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ABSTRACT 

Calculations of transport properties of dilute gases 

are always based on the Boltzmann equation.  The Boltzmann 

equation accounts only for the effects of collisions between 

two gas molecules.  To predict transport properties of 

moderately dense gases one needs to determine the effects 

of collisions among more than two gas molecules.  The present 

report studies the contributions to the transport properties 

caused by collisions among three gas molecules.  It is demon- 

strated that the first density correction to the transport 

properties can be represented by a series of collision 

integrals associated with, one, two, three and four collisions 

between three gas molecules.  Numerical studies for calculating 

the dominant collision integrals are made for a gas of hard 

spherical molecules. 
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CHAPTER I 

SCOPE OF THIS RESEARCH 

1.1  Introduction 

For many engineering applications, reliable information 

on the transport properties of compressed gases is required. 

This research is part of a continuing effort to develop 

methods to calculate the transport properties of gases as a 

function of pressure or density.  In order to pursue this goal 

we are attempting to derive such methods from the rigorous 

foundations of statistical mechanics.  Our approach is in many 

ways analogous to the virial expansion for the equation of 

state and the thermodynamic properties.  We recall that, for a 

gas in equilibrium, the product of the pressure P and volume V 

can be expanded in a power series in terms of the density p: 

PV = RT + Aip + A2P2 + ... (1-1) 

The "virial coefficients" A, can be expressed in terms of 

molecular clustel^ integrals which are integrals over the posi- 

tions of k simultaneously interacting gas molecules.  They can 

be calculated for molecules with a given interaction potential. 

Similarly, we attempt to represent the thermal conductivity 

X and the viscosity n by expansions in terms of the density p: 
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X = Xo + Xip + X2p2logp + X2p
2 + ... 

(1-2) 

n = no + niP + n2*P2iogp + x2p
2 + ... 

The new expansion (1-2) for the transport properties 

differs from the virial expansion (1-1) for the equilibrium 

properties in two important aspects: 

1. The theory predicts that the expansion for the 

transport properties contains not only simple 

powers of p, but also terms which depend loga- 

rithmically on p [1,2,3].  These extra terms 

lead to some complicating features and we shall 

need to assess their effect.  In this and a 

subsequent technical report we shall give some 

arguments indicating that the coefficients of 

the logp term are small. 

2. The coefficients X and n determine the response 

of the gas to the presence of a gradient in 

temperature or fluid velocity. Microscopically, 

these coefficients are related to the dynamical 

interactions among the molecules. While the 

coefficients A. of the virial series are deter- 

mined by relatively simple "configurational 

integrals", the coefficients of the expansions 

(1-2) are determined by fairly complicated 

"collision integrals".  At the present, the 

structure of these collision integrals is poorly 

understood. 
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The transport coefficients Xo and no in the dilute gas 

iimit (p+0) are determined by the Boltzmann equation.  Using 

a procedure introduced by Chapman and Enskog [4,5] , Xo and no 

are obtained in terms of "binary collision integrals".  Calcu- 

lation of these binary collision integrals has become a routine 

procedure, and tabulated values are available for many forms of 

the intermolecular potential. 

The approximate nature of the Boltzmann equation is due 

to the fact that it considers only uncorrelated binary col- 

lisions.  That is, if two molecules are aimed to collide, the 

Boltzmann equation assumes that they will eventually collide; 

similarly, if two molecules are not aimed to collide, the 

Boltzmann equation assumes that they will never collide.  These 

assumptions clearly fail at higher densities, where, as a 

result of "interfering" collisions with other molecules, two 

molecules which are originally aimed to collide may in fact not 

collide, and two molecules which are originally not aimed to 

collide may eventually do so.  Therefore, to extend the theory 

to higher densities, collision processes involving more than 

two molecules must be accounted for. 

In the past decade many attempts have been made to 

generalize the Boltzmann equation to higher densities. However, 

all such attempts have been on a rather formal level.  Thus it 

becomes our task to judge these developments, to derive expres- 

sions for the collision integrals determining the coefficients 

in the density expansion (1-2) for the transport properties, and 
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to explore procedures for calculating these collision integrals. 

In this technical report we focus our attention on the 

first density corrections Xi and m in (1-2). A knowledge of 

these first density coefficients would enable us to predict 

the transport properties up to pressures of the order of 100 

atmospheres. 

A calculation of the first density corrections requires 

an analysis of collisions among three gas molecules. A 

treatment of "genuine" triple collisions, such as those lead- 

ing to the association and dissociation of bounded states, is 

deferred to a later stage in this research program.  Here we 

consider the effect on the transport properties of those triple 

collisions which are sequences of successive binary  collisions 

involving  three molecules. 

In view of the complexity of this task, our initial 

analysis must be restricted to a gas of hard  spherical molecules. 

Although this model is somewhat unrealistic, it nevertheless 

provides valuable insight as to how the various collision 

sequences contribute to the transport coefficients of the gas. 

Our ultimate goal of course is to calculate the density depen- 

dence of the transport properties of more realistic gases. 

1.2 Highlights of This Research 

The research program outlined above was initiated in a 

previous technical report AEDC-TR-69-68 [6]. We shall refer 

to that report as I. 
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In the past a few attempts have been made to propose 

a tentative theory for the density dependence of the transport 

properties.  The most important approximate theory is the one 

proposed by Enskog for a gas of hard spherical molecules [7]. 

This theory assumes that the probability of finding two 

molecules involved in a collision, when the gas is not  in 

equilibrium, is the same as when the gas is  in equilibrium. 

All approximate theories developed thus far avoid an 

explicit analysis of collision sequences involving more than 

two molecules.  The research reported in I and the present 

report yields, for the first time, actual calculations  of 

transport collision integrals which include the effects of 

collisions among more than two gas molecules. 

The preliminary calculations reported in I revealed that 

the theory of Enskog is not strictly correct, but it does 

provide a good first approximation to the first density coef- 

ficients.  While this result represented a major discovery, 

its physical origin was far from clear.  Furthermore, the 

calculations reported in I revealed that substantial cancel- 

lations occurred among the contributions from the various 

three-particle collision sequences.  These results indicated 

that, despite the fact that our formulation of the transport 

integrals was mathematically correct, we did not grasp suf- 

ficiently well the "physics" of the problem.  As a consequence 

we were unable to refine the approximate Enskog theory in a 

systematic way, nor was it clear how the prediction method 
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could be extended to account for successive collisions between 

more realistic gas molecules. 

In the present report we show how these questions can 

be answered by considering three-particle collision integrals 

containing respectively, one, two, three and four binary 

collisions among the three molecules.  Present indications are 

that this expansion converges rapidly, and the first term 

accounts for.90 to 95% of the first density correction. 

To appreciate the physical meaning of this expansion 

we again make the analogy with the virial expansion (1-1) for 

the equation of state and the thermodynamic properties.  For 

a gas in equilibrium the velocities of the molecules are 

uncorrelated; that is, the velocities of the molecules are 

independent and determined by the Maxwell-Boltzmann distribution, 

As a result the virial coefficients A, are related to cluster k 

integrals that contain only the positions  of the molecules. 

In the dilute gas limit, the equation of state is that of a 

perfect gas:  PV=RT.  In this approximation it is assumed 

that the positions of the molecules are also random.  This 

assumption fails at higher densities since the excluded volume 

associated with molecules of finite size leads to correlations 

among the positions of the molecules. 

For a gas that is not in equilibrium both the positions 

and  the velocities are correlated. At low densities, the 

transport coefficients of a gas are given approximately by the 

Chapman-Enskog theory [Xo  and no in (1-2)]. This approximate 

theory is akin to the perfect gas law, in that it assumes 
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no correlations in either the positions or the velocities of 

the molecules.  The assumption that the velocities are uncor- 

related is sometimes referred to as the assumption of molecular 

chaos.     In order to calculate the transport properties at 

higher densities we have to account for excluded volume effects 

in the position distribution, and also for deviations from 

molecular chaos in the velocity distribution.  With the fore- 

going points in mind, our new expansion procedure for calculating 

the first density correction to the transport properties may be 

characterized in the following way:  The first term in the 

expansion takes into account the excluded volume effects for 

the positions of three molecules, but no deviations from mole- 

cular chaos for their velocities.  The next term accounts for 

the excluded volume effects for two molecules and a first 

deviation from molecular chaos in which the velocities are cor- 

related by two successive binary collisions among the three 

molecules.  The higher order terms contain no excluded volume 

effects, but increased deviations from molecular chaos caused 

by three and four successive collisions among the three 

molecules.  It turns out that the first term in this expansion 

of the first density coefficients coincides precisely  with the 

Enskog theory. 

In the course of our investigations, several theorems were 

discovered leading to significant simplifications in the calcu- 

lations of the transport integrals. In particular we were able 

to prove that, for a calculation of transport coefficients, one 

does not  need to consider more than four  successive collisions 
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among three gas molecules. Although this theorem is strictly 

valid for hard spherical molecules, the analysis strongly sug- 

gests that the contributions from five and more successive 

collisions will be negligibly small for more realistic gas 

molecules as well.  Furthermore, it turns out that the matrix 

of collision integrals is symmetric, so it suffices to calcu- 

late only half the elements of the matrix. 

In summary, the results obtained for this report represent 

a significant advance in our ability to calculate transport 

collision integrals accounting for sequences of collisions 

involving three gas molecules.  Moreover, the results are in 

such a form that methods to extend the theory to higher densi- 

ties and to generalize the procedure to more complicated 

molecules begin to suggest themselves.  For a more detailed 

discussion of the results the reader is referred to Chapter VI. 

While developing the theory further, we have also made a 

close examination of the density dependence of transport proper- 

ties for those gases where experimental information is available. 

In I we developed some criteria as to how information could be 

extracted from the experimental data for a meaningful comparison 

of theory and experiment.  As a result we presented tables of 

first density coefficients for both the thermal conductivity 

and shear viscosity [8].  During the present research efforts, 

new very precise results were obtained for the density dependence 

of the viscosity of argon and nitrogen.  These studies were 

carried out in collaboration with Professor Kestin and Mr. Paykoc 

at Brown University, and will be presented in another technical 

8 
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report to be prepared in the near future. The present report 

is limited to a comprehensive account of our methods to cal- 

culate the required transport collision integrals. 
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CHAPTER II 

REVIEW OF THE BASIC EQUATIONS 

In Chapter II of our previous report I[6], the basic 

equations determining the transport coefficients of a gas of 

hard sphere molecules were presented and discussed in some 

detail.  In the present chapter we review these equations, 

since they form the basis for our subsequent work.  Inasmuch 

as these equations and their underlying formalism are rather 

complicated, we have made several changes in notation and 

format in an attempt to obtain greater pedagogical clarity. 

We shall now write all equations directly in terms of the 

number density of molecules n and the molecular diameter a, 

instead of the molecular covolumt bp; these quantities are 

related by the equation [cf. (2.3-8) of I] 

|bp = j|™3n (2-1) 

More importantly, we shall introduce the "binary collision 

inner product" and the "triple collision inner product" as 

the fundamental entities which determine the zeroth-order 

density and first-order density parts of the transport coef- 

ficients. We shall see that our understanding of 'the origin 

and magnitude of the linear terms in the density expansions 

of the transport coefficients depends mainly upon how deeply 

we can analyze the physics and mathematics of the general 

"triple collision inner product". 

10 
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2.1 Equations Governing the Transport Coefficients in the 

Dilute Limit.  The "Binary Collision Inner Product". 

The Boltzmann equation for the rate of change of the 

single-particle distribution function f (r*i ,v\ ;t) of a dilute 

gas is [4] 

H + *-!§.- J<«) (2-2) 

Here the term J(ff) represents the effects of uncorrelated 

binary collisions among the molecules [cf. p.10 of I for a 

description of J(ff)].  In order to obtain a solution f valid 

to first order in the gradients of the local temperature 

T(r*i>t) and the local mean velocity u(rl,t) — i.e., a solution 

sufficient to determine the thermal conductivity X0 and the 

shear viscosity rio— one assumes for f the form [6] 

f(ri,vi;t) = fo(V!)^l -lC(Vi).^£-f(^):!£j     (2-3) 

Here, Vi is the "thermal velocity" of molecule 1, 

Vi = vt - u(ri,t) (2-4) 

fo(Vi) is the Maxwell-Boltzmann distribution function, 

fo(Vi) = n m l3ft -mV*/2kT e "'M'™ (2_5) 2irkTj 

where m is the mass of a molecule and k is Boltzmann's constant, 

and finally, A{vl) and B(vJ) are respectively vector-and 

11 
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tensor-valued functions of velocity whose forms must be 

such that (2-3) satisfies (2-2) to first order in the gradients 

of T and TJ.  One thus finds that "A and B must satisfy the 

equations [6] 

iiA(vt) = fo(Vi)(§£i - |jvl (2-6) 

and 

I2B(v*i) = fo(Vi)^V?Vi (2-7) 

where ViVi is the traceless tensor \fiV\- lvf/3, and where I2 

is the "linearized binary collision operator". For hard sphere 

molecules of diameter a,  the operator I2 acting on a general 

function \J> (V'I )  produces [cf. (2.8-8) of I] 

I21MV1) = -o2  /dVzdfizilVzVfczi |fo(Vi)f0(V2) 

2 
T(12) I  IKY*) (2-8) 

n=l 

The quantities appearing in this equation are related to each 

other through the binary collision sequence depicted in Fig.l. 

The variable V2 is the thermal velocity of molecule 2, 

V21 = V2 - Vi, and JC21 locates molecule 2 relative to molecule 

1 according to 

ofczi = -(r2-r*i) (2-9) 

Since k21 is a unit vector, then |f2-ri|=a, implying that we 

are spatially constraining molecules 1 and 2 to be just touching 

12 
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molecule I -/   \    /V      /   \molecule 2 

Figure 1. A collision between two hard sphere molecules. 

each other; in other words, in (2-8) molecules 1 and 2 are 

"colliding" with perihelion or "collision vector" k2i [see 

Fig.l]. 

The operator T(12) in (2-8) has two forms, depending on 

whether the two molecules are converging (V2I«K2I>0) or diverging 

(V21 •JCH<0) .  Specifically, if the molecules are diverging, 

then T(12) acting on a general function F of the velocities Vi 

and V2  produces zero: 

V2i'£2i<0:  T(12)F{V!,V2) =0 (2-10a) 

13 
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if the molecules are converging,   however, then 

V*2i'£2i>0:  T(12)F(V1,V2) = F(Vi',V2) - F (V*i ,V2)      (2-10b) 

where "Vi and Vi* are the velocities of the molecules after the 

collision: 

Vf = Vi + V21 '%i%i 

\f2 = V2 - V2i 'k2ik2 1 

(2-11) 

For later purposes it will be illustrative to regard T(12) 

as being the sum of two "velocity replacement" operators, 

Ta)(12)  and Tt?){12) , which we shall denote generally by 

T^(12) : 

T(12) =   I     T"{12) (2-12) 
y=n,i y 

According to (2-10a), when molecules 1 and 2 are not  aimed 

to collide, then  T(?1(12)=Tt2)(12)=0; according to (2-10b) , when 
in 

molecules 1 and 2 are  aimed to collide, then 

T?(12)F(Vi,V2) = F(Vf,V2) 1 (2-13) 

T(2Ml2)F{Vi,v^2) = -F(VlfV2) 
n 

where Vi and V2 are given by (2-11).  Our motivation for 

introducing the T2 (12)  operators,is as follows. Let us 

associate the index y=i with an "interacting" collision, in 

which molecules 1 and 2 are deflected in the usual way with 

their final velocities VY and V2 given by (2-11); similarly, 

let us associate the index y=n with a "non-interacting" col- 

lision, in which molecules 1 and 2 pass through each other 

14 
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undeflected so that their final velocities are Vf=Vi and Vsf=V2 . 

Then we may write for either   index y. 

V2i-k21<0:  T(2^12)F(V1,V2) = 0 (2-14a) 

V"2i-k2i>0:   T
(J(12)F(Vi,V2) = (-1) yF (Vf ,Vi) (2-14b) 

where (-l)y=+l or -1 according to whether the y-collision is 

interacting or non-interacting, and where \ff and V2 are now 

the final velocities for the y-collision. A more precise 

mathematical definition of these operators has been given by 

Ernst et al [9]. 

With the linearized Boltzmann operator I2 thus defined, 

one next proceeds to solve equations (2-6) and (2-7) for the 

functions A and B respectively.  The solution A governs the 

linear response of the distribution function f to a gradient 

in the temperature, and in fact it determines the dilute-limit 

thermal conductivity X0 according to [cf. (2.1-18) of I] 

Ao = |/dV!A(vi) •  fo(Vl) (§£ - | WJ        (2-15) 

Similarly, the solution B governs the linear response of the 

distribution function to a gradient in the mean velocity, and 

it determines the dilute limit viscosity no according to [cf. 

(2.1-19) of I] 

no = ^jdvSiVi):  f f0(Vl)jgv?Vi] (2-16) 

By virtue of equations (2-6) and (2-7), it is seen that 

equations (2-15) and (2-16) can also be written 

15 
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Xo - 5 /dViA(Vi) «IaAtVi) 

JdViB(^i) :I2B(Vi) no = 10 

We are thus led to define the binary collision inner product 

of two functions <J> (Vi) and \\> (V*i) by 

(♦,*> <2> = 
•/ 

dVuMVi)*^*^) (2-17) 

where * denotes the dot product if <|> and ty  are vectors, and 

the double dot product if they are tensors. With this notation, 

the above equations for Xo and no take the compact forms 

Xo = |(A,A)(" 

no - jo ' 

(2-18) 

(2-19) 

Therefore, once A(Vi) and B(Vi) have been found, Xo is given 

essentially by the binary collision inner product of A with 

itself, while ri0 is given essentially by the binary collision 

inner product of B with itself. 

An explicit expression for the binary collision inner 

product can be obtained.by substituting the formula for I2 

given in (2-8) into the definition (2-17), and then symmetrizing 

with respect to the velocities.  Defining 

*(Vi,V2) =     I  <J>(Vn)  and  Y(Vi,V2) =     I  * (V ) 
n=l  n n=l  n 

(2-20) 

we obtain in this way 

16 
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(cM)f2) = -  \  JdV\d\Tz6Sill |v^i-k2i |fo(Vi)f0(V2) 

{*(VlfV2)*T (12)Y<v",V2)} (2-21) 

If we write T(12)   as  in   (2-14),   this becomes 

(*,i|»)(2) = - 2       I      /'dvidV2d1c2i|v2i«1c2i |fo(Vi)f0(Vi) 
Z y=i,n' 

{*(Vki,V2)*'l^(12)H'(V'i,V2)} (2-22) 

Alternatively, we can use (2-10) to write the binary collision 

inner product as 

(<J>,i|))(2) = - § f     dv1d\r2d^2i |V21.^21 |fo(Vi)f0(V2) 
^v21-k21>o (2_23) 

{$ (v i, v2) * [ Y (vr, vn -v (Vj, v*2) ]} 

where Vf and \f2 are given in terms of the integration variables 

by (2-11). 

In practice, one does not solve (2-6) and (2-7) for A"(V*i) 

and B(Vi) exactlya   but only in some "Nth Sonine approximation"; 

that is, A and B are written as linear combinations of N Sonine 

polynomials, and the optimum values of the expansion coefficients 

are found by a variational procedure.   If these Sonine expansions 

are written as [cf. (2.2-10) of I] 

15 jT 1  V , ^c(k),„i^ 

I /Fs5T /rojAW^l^'W,     (2-25) 
T N-l 

BN(Vi) = + 
N u  ' " "v-  ' — k=0 
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where we have defined the dimensionless velocity W. by 

*i - VS JL_ v 2kT vi (2-26) 

then one finds that the expansion coefficients for N=l and 

N=2 are as shown in Table I [4] .  The explicit formulae for 

the Sonine polynomials which we shall be using are give in 

Table II [4] .   We remark that the complicated looking factors 

in front of the summation signs in (2-24) and (2-25) were 

chosen merely in order to make ai(1)=bo(1)=1. for hard 

sphere molecules. 

If we now substitute the Sonine expansions (2-24) and 

(2-25) into (2-18) and (2-19), we can obtain the well-known 

results [cf. (2.2-13) of I] 

X0(N) " 3(W          64  ? V mir   &1 (N) 

no(N) kT/i*  ^ \(2)         5   1     /mkT" ,    /M. 
i*(W   = is SPY TT  bo(N) 

(2-27) 

(2-28) 

for the Nth Sonine approximations to Ao and no respectively. 

We remark, however, that these results are actually obtained 

by substituting the Sonine expansions for £, and B directly 

into (2-15) and (2-16), rather than into (2-18) and (2-19). 

Of course, the coefficients a.(N) and b, (N) in the expansions 

(2-24) and (2-25) were obtained by evaluating integrals 

which are essentially binary collision inner products between 

the various Sonine polynomials, as was indicated in I. 
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TABLE I 

The coefficients for the first and second 

Sonine approximations (2-24) and (2-25) to the 

solution of the linearized Boltzmann equation 

for hard sphere molecules. 

N=l 

N=2 

aid) = 1 

ai(2) = 1 + 44 

az(2) = 11 

bo(l) = 1 

bo(2) = 1 + 202 

bi(2) = 101 

General 

k=0: 

k-1: 

k=2: 

TABLE II 

The Sonine Polynomials 

'-11 3 (-l)J(k+n) 1  xj s(k)m = Y   n w       ji0(j+n)!(k-j)!j! 

S(0)(X) = 1 n 

S^1* (X) = (n+l)-X 

SU)(XJ = (n-HMn+2) _ (n+2)x + lx, 
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In the following chapters, v:e shall indicate how 

the calculation of the first order density quantities proceeds 

along lines parallel to the foregoing binary collision inner 

product formalism.  Thus, an appreciation of (a) the definition 

of the binary collision inner product in (2-17), (b) its 

relation to the zeroth-order transport coefficients in (2-18) 

and (2-19), and (c) its mathematical structure in (2-21)-(2-23), 

will enable us to see more clearly what is involved in determin- 

ing the first order density corrections to the transport coef- 

ficients. 

Finally, we wish to point out an important feature of the 

binary collision inner product in (2-17):  it is symmetric, in 

that  

(2-29) <2> ^ /,i, Aid) <*,*)«'- (*,<D) 

provided that <J> and ip are either both even or both odd functions 

of velocity.  This can be proved most easily using equation 

(2-23):  Changing the integrating variables from vj ,v"2 to VJ^V^ 

and noting from (2-11) that 

dvYdV2 = dVidv"2 

vYi'lUi = -Vii'tcai (2-30) 

Vf2 + V2
2 = V2 + vf 

(2-23) can be written as 

(<M){2) =  -  5*/!     ^    dvYdV2^£21|vYi^2i|fo<Vi)fo(V2) 2'v21.$21<o (2_31) 

(*(Vi,V2)*[H'(Vf,V2*)    -   Y(Vi,V2)]} 
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Here, V^ and V^ are given in terms of the integrating variables 

by the inverse of equations (2-11): 

V2 = v2 - V21 •k2i'k2a 

(2-32) 

If we now make a second change of variables from Vi,V2 to the 

negative of these quantities, then because $  and ty  are assumed 

to have the same parity, 

c|>(-X)*iM-Y) E (|)(X)*i|;{Y) 

the only change in (2-31) is that the "<" sign in the integra- 

tion limit becomes a ">" sign.  Finally, we interchange the 

primed and unprimed velocity variables throughout; the resulting 

equation is then identical to the original expression (2-23), 

save only for an interchange of the primed and unprimed velo- 

cities inside the braces.  If this equation and (2-23) are 

added together and the result divided by 2, we obtain 

(<t»,i|>)(2) - 5 /"_   dVidVzdfc^lVai'fcailfoOMfofVz) 
/V2i'K2l>0 (2-33) 

{ I« (Vf ,V2) -* (Vi ,V2 ) ] * [¥ (Vf ,Vi*) -* (Vi ,V2) ] } 

Since (2-33) is manifestly symmetric in $ and Y, the 

property (2-29) follows immediately. 
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2.2 Equations Governing the Transport Coefficients to First 

Order in Density.  The "Triple Collision Inner Product". 

The "generalized Boltzmann equation" to first order in the 

density n is [2f10] 

|| + vi.|l = J(ff) +Ji(ff) + K(fff) (2-34) 

This equation differs from the ordinary Boltzman equation (2-2) 

only by the addition of the two terms on the right.  The term 

Ji(ff) accounts for the "spatial inhomogeneity" caused by the 

fact that the centers of two colliding molecules are not at the 

same point, but are separated by a distance a>0.  As the notation 

suggests, the term Ji(ff) is essentially a binary collision term. 

The term K(fff), however, represents the effects of correlated 

binary collision sequences involving three molecules, and is the 

subject of our present investigation. The precise form of K(fff) 

has been set down and discussed in I [see equations (2,4-1)-(2.4-4) 

of I] . 

Corresponding to the three collision terms on the right of 

(2-34), the transport coefficients take the forms 

4     9 
X =  X0   + ;rTra3nXo   + nXi (2-34) 

8    3 
n = n0 + j^7ra

dnn0 + rnii (2-36) 

We see that the terms Ji(ff) and K(fff) eaeh  contribute terms 

to the transport coefficients which are linear in the density. 
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The contributions of Ji(ff) are known exactly in terms of 

a,n and the zeroth order quantities [4], but the contributions 

of K(fff) remain to be determined. 

A derivation of formal expressions for Xi and m has been 

given in I [cf. Section 2.4 and Appendix A of I].  Briefly, 

what is involved is as follows:  Just as one constructs from 

J(ff) a "linearized binary collision operator" I2 so one 

constructs from K(fff) a "linearized triple collision operator" 

I3 [cf. (2.4-5) and (2.4-6) of I].  As originally obtained, I3 

is a 12-dimensional integral operator; after performing one 

rather intricate integration [cf. Appendix A of I], one obtains 

an 11-dimensional "surface integral" form for I3: 

Ia^(Vi) = - 2 y'dVzd^dKiidr^ilVza-Sz! [f0(Vi)f 0(V2) foil- 

s' 
T(123) I  t(V) (2-37) 

n=l 

[Note:  13 here corresponds to b.plä in I.]  We call attention 

to the similarity in forms between this expression for 13 and 

I2 given in (2-8).  The integrating variables in (2-37) and 

the operator T(123) are related to certain sequences of binary 

collisions involving three  molecules, just as the integrating 

variables in (2-8) and the operator T(12) are related to 

certain sequences of binary collisions involving two  molecules. 

Since a detailed description of the relevant three-particle 

collision sequences requires a specialized nomenclature, we 

shall postpone a deeper analysis of the quantities appearing 

in (2-37) until after this nomenclature has been developed in 
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Chapter III. For now, it suffices only to realize that the 

theory provides us with a well-defined "linearized triple col- 

lision operator" I3, which is a generalization of the linearized 

binary collision operator I2. 

Now, in Sec. 2.4 of I it is shown that Xi and m are given 

by [cf. (2.4-11) of I] 

nXi = - I f dViMVi) -I3A(Vi) 

/ 
nm - - J§ / dV1B(V1) iIsBtV!) 

(2-38) 

(2-39) 

[Note: nXi here corresponds bpXi in I, and similarly for nm.] 

Here A and B are the same  functions we encountered in the 

previous section — i.e., the solutions to (2-6) and (2-7). 

Defining, then, the triple collision inner product  of two 

functions <|> (Vi) and TJ) [V\ ) by 

(d> ,ij0<3> = JdVicMVi)*i3iMVi) (2-40) 

where, as in (2-17), * denotes the dot product if $ and ip are 

vectors, and the double dot product if they are tensors, we may 

evidently write (2-38) and (2-39) in the compact forms 

nXi = 

nm = 

-§(A,A)t3> 

-^(U)(3) 

(2-41) 

(2-42) 

The only differences between these formulae for nXi and nm 

and the formulae in (2-18) and (2-19) for X0 and no are: 
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(i)   the minus signs, and (ii)   the fact that the inner products 

are now taken with respect to 13 rather than I2 •  Since A and B 

are the known  solutions of the ordinary Boltzmann equation, 

then further progress from equations (2-41) and (2-42) evidently 

requires a thorough understanding of the triple collision inner 

product in (2-40); it is to this end that our present work is 

directed.  If the expression for 13 in (2-37) is inserted into 

the definition (2-4 0), and the resulting expression then sym- 

metrized with respect to the velocities, we obtain [cf. (2-21)] 

5   r 

(<f>,*)(3)    =  ~ fr   J dVidV2dV3d1c2idr3i 

|V2i«1c2i|fo(Vi)fo (V2)fo(Vs) (2-43) 

{ * (Vi ,V"2 ,V3) *T (123) ¥ (Vi ,V2 ,V3 ) } 

Here we have defined,   in analogy with   (2-20), 

3 _ 3 
<MVifV2,V3)=   I  <MV') ; ¥(Vi,V2,Vs)=   I  lMV)    (2-44) 

n=l       n ■     n=l       n 

The interrelations among the integrating variables in (2-43), 

and the precise definition of the operator T(123), will be 

explained in detail in Sec. 4.1. 

At this point it is pertinent to recall that the earliest 

(and to date the most meaningful) attempt to account for the 

density dependence of the transport coefficients was made by 

Enskog [7].  Enskog correctly assessed the "spatial inhomogeneity" 

corrections in (2-35) and (2-36) — i.e., the Ji-terms — and 
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in addition he derived an approximation  for the triple 

collision corrections Xi and n1 - An explanation of the 

basis of tne Enskog theory for Xi and ni is given in Sec. 2.3 

of I, and we shall quickly review that explanation here: 

When a gas is in equilibrium, the probability to find 

two molecules at a given separation r2i is independent of the 

velocities of the molecules, and is determined by the radial 

distribution function g(r2i).  The Enskog theory essentially 

assumes that this still holds true when the gas is not   in 

equilibrium, in that g(a) gives the probability to find two 

molecules in contact (r2i=a) even in the presence of gradients. 

As a consequence, the quantity fo(Vi)f0(V2) in (2-8) gets 

replaced by g(a)fo(Vi)f0(V2), implying that the linearized 

Boltzmann operator I2 gets replaced by g(a)I2; this in turn 

replaces the solutions A and B of (2-6) and (2-7) by A/g(a) 

and B/g(a), respectively.  Consequently, from (2-15) and 

(2-16), we find for the thermal conductivity and shear viscosity 

the results 

XE = X0/g(a) nE = n0/g(o) (2-45) 

Now, the quantity g(a) can be expressed as a function of the 

density n by a well-known virial expansion, 

g(a) = 1 + ^TT03n + ... (2-46) 

In a gas of hard spheres, spatial correlations are due to the 

finite size of the molecules, which does not allow molecules 
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to overlap each other.  Therefore, the various terms in the 

expansion (2-46) are determined by integrals over "forbidden" 

configurations involving increasing numbers of molecules.  In 

particular, the coefficient 5ira3/12 is the volume where a third 

molecule 3 would overlap with both of two colliding molecules 

1 and 2, as illustrated in Fig.2.  Inserting now the above 

expansion for g{a) into (2-45), we find for the Enskog estimates 

of Xi and m 

Xi = -^-TTa3X0 = XiE    m «* -^ira3no =  niE    (2-47) 

A comparison of these results with equations (2-18), (2-19), 

(2-41) and (2-42) reveals that the  effect  of the Enskog  theory 

is   to  approximate  the   triple  collision inner product according  to 

(4>,<JO<3) " ^Tra3n(<D,<|;)(21 = (♦,*)£ (2-48) 

Our subsequent analysis of the triple collision inner product 

will shed considerable light on the relation of this approxi- 

mation to the exact theory. 

Earlier work by Sengers [12,13] as reported in I, has 

indicated that the Enskog approximation for Xi and ni is 

probably in error by only about 5% or so.  For this reason it 

will be advantageous to measure the first density corrections 

to X and r\  in units of |Xi_| and |liE| respectively.  Thus, 

using (2-47), we write (2-35) and (2-36) as 
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Figure  2.     The  excluded volume determining 
the  linear  density  term  in g(a). 

X  =  X0  [l +  ^a3n(j| +  Xi/|XlE|)] 

n = no [l + i2ffö3n ^25 + rn/lr»iEM| 

(2-49) 

(2-50) 

Our eventual aim, then, is to evaluate the dimensionless 

quantities Xi/|Xi_J and ni/|niF|# and in particular to 

determine why  and by  how much  these quantities differ from 

the Enskog estimate of -1. 

Our present numerical calculations will be keyed to the 

Sonine approximations of the functions A and B in (2-24) and 

(2-25).  Consequently, our formulae will have to indicate 
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the degree N of the approximation, with higher values of N 

indicating a more accurate approximation. Thus, equations 

(2-49) and (2-50) will be written more explicitly as 

X(N) = X0(N)  1 + ^7ro3n (|| + Xi (N) / | XiE (N) |U     (2-51) 

n(N) = no(N) f 1 + j^TTa3n (|| + m (N)/|niE(N) \\\ (2-52) 

Here, X0(N) and no(N) are given by (2-27) and (2-28), and 

these quantities multiplied by 5"rra3/12 give |Xi„(N) | and 

|niE(N)|.  The quantities Xi(N) and m(N) are obtained by 

substituting the expansions (2-24) and (2-25) into formulae 

(2-41) and (2-42) respectively.  Upon carrying out these 

steps we obtain the results 

fxT^ml = ;^W k j=1V
N> VN> [«$M>*.s$«1>M"(2"53) 

N-l ,       /,,, ,„\ _ i(3) 

H^Tsfl = B7W krU
bk(")b»(") [^(«flS^.s<;>(«!»»?«, (2-54) 

where we have now defined  the dimensionless   triple collision 

inner  product   [<J>,IJJ]
<3)

  by 

[*'*i(3)E roVVlf n^ <*'<">(3) (2"55> 

It is most convenient to use (<{>,i|j)Cä> in our theoretical  work and 

[<t>,ijj](3) in our numerical  work.  According to (2-55), these two 
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quantities are identical except for a known factor, so no 

difficulty should arise in switching from one to the other. 

The diraensionless nature of [c|> ,^]C3^ can be seen directly from 

(2-53) and (2-54); it can also be seen if we insert into (2-43) 

the explicit forms of the fo(V.) functions [see (2-5)] and 

then change to the dimensionless velocity variables W. [see 

(2-26)].  In this way we obtain the expression 

[ *'*](S' = iöli?/d"xÄdW3d1c2 !dr 31 

fWai *1c2i |exp(-W?-w|-w|) 

{*(wi,vr2#W3)*T(123)4'(Wi ,W2,W3) } (2-56) 

where $ and f are as defined in (2-44).  As we shall point out 

later, the variable r^i is actually a position vector divided 

by a; thus, all  the integrating variables in (2-56) are dimen- 

sionless.  Inasmuch as the forms for <}> and ty  appearing in (2-53) 

and (2-54) are also dimensionless, it follows that (2-56) is a 

completely dimensionless expression, and therefore suitable for 

numerical analysis. 

Our program now is as follows:  After developing the 

requisite "collision sequence" formalism in Chapter III, we 

shall give the precise definition of (<J>,i(Oc^ in Sec. 4.1. Then, 

in Sec. 4.2, we shall derive a more physically meaningful form 

for (<b ,i\>)(*\     Finally, in Chapter V, we shall present our current 

numerical results as to the magnitudes of the unknown terms in 

(2-51) and (2-52). 
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CHAPTER III 

SEQUENCES OF MOLECULAR COLLISIONS 

In order to see how collisions among more than two 

molecules affect the transport coefficients, it is necessary 

to introduce a suitable nomenclature and notation to specify 

sequences of collisions.  The reason we must take special pains 

in this regard is that the three-particle collision sequences 

which contribute to the triple collision inner product (<J>,ifi)(3 

are found to contain so-called "non-interacting collisions", 

in which the molecules are allowed to pass through each other 

without any deflection of their paths.  The generalization of 

the ccncept of "collision" to cover the non-interacting as 

well as the interacting varieties introduces some important 

new concepts, and these must be clearly understood if we are 

to gain insight into the nature of the triple collision inner 

product. 

The fact that non-interacting collisions play an important 

role in the theory, even though such collisions would not really 

occur in a gas of hard spheres, may seem strange at first sight. 

In order to get some notion as to why  we are forced to deal with 

these non-occurring entities, let us recall that the approximate 

nature of the Boltzmann equation is due to the fact that it 

considers only uncorrelated binary collisions.  In other words, 

the Boltzmann equation assumes that if two molecules are aimed 

to collide then they will eventually collide, and if two 

molecules are not aimed to collide then they will never collide. 
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Thus, the Boltzmann equation has ignored the possibility of 

"interfering" collisions.  For example, two molecules which 

are originally aimed to collide may be prevented from doing 

so because one of the molecules is deflected by a third 

molecule; similarly, two molecules originally not aimed to 

collide may be knocked together by a third molecule. In  so 

ignoring  these  interfering  collisions3   the Boltzmann  equation 

has   essentially   treated  them as   though  they  were  non-interacting. 

Therefore, in order to improve upon the Boltzmann equation 

results, we must systematically assess the contributions of 

various collision sequences containing non-interacting col- 

lisions.  This situation actually has a precedent in conven- 

tional statistical mechanics:  We recall that the density 

dependence of an equilibrium  property of a gas is determined 

by a "virial expansion", such as that indicated for the 

equilibrium radial distribution function in (2-46).  The coef- 

ficients in such an expansion are determined completely by 

integrations over various forbidden  spatial  configurations  of 

the molecules — i.e., configurations in which molecules are 

overlapping.  Analogously, we shall find that the density 

dependence of the transport  properties of a gas is determined 

mainly (although not exclusively) by integrations over various 

forbidden  collision   sequences   — i.e., sequences containing 

non-interacting collisions. 

32 



AEDC-TR-71-51 

3.1  Definitions and Nomenclature 

The action  sphere  of a hard sphere molecule (in a gas 

of like molecules) is a sphere concentric about the molecule 

whose radius is equal to the molecular diameter.  By definition, 

two molecules are colliding  when the center of one molecule 

lies on the surface of the action sphere of the other molecule. 

Two molecules are overlapping  when the center of one molecule 

lies inside the action sphere of the other molecule.  For 

simplicity, we shall henceforth measure all distances in units 

of the molecular diameter c; thus, the centers of two molecules 

in a collision will be exactly separated by their unit collision 

vector k, and the action spheres of all molecules have unit 

radius. 

A "collision", for our purposes, is always one of three 

types:     interacting, non-interacting penetrating, and non- 

interacting separating.  In an interacting  collision  between 

two molecules with velocities Vi and V2 and collision vector 

k2i, the velocities change in accordance with the laws of 

mechanics (2-11); in words, the velocities just after an 

interacting collision are obtained from the velocities just 

before the collision by interchanging the velocity components 

along the collision vector k2i.  In a non-interacting  collision ■ 

the velocities of the molecules do not change, and each 

molecule moves as though the other were not present.  Evidently, 

non-interacting collisions always occur in pairs, corresponding 

to when the center of one molecule enters the action sphere of 
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the other molecule and to when it leaves this action sphere. 

Thus, we distinguish between a non-interacting -penetrating 

and a non-interacting separating  collision, depending on 

whether the molecules are overlapping just after or just 

before the collision.  It is clear that a penetrating collision 

is always followed by a continuous period of overlapping which 

is eventually terminated by a separating collision, and it is 

also clear that these two collisions occur at different times 

and with different collision vectors. Nevertheless, it is 

occasionally convenient to consider the two collisions together, 

and so we define a complete collision  to be either a single 

interacting collision or a concomittant pair of non-interacting 

collisions. 

A collision  sequence   is defined to be a succession of col- 

lisions in which the order  and types  of the collisions are 

specified. 

We represent collisions and collision sequences by simple 

line diagrams.  These diagrams can roughly be thought of as 

space-time plots of the centers of the molecules, with the time- 

axis vertical and the (one-dimensional) space-axis horizontal. 

The time and space axes are usually not indicated explicitly, 

but we shall adopt the convention that time increases when the 

diagrams are read from top to bottom.  In Figs.3a, 3b and 3c 

we show how we represent the three basic collisions defined 

above.  Each collision occurs at time t=to, and we can imagine 

that the centers of the molecules are connected by a collision 

vector k2i at t0.  In Fig. 3a, we indicate the abrupt change 
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»0 + 

2     I 

(a) 
time 

(b) (c) 

Immun 

(d) 

Figure 3.  Representation of (a) an' interacting collision, 

(b) a non-interacting penetrating collision, 

(c) a non-interacting separating collision, and 

(d) an explicit overlap. 

in velocities in an interacting collision.  In Figs. 3b and 3c 

the velocities do not change, but we place hash marks just 

below/above the collision time in the non-interacting penetrating/ 

separating collision diagram to indicate that the overlap occurs 

just after/before the collision.  We note that upon time-reversal, 

an interacting collision remains interacting, whereas a pene- 

trating collision becomes a separating collision and vice-versa. 

It is occasionally advantageous to indicate explicitly that two 

molecules are overlapping at some time t=to, and we do this by 

connecting their lines with hash marks, as shown in Fig. 3d. 
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*.- 

»2- 

Figure 4.  Example of a three-particle collision sequence. 

Using the foregoing symbolic representations,  we can 

construct diagrams representing sequences  of binary collisions. 

Thus, for example, the diagram in Fig. 4 represents a three- 

particle collision sequence in which a 1-2 interacting collision 

occurs at time ti, a 1-3 interacting collision occurs at time 

t2>ti, a 2-3 penetrating collision occurs at time t3>t2, and a 

2-3 separating collision occurs at time ti^ta. We must 

emphasize two points in connection with the collision sequence 

diagram in Fig. 4: 

(i)     The diagram says nothing about the sizes of the time- 

intervals, t2-ti , t3-t2/ ti,-t3, but requires only that they be 
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positive — i.e., that the collisions occur in the order 

indicated. 

(ii)     The diagram is completely non-committal about the 

occurrence or non-occurrence of any additional non-interacting 

collisions.  For instance, an additional 1-2 non-interacting 

collision at any time t>t2, or a 2-3 non-interacting collision 

at any time t<ti (either is in fact dynamically possible), may 

or may not occur.  It if is desired to exclude such additional 

collisions from the class of collision sequences represented 

by a given diagram, the appropriate restrictions must be 

explicitly stated. 

Item {ii)   allows us occasionally to combine or "add" 

several diagrams to form a single diagram.  An example is 

shown in Fig. 5.  The diagrams in Figs. 5a and 5b differ only 

in the ordering of the 2-3 separating collision and the 1-3 

interacting collision.  The "sum" of these diagrams may be 

represented by the diagram in Fig. 5c, which evidently 

includes both possibilities. 

It will be convenient to introduce two further definitions, 

A single-overlap  collision  is a collision of any type (i.e., 

interacting, penetrating or separating) between two molecules 

which occurs while a third molecule overlaps with one  of the 

colliding molecules.  For example, the 1-2 collisions in Figs. 

5a, 5b and 5c, and the 1-3 collision in Fig. 5b are single- 

overlap collisions.  Similarly, a double-overlap  collision  is 

a collision of any type between two molecules which occurs 

while a third molecule overlaps with both  colliding molecules. 
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I 2   3        1 2  3 I 2   3 

/ 

(a) (b) (c) 

Figure 5.  Illustrating the addition of two collision 

sequence diagrams. 

We shall find in Sec. 4.2 that this concept of an "overlap" 

collision" is of central importance in the analysis of the triple 

collision inner product. 

3.2 Some Important Theorems 

In this section we present some lemmas and theorems for 

collision sequences involving three identical hard sphere 

molecules.  These theorems will greatly simplify our analysis 

of the triple collision inner product in Sec. 4.2. 

To date, pertinent studies concerning the motion of three 

hard spheres have been limited to interacting collisions [14, 15] 

Since, as explained at the beginning of this chapter, we. shall 
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be dealing with collisions of both the interacting and non- 

interacting varieties, it is necessary to develop the subject 

from a fresh point of view.  The development which follows is 

due to W. R. Hoegy and the present authors [17, 18]. 

To begin with, there are several "obvious theorems" or 

"rules" that follow almost immediately from the definition of 

a collision.  For example, we shall frequently invoke the 

Reoollisibn Rule:     After two spheres have collided, 

they cannot recollide in another complete collision 

before one of the two spheres undergoes an interact- 

ing collision with the third sphere. 

In addition to such more or less obvious restrictions, 

there are several restrictions that are not of a trivial nature. 

For example, we have 

Lemma 1.     In the collision sequence defined by the 

diagram in Fig. 6, it is not possible for 

spheres 2 and 3 to collide or overlap in 

the time interval ti^t^t5. 

Note that this lemma also rules out a 2-3 collision or overlap 

for ti<t<tij if the 1-2 collision at tit were interacting instead 

of penetrating; it also rules out a 2-3 collision or overlap 

for t2<t$t5 if the 1-2 collision at t2 were interacting instead 

separating.  A proof of this lemma is presented in Appendix A. 

As a consequence of Lemma 1, we have 
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Figure 6.  Diagram of Lemma 1. 

THEOREM I. If a three-particle collision sequence 

contains at least one single-overlap collision, then it 

cannot contain more   than  three  complete  collisions. 

This same theorem is trivially valid for a three-particle 

collision sequence containing a dow&Ze-overlap collision. 

Theorem I tells us, for example, that no further collisions 

are dynamically possible in any of the diagrams in Fig. 5. 

To prove Theorem I, one considers all three-particle col- 

lision sequences with at least one overlap collision and at 

least four complete collisions, and one finds that every such 

sequence violates Lemma 1. A proof of Theorem I is given in 

Appendix A. 
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We now turn our attention to collision sequences that 

contain no  overlap collisions.  This means that all complete 

collisions will be separated, so that in between a concomittant 

pair of non-interacting collisions between two molecules, no 

other collision with the third molecule will take place.  In 

such cases we indicate an interacting collision between 

molecule a  and molecule b  by (ab)    , a complete non-interacting 

collision by (ab)    ,   and a sequence of such collisions by a 

left-to-right juxtaposition of these symbols.  Thus, e.g., the 

sequence in Fig. 4 would be denoted by (12) (13) (23) . 

Moreover, we shall write (ab)   to denote a complete collision 

between a  and b  which is either interacting or non-interacting: 

(ab)   = (ab)L  + (ab)n 
(3-1) 

Using this notation, we quote the following two lemmas. 

Lemma   3.     Not dynamically possible are the three- 

particle collision sequences 

(12) (13)1(12)1(13) 

(12) (13)i(23)i(12) 

Lemma   3.     Not dynamically possible are the three- 

particle collision sequences 

(12) (13)1(12)1(23)1(12) 

(23) (12)1(13)1(12)1(23) 

Lemmas 2 and 3 were stated by Sandri and co-workers [14] 

and proved in detail by Murphy and Cohen [15].  Implicit in 
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these lemmas is the fact that any sequence, constructed by 

inserting non-interacting collisions between any of the col- 

lisions in the sequences excluded, is also not dynamically 

possible [16]. 

From Lemmas 1,2 and 3 one may then establish 

THEOREM II.     If a   three-particle  collision  sequence 

contains  no  single-overlap  collisions 3   then  it  cannot 

contain more  than four complete  collisions. 

Again, the proof proceeds by showing that any collision sequence 

of the kind contemplated violates one of the lemmas.  The proof 

of Theorem II is given in Appendix A. Combining Theorems I and 

II, we have the theorem that no three-particle collision sequence 

can contain more than four complete collisions.  This theorem 

was discovered by Hoegy and Sengers [18]. 

In the proof of Theorem II, one finds as a corollary that 

there are in fact only  two  dynamically independent sequences 

with four complete collisions, namely 

(12) (13)1{12)1(23)    and    (12) (13)1 (12) n(23)     (3-2) 

In other words, any sequence of four complete collisions either 

is one of the above sequences, or else is obtainable therefrom 

by interchanging numerical lables and/or reversing time.  This 

is a generalization of the previously discovered fact [14,15] 

that the only possible sequence of four interacting  collisions 

is (12)1(13)1(12)1(23)1. 
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CHAPTER IV 

ANALYSIS OF THE TRIPLE COLLISION INNER PRODUCT 

4.1  Introduction 

In statistical mechanics one derives the density expansion 

of the equilibrium pair distribution function g(r) by making a 

"cluster expansion" of the partition function [5].  In an ana- 

logous way, the first density correction to the Boltzmann 

operator 12 can be obtained by making a "cluster expansion" of 

the Liouville operator, as was first pointed out by Green and 

Cohen [19,20,21].  This procedure leads eventually to the triple 

collision operator I3 which was written down in equation (2-37) . 

In that equation, the variables Vi ,V*2 and V3 may be regarded as 

the velocities of three isolated molecules 1, 2 and 3, while 

the variables kZi and ?3i locate molecules 2 and 3 relative to 

1 according to 

k2i = -(f*2-f'1)/o  and  r 31 = (r*3-r*i)/c        (4-1) 

It will be noted that these position variables are measured in 

units of the molecular diameter a.     Moreover, since k21 is a 

unit vector, then we are evidently constraining molecules 1 

and 2 spatially so that they are "colliding" [cf. our definition 

of "collision" in Sec. 3.1].  Strictly speaking, the five- 

dimensional volume element Iv..*k..Idk..dr. . in (2-37) should 1 ij  i] '  lj  kj 

refer to any colliding pair i-j, and we should really write 

down two more integrals for the pairs 1-3 and 2-3. However, 

it is sufficient for our purposes to carry out the integrations 
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only for the pair indicated, and to take account of the permu- 

tations by-introducing a factor of 3 at a later stage; never- 

theless, it should be kept in mind that 13 is completely 

symmetrical in the particle labels. 

Our real interest here is not so much in the triple 

collision operator  but in the triple collision inner product, 

which one forms using this operator according to (2-40).  An 

explicit expression for (<(> ,^)<3> which is totally symmetric in 

the molecule labels was given in (2-43), and for convenience 

we write that expression again here: 

(<J>^)C3) =  ~ JT  /"dVidV2dV5d^2idr31 

|v*21-5c2i |£o(Vi)£0{Vi)f0(Va)      (4-2) 

{ * (Vi ,Vz" ,V3) *T (123) ¥ (Vj ,Vj ,V"3 ) } 

where 

$(V!,V2,V3) =   I   <MVn);   *(Vi,V2,V3) =   I  iMVn)   (4-3) 

Evidently, the triple collision inner product is a fourteen 

dimensional integral over the velocities and relative positions 

of three isolated molecules, with molecules 1 and 2 in contact. 

The integration runs over the whole of this fourteen dimensional 

space, although, as we shall see momentarily, the operator T(123) 

vanishes everywhere except in certain select subregions of this 

space.  The factors f0(V.) are, as before, simple Maxwell- 

Boltzmann functions [cf. (2-5)]. 
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In defining the .operator T(123) , it is helpful to first 

recall how the operator T(12) appearing in the binary collision 

inner product (2-21) is defined.  We noted in (2-12) that T(12) 

could be regarded as the sum of two "velocity replacement 

operators": 

T(12) =   I     T^(12) (4-4) 
y=n,i ■ 

Using the diagrammatic notation introduced in Chapter III, we 

may associate these two operators with the two "two-particle 

collision sequence diagrams" shown in Fig. 7.  With the aid of 

these two diagrams, the expression for ($,ifOt21 in (2-22) may be 

understood as follows:  For each y-term, the integrating 

variables v"i ,V2 and £21 in (2-22) are the velocities and relative 

positions of the molecules instantaneously before (above) the 

1-2 collision indicated in diagram y.  The operator T*2'(12) 

is different from zero only  when Vi ,v"2 and k21 are such that 

the corresponding y-collision sequence can be realized; the 

condition for this for either  y-diagram is simply that the 

molecules be aimed to collide, or V2i'k2i>0.  When this condition 

is satisfied, T(21(12) acting on a function of the initial velocities 

Vi and V2 replaces these velocities by the final velocities in 

diagram  y, with the proviso that an overall minus sign is intro- 

duced when the collision is non-interacting. 

c   Similarly, the operator T(123) in (4-2) can be considered 

as a sum of twelve  velocity replacement operators, 

1 

T(123) - 3! I  Tf(12;13) (4-5) 
y v 
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fjL-\ ft = n 

Figure 7.  Diagrams for the operators T®(12). 

each of which is defined relative to a particular three- 

particle collision sequence diagram.  The twelve diagrams are 

shown in Fig. 8. We restrict ourselves to collision sequences 

in which the first collision is a 1-2 collision and the second 

collision is a 1-3 collision; since the triple collision inner 

product is symmetric in the molecules, other permutations are 

accounted for by the factor 31 in (4-5).  Concerning the 

diagrams in Fig. 8, we make the following observations: 

Each diagram requires that the three molecules undergo 

at least three collisions of a specified type (either inter- 

acting or non-interacting penetrating) and in a specified 

time order.     We shall number these three required collisions 
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*  CM 

CM 

ii 

K> 

O 

CVJ y—\ 

.<&> Figure 8. Diagrams for the operators Ta) (12;13) . 

[Note that these diagrams are subject 

to the restrictions stated in the text] 
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in the order in which they occur (i.e., from top to bottom). 

Each diagram is labelled by a letter and two numbers.  The 

first number is either 1 or 2 according to whether the first 

collision is interacting or penetrating, and the second number 

similarly describes the third  collision.  The diagrams with 

the letter R are "recollision" diagrams, in that the third col- 

lision involves the same pair (1 and 2) that made the first 

collision.  The diagrams with the letter C are "cyclic col- 

lision" diagrams, in that the third collision involves the third 

pair (2 and 3).  The diagrams with the letter H are "hypothetical 

cyclic collision" diagrams, in that, like the C diagrams the 

third collision involves molecules 2 and 3 but unlike the C 

diagrams the second collision is non-interacting.  (It will be 

noted that a corresponding set of "hypothetical recollision" 

diagrams is not dynamically possible because of the Recollision 

Rule). 

It must be emphasized, however, that the specific col- 

lision sequences relative to which the operators T<3>(12;13) are 

defined are not  completely specified by the diagrams in Fig. 8. 

As demonstrated in I, the theory imposes the following two 

restrictions on these diagrams [22]: 

First Collision Restriction: No collisions of any kind 

are allowed to occur before (above) the "first" collision in 

any   y-diagram. 

Beal  Collision Restriction:     In diagrams Rll, R12, Cll 
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and C12, no additional collisions of any kind are allowed to 

occur before the "third" collision. 

Additional non-interacting collisions which do not violate 

these restrictions are permitted to occur. Some  additional 

collisions will necessarily  occur — namely, the separating 

collisions which naturally follow the required penetrating 

collisions; in this connection, we note that the y-diagrams 

do not   specify when these separating collisions are to occur. 

Other  additional non-interacting collisions may or may not 

occur:  for example, a 2-3 non-interacting collision may 

occur between the first and second collisions in diagrams C21 

and C22, but such a collision must be explicitly excluded 

from diagrams Cll and C12 because of the Real Collision 

Restriction; the same holds true for a 1-2 non-interacting 

collision between the second and third collisions in the C- 

diagrams. 

The integrating variables in (4-2) refer to the velocities 

and relative positions of the three molecules instantaneously 

before (above) the "first" collision in each y-diagrams, and 

we define the subvolumes Q    by 

ß = set of all points (Vi,V2,V3,%2ir3i) for which 

a collision sequence of the type described in 

diagram y can occur (subject to the First Col- 

lision and Real Collision Restrictions).       (4-6) 

Note that a given point in the 14-dimensional space spanned 

by the integrating variables in (4-2) may lie in none, one, 
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,0) or more than one of the subvolumes 0,   .  The operators T 

are now defined analogously to the operators T®  in (2-14): 

outside Q   :  T®*(V\,V2,V3) = 0 (4-7a) 

inside fiy:  T^V (Vi ,V2 ,VS) = (-l)yy (Vi ,V2 /Vä*)    (4-7b) 

where (-1)  =+1 or -1 according to whether diagram y has an 

even or odd number of required non-interacting collisions, and 

where V^ is the velocity of molecule i at the end of the y 

collision sequence.  In the cases y=Rll and y=Cll, the theory (as 

developed in I) requires that if  more interacting collisions 

can occur after the third collision, then V? is to be the 

velocity of molecule i after all  additional collisions have 

taken place; for yj^Rll and y^Cll, however, Vf denotes the 

velocities after the third required collision, regardless of 

the possibility of any subsequent collisions [22]. 

If we insert (4-5) into (4-2), we will evidently obtain 

an expression for («f»,^)01 which is very analogous to the 

expression for (<J> ,if0(2^ in (2-22): 

(4>,iMf3) = -o5 I  /dVidV2dV3d1c2idr3i 
y J 

IVzi-'kzi | f o (Vi)f0(Va)fo (V3)      (4-8) 

{* (V*! ,V2 ,V3) *T^(12 ;13) Y (Vi ,V2 ,V3 ) } 

The advantage of this expression is that it conveys in a 

physical, yet mathematically precise, way the structure of 
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the triple collision inner product.  At the same time, it 

reveals how the triple collision inner product appears as a 

fairly natural generalization of the binary collision inner 

product in (2-22). 

Of more usefulness for computational purposes would be 

an expression for (<|>,IJJ)
(3)
 which is analogous to (2-23).  To 

this end, we first define 

V.(j ) = velocity of particle i immediately after 

the jth required collision in diagram y.   (4-9) 

In particular, we shall write j =0  to denote the velocity c s     Jy  u 

region before the first collision, and we shall write 

velocity region after the last 

collision for y=Rll and u=Cll; 
3y = < (4-10) 

velocity region 3  for all other y. 

For brevity, we shall also write 

<Mjy) = *(Vi(jy) ,V2(jy) ,V3(jy)) (4-11) 

and similarly for ¥.  In this notation, ¥(Vf,V2,Vs) in (4-7b) 

becomes simply f(T"), and (4-8) takes the form 

(4>,iM(3) = -a5 I   f   dVi(0,l)dV2(0ii)dv"3(0ii)d1c2iclf%i 
u in     ^     y     u 

*      y 

|V*2 1 (0 ) '$2 1 |f0(Vi)fo(V»)fo (Vs) 

Vt {(-l)M*(0„)*¥(3ii)}  (4-12) ^   y 
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In (4-12), we have used the fact that the velocities in the 

product of the Maxwell-Boltzmann functions can be referred to 

any  velocity region in diagram y, because of conservation of 

energy [cf. the remarks following (4-17)].  In order to 

explain our next step, consider the diagrams of Rll and R12 

in Fig. 9.  We indicate schematically the integrating variables 

and the various velocity regions for these diagrams in this 

figure.  Now, the conditions to be satisfied by the integration 

variables in order to obtain the collision sequence R12 are 

evidently identical  to the conditions for Rll, since the initial 

variables do not care whether the third collision is interacting 

or penetrating; thus. 

flRl2 * fiRll = ßRl (4-13) 

Moreover, for any given point (Vx (0R1) ,V2 (0R1) ,V3 (0Rl)/k2 i ,f^3 i) 

inside ftR,, it is clear that the velocities in regions 1 and 2 

of these diagrams will coincide exactly, while the velocities 

in region 3 of R12 will coincide with the velocities in 

region 2 of Rll.  Consequently, we may relate the R12-term in 

(4-12) directly to diagram Rll, which we now relabel  v=Rl, and 

we write ¥ (2  ) in place of fd J.  The integrands for Rll 

and R12 can then be added directly, provided we take account of 

the extra minus sign in front of the R12 integrand.  Clearly, 

we can similarly combine every pair of y-diagrams whose labels 

differ only in the last digit.  In this way we write (4-12) in 

the form 
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V2(0Rll)  V,(0RII)  V,(0R1I)   V2(0RI2)  V,(0Rl2) V3(0RI2) 

°-VZ_. 
RI2 

RI2 

'RI2 

/I = RII     (v = RI) fL = R\2 

Figure 9.  Diagrams R11=R1 and R12. 

(♦,*)*"= -a5   I  f    dVx(0   )dv2(0   )dV3(()  )d1c21dr~31 
\> J n v v v v J n 

|V2I (0 ) -lea i | f o (Vi)fB(V2)fo(V3) V 

{(-l)V$(0v)*[l'(3v)-'t'(2v)]}    (4-14) 

where the sum now runs over the six  v-diagrams R1ER11, R2=R21, 

C1=C11, etc., shown in Figure 10.  This form for (<f),i(j)(31 is the 

desired analogue to (2-23), and it is the form in which the 

triple collision integrals were first presented in earlier 

publications [6,13,22].  It must be emphasized that the restric- 

tions mentioned earlier in connection with the y-diagrams still 
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= RI = R2 

= CI = C2 

= HI = H2 

Figure 10.  The six v-diagrams.  [Note that these 

diagrams are subject to the restrictions 

stated in the text]. 
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apply to the v-diagrams, the First Collision Restriction 

applying to all the v-diagrams and the Real Collision 

Restriction applying to diagrams Rl and Cl only.  We also 

want to stress the dual  role  played by the v-diagrams in 

regard to the six integrals in (4-14):  on the one hand, 

these diagrams serve to define the volume ß over which each 

of the integrals is taken; on the other hand, these diagrams 

determine the functional dependence of the velocities V. (2 ) 

and V\ (3~ ) upon the integrating variables. 

We note that our restriction to hard spheres has thus 

far been a restriction only on the duration  of a binary col- 

lision, in that we have assumed only ."instantaneous interactions" 

[23].  This restriction excludes the consideration of genuine 

triple collisions, in which three molecules collide simulta- 

neously.  However, the expression in (4-14) and the associated 

diagrams in Fig. 10 correctly account for the effects of 

sequential binary collisions for any  short-range potential with 

a hard core. 

4.2  Separation of Spatial and Dynamical Correlations. 

Expansion in Effective Number of Collisions. 

The expression for the triple collision inner product in 

(4-14) , as a sum of six integrals corresponding to the six 

v-diagrams in Fig. 10, suffers from several drawbacks.  In 

particular we mention: 
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1. Although the triple collision inner product is 

symmetric [18], it is not true that the six triple collision 

integrals in (4-14) are individually symmetric [22] .  It would 

be better if {<|>,i>)<3) were expressed as a sum of terms which are 

separately symmetric in §  and ty. 

2. As reported in I [see Sec. 2.7 of I], preliminary 

numerical calculations have revealed that substantial cancel- 

lations occur among the contributions of the six v-integrals. 

It would be better if (<|>,i|0f3) were expressed as a sum of integrals 

whose individual contributions were ordered according to some 

physically sensible scheme., 

3. The integration regions fi are defined by the diagrams 

in Fig. 10 subject  to  the First Collision Restriction and the 

Real Collision Restriction.  These extra conditions on the 

collision sequence diagrams are a nuisance in numerical compu- 

tation.  It would be better if we could use a set of diagrams 

that are defined without any externally imposed restrictions. 

The above observations suggest that the decomposition of 

(tf>,40(3) in (4-14), although mathematically correct, is physically 

not the most desirable one.  Part of the problem here is that 

the diagrams in Fig. 10 do not adequately distinguish between 

correlations  in positions  and correlations  in velocities.     We 

recall that, for a gas in equilibrium, the velocities of the 

molecules are uncorrelated; thus, the density dependence of the 

equilibrium properties are completely due to spatial correlations, 

which, for a gas of hard spheres are related to the exclusion of 
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configurations where the molecules are overlapping   [cf. Fig.2]. 

Reasoning by analogy, we may expect that spatial correlation 

effects on the non-equilibrium properties of a gas (such as the 

transport coefficients) will be related to the exclusion of 

collision sequences containing overlap collisions;   collision 

sequences which do not contain overlap collisions would then 

represent the effects of velocity correlations. 

In light of the foregoing considerations, we now 

reconsider the v-diagrams in Fig. 10.  We first "decompose" 

each of these diagrams into its several more specific diagrams, 

in which we take account of the possible additional collisions 

that may take place.  Next, we recombine or "resum" these 

specific diagrams, grouping them according to the following 

criteria: 

(a)     diagrams with at least one double-overlap 
collision; 

(2>)  diagrams with at least one single-overlap 

collision, but no double-overlap collision; 
(4-15) 

(ö)  diagrams with no overlap collisions and 

specifying only three complete collisions; 

id)     diagrams with no overlap collisions and 

specifying four complete collisions. 

In view of Theorems I and II of Chapter III [cf. Appendix A], 

we note that these groupings are indeed mutually exclusive and 

collectively exhaustive.  We, may then write the triple-col- 

lision inner product in the form 

57 



AEDC-TR-71-51 

(<M><S> = I   («C/^)? (4-16) 
k=l    K 

where the four terms represent the contributions from the 

four groupings (a) , (J>) , (c) , (d) , respectively.  It will be noted 

that the presence of a double-overlap collision in a collision 

sequence already implies the occurrence of two additional com- 

plete collisions, namely, the two non-interacting collisions 

which gave rise to the two overlaps; since Theorem I permits a 

maximum of three complete collisions in such circumstances, we 

conclude that those collision sequences falling into group (a), 

and contributing to the term  (c(),ip)(i), will effectively contain 

only one  collision (namely, the double-overlap collision). 

Similarly, the presence of a single-overlap collision in a 
i 

sequence implies the occurrence of one additional complete 

collision, so that by Theorem I those collision sequences fal- 

ling into group (2>) , and contributing to the term ($ ,ty)(i,  will 

effectively contain only two  collisions.  Finally, it is clear 

from the definitions of groups (b)   and (e) that the sequences 

contributing to the terms (<f», 4>) 1 and (4>,^)c? will contain three 

and four  collisions, respectively.  Thus, we have in (4-16) an 

expansion in the effective number k of collisions; moreover, 

the expansion evidently proceeds from high to low spatial cor- 

relation, and from low to high velocity correlation.  These 

features of (4-16) will become clearer as we derive the 

specific diagrams relative to which these terms are defined. 
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In resumming the v-diagrams, we shall make use of three 

invariance  properties  of (4-14): 

First, we shall frequently invoke the fact that the six| 

integrals in (4-14) are each invariant under all permutations 

of the molecule labels.  This is a consequence of the symmetry 

of I3, which was mentioned in the first paragraph of Sec. 4.1. 

Secondly, we shall use the fac;t that the six integrals 

in (4-14) are each invariant under a sign reversal of all 

velocities.  To prove this, we begin by observing that the 

Jacobian of the transformation (V*i ,V*2 ,V*3) -*■ (-Vi ,-V2 , -V3 ) is 

unity, so' that the differentials in (4-14) are unaffected if 

the sign of each V.(0 ) variable is changed.  Furthermore, the 

factor |V2i(0 )*k2i| is unaffected by a sign change because of 

the absolute value operation, while the Maxwell-Boltzmann 

factors depend only on the magnitudes of the velocities and 

not their directions.  Finally, the invariance of the quantity 

in braces follows from the facts that a reversal of velocities 

in region 0  induces a velocity reversal in every region, while 

the functions <J> and if; (and hence <)> and ijj) are always of the 

same parity in the velocities [cf. the expressions in (2-24) 

and (2-25) for A and B ]. 

The third invariance property of (4-14) which we shall 

use says that the volume element 

dfi = dV.dV.dV\ dk\ .df: . |v. . •£, . | (4-17) 
v    1  3<-k ji ki1 ]i  ki1 
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which in (4-14) refers to the phases of the three molecules 

just before   the first collision  in diagram v, may in fact be 

evaluated just before    or just  after  any  collision   in the 

dynamical history of diagram v.  We shall indicate the proof 

of this invariance property by first showing that we can 

transform dfl  invariantly from above the first collision to 

below the first .collision, and next that we can transform 

6.0.     invariantly from below the first collision to above the 

second collision.  (Essentially, the invariance of dfi fol- 

lows from Liouville's Theorem, which states that the volume 

element in phase space is invariant under transformations 

generated by the natural motion of the system.) 

The transformation from above to below the first col- 

lision is (dropping the subscript v): 

Vt(l) = Vi (0) + V21 (0) -icaitczi 

\T2(1) = V2(0) - V21 (0) -Szii^i (4-18) 

V3(l) = V3(0) 

From this it can be shown, with some algebra, that 

dVi (l)dvl(l)dV3(l) = dVi (0)dV2 (O)dvl(O)        (4-19a) 

V^i(l)-1c21 = -Vz"! (0)-1c2i (4-19b) 

Vf(l) + V5(l) + Vf(l) = V? (0) + V|(0) + V§(0)  (4-19c) 

Clearly, then, the velocity variables in (4-17) outside the 

braces can refer either to region 0 or to region 1.  We remark 

that (4-19c) has already been invoked in obtaining (4-14), when 
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in (4-12) we dropped the velocity region designations from 

the Maxwell-Boltzmann factors; for we see from (2-5) that the 

product of these three MaxwellrBoltzmann factors depends only 

on the sum of the squares of the velocities.  We see, then, 

that all velocities in (4-14) outside the braces can be 

changed from region 0 to region 1  if desired. 

We shall next prove that the volume element dfi  can be 

transformed invariantly from just below the first collision 

to just above the second collision in any v-diagram.  The 

second collision is a 1-3 collision, so we let K31 and r*2i 

be the relative position vectors at the instant of the second 

collision.  The velocities just before the second collision 

are of course identical with the velocities just after the 

first collision, so the desired invariance property will be 

proved if we can show that 

dfc3idr2i|Vsi (1) .$31 I = dk21dr31|\T21(l) .£2 1 |    (4-20) 

To prove (4-20), we let T be the time between the first and 

second collisions, and we note from Fig. 11 that 

r"2i = -£21 + V21 (1)T (4-21a) 

-£31 = rii +VII(1)T (4-21b) 

If we now regard (4-21a) as representing the transformation 

(k21,T)+r21, then it is fairly straightforward to show that the 

Jacobian of this transformation is 
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time 

Figure 11.  Illustrating the relation between the 

variables at the first and second collisions. 

dr 
aSHfc- !««<»*» (4-22a) 

Similarly, from (4-21b) we deduce that 

aSHfc-!*•<»•*•• 
Using equations (4-22), we therefore have 

(4-22b) 

d$3idr21|v
,
3I{l).$3i| = d1c9i[d1c2idT|v2i(l) -%i [] |V*8i<l>«£ai 

=   dtt21[di?3idT|v*3l(D  >1C3 1 l]  |V21(1)-$21 

= d^2idr"31 Ivki (1) -k2i I 
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which is the desired result (4-20).  Note also that, since at 

the second collision r^a = ic31 + rä i , then 

dk 3 10^2 1 = dk3idr2 3 (4-23) 

This means that r\i on the right side of (4-20) may be 

replaced by r23 if desired; i.e., it makes no difference whether 

we locate 2 relative to 1 or 3. 

The arguments in the proceeding two paragraphs can be 

repeated to show that the volume element dfl in (4-17) can 

refer to just before or just after any collision in the history 

of diagram v. 

The foregoing invariance properties of (4-14) allow us to 

write the equation in the more general form 

(<l>,iMf33 = -o5   I   f dVidV2dV3d^2idr3i 
M JO. V 'ft. 

V 

|V21 .$2i | f o (Vi)fo (V2)f0 (V3)     (4-24) 

{(-l)v<M0v)*[V(Tv)-V(2v)]} 

Here, the velocity variables outside the braces refer to the 

velocities of the molecules either immediately before or 

immediately after any collision in the history of diagram v, 

in either the direct or reversed time sense, with the molecules 

labeled so that their positions are in accord with (4-1) at 

the chosen collision time. 
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We now turn to the task of using this more flexible form 

for (<|>,ty)(3),   together with the lemmas and theorems of Sec. 3.2, 

to effect the decomposition in (4-15) and (4-16). 

Consider first groups (a) and (b) in (4-15).  For these, 

we must evidently extract from the six v-diagrams in Fig. 10 

all collision sequences containing overlap  collisions.     Now 

Theorem I [of. Sec. 3.2 and Appendix A] tells us that any 

collision sequence containing a single-overlap collision (and 

hence a  fortiori  any sequence containing a double-overlap col- 

lision) cannot contain more than three complete collisions. 

This fact greatly simplifies our task of finding all the 

v-sequences containing double- or single-overlap collisions: 

it means that we need not worry about any collisions not 

explicitly indicated in the v-diagrams, save only those separating 

collisions which are concomittant with the required penetrating 

collisions. 

Since a double-overlap collision requires at least two 

complete non-interacting collisions, it is clear from Fig. 10 

that only diagram H2 is a possible source of collision sequences 

containing a double-overlap collision.  Indeed, if in H2 pairs 

1-2 and 1-3 both separate after (below) the 2-3 interacting 

collision, then the 2-3 collision will be a double-overlap col- 

lision.  Moreover, since we do not care in which order the 1-2 

and 1-3 separating collisions follow the 2-3 interacting col- 

lision, we obtain a total of two  v-collision sequences containing 

at least one double-overlap collision.  These two double-overlap 

sequences are shown in Fig. 12.  In this figure we have used 
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a 

J 

H2' <X>(a)*[*(j3)-¥(a)] 

Figure 12.  All v-diagrams containing at least 

one double-overlap collision. 

dashed lines in order to represent two distinct collision 

sequences by means of only one diagram; i.e., Fig. 12 

represents one collision sequence in which 1 and 3 separate 

before  1 and 2, and another collision sequence in which 1 

and 3 separate after  1 and 2.  We label the distinct  velocity 

regions in the diagram by small Greek letters, and we indicate 

below the diagram the form assumed by the quantity in braces 

in (4-24).  Note that, since H2 has an even number of col- 

lisions, then (-1) =+1 for this term. 
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A single-overlap collision requires the presence of at 

least one non-interacting collision, so it is clear from 

Fig. 10 that diagrams Rl and Cl cannot contribute any sequences 

containing a single-overlap collision.  Furthermore, diagram 

R2 cannot either; for the Recollision Rule requires 1 and 2 

to separate in R2 before 1 and 3 interact if 1 and 2 are to 

subsequently recöllide.  Thus, the only possible sources of 

v-sequences containing at least one single-overlap collision 

are diagrams C2, HI and H2.  An examination of these diagrams 

reveals that there are five  single-overlap sequences in H2 

(shown in Figs. 13a, 13b and 13c), one  single-overlap sequence 

in HI (shown in Fig. 13d), and two  single-overlap sequences 

in C2 (shown in Fig. 13e).  [Note that Figs. 13b, 13c and 13e 

each stand for two'separate sequences.]  We again label the 

distinct  velocity regions by small Greek letters, and we 

indicate below each diagram the corresponding form of the 

integrand in equation (4-24), including the (-1)  factor.  It 

must be emphasized that the velocity region labels in each 

diagram in Fig. 13 refer only to the integrand appearing just 

below that diagram; that is, no connection is as yet implied 

or assumed between like-labelled velocity regions in different 

diagrams.  (Actually, our particular choice of labels for the 

velocity regions in the diagrams of Fig. 13 was made with 

hindsight, for we shall find presently that like-labelled 

velocity regions in these single-overlap diagrams are in fact 

dynamically equivalent regions.) 
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Figure 13.  All v-diagrams containing at least one 

single-overlap collision. 
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Having thus extracted all the double-overlap v-sequences 

(Fig. 12) and all the single-overlap v-sequences' (Fig. 13), 

let us now examine the combined  contributions  of these classes 

of diagrams, as represented respectively by the terms (<J>,i|0(f 

and (<fr,iJOT in (4-16). 

Consider first the double-overlap contributions (k=l). 

Using the overlap notation in Fig. 3d, we can evidently 

represent the sum of the two double-overlap diagrams in Fig. 12 

by the diagram in Fig. 14a; this diagram shows explicitly that 

1 overlaps with both 2 and 3 at the instant of the 2-3 collision, 

and it is non-specific about the order in which the subsequent 

1-2 and 1-3 separating collisions occur.  If we interchange 

labels 2 and 3, we obtain the equivalent representation of the 

double-overlap term shown in Fig. 14b.  Now diagrams 14a and 

14b differ only in the ordering of the initial penetrating 

collisions; thus, the sum of these two diagrams (which is 

exactly twice the double-overlap contribution) gives a diagram 

in which the order of the 1-2 and 1-3 penetrating collisions 

is also not specified.  Interchanging in this diagram labels 

1 and 3, we thus obtain the diagram in Fig. 15 and the cor- 

responding "double-overlap part" of the triple collision inner 

piUUUUL, 

<*,*>'?    - 
3 

-a5   / dVidV2dV3dß21dr3i |v2i-lc2i |T7fo(V.) 
*fii                                                          i=l 

{M»(a)*[Y<0)-¥(a)]} (4-25) 
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ft(a)a[¥(0)-V(a)]      *(a)*|y(/3)-¥(a)] 
(a) (b) 

Figure 14.  Equivalent double-overlap diagrams. 

In this expression, the velocity variables outside the braces 

are most conveniently taken to be the a-region velocities, 

and iii is that region in the space of points (V. =~V. (a) ,1^21 ,r"31) 

which corresponds to a realization of the collision sequence 

depicted in Fig. 15.  [Specifically, the points in fii satisfy 

the three conditions V*2 i *1c2 i >0 , |r*3ij<l and |r% i+k~2 i I <1 •] 

The factor of 1/2 in the integrand of (4-25) arises because 

the diagram of Fig. 15 is the sum of the two diagrams in Fig. 14, 

each of which separately gives ((f),^)'?5.  The reason we prefer the 

diagram in Fig. 15 over either of the diagrams in Fig. 14 is 

that the integrating volume associated with Fig. 15 is easier 

to specify analytically:  we do not have to worry about the 
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ß 
II UHU 

Figure 15.  Diagram for (<f>,ty)lf. 

order of the penetrating collisions -in Fig. 15. We remark 

that the dependence of equation (4-25) upon the diagram in 

Fig. 15 exactly parallels the dependence of equation (4-24) 

on the v-diagrams in Fig. 10; that is, the diagram in Fig. 15 

specifies the integrating volume fli as well as the functional 

dependence of the ß-region velocities upon the integrating 

variables. 

It will be observed that the diagram in Fig. 15 is 

"symmetric" in the sense that a reversal of all velocities 

is equivalent to simply interchanging the velocity region 
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labels a and 3.  Therefore, since (4-25) is unaffected by a 

reversal of all velocities, then it is also unaffected by an 

interchange of the labels a and ß.  If such an interchange is 

made, and if the resulting expression is added to (4-25) and 

the sum divided by 2, we obtain an expression for (tf),^)'? which 

is identical to (4-25) except that the quantity in braces is 

replaced by 

{-1/,[$(ß)-$(a)]*[1'(ß)-y(a)]} 

Since  this   is   symmetric  with respect  to  an  interchange  of 

$  and  H*,   we deduce  that   (<j>,i|Of?  is   symmetric   in  <}>   and  ty: 

(♦,♦)«!» =   ^,n(V (4-26) 

In Sec. 5.1 we shall prove that (4>">^)(i' coincides with the 

Enskog inner product (ij> ,if))(i,).   For now, though, we turn to 

consider the single-overlap term, (<$>,ty)l2. 

By definition, (<j>,40T is the sum of all the diagrams in 

Fig. 13.  This summation is carried out in four steps, as is 

shown in Fig. 16:  First, to diagram 13b we add diagram 13c 

(with 2 and 3 interchanged).  Second, to the sum of diagrams 

13b and 13c we add diagram 13e (with 2 and 3 interchanged). 

Third, to diagram 13a (with 2 and 3 interchanged) we add 

diagram 13d (with 2 and 3 interchanged).  Finally, to the sum 

of diagrams 13a and 13d (with velocities reversed), we add 

the sum of diagrams 13b, 13c and 13e (with 1 and 2 interchanged) 

In this last operation — the fourth "line" in Fig. 16 — 
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Figure 16.  Summation of the single-overlap diagrams 

72 



AEDC-TR-71-51 

K|*| 
i 

01 

e 
i 

<H   | o 

X 

s 5 
I* I* 2 

Figure  16.    (Continued). 
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we observe that the [a+d] diagram requires 2 and 3 to separate 

before  1 and 3 interact, whereas the [b+c+e] diagram is non- 

committal about the order of the 2-3 separating collision and 

the 1-3 interacting collision.  Consequently, the [a+d] 

integrand can be referred to the [b+c+e] diagram only if the 

[a+d] integrand is multiplied by a quantity 0, which is unity 

if 2 and 3 separate before 1 and 3 collide and zero otherwise. 

Thus, we obtain for the "single-overlap inner product" the 

expression 

(*,*>T = =  -a5  / dVidV2dV3d^2idr3l |v2i^2i iTTfo (V.) 
J Ü2 i=l      1 

{-[•(a)-*(ß)]*[Y(Y)-1!'(ß)] 

-e[V(o)-*(ß)]*[«(Y)-*(ß)]} (4-27) 

where the integration volume ß2 and the velocity regions 

a,ß,Y are defined relative to the diagram in Fig. 17.  The 

quantity 0 is also defined relative to this diagram, in the 

following way:  if ii is the time interval between the 1-2 

collision and the 1-3 collision, and x2 the time interval between 

1-2 collision and the 2-3 separating collision then 

0 = 0(Ti - T2) = 

1, for Ti>T2 

0, for TJ<T2 

(4-28) 
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ß 

2  3 

13) Figure 17.  Diagram for ($,ty)i. 

In words, the second term in the integrand in (4-27) con- 

tributes only when molecules 2 and 3 separate before molecules 

1 and 3 collide. 

In order to prove that {$ ,ty)(2   is symmetric, we imagine 

the integrating volume ü2   to be divided into two regions, 

ß2(1) and ^2(0), where 0=1 and 0=0 respectively.  In ^2(1) 

the integrand is obviously symmetric in $ and ¥.  In &z (0) 

the integrand consists of only the first term, and hence 

is not symmetric.  Here, however, the diagram in Fig. 17 must 

be modified to indicate that the 2-3 overlap definitely persists 

to the 1-3 collision.  The resulting diagram is identical to 
/ 
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the one shown in Fig. 5b, and is evidently symmetric in the 

sense that a reversal of all velocities is equivalent to an 

interchange of velocity regions a and y.     Thus, the integrand 

in ^2(0) is invariant to an interchange of the regions a  and y. 

But such an interchange in the first term of the integrand in 

(4-27) is evidently equivalent to an interchange of $ and ¥. 

Thus, the integral in (4-27) is symmetric in * and ¥ over 

regions ^2(1) and ^2 (0) separately,   so it follows that 

(♦,♦)¥ = (*,♦)?' (4-29) 

We shall consider the problem of numerically  evaluating 

W,*)'!' in Sec. 5.2. 

Having now disposed of the "excluded volume" contributions 

to (<J>,i|Ol3) — i.e., contributions from collision sequences con- 

taining some sort of overlap collision — we now turn to examine 

the effects on (<j) ,i{0(31 due solely to deviations from "molecular 

chaos" — i.e., contributions from collision sequences containing 

no overlap collisions.  To obtain these non-overlap sequences, 

we return to the v-diagrams in Fig. 10 and we insert the concom- 

mittant separating collision after each required penetrating 

collision but before  the next required collision, thus assuring 

the absence of overlap collisions.  The resulting non-overlap 

collision sequences are shown in Fig. 18.  We again indicate the 

distinct velocity regions in each diagram by small Greek letters, 

and we display below each diagram the corresponding integrand 

[i.e., the quantity in braces in (4-24)].  It must be emphasized 
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I 2 

£1- *(a)«[*(5)-¥(r>]   R2 ■ -*(/9)«[^(8)-^(y)] 

a.v*(a)«[^(5)-^(r>] C2« -<X>(/9)*[¥(8)-¥(y)] 

I 2 

JI!-<I>(a)* [*(>,)-¥(£)]   H2'*{/9)«[¥(y)-¥(j8)] 

Figure 18. All v-diagrams not containing an overlap 

collision.  [Note that these diagrams are 

subject to the restrictions stated in the 

text.] 
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that the diagrams in Fig. 18 are still subject to the First 

Collision Restriction (no collisions permitted above the 

"first" collision in any diagram) and the Real Collision 

Restriction (no additional collisions permitted between the 

"first" and "third" collisions in Rl and Cl).  In addition, 

we note that the integrands for Rl and Cl refer to region 3", 

which corresponds to the velocities after all  -possible  inter- 

action collisions have been allowed to occur [cf. (4-10)]. 

We now define the contribution to (<J> ,i|0  from the 

diagrams of (4-15c) — i.e., the k=3 term in (4-16) — to be 

that calculated from the non-overlap diagrams in Fig. 18 

ignoring 

{i)     the First Collision Restriction; 
(ii)     the Real Collision Restriction; 

(iii)      the distinction between velocity regioi\s 

6" and 6 in diagrams Rl and Cl. 

When these three points are ignored, it becomes possible to 

combine each type 2 diagram in Fig. 18 with its type 1 counter- 

part.  For example, in the absence of the above externally 

imposed conditions, the velocity regions ß, y and 6 in R2 are 

seen to be equivalent to the like-labelled velocity regions 

in Rl; we may therefore refer the R2 integrand directly to the 

Rl diagram.  We similarly combine C2 with Cl and H2 with Hi. 

Thus we find 

78 



AEDC Tfl-71-51 

(•M)"' = -a5   I   / dVidV2dV3dJc2idr3i 1^1-^2 1 |"TTfo(V.) 
l=lJü3l i=l 

{ (-1) *_1 [# (aA) -* (ß£) ] * [¥ (6Ä) -? (YZ) ] } (4-30) 

where the integration volumes ß3. and the velocity regions 

<*„»ßp,Ynf^n are defined relative to the three diagrams in 
X*        JC   X»   x» 

Fig. 19.  We emphasize that these diagrams are not subject to 

any externally imposed restrictions, as are the diagrams in 

Fig. 10. 

If, in the diagrams of Fig. 19, we reverse all velocities, 

and if we also interchange molecule labels 1 and 3,on the 1=2 

and 1=3  diagrams, we see that the net effect is to interchange 

the velocity regions according to a.■*-*■&   ,   8 JJ^Y Ä •  
But such an 

interchange of velocity regions in (4-3 0) is evidently equi- 

valent to interchanging $ and V.     Therefore, since (4-30) is 

invariant under velocity reversal and label permutations, we 

conclude that 

{*,*>T = ty,4>)f (4-31) 

Now, ((f),^)!1 evidently differs from the true non-overlap 

part of (<(),^)(31 in three respects:  Firstly, d}),^)^ includes 

contributions from diagrams which violate the First Collision 

Restriction; these diagrams must be found and their contribu- 

tions subtracted.  Secondly, (c|>,iJ0T includes contributions 

from Rl-like and Cl-like diagrams which violate the Real Col- 

lision Restriction; these diagrams too must be found and 

their contributions subtracted.  Thirdly, for those Rl and Cl 

79 



AEDC-TR-71-51 

*=l £ = 2 4=3 

Figure 19.  Diagrams for ((f>,^)f. 

collisions sequences that are succeeded by a fourth collision, 

(«K'lOT incorrectly uses for V. (6) the velocities after the third 

collision instead of the velocities after the last  collision; 

these diagrams must be found, their incorrect contributions 

subtracted, and their correct contributions added.  Evidently, 

all these diagrams will contain more   than three complete col- 

lisions.  But here our task is greatly simplified by Theorem II 

[cf. Sec. 3.2 and Appendix A], which tells us that we need 

concern ourselves only  with finding those diagrams in the above 

categories which contain four  complete collisions.  The 

appropriately signed contributions from these four-collision 
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sequences will, of course, constitute the fourth and final 

term in our expansion (4-16). 

Evidently, the diagrams contibuting to (9,ij>-)" fall into 

three classes, and so we discuss these three classes of dia- 

grams in turn.  The class (i) diagrams consist of all those 

sequences in Fig. 18 which have an additional non-interacting 

collision before (above) the "first" collision.  The Recol- 

lision Rule tells us that diagrams Rl, Cl and HI may be 

preceeded only by a 1-3 or a 2-3 collision, and diagrams 

R2 and C2 only by a 2-3 collision, while diagram H2 cannot be 

preceeded by a collision between any pair.  This yields a 

total of eight diagrams.  However, half of these diagrams are 

not dynamically possible:  Lemma 2 forbids Rl from having a 

prior 1-3 collision, and also Cl from having a prior 2-3 
i 

collision, while Lemma 1 forbids both HI and C2 from having 

prior 2-3 collisions.  The remaining four diagrams in class (i) 

are dynamically possible, and they are shown in Fig. 20.  In 

these class (i) diagrams, we have changed'the labelling of the 

velocity regions from Fig. 18 for later convenience.  We have 

also incorporated into the integrands an additional factor of 

(-1), reflecting the fact that these diagrams contribute in a 

"subtractive" sense. 

The class (ii) diagrams consist of all those Rl-like and 

Cl-like sequences which have an additional non-interacting 

collision between the first and second collisions or between 

the second and third collisions.  The Recollision Rule admits 

four possibilities:  Rl can have a 2-3 non-interacting collision 
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R2 « + *(0)«[¥(c)-¥<8)]      HM « +*(8)*[*(a)-¥(0)] 

2 I      3 
Nil III! Ill/ I 

\7f 

I    3 

Y 
ß 

Rh -•(M«[V(a)-¥(0)]        Ci' -<K£)*[*(€)-¥(8)] 

Figure 20.    Four-collision diagrams:    class   (i). 
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c 

7 
ßor r 

Ch-GWa^Ul-VW]      Ch -*(c)*[^(o)-^(0)] 

m.'{-<I>(o)*[^{3)-^(r)]       CjB'{-«U)«[VO)-V(y)] 
♦ *<o)«[VU)-V(r>]}     +<D(€)*[^(o)-^(y)]} 

Figure 21.  Four-collision diagrams:  top row, 

class (ii); bottom row, class (iii). 
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between the first and second collisions or  between the second 

and third collisions; and Cl can have a 2-3 non-interacting 

collision between the first and second collisions or  a 1-2 

non-interacting collision between the second and third col- 

lisions.  Lemma 1 rules out the two Rl sequences. The two Cl 

sequences are possible, though, and we show them in the top 

row of Fig. 21.  Again, we have relabelled the velocity 

regions, and we have incorporated an additional factor of (-1) 

into the integrands, reflecting their subtractive nature. 

Finally, the class (iii) diagrams consist of all those 

Rl and Cl diagrams that can have a fourth interacting collision. 

By the Recollision Rule, this fourth collision can be either a 

1-3 or a 2-3 collision for Rl, and either a 1-3 or a 1-2 

collision for Cl.  However, Lemma 2 rules out a fourth 1-3 

collision for Rl, as well as a fourth 1-2 collision for Cl. 

The remaining two diagrams are dynamically possible, and are 

shown in the bottom row of Fig. 21.  Again, for later convenience, 

we have relabelled the velocity regions in these diagrams.  In 

determining the integrands for these class (iii) diagrams, we 

recall that they arise here because, in {(f),^)'^, we incorrectly 

wrote T(6) instead of V(6") for these diagrams.  Therefore, the 

integrand for each diagram contains a "subtractive term", cor- 

responding to ¥(6), and an "additive term", corresponding to 

To obtain (<J> ,4,)(5>, we have now to add the contributions from 

the eight diagrams in.Figs. 20 and 21.  To this end, we first 
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reverse all velocities (where necessary) so that the velocity 

regions are encountered in the order a,3,Y»«5,e; next, we 

renumber the molecules (where necessary) in such a way that 

the first collision in each diagram is a 1-2 collision and the 

second collision a 1-3 collision. With these changes, we find 

that like-labelled velocity regions in the four diagrams in the 

top rows  of Figs. 20 and 21 are all equivalent and that the 

corresponding integrands can all be referred to the 1=1 

diagram in Fig. 22.  Similarly, like-labelled velocity regions 

in the four diagrams in the bottom rows  of Figs. 20 and 21 are 

all equivalent, and the corresponding integrands can all be 

referred to the 1=2  diagram in Fig. 22.   The integrand for the 

£=1 diagram in Fig. 22 will therefore be the sum of the 

integrands of the top-row diagrams in Figs. 20 and 21; likewise, 

the integrand for the 1=2  diagram in Fig. 22 will be the sum of 

the integrands of the bottom-row diagrams in Figs. 20 and 21. 

We thus obtain the comparatively simple result 

(* 
2 3 

,$)<$ =  -0s   I     f dVidV2dV3d^23d?3i|v21^21 |"TTfo(v.) 
1=1 JilltR i=l 1 

(-!)*{[* (a£)-*(ß£)]*[y(e&)-¥ {5 A)] 

+ [Y (o^)-Y( ß£)'] * [$ UÄ)-$(6^) ] } (4-32) 

where the integration volumes J^. and the velocity regions 

Q-o fßn fYo t^n i£»  are defined relative to the two diagrams in 
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ßrr 

£*\ A*Z 

Figure 22.  Diagrams for (<J>,ip)T. (3) 

Fig. 22. 

that 

We observe that (4-32) is symmetric in $ and ¥, so 

(<M)(P = (*,*)'? (4-33) 

This completes our derivation of the terms appearing in 

the re-summed form of the triple collision inner product in 

(4-16).  We have essentially replaced the v-diagrams in Fig. 10 

with the diagrams in Figs. 15, 17, 19 and 22.  We emphasize that, 

unlike the v-diagrams, our new diagrams are not subject to extra 

conditions or restrictions.  We have proved that each term in 

(4-16) has the attractive property of being symmetric in t)> and 

i/>, a property that did not hold for the individual terms in 
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(4-24).  Indeed, our work here constitutes an independent proof 

of the fact that [18] 

(*,^)£3) = (♦,♦) £91 (4-34) 

Further attractive features of our new expansion will emerge in 

the next chapter. 

4.3 Consequences for the Transport Coefficients 

In (2-41) and (2-42) we found that the triple collision con- 

tributions to the transport coefficients, Ai and ni/ are propor- 

tional to certain triple collision inner products.  Therefore, 

the fact that the general triple collision inner product can be 

decomposed in the manner of (4-16<i implies corresponding decom- 

positions for Ai and ni. Thus, we write 

Ai = Aii + Ai2 + Ais + Aii» 

ni = nil + Ii2 + ni3 + rui» 

where 

nAi± = -|(A,A)(» 

= _kT ,f ^(3) 
i - "Iu-(B'B)i 

(4-35) 

(4-36) 

(4-37) 

(4-38) 

Here, A and B are, as before, the solutions to the linearized 

Boltzmann equations (2-6) and (2-7); the N— Sonine approxi- 

mations to A and B*were given in (2-24) and (2-25) [cf. also 

Tables I and II]. 
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The quantities Xii and nil are calculated by means of 

formula (4-25) and the collision sequence diagram in Fig. 15. 

This "double-overlap" diagram contains the dynamics of only 

one  collision, and gives rise to purely "excluded volume" 

contributions to Ai and ni. 

The quantities A12 and n12 are calculated by means of 

formula (4-27) and the collision sequence diagram in Fig. 17. 

This "single-overlap" diagram contains the dynamics of two 

collisions, and gives contributions to Xi and n1 which may be 

characterized as a mixture of excluded volume effects and 

effects due to deviations from molecular chaos in the velocity 

distribution. 

The quantities X13 and ni3 are calculated by means of 

formula (4-30) and the collision sequence diagrams in Fig. 19. 

These no-overlap diagrams contain the dynamics of three  col- 

lisions, and give rise to contributions due solely to 

deviations from molecular chaos in the velocity distribution. 

Finally, the quantities Xiit and m* are calculated by means 

of formula (4-32) and the collision sequence diagrams in Fig. 22. 

These no-overlap diagrams contain the dynamics of four  collisions, 

and again give rise to contributions caused solely by deviations 

from molecular chaos in the velocity distribution. 

The fact that the above expansion terminates at four col- 

lisions is worth emphasizing.  Our previous investigations in I 

were based on collision integrals of the form (4-14), and it was 
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not clear just how many molecular collisions were actually 

involved.  Of course, the theorems in Sec. 3.2, which prove 

that three-particle collision sequences cannot contain more 

than four complete collisions, have assumed "hard sphere" 

dynamics.  However, it is a reasonable conjecture that con- 

tributions from five and more successive collisions among 

triplets of more realistic gas molecules will be negligibly 

small. 

It is obvious from the formulae for the integrals (<|),^)<?) 

that the ease of computing X\.   and ni. increases considerably 

with decreasing i.  This is because correlations among the 

positions  of the molecules (which dominate in the lower i 

terms) are mathematically easier to express than correlations 

among their velocities   {which dominate in the higher i terms). 

This will work to a practical advantage if  it should turn out 

that the magnitudes of the successive terms in (4-35) and 

(4-36) decrease from left to right, in the manner of a 

"perturbation expansion".  Present indications are that this 

is probably the case: As we shall see in the next chapter, 

the double-overlap terms, Aii and nil, coincide exactly with 

the Enskog quantities Xi„ and TU , respectively, while the 

single-overlap terms A12 and ni2 are on the order of roughly 

3 to 6 percent of the Enskog terms (but of opposite sign). 

Recalling our preliminary findings, reported in I, that Xi and 

Hi differ from Ai  and mE by only a few percent, we are thus 

led to conjecture that the single-overlap terms X12 and n12 

89 



AEDC-TR-71-51 

alone constitute a reasonably accurate refinement of Enskog's 

approximate theory. 

In the next chapter we shall analyze in detail the i=l 

and i=2 terms in (4-35) and (4-36). 
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CHAPTER V 

NUMERICAL CALCULATIONS OF THE "EXCLUDED VOLUME" 

CONTRIBUTIONS TO THE TRANSPORT PROPERTIES 

5.1 Equivalence of the "Double-Overlap" Con- 

tribution with Enskog's Approximation. 

The formula for the leading term in our expansion (4-16) 

of the triple collision inner product — the so-called 

"double-overlap" term — is given in (4-25), and refers to 

the collision sequence diagram in Fig. 15.  A more geometrical 

representation of this double-overlap collision sequence is 

shown in Fig. 23, which may be regarded as a "snapshot" of the 

molecules at the instant of the 1-2 interacting collision.  We 

take the integrating variables in (4-25) to be the velocities 

and relative positions of the molecules instantaneously before 

the 1-2 collision (thus, V.=V. (a)).     The integration volume fii 

is then determined by two conditions.  First, that molecules 1 

and 2 initially be converging: V2i•£2I>0.  Second, that 3 be 

overlapping with both 1 and 2:  | r*31 | < 1 and | k 21 +rl 1 | < 1.  If 

we write Vf for the ß-region velocities, then Vf and V*z will 

be given by (2-11), while V^V^.  Using the definitions of 

4 and ¥ in (4-3), we thus write (4-25) more explicitly as 

n5 r _^ 3 

(<!>,*)¥ = -7 / dVidVzdVadlczidrailvli-lczi |TTfo(V.) 
JV2i'1c2i>0 i=l    1 

|r3i |<1, |1c2i+f*ji |<1 

I      I  <Mv )*[<Mv;)-iMv)]     (5-1) 
m=l n=l  m     n    n 
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V,{a)»V,      y3(a).V3(j8) = V3 

.«' '2(/8)«V^ 

Figure 23.  Integrating variables for (<(),^J) i - 
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Since nothing in the integrand depends on the variable 

r*31, we can perform this integration without difficulty. 

Noting that the integration region for F31 , shown shaded in 

Fig. 13, is identical to the volume which determines the 

first density correction to g(a) [cf. Fig. 2 and equation 

(2-46)]/ one easily finds /dr 3 I=5TT/12 .  Thus, (5-1) becomes 

(* ,*)T =   -4-TTO5  /   dVidV2dV3d£21 |V2i -1c21 |"TTf0(V. ) 
^4       JV2i'^2i>0 i=l 

3       3 
I        I   *(Vm)*[<p(vJ;)   -   *(Vn)] (5-2) 

m=l  n=l 

Now, the n=3 term here vanishes because V3=V3.  Furthermore, 

the m=3 contribution vanishes under the V^ integration, since 

/dV3fo (V3)4»(V3) = 0 

This is due to the fact that <f>(V3) is always proportional to 

either V*3 or V3V3 [cf. the expansions for A and "B in (2-24) and 

(2-25)];  more generally, the vanishing above the above 

integral is a consequence of the normalization condition imposed 

on the distribution function (2-3) [cf. equation (2.1-14) of I]. 

Then since the quantities under the summation signs in (5-2) 

are independent of V^, the V^ integration can be trivially done 

owing to the normalization of the Maxwell-Boltzmann function: 

/ 
dV3fo(Vs) = n 
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Consequently,   (5-2)   reduces to 

(«fr,*)'?1 =  "öi™5n / dVidV2d£21 |V2I»K*2I | f 0 (Vj) f 0 (V2) 
V2i-lc2l>0 

2   2   _     _    __ 
I       I  *(Vm)*[^(V^)-i|;(Vn)] 

m=l n=l 
(5-3) 

A comparison of this last equation with equation (2-20), 

(2-23) and (2-48) reveals that 

(♦,*)T = j|7ra3n(<f>,i|0(2) =   (<|>,«)(« (5-4) 

Thus, the first term in the expansion (4-16) of the triple 

collision inner product coincides exactly  with the Enskog 

approximation.  The immediate consequence of (5-4) is that the 

first terms in the expansions (4-35) and (4-36) of Xi and ni 

coincide exactly with the Enskog predictions: 

(5-5a) 

(5-5b) 

With these results, our expressions for X and n in (2-49) and 

(2-50) can be written 
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X   =   X, 

n = no 

l + 

l + 

£iro'n(i| - i + Xl2+ Xl3+ XlMl 

c f-i-i TII2+ ni 3+ ni it \ 1 

(5-6) 

(5-7) 

5.2 Evaluation of the "Single-Overlap" Con- 

tribution.  Refinement of Enskog. 

Equations (5-6) and (5-7) show clearly what must be done 

to effect a rigorous improvement of Enskog's approximation 

for "the linear density dependence of the transport coefficients: 

we have to calculate the quantities (Xi2+Xi3+Xiit)/|Xi_| and 

(Hi 2+TII 3+ni !►)/| Tii_ | .  These calculations can be made through 

equations (4-37) and (4-38), using the general formula for 

the inner products (c|>,i|>)(? derived in Sec. 4.2. 

To the extent that our expansion öf the triple collision 

inner product in (4-16) displays the terms in decreasing order 

of importance — a conjecture which, although highly plausible, 

must ultimately be tested by direct numerical calculations — 

we can obtain a "first correction" to Enskog's theory by 

evaluating only the quantities X i 2/ | X1 _ | and TII2/|TIIE|.  We 

shall, for the present, evaluate these quantities using the 

Sonine approximations for A and B in (2-24) and (2-25).  The 

Nth Sonine approximation to (5-6) and (5-7) reads 
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X(N) = X„ (N)[l + n^'nfH - 1  +     I   XlJL(N)/|XiE(N) \\\ (5-8) 

n(N) = no(N) f l + _|7Ta3n(|| - l + J n^ (N)/|TUE(N) |j]    (5-9) 

The ratios under the summation signs can be read off from 

equations (2-53) and (2-54).  In particular, the i=2 ratios 

are 

N r #v\  .  .   io\      . _ . 1Ö1 

^5T = STW kj=1V
N>VN>[s3/>W'<s3/>W>]2   

(5^oi 

ni2(M)    _    -1 %#m - E7w k,L>w VH> L"£icm>iw,.B$tm>w.j1<s-ii> 

where the dimensionless triple-collision inner products [c|>,i|>]2 

are given by (2-55): 

The■formula for ($ ,il>)<z  which appears on the right side of the 

last equation is given in (4-27), and refers to the single- 

overlap collision sequence in Fig. 17.  If we introduce into 

(4-27) the dimensionless velocity variables w"l [cf. (2-26)3 

and the explicit forms of the Maxwell-Boltzmann functions 

[cf. (2-5)], and insert the resulting expression into (5-12), 

we obtain 
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[♦,♦!¥ = -j^l   / dWidW2dW3dic2idr3i IvTzi -"Jczi |exp (-Wf-Wf-Wf) 
&2 

{[•(<X)-»(B)]*[¥(Y)-¥(B)] 

+ 0[vK(a)-f(3)]*[$(Y)-*(ß)]>  (5-13) 

The integration volume &z   and the velocity regions a, 3 and y 

are still defined relative to the single-overlap diagram in 

Pig. 17, as is also the factor 0[cf. (4-28)].  We choose for 

our integrating variables the velocities and relative posi- 

tions of the molecules instantaneously after the 1-2 collision 

in Fig. 17 (so that W.=W.(3)).  In Fig. 24 we show the single- 

overlap collision sequence of Fig. 17 in more detail. 

Our program now is as follows:  Using Fig. 24, we must 

first express the a-and y-region velocities, and also the 

factor 0, as explicit functions of the integrating variables. 

Next, we must deduce from Fig. 24 an analytic expression for 

the integration region fi2, so that (5-13) is brought into the 

form of an iterated integral  with well-defined upper and lower 

integration limits.  By these means, we transform the expres- 

sion for [<|>,ty]lV  in (5-13) into a mathematically precise 

definite integral, defined without the use of any "physical" 

diagrams.  We then proceed to evaluate this integral for 

those forms of <j> and i|» appearing on the right of (5-10) and 

(5-11), using the explicit formulae for the Sonine polynomials 

given in Table II.  Finally using the aR(N) and b, (N) coef- 

ficients given in Table I, we evaluate the right sides of 
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W,(y) 

W2-W2(r) 

W3=W3(a)\ 
\ 
\ 

ft) Figure 24.  Integrating variables for («f»,^)'! 
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(5-10) and (5-11), and so obtain numerical values for the 

single-overlap contributions to (5-8) and (5-9).  We shall 

perform the calculations for the first (N=l) and second 

(N=2) Sonine approximations. 

The program just outlined entails an enormous amount 

of mathematical manipulations.  In the first place, we find 

that in order to bring (5-13) into the form of an iterated 

integral with reasonable limits, the vector integrating 

variables must be defined in differently oriented frames; 

thus, rotation matrices must be introduced in order to find 

the components of these vectors in a common coordinate system. 

In the second place, (5-13) as it stands is a fourteen dimen- 

sional integral, and we perform seven of these integrations 

analytically; however, the performance of these seven inte- 

grations increases considerably the mathematical complexity 

of (5-13), particularly for the higher Sonine integrands.  The 

remaining seven integrations must be done using Monte Carlo 

techniques.  If a simple, straight forward Monte Carlo 

technique is applied, one does not obtain results of suffi- 

cient numerical accuracy; thus, we have taken considerable 

pains to develop a Monte Carlo method which is "tailored" to 

the specifics of our problem.  Finally, we mention that cal- 

culations were made not only for the thermal conductivity and 

the viscosity, but also for the self-diffusion.  Since we are 

working in the second Sonine approximation, we have to calcu- 

late three distinct integrals for each transport property; 
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therefore, we are evaluating here a total of nine   separate 

integrals  of the form (5-13). 

It is simply not feasible to give here all or even most 

of the mathematical details involved in these calculations. 

Thus, we shall merely attempt to give the briefest possible 

sketch of the procedure, and then quote our numerical results. 

We begin by making a transformation of variables from 

the velocities wi,W2,W3 to 

W*0  = 3<wi + W*2 + W"3) 

W*21 = w*2 -yf[ (5-14) 

"W31 = W3 - W1 

It is also convenient to introduce the auxiliary variables 

WTo ,"W2 0 ,W^ 0 : 

Wi 0 = W*i - vfB = -| (W2 1 + "Wl 1) 

W*2 0 = "W2 - Wi = -|(wli - 2W21) (5-15) 

W30 = W"3 - "W0 = -|(W2i - 2W3i) 

It is straightforward to show that the Jacobian of the trans- 

formation (5-14) is unity, and also that 

3 
I  W? = 3W§ + E (5-16a) 

i=l 1 
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where the quantity E is defined by 

3       o _ _ E "  I ^n = ?(W2i + W3? - W21-W31) (5-16b) 
i=l 10   3 

For brevity, we shall also write 

k2i = k,  räi = r*,  k31 = k" (5-17) 

i 

where k3i   is  the collision vector  for  the 1-3  collision,   as 

shown  in Fig.   24.     Equation   (5-13)   thus  takes  the  form 

[♦,*]? =  jj^f   rdW"0dW2idr3ldkdr|w*2l-1c|exp(-3W§-E) 
■'Oz 

{[•(a)-•(&)]*[¥ (Y)-¥(ß)l 

+0 [¥ (a) -V (ß) ] * [« (Y) -* (ß) ] > (5-18) 

The a- and y-region velocities are given by equations 

of the form (2-11): 

w7 (a) = Wi + W2 l *k 1c        "wi (Y) - Wl + "Ws i «"k"1c* 

"W2 (a) = "W2 - W2 l «1c 1c W*2 (Y) = W*2 (5-19) 

"Ws (a) = vf3 W*3 (Y) - Ws -Ws !•£'£' 

If, in these equations, we replace each W. by W. , we obtain 

the equations giving the values of the velocities Wt   in the 
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a and y  regions.  The corresponding equations for the 

velocities Wo ,W*21 ,W*31 are easily found to be 

vf0 (a)     =  Wo Wo (Y)  = Wo 

wTzi(a) = Wli -2wli'k1t      "W2i(Y) - W*21 -W^'lc'lc' 

W3i(a) = wli - Wii'k 1c       W3I(Y) = Wai - 2W"31 «1c'It' 

Evidently, (5-19) and (5-20) give the cx-region velocities 

in terms of the integrating variables; however, the formulae 

for the Y~region velocities contain the vector k7 which itself 

is  also a function of the integrating variables.  In addition 

to determining k^ we must also obtain expressions for the times 

TI and T2 which enter into the factor 0.  By definition, Ti 

is the time between the 1-2 collision and the 1-3 collision, 

and T2 is the time between the 1-2 collision and the 2-3 

separating collision. Therefore, Ti is the smaller  root of 

the quadratic 

|r + vfaiTi |2 = 1 (5-21a) 

while T2 is the positive  root of the quadratic 

|(r+1c) + (w1i-W2i)T2 |2 = 1 (5-21b) 

The collision vector k' can then be obtained from Ti according 

to [cf. (4-21b)] 
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1c*= -r -W31T1 (5-21c) 

We shall defer giving the explicit expressions for TI,T2 and 

k'until we have reduced (5-18) to a definite integral. 

In transforming (5-18) into an iterated integral with 

specific integration limits, we find it convenient to 

define three coordinate systems, I, II and III. All three 

coordinate systems are rest frames of 1, but they are 

oriented differently: 

Frame I:  vfi=0; Z-axis points along W2 1 , and X-axis 

is in the plane of W21 and k such that k has a negative 

x-component. 

Frame II:  w\ = 0; obtained by rotating Frame I about 

its Y-axis so that the Z-axis points along -k. 

Frame III:  w\=0; obtained by first rotating Frame II 

about its Z-axis until r" lies in the positive X half of the 

XZ-plane, and then rotating about the Y-axis until the 

Z-axis points along -r\ 

The salient features of these frames are that they are all 

rest frames of 1 (in the ß-region), and their Z-axes satisfy 

zT  « W2i (5-22a) 

'ZJ.J ■ -£ (5-22b) 

^11T-a  -r* (5-22c) 
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We now consider the integrating variables in (5-18) in the 

order Wo M21 /k,f,W*31 • 

•Wo:  This variable is proportional to the total center- 

of-mass velocity, and Fig. 24 imposes no restrictions on this 

quantity.  Therefore, W0 is to be integrated over all possible 

values: 

/// 
d3W0 (5-22) 

When * and Hi  are Sonine polynomials, it turns out to be possible 

to factor out the Wo-dependence from the integrand in (5-18) 

in a term-by-term manner, and to then perform the Wo-integration 

analytically. 

•W21:  We specify this variable relative to Frame I.  Since, 

by (5-22a) , Frame I has its Z-axis along V?2 1 , then the angular 

integrations on W21 are taken account of by a factor of 4TT. 

Consequently, the W21-integration has the form 

00 

4TT I    w!idW2i (5-23) t7T j 
Jo 

•k:  We specify this variable with respect to Frame I also. 

However, Frame I is defined so that its XZ-plane contains k; 

thus, the azimuthal integration on k is taken account of by a 

factor of 2TT. We let 0 denote the polar angle of k in Frame I, 

as shown in Fig. 25.  The dynamics of the collision sequence 

in Fig. 24 requires that 1 and 2 be diverging just after their 

collision, so k must be such that W2i;,k<0.  Therefore, cosO is 
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w2, 

f3) Figure 25.  The variable k2i in {$ ,ty)2 

restricted to the range (-1,0), and the k-integration takes 

the form 

»£ dcos8 (5-24) 

•r:  We specify this variable with respect to Frame II in 

polar coordinate form (r,9  <b ) .  Since r* is restricted to lie r, r 

in the shaded region of Fig. 24, we can deduce the limits on 

r,9  and <J>  from the diagram in Fig. 26:  <b  can have any value 

between 0 and 2TT, cos0  is restricted to values between 1/2 

and 1, and r must lie between 1 and  2cos6 .  Thus, the 
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r*-integration takes the form 

r27r  rl /*2cos9 
I d<J> I dcos6 | r2drr (5-25) 

Jo      T Jl/2        rJl 

•W31:  We specify this last variable with respect to 

Frame III in polar coordinate form (W3i,8 A ). The dynamics 

of the collision sequence in Fig. 24 requires that 1 and 3 

be aimed to collide in the future.  The conditions which this 

requirement imposes on the W31-variables can be deduced from 

the diagram in Fig. 27:  as long as 8  lies between 0 and a 

certain critical value 60, then 1 and 3 will collide for any 

values of W31 and <J> .  It is seen from Fig. 27, that 0O is 

such that cos6o=:/r2-l/r=y'l-r~2".  Consequently, the W3 ^integra- 

tion takes the form 

f°° /*27r       rl 
wf1dW3i  /   d<j>    Idcose 

Jo Jo     WJ/I^F^w (5-26) 

Putting equations (5-22)-(5-26)"into (5-18), and using the 

fact that 

1"*  "■ 1 
W21'k = -W2icos0 

we thus obtain [A,^]'!' as an explicit  eleven-fold iterated 

integral: 
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Figure 26.  The variable r31 in (<p,ty)l2. 

Figure 27.  The variable W31 in (<p,^)(2' 
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[<J>,<HT - -5-^? r//d3w° f  w2idw2i /   dcosü/   d«r r dcosO 

r2cosOr /*2TT      /•» ri 
I    r2dr   I    d(f>w I    wfidWsi /   dcos6w 

A Jo      Vo J/i=F=r (5-27) 

(-W2iCOse)exp[-3Wo-E] 

{[•{a)-*(e)]*[f (Y)-*(B)1 

+e[*(a)-¥(S)]*[#(Y>-#(ß)]} 

where 

3  _* 3  _ 
«(a) =     I  <|>(W*. (a)), etc.;  V(a) = I  ty (\f. (a)) , etc.  (5-28) 

i=l  1 i=l  1 

0 = 

1 if Ti > T2 

(5-29) 

0 if Ti  < T2 

and where E and the a- and y-region velocities are given in 

(5-16b), (5-19) and (5-20) .  The evaluation of the integrand 

in (5-27) will evidently involve taking linear combinations 

and inner products of the vectors W-j 1 ZK/T" and W31; consequently, 

it is necessary to find the Cartesian components of these 

vectors in some common  coordinate system, expressing these 

coordinates in terms of the explicit integration variables in 

(5-27).  It turns out to be simplest to use Frame III as this 

common coordinate system.  The vector W31 is already defined 
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relative to Frame III; however, W21 and k are defined relative 

to Frame I, while r" is defined relative to Frame II.  We must 

therefore analyze the relationships between Frames I, II and 

III, construct the appropriate rotation matrices, and thereby 

bring the vectors W21, k and r into Frame III.  Having done 

this, we may then carry out the calculations indicated in equa- 

tions (5-21) to obtain explicit expressions for Ti,i2 and k" in 

terms of the integrating variables.  Upon performing all these 

calculations, we find the formulae shown in Table III.  By 

means of these formulae, along with equations (5-16b) , (5-19) , 

(5-20), (5-28) and (5-29), the integral in (5-27) can be eval- 

uated for any given functions <$>  and ty.     It is to be emphasized 

that this integral is now "mathematically self-contained", in 

that all the physical conditions imposed by the collision 

sequence diagram in Fig. 24 have now been incorporated into 

the integration limits and the formulae just mentioned. 

We have now only to evaluate the integral (5-27) for those 

specific combinations of $  and ^ functions that are required 

in (5-10) and (5-11) [cf. Table II].  Then, using the aR(N) 

and b,(N) values given in Table I, we immediately obtain the 

"single-overlap corrections" to the Enskog results—i.e., the 

i=2 terms in (5-8) and (5-9).  The evaluation of the required 

[(f),^]'! integrals is an extremely lengthy calculation, and it 

does not seem feasible to reproduce it here.  Consequently, 

we shall simply state in words what was done, remarking occa- 

sionally, on certain interesting aspects of the calculations. 
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TABLE III 

Dynamical quantities for the single-overlap collision 

sequence, expressed in terms of the integration variables 

in equation (5-27). [Note:     Vector components are 

relative to Frame III.] 

W2i   = W21 

sin9cos9rcosc|>r - cos9sin9r 

sin6sin<j>r 

sin9sin8rcos<(>r + cos9cos6r 

s = 

W31 = Wsi 

sinewcos((>w 

sin6wsin<J)w 

cos9w 

-sin0r 0 

0 "r = r 0 
cos6r _-l 

V = 
r (e-1) cos6wsin9wcos())w 

r (e-1) cos8wsin6wsin<j)w 

r(e-l)cos20w + r 

where e .fZ 1 -r -2 COS20 W 

Ti = w 3 1 r (l-e)cos0 w 

T2 = -r32'W32 + /(r
,3 2'W*32)

2 + wj2 (l-r|2)' 
wh 

where 
!r"3 2 ■ r + k 

W3 2 = W31 - W21 
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For those <|> and ^ functions required in (5-10) and 

(5-11), we first compute the corresponding $ and f functions; 

we find it convenient to express these in terms of Wo and 

the auxiliary variables wi 0 ,w"2 o ,w"3 0 [cf. (5-15)].  Next, the 

differences in $ and ¥ between the a and 3 regions and between 

the y  and (3 regions are calculated as required in (5-27) ; 

the calculations of these differences is simplified somewhat 

by the fact that Wo and the quantity E [cf. (5-16b)3 are the 

same in all regions.  We next take the scalar products of 

these differences in $ and ¥, as indicated in (5-27); each 

scalar product is in the form of a sum of terms (from a few 

to very many depending on the particular $  and i|> functions 

considered).  Using various vector and tensor identities [cf. 

Chapter 1 of ref. 4] , it is possible to reduce the W*0-depen- 

dence in each term to a factor of |Wo|n, with the value of n 

usually being different for different terms.  We can then 

carry out the "Wo-integration, 

//Yw?exp[-3W§]d3W0 (5-30) 
ao 

analytically on a term-by-term basis. This actually reduces 

the number of terms in the integrands considerably; for, only 

terms having an even power of Wo will survive, and of the sur- 

viving terms, several will differ only by numerical factors and 

can therefore be combined.  After the Wo-integration has been 

performed, the various [(f),^]^ quantities are given as eight- 

fold  iterated integrals. 

Ill 



AEDC-TR-71-51 

The fact that W0 could be integrated out with relative 

ease is a reflection of the fact that the dynamics of the 

collision sequence is independent of the velocity of the 

center-of-mass of the three molecules.  Another variable 

which does not affect the collision dynamics for hard sphere 

molecules is the scale with respect to which all the velocities 

are measured (this is because the angle of deflection for two 

colliding hard sphere molecules is independent of their velo- 

cities) .  Suppose, in fact, we measure the two velocity 

variables W21   and W31 in (5-27) in units of W21: 

W21 = Wai^ i 

W3 1 = W2 1 "w ) 
(5-31) 

Essentially, this amounts to a change of variables of the form 

(W21 , W31) -*- (W2i , w=Wsi/W2i) (5-32a) 

with 

dW2idW3i =W2idW3idw (5-32b) 

The essential independence of the integrand with respect to 

the velocity scale manifests itself in the following fact:  If 

relations (5-31) are introduced into the various integrands, 

then every term in these integrands is found to be homogenous 

in W21 ; that is, if F(X^i,T?3i) is a typical integrand term, 

then we discover that 
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F(W2i,Wii)   = F(W2iZ,W21w) = W^iFt^w) (5-33) 

with the value of n usually being different for different 
i 

terms.  In particular, we note that k' and 0 are homogeneous 

of degree zero, while E is homogeneous of degree two: 

E = Wii[|(l + w2 - z«w)] =  WiiE* (5-34) 

Therefore, if P(W2i,W3i) in (5-33) is a typical term inside 

the braces of (5-27) (where we now assume Wo has already been 

integrated out), then we can perform the W2i-integration, 

/•oo 

Jo' <W2 x)2+3+1+nexp[-E*W|x]F(z,w)dW2 x (5-35) 

analytically on a term-by-term basis. We note that this inte- 

gration removes the factor exp[-E] and replaces it by the reci- 

procal of E raised to some half-odd-integer power. 

Thus, by means of the W0-integration and the W2i-integra- 

tion, we reduce (5-27) to the form of a seven-fold iterated 

integral  with well-defined integration limits.  However, the 

integrands are now very complicated functions of the integrat- 

ing variables. Therefore, we proceed from this point using 

Monte Carlo techniques. 

A fairly comprehensive review of general Monte Carlo 

methods has been given by Hammersley and Handscomb [24]. We 

shall outline briefly some of the essential points of the 

Monte Carlo approach which are pertinent to our work here. 
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Suppose it is desired to evaluate the integral of some 

function f(x), where x denotes an n-component variable, over 

some finite region ß in the space defined by the components 

of j?: 

I = / f(x)dx (5-36) 
Ja 

Letting |fi| denote the volume fi, we write this as 

1= \n\jf{x)(fL\dx=   |ß|-F (5-37) 

where f is defined through the identity sign.  If we now con- 

sider a distribution in the space of x which is described by 

the -probability  density function 

P(x) = 

rl/|n|,  for x e Ü 

(5-38) 

0,    for  x jL Si 

then the quantity F may be interpreted as the "mean value" of 

f, taken with respect to this distribution.  [We note passing 

that the function P(x) defined in (5-38) is indeed a' legiti- 

mate probability density function, since it satisfies the two 

requirements P(x)£0 and /p(x)dx=l.]  Now, if we had a set of 

points {xi ,"x2 i. •. ,3?N} which were randomly distributed accord- 

ing to the density function in (5-38)—i.e., if we had a set 

of N points which were distributed randomly and uniformly  over 

fi—then we could estimate  f by an ordinary averaging procedure: 
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1 N 

f ■ £ I f (x.) (5-39) 
i=l  L 

The uncertainty  in so estimating F would be given approximately 

by the root-mean-square deviation of the f(x*.)-values, divided 

by the square root of the number of random points used. 

The Monte Carlo method for evaluating the integral I in 

(5-36) therefore requires that one be able to: 

1° Calculate, in some way, the volume |fi| of the 

integrating region ft; 

2°  Devise a method for generating points x\ ,x2,... 

randomly and uniformly inside ft. 

Then, normally using a high-speed digital computer, one 

generates  the points jfi ,X2 ,... ,X-, in turn, calculates  for 

these points the averages 

»sj! f<*i),    <f2> = 5 ! If«*!)]2 (5-40) 
1=1   1 wi=i    x 

and finally puts 

i * n U t ^VW] (5-41) 

It is desired, of course, to make the "error" term in (5-41) 

as small as possible.  Since the rms deviations of f is essen- 

tially fixed by the specifics of the problem, we must therefore 

take N as large as possible.  The maximum  value of N is essen- 

tially equal to the amount of computer time available, 
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divided by the amount of time the computer requires to 

generate one random point x\ and calculate the corresponding 

value f(x\).  If, as frequently happens, the maximum value 

of N is not large enough to give a sufficiently accurate esti- 

mate of I, then one has two alternatives:  either one must 

devise a more efficient means of generating the random points 

{x". }; or, one must try to make a change of variables in (5-36), 

(f(x)dx = (   f (x)|f§>dx' = / f" (x')dx'        (5-42) 
Jo J(i' ldx       Jo' 'a Jn n- 

in the hope that the new integrand f  will have a smaller rms 

deviation over the new region Q'  than f had over Si. 

There are many so-called "pseudo-random number" subroutines 

available by means of which a computer will generate on call a 

random value from a uniform distribution in the unit interval. 

In our work we use a subroutine written by Marsaglia and Bray 

[25] .  We shall denote by fi  a random number from a uniform 

distribution in the unit interval, with the understanding that 

a new random number is implied each time n.  appears.  We can 

generate a random value x from a uniform distribution in the 

interval [a,b] by means of the formula 

x = a + (b-a)*. (5-43) 

th u   is   a    \DOX" ,   witn   tne   l 

<x<i> 

random point "x from a uniform distribution inside 0,  by putting 

Thus, if the n-dimensional volume SI is a "box", with the i- 

component of 3c satisfying a.<xl '<b., then we can generate a 
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x(l) = a± 4- (b± - ai)/ti, i=l,...,n (5-44) 

If_fi is not a "box", then one has two options.  On the 

one hand, one can surround fi by a "box"E, generate random 

points inside E in the manner of (5-44), and then keep only 

those points which happen to fall inside fi.  On the other 

hand, one can construct a transformation of variables, x-*-x" 

which is such that the transformed volume fi' is a "box".  In 

the first method it is clear that only the fraction |fi|/JE| 

of the points initially generated in E will also lie in fi; 

thus, if the shape of fi is such that it can only be enclosed 

in a "box" E with |z|>>|fi|, then the first method is very 

inefficient.  [We note in passing that one could extend the 

definition of f so that it is zero outside fi, thus making f 

defined everywhere inside Ej  however, this approach can be 

shown to be completely equivalent to our first method, and 

thus cannot improve the situation any.]  If a fairly simple 

transformation of variables can be found which transforms fi 

into a "box", then that is normally the method to use.  It 

is always possible to write down transformations which carry 

fi into a "box" if  the given integral can itself be written 

as an n-fold iterated integral with explicit integration 

limits; however, whether a sufficienty "simple" transforma- 

tion can be written down is another question. 
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To these very general remarks about the Monte Carlo 

method for evaluating integrals, we should add one final com- 

ment.  The uncertainty in the Monte Carlo estimate of an 

integral [cf. (5-41)] is inversely proportional to the square 

root of the number of points for which the integrand is 

evaluated, regardless  of  the  dimensionality  of the  integral. 

This is in contrast to the situation with standard "classi- 

cal" numerical methods (i.e., the trapezoid method, Simson's 

method, Gauss' method), where the number of points required 

for a given level of accuracy increases very rapidly with 

the dimensionality of the integral.  It turns out that non- 

Monte Carlo methods are superior in four or less dimensions, 

while the Monte Carlo method is superior in five or more 

dimensions; indeed, for seven dimensional integrals, which 

are the kind we are faced with here, the Monte Carlo method 

is the only feasible one. 

Returning now to the problem at hand, we have to evaluate 

integrals of the type (5-27), except that the W0 and W21 inte- 

grations [the first four integrations in (5-27)] have already 

been performed analytically, and the W31-integration has been 

replaced by an integration over the variable w [cf. (5-31) 

and (5-32)].  The quantities in braces in (5-27) now have a 

fairly complicated structure, as a result of having been 

expressed in terms of quantities more closely related to the 

integrating variables.  However it found that, regardless of 

which Sonine polynomials are considered for <J> and i|>, the 

quantity in braces always contains the factor (z *1c) (w«1c') . 
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The reason for this is that the factors 1$(a)-*(3)] and 

—»     S\ 
[¥(a)-¥(3)] in (5-27) are always proportional to W2i'k2i 

(which becomes z«k after the W2i-integration), while the 

factors [*(Y)-*(ß)l and [¥(y)-¥(3)] in (5-27) are always 

proportional to W31»k  (which becomes w»k after the W21- 

integration).  Using the formula in Table III, it is easy 

to show that 

—■  /v 

W21*k = W2icos8 

W31*k = W3irecos0w 

so that the quantity in braces in-(5-27) always contains 

the overall factor 

(z *k) (w-$') = wrecos6cos8w (5-45) 

If we extract the above factor from the quantity in braces 

in (5-27) , then we obtain for [«J»,^]^ an expression of the 

general form 

/0     /*2ir   r\ /•2cos6r /*2TT 
dcosG I d<|>r / dcos6r I r2dr ( d(J>w 

1     JO Jl/2 Jl JO 

I    w2dw I dec 
Jo J/T^T1: 

w2dw / dcos9w[(cosö) (wrcos6cos8w)]xF  (5-46a) 
•2 

where the extra factor of cos8 comes from the middle line in 

(5-27), and where the quantity F is some complicated function 

of all  the integrating variables that accounts for "the rest" 
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of the integrand.  Using simple differential formulae, it 

is easy to transform (5-46a) into 

.      rO /"2ir   r2ir        /•« 
[♦»♦if = 2T / d(cos36) / d*r J d(f»w i w; dw 

/•l       /'16cos,,er rl 
/ dcos6r / d(r"*)   J d(cos20w)xF      (5-46b) 
Jl/2 Jl Jr-r-t 

Now, an integral of this type is not yet susceptible to Monte 

Carlo integration, because one of the variables, namely w, has 

an infinite range.  It is therefore necessary to transform 

from w to some new variable u, such that:  (■£) the infinite 

range 0<w<°° is transformed into a finite range a<u<b, and 

Hi)   the quantity w3F|9u/3w| is a bounded function of u in 

the interval [a,b].  The particular transformation we have 

used is 

u = r^r (5-47) 

This transformation evidently maps the interval 0<w<°° onto 

the interval 0<u<l.  The exponent of 4 was chosen after a 

careful study of the behavior of w3FJ3u/3v| in the limits 

w->-0 and w->-°°:  it was determined that 4 was the largest expo- 

nent for which this quantity remained finite in these limits 

for all  the required combinations of <}> and tji functions. 

Consequently, all the inner product integrals which are to 

be calculated have the general form 
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/O r2TT /•2-rr rl 
d(cos36)    /    d<f>r   /    d<j>w   /    du 

1 Jo        Jo        Jo 

rl /•16cos'*er fl 
I    dcos6r / d(r")   / d(cos26w)*G  (5-48) 

Jl/2 Jl Jl-r-z 

where G is a complicated but bounded  function of all the inte- 

grating variables, the exact form of G depending on which 

Sonine polynomials are being considered.  It is integrals of 

the form (5-48) which we must evaluate by a Monte Carlo pro- 

cedure. 

The integration volume ft for (5-48) consists of all 

points (cos36 ,$r ,<|>w,u,cos9r ,r"* ,cos29w) whose components lie 

between the corresponding integration limits in (5-48).  If 

all these integration limits were constants, then ft would be 

a "box", and we could use the method described in (5-44) to gen- 

erate points randomly and uniformly inside ft.  However, we note 

that the limits on cos29w depend on r
1', and the limits on r" 

depend on cos9r.  Thus, we shall have to devise a more sophis- 

ticated method for generating random points uniformly inside 

ft.  The volume of ft is calculated by evaluating (5-48) with 

G=l, and is easily found to be 

|0| =iTLi (5-49) 

One way of proceeding here would be to enclose ft in a 

larger "box" E, generate random points inside I  according to 
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the method (5-44), and then keep only those points which 

also fall inside SI.     We find, though, that the smallest 

box enclosing SI  has a volume about 5.6 times larger than 

SI,   so our generating efficiency would be only about 18%. 

We have therefore chosen to adopt a different approach: 

Essentially, what we do is to express the composite n- 

variable probability density function P (x) in (5-38) as a 

product of n "conditional one-variable density functions". 

This allows us to generate points in such a way that the 

non-rectangular shape of SI  is automatically  accounted for, 

so that every  point so generated is a "legitimate" point. 

(We remark that the problem is not so much to generate 

random points which simply lie inside SI,  but rather to do 

it in such a way that the points cover SI uniformly  to 

within normal statistical variations).  For a discussion of 

the conditioning technique, we refer to Ref. 26 [esp. pp. 187- 

190].  When this technique is applied to our problem here, 

it yields the following set of formulae for generating points 

randomly and uniformly inside the integrating region SI  of 

(5-48) :■ 

(5-50a) 

(5-50b) 

(5-50c) 

(5-5.0d) 

(5-50e) 

(5-50f) 

(5-50g) 

cosae 

«j>r 

*w 

u 

2-t-s 

3fl = -1 + K\ 

27T/E.2 

27T-t3 

A*    w=[(l-u)/u] * 

r 

cos2e w 

= 4cos 6r - 3cos0r + 1 

= [1 + (4cos26r-l)A6]
2 

=   (1-r-2)   + r-2*7 

122 



AEDC-TR-71-51 

In these formulae, the quantities ti.   represent random numbers 

drawn from a uniform distribution in the unit interval.  We 

note that the first four formulae, (5-50a)-(5-50d), are 

precisely what we would expect on the basis of (5-48) and 

(5-44).  The formulae for the last three variables are, 

however, different; this is because the limits for these 

variables are interrelated [cf.(5-48)].  These last three 

variables must be generated in the order given:  Thus, we 

first  draw a random number K5   and compute cos6r from (5-50e); 

we note that (5-50e) must be inverted to calculate cos6r, 

but this can be easily done by the computer.  With cos6r 

thus generated we next  draw a random number Ji6   and compute 

r1* according to (5-50f) ; we note that the value generated 

for r1* depends upon the value generated for cos6r. Finallys 

using the generated value of r1*   along with a random number 

fi7 ,  we calculate a value for cos28  according to (5-50g) . 

It is, of course, not  obvious that the generating for- 

mulae in (5-50) accomplish the desired goal of populating 

the seven-dimensional integrating region (I  of (5-48) randomly 

and uniformly.  To demonstrate the validity of these formu- 

lae and our use of them, let us regard them for the moment 

not as "generating formulae", but rather as equations 

specifying the transformation  of variables 

(coB3Ql^x,<i>VfutcosQrfr'1 ,cos23w) —*- Hi,... tA7) (5-51) 
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The reader can easily verify from (5-50) that this transfor- 

mation maps fi onto the seven-dimensional unit cube {0<fi.<l, 

i=l,...,7), and, moreover, that the Jacobian of the transfor- 

mation has the constant value I ft I: 

3 (cos38,(l>r,<i>w,u,coser,r\cos
2ew) _ 16ir2 _ .fii  (5_52) 

Consequently, we can write (5-48) as 

[<!> ,*]¥ = / dA.i / d*2'" / d^7x|ft|G       (5-53) 
Jo        Jo Jo 

where the dependence of G on the new integrating variables 

follows from its dependence on the old integrating variables 

via equations (5-50).  Since the new integration region is 

the (seven-dimensional) unit cube, then the Monte Carlo 

estimate of the integral in (5-53) is 

[*,*]¥ = 1'(\Q\G) (5-54a) 

where the average is taken with respect to a set of points 

(>ti ,4.2 ,... ,Hi)   generated randomly and uniformly inside the 

unit cube. Clearly this is equivalent to saying that 

[*,IMT = |n|*(G) (5-54b) 

where the average is taken with respect to a set of points 

(cos3 6 ,<J>r,... ,cos
28w). generated according to (5-50).  But 

(5-54b) also  gives the Monte Carlo estimate of (5-48), provided 
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the indicated average is taken with respect to a set of points 

(cos30 ,<|>r,. . :,cos28w) generated randomly  and uniformly  inside 

fi. We conclude, then, that points generated according to 

(5-50) are indeed distributed randomly and uniformly over the 

integrating region of (5-48). 

In summary, then, we can evaluate the integral (5-48) by 

generating N random "points" according to formulae (5-50), 

calculating the averages of G  and G2 with respect to these 

points, and then putting 

[♦,*]¥ = 16TT
2 

3 
<G>   ±'«*>-«»! 

(5-55) 

Denoting, for the sake of brevity, the single-overlap triple 

collision inner products on the right hand sides of (5-10) 

and (5-11) by 

lk£ °l> 
.(k) 
'3/2 (W

2)W\,S^(W2)Wi (5-56a) 

bk* - [sft£(irt>*i*k,s<J>(whOk]™ (5-56b) 

and defining the "reduced" single-overlap parts of Xi and nI 

in the Nth Sonine approximation by 

X*2(N) =  X12(N)/|XiF(N) | 

n*2(N) = ni2(N)/]mE(N) 

(5-57a) 

(5-57b) 
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we show the results of our Monte Carlo calculations in 

Column A of Table IV. These results were obtained by car- 

rying out the computational procedure just described, using 

50,000 random points; the calculations required approximately 

9 minutes on a UNIVAC 1108 computer.  Included in Table IV 

are the results of parallel calculations for the coefficient 

of self-diffusion, D.  The values obtained for X12 and ni2 

are calculated from (5-10) and (5-11), respectively, and 

represent "corrections" to the Enskog terms of -1 in equations 

(5-8) and (5-9). An equation analogous to (5-8) and (5-9) 

holds for the self-diffusion D, except that there is no addi- 

tional "spatial inhomogeneity" term for D as there is for A 

and n., 

The ± uncertainties quoted in column A of Table IV 

should be considered as "one standard deviation" uncertainties. 

An attempt was made to reduce these uncertainties without  in- 

creasing the number of points used (and hence the amount of 

computer time used). To do this, we have resorted to a 

technique known as "importance sampling". 

Importance sampling is roughly equivalent to making a 

change of integrating (or generating) variables which decreases 

the rms deviation of, the integrand, thereby decreasing the 

uncertainty in the average value computed for this integrand. 

To illustrate the approach we have taken, consider again 

equation (5-53).  Suppose we can find some function P(*i) 

that satisfies 
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TABLE IV 

Monte Carlo estimates of the single-overlap triple collision 

integrals, and the consequent fractional corrections to the 

Enskog values for Xi,m and Di in the first(l) and second(2) 

Sonine approximations. 

Quantity 
Column A 

(straight sampling) 
Columr 

(importance 
i B 

sampling) 

ai i -0.0311 + .0018 -0.0284 + .0008 

ai 2 0.0333 + .0007 0.0331 + .0004 

&2  1 0.0331 + .0007 0.0334 + .0004 

ä2 2 0.0214 + .0034 0.0276 ± .0014 

bo o -0.0628 + .0017 -0.0631 + .0008 

bo l 0.0194 + .0008 0.0194 + .0004 

bi o 0.0189 + .0007 0.0198 + .0004 

bn -0.0709 + .0047 -0.0631 + .0018 

Co 0 -0.1186 + .0009 -0.1181 + .0008 

Co 1 0.0391 + .0009 0.0393 + .0006 

Ci o 0.0387 + .0009 0.0397 + .0005 

en 0.0298 + .0025 0.0322 + .0015 

A i*2(l) 0.0311 ± .0018 0.0284 ± .0008 

A 1*2 (2) 0.0256 + .0018 0.0228 + .0008 

n *2(l) 0.0628 + .0017 0.0631 + .0008 

m*2(2) 0.0617 + .0017 0.0618 + .0008 

D *2(1) 0.1186 + .0009 0.1181 + .0008 

D 1*2 (2) 0.1151 + .0009 0.1146 + .0008 
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1°  P(*i)>0 for 0<*1<1, 

f 
JO 

P(*i)d*i=l 

3° P(<*i) "follows" G in (KA-i^l in the sense that 

P(*i)/G  is more nearly a constant in this 

interval than G itself is, independently of the 

other variables tiz ,.. . ,A.? . 

Items 1° and 2° tell us that P(Ai) can be regarded as a pro- 

bability density function for K\ over the unit interval. If 

we now write (5-53) as 

[<J> Mi = / puijd*! j dfi2'" j d*7x\Q\\vT£rn   (5-58) 

then we see that this integral can also be evaluated in the 

following way:  Generate the variables Ki,...Ki  uniformly 

inside the unit interval as before, but now generate K\   accord- 

ing to the density function P(^i).  [Techniques for generating 

random numbers from a non-uniform distribution characterized by 

a non-constant probability density function are derived and. 

discussed in detail in Ref. 26.]  The above integral can now 

be calculated as the average value, with respect to the points 

so generated, of the new integrand, 

i°i[*M 
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Since, by item 3°, this new integrand has a smaller variance 

than the old integrand, |ß|G, it follows that the numerator 

of the uncertainty term in (5-55) will be correspondingly 

reduced. 

We can carry out the above procedure for each of the 

X.-variables in turn; however, we should not  expect to be 

able to reduce the uncertainty to zero.  This is because 

item 3° can usually not be strictly satisfied "independently 

of the other variables"; indeed, 3° could be strictly  satis- 

fied only if the H\-dependence in G could be exactly factored 

out. 

By using a very expirical trial-and-error procedure, 

guided by a rough determination of the "average behavior" of 

a typical G as a function of each of the variables n..   in 

(5-53), we settled on the following combination of density 

functions to use in our importance sampling procedure: 

P(*i) « exp [-3(1-^.1)] (5-59a) 

P(*2) a  1 - 0.7COS2T7^2 (5-59b) 

PUs) « 1 + 0.7COS2TT*3 (5-59C) 

PUs) a  exp[-/LS] (5-59d) 

The results are shown in column B of Table IV.  On the average, 

the uncertainties in the thermal conductivity and the vis- 

cosity were reduced by a factor of 2, while the uncertainty in 

the self-diffusion was not much affected (but note that the 

self-diffusion uncertainties were comparatively small to begin 
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with).  The computer run used to obtain the column B results 

took about nine and one-half minutes, as opposed to about 

nine minutes flat for the column A results.  However, about 

forty  minutes of computer time would have been required by 

the straight-sampling program to obtain results as accurate 

as those found in the importance-sampling run, since the 

number of points used must be increased by a factor of four 

in order to halve the uncertainty.  Thus, our attempt at 

importance sampling may be regarded as fairly successful. 

We take as our "best" results the column B figures for 

Xi*2,n*2, and Di*2.  It will be observed that the second 

Sonine approximation figures are smaller than the first 

Sonine approximation figures by 2% for the viscosity, 3% 

for the self-diffusion, and 20% for the thermal conductivity. 

The 20% difference for the thermal conductivity is both sur- 

prising and disappointing: either  our calculations for the 

thermal conductivity are in error; or  the Sonine approxi- 

mation is not a rapidly convergent one, so far as the first 

density density correction to the thermal conductivity is - 

concerned.  Very careful checks of our derivations and com- 

puter coding have not turned up any errors, so we believe 

the second alternative is a very distinct possibility.  How- 

ever, until this question is definitely resolved, we have 

decided not to initiate a several-hour long computer run 

aimed at further  reducing the quoted uncertainties. 
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We are presently preparing a Monte Carlo calculation 

based on the eleven-dimensional  integral in (5-27), rather 

than the seven-dimensional integral of (5-48).  If certain 

convergence problems can be worked out, we could thus by- 

pass the lengthy calculations involved in proceeding ana- 

lytically from (5-27) to (5-48).  At present, we see this 

approach as the one most likely to resolve the difficulty 

with the thermal conductivity, as well as providing a 

fairly independent check of our other results.  This approach 

might also enable us to investigate higher Sonine approxima- 

tions, something which is quite out of the question using 

(5-48) because of the great algebraic complexity of the 

integrands for these higher Sonine terms. 
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CHAPTER VI 

DISCUSSION OF RESULTS 

6.1  Summary of Accomplishments 

In this report we have demonstrated that, up to terms 

linear in the density n, the thermal conductivity A, the 

shear viscosity n and the coefficient of self diffusion D 

of a gas of hard sphere molecules can be represented by 

A = XoU + j^TTa3n[1.92 + A*i + A*2 + A 1*3 + A*.,]}   (6-1) 

n = noil + ^T7c3n[i.28 + n*i + n*2 + n*s + ni\]J      (6-2) 

D = D0(l + ^ira
3n[D*i + D*2 + D*3 + Di*]} (6-3) 

Here, A0, no and D0 are the transport coefficients in the low 

pressure limit (derived from the linearized Boltzmann equa- 

tion) , and c is the diameter of the hard sphere molecules. 

In these equations, Aii, nii and Dii represent reduced trans- 

port coefficients that account for correlations among the 

positions and the velocities of three molecules.  They are 

given by expressions of the form 

X- " " aTTNT X XV^V*1 [V^i <6'4> 
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" *i " " 57W ll0 £
bk(N> VN> t*k'^!i <6-5' 

where the coefficients a, (N) and b, (N) are given in Table I, 

and where the quantities [4,w4>o](? and ^k'^Ä^T are "triPle 

collision inner products" of various Sonine polynomials (or 

more simply, "triple collision integrals").  The coefficients 

D!i are given by a similar expression.  We have proved that 

the triple collision integrals are symmetric  in the sense 

that 

[4>,*iy = I*»*]'?1 (6-6) 

The expansions (6-1), (6-2) and (6-3) correspond to an 

expansion of the triple collision integrals, 

[<J>,1;]<3)= [<|>,Y](? + [<t>,y]f+   [♦,*]'? + it,M{V (6-7) 

in which we take into account, in turn, the effects of one, 

two, three and four successive binary collisions among three 

gas molecules.  The major features of this expansion are 

summarized in Table V.  It was proved that the expansion 

terminates after four collisions among three (hard sphere) 

gas molecules. 

The leading terms, X*i,   m*i and D*i , are due to col- 

lision sequences in which the positions of the three molecules 

are highly correlated.  Specifically, the phases are con- 

strained by the "excluded volume" condition that two pairs of 
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TABLE V 

Expansion of the triple collision integrals. 

[*,^](3) = i*,^]'?1 + [♦#*]¥ + I*»*]'? + [*f*]V 

•increasing number of collisions. 

•decreasing correlations in the 

position variables; i.e., "decreas- 

ing excluded volume effects". 

•increasing correlations in the velocity 

variables; i.e., "increasing devia- 

tions from molecular chaos". 

•increasing range of correlations. 

•increasing difficulty of computation. 

•decreasing magnitude. 

TABLE VI 

Numerical results for the single-overlap terms. 

First Sonine Approx. Second Sonine Approx. 

Xi 2 0.0284 ± .0008 0.0228 ± .0008 

* 
ni2 0.0631 ± .0008 0.0618 ± .0008 

_ * 
D12 0.1181 ± .0008 0.1146 ± .0008 
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molecules be overlapping while the third pair is colliding. 

Such "double-overlap" collision sequences involve the dynamics 

of only one  binary collision.  It was shown that these leading 

terms coincide with the predictions of the Enskog theory: 

A 1*1 = TU* = Di*i = -1 (6-8) 

The second terms, X12, TI12 and D12/ are due to collision 

sequences in which only one pair of molecules is overlapping 

while another pair is colliding.  These "single-overlap" col- 

lision sequences involve the dynamics of two  successive binary 

collisions, and thus give rise not only to an excluded volume 

effect, but also to a departure from strict molecular chaos. 

We have derived explicit integral expressions for these single- 

overlap terms,, and we have evaluated these integrals numerically. 

The results are summarized in Table VI. 

We see that these single-overlap terms change the Enskog 

estimates for the thermal conductivity and the viscosity by 

approximately 2% and 6%, respectively.  The contribution to the 

coefficient of self diffusion is more significant and amounts 

to approximately 11%. 

Our formulation of the triple collision contributions to 

the transport coefficients makes use of the solutions of the well- 

known linearized Boltzmann equation.  These solutions are tradi- 

tionally obtained by a procedure which approximates  them as 

finite sums of Sonine polynomials [4,5].  These Sonine expansions 
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produce rapidly converging expressions for the 'dilute   limit 

coefficients X 0, ri o and Do, in the sense that the values for 

these quantities calculated using the first two  Sonine terms 

differ from the values calculated using the"first Sonine term 

alone  by only about 2%.  We find [cf. Table VI] that the 

values for n12 and D12 are likewise fairly insensitive to the 

order of the Sonine approximation:  the second Sonine approxi- 
* * 

mation lowers n12 by about 2% and D12 by about 3%, from the 

corresponding values found in the first Sonine approximation. 
* 

However, the second Sonine approximation value for A12 is 

about 20% lower than the first Sonine approximation value.  So 

far, we have been unable to locate any errors in our calcula- 

tions.  Thus, it seems that a rapid convergence of the Sonine 

expansion procedure can not  be taken completely for granted, 

and further research on this point is required. 

We conjecture that the excluded volume  terms represent 

the dominant  contributions to the density dependence of the 

transport coefficients.  This conjecture is based on a compari- 

son of our present results for the single-overlap and double- 

overlap terms with the previous results reported in I.  Unfor- 

tunately, our previous results are not accurate enough to allow 

a definite conclusion to be drawn in this regard.  We recall 

that in I we considered only the thermal conductivity and the 

viscosity, and these only in the first Sonine approximation,- 

moreover, the formulation of the triple collision integrals in 

I permitted an accuracy of only about one-tenth that available 
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by our present method.  Consequently, the validity of the 

last point mentioned in Table V must ultimately be established 

by an explicit calculation of the integrals [<J>,i|;](f and [$,ty]l$. 

To the extent that our conjecture is  correct, though, the 

figures quoted in the second column of Table VI should repre- 

sent the most accurate numerical refinement to date of the 

predictions of the Enskog theory. 

We recall that the density dependence of the thevmodyna- 

mic properties of a gas is completely determined by "excluded 

volume effects" representing correlations in the positions of 

the gas molecules, and is not affected at all by correlations 

in the velocities. Our present results indicate that, for 

the density dependence of the transport properties of a gas, 

velocity correlations do contribute somewhat, but it is again 

the excluded volume effects which play the dominant role. 

6.2 Outlook 

In the present report we have developed a physical expan- 

sion which accounts for the effects of sequences of binary col- 

lisions among three gas molecules upon the first density coef- 

ficients (Ai and ru in (1-2)) of the transport properties of 

a moderately dense gas. In this section we want to comment on 

how the insight gained in this research can be used to improve 

our capability of calculating transport coefficients. 
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We first note that the expansion procedure developed in 

this report can be extended to account for sequences of binary 

collisions among more  than three molecules.  Such sequences 

need to be considered in calculating the higher order density 

terms in the expansions (1-2). One would expect that the 

next terms in (1-2) would be proportional to p2, with coeffi- 

cients of proportionality being determined by four-particle 

collision integrals. However, as noted in I, the four-particle 

collision integrals turn out to be divergent; the reason is 

that the coefficients of p2 in (1-2) have the form 

X2 + X£logp and ria + niilogp 

Nevertheless one could carry out a partial  evaluation of .the 

four-particle collision integrals with our procedure.  Thus, 

a first approximation to ^ and ri2 would refer to a collision 

sequence involving four gas molecules in which one pair of 

molecules is colliding while all the other pairs are overlap- 

ping.  This contribution is convergent and leads to terms 

proportional to p2 which are the same as those in the Enskog 

theory.  Physically, we would again expect this to be the 

dominant effect.  Thus, it might be advantageous to represent 

the transport coefficient as a sum of two  series:  one which 

is a power series in the density, and another which contains 

(among others) non-analytic terms such as p2logp.  The coef- 

ficients of the first series could then be evaluated in 
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successive approximations by our procedure:  The first appro- 

ximations would contain those n-particle collisions where one 

pair is colliding while all other pairs are overlapping; this 

would reproduce the coefficients in the power series predicted 

by the theory of Enskog.  Molecular dynamics results confirm 

our suggestion that these coefficients provide a good first 

approximation [27].  A second approximation to the coefficients 

of the power series would be obtained by considering those 

n-particle collisions where one pair is colliding while all 

the other pairs exaept  one  are overlapping; for n=3 this 

would be our terms X12 and ni2 in (6-1), which were calculated 

in this report.  Other terms could then be regrouped to give a 

second  series with a non-analytic density dependence.  However, 

the coefficient of the leading term, p2logp, in this second 

series is determined by collision integrals that do not involve 

any pairs of molecules that overlap.  Therefore, extrapolating 

by analogy our physical results for three-particle collisions, 

we would expect that the quantitative effects of this second 

series would be small.  This conclusion is supported by an 

analysis of precise experimental viscosity data to be reported 

in a future technical report. 

In the present report we have formulated the theory of 

predicting transport properties for a moderately dense gas of 

hard spherical  molecules.  However, the engineer requires 

methods for predicting transport properties of gases of mole- 

cules with a more realistic intermolecular interaction. 
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In conclusion, therefore, we indicate how the procedure 

developed in this report may be generalized to more realistic 

gases.  We do not  want to suggest that the problem of calcu- 

lating transport properties of dense real gases is on the verge 

of being solved; indeed, calculating the effects of collisional 

transfer and of triple collisions involving bounded states poses 

a very difficult challenge for the future.  Nevertheless, our 

analysis does suggest how to treat the effect of successive 

collisions among three gas molecules when the molecules inter- 

act via a potential with a hard core and a finite range. 

For hard sphere molecules the leading term appeared to be 

obtained by a partial  evaluation of the triple collision inte- 

grals, namely by restricting the integration region to the 

excluded volume configuration indicated in Fig. 2.  These are 
0 

precisely the same configurations as those which determine the 

third virial coefficient A2 in the virial expansion (1-1) of 

the equilibrium  properties.  For molecules with a finite inter- 

action range, one could again consider a partial evaluation of 

the triple collision integrals by restricting the integration 

to those configurations that determine the corresponding third 

virial coefficient for the equilibrium virial series.  Our 

results lead to the conjecture that such a partial evaluation 

may again be a very good approximation for predicting the trans- 

port properties. Thus, our analysis may open a way to extend 

the Enskog theory, which is so successful for hard sphere mole- 

cules, to molecules with a more realistic interaction potential. 
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APPENDIX A 

THEOREMS ON THE DYNAMICS OF THREE HARD SPHERE MOLECULES 

►   Lemma   1.  In the collision sequence defined by the 

diagram in Fig. 28, it is not possible for spheres 2 and 3 

to collide or overlap in the time interval ti^tsts. 

•Proof.     If the three spheres have diameter a, we must 

evidently prove that 

r32(t)>a  for  ti$t<t5 (A-l) 

However, in view of the symmetry of the recollision sequence, 

it suffices to prove this inequality for t3^t£ts only. 

The theorem is most easily proved by examining the actual 

trajectories of the three particles in a particular reference 

frame.  In this frame, the center of 1 is at rest at the 

Figure 28.  Diagram of Lemma 1. 
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i 

origin 0 prior to the 1-3 collision (t<ta).  The frame is 

oriented so that the center of 2 moves in the XZ plane in the 

positive Z direction.  The situation is depicted in Fig. 29. 

Points A and B lie in the XZ plane, and denote the points 

where the center of 2 meets the action sphere of 1 at times 

ti and t2 respectively.  For times t>t2, the center of 2 lies 

on the extension of vector ÄB.  Vector ÖB has length a and 

makes an angle 6i with the X axis, with 

0 < 0! < | (A-2) 

We let C denote the point where the center of 3 strikes 

the action sphere of 1 at time t3.  In this interacting 

collision, 1 and 3 will exchange velocity components along OC. 

As a consequence, 3 will be deflected so that, for t>t3, its 

center moves in the plane perpendicular to ÖC at C (plane P3), 

and 1 will be knocked so that for t>t3 its center moves along 

the extension of vector CO.  We specify the location of point C 

on the surface of the action sphere of 1 by means of two 

angles, 62 and 4>:  4> is the angle that ÖC makes with the XZ 

plane, and 82 is the angle that the positive Z axis makes with 

the plane containing OC and the Y axis (plane PI).  [Thus, in 

Fig. 29, 62 is measured in the XZ plane, even though OC is not 

necessarily in this plane.] 

We now examine the restrictions on the location of point C 

if it is required that there be a 1-2 collision at some .time 

ti,>t3.  Since, for t>t3, the center of 2 is on line AB above B, 

142 



AEDC-TR-71-51 

plane P3 

action sphere 
of I  for t < t 

^ path of 2 

path of I 
-and- 

edge of plane PI 

Figure 29.  Diagram used in proof of Lemma 1 

143 



AEDC-TR-71-51 

then in order for 1 and 2 to collide, 3 must knock the 

action sphere of 1 across some portion of the line AB 

above B.  This requires that in the t3 collision 1 be given 

a positive velocity component in the direction ÖB.  This 

in turn can happen only if CO*ÖB>0; thus C must   lie   in   the 

hemisphere  opposite  B. 

If C lies in the hemisphere opposite B, then it-fol- 

lows that the distance from C to any point on the line AB 

above B is greater than c.  Thus, r32{t3)>a.  In order for 

rs2(t) to become equal to a for some time t=t6>ta, it is 

necessary for the plane of the path of 3 to intersect some 

portion of the line AB above B.  For this to happen, C 

must   lie  in   the  +Z hemisphere. 

If now we require both  a 1-2 collision and a 3-2 

collision for some times ti^ta and t6>t3 respectively, then 

C must lie in the hemisphere opposite B and  in the +Z 

hemisphere.  This restricts C to the sector of the action 

sphere of 1 defined by 

6i < e2 < | 

and (A-3) 

2*2 

Consider the distance between the path of 2 for t>t3 

and the plane P3.  Since these intersect, there are two 

points on the line AB above B whose distances to the plane 
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P3 are exactly a.  We denote as point E the position of 

2 at the earlier time t„ when the distance |EF|=O.  For 

all times t3^t<tp, r3 2(t)>a, so the time t6 of first  contact 

of pair  32 must be greater than or equal to t„: 

t6 * tE (A-4) 

Next, consider the distance between the path of 2 for 

t>t3 and the plane PI.  Since the distance from point B to 

this plane is asin (81 +[TT/2 - Qi])<o,   then at some time tG>t2 

the center of 2 will be at a point G such that the distance 

from G to the plane PI is exactly a.  The time ts of the 

last contact  of pair  12 must clearly be less than or equal 

to t_: 

t5 S tQ (A-5) 

We now wish to compare the distance from G to the plane 

PI with the distance from E to this same plane.  The former 

is by definition a.    The latter is just the length |ÖE|, 

inasmuch as OE is seen to be perpendicular to CO and hence 

perpendicular to the plane Pi.  Now from Fig. 29 it will be 

seen that OE and OB have equal projections on the X axis, 

so that 

|ÖE|COS82 = |ÖB|COS0I = acosBi (A-6) 

By the first of equations (A-3) we deduce that cos0i>cos6 2, 

so that |ÖE|>a.  Thus E is farther from the plane PI than 

G is.  Therefore, 
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tE > tG (A-7) 

Comparing (A-7) with (A-4) and (A-5), we conclude that 

t6 > t5 (A-8) 

Thus 3 can collide with 2 only after  1 and 2 have separated 

at time ts, which proves the lemma. 
Q.E.D. 

► THEOREM I. If a three-particle collision sequence 

contains at least one single-overlap collision, then it 

cannot contain more than three complete collisions. 

•Proof.     We shall first list all possible three-particle 

collision sequences which contain a single-overlap collision 

and a total of three complete collisions. Then we shall show 

that it is not possible to add a fourth complete collision to 

any of these sequences without violating Lemma 1 (or the 

Recollision Rule, as stated on p.39). 

We suppose that at time t=0 spheres 1 and 2 collide 

while spheres 1 and 3 overlap.  This will constitute the 

"known" single-overlap collision; whether or not other 

overlap collisions occur for t>0 or t<0 is immaterial. 

Nevertheless, we must immediately allow for three cases, 

according to whether this single-overlap collision is (a) 

interacting, (b) penetrating, or (c) separating.  [See top 

of Fig. 30].  Now, the very existence of this overlap col- 

lision already implies the existence of two  complete 
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Figure 30.  Diagram used in proof of Theorem I. 
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collisions — namely, a 1-2 collision and a 1-3 collision. 

Therefore, we can obtain all possible sequences with three 

complete collisions by appending to (a), (b) and (c) in turn 

each possible third complete collision.  This third collision 

may occur either in the past or in the future.  However, we 

observe that any third collision in the past of (a) can be 

made a third collision in the future of (a) simply by reversing 

the sense of time; moreover, by this same device we can make 

any third collision in the past of (b) a third collision in 

the future of (c), and any third collision in the past of (c) 

a third collision in the future of (b).  Therefore, it suf- 

fices to consider only the possible future  third complete col- 

lisions for each of the cases (a), (b) and (c). An inspection 

of diagrams (a), (b) and (c) in Fig. 30 reveals that the next 

future complete collision cannot occur between 1 and 2 or 

between 1 and 3 since these pairs have already collided.  [Note: 

1 and 3 will of course undergo a separating collision in the 

future, but this is not another complete  collision; likewise 

for 1 and 2 in case (b).]  Consequently, the only candidate 

for the future third collision in each case is the pair 2 and 3, 

If 2 and 3 are overlapping at t=0, in which case the 1-2 

collision is actually a double-overlap  collision, then this 

third complete collision has "already" occurred; moreover, it 

is clear that 2 and 3 cannot then recollide, this for the same 

reason that 1-2 and 1-3 cannot recollide.  Thus, Theorem I 

holds trivially for a double-overlap collision.  We therefore 

consider the non-trivial case in which 2 and 3 are not 
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overlapping at t=0, and are aimed to collide at some time 

ti>0.  Two cases can now be distinguished, corresponding' to 

a 2-3 interacting  collision (which we label "1) and a 2-3 

penetrating  collision (which we label "2).  Therefore we have 

six possible diagrams containing a single-overlap collision 

and a total of three complete collisions:  (al), (a2), (bl), 

(b2), (cl) and (c2).  We show these diagrams in Fig. 30. 

Our next task is to demonstrate that it is not possible to add 

another complete collision either   in the past (t<0) or  in the 

future (t>ti) of any of these six collision sequences. 

If a fourth complete collision occurred at some t<0, it 

would have to be a 2-3 collision.  This follows by the same 

reasoning we used in establishing that the third collision at 

time ti would have to be a 2-3 collision.  On the other hand, 

if a fourth complete collision occurred at some t>ti it would 

have to be other than a 2-3 collision, since 2 and 3 have 

just collided at time ti.  Thus, our theorem will be proved 

if we can establish that, for each of the six diagrams (al) 

through (c2), 

a 2-3 collision cannot occur for t<0 

a 1-2 collision cannot occur for t>ti 

a 1-3 collision cannot occur for t>ti 

Of the 6x3=18 propositions to be proved, we can dispose 

of 10 of them rather easily by simply invoking the Recollision 

Rule (cf. p.39) : 

Diagrams (b2) and (c2) are composed of three non-interacting 

collisions involving the three pairs 1-2, 1-3, 2-3.  Since there 

149 



AEDC-TR-71-51 

are no interacting collisions present, all pairs will recede 

in the past and future, and no further collisions can occur. 

Therefore 

(b2) satisfies a, 3 and y 

(c2) satisfies a, ß and y 

Diagrams (bl) and (b2) differ only in that the 2-3 collision 

at time ti is interacting for (bl) and penetrating for (b2). 

For times t^ti the diagrams are "dynamically equivalent"; i.e., 

for t^ti the conditions on the phases of the three particles 

are identical, and are not affected by whether 2 and 3 bounce 

off each other or penetrate each other at the ti collision. 

Therefore, from the fact that (b2) satisfies a we may deduce 

(bl) satisfies a 

Similarly, (cl) and (c2)are dynamically equivalent for t<ti, 

so from the fact that (c2) satisfies a we may deduce 

(cl) satisfies a 

Finally, we observe that (a2) and (c2) are dynamically equi- 

valent for t>0, so since (c2) satisfies ß and y,  then 

(a2) satisfies ß and y 

We are now left with eight propositions to prove; these 

will require Lemma 1, which states that at no time during the 

recollision sequence (12)(13)1(12) is it possible for 2 and 3 

.to collide or overlap. 

For times tsti diagrams (al) and (a2) are dynamically 

equivalent, so we discuss proposition a for these two diagrams 

together.  Suppose a were violated, and for some t'<0 a 2-3 

collision occurred.  Then reading from t' to ti we would have 
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sequences of the form (23)(12) (23), with 1 and 3 overlapping 

at t=0.  But this violates Lemma 1, as can be seen by a trivial 

relabelling of the particles; thus, we conclude that 

(al) satisfies a 

(a2) satisfies a 

For times t»0 diagrams (al) and (cl) are dynamically 

equivalent, so we discuss propositions ß and y  for these two 

diagrams together.  First, suppose ß were violated, and for 

some time t'>ti a 1-2 collision occurred.  Then reading from 

time 0 to time t' we would have sequences of the form 

(12)(23) (12), with 1 and 3 overlapping at t=0.  This violates 

Lemma 1, as can be seen by a relabelling of the particles, and 

therefore 

(al) satisfies B 

(cl) satisfies ß 

Next, suppose y  were violated in (al) or (cl), so that for 

some time t'>ti a 1-3 collision occurred.  For this to happen, 

the 1-3 overlap condition which existed at t=0 must have been 

terminated prior to time ti (by the Recollision Rule), and so 

we let t" (0<t"<ti) be the time when the requisite separating 

collision occurred.  Reading backwards in time from t' to t" 

we have sequences of the form (13)(23)1(13)n.  The "last" 

collision, (13)n, starts a time t" (still reading backwards), 

and is not yet completed at time 0 when 1 and 2 collide.  This 

is a violation of Lemma 1, however, and therefore 

(al) satisfies y 

(cl) satisfies y 
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It remains only to prove that diagram (bl) satisfies 

propositions 3 and y.     Now in this diagram, 1 overlaps with 

both 2 and 3 immediately after t=0.  Let t*>0 and t">0 

be the time when 1 and 2 separate and the time when 1 and 3 

separate, respectively.  If either t' or t" is greater than 

ti, then the 2-3 collision at time ti is an interacting 

overlap collision.  But because of our disposal of the (al) 

and (a2) diagrams, we know that a collision sequence containing 

an interacting overlap collision cannot violate the theorem. 

Thus, we restrict our attention to the cases where both t' and 

t" are less than ti, and we distinguish two cases:  t'<t" and 

t'>t".  For t'<t", 1 and 2 separate while 1 and 3 are overlapping, 

and subsequently 2 and 3 interact; this is identical to diagram 

(cl), which diagram we have proved does not violate the theorem. 

For t'>t", 1 and 3 separate while 1 and 2 are overlapping, and 

subsequently 2 and 3 interact; interchanging labels 2 and 3, we 

again obtain diagram (cl).  We may conclude, then, that (bl) 

does not violate the theorem, and in particular that 

(bl) satisfies ß and y 

We have thus shown that all six diagrams, (al) through 

(c2), satisfy propositions a, 3 and y,  and our proof is complete. 

Q.E.D. 

►  THEOREM II.     If a three-particle collision sequence 

contains no single-overlap collision, then it cannot contain 

more than four complete collisions.' 
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• Proof.     Since by hypothesis no overlap collisions are 

allowed, then in between any concomittant pair of non-inter- 

acting penetrating and separating collisions, no third 

collision may occur.  Thus, all complete  collisions are disjoint, 

and we may unambiguously define a collision sequence by a left- 

to-right juxtaposition of (ab)-symbols, as defined in Sec. 3.2 

[cf. (3-1)].  Our method of proof is to first list all possible 

collision sequences containing four complete collisions, and to 

then show that it is impossible to add a fifth complete collision 

without violating either the Recollision Rule or Lemmas 1, 2 

or 3. 

To obtain the four-collision sequences, let us assume the 

first collision is (12) and the second is (13) .  By the Recol- 

lision Rule the third collision can only be (12) or (23).  If 

the third collision is (12) , then the fourth collision can only 

be (13) or (23); if the third collision is (23) , then the fourth 

collision can only be (12) or (13).  Thus the candidates for the 

possible sequences containing four complete collisions are 

(12) (13) (12) (13) 

(12) (13) (12) (23) 

(12) (13) (23) (12) 

(12) (13) (23) (13) 

We next display explicitly the interacting or non-inter- 

acting nature of the middle two collisions, at the same time 

indicating which sequences violate the Recollision Rule [RR] 

or Lemmas 1, 2 or 3 ([Ll],[L2],[L3]). 
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(12) (13)1(12)1(13) [L2] 

(12) (13)i(12)i(23) 

(12) (13)i(23)1(12) [L2] 

(12) (13)1(23)i(13) 

(12) (13)n(12)1(13) [RR] 

(12) (13)n(12)1(23) [RR] 

(12) (13)n(23)i(12) [LI] 

(12) (13)n(23)1(13) 

(12) (13)i(12)n(13) [RR] 

(12) (13)1(12)n(23) 

(12) (13)1(23)n(12) [LI] 

(12) (13)1(23)n(13) [RR] 

(12) (13)n(12)n(13) [RR] 

(12) (13)n(12)n(23) [RR] 

(12) (13)n(23)n(12) [RR] 

(12) (13)n(23)n(13) [RR] 

We thus find that there are only four dynamically possible 

sequences of four complete collisions which do not involve an 

overlap.  [We ignore for the moment the interacting or non- 

interacting nature of the first and fourth collisions.]  It 

will be observed that two of these possible sequences are 

(12) (13)i(12)i(23) 

(12) (13)i(12)n(23) 

while the other two sequences can be obtained from these by 

reversing time and renumbering the molecules.  Hence, the 

above two sequences are the only "dynamically independent" 

sequences of four complete collisions [this observation justi- 

fies our remark in the text concerning (3-2)], and we may 

without loss of generality confine our further remarks to 

these two sequences. 

The possible three-particle collision sequences containing 

five  complete collisions and no single-overlap collision can 

evidently be obtained in two ways: Either  we can add a (13) 
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or (23) collision in front  of the two four-collision sequences 

(in which case we must pay attention to the interacting or 

non-interacting nature of the first collision); or  we can add 

a (12) or (13) collision in back  of the two four-collision 

sequences (in which case we must pay attention to the inter- 

acting or non-interacting nature of the last collision).  We 

list below all these possibilities, and we indicate as before 

which sequences violate which restrictions.  We use the fact, 

mentioned in the text, that sequences constructed by inserting 

additional complete non-interacting collisions into the 

sequences mentioned in Lemma 2 are also not possible. 

(13) (12)i(13)i(12)i(23) [L2] (13) (12) X (13) 1 (12) n (23) [L2] 

(23) (12)i(ll)i(12)i(23) [L3] (23) (12) 1 (13) X (12) n (23) [L2] 

(13) (12)n(13)i(12)i(23) [RR] (13) (12) n (13) X (12) n (23) [RR] 

(23) (12)n(13)i(12)i(23) [L2] (23) (12) n (13) i (12) n (23) [LI] 

(12) (13)1(12)1(23)1(12) [L3] (12) (13) i (12) n (23) 1 (12) [L2] 

(12) (13)i(12)i(23)i(13) [L2] (12) (13) i (12) n (23) i (13) [LI] 

(12)(13)1(12)1(23)n(12) [RR] (12)(13)1(12)n(23)n(12) [RR] 

(12) (13)1(12)i(23)n(13) [LI] (12) (13)1 (12) n (23) n (13) [RR] 

Since every sequence violates some restriction, the theorem 

is proved. Q.E.D. 
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