oldest definition. If a definition
included 'flag any', that argument position matches any given type. If a
match is found during the scan, no further scanning is performed and a result
is returned. If the scan did not result in any match, then those definitions
are scanned which were made for any general arguments as Indicated by a first
tail argument of 'flag general' on a previous write call on 'wrlte_functlon'• As
before, general definitions are scanned newest to oldest. There are no built-
in general definitions. If a match is not found among the general definitions.

90

I
• a result of 'bulltln error* is returned.

This function is called by the AM BIT/G interpreter for every writing
link it processes to determine the definition of that Jink. It is not expeottd
to be used within "normal" AMBIT/G programs.

If argl is not of type 'cell', error condition 'gwfl' is signalled. If
an element of the list given as argl is not of type 'type', error condition
'gwfZ' is signalled. If a connector node of the list given as argl includes a
node other than a 'cell', en-or condition 'gwf3' is signalled. !f the number
of elements of the list given as argl exceeds the maximum number of argu-
ments of a function (according to hint variable ■function_arguments')# then
error condition 'gwf4' is signalled.

The error messages for this function follow.

gwfl: The first argument of a read-call on the builtin
"write-functlon" is "... ", which is not of type "cell".

gwf2: The first argument of a read-call on the builtin
"write-functlon" is a ist beginning with " ... "
which includes a node of type "cell" whose "value"
link points to " ... ", which is not of type "type".

gwf 3: The first argument of a read-call on the builtin
"write_function" is a list beginning with " ... "
which Includes a node of type "cell" whose "next"
link points to " ... ", which Is not of type "cell".

gwf4: The first argument of a read-call on the bulltln
"write-functlon" Is a list beginning with " ... "
whose length exceeds the maximum number of
arguments allowed for a function definition.

91

char (read)

This function is called with one tail argument (argl) and one head
result. It is used to read (or input) one ASCII character from either the
input stream of the user's typewriter terminal or from the normal input file
for the AMBIT/G run (e.g., 'foo.ambitg'). The result of this function Is
always a node of type 'char', and it is one of the 128 built-in nodes of that
type. The design of this function may be extended in the future as other
input requirements present themselves; but presently only these two devices
are available. If argl is the node 'char D' (for disk or data) the character
is read from the file. If, however, this is an attempt to read beyond the
end of the file, error condition 'rcT is signalled. Any other value of argl
causes a character to be read from the terminal. Actually, the Multics
System "hands over" one line at a time to AMBIT/G , so a user must type a

new line (carriage return) before any characters of that line are obtainable.
If this function is called when the user has not typed any input. It waits for
the input indefinitely with the AMBIT/G System in a dormant state with respect
to Multics.

The AMBIT/G implementation on Multics passes through whatever
ASCII character it finds. The Multics convention Is every line ends in
only the single character ASCII 'LF' (Multics terminology Is NL for new line);
the AMBIT/G programmer should not expect to find the ASCII 'CR* In the
normal case.

This function is called by the AMBIT/G loader with an argument of
'char D' to read the input file.

The error messages for this function follow.

rd: A read-call on the builtln "char" with a first
argument of "char D" is an attempt to read beyond
the last character of the input file.

92

char (write)

This function is called with one tail argument (argl) and one head
argument (arg 2). It is used to write (or output) one ASCII character to the
output stream of the user's typewriter terminal. The design of this function
may be extended in the future as other output requirements present themselves;
but presently only the one device is available. The character to be written is
given as an>2 and it must be one of the 128 built-in nodco of type 'char';
otherwise, error condition 'wd' is signalled.

This function normally buffers a line of characters at a time and
flushes that buffer only when a 'LF' is written* The AMBIT/G implementation
on Multlcs passes through whatever ASCII character it finds. The Multlcs
convention is every line ends in only the single ASCII 'LF* (Multlcs terminology
is NL for new line); the AMBIT/G programmer should not normally write the
ASCII 'CR'. The line buffer can hold up to 130 characters and is flushed when
that buffer is full.

To permit interactive programs written in AMBIT/G which have ques-
tions and answers, this function may be called with argl as 'char F' tojlush
the character butter, including the current character given as arg 2 . Any
other value of anil causes normal buffering to occur.

The error messages for this function follow.

wd: The head pointer of a write-call on the builtin
"char" is "... ", which is not a node of type
"char" which represents an ASCII character.

93

add (read)

This function is called with two tail arguments (argl and arq2) and
one head result. It is used to produce as result the 'integer* node repre-
senting the sum of the integer represented by the 'intecer' node argl and
the integer represented by the 'integer' node arg 2 ,

If» arg 1 is not of type 'integer', error condition 'addl1 is signalled.
If arg 2 is not of type 'integer', error condition 'add2' is signalled. If the
sum of the two arguments is an integer which is outside of the range of
existing AMBIT/G integers (according to hint variables 'smallest_integer' and
'largest_integer'), error condition 'add 3' is signalled.

The error messages for this function follow.

addl: The first argument of a call on the bulltin
"add" is " ... ", which is not of type "integer".

add2: The second argument of a call on the bulltin
"add" is " ... ", which is not of type "integer".

add3: A call on the bulltin "add" produced a sum of
" ... ", which is outside of the range of Integers.

subtract (read)

This function is called with two tall arguments (argl and arg 2) and
one head result. It is used to produce as result the 'Integer ' node repre-
senting the difference of the Integer represented by the 'integer' node argl
minus the integer represented by the 'Integer' node arg 2.

If argl is not of type 'integer, error condition 'subl' Is signalled.
If arg2 is not of type 'Integer', error condition 'sub2' Is signalled. If the
difference of the two arguments is an Integer which Is outside of the range
of existing AMBIT/G Integers (according to hint variables 'smallest_integer'

94

and 'largest_lnteger')# error condition 'suba* Is signalled.

The error messages for this function follow.

subl: The first argument of a call on the builtin
"bubtract" i£ " ... ", which is not of type "Integer".

sub2: The second argument of a call on the; cuiltin

"subtract" is " ... ", which is not of type "integer".

sub3: A call on the builtin " subtract" produced a difference
of " ... " , which is outside of the range of integers.

multiply (read)

This function is called with two tail arguments (argl and arg 2) and
one head result. It is used to produce as result the 'integer' node representing
the product oi the integer represented by the 'integer' node arql times the
integer represented by the 'integer* node argZ.

If argl is not of type 'integer', error condition 'mull' is signalled.
If aro 2 is not of type 'integer', error condition 'mul2' is signalled. If the
product of the two argum mts is an integer which is outside of the iange of
existing AMBIT/G irtegers (according to hint variables 'smallesteintejer1

and 'largestjlnteger), error condition 'mul3' is signalled.

The error messages for this function follow.

mull: The first argument of a call on the builtin
"multiply" Is " ... ", which Is not of typ<t "Integer".

mul2: The second argument of a call on the builtin
"multiply" is " ... ", which Is not of type "integer".

mul3: A call on the builtin "multiply" produced a product
of " ... ", which is outside of the range of integers.

95

I
I
.;

I
>

I
i

divide (read)

This function Is called with two tail arguments (argl and arg 2) and
two head results (resl and res 2). It is used to produce: as result resl the
'integer' node representing the quotient of the integer represented by the
'integer' node argl divided by the integer represented by the 'integer' node
'arg 2' ; and as result res 2 the 'integer' node representing the remainder of
that division.

It argl is not of type 'Integer', error condition 'dlvl' Is signalled.
If arq2 Is not of type 'Integer', error condition 'd^' Is signalled. If
arg2 Is 'Integer 0', error condition 'dlv3' Is signalled. If the quotient
of the division Is an Integer which Is outside of the range of existing
AMBIT/G Integers (according to hint variables ,smallest_lnteger' and
'ldrgest_lnteger'), error condition 'dlv4' Is signalled. If the remainder
of the division Is an Integer which Is outside of the range of existing
AMBIT/G Integers, error condition 'dlvS' Is signalled.

The error messages for this function follow.

dlvl: The first argument of a call on the bulltin
"divide" Is "... ", which Is not of type "Integer".

div2: The second argument of a call on the bulltin
"divide" Is " ... ", which is not of type "Integer".

div3: A call on the bulltin "divide" is an attempt to
divide by zero.

dlv4: A call on the bulltin "divide" produced a quotient
of " ... ", which is outside of the range of integers.

divS: A call on the bulltin "divide" produced a remainder
of " ••• ", which is outside of the range of Integers.

96

sign (read)

This function is called with one tail argument (argl) and one head
result. It is used to produce as result either:

a) 'integer -1* if argl is an 'integer' node representing
an integer less than zero; or

bT 'integer 0' if argl is 'integer 0'; or
c) 'integer 1' if argl is an 'integer' node representing

an integer greater than zero.

If argl is not of type 'integer', error condition 'sgnl' is signalled.
If the integer result (-1, 0, or 1) is outside of the range of existing AMBIT/G
integers (according to hint variables 'smallest_integer' and 'largest^nteger'),
error condition 'sgn2' is signalled.

The error messages for this function follow.

sgnl: The argument of a call on the builtin "sign"
is " ..." # which is not of type integer".

sgn2: A call on the builtin "sign" produced a result
of " ... ", which is outside the range of integers.

A SAMPLE ERROR

The following page is terminal output of an AMBIT/G run on Multics
which causes an error condition (drfl). Following the listing of the run is
a listing of the program which caused the error. The arrows added to the
output indicate lines typed in by the user.

97

0)
ü

in

3

•
00

•o
n CM
0 ♦

O

%
rH t^

• .*
t^» r-l 0
r-t • 0

(fl (3
u ro hfl-s.

•— J- 4-» H
*-> J- • -• mm»

3 _ iH J3 00
E 3

-C ^ i.

u
3

c H-
•«i |
4-) ■o'
r— IT»
._ oi 01
3 a w

JQ >
4J

« •
£ U- S '^
4-» 0 o >

0
c w «4- r-

o ai i—

^ tt» 0)
•a 4-) — ü
r— » 3
(0 0) w «
u c
1
0) (/)

S X

0> —
*J .- fmm ps

•— 3 0)
w J: W U
2 u s^

•M 0)S
(0£ £

2 «J
(4- • ^
o *r bO C

r v C —
u x — •— pw

ai 3 4-i
*J p- u 0) 0)
c ^s w x:
._ a» a«
o u 01 w
as a 0t 00

>« c
■O W» 4J c —
ro — .- M
0) <*- M
fr o 01 u

c »- ü
a» o w — 0
.c — o -c »-
H 4J C 5 a LT»

u PM
BC ■O IÄ f-4
3 B 0) (0 +

M- — w 2 O
I*« w

■o- 3 W
• • (Q •— U 0) w
U (U 3 U 4J CN
O W JS 0 V in
WS s w «
w w a u»
Ul 0 w

W Q>
rH

a W 4J
^ 0) = ■9
H •M» J-

VI ^
00 .- Q) rH

i .c J:
KH W

c
3

03

CM

M
4J

1

ha
10

8
w a

1

1
1
o

t
o

y
o
u

f
o
o

r
e
a
d
_
f
u
n
c
t

 i
on
l

o
o

0»rH X > 1 M-
£ W ~ 0)

pm t~ rH — 1
1 1 pm fm f 3 4J
0« V 0) u w w
bO- o u %"0 10
(0 3 1 rH C 4J
a W rH IH 1 10 01 M
1 1 10 Xi 1 w 1 1

98

CHAPTER 7

THE DEBUGGING FACILITY

This chapter describes 'AMBIT/G DEBUG', henceforth called
'agd', which is an interactive debugging aid used in conjunction with the
AMBIT/G Programming System implemented on Multlcs. This debugger
gives the user the facility to examine the AMBIT/G Data Graph symbolically
in a variety of ways and to alter links in the Data Graph on an individual
basis.

The user invokes the debugger by typing the following command line
to the console command monitor:

agd

The debugger should only be invoked any time after AMBIT/G data has been
initialized (or restored). AMBIT/G initialization is complete after the second
new line (carriage return) is issued by the AMBIT/G System when it is first
started. If 'agd' does not detect any existing AMBIT/G data when it is
started, it will type an informative error message and terminate. Otherwise,
it issues a new line (carriage return) and waits for user input.

'agd' is used interactively at a typewriter terminal where the user
types requests, and the debugger issues typed responses to those requests.
It never takes the Initiative of requesting something from the user, 'agd*
continues to interpret the user's requests until it terminates as a result of
the user's typing either:

a) a '/q1 command to quit, or

b) a '/S' command to signal a system status save, or

c) a '/R' command to resume AMBIT/G interpretation.

99

LEXICAL CONVENTIONS

SPACES are treated as characters and are not normally optional
in 'agd' . For example, a full node name must have at most one SPACE
separating the type-name from the subname.

Since the names of AMBIT/G nodes may consist of any printing
characters, the following conventions apply to all user-typed Input to 'agd*.

The dollar sign '$' serves as a protection character for whatever
character immediately follows It. Unless preceded by a protective dollar
sign, the following characters have special meaning:

Character Meaning

carriage return statement terminator
• statement terminator

i separator
/ separator and command Indicator
& Internal name Indicator

$ protect the next character

When a carriage return Is protected (because a line ended In an
unprotected '$'), both the '$' and carriage return are Ignored. Thus, this
combination can be used to Input a statement on any number of typed lines,

The use of an unprotected '$' Immediately preceding any of the
other five special characters

y , / & $

causes that character to be Interpreted literally as a character In a name.
Thus, a user must type

ab$&$$cd

when referring to the node name 'ab&Scd'.

100

When an unprotected '$' Immediately precedes any character other
than the special ones, that '$' Is Ignored.

The above conventions for user-typed Input to 'agd' Insure that
a user may make unambiguous requests. These conventions only apply to

Input, but 'agd' output may be ambiguous In some rare cases. In these
cases It should be possible for a user to type one or two requests whose
responses will eliminate the ambiguity.

STATEMENTS

A statement Is an Individual request which a user types to 'agd1.
Usually a user types a statement Immediately followed by a carriage return.
This causes 'agd* to scan the statement and make some response. Note,
however, that 'agd' makes a null response to the null statement.

More than one statement may be included on a typed line by using
an unprotected ';' as a statement terminator.

When 'agd' detects an error and responds to a statement without
having scanned to the ei.i of the statement, It aborts the scan for the
remainder of the typed line and Issues an extra carriage return to indicate
this condition to the user.

Except for the null statement, a statement Is either a command,
or it is a request to examine part of the AMBIT/G Data Graph. Examination
may result in a typeout of the origin, name, and destination of a particular
link; or it may produce such a typeout for each link emanating from a
particular node.

If 'agd' detects an error in a statement, it attempts to respond
with an informative error diagnostic. There are so many possible diagnostics
which may be issued that this writeup will not Include a list of them. The
sample session at the end of the chapter includes examples of these diagnostics.

Before presenting the various forms of statements, some definitions
and conventions will be given which apply to many of the statements.

101

I
[

Node Names

AMBIT/G Data consists of nodes and links. Each node belongs to
a class, where each member of that class has the same links defined. This
membership is described as the type of a node. The type of any given node
never changes, and contributes directly to the node's name.

The type or type-name is that character string which, together
with a node's subname, makes up the full name of a node. However, some
nodes have no subname (those located with a null name); such a node is
unnamed. A node with a non-null subname is a named node.

Thus, each node in AMBIT/G Data has a type-name which consists
of one or more printable ASCII characters (not including SPACE, TAB, etc.).
Each named node also has a subname which consists of one or more printable
ASCII characters (not including SPACE, TAB, etc.). The subnames of the
nodes of a given type must be unique. The canonical graphical representation
of a named node is a rectangular box with the type-name positioned above
the subname within the box. In 'agd', a node name is typed as the type-name
followed by one SPACE followed by the subname.

Each type in AMBIT/G data has an associated node of type 'type'
with a subname corresponding to the associated type. For example, if
'integer 5' is a node name, its type or type-name is 'integer* and its subname
is '5'. Furthermore, there must also be a node in the data whose name is
'type integer'. This implies there must be a nod« in the data whose name is
'type type1, and this sequence of implications stops here.

Internal Subnames

For the purposes of using 'agd' to examine AMBIT/G Data which
includes unnamed nodes, the convention has been established to associate an
internal subname with every node. An internal subname begins with an un-
protected '&', and that is followed directly by an unsigned or negative decimal
integer. The integer part of an internal subname of a given node conveniently
coincides with the integer representing that node in the Pl/I representation of
AMBIT/G Data in the Multics Implementation; this is particularly valuable for
debugging the AMBIT/G System in conjunction with the Multics 'debug' command.

102

Note that the integer part of an Internal subname may be any
negative Integer greater than some lower bound which depends upon the
particular AMBIT/G run. There is a similar upper bound for those internal
subnames whose integer ports are positive; however, within the positive
range not all integers correspond to nodes. A node with n links (n 2 0)
will "use" n consecutive Integers. A type node "uses" four consecutive
integers.

A node with an internal subname whose integer part is negative
is a terminal node; i.e., it has no links.

Typing Node Names

When 'agd' types out a node name, it types a type-name followed
by a SPACE followed by a subname. For a named node, the subname typed is
the subname of that node; and for an unnamed node, the subname typed is the
internal subname of that node.

When a user wishes to type in a reference to a node by its node name he
has some choices: the usar may type either two names separated by one
SPACE, or Just one name. If he types two names, the first is taken as a type-
name, and the second as a subname. 'agd' will allow the type-name, in this
case, to be the internal subname of a 'type1 node. The second name typed by
a user may be either the subname of a node or an internal subname; either form
is acceptable for a named node, but the former option could not be used for
an unnamed node.

If the user types a node name consisting of Just one name, that name
is taken as a subname. 'agd1 will accept that reference if the typed subname
Is the subname of only one node in the data. This will always be the case
when an internal subname is typedc

Therefore, when a user refers to a node, he may type only its internal
subname. If he precedes that by a type-name, 'agd' checks for consistency.
On type out, 'agd' will not eliminate the type-name in a node name.

103

Ll^k-Names

A link in AMBIT/G Data is basically a triplet of node names, where

the elements are: origin, name, and destination. Although the 'name* of a

link is just .mother node, a convention has been established for typing out

and typing in link-names which is different from the conventions for typing

node names.

When 'agd' types out a link-name it omits typing the type-name

and separating SPACE when the type-name is "link"; otherwise, the node

name for that link is typed. Since many names of links are of type 'link',

this convention reduces type-out time.

This convention also applies to a user-typed link-name. Thus, If

only one name is typed as a link-name, and if it is not an internal subname,

then 'agd' assumes the user had also typed a type-name of "link". If the

user types just an internal subname, the node which is uniquely named by that

internal subname is taken as the link-name reference.

Link Type-Out

When 'agd' types out one or more links it first types out the node

name of the origin of the link(s) followed by a colon. Then on separate lines,

it types each link indented by one TAB. The link-name is typed followed oy

a '/' as separator. This is normally followed by the node name of the

destination of the link. One special convention has been established to

conserve type-out time and aid to readability: if the destination is the built-

in undefined node, 'undef undef, the tvoe out ofthat node name is omitted.

There is no similar convention for typing in.

104

I
I
I
I

STATEMENT FORMS

The most common 'agd* request is for the examination of a node
or a link. The following syntactic forms may be used:

Syntactic Form Use

node-name to examine a node
node-name { / link-name } / to examine a node
node-name { / link-name } / link-name to examine a link

A matching pair of curly braces indicates they enclose a coi struct which
may be repeated any number of times». Including zero. The underlined
strings are meta-variables (non-terminals); their definitions have already
been given.

The only SPACES allowed in these statements are those which
separate a type-name from a subname. A ',' may optionally be used in place
of a '/' in these statements. Examination of a node means that 'agd' types
out all links which emanate from the specified node. If Just one node name
is given, as in the first form above, that name refers to the specified node.
A statement of the second form, however, permits the user to type a list of
link-names to specify a "walk" through the AMBIT/G Data Graph to reach the
specified node. Each given link-name is interpreted as a step out of the
current node via that link to the node at the destination of that link; that
destination node then becomes the current node.

A statement of the third form is used to examine just one link of
a specified node, 'agd' interprets such a statement by first determining the
origin in the same manner as it does for a statement of the second form. Then,
the final link-name given determines the one link which 'agd' will type out.

As 'agd' scans a statement, interpreting a "walk", it checks for
any error conditions and will report immediately on any error without coi;tirmlng
its scan.

105

I
r

i

!

1

I
I

i

Commands

The remaining statement forms are commands which begin with a
'/* followed by a letter. The following commands are recognized by 'agd':

Syntactic Form Use

A type-name type out type statistics
/I type-name Jlst alHlnks of the type
/i node-name type_intemal sub name
/s node-name/llnk-name/node-name jet a link (same as /w)
/w node-name/llnk-name/node-name write a link (same as /s)
/S Signal gystem Status gave and

resume execution
/R .resume AMBIT/G interpretation
/q auit

The '/S', '/R', and '/q* commands must be given as Just two characters.
The other commands may have any number (including 0} of SPACES following
the first two characters. The argument of a 'A' or '/l' command cannot be
an internal subname.

The 'A' command causes 'agd' to type out the current and maximum
numbers of links and nodes for the given type and also the internal subnames
spanned by the current number of nodes.

The '/i' command causes 'agd' to type out the node name of the
given node followed by a 's' followed by the internal subname of that node.

The '/s' or '/w* command alters the AMBIT/G Data and types out
both the old and new values of the link.

The '/S' and '/R' commands provide user control of the AMBIT/G
System which are not directly related to debugging. Their use is described
elsewhere in the report.

The '/q' causes 'agd' to terminate and return to its caller.

106

A SAMPLE SESSION

This description of 'agd' concludes with a sample session of using
the debugger on a limited part of an AMBIT/G Data Graph. The listing
Included Is a real session without any simulated typing. For convenience
In the references to the listing. It has been annotated to the extent that
every line typed In by the user has an associated Integer; all other lines
are typed out by the system.

On the next page Is a portion of the AMBIT/G Data Graph which
Is referenced In the sample session. The Data Graph referenced also In-
cludes all Initial (or built-in) data.

Following that Is a listing of the session, and that Is finally
followed by an explanation of the session.

Other 'agd1 sessions are included among the examples In Volume II.

107

A portion of on ;;..niT/G D. : Grjph

charconn
free

noxtlchurconn next

' 1
k/alue

v
I char
1 * i

charconn 'next charconn

value value

?

i lvalue

f
undef
undef

char
X

char
• 1
' i

■

circle
r

lvalue i

rule

start
Contents t». llnkrep

1
1

Istate

flag

1 clear

108

Listing of the Session

1 a;:«l

2 ctiarconn freo
cl 1.1 rconn froe:

next/cluirconn «i59c2

3 charconii {«5002
charcumi r<^JC2t

nuxt/chürconn v.;l>!)C4
valun/char *

4 üinU
chürconn UüäUi»i

luixt/cluirconn uS^üL
value/cliar A

5 v(3 °J ü 1>
lUTiiauAL SUIMAT.I; "V.J....:)" DOr.o HOT .i*\ilE A lioni-

6 cUarconr« frce/ncxt/nnxt/next/
charconn i'(Ii:)üb>

ncxt/clnrrconn »'.ÜGCw
^nlua/char ;

7 char ;
TI!C i-iOL>E liAi.L "clwir" iL.CJ CAP bYilTAX üfö »FACES

8 char :..;
char ;; tiO LiUKS

9 früo;/l r.har;/lchnrcoiin
"frGu" l:> liOT UiiliiUE: C(i\], pipe, circle, cl.nrconn
MDtS OF TYPE "chnr" HAVE iJO LIHKS
.J0ÜE3 OF TYPE "charconn" HAVE LlilKS:

itoxt
val uc

10 /t clinrconn;/! charconn;/s charconn;/q charconn
TYPE "charconn" I1A3 2/2 LlilKS A.'ID 2003/2003 UODES: LJ.-JZ T- ..,:ü;
type charconn ■ «.10112
li;COIiPLETF. "/s" comA.io

11 /n charconn
USE "/q" ALOiiE TO QUIT

12 charconn KIOS*
I.-TEUKAL SUDiiAliE "iaür.2" DOES liOT iJAHE A NODE OF TYPE »chnrconn"

13 type ai0ü2
lüTEUWAL SUU.iAfiE "ai.0ü2" HAS BAD SYMTAX

14 type £iin.S2
type chr.rcoiui: liO LliltCj

15 foo;i.oo noo
110 IJODL HAS SUßhAliE "foo"
THE TYPE U0DE "noo" IS U.iDEFI.iED

16 type poo
"poo" IS HOT A SUBHAliE OF A .10DE OF TYPE "type"'

17 /s charconn i(i>0iii</val ue/char sp
charconn («HSCüi

value/char ;
DECOHES value/char SP

109

I

18 circle r;circle r/link value
clrein r:

value/rule start
clrele r:

value/rulo start
19 circle r,valuc#state

rule start:
statc/flaL clear

20 circle r/value/next
;:0l)£ "rult: start" D0I;S IKJT HAVt LIHK "link next"

21 circle r/value/state/
1'la,. clear: .iO LI .IKS

22 circle r/value/otate/state
i;0Dli "fins clear" nOES UOT HAVE LINK "link state"; IT HAS IIO.IE

23 cl rele r/f ;o
"foo" lü iJ.)T A SUBMAME OF A NODE OF TYPE "link"

24 /q
r lo22 !J..ii:7 2bü+(3Jl

110

Explanation of the Session

1. "agd" is the command the user typed to the Multics console

command monitor which caused 'agd' to be invoked. Note the
blank line issued by 'agd' to indicate it is ready to receive requests.

2. This is a request to examine a node. Note that 'agd1 retyped
"charconn free:" and then typed the two links emanating from
that node. Since the names of both links are of type 'link',

"link" is not typed in the link-names. Also, since the destination
of the 'value' link is 'undef undef nothing was typed there. The

destination of the 'next* link is an unnamed node, and therefore
an internal subname is typed.

3. This is a request to examine a node using a node name composed

of a type-name and internal subname.

4. Just the internal subname was typed by the user to examine a node.

5. Just an internal subname was typed, but it does not name a node.

6. This is an examination of a node by specifying a "walk". Note
the syntax of the destination of the 'value' link.

7. The user then tried to examine the node "char;", but the ';' acted

as a statement terminator.

8. This is a successful examination of that node, demonstrating the
use of the protection character.

9. Three statements are included on one typed line. First, there is

an attempt to examine a node by typing only a subname, but that

subname is not unique; note that 'cell free', 'pipe free', and
'circle free' are built-in nodes. Then there are two examples of

the '/l' command.

ill

10. This line Includes four statements. The first Is an example of the

'A' command, and the second Is an example of the '/l' command,
'agd' detected an error In the third statement, and terminated Its
scan, which Is indicated by Its Issuing the blank line.

I
i

i

j
11. The user now re-enters (for demonstration only) the command which

was not previously scanned, but 'agd' detects an error and again
terminates Its scan In the middle of the line.

12. The user has typed a node name, where the type-name Is not
consistent with the type of the typed Internal subname.

13. The typed Input appears to be correct, but due to a terminal or

communications problem an extra period was accidentally entered.
(Incidentally, this was a spontaneous error which the author did

not expect.)

14. This Is an example of the examination of a 'type* node.

15. Two silly commands are typed by the user, and 'agd' types the

two error diagnostics.

16. This Is another example of an error diagnostic caused by an incorrect
node name.

17. This Is an example of setting a link.

18. This line Includes both a node examination and a link examination

which both produce Identical results. The second statement
includes a link-name which was typed with a type-name.

19. This Is a link examination with a "walk", and also demonstrates

the use of commas as separators.

112

20. This Is a node examination which Includes a "walk" ending In
a non-exlstant link.

21. This Is a successful node examination.

22. This Is a link examination which includes a "walk" ending in

a non-exlstant link on a tnrmlnal node.

23. This Is an attempt to examine a link where the link-name is not even

a node.

24. This Is a successful end of the session. The final 'ready*

message line was typed by the Multlcs system. It indicates
that this sample session used 9.867 seconds of CPU time.

1J3

CHAPTER 8

THE IMPLEMENTATION

This chapter begins with credits and acknowledgements of those re-

sponsible for the implementation of the AMBIT/G System on Muitics. The

remainder of ehe chapter discusses various details of the implementation

which serve as notes for a maintainer of the system and as a guide for using

the system. Since at the time of this writing there is essentially no user

community for this experimental implementation, we have not produced a

polished user manual. The implementation was written in Muitics PL/I and

AMBIT/G (bootstrapped by hand-translation into PL/I).

CREDITS AND ACKNOWLEDGEMENTS

The AMBIT/G System described in this report has been Implemented on

the Muitics (for Multiplexed Information and Computing Service) System at M.I.T.,

which is a general purpose time-shared computer utility implemented on a

"General Electric" 645 computer system.

This development was carried our using a semi-portable Datei 30 type-

writer terminal especially modified for Muitics use. This terminal was used in

the Wakefield office of Applied Data Research and in a home of one of the

implementors. We regularly obtained line printer listings by ordering them

(using the terminal) and then picking them up at M.I.T.

Michael S. Wolfberg was responsible for the implementation effort as a

whole. Carlos Christensen, D. Austin Henderson, Michael J. Fischer, arid

M.S. Wolfberg worked together to produce the design of the language to be

implemented and to resolve some difficult problems of the implementation.

M.J. Fischer wrote the AMBIT/G program for the interpreter which appears in

the third volume and wrote several of the example programs in the second

volume. M.S. Wolfberg wrote the loader, the underlying foundation described

in the current chapter, the debugging subsystem, and the remaining example

programs with the assistance of Maynie Ho.

114

We thank Prof. J.C. R. Licklider, Director of Project MAC, M.I.T.

who made important initial steps in arranging for our access to Multics. We

also thank the staff of M.I.T, Information Processing Services and the M.I.T.

Information Processing Center who administer Multics, especially Thomas

Van Vleck (of I.P.C.) and Jerrold M. Grochow (Assistant to the Director of

I.P.S.) for their helpful assistance and advice so courteously given.

115

AN INTFR.JA:. VIEW or THE MULTICS AMBIT/G SYSTEM

An AMBIT/G program exists on Multics as a pair of source files;

for example, the program 'foo' would be represented by 'foo.hints' and

'foo.ambitg'. The file with secondary name 'hints' is usually rather small;

it includes some Information which causes a particular initialization of the

AMBIT/G machine. Since this information is considered to be outside of the

definition of the AMBIT/G language we call its contents "hint information"

or just "hints". The syntax and semantics of the hints is given elsewhere.

The source file with secondary name 'ambitg' includes a string en-

codement of the AMBIT/G program in a format acceptable to the AMBIT/G

loader.

The AMBIT/G System exists as eight executable segments: 'pribin',

'interpreter', 'loader', 'ambitg_error', 'intldr_error', 'agd', 'agsave', and

'agrestore'. At a minimum, the first three segments must be available for

execution, and the next three segments should be available in case any

error conditions arise. The remaining two segments are used only for saving

and restoring the status of an AMBIT/G progiam. Although 'agd' is required

for handling errors, it alone is required for performing interactive symbolic

debugging of AMBIT/G data.

The AMBIT/G System can be invoked to run a program by the user's

typing the console command "ambitg" followed by a space followed by

the name of the program. Alternatively, the 'ambitg' procedure can be called

from within a PL/I program with one character string argument as the name of

the program. The 'ambitg' procedure is part of the 'pribin' bound archive,

and the 'pribin' segment has 'ambitg' as an additional name.

Let us assume the user issued the console command "ambitg foo".

We shall now trace through the initialization process.

116

Initialization

First, the system save switch is cleared. Then an attempt is made

to "open" the source file 'foo.ambitg' in the current working directory; if

there is an error an error message is typed and executic aborts. The length

of this file is determined as a character count, and the file input counter is

initialized to zero.

To overcome the inability of Multics PL/I to read a file whose name

has been determined by a computation, a fixed name, 'ambitg_hints', is

temporarily added to the hint file, 'foo.hints'. PL/I input statements are

used to read the hint file. If the fixed name cannot be added to the nint file

for any reason, an indicative error message is typed concerning the "üpening"

of the hint file and execution aborts.

Three segments are then created in the current process directory

which are to contain nearly all data specific to this AMBIT/G run:

Name Use

nodes_segment all AMBIT/G 'type' nodes and non-
terminal nodes

names_segment the symbol table of all named nodes

defns_jsegment all function definitions

If one of these segments is found to be already known to the process, it is

used and initially truncated. Any error condition causes an indicative error

message to be typed and execution aborts.

If all has gone well up to this point "AMBIT/G" is typed on the ter-

minal as positive feedback to the user.

Default values are assigned to the hint variables and then a 'get

file data' PL/I statement is used to read any overriding values for the hint

variables. Consistency checks are performed for hint variables to meet

various conditions. Any inconsistency causes an indicative error message

to be typed and execution aborts.

117

After passing all consistency checks, the initializer reads any number
of terminal node hints from the hint file. Each such hint consists of a non-

null string and a non-negative integer. The end of these terminal node hints
is signalled'by a null string. The given hints are merged with built-in ter-
minal node hints.

Then any number of non-terminal node hints are read from the hint
file. Each such hint consists of a non-null string and an integer greater

than zero and a non-negative integer. The end of these non-terminal node

hints is signalled by a null string. The given hints are merged with built-in
non-terminal node hints.

During the reading of hints various conditions may cause an error
message to be typed and execution to be aborted. Otherwise, the hint file
is "closed" by removing the temporary name 'ambitg^lnts' from it. This

too is prone to an error condition leading to execution aborting.

If all is well, the user is given more feedback by a blank line being

typed.

At this point, the 'nodes_segment' is arranged, and all built-in nodes
are created and their names are made known in the ,nanes_segment'. Then
the ,defns_segment, is initialized to include definitions of all built-in functions,
All built-in links are defined, and finally an Initial data graph is created in-

cluding various built-in rules in a 'clear' state.

A second blank line is typed to indicate to the user the end of ini-

tialization. The AMBIT/G interpreter is then invoked to begin Interpretation

at 'rule start' , which is one of the built-in rules.

Interpretation

The initializer creates an AMBIT/G machine and data graph and finally

calls the interpreter as a subroutine with one argument. In this case, that

argument is 'rule start'. Thus the interpreter carries out an Interpretation

cycle on 'rule start'. Since that rule is in a 'clear' state , It is first compiled

and then is interpreted. The contents of that rule causes a function call on the

118

AMBIT/G loader. The loader reads its input one character at a time from
the source file 'foo.ambitg' by calling on the primitive ,read_char'. When

a '-start-' statement is processed by the loader, it returns control to the
interpreter which finishes its Interpretation of 'rule start'. That interpre-
tation causes the 'success' exit of 'rule start' to be the starting rule of 'foo'.
So the interpreter will then carry out an interpretation cycle on that rule.

The interpreter then continues to execute the program 'foo' by inter-
preting its rules. It is possible that 'foo' includes rules which cause further
reading of 'foo.ambitg' by either calling the loader again or by calling the

read version of the builtin 'char'.

Interpretation continues indefinitely until one of the following occurs:

a) The interpreter detects an error condition; this causes an

error message to be typed and execution aborts.

b) The interpreter calls a primitive which detects an error
condition; this causes an error message to be typed and

execution aborts.

c) The interpreter interprets 'rule stop' at the top level (i.e.,
'ptr ret' points to 'rule stop'); this causes the interpreter
to return control to its caller. If the interpreter had been
called by the initializer, the initializer then returns control
to its caller which was probably the console command moni-
tor. This is the standard ending of a complete AM3IT/G run.
The AMBIT/G data is preserved in the process directory.

d) The Interpreter detects the system save switch is set when
it begins a new cycle at its own 'rule start'; this causes
the interpreter to call the 'agsave' procedure which saves

the status of the AMBIT/G System in the current working

directory. The 'agsave' procedure returns to its caller with

a cleared system save switch if the user answers "yes ' to

119

I
the question "CONTINUE EXECUTION? " typed on the ter-

minal; this causes the interpreter to begin that new cycle

from which it was interrupted. If the user had answered

"no" to the question posed by the 'agsave' procedure, then

it does not return to the interpreter, but instead calls the

console command monitor. Thus this could be considered

as the end of a partial AMBIT/G run. Note that the AMBIT/G

data is preserved in the process directory in addition to the

saved data in the current working directory. The rule which

the interpreter was about to interpret is saved as the node

pointed to by 'circle r'.

The system save switch is originally cleared as the

first action performed by the initializer. The user can cause

that switch to be set by temporarily interrupting his job and

invoking the'/S1 command of 'agd'.

e) The user aborts the running of the job by depressing the

"QUIT" button on his terminal and does not resume that job;

this could be considered as the end of a partial AMBIT/G

run. Note that AMBIT/G data is preserved in the process

directory.

f) The system crashes and automatically logs out the user;

this destroys the process directory and thus all AMBIT/G

data. If the user had caused any system saves to be done,

the working directory at the time of that save contains the

saved data. Thus if a user has invested in a rather long or

costly run, he is advised to save the AMBIT/G system

status at appropriate intervals during the run.

We have described the way in which the interpreter is called as a

procedure by the initializer after all initialization is complete. The one other

call upon the interpreter in the current implementation is in 'agrestore', the

restoration procedure. This call can be invoked by various methods, but it

finally calls upon the interpreter with an argument of the node pointed to by

'circle r'.

120

Loading

The AMBIT/G loader is a primitive of the system as are 'read^ink'

and 'read^ype'. However, it differs from all other primitives in the method

used to define and implement it. The loader was written in AMBIT/G and

then hand-translated to PL/I in the same way the interpreter was implemented,

Even though the loader is a primitive, it makes use of calling upon many

other primitives, but then so do some of the other primitives.

If the loader is given a large source file to load it may require a

significant amount of time. Thus if a user causes the setting of the system

save switch during the interpretation of a rule which includes a call on the

loader, he may have to wait a long time before the interpreter again begins

another cycle when it causes the saving to occur.

The loader has no argument, but it is called as a function by the

interpreter. The result is a 'rule' node specified in the 'start' statement

which ends the loading process.

Although the loader detects and reports several error conditions re-

sulting from an Improper source file, there are some errors which show up

in a primitive on which the loader calls. Unfortunately the error message

in this case often does not include enough Information for the user to deter-

mine the cause of the error. In this case, the user can invoke 'agd' and

determine the current statement number by observing the destination of the

'value' link of 'circle page'; the name of the current page is a list of

characters beginning at the destination of the 'value' link of 'circle line1.

These two pieces of Information are typea as part of any error message which

the loader itself caused to be typed.

Errors

When the Interpreter or loader detects an error condition it makes

a procedure call on an error procedure in the object segment 'intldr_error'.

Entry point names for errors detected by the interpreter are 'intldr_error$ intN'

where N Is a decimal integer. Similarly, loader errors use entry points names

of the form ,lntldr_erTor$ldrN' . Depending on the type of error, some argu-

ments are passed to the particular routine. Each error routine causes the

121

typing of an error mossage on the user's terminal. Arguments are converted

to symbolic node names for more informative type-out by the error routine's

calling 'agd $ gotname' which is a special entry point in the debugger.

Errors detected by the loader cause an additional line to be typed

before the specific error message which indicates a statement number and

the name of the current page being loaded. These are determined by following

the 'value' link of 'circle page' to an integer and the 'value' link of 'circle line'
to a list of charactsrs.

Following the specific error message is a general dump of the status

of the interpreter. First is the name of the rule being interpreted determined

by following the 'value' link of 'circle r', Then,, if the 'value' link of 'circle i'

poirjts to a 'linkrep' node on the 'contents' list of the current rule, that

'linkrep' is dumped as completely as possible. Finally, if \ptr ret' does not

point to 'rale stop' a function call stack trace is performed until either

'rule stop' is encountered or a cycle is encountered or the list is found to

include a node whose type is not 'rule'. The trace consists of typing sub-

names of 'rule' nodes and perhaps ' .,, 'to indicate a cycle, or a full node

name if a node is found on the list whose type is not 'rule',

After a.': of the typing, the error routine calls the console command

monitor.

When a primitive other thaa the loader detects an error condition,

it makes a procedure call on an error procedure in the object segment

'ambitg_erTor,. These various error routines operate just as those in

'intldr_error'.

Saving

The system save switch is a 'fixed binary external static' variable

which is cleared at the beginning of AMBIT/G initialization. It can be set

by the user's temporarily interrupting his job by depressing the "QUIT"

button on his terminal and then invoking the '/S' command of 'agd'. Such an

invocation may be carried out in one of two ways:

122

a) The user may enter the 'agd' debugger by typing the console

command "agd" . Then he may use various features of the de-

bugger. When he wishes to signal a system save and con-

tinue execution, he types the 'agd' command "/S".

b) The user may type the console command "agd $ S", which is

equivalent to typing "agd" and then "/S".

Either of these operations sinpiy causes the system save switch to be set

and then interrupted AMBIT/G execution to be resumed by calling the 'start'

procedure of the Multics Standard Service System.

Actual saving will then occur when the interpreter is about to begin ii

next interpretation cycle. Before the interpreter's 'rule start' is executed, ii

the system save switch is set, a call is made on 'agsave'» The 'agsave'

procedure saves the status of the AMBIT/G System in the current working

directory as detailed later. After saving is complete, the procedure types a

question to the user: "CONTINUE EXECUTION? " . If he answers "yes" th<

'agsave'procedure clears the system save switch and returns to its caller;

this causes the interpreter to proceed with its interpretation cycle which wd.

interrupted. If the user answers "no", 'agsave' calls the console command

monitor.

The method of saving just described preserves the interpretability

of an AMBIT/G program and we expect it to be the common method for saving.

However, the user is also permitted to invoke 'agsave' as a console command

at any time. If saving is done at a time when AMBIT/G is in a strängt btdb-,

later restoration and resumption of execution may not be reliable. Saving

such as this is acceptable if the user expects only to look at the AMBIT/G

data with 'agd' after a future restoration.

When 'agsave' is invoked as a console command it still asks the use;

whether execution should continue. In this case, the question is meaningle;
and either "yes" or "no" is acceptaibie • since either answer ultimately causti

control to proceed to the console command monitor. (The 'agsave' routine

should be altered to eliminate the typing of the question in this case.)

123

W« ihall now d«torlb« ton« dtuili of tho «otlont of '«giav«' • It
b«9lni by typing an InfonMtlvo mtiiago on tho tormlnol whioh inoludot tho
nuM of tho prognun and tho full nomo of tho doitinotlon of tho 'valuo*
link of 'clrolt r* • For oxomplo:

SAVING AMBir/Q STATUS OP -foo" AT *lulo x"

NoMt« Clftoon «ctornol ttotlo voiloblot whloh rtfloot tyiton atotui
•TO eoplod •• an oxtonalon to tho 'nodaa^aognont'• Than tha thraa aogmonu
In tho proooaa düootocy ara ooplod Into tha ounont working dliootocy with tha
following naming oonvontlon (aaauaOng 'too' la tho progran nama):

nodoa^aogmont foo«nodoa«aava

dofna_aogflMnt foo«dofiia*aava

If any auoh ftloa alraady aodatad In tha owvant «roritlng dlvaotoiy thoy ara
ovoiwritlan. Thua It la poaalhla to aavo only ono voralon of a glvon AMUTA*
program In a glvon dlvaotory without ualng MuWoa fllo BMnlpuladon

•

R la oftan tha oaaa that tha 'nodoa^aogmont' ia not danaaly utUlaad«
and thua tha Multloa •oopy.aogj prooadura oauaoa tho typing of a «aiboao
warning awaaago whloh indloatoa tha flwwnt longth dooa not aMtoh tha ounont
block oount. Tho uaor ahould Ignora thla warning.

If 'agaava* datacu any anor condition« It typoa an indioatlva onor
BMaaaga and calla tho oonaolo ooaiaiand monitor.

After tho throo aagaanti ara proporty ooplod 'agaava* aaka ita quaa-
tlon« whloh haa boon pravloualy dooumonted«

124

Rtttoratlon Is logioally tht revsrM optratlon of Mvlno» but ilaot
nott txtemal ttatto vvlabtoi om bt raoonttmoltd from th« Mvtd
,n•lll••_••gn•^t, they art not lavtd. Thus rtitoraUon ukoi ■igniliotntly
loogor than Mvlng.

Tho rtftoratlon praoodurt it '««rtttora' and It «coaptt • ■Inolt «-
guMMft which it tho chamotor ttring nama of tha prooram to ba laatocad. Tha
ooeuaon tthod of invoking rtatocation it tha uaar't typing a oewmand to tha
oonaola ooawand monitor tueh at 'agvaatoia too". Thii would oaua« rastora-
tioo of tha aavad AMBIT/Q progiam 'foe* Cram tha ouirant working dirtotocy
to tha prooaat diraetoiy; thus any aadatlag AMBR/O dau would ba ovar-
witttan* For a raatoration to ba propany oomplalad tha ounant working

a) foo.nodat.aava
b) foo.namataaava
o) foo.daftoa.aava
d) foo»awbitg

Nota that tha hinu flla Cfoo.hinta*) waa load by tha ialtUliaar, but it U
navar naadad again. Evan if tha vaatoiad AMBR/G progiam 'foo* doaa not
«aad any r> «• from *loo.ambitg* # that flla (or any flla with that namo) muat
ba in tha ounant wotking diiaotoiy«

Tha matoration prooata bagina by typing an Indloativa moaaaga
auohaat

RESTORING AMBIT/G STATUS OP "foo"

Than tha thvaa aavad togmontt art copitd to tha prooaat diractocy • At in
tavlng. It la Ukaly that a vaiboaa warning mattaga will ba ittuad duo to a
mlaamtoh of tha ounant langth and ounant block count of tho tavod
'nodot.togmont*• Th« utor should ignor« such a warning.

12S

After UM thrM ••gnwittt trt properly oeptod and tht tourM fll« if
inltlatod, th« titt—n tavad txttmal ttaUo varUbtoi an Inlttaliaad and than
all othar axtamal IUUO variablai art laitUUaad. Much of thii It dona bf
oalU on tha 'looatajprtna* funotton, tha altamata font of tha 'looata* prlmltlva.

If 'aortttora* dataott any airor oondltion. It typat an indloatlva anor
mattaga and oallt tha oontola oowmand monitor.

Finally« rtttoratlon It oonplata and '•grttlow* than oautat mmmtim
to rttuma by ealllng tha Inttrpvtttr with an argunant of tha noda at tha
dattlnaUonof tha'valua* Uakof'elrolar1. Bafoca oallla« tha Intarprttar tha
•yttam tava twltoh It olaartd and a nattaga It typad to tha utar tuoh at:

KXBCUTION CONTWUM AT -rula x*

Tha rtttoratlon prooaduia hat tiro altamata antoy polntt which Impla-
■ant taparataly tha dlttlnot oparatloot of rtttoratlon and rttumptlon of aata-
^F^a%wa^aa9 att »^r^••t^^a aa^^p ^^^^aeaaB^^aa^^a ^^aaa^wv^^a^p^^w^^^m^^ w^^^j ^^^wa^^^p^r a^p^pa^^a^a^va^at a^a «a^^p

program 'foo'« but whan lattorttlon It ooayiata oontrol rttumt to Ott oallar)
tha oontola command monitor, tevoklng tha oottand 'agttttott I latuaw1

Mth no argumant) oautat twaouMon to ratuma aa dtfortbad piavloutly • Tha

'agiattoia $ ratuma* • Such rttumptlon of aacaoutlcn tMy ba appropflata altar
certain «nor condltlont loading to tamlaatloa. In tomacatat« tha utarcan
uta 'agd* to altar ona or ama Unkt and than Ittua •/k* to tiy again« If
a coRaottbla airor cocunad duilng tha Intarprttatlon of a mla. It may ba
naoottaiy to altar tha datttaatlon of tho 'ttata* link of that nila.

Tha intaraoUva tymbcllo debugger 'agd* (for AMBIT/G Debugger)
can be tuccestfully Invoked only after AMHX^G data hat been Inltlallaed
or rtttocad. When 'agd* baglnt. If It doet not detect toy exlttlng AMBIT/G
data« It types an Informative error mettaga and terminates. Otherwise, 'agd'
issues t carriage return (new line) and waits for user Input. Theia are no-
other errors which can cause termination.

126

Th« d«bugg«r male«! UM of Mvtral «xtomal ■Utlo vwUbtos «nd th«
'nodti.MgmMt' and th« *t^»m^_B^qm•tA,, It is Mlf-eonUlMd and inoludat
its own routinat for rsading typas and links, ate«

Onoa it is proparly staitad, it is tamlnatad only by a '/*', 'A*,
or 'A* oommand, 'agd' is not wrlttan to aooount for tha program intanrupt
ooodition.

On« prooadurs is dafinad within tha dabuggar for usa by othar parts
of tha AMBIT/O Systamt *agd I gat.naaw* dataminas a bast synbolio noda
MM as two oharaotar stilngs givan tha noda addiass of a noda • This
proeadmo is oallad torn 'iatldrjanor*« 'arabitgjtiror', 'agsava', and
'agiastesa'«

Tha dabuggar has two mors altamata antry potato whieh provida
abbrsviatod fonas of usar commands:

a) 'agdlS'oan ba issuad as anabbrtvlaticn forthausar's
typing "agd" and than "/§"• This oommand is dascilbad
In tha aartiar sactlon on saving,

b) 'agdlR* oan ba issuad as an abbcaviation for tha user's
typing "agd" and than "/h". This command is dascilbad
In tha prsvlcus sactlon on rastoratlon.

Tha loader has alrsady been described since It is such a diffaient
sort of pilmltlve. Thei» are nine other flA procedures which Include the
It other primitives« These lelatlonships art described in the section on
the files of the Implementation, but rspaated hart for ccnvenlence« An
asterisk following an entiy point name Indicates it is called as a function.

127

KMd/Wlrlto Mam» Propydura JyQ^Q^^^Q^

rMd tyv rMdjtyp« »adLtypa*
f—d locate locate locate*

iMd UnkQlnk') iMd.llnk iMd.Unk*

write link (link') iMdJink writejiak
raid MM iMdjiana raad.nama*

iMd gtuir iM^johar raad^char*

witte ehar wrttejohar wrttejohar

IMd iMd.funollon 9at-,iM4—function gat.raad.funoaof^
IMd wrtte^funotlon gat.iMd.fünotlon got^wrtte^functlon*

write iMd.fünetton dattna.rMd.funotlon daftna.iaad.funotlon

write wilte_ftiMtton daftna taad function daflna.Kirrtte.funotlcn
iMd add aguM agadd*
iMd •ubtraot •«Mid agtubtiaot*
iMd muHlpty agadd agmulttply*
iMd dlvkto agadd agdlvlda
iMd •ten agadd agtlgn*

Thart am two additional antiy pdnte «rtthln thasa pcocaduiat uaad
by tha Inplamantatlon:

•lavf la
and

'laadjlak* la a fünotlcn utad by tha Intarptater
to mad a link and vartfy tha typa of tha daatlaatlon.

'loeate_pclBM' In pcocadura 'locate* la a function uaad by tha lal-
tlallaar and 'agiattoca*; It doat tha lama at 'locate' axoapt
Its aaecad aiguaant It a VIA character string.

An Internal datcriptlon of aach prtmltlva If not Included In this report;
tha utar't datcriptlon of aach prtmltlva should suffica. There are, howavar,
sons ganaral statemants wa can maka about Implaaantatlon of tha prtmltlvas.
Many are callad as functions, as Indicated abova, and tha othsrs are callad
as procaduret. Aiyumantt and results are always nod« addresses (Indices
Into tha virtual 'nodes^segment*. Note that since 'agdlvlda' has two results
It Is called as a procedure.

128

Most pilmitivM pMfom «xUntlv« ohtoklno for «nor oondltlont «nd
upon dotootlfig on oitor moko • o«U upon an orror preoodun within tho objoot

Tho vuloui pctmitivot onploy local vorioblos for tomponry ttoragn
•nd «yumont/rtiult poiting. OthoiwiM thoy UM vorioui oxtemol ttotio
vorlobloi, tho 'nedot.Mgnont* t 'ntmot^Momont', and 'dofni.togmont* •

primitivot oall upon othort. Tho '»adJink* and 'wittojink*
prlmitivos uao thoir onm looal vortlon of 'roadjtypo' for officionoy. Othor-
wtao, auch uao of primitivot followtt

rtad^typa

raad.link
wittojink

wittajohar

Sim Vwn (BnttY frtnti

raadjtypa« raad^Unk

raadjtypa, raad.link, wita.link

got.raad.funotion raadjtypo, raad.link
gotjviltajfunotion raadjtypo, raad.link
dafino raad function raadjtypa, raad.link

doflno_*iitajtunetion raad.typa, raad.link
agadd —-

aQaubtcact —

agmultiply —

agdivido —

agtign

129

BM OF THE MVLTICB AMMT/fl MBM

On Jtnuaiy 1, 1971 th« Multtes AMBIT/Q Syttam WM froMn la th«
foUofwlng tttt«. Dlraotoiy ' >udd> Anblt/a> Wolfbtiy' oonUlnt th« following
OKOoutoblo toommti which oonotttuto tho running tyitom:

prtbln

tabltgjMior

intldrjtrror

•Od

•gMvo

•oroitoro

fitt.

bound «rohlv« with laitUUoor
•nd oil prlmltlvoo oKoopc tho
loodon thlo hoo If oddltlonol
noaoi for

AMUT/O Intorprotor

AMUT/O loodor

hondlot oil orvors dotoctod by
prlmltlvoo

hondlot oirofo dotoctod by nio

AMMT/G DBBUO Intorootlvo
dobuggor

hondlot tovlng of tyttom ttotut

hondlot rtttorotlon of tyttom ttotut

In addition« thlt dlrtotory Includot tho following togmontt:

Nomo

prlbln.archiv«

fact.dofnt.tavo
fact.namot.tovo
fact.nodot.tavo

fiM.
arohlvo of objoct togmontt of
tho InltUllaor and all prlmlttvot
tacoopt tho loodor

tovod tyttom ttotut oftor txo-
outlon of on AMBIT/ G program
namod 'fact*

The object legmentt 'Inlerprtter' and 'loodor' wort created with the
'table' option of the PL/l compiler, which produces a o/mbol table useful for
symbolic debugging. All other segments do not have symbol tables. When

130

raort oonfldcno« it dtvalopcd In th« int«rpr«ter and loadtr th«y should b«
rt-ooaipU«d wlthoug tymbol tablat.

Idt«Uy(th« int«rpr«t«r and loader should bo port of tho bound ir-
chlvo; howovor, th« blndor currently hoi a limitation In th« tit« of a tabl«
('ralartnoa' array) which cautat th« inclusion of «lth«r 'tnt«rpr«t«r' or
'loadar* to «xo««d Its capacity. Whan a new binder !■ rtloai«d for Multlos
at least thai« two ■ogments« and perhaps others, should be Included In the
bound archive. Since the detection of an error currently aborts execution,
it is el little value to Include 'amblto.error' and 'Intldrjsiror' In the bound
archive.

When the PL/t compiler is altered to produce faster procedure calls
all PlA components of the system should be re-compiled.

The 'Wolfberg1 directory has one sub-directory named 'source' which
contains two archive segments:

Name

prlmlts. archive

sys. archive

Bit
archive of source segments of
all primitives except the loader

archive of all other source seg-
ments for the system plus source
segments of II AMBIT/G programs

There are 10 distinct PL/I procedures which cover all 17 primitives
as follows:

uüm\ i. Name Procedure Entry Point
read type read_type reacjype
read locate locate locate
read link (link*) readjlnk readjlnk
write link (link1) read Jink wrltejink
read name readjname readjfiame
read char read__char read_char
write char wrlte_char write_char
read read_functlon getjread_function get_readJunction

131

rMd wrltP_functlon ««t.read^funotlon gatjvrtta^funotlon
writ« roadjunction daflna^read^functlon daflna^readjunotlon
writ« wrtt«_f unction daflna_r«ad_funotlon d«fln«j(irrlt«_funotlon
read load loadar loadar
re«d add ««add agadd
read subtract agadd agaubtract
read multiply agadd agmultlply
read dlvlda agadd agdlvlda
read alon agadd agslgn

Thar« are two additional «ntry points within th«s« prooadures usad by
<h« implusiantauon:

ravt' In preoadur« 'readjink' Is usad by tha inurpratar and loadar to
read a link and varlfy th« typ« of th« dastlnatlon.

'locata^prime' in prooodure 'locata' is usad by tha inltlallsar and
'agrestora'; It doas tha same aa 'locate' aacoapt its saoond aigumant Is a
PL/I character string.

Each of the 11 AMBIT/G programs In 'sys.archive' consists of two
source aagsrents. For the program 'octdec', for example, there are 'octdec.hints'
and 'octdec.ambitg'. The following is a list of these programs.

Name
msw2
msw3
mswS
reversel
reyerse2
reversed
octdec
quicksort
mfgarb
lispgc
fact

check-out program in data loading form only
same aa msw2, but using role loading
demonstration of generality of function calls
short program to reverse a list, method 1
short program to reverse a list, method 2
short program to reverse a list, method 3
interactive octal to decimal converter
routine to sort a list of integers
Michael Fischer's garbage collector
LISP garbage collector from Chrlstensen's AMBIT/G paper
factorial routine with recursion package

132

Tha following ara dlractory listings and arehlva tablas of oontants
of tha froaan suta of tha Multlcs AMBRAS System. Also indudad Is a
map for tha 'pribin* bound sagmant. This indlcatas thosa sagmants in
'pribin .arohiva'.

Sacmants" 15« Records« 116.

rowa fact.dafna.save
rawa fact.names.save
rowa 11 fact.iiodea.sa/a
ro •Id
ra Intldr.error
ro ai.ibltA.err or
ro II Interpreter
re agrestore
ra aesove
ra lu loader
r wa ma 11 box
r wa 19 pribin.archive
re 1» pribin

ambits
def 1 iie.wr 1 te_f unc 11 on
dof 1 ne.ruadLf unc 11 on
rovt
acsiitn
afidlvlde
ac'-Niltlply
assubtract
asadd
locate
1ocate._prine
rua<Ltype
reaOltik
wrlte.1Ink
ruadLcliar
«ct.rcod-functIon
f et.wr i te.f unct Ion
roa<Lpai:io
wrlteacher

Directories« 1« Records« 1.

rowa source

Links« 0.

133

,WoHb<rq>«oufce* Directory

Scfinuiitu1* 2, Kucurds« 0*.

r wa bi tys.urchlvu
r wa 7 prlr.iitk.arcliivo

Dlructorlos« 0.

Links« ü.

134

M «or»«

»ACM

r-tK»^e0t-ir^.»C<<Nt«»09i/VlAe00>0»»n«0lA«*rA<-*O^.»rif«.
eo^t^ooK«ociorAOf-ieooo<NtAoeoiHOr-«j'jre9i.tt>^
r-tMOiHaOCIk^OIOMOlNCMe^lAOIKXHrtlAfM^fAOiKir«
W h« MK« JO r».OK\MrA«.Jf>» Jf J O M tj

K>iHJt-«OK\OC».3'00 M K> f\

rA^0t^c>*Mnr4K\«OfAr4K)r««cte>otoicnoaMf-<oc3eocioo.*

— «K\t4rAlArM;AOK%Mf*4r^(AOe»CIOt'Mr4r4r^r^r«r«h«OUr4il%U
H« lHiHMr4iH<MMO MCMM Mi-ie fH O O CM CMCM iH M iH r-l tH (M tHCM «4 O

oooooooooooooooooooooooooooooo

tH«OcOOMOOOOf-tiHC4K\i-ir^iHi-IO>OtOOOOOOOOOOr-l
CMCM»-ICMfMr-l<MtAOICMCMr<ICMK>«N»*>»AP4tMCMK\K\KNK»KVrA»/M'M'%»"\

CMCMCM<MCMCMCMCMCMCMr4CMCMCMCMCMCMCMC4r4CMCMCMCMr4CM<MC4IM<M

CMiniA^tAtAOCt«lAtACMOr>»^lAO0irf\K\OtC>O)ClcnC»Otet'9C9

04AJtu>iAJJf«HiniAO»AC»r<MCMc»ocMr^f«.rs,r*rN,r>.j'j»iAL'\
iH^OrMOOOOCMCMCM^m^iHjr^cMr^^^^^^^^rAr^cMtM
«K%c9for9c«oerACMtMr«mo«0OOcMnrAoooeoocMCMOO

X) r4 iH *H i-l it r>l O O fH IH l-l fH M O F4 iH iH CM CM CM CM CM CM CM CM CM CM CM O O

0
■ eeeoeoeoooooooooooeeeeoeeoo90o

3 iHO OO O 0»0 O OCM CM COr«r-« r« f-t i-l 0> OOIO O O O O O O OiH r-4
r4CMtHCM*MrMlAIACMCMCMrMCMK\MKMACMCMCMmr'>KMAIAK\r<MOl'%rA
^* «^ >»•»***»•*• ^ »^ ^ "^ *^ >» *^ %. ^ "^ *» "V >• ^ *% ^ "** X. %, ^ >,>» ^ ^
CMCMCMCMCMCMCMCMtMCMMCMCMCMCMCMMCMCMCMCMCMCMCMCMCMCMCMCMCM

t
m

5

a a
• •

>4J
« —

M
(0 ■I

a
iM M •

to u w a**— o
M44t/t4rfM4J «S^k

^ ox ox: « «ja jj !>i
• •••••Mkh,«4

fiffiin%i

bO
IA4J
i— M

a — M «

4E I0
• •

u u
UM aa

w O
tt •

m u
o <o

o
M U

I!'
*J —

<o c

a «-• —

E o — »- »-«-»*- —

a
kiH a—
k a
« • wo
S bO

— (0

X (9
• •

fH 1-4
« 0)

k k

> >
O 0»

M
W 69 (A w

M 4J W *J 4J —
4J» 4J» S4 t0
C ^> B A •" I MW

— E— S^ fl « —
— ro — Q • «ca

• • • • w »J •■» E
(M 'M m (/> k k .= Q
O Cl 4) O O O • •
l/IMMMMMUU
kkkk^^uv
«««OIUUXS'O
> > > > —— 4J *J
ooiciossyv

135

£ P* O CM IA iH IA Kt (0 «
«i i-t K> tO O « tM f» CM r>»
M rMH in M oo ^ r*io
C MK> ^ O 0>r40) O r4
0) M iH iA H% iH M K% M

tACTOOtCMOOMlA
• ••••••••

X> O O tN. jf <N Jt C9 <M 00
0 KMAKtOOOOOO

—> K>K\ rA ^ ^ Jt ^ rA ^

oooooooo

rArAK>rA»AtA»AeMK%
eMCMCMCM(MOteMC«4CM

rHiHriiHiHiHrHiHiH

Qflnnnnaara

£
OOOOOlAtAOlA

c9eoooe3o»eoooi>.M
OOOOOOOOO

■o iHiHi-«iHfHi-<f-»C<fH
0)
«J
«0 OOOOOOOOO
•D
a
3 >A JA >A tA JA >A JA W >A

>
•^^.•^>»^^^^>*
CMCMPMCMCMCMCMCMCM

u
u
«a •
M
«
E H

i
a g
§

I

— C'- la- — a 3 a TJ • a a
• «♦- • iH Q W • •

oi 11.^. a eg »IH^
axr to A vJ s— c
> «^ • |ua ID a—

OIVVOVWOIhOQ)

136

rH r-t iH iH r-i r-i J»

i
to

•A
V

M £ s H CM

U ID-i
i ^ J C

lt> *J OOCM^^CMOCMOlA
-1 k ^ r^ ^ o o O J- r^ o

o ** 10 i-«cs^inOP«.o«M
2 m ♦J f-4 iH
/\ «/> CO
M

>^ «
4J trt
— 01
4
lrt.
/\ rA £ OinKMOlArHlAr^OCM O
W Jt 4J CMJ»iHCMU>inU>JtlOt-« r-i
— J* M cs(0^iHiH«0K\r<«mro IA
■O tH C iH iH r-t T-4ff\ ^

u CM rA
k. 4-) -i

M. e K
•or» 41

c -^ H *J OOuacMOUJOUJVOlO
.. w'to u CSJOOfnrHroiJtrHr«.
£ 0) CM re CMOlAlOOOOICMlA
•- (A «v ♦J rHr-4CM^lAiOr«0
k. 3CM CO iH
a A, iH

I
c

a
c

Mk

y
■a at
C w
3 —

c
W — T»
o «

«♦-TJ «
§10

V
«0 0 4.
Sti. U

c I
c
01

a
Ö
o

c
o

o u
— c
« 3

s-o1

d c a i jz-o *-
> — X (0 U 10 I
«— OC. 0) I U 0) M

_J IS ♦* • c. s *• "O'O'O'O'O 10 w I——
(0 «i «0 io «o o — ■M «♦- ^
0l0)0)«MOi>«0lE
i. u U w to — X WO 10

0) ^ w u
S 10 E

(A

c

•3- (A
IA.*

c
0-
*J •-

(A O
q>r-i
u
c o
U 4J c
« (A

*•- V
« Ü u c

0)
IX W
00 V
tA «^
-* 0)
w i.
00
^ o
a IH

• w
CM IA O)
(0^ >

e
N — IA

IA C
• «-Ml
o «o»-
c c
0) k >
u v k.
0) W 4J

«t- X c
31 « 01
w

■o-o
— « «
10 IA IA e a a
^ 10 10

«i •- •-
= 00

— ü Ü

ro «♦-*♦.»♦-
« 0 0 0
o

h> % «i %

137

The 'mallbox1 segment In directory 'Wolfberg' is a receptacle for
receiving mall from other users of Multlcs.

The additional names are required on the bound archive 'prlbin' since
procedures external to this segment make procedure calls using those names.
In particular, the interpreter includes calls on every primitive. Eventually,
when more of the AMBIT/G System can be commonly bound, most of these ad-
ditional names can be removed.

The use of the sub-directory 'scarce' was established to make easier
the updating of the procedures of the system. It is advantageous for PL/I
compilations of primitives to be done in the 'source' directory since the
'prlbin* bound archive includes names of all primitive object segments. Thus,
for example, if 'read_type' were to be compiled in the 'Wolfberg' directory,
then the object segment produced by the compiler would replace 'prlbin' alias
'read_type'. Such use of the file system may lead to undesirable results if
the maintainer is not exceedingly careful.

PL/I DATA FORMATS

We present here the arrangements of PL/I data used in the Multics
implementation of the AMIBT/G System to represent the AMBIT/G data base
including nodest links, names, and function definitions. The reader who Is
Interested in further details should consult PL/I listings of the system. This
discussion will concentrate on the formats of the ,nodes_segment'#

'names_segment', and 'defns_segment'. In addition to these, however, the
Implementation makes extensive use of 'external static' variables for global
use throughout the procedures of the implementation. Only a small number of
these reflect system status — those which are saved during a system save.

nodes_segment

This segment is simply a long one-dimensional 'nodes' array with
limits 'lb' to 'ub' declared as a PL/I structure:

138

del 1 node$_segment ba$ed(nodei_ptr_1ocal) aligned^
2 nodesdbtub) fixed bin;

The 'nodes' array actually contains only representations of 'type' nodes and
all non-terminal nodes; however, we usually think of a virtual 'nodes' /ay
which also includes terminals. In this virtual array all nodes of a given type
are represented contiguously. A node address is an index into the virtual nodes
array. A terminal node occupies one index number below the actual array. The
node address of the first 'type' node is the value of 'lb', which is one more than
the value of the hint variable 'largest_integer'. Thus the node address of each
'integer' node is the integer itself. This implies all other terminal nodes have
an associated node address less than the value of the hint variable
'smallest_integer'. Although a 'type' node is considered to be a terminal, this
exceptional case occupies four index numbers, and the node address of such a
node is the algebraically smallest of the four numbers. Each non-terminal node
of n links (maximum) occupies n index numbers and its node address is the alge-
braically smallest of those numbers. An initial set of the n entires of a non-
terminal node contain node addresses of the destinations of the node's defined
links.

The four array entries occupied by a 'type' node are used for the
following information:

a) first: an index into the 'nodes' array indicating the ttartinq place
of nodes of this type. For terminal nodes, this Is the algebraic-
ally smallest node address of all nodes of this type. For a
non-terminal type of n links (maximum), this is n less than the
algebraically smallest node address of all nodes of this type.
These extra n entries are used to contain the node addresses
of link names of the given type.

b) second: a positive Integer indicating the current number of links
defined for this type. This Integer remains zero for terminal
types; It may Increase during an AMBIT/G run for non-terminal
types from zero up to the maximum number of links given in
the next entry.

139

c) third: a positive integer indicating the maximum number

of links which may be defined for this type. This

entry remains constant throughout an AMBIT/G run. It
is the integer zero for teiminal types.

d) fourth: an index Into the 'nodes' array indicating the node

address of the next node of this type which is available
for freshly locating. If no nodes of this type have been
located, it is the algebraically smallest node address of

all nodes of this type. If all of the nodes of this type
have been located, it is an index beyond the algebra-
ically largest node address of all nodes of this type.

To conclude this description, an example will clarify the representa-
tion of data graph in the 'nodes_segment'. The example is strictly hypo-
thetical since it does not include the vast built-in data which is initialized
in every real AMBIT/G run. Instead, we represent only the following snap-
shot of a data graph during a hypothetical AMBIT/G run:

Node
Typ«

Current
Number
of Nodes

Maximum
Number
of Nsdtf

Current
Number
gUMä

Maximum
Number
SUML.

atom 2 3 0 0

Integer 5 5 0 0

type 4 4 0 0

triangle 1 2 2 3

The small data graph outlined above has 12 nodes. Although the 'nodes^segmenf
Includes no references to names of nodes we will include them here to aid In
the discussion. The following is a diagram of the data graph:

140

atom atom
X

\ i J
triangle type

atom

type

integer
J

; type

| type
1

type

triangle i

1 ^
| integer

"2

integer

-1

integer

0

j integer !
! 1 i
L„. .

integer
2 i

On the next page we present a listing which shows the ,nodes_segment'
representing the hypothetical data graph. The horizontal lines separate node
representations. An asterisk next to an index number indicates that it is also
a node address of a located node. Although indices range from -5 to 32« the
actual 'nodes' array of the >nodes_segmentl occupies entries with indices 3 to
31. Note the two defined links of 'triangle's and the two links of 'triangle X'.
Note how the nodes of type 'type' are arranged in the same order as the entire
'nodes_segment' and thus finding the type of a given node (given its node ad-
dress) can be accomplished by a binary search. Furthermore, the maximum
number of nodes of a given type is implicitly available by looking at the first
word of the next 'type' node. This arrangement requires an extra dummy node
to end the group of 'type' nodes.

141

Index Entry Subname
-5* X

_4*

-3

-2* -2

-1* -1

0* 0

1* 1

2* 2

3*
4
5
6

-5
0
0

-3

atom

7*
8
9

10

11*
12
13
14

15*
16
17
18

-2
0
0
3

3
0
0

23

23
2
3

29

integer

type

triangle

19 32
20 0
21 0
22 0

23 -5
24 -1
25

26* -4 X
27 -2
28

29
30
31

_/

Representing

nodes of type 'atom1

nodes of type 'integer'

nodes of type 'type'

dummy node to end
'type's

defined links for nodes
of type 'triangle*

nodes of type 'triangle'

32

142

naines_segment

This segment is a structure defined by the following PL/I declaration:

del 1 names_segment based(names_ptr_1oca 1) aligned/
2 max_chars fixed bin,
2 names.next fixed bin,
2 names.size fixed bin,
2 names(hlnt_names_size}/

3 named_node fixed bin,
3 node_name char(hint_name_length);

The value of the first entry of the structure, 'maxjshars', is the value of the
hint varlbla 'name^ength'. 'names^ext' contains an index to the next
available entry of the 'names' array described below. The value of 'names_size'
is the value of the hint variable 'names_size'. The 'names_segment> ends with
a one-dimensional array named 'names' of length equal to the value of
,names_size'. Each element of the array holds a pair of quantities:

a) a node address representing a named node, and
b) a character string (of length up to the value of

'names_slze') representing the subname of the
named node.

Since the 'names' array contains only subnames, the full name of a node is
represented not only by its subname, but also by the subname of the 'type'
nod« representing Its type.

The 'names' array of the 'names^segment' contains all named nodes
except nodes of type 'integer' and built-in nodes of type 'char'. The names
of these nodes are handled implicitly In the primitives 'read_name' and 'locate'.
A given node has at most one subname. There is no order to the entries of
the 'names' array.

We complete this description with a listing below showing the arrange-
ment of the hypothetical 'names_segment' which would correspond to the
hypothetical 'nodes_segment'. The values of hint variables 'naine_length' and
'namesjBlze' used in this example are the default values used in a real
AMBIT/G run.

143

max_chars = 25
names_next = 7
names_slze = 1000
names (I) = 11 "type"
names (2) ■ 3 "atom"
names(3) = 7 , "integer"
names (4) = -5 , "X"
names (5) ■ 15 , "triangle"
names (6) =: 26 , "X"

defns_segment

This segment is a structure defined by the following declaration:

del 1 defn$_stgment ba$ed(defns_ptr_local) aligned«
2 max_args fixed bln#
2 defn$_next fixed bin,
2 defns.slzt fixed bin,
2 defns(hint_defns..ilz«) fixed bin;

The value of the first entry of the structure, 'maxjargs', is the value of the
hint variable lfunction_argumentsl. 'defns_next' contains an index to the
next available entry of the 'defns' array described below. The value of
'defns_size' is the value of the hint variable 'defns_size'. The 'defns^segment'
ends with a one-dimensional array named 'defns' of length equal to the value
of 'defns_size'. Each element is either an index back Into the 'defns' array
or a node address (index into the virtual 'names' array).

Let M. be the value of ,max_args,
i.e., the maximum number of argu-

ments a function may have for a particular AMBIT/G run. Then the first 2*M+4
entries of the 'defns' array are used ' i contain pointers to various lists as
follows:

144

Entry Nam» Contalns Pointer to List bl Definitions of:
defns(i) general reading functions
defns(2) general writing functions
defns(3) reading functions with 0 arguments
defns(4) writing functions with 0 arguments
defnsCS) reading functions with 1 argument
defns(6) writing functions with 1 argument
defns(7) reading functions with 2 arguments

defns(2*M+4) writing functions with M arguments

A list pointer either contains a 0 to Indicate the list contains no
entries, or it contains an index into the 'defns' array to the first entry of
a block occupying several entries. One block represents one function de-
finition . Each block on the general reading or general writing list consists
of 3 consecutive entries. Each block on an N argument list consists of N+3
entries arranged as follows:

Entry within Block Use
1 pointer to next block on this list
2 link name
3 type of tail 1

tf+2 type of tail N
N+3 definition ('rule1 or 'builtin')

The first entry of a block is a pointer used to singly-link the particular list
of blocks. The last block on a list contains an indicative pointer of 0. When
a primitive adds a definition to one of the lists it is pushed down at the head
of the list. The remaining entries within a block are the arguments received
by a write call on either the ,read_function' or ,write_function' built-in functions.
Thus the "type of tall" may either be the node address of a 'type' node or of
'flag any'.

145

Blocks on the general lists and O-argument lists consist of three
entries arranged as follows:

Entry within a Block yag.
1 pointer to next block on this list
2 link name
3 definition ('rule1 or 'buUtin')

The blocks entered into the 'defns' array are added at the next
available entry, and thus an initial portion of the array Is always In use
densely packed. Blocks are never removed« and therefore, the array grows
longer with each processed definition. Definitions are not even merged.
The variable 'defnsjiexf indicates the extent of use of the 'defns' array at
any time.

When a link is defined for either reading or writing, a four-word block
is entered on the one-argument reading or one-argument writing list. Further-
more, the link definition is recorded in the 'nodes.segment' In the place used
to contain the link names for a given type.

We conclude with an example of what the 'defns' array would be if
the value of hint variable 'functlon_arguments' were 2, and If two links were
defined for reading and writing on nodes of type 'triangle', as used la the
example we have been employing throughout this section on data formats. In
this example, the value of 'defns_next' is 25.

146

1
2
3
4
5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

21
22
23
24

25

Entry Representing

0
0
0
0

17
21
0
0

general read
general write
0-read
0-write
1-read
1-write
2-read
2-write

0
-5
15

NABL*

block defining 'atom X*
as a link for reading
on nodes of type 'triangle'

0
-5
15

NABL*

block defining 'atom X'
as a link for writing
on nodes of type 'triangle'

9
-1
15

NABL*

block defining'integer -1'
as a link for reading
on nodes ot type
'triangle'

13
-1
15

NABL*

block defining 'integer -r
as a link for writing
on nodes of type
'criangle'

next available entry

"NABL" means "node address of 'builtin link'". Note that our
simple example which ignores built-in data is too simple to
represent these definitions completely.

147

PL/I IMPLEMENTATION OF THE INTERPRETER AND LOADER

Both the AMBIT/G interpreter and AMBIT/G loader were designed and
programmed as AMBIT/G programs. However, neither one has been executed
in the same manner as a user AMBIT/G program; in fact, neither has been
encoded in loader input form. Instead, both have been hand-translated from
AMBIT/G into a stylized PI/I form which is a vast succession of procedure
and function calls.

AMBIT/G functions were implemented as PL/I procedures with tails
and heads passed through the argument list. The translation is done one
rule at a time starting with the following labelled statement:

L:
call rule (§.,£) ;

where L is the label of this rule corresponding to the rule's name, £ is the
label of the rule at the success exit, and F is the label of the rule at the
fail exit. Rules which were unnamed in the listing are given labels by a
simple algorithm. If a rule in the listing did not include a fall exit, a label
'imp* (for "impossible") is used. If control ever reaches 'imp', enror condition
'int4' or 'IdtA' is signalled. Note that this encodement is possible since
neither the interpreter nor loader includes any rules which attempt to modify
'success* or 'fail' links of one of their own rules.

The contents of a rule is translated into calls on primitives, calls on
functions of the program, and calls on special functions and piocedures derived
from primitives used only for this stylised form. Within each rule, dummy
variables 'dl', 'd2', ... are used for matching dummy nodes to the data. Finally,
the translation of a rule ends with:

call endrule;

We now present examples of function and procedure calls which
may be used in the translation of a rule contents. We begin with the calling
sequences of primitives:

148

headl - read llnkftallUtdilZ);
call wrltejlnk(talli.tail2.headl);
headl ■ read_type (talll) ;
headl- locate(talJl.tail2):
headl » read_name (talll .tail2);
headl* read char(taill);
call write charftalll.headl):
headl» get read function (talll, tall2);
headl ■ get_wrlte_f unction (talll, tail2);
call define read function (talll. tali2. headl);
call define write function (talll. tail2.headl);
llfifldl * aaadd(taül.taii2);
hutfl ■ aggubtractftaiil .tail2) ;
headl » aamultlDiv(taill .tail2);
call aadivlde(taill.tail2.headl.head2):
hsAdl * agtlgn^aiJD;
headl ■ loader;

The arguments and results which are pasted are 'fixed binary* integers repre-
senting node addresses. Now we present calling sequences and explanations
of the derived procedures and function which may be included in the translation
of a role contents:

CeliAnfl Seauenee

call testfaodsfl.nodej);

call tost_llnk(Qi2fllptoiBii,diit);

call venfyCofidtffQfidtf);

call verify linktorioift.namf .dest);

UM.
if the two arguments are not
the same, take the fail exit
of the role.
if the link given by origin and
name does not point to dest.
take the fall exit of the role.
if the two arguments are not
the same, signal error condition
'inn' or 'kM*.
if the link given by origin and
name does not point to dest.
signal error condition 'IntT or
•IdfT.

149

call verify typeCnode,typo);

deif ravt (origin, name, typ»);

if the type of node la not
tvoe . signal error condition
'inta* or'IdrS*.
this means "read and verify
type". If the destinaUon of the
link givun by oiioin and name
is of type tvoe. return it as the
result; otherwise, signal error
condition 'intS?' or 'ldrl3'.

When the 'nile* procedure is called to identify the beginning of a
rule, the two given exits are saved (logically, on a stack). If during the
execution of the rule a rule failure is detected, the given fail exit is taken
Immediately. When the 'endrule' procedure is called, it causes the transfer
of control to the success exit.

To easily implement the interpreter and loader in PL/1, the AMBIT/G
initializer was designed to set up an 'external static fixed binary' variable
for each built-in named node mentioned in either the interpreter or loader.
The initialiser uses a form of the 'locate' primitive to initialise each of these
variables with the node address of the node it represents. For example, the
variable 'diamond.end* contains the node address of the built-in node
'diamond end' • Thus the encodement of a named node in a rule contents amounts
to using the variable which names the node; the variable name is the same as
the node name, except an underbar separates the type from the subname.

We condlude by presenting the PI/I statements used to represent one
of the hiles in the AMBIT/G interpreter. The name of the rule is ,dojrf_r', and
it appears on the page of the interpreter listing (In Vol.UD entitled '10'. We
purposefully omit discussion of the handling of the error condition.

/• 10 •/

•all ralft(»i-r«ttra.r»9rror.ao.rf.r)f
Sln«vt(eirel».l*llAii.ftl««#trM.llat(rtp)i
ia"ra?t (a 1 • iiKk.orf»t rM jlla«oai II
ll"ravt (ia* liak.atit # tr »t^laaaaa) i
lMra?t(fll*ilBk.«9atftffajlu«aBi)i
•l"ravt («a* Xiak.valaa« lrM^ia«ar«f) I
|i«ravt(«s«iiBk.nlaa«trM«a«<*raf)i
l7«ravtUatilakjraUa*tf0a.aaiar«»)l
•••rtaa.llak (45« Uak^a» M
•t"rtai.llakCa«cXiak.raa)i
l10Mat^ta4^aaetlot(li9it)i
call t«at.link(aS*llnkjit«t#iitMoaa.«as)f
call t«atUlakU«*Uak.aait»iiaBOB49aai)i
call vMtT|T»iat9io)i
•o to tadralai

arrer.io.rff^l
•all latiar.arreraiatUf

151

FURTHER WORK

In the short tun, the n«c«ttary work to mak« tho AMBIT/G System
publlcaUy avallabl« through Multlos should b« dons. This will sntsil dsanlng
up sons rough spots in the design and attempting to Improve the apparently
slow speed of the system. Some minor bugs can be fixed.

Greater public interest in AMBIT/G and a large improvement in its
usefulness would result from building a graphical interface for its use. One
of the reasons we implemented on Multic» is for its support of the ARD6
storage tube display terminal and the potential of using the ARPA network in
this medium.

In the longer run, we seek the means of providing an AMBIT/G System
as a simple and practical tool to a software programmer. Currently, this goal
is being pursued with the AMBITA Programming System implemented on a
D.E.C. PDP-10/50 time-sharing computer.

We know of several deficiencies in the current design and implementa-
tion of AMBIT/G. In this chapter we mention a few of these and discuss some
of the possible solutions which have occurred to us. It should be borne in
mind, however, that our thinking is not yet complete on most of these issues.

The AMBIT/O version of the interpreter is, so far as we know, a
legitimate AMBIT/G program. We qualif:' this statement because it has never
been tested; only the PI/1 program obtained from it has actually been run* A
real test of the AMBIT/G version of the interpreter would be to place it, to-
gether with a test program, into the PI/I implementation and see if the PI/I
Interpreter interpreting the AMBIT/G interpreter could successfully interpret
the test program.

In fact, we know that such a test would fail, for the three programs
would interfere with each other in the use of storage. It seems dear that some
sort of block structure is needed to make this work, but we do not know just
how it should look.

1S2

Enor HandliaQ

In the present Implementation, all eirors are tenninal; then it no
way for a user's program to regain control after the occurrence of an error.
Since the interpreter is written using the same conventions as a user's pro-
gram« it likewise cannot regain control after a built-in function detects an
error.

Some sort of an interrupt facility should probably be added to allow
for error recovery. There are actually two examples of interrupts built into
the interpreter: the branches to 'rule go* and to 'rule help*.

Explicit Representation of Primitives

In the present implementation« the primitive routines were hand-
coded in ?lA and no formal definition of them exists. It is certainly possi-
ble to define a representation of arbitrary AMBIT/G data in terms of a fixed
collection of shapes. One could then write AMBIT/G programs which manipulate
these shapes so as to implement the primitives in much the same way as the
AMBIT/G version of the interpreter defines the rules for program execution.

Mrtittonil PrimttlYft

The primitive functions 'locate', 'read_function' and ,wrtte_function'
currently have no inverses. At least for the sake of completeness, it would
seem that there should be a function 'lose' which returns an unused node to
the environment and a function 'forget' which removes a definition of a read or
write function.

Non-prtmitive Built-ins

It is likely that, as AMBIT/G evolves, the need for more built-in
functions will arise. One would like to be able to take an ordinary AMBIT/G
function and, without translating it into PL/l, install it in the interpreter as
a 'built-in* in a way that looks to the user exactly as if it were actually a
PL/1 routine. It would be easy to modify the interpreter to simulate a user-
function call whenever a particular built-in is recognised. But this doesn't

153

have quite the desired effect, for then the user's 'nUe' node rather than the
interpreter becomes the caller« and of course this difference is detectable
by the user (although in any practical sense it is probably not too important).

Other Link Modes

There are many cases in which it would be nice to have a link in a
rule with opposite effect of a 'test* link, that is, the rule would fail only if
the data graph did match the link. Diagramming such a link by slashing the
arrow, we could then write the rule

which would advance the pointer 'circle a* only if it had not previously
reached 'cell end*. A disadvantage of such a "link", of course, is that
it lessens the gestalt feeling of the language, but so do function calls.

Regardless of the merits of such a link, perhaps a mechanism should
be provided whereby the user could extend the number of available link modes
and define interpretations for the new ones. How to do this is still very much
an open problem.

We have generalised links in rules to the point where any link can
denote any operation and the particular operation is determined dynamically.
However, we at present do not allow a different function to be used for trade
'frame' as is used for mode 'test*. One could generalise the 'test* link to
say that both the tails and the heads are passed to a function which then de-
cides, in an arbitrary manner, whether or not the test succeeds. However,

154

this would require (at the least) that we provide tome way for a function
to return a failure indication.

Order of Execution and Fiow Links

When functions have side effects, the order in which they are called
often makes a difference. It is sometimes convenient to be able to call two
functions from the same rule and to specify separately which is to be executed
first. Flow links, as in AMBIT/L, are one device which permits such a spe-
cification and perhaps should be added to AMBIT/G.

A more common and also more subtle problem arises when one wishes
to make a statement of the form: " if a certain portion of the data satisfies
some condition, then another portion of the data will be as indicated and
should be modified accordingly." Another way of saying the same thing is,
"if a certain portion of the data does not satisfy the condition, quit immedi-
ately and do not attempt to match the frame to the remainder." More generally,
one might wish to intermix quite thoroughly the order of execution of the
three modes of links: first establish a little bit of frame, then check some
condition, then some more frame, another condition , perhaps now a modifica-
tion, then some more frame, and so on. Flow links, of course, could also
specify such an order, but it is not clear to what extent this is desirable.
Moreover, modifications can cause very subtle complications, although so
can side-effects of other functions.

The only constraints that the present implementation will accept and
enforce (other than hints) are those resulting from redundancy in the 'frame'
portion of i rule. For example, the rule

155

is essentially a constraint that says, when it is executed, 'circle a' and
'circle b' point to the same thing.

Many other constraints have been proposed, and the intention of
eventually providing for a considerable variety of constraints had a strong
influence on the design of the language, tending to make us less concerned
over inefficiency resulting from increased generality on the belief that, at
the very least, the generality could be constrained away and the efficiency
restored. Of course, actually doing so would require an implementation able
not only to check the validity of constraints but also to take advantage of
them wherever possible.

Continuing research must be done in the ways constraints can be incor-
porated into the language. We seek to expand the vocabulary of constraints to
extend the ability of AMBIT/G to model machine language software.

Adding constraints and building a compiler to utilize them is probably
the most important and most difficult remaining task.

156

CHAPTER 10

PROJECT BIBLIOGRAPHY

This chapter Is composed of a list of papers and a list of implementa-
tions . An item appears In these lists because It was produced as part of the
project (In which case It Is marked with a star, *) or because it pertains directly
to AMBITXä. Only Immediately relevant and generally available papers are
mentioned. The list of implementations may be incomplete, since we include
only those of which we have direct knowledge.

PI. Christensen, Carlos. "An example of the manipulation of directed
graphs in the AMBIT/tl programming language." In Klerer and Relnfelds,
eds., Interactive Systems for Experimental Applied Mathematics.
Academic Press, New York, 1968. —

This Is the first paper on AMBIT/G. It remains useful
because it has a complete listing and careful explanation
of the link-bending garbage collection program (for LISP)
written in AMBIT/G. This program has, to our knowledge,
been run as a test case on every implementation of AMBIT/G.
It Is a good example of AMBIT/G because it is quite short
but decidedly non-trivial.

P2. Cheatham, T.E., Jr. "The theory and construction of compilers."
Massachusetts Computer Associates, Wakefleld, Mass., June 1967
(to be published as a book).

This textbook on compiler-writing makes very successful
use of AMBIT/G data structures to describe and explain
a variety of algorithms for syntactic analysis.

P3.* Henderson, D. Austin, "A description and definition of simple AMBIT/G —
a graphical programming language." Massachusetts Computer Associates,
Wakefleld, Mass., April 1969.

The paper consists of two descriptions of simple-AMBIT/G:
the first Is In English and Is quite informal; the second is in
mathematical notation and constitutes a formal definition of
the language expressed In predicate calculus.

P4. Rovner, Paul D. and Henderson, D. Austin, "On the implementation of
AMBIT/G: a graphical programming language." Presented at the AFIPS/ACM
International Conference on Artificial Intelligence, Washington, D. C.,
May 1969.

This paper describes an interactive AMBIT/G system, with
Input through a graphics tablet and output on a computer
driven display. The implementation is on the TX-2 at M.I.T.
Lincoln Laboratory.

157

P5.* Jorrand, Philippe. "Some aspects of BASEL, the base language for an
extensible language facility.M Proceedings of the Extensible Languages
Symposium, Boston, May 1969, published as the August 1969 edition
olSIGPLAN Notices.

BASEL was designed as the base language component for an
extensible language facility called ELF. ELF was Intended to
have severe] components: one for syntactic extension, one
for definition of communications with a given kind of environ-
ment, and some others. It follows that, on the one hand,
BASEL must have a very simple syntax and, on the other, it
must be a very "powerful" language.

P6.* Hammer, Michael M. and Jorrand, Philippe. "The formal definition of
BASEL." (in three volumes). Massachusetts Computer Associates,
Wakefield, Mass. August 1969.

The purpose of this document is three-fold: to discuss in
some detail the subtler features of the BASEL language; to
indicate the Issues involved in defining a language in terms
of the two-dimensional, machine-independent programming
language AMBIT/G; and to provide the actual programs for
the BASEL compiler and interpreter written in AMBIT/G. A
basic familiarity with the concepts of BASEL and AMBIT/G
is assumed. Part 1, "Introduction", describes in an informal
and instructive way the AMBIT/G data which is used in the
compiler and interpreter, and then proceeds to a discussion
of the defining programs themselves. Part 2, "Compiler",
is an AMBIT/G program which converts the output of a con-
ventional parsing routine into a form suitable for interpre-
tation. Part 3, "Interpreter", is an AMBIT/G program which
interprets the compiled form of a BASEL program.

P7.* Ledeen, Kenneths. "A character recognizer." Massachusetts Computer
Associates, Wakefield, Mass., August 1969.

A real-time character recognition scheme, that is, an
algorithm for associating a sequence of pen movements
with a character code and display form, was designed and
implemented for the Harvard University PDP-1 computer
with Grafacon tablet and CRT display. The program allows
the user to "train" the recognition program to recognize
his individual printing style, and to draft display charac-
ters of his own design. The original intention, not realized,
was to use this Character Recognition System as the input
mechanism of the AMBIT/G implementation.

PS.* Wolf berg, Michael S. "A user's view of the character recognition
program." Massachusetts Computer Associates, Wakefield, Mass.,
August 1969.

The paper first presents a user's view of the Character Recog-
nition System (see Ledeen, above) in completely verbal terms.
Next an Informal two-dimensional notation Is Introduced and
is used to document the program from the user's point of view.
Finally, a series of photographs of the screen is presented
which documents for the reader a sample session of using the
Character Recognition System.

158

P9.* Wolfberg, Michael S. "An Interactive graph theory system." Preprint
of a paper presented at the Computer Graphics 70 International Sym-
posium, Brunei University, England, April 1970. Massachusetts
Computer Associates, Wakefleld, Mass.,March 1970.

This paper describes an Interactive graphics system for
solving graph thoretlc problems. The system Is Implemented
on a remote graphics terminal with processing power connected
by voice-grade telephone line to a central computer. The
potential of using the terminal as a programmable subsystem
has been exploited, and computing power is appropriately
divided between the two machines. In order to express Inter-
active graph theoretic algorithms, the central computer may
be programmed In an algorithmic language which Includes
data structure and associative operations. Examples of system
use and programming are presented. The writing of this paper
(but not the work described In the paper) was performed as
part of the AMBIT/G project.

P10.* Christensen, Carlos and V/olfberg Michaels. "AMBIT/G as an Imple-
mentation language." To appear In the Convention Digest of the IEEE
International Convention and Exposition, New York, March 19 71.

This is a summary of a talk to be given In the session
"Manufacturing Software, the Case for High Level Languages",
chaired by J.W. Poduska. It Is our most recent version of a
concise. Introductory description of our work on AMBIT/G.

PH.* Christensen, Carlos. "An Introduction to AMBIT/L, a diagrammatic
language for list processing." To appear In the proceedings of SYMSAM/2,
the Second Symposium on Symbolic and Algebraic Manipulation, Los
Angeles, March 1971.

AMBIT/L IS a list-processing programming system. The system
grew directly out of AMBIT/G and achieves practical value by
accepting limitations on the generality of AMBIT/G. Two-dimen-
sional dlrected-graph diagrams are used to represent the data,
and similar diagrams appear throughout the program as the
"patterns" of rules. The system has a simple core, but extends
out to accomodate the always complicated requirements of
input-output, traps and Interrupts, and storage management; It
is a large system. The PDP-10 Implementation of AMBIT/L Is
described In this paper.

P12.* First semi-annual technical report for the project Research In Machine-
Independent Software Programming. Massachusetts Computer Associates,
Wakefleld, Mass., February 1969.

This semi-annual report provides a detailed discussion of
the background, basic approach, and research plan of the
project.

159

P13.* Second semi-annual technical report for the project Research in
Machlno-Indepondent Software Programming. Massachusetts
Compi'terAssociates, Wakcfleld, Mass., August 1969.

This report describes our work on fie PDr-1 implementation
of AMBIT/G (which wos not completed), on the modelling
of BASEL in AMBIT/G, and on the general design of AMBIT/G.

P14.* Third semi-annual technical report part I (covering task areo I) for the
project Research in Machine-Independent Software Programming.
Massachusetts Computer Associates, Wakefield, Mas«;., February 1970.

This semi-annual report gives a complete description of
AMBIT/G, It is especially recommended for its discussion
of constraints. It contains explanations and examples of
the concept of constraint which have not appeared elsewhere.

PIS.* Christensen, Carlos; Wolfberg, Michael S.; and Fischer, Michael J.
"A report on AMBIT/G", final report — task area I (in four volumes)
for the project Research in Machine-Independent Software Programming,
Massachusetts Computer Associates, Wakefield, Mass., February 1971.

An AMBIT/G system has been implemented on the Multics
System at M.I.T. The implementation is ostensive and Is
intended for experiments in the use of AMBIT/G. It is
written partly in AMBIT/G and partly in PL/I. This report
begins with fundamental concepts and then proceeds to describe
the implementation in great detail. The AMBIT/G programs for
the AMBIT/G interpreter and the AMBIT/G loader are described
and then displayed in full. Instructions for the input, execution,
and debugging of a user program are given. Many examples are
Included, carefully chosen to illustrate and teach Important
features of AMBIT/G.

IMPLEMENTATIONS

11. Moskovites, Peter. An AMBIT/G Compiler implemented on the SDS-940
at Harvard University by Massachusetts Computer Associates, completed
August 1967.

12. Rovner, Paul; Henderson, D. Austin; and Greenberg, Martha. An
Interactive AMBIT/G System with Graphic I/O, implemented on the TX-2
at M.I.T. Lincoln Laboratory, initial system completed April 1968, and
revised system completed Fall 1968.

13.* Wolfberg, Michael S.; Supnik, R.; and Ledeen, K.S. A Character
Recognition System, implemented on the PDP-1 at Harvard University
by Massachusetts Computer Associates, completed August 1969.

14. An Experimental Implementation of AMBIT/G, Implemented on the ATLAS
computer, Cambridge University, England, Summer 1969.

160

15. Christensen, Carlos; Muntz, Charles; and others. A Complete AMBIT/L
Programming System, Implemented on the Applied Dota Research PDP-10
In Princeton, N.J. by Massachusetts Computer Associates, completed
September 1969.

16.* Wolfberg, Michael S.; Fischer, Michael J.; and Ho, Maynie. An AMBIT/G
System, implemented on the Multics System at M.I.T. by Massachusetts
Computer Associates, completed December 1970.

161

