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ABSTRACT

Calculations of transport properties of dilute gases
are always based on the Boltzmann equation. The Boltzmann
equation accounts only for the effects of collisions between
two gas molecules. To predict transport properties of
moderately dense gases one needs to determine the effects
of collisions among more than two gas molecules. The present
report studies the contributions to the transport properties
caused by collisions among three gas molecules. It is demon-
strated that the first density correction to the transport
properties can be represented by a series of collision
integrals associated with, one, two, three and four collisions
between three gas molecules. Numerical studies for calculating
the dominant collision integrals are made for a gas of hard

spherical molecules.
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CHAPTER 1

SCOPE OF THIS RESEARCH

1.1 Introduction

For many engineering applications, reliable information
on the transport properties of compressed gases is required.
This research is part of a continuing effort to develop
methods to calculate the transport properties of gases as a
function of pressure or density. In order to pursue this goal
we are attempting to derive such methods from the rigorous
foundations of statistical mechanics. Our approach is in many
ways analogous to the virial expansion for the equation of
state ‘and the thermodynamic properties. We recall that, for a
gas in equilibrium, the product of the pressure P and volume V

can be expanded in a power series in terms of the density p:

PV = RT + Ai1p + A2p% + ... (1-1)

The "virial coefficients"” Ak can be expressed in terms-of
molecular clusteél integrals which are integrals over the posi-
tions of k simultaneously interacting gas molecules. They can
be calculated for molecules with a given interaction potential.
Similarly, we attempt to represent the thermal conductivity

A and the viscosity n by expansions in terms of the density p:
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A= A9 + Ap + Aipzlogp + A2p? + ...
(1-2)

n=no+ me + nzp2logp + A2p% + ...

The new expansion (1-2) for the transport properties
differs from the virial expansion (1-1) for the equilibrium
properties in two important aspects:

1. The theory predicts that the expansion for the
transport properties contains not only simple
powers of p, but also terms which depend loga-
rithmically on p [1,2,3]. These extra terms
lead to some complicating features and we shall
need to assess their effect. In this and a
subsequent technical report we shall give some
arguments indicating that the coefficients of

the logp term are small.

2. The coefficients A and n determine the response
of the gas to the presence of a gradient in
temperature or fluid velocity. Microscopically,
these coefficients are related to the dynamical
interactions among the molecules. While the
coefficients Ak of the virial serigg are deter-
mined by relatively simple "configurational
integrals", the coefficients of the expansions
(1-2) are determined by fairly complicated
"collision integrals". At the present, the

structure of these collision integrals is poorly

understood.
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The transport coefficients Ap and np in the dilute gas
iimit (p+0) are determined by the Boltzmann eguation. Using
a procedure introduced by Chapman and Enskog [4,5], Ao and np
are obtained in terms of "binary collision integrals". Calcu-
lation of these binary collision integrals has become a routine
procedure, and tabulated values are available for many forms of
the intermolecular potential.

The approximate nature of the Boltzmann equation is due
to the fact that it considers only uncorrelated binary col~
lisions. That is, if two molecules are aimed to collide, the
Boltzmann equation assumes that they will eventually collide;
similarly, if two molecules are not aimed to collide, the
Boltzmann equation assumes that they will never collide. These
assumptions clearly fail at higher densities, where, as a
result of "interfering" collisions with other molecules, two
molecules which are originally aimed to collide may in fact not
collide, and two molecules which are originally not aimed to
collide may eventually do so. Therefore, to extend the theory
to higher densities, collision processes involving more than
two molecules must be accounted for.

In the past decade many attempts have been made to
generalize the Boltzmann equation to higher densities. However,
all such attempts have been on a rather formal level. Thus it
becomes our task to judge these developments, to derive expres-
sions for the collision integrals determining the coefficients

in the density expansion (1-2) for the transport properties, and
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to explore procedures for calculating these collision integrals.

In this technical report we focus our attention on the
first density corrections A; and ni in (1-2). A knowledge of
these first density coefficients would enable us to ﬁredict
the transport properties up to pressures of the order of 100
atmospheres.

A calculation of the first density corrections requires
an analysis of collisions among three gas molecules. A
treatment of "genuine" triple collisions, such as those lead-
ing to the association and dissociation of bounded states, is
deferred to a later stage in this research program. Here we
consider the effect on the transport properties of those triple
collisions which are sequences of successive binary collisions
involving three molecules.

In view of the complexity of this task, our initial
analysis must be restricted to a gas of hard spherical molecules.
Although this model is somewhat unrealistic, it nevertheless
provides valuable insight as to how the various collision
sequences contribute to the transport coefficients of the gas.
Our ultimate goal of course is to calculate the density depen-

dence of the transport properties of more realistic gases.

1.2 Highlights of This Research

The research program outlined above was initiated in a
previous technical report AEDC-TR-69-68 [6]. We shall refer

to that report as I.
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In the past a few attempts have been made to propose
a tentative theory for the density dependence of the transport
properties. The most important approximate theory is the one
proposed by Enskog for a gas of hard spherical molecules ([7].
This theory assumes that the probability of finding two
molecules involved in a collisioﬁ, when the gas is not in
equilibrium, is the same as when the gas Zs in equilibrium.

All approximate theories developed thus far avoid an
explicit analysis of collision sequences involving more than
two molecules. The research reported in I and the present
report yields, for the first time, actual calculations of
transport collision integrals which include the effects of
collisions among more than two gas molecules.

The preliminary calculations reported in I revealed that
the theory of Enskog is not strictly correct, but it does
provide a good first approximation to the first density coef-
ficients. While this result represented a major discovery,
its physical origin was far from clear. Furthermore, the
calculations reported in I revealed that substantial cancel-
lations occurred among the contributions from the various
three-particle collision sequences. These results indicated
that, despite the fact that our formulation of the transport
integrals was mathematically correct, we did not grasp suf-
ficiently well the "physics" of the problem. As a consequence
we were unable to refine the approximate Enskog theory in a

systematic way, nor was it clear how the prediction method
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could be extended to account for successive cqllisions between
more realistic gas molecules.

In the present report we show how these questions can
be answered by considering three-particle collision integrals
containing respectively, one, two, three and four binary
collisions among the three molecules. Present indicationé are
that this expansion converges rapidly, and the first term
accounts for 90 to 95% of the first density correction.

To appreciate the physical meaning of this eXpansion
we again make the analogy with the virial expansion (1~1) for
the equation of state and the thermodynamic properties. For
a gas in equilibrium the velocities of the molecules are
uncorrelated; that is, the velocities of the molecules are
independent and determined by the Maxwell-Boltzmann distribution.
As a result the virial coefficients Ak are related to cluster
integrals that contain only the positions of the molecules.

In the dilute gas limit, the equation of state is that of a
perfect gas: PV=RT. In this approximation it is assumed

that the positions of the molecules are also random. This
assumption fails at higher densities since the exceluded volume
associated with molecules of finite size leads to correlations
among the positions of the molecules.

For a gas that is not in equilibrium both the positions
and the velocities are correlated. At low densities, the
transport coefficients of a gas are given approximately by the
Chapman-Enskog theory [Xp and no in (1-2)]. This approximate

theory is akin to the perfect gas law, in that it assumes
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no correlations in either the positions or the velocities of
the molecules. The assumption that the velocities are uncor-
related is sometimes referred to as the assumption of molecular
chaoe. In order to calculate the transport properties at
higher densities we have to account for excluded volume effects
in the position distribution, and also for deviations from
molecular chaos in the velocity distribution. With the fore-
going points in mind, our new expansion procedure for calculating
the first density correction to the transport properties may be
characterized in the following way: The first term in the
expansion takes into account the excluded volume effects for
the positions of three molecules, but no deviations from mole-
cular chaos for their velocities. The next term accounts for
the excluded volume effects for two molecules and a first
deviation from molecular chaos in which the velocities are cor-
related by two successive binary collisions among the three
molecules. The higher order terms contain no excluded volume
effects, but increased deviations from molecular chaos caused
by three and four successive collisions among the three
molecules. It turns out that the first term in this expansion
of the first density coefficients coincides precisely with the
Enskog theory.

In the course of our investigations, several theorems were
discovered leading to significant simplifications in the calcu-
lations of the transport integrals. In particular we were able
to prove that, for a calculation of transport coefficients, one

does not need to consider more than four successive collisions
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among three gas molecules. Although this theorem is strictly
valid for hard spherical molecules, the analysis strongly sug-
gests that the contributions from five and more successive
collisions will be negligibly small for more realistic gas
molecules as well. Furthermore, it turns out that the matrix
of collision integrals is symmetrie, so it suffices to calcu-
late only half the elements of the matrix.
~In summary, the results obtained for this report represent
a significant advance in our ability to calculate transport
collision integrals accounting for sequences of collisions
involving three gas molecules. Moreover, the results are in
such a form that methods to extend the theory to higher densi-
ties and to generalize the procedure to more complicated
molecules begin to suggest themselves. For a more detailed
discussion of the results the reader is referred to Chapter VI.
While developing the theory further, we have also made a
close examination of the density dependence of transport proper-
ties for those gases where experimental information is available.
In I we developed some criteria as to how information could be
extracted from the experimental data for a meaningful comparison
of theory and experiment. As a result we presented tables of
first density coefficients for both the thermal conductivity
and shear viscosity [8). During the present research efforts,
new very precise results were obtained for the density dependence
of the viscosity of argon and nitrogen. These studies were
carried out in collaboration with Professor Kestin and Mr. Paykoc

at Brown University, and will be presented in &nother technical
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report to be prepared in the near future. The present report
is limited to a comprehensive account of our methods to cal-

culate the required transport collision integrals.
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CHAPTER II

REVIEW OF THE BASIC EQUATIONS

In Chapter II of our previousireport I[6], the basic
equations determining the transport coefficients of a gas of
hard sphere molecules were presented and discussed in some
detail. 1In the present chapter we review these equations,
since they form the basis for our subsequent work. Inasmuch
as these equations and their underlying formalism are rather
complicated, we have made several changes in notation and
format in an attempt to obtain greater pedagogical clarity.
We shall now write all equations directly in terms of the
number density of molecules n and the molecular diameter o,
instead of the molecular covolume bp; these quantities are

related by the equation [cf. (2.3-8) of I]

500 = Srg? ' =
8bp = 12“0 n (2-1)

More importantly, we shall introduce the "binary collision
inner product" and the "triple collision inner product" as
the fundamental entities which determine the zeroth-order
density and first-order density parts of the transport coef-
ficients. We shall see that our understanding of ‘the origin
and magnitude of the linear terms in the density expansions
of the transport coefficients depends mainly upon how deeply
we can analyze the physics and mathematicz of the general

"triple collision inner product".

10
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2.1 Equations Governing the Transport Coefficients in the

Dilute Limit. The "Binary Collision Inner Product”.

The Boltzmann equation for the rate of change of the

single-particle distribution function £ (#),¥i;t) of a dilute

gas is [4]

3+ vi-dh = aen) (2-2)
Here the term J(ff) represents the effects of uncorrelated
binary collisions among the molecules [cf. p.10 of I for a
description of J(ff)]. 1In order to obtain a solution f wvalid
to first order in the gradients of the local temperature
T(Fi;t) and the local mean velocity U(Fi,t) -- i.e., a solution
sufficient to determine the thermal conductivity Ag¢ and the

shear viscosity neg-- one assumes for f the form [6]

£(F1,71:t) = fo(vl)(l -K(W)-%}-?(ﬁ)z%) (2-3)

Here, Vﬁ is the "thermal velocity" of molecule 1,

Vi = ¥1 - 4(T1,t) (2-4)
£fo(V,) is the Maxwell-Boltzmann distribution function,

(2-5)

_ m )32 -mvZ/2xT
FolVa) = n[21rkT] =

where m is the mass of a molecule and k is Boltzmann's constant,

o p— ' =
and finally, A(V,) and B(V,) are respectively vector- and

11
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tensor-valued functions of velocity whose forms must be
such that (2-3) satisfies (2-2) to first order in the gradients
of T and §. One thus finds that A and B must satisfy the

equations [6]

LR = fovn) (B - 3 (2-6)
and
LB(TI) = £0 (V1) ZVITh (2-7)

where V?Vl is the traceless tensor V;V;- TV%/3, and where 1.
is the "linearized binary collision operator". For hard sphere
molecules of diameter o, the operator I, acting on a general

function w(Vﬁ) produces ([cf. (2.8-8) of I]

I29(Vy) = -OZJ/.dV}dﬁzl]V21'ﬁ21|fo(v1)fo(vz)

2
T(12) } 9(T) (2-8)
n=1

The quantities appearing in this equation are related to each
other through the binary collision sequence depicted in Fig.l.
The variable V3 is the thermal velocity of molecule 2,
V21 = ¥; - V), and ﬁ21 ldcates molecule 2 relative to molecule
1 according to

— ey

ok21 = - (F2-F1) (2-9)

Since ?21 is a unit vector, then ]fi-f§|=c, implying that we

are spatially constraining molecules 1 and 2 to be just touching

12
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<l
>
N<|v

molecule | ‘ molecule 2

Figure 1. A collision between two hard sphere molecules.

each other; in other words, in (2-8) molecules 1 and 2 are
"colliding" with perihelion or "collision vector" ﬁzl [see
Fig.l1l].

The operator T(12) in (2-8)} has two forms, depending on
whether the two molecules are converging (V;l-?21>0) or diverging
(Vil-ﬁ}1<0). Specifically, if the molecules are diverging,
then T(12) acting on a general function F of the velocities V:

and V. produces zero:

-—

V21°K21<0: T(12)F(V,V3) = 0 (2-10a)

13



AEDC-TR-71-51
if the molecules are converging, however, then
V21+R21>0: TQQ2)F(V,,V2) = F(V{,V3) - F(V1,V2) (2-10b)

where Vi and'VE are the velocities of the molecules after the

collision:

Vi = V1 + Va1°kK21%21
(2-11)

Vi = V2 - Va1+kz21X21
For later purposes it will be illustrative to regard T(12)
as being the sum of two "velocity replacement" operators,
Tﬁ(lZ) and T?(lZ), which we shall denote generally by
T®(12) :
u( )
T(12) = ) T%(12) (2-12)
u=n,i u

According to (2-10a), when molecules 1 and 2 are not aimed
to collide, then T?(12)=T?(12)=0; according to (2-10b), when

molecules 1 and 2 are aimed to collide, then

™ (12)F (V1,V2) = F(V{,V3)
(2-13)
T2 (12)F(V1,72) = -F(V},V2)
where V{ and V; are given by (2-11). Our motivation for

introducing the Tﬁ(l2) operators ,is as follows. Let us

associate the index uy=i with an "interacting" collision, in
which molecules 1 and 2 are deflected in the usual way with
their final velocities Vi and V5 given by (2-11); similarly,
let us associate the index p=n with a "non-interacting" col-

lision, in which molecules 1 and 2 pass through each other

14
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—

undeflected so that their final velocities are V?=Vﬁ and Vi=V,.

Then we may write for either index u.

Vai1°k21<0: T$(12)F(vn,ﬁ2) =0 (2-14a)
V21 k2120: Tﬁ’(lz)F(V‘l V) = (-1)YF(VT,T3) (2-14b)

where (-l)u=+l or -1 according to whether the u-collision is
interacting or non-interacting, and where Vi and Vs are now
the final velocities for the p-collision. A more precise
mathematical definition of these operators has been given by
Ernst et al [9].

With the linearized Boltzmann operator I, thus defined,
one next proceeds to solve equations (2-6) and (2-7) for the
functions A and ﬁ‘respectively. The solution X’governs the
linear response of the distribution function f to a gradient
in the temperature, and in fact it determines the dilute-limit

thermal conductivity A, according to [cf. (2.1-18) of I]
Xo [dV1A(V1)' [fo(V1) (I;X,i‘ = 2)71] (2-15)

Similarly, the solution B governs the linear response of the
distribution function to a gradient in the mean velocity, and
it determines the dilute limit viscosity ng¢ according to [cEf.

(2.1-19) of I]

ne = ‘{%jd%‘ﬁ(ﬁ): [fa(vl) ViV (2-16)

By virtue of equations (2-6) and (2-7), it is seen that

equations (2-15) and (2-16) can also be written
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k ol cam i —
Ao = 5.[dV1A(V1)'IzA(V1)
- =
ne = K [a. 8w 3@

We are thus led to define the binary collision inner product

of two functions ¢(V1) and (V) by

(6, 9)@ zjdv‘mv‘x)uzw(?l) C o (2-17)

where * denotes the dot product if ¢ and y are vectors, and
the double dot product if they are tensors. With this notation,

the above equations for A, and no take the compact forms

Ao = ‘g(i,i)m (2-18)
=
no = £(8,B)@ (2-19)

Therefore, once A(Vi) and B(Vi) have been found, Ao is given
essentially by the binary collision inner product of A with
itself, while no is given essentially by the binary collision
inner product of % with itself.

An explicit expression for the binary collision inner
product can be obtained .by substituting the formula for I,
given in (2-8) into the definition (2-17), and then symmetrizing

with respect to the velocities. Defining

& (V,,7,)

2 2
1 6(V) and Y¥(V1,V2) = ] ¥(V) (2-20)
n=1 n=1

we obtain in this way
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2 — — — ~
(¢,9)2 = - g /dvldedizl | V21 Koy [£0 (V1) Ep(V2)
{0 (V) ,V32)*T(12)¥(V,,V3) } (2-21)

If we write T(12) as in (2-14), this becomes

2 -— o _A —
(¢,9)? = - % E /dVldVdezl |V21'ﬁ21 |fo (V1) £o(V2)
u=i,n
{& (T, ,\'r"z)*'r‘ﬁ‘(lz)wu‘r‘l V2)} (2-22)

Alternatively, we can use (2-10) to write the binary collision

inner product as

@ g2 T -
(¢,9) = - 5 _‘dvidvzgkulvzwkzl|fo(V1)fo(Vz)
Vai1°+K21>

(2-23)

{&(V,,V2) * [¥ (V] ,V3)-¥(V, , V) 1}

where Vi and V; are given in terms of the integration variables
by (2-11).

In practice, one does not solve (2-6) and (2-7) for 3]Vﬁ)
andtf(V§) exactly, but only in some "Nth Sonine approximation";
that is, A and % are written as linear combinations of N Sonine
polynomials, and the optimum values of the expansion coefficients
are found by a variational procedure. If these Sonjine expansions

are written as [cf. (2.2-10) of I]

[y N
BV = - 2 (22, kzlak<u)s§§;(w%)W2 (2-24)
N-1
= _ Y
B (V1) = + 2 ‘/-?n}—'z- ‘/;“ﬁ_kzobk(mss“/‘)z (W) Wi W, (2-25)
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where we have defined the dimensionless velocity W; by

= = J. .
W, Sy3T Vi (2-26)

then one finds that the expansion coefficients for N=1 and
N=2 are as shown in Table I [4]. The explicit formulae for
the Sonine polynomials which we shall be using are give in
Table II [4]. We remark that the complicated looking factors
in front of the summation signs in (2-24) and (2-25) were
chosen merely in order to make ai(l)=bp(l)=1l for hard
sphere molecules.

If we now substitute the Sonine expansions (2-24) and
(2-25) into (2-18) and (2-19), we can obtain the well-known

results [cf. (2.2-13) of I]

K — = 7
M o= S@EE)? = B L T L m) (2-27)
e = 5@ B = o &y EL by ) (2-28)

for thé Nth Sonine approximations to A¢ and ny respectively.
We remark, however, that these results are actually obtained
by substituting the Sonine expansions for X& and ﬁ;.directly
into (2-15) and (2-16), rather than into (2-18) and (2-19).
Of course, the coefficients ak(N) and bk(N) in the expansions
(2-24) and (2-25) were obtained by evallating integrals

which are essentially binary collision inner products between

the various Sonine polynomials, as was indicated in I.
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TABLE I

The coefficients for the first and second
Sonine approximations (2-24) and

solution of the linearized Boltzmann equation

for hard sphere molecules.

(2-25) to the

N=1 a:(l) =1 =
_ 1 _ 3
81(2)—14‘4—4- —1+2—02-
N=2
= L = 0
az2(2) = 73 = To1
TABLE II
The Sonine Polynomials
k J
. (k) - (-1) - (k+n) !
General: S "' (X) = jZo(j+n)!(k-j)!j!
-0 - (0) -
=0: Sn (X) =1
=1: st () = (1) x
=2: Sr(12) (x) = A (n+2) o)y 4 5X?
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In the following chapters, we shall indicate how
the calculation of the first order density quantities proceeds
along lines parallel to the foregoing binary collision inner
product formalism. Thus, an appreciatioﬁ of (a) the definition
of the binary collision inner product in (2-17), (b) its
relation to the zeroth-order transport coefficients in (2-18)
and (2-19), and (c) its mathematical structure in (2-21}-(2-23),
will enable us to see more clearly what is invelved in determin-
ing the first order density corrections to the transport coef-
ficients. I

Finally, we wish to point out an important feature of the
binary collision inner product in (2-17): it is symmetiriec, in

that

(6,9)2 = (y,$)? (2-29)

provided that ¢ and y are either both even or both odd functions
of velocity. This can be proved most easily using equation
(2-23): Changing the integrating variables from ﬁﬁ,ﬁ? to V?,V?
and noting from (2-11) that

avidv; = avidv,

V21k21 = ~V21K2: ' (2-30)

vi? + v3? = vi + v}

(2-23) can be written as

2 4 - P
(¢6,9)? = - % dedV{dﬁ21|V21:i21|fo(V1)fo(Vz)

V51 Ka1<0 (2-31)

{0 (V) ,V2) * [Y(V],V5) - ¥(V1,V2)1}
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Here, V; and V, are given in terms of the integrating variables

by the inverse of equations (2-11):

Vi = Vi + V5,kz1K21
—_ — -, ~ A (2-32)
Va = Vi - Vz1+*ka1kz

If we now make a second change of variables from Vi,V to the
negative of these quantities, then because ¢ and }y are assumed

to have the same parity,
¢ (-R)*p (-¥) = ¢ (X)*y(¥)

the only change in (2-31) is that the "<" sign in the integra-
tion limit becomes a ">" sign. Finally, we interchange the
primed and unprimed velocity variables throughout; the resulting
equation is then identical to the original expression (2-23),
save only for an interchange of the primed and unprimed velo-
cities inside the braces. If this equation and (2-23) are

added together and the result divided by 2, we obtain

2 — — P —
(9, 1)@ = % N dedvzdk21|V21'?<21|fo (Vi) £o (V2)
Va1 KR21>0 (2-33)

{10 (V1,V3) =0 (V,,V,) 1% [¥(V],V3)-¥(V,,V2)]}

Since (2-33) is manifestly symmetric in ¢ and ¥, the

property (2-29) follows immediately.
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2.2 Equations Governing the Transport Coefficients to First

Order in Density. The "Triple Collision Inner Product”.

The "generalized Boltzmann equation" to first order in the

density n is [2,10]

of + T of

3t 1'—?1= J(£f) + J:(ff) + K(fff) (2-34)

This equation differs from the ordinary Boltzman equation (2-2)
only by the addition of the two terms on the right. The term
J1 (£f) accounts for the "spatial inhomogeneity" caused by the
fact that the centers of two coll&ding molecules are not at the
same point, but are separated by a distance ¢>0. As the notation
suggests, the term J,; (ff) is essentially a binary collision term.
The term K(fff), howéver, represents the effects of correlated
binary collision sequences involving three molecules, and is the
subject of our present investigation. The precise form of K(fff)
has been set down and discussed in I [see equations (2,4-1)-(2.4-4)
of I].

Corresponding to the three collision terms on the right of

(2-34), the transport coefficients take the forms

A=Ay + %noanlo + niy (2-34)
_ 8 3
n=mnp + {g"o nng + nm, (2-36)

We see that the terms J, (£f) and R(fff) each contribute terms

to the transport coefficients which are linear in the density.

22



AEDC-TR-71-51
The contributions of J,(ff) are known exactly in terms of

o,n and the zeroth order quantities (4], but the contributions
of K(fff) remain to be determined.

A derivation of formal expressions for A, and n; has been
given in I [cf. Section 2.4 and Appendix A of I]. Briefly,
what is involved is as follows: Just as one constructs from
J(ff) a "linearized binary collision operator" I, so one
constructs from K(fff) a "linearized triple collision operator"
I; [cf. (2.4-5) and (2.4-6) of I]. As originally obtained, I;
is a 12-dimensional integral operator; after performing one
rather intricate integration [cf. Appendix A of I], one obtains

an ll-dimensional "surface integral" form for I;:

m—lt S —t —r al - ——
Isy(Vy) = - % /.dedVadkzldr31|V21'ﬁzllfo(Vl)fo(Vz)fo(V3T

3.
T(123) ] ¢ (7)) (2-37)
n=1

[Note: I3 here corresponds to bpI; in I.] We call attention
to the similarity in forms between this expression for I; and
I, given in (2-8). The integrating variables in (2-37) and
the operator T(123) are related to certain sequences of binary
collisions involving three molecules, just as the integrating
variables in (2-8) and the operator T(1l2) are related to
certain sequences of binary collisions involving ftwo molecules.
Since a detailed description of the relevant three-particle
collision sequences requires a specialized nomenclature, we
shall postpone a deeper analysis of the quantities appearing

in (2-37) until after this nomenclature has been developed in
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Chapter III. For now, it suffices only to realize that the
theory provides us with a well-defined "linearized triple col-
lision operator" I3, which is a generalizgtion of the linearized
binary collision operator I:.

Now, in Sec. 2.4 of I it is shown that X; and n, are given

by [cf. (2.4-11l) of I]

n\, = - g[dle(vl)'lax(‘_fl) (2-38)
any = - 5 [ a0 B@) 1,80 (2-39)

[Note: n); here corresponds bpl; in I, and similarly for nni.J)
Here A and B are the same functions we encountered in the
previous section -- i.e., the solutions to (2-6) and (2-7).
Defining, then, the triple collision inner product of two

functions ¢ (Vy) and ¢ (V) by

(6,9)@ = [dV‘m(v})*Igwuﬂ) (2-40)

where, as in (2-17), * denotes the dot product if ¢ and y are
vectors, and the double dot product if they are tensors, we may

evidently write (2-38) and (2-39) in the compact forms

nA; = -3(X,K)® (2-41)
nmy = -5%(8,B)® (2-42)

The only differences between these formulae for niA; and nm

and the formulae in (2-18) and (2-19) for Ao, and no are:
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() the minus signs, and (ZZ) the fact that the inner products
are now taken with respect to I; rather than I,. Since X'and'§
are the known solutions of the ordinary Boltzmann equation,

then further progress from equations (2-41) and (2-42) evidently
requires a thorough understanding of the triple collision inner
product in (2-40); it is to this end that our present work is
directed. If the expression for I3 in (2-37) is inserted into
the definition (2-40), and the resulting expression then sym-

metrized with respect to the velocities, we obtain [cf. (2-21)]

5
(q,,q,)“) = - g— /dvldvzdvad’ﬁudﬁl

[V21 K21 | €0 (V1) £o (Vo) £ (V3)  (2-43)

{0 (V1,V2,V3)*T (123) ¥ (V) ,V2,V3) }

Here we have defined, in analogy with (2-20),
3 3
o(V1, V2, V)2 ] 0(V);  ¥(T,V2,Va)= ] v(T) (2-44)
n=1 © n=1

The interrelations among the integrating variables in (2-43),
and the precise definition of the operator T(123), will be
explained in detail in Sec. 4.1.

At this point it is pertinent to recall that the earliest
(and to date the most meaningful) attempt to account for the
density dependence of the transport coefficients was made by
Enskog [7]. Enskog correctly assessed the "spatial inhomogeneity"

corrections in (2-35) and (2-36) -- i.e., the J;-terms -- and
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in addition he derived an approximation for the triple
collision corrections A; and ni. An explanation of the
basis of the Enskog theory for A, and n; is given in Sec. 2.3
of I, and we shall quickly review that explanation here:

When a gas is in equilibrium, the probability to find
two molecules at a given separation r,; is independent of the
velocities of the molecules, and is determined by the radial
distribution function g(r;:). The Enskog theory essentially
assumes that this still holds true when the gas is not iﬁ
equilibrium, in that g (o) gives the probability to find two
molecules in contact (r.1=0) even in the presence of gradients.
As a consequence, the quantity £o(V1)£fo(V2) in (2-8) gets
replaced by g(o)£o(V1)£fo(V2), implying that the linearized
Boltzmann operator I, gets replaced by g(o)I,:; this in turn
replaces the solutions & and B of (2-6) and (2-7) by A/g(0)
and f/g(o), respectively. Consequently, from (2-15) and
(2-16), we find for the thermal conductivity and shear viscosity

the results

Ag = *o/g(0) Ng = No/g (o) (2-45)

Now, the quantity g(o) can be expressed as a function of the

density n by a well-known virial expansion,

g(o) =1 + f%ncan + ... (2-46)

In a gas of hard spheres, spatiai correlations are due to the

finite size of the molecules, which does not allow molecules
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to overlap each other. Therefore, the various terms in the
expansion (2-46) are determined by integrals over "forbidden"
configurations involving increasing numbers of molecules. 1In
particular, the coefficient 5mc¥/12 is the volume where a third
molecule 3 would overlap with both of two colliding molecules

1l and 2,as illustrated in Fig.2. 1Inserting now the above
expansion for g{c) into (2-45), we find for the Enskog estimates
of A; and m

Ay = —f’inoaxa = hig, ny, = —%noano = Mg (2-47)

A comparison of these results with equations (2-18), (2-19),
(2-41) and (2-42) reveals that the effect of the Enskcg theory
18 to approximate the triple collision inner product according to

(6,9 = S10°n (6,9 = (6,9 (2-48)

Our subsequent analysis of the triple collision inner product
will shed considerable light on the relation of this approxi-
mation to the exact theory.

Earlier work by Sengers [12,13] as reported in I, has
indicated that the Enskog approximation for A1 and n) is
probably in error by only about 5% or so. For this reason it
will be advantageous to measure the first density corrections
to A and n in units of |A1E| and |n1E[ respectively. Thus,

using (2-47), we write (2-~35) and (2-36) as
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Figure 2. The excluded volume determining

the linear density term in g(0).

5 48

A= Xy [l + E'ﬂo3n (5-5' + Al/l)\lEI)] (2-49)
5 32

n = Mo [l + E'no3n 5% + n1/|ﬂ1E|)] (2-50)

Our eventual aim, then, is to evaluate the dimensionless
guantities A1/|A1E] and n1/|n1E|, and in particular to
determine why and by how much these quantities differ from
the Enskog estimate of -1.

Our present numerical calculations will be keyed to the
Sonine approximations of the functions 2 and % in (2-24) and

(2-25). Consequently, our formulae will have to indicate

28



AEDC-TR-71-51

the degree N of the approximation, with higher values of N
indicating a more accurate approximation. Thus, equations

(2-49) and (2-50) will be written more explicitly as

AN) = Ao (N) [1 + f%noan (%% + AI(N)/|A1E(N)|)] (2-51)

n (N)

no (N) [l + f%ﬁoan (%% + nl(N)/InlE(N)|)] (2-52)

Here, Ap(N) and n¢(N) are given by (2-27) and (2-28), and
these quantities multiplied by 5mc3/12 give |11E(N)| and
|n1E(N)|. The gquantities A;(N) and n; (N) are obtained by
substituting the expansions (2-24) and (2-25) into formulae
(2-41) and (2-42) respectively. Upon carrying out these

éteps we obtain the results

N (3}
AN -l (k) w2yvi o () (pe2yw _
Mg = arm §=lak(N)a2(N> [53/2(w1)wl,s3/2(w1)w1] (2-53)
R (3)
n (N) _ -1 (K) oo mmomr o (R) o2 00
Mg |~ BoM §=0bk(N)bg(N) [55/2(W1)w1w1,85/2(W1)W1W1](2_54)

where we have now defined the dimensionless triple collision

inner product [¢,¥]® by

16,919 = T3 Yiie =5 (6,1)9 (2-55)

It is most convenient to use (¢,wf” in our theoretical work and

[6,9]* in our numerical work. According to (2-55), these two
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guantities are identical except for a known factor, so no
difficulty should arise in switching from one to the other.
The dimensionless nature of [¢,w]“)can be seen directly from
(2-53) and (2-54); it can also be seen if we insert into (2-43)
the explicit forms of the fo(Vi) functions [see (2-5)] and
then change to the dimensionless velocity variables W; [see

(2-26)]. 1In this way we obtain the expression

(6,91 = -gg—;f—fdﬁ1dﬁ‘2dﬁadﬁz 1dF31

|iﬂl'?z1|exp(-w%-W§-W§)
{0 (Wy,W, ,W3)*T(123) ¥ (W, ,W,,W3)}  (2-56)

where & and ¥ are as defined in (2-44). As we shall point out
later, the variable T3; is actually a position vector divided
by o; thus, all the iﬁtegrating variables in (2-56) are dimen-
sionless. Inasmuch as the forms for ¢ and §y appearing in (2-53)
and (2-54) are also dimensionless, it follows that (2-56) is a
completely dimensionless expression, and therefore suitable for
numerical analysis.

Our program now is as follows: After developing the
requisite "collision sequence" formalism in Chapter III, we
shall give the precise definition of (¢,¥)® in Sec. 4.1. Then,
in Sec. 4.2, we shall derive a more physically meaningful form
for (¢,¥)®. Finally, in Chapter V, we shall present our current
numerical results as to the magnituées of the unknown terms in

(2-51) and (2-52).
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CHAPTER III

SEQUENCES OF MOLECULAR COLLISIONS

In order to see how collisions among more than two
molecules affect the transport coefficients, it is necessary
to introduce a suitable nomenclature and notation to specify
sequences of collisions. The reason we must take special pains
in this regard is that the three-partic;e collision sequences
which contribute to the triple collision inner product (¢,wﬁ”
are found to contain so-called "non-interacting collisions",
in which the molecules are allowed to pass through each other
without any deflection of their paths. The generalization of
the ccncept of "collision" to cover the non-interacting as
well as the interacting varieties introduces some important
new concepts, and thesé must be clearly understood if we are
to gain insight into the nature of the triple collision inner
product.

The fact that non-interacting collisions play an important

role in the theory, even though such collisions would not really

occur in a gas of hard spheres, may seem strange at first sight.

In order to get some notion as to why we are forced to deal with

these non-occurring entities, let us recall that the approximate

nature of the Boltzmann equation is due to the fact that it
considers only uncorrelated binary collisions. In other words,
the Boltzmann equation assumes that if two molecules are aimed

to collide then they will eventually collide, and if two

molecules are not aimed to collide then they will never collide.
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Thus, the Boltzmann equation has ignored the possibility of
"interfering"” collisions. For example, two moleculés which
are originally aimed to collide may be prevented from doing

so because one of the molecules is deflected by a third
molecule; similarly, two molecules originally not aimed to
collide may be knocked together by a third molecule. In so
ignoring these interfqring collisions, the Boltzmann equation
has essentially treated them as though they were non-interacting.
Therefore, in order to improve upon the Boltzmann equation
results, we must systematically assess the contributions of
various collision sequences containing non-interacting col-
lisions. This situation actually has a precedent in conven-
tional statistical mechanics: We recall that the density
dependence of an equilibrium property of a gas is determined
by a "virial expansion", such as that indicated for the
equilibrium radial distribution function in (2-46). The coef-
ficients in such an expansion are determined completely by
integrations over various forbidden spatial configurations of
the molecules -- i.e., configurations in which molecules are
overlapping. Analogously, we shall find that the density
dependence of the transport properties of a gas is determined
mainly (although not exclusively) by integratioﬁs over various
forbidden collision sequences -- i.e., sequences containing

non-interacting collisions.
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3.1 Definitions and Nomenclature

The action sphere of a hard sphere molecule (in a gas
of like molecules) is a sphere concentric about the molecule
whose radius is equal to the molecular diameter. By definition,
two molecules are colliding when the center of one molecule
lies on the surface of the action sphere of the other molecule.
‘Two molecules are overlapping when the center of one molecule
lies inside the action sphere of the other molecule. For
simplicity, we shall henceforth measure all distances in units
of the molecular diameter o; thus, the centers of two molecules
in a collision will be exactly separated by their unit collision
vector @, and the action spheres of all molecules have unit
radius. ,

A "collision", for our purposes, is always one of three
types: linteracting, non-interacting penetrating, and non-
interacting separating. In an interacting collision between
two molecules with velocities Vi and V, and collision vector
@21, the velocities change in accordance with the laws of
mechanics (2-11); in words, the velocities just after an
interacting collision are obtained from the velocities just
before the collision by interchanging the velocity components
along the collision vector‘ﬁZl. In a non-interacting collision .
the velocities of the molecules do not change, and each
molecule moves as though the other were not present. Evidently,
non-interacting collisions always occur in pairs, corresponding

to when the center of one molecule enters the action sphere of
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the other molecule and to when it leaves this action sphere.
Thus, we distinguish between a non-interacting penetrating

and a non-interacting separating collision, depending on
whether the molecules are overlapping just after or just

before the collision. It is clear that a penetrating collision
is always followed by a continuous period of overlapping which
is eventually terminated by a separating collision, and it is
also clear that these two collisions occur at different times
and with different collision vectors. Nevertheless, it is
occasionally convenient to consider the two collisions together,
and so we define a complete collision to be either a single
interacting collision or a concomittant pair of non-interacting
gollisions.

A collision sequence is defined to be a succession of col-
lisions in which the order and types of the collisions are
specified.

We represent collisions and collision sequences by simple
line diagrams. These diagrams can roughly be thought of as
space-time plots of the centers of the molecules, with the time-
axis vertical and the (one-dimensional) space-axis horizontal.
The time and space axes are usually not indicated explicitly,
but we shall adopt the convention that time increases when the
diagrams are read from top to bottom. 1In Figs.3a, 3b and 3c
we show how we represent the three basic collisions defined
above. Each collision occurs at time t=t;, and we can imagine
that the centers of the molecules are connected by a collision

vector K»1 at ty. In Fig. 3a, we indicate the abrupt change
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Figure 3. Representation of (a) an interacting collision,
(b) a non-interacting penetrating collision,
(c) a non-interacting separating collision, and

(d) an explicit overlap.

in velocities in an interacting collision. In Figs. 3b and 3c

the velocities do not change, but we place hash marks just
below/above the collision time in the non-interacting penetrating/
separating collision diagram to indicate that the overlap occurs
just after/before the collision. We note that upon time-reversal,
an interacting collision remains interacting, whereas a pene-
trating collision becomes a separating collision and vice-versa.
It is occasionally advantageous to indicate explicitly that two
molecules are overlapping at some time t=tp;, and we do this by

connecting their lines with hash marks, as shown in Fig. 3d.
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Figure 4. Example of a three-particle collision sequence.

Using the foregoing symbolic representations, we can
construct diagrams representing sequenceg of binary collisions.
Thus, for example, the diagram in Fig. 4 represents a three-
particle collision sequence in which a 1-2 interacting collision
occurs at time t;, a 1-3 interactihg collision occurs at time
ta>t:, a 2-3 penetrating collision occurs at time t3>t;, and a
2-3 separating collision occurs at time t,>ti;. We must
emphasize two points in connection with the collision seguence
diagram in Fig. 4:

(2) The diagram says nothing about the sizes of the time-

intervals, t2-t3, t3i-ta2, tu-ts3, but requires only that they be
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positive -- i.e., that the collisions occur in the order
indicated.

(ZZ) The diagram is completely non-committal about the
occurrence or non-occurrence of any additional non-interacting
collisions. For instance, an additional 1-2 non-interacting
collision at any time t>t;, or a 2-3 -non-interacting collision
at any time t<t; (either is in fact dynamically possible), may
or may not occur. It if is desired to exclude such additional
collisions from the class of collision sequences represented
by a given diagram, the appropriate restrictions must be
explicitly stated.

Item (ZZ) allows us occasionally to combine or "add"
several diagrams to form a single diagram. An example is
shown in Fig. 5. The diagrams in Figs. 5a and 5b differ only
in the ordering of the 2-3 separating collision and the 1-3
interacting collision. The "sum" of these diagrams may be
represented by the diagram in Fig. 5c, which evidently
includes both possibilities.

It will be convenient to introduce two further definitions.
A single-overlap collision is a collision of any type (i.e.,
interacting, penetrating or separating) between two molecules
which occurs while a third molecule overlaps with one of the
colliding molecules. For example, the 1-2 collisions in Figs.
5a, 5b and 5c¢, and the 1-3 collision in Fig. 5b are single-
overlap collisions. Similarly, a double-overlap collision is
a collision of any type between two molecules which occurs

while a third molecule overlaps with both colliding molecules.
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OO

Figure 5. Illustrating the addition of two collision

sequence diagrams.

We shall find in Sec. 4.2 that this concept of an "overlap"
collision” is of central importance in the analysis of the triple

collision inner product.

3.2 Some Important Theorems

In this section we present some lemmas and theorems for
collision sequences involving three identical hard sphere
molecules. These theorems will greatly simplify our analysis
of the triple collision inner product in Sec. 4.2.

To date, pertinent studies concerning the.motion of three
hard spheres have been limited to interacting collisions {14, 15].

Since, as explained at the beginning of this chapter, we. shall
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be dealing with collisions of both the interacting and non-
interacting varieties, it is necessary to develop the subject
from a fresh point of view. The development which follows is
due to W. R. Hoegy and the present authors [17, 18].

To begin with, there are several "obvious theorems" or
"rules" that follow almost immediately from the definition of

a collision. For example, we shall frequently invoke the

Recollisibn Rule: After two spheres have collided,
they cannot recollide in another complete collision

before one of the two spheres undergoes an interact-

ing collision with the third sphere.

In addition to such more or less obvious restrictions,
there are several restrictions that are not of a trivial nature.

For example, we have

Lemma 1. In the collision sequence defined by the
diagram in Fig. 6, it is not possible for
spheres 2 and 3 to collide or overlap in
the time interval t;<t<ts.
Note that this lemma also rules out a 2-3 collision or overlap
for t;<t<t, if the 1-2 collision at t, were interacting instead
of penetrating; it also rules out a 2-3 collision or overlap
for tz¢t<ts if the 1-2 collision at t; were interacting instead

separating. A proof of this lemma is presented in Appendix A.

As a consequence of Lemma 1, we have
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Figure 6. Diagram of Lemma 1.

THEOREM I. If a three-particle collision sequence
econtainse at least one single-overlap collision, then it

cannot contain more than three complete collisions.

This same theorem is trivially valid fér a three-particle
collision sequence containing a double-overlap collision.
Theorem I tells us, for example, that no further collisions
are dynamically possible in any of the diagrams in Fig. 5.

To prove Theorem I, one considers all three-particle col-
lision sequences with at least one overlap collision and at
least four complete collisions, and one finds that every such
sequence violates Lemma 1. A proof of Theorem I is giﬁen in

Appendix A.
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We now turn our attention to collision sequences that
contain no overlap collisions. This means that all complete
collisions will be separated, so that in between a concomittant
pair of non-interacting collisions between two molecules, no
other collision with the third molecule will take place. 1In
such cases we indicate an interacting collision between
molecule a and molecule % by (ab)i, a complete non-interacting
collision by (ab)™, and a sequence of such collisions by a
left—-to-right juxtaposition of these symbols. Thus, e.g., the
sequence in Fig. 4 would be denoted by (12)i(13)i(23)n.
Moreover, we shall write (ab) to denote a complete collision

between a and » which is either interacting or non-interacting:
(ab) = (ab)* + (ab)” (3-1)
Using this notation, we quote the following two lemmas.

Lemma 2. Not dynamically possible are the three-
particle collision sequences

(12) (13) L (12) 113
(12) (13) 23y (12)

Lemma 3. Not dynamically possible are the three-
particle collision sequences

(12) 13)*(12)1(23) 1 (12)

(23) (12) % (13) 1 (12) 1 (23)

Lemmas 2 and 3 were stated by Sandri and co-workers [14]

and proved in detail by Murphy and Cohen [15]. Implicit in
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these lemmas is the fact that any sequence, .constructed by
inserting non-interacting collisions between any of the col-
lisions in the sequences excluded, is also not dynamically
possible [1l6].

From Lemmas 1,2 and 3 one may then establish

THEOREM II. If a three-particle collision sequence
contains no single-overlap collisions, then it cannot

contain more than four complete collisions.

Again, the proof proceeds by showing that any collision sequence
of the kind contemplated violates one of the lemmas. The proof
of Theorem II is given in Appendix A. Combining Theorems I and
II,we have the theorem that no three-particle collision sequence
can contain more than four compiete collisions. This theorem
was discovered by Hoegy and Sengers [18].

In the proof of Theorem II, one finds as a corollary that
there are in fact only two dynamically independent segquences

with four complete collisions, namely
a2y anianieyy  ana a2y aniaznPeI) (3-2)

In other words, any sequence of four complete collisions either
is one of the above sequences, or else is obtainable therefrom
by interchanging numerical lables and/or reversing time. This
is a generalization of the previously discovered fact [14,15]

that the only possible sequence of four interacting collisions

is a2)tanianienl.
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CHAPTER IV

ANALYSIS OF THE TRIPLE COLLISION INNER PRODUCT

4,1 Introduction

In statistical mechanics one derives the density expansion
of the equilibrium pair distribution function g(r) by making a
"cluster expansion"” of the partition function [5]. 1In an ana-
logous way, the first density correction to the Boltzmann
operator I, can be obtained by making a "cluster expansion" of
the Liouville operator, as was first pointed out by Green and
Cohen [19,20,21]. This procedure leads eventually to the triple
collision operator I3 which was written down in equation (2-37).
In that equation, the variables VZ,VZ and V3 may be regarded as
the velocities of three isolated molecules 1, 2 and 3, while
the variables %,; and ¥3:; locate molecules 2 and 3 relative to

1 according to

k21 = —(F2-T1) /0 and ¥31 = (F3-T1)/c (4-1)

It will be noted that these position variables are measured in
units of the molecular diameter ¢. Moreover, since'k21 is a
unit vector, then we are evidently constraining molecules 1

and 2 spatially so that they are "colliding" [cf. our definition
of "collision" in Sec. 3.1]. Strictly speaking, the five-

dimensional volume element |V,.-k..|dk,.d? .
ij 13713 k)

refer to any colliding pair i-j, and we should really write

in (2-37) should

down two more integrals for the pairs 1-3 and 2-3. However,

it is sufficient for our purposes to carry out the integrations
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only for the pair indicated, and to take account of the permu-
tations by ‘'introducing a factor of 3 at a later stage; never-
theless, it should be kept in mind that I3 is completely
symmetrical in the particle labels.

Our real interest here is not so much in the triple
collision operator but in the triple collision inner product,
which one forms using this operator according to (2-40). An
explicit expression for (¢,9)® which is totally symmetric in
the molecule labels was given in (2-43), and for convenience

we write that expression again here:
(3) o® T AT AT =
(9" = - 37 /-dv1dedV3dﬁz1dr31

|v31'ﬁz1Ifo(Vl)fo(Vz)fo(Va) (4-2)

{8(V,,72,V5)+T(123)¥(V,,V,,V3) }

where

ROARCS

e [3Y)

3
¢(V1,¥2,V3) = ] ¢(V): ¥(Vh,72,Vs) =
=1 n

Evidently, the triple collision inner product is a fourteen
dimensional integral over the velocities and relative positions
of three isolated molecules, with molecules 1 and 2 in contact.
The integration runs over the whole of this fourteen dimensional
space, although, as we shall see momentarily, the operator T(123)
vanishes everywhere except in certain select subregions of this
space. The factors fo(Vi) are, as before, simple Maxwell-

Boltzmann functions [cf. (2-5)].
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In defining the operator T(123), it is helpful to first
recall how the operator T(1l2) appearing in the binary collision
inner product (2-21) is defined. We noted in (2-12) that T (12)
could be regarded as the sum of two "velocity replacement
operators":

T(12) = ] T2(12) (4-4)
p=n,i °
Using the diagrammatic notation introduced in Chapter III, we
may associate these two operators with the two "two-particle
collision sequence diagrams" shown in Fig. 7. With the aid of

Y? in (2-22) may be

these two diagrams, the expression for (9,y
understood as follows: For each p-term, the integrating

variables VH,VQ and k27 in (2-22) are the velocities and relative
positions of the molecules instantaneously before (above) the

1-2 collision indicated in diagram p. The operator Tﬁ(lZ)

is different from zero only when V.,V and ﬁzl are such that

the corresponding jU-collision sequence can be realized; the
condition for this for either pu-diagram is simply that the
molecules be aimed to collide, or Vz;:K21>0. When this condition
is satisfied, Tﬁ(lZ) acting on a function of the initial velocities
V1 and V, replaces these velocities by the final velocities in
diagram u, with the proviso that an overall minus sign is intro-
duced when the collision is non-interacting.

: Similarly, the operator T(123) in (4-2) can be considered

as a sum of twelve velocity replacement operators,

I

T(123) = 3t ) T‘i_)(lz;l3) (4-5)
! H
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¥

2 |
p=i

2
p=n

Figure 7. Diagrams for the operators T?(12).

each of which is defined relative to a particular three-
particle collision sequence diagram. The twelve diagrams are
shown in Fig. 8. We restrict ourselves to collision sequences
in which the first collision is a 1-2 collision and the second
collision is a 1-3 collision; since the triple collision inner
product is symmetric in the molecules, other permutations are
accounted for by the factor 3! in (4-5). Concerning the
diagrams in Fig. 8, we make the following observations:

Each diagram requires that the three molecules undergo
at least three collisions of a specified type (either inter-
acting or non-interacting penetrating) and in a specified

time order. We shall number these three required collisions
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3
3

p=R22

3
3

! 2
# =R2I
2
p=C2l
p=H2I

(Y
3¢
X K

3
3

3
3

2
#=RII
ﬁ:i:;é;éz:j//
#=Cll
2 |

p=HII

e,
§ K

Figure 8. Diagrams for the operators Tﬁ(12;13).

[Note that these diagrams are subject

to the restrictions stated in the text].
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in the order in which they occur (i.e., from top to bottom).
Each diagram is labelled by a letter and two numbers. The

first number is either 1 or 2 according to whether the first
collision is interacting or penetrating, and the second number
similarly describes the third collision. The diagrams with

the letter R are "recollision" diagrams, in that the third col-
lision involves the same pair (1 and 2) that made the first
collision. The diagrams with the letter C are "cyclic col-
lision" diagrams, in that the third collision involves the third
pair (2 and 3). The diagrams with the letter H are "hypothetical
cyclic collision" diagrams, in that, like the C diagrams the
third collision involves molecules 2 and 3 but unlike the C
diagrams the second collision is non-interacting. (It will be
noted that a corresponding set of "hypothetical recollision"
diagrams is not dynamically possible because of the Recollision
Rule).

It must be emphasized, however, that the specific col-
lision sequences relative to which the operators Tﬁ(12;13) are
defined are not completely specified by the Qiagrams in Fig. 8.
As demonstrated in I, the theory imposes the following two

restrictions on these diagrams [22]:

First Collistion Restriction: No collisions of any kind
are allowed to occur before (above) the "first" collision in
any u-diagram.

Real Collision Restriction: In diagrams R11, R12, Cll
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and Cl2, no additional collisions of any kind are allowed to

occur before the "third" collision.

Additional non-interacting cocllisions which do not violate
these restrictions are permitted to occur. Some additional
collisions will necessarily occur -- namely, the separating
collisions which naturally follow the required penetrating
collisions; in this connection, we note that the u-diagrams
do not specify when these separating collisions are to occur.
Other additional non-interacting collisions may or may not
occur: for example, a 2-3 non-interacting collision may
occur between the first and second collisions in diagrams C21
and C22, but such a collision must be explicitly excluded
from diagrams Cll and Cl2 because of the Real Collision
Restriction; the same holds true for a 1-2 non-interacting
collision between the second and third collisions in the C-
diagrams.

The integrating variables in (4-2) refer to the velocities
and relative positions of the three molecules instantaneously
before (above) the "first" collision in each p-diagrams, and

we define the subvolumes Qu by

Q. = set of all points (V),V.,V;s,k,:%3;) for which
a collision sequence of the type described in
diagram py can occur (subject to the First Col-

lision and Real Collision Restrictions). (4-6)

Note that a given point in the l1l4-dimensional space spanned

by Fhe integrating variables in (4-2) may lie in none, one,
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or more than one of the subvolumes Qu. The operators Tﬁ

are now defined analogously to the operators Tﬁ in (2-14):

outside Qu: T‘ﬂ"l’(vl ,V2,V3) =0 (4-7a)

(-1) Yy (V1,5 ,95) (4-7b)

inside szu : 1‘;’\1’ (V1,V2,V3)

where (—1)u =+1 or -1 according to whether diagram u has an
even or odd number of required non-interacting collisions, and

o

where Vi is the velocity of molecule i at the end of the u
collision sequence. In the cases u=Rll and p=Cll, the theory (as
developed in I) requires that if more interacting collisions
can occur after the third collision, then Vi is to be the
velocity of molecule i after all additional collisions have
taken place; for u#Rll and p#Cll, however, V{ denotes the
velocities after the third required collision, regardless of
the possibility of any subsequent collisions [22].

If we insert (4-5) into (4-2), we will evidently obtain

an expression for (¢,¢)m which is very analogous to the

expression for (¢,¥)? in (2-22):

(4),1!))(3) = —0'5 ZIdV1dedv3d‘Ez1d?31
u

|21 K21 | €0 (V1) £ (V2) Eo (V3) (4-8)

{6 (¥, ,,,V3) *T‘;’(lz;ls) Y(V1,V,,V3)}

The advantage of this expression is that it conveys in a

physical, yet mathematically precise, way the structure of
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the triple collision inner product. At the same time, it
reveals how the triple collision inner product appears as a
fairly natural generalization of the binary collision inner
product in (2-22).

Of more usefulness for computational purposes would be
an expression for (¢,wf” which is analogous to (2-23)}. To

this end, we first define

velocity of particle i immediately after

Vi)
the jth required collision in diagram u. (4-9)
In particular, we shall wri}e ju=0u to denote the velocity

region before the first collision, and we shall write

velocity region after the last

__ collision for u=R1l1l and u=Cll;
3. = (4-10)

velocity region 3u for all other u.

For brevity, we shall also write

2(3j,) & (71 (3, V2 (3, V3 (3,0 (4-11)

——

and similarly for ¥. In this notation, W(V{,V{,Vg) in (4-7b)

becomes simply W(?L), and (4-8) takes the form

(6,1)® = -¢% § a7 (0. )d¥ (0 )aVs (0. )dk, 4%,
s Ja U u u
u
I\Tmou)-?ulfu(vl)fo(vz)fo(va)

_1yH T _
{(-1) ¢(ou)*w(3u)} (4-12)
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In (4-12), we have used the fact that the velocities in the
product of the Maxwell-Boltzmann functions can be referred to
any velocity region in diagram u, because of conservation of
energy [(cf. the remarks following (4-17)}. 1In order to

explain our next step, consider the diagrams bf R11l and R12

in Fig. 9. We indicate schematically the integrating variables
and the various velocity regions for these diagrams in this
figure. Now, the conditions to be satisfied by the integration
variables in order to obtain the collision sequence R12 are
evidently identical to the conditions for R11l, since the initial
variables do not care whether the third collision is interacting

or penetrating; thus,
Y/ = § =0 (4-13)

Moreover, for any given point (V1(ORl),Vz(ORl),Va(ORl),ﬁ21,f31)

inside @ it is clear that the velocities in regions 1 and 2

R1’
of these diagrams will coincide exactly, while the velocities
in region 3 of R12 will coincide with the velocities in

region 2 of R11l. Consequently, we may relate the Rl2-term in
(4-12) directly to diagram Rl1l, which we now relabel v=R1l, and
we write T(le) in place of T(?ﬁlz). The integrands for R1l1l
and R12 can then be added directly, provided we take account of
the extra minus sign in front of the R12 integrand. Clearly,
we can similarly combine every pair of u-diagrams whose labels

differ only in the last digit. In this way we write (4-12) in

the form
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Vo (Oy) Vi(Opy) Via(Opy) ValOgz) Vi(Ogyp) V5(Oppp)

Oz

I ri2 ?‘zl -r;I

“mz

SRi2 /
p=RIl (v=RI) u =RI2

Figure 9. Diagrams R11ZR1l and R1l2.
(6,9 = -0° ] [ a71(0,)dV: (0)a¥s (0,) Ry, 4Fs,
vy
v

1921 (0)) a1 | £0 (V1) £5 (V2) £0(V3)

Vv w 1S '
{(-1) d>(0v)*[4’(3v)-w2v)]} (4-14)

where the sum now runs over the sgix v-diagrams R1ZR1l1l, R2ZR21,
C1=Cll1l, etc., shown in Figure 10. This form for (¢,¢V” is the
desired analogue to (2-23), and it is the form in which the
triple collision integrals were first presented in earlier
publications [6,13,22]. It must be emphasized that the restric-

tions mentioned earlier in connection with the u-diagrams still
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X<

2 3

W

y=C2

yv=H2

2 {'

v =RI
2}'
v=ClI

2 |

v = Hl

Figure 10. The six v-diagrams. [Note that these
diagrams are subject to the restrictions
stated in the text].
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apply to the v-diagrams, the First Collision Restriction
applying to all the v-diagrams and the Real Collision
Restriction applying to diagrams Rl and Cl only. We also
want to stress the dual role played by the v-diagrams in
regard to the six integrals in (4-14): on the one hand,
these diagrams serve to define the volume Qv over which each
of the integrals is taken; on the other hand, these diagrams
determine the functional dependence of the velocities Vl(Zv)
and v1(§§) upon the integrating variables.

We néte that our restriction to hard spheres has thus
far been a restriction only on the duration of a binary col-
lision, in that we have assumed only ."instantaneous interactions"
[23]. This restriction excludes the consideration of genuine
triple collisions, in which three molecules collide simulta-
neously. However, the expression in (4-14) and the associated
diagrams in Fig. 10 correctly account for the effects of
sequential binary collisions for any short-range potential with

a hard core.

4,2 Separation of Spatial and Dynamical Correlations.

Expansion in Effective Number of Collisions.

The expression for the triple collision inner product in
(4-14), as a sum of six integrals corresponding to the six
v-diagrams in Fig. 10, suffers from several drawbacks. 1In

particular we mention:
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1. Although the triple collision inner product is
symmetric [18], it is not true that the six triple collision
integrals in (4-14) are individually symmetric [22]. It would
be better if (¢,¢f” were expressed as a sum of terms which are
separately symmetric in ¢ and V.

2. As reported in I [see Sec. 2.7 of I], preliminary
numerical calculations have revealed that substantial cancel-
lations occur among the contributions oflthe six v=-integrals.
It would be better if (¢,¢f” were expressed as a sum of integrals
whose individual contributions were ordered according to some
physically sensible scheme.

3. The integration regions Qv are defined by the diagrams
in Fig. 10 subject to the First Collision Restriction and the
Real Collision Restriction. These extra conditions on the
collision sequence diagrams are a nuisance in numerical compu-
tation. It would be better if we could use a set of diagrams

that are defined without any externally imposed restrictions.

The above observations suggest that the decomposition of
(6,)® in (4-14), although mathematically correct, is physically
not the most desirable one. Part of the problem here is that
the diagrams in Fig. 10 do not adequately distinguish between
correlations in positions and correlations in velocities. We
recall that, for a gas in equilibrium, the velocities of the
molecules are uncorrelated; thus, the density dependence of the
equilibrium properties are complétely due to spatial correlations,

which, for a gas of hard spheres are related to the exclusion of
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configurations where the molecules are cverlapping [cf. Fig.2].
Reasoning by analogy, we may expect that spatial correlation
effects on the non-equilibrium properties of a gas (such as the
transport coefficients) will be related to the exclusion of
collision sequences containing overlap collisions; collision
sequences which do not contain overlap collisions would then
represent the effects of velocity correlations.

In light of the foregoing considerations, we now
reconsider the v-diagrams in Fig. 10. We first "decompose"
each of these diagrams into its several more specific diagrams,
in which we take account of the possible additional collisions
that may take place. Next, we recombine or "resum” these

specific diagrams, grouping them according to the following

criteria:

(a) diagrams with at least one double-overlap

collision;

(b} diagrams with at least one single-overlap

collision, but no double-overlap collision;
(4-15)
(e) diagrams with no overlap collisions and

specifying only three complete collisions;

(d) diagrams with no overlap collisions and

specifying four complete collisions.

In view of Theorems I and II of Chapter III [cf. Appendix A],
we note that these groupings are indeed mutually exclusive and
collectively exhaustive. We may then write the triple-col-

lision inner product in the form
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4
(6,9) = T (o, 9¢ (4-16)
k=1

where the four terms represent the contributions from the

four groupings (a),(b),(e),(d), respectively. It will be noted
‘that the presence of a double-overlap collision in a collision
sequence already implies the occurrence of two additional com-
plete collisions, namély, the two non-interacting collisions
which gave rise to the two overlaps; since Theorem I permits a
maximum of three complete collisions in such circumstances, we
conclude that those collision sequences falling into group (a),
and contributing to the term (¢,¢f?, will effectively contain
only one collision (namely, the double-overlap collision).
Similarly, the presence of a single-overlap collision in a
sequence implies the occurrence of one additional complete
collision, so that by Theorem I those collision sequences fal-
ling into group (b), and contributing to the term (¢,¥)%, will
effectively contain only two collisions. Finally, it is clear
from the definitions of groups (b) and (e¢) that the sequences
contributing to the terms (¢,9)%9 and (¢,¥)® will contain three
and four collisions, respectively. Thus, we have in (4-16) an
expansion in the effective number k of collisions; moreover,
the expansion evidently proceeds from high to low spatial cor-
relation, and from low to high velocity correlation. These
features of (4-16) will become clearer as we derive the

specific diagrams relative to which these terms are defined.
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In resumming the v-diagrams, we shall make use of three
invariance prsperties of (4-14):

First, we shall frequently invoke the fact that the sid
integrals in (4-14) are each invariant under all permutations
of the molecule labels. This is a consequence of the symmetry
of I3, which was mentioned in the first paragraph of Sec. 4.1.

Secondly, we shall use the fag't that the six integrals
in (4-14) are each invariant under a sign reversal of all
velocities. To prove this, we begin by observing that the
Jacobian of the transformation (V:,V,,V3)»>(-V,,-V2,-Vs3) is
unity, so- that the differentials in (4-14) are unaffected if
the sign of each V;(Ov) variable is changed. Furthermore, the
factor |V;1(0v)-?21| is unaffected by a sign change because of
the absolute value operation, while the Maxwell-Boltzmann
factors depend only on the magnitudes of the velocities and
not their directions. Finally, the invariance of the quantity
in braces follows from the facts that a reversal of velocities
in region Ov induces a velocity reversal in every region, while
the functions ¢ and y {and hence ¢ and Y) are always of the
same parity in the velocities [cf. the expressions in (2-24)
and (2-25) for A

N
The third invariance property of (4-14) which we shall

d=
an BN]'

use says that the volume element

ae, = dvidngvkdﬁjidrki|vji-kki| (4-17)
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which in (4-14) refers to the phases of the three molecules
just before the first collision in diagram v, may in fact be
evaluated just before or just after any collision in the
dynamical history of diagram v. We shall indicate the proof
of this invariance property by first showing that we can
transform dQv invariantly from above the first collision to
below the first .collision, and next that we can transform
dQv invariantly from below the first collision to above the
second collision. (Essentially, the invariance of dﬂv fol-
lows from Liouville's Theorem, which states that the volume
element in phase space is invariant under transformations
generated by the natural motion of the system.)

The transformation from above to below the first col-

lision is (dropping the subscript v):

T1(1) = V1 (0) + Va2,1(0) k21%24
V2 (l) = V2(0) - V21(0) -k2:1%2:1 (4-18)
Vi (l) = V3(0)

From this it can be shown, with some algebra, that

d¥, (1)d¥, (1)dVs (1) = d¥; (0)dV, (0)dVs (0) . (4-19a)
T21(1) °K,, = V21(0) Kz, (4-19D)

vi(l) + vE(l) + vi(1l) = vi(0) + V3(0) + V3(0) (4-19¢c)

Clearly, then, the velocity variables in (4-17) outside the
braces can refer either to region 0 or to region 1. We remark

that (4-19c¢) has already been invoked in obtaining (4-14), when
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in (4-12) we dropped the velocity region designations from
the Maxwell-Boltzmann factors; for we see from (2-5) that the
product of these three Maxwell-Boltzmann factors depends only
on the sum of the squares of the velocitigs. We see, then,
that all velocities in (4-14) outside the braces can be
changed from region Ov to region lv if desired.

We shall next prove that the volume element dﬂv can be
transformed invariantly from just below the first collision
to just above the second collision in any v-diagram. The
second collision is a 1-3 collision, so we let %:, and T3
be the relative position vectors at the instant of the second
collision. The velocities just before the second collision
are of course identical with the velocities just after the
first collision, so the desired invariance property will be

proved if we can show that
dﬁsldfﬁllvél(l)'?al| = d?21d?31|V21(1)-Q21| (4-20)

To prove (4-20), we let T be the time between the first and

second collisions, and we note from Fig. 11 that

Fz1 = K21 + 621(1)T (4-213)
K31 = T 4+ Vs (1)1 (4-21Db)

If we now regard (4-2la) as representing the transformation
(Q21,1)+f31, then it is fairly straightforward to show that the

Jacobian of this transformation is
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T
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time FY

3l

Figure 11. TIllustrating the relation between the
variables at the first and second collisions.

drz,

2= = |72: (1) ke | (4-22a)

Similarly, from (4-21b) we deduce that

dT:,

FRdT - leal(l) ',]Eaxl (4-22b)

Using equations (4-22), we therefore have

dﬁazdf31lvzz(l)'ﬁa1| dﬁ31[dﬁzldT|VE1(l);ﬁz1|]|V;1(1)'£51|

dﬁzl[dﬁa 147 |3, (1) K |] |¥21 (1) Xaa |

- T ~
dﬁzldrazlvzl(l)'kzll
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which is the desired result (4-20). Note also that, since at

the second collision Fp3 = K31 + F3,, then
dks,drz, = dk;1d%, (4-23)

This means that ¥2: on the right side of (4-20) may be
replaced by Y:; if desired; i.e., it makes no difference whether
we locate 2 relative to 1 or 3.

The arguments in the proceeding two paragraphs can be
repeated to show that the volume element dQv in (4-17) can
refer to just before or just after any collision in the history
of diagram v.

The foregoing invariance properties of (4-14) allow us to

write the equation in the more general form
(¢’\p){3) = —0’5 z/QdV1dVZdV3diz1dF31
v
Y

|vz1‘?z1lfo(Vl)fo(Vz)fo(Va) (4-24)

v -
{(=1) Y0 (0 ) * [¥(3)-¥(2)]1)

Here, the velocity variables outside the braces refer to the
velocities of the molecules either immediately before or
immediately after any collision in the history of diagram v,

in either the direct or reversed time sense, with the molecules
labeled so that their positions are in accord with (4-1) at

the chosen collision time.
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- We no@ turn to the task of using this more flexible form
for (¢,wf”, together with the lemmas and theorems of Sec. 3.2,
to effect the decomposition in (4-15) and (4-16).

Consider first groups (a) and (b) in (4-15). For these,
we must evidently extract from the six v-diagrams in Fig. 10
all collision sequences contdining overlap collisions. Now
Theorem I [cf. Sec. 3.2 and Appendix A] tells us that any
collision sequence containing a single-overlap collision (and
hence a fortiori any sequence containing a double-overlap col-
lision) cannot contain more than three complete collisions.

This fact greatly simplifies our task of finding all the
v-sequences containing double- or single-overlap collisions:

it means that we need not worry about any collisions not
explicitly indicated in the v-diagrams, save only those separating
collisions which are concomittant with the required penetrating
collisions.

Since a double-overlap collision requires at least two
complete non~interacting collisions, it is clear from Fig. 10
that only diagram H2 i; a possible source of collision sequences
containing a double-overlap collision. Indeed, if in H2 pairs
1-2 and 1-3 both separate after (below) the 2-3 interacting
collision, then the 2-3 collision will be a double-overlap col-
lisioh. Moreover, since we do not care in which order the 1-2
and 1-3 separating collisibns follow the 2-3 interacting col-
lision, we obtain a total of two v-collision sequences containing
at least one double-overlap collision. These two double-overlap

sequences are shown in Fig. 12. In this figure we have used
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2: @(o)%[V(B)-¥(a]

Figure 12. All v-diagrams containing at least

one double-overlap collision.

dashed lines in order to represent two distinct collision
sequences by means of only one diagram; i.e., Fig. 12
represents one collision sequence in which 1 and 3 separate
before 1 and 2, and another collision sequence in which 1

and 3 separate after 1 and 2. We label the distinet velocity
regions in the diagram by smail Greek letters, and we indicate
below the diagram the form assumed by the quantity in braces
in (4-24). Note that, since H2 has an even number of col-

lisions, then (—1)v=+l for this term.
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A single-overlap collision requires the presence of at
least one non-interacting collision, so it is clear from
Fig. 10 that diagrams Rl and Cl cannot contribute any sequences
containing a single-overlap collision. Furthermore, diagram
R2 cannot either; for the Recollision Rule requires 1 and 2
to separate in R2 before 1 and 3 interact if 1 and 2 are to
subsequently recollide. Thus, the only possible sources of
v-sequences containing at least one single-overlap collision
are diagrams C2, Hl1 and H2. An examination of these diagrams
reveals that there are five single-overlap sequences in H2
(shown in Figs. 13a, 13b and 1l3c), oﬁe single-overlap sequence
in H1 (shown in Fig. 13d), and two single-overlap sequences
in C2 (shown in Fig. 13e). [Note that Figs. 13b, 13c and 1l3e
each stand for two separate sequences.] We again label the
distinet velocity regions by small Greek letters, and we
indicate below each diagram the corresponding form of the
integrand in equation (4-24), including the (—l)v factor. It
must be emphasized that the velocity region labels in each
diagram in Fig. 13 refer only to the integrand appearing just
below that diagram; that is, no connection is as yet implied
or assumed between like-labelled velocity regions in different
diagrams. (Actually, our particular choice of labels for the
velocity regions in the diagrams of Fig. 13 was made with
hindsight, for we shall find presently that like-labelled
velocity regions in these single-overlap diagrams are in fact

dynamically equivalent regions.)
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(3) (P)
[(a-(H)a]x()e-:25  [(&)A-(o)A]=(4)0-

Py a

(3) (a) (B)
[(@)A-ta]xeeZH [(6)A-(44 |80 ZH [(E)A-(0)A]x(8)®:2H
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All v-diagrams containing at least one

Figure 13.

single-overlap collision.
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Having thus extracted all the double-overlap v-sequences
(Fig. 12) and all the single-overlap v-sequences' (Fig. 13),
let us now examine the combined contributions of these classes
of diagrams, as represented respectively by the terms (¢,¢)@
and (¢,¥)9 in (4-16).

Consider first the double-overlap contributions (k=1}).

Using the overlap notation in Fig. 3d, we can evidently
represent the sum of the two double-overlap diagrams in Fig. 12
by the diagram in Fig. 14a; this diagram shows explicitly that
1 overlaps with both 2 and 3 at the instant of the 2-3 collision,
and it is non-specific about the order in which the subsequent
1-2 and 1-3 separating collisions occur. If we interchange
labels 2 and 3, we obtain the equivalent representation of the
double-overlap term shown in Fig. 14b. Now diagrams l4a and
14b differ only in the ordering of ' the initial penetrating
collisions: thus, the sum of these two diagrams (which is
exactly twice the double-overlap contribution) gives a diagram
in which the order of the 1-2 and 1-3 penetrating collisions

is also not specified. Interchanging in this diagram labels

1 and 3, we thus obtain the diagram in Fig. 15 and the cor-

responding "double-overlap part" of the triple collision inner

product,
3
(¢,9)P = -05.[ dvﬁdV}dVGdEz1df31|Vzl'221|T_Tfn(Vi)
521 i=1
{20 (@)« [¥Y(B)-¥(a)]} (4-25)
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2 I 3 3 I 2

B8
Y |

®a)e[¥(B-¥(a)] @ (a)%[¥(8)-¥(al]
(a) (b)

Figure l4. Equivalent double-overlap diagrams.

In this expression, the velocity variables outside the braces

are most conveniently taken to be the a-region velocities,

and f2; is that region in the space of points (Vléva(a),?21,f}1)
which corresponds to a realization of the collision sequence
depicted in Fig. 15. [Specifically, the points in f; satisfy
the three conditions V21+XK21>0, }F3:1]<1l and |Fs1+K21|<1.]

The factor of 1/2 in the integrand of (4-25) arises because

the diagram of Fig. 15 is the sum of the two diagrams in Fig. 14,
each of which separately gives (6,9)9. The reason we prefer the
diagram in Fig. 15 over either of the diagrams in Fig. 14 is

that the integrating volume associated with Fig. 15 is easier

to specify analytically: we do not have to worry about the
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Figure '15. ‘Diagram for (¢,9)%.

order of the penetrating collisions -in Fig. 15: We remark
that the dependence of equation (4-25) upon the diagram in
Fig. 15 exactly parallels the dependence of equation (4-24)
on the v-diagrams in Fig., 10; that is, the diagram in Fig. 15
specifies the integrating volume {2; as well as the functional

dependence of the B-region velocities upon the integrating

variables.
It will be observed that the diagram in Fig. 15 is
"symmetric" in the sense that a reversal of all velocities

is equivalent to simply interchanging the velocity region
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labels a and B. Therefore, since (4-25) is unaffected by a
reversal of all velocities, then it is also unaffected by an
interchange of the labels o and B. If such an interchange is
made, and if the resulting expression is added to (4-25) and
the sum divided by 2, we obtain an expression for (¢,w)? which
is identical to (4-25) except that the quantity in braces is

replaced by
{-Y10(B)-8(a)]*[¥(B)-¥(a)]}

Since this is symmetric with respect to an interchange of

¢ and ¥, we deduce that (¢,w)@ is symmetric in ¢ and V:

(0,v)% = (¢, 1) (4-26)

In Sec. 5.1 we shall prove that (¢,9)% coincides with the
Enskog inner product (q;,\p)%’. For now, though, we turn to

consider the single-overlap term, (¢,9)%.

By definition, (¢,¥)% is the sum of all the diagrams in
Fig. 13. This summation is carried out in four steps, as is
shown in Fig. 16: First, to diagram 13b we add diagram l3c
gwith 2 and 3 interchanged). Second, to the sum of diagrams
i3b and 13c we add diagram 13e (with 2 and 3 interchanged).
Third, to diagram 13a'(with 2 and 3 interchanged) we add
Qiagram 134 (with 2 and 3 interchanged). Finally, to the sum
of diagrams 13a and 13d (with velocities reversed), we add
the sum of diagrams 13b, 13c and 13e (with 1 and 2 interchanged).

In this last operation -- the fourth "line" in Fig. 16 --
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Summation of the single-overlap diagrams.

Figure 16.
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(Continued).

Figure 16.
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we Sbserve that the [a+d] diagram requires 2 and 3 to separate
before 1 and 3 interact, whereas the [b+c+e] diagram is non-
committal about the order of the 2-3 separating collision and
the 1-3 interacting collision. Consequently, the [a+d]
integrand can be referred to the [b+c+e] diagram only if the
[a+d] integrand is multiplied by a quantity ©, which is unity
if 2 and 3 separate before 1 and 3 collide and zero otherwise.
Thus, we obtain for the "single-overlap inner product" the

expression

3
(0,0)9 = -05./ av,dv,aVsdk»1d%%s 1 | V21 ok | ] [fo(Vi)
Qz i=1

, {18 (a) -2 (B) 1*[¥ (y) -¥(B)]

-O[¥(a)-¥(B)1*[0(y)~0(B)]} |(4-27)

where the integration volume f22 and the velocity £egions

o,B,Y are defined relative to the diagram in Fig. 17. The
quantity © is also defined relative to this diagrﬁm, in the
following way: if T:1 is the time interval between the 1-2
collision and the 1-3 collision, and T2 the time interval between

L

1-2 collision and the 2-3 separating collision then

l, for T1>1>
& =06(t1 - 12) = (4-28)
0, for T1:<T1,
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i

a
B
14

Figure 17. Diagram for (¢,¢)?.

In words, the second term in the integrand in (4-27) con-

tributes only when molecules 2 and 3 separate before molecules

1 and 3 collide. |
In order to prove that (¢,¥)% is symmetric,we imagine

the integrating volume 2, to be divided into two regions,

Q2(1) and 92 (0), where 0=1 and 0=0 respectively. In Q3 (1)

the integrand is obviously symmetric in ¢ and ¥. In §2{(0)

the integrand consists of only the first term, and hence

is not symmetric. Here, however, the diagram in Fig. 17 must

be modified to indicate that the 2-3 overlap definitely persists

to the 1-3 collision. The resulting diagram is identical to
7/
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A

the one shown in Fig. 5b, and is evidently symmetric in the
sense that a reversal of all velocities is equivalent to an
interchange of velocity regions o and y. Thus, the integrand
in 2,(0) is invariant to an interchange of the regions o and Y.
But such an interchange in the first term of the integrand in
(4-27) is evidently equivalent to an interchange of ¢ and VY.
Thus, the integral in (4-27) is symmetric in ¢ and ¥ over

regions f2 (1) and 2 (0) separately, so it follows that
(6,09 = (y,9)9 (4-29)

We shall consider the problem of numerically evaluating
(¢,9)3 in Sec. 5.2.

Having now disposed of the "excluded volume" contributions
to (¢,9)® -- i.e., contributions from collision sequences con-
taining some sort of overlap collision -- we now turn to examine
the effects on (¢,w)“)due solely to deviations from "molecular
chaos" -- i.e., Eontributions from collision sequences containing
no overlap collisions. To obtain these non-overlap sequences,
we return to the v-diagrams in Fig. 10 and we insert the concom-
mittant separating collision after each required penetrating
collision but before the next required collision, thus assuring
the absence of overlap collisions. The resulting non-overlap
collision sequences are shown in Fig. 18. We aygain indicate the
distinct velocity regions in each diagram by small Greek letters,
and we display below each diagram the c;rresponding integrand

[i.e., the guantity in braces in (4-24)]. It must be emphasized
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IR

RI: ®(a)%[¥(3)-¥(y)] - oBe[v(B)-¥(y)]
>/<3 }(
Clo@e[¥@-¥(y)] c2:-0(8)1n[¥(3)-¥(y)]

Hi:-0(a)e[V(y)-¥(8)]  H2: ®(B)[¥(y)-¥(B)]

Figure 18.

|~ [w|e
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I:n

w| % |w|e
N |w™

All v-diagrams not containing an overlap
collision. [Note that these diagrams are

subject to the restrictions stated in the
text.]
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that the diagrams in Fig. 18 are still subject to ‘the First
Collision Restriction (no collisions permitted above the
"first" collision in any diagram) and the Real Céllision
Restriction (no additional collisions permitted between the
"first" and "third" collisions in Rl and Cl). In addition,
we note that the integrands for Rl and Cl refer to region §,
which corresponds to the velocities after all possible inter-
action collisions have been allowed to occur [cf. (4-10}].
We now define the contribution to (¢,w)u)from the
diagrams of (4-15c¢) -- i.e., the k=3 term in (4-16) -- to be
that calculated from the non-overlap diagrams in Fié. 18

ignoring

(7) the First Collision Restriction;
(7Z) the Real Collision Restriction;
(22Z2) the distinction between velocity regions

§ and § in diagrams Rl and Cl.

When these three points are ignored, it becomes possible to
combine each type 2 diagram in Fig. 18 with its type 1 counter-
part. For example, in the absence of the above externally
imposed conditions, the velocity regions B, vy and ¢ in R2 are
seen to be equivalent to the like-labelled velocity regions

in Rl; we may therefore refer the R2 integrand directly to the
Rl diagram. We similarly combine C2 with Cl and H2 with Hl.

Thus we find
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(¢, w)ﬂ)' ~g? Z j’dV1dedV3dﬁ21dr31]V21°kz1|| |fo(V )
17°Q3 8 i=1

(-0 " 0(a,) -0 (8,) 1 [¥(8,)-¥(v,) 1} |(4-30)

where the integration volumes 932 and the velocity regions
az'Bz'Yz'Gz are defined relative to the three diagrams in

Fig. 19. We emphasize that these diagrams are not subject to
any externally imposed restrictions, as are the diagrams in
Fig. 10.

If, in the diagrams of Fig. 19, we reverse all velocities,
and if we also interchange molecule labels 1 and 3 on the 2=2
and 2=3 diagrams, we see that the net effect is to interchange
the velocity regions according to a£++61, 82++yz. But such an
interchange of velocity regions in (4-30) is evidently equi-
valent to interchanging ¢ and ¥. Therefore, since (4-30) is
invariant under velocity reversal and label permutations, we

conclude that

@6, ? = ,n? (4-31)

Now, (9,0)9 evidently differs from the true non-overlap
part of (¢,¥)® in three respects: Firstly, (¢,y)9 includes
contributions from diagrams which violate the First Collision
Restriction; these diagrams must be found and their contribu-~
tions subtracted. Secondly, (¢,¢f? includes contributions
from Rl-like and Cl-like diagrams which violate the Real Col-
lision Restriction; these diagrams too must be found and

their contributions subtracted. Thirdly, for those Rl and Cl
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o>

Figure 19. 'Diagrams for (¢,¢f”.

collisions sequences that are succeeded by a fourth collision,
(¢,¥)9 incorrectly uses for Vi(ﬁ) the velocities after the third
collision instead of the velocities after the last collision;
these diagrams must be found, their incorrect contributions
subtracted, and their correct contributions added. Evidently,
all these diagrams will contain more than three complete col-
lisions. But here our task is greatly simplified by Theorem II
[cf. Sec. 3.2 and Appendix A], which tells us that we need
concern ourselves only with finding those diagrams in the above
categories which contain four complete collisions. The

appropriately signed contributions from these four-collision
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sequences will, of course, constitute the fourth and final
term in our expansion (4-16).

Evidently, the diagrams contibuting to (¢,¢)@ fall into
three classes, and so we discuss these three classes of dia-
érams in turn. The class (i) diagrams consist of all those
sequences in Fig. 18 which have an additional non-interacting
collision before (above) the "first" collision. The Recol-
lision Rule tells us that diagrams Rl, Cl and Hl may be
preceeded only by a 1-3 or a 2-3 collision, and diagrams
R2 and C2 only by a 2-3 collision, while diagram H2 cannot be
preceeded by a collision between any pair. This yields a
total of eight diagrams. However, half of these diagrams are
not dynamically possible: Lemma 2 forbids Rl from having a
prior 1-3 collision, and also Cl from having a prior 2-3
collision, while Lemma 1 forbids both Hl and C2 from having
prior 2-3 collisions. The remaining four diagrams in class (i)
are dynamically possible, and they are shown in Fig. 20. 1In
these class (i) diagrams, we have changed  the labelling of the
velocity regions from Fig. 18 for later convenience. We have
also incorporated into the integrands an additional factor of
(-1) , reflecting the fact that these diagrams contribute in a
"subtractive" sense.

The class (ii) diagrams consist of all those Rl~like and
Cl~-like sequences which have an additional non-~interacting
collision between the first and second collisions or between
the second and third collisions. The Recollision Rule admits

four possibilities: Rl can have a 2-3 non-interacting collision
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Figure 20, Four-collision diagrams: class (i).
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betﬁeen the first and second collisions or between the second
and third collisions; and Cl can have a 2-3 non-interacting
collision between the first and second collisions or a 1-2
non-interacting collision between the second and third col-
lisions. Lemma 1 rules out the two Rl sequences. The two Cl
sequences are possible, though, and we show them in the top
row of Fig. 21. Again, we have relabelled the velocity
regions, and we have incorporated an additional factor of (-1)
into the integrands, reflecting their subtractive nature.

Finally, the class (iii) diagrams consist of all those
Rl and Cl diagrams that can have a fourth interacting collision.
By the Recollision Rule, this fourth collision can be either a
1-3 or a 2-3 collision for Rl,-and either a 1-3 or a 1-2
collision for Cl. However, Lemma 2 rules out a fourth 1-3
collision for Rl, as well as a fourth 1-2 collision for Cl.
The remaining two diagrams are dynamically possible, and are
shown in the bottom row of Fig. 21. Again, for later convenience,
we have relabelled the velocity regions in these diagrams. In
determining the integrands for these class (iii)} diagrams, we
recall that they arise here because, in (¢,wﬂ?, we incorrectly
wrote ¥(3) instead of ¥(§) for these diagrams. Therefore, the
integrand for each diagram contains a "subtractive term", cor-
responding to ¥(§), and an "additive term", corresponding to
¥(3).

To obtain (¢,¥)?, we have now to add the contributions from

the eight diagrams in.Figs. 20 and 21. To this end, we first
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reverse all velocities (where necessary) so that the velocity
regions are encountered in the order o,B,Y,8,€; next, we
renumber the molecules (where necessary) in such a way that

the first collision in each diagram is a 1-2 collision and the
second collision a 1-3 collision. With these changes, we find
that like-labelled velocity regions in the four diagrams in the
top rows of Figs. 20 and 21 are all equivalent and that the
corresponding integrands can all be referred to the %=1

diagram in Fig. 22. Similarly, like-labelled velocity regions
in the four diagrams in the bottom rows of Figs. 20 and 21 are
all equivalent, and the corresponding integrands can all be
referred to the 2=2 diagram in Fig. 22. The integrand for the
2=1 diagram in Fig. 22 will therefore be the sum of the
integrands of the top-row diagrams in Figs. 20 and 21; likewise,
the integrand for the £=2 diagram in Fig. 22 will be the sum of
the integrands of the bottom-row diagrams in Figs. 20 and 21.

We thus obtain the comparatively simple result

2 — — — 3
(6,9)% = -05 ¥ /.dVIdVZdvsdQZJdrSI|V21'?21|| |fo(Vi)

(1) {10 (0,) -0 (B,) 1w [¥ (e,) -¥(5,)]

+[¥(0,) =¥ (B )1%[0(e,) -0 (6,)]1} (4-32)

where the integration volumes 942 and the velocity regions

02,82,72,62,62 are defined relative to the two diagrams in
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Figure 22. Diagrams for (¢,y).

Fig. 22. We observe that (4-32) is symmetric in ¢ and ¥, so

that
(0, 0% = ,nF (4-33)

This completes our derivation of the terms appearing in
the re-summed form of the triple collision inner product in
(4-16). We have essentially replaced the v-diagrams in Fig. 10
with the diagrams in Figs. 15, 17, 19 and 22. We emphasize that,
unlike the v-diagrams, our new diagrams are not subject to extra
conditions or restrictions. We have Proved that each term in
{4-16) has the attractive property of being symmetric in ¢ and

Y, a property that did not hold for the individual terms in
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(4-24). Indeed, our work here constitutes an independent proof

of the fact that [18]

4,0 = (v,0)® (4-34)

Further attractive features of our new expansion will emerge in

the next chapter.

4,3 Consequences for the Transport Coefficients

In (2-41) and (2-42) we found that the triple collision con-
tributions to the transport coefficients, A; and ni, are propor-
tional to certain triple collision inner products. Therefore,
the fact that the general triple collision inner product can be
decomposed in the manner of (4-16) implies corresponding decom-

positions for A; and mi. Thus, we write

A1 = X111 + A2 + As + Ay (4-35)
N1 = N11 + N1z + N1s + Nia (4—}6)
" where
- Kz e -
n}\1i = 3(A,A)i (4-37)
_ _ kT.,==
nni; = -15(B,B)Y (4-38)

Here, A and B are, as before, the solutions to the linearized
Boltzmann equations (2-6) and (2-7); the NEll Sonine approxi-
mations to A and B.were given in (2-24) and (2-25) [cf. also

Tables I and IX].
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The quantities A;; and n;1 are calculated by means of
formula (4-25) and the collision sequence diagram in Fig. 15.
This "double-overlap"” diagram contains the dynamics of only
one collision, and gives rise to purely "excluded volume"
contributions to A; and n;.

The quantities Aj12 and ni2 are calculated by means of
formula (4-27) and the collision sequence diagram in Fig. 17.
This "single-overlap" diagram contains the dynamics of two
collisions, and gives contributions to A; and n: which may be
characterized as a mixture of excluded volume effects and
effects due to deviations from molecular chaos in the velocity
distribution.

The quantities Ai13 and ni1s are calculated by means of
formula (4-30) and the collision sequence diagrams in Fig. 19.
These no-overlap diagrams contain the dynamics of three col-
lisions, and give rise to contributions due solely to
deviations from molecular chaos in the velocity distribution.

- Finally, the quantities A:14 and nis are calculated by means
of formula (4-32) and the collision sequence diagrams in Fig. 22.
These no-overlap diagrams contain the dynamics of four collisions,
and again give rise to contributions caused solely by deviations
from molecular chaos in the velocity distribution.

The fact that the above expansion terminates at four col-
lisions is worth emphasizing. Our previous investigations in I

were based on collision integrals of the form (4-14), and it was
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not clear just how many molecular collisions were actually
involved. Of course, the theorems in Sec. 3.2, which prove
that three-particle collision sequences cannot contain more
than four complete collisions, have assumed "hard sphere"
dynamics. However, it is a reasonable conjecture that con-
tributions from five and more successive collisions among
triplets of more realistic gas molecules will be negligibly
small.

It is obvious from the formulae for the integrals (¢,wﬂ?
that the ease of computing Ali and N1y increases considerably
with decreasing i. This is because correlations among the
positions of the molecules (which dominate in the lower i
terms) are mathematically easier to express than correlations
among their veloecities (which dominate in the higher i terms).
This will work to a practical advantage if it should turn out
that the magnitudes of the suécessive terms in (4-35) and
(4-36) decrease from left to right, in the manner of a
"perturbation expansion". Present indications are that this
is probably the case: As we shall see in the next chapter,
the double-overlap terms, A;; and n;;, coincide exactly with
the Enskog gquantities AIE and Nig, respectively, while the
single-overlap terms A2 and niz are on the order of roughly
3 to 6 percent of the Enskog terms (but of opposite sign).
Recalling our preliminary findings, reported in I, that A; and
n1 differ from AIE and Mg by only a few percent, we are thus

led to conjecture that the single-overlap terms A;2 and ni:
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alone constitute a reasonably accurate refinement of Enskog's

approximate theory.

In the next chapter we shall analyze in detail the i=l

and i=2 terms in (4-35) and (4-36).
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CHAPTER V

NUMERICAL CALCULATIONS OF THE "EXCLUDED VOLUME"
CONTRIBUTIONS TO THE TRANSPORT PROPERTIES

5.1 Equivalence of the "Double-Overlap" Con~-

tribution with Enskog's Approximation.

The formula for the leading term in our expansion (4-16)
of the triple collision inner product -- the so=-called
"double-overlap" term -- is given in (4-25), and refers to
the collision sequence diagram in Fig. 15. A more geometrical
representation of this double-overlap collision sequence is
shown in Fig. 23, which may be regarded as a "snapshot" of the
molecules at the instant of the 1-2 interacting collision. We
take the integrating variables in (4-25) to be the velocities
and relative positions of the molecules instantaneously before
the 1-2 collision (thus, Vi=71(a)). The integration volume
is then determined by two conditions. First, that molecules 1
and 2 initially be converging: Va.i:°+X,:1>0. Second, that 3 be
overlapping with both 1 and 2: |T3:]|<l and |?21+531|<1. If
we write Vz for the B-region velocities, then VT and V? will
be given by (2-11), while V3=V3. Using the definitions of
¢ and ¥ in (4-3), we thus write (4~25) more explicitly as
(6,09 = -— d‘ldedVadﬁz1dr31|V21 ?21|T—Tfo(v )

V21'E 1>0
|r31|<l |i21+r31|<1

3
) Z O (V) [¥ (V) w(v )] (5-1)

m=1 n=1
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Figure 23. Integrating variables for (¢,¢)‘§’.
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Since nothing in the integrand depends on the variable
rs1, we can perform this integration without difficulty.
Noting that the integration region for Ys1, shown shaded in
Fig. 13, is identical to the volume which determines the
first density correction to g(o) [cf. Fig. 2 and equation
(2-46)], one easily finds Jdr;:=5%/12. Thus, (5-1) becomes

—_—

3
0,07 = -—Z%wosf dV1dV>aVsdkz1 [ V21 Koo [T J£0 (V)

Va1 K220 i=1l
3 3 r— —y —
I 1oV )xle(V) - v(V)] (5-2)
m=1 n=1
Now, the n=3 term here vanishes because Vi=Vs. Furthermore,

the m=3 contribution vanishes under the V; integration, since
fd\‘r‘afo(vam(vs) =0

This is due to the fact that ¢ (Vi) is always proportional to
either Vi or V3V; [cf. the expansions for A and B in (2-24) and
(2-25)]; more generally, the vanishing above the above

integral is a consequence of the normalization condition imposed
on the distribution function (2-3) [cf. equation (2.1-14) of I].
Then since the quantities under the summation signs in (5-2)

are independent of V3, the Vi integration can be trivially done

owing to the normalization of the Maxwell-Boltzmann function:

[d\‘fafo(va) =n

93



AEDC-TR-71-51

Consequently, (5-2) reduces to

4, nP = -fzno n_/ dVldvzdﬁ21|V21'k21|fo(vl)fo(vz)

Vai1+K21>0
2 2 — — P =
I L oV )al¥ (V) ~y(V )] (5-3)
m=1 n=1

A comparison of this last equation with equation (2-20),

(2-23) and (2-48) reveals that

(¢ WP = 370°n 6, 0? = (6,9 (5-4)

Thus, the first term in the expansion (4-16) of the triple
collision inner product coincides exactly with the Enskog
approximation. The immediate consequence of (5-4) is that the
first terms in the expansions (4-35) and (4-36) of A1 and n:

coincide exactly with the Enskog predictions:

L1

A1l = A]E = lz'lTO' A.u (5-5a)

_ 5
N1 = Mg 12” No (5-5b)

With these results, our expressions for A and n in (2-49) and

(2-50) can be written
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A= Ao (1 + Srotn(a8 o q 4 Mzt Miot M (5-6)
| 12 25 IA I
g
r Niz+ N1+ N1
- 5 .3.(32 _ )] -
n = No L 1l + 1211'0' n(zs 1 + InlEI (5-7)

5.2 Evaluation of the "Single-Overlap" Con-

tribution. Refinement of Enskog.

Equations (5-6) and (5-7) show clearly what must be done
to effect a rigorous improvement of Enskog's approximation
for "the linear density dependence of the transport coefficients:
we have to calculate the quantities (112+X13+A1q)/|A1E| and
(n12+n13+n1u)/|n1E|. These calculations can be made through
equations (4-37) and (4-38), using the general formula for
the inner products (¢,w)? derived in Sec. 4.2,

To the extent that our expansion of the triple collision
inner product in (4-16) displays the terms in decreasing order
of importance -- a conjecture which, although highly plausible,
must ultimately be tested by direct numerical calculations --
we can obtain a "first correction" to Enskog's theory by
evaluating only the quantities A12/|A1E| and n12/|n1E|. We
shall, for the present, evaluate these quantities using the
Sonine approximations for A and % in (2-24) and (2-25). The

Nth Sonine approximation to (5-6) and (5-7) reads
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4
5 48
A(N) = Ao(N)[l + 1370 n(zs -1+ izlei(N)/hlE (N) [)] (5-8)
o 32 E
n(N) = no(N)[ 1+ Iiﬂcan(ig -1+ izznli(N)/lnlE(N)l)] (5-9)

The ratios under the summation signs can be read off from

equations (2-53) and (2-54). In particular, the i=2 ratios

are
AMa(N) -1 N (k) @ |
lll (N) l - a: (N} X % 1ak(N)a£(N)[s3/2 (W1)W1, 3/2 (WI)WI]Z (5-10)
E , A= |
NZl (3
ma2(N) _ -1 (k) o= (L) ,eu2 wrom> _
Mg - @ o Z b (M) b (N)[ss/z(wl)wlwl,ss/z(wl)wlwl]z(s 11)

j

where the dimensionless triple-collision inner products [¢,¢]%’ _'

are given by (2-55):

16,919 = = yrmr mise(e. 1Y (5-12)

The - formula for (¢,y)% which appears on the right side of the
last equation is given in (4-27), and refers to the single-
overlap collision sequence in Fig. 17. If we introduce into
(4-27) the dimensionless velocity variables W; [cf. (2~286)])
and the explicit forms of the Maxwell-Boltzmann functions
[cE. (2-5)], and insert the resulting expression into (5-12),

we obtain
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(6,019 = 1222 [ aWyaW,aWsaks dzs s [Wor -Rer | exp (-3 -WE-W)
w5

{[2(a) -2 (B) 1% [¥(y)-¥(R)]

+ [¥(a)-¥(B)l«x[2(y)-2(B)]} (5-13)

The integration volume 22 and the velocity regions o, B and Y
are still defined relative to the single-overlap diagram in
Fig. 17, as is also the factor O[cf. (4-28)). We choose for
our integrating variables the velocities and relative posi-
tions of the molecules instantaneously after the 1-2 collision
in Fig. 17 (so that iﬁzﬁ;(s)). In Fig. 24 we show the single-
overlap collision sequence of Fig. 17 in more detail.

Our program now is as follows: Using Fig. 24, we must
first express the a-and y-region velocities, and also the
factor ©, as explicit functions of the integrating variables.
Next, we must deduce from Fig. 24 an - analytic expression for
the integration region Q,, so that (5-13) is brought into the
form of an iterated inte%ral with well-defined upper and lower
integration limits. By these means, we transform the expres-
sion for [¢,¥]9 in (5-13) into a mathematically precise
definite integral, defined without the use of any "physical®
diagrams. We then proceed to evaluate this integral for
those forms of ¢ and y appearing on the right of (5-10) and
(5-11) , using the explicit formulae for the Sonine polynomials

given in Table IXIIXI. Finally using the aK(N) and bk(N) coef-

ficients given in Table I, we evaluate the right sides of
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Figure 24,
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(5-10) and (5-11), and so obtain numerical values for the
single-overlap contributions to (5-8) and (5-9). We shall
perform the calculations for the first (N=1l) and second
(N=2) Sonine approximations.

The program just outlined entails an enormous amount
of mathematical manipulations. In the first place, we find
that in order to bring (5-13) into the form of an iterated
integral with reasonable limits, the vector integrating
variables must be defined in differently oriented frames;
thus, rotation matrices must be introduced in order to find
the components of these vectors in a common coordinate system.
In the second place, (5-13) as it stands is a fourteen dimen-
sional integral, and we perform seven of these integrations
analytically; however, the performance of these seven inte-
grations increases considerably the mathematical complexity
of (5-13), particularly for the higher Sonine integrands. The
remaining seven integrations must be done using Monte Carlo
techniques. If a simple, straight forward Monte Carlo
technique is applied, one does not obtain results of suffi-
cient numerical accuracy; thus, we have taken considerable
pains to develop a Monte Carlo method which is "tailored" to
the specifics of our problem. Finally, we mention that cal-
culations were made not only for the thermal conductivity and
the viscosity, but also for the self-diffusion. Since we are
working in the second Sonine approximation, we have to calcu-

late three distinct integrals for each transport property;
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therefore, we are evaluating here a total of nine geparate
integrals of the form (5-13).

It is simply not feasible to give here all or even most
of the mathematical details involved in these calculations.
Thus, we shall merely attempt to give the briefest possible
sketch of the procedure, and then quote our numerical results.

We begin by making a transformation of variables from

the velocities W;,W:,W: to

— 1—. _— -

Wo = 5( 1 + W2 + W3)

Wa1 = W2 - W1 (5-14)
Wi = Ws - W

It is also convenient to introduce the auxiliary variables

— e— eu—
Wio ,Wao,W3p:

—_— [ — 1 —_— —

Wig S Wy = Wy = -§(Wz1 + W3,)

Woo = Wa2 - Wy = —§(W31 - 2W21) (5-15)
-——n - = — l —n =

Wap = W3 = Wo = -§(W21 - 2W31)

It is straightforward to show that the Jacobian of the trans-

formation (5-14) is unity, and also that

= 3W3 + E (5-16a)
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where the quantity E is defined by
3 2 .
E = Z WJZ.O = i(wz% + Wa% - W21‘W31) (5-16b)

For brevity, we shall also write

%21 = %, i, = %, ka 03 (5-17)

where /1231 is the collision vector for the 1-3 collision, as

shown in Fig. 24. Equation (5-13) thus takes the form

(6,919 = Tor2 [ aisai: 1 aWs 1 akaE [Ws 1 R | exp (-3W5-E)
Q2

{[e(a)=-2(B) ) [¥(Y)-¥(B)]

+O[¥(a)-Y(R)1x[®(y)-0(B)]} (5-18)

The o- and y-region velocities are given by equations

of the form (2-11):

Wila) =Wi + Wark % Wily) = Wi + Ws,1 kR~
Wo(a) = W2 -~ Wa1°k %k Wa (y) = W2 (5-19)
Wi(a) = W Wi ly) = Ws - Wa1-kk”

If, in these equations, we replace each Wl by W}o, we obtain

the equations giving the values of the velocities Wio in the
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o and Yy regions. The corresponding equations for the

—

velocities Wo,Wz21,W3: are easily found to be

Wo (a) = Wo Woly) = Wo

W21 (a) = W21 - W10k k Wa1ly) = Wa2a - ﬁ?x'ﬁfﬁ' (5-20)
— -— (IS A~ — — — .

Wii (o) = W31 = W21 % Wii1(y) = W3, - 2W31‘ﬁ k

Evidently, (5-19) and (5-20) give the a-region velocities

in terms of the integrating variables; however, the formulae
for the y-region velocities contain the vector k; which itself
is also a function of the integrating variables. In addition
to determining‘i: we must also obtain expressions for the times
71 and T2 which enter into the factor 0. By definition, T

is the time between the 1-2 collision and the 1-3 collision,
and T2 1s the time between the 1-2 collision and the 2-3
separating collision. Therefore, T: is the smaller root of

the quadratic

T+ Waata|? =1 (5-21a)

while T2 is the positive root of the gquadratic

| (T +%) + (Wa1-W21)712]%2 =1 (5-21b)

The collision vector k” can then be obtained from T, according

to [cf. (4-21b)]
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%= -¢ —Wal‘h (5-21c)

We shall defer giving the explicit expressions for t:,T2 and
% until we have reduced (5-18) to a definite integral.

In transforming (5-18) into an iterated integral with
specific integration limits, we find it convenient to
define three coordinate systems, I, II and III. All three
coordinate systems are rest frames of 1, but they are

oriented differently:

-—m

Frame I: W;=0; 2Z-axis points along Wz, and X-axis
is in the plane of ﬁﬂ; and k such that kX has a negative
X-component.

Frame II: W;= 0; obtained by rotating Frame I about
“its Y-axis so that the Z-axis points along k.

Frame III: W;=0; obtained by first rotating Frame II

about its Z-axis until T lies in the positive X half of the
XZ-plane, and then rotating about the Y-axis until the

Z-axis points along -T.

The salient features of these frames are that they are all

rest frames of 1 (in the B-region), and their Z-axes satisfy

2 = Wai (5-22a)
PaS N\

zII « =k (5-22b)
S —

Zryp® T (5-22¢)
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We now consider the integrating variables in (5-18) in the
order Wo,W21,%,f,Wa,.

eW,: This variable is proportional to the total center-
of-mass velocity, and Fig. 24 imposes no restrictions on this
quantity. Therefore, Wo is to be integrated over all possible

values:

f[[daw‘o (5-22)

When ¢ and ¢ are Sonine polynomials, it turns out to be possible
to factor out the ﬁb-dependence from the integrand in (5-18)
in a term-by-term manner, and to then perform the Wo-integration
analytically.

OWzl: We specify this variable relative to Frame I. Since,

by (5-22a), Frame I has its Z-axis along ﬁB1, then the angular

integrations on W2, are taken account of by a factor of 4m.

—
Consequently, the Wz;—-integration has the form

477[ W31dW2, ' (5-23)
o]

ok: We specify this variable with respect to Frame I also.
However, Frame I is defined so that its XZ-plane contains'&;
thus, the azimuthal integraticn on % is taken account of by a
factor of 2n. We let © denote the polar angle of kX in Frame I,
as shown in Fig. 25. The dynamics of the collision sequence

in Fig. 24 requires that 1 and 2 be diverging just after their

collision, so % must be such that ﬁﬂ1§%<0. Therefore, cosf is
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Figure 25. The variable ®,: in (¢,9)%.

restricted to the range (-1,0), and the @—integration takes

2w]ﬂdcose (5-24)
-1

eT: We specify this variable with respect to Frame II in

the form

polar coordinate form (r,er'¢r). Since T is restricted to lie
in the shaded region of Fig. 24, we can deduce the limits on
r,er and ¢r from the diagram in Fig. 26: ¢r can have any value
between 0 and 2T, coser is restricted to values between 1/2

and 1, and r must lie between 1 and 2coser. Thus, the
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Tr-integration takes the form

2coser
f J'dcosej r2dr (5-25)
0 1l

eW31: We specify this last variable with respect to
Frame III in polar coordinate form (ng,ew’¢w). The dynamics
of the collision sequénce in Fig. 24 requires that 1 and 3
be aimed to collide in the future. The conditions which this
requirement imposes on the W}l-variables can be deduced from
the diagram in Fig. 27: as long as Ow lies between 0 and a
certain critical value 8y, then 1 and 3 will collide for any

values of W;3;; and ¢w. It is seen from Fig. 27, that 0, is

such that cosf¢=vr2-1/r=y/1-r-2. Consequently, the ﬁﬂl-integra-

tion takes the form

f W%ldW31f f dCOSe (5-26)
0 0 Vi-r-2'

Putting equations (5-22)-(5-26) into (5-18), and using the
fact that

|W21%| = -W,1c0s6

we thus obtain [¢,¥]% as an explicit eleven-fold iterated

integral:
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Figure 26. The variable T3; in (¢,9)%.

Figure 27. The variable W3; in (¢,9)%.
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w 0
6,919 = Lgi-?fffdsmf W§1sz1f dcost f dcosf
m 0 -1 0 1/
2cos()r
fr drqu)wf ngdW31f dcosfy
Yi-r2
(5~-27)
(-W21cos0) exp[~3Wi-E]
{{e(a) =2 (B)I*[¥Y(y)-¥Y(BR)]
i +O[¥Y(a)-¥Y(B)Ix([d(y)-®(R)]}
where
3 3
¢(a) = Z¢(w (a)), etc., ¥(a) = th(w (a)), etc. (5-28)
i=1 i=1l
1 if T1 > T2
P = (5-29)
0 if 7, < 712

and where E and the o- and y~region velocities are given in

(5-16b), (5~19) and (5-20). The evaluation of the integrand

in (5-27) will evidently involve taking linear combinations

and inner products of the vectors ﬁﬁl,ﬁ;f'and W}1; consequently,
it is necessary to find the Cartesian components of these
vectors in some common coordinate system, expressing these
coordinates in terms of the explicit integration variables in
(5-27). It turns out to be simplest to use Frame III as this

common coordinate system. The vector Ws; is already defined

108



AEDC-TR-71-51

relative to Frame III; however, Wz: and X are defined relative
to Frame I, while T is defined relative to Frame II. We must
therefore analyze the relationships between Frames I, II and
III, construct the appropriate rotation matrices, and thereby
bring the vectors W;l,'ﬁ and T ipto Frame III. Having done
this, we may then carry out the calculations indicated in equa-
tions (5-21) to obtain explicit expressions for T:,T:2 and X* in
terms of the integrating variables. Upon performing all these
calculations, we find the formulae shown in'Table III. By
means of these formulae, along with equa*ions (5-16b), (5-19),
(5-20), (5-28) and (5-29), the integral in (5-27) can be eval-
uated for any given functions ¢ and Y. It is to be emphasized
that this integral is now "mathematically self-contained", in
that all the physical conditions imposed by the collision
sequence diagram in Fig. 24 have now been incorporated into
the integration limits and the formulae just mentioned.

We have now only to evaluate the integral (5-27) for those
specific combinations of ¢ and y functions that are required
in (5-10) and (5-11) [cf. Table II]. Then, using the ak(N)
and bk(N) values given in Table I, we immediately obtain the
"single-overlap corrections" to the Enskog results--i.e., the
i=2 terms in (5-8) and (5-9). The evaluation of the required
[¢,¢]? integrals is an extremely lengthy calculation, and it
does not seem feasible to reproduce it here. Consequently,
we shall simply state in words what was done, remarking occa-

sionally on certain interesting aspects of the calculations.
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TABLE III

in equation (5-27). [Note:

relative to Frame III.]

Dynamical quantities for the single-overlap collision
sequence, expressed in terms of the integration variables

Vector components are

sinBcosbycost¢y - cosOsinbyp

W21 = W2 sinfsind,
sinbsinf,.cos¢, + cosbcost,
sinewcos¢d-
W;1 = W3, sinewsin¢w
cosOy,
~siné, 0
X = 0 T=r|o0
cosf, ~1
r(e—l)cosewsinewcos¢;1 .
-2
% = r{e-1)cosBysinbysingy where € E'Ji ~- é3§§§—
W
r(e-1l)cos?6,, + r
T = —l—r(l—e)cose
Wi w
T3 £ +k
T . oI = o 32 2 2 v Y32 =Y
T, = -f32 W32 + /(razzwaz) + Wiz (1-r%2) where {_A _ N
W32 W3z =W3; - W2
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For those ¢ and ¢y functions required in (5-10) and
(5-11), we first compute the corresponding ¢ and ¥ functions;
we find it convenient to express these in terms of Wy, and
the auxiliary variables W;o,Wa2o0,Wso [cf. (5-15)]. Next, the
differences in ¢ and Y betweén the o and B regions and between
the vy and B regions are calculated as required in (5-27);
the calculations of these differences is simplified somewhat
by the fact that W, and the quantity E [cf. (5-16b)] are the
same in all regions. We next take the scalar products of
these differences in ¢ and Y, as indicated in (5-27); each
scalar product is in the form of a sum of terms (from a few
to very many depending on the particular ¢ and § functions
considered). Using various vector and tensor identities [cf.
Chapter 1 of ref. 4], it is possible to reduce the W}—depen-
dence in each term to a factor of |W,|™, with the value of n
usually being different for different.terms. We can then

carry out the Wp-integration,
f/fw{,‘exp[-3w%]d3w‘o (5-30)
o0

analytically on a term-by-term basis. This actually reduces
the number of terms in the integrands considerably; for, only
terms having an even power of Wo will survive, and of the sur-
viving terms, several will differ only by numerical factors and
can therefore be combined. After the Wﬂ-integration has been
performed, the various [¢,y]% quantities are given as eight-

fold iterated integrals.
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The fact that Wy could be integrated out with relative
ease is a reflection of the fact that the dynamics of the
collision sequence is independent of the velocity of the
center-of-mass of the three molecules. Another variable
which does not affect the collision dynamics for hard sphere
molécules is the scale with respect to which all the velocities
are measured (this is because the angle of deflection for two
colliding hard sphere molecules is independent of their velo-
cities). Suppose, in fact, we measure the two velocity

variables Ws, and Ws1 in (5-27) in units of Wz,:

iﬂ1 = Wzrﬁ
. . (5-31)
W31 = Wow

Essentially, this amounts to a change of variables of the form

(W21, W31) > (W21, w=W31/W21) (5-32a)
with

dWz31dAW3; = W2 1dW3;dw {5-32b)

The essential independence of the integrand with respect to
the velocity scale manifests itself in the following fact: If
relations (5-31) are introduced into the various integrands,
then every term in these integrands is found to be homogenous
in W,,; that is, if F(W»1,Ws1) is a typical integrand term,

then we discover that
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F(W21,W31) = F(W2,2,W2, W) = W?lF(?fﬁ) (5-33)

with the value of n usually being different for different
]
terms. In particular, we note that k“ and @ are homogeneous

of degree zero, while E is homogeneous of degree two:
2 [2 2 P *
E = W21[§(1 + wo - Z’W)] = W%,E (5-34)

Therefore, if F(V_\T‘“,ﬁ“) in (5-33) is a typical term inside
the braces of (5-27) (where we now assume Wy has already been

integrated out), then we can perform the W;i-integration,

f (Wy1) 234D oy [-E*W3, 1 F (2,%) AW, (5-35)
0

’

analytically on a term-by-term basis. Wé note that this inte-
gration removes the factor exp[-E] and replaces it by the reci-
procal of E* raised to some half-odd-integer power.

Thus, by means of the ﬁ}—integration and the W2;-integra-
tion, we reduce (5-27) to the form of a seven-fold iterated
integral with well-defined integration limits. However, the
integrands are now very complicated functions of the integrat-
ing variables. Therefore, we proceed from this point using
Monte Carlo techniqﬁes.

A fairly comprehensive review of general Monte Carlo
methods has been given by Hammersley and Handscomb [24]. We
shall outline briefly some of the essential points of the

Monte Carlo approach which are pertinent to our work here.
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Suppose it is desired to evaluate the integral of some
function f(X), where X denotes an n-component variable, over
some finite region f# in the space defined by the components
of X:

I = fo(B?)dk‘ (5-36)

Letting '|R| denote the volume 9, we write this as

1= |e|ff@) (2 )ax = |o|-F (5-37)
[§2]
Q .
where f is defined through the identity sign. If we now con-
sider a distribution in the space of X which is described by

the probability density funetion

1/}e|, for X e Q
P(X) = (5-38)
0, for X £ Q

then the quantity f may be interpreted as the "mean value" of
f, taken with respect to this distribution. [We note passing
that the function P(X) defined in (5-38) is indeed a legiti-
mate probability density function, since it satisfies the two
requirements P(X)20 and fP(i)d§=l.] Now, if we had a set of
points {X,,¥X2,...,Xy} which were randomly distributed accord-
ing to the density function in (5-38)--i.e., if we had a set
of N points which were distributed randomly and uniformly over

f--then we could estimate I by an ordinary averaging procedure:
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— N .
F == z f(X.) (5-39)
i=1 '

2~

The uncertainty in so estimating f would be given approximately
by the root-mean-square deviation of the f(xi)-values, divided
by the square root of the number of random points used.
The Monte Carlo method for evaluating the integral I in
{(5-36) therefore requires that one be able to:
1° Calculate, in some way, the volume || of the
integrating region Q;
2° Devise a method for generating points X;,X2,...
randomly and uniformly inside Q.
Then, normally using a high-speed digital computer, one
generates the points i},ﬁ&,...,iﬁ in turn, calculates for

these points the averages

1 N —_ 2 1 N manth 2
(€) = ﬁ_zlf(xi), € = ﬁ-Il[f(xin (5-40)
i= i=
and finally puts
= ol [<f> : LED-@T ><f>] (5-41)
N

It is desired, of course, to make the "error" term in {(5-41)

as small as possible. Since the rms deviations of f is essen-

tially fixed by the specifics of the problem, we must therefore
take N as large as possible. The maximum value of N is essen-

tially equal to the amount of computer time available,
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divided by the amount of time the computer requires to
generate one random point §} and calculate the corresponding
value f(i}). I1f, as frequently happens, the maximum value

of N is not large enough to give a sufficiently accurate ésti-
mate of I, then one has two alternatives: either one must
devise a more efficient means of generating the random points

{EE}; or, one must try to make a change of variables in (5-36),

dx”

ff(?‘c)di = /‘f(:‘f)%, j £7(£7)a%” (5-42)
) Q Q-

in the hope that the new integrand f° will have a smaller rms
deviation over the new region 2 than f had over Q.

There are many so-called "pseudo-random number" subroutines
available by means of which a computer will generate on call a
random value from a uniform distribution in the unit interval.
In our work we use a subroutine written by Marsaglia and Bray
[25]. We shall denote by 42 a random number from a uniform
distribution in the unit interval, with the understanding that
a new random number is implied each time % appears. We can
generate a random value x from a uniform distribution in the

interval [a,b] by means of the formula

x =a+ (b-a)xn (5-43)

Thus, if the n~dimensional volume 2 is a "box", with the iEE

component of satisfying ai<x(1)<bi, then we can generate a

X
random point X from a uniform distribution inside © by putting
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x) = a4+ b, -a n, isl,e..n (5-44)

If @ is not a "box", then one has two options. On the
one hand, one can surround Q by a "box"I, generate random
points inside I in the manner of (5-44),Iand then keep only
those points which happen to fall inside . On the other
hand, one can construct a transformation of variables, X+*X~
which is such that the transformed volume Q° is é "box". In
the first method it is clear that only the fraction |R|/]z]
of the points initially generated in ¥ will also lie in Q;
thus, if the shape of 2 is such that it can only be enclosed
in a "box" I with |I|>>|Q]|, then the first method is very
inefficient. [We note in passing that one could extend the
definition of £ so that it is zero outside f, thus making f
defined everywhere inside I; however, this approach can be
shown to be completely equivalent to our first method, and
thus cannot improve the situation any.] If a fairly simple
transformation of variables can be found which transforms @
into a "box", then that is normally the method to use. It
is always possible to write down transformations which carry
Q into a "box" Zf the given integral can itself be written
as an n-fold iterated integral with explicit integration
limits; however, whether a sufficienty "simple" transforma-

tion can be written down is another question.
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To these very general remarks about the Monte Carlo
method for evaluating integrals, we should add one final com-
ment. The uncertainty in the Monte Carlo estimate of an
integral [cf. (5-41)] is inversely proportional to the square
root of the numpber of points for which the integrand is
evaluated, regardless of the dimensionality of the integral.
This is in contrast to the situation with standard "glassi-
cal" numerical methods (i.e., the trapezoid method, Simson's
method, Gauss' method), where the number of points required
for a given level of accuracy increases very rapidly with
the dimensionality of the integral. It turns out that non-
Monte Carlo methods are superior in four or less dimensions,
while the Monte Carlo method is superior in five or more
dimensions; indeed, for seven dimensional integrals, which
are the kind we are faced with here, the Monte Carlo method
is the only feasible one.

Returning now to the problem at hand, we have to evaluate
integrals of the type (5-27), except that the ﬁo and W2, inte-
grations [the first four integrations in (5-27)] have already
been performed analytically, and the W;3;-integration has been
replaced by an integration over the variable w [cf. (5-31)
and (5-32)]. The quantities in braces in (5-27) now have a
fairly complicated structure, as a result of having been
expressed in terms of quantities more closely related to the
integrating variables. However it found that, regardless of
which Sonine polynomials are considered for ¢ and ¢, the

quantity in braces always contains the factor (2-X) (w'k’).
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The reason for this is that the factors [¢(a)-9(B)] and
[Y(a)-¥Y(R)] in (5-27) are always proportional to W215§21
(which becomes 2+k after the W,;-integration), while the
factors [®(y)-2(B)] and [¥(Y)-Y(R)] in (5-27) are always
proportional to Wi;+k” (which becomes wek” after the Wj,-
integration). Using the formula in Table III, it is easy

to show that

- N
W21°k = Wa,cos6
—— o,
W3y *k™ = Wairecosdy,

so that the quantity in braces in- (5-27) always contains

the overall factor
(2+%) (W'X") = wrecosécosé,, (5-45)

If we extract the above factor from the quantity in braces
in (5-27), then we obtain for [¢,y]1% an expression of the

general form

2cosb,
[¢,919 = fdcosef dd)rj;dcoser fl rzdrfdd)w

jr w de[ dcosfy[ (cosh) (wrcosbcosby) IxF  (5-46a)
_r—Z

where the extra factor of cos6é comes from the middle line in
(5-27), and where the quantity F is some complicated function

of all the integrating variables that accounts for "the rest"
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of the integrand. Using simple differential formulae, it

is easy to transform (5-46a) into

1 0 2T 2m 0 .
(6,919 = ﬁf d(cosae)f dé, f d¢wf w dw
-1 0 0 0

1 l6cos*6, (1
fdcoserfd(r") fd(coszew)XF (5-46b)
1/2 1 1>y -2

Now, an integral of this type is not yet susceptible to Monte
Carlo integration, because one of the variables, namely w, has
an infinite range. It is therefore necessary to transform
from w to some new variable u, such that: (<) the infinite
range 0<w<» is transformed into a finite range a<u<b, and

(iif the quantity w®F|3u/dw| is a bounded function of u in

the interval [a,b]. The particular transformation we have

used is

LR e (5-47)

This transformation evidently maps the interval 0<w<~ onto
the interval 0<u<l. The exponent of 4 was chosen after a
careful study of the behavior of w’F|3u/3v| in the limits
w+0 and w»»: it was determined that 4 was the largest expo-
nent for which this quantity remained finite in these limits
for all the required combinations of ¢ and ¢ functions.
Consequently, all the inner product integrals which are to

be calculated have the general form
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0 2T 2 1
[¢..w1‘2’=f d(cos®8) f d¢rf d¢wf du -
-1 0 0 0

1 l6cos“6, [1
fdcoserf a(r*) fd(coszew)XG (5-48)
1/2 1 L-r=2

where G is a complicated but bounded function of all the inte-
grating variables, the exact form of G depending on which
Sonine polynomials are being considered. It is integrals of
the form (5-48) which we must evaluate by a Monte Carlo pro-
cedure,

The integration volume 9 for (5-48) consists of all
points (cos®0,¢,,0y,u,cosd,.,r*,cos?8,) whose components lie
between the corresponding integration limits in (5-48). 1If
all these integration limits were constants, then  would be

a "box", and we could use the method described in (5-44) to gen-

erate points randomly and uniformly inside . However, we note
that the limits on cos®8,, depend on r*, and the limits on r*
depend on cosfy. Thus, we shall have to devise a more sophis-
ticated method for generating random points uniformly inside
. The volume of Q is calculated by evaluating (5-48) with

G=1, and is easily found to be

(5-49)

One way of proceeding here would be to enclose £ in a

larger "box" I, generate random points inside I according to
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the method (5-44), and then keep only those points which

also fall inside Q. We find, though, that the smallest

box enclosing 2 has a volume about 5.6 times larger than

Q, so our generating efficiency would be only about 18%.

We have therefore chosen to adopt a different approach:
Essentially, what we do is to express the composite n-
variable probability density function P(X) in (5-38) as a
product of n "conditional one-variable density functions®.
This allows us to generate points in such a way that the
non-rectangular shape of  is automatiecally accounted for,

so that every point so generated is a "legitimate" point.

(We remark that the problem is not so much to genefate

random points which simply lie inside @, but rather to do

it in such a way that the points cover Q uniformly to

within normal statistical variations). For a discussion of
the conditioning technique, we refer to Ref. 26 [esp. pp. 187-
190]. When this technique is applied to our problem here,

it yields the following set of formulae for generating points

randomly and uniformly inside the integrating region 2 of

(5-48) =
cos30 = -1 + n, (5-50a)
¢ = 2Th, (5-50b)
by = 2Tn3 (5-50c)
u = wE[(l—u)/u]b{ (5-504)
215 = 4cos®6y - 3cosf, + 1 (5-50e)
r* = [1 + (4cos?6,-1)rs]? (5-50f)
cos?8, = (1-r7?) + r~?x, (5-50g)
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In these formulae, the quantities ni represent random numbers
drawn from a uniform distribution in the unit interval. We
note that the first four formulae, (5-50a)-(5-50d), are
precisely what we would expect on the basis of (5-48) and
(5-44). The formulae for the last three variables are,
however, different; this is because the limits for these
variables are interrelated [cf.(5-48)]. These last three
variables must be generated in the order given: Thus, we
firet draw a random number %s and compute cosf, from (5-50e) ;
we note that (5-50e) must be inverted to calculate cosf,.,
bu£ this can be easily done by the computer. With cosé,
thus generated we next draw a random number %z and compute

r* according to (5-50f); we note that the value generated
for r"' depends upon the value generated for cosb,. Finally,
using the generated value of r" along with a random number
h7, we calculate a value for c0526w according to (5-50g).

It is, of course, not obvious that the generating for-
mulae in (5-50) accomplish the desired goal of populating
the seven-dimensional integrating region § of (5-48) randomly
and uniformly. To demonstrate the validity of these formu-
lae and our use of them, let us regard them for the moment
not as "generating formulae", but rather as equations

specifying the transformation of variables

(cos®0,¢, 9 ,uscosdy,r* ,co828,) — (L1,...,47) (5-51)

123



AEDC-TR-71-51

The reader can easily verify from (5-50) that this transfor-
mation maps 2 onto the seven-dimensional unit cube (0<ni<1,
i=l1,...,7), and, moreover, that the Jacobian of the transfor-

mation has the constant value |R]:

9 (cos®0, ¢y, by,u,cos8y,r*,cos®6y) _ lém? _ _
T o e - = = = 8] (5-52)

Consequently, we can write (5-48) as

1 1 1
[¢.w1‘%’=f diuj; dnz---j; dn,x|2|6 (5-53)
0

where the dependence of G on the new integrating variables
follows from its dependence on the old integrating variables
via equations (5-50). Since the new integration region is
the (seven-dimensional) unit cube, then the Monte Carlo

estimate of the integral in (5-53) is

(9,919 = 1-(|a]6) (5-54a)

where the average is taken with respect to a set of points
(n1,224...,17) generated randomly and uniformly inside the

unit cube. Clearly this is equivalent to saying that
(4,919 = |a|-{6) (5-54b)

where the average is taken with respect to a set of points
(cos®8,¢y,...,cos%8,). generated according to (5-50). But

(5-54b) also gives the Monte Carlo estimate of (5-48), provided

\
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the indicated average is taken with respect to a set of points
(cos3e,¢r,..;,coszew) generated randomly and uniformly inside
. We conclude, then, that points generated according to
(S-Sh) are indeed distributed randomly and uniformly over the
integrating region of (5-48).

In summary, then, we can evaluate the integral (5-48) by
generating N randoﬁ "points" according to formulae (5-50),
calcuiating the averages of G and G? with respect to these

points, and then putting

6,919 = lgﬁf B@) + '<G§/:<G>2] ) (5-55)
N

Denoting, for the sake of brevity, the single-overlap triple
collision inner products on the right hand sides of (5-10)

and (5-11) by

3
agy = [S35) mbwh,si%) whw | (5-56a)
—Q i O m—in (3)
by = [séfi(wf)wlwl,séﬁ%(w%)wiwlj2 (5-56b)

and defining the "reduced" single-overlap parts of A, and n,

in the Nth Sonine approximation by

A%, (N)

A12(N)/|A1E(N)| (5-57a)

N1z (N) ﬂlz(N)/]ﬂlE(N)| {5-57b)
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we show the results éf our Monte Carlo calculations in

Column A of Table IV. These results were obtained by car-
rying out the computational procedure just described, using
50,000 random points; the calculations required approximately
9 minutes on a UNIVAC 1108 computer. Included in Table IV
are the results of parallel calculations for the coefficient
of self-diffusion, D. The values obtained for Ar2 and ni2
are calculated from (5-10) and (5-11), respectively, and
represent "corrections" to the Enskog terms of -1 in equations
(5-8) and (5-9). An equation analogous to (5-8) and (5-9)
holds for the self-diffusion D, except that there is no addi-
tional "spatial inhomogeneity"” term for D as there is for A
and n.,

The % uncertainties quoted in column A of Table IV
should be copsidered as "one standard deviation" uncertainties,
An attempt was made to reduce these uncertainties without in-
creasing the number - of points used' (and hence the amount of
computer ;ime used). To do this, we have resorted to a
technique known as "importance sampling”.

Importance saﬁpling is roughly equivalent to making «
change of integrating (or generating) variables which decreases
the rms deviation of the ihtegrand, thereby decreasing the
uncertainty in the average value computed for this integrand.
To illustrate the approach we have taken, considar again
equation (5-53). Suppose we can find some function P(x;)

that satisfies
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TABLE IV

Monte Carlo estimates of the single-overlap triple collision
integrals, and the consequent fractional corrections to the
Enskog values for A;,n: and D; in the first(l) and second(2)

Sonine approximations.

Column A Column B
Quantity (straight sampling) (importance sampling)
ari -0.0311 * .0018 -0.0284 *+ .0008
aiz 0.0333 + .0007 0.0331 + .0004
as: 0.0331 * .0007 0.0334 + .0004
aszs 0.0214 * .0034 0.0276 + .0014
boo -0.0628 * .0017 -0.0631 % .0008
bo1 0.0194 * .0008 0.0194 + .0004
b1o ~0.0189 % .0007 0.0198 * .0004
b1 -0.0709 + .0047 -0.0631 + .0018
Coo -0.1186 * .0009 -0.1181 % .0008
Co1 0.0391 * ..0009 0.0393 + .0006
C1o 0.0387 + .0009 0.0397 £ .0005
c11 0.0298 + .0025 0.0322 + .0015
Are (1) 0.0311 + .0018 0.0284 + .0008
Ars (2) 0.0256 + .0018 0.0228 ¢ .0008
N (1) 0.0628 *+ .0017 0.0631 + .0008
nia (2) 0.0617 + .0017 0.0618 * .0008
D12 (1) 0.1186 + .0009 0.1181 + .0008
D2 (2) 0.1151 * .0009 0.1146 * .0008
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1° P(n,)>0 for 0¢n,;<1,

1
2° f P(n,)dr,=1
0

3° P(n,) "follows™ G in 0O<n;¢1 in the sense that
P{n,)/G 1is more nearly a constant in this
interval than G itself is, independently of the

other variables %2,...,17.

Items 1° and 2° tell us that P(1,) can be regarded as a pro-
bability density function for z, over the unit interval. If

we now write (5-53)_as

© 1 1 1 .
(6,912 =j;P(ILl)d’L1j;dlz.z-“./;dn-;xlﬂl[P_(,L_l)_] (5-58)

then we see that this integral can also be evaluated in the
following way: Generate the variables #n2,...47 uniformly
inside the unit interval as before, but now generate 1, accord-
ing to the density fqution P(r1). [Techniques for generating
random numbers from a non-uniform distribution characterized by
a non-constant probability density function are derived and.
discussed in detail in Ref. 26.] The above integral can now

be calculated as the average value, with respect to the points

sO0 generated, of the new integrand, -

G
""[m]
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Since, by item 3°, this new integrand has a smaller variance
than the old integrand, |2|G, it follows that the numerator
of the uncertainty term in (5-55) will be correspondingly
reduced.

We can carry out the above procedure for each of the
ni—variables in turn; however, we should not expect to be
able to reduce the uncertainty to zero. This is because
item 3° can usually not be strictly satisfied "independently
of the other variables"; indeed, 3° could be strictly satis-
fied only if the ni1-dependence in G could be exactly factored
out.

By using a very expirical trial-and-error procedure,
guided by a rough determination of the "average behavior" of
a typical G as a function of each of the variables hi in
(5-53), we settled on the following combination of density

functions to use in our importance sampling procedure:

P(rny) « exp[-3(1-x:)] (5-59a)
P(nz) = 1 - 0.7cos2mx, (5-59b)
P(rsy) = 1 + 0.7cos2mra {5-59¢c)
P(rs) « exp[-1s5] (5-594)

The results are shown in column B of Table IV. On the average,
the uncertainties in the thermal conductivity and the vis-
cosity were reduced by a factor of 2, while the uncertainty in
the self-diffusion was not much affected (but note that the

self-diffusion uncertainties were comparatively small to begin
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with). The computer run used to obtain the column B results
took about nine and one-half minutes, as opposed to about
nine minutes flat for the column A results. However, about
forty minutes of computer time would have been required by
the straight-sampling program to obtain results as accurate
as those found in the importance-sampling run, since the
number of points used must be increased by a factor of four
in order to halve tﬁe uncertainty. Thus, our attempt at
importance sampling may be regarded as fairly successful.

We take as our "best" results the column B figures for
A1§,nfz, and D;%. It will be observed that the second
Sonine approximation figures are smaller than the first
Sonine approximation figures by 2% for the viscosity, 3%
for the self-diffusion, and 20% for the thermal conductivity.
The 20% difference for the thermal conductivity is both sur-
prising and disappointing: either our calculations for the
thermal conductivity are in error; or the Sonine approxi-
mation is not a rapidly convergent one, so far as the first
density density correction to the thermal conductivity is
concerned. Very careful checks of our derivations and com-
puter coding have not turned up any errors; so we believe
the second alternative is a very distinct possibility. How-
ever, until this question is definitely resolved, we have
decided not to initiate a several-hour long computer run

aimed at further reducing the quoted uncertainties.
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We are presently preparing a Monte Carlo calculation
based on the eleven-dimensional integral in (5-27), rather
than the seven-dimensional integral of (5-48). If certain
convergence problems can be worked out, we could thus by-
pass the lengthy calculations involved in proceeding ana-
lytically from (5-27) to (5-48). At present, we see this
approcach as the one most likely to resolve the difficulty
with the thermal conductivity, as well as providing a
fairly independent check of our other results. This approach
might also enable us to investigate higher Sonine approxima-
tions, something which is quite out of the question using
(5-48) because of the great algebraic complexity of the

integrands for these higher Sonine terms.
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CHAPTER VI

DISCUSSION OF RESULTS

6.1 Summary of Accomplishments

In this report we have demonstrated that, up to terms
linear in the density n, the thermal conductivity XA, the
shear viscosity n and the coefficient of self diffusion D

of a gas of hard sphere molecules can be represented by

A o= Aoll + %n&n[l.gz AR+ A%+ AN+ AR (6-1)
1= nell + 1—52'r.can[l.28 + nf1 + 02 + s o+ nflll (6-2)
D = Do{l + 1—5211'03n[Dik1 + D]_*z + D]:k;a, + Dlt]} (6-3)

Here, Ap, ng and Dy are the transport coefficients in the low
pressure limit (derived from the linearized Boltzmann equa-
tion), and o is the diameter of the hard sphere molecules.

In these equations, Afi, nlﬁ and Dlﬁ represent reduced trans-
port coefficients that account for correlations among the
positions and the velocities of three molecules. They are

given by expressions of the form

x, 1 N N

e UL ORT (6-4)
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N-1 N-1

LA 1 ) ' .
mi = - Ry kzo Zéobk(N)bz(N)[wk’wzli (6-5)

where the coefficients ak(N) and bk(N) are given in Table I,
and where the quantities [¢k,¢2]? and [wk,wllg?are "triple
collision inner products" of various Sonine polynomials (or
more simply, "triple collision integrals"). The coefficients
D;ﬁ are given by a similar expression. We have proved that
the triple collision integrals are symmetric in the sense
that

o) 3) -
0,919 = [v,01% (6-6)

The expansions (6~1), (6-2) and (6-3) correspond to an

expansion of the triple collision integrals,

[6,91% = (6,919 + (6,919 + [o,9I9 + [o,v]D (6-7)

in which we take into account, in turn, the effects of one,
two, three and four successive binary collisions among three
gas molecules. The major features of this expansion are
summarized in Table V. It was proved that the expansion
terminates after four collisions among three (hard sphere)
gas molecules.

The leading terms, 11*1, n1*1 and Dl*l, are due to col-
lision sequences in which the positions of the three molecules
are highly correlated. Specifically, the phases are con-

strained by the "excluded volume" condition that two pairs of
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TABLE V

Expansion of the triple collision integrals.

(6,91® = (6,919 + 16,919 + (6,919 + (6,019

-

eincreasing number of collisions.

edecreasing correlations in the
position variables; i.e., "decreas-

ing excluded volume effects".

eincreasing correlations in the velocity
variables; i.e., "increasing devia-

tions from molecular chaos".
eincreasing range of correlations.
eincreasing difficulty of computation.

edecreasing magnitude.

TABLE VI

Numerical results for the single-overlap terms.

Second Sonine Approx.

First Sonine Approx.
A2 0.0284 + .0008
nie 0.0631 *+ .0008
D> 0.1181 *+ .0008

0.0228 + ,0008
0.0618 + .0008
0.1146 * .0008
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molecules be overlapping while the third pair is colliding.
Such "double-overlap" collision sequences involve the dynamics
of only one binary collision. It was shown that these leading

terms coincide with the predictions of the Enskog theory:
Afi = mY =D = -1 (6-8)

The second terms, Afz, nfﬁ and sz, are due to collision
sequences in which only one pair of molecules is overlapping
while another pair is colliding. These "single-overlap” col-
lision sequences involve the dynamics of two successive binary
collisions, and thus give rise not only to an excluded volume
effect, but also to a departure from strict molecular chaos.

We have derived explicit integral expressions for these single-
overlap terms,. and we have evaluated these integrals numerically.
The results are summarized in Table VI.

We see that these single-overlap terms change the Enskog
estimates for the thermal conductivity and the viscosity by
approximately 2% and 6%, respectively. The contribution to the
coefficient of self diffusion is more significant and amounts
to approximately 11%.

Our formulation of the triple collision contributions to
the transport coefficients makes use of the solutions of the well-
known linearized Boltzmann equation. These solutions are tradi-
tionally obtained by a procedure which approximates them as

finite sums of Sonine polynomials [4,5]. These Sonine expansions
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produce fapidly conVerging expressions for the dilute limit
coefficients_Ao,ﬁo and Dy, in the sense that the Valueélfor
these quantities calculated using the first two Sonine terms
differ from the values calculated using the first Sonine term
alone by only about 2%. We find [cf. Table VI] that the
values for n:; and Dfa are likewise fairly insensitive to the
order of the Sonine approximation: the second Sonine approxi-
mation lowers n:z by about 2% énd D:z by about 3%, from the
corresponding values found in the first Sonine approximation.

- However, the second Sonine approximation value for A:é is
about 20% lower than the first Sonine approximation value. So
far, we have been unable to locate any errors in our calcula-
tions. Thus, it seems that a rapid convergence of the Sonine
expansion procedure can not be taken completely for granted,
and further research on this point is required.

We conjecture that the exeluded volume terms represent
the dominant contributions to the density dependence of the
transport coefficients. This ‘conjecture is based on a compari-
son of our present results for the single-overlap and double-
overlap terms with the previous results reported in I. Unfor-
tunately, oﬁr previous results are not accurate enough to allow
a definite conclusion to be drawn in this regard. We recall
that in I we considered only the thermal conductivity and the
viscosity, and these only in the first Sonine approximationj;
moreover, Ehe formulation of the triple collision integrals in

I permitted an accuracy of only about one-tenth that available
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by our present method. Consequently, the validity of the

last point mentioned in Table V must ultimately be established
by an explicit calculation of the integrals [¢,¥1? and [¢,91%9.
To the extent that our conjecture ¢s correct, though, the
figures quoted in the second column of Table VI should repre-
sent the most accurate numerical refinement to date of the
predictions of the Enskog theory.

We recall that the density dependence of the thermodyﬁa-
mice properties of a gas is completely determined by "excluded
volume effects" representing correlations in the positions of
the gas molecules, and is not affected at all by correlations
in the velocities. Our present results indicate that, for
the density dependence of the transport properties of a gas,

velocity correlations do contribute somewhat, but it is again

the excluded volume effects which play the dominant role.

6.2 Outlook

In the present report we have developed a physical expan-
sion which accounts for the effects of sequences of binary col-
lisions among threelgas molecules upon the first density coef-~
ficients (A and n; in (1-2)) of the transport properties of
a moderately dense gas. In this section we want to comment on
how the insight gained in this research can be used to improve

our capability of calculating transport coefficients.
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We first note that the expansion procedure developed in
this report can be extended to account .for sequences of binary
collisions among more than three molecules. Such sequences
need to be considered in calculating the higher order density
terms in the expansions (1-2). One would expect that the
next terms in (1-2) would be proportional to p?, with coeffi-
cients of proportionality being determined by four-particle
collision integrals. However, as noted in I, the four-particle
collision integrals turn 6ut to be divergent; the reason is

that the coefficients of p? in (1-2) have the form

A2 + Ajlogp and n2 + nilogp

Nevertheless one could carry out a paritial evaluation of .the
four-particle collision integrals with our procedure. Thus,
a first approximation to A2 and n: would refer to a collision
sequence involving four gas molecules in which one pair of
molecules is colliding while all the other pairs are overlap-
ping. This contribution is convergent and leads to terms
proportional to p? which are the same as those in the Enskog
theory. Physically, we would again expect this to be the
dominant effect. Thus, it might be advantageous to represent
the transport coefficient as a sum of two series: one which
is a power series in the density, and another which contains
(among others) non-analytic terms such as p?logp. The coef-

ficients of the first series could then be evaluated in
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successive approximations by our procedure: The first appro-
ximations would contain those n-particle collisions where one
pair is colliding while all other pairs are overlapping; this
would reproduce the coefficients in the power series predicted
by the theory of Enskog. Molecular dynamics results confirm
our suggestion that these coefficients provide a good first
approximation [27]. A second approximation to the coefficients
of the power series would be obtained by considering those
n-particle collisions where one pair is colliding while all
the other pairs except one are overlapping; for n=3 this

would be our terms Afz and nfz in (6-1), which were calculated
in this report. Other terms could then be regrouped to give a
second series with a non-analytic density dependence. However,
the coefficient of the leading term, p%*logp, in this second
series is determined by collision integrals that do not involve
any pairs of molecules that overlap. Therefore, extrapolating
by analogy our physical results for three-particle collisions,
we would expect that the quantitative effects of this second
series would be small. This conclusion is supported by an
analysis of precise experimental viscosity data to be reported
in a future technical report.

In the present report we have formulated the theory of
predicting transport properties for a moderately dense gas of
hard spherical molecules. However, the engineer requires
methods for predicting transport properties of gases of mole-

cules with a more realistic intermolecular interaction.
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In conclusion, therefore, we indicate how the procedure
developed in this report may be generalized to more realistic
gases. We do not want to suggest that the problem of calcu-
lating transport properties of dense real gases is on the verge
of being solved; indeed, calculating the effects of collisional
transfer and of triple.collisions involving bounded states poses
a very difficult challenge for the future. Nevertheless, our
analysis does suggest how to treat the effect of successive
collisions among three gas molecules when the molecules inter-
act via a potential with a hard core and a finite range.

For hard sphere molecules the leading term appeared to be
obtained by a partial evaluation of the triple collision inte-
grals, namely by restricting the integration region to the
excluded volume configuration indicated in Fig. 2. These are
precisely tﬁé same configurations as those which determine the
third virial coefficient A, in the virial expansion (1-1) of
the equilibrium properties. For molecules with a finite inter-
aétion range, one could again consider a partial evaluation of
the triple collision integrals by restricting the integration
to those configurations that determine the corresponding third
virial coefficient for the equilibrium virial series. Our
results lead to the conjecture that such a partial evaluation
may again be a very good approximation for predicting the trans-
port properties. Thus, our analysis may open a way to extend
the Enskog theory, which is so successful fo? hard sphere mole-

cules, to molecules with a more realistic interaction potential.
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APPENDIX A

THEOREMS ON THE DYNAMICS OF THREE HARD SPHERE MOLECULES

> Lemma 1. 1In the collision sequence defined by the
diagram in Fig. 28, it is not possible for spheres 2 and 3

to collide or overlap in the time interval t;<tgts.

e Proof. 1If the three spheres have diameter o, we must

evidently prove that
r3>({t)>0 for ti1st<ts (A-1)

However, in view of the symmetry of the recollision sequence,
it suffices to prove this inequality for t3g<t{ts only.

The theorem is most easily proved by examining the actual
trajectories of the three particles in a particular reference

frame. In this frame, the center of 1 is at rest at the

Figure 28. Diagram of Lemma 1.
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origin O prior to the 1-3 collision (t<tj3). The frame is
oriented so that the center of 2 moves in the X7 plane in the
positive Z direction. The situation is depicted 'in Fig. 29.
Points A and B lie in the XZ plane, and denote the points
where the center of 2 meets the action sphere of 1 at times
t:1 and t; respectively. For times t>t;, the center of 2 lies
on the extension of vector AB. Vector OB has length ¢ and

makes an angle 01 with the X axis, with

0 < 8; < (A-2)

T
2

We let C denote the point where the center of 3 strikes
the action sphere of 1 at time t3;. 1In this interacting
collision, 1 and 3 will exchange velocity components along ocC.
As a consequence, 3 will be deflected so that, for t>t;, its
center moves in the plane perpendicular to OC at C (plane P3),
and 1 will be knocked so that for t>t3 its center moves along
the extension of vector CO. We specify the location of point C
on the surface of the action sphere of 1 by means of two
angles, 6, and ¢: ¢ is the angle that OC makes with the X2
plane, and 0; is the angle that the positive Z axis makes with
the plane containing OC and the Y axis {plane Pl). [Thus, in
Fig. 29, 0, is measured in the XZ plane, even though OC is not
necessarily in this plane.]

We now examine the restrictions on the location of point C
if it is required that there be a 1-2 collision at some time

ty,>ts3. Since, for t>t3, the center of 2 is on line AB above B,
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b A/path of 2

plane P3

action sphere
of | for t < ty

path of |
-and -
edge of plane PI

Figure 29. Diagram used in proof of Lemma 1.
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then in order for 1 and 2 to collide, 3 must knock the
action sphere of 1 across some portion of the line AB
above B. This requires that in the t; collision 1 be given
a positive velocity component in the direction OB. This

in turn can happen only if CO+0B>0; thus C must iie in the
hemisphere opposite B.

If C lies in the hemisphere opposite B, then it: fol-
lows that the distance from C to any point on the line AB
above B is greater than o. Thus, r3;{ts;)>0. In order for
ri;2{t) to become equal to ¢ for some time t=tg>t;, it is
necessary for the plane of the path of 3 to intersect some
portion of the line AB above B. For this to happen, C
must lie in the +2Z hemisphere.

If now we require both a 1-2 collision and a 3-2
collision for some times t4>t3 and te¢>ts: respectively, then
C must lie in the hemisphere opposite B and in the +2Z
hemisphere. This restricts C to the sector of the action

sphere of 1 defined by

m
91<ez<2

and {A-3)

Consider the distance between the path of 2 for t>t,
and the plane P3. Since these intersect, there are two

points on the line AB above B whose distances to the plane
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P3 are exactly 0. We denote as point E the position of

2 at the earlier time t_ when the distance |EF|=0. For

E

all times tjist<t r3»(t)>0, so the time t¢ of first contact

EI

of pair 32 must be greater than or equal to tE:

te 3 tg (A-4)

Next, consider the distance between the path of 2 for
t>t3; and the plane Pl. Since the distance from point B to
this plane is o0sin(0;+[1/2 - 0:])<0, then at some time tg>t2
the center of 2 will be at a point G suéh that the distance
from G to the plane Pl is exactly o. The time ts of the
last contact of pair 12 must clearly be less than or equal

to tG:

ts € tg (A-5)

We now wish to compare the distance from G to the plane
Pl with the distance from E to this same plane. The former
is by definition o. The latter is just the length |OE]|,
inasmuch as OE is seen to be perpendicular to CO and hence
perpendicular to the plane Pl. Now from Fig. 29 it will be
seen that OE and OB have equal projections on the X axis,
so that

|OE |cos8, = |OB|cosf: = ocosb; (A-6)

By the first of equations (A-3) we deduce that cosf;>cos0,,
so that |5E|>o. Thus E is farther from the plane Pl than

G is. Therefore,
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Comparing (A-7) with (a-4) and (A-5), we conclude that
te > ts (A-8)

Thus 3 can collide with 2 only after 1 and 2 have separated

at time ts, which proves the lemma.
Q.E.D.

> THEOREM I. I1If a three-particle collision sequence
contains at least one single-overlap collision, then it

cannot contain more than three complete collisions.

® Proof. We shall first list all possible three-particle
collision sequences which contain a single-overlap collision
and a total of three complete collisions. Then we shall show
that it is not possible to add a fourth complete collision to
any of these sequences without violating Lemma 1 (or the
Recollision Rule, as stated on p.39).

We suppose that at time t=0 spheres 1 and 2 collide
while spheres 1 and 3 overlap. This will constitute the
"known" single-overlap collision; whether or not other
overlap collisions occur for t>0 or t<0 is immaterial.
Nevertheless, we must immediately allow for three cases,
according to whether this single-overlap collision is (a)
interacting, (b) penetrating, or (c¢) separating. [Seé top
of Fig. 30]. Now, the very existence of this overlap col-

lision already implies the existence of two complete
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2 I 3 2 | 3 2 | 3
| 54 T I
time (o) (b) (c)
2 | 3 2 13 2! 3
O+t Ul i "
tl -
Y
time (al) (bl) (cl)
2 | 3 2 | 3 2 | 3
O" " T i
'I-.
Y
time (a2) (b2) (c2)

Figure 30. Diagram used in proof of Theorem I.
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collisions -- namely, a 1-2 collision and a 1-3 collision.
Therefore, we can obtain all possible sequences with three
complete collisions by appending to (a), (b) and (¢) in turn
each possible third complete collision. This third collision
may occur either in the past or in the future. However, we
observe that any third collision in the past of (a) can be
made a third collision in the future of (a) simply by reversing
the sense of time; moreover, by this same device we can make
any third collision in the past of (b) a third collision in
the future of (c), and any third collision in the past of (c)
a third collision in the future of (b). Therefore, it suf-
fices to consider only the possible future third complete col-
lisions for each of the cases (a), (b) and (c). An inspection
of diagrams (a), (b) and (c) in Fig. 30 reveals that the next
future complete collision cannot occur between 1 and 2 or
between 1 and 3 since these pairs have already collided. |[Note:
1 and 3 will of course undergo a separating collision in the
future, but this is not another complete collision; likewise
for 1 and 2 in case (b).] Consequently, the only candidate
for the future third collision in each case is the pair 2 and 3.
If 2 and 3 are overlapping at t=0, in which case the 1-2
collision is actually a double-overlap collision, then this
third complete collision has "already" occurred; méreover, it
is clear that 2 and 3 cannot then recollide, this for the same
reason that 1-2 and 1-3 cannot recollide. Thus, Theorem I
holds trivially for a double-overlap collision. We therefore

consider the non-trivial case in which 2 and 3 are not
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overlapping at t=0, and are aimed to collide at some time
t1>0. Two cases can now be distinguished, corresponding to

a 2-3 interacting collision (which we label "1l) and a 2-3
penetrating collision (which we label "2). Therefore we have
six possible diagrams containing a single-overlap collision
and a total of three complete collisions: {(al), (a2), (bl),
(b2}, (cl) and (c2). We show these diagrams in Fig. 30.

Our next task is to demonstrate that it is not possible to add
another complete collision either in the past (t<0) or in the
future (t>t;) of any of these six collision sequences.

If a fourth complete collision occurred at some t<0, it
would have to be a 2-3 collision. This follows by the same
reasoning we used in establishing that the third collision at
time t; would have to be a 2-3 collision. ‘On the other hand,
if a fourth complete collision occurred at some t>t; it would
have to be other than a 2-3 collision, since 2 and 3 have
just collided at time ti. Thus, our theorem will be proved
if we can establish that, for each of the six diagrams (al)
through (c2),

0: a 2-3 collision cannot occur for t<0
B
Y: a l1l-3 collision cannot occur for t>t,

a 1-2 collision cannot occur for t>t;

Of the 6x3=18 prbpositions to be proved, we can dispose
of 10 of them rather easily by simply invoking the Recollision
Rule (cf. p.39):

Diagrams (b2) and (c2) are composed of three non-interacting

collisions involving the three pairs 1-2, 1-3, 2-3. Since there
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are no interacting collisions present, all pairs will recede
in the past and future, and no further collisions can occur,
Therefore

(b2) satisfies o, B and vy

(c2) satisfies o, B and v
Diagrams (bl) and (b2) differ only in that the 2-3 collision
at time t; is interacting for (bl) and penetrating for (b2).
For times t<t; the diagrams are "dynamically equivalent"; i.e.,
for t<t: the conditions on the phases of the three particles
are identical, and are not affected by whether 2 and 3 bounce
off each other or penetrate each other at the t; collision.
Therefore, from the fact that (b2) satisfies o we may deduce

(bl) satisfies o
Similarly, (cl) and (c2)are dynamically equivalent for t<ti,
so from the fact that (c2) satisfies o we may deduce

(cl) satisfies a
Finally, we observe that (a2) and (c2) are dynamically equi-
valent for t30, so since (c2) satisfies f and vy, then

(a2) satisfies B and Y

We are now left with eight propositions to prove; these
will require Lemma 1, which states that at no time during the
recollision sequence (12) (13)1(12) is it possible for 2 and 3
to collide or overlap.
For times t¢t; diagrams (al) and (a2) are dynamically

equivalent, so we discuss proposition o for these two diagrams
together. Suppose o were violated, and for some t'<0 a 2-3

collision occurred. Then reading from t' to t:1 we would have
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sequences of the form (23) (12)*(23), with 1 and 3 overlapping
at t=0. But this violates Lemma 1, as can be seen by a trivial
relabelling of the particles; thus, we conclude that

(al) satisfies o

(2a2) satisfies a

For times t>0 diagrams (al) and (cl) are dynamically

equivalent, so we discuss propositions B and y for these two
diagrams together. First, suppose B were violated, and for
some time t'>t: a 1-2 collision occurred. Then reading from
time 0 to time t' we would have sequences of the form
(12)(23)i(12), with 1 and 3 overlapping at t=0. This violates
Lemma 1, as can be seen by a relabelling of the particles, and
therefore

(al) satisfies B

(cl) satisfies B
Next, suppose Y were violated in (al} or (cl), so that for
some time t'>t; a 1-3 collision occurred. For this to happen,
the 1-3 overlap condition which existed at t=0 must have been
terminated prior to time t: (by the Recollision Rule), and so
we let t" (0<t"<t,;) be the time when the requisite separating
collision occurred. Reading backwards in time from t' to t"
we have sequences of the form (l3)(23)i(13)n. The "last"
collision, (l3)n, starts a time t" (still reading backwards),
and is not yet completed at time 0 when 1 and 2 collide. This
is a violation of Lemma 1, however, and therefore

(al} satisfies ¥y

(cl) satisfies ¥y
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It remains only to prove that diagram (bl) satisfies
propositions B and y. Now in this diagram, 1 overlaps with
both 2 and 3 immediately after t=0. Let t'>0 and t">0
be the time when 1 and 2 separate and the time when 1 and 3
separate, respectively. If either t' or t" is greater than
t,, then the 2-3 collision at time t; is an interacting
overlap collision. But because of our disposal of the (al)
and (a2) diagrams, we know that a collision sequence containing
an interacting overlap collision cannot violate the theorem.
Thus, we restrict our attention to the cases where both t' and
t" are less than t;, and we distinguish two cases: t'<t" and
t'>t"., For t'<t", 1 and 2 separate while 1 and 3 are overlapping,
and subsequently 2 and 3 interact; this is identical to diagram
(cl), which diagram we have proved does not violate the theorem.
For t'>t", 1 and 3 separate while 1 and 2 are overlapping, and
subsequently 2 and 3 interact; interchanging labels 2 and 3, we
again obtain diagram (cl). We may conclude, then, that (bl)
does not violate the theorem, and in particular that

(bl) satisfies B and Yy

We have thus shown that all six diagrams, (al) through

(c2), satisfy propositions a, B and Yy, and our proof is complete.

Q.E.D.
> THEOREM II. 1If a three-particle collision sequence

contains no single-overlap collision, then it cannot contain

more than four complete collisions.
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® Proof. Since by hypothesis no overlap collisions are
allowed, then in between any concomittant pair of non-inter-
acting penetrating and separating collisions, no third
collision may occur. Thus, all complete collisions are disjoint,
and we may unambiguously define a collision sequence by a left-
to-right juxtaposition of (ab)-symbols, as defined in Sec. 3.2
[cf. (3-1)]. Our method of proof is to first list all possible
collision sequences containing four complete collisions, and to
then show that it is impossible to add a fifth complete collision
without violating either the Recollision Rule or Lemmas 1, 2
or 3.

To obtain the four-collision sequences, let us assume the
first collision is (12) and the second is (13). By the Recol-
lision Rule the third collision can only be (12) or (23). If
the third collision is (12), then the fourth collision can only
be (13) or (23); if the third collision is (23), then the fourth
collision can only be (12) or (13). Thus the candidates for the

possible sequences containing four complete collisions are

(12) (13) (12) (13)
(12) (13) (12) (23)
(12) (13) (23) (12)
(12) (13) (23) (13)

We next display explicitly the interacting or non-inter-
acting nature of the middle two collisidns, at the same time
indicating which sequences violate the Recollision Rule ([RR]

or Lemmas 1, 2 or 3 ([Ll],I[L2],I[L3]).
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a2 aniaian el (12) 13)™12)113) (rr]
(12) 13) 1 (12) (23) (12) (13)"(12) 1 (23) [RR]
(12)(13)i(23)i(12) [L2] (12)(13)n(23)i(12)'[L1}
(12) (13) 2 ias (12) (13)"(23)1(13)

(12) (13) F(12)™(13) [RR] (12) 13)?@2)™(13) [RR]
(12) (13) 1 (12)®(23) (12) (13)™(12)"(23) [RR]
(12) 13)1(23)"(12) [11] (12) (13)%(23)"(12) [RR]
(12) (13) 1 (23)®(13) [RR] (12) (13) ™ (23)™(13) [RR]

We thus find that there are only four dynamically possible
sequences of four complete collisions which do not involve an
overlap. [We ignore for the moment the interacting or non-
interacting nature of the first and fourth collisions.] It
will be observed that two of these possible sequences are

(12) (13) L (12) 1 (23)

(12) (13) ¥ (12)(23)
while the other two sequences can be obtained from these by
reversing time and renumbering the molecules. Hence, the
above two sequences are the only "dynamically independent"
sequences of four complete collisions [this observation justi-
fies our remark in the text concerning (3-2)], and we may
without loss of generality confine our further remarks to
these two sequences.

The possible three-particle collision sequences containing
five complete collisions and no single-overlap collision can

evidently be obtained in two ways: Either we can add a (13)
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or (23) collision Zn front of the two four-collision sequences
(in which case we must pay attention to the interacting or
non-interacting nature of the first collision); or we can add
a (12) or (13) collision in back of the two four-collision
sequences (in which case we must pay attention to the inter-
acting or non-interacting nature of the last collision). We
list below all these possibilities, and we indicate as before
which sequences violate which restrictions. We use the fact,
mentioned in the text, that sequences constructed by inserting
additional complete non-interacting collisions into the
sequences mentioned in Lemma 2 are also not possible.

an aantaniazniesn ma  amnaniontaa®en w2
enanianHianien w  eamantanta®es (w2l
as arantaanie w®r1 3 2?3 *a2)"23) (kR

(23)(12)“(13)1(12)i(23) [L2] (23) (12)* 13y a2)™(23) (L1

a2y anifaniteniazn i ananitanten i) e
a2y anfanienian w21 ananian™enias) iy
a2 axnianien®a wrl a2y ania2)™ 23 ®a2) [rr]

a2y aniayien™as) w1l @2) a3)ia2)? 23" as3) (rr

Since every sequence violates some restriction, the theorem

is proved. Q.E.D.

155



AEDC-TR-71-51

10.

11.
12.

13.

14,

REFERENCES

E.G.D. Cohen, Recent Advances in Engineering Science,
A.C. Eringen, ed., Gordon and Breach, New York, 1968,
p.125.

J.R. Dorfman and E.G.D. Cohen, J. Math. Phys. 8, 282
(1967) . .

J.V. Sengers, Recent Advances in Engineering Science,
Vol.III, A.C. Eringen, ed., Gordon and Breach, New
York, 1968, p.l1l53.

S. Chapman and T.G. Cowling, The Mathematical Theory
of Nonuniform Gases, Cambridge Univ. Press, London
and New York, .2nd ed., 1952,

J.0., Hirschfelder, C.F, Curtiss and R.B. Bird, Molecular
Theory of Gases and Liquids, John Wiley, New York, 1954.

J.V. Sengers, Triple Collision Effects in the Thermal
Conduetivity and Viscosity of Moderately Dense Gases,
AEDC-TR-69-68, Arnold Engineering Development Center,
Tennessee, 1969.

Ref. 4, Chapter 16 and Ref. 5, Chapter 9.

H.J.M. Hanley, R.D. McCarty and J.V. Sengers, J. Chemn.
Phys. 50, 857 (1969).

M.H. Ernst, J.R. Dorfman, W.R. Hoegy and J.M.J. Van
Leeuwen, Physica 45, 127 (1969).

E.G.D. Cohen, Fundamental Problems in Statistical
Mechanics, North-Holland, Amsterdam, 1962, p.110.

J.V. Sengers and E.G.D. Cohen, Physica 27, 230 (1961).
J.V. Sengers, Boulder Lecturee in Theoretical Physics,
Vol.9C, W.E. Brittin, ed., Gordon and Breach, New York,
1967, p.335.

J.V. Sengers, Proceedings of the Symposium on Kinetic
Equations, Cornell Univ. 1969, R. Liboff and N. Rostoker,
eds., Gordon and Breach, New York, 1970, p.137.

G. Sandri, R.D. Sullivan and P. Norem, Phys. Rev. Letters,
13, p.743 (1964);

G. Sandri and A.H. Kritz, Phys. Rev. 150, 92 (1966).

156



15.

16.

17.

18.

19.

20.
21.
22.
23.
24,

25.

26.

27.

AEDC-TR-71-51

E.G.D. Cohen, Boulder Lectures in Theoretical Physics,
Vol.8A, Univ. of Colo. Press, Boulder, Colo., 1966,

p. 170;

T.J. Murphy, "A Thecrem on Three Hard Spheres", preprint.
T.J. Murphy, private communication.

J.V. Sengers, D.T. Gillespie and W.R. Hoegy, Physics
Letters, 32A, 387 (1970).

W.R. Hoegy and J.V. Sengers, Phys. Rev. (to appear in
December 1970 issue).

M.H. Ernst, L.K. Haines and J.R. Dorfman, Rev. Mod. Phys.,
41, 296 (1969).

M.S. Green, J. Chem. Phys., 25, 836 (1956).

E.G.D. Cohen, J. Math. Phys., 4, 183 (1963).

J.V. Sengers, Phys. FZuiés;'g; 1333 (1966).

M.S. Green, Phys. Rev., 136, A905 (1964).

G. Marsaglia and T. Bray, "One-Line Random Number Generators
and their Use in Combinations", Boeing Scientific Research

Laboratories Document D1-82-0689 (1968).

J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods,
Methuen, London, 1964.

D.T. Gillespie, "Monte Carlo Techniques for Analyzing
Elementary Particle Reaction Mechanisms", Department
of Physics Report, Johns Hopkins University, 1968.

B.J. Alder and T.E. Wainwright, Phys. Rev. Letters 18,
988 (1967). —

157



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security clesszllication of title, body ol abstract end Indexing annotation must be entered when the overeil report is clasellied)

1. ORIGINleNG ACTIVITY (Corporate author) . 28, REPORYT SECURITY CLASSIFICATION
Ingtltupe for Molecular Physics UNCLASSIFIED
University of Maryland 26, GROUP
College Park, Maryland 20742 N/A

3 REPORT TITLE

TRIPLE COLLISION EFFECTS IN THE THERMAL CONDUCTIVITY AND VISCOSITY
OF MODERATELY DENSE GASES, PART II.

4. DESCRIPTIVE NOTES ( e of report and inclusive dates)

September 1, 1968 - September 1, 1970 - Interim Report

8. AUTHORIS) (Flnl nams, middle initial, last name)

Daniel T. Gillespie and Jan V. Sengers

8- REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
March 1971 167 27
%2. CONTRACT OR GRANT NO. 93. ORIGINATOR'S REFORT NUMBER(S)
F40600-69-C-0002
b. prosECT No. 8951 AEDC-TR-71-51
c. Program Element 61102F S THER REFORT NOUsI (Any other numbers that may 6o easlgned
d. N/A

|

10. OISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Part I of this title is available Arnold Engineering Development
as AEDC-TR-69-68. Available in DDC| Center, Air Force Systems Command,
Arnold Air Force Station, Tennessee

13. ABSTRACT

Calculations of transport properties of dilute gases are always
based on the Boltzmann equation. The Boltzmann equation accounts only
for the effects of collisions between two gas molecules. To predict
transport properties of moderately dense gases one needs to determine
the effects of collisions among more than two gas molecules. The pres-
ent report studies the contributions to the transport properties caused
by collisions among three gas molecules. It is demonstrated that the
first density correction to the transport properties can be represented
by a series of collision integrals associated with one, two, three and
four collisions between three gas molecules. Numerical studies for
calculating the dominant collision integrals are made for a gas of hard
spherical molecules,

.

FORM
DD 1 NOV 651 473 UNCLASSIFIED

Security Classification




UNCLASSIFIED
Becurity Classification

KEY WORDS

LINK A LINK B

LINK ©

ROLE LAj ROLEK

wTY

ROLE

wT

| transport propert;ggﬁ,::j_ﬁﬁhh“““ﬁahhﬁkxx
cGhermal conductivity =

viscosity

iple collisions

dense gases
hard spheres

| et -~

5 &(' s o /
3 by - P
—

AFSC
Arsold AFE Teon

\/ YN

\

UNCLASSIFIED

Security Classification




