
t APPLIED DATA RESEARCH. INC
OKCSIOC orricz PARK. wANcricio. MASSACHusrrrs oissoei? 24S OMO

CvJ

CO
o
CM
(V? AMBIT/G
^■^ AS N IMPLLMENTATION LANGUAGE

r^ by

Corlos Chrlstensen and
Michael S. Wolfberg

r^ n ^
CA-7103-0211 *-. ' ■->

March 2, 1971 r
MA.1? ■;. 1$%

This is the summary of a talk given In the session
"Manufacturing Software, the Case for High Level
Languages", J. W. Poduska, Chairman, at the
IEEE International Convention and Exposition,
New York, March 22-25, 1971.

NATIONAL TECHNICAL
'NFORMATION SERVICE

SprT.gtiold, Va 2?I5I

AMBIT/G AS AN IMPLEMENTATION LANGUAGE'

Carlos Chris'ensen and Michael S. Wolfberg
Corporate Research Center

Applied Data Research, Inc.
Wakefield, Massachusetts

The AMBIT/G programming system Is, first of
all, a high level system for the construction of
software. The term "high level" is often applied
to a programming language to indicate the use of
some combination of English and mathematical
notation. We intend a more general use of the
term. In our broader sense, a successful high
level system provides a complete framework of
concepts and techniques for programming in
addition to a language; that is, it channels and
supports the thoughts of the programmer as well as
his utterances.

Our work on AMBIT/G has a simple under-
lying assumption. We believe that the character-
istic activity of software construction is the
design and use of complicated data structures,
such as stacks, queues, rings, lists, and
special tables. Indeed, the most important "con-
struction" activity seems to be the structuring of
data rather than programs. Accordingly, AMBIT/G
Is data-oriented to an unprecedented extent. At
the beginning of a new programming task, the
AMBIT/G user establishes a formal and 'machine-
able' statement of the representation and prop-
erties of his data. Only when his data design is
complete does he begin programming.

English and algebra, as used in COBOL,
FORTRAN, and PL/I for example, are an effective
combination for commercial and scientific pro-
gramming. However, these textual, essentially
linear notations are not a natural medium for the
description of structure in general or software
data structures in particular. AMBIT/G rejects
these notations in favor of another high level
medium, the diagram.

^Research supported by the Advanced Research
Projects Agency of the Office of the Secretary of
Defense under ARPA Order No. 1228.

The expository value of a diagram Is well
known. Plow charts of programs are very familiar
and (more relevant to the present discourse)
informal diagrams of data have neon used for years
to supplement program documemation. On the
other hand, the formal adoption of a diagram as
the 'actual" data is quite unique to AMBIT/G and
has a powerful effect; the diagram becomes an
almost machine-like object, changing frequently
in certain places and relatively fixed in others, a
passive machine operated by a program but sub-
ject to its own built-in constraints.

An early use of infer.lal data diagrams was in
the representation of LISP lists, and many varia-
tions have since been used in papers on software.
We obtained a formal model for data by restricting
and simplifying the notation rather than elaborating
it. The final result is a precisely defined form of
diagram called a data graph. The following
diagram is an example of a (smalll data graph.

The diagram is composed of nodes and links. A
node Is a rectangle with a node-name written
Inside; this node name Is a type written above a
subname. There may be many nodes of a given
type, and these are distinguished from cne
another by their subnames. In the diagram above
for example, there are eight nodes of type CELL;
their subnames are the Integers from 20 through 27.
A link Is a line which begins at an origin node,
passes close to its link name, and ends (with an
arrowhead)at a destination node. Every node of a
given type has a slmilai set of links. For
example, every CELL In the diagram is the origin
of four links which are named flag,, r_, _s, and J,
and every SYM is the origin of no links.

The types, subnames, and link names used in
the data graph are selected by the programmer for
each particular program. It is the facility for
building special data structures, wot the structures
themselves, which is built into the AMBIT/G
system.

Every data graph must be functional, that is,
a given node name (as origin of a link) and a given
identifier (as link name) must specify no more than
one node name (as destination of the link). This
allows the unambiguous specification of a "walk"
along the links of a diagram by giving a starting
node name and a sequence of link names. Pur-
poseful link walking is an important activity of
software programs, lite data graph must also be
permanent; that is, nodes and links cannot be
created or destroyed during program execution. In
fact, the only permitted operation is the "swinging"
of a link so that its pointed end moves from one
node to another

Once the fundamental data representation has
been established, certain superficial but useful
"abbreviations" are Introduced. For example, the
type is dropped from within a node boundary and
Is indicated by giving the node boundary itself a
distinctive shape. Or link names are dropped by
establishing for each different link a characteristic
point of origin on the node boundary. Such con-
venience notations make the diagram much more
readable.

An AMBIT/G program is a collection of rules
connected by flow lines as in a flow chart. Each
rule is itself a diagram and uses a notation which
closely resembles that of the data graph. An
example of a single rule is as follows:

—E> VAR
Y

VAR
X b-*

•
•

val 1 val

\7 1
■ ..i

val
O <L>

—^ CELL r-^
CELL

^—^
CELL

d
_ J i—1

d d

\ I { JL
INT OP SYM
25 Al

l . ,. . J t. c>. - J I 1

This rule is executed when "control" enters along
one of the incoming flow lines at the left; and its
execution results in control exiting to another rule
along the success or failure flow lines to the right.
The inside of the rule can be interpreted in three
paragraphs, as follows:

First frame the data graph as follows: Select
VAR/Y, follow the va_l link, and call its des-
tination^. Is cl_ a CELL node ? Select cl^
follow the d link, and answer: is its des-
tination INT/2S ? Select cK follow the r_link,
and call its destination.c2. Is c2_ a CELL
node ? Select c2, follow the d link, and call
its destination^!.. Select_c2, follow the r.
link, and call its destination c3. Is c3 a
CELL node ? (Should the answer to a frame
question be "no", you have detected the con-
sequences of a programming error; take the
day off and get undefined .j

Next test the data graph as follows: Is oa an
OP node? Select VAR/X, follow the val link,
and answer: is its destination c3? (Should
the answer to a test question be "no", take
the fail exit from the rule.j

Finally, (if you haven't gone away)modify the
data graph thus: Select VARA and set its
val link to point to c2.. Select c3 and set its
d link to SYM/Al.(No questions are asked
during modification. When you are done,take
the success exit from the rule.)

Every (single-line) link in any rule must be
a part of an anch ored walk. An anchored walk
begins with a node whoso full name (type and sub-
name) is given in the rule and repeatedly "steps"
from one node in the rule to another, each time
following a link from origin to destination. This
restriction means that the pattern-match can be
implemented very efficiently; in fact, none of the
"searching" characteristic of general pattern-
matching is ever required.

Ove; the past five years a series of experi-
mental Implementations of AMBIT/G have been
completed: first on an SDS 940 [1], then on the
Lincoln Laboratory TX-2 [3], and recently on
Multics [2]. Nevertheless, AMBIT/G has not
reached the point at which it can be used to
implement software; important practical and
theoretical work remains to be done. On the other
hand, AMBIT/G has spun off a more restricted but
very practical language, AMBIT/L [4], which thus
far has been used with success for two large-scale
software projects and which shows promise of
wide use.

References

1. Christensen, Carlos. "An Example of the
manipulation of directed graphs In the
AMBIT/G programming language". In Inter-
active Systems for Experimental and Applied
Mathematics. M.Klerer and J. Reinfelds,
eds.. Academic Press, New York, 1968.

2. Christensen, Carlos; Fischer, Michael;
and Wolfberg, Michael S. "Final report for
the project 'Research in Machine-Independent
Software Programming'.", Massachusetts
Computer Associates, Inc., Wakefield, Mass.
February 1971.

3. Rovner, Paul D. and Henderson, D. Austin.
"On the implementation of AMBIT/G: a
graphical programming language", Proceedings
of the AFIPS/ACM International Conference on
Artificial Intelligence, Washington, D.C.,
May 1969.

4. Christensen, Carlos. "An Introduction to
AMBIT/L, a diagrammatic language for list
processing". Proceedings of the Second
Symposium on Symbolic and Algebraic
Manipulation, Los Angeles, March 1971.

