AD?20313

MAR 19 9Tl

[&E@Eﬂﬂﬂlﬂ |

Il
D~
Massachusetts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Seringfield, V. 22181

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCE

_LEGIBLY.

Ve

Task Arca 1

Task lrca]I

Contractor:
Contract No.:

Effective Date:

Lxpiration Date:

Amount;

APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK. WAKEFIELD, MASSACHUSETTS 01880 (817’ 248 9840

FINAL DUUORT = TALGY, 4o g
(Volume 1)
(2) June 1CLE - 3Y Lo cobher A1YAG)
FOQu vl MOy 1
RESLARCH o rALCHY -l DG G
SOIMWIRE PROGI MG NG -

Principal Investigators:

Carlos Chr:stecnscen (617) 245-9540
Anatol W, liolt (617) 745-9540
Project Managycor: P

Robert I, Millstein (017) 245-9540

ARPA Ordor Number - ARPA 1228

Program Code Number - €230
Massachusetts Computer Associates, Inc., Division of ADR
DAHC04-68-C- 0013
21 Junc 1964

30 Septaemnber 1971 — ' ST
$696,600.00 - it il
L ad

Sponsored by . LJ.

Idvancod ! osearels voicets Aacuay

ARPA Ovilor Numter = 1228

Ch=-7102-201 1

i e

B Deman &

@ . APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK. WAKEFIELD, MAStACHUSETTS 01880 :(617) 245-9540

A REPCHT ON IWVRIT/G |
“{Volume 13~

by
Carlos Chris onsen
Michael S. Wolfberg
Michacl J. Fischer*

CA-7102-2611
February 26, 1971

* Consultant to Applied Data Research, Tuc,
Addiess:; Department of Mathematics, M. I. T.,
Camhridge, Massachusetts

This is the {irst of four volumes of the final report on Task Arca I
of the prcjcct "Rescarch 1 Moechine-Independaont Software
Programminy . 1nis vescarch was supported by the Advanced
Research Projects Agoncy of The Department of Defeonse and was
monitored by U, S, Army Rescarch Office-Durham, Box CM,
Duke Statiow, 2urhom, Horth Carelina 27705, under Contract
DALIC04-68- G043,

ABSTRACT

AMBIT/G is an experimental language for software programming. It is
oriented toward the manipulation of complicated data structures, Two-
dimensional directed-graph diagrams are used to represent the data, and
similar diagrams are used throughout the program as the "patterns" of
rules to modify the data. An AMBIT/G system has been implemented on
the Multics System at M,I.T. The implementation is ostensive and is
intended for experiments in the use of AMBIT/G. It is written partly in
AMBIT/G and partly in PL/I. This report begins with fundamental concepts
and then proceeds to describe the implementation in great detail, The
AMBIT/G programs for the AMBIT,/ G interpreter and the AMBIT/G loader
are described and then displayed in full. Instructions for the input,
execution, and cdebugging of a user program are given, Many examples
are included, carefully chosen to illustrate and teach important features
of AMBIT/G.

& At

[T

—»

CONTENYS

Volume I
Abstract
l, Summary
2. Fundamentals
data graph, constraints, program, general philosophy
specific languages.
3. Representation of Programs

overview, program syntax, correspondence between
program graphs and diagrams

4, The Interpreter
overview, the compiler, interpretation of 'linkrep's,
user-defined functions, error messages.
5. The Loader
overview, error messages, loader syntax, sample
encodement, sample error.
6. Initialization and the Built-in System
hints, built-in nodes, built-in links, built-in function
definitions, built-in rules, built-in data, built-in
functions, sample error,
7. The Debugging Facility
lexical conventions, statements, statement forms,
sample session,
8. The Implementation
credits and acknowledgements, internal view, files,
FL/1 data formats, PL/I implementation of the inter-
preter and loader.
9. Further Work
10, Project Bibliography
Volume 11
11, Examples of AMBIT/G Programs
observations, introductory examples: reversing a list,
two forms of input, function calling, LISP gar-
bage collector, another garbage collector, an inter-
active program, sorting, factorial computation and
recursion . '
Volume III
12, The AMBIT/G Interpreter as an AMBIT/G Program
description, listing.
Volume IV
13. The AMBIT/G Loader as an AMBIT/G Program

description, listing.

15

30

48

65

99

114

152
157

CHAPTER]
SUMMARY

This report {s large, However, the casual reader can obtain a uscful
introduction to AMBIT/G by reading a few pages of the first two volumes,
Specifically, we suggest that he begin with the next chapter of this volume,
nn fundamentals, and then rcad the {irst thrce sections of the second volumne,
concluding with the introductory examplcs, thrce programs for reversing the
order of a list.

The report is large because it contains many complete AMBIT/G pro-
grams and because these programs require diagrams rather than text for their
representation. The general trend of the report is from general and philosoph-
ical discussion to detailed and practical specifications. At the beginning
we do not assume a prior knowledge of AMBIT/G, and at the end we give
listings of large and complicated AMBIT/G programs. Much of this information
is the unrefined output of our current research on AMBIT/G and therefore is
not presented in a tutorial way.

After the chapter on fundamentals, the report proceeds to its main
business, which is the definition and implementation of the AMBIT/G system.
The definition and implementation are, in fact, partly identical since some of
the implementation is written in AMBIT/G. Chapter 3 gives the representation
of AMBIT/G programs in the form of AMBIT/G data and provides the basis for
accepting a program as a data structure on which an interpreter program can
operate. The chapter makes use of an interesting formalism for the specification
of "grammars" for AMBIT/G data.

Once we have a way of thinking of a program as data, we can discuss
an interpreter. Chapter 4 describes the AMBIT/G program (given in Volume III)
which is our interpreter. An especially important part of this chapter is a
discussion of the definition and use of functions in AMBIT/G.

Our implementation of AMBIT/G requires that both data and programs
are presented to the system in an abstract input language (as textual descrip-
tions of dlagrams). Chapter 5 describes an AMBIT/G program (given in Volume
IV) which "loads" pages of this input to produce an internal data graph. The
chapter gives a formal syntax for the input language and includes an example
of the use of the loader,

The AMBIT/G System is not empty when a user program arrives for
interpretation., Certain information on the requirements of the program must
be submitted in advance. More important, a variety of nodes, links,
functions, rules, and pre-set data is built into the system in order to give
the user a practical point of departure for programming. These facilities
are described in Chapter 6.

A special subsystem for symbolic debugging is included in the
AMBIT/G System, so that the user may inspect the data in a natural and
interactive way. Chapter 7 describes the use of this suusystem in detail.

Although the interpreter and loader are both written in AMBIT/G,
there is necessarily an underlying foundation for our Multics implemen-
tation. This foundation is composed of PL/I routines and is described in
great detail in Chapter 8.

Chapter 9 contains some suggestions for further work on the imple-
mentation. The first volume concludes with an annotated bibliography of
the papers and programs which have been produced by the project or are
related to the project.

The second volume consists entirely of example programs, It is
these examples which best display the concepts of AMBIT/G. In fact,
nearly every example was chosen to illustrate a particular aspect of the
AMBIT/G System.

We have already noted that the last two volumes are the complete
program listings for the interpreter and the loader. These listings are
included in the report for three reasons: The programs contribute to the
formal definition of AMBIT/G, they form the basis for the implementation,
and they are large-scale examples of AMBIT/G programming.

The scope of this report is limited to the definition and implementation
of AMBIT/G and does not include other work done as part of the project. The
interested reader is directed especially to our work on character recognition
(Ledeen and Wolfberg), formal definition of BASEL (Jorrand and Hammer),
description of simple AMBIT/G (Henderson), constraints (Third Semi-Annual
Report), and the design of AMBIT/L (Christensen).

CHAPTER 2
FUNDAMENTALS

The project "Research in Machine-Independent Software Programming"
is devoted to the capture and analysis of the techniques of software
construction., By tradition and necessity, these techniques have been
expressed fully only in machine-language programs; and in that form they
are as obscure and exotic in our times as the operations of arithmetic were
in the European Middle Ages. We seek a significant remedy to this
situation by breaking away from current programming languages and
following a fundamentally new approach to software programming. The
practical results of this speculative venture are incorporated in an
experimental programming system called AMBIT/G.

The AMBIT/G programming system is, first of all, a high level
system for the construction of software. The term "high level" is
often applied to a programming language to indicate the use of some
combination of English and mathematical notation. We intend a more
general use of the term. In our broader sense, a successful high level
system provides a complete framework of concepts and techniques for
programming in addition to a language; that is, it channels and supports
the thoughts of the programmer as well as his utterances.

Our work on AMBIT/G has a simple underlying assumption. We
believe that the characteristic activity of software construction is the design
and use of complicated data structures, such as stacks, queues, rings,
lists, and special tables. Indeed, the most important "construction" activity
seems to be the structuring of data rather than programs. Accordingly,
AMBIT/G is data-oriented to an unprecedented extent. At the beginning of
a new programming task, the AMBIT/G user establishes a formal and
"machinable" statement of the representation and properties of his data. Only
when his data design is complete does he begin programming.

English and algebra, as used in COBOL, FORTRAN, and PL/I,
for example, are an effective combination for commercial and scientific
programming. However, these textual, essentially linear notations are not
a natural medium for the description of structure in general or software
data structures in particular. AMBIT/G rejects these notations in favor
of another high level medium, the diagram.

The expository value of a diagram is well known. Flow charts
of programs are very familiar and (more relevant to the present discourse)
informal diagrams of data have been used for years to supplement program
documentation. On the other hand, the formal adoption of a diagram as
the “actual” data is quite unique to AMBIT/G and has a powerful effect;
the diagram becomes an almost machine-like object, changing frequently
in certain places and relatively fixed in others, a passive machine
operated by a program but subject to its own built-in constraints,

THE DATA GRAPH

An early use of informal data diagrams was in the representation
of LISP lists, and many variations have since been used in papers on
software. We obtained a formal model for data by restricting and simpli-
fying the notation rather than elaborating it. The final result is a precisely

defined form of diagram called a data graph. The following diagram is an
example of a (small) data graph.

INT | oP | SYM

The diagram is composed of nodes and]Jinks. A node is a rectangle with

a pode pame written inside; this node name is a type written above a
subname. There may be many nodes of a given type, and these are
distinguished from one another by their subnames. In the diagram above,
for example, there are eight nodes of type 'CELL'; their subnames are the
integers from '20' through '27'. A link is a line which begins at an origin
node, passes close to its link name, and ends (with an arrowhead) at a
destination node. Every node of a given type has a similar set of links.

For example, every ‘CELL' in the diagram is the origin of four links which
are named 'flag’, ‘'r', 's', and 'd', and every 'SYM' is the origin of no links.

The types, subnames, and link names used in the data graph
We selected by the grogrammer for ¢ach particular program. It is the
{acility for building special data structures , not the structures them-
saives, which is bullt into the AMBIT/G system.

Every data graph must be functional, that is, agiven node
(28 origin of a link) and o given identifier (as link name) must specify
no more than one node (o8 destination of the link). This allows
the u.iambiguous “pecification of a “walk" along the links of a diagram
by giving a starting node name and a sequence of link names. Purpose-
ful link walking Is an important activity of software programs.

The dsta graph must also be permanent: that is, nodes and links
cannot be created or destroyed during program eyecution. In fact, the
only permitted operation is the “swinging™ of a link so that its pointed
end moves from one node to another. This restriction reflects the fact
that machines (including memory hardware) tend to be permanent.

Once the fundamental data representation has been established,
certain superficial but useful ~abbreviations” are introduced. For
example, the type is dropped from within a node boundary and is indi-
cated by giving the node boundary itself a distinctive shape. Or link
names are druopped by establishing for each different link a characteristic
point of origin on the node boundary. Such convenience notstions make the
diagram much more readable.

We do not intend thet the programmer write out a large data graph;
an architect does not draw every brick end nail of his bullding. However,
the postulated existence of the data graph provides a reliable basis for the
programmer’s thinking. It is the basis for the design of constraints on
data and the writing of programs .

CONSTRAINTS

If a data graph has p nodes, then each link in the data graph
has p states, one for each possible destination. Further, if the data
graph has a total of k links, then the entire data graph has gk different
states.

The programmer uses formal statements called constraints to
stipulate that certain states of the data graph can never occur during
the execution of his program. A constraint may fix a given link to a
single destination for all time; or it may restrict the link to destinations
of a specified type; or it may establish a more general and dynamic
dependency of the link on other links, When a program is being debugged,
the program interpreter (2 human reader or computer executor) can check
for operations on the data which are inconsistent with the constraints
and report these to the programmer.

Ultimately the data graph must be encoded in bits and stored in
some computer memory. The amount of computer memory required will be
a function of the number of states available to the data graph: therefore,
constraint of the data graph reduces the memory required. Thus constraints
are useful both for debugging the program and for optimization of storage.
Constraints are a vital and growing aspect of AMBIT/G.

IHE PROGRAM

An AMBIT/G program includes a collection of rules connected by
flow lines as in a flow chart. Each rule is itself a diagram and uses a
notation which closely resembles that of the data graph. An example of a
single rule is as follows:

VAR VAR S o

B Y X
P val val val F
. —>
—

CELL {r B CELL

j! Y

INT SYM

25 Al

This rule is executed when "control" enters along one of the incoming
flow lines at the left; and its execution results in control exiting to
another rule along the success or fail flow lines to the right, The
inside of the rule can be interpreted in three paragraphs, as follows:

First frame the data graph as follows: Select 'VAR Y', follow
the 'val' link, and call its destination cl. Is ¢l a 'CELL'

node? Select cl, follow the 'd' link, and answer: is its
destination 'INT 25'? Select cl, follow the 'r' link, and call its
destination c2. Is c2 a 'CELL' node? Select c2, follow the

'd' link, and call its destination ol. Select c2, follow the 'r'
link, and call its destination c3. Is c3 a 'CELL' node? (Should
the answer to a frame question be "no", you have detected the
consequences of a programming error; take the day off and get
undefined.)

Next test the data graph as follows: Is ol an 'OP' node? Select
'VAR X', follow the 'val' link, and answer: is its destination

¢3? (Should the answer to a test question be "no", take the
fail exit from the rule.)

Finally, (if you haven't gone away) modify the data graph thus:
Select 'VAR Y' and set its 'val' link to point to c2. Select c3
and set its 'd' link to 'SYM Al'. (No questions are asked
during modification. When you are done, take the success exit
from the rule.)

The paragraphs just given imply a total ordering of actions
which we now revoke: The actiuns (commands and questions) within
a given paragraph can be interpreted in any order provided that each
variable (like cl) is associated with a node in the data graph (by a "call"
clause) before it is referenced (by a "select" clause).

Every (single-line) link in any rule must be a part of an
anchored walk. An anchored walk begins with a node whose full name
(type and subname) is given in the rule and repeatedly "steps" from one
node in the rule to another, each time following a link from origin to des-
tination. This restriction means that the pattern-match can be implemented
very efficiently; in fact, none of the "searching" characteristic of
general pattern-matching is ever required.

To complete this discussion of programs, some remarks on program
structure (that is, the framework in which rules are embedded) is necessary.
Since most of the unusual and novel concepts of AMBIT/G seem to be
confined to the rules, we seriously considered adopting the program
structure of some existing high level language and we decided that ALGOL 60
was the obvious candidate. The use of an ALGOL 60 framework presented
serious problems, however,

The first problem arose in finding an analog to the ALGOL 60 function
reference., At first it appeared that there was no natural place for functions
in a pattern-mctching rule. Eventually, however, we developed the idea
that the function reference and the data link are not in conflict but, rather,
are two aspects of the fundamental mechanism for assigning structure to data.
The function reference became a new and important part of the notation
for rules.,

Our second problem arose with block structure. The ALGOL 60
block structure is the basis for automatic storage allocation, and recursive
function evaluation., It has been extremely successful and has become a
classic component of high level languages. However, block structure
implies hidden mechanisms for storage management which are in direct

[== T

S iy

conflict with the objectives of AMBIT/G, which seek to give the pro-
grammer close control over all his data. We rejected block structure
because we could not find a simple and practical way to control its
machinery.

Other problems of a less fundamental nature arose and we
were forced, after all, to accept a minimal program structure, far simpler
than that of ALGOL 60, which involved the use of success and fail flow
lines to connect rules and a very general mechanism for function definition

and reference.

GENERAL PHILOSOPHY

The designer of a programming language soon leamns that the goals
he has set for himself are in conflict. A language should be powerful yet
easily implemented, rich in expression yet easily leamed, application-
oriented yet general purpose, concise yet readable, easily programmed in
yet efficiently compiled. Most existing languages are readily classified
along one or more of these dimensions and often are noteworthy because of
an extreme position with respect to one of them, PL/I is noted for being
pcwerful but difficult to implement; BASIC is at the other extreme, ALGOL 68
is rich in expression ; SN')BOL 1 is easily learned, SIMSCRIPT is application-
oriented; ALGOL 60 is general purpose. APL is concise; COBOL attempts
to be readable, EULER is easily programmed; FORTRAN can be efficiently
compiled,

The motivation in the design of AMBIT/G was not simply to decide
upon a position with respect to each of the above parameters and then build
yet another language, distinguished from the others only by the particular
combination of choices made, Rather, it was to study some of these apparent
con:licts in an attempt to see just how they influence language design, and
based on the insights so gained, to build a language which overcomes the
weaknesses and limitations which any compromise, no matter how carefully
chosen, necessarily imposes,

10

This seemingly impossible undertaking has indeed succeeded, at
least in its initial stages, and the particular solutions take one of two forms.
Some of the conflicts among goals disappear with radical changes in pcr-
spective, Other conflicts, which we were unable to so eliminate, can be
parameterized so that the user and not the language designer is able to choose
the point of compromise.

Four main ideas emerged from these considerations:

a) Data is of primary importance and should be designed
first with the care usually given to the language im-
peratives.,

b) Two-dimensional representation permits humans to deal

with greater complexity than is possible with linear
representations,

c) People seem to have an ability to comprehend spatial
pattems of far greater complexity than temporal.

d) Redundant information in the form of constraints can be
highly useful both to people and to the machine,

How is it that these ideas have been overlooked for so long? To some
extent, they are not new, LISP, PL/I, ALGOL 68 and BASEL certainly have
the ability to deal with highly structured data, SNOBOL owes much of its
success to the pattemn-replacement idea, Certain explicit constraints such as
declarations of array sizes and data type are present in several languages,
But the exciting discovery is that the ideas are not independent and cannot
realize their full potential in isolation,

Many languages, as we have noted, can deal with highly structured
data, However, few languages make it convenient to manipulate data which
is not basically tree-structured (or at least acyclic). In LISP, for example,
one can create arbitrary structures through the use of the functions RPLACA
and RPLACD, but it is an exercise reserved for the expert,

11

m b‘ m‘ k‘

[ST

&

[=N - P

[S

| T2

i

An important reason for the preference for hierarchial data is that it
can be linearized in a fairly natural way using parentheses, precedence, and
other devices. But these methods do not generalize nicely to cyclic structures,
so a conceptual barrier arises between the two types of data, The net result
seems to be that users are encouraged to force all their data into the often
inappropriate hierarchial mold. In two dimensions, however, cyclic graphs
are as easily represented as trees, and it becomes natural to break away
from tree structures wherever appropriate,

Pattern-matching gives SNOBOL a gestalt capability and in many
cases results in surprisingly perspicuous programs. However, string data
tends to have only limited sorts of interesting pattems, so many SNOBOL
programs use the pattern-matching facility mainly to emulate the structured
data found in other languages. By generalizing the types of data that can be
manipulated, many more interesting types of pattems. become manifest and
the gestalt methods of programming can handle a far larger portion of the
computational task.

Designers of programming languages have often regarded declarations
as nuisances which are eliminated wherever possible and which are useful only
if a language is to be "compiled". It is true that such constraints enable
more efficient implementations of a language, but they also serve two other
distinct and equally important functions, First, they greatly facilitate de-
bugging by establishing a set of conditions under which the program must
operate; any attempted violation indicates an error, The subscript bounds
checking of PL/I and the type-checking of ALGOL are such conditions. Second,
declarations of constraint are a reliable form of comment and thus help con-
tribute to documentation, The programmer who says on a comment card that
his program never stores a number bigger than 100 into the variable X states
this as a matter of belief; the programmer who includes that statement as an
explicit constraint knows it to be true as a matter of fact., The significance
of this distinction cannot be overestimated in a typical program which is modi-
fied many, many times before completion.

While constraints can be extremely valuable, it is difficult with most
programming languages to envision very many different kinds other than the

12

ones alluded to above., However, once data with complicated and dynamically
‘changing structure is introduced, there becomes a much more pressing

need for constraints. The added generality provides more directions in which
program optimization is possible and necessary. But most important, con-
straints, together with the two-dimensional representation, are the tools

the user needs to control the greater complexity possible with the more general
data.

SPECIFIC LANGUAGES

AMBIT/G has been implemented several times in the past four years,
and these implementations are listed in the Project Bibliography included
in this report. Most of the remainder of this report is devoted to the
most recent of these implementations, an AMBIT/G system on Multics.

We have already stated that the AMBIT/G system is experimental and
is a vehicle for expressing basic ideas about programming. On one hand,
the system carries the use of diagrams to an extraordinary extreme, includes
very carefully developed facilities for definition and use of functions, and
endows the data with unprecedented independence. On the other hand, we
have excluded features which we considered to be trivial (rational arithmetic),
over-sophisticated (block structure), or peripheral (graphic input-output).
The resulting programming system is a theoretical model, not a practical
language for software programming.

The AMBIT/G language described in this report is the most important
result of the project. It is the basis for future development of both theory
and practice. However, a very different language, AMBIT/L, has come to
light, rather unexpectedly, as part of the project.

AMBIT/L is the result of a vigorous specialization and simplification
of AMBIT/G to produce a practical language for list-processing. It has
an applications area quite similar to that of LISP, but it uses the diagrammatic
pattern-replacement style of AMBIT/G. The language is described in a
separate paper listed in the bibliography and submitted with this report.
Under auspices other than this project, it was fully implemented and then
successfully applied to the construction of a large software system for
interactive algebraic manipulation.

13

Thus two specific languages have resulted from the project;: AMBIT/G,
an adaptable framework for testing principles of language design, and
AMBIT/L, a practical embodiment of the current results of our work on

" dilagrammatic programming.

14

CHAPTER 3
REPRESENTATION OF PROGRAMS

The diagrams with which the programmer represents his program are
represented in the AMBIT/G system as ordinary AMBIT/G data and are accessi-
ble to him in the same manner as any other data. This allows one to write
programs which construct other programs or which modify themselves. It also
permits the interpreter itself to be expressed as an AMBIT/G program, which
we have chosen to do in order to give a formal desctiption of the semantics as
well as being an aid in the production of an implementation. The interpreter
and the implementation are described elsewhere in this report,

OVERVIEW OF THE PROGRAM REPRESENTATION

The description of the program representation is in two parts. First we
define a class of data graphs which we call program graphs and which consti-
tute the class of legal inputs to the interpreter. Second, we attempt to show
how to find a diagram which the program graph represents. We note that there
is not a one-to-one correspondence between program graphs and diagrams; a
given diagram may be represented by many different program graphs and con-
versely, many different diagrams may have the same program graph for their
representation (e.g. diagrams which differ only in the positions of the nodes
on the page).

Two diagrams with the same set of possible representations are se-
mantically equivalent. However, we will see that it is possible for a diagram
to be represented by two or more distinct program graphs upon which the in-
terpreter will behave differently and perhaps produce differing results., This
may occur, for example, when a rule contains calls on functions which have
side-effects, Diagrams which lead to two or more inconsistent interpretations,
even though syntactically correct, are considered to be semantically undefined
and not a part of the AMBIT/G language.

15

Briefly, a rule is represented by a collection of nodes of a small
number of pre-defined types and certain of their links., The nodes in general
represent the pileces of the diagram such as the boxes and the arrows, while
the links represent the relationships among the pieces.

These same nodes carry other links which are used to record mis-
cellaneous information generated during the process of execution of the pro-
gram. Such information includes the results of compilation of a rule, the calls
on user functions which are currently active, and the arguments and results
being passed to user functions, Further mention of these links is deferred to
the chapter on the interpreter,

PR SYNT
hapes and Lin e Represen n

A program graph is a collection of nodes of the pre-defined types
‘rule', 'linkrep’, ‘noderep’', 'diamond', and 'flag’', called program repre-
sentation nodes, together with the links shown in the table below. The .
shapes used to picture these node types and the relevant links are shown
following the table.

16

Links defined for a rule in state ‘clear’

Node
JIype Link Destination Meaning
rule success rule success exit.
fall rule fail exit.
contents linkrep encoding of rule
contents.
linkrep mode flag mode of the link
(‘frame', ‘test’' or
‘modify').
org diamond list of talls.
name noderep 1ink name.
dest diamond list of heads.
next linkrep used to form list.
diamond next diamond next element in
heads or talls list.
value noderep the list element
itself.
noderep variablility flag tells whether or not

the node is a dummy.

rep* user node the node of the data
graph represented by
this rule node.

*Defined only if the ‘variability' link points to ‘flag fixed'.

17

rule :

nodere) :

SUCCeSS

contents

ariability

rep

18

linkrep :

diamond :

flag :

mode

next

rg - |[name dest

next

value

19

. . P— — . —

Lo]

ey,

b S A Sl Bl i T R D e AR N B Rl . il e 4 W T} L &

The syntax of AMBIT/G is specified by a "grammar" consisting of
special diagrams. As in BNF, we introduce meta-linguistic v-ariables which
we call property symbols and represent by hexagons containing a character
string. However, unlike BNF, we do not think of our grammar as generating
a graph but rather as a means of testing a graph for certain well-formedness
properties. Given a data graph, our grammar rules allow us to assign one or
more properties to certain nodes of the graph. A hexagon from which emanates
a double arrow is a defining instance of that property. A given node of the
data graph is defined to have that property if the pattern beginning at the
destination of the double arrow can be matched to a subgraph of the data
beginning with the given node. Forexample, the syntax rule

(oo >L B cell

says that every node of type 'cell' has the property 'foo', whereas the rule

< >:g> cell
goo

down

integer

20

§ays tnat oniy 'Cell 5 whnose auwil LR pulllld tva Ve Ui Lyps Hitsygol

‘have property 'goo’.

A property symbol may be used to qualify other nodes appearing in

the diagram. For example, the rule

cell
< hoo >'—_—$>
down
s
\ goo

says that a 'cell' has the property 'hoo' providing that its 'down' link points

to a node with property 'goo'. This may be abbreviated as

cell
hoo

down

=5

Two other notations may be employed in writing syntax rules, A

section of the pattern may be enclosed in a dotted box to indicate zero or
more repetitions of the enclosed pattern, For example,

e eccececccraccomctcnnny
'

cell cell
< list ReXl g,

end

21

specifies that a ‘cell' is a 'list' if either it is the node ‘'cell end' or if
‘cell end' can be reached from it via a chain of 'cell's along the 'next' link.

Finally, we allow an arrow of the pattern to branch, meaning an al-

ternative is allowed, For example,

L cell
terminator

cell

end

g oot 6 02

atom ;

means that a 'cell’ is a 'terminator' if its 'next' link points either to

‘cell end' or to an 'atom'.

The Syntax of AMBIT/G

A collection of program representation nodes is by definition a pro-
gram if some 'rule' node in the collection is assigned the property 'rule'
by the following grammar. Any node with that property is a valid place at

which to begin execution,

22

Grammar for AMBIT/G :

sSuccess

contents

~

linklist >

\g stop

NG

] N i
< linklist —b LT next | €09
Em—

< linkrep >

- > w>-w .-

23

4
frame test f

mode

g “a"‘\
Y

<noderep_list> <node representatio> <noderep llst

e Bw m e e e Eme *m e e = sy

i \ :
<noderep_listj‘: f

|
| "

l L]
<10de__re presentatior>
| 24

éode_representat1;r>

\V4

< user_node >:-—:—'—:§

fixed

variability

dummy

variability

(any node of the system)

Additional Restrictions

In addition to the restrictions imposed by the grammar above, we
constrain the "“sharing" that may take place among nodes. Informally, we
require that no node "belong" to the representation of more than one link,

More formally, we say that a 'diamond' D belongs to the 'org' ('dest’')
list of a 'linkrep' L if D is not the node 'diamond end' and also D is accessible
from L by a path beginning with an 'org' ('dest') link from L and then continuing
with zero or more 'next' links from 'diamonds'.

We say that a node N belongs to-a 'rule' node R if either:
a) N is not the node 'linkrep end' and N is accessible from

R by a path beginning with the 'contents' link of R and
continuing with zero or more 'next' links from 'linkrep'

nodes; or

b) N is a 'diamond' which belongs to the 'org' or 'dest' list
of some 'linkrep' node which belongs to R; or

c) N is a 'noderep' node which is the destination of the
'value’' link of some 'diamond' which belongs to R; or

d) N is a 'noderep' node which is the destination of the

'name’' iink of some 'linkrep' node which belongs to R.

We then require that each 'linkrep', 'diamond' and 'noderep' node
belongs to at most one rule, and in addition, each 'diamond' belongs to the
'org' or 'dest' list (but not to both) of one 'linkrep' node.

CORRESPONDENCE BETWEEN PROGRAM GRAPHS AND DIAGRAMS

In this section, we show how, given a program graph, to find a
diagram which that graph represents.

A 'rule' node together with the nodes which belong to it represent a
single rule, diagrammed by a rule box. The suoname of the 'rule' node is
written in the upper-left comer of the rule box. The success and fail

26

o == e e oy =N @

—

exits of the rule lead to those rule boxes represented by the destinations
of the 'success' and 'fail' links respectively.

Each ‘'noderep' node belonging to the rule corresponds to a node
box in the rule, A dummy 'noderep' ({.e., one whose 'variablilty' link
points to 'flag dummy') is represented by a node box with no contents. A
fixed 'noderep' whose 'rep' link points to a named node corresponds to a
node box containing the full node name. At present, we have no way to
diagram a fixed 'noderep' whose 'rep' link points to an unnamed node.

Each 'linkrep' node corresponds to an arrow of mode specified by
the 'mode’ link. The number of heads and tails of this arrow are determined
by the lengths of the lists of diamonds hanging on the 'dest' and ‘org' links
respectively. The 'tails' and 'heads' of this arrow are attached to the node
boxes corresponding to the '‘noderep' nodes which are the destinations of
the 'value' links of the 'diamond's in the ‘'org' and 'dest' lists respectively.
The spur of this arrow is the node box corresponding to the ‘noderep' node

at the destination of the 'name’ link.

An example should help to make these ideas clear,

27

Exanple of Rule Representation

Sugarcd form of rule:

e er— —— o - — — prs L e

P —— e =

' cell .—]n ht > cell
oS o

down

—\T
cell
Y

Desugared form of rule:

link type
_nght cell

cell link
X type
link]

down

28

e —— Ay -' —

Data representation of rule:

29

Gummy *

type
cell

CHAPTLR 4
THE INTERPRETER

The AMBIT/G interpreter is an agent which, given an AMBIT/G data
graph and the starting rule of a program represented within that graph, modi-
fies the graph in successive steps according to one of the many possible
interpretations of the AMBIT/G language.

Not all AMBIT/G programs wiil produce the same results on all imple-
mentations of the language; such programs we consider to be {ll-formed. The
decision to> admit the possibility of certain syntactically correct programs whose
semantics are unspecified {s a compromise at best. It has the obvious disad-
vantage that it may be difficult or impossible to determine mechanically
whether a given program is {ll-formed, so that one may unwittingly use an
illegal program to produce correct results at one installation and later have it
fail at another.

On the other hand, to attempt to specify completely the effects of ex-
ecution of all syntactically correct programs severely restricts the range of
possible implementations at perhaps a considerable cost of efficiency. More
seriously, one is forced to define and describe the results of "tricky" or
pathological programs which should not be written anyway, greatly complicating
tne definition of the language.

Ours is not a new approach. FORTRAN for example does not specify the
value of a DO-variable after normal exit from a loop. PL/I likewise has many
"implementation-dependent” parameters.

OVERVIEW OF THE INTERPRETER

This section gives an informal description of the operation of the inter-
preter., It presupposes the reader is familiar with the representation of programs.
It also uses the notation for describing paths through the graph that is defined
in the chapter on the AMBIT/C symbolic debugger. While some attempt was
made to be complete, this section should be regarded principally as an introduc-
tion to the formal definition of AMBIT/G.

30

The interpreter operates on a rule by rule basis, going through a
cycle of several phases for each rule,

Most of the information recording the progress of execution of the
program is stored in the several links originating from the 'rule' and 'noderep'
nodes which represent the program; hence this information is available dy-
namically for inspection and modification.

Each 'rule' node has a 'state' link which tells the current status of
execution of that rule. State 'clear' indicates a rule ready to be executed
for the first time. Such a rule must first be compiled, after which its state
is set to 'compiled’.

Execution then proceeds through the rule in three phases: 'frame’,
‘test', and 'modify', as indicated by the 'state' link. In each phase, 'linkrep's
of the corresponding mode are examined one at a time in the order specified by
the compiler and the appropriate action is taken. 'linkrep's of mode 'frame'’
cause dummy nodes to be matched (bound) to nodes of the data graph; those of
mode 'test' cause the destinations of links to be tested, and those of mode
‘'modify ' cause links in the data graph to be altered.

If any of the tests fail, thke rule fails immediately ~- the remainder of
the 'test’' phase and the entire 'modify' phase are then skipped, and the inter-
preter proceeds to the rule specified by the 'fail' link. If all the tests succeed
then the 'modify’' phase is performed as described, after which another interpre-
tation cycle begins with the rule at the destination of the 'success' link. In
either case, the state of the rule just executed is set back to 'compiled' to
indicate that compilation need not be repeated on subsequent executions of that
rule. Of course, if a user modifies a rule, he should reset the 'state’' link to
‘flag clear' which indicates that rule is in the 'clear' state.

Two rules have a special interpretation associated with them;
‘rule error' causes an error message to be emitted and execution to terminate;
‘rule stop' causes a normal return from the currently executing user subroutine,
or if at the top level, a normal program stop. For both of these rules, the
action is taken immediately and any contents of the rule are ignored.

3l

THE CO

MPILER

The compiler is not invoked until just before a rule is to be executed,

and on each call, it compiles only the single rule which is its argument,

Compilation consists of sorting the 'linkrep's by mode and ordering

those of mode 'frame' so that later during interpretation every dummy node of

the rule will have been bound to a node of the data graph before it is referenced.

The compiler reports an error if such an ordering is not possible.

sent the rule.

Compilation does not modify any of the links originally used to repre-

Rather, it adds information to the representation of the rule by

setting additional links on the nodes of type 'rule', 'linkrep', and 'noderep’,

as shown in the following table:

Additional links defined for a rule in state 'compiled'

Node

rule

linkrep

noderep

Link

frame

test

modify

nextl

sets

Destination

linkrep

linkrep

linkrep

linkrep

diamond

Meaning

Head of a properly ordered list
of the 'linkrep's of mode 'frame’'.

Head of a list of the 'linkrep's of
mode 'test'.

Head of a list of the 'linkrep's of
mode 'modify’.

Used to chain together the ele-
ments of the 'frame’', 'test’,
and 'modify’' lists.

If the node is a 'dummy’, points
to the 'diamond’' in the 'frame'
list which will bind the 'rep'
link during execution. If the
node is 'fixed', it points to
'diamond matched'.

32

The 'frame', 'test'. and 'modify' links of the 'rule' node are set to point to
the three new lists of ‘linkrep's which the compiler creates using the 'nextl’
link of the 'linkrep's. In addition, the compiler sets the 'sets' link of each
‘noderep' to point to the 'diamond' of the 'linkrep' which is supposed to bind
it, if any. (All the other 'frame' links which locate the node should just
verify the prior setting.)

The compilation algorithm.is fairly simple. First, all af the 'noderep’
nodes belonging to the rule are marked as matched or unmatched according to
whether they are fixed or dummies. The 'sets' link is temporarily used for
this purpose. At the same time, the 'linkrep's are chained together in one
big list, called the active list, temporarily using the 'nextl' link.

The active list is then scanned for an entry which is eligible for
processing. An entry is eligible if the 'noderep's hanging from its 'org' and
‘name' links have ali been previously matched and, in the case of 'test' and
‘'modify' 'linkrep's, the destination 'noderep's have been matched as well.
Whenever such an entry is found, it is removed from the active list and pro-
cessed, The active list is then rescanned. When a complete pass over the
active list fails to locate an eligible entry, the scanning phase terminates.

The processing of a 'linkrep' depends on its mode. 'test' and 'modify’
‘linkrep's are processed simply by placing them at the ends of the 'test' and
'modify’' lists respectively. 'frame' 'linkrep's are likewise placed on their
respective list, but in addition, any destination 'noderep's are marked as
being 'matched', possibly making additional 'linkrep's eligible for processing.

At the termination of the scanning phase, a non-empty active list indi-
cates an error, for the rule then must contain a node that cannot be matched.
If there has been no error, the three new lists of 'linkrep's are then attached
to their respective points on the ‘rule' node and compilation of the rule is

complete.

In response to a successful compilation, the interpreter changes the
state from 'clear' to 'compiled’.

33

Below is an augmentation of the syntax of AMBIT/G to describe compiled

rules.,

o

<(ompiled_rule

<f linkli t\
rame_lin S/

frame

frame linklist

t--t’j—_‘yest

modify

- et > e e e e - e e - -

34

test linklist

modify_1 1nklis>

end

| .
élodify_linkliit>_—;:_—_‘t;> ond
<node_repre sentatio>
atche
fixed
S ariability
\ |
§ >
|
< user_node>
sets
ariability

‘P"

[

35

THL INTERPRETATION OF 'linkrep's

Each 'linkrep' appearing in a rule denotes an elementary action
which is elther a call on a user-defined function or the execution of a
primitive operation. Which action is actually taken by the interpreter when
it encounters the 'linkrep' L is determined dynamically and depends on;

a) the mode of L;

b) the number of arguments of L;

c) the types of the arguments of L; and
d) the f-name of L.

The mode of L is the destination of its 'mode' link and is either
‘flag frame', 'flag test' or 'flag modify'. The arguments of L are those nodes
of the user's data which are matched to 'noderep' nodes hanging off the
‘org' link of L (see Figure 4-1), The f-nime of L is the node 'L/name/rep/"
(see Figure 4-2).

s next and

rep rep

oral - rgziy
N

Figure 4-1: Arguments of L
36

e

name

p———

— s

rep

f-name :

Figure 4-2: The f-name of L.

The mode of L determines the class of the action to be taken: modes
'frame' and 'test' result in a class read action, while mode 'modify' signifies
a class write action. Basically, a read action is taken to obtain one or more
values and is the generalization of reading a link. A write action returns no
values and is executed solely for its side effects; it generalizes link writing,

For a 'linkrep' L of class read (write), a call is made by the interpreter
on the primitive function 'read_function' ('write_function') with the f-name
and list of argument types as parameters. This primitive retums a node of
type either 'rule’ or 'builtin'., If the node is of type 'rule', the interpreter then
makes a class read(class write) call on a user function with execution beginning

with that rule, Otherwise, the interpreter performs the action corresponding to
that 'builtin' and class read (write). In most cases, this action is simply to

pass the arguments (and sometimes other information) to the corresponding

primitive routine,

37

I'or a class write action, there is nothing more to do. However, a
class read operation returns one or more results. These results are then
us~d by the interprcter either to set or to test the value of the 'rep’ link of
the 'nodecrep's hanging off of the 'dest' link of L. In mode 'test', equality
must hold between corresponding results and 'rep' links or else the rule
fails. In mode 'frame', a given result may be used either to set the 'rep'
link or to verify a prior setting. Which of the two occurs depends on the
setting of the 'sets' link of the particular 'nodcrep'. If it points back to the
‘diamond' through which it was located, then a setting action takes place
(see T'igure 4-3) ; otherwise, a verification occurs (see Figure 4-4). An
inequality in the verification indicates an error which the interpreter then
reports,

next

rep

2nd result :

Figure 4-3 : Conditions for the setting o1
the 'rep' link,

38

Some diamond

other than
d2 :

rep

2nd result :

Figure 4-4: Conditions for the verification
of the 'rep' link.

USER-DEFINED FUNCTIONS

There are three parts to a user-defined 'function: the definition, the
call, and the return.

Function Definitions

A user function is defined by associating a 'rule’ node with a particular
call-class (i.e. read or write), f-name, and argument-type list. This Is per-
formed by a class write call on the primitive 'read_function' to define a cldss
read call, or on 'write_function' to define a class write call,

AMBIT/ G does n.nt have any sort of block structure, and there is no
well-defined collection of rules which can be called the "body" of the function.

39

| S

Rather, a given rule can be shared by any number of functions; this permits

multiple-entry functions as a special case.

Function Calls

Once the interpreter determines that a user function is to be called,

it performs the following set of actions:

a)

b)
c)

d)

e)

It sets up 'pipe's on the 'rule' node of the
caller for the transmission of values between

the caller and the function;

It sets 'ptr next_rule/value' to the starting rule
of the function to be called;

It saves its current status on the ‘rule’' node of
the caller;

It sets 'ptr ret/value' to point to the 'rule’' node
of the caller, thus enabling the function to lo-
cate the call; and

It begins interpreting 'rule go'.

Thus, all of the information relevant to the call is saved with the caller. The
actual links used are shown below and summarized in the table which follows.

save

saveret

40

Links used in calling user functions

Node
txge

rule

Link

tails

spur

heads

state
savel

saveret

Destination

Meaning

pipe

user node

pipe

flag

linkrep

rule

List of 'pipe's which contain the
actual tail arguments to the user
function called from within this rule.

The actual link name that caused
the user function to be invoked.

List of 'pipe's which contain the
actual head arguments or which
will receive the results of the user
function called from within this
rule, depending on the class of
the call.

The mode of the link causing the
call on the user function.

The actual link representation that
caused the call,

Used to save the old value of
‘ptr ret/value’'.

4]

The arguments passed to the function depend on the class of the call,
whether read or write, In either case, the interpreter builds two lists of 'pipe's
equal 1n length to the ‘org’ and ‘dest’' lists of ‘diamond's on the calling 'linkrep’.
The actual origin arquments are then copied into the 'value’ links of the ‘tails’
‘pipe‘s, i'or a class write call, the actual destination arguments are similarly
copled into the 'value' links of the 'heads’ 'pipe's, but for a class read call,
these links are instead set to undefined (the node 'undef undef'). In either
case, the f-name which caused the function to be invoked is stored as the des-
tination of the 'spur’ link of the ‘rule' node of the caller, sometimes useful when
the same code is to be used to implement several slightly different but similar
functions.

The interpreter does not go directly to the desired function; rather, al)
function calls lead to ‘rule go' which has a default definition which causes an
immodiate branch to the function. The reason for this indirection is to enable
the user to extend or modify the action taken by the interpreter on a function
call, for the user nced only replace the defau't contents of ‘rule go' with his
own. It is to be emphasized that 'rule go' exists in the user's data hHase and
is interpreted in just the same way as any other user rule. An example of an
extension requiring modification of ‘'rule go' is the recursion package which
extends the interpreter to handle recursive procedures. The reader is referred
to the ‘factorial’ example for more details on this (at the end of Volume 1),

The status that is saved consists of the state of the interpreter (whether
‘frame’', ‘test’, or 'modify’'), the current 'linkrep’ (the one causing the call),
and the old value of 'ptr ret’'. This information is saved on the links 'state’,
‘savel’, and 'saveret’ respectively.

The ordinary AMBIT/U programmer may ignore most of the above details.
He only needs to know that for a class read function, the arguments are to be
found in the 1ist of 'pipe’s located by 'ptr ret/value/tails' and that the results
to be retumed by the function should be stored in the 'pipe’s located by
'ptr ret/value/heads'. Similorly, for a class write function, both
‘ptr ret/value/talls' and 'ptr ret/value/heads’ contain arguments.

42

Function Retums

To retum from a function, it suffices to branch to ‘rule stop', but
the programmer is instructed to branch always to ‘rule ret', which has a
default definition of always branching immediately to 'rule stop'. In this
way, a modification of ‘'rule ret' will allow function returms t¢ be intercepted
much in the same way as function calls can be monitored by altering 'rule go'.

When the interpreter interprets 'rule stop', it performs almost an exact
inverse of the five steps involved in a function call by doing the following:

a)- It tums its attention to the rule located by
‘ptr ret/value' and halts if that value also
happens to be 'rule stop';

b) It restores the previous setting of ‘'ptr ret/value'
from the ‘saveret' link;

c) It restores its previous status from the ‘state’
and ‘savel' links;

d) It processes any results produced by the
function and frees the 'pipe's for later use; and

¢) It continues with the interpretation of the rule.
Recursion Faults

During the execution of a function a rule may be encountered whose
state is ‘frame’', 'test’', or ‘modify’', indicating that the rule is currently
suspended because it contains a8 function call which is now being processed.
This can occur only as a result of an attempted recursive function call. In
this case, the interpreter does not try to exe-ute the rule but rather points
‘ptr next_rulo/value' at it and then branches to ‘rule help'. AMBIT/G does
not support recursion, 8o ‘rule help' normally branches immediately to 'rule error’,
However, the user may supply his own version of ‘rule help' to save
the important information of the rule about to be executed, reset its state to
‘compiled', and then branch to it. This is the final handle needed by the re-
cursion package.

43

ERROR MLESSAGES Ol THE AMBIT/G INTERPRETER

The following is a list of the various error messages which may be

typed out as a result of the interpreter's detecting an error condit'on. The

use of three periods is to indicate a symbolic node name will be typed

according to the state of the data.

o

System imple entation error in the interpreter probably due to
improper data; a frame does not match because " ... " 1is not
the same as " ... " .

System implementation error in the interpreter probably due to
improper data: a frame does not match because a link with origin
'"+... " and name " ..." points to destination " ... " instead
of " . e ." R

System implementation error in the interpreter probably due to
is not of

improper data; a frame does not match because” ...

typc " LA N] .

System implementation error in the interpreter due to an over-
sight by the implementor: a rule took an unexpected fail exit.

The interpreter i{s attempting to interprat a non-rule.
The interpreter is reporting a user-detected error.

The interpreter is attempting to interpret the rule” ..." which
is In an unknown state of " ..." .

44

10.

11,

12.

13.

14,

15.

16.

17.

18.

The interpreter is attempting to resume the interpretation of

rule " ,..." which is in an unknown state of " ...

The interpreter has detected an attempt to execute an undefined

reading function.
The interpreter hac detected a wrong number of tails or heads
a read-call on the builtin "link".

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "type".

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "read_functiorn.” .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "write_function” .

The interpreter has detected a wrong number of tails or heads
a read-ca!l on the builtin "name" .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin *1link'" .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "char" .

The interpreter has detected a wrong numbar of tails or heads
a read-cali on the builtin "locate” .

The interpreter has detected a wrong number of tails or heads
a read-call on the builtin "load” .

45

on

on

on

on

on

on

on

on

on

19,

20,

21.

208

23.

24,

25,

26.

27.

28.

29.

30.

The interpreter has deteécted a wrong number of tails or heads on
a read-call on the builtin "add" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "subtract" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "multiply" .

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "divide" ,

The interpreter has detected a wrong number of tails or heads on
a read-call on the builtin "sign" .

The interpreter has detected that the frame is inconsistent with
the data graph.

The interpreter has detected an attempt to execute an undefined
writing function.

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "link" .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "read_function” .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin “write_function" .

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "link' " .,

The interpreter has detected a wrong number of tails or heads on
a write-call on the builtin "char" .

4o

o

32.

33.

34.

35,

36.

37.

The interpreter has detected the "success" exit from a rule leads
to" ... " , which is not a rule.

The interpreter has detected the "fail" exit from a rule leads to

* .. ", which is not a rule.

The interpreter has detected a wrong number of results returned

by a user function.

The compilation phase of the interpreter has detected the mode of
alinkis " ... " , which is neither "flag frame", "flag test", nor

"flag modify".

The compilation phase of the interpreter has detected that a rule
contains an unreachable node.

The compilation phase of the interpreter has detected that the
destination of a "variability” link is " ... " , which is neither
"flag fixed" nor "flag dummy" .

System implementation error in the interpreter or 1oader probably

due to improper data; & frame does not match because a link with
origin " ... " and name " ... " points to destination" ... ", which
is not of typ2 " ... ".

47

CHAPTLR &

THE LOAD R

The AMBI[/G loader is called as a built-in read function as in

the following samplc rule:

start

Although all other built-in functions are defined in English, the loader
was written as an AMBIT/G program, and thus its listing serves as a
precise definition of its characteristics. However, we shali describe

in this chapter its characteristics from & user or programmer viewpoint.
Volume IV of this report contains a description of the loader as an
AMBIT/G program. A programmer may wish to study the loader as an
example of a large AMBIT/G program, but studying the AMBIT/G interpreter
would also serve this purpose, and is probably more useful.

There is no important reason for the loader's being built-in other

than convenience and efficiency ard the bootstrap problen; of how to load
anything (the loader itself). As a function, however, the loader uses no more
facilities than any AMBIT/G user function. A similar statement cannot be
made, of course, for other built-in functions such as the primitives to read
and write links. As the system exists, however, the loader is known to the
‘interpreter as a primitive and is also known to the system in the way in which
initialization leads to the start of execution. Namely, the initializer calls

48

upon the interpreter with an argument of ‘rule start' shown as a sample rule
above. That rule is interpreted (and compiled); this amounts to an automatic
call on the loader, Note how ‘rule start' includes a modification link which
causes the modification of its own 'success' exit after loading to the first
rule of the loaded program (or data).

OVERVIEW OF THE LOADER

The loader is called as a function with no arguments and one result,
That result is a rule node which is meant to be the starting rule of the user's
program, If the loader is called other than by an interpretation of 'rule start’
the result may be used or not according to the programmer's fancy.

The loader reads source input one character at a time from the source
file (e.g., 'foo.ambitg') by making read calls on the built-in function 'char'.
It analyzes its input one statement at a time., Normally, a statement corre-
sponds to one input line; however, many statements may be included on one
line by using semicolons, and there is a method for continuing any statement
across any number of input lines,

As dictated by the statements it reads, the loader deals with one en-
coded page at a time, We consider the true input to the loader to be pages
of diagrams, Each page is hand-translated from these diagrams into several
statements which represent the diagrams, but do not include coordinate
(position) information., Just those aspects of connectivity which are essen-
tial to the AMBIT/G meaning of the page are encoded,

As the loader processes a page, it does not create any data, Recall
that all AMBIT/G nodes were created at initialization, and their existence
is permanent for the duration of AMBIT/G execution. All the loader does to
AMBIT/G data, therefore, is connect various nodes by links which it sets.
Usually, any link set by the loader was undefined (pointing at 'undef undef'),
but no check is made for this, The loader is also capable of defining links,

which it does by making write calls on the built-ins 'read_function' and
‘write_function’,

49

The loader makes extensive use of the built-in 'locate’', often to find
an unnamed node of a given type. In such a case, if that node is not linked to

be accessible from an accessible node it is lost in the data base forever,

Although the loader is used to load data, data can include an AMBIT/G
rule as a qlorified node, The loading of programs ‘makes extensive use of
this feature. The loading of a rule causes the representation of that rule in
AMBIT/G data according to the specifications given in the chapter on represen-
tation of programs. In making up the representation of a rule, the loader
links together a 'rule' node with unnamed 'linkrep's, 'diamond's, and 'noderep's
along with the various named nodes used in rule representations., Each named
node explicitly mentioned in a rule is located by the loader and ends up as the
destination of a 'rep' link of a 'noderep' in that rule's representation.

Since the loader can be called by a user program as well as by the
initial 'rule start' it does not output anything to the terminal unless an error
condition is detected. An error causes an indicative message tc ba typed

and execution to be terminated.

ERROR MESSAGES OF THE AMBIT/G LOADER

The following is a list of the various error messages which may be
typed out as a result of the loader's detecting an error condition, The use
of three periods is to indicate a character string will be typed according to
the state of the data or the loader input, The following line is typed along
with every loader error message except the last:

AMBIT/G Error: detected by the loader at statement n on page p
where n i< an integer, and p ts a page-title (string of characters).

1, System implementation error in the loader probably due to improper
data; a frame does not match because " ,,. " is not the same as

2, System implementation error in the loader probably due to improper
data; a frame does not match because a link with origin " ... " and
name " ,,, " points to destination " ,,. " instead of " ,.. " .

50

10.

11.

12,

13.

System implementation error in the loader probably due to improper
data; a frame does not match because " ... " is not of type " ..." .

System implementation error in the loader due to an oversight by the
implementor; a rule took an unexpected fail exit.

The first statement read by the loader does not begin witha " - " ,

" ... " is an unknown statement.

A type-name is missing on a node on a loader page.

A page-name is missing for a "-rule-" or "—ruleref-" on a loader page.
There is an unknown "-" line in a rule contents on a loader page.
There is an incomplete statement on a loader page.

" ... " is an extra special character on a loader page.

" ... " is an undeclared page-name on a loader page.

System implementation error in the interpreter or loader probably due
to 1mpr0p'er data; a frame does not match because a link with origin

" ... " and name " ... " points to destination" ... ", which is not
of type " ... ".

51

AMBIT/G L.OADER SYNTAX

In designing the syntax for the loader, we established some require-
ments based on the readability of a loader page. A loader page is intended
to be a sequence of text lines representing one physical page or sheet of
AMBIT/G diagrams. Such a page may be arbitrarily large and contain dia-
grams representing any mixture of rules, data, and link definitions,

We shall provide a grammar for the syntax in a BNF-like specification
language, However, we will first give informally the lexical conventions
which apply to loader input to produce the syntax of a statement,

The readability requirement affects the interpretation of spaces, tabs,
and new-lines (carriage retums) . Since we can't determine by reading, spaces
and tabs are not distinguished; furthermore, to avcid a requirement for count-
ing, any amount of space on a typed line is treated as a single space. Since
a reader cannot see trailing space it is ignored. Similarly, since the exact
position of a left margin can be uncertain, leading space is ignored, Since
line spacing is difficult to see, any blank line (even if it contains a space)
is ignored., A loader page should otherwise include only visible printing char-
acters of the ASCII character set,

Another requirement of the syntax is its ability to represent AMBIT/G
node names which may consist of any sequence of printing characters, Thus
when a special meaning is given to a character, such as semicolon, there
must also be a method of inputting a semicolon as a normal text character.
This has been accomplished by giving the dollar sign a special meaning as
a protection character, Namely, when a statement includes a dollar sign
which is itself unprotected, that dollar sign protects the very next character
fiom having special meaning. The following list presents all printable char-
acters which have special meaning in the loader syntax:

Any of these special characters must be protected in order to be understood
as a normal text character. Any other character may be protected by a dollar

52

sign, but protection has no effect; this means a user can't go wrong if he
protects a character when he is not sure whether it has a special meaning.

When a dollar sign ends a text line, it can be considered as a pro-
tection of the new-line (or carriage return) character. Normally the end of
a line denotes the end of a statement, If a line ends with an unprotected
dollar sign, however, that special meaning is nullified, and instead the
statement is interpreted as continuing on the next line, Any number of
continuations may be given. Note that since leading and trailing spaces are
ignored, it may be necessary to protect a space at the beginning of a line
which is part of a continued statement.

We have described how an individual statement may spread over
several lines, The complementary ability to include several statements on
one line is provided by using an unprotected semicolon as a statement term-

inator,

Input fo the loader may include comment statements anywhere, A
comment statement begins with an asterisk and ends either at the end of a
line (which is not continued) or at an unprotected semicolon., Within a
comment it is not necessary to protect any other special characters.

The loader performs its inputting by calling a function named
‘get_statement'. That function takes into account all the lexical conventions just
described, It reads the input stream character by character and produces an
output stream of one loader statement each time it is called, Its output does
not include null statements nor comment statements, Protective dollar signs
are removed, and unprotected special characters are converted into objects
which are not ASCII characters, but serve as an extension to the character
set, We will, however, denote these special objects in the loader syntax
by the corresponding ASCII character, Each space produced by ‘get_statement'
is also one of these special objects; it will be denoted by 'SP'.

Spacing and the use of separate lines are used inthe loader syntax

grammar for readability and do not affect the meaning. Ends of statements
are denoted by a semicolon, but recall a semicolon is required to end a

93

statement only when more toxt follows on the same line, Meta=variables
(non-terminals) are underlined strings consisting of alphabetic characters
and hyphens.

A vertical bar in the grammar represents disjunction. A matching pair
of vertical brackets indicates they enclose an optional construct; namely, the
syntax allows for either zero or one occurrence. A matching paic of vertical
curly braces indicates they encluse a construct which may be repeated any
number of tines, including zero,

The grammar is designed not to be minimal nor reflect its implemen-
tation; it is supposed to be easily understood and to correspond to what it
represents, The grammar provides the definition of a ‘loader-input’' which
is the string of characters which the loader processes as a result of one
invocation unless an error condition is detected. One ‘'loader-input' consists
of any number of ‘loader-page’s finally followed by a ‘start-statement'. Each
‘loader-page’ begins with a header which should contain a 'page-title’ since
that title is typed when an error is detected by the loader on th>t page, Then
any number of 'data-node’'s are specified; each one may either refer to a
‘node’ in the data of a given type (possibly unnamed) or a ‘rule’ or a refer-
ence of a rule (‘ruleref') ., Next (and last) on a page are representations
of links (‘data-link's) to be initialized in the data. This includes ‘'success’
and ‘fail' links connecting rules on the page.,

A rule is an elaborate generalization of a node with a substructure
resembling the super-structure of a 'loader-page’'. Namely, each ‘rule’ begins
with a header and then contains specifications of 'rule-node‘'s followed by
‘rule-link's . Unlike a ‘page’', the end of a rule is clearly indicated by an
‘~=endrule-' statement,

To permit the mentioning of 'data-node‘'s in 'data-link's each node
specification includes a '‘page-name’ which is an identifier whose scope is
the current page, (We now reaiize this kind of identifier would have been
better named 'instance-name’, but '‘page-name’ is used throughout programs
and documentation so it has been kept; we apologize to the reader,) ‘'rule’
and 'ruleref' specifications also include a ‘page-name' for the same reason,
The user should think of the page-name as corresponding to a box in the

54

AMBIT/G diagram: either a box representing a node, a larger one representing
a rule (with contents), or a rounded rectangle representing a rule reference,
We have found it convenient to choose page-names in the spirit of encoding
AMBIT/L diagrams: the page may be thought of as having a grid of rows and
columns, Rows are named 'a', 'b‘', ‘c', etc., and columns are named with

the integers beginning at ‘l', A page-name is then chosen according to the
coordinate position of the hox it represents. For example, 'h3' is the third
column of the second row. The decision of whether to adopt this suggestion

is at the user's discrotion, He may prefer to employ words of mnemonic value,

Within a rule, 'rule-page-name's serve the same purpose as
‘paga-name‘s, but thelr scope is only the current rulo, Thus if o page contoins
more than onu rule, e¢och rule moy tnclude the very same rule-pege-nasnics,
ond furthermore, they may be the sume au page-nomes employed on the
loader-pugye at large.

The syntax allows for specification of ‘data-link's and ‘rule-link's
in two different forms: using a textual ‘link-label’ or by referencing a node
by its page-name. The latter form corresponds to the more primitive view
of a link with a spur to a node, The loader processes a ‘'link-label' xyz by
treating it as a spur to the node ‘'link xyz'.

These explanatory notes huve been intended to give the reader a
“push” into the grammar; we do not consider it necessary to discuss all of
its details, Following the grammar is a small sample of the encodement of
a complete th:«2-page AMBIT/G program,

99

Grommar of L.oadar Syntux

1.

3.
4,
Se
8.
7.
8.

10.

1.
12,
13,
14,
15,
16.
17.

18,

loador-input —) {loiudor-page} start-statement
Joader-page -=) paqo-hoader

{data-node}

[-itnks- ; { data-link }]
page-hcader —> -page-[[SP) page-title] ;
data-nodo —) node | rule | ruleref
node —> typed-node | named-node
typed-node = page-name sep type ;
named-nodo —) page-name sep type sop subname ;
rule — rule-header

{rule-node)

[=== {rulo-link}]

-endrule- ;
fule-header —> -rule- (SP] page-namo [SP Jabel] ;
rule-node —) unnamed-rule-node | tested-typeci-rule-node |

typed-rule-node | named-rule-node
unnamed-rule-node —> rule-page-name ;
tested-typed-rule-node — typed-rulo-node ? ;
typed-rule-node - rule-page-name sop type :
named-rule-node =) nulo-page-name sop type sep subname ;
rule-link —— nule-link-org sep rule-link-name sep rule-link-dest ;
rule-link-org — rule-link-org-dest
rule-link-name —) frame-rule-link | test-rule-link |

modify-rule-link

rule-link-dest =) rulz-link-org-dest

56

19,
20,
21,
22,
23,
24,
25,

26,
27,
28,

29,
30,
3l.

32,
3.
34,
3s,
36,
37,
38,
39,
40,
41.

42,
43.
44,

frame-rule-link — basic-rule-link
test-rule~lin —> rasjc-rule-link ?
modify-rule=-link —> basjc-rule- |
basic-rule-link —> labelled-rule-link | spurmred-rule-link
abelled-rule-link —> link-label
8 - =]ink) : qule-paye-pame
rule-link-org- —-> rule-page-name |
([SP) [rule-page-name {list-sep rule-page-name} (SP]])
nuleref —> -nuleref- [SP) page-pame [SP label] :
data-Jink —> doflinks | Unk
deflinks —»
~deflinks-{ §P) type [SP] ([8P] link-name {)ist-sep link-name} [§P)) :
Unk —> link-org sep link~-name sep link-dest :
link-org —) page-name
link=-name —> labelled-link | spurred-link
abelled-link —> link=-label
spurred-link — :page-name
Atart-statement —> -start-[[SP] Jabel] :
Lpage-pame —> lmited-identifier
ale-page-name — limited-identifier
lahal —> subpame
Uink-labe} —> subname
type —— identifier
subname y identifier
sep. — sPl.,l/
list-sep — 8P|, I[sP]
page-title — (any string without statement terminator)
limited-identifier —_) (any 1de__nt1_f§g_r which does not begin

with a minus sign)

45, identifier —3 (any string of printing characters)
(END)

A SAMPLE ENCODEMENT

Below is an actual listing of the file 'reversel.ambitg’ representing
the small yet complete three-page AMBIT/A program which follows,

reversel.ambitg 12/30/70 2035.3 est \led

=pagoe= rl-l

]l inks~-

-deflinks=- p (d)
~deflinks- end (r)
-deflinks- ¢ (r,d)

-page= rl-2
al X

o

(Y%,]
acocQcatSsT T s Aa

[~

v

(Cont' on next page)

58

-page~- rl-3
=rule~- rl reverse-l
al p vy

al p x

bl

b2 ¢c?

L3

al d bl

al dl b2

a3 d b2

aj d! b3

b2 r! bl

b2 r b3
-endrule-

ruleref=- r2 stop
=) Inks~-

rl success rl

rl fail r2

-gstart- reverse-l

59

reversel
P
d
end

60

rl-1

0"‘-—'Xﬂ

e

char

61

rl-2

; ,L ;]
T

S

62

A SAMPLE ERROR

The following page is terminal output of an AMBIT/G run on
Multics which causes a loader-detected error condition (number 12).
Following the listing of the run is a listing of the program which
caused the error. The arrows added to the output indicate lines typed
in by the user.

63

TT«0 89€° ZanT 4

004 -3403S-

-3 NAPpUI-

(Te) juopidunyg™peas (Id ‘te)
A 119 1q

X 119> e

004 T4 -3|NJ-

noA 03 o3y -a%ed-

uns 1S3 ¢zt o0L/LZ/TT 331)1que-00y
23jque-003 ad

SET+0 ZLTI ST T1IneT 4

‘Wl) peol ()s NUIL 3yl BUISSID0LD SBM 1334d1d3uUy Y]
*w34RIS NI, NI Y] BUPIIMIIIUY L IYM PIIINDD0 40443 S|IY]

*3a%ed

43pe0o| e uo aweu-32ed paseddpun ue sy 19,
WwNOA 03 0113y ,, 33ed uo § JUIWIILIS Je JIpeo| 3yl AQ paIiIdINIP $40443 9/118NWY
9/118vv
003 23jque

ZT+0 8h7° TINaT 4
S4asn £ Z0°I"/0°8 peol ‘I €T SI1IINK

nwy

64

CHAPTER 6
INITIALIZATION AND THE BUILT-IN SYSTEM

To make an AMBIT/G run using the Multics AMBIT/G System a user
must prepare two source files. One file is for normal input to the system;
it will be read by the AMBIT/G loader and by the user's program callir.g
upon the built-in function which reads from the input file, The other file
is read only by the AMBIT/G initializer early in the run and it plays no
further role after initialization is complete; this file is called the hint file
since its role in the system is considered to be outside of the definition of
the AMBIT/G language. We call the contents of the hint file "hint informa-
tion” or just "hints",

This chapter describes the syntax and semantics of the hint file,
and a user's view of the initialization process is given, It also contains
a complete description of the initial state of the AMBIT/G System as seen by
a user's program, This includes all built-in nodes, defined links, initial
links, and built-in rules. All built-in functions other than the loader are
described and their built-in definitions are given,

HINTS

A hint file has three parts. It begins *vith any number (including
zero) of settings of hint variables which control the AMBIT/G System ini-
tialization, These variables have default settings for every run, but the
hint file can override the default settings., However, these overriding
settings must be consistent with initialization of the built-in data and
functions. The following table outlines this information.

Hint Variable ef Value Meaning, Restrictions
smallest_integer -999 ‘integer's are built-in nodes, and
largest_integer 999 these variables establish the range of

created ‘'integer' nodes.
'smallest_integer' must not be greater
than 'largest_integer'. Note that

65

function_arguments 10
defns_size 5000
names_size 1000
name_length 25

'largest_integer' should be greater
than the number of statements included
on a loader page, since the loader
tallies a count of statements using
'integer's.

This variable indicates the maximum
number of tail arguments which can

be included in a function call, It
also is an upper limit on the number of
of arguments for which a function may
be defined. It must be at least 2.

This variable is used to limit the size
of the segment used to store function
definitions, A larger number does not
raise costs, but it must be less than
65000, Its moderate setting may be
useful for catching errors in a program
which gets into a loop defining too
many functions. It must be at least
347 plus twice the value of
'‘function_arguments’.

This variable indicates the maximum
number of names which may be accomo-
dated in the symbol table (names_seg-
ment). It must be at least 200.

This variable indicates the maximum
number of characters which may be used
in a name., It must be at least 14,

The second portion of the hint file specifies the names and counts of
all types of terminal nodes (having no links), which are to be created in
additon to the built-in nodes. The given count must be greater than zero. The
following list indicates the built-in terminal type names and the number of

nodes which are always created.

Terminal type

flag
link
builtin
undef
boolean
char
special

66

Count

13

36 (built-in) + 100 {for user)
15

1

2

128

integer
type

largest_integer - smallest_integer + 1
(19 plus additional ones defined by the

user in the hints)

The hint file may inclucde one mention of any of the built-in terminal
types other than 'integer' and ‘'type'. The given associated count will be
added to the built-in count. For example, if the user wishes to extend the
class of nodes of type 'char' by eight more nodes, he would include in the
second portion of the hint file the terminal type name "char" and the integer
'8'. Thus 136 nodes of type 'char' would be created.

The third portion of the hint file specifies the names, counts, and
maximum number of links of all types of non-terminal nodes which are to
be created other than the built-in nodes. The given count must be greater
than zero.

Since various non-terminal nodes are used to represent a user's pro-
gram and the need for certain other nodes varies according to the ways in
which a program uses functions, the overriding mechanism is more complex
than for terminals. If the hint file does not mention a built-in non-terminal
type then the number of nodes of that type created is the sum of the built-in
count plus the default additional count, However, if a built-in non-terminal
is included in the third portion of the hint file the given count is added to
the built-in count, thus overriding the default additional count, Furthermore,
the given number of links is added to the built-in number of links. The given
number of links for a built-in non-terminal may therefore be any positive
integer including zero. The given number of links for user-defined non-

terminal types must be greater than zero. The following list presents the relevant

information for built-in non-terminals,

Non-Terminal Type Count Default Additional Number of Links
Tule 6 50 12
linkrep 1 500 6
pipe 4 100 2
cell 4 + function arguments functicn_arguments 2
charconn 103 1900 2

67

ptr 2 0 1
noderep 13 500 3
circle 42 0 1
diamond 15 1000 2
pname 2 100 3

A type name must not appear more than once in the hint file, Also,
a built-in terminal cannot be promoted to a non-terminal,

Hint Syntax

The syntax of the hint file corresponds to the requirements for
simple use of PL/T input functions. Below is given a grammar for the syntax
in a BNF-like specification language, Spacing is used for readability and
does not affect the meaning, Meta-variables (non-terminals) are underlined
strings consisting of alphabetic characters and hyphens. A vertical bar in
the grammar represents disjunction, A matching pair of vertical brackets
indicates they enclose an optional construct; namely, the syntax allows for
either zero or one occurrence. A matching pair of curly braces indicates
they enclose a construct which may be repeated any number of times, in-
cluding zero,

68

Grammar:

1. hints

2., set-hint-variable

3. terminal-spec

4, non-terminal-spec

5. hint-variable

6. integer

7. digit

8. type

10, NL

N N

L

3

{ set-hint-variable NL }
; NL
{ terminal-spec NL }
“* NL
{ non-terminal-spec NL }
“* NL

hint-variable = integer

"type" SP integer
"type" SP integer SP integer

smallest_integer | largest_integer |
function_arguments | defns_size |
names_size | name_length

[-] digit { digit }
o|l1|2[3|4]|5]6|7]8]9

(any (non-null) string of printing characters ,
except double quotes must be in pairs)

(space composed of any (non-pull) mixture
of spaces and tabs)

(new-line (carriage retum))

69

An Example

A rhort example of a hint file follows as an actual listing of the
file 'reversel . hints'. This file is the mate of the file listed as an ex-
ample in the chapter on the loader. Furthermore, the 'reversel’' program
is discussed in detail as the first example in Volume II of this report.

reversel.hints 12/30/70 2035.3 est \ed
l;lll
llpll 2 1
“end" 1 1
llcll u 2

70

BUILT-IN NODES

As it reads the three portions of the hint file, the initializer creates
all nodes which can be used in the AMBIT,/G run. It then attaches names to
the named built-in nodes. These are named nodes of the interpreter and
loader and other nodes which are part of the AMBIT/G System.

An AMBIT/G programmer should avoid using any built-in nodes in
his programs other than for their intended purpose. The programmer is ad-
vised not to use type names which are built-in for anything but their intended
use. For example, a programmer should not employ nodes of type 'circle’ in
a program to represent an arbitrary variable.

The following is a comprehensive list by type of all named built-in
nodes. (Their order corresponds to orderng in the implementation of the
'nodes_segment',)

flag

clear compiled frame test modify
ok no def undef fixed
dummy any general

Unk

heads spur tails state success
contents frame test modify fail
savel saveret mode org name
dest next next! value sets
variability rep link' read_function write_function
locate type char load add
subtract multiply divide sign pname
node

bujltin

link link' read_function write_function locate
name type char load add
subtract multiply divide sign error

71

undef

(all intejers between smallest_integer and largest_integer; e.g. <.

undef

boolean

true false

char

NUL SOH STX ETX
BEL BS HT LF
SO SI DLE DCl
NAK SYN ETB CAN
FS GS RS Us
$ % &

* + ' -

1 2 3 4

8 9 2 5

? @ A B

F G H 1

M N o] P

T 19) \Y w

[\] -

b c d e

i j k 1

p q r 5

w X Y 2
— DEL

special

SP / ' !

*

integer

-5 -4 -3 -2
2 3 4 5

EOT

DC2
EM
SP

O QAo

Aﬂ5m|

-1

ENQ:

FF
DC3
SUB

m\Ao-.

< D R g |

—_— s 3 O

0
)

ACK
CR

DC4
ESC

-— g 0 e N MMV N o™

type

(any user-defined types plus:)

flag
integer
ptr

free

cell

free

charconn

free

ptr

ret

noderep
(none)

circle

a
f

r

char
prev_char
end_line

link builtin undef
type rule linkrep
noderep circle diamond
stop error help

tl ml bhegin
end h

end h

end

next_rule

b c d

free dest 1

ret rule fl
next_pname pname_list pname
find1 find2 char_a
save_pname special find_pname

73

boolean

pipe
pname

ret

end

dl

1

m]
node
char_b
paren

char
cell

start

d2
mode
tl

org
first ch

page

special
charconn

end

n
proceed
name
last_ch
line

diamond

end

pname

end

matched

BUILT-IN LINKS

unmatched h

The following is a complete list by node type of all defined links

which are built-in, (Their order corresponds to ordering in the implementation

of the 'nodes_segment' and "defns_segment',) All built-in link names are

nodes of type 'link', and therefore the given names are their subnames.

rule

state
spur

linkrep

org

next

cell

next

charconn

next

ptr.

value

success

tails

name

value

value

value

fail saveret savel heads
contents frame test modify
dest next nextl mode

74

noderep

rep

circle

value

diamond

next

name

next

BUILT-IN FUNCTION DEFINITIONS

variability

node

sets

Each of the built-in functions is initially defined as if write calls
has been made on 'read_function' and ‘write_function', These built-in defi-
nitions are initialized (in the 'defns_segment') before built-in links are
defined. The following table summarizes these definitions. All built-in
link names are nodes of type 'link' and therefore the given names are their
subnames. (Their order corresponds to ordering in the implementation of
the 'defns_segment',)

Read/ Write

read
read
read
read
write
read
read
read
read
read
read

Link- Name

load
type
sign
char
char
add
subtract
multiply
divide
locate
name

Definition
'builtin load'
'builtin type'
'builtin sign'
’builtin char'
'builtin char'
'builtin add'
'builtin subtract'
'builtin multiply'
'builtin divide'
'builtin locate’
'builtin name'

Tail Types
(none)

(any)

intzger

(any)

(any)

integer, integer
integer,int jer
integer,integer
integer,imeger
type,charconn
(any) ,charconn

rC.d read function ‘'builtin read_function' cell, (any)

read write_function 'builtin write_function' ccll, (any)
read link!' 'bufltin link'' (any), (any)
write read_function ‘builtinread_function' flag, (any)
write writc_function 'builtin write_function' flag, (any)
write rcad_function ‘builtin read_function' cell, (any)
writce write_function 'builtin write_function' cell, (any)
write link' 'builtin link'* (any), (any)

Although all of the above definitions are bui!'t-in, it is only necessary
that thce fourth last one be built-in, The cxistence of that one definition can
serve as a bootstrap to definc all of the others,

BUILT-IN RULES

The initial AMBIT/G data graph includes six built-in rules, Two of
thesc cxist only as 'rule' nodcs since the interpreter never attempts to look
at their contents: ‘rule stop' and 'rule error', The other four built-in rules
are initialized in the 'clear' state to be as follows. Note that the first two
rules have nc contents,

* @ commmm. e eem so mao

. om ———— o er e e cmemteme

—_—
help 0
-—-ﬂ error ’

ret
stop l

g . . Cems . - o — v ame - o ———

go
ptr
next_rule
r = -t
! .
‘— succcss\r >
go ———- ’?’“ P
b e . e e @E—— et e e e——— 0o 76..._. e e cecem . mme

start

start

load >

B

BUILT-IN DATA

The initial AMBIT/G data graph includes various nodes which are
initially linked together in addition to the representations of the four
above rules. All other built-in nodes have their buiit-in links undefined
(pointing to 'undef undef'). The following diagram shows the initial data.

77

ptr cell next cell next cell e
ret free end
value o
stop

ext N o =4 —\
O free)P_.x__va end }%&_‘,() next

—

vmrrmmm 7
onn ar nn harconn harconn
charconn next | charconn _n_ext-_> charco next| charc next | charc lnext
free end

lV j
100 nodes
next next
end
fixed
alue

sets |value

ariability

T

— L
@

78

BUILT-IN FUNCTIONS

A description of each of the built-in functions (except the loader)
of the AMBIT/G System is included here. Each description includes all
possible error conditions and messages, Although a built-in function will
normally be invoked by a call which depends upon its built-in definiion,

a program may give a built-in function as the definition of what is invok.d
for any arbitrary link name, etc.., When the AMBIT/G interpreter processes
a link, it first finds out the definition of that link name as applied to the
tails of the link, If that definition is a built-in then the interpreter checks
for the number of tails and heads of the link; it reports an error if there is a
discrepancy. The interpreter then gathers the arguments of the built-in
function and performs a direct call on it as part of its interpretation,

To make it possible for the interpreter to be itself a legitimate AMBIT/G
program, two nodes of type 'builtin’' are involved with the reading and writing
of links, The node 'builtin link' should be given as the head argument of a
write call on ‘read_function' (or ‘write_function') to define for reading (or
writing) a particular link name as a true link on a particular type of node,
The node 'builtin link'' is given as the head argument of such a call when
defining a link to invoke the primitive link reading (or writing) function. This
difference will be clarified for the reader by his observing the listing of the
AMBIT/G interpreter where it processes these built-in functions. There is
only one built-in function which is the primitive link reading function (and
one for writing), and it will be described below,

type (read)

This function is called with one tail argument and one head result,
The result of this function is the node of type 'type' which corresponds to
the type of the argument, Since every node has a type there are no error
conditions for this function,

link' (read)

This function is called with two tail arguments (arg1 and arg2)

79

[By L. 3]

and one head result. The type of arg1 is first determined; if arg 2 is not
defined as a true link on nodes of that type, error condition ‘rl1' is sig-
nalled. Otherwise, the link with origin arg4 and name arg2 is read, and
its destination is retumed as this function's result., If the sought link is
defined but has never been written, the result is the undefined node
‘undef undef'.

The error messages for this function follow,

rl1: An attempt is being made to read an undefined link
with origin " ... " and name " ... " .

Iink* (write)

This function is called with two tail arguments (arg! and arg2)
and one head argument (arg3) . The type of argl is firstdetermined;
if arg 2 1s not defined as a true link on nodes of that type, error condition
'wlq’ is signalled, Otherwise, the link with origin arg1 and name arg 2
is written to destination arg 3. The previous destination of that link is

losto
The error messages for this function follow:

wli: An attempt is being made to write an undefined link

with origin " ... " and name " ,.. " to destination * ... " .

locate (read)

This function is called with two tail arguments (arg1 and _arg2) and

one head result., In general, arg! is a ‘type’' node and arg 2 is a list of
printing characters; this function is used to locate by type (arg1) and

subname { arg 2) a particular node. If a null fubname is given a unique node

of the given type is located.

When initialization of an ~MBIT/G run is complete all nodes are
created according to the hints, During the execution, a call on 'locate’

80

either uses up a fresh node of the given type or it finds a named node
which has already been located for the first time., Normally, the lcader
locates all nodes during the loading of data and rules., arg2 is supposed

to be a (possibly empty) list of connector nodes of type 'charconn’'. These
are forwardly-linked by 'next' links, and 'charconn end' terminates the list,
Each othe: (if any) ‘charconn' node of the list has a 'value' link which is
supposed to point to a node of type 'char' which represents a printing char-
acter,

If argl is not of type ‘type’, error cendition 'loc 2' is signalled. If
an element of the list of arg2 is not of type ‘char', error condition 'loc 3' is
signalled. If an element of the list of arg2 does not represent a printing
character, error condition 'loc 4' is signalled. If a connector of the list of
arg 2 is not of type 'charconn', error condition 'loc5' is signalled. If the
length of the list of arg 2 exceeds the maximum length of a name (according
to hinrt variable ‘name_length'), error condition 'loc6' is signalled.

After all above checks are passed, if arg2 is a non-empty list it
is treated ac a specification of the subname of the node being located. If
that node is already known, it is returned as the result, If it is not already
known (including the null subname case) a fresh node of the given type is
obtained to be retumed as result. If, however, all nodes of the given type
have already been located, errcor condition 'loc 7' is signalled. If a non-null
subname was given and & fresh node is to be obtained, but the system cannot
accoinmodate another name (according to hint variable ‘names_size'), error
condition 'loc 8’ is signalled.

The error messages for this function follow,

locl: The first argument of a call on the builtin "locate" is
" +es ", which is not of type "type".

loc2: The second argument of a- call on the builtin "locate" is
" oes ", Which is not of type "charconn" ,

8l

loc3: The second argument of a call on the builtin “locate"
is a list beginning with " ... " which includes a node
of type “charconn” whose “value” link points to " ... ",
which is not of type “char".

loc4: The second argument of a call on the builtin "locate"
is a list beginning with " ... " which includes " ... ",
which {s an unprintable charac:er,

locS: The second argument of a call on the builtin "locate"
is a list beginning with " ... " which includes a node
of type "charconn" whose "next" link points to " ... ",
which is not of type "charconn”.

loc6: The second argument of a call on the builtin "locate"
is a list of characters beginning with " ... " whose
length exceeds capacity.

loc7: A call on the buiitin "locate" is causing an attempt to
locate a new node of type " ... " with second argument
" ..o ", and there is none. '

loc8: A call on the builtin "locate” with arguments " ... " and

" .ee " i8 causing an attempt to create a new name, and
that would exceed capacity,

name (read)

This function is called with two tail arguments (arg1 and arg 2) and
one head result. arg1 is any node, and this function returns the subname
of the node as a list of its constituent characters. This result list is
connected by ‘charconn’' nodes removed from a "free" list of 'charconn's
headed by the 'charconn’' node arg 2. The list given as arg 2 and the result
list are forward-linked by 'next' links, and 'charconn end' terminates these
lists. Each other (if any) 'charconn' node of the list has a 'value’ link for
pointing to a 'char' node.

82

If arg 21is not a node of type 'charconn’, error condition ‘m1‘ is
signalled. If a connector node of the list given as arg 2 includes a node to
be used other than a ‘charconn’, error condition 'm 2*' is signalled. If the
given list of ‘charconn's does not include enough of such nodes for retum-
ing the subname, error condition 'm3' is signalled. If arg1 has no .subname,
the result is ‘charconn end' and the given "free" list is not affected; other-
wise, this function has the side-effect of removing those 'charconn' nodes
which it uses from that "free" list.

Note this built-in function is available to a user program, but it is
not used anywhere in the system other than one call in the interpreter to
execute the function on behalf of the user's program,

The error messages for this function follow,

mi: The second argument of a call on the builtin "name"
is " <o " , which is not of type "charconn".

m2: The second argument of a call on the builtin "name"
is a list beginning with " ... " which includes a
node of type "charconn"” whose "next" link points to
" +ee ", which is not of type "charconn".

m3: The second argument of a call on the builtin "name"
is a list of nodes of type "charconn" beginning with
" «ee " which is too short to accommodate the subname
of [1] ce e " .

read_function (write)

This function is called with two tail arguments (arg4 and arg 2) and
one head argument (arg 3) . It is used to define a reading function whose
definition is arg3. The link name which will later invoke that reading
function is arg2. arg4 is used as an indicator of the number and types of
tail(s) which will be required to invoke that reading function, If there should
be no restriction on the tails, argl should be ‘flag general' , Otherwise,

83

LB

arg4 must be a list where nodes of type 'cell’ are the connectors. 'cell's
are forwardly-linked by 'next' links, and 'cell end' terminates the list.
Each other (if any) 'cell' node of the list has a 'value' link to point at the
list element. Each given list element represents one tail argument of the
reading function being defined., If the element is 'flag any' that particular
tail argument may be any node, Otherwise, a list element must be a node
of type 'type’ to indicate the type of that particular tail argument which is
required to invoke the reading function. If arg2 is 'cell end' an attempt is
being made to define a reading function with no tail arguments.,

If a definition is made when arg4 is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name, the newer
definition overrides the previous one for the overlapped domain, This is
discussed further in the section describing ‘read_function (read)'.

arg 3 must be either a node of type 'builtin’ or ‘rule’. If arg3 is
'builtin link', this is an attempt to define a link for reading; therefore, arg4
must be a list with exactly one element which is a 'type’' node.

If arg 3 is neither of type 'builtin' nor type 'rule’, error condition
'‘drfl’ is signalled. If argl is neither 'flag general' nor of type ‘cell’, error
condition 'drf2' is signalled. If an element of the list given as arg1 is
neither 'flag any' nor of type 'type', error condition 'drf 3' is signalled. If
a connector node of the list given as arg1 includes a node other than a ‘cell’,
error condition ‘drf4' is signalled.

If arg 3 is 'builtin link', then this is an attempt to define a link for
reading. If arg1 is not a list of one element, error condition 'drf5 is sig-
nalled. If another link cannot be defined for the given 1.ype because that
would exceed the maximum number of links given in the hints, error condi-
tion 'drf6' is signalled,

In defining any reading function, if the system cannot accommodate
that definition (according to hint variable 'defns_size') , an error condition
‘drf 7' is signalled. If the number of elements of the list given as argl
exceeds the maximum number of arguments of a function (according to h'nt
variable 'function_arguments'), then error condition 'drf 8' is signalled.

84

The error messages for this function follow.

3

The head pointer of a write~call on the builtin
"read_function: is * ... ", which is neither of
type “builtin" nor of type "rule".

drf2: The first argument of a write-call on the builtin
"read_function" is " ... ", which is neither the
node "flag general” nor a node of type "cell",

drf3: The first argument of a write-call on the builtin
"read_function" is a list beginning with " .., ",
which includes a node of type “cell" whose "value"
link points to " ... ", which is neither the node
"flag any" nor a node of type "type".

drf4: The first argument of a write-call on the builtin
"read_function" is a list beginning with " ... *
which includes a node of type "cell" whose "next"
link points to " ... ", which is not of type "cell".

drfs: A write=-call on the builtin "read_function" is an
attempt to define the link " ... ", and the first
argument is " .,, " , which is not a list of one
1ode of type "type".

drf6: A write-call on the builtin "read_function" is an
attempt to define the link " ... " on nodes of type
" «ee ", and another link cannot be defined for
this type,

dri7: A write-call on the builtin "read_function" is causing

an attempt to make a new definition, and that would
exceed capacity,

85

dri8: The first argument of a write~call on the builtin
“read_function" is a list beginning with " .., "
whose length exceeds the maximum number of
arguments allowed for a function definition,

write_function (write)

This function is called with two tail arguments (argi and arg 2)
and one head argument (arg3) . It is used to define a writing function
whose definition is a8rg3. The link name which will later invoke that
writing function is arg2 . argl is used as an indicator of the number
and types of tail(s) which will be required to invoke that writing function.
If there should be no restriction on the tails, arg4 should be 'flag general'.
Otherwise, arg1l must be a list where nodes of type ‘cell' are the con-
nectors, 'cell's are forwardly-~linked by 'next' links, and ‘cell end' ter-
minates the list, Each other (if any) ‘cell' node of the list has a 'value’
link to point at the list element, Each given list element represents one
tail argument of the writing function being defined. If the element is
‘flag any' that particular tall argument may be any node. Otherwise, a list
element must be a node of type 'type' to indicate the type of that particular
tall arsument which Is required to Invoke the writing function. If arg2 Is
'cell end' an attempt is being made to define a writing function with no tail
arguments.,

If a definition is made when arg4 is not 'flag general' whose domain
overlaps with that of a previous definition of the same link name, the newer
definition overrides the previous one for the overlapped domain, This is
discussed further in the section describing 'write_function (read).

arg 3 must be either a node of type 'builtin’ or ‘rule', If arg3 is
'builtin link', this is an attempt to define a link for writing; therefore, argl
must be a list with exactly ore element which is a 'type’ node.

If arg 3 is neither of type 'builtin' nor type ‘rule', error condition 'dwfl’
is signalled, If arglis neither 'flag general' nor of type 'cell', error condi-
tion 'dwf2' is signalled. If an element of the list given as argl is neither
‘flag any' nor of type ‘type’, error condition 'dwf3' is signalled, If a connect-~

or node of the list given as arg1 includes a node other than a 'cell', error

86

condition 'dwf4' is signalled,

If arg 31s 'builtin link’, then this is an attempt to define a link for
writing. If arg1 is not a list of one element, error condition 'dwf5’' is
signalled, If another link cannot be defined for the given type because
that would exceed the maximum number of links given in the hints, error
condition 'dwf6’' is signalled.

In defining any writing function, if the system cannot accommodate
that definition (according to hint variable 'defns_size'), error condition
'dwf7' is signalled, If the number of elements of the list given as arg1l
exceeds the maximum number of arguments of a function (according to
hint variable ‘function_arguments'), then error condition 'dwf8' is sig-
nalled,

The error messages for this function follow,

dwfl: The head pointer of a write-call on the builtin
'write_function” is " ... ", which is neither of
type "builtin" nor of type "rule".

dwf2: The first argument of a write-call on the builtin
"write-function” is " ... ", which is neither the
node "flag general" nor a node of type "cell".

dwif3: The first argument of a write-call on the builtin
"write_function" is a list beginning with " .., "
which includes a node of type "cell" whose "value"
link points to " ... ", which is neither the node
"flag any” nor a node of type "type".

dwif4: The first argument of a write-call on the builtin
"write_function" is a list beginning with " ... "
which includes a node of type "cell” whose "next"
link points to " ... " , which is not of type "cell",

87

dwfs: A write-call on the builtin "write_function" is
an attempt to define the link " ,.. ", and the
first argument is " ... " , which is not a list
of one node of type "type".

dwi6: A write-call on the builtin "write_function" is
an attempt to define the link " ,,. " on nodes
of type " ... ", and another link cannot be de-
fined for this type.

dwf7: A write-call on the builtin "write_function" is
causing an attempt to make a new definition,
and that would exceed capacity.

dwi8: The first argument of a write~call on the builtin
"write_function" is a list beginning with " .., "
whose length exceeds the maximum number of
arguments allowed for a function definition.

read_function (read)

This function is called with two tail arguments (arg4 and arg 2)
and one head result. It is used to determine the reading function which is
defined to be called for a given link name, arg 2 , and with a given sequence
of types of tail arguments. This sequence of types is represented as arg1
by a (possibly empty) list where nodes of type ‘cell’' are the connectors,
‘cell's are forwardly-linked by 'next' links, and 'cell end' terminates the list.
Each other (if any) 'cell' node of the list has a 'value' link pointing at a
1ist element which is a node of type 'type'. Each given list element represents
one tail of the link whose definition is sought, If there is no definition for the
given link name and sequence of types, the result is 'builtin error'., Otherwise,
this function's result is either another 'builtin' node or a 'rule' node,

Since overlapping domains might have been given for a particular link
name on various write calls on 'read_function', we include the following

88

complicated description., For the given number of elements (including zero)
of the list presented as arg1 , previous definitions are scanned for that
number of elements. The scan is performed starting with the most recent
definition and then working backwards towards the oldest definition. If a
definition included 'flag any', that argument position matches any given
type. If a match is found during the scan, no further scanning is performed
and a result is returned, If the scan did not result in any match, then those
definitions are scanned which were made for any general arguments as indi-
cated by a first tail argument of 'flag general' on a previous write call on
'read_function', As before, general definitions are scanned newest to oldest.
There are no built-in general definitions, If a match is not found among the
general cefinitions, a result of 'builtin error' is retumed,

This function is called by the AMBIT/G interpreter for every reading
link it processes to determine the definition of that link. It is not expected
to be used within "normal" AMBIT/G programs.

If arg! is not of type 'cell', error condition 'grfl' is signalled. If an
element of the list given as arg! is not of type 'type', error condition 'grf2’
is signalled., If a connector node of the list given as arg1 includes a node
other than a 'cell’, error condition 'grf3' is signalled. If the number of
elements of the list given as arg4d exceeds the maximum number of arguments
of a function (according to hint variable 'function_arguments'), then error con-
dition 'grf4' is signalled.

The error messayes for this function follow,

grfl: The first argument of a read-call on the builtin
"read_function" is " ... ", which is not of type "cell".

grf2: The first argument of a read-call on the builtin
"read_function" is a list beginning with " ... "
which includes a node of type "cell" whose "value"
link points to " ... " , which is not of type "type".

grf3: The first argument of a read-call on the builtin
"read_function" is a list beginning with " ...

89

which includes a node of type "cell" whose "next"
link points to * ... " , which is not of type "cell”.

grf4: The first argument of a read-call ~,n the builtin
"read_function” is a list beginning with * .., "
whose langth exgeeds the maximum number of
arguments allowed for a function definition.

write_function (read)

This function is called with two tail arguments (arg4 and arg2) and
one head result, It is used to determine the writing function which is de-
fined to be called for a given link name, arg2, and with a given sequence
of types of tail arguments, This sequence of types is represented as arg1
by a (possibly empty) list where nodes of type ‘cell' are the connectors,
‘cell's are forwardly-linked vy ‘next’' links, and 'cell end' terminates the
list, Each other (if any) ‘cell' node of the list has a 'value' link pointing at
a list element which is a node of type 'type'. Each given list element repre-~
sents one tail of the link whose definition is sought. If there is no defini-
tion for the given link name and sequence of types, the result is 'builtin error'.
Otherwise, this function's result is either another 'builtin’' node or a 'rule’ node,

Since overlapping domains might have been given for a particular
link name on various write calls on 'write_function’', we include the following
complicated description, For the given number of elements (including zero)
of the list presented as argl, previous definitions are scanned for that number
of elements, The scan is performed starting with the most recent definition
and the working backwards towards the oldest definition, If a definition
included ‘flag any’, that argument position matches any given type. If a
match is found during the scan, no further scanning is performed and a result
is retumed., If the scan did not result in any match, then those definitions
are scanned which were made for any general arguments as indicated by a first
tail argument of 'flag general’ on a previous write call on ‘write_function'. As
before, general definitions are scanned newest to oldest, There are no built-
in general definitions. If a match is not found among the general definitions,

90

a result of 'builtin error’' is retumed.

This function is called by the AMBIT/G interpreter for every writing
link it processes to determine the definition of thatJink. It is not expeoted
to be used within “normal" AMBIT/G programs.

If argl is not of type 'cell', error condition 'gwfl’' is signalled, If
an element of the list given as arg1 is not of type 'type', error condition
‘gwf2' is signalled, If a connector node of the list given as arg1 includes a
node other than a 'cell', enor condition ‘'gwf3' is signalled. 'f the number
of elements of the list given as arg1 exceeds the maximum number of argu-
ments of a function (according to hint variable 'function_arguments'), then
error condition 'gwf4’' is signalled,

The error messages for this function follow,

gwfl: The first argument of a read-call on the builtin
"write-function" is " ,.. ", which is not of type “cell",

gwf2: The first argument of a read-call on the builtin
"write-function" is a ist beginning with " ,,. "
which includes a node of type "cell” whose "value"
link points to " ... ", which is not of type "type".

gwi3: The first argument of a read-call on the builtin
"write_function" is a list beginning with " ... "
which includes a node of type "cell" whose "next"
link points to " ... ", which is not of type "cell".

gwifd4: The first argument of a read-call on the builtin
"write_function" is a list beginning with " .., "
whose length exceeds the maximum number of
arguments allowed for a function definition.

9l

char (read)

This function is called with one tail argument (arg4) and one head
result. It is used to read (or input) one ASCII character from either the
input stream of the user's typewriter terminal or from the normal input file
for the AMBIT/G run (e.g., 'foo.ambitg'). The result of this function is
always a node of type 'char', and it is one of the 128 built-in nodes of that
type. The design of this function may be extended in the future as other
input requirements present themselves; but presently only these two devices
are available, If arg] is the node ‘char D' (for disk or data) the character
is read from the file, If, however, this is an attempt to read beyond the
end of the file, error condition ‘rcl' is signalled. Any other value of arg1
causes a character to be read from the terminal, Actually, the Multics
System "hands over" cne line at a time to AMBIT/G , so a user must type a
new line (carriage return) before any characters of that line are obtainable,
If this function is called when the user has not typed any input, it waits for
the input indefinitely with the AMBIT/G System in a dormant state with respect
to Multics,

The AMBIT/G implementation on Multics passes through whatever
ASCII character it finds, The Multics convention is every line ends in
only the single character ASCII ‘'LF' (Multics terminology is NL for new line);
the AMBIT/G programmer should not expect to find the ASCII 'CR’ in the
normal case,

This function is called by the AMBIT/G loader with an argument of
‘char D' to read the input file,

The error messages for this function follow,
rcl: A read-call on the builtin "char" with a first

argument of "char D" is an attempt to read beyond
the last character of the input file,

92

char (write)

This function is called with one tail argument (arg4) and one head
argument (arg 2). It is used to write (or output) one ASCII character to the
output stream of the user's typewriter terminal. The design of this function
may be extended in the future as other output requirements present themselves;
but presently only the one device is available. The character to be written is
given as arg2 and it must be one of the 128 built-in nodcs of type 'char';
otherwise, error condition 'wcl' is signalled,

This function normally buffers a line of characters at a time and
flushes that buffer only when a 'LF' is written. The AMBIT/G implementation
on Multics passes through whatever ASCII character it finds, The Multics
convention is every line ends in only the single ASCII 'LF' (Multics terminology
is NL for new line); the AMBIT/G programmer should not normally write the
ASCII 'CR'. The line buffer can hold up to 130 characters and is flushed when
that buffer is full.

To permit interactive programs written in AMBIT/G which have ques~
tions and answers, this function may be called with arg1 as 'char F' to flush
the character buffer, including the current character given as arg2 . Any
other value of arg1 causes nomal buffering to occur,

The error messages for this function follow,
wcel: The head pointer of a write-call on the builtin

"char” {8 " ... ", which is not a node of type
"char" which represents an ASCII character,

93

add (read)

This function is called with two tail arguments (argl and arg 2) and
one head result, It is used to produce as result the ‘integer' node repre-
senting the sum of the integer represented by the 'intecer' node arg1 and
the integer represented by the 'integer' node arg2 .

Ibargi is not of type 'integer', error condition 'addl’ is signalled.
If arg 2 is not of type 'integer', error condition 'add2’ is signalled. If the
sum »f the two arguments is an integer which is outside of the range of
existing AMBIT/G integers (according to hint variables 'smallest_integer' and
'largest_integer'), error condition ‘add 3' is signalled.

The error messages for this function follow,

addi: The first argument of a call on the builtin
*add" 18 " ... ", which is not of type "integer".

add2: The second argument of a call on the builtin
“add" 1s " ... ", which is not of type "integer".

add3: A call on the builtin “add” produced a sum of
" .ee ", which is outside of the range of integers,

subtract (read)

This function is called with two tail arguments (arg4 and arg 2) and
one head result, It is used to produce as result the ‘integer ' node repre-
senting the difference of the integer represen’ed by the 'integer' node arg1
minus the integer represented by the ‘integer' node arg 2,

If arg1 is not of type ‘integer, error condition 'subl’' is signalled,
If arg 2 is not of type 'integer', error condition ‘sub2’ is signalled, If the
difference of the two arguments is an integer which is outside of the range
of existing AMBIT/G integers (according to hint variables 'smallest_integer'

94

and 'largest_integer'), error condition ‘sub3’ is signalled.
The error messages for this function follow.

subi: The first argument of a call on the builtin
"subtract” ks " ... ", which is not ¢f type "integer",

syb2: The second argument of a call on the Builtin
"subtract" is " ... ", which is not of type "integer",

sub3: A call on the builtin "subtract" produced a difference
of " ... " , which is outside of the range of integers,

multiply (read)

This function is called with two tail arguments (arg1 and arg 2) and
one head result, It is used to produce as result the 'integer' node representing
the product of the integer represented by the 'integer' node arg1 times the
integer represented by the ‘integer' node arg2.

If arg1 is not of type 'integer', error condition ‘mull' is signalled,
If arg 2 is not of type ‘integer’', error ccndition 'mul2’ is signalled. If the
product of the two argum 'nts is an integer which is outside of the 1ange of
existing AMBIT/G irtegers (according to hint variables ‘smallest_intejer'
and ‘largest_integer’), error condition 'mul3’ is signalled,

The error messages for this function follow.

mull: The first argument of a call on the builtin
"multiply” is " ... ", which is not of type "integer".

mul?2: The second argument of a call on the builtin
"multiply” {s " ... ", which is not of type "integer",

mul3: A call on the builtin "multiply" produced a product
of " ... ", which is outside of the range of integers,

95

divide (read)

This function is called with two tail arguments (arg1 and arg 2) and
two head results (res1 and res 2), It is used to produce: as result resi the
‘integer’' node representing ths Quotient of the integer represented by the
'integer’' node arg4 divided by the integer represented by the 'integer’' node
‘arg 2'; and as result res 2 the 'integer' node representing the remainder of
that division,

If argl is not of type 'integer', error condition 'divl' is signalled.
If arg2 is not of type 'integer', error concition ‘div2' is signalled. If
arg2 is 'integer 0', error condition 'div3’ is signalled. If the quotient
of the division is an integer which is outside of the range of existing
AMBIT/G integers (according to hint variables ‘'smallest_integer' and
'‘largest_integer'), error condition 'div4' is signalled. If the remainder
of the division is an integer which is outside of the range of existing
AMBIT/G integers, error condition 'divS' is signalled.

The error messages for this function follow,

divi: The first argument of a call on the builtin
"divide" is " ... ", which is not of type "integer".

div2: The second argument of a call on the builtin
vdivide" is " ... ", which is not of type "integer".

div3: A call on the builtin "divide” is an attempt to
divide by zero,

div4: A call on the builtin "divide" produced a quotient
of" ... ", which is outside of the range of integers,

divs: A call on the builtin "divide" produced a remainder
of " ... ", Which is outside of the range of integers.

96

sign (read)

This function is called with one tail argument (argl) and one head
result, It is used to produce as result either:

a) 'integer -1' if arg4 is an 'integer' node representing
an integer less than zero; or

bY- 'integer 0' if argd is ‘integer 0'; or

c) ‘integer 1' if arg4 is an ‘integer' node representing

an integer greater than zero,

If arg1 is not of type 'integer', error condition 'sgnq' is signalled.
If the integer result (-1, 0, or 1) is outside of the range of existing AMBIT/G
integers (according to hint variables 'smallest_integer' and 'largest_integer'),

error condition 'sgn2' is signalled,
The error .nessages for this function follow,

sgnl: The argument of a call on the builtin "sign"
is " +e¢ ", wWhich is not of type integer",

sgn2: A call on the builtin "sign" produced a result
of " ... ", which is outside the range of integers,

A SAMPLE ERROR

The following page is terminal output of an AMBIT/G run on Multics
which causes an error condition (drfl). Following the listing of the run is
a listing of the program which caused the error. The arrows added to the
output indicate lines typed in by the user.

97

003 -3jJels-
-3|NJpuUI-
(1e) juoy3ounypeas (1q ‘te)

A 1190 19

X {195 1€

00j T4 -9 |NJ4-

noA 03) o9y -38ed-

ung 3Is3d [q88T 0L/LZ/TT 33 |quecooy

231queooy ad

SZT+0 6Z5°9T nhhy 4
*u(X L192) juoi! iounj) peau (A LL1®D ‘X |199),, Uil 3yl BuissS3ad0ad sem 433Idadaajuy 3ayj)
*w003 3NJ, 3|NJ 3y) 3u3Ia34dadJU} I IYM P3IINDD0 40443 SIYY
*wdlN4,, 3dA3 jo0 Jo0u L uiljing,,
3dA3 JO 43yl 13U S| YoIym ‘,.x [13d, S| ,LuojldunjiTpead,,
ujiling 3ayj3 uo |ed2-331am e jo a33jujod peay ayjy 40443 9/1180WY

9/118KHY
00} 23ji1que

T+0 LHT° cHNT 4
S43sn / {0°I%/0°8 peOl “‘I°CTI SO13I|NY

Ny

98

CHAPTER 7
THE DEBUGGING FACILITY

This chapter describes 'AMBIT/G DEBUG', henceforth called
'agd', which is an interactive debugging aid used in conjunction with the
AMBIT/G Programming System implemented on Multics. This debugger
gives the user the facility to examine the AMBIT/G Data Graph symbolically
in a variety of ways and to alter links in the Data Graph on an individual
basis.

The user invokes the debugger by typing the following command line
to the console command monitor:

agd

The debugger should only be invoked any time after AMBIT/G data has been
initialized (or restored). AMBIT/G initialization is complete after the second
new line (carriage return) is issued by the AMBIT/G System when it is first
started. If 'agd' does not detect any existing AMBIT/G data when it is
started, it will type an informative error message and terminate, Otherwise,
it issues a new line (carriage return) and waits for user input.

'agd’' is used interactively at a typewriter terminal where the user
types requests, and the debugger issues typed responses to those requests.
It never takes the initiative of requesting something from the user. ‘'agd’
continues to interpret the user's requests until it terminates as a result of
the user's typing either:

a) a '/q' command to quit, or
b) a '/S' command to signal a system status save, or
c) a '/R' command to resume AMBIT/G interpretation.

99

LEXICAL CONVENTIONS

SPACES are treated as characters and are not normally optional
in 'agd' . For example, a full node name must have at most one SPACE
separating the type-name from the subname.

Since the names of AMBIT/G nodes may consist of any printing
characters, the following conventions apply to all user-typed input to 'agd’.

The dollar sign '$' serves as a protection character for whatever
character immediately follows it. Unless preceded by a protective dollar
sign, the following characters have special meaning:

Character Meaning

carriage return statement terminator

statement terminator

separator

separator and command indicator

-e

internal name indicator
protect the next character

“© o\~

When a carriage return is protected (because a line ended in an
unprotected '$'), both the '$' and carriage return are ignored. Thus, this
combination can be used to input a statement on any number of typed lines.

The use of an unprotected '$' immediately preceding any of the
other five special characters

r ./ & $

causes that character to be interpreted literally as a character in a name.
Thus, a user must type

ab$&$Scd

when referring to the node name 'ab&$cd'.

100

‘ When an unprotected '$' immediately precedes any character other
than the special ones, that '$' is ignored.

The above conventions for user-typed input to 'agd' insure that
a user may make unambiguous requests. These conventions only apply to
input, but 'agd' output may be ambiguous in some rare cases. In these
cases it should be possible for a user to type one or two requests whose
responses will eliminate the ambiguity.

STATEMENTS

A statement is an individual request which a user types to 'agd’.
Usually a user types a statement immediately followed by a carriage return.
This causes 'agd' to scan the statement and make some response. Note,
however, that 'agd' makes a null response to the null statement.

More than one statement may be included on a typed line by using
an unprotected ';' as a statement terminator.

When 'agd' detects an error and responds to a statement without
having scanned to the ei.l of the statement, it aborts the scan for the
remainder of the typed line and issues an extra carriage return to indicate
this condition to the user.

Except for the null statement, a statement is either a command,
or it is a request to examine part of the AMBIT/G Data Graph. Examination
may result in a typeout of the origin, name, and destination of a particular
link; or it may produce such a typeout for each link emanating from a
particular node.

If 'agd' detects an error in a statement, it attempts to respond
with an informative error diagnostic. There are so many possible diagnostics
which may be issued that this writeup will not include a list of them. The
sample session at the end of the chapter includes examples of these diagnostics.

Before presenting the various forms of statements, some definitions
and conventions will be given which apply to many of the statements.

101

Node Names

AMBIT/G Data consists of nodes and links. Each node belongs to
a class, where each member of that class has the same links defined. This
membership is described as the type of a node. The type of any given node
never changes, and contributes directly to the node's name.

The type or type-name is that character string which, together
with a node's subname, makes up the full name of a node. However, some
nodes have no subname (those located with a null name); such a node is
unnamed. A node with a non-null subname is a named node.

Thus, each node in AMBIT/G Data has a type-name which consists
of one or more printable ASCII characters (not including SPACE, TAB, etc.).
Each named node also has a subname which consists of one or more printable
ASCII characters (not including SPACE, TAB, etc.). The subnames of the
nodes of a given type must be unique. The canonical graphical representation
of a named node is a rectangular box with the type-name positioned above
the subname within the box. In‘'agd', a node name is typed as the type-name
followed by one SPACE followed by the subname.

Each type in AMBIT/G data has an associated node of type 'type’
with a subname corresponding to the assoclated type. For example, if
‘integer 5' is a node name, its type or type-name is 'integer' and its subname
is 'S'. Furthermore, there must also be a node in the data whose name is
‘type integer'. This implies there must be a node in the data whose name is
‘type type', and this sequence of implications stops here,

Internal Subnames

For the purposes of using 'agd' to examine AMBIT/G Data which
includes unnamed nodes, the convention has been established to associate an
internal subname with every node. An internal subname begins with an un-
protected '&', and that is followed directly by an unsigned or negative decimal
integer. The integer part of an internal subname of a given node conveniently
coincides with the integer representing that node in the PL/I representation of
AMBIT/G Data in the Multics Implementation; this is particularly valuable for
debugging the AMBIT/G System in conjunction with the Multics '‘debug' command.

102

Note that the integer part of an internal subname may be any
negative integer greater than some lower bound which depends upon the
particular AMBIT/G run. There is a similar upper bound for those internal
subnames whose integer parts are positive; however, within the positive
range not all integers correspond to nodes. A node with n links (n 2 0)
will Yuse" n consecutive integers. A type node "uses" four consecutive
integers.

A node with an internal subname whose integer part is negative
is a terminal node; i.e., it has no links.

Typing Node Names

When ‘agd' types out a node name, it types a type-name followed
by a S8PACE followed by a subname. For a named node, the subname typed is
the subname of that node; and for an unnamed node, the subname typed is the
internal subname of that node.

When a user wishes to type in a reference to a node by its node name he
has some choices: the usar r.ay type either two names separated by one
SPACE, or just one name. If he types two names, the first is taken as a type-
name, and the second as a subname., ‘'agd’' will allow the type-name, in this
case, to be the internal subname of a 'type' node. The second name typed by
a user may be either the subname of a node or an internal subname; either form
is acceptable for a named node, but the former option could not be used for
an unnamed node.

1f the user types a node name consisting of just one name, that name
is taken as a subname. 'agd' will accept that reference if the typed subname
is the subname of only one node in the data. This will always be the case
when an internal subname is typed.

Therefore, when a user refers to a node, he may type only its internal

subname. If he precedes that by a type-name, 'agd' checks for consistency.
On type out, 'agd’ will not eliminate the type-name in a node name.,

103

Lipk-Names

A link in AMBIT/G Data is basically a triplet of node names, where
the elements are: origin, name, and destination. Although the '‘name’ of a
link is just another node, a convention has been established for typing out
and typing in link-names which is different from the conventions for typing

node names,

When ‘agd’ types out a link-name it omits typing the type=-name
and separating SPACE when the type-name {s “link"; otherwlise, the node
name for that link is typed. Since many names of links are of type 'link',
this convention reduces type-out time,

This convention also applies to a user-typed link-name. Thus, if
only one name is typed as a link-name, and if it is not an internal subname,
then 'agd' assumes the user had also typed a type-name of “link", If the
user types just an internal subname, the node which is uniquely named by that
internal subname is taken as the link-name reference.

Link Type-Out

When 'agd' types out one or more links it first types out the node
name of the origin of the link(s) followed by a colon. Then on separate lines,
it types each link indented by one TAB. The link-name is typed followed oy
a '/' as separator. This Is normally followed by the node name of the
destination of the (ink. One special convention has been established to
conserve type-out time and aid to readability: if the destination {s the built-
in undefined node, 'undef undef', the tvne out of that node name i{s omitted.

There is no similar convention for typing in.

104

STATEMENT FORMS

The most common 'agd’ request is for the examination of a node
or a link. The following syntactic forms may be used:

Syntactic Form Use
node-name to examine a node
node-name { / link-name } / to examine a node
node-name { /link-name } / link-name to examine a link

A matching pair of curly braces indicates they enclose a coi struct which
may be repeated any numbe: of times, including zero. The underlined
strings are meta-variables (non-terminals); their definitions have already
been given,

The only SPACES allowed in these statements are those which
separate a type-name from a subname. A ',' may optionally be used in place
of a '/' in these statements. Examination of a node means that 'agd' types
out all links which emanate from the specified node. If just one node name
is given, as in the first form above, that name refers to the specified node.
A statement of the second form, however, permits the user to type a list of
link-names to specify a "walk" through the AMBIT/G Data Graph to reach the
specified node. Each given link-name is interpreted as a step out of the
current node via that link to the node at the destination of that link; that
destination node then becomes the current node.

A statement of the third form is used to examine just one link of
a specified node, ‘agd' interprets such a statement by first determining the
origin in the same manner as it does for a statement of the second form. Then,
the final link-name given determines the one link which 'agd' will type out,

As 'agd’ scans a statement, interpreting a "walk", it checks for

any error conditions and will report immediately on any error without contiriuing
its scan.

105

Commands

The remaining statement forms are commands which begin with a
'/* followed by a letter. The following commands are recognized by 'agd':

Syntactic Form Use
/t type-name type out type statistics
/1 type-name list all links of the type
/1 node-name type internal subname
/s node-name/link-name/node-name _set a link (same as /w)
/w node-name/link-name/node-name write a link (same as /s)
/S Signal System Status Save and
resume execution
/R resume AMBIT/G interpretation
/q guit

The '/S', '/R’, and '/q' commands must be given as just two characters.
The other commands may have any number (including 0) of SPACES following
the first two characters. The argument of a '/t' or '/1' command cannot be
an internal subname.

The '/t' command causes ‘agd' to type out the current and maximum
numbers of links and nodes for the given type and aiso the internal subnames
spanned by the current number of nodes.

The '/i' command causes 'agd’ to type out the node name of the
given node followed by a '=' followed by the internal subname of that node.

The '/s' or '/w' command alters the AMBIT/G Data and types out
both the old and new values of the link.

The '/S*' and '/R' commands provide user control of the AMBIT/G
System which are not directly related to debugging. Their use is described

elsewhere in the report.

The '/q' causes 'agd’ to terminate and return to its caller.

106

A SAMPLE SESSION

Ttis description of 'agd’ concludes with a sample session of using
the debugger on a limited part of an AMBIT/G Data Graph. The listing
included is a real session without any simulated typing. For convenience
in the references to the listing, it has been annotated to the extent that
every line typed in by the user has an associated integer; all other lines
are typed out by the system.

On the next page is a portion of the AMBIT/G Data Graph which
is referenced in the sample session. The Data Graph referenced also in-
cludes all initial (or built-in) data.

Following that is a listing of the session, and that is finally
followed by an explanation of the session.

Other 'agd' sessions are included among the examples in Volume II.

107

A Portion of an 41uBIT/G Dot Graph

charconn lncx cimrconn—'noxf_' .[charcomnnex
RICS _j l: f] J
alue alue value value
\1

charconn

undef char char char
undef | * | X] 5
circle 1
r .

) lvalue

tule contents. _p. linkrep
start _J

lstate

flag

clear

108

10

11

12
13
14
15

16
17

Listing of the Session

arsd

charcomm
charconn

charcunii
charcoun

ab vl
charconn

NRUEHVE)

1aTENAL
charconn
chiarcorm

char ;

THE WODE nhilkl "char" (106 LAD OYITAX RS

char
ciiar }:

frec

freec:

next/charconn ab59u2
valui/
&57302
abjtes

next/charconn «L9dcih
value/char *

HURI Y
next/charconn &G5Yut
value/char «

SUBUALE "Liuuh™ DORS
free/uext/next/next/
GG
wexkt/ehirconn &350
value/char

Wl LIURS

free;/1 charg/lcharconn

"froe" 15 WOT ULIGUE: cell, plpe, clircle, chiarconn

HOT JinniE A 0ODE

obFLCLS

wODES OF TYPE "char" HAVE {0 LILiKS
d0DES OF TYPE "charconn" HAVE LIiIKS:

/t charconn;/1 charconn;/s charconn;/q charconn

next
value

TYPE "charconn" HAS 272 LIUKS AUD 260372003 U
tvpe charconn = 41U%2
1i:COLPLETE "/s" COMLAID

/4 charconn

USE "/q"

ALOIE TO QUIT

charconn &lub<

PUTERGAL SUBWGALE "G1052" DOES [OT HAIE A LODE OF TYPE 'charconn

type ulidh?2
LATERUAL SUBIWALE "Gl.052" [IAS BAD SYUTAX
type <1042

type charconne: 0 LIS
fou;1i00 noo

110 J0ODE HAS SUBLALLE "foo'
THE TYPE KODE "oo'" 1S UIDEFILILED

type poo

"poo' 15 HOT A SUBIALE OF A JJODE OF TYPE "type'™

/s charcoun as%9ti/value/char 3P
charconn wh9Gus

BLCOIIES

value/char ;
valuc/char SP

109

ONES: L.508

18

19

20
21
22
23
24

circle r;circle r/link value

circle

circle

r:

value/rule start

r:
val

uc/rule start

circle r,valuc,state

rule s

circle

WODE Mrule start DOES (0T HAVE LINK "link next"

tart:

state/flag clear

r/value/next

circle r/value/state/

fla, c

circle r/value/state/state
Jd0DE "flag clear DOES 10T HAVE LILK "1ink state';

circle
"fool

/q
r lu2

lear:

r/fuo

1S T A SUBI!AME OF A ODE OF TYPE "1ink"

G.dL7

10 LIRS

2506+651

110

HAS i10.E

Explanation of the Session

"agd" is the command the user typed to the Multics console
command monitor which caused 'agd' to be invoked. Note the

blank line issued by 'agd' to indicate it is ready to receive requests.

This is a request to examine a node. Note that 'agd’ retyped
"charconn free:" and then typed the two iinks emanating from

that node. Since the names of both links are of type 'link’',

"1ink" is not typed in the link-names. Also, since the destination
of the 'value' link is 'undef undef' nothing was typed there. The
destination of the 'next' link is an unnamed node, and therefore
an internal subname is typed.

This is a request to examine a node using a node name composed
of a type-name and internal subname.

Just the internal subname was typed by the user to examine a node.

Just an internal subname was typed, but it does not name a node.

This is an examination of a node by specifying a "walk". Note
the syntax of the destination of the 'value’ link.

The user then tried to examine the node "char;", but the ';' acted
as a statement terminator.

This is a successful examination of that node, demonstrating the
use of the protection character.

Three statements are included on one typed line. First, there is
an attempt to examine a node by typing only a subname, but that
subname {s not unique; note that 'cell free', 'pipe free', and

'‘circle free' are buiit-in nodes. Then there are two examples of

the '/1' command.

i

IOJ

11,

1829

13.

14.

15,

16.

17.

18.

19.

This line includes four statements. The first is an example of the
'/t command, and the second is an example of the '/i' command.
'agd' detected an error in the third statement, and terminated its
scan, which is indicated by its issuing the blank line.

The user now re-enters (for demonstration only) the command which
was not previously scanned, but 'agd' detects an error and again
terminates its scan in the middle of the line.

The user has typed a node name, where the type-name is not
consistent with the type of the typed internal subname,

The typed input appears to be correct, but due to a terminal or
communications problem an extra period was accidentally entered.
(Incidentally, this was a spontaneous error which the author did
not expect,)

This is an example of the examination of a 'type' node.

Two silly commands are typed by the user, and 'agd' types the
two error diagnostics.

This is another example of an error diagnostic caused by an incorrect
node name.

This is an example of setting a link.,
This line includes both a node examination and a link examination
which both produce identical results. The second statement

includes a link-name which was typed with a type-name.

This is a link examination with a "walk", and also demonstrates

the use of commas as separators.

112

20.

21,

22,

23.

24,

This is a node examination which includes a "walk" ending in
a non-existant link.

This is a successful node examination.

This is a link examination which includes a "walk" ending in
a non-existant link on a terminal node.

This is an attempt to examine a link where the link-name is not even

a node.
This is a successful end of the session. The final 'ready'

message line was typed by the Multics system. It indicates
that this sample session used 9.867 seconds of CPU time.

113

CHAPTER 8
THE IMPLEMENTATION

This chapter begins with credits and acknowledgements of those re-
sponsible for the implementation of the AMBIT/G System on Multics. The
remainder of the chapter discusses various details of the implementation
which serve as notes for a maintainer of the system and as a guide for using
the system, Since at the time of this writing there is essentially no user
community for this experimental implementation, we have not produced a
polished user manual. The implementation was written in Multics PL/I and
AMBIT/G (bootstrapped by hand-translation into PL/I).

CREDITS AND ACKNOWLEDGEMENTS

The AMBIT/G System described in this report has been implemented on
the Multics (for Multiplexed Information and Computing Service) System at M,I,T.,
which is a general purpose time-shared computer utility implemented on a
"General Electric" 645 computer system,

This development was carried our using a semi-portable Datel 30 type-
writer terminal especially modified for Multics use. This terminal was used in
the Wakefield office of Applied Data Research and in a home of one of the
implementors. We regularly obtained line printer listings by ordering them
(using the terminal) and then picking them up at M,I.T.

Michael S. Wolfberg was responsible for the implementation effort as a
whole. Carlos Christensen, D, Austin Henderson, Michael J. Fischer, ard
M.S. Wolfberg worked together to produce the design of the language to be
implemented and to resolve some difficult problems of the implementation.
M.]. Fischer wrote the AMBIT/G program for the interpreter which appears in
the third volume and wrote several of the example programs in the second
volume. M.S. Wolfberg wrote the loader, the underlying foundation described
in the current chapter, the debugging subsystem, and the remaining example

programs with the assistance of Maynie Ho.

114

We thank Prof, J.C. R. Licklider, Director of Project MAC, M.,I.T.
who made important initial steps in arranging for our access to Multics. We
also thank the staff of M,1.T. Information Processing Services and the M.,I.T.
Information Processing Center who administer Multics, especially Thomas
Van Vleck (of I.P.C.) and Jerrold M. Grochow (Assistant to the Director of
1.P.S.) for their helpful assistance and advice so courteously given.

115

AN INTER.JA[. VIEW OF THE MULTICS AMBIT/G SYSTEM

An AMBIT /G program exists on Multics as a pair of source files;
for example, the program ‘foo' would be represented by 'foo.hints' and
'foo.ambitg'. The file with secondary name 'hints' is usually rather small;
it includes some information which causes a particular initialization of the
AMBIT/G machine. Since this information is considered to be outside of the
definition of the AMBIT/G language we call its contents "hint information"
or just "hints". The syntax and semantics of the hints is given elsewhere.

The source file with secondary name 'ambitg' includes a string en-
codement of the AMBIT/G program in a format acceptable to the AMBIT/G
loader.

The AMBIT/G System exists as eight executable segments: 'pribin',
'interpreter', 'loader', 'ambitg_error', 'intldr_error', 'agd', 'agsave', and
‘agrestore'. At a minimum, the first three segments must be available for
execution, and the next three segments should be available in case any
error conditions arise. The remaining two segments are used only for saving
and restoring the status of an AMBIT/G progiam. Although 'agd' is required
for handling errors, it alone is required for performing interactive symbolic
debugging of AMBIT/G data.

The AMBIT/G System can be invoked to run a program by the user's
typing the consolz command "ambitg" followed by a space followed by
tl.e name of the program. Altematively, the 'ambitg' procedure can be called
from within a PL/I program with one character string argument as the name of
the program. The 'ambitg' procedure is part of the 'pribin' bound archive,
and the 'pribin' segment has 'ambitg’' as an additional name,

l.et us assume the user issued the console command "ambitg foo".
We shall now trace through the initialization process.

116

Initialization

First, the system save switch is cleared. Then an attempt is made
to "open" the source file 'foo.ambitg' in the current working directory; if
there is an error an error message is typed and executio'' aborts, The length
of this file is determined as a character count, and the file input counter is

initialized to zerc.

To overcome the inability of Multics PL/I to read a file whose name
has been determined by a computation, a fixed name, 'ambitg_hints', is
temporarily added to the hint file, 'foo.hints'. PL/I input statements are
used to read the hint file. If the fixed name cannot be added to the hint file
for any reason, an indicative error message is typed concerning the "opening"
of the hint file and execution aborts.

Three segments are then created in the current process directory
which are to contain nearly all data specific to this AMBIT/G run:

Name Use

nodes_segment all AMBIT/G 'type' nodes and non-
terminal nodes

names_segment the symbol table of all named nodes

defns_segment all function definitions

If one of these segments is found to be already known to the process, it is
used and initially truncated. Any error condition causes an indicative error
message to be typed and execution aborts.

If all has gone well up to this point "AMBIT/G" is typed on the ter-
minal as positive feedback to the user.

Default values are assigned to the hint variables and then a 'get
file data' PL/I statement is used to read any overriding values for the hint
variables. Consistency checks are performed for hint variables to meet
various conditions. Any inconsistency causes an indicative error message
to be typed and execution aborts.

117

After passing all consistency checks, the initializer reads any number
of terminal node hints from the hint file. Each such hint consists of a non-
null string and a non-negative integer. The end of these terminal node hints
is signalled'by a null string. The given hints are merged with built-in ter-
minal node hints.

Then any number of non-terminal node hints are read from the hint
file. Each such hint consists of a non-null string and an integer greater
than zero and a non-negative integer. The end of these non-terminal node
hints is signalled by a null string. The given hints are merged with built-in

non-terminal node hints,

During the reading of hints various conditions may cause an error
message to be typed and execution to be aborted. Otherwise, the hint file
is "closed" by removing the temporary name 'ambitg_hints' from it, This
too is prone to an error condition leading to execution aborting.

If all is well, the user is given more feedback by a blank line being
typed.

At this point, the 'nodes_segment' is arranged, and all built-in nodes
are created and their names are made known in the 'names_segment'. Then
the 'defns_segment' is initialized to include definitions of all built-in functions.
All built-in links are defined, and finally an initial data graph is created in-
cluding various built-in rules in a 'clear' state.

A second blank line is typed to indicate to the user the end of ini-

tialization. The AMBIT/G interpreter is then invoked to begin interpretation
at 'rule start' , which is one of the built-in rules.

Interpretation

The initializer creates an AMBIT/G machine and data graph and finally
calls the interpreter as a subroutine with one argument, In this case, that
argument is 'rule start'. Thus the interpreter carries out an interpretation
cycle on 'rule start', Since that rule is in a 'clear' state , it is first compiled
and then is interpreted., The contents of that rule causes a function call on the

118

AMBIT/G loader. The loader reads its input one character at a time from

the source file 'foo.ambitg' by calling on the primitive 'read_char'. When

a '-start-' statement is processed by the loader, it returns control to the
interpreter which finishes its interpretation of 'rule start'. That interpre-
tation causes the 'success' exit of 'rule start' to be the starting rule of 'foo'.
So the interpreter will then carry out an interpretation cycle on that rule.

The interpreter then continues to execute the program 'foo' by inter-
preting its rules. It is possible that 'foo' includes rules which cause further
reading of 'foo.ambitg' by either calling the loader again or by calling the
read version of the builtin 'char'.

Interpretation continues indefinitely until one of the following occurs:

a) The interpreter detects an error condition; this causes an
error message to be typed and execution aborts.

b) The interpreter calls a primitive which detects an error
condition; this causes an error message to bc typed and
execution aborts.

c) The interpreter interprets 'rule stop' at the top level (i.e.,
'ptr ret' points to 'rule stop'); this causes the interpreter
to return control to its caller. If the interpreter had been
called by the initializer, the initializer then returns control
to its caller which was probably the console command moni-
tor. This is the standard ending of a complete AMBIT/G run.
The AMBIT/G data is preserved in the process directory.

d) The interpreter detects the system save switch is set when
it begins a new cycle at its own 'rule start'; this causes
the interpreter to call the 'agsave' procedure which saves
the status of the AMBIT/G System in the current working
directory. The 'agsave' procedure returns to its caller with
a cleared system save switch if the user answers "yes" to

119

the question "CONTINUE EXECUTION? " typed on the ter-
minal; this causes the interpreter to begin that new cycle
from which it was interrupted. If the user had answered
"no" to the question posed by the 'agsave' procedure, then
it does not return to the interpreter, but instead calls the
console command monitor. Thus this could be considered
as the end of a partial AMBIT/G run. Note that the AMBIT/G
data is preserved in the process directory in addition to the
saved data in the current working directory. The rule which
the interpreter was about to interpret is saved as the node
pointed to by 'circle r',

The system save switch is originally cleared as the
first action performed by the initializer. The user can cause
that switch to be set by temporarily interrupting his job and
invoking the'/S' command of 'agd'.

e) The user aborts the running of the job by depressing the
“"QUIT" button on his terminal and does not resume that job;
this could be considered as the end of a partial AMBIT/G
run, Note that AMBIT/G data is preserved in the process
directory.

f) The system crashes and automatically logs out the user;
this destroys the process directory and thus all AMBIT/G
data. If the user had caused any system saves to be done,
the working directory at the time of that save contains the
saved data. Thus if a user has invested in a rather long or
costly run, he is advised to save the AMBIT/G system
status at appropriate intervals during the run.

We have described the way in which the interpreter is called as a
procedure by the initializer after all initialization is complete. The one other
call upon the interpreter in the current implementation is in 'agrestore', the
restoration procedure. This call can be invoked by various methods, but it
finally calls upon the interpreter with an argument of the node pointed to by
‘circle r'.

120

Loading

The AMBIT/G loader is a primitive of the system as are 'read_link’
and 'read_type', However, it differs from all other primitives in the method
used to define and implement it, The loader was written in AMBIT/G and
then hand-translated to PL/I in the same way the interpreter was implemented.
Even though the loader is a primitive, it makes use of calling upon many
other primitives, but then so do some of the other primitives,

If the loader is given a large source file to load it may require a
significant amount of time. Thus if a user causes the setting of the system
save switch during the interpretation of a rule which includes a call on the
loader, he may have to wait a long time before the interpreter again begins
another cycle when it causes the saving to occur.

The loader has no argument, but it is called as a function by the
interpreter. The result is a 'rule' node specified in the 'start' statement
which ends the loading process.

Although the loader detects and reports several error conditions re-
sulting from an improper source file, there are some errors which show up
in a primitive on which the loader calls. Unfortunately the error message
in this case often does not include enough information for the user to deter-
mine the causé of the error. In this case, the user can invoke 'agd' and
determine the current statement number by observing the destination of the
'value' link of 'circle page'; the name of the current page is a list of
characters beginning at the destination of the 'value' link of 'circle line'.
These two pieces of information are typed as part of any error message which
the loader itself caused to be typed.

Errors

When the interpreter or loader detects an error condition it makes
a procedure call on an error procedure in the object segment 'intldr_error'.
Entry point names for errors detected by the interpreter are 'intldr_error $ intN'
where N is a decimal integer, Similarly, loader errors use entry points names
of the form 'intldr_error$ 1drN' . Depending on the type of error, some argu-

ments are passed to the particular routine. Each error routine causes the

121

typing of an error message on the user's terminal. Arguments are converted
to symbolic node numes for more informative type-out by the error routine's

calling 'agd $ get_name' which is a special entry point in the debugger,

Errors detected by the loader cause an additional line to be typed
before the specific error message which indicates a statement number and
the name of the current page being loaded. These are determined by following
the 'value' link of 'circle page' to an integer and the 'value' link of ‘'circle line'
to a list of characters.

Following the specific error message is a general dump of the status
of the interpreter, First is the name of the rule being interpreted determined
by following the 'value' link of 'circle r'. Then, if the 'value' link of 'circle I'
poiists to a 'linkrep' node on the 'contents' list of the current rule, that
'linkrep' is dumped as completely as possible. Finally, if 'ptr ret' does not
point to ‘rale stop' a function call stack trace is performed until either
'rule stop' is encountered or a cycle is encountered or the list is found to
include a node whose type is not 'rule'. The trace consists of typing sub-
names of 'rule' nodes and perhaps ' ... ' to indicate a cycle, or a full node
name if a node is found on the list whose type is not 'rule’.

After a:’ of the tvping, the error routine calls the console command

monitor,

When a primitive other thai the loader detects an error condition,
it makes a procedure call on an error procedure in the object segment
'ambitg_error'. These various error routines operate just as those in
'‘intldr_error'.

Saving

The system save switch is a 'fixed binary extemal static' variable
which is cleared at the beginning of AMBIT/G initialization, It can be set
by the user's temporarily interrupting his job by depressing the "QUIT"
button on his terminal and then invoking the '/S' command of 'agd'. Such an

invocation may be carried out in one of two ways:

122

a) The user may enter the 'agd' debugger by typing the console
command "agd". Then he may use various features of the de-
bugger, When he wishes to signal a system save and con-
tinue execution, he types the 'agd' command "/S".

b) The user may type the console command "agd $S", which is

eqQuivalent to typing "agd" and then "/S".

Either of these operations simiply causes the system save switch to be set
and then interrupted AMBIT/G execution to be resumed by calling the 'start’
procedure of the Multics Standard Service System,

Actual saving will then occur when the interpreter is about to begin il
next interpretation cycle. Before the interpreter's 'rule start' is executed, i
the system save switch is set, a call is made on 'agsave'. The 'agsave'
procedure saves the status of the AMBIT/G System in the curmrent working
directory as Jdetailed later, After saving is complete, the procedure types a
question to the user: "CONTINUE EXECUTION? " , If he answers "yes" th:
'agsave'procedure clears the system save switch and returmns to its caller;
this causes the interpreter to proceed with its interpretation cycle which wa:
interrupted, If the user answers "no", 'agsave' calls the console command
monitor,

The method of saving just described preserves the interpretability
of an AMBIT/G program and we expect it to be the common method for saviag.
However, the user is also permitted to invoke 'agsave' as a console comman:
at any time, If saving is done at a time when AMBIT/G is in a strange statc,
later restoration and resumption of execution may not be reliable., Saving
such as this is acceptable if the user expects only to look at the AMBIT/G
data with 'agd' after a future restoration,

When 'agsave' is invoked as a console command it still asks the use:

whether execution should continue, In this case, the Question is meaninglc
and either "yes" or "no" is acceptable . since either answer ultimately €aus:«

control to proceed to the console command monitor. (The 'agsave' routine
should be altered to eliminate the typing of the qQuestion in this case.)

123

We shall now describe some details of the actions of ‘agsave’, It
begins by typing an informative message on the terminal which includes the
name uf the program and the full name of the destination of the ‘value’
link of ‘circle ', For example:

SAVING AMBIT/G STATUS OF "foo” AT “rule x"

Next, fifteen extemal static variables which reflect system status
are copled as an extension to the ‘nodes_segment’'. Then the three segments

in the prooess directory are copied into the curtent working directory with the
following naming convention (assuming ‘oo’ is the program name):

Qriginal Saved Cogy

m._m foo.nodes . save
names_segment foo.names . save
defns_segment foo.defns, save

If any such files already existed in the ourrent working directory they are
overwritten, Thus it 1s possible to save only one version of a given AMBIT/G
program in a given directory without using Multics file manipulation .ommands
such as ‘rename’,

R is often the case that the ‘nodes_segment’ is not densely utilised,
and thus the Multics * _seg_' procedure causes the typing of a verbose
warming message which indioates the current length doss not matoh the current
block count, The user should ignore this weming.

If ‘agsave’ detects any error oondition, it types an indicative error
message and calls the console command monitor,

AfRver the three segments are properly ocopled ‘agsave’ asks its Ques-
tion, which has been previously documented,

124

Restoration is logically the reverse operstion of saving, but since
most external static variables can be reconstructed from the saved
‘names_segment’ they are not saved. Thus restoration takes significantly
longer than saving.

The restoration procedure is '‘agrestore’ and it acospts a single ar-
gument which is the character string name of the program to be restored. The
common method of invoking restoretion is the user's typing & command to the
oonsole command monitor such as "agrestore foo". This would cause festora-
tion of the saved AMBIT/G program 'foo’ from the current working directory
to the process directory; thus any existing AMBIT/G data would be over-
weitten, For a restoration to be properly completed the ourrent working
directory must contains

a) foo.nodes.save
b) foo.names.save
o) foo.defns.save

d’ mom

Note that the hints file (*foo.hints') was read by the initialiser, but it is
never needed again, Even if the restored AMBIT/G program ‘oo’ does not
read any rive from ‘§oo.ambitg’, that file (or any file with that name) must
be in the current working directory.

The restoretion process begins by typing an indicative message
such as:

RESTORING AMBIT/G STATUS OF “foo"
Then the three saved segments are copied to the process directory. As in
saving, it is likely that a verbose waming message will be issued due to &

mismatch of the current length and current block count of the saved
‘nodes_segment’'. The user should ignore such a waming.

125

After the three segments are properly copied and the source file is
initiated, the fifteen saved external static variables are initialised and then
all other extemal static variables are initializsed, Much of this is done by
calls on the ‘locate_prime’ function, the alternate form of the ‘locate’ primitive,

If ‘agrestore’ detects any ervor condition, it types an indicative error
message and calls the oconsole command monitor,

Finally, restoretion is complete and ‘agrestore’ then causes exeoution
to resume by calling the interpreter with an argument of the node at the
destination of the ‘value’ link of ‘circle ', Before calling the interpreter the
system save switch is cleared and a message is typed to the user such as:

FXECUTION CONTINUES AT “rule x"

The restoretion procedure has two alternate entry points which imple-
ment separstely the distinct operstions of restoration and resumption of exe-
cution, Invoking the command ‘agrestore$nocex {00’ causes restoration of the
program ‘foo’, but when restoretion is complete control retums to (its caller)
the oonsole command monitor, Invoking the command ‘agrestore § resume’
(with no argument) causes exscution to resume as described previously, The
‘/R* command of ‘agd’ or the alternate entry ‘agd $ R’ causes & call on
‘agrestore § resume’ . Such resumption of exeoution may be appropeiate after
oertain ervor conditions leading to termination, In some cases, the user ocan
use 'agd’ to alter one or more links and then issus ‘'/R’ to try agein, If
& comectable error cocurted during the interpretstion of a rule, it may be
necessary to alter the destination of the ‘state’ link of that rule,

The interactive symbolic debugger ‘agd’ (for AMBIT/G Debugger)
can be sucosssfully invoked only after AMET/G data has been initializsed
or restored, When 'agd’ begins, if it does not detect any existing AMBIT/G
data, it types an informative ervor message and terminates. Otherwise, ‘agd’
issues a carriage retum (new line) and waits for user input. There are no
other errors which can cause termination,

126

The debugger makes use of severs] external static variables and the
‘nodes_segment' and the 'names_segment', It is self-contained and includes
its own routines for reading types and links, eto,

Onoe it is properly started, it is terminated only by a '/Q'. 'ﬂ'.
or '/R' command, ‘agd’ is not written to acoount for the program interrupt
oondition,

One procedure is defined within the debugger for use by other parts
of the AMBIT/G System: ‘agd § get_name' determines & best symbolic node
name as two character strings given the node address of . a node « This
prooedure is called from 'intldr_etvor’, ‘ambitg_emor', ‘agsave’, and
‘agrestore’.

The debugger has two more altemnate entry points which provide
abbreviated forms of user commands:

a) ‘agd$8' can be issued as an abbreviation for the user's
typing "agd” and then /8", This command is described
in the earlier section on saving,

b) ‘agd$R’ can be issued as an abbreviation for the user's
typing “agd” and then "/R". This command is described
in the previous section on restoration,

The loader has already been described since it is such a different
sost of primitive, There are nine other PL/] procedures which include the
16 other primitives. These relationships are described in the section on
the files of the implementation, but repeated here for convenience, An
asterisk following an entry point name indicates it is called as a function,

127

Mead/ Wiite Name Procedure Entty Point

read type read_type read_type*

redd locate locate locate*

read Unk (link') read_link read_link*

write Unk (link') read_link write_link

read name read_name read_name*

read char read_char read_char*

write char write_char write_ochar

read read_function get_read_function get_read_functior?®
read write_function get_read_function get_write_function®
write read_function define_read_function define_read_function
write write_function define_read_function define_write_function
read add agedd agedd*

read subtrect agadd sgsubtract®

read multiply agadd agmultiply*

read divide agedd agdivide

read sign agedd agsign*

There are two additional entry points within these procedures used
by the implementation:

‘ravt’ in proocedure 'read_link' is a function used by the interpreter
and loader to read a link and verify the type of the destination,

‘locate_prime' in procedure ‘locate’ is & function used by the ini-
tialiser and ‘agrestore’; it does the same as 'locate’ except
its second argument is a PL/I charecter string.

An intemal description of each primitive is not included in this report;
the user's description of each primitive should suffice. There are, however,
some general statements we can make about implementation of the primitives,
Many are called as functions, as indicated above, and the others are called
as procedures. Arguments and results are always node addresses (indices

into the virtual ‘nodes_segment’, Note that since ‘agdivide' has two results
it is called as a procedure,

128

Most primitives perform extensive checking for ervor conditions and
upon detecting an ervor make a call upon an error procedure within the object
segment ‘ambitg_eror',

The various primitives employ local variables for temporery storege
and argument/ result passing., Otherwise they use various extemal static
variables, the ‘nodes_segment’', ‘names_segment’', and ‘defns_segment’.

Some primitives call upon others, The ‘read_link' and ‘write_link'
primitives use their own Jooal version of ‘read_type' for efficiency. Other-
wise, such use of primitives follows:

Primitive &ntry Point) Calls Upon (Entry Point)

read_type o

locate read_type, read_link
read_link coe

write_link cne

redd_name read_type, read_link, w-ite_link
read_char cea

write_char e
get_read_function read_type, read_link
get_write_function read_type, read_link
define_read_function read_type, read_link
define_write_function read_type, read_link
agedd S0

agsubtrect o=

agmultiply e

agdivide ==

agsign o=-

129

E0E3 OF THE MULTICS AMNT/G SYSTFM

On January 1, 1971 the Multics AMBIT/G System was frosen in the
following state. Directory ' >udd> Ambit/g> Wolfberg' oontains the following
exsoutable segments which constitute the running system:

Name
pribin

interpreter
loader
ambitg_error

intldr_error
agd

agrestore

Yse

and all primigives exoept the.
ves

loader; this has 19 additional
names for proper linking

AMBIT/G interpreter
AMBIT/G loader

handles all errors detected by
primitives

handles errors detected by the
intecpreter and loader

AMBIT/G DEBUG interactive
debugger

handles saving of system status
handles restoration of system status

In addition, this directory includes the following segments:

Name
pribin.archive

fact.defns.save
fact.names,.save
fact.nodes.save

Use

archive of cbject segments of
the initialiser and all primitives
exoept the loader

saved system status after exe-
cution of an AMBIT/ G program
named ‘fact’

The object segments 'interpreter' and ‘loader’ were created with the
‘table’ option of the PL/I compiler, which produces a »:mbol table useful for
symbolic debugging. All other segments do not have symbol tables. When

more confidence is developed in the interpreter and loader they should be
re-compiled withoug symbol tables.

1deally, the interpreter and loader should be part of the bound ar-
chive; however, the binder currently has a limitation in the size of a table
(‘reference’ array) which causes the inclusion of either ‘interpreter' or
‘loader’ to exceed its capacity. When a new binder is relecased for Multics
at least these two segments, and perhaps others, should be included in the
bound archive. 8ince the detection of an error currently aborts execution,
it is of little value to include 'ambitg_ervor' and 'intldr_error’ in the bound
archive,

When the PL/I compiler is altered to produce faster procedure calls
all PL/1 components of the system should be re-compiled.

The 'Wolfberg' directory has one sub-directory named ‘'source’ which
oontains two archive segments:

Name Uge

primits .archive archive of source segments of
all primitives except the loader

sys.archive archive of all other source seg-
ments for the system plus source
segments of 11 AMBIT/G programs

There are 10 distinct PL/1 procedures which cover all 17 primitives
as follows:

Read/Write Name Procedure Entry Pojnt
read type read_type reac_type
read locate locate locate
read link (link') read_link read_!ink
write link (link’) read_link write_link
read name read_name read_name
read char read_char read_char
write char write_char write_char

read read_function get_read_function get_read_function

131

read
write
write
read

read
read
read
read

write_function get_read_function get_write_function
read_function define_read_function define_read_function
write_function define_read_function define_write_function
load loader loader

add egadd agedd

subtract agadd agsubtract

multiply agedd agmultiply

divide agedd egdivide

sign agedd agsign

There are two additional entry points within these procedures used by

¢the implementation?
‘revt’ in procedure ‘resd_link' is used by the interpreter and loader to
read a link and verify the type of the destination.

‘locate_prime' in procedure ‘locate’ is used by the initialiser and
‘agrestore’; it does the same as 'locate’ exoept its seocond argument is a
PL/1 character string.

Each of the 1l AMBIT/G programs in 'sys.archive’ consists of two
source segments. For the program 'octdec’', for example, there are ‘octdec.hints’
and ‘octdec.ambitg’. The following is a list of these programs.

Neme
msw2
msw3
msw$
reversel
reverse2
reverse3
octdec
quicksort
mfgarb
lispgc
fact

Use
check-out program in data loading form only

seme as msw2, but using rule loading

demonstration of generality of function calls

short program to reverse a list, method 1

short program to reverse a list, method 2

short program to reverse a list, method 3

interactive octal to decimal converter

routine to sort a list of integers

Michael Fischer's garbage collector

LISP garbage collector from Christensen's AMBIT/G paper
factorial routine with recursion peckage

132

The following are directory listings and archive tables of contents
of the frozen state of the Multics AMBIT/G System. Also included is a
map for the ‘pribin’ bound segment. This indicates those segments in

‘pribin .archive’.
Walfberg® DRiregtory

Segmentse= 13, Recordse= 11§,

rowd 1 fact.defns.save
rewa 2 foct.names.save
rova 11 fact.nodes.save

re L oagd

re 7 lutidr_egrror
re 7 oawbitg _crror
re 1 Interpruter
re 8§ agrustore

re 2 oagsave

re 19 loader

rws 0 mallbox

rve 19 pribin.archive

re 14 opribin
onbitg
define_write_function
define_read_function
ravt
agsign
agdivide
agwlitiply
agsubtract
agadd
locate
locate_prime
read_type
read_) Ink
write_link
read_char
got_rcad_function
got_write_function
read_none
write_char

Dircctoricese 1, Recordse= 1.
rewd 1 source

Links= 0.

133

‘W

>8

e'D

Scgrentusv 2, Recourdse 6o,

rwa Ui sys.archive
r wa 7 prinits.archive

Dircctorlies= 0,

Links= 0,

134

LLe3eC
15¢
"83Z1¢
ing
G901
e
€95Y
=) 44
S8In
90¢
SS6L61
6ZS36¢
699¢n1
8001
S87¢6
ST1769
866L¢
L58
2000691
Z6Int
%S
L£6€0T
10831
861
YM0L¢
€8
1818
€9
8LT6TE
(724 11

Yyi3udg

n°L000 0L/T</21
S°TIET 0L/0£/21
6otz 0L/0€/C1
G°6T9T o0r/0£/21
8°q%0Z 0L/0£/21
S°8TLT o0L/0f/TT
0°S%LT o0L/0€/21
1°50LT o0L/0€/21
$°9TLT o0L/0¢€/21
8°8TLT 0L/0£/T1
6°€€TT oL/6z/ct
6°€<TT oL/62/21
6°6z7Z o0L/6Z/T1
6°Z%60 01/1€/21
6°Z"60 o0L/1¢/2%
n°LIST oL/LT/Tt
L°6%00 o0L/1¢/21
€°9IST oL/€T/TT
c°oNLY oL/8T/TR
€°60TT o0L/1T/21
9°60TZ 0L/1Z/T1
g°rZEr 0L/9T/T1
1°€000 0L/0£/TT
€°96¢T 0L/6T/T1
€°05IZ o0cs/31/21
6°0zZSt o0L/81/21
N°NTET 0L/02/21
6°T€zz oL/et/Tt
N °GEET 0L/9Z/21
€°60%T oOL/tZ/T1
P33 1pou

G
e/ 0

eMm

9

e bbb bbbbbbbSsbsbSsbsbWsbse.

9

| S38 "

§

2°6200 0L/1¢/2t
~°6Z00 0L/T€/TT
6°4€ZZ 0L/05/31
6°%€ZZ 01/0S/21
G°LN0Z 01/0£/21
6°Ln0Z 0L/0€/Z1
G°Ln0Z 0L/0S/Z1
6°L%0Z 0L/05/2T
G°LY0Z 0L/05/21
6°L"0Z 0L/0€/Z1
€°Tn€z 02/62/21
€°6ccZ 0L/62/21
6°622Z 0L/6Z/21
0°Z%T 0L/1€/21
S Zn0T 0L/TS/TT
n°LI8T 0L/12/21
L°GY00 OL/TS/TT
9°SECT 02/12/2T
z°onIT 0L/82/21
$°SZZT 0L/72/T1
§°SZZT 0L/2Z/T1
%°TZET 0L/9Z/21
6°%000 0L/0€/ZT
G°%000 02/0€/Z1
S°S08T 0L/61/21
S°S0eT 0L/61/21
9°8IET 0£/02/21
S°S0CT 0L/61/2T
S GNET 02/92/21
Z°NINT 0L/1Z/21
pa3lepdn

33 1quedsapido
S3Y1°20p3Id0
23jquec3a0soinb
SIUIY°1408YIINd
23 1quie° Cas 1aAd4
SIUYY° CISIIADI
33 1que73s1aA34
SIUNY ZISIIADI
23 1quUe°TISIDIAII
SIUY° TISIIADI
11d°p3e
T1d°42304dad3U}
T1d 404487 4ap 13U}
sjujgy°3oey
231que3oey

Ttd a8peo|
231qed3ds) |
s3ui°d3ds| |
T1d° 40420723 quE
23 1quecqieldju
s3uUgy*qiesdu
T1{d°d24031534%e
23 1que-° gnsu
S| Y GMSt)

23 queznsu
S3uY ZMsuw

I que- cnsuy
SIUPY° CMS
11a°33jque
T1d°daesle

IAIYOIR° SAS

135

LV 421
9ZL0¢
€646
SZOoT1
1896¢
S080S
Z9snl
0gtse
Lies

Yyiduay

S°80MT 0L/g22/21
8°z0¢Z oL/zT/T1
0°gonT oL/¢z/TT
6°%08T o0L/¢2/21
z°zont ocL/¢cz/et
6°%04T o0L/gZ/T1
0°LSET ocL/cz/TT
6°0S€T oL/¢z/2T
€°0¢ET oL/cz/et
Paljipouw

bbb

apouw

S°808T o0L/f£2/21
9°L0¢Z oL/TT/TT
s°8onY 0L/£2/21
S°804%T ocr/¢€z/21
0°80%T 0L/£Z/T1
0°80%T o0L/¢Z/21
0°80%T o0L/€2/21
0°80%T 0L/52/1
0°80%T 0L/£2/21
paiepdn

Tid*juy L peas

T1d°ppe3e

T1d°aweu pead
Tdaeyd 93] im
I1d°uoj3dunj peas au)3ap
T149°33e20|

T1daeys peaa
T1d°uoj 3dUunsi peas 333
11d°3adA3"peaa

IAydJe-sjuyad

136

‘(S ull 0T O3 Sa2uUa43334 (T)6= SAU)| AJ43ud pasde| 0D jO ¢
“(SHUll 9HE O3 S3OUILIJAJ [8CT)8L= SHU|| (PUJIIXD pasde| (0D JO j
*Z9 = S35U3J3JIJ [eULIJU| JO

0€Le 0TISh¢S telo}
ant 9921 TTLST 9LSOT 33 1que
91 0201 09¢T 912¢L uoilIounjiTpeasTaul jap
921 nL Lt 9429 uojldunjTpeasT3a3
29 099 113 095§ deysTa3 fam
961 zos 1591 9104 ajeso|
911 n9¢ S9TI 0¢€92 ppede
0€t L%4 9211 Z0ST aweu~peaJ
Zo1 Z<t STh 99071 deys peau
79 9 S%9 0zZ Yuy{"pead
9% 0 022 (] . adAk3"peau
yisuayl 1iaels yi3uady 3Jae3s
adeyquy IXI] JUBW33S Juauodo)
1es 1Sd 1°¢anT 0L/92/21 paieau)
343q3 10MC3 /3 | qUYCAIPT AP 43SN(A40312341p u] punog
urqj4ad JUBWB3S punoq 403 dey

uns 1S3 ¢°L¢¢T o0L/LT/TT dew-ujqlad

137

The 'mailbox' segment in directory 'Wolfberg' is a receptacle for
receiving mail from other users of Multics.

The additional names are required on the bound archive 'pribin' since
procedures extermal to this segment make procedure calls using those names.
In particular, the interpreter includes calls on every primitive. Eventually,
when more of the AMBIT/G System can be commonly bound, most of these ad-
ditional names can be removed.

The use of the sub-directory 'scurce' was established to make easier
the updating of the procedures of the system, It is advantageous for PL/I
compilations of primitives to be doue in the 'source' directory since the
'pribin' bound archive includes names of all primitive object segments, Thus,
for example, if 'read_type' were to be compiled in the 'Wolfberg' directory,
then the object segment produced by the compiler would replace 'pribin' alias
‘read_type'. Such use of the file system may lead to undesirable results if
the maintainer is not exceedingly careful.

PL/1 DATA FORMATS

We present here the arrangements of PL/] data used in the Multics
implementation of the AMIBT/G System to represent the AMBIT/G data base
including nodes, links, names, and function definitions. The reader who is
interested in further details should consult PL/I listings of the system. This
discussion will concentrate on the formats of the 'nodes_segment’,
‘'names_segment', and 'defns_segment'. In addition to these, however, the
implementation makes extensive use of 'external static' variables for global
use throughout the procedures of the implementation. Only a small number of
these reflect system status -- those which are saved during a system save,

nodes_segment

This segment is simply a long one-dimensional 'nodes' array with
limits ‘'lb' to ‘ub' declared as a PL/] structure:

138

dcl 1 nodes_segment based(nodes_ptr_local) alligned,
2 nodes(1bsub) fixed bin;

The ‘nodes' array actually contains only representations of 'type' nodes and
all non-terminal nodes; however, we usually think of a virtual 'nodes' .ay
which also includes terminals. In this virtual array all nodes of a given type
are represanted contiguously. A node address is an index into the virtual nodes
array. A terminal node occupies one index number below the actual array. The
node address of the first 'type' node is the value of 'lb', which is one more than
the value of the hint variable 'largest_integer'. Thus the node address of each
‘integer' node is the integer itself. This implies all other terminal nodes have
an associated node address less than the value of the hint variable
‘'smallest_integer', Although a 'type' node is considered to be a terminal, this
exceptional case occupies four index numbers, and the node address of such a
node is the algebraically smallest of the four numbers. Each non-terminal node
of n links (maximum) occupies n index numbers and its node address is the alge-
braically smallest of those numbers. An initial set of the n entires of a non-
terminal node contain node addresses of the destinations of the node's defined
links,

The four array entries occupied by a 'type' node are used for the
following information:

a) first: an index into the 'nodes' array indicating the stariing place
of nodes of this type. For teminal nodes, this is the algebraic-
ally smallest node address of all nodes of this type. For a
non-terminal type of n links (maximum), this is n less than the
algebraically smallest node address of all nodes of this type.
These extra n entries are used to contain the node addresses
of 1ink names of the given type.

b) second: a positive integer indicating the cyrrent number of links
defined for this type. This integer remains zero for terminal
types; it may increase during an AMBIT/G run for non-terminal
types from zero up to the maximum number of links given in
the next entry.

139

c) third: a positive integer indicating the maximum number
of links which may be defined for this type. This
entry remains constant throughout an AMBIT/G run, It
is the integer zero for terminal types.

d) fourth: an index into the 'nodes' array indicating the node
address of the next node of this type which is available
for freshly locating. If no nodes of this type have been
located, it is the algebraically smallest node address of
all nodes of this type. If all of the nodes of this type
have been located, it is an index beyond the algebra-
ically largest node address of all nodes of this type.

To conclude this description, an example will clarify the representa-
tion of data graph in the 'nodes_segment’'. The example is strictly hypo-
thetical since it does not include the vast built-in data which is initialized
in every real AMBIT/G run. Instead, we represent only the following snap-
shot of a data graph during a hypothetical AMBIT/G run:

Current Maximum Current Maximum
Node Number Number Number Number
Iype of Nodes of Nodes of Links of Links
atom 2 3 0 0
integer 5 5 0 0
type 4 4 0 0
triangle 1 2 2 3

The small data graph outlined above has 12 nodes. Although the 'nodes_segment'
includes no references to names of nodes we will include them here to aid in
the discussion. The following is a diagram of the data graph:

140

atom atom

X
triangle | type type [type type !
X J atom integer type triangle;
N L
integer integer integer . integer |'1nteger '
H
- -1 0o 1 | 2 f
2 T n

On the next page we present a listing which shows the 'nodes_segment'
representing the hypothetical data graph. The horizontal lines separate node
representations. An asterisk next to an index number indicates that it is also
a node address of a located node. Although indices range from -5 to 32, the
actual 'nodes’' array of the 'nodes_segment' occupies entries with indices 3 to
31. Note the two defined links of 'triengle's and the two links of 'triangle X'.
Note how the nodes of type 'type' are arranged in the same order as the entire
'nodes_segment' and thus finding the type of a given node (given its node ad-
dress) can be accomplished by a binary search. Furthermore, the maximum
number of nodes of a given type is implicitly available by looking at the first
word of the next 'type’' node. This arrangement requires an extra dummy node
to end the group of 'type’' nodes.

141

Index Entry Subname Representing
=5% X
-4* nodes of type 'atom'
-3
—
-2% -2
-1* -1 nodes of type 'integer'
o* 0
1* 1 /
2% 2 /
3 -5 atom
4 0
5 0
6 -3 \\
7% -2 integer |
s 8
10 3 / nodes of type 'type’
11+ 3 type ’
13 0 /
14 23 /
1S* 23 triangle
16 2 /
17 3
18 29 |
19 32
20 0 dummy node to end
21 0) ‘type's
22 0 /s
23 -5 defined links fo
24 -1 e 8 for nodes
25 of type 'triangle’
26* -4 X
2; -2
2
29 nodes of type ‘triangle’
30 //
3l /
32

142

names_segment

This segment is a structure defined by the following PL/I declaration:

dcl 1 names_segment based(names_ptr_local) aligned,
2 max_chars flixed bin,
2 names_next fixed bin,
2 names_slze fixed bin,
2 names(hint_names_size),
3 named_node fixed bin,
3 node_name char(hint_name_length);

The value of the first entry of the structure, 'max_chars', is the value of the

hint varible ‘'name_length'. 'names_next' contains an index to the next

~ available entry of the 'names' array described below. The value of 'names_size'
is the value of the hint variable 'names_size'. The 'names_segment' ends with
a one-dimensional array named 'names’' of length equal to the value of
‘names_size'. Each element of the array holds a pair of quantities:

a) a node address representing a named node, and

b) a character string (of length up to the value of
'names_size') representing the subname of the
named node.

8ince the 'names' array contains only subnames, the full name of a node is
represented not only by its subname, but also by the subname of the 'type’
node representing its type.

The 'names' array of the 'names_segment' contains all named nodes
except nodes of type 'integer' and built-in nodes of type 'char', The names
of these nodes are handled implicitly in the primitives ‘'read_name' and 'locate'.
A given node has at most one subname., There is no order to the entries of
the ‘'names’ array.

We complete this description with a listing below showing the arrange-
ment of the hypothetical '‘names_segment' which would correspond to the
hypothetical 'nodes_segment'., The values of hint variables 'name: length' and
‘names_size' used in this example are the default values used in a real

AMBIT/G run.

143

max_chars = 25

names_next = 7

names_size = 1000

names (l) = 1l . "type"
names(2) = 3 . "atom"
names(3) = 7 "integer"
names(4) = <5 , "X
names(5) . = 15 , "triangle"
names(6) = 26 , "X

defns_segment

This segment is a structure defined by the following declaration:

dcl 1 defns_segment based(defns_ptr_local) aligned,
2 max_args fixed bin,
2 defns_next fixed bin,
2 defns_slze fixed bin,
2 defns(hint_defns_slze) fixed bin;

The value of the first entry of the structure, 'max_args', is the value of the
hint variable 'function_arguments'. ‘'defns_next' contains an index to the

next available entry of the 'defns' array described below. The value of
‘defns_size' is the value of the hint variable 'defns_size', The 'defns_segment'
ends with a one-dimensional array named 'defns' of length equal to the value

of 'defns_size'. Each element is either an index back into the ‘defns' array

or a node address (index into the virtual ‘names' array).

Let M be the value of'max_args', i.e., the maximum number of argu-
ments a function may have for a particular AMBIT/G run. Then the first 2*M+4
entries of the 'defns' array are used ' » contain pointers to various lists as
follows:

144

Entry Name Contains Pointer to List of Definitions of;

defns(l) general reading functions

defns(2) general writing functions

defns(3) reading functions with 0 arguments
defns(4) writing functions with 0 arguments
defns(5) reading functions with 1 argument
defns(6) writing functions with | argument
defns(7) reading functions with 2 arguments
defns(2*M+4) writing functions with M arguments

A list pointer either contains a 0 to indicate the list contains no
entries, or it contains an index into the 'defns' array to the first entry of
a block occupying several entries. One block represents one function de-
finition . Each block on the general reading or general writing list consists
of 3 consecutive entries. Each block on an N argument list consists of N+3

entries arranged as follows:

Entry within Block Use

1 pointer to next block on this list
2 link name
3 type of tail 1

N+2 type of tail N

N+3 definition (‘rule' or ‘builtin')

The first entry of a block is a pointer used to singly-link the particular list

of blocks. The last block on a list contains an indicative pointer of 0, When

a primitive adds a definition to one of the lists it is pushed down at the head

of the list. The remaining entries within a block are the argumeats received

by a write call on either the 'read_function' or 'write_function' built-in functions.
Thus the "type of tail" may either be the node address of a 'type' node or of

'flag any'.

145

Blocks on the general lists and O-argument lists consist of three
entries arranged as follows:

Entry within @ Block Use
1 pointer to next block on this list
1ink name

definition (‘rule’ or ‘builtin')

The blocks entered into the 'defns' array are added at the next
available entry, and thus an initial portion of the array is always in use
densely packed. Blocks are never removed, and therefore, the array grows
longer with each processed definition. Definitions are not even merged.
The variable 'defns_next' indicates the extent of use of the ‘defns’ array at
any time.

When a link is defined for either reading or writing, a four-word block
is entered on the one-argument reading or one-argument writing list. Further-
more, the link definition is recorded in the ‘nodes_segment' in the place used
to contain the link names for a given type.

We conclude with an example of what the ‘defns’ array would be if
the value of hint variable 'function_arguments' were 2, and if two links were
defined for reading and writing on nodes of type ‘'triangle’, as used in the
example we have been employing throughout this section on data formats. In
this example, the value of ‘defns_next' is 2§.

146

:

DN N

11
12

13
14
15
16

17
‘18
19
20

.2l
22
23
24

2$

E

™ —
OO0OENOOOO

epresentin

general read
general write
O-read
0-write
l-read
l=write
2-read
2-write

block defining 'atom X'
as a link for reading
on nodes of type 'triangle’

block defining 'atom X'
as a link for writing
on nodes of type 'triangle’

block defining 'integer -1'
as a link for reading

on nodes ot type

'triangle’

block defining 'integer -1
as a link for writing

on nodes of type

'criangle’

next available entry

* "NABL" means "node address of ‘builtin link'". Note that our
simple example which ignores built-in data is too simple to

represent these definitions completely.

147

PL/1 IMPLEMENTAT OF

Both the AMBIT/G interpreter and AMBIT/G loader were designed and
programmed as AMBIT/G programs. However, neither one has been executed
in the same manner as a user AMBIT/G program; in fact, neither has been
encoded in loader input form. Instead, both have been hand-translated from
AMBIT/G into a stylized PL/I form which is a vast succession of procedure
and function calls.

AMBIT/G functions were implemented as PL/I procedures with tails
and heads passed through the argument list, The translation is done one
rule at a time starting with the following labelled statement:

L:
call rule(§,F);

where L is the label of this rule corresponding to the rule's name, 8§ is the
label of the rule at the success exit, and | is the label of the rule at the

fail exit. Rules which were unnamed in the listing are given labels by a
simple algorithm, If a rule in the listing did not include a fail exit, a label
'imp' (for "impossible") is used, If control ever reaches 'imp', error condition
'‘int4' or 'ldr4’' is signalled. Note that this encodement is possible since
neither the interpreter nor loader includes any rules which attempt to modify
'success’ or ‘fail' links of one of their own rules.

The contents of a rule is translated into calls on primitives, calls on
functions of the program, and calls on special functions and ptrocedures derived
from primitives used only for this stylized form. Within each rule, dummy
variables 'dl', 'd2', ... are used for matching dummy nodes to the data. Finally,
the translation of a rule ends with:

call endrule;
We now present examples of function and procedure cslls which

may be used in the translation of a rule contents. We begin withthe calling
sequences of primitives:

148

head] = read_link{aill,taii2);
call write_link(taili . tail2 . headd:
headi = read_type(taild):

headi = locate(taill, tail2):

head] = read_name(tail),tail2):
headl = read_char(tajli):

call write_char(taill, headl);

head] = get_read_function(tajll,tail2):
headi = get_write_function(taill,tail2):

call define_read_function(tailj ,tail2 .headl):
call define_write_function (taill,tail2 .heads

haadi = agadd(taill,taii2):
head} = agsubtract (taill.tail2):
headl = agmultiply(tail} ,tail2):

call agdivide(taill,tail2,headl head2);

headi = agsign(taill);
headi = loader;

The arguments and results which are passed are 'fixed binary' integers repre-
senting node addresses. Now we present calling sequences and explanations
of the derived procedures and function which may be included in the translation

of a rule contents:

Calling Sequence
cal! testinodql,node2);

call test_link(origin.name.dast):

call verify(nodel.node?) :

call verify_link(grigin .name,dest);

149

Use

if the two arguments are not
the same, take the fail exit
of the rule.

if the link given by and
does not point to ¢
take the fail exit of the rule.

if the two arguments are not

the same, signal error condition
‘intl’ or 'ldnl’,

if the link given by and
name does not point to '
"ltgr?'l error condition 'int2’ or

call verify_type(node,type); if the type of node is not
e type , signal error condition

‘int3° or ‘ldr3’,

= ravt(origin,name,): this means “read and verify
dest fpe type" . If the destination of the

link given by origin and pame
is of type type, return it as the
result; otherwise, signal error
condition ‘int37* or ‘ldrid’.
When the 'rule' procedure is called to identify the beginning of a
rule, the two given exits are saved (logically, on a stack). If during the
exzcution of the rule a rule failure is detected, the given fail exit is taken
immediately. When the ‘endrule’ procedure is called, it causes the transfer

of control to the success exit.

To easily implement the interpreter and loader in PL/1, the AMBIT/G
initializer was designed to set up an ‘external static fixed binary' variable
for each buiit-in named node mentioned in either the interpreter or loader.
The initializer uses a form of the 'locate’ primitive to initialize each of these
variables with the node address of the node it represents. For example, the
variable 'diamond_end' contains the node address of the built-in node
‘diamond end'. Thus the encodement of a named node in a rule contents amounts
to using the variable which names the node; the variable name is the same as
the node name, except an underbar separates the type from the subname.

We condlude by presenting the PL/1 statements used to represent one
of the fules in the AMBIT/G interpreter. The name of the rule is ‘do_rf_r', and
it appears on the page of the interpreter listing (in Vol.III) entitled '10'. We
purposefully omit discussion of the handling of the error condition.

150

/* 10 %

fort_r3
sall rule(bi_cetura_g,orpor_g0._52.r))
f1sgavt(circle. lelink _volue,t¥pe 140k00p)}
f3%cavt(41.14ak_0r0,type _Aianond))
Q3%vave(42,14ak_Rekt type _diadend);
f8spave (49o14ak 00t trpe _S1aR0ad);
8sravt (22,14ak_valus,type_nelesep);’
qe-cnvtta!.1tut.!olwo.troo..clccoo)a
t7°savt(abedink_valuostype noderep))
t0ezead 140k (48,14nk 2op}s
t9epead _d4nk(a6,14nk rep)}
810%get _crend._fuaction(16,49);}
call test_link(g3,14nk _next,d3amond_oni);
call tcotrxtau(40.xtlu.natt.l;n-oac.aas):
call veet(d7,44,310);
g0 to ealdrule}

error._do e 1!t
6all iatidr_ercerbint1d;

151

e s reaTiey
WEMN 400s0 »

FURTHER WORK

In the short run, the necessary work to make the AMBIT/G System
publically available through Muitics should be done. This will entail cleaning
up some rough spots in the design and attempting to improve the apparently
slow speed of the system. Some minor bugs can be fixed.

Greater public interest in AMBIT/G and & large improvement in its
usefulness would result from building a graphical interface for its use. One
of the reasons we implemented on Multics is for its support of the ARDS
storage tube display teminal and the potential of using the ARPA network in
this medium.

In the longer run, we seek the means of providing an AMBIT/G System
as a simple and practical tool to a software programmer. Currently, this goal
is being pursued with the AMBIT/L Programming System implemented on a
D.E.C. PDP-10/50 time-sharing computer.

We know of several deficiencies in the current design and implementa-
tion of AMBIT/G. In this chapter we mention a few of these and discuss some
of the possible solutions which have oocurred to us. It should be bome in
mind, however, that our thinking is not yet complete on most of these issues.

Self Intecnretation

The AMBIT/G version of the interpreter is, 80 far as we know, a
legitimate AMBIT/G program. We qualif- this statement because it has never
been tested; only the P1/1 program obtained from it has actually been run, A
real test of the AMBIT/G version of the interpreter would be to place it, to-
gether with a test program, into the PL/I implementation and see if the PL/1
interpreter interpreting the AMBIT/G interpreter oould successfully interpret
the test program.

. In fact, we know that such a test would fail, for the three programs
would interfere with each other in the use of storage. It seems clear that cone
sort of block structure is needed to make this work, but we do not know just

how it should look.

152

Ecror Handling

In the present implementation, all errors are temminal; there is no
way for a user's program to regain control after the occurrence of an error,
S8ince the interpreter is written using the same conventions as a user's pro-
gram, it likewise cannot regain control after a built-in function detects an
error,

Some sort of an interrupt facility should probably be added to allow
for error recovery. There are actually two examples of interrupts built into
the interpreter: the branches to ‘rule go' and to 'rule help’.

Explicit Representation of Primitives

In the present implementation, the primitive routines were hand-
coded in PL/I and no formal definition of them exists. It is certainly possi-
ble to define a representation of arbitrary AMBIT/G data in terms of a fixed
collection of shapes. One could then write AMBIT/G programs which manipulate
these shapes 30 as to implement the primitives in much the same way as the
AMBIT/G version of the interpreter defines the rules for program execution.

Additional Pumitives

The primitive functions ‘locate’, 'read_function' and ‘write_function’
ocurrently have no inverses. At least for the sake of completeness, it would
seem that there should be a function ‘lose’ which returns an unused node to
the environment and a function ‘forget' which removes a definition of a read or
write function,

Non-orimitive Bullt-ine

It is likely that, as AMBIT/G evolves, the need for more built-in
functions will arise. One would like to be able to take an ordinary AMBIT/G -
function and, without translating it into PL/I, install it in the interpreter as
& ‘built-in’ in a way that looks to the user exactly as if it were actually a
PL/1 routine. It would be easy to modify the interpreter to simulate a user-
function call whenever a particular built-in is recognized, But this doesn't

183

have quite the desired effect, for then the user's 'rule’' node rather than the
interpreter becomes the caller, and of course this difference is detectable
by the user (although in any practical sense it is probably not too important).

Qther Link Modes

There are many cases in which it would be nice to have a link in a
rule with opposite effect of a 'test’ link, that is, the rule would fail-only if
the data graph did match the link. Diagramming such a link by slashing the
arrow, we could then write the rule

-

r@en

which would advance the pointer 'circle a' only if it had not previously
reached ‘cell end'. A disadvantage of such a "link", of course, is that
it lessens the gestailt feeling of the language, but so do function calls.

Regardless of the merits of such a link, perhaps a3 mechanism should
be provided whereby the user could extend the number of available link modes
and define interpretations for the new ones. How to do this is still very much

an open problem,

We have generalized links in rules to the point where any link can
denote any operation and the particular operation is determined dynamically,
However, we at present do not allow a different function to be used for w >de
‘frame’ as is used for mode 'test'. One could generalize the ‘test’ link to
say that both the tails and the heads are passed to a function which then de~
cides, in an arbitrary manner, whether or not the test succeeds. However,

154

this would require (at the least) that we provide some way for a function
to return a failure indication.

-Order of Execytion and Flow Links

When functions have side effects, the order in which they are called
often makes a difference. It is sometimes convenient to be able to call two
functions from the same rule and to specify separately which is to be executed
first. Flow links, as in AMBIT/L, are one device which permits such a spe-
cification and perhaps should be added to AMBIT/G.

A more common and also more subtle problem arises when one wishes
to make a statement of the form: "if a certain portion of the data satisfies
some condition, then another portion of the data will be as indicated and
should be modified accordingly." Another way of saying the same thing is,

" if a certain portion of the data does not satisfy the condition, quit immedi-
ately and do not attempt to match the frame to the remainder." More generally,
one might wish to intermix quite thoroughly the order of execution of the

three modes of links: first establish a little bit of frame, then check some
condition, then some more frame, another condition , perhaps now a modifica-
tion, then some more frame, and so on., Flow links, of course, could also
specify such an order, but it is not clear to what extent this is desirable.
Moreover, modifications can cause very subtle complications, although so

can side-effects of other functions.

Constraints

The only constraints that the present implementation will accept and
enforce (other than hints) are those resulting from redundancy in the 'frame’
pottien of a rule. For example, the rule

185

is essentially a constraint that says, when it is executed, 'circle a' and
‘circle b' point to the same thing.

Many other constraints have been proposed, and the intention of
eventually providing for a considerable variety of constraints had a strong
influence on the design of the language, tending to make us less concerned
over inefficiency resulting from increased generality on the belief that, at
the very least, the generality could be constrained away and the efficiency
restored. Of course, actually doing sowould require an implementation able
not only to check the validity of constraints but also to take advantage of
them wherever possible.

Continuing research must be done in the ways constraints can be incor-
porated into the language. We seek to expand the vocabulary of constraints to
extend the ability of AMBIT/G to model machine language software.

Adding constraints and building a compiler to utilize them is probably
the most important and most difficult remaining task.

156

CHAPTER 10
PROJECT BIBLIOGRAPHY

This chapter is composed of a list of papers and a list of implementa-

tions . An item appears in these lists because it was produced as part of the
project (in which case it is8 marked with a star, *) or because it pertains directly
to AMBITA. Only immediately relevant and generally available papers are
mentioned. The list of implementations may be incomplete, since we include
only those of which we have direct knowledge.,

Pl.

P2,

P3.*

P4,

Christensen, Carlos. "An example of the manipulation of directed
graphs in the AMBIT/G programming language.” In Klerer and Reinfelds,

eds ., Interactive Systems for Experimental Applied Mathematics.
Academic Press, New York, 1968.

This is the first paper on AMBIT/G. It remains useful
because it has a complete listing and careful explanation

of the link-bending garbage collection program (for LISP)
written in AMBIT/G. This program has, to our knowledge,
been run as a test case on every implementation of AMBIT/G.
It is a good example of AMBIT/G because it is quite short
but decidedly non-trivial.

Cheatham, T.E., Jr. "The theory and construction of compilers."
Massachusetts Computer Assoclates, Wakefield, Mass., June 1967
(to be published as a book). ,

This textbook on compiler-writing makes very successful
use of AMBIT/G data structures to describe and explain
a variety of algorithms for syntactic analysis.

Henderson, D. Austin, "A description and definition of simple AMBIT/G --
a graphical programming language." Massachusetts Computer Associates,
Wakefield, Mass,, April 1969,

The paper consists of two descriptions of simple AMBIT/G:
the first is in English and is quite informal; the second is in
mathematical notation and constitutes a formal definition of
the language expressed in predicate calculus.

Rovner, Paul D. and Henderson, D. Austin, "On the implementation of
AMBIT/G: a graphical programming language." Presented at the AFIPS /ACM
Inurrlnatlonal Conference on Artificial Intelligence, Washington, D. C.,
May 1969.

This paper describes an interactive AMBIT/G system, with
input through a graphics tablet and output on a computer
driven display. The implementation is on the TX-2 at M,I. T,
Lincoln Laboratory.

157

P5.* Jorrand, Philippe., "Some aspects of BASEL, the base language for an
extensible language facility." Proceedings of the Extensible Languages
Symposium, Boston, May 1969, published as the August 1969 edition
of SIGPLAN Notices.

BASEL was designed as the base language component for an
extensible language facility called ELF. ELF was intended to
have several components: one for syntactic extension, one
for definition of communications with a given kind of environ-
ment, and some others. It follows that, on the one hand,
BASEL must have a very simple syntax and, on the other, it
must be a very "powerful" language.

P6.* Hammer, Michael M. and Jorrand, Philippe. "The formal definition of
BASEL." (in three volumes)., Massachusetts Computer Associates,
Wakefield, Mass. August 1969,

The purpose of this document is three-fold: to discuss in
some detall the subtler features of the BASEL language; to
indicate the issucs involved in defining a language in terms
of the ‘wo-dimensional, machine-independent programming
language AMBIT/G; and to provide the actual programs for
the BASEL compiler and interpreter written in AMBIT/G. A
basic familiarity with the concepts of BASEL and AMBIT/G
is assumed. Part 1, "Introduction", describes in an informal
and instructive way the AMBIT/G data which is used in the
compller and interpreter, and then proceeds to a discussion
of the defining programs themselves. Part 2, "Compiler",
is an AMBIT/G program which converts the output of a con-
ventional parsing routine into a form suitable for interpre-
tation, Part 3, "Interpreter", is an AMBIT/G program which
interprets the compiled form of a BASEL program.

P7.* Ledeen, KennethS. "A character recognizer." Massachusetts Computer
Assoclates, Wakefield, Mass., August 1969,

A real-time character recognition scheme, that is, an
algorithm for assoclating a sequence of pen movements

with a character code and display form, was designed and
implemented for the Harvard University PDP-1 computer
with Grafacon tablet and CRT display. The program allows
the user to "train" the recognition program to recognize

his individual printing style, and to draft display charac-
ters of his own design. The original intention, not realized,
was to use this Character Recognition System as the input
mechanism of the AMBIT/G implementation.

P8.* Wolfberg, Michael S. "A user's view of the character recognition
program." Massachusetts Computer Associates, Wakefield, Mass.,,
August 1969, :

The paper first presents a user's view of the Character Recog-
nition System (see Ledeen, above) in completely verbal terms,
Next an informal two-dimensional notation is introduced and
is used to document the program from the user's point of view,
Finally, a serles of photographs of the screen is presented
which documents for the reader a sample session of using the
Character Recognition System,

158

P9.* Wolfberg, Michael S. "An interactive graph theory system." Preprint
of a paper presented at the Computer Graphics 70 International Sym-
posium, Brunel University, England, April 1970. Massachusetts
Computer Associates, Wakefield, Mass., March 1970,

This paper describes an interactive graphics system for
solving graph thoretic problems, The system is implemented
on a remote graphics terminal with processing power connected
by voice-grade telcphone line to a central computer. The
potentiol of using the terminal as a programmable subsystem
has been exploited, and computing power is appropriately
divided between the two machines. In order to express inter-
active graph theoretic algorithms, the central computer may

be programmed in an algorithmic language which includes

data structure and associative operations. Examples of system
use and programming are presented. The writing of this paper
(but not the work described in the paper) was performed as

part of the AMBIT/G project.

P10.* Christensen, Carlos and Wolfberg Michael S. "AMBIT/G as an imple-
mentation language." To appear in the Convention Digest of the IEEE
International Convention and Exposition, New York, March 1971.

This Is a summary of a talk to be given in the session
"Manufacturing Software, the Case for High Level Languages",
chaired by J.W. Poduska, It is our most recent version of a
concise, introductory description of our work on AMBIT/G.

Pll,* Christensen, Carlos. "An introduction to AMBIT/L, a diagrammatic
language for list processing," To appear in the pro.eedings of SYMSAM/2,
the Second Symposium on Symbolic and Algebraic Manipulation, Los
Angeles, March 1971,

AMBIT/L is a list-processing programming system. The system
grew directly out of AMBIT/G and achieves practical value by
accepting limitations on the generality of AMBIT/G. Two-dimen-
slonal directed-graph diagrams are used to represent the data.
and similar diagrams appear throughout the program as the
“patterns" of rules. The system has a simple core, but extends
out to accomodate the always complicated requirements' of
input-output, traps and interrupts, and storage management; it
ls a large system. The PDP-10 implementation of AMBIT/L is
described in this paper.

Pl2.* First semi-annual technical report for the project Research in Machine-
Independent Software Programming. Massachusetts Computer Assoclates,
Wakefield, Mass., February 1969,

This semi-annual report provides a detailed discussion of
the background, basic approach, and research plan of the
project.

159

P13.*

Pl4.*

P15.*

Second semi-annual technical report for the project Research in
Machine-Independent Software Programming. Massachusetts
Coniputer Assoclates, Wakefleld, Mass., August 1969.

This report describes our work on the PDF -1 implementation
of AMBIT/G (which was not completed), on the modelling
of BASEL in AMBIT/G, and on the general design of AMBIT/G.

Third semi-annual technical report part I (covering task ares I) for the
project Research in Machine-Independent Software Programming.
Massachusetts Computer Assocliates, Wakefield, Mass,, February 1970.

This semi-annual report gives a complete description of
AMBIT/G, It is especially recommended for its discussion

of constraints. It contains explanations and examples of

the concept of constraint which have not appeared elsewhere.

Christensen, Carlos; Wolfberg, Michael §.; and Fischer, Michael J.

“A report on AMBIT/G*", final report -- task area I (in four volumes)

for the project Research in Machine-Independent Software Programming,
Massachusetts Computer Associates, Wakefield, Mass., February 1971,

An AMBIT/G system has been implemented on the Multics
System at M,1.T. The implementation is ostensive and is
intendec for experiments in the use of AMBIT/G. It is

written partly in AMBIT/G and partly in PL/1. This report
begins with fundamental concepts and then proceeds to describe
the implementation in great detail, The AMBIT/G programs for
the AMBIT/G interpreter and the AMBIT/G loader are described
and then displayed in full. Instructions for the input, execution,
and debugging of a user program are given. Many examples are
included, carefully chosen to illustrate and teach important
features of AMBIT/G.

JMPLEMENTATIONS

I1l.

I12.

13.*

14.

Moskovites, Peter. An AMBIT/G Compiler implemented on the SDS-940
at Harvard University by Massachusetts Computer Associates, completed
August 1967,

Rovner, Paul; Henderson, D. Austin; and Greenberg, Martha. An
Interactive AMBIT/G System with Graphic 1/0, implemented on the TX-2
at M,.I1.T. Lincoln Laboratory, initial system completed April 1968, and
revised system completed Fall 1968.

Wolfberg, Michael S.; Supnik, R.; and Ledeen, K.8. A Character
Recognition System, implemented on the PDP-1 at Harvard University
by Massachusetts Computer Associates, completed August 1969.

An Experimental Implementation of AMBIT/G, implemented on the ATLAS

computer, Cambridge University, England, Summer 1969.

160

15,

16.*

Christensen, Carlos; Muntz, Charles; and others. A Complete AMBIT/L
Programming System, implemented on the Applied Data Resear::h PDP-10
in Princeton, N.J. by Massachusetts Computer Associates, completed
September 1969.

Wolfberg, Michael S.; Fischer, Michael J.; and Ho, Maynie. An AMBIT/G

System, implemcnted on the Multics System at M.1.T. by Massachusetts
Computer Associates, completed December 1970.

161

