QC961 7 USS no.5345

45

La la la grande de la compense

AD

Reports Control Symbol OSD-1366

RESEARCH ANI

RESEARCH AND DEVELOPMENT TECHNICAL REPORT ECOM-5345

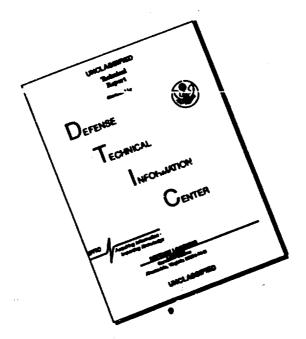
METEOROLOGICAL INFLUENCE OF A SOLAR ECLIPSE ON THE STRATOSPHERE

By

J. S. Randhawa

B. H. Williams

M. D. Kays


December 1970

This document has been approved for public release and sale; its distribution is unlimited.

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND - FORT MONMOUTH, NEW JERSEY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Reports Control Symbol OSD-1366

Technical Report ECOM-5345

METEOROLOGICAL INFLUENCE OF A SOLAR ECLIPSE ON THE STRATOSPHERE

Ву

J. S. Randhawa

B. H. Williams

M. D. Kays

Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico

December 1970

DA Task No. IT061102B53A-18

This document has been approved for public release and sale; its distribution is unlimited.

U. S. Army Electronics Command

Fort Monmouth, New Jersey

ABSTRACT

An experiment to study the influence of a solar eclipse on the earth's lower atmosphere was conducted at Eglin Air Force Base, Florida, where a solar eclipse occurred on 7 March 1970. Three temperature-ozone-sondes and eight Arcasondes were deployed into the upper stratosphere and lower mesosphere at times prior to, during, and after the total eclipse. In addition, two electrochemical ozonesondes were flown on balloons on 5 and 6 March. Resulting temperature, wind and ozone data are presented. No measurements were made during the totality. An increase in ozone was measured during and several hours after the partial eclipse. Higher temperatures and a perturbation in the zonal wind field were observed in the middle stratosphere during the partial eclipse.

CONTENTS

P	age
INTRODUCTION	l
EXPERIMENT	2
RESULTS AND DISCUSSION	5
Ozone	
CONCLUSIONS	8
LITERATURE CITED	1
APPENDIX A METEOROLOGICAL POCKET SOUNDING DATA 2	マ

INTRODUCTION

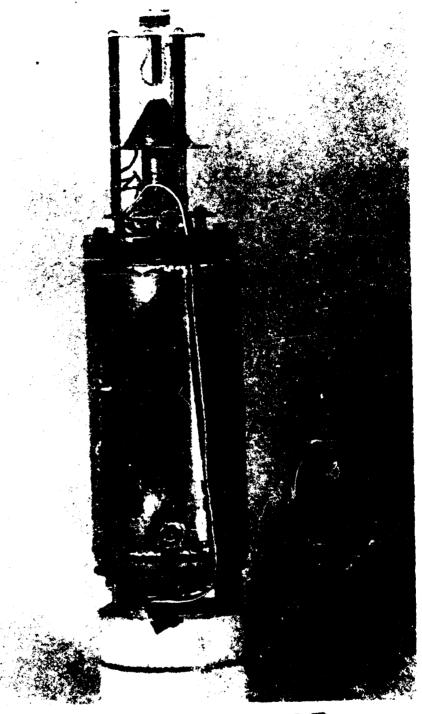
During the last two decades, a significant amount of research has gone into intriguing problems involving the structure and dynamics of the stratosphere and mesosphere. Ozone is an important constituent of that region and, because of its strong absorption of solar ultraviolet radiation, plays a special role in the radiative thermal budget. It thus helps to develop some of the characteristics of the general circulation of the upper stratosphere and mesosphere.

When solar radiation is denied to the earth's atmosphere during an eclipse of the sun, marked changes occur in its state, particularly in the ionosphere where the effects can be studied by means of radio waves. At lower elevations, the denial of solar radiation also affects the ozonosphere where it is found to produce increased ozone concentration due to the absence of photochemical reactions. Measurements of total ozone content in a vertical column during partial eclipses have been reported by Stranz [1] and Bojkov [2] who show an increase in the total amount shortly after the maximum phase of the eclipse. Ozone observations were made using a rocket-borne ozonesonde by Randhawa [3] during a total eclipse on 12 November 1966. An increase in the ozone concentration was noted as the sonde passed through the total eclipse shadow between 60 and 54 km altitude.

The stratospheric circulation in Northern Hemisphere lower midlatitudes has been shown to exhibit a strong diurnal response to solar heating in the 45-55 km altitude region [4, 5]. This diurnal tidal motion is characterized by wind variations of the order of 20 mps in a layer centered near the stratopause level. Rocket sounding data indicate a well-developed meridional variation, with the circulation directed away from the equator during the morning hours and toward the equator during the afternoon and evening. The zonal diurnal variation in March is less definite but generally indicates a weakening flow during the day and strengthening (more westerly) at night.

The introduction of an eclipse shadow into the stratospheric solar heat input provides an opportunity for inspection of a new mode of stratospheric response to a change in solar heat input. The progress of the eclipse shadow is significantly different from sunset-sunrise perturbations and provides unique conditions in which to study the response times of the region.

An experiment to study these effects was performed at Eglin Air force Base (29°41'N, 85°20'W) during the total solar eclipse which occurred on 7 March 1970. Meteorological sensors to measure temperature, ozone and wind before, during and after the total eclipse were deployed near 60 km altitude by Arcas rockets.


EXPERIMENT

The path of totality moved northeastward over the Gulf of Mexico, across the Florida Panhandle and along the east coast of the United States. The duration of complete darkness at the center line was 190 seconds, starting at 1313 EST. The launch site, indicated as D-3 in Figure I, was located about 10 km northwest of the path of totality. The sensors were rocket-launched into the totality at an azimuth of 129 degrees. Areas meteorological rockets were utilized to carry the sensors, parachutes and transmitters to an altitude of 55-60 km. After ejection, the sensors descended on radar-reflective parachutes (4.5m diameter). The transmitted signals were pulse modulated and received by a GMD receiver on a carrier frequency of 1680 MHz. FPS-16 radars were used for tracking the parachutes and provided the altitude of the instrument with time. The three types of sensors used during this experiment were:

- A. STS-Ozonesonde: This is a dual-channel rocket-borne ozonesonde [6] which incorporated a temperature-sensing bead thermistor on a time-sharing basis with an ozone sensor. Ozone is detected by the chemiluminescent principle and the sensor consists of Rhodamine B adsorbed on silica gel. Each instrument was calibrated before launch by use of an ozone generator [7] for the absolute measurement of ozone concentration in the atmosphere. Ozonized air of known concentration was injected into the sampling bottle at a known flow rate, and instrument sensitivity was set in the proper range. Figure 2 shows this dual sensor.
- B. Temperaturesonde: This is a single-channel temperature instrument [8] which also has a bead thermistor as its sensing element.
- C. Electrochemical Ozonesonde: During the course of this experiment two electrochemical ozonesondes (Mast type) [9] were attached with AMT-12 Radiosondes and flown on balloons, one on 5 March and the other on 6 March 1970. The objective of these balloon flights was to study the low-level ozone distribution and to compare the data derived from the two systems at overlap levels.

Surface weather conditions for several days prior to the eclipse were in general humid with occasional rain. The day of the eclipse, 7 March 1970, was quite cloudy with intermittent rain during the morning hours and heavy rain during eclipse time. A low-pressure system was moving northeastward from the Gulf of Mexico across western Florida.

Figure 1. Path of Eclipse Shadow.

STS-OZONESONDE

RESULTS AND DISCUSSION

Eleven rockets were launched at the times given in Table I. Three soundings produced temperature, ozone, and wind data, six produced remperature and wind data, and two produced wind data only. All these data are presented in Appendix A in tabular and graphical form. Total ozone measured with a Dobson spectrophotometer at Tallahassee, Florida (30°23'N, 84°22'W) is given in Table II. Skies during daylight hours at Tallahassee on 5 and 6 March were partly cloudy and on 7 March were overcast with high clouds. No precipitation was recorded during this period.

Ozone

Two Mast electrochemical ozonesondes were flown, one on 5 March and the other on 6 March; the data received are presented in Figures 3 and 4. There are no marked differences in the two distributions except for a small increase near 18 km and a slight decrease at 10 km altitude on 6 March. Total ozone measured at Tallahassee on the same days also showed no large variation.

On the day of the eclipse, three ozone soundings (Figure 5) were made: one at 1404 EST (partial eclipse), the second at 1815 EST (one hour before sunset), and the third at 2015 EST (one hour after sunset). The eclipse sounding showed a higher than expected ozone concentration above 35 km. This higher concentration was also measured by the 1815 EST sounding which was made nearly four hours after the last contact. The night sounding (2015 EST) showed normal ozone distribution with two peaks, one near 25 km and the other near 19 km altitude.

As the photodissociation of ozone is gradually cut off during the eclipse, an increasing amount of ozone is formed through the three-body reaction

$$0 + 0_2 + M \longrightarrow 0_3 + M$$

where M is the other oxygen molecule or is a nitrogen molecule. On the other hand, ozone can be destroyed by the following reaction as the solar radiation becomes available:

$$0_3 + h v \longrightarrow 0_2 + 0 (\lambda < 11000A).$$

According to theory, maximum enhancement occurs after totality; thereafter a rapid decrease occurs as compared to build-up time [10]. As evidenced from these observations, ozone concentration did not decrease for a long time, even after the fourth contact. The increase measured during partial eclipse at some levels is more than 100 percent as

TABLE 1

Date	Launch Time (EST)	Measured Parameter
6 Mar 70	1339	Wind
6 Mar 70	1610	Temperature-Wind
7 Mar 70	1121	Wind
7 Mar 70	1310.5	Temperature-Wind
7 Mar 70	1311.5	Temperature-Wind
7 Mar 70	1404	Temp-Ozone-Wind
7 Mar 70	1600	Temperature-Wind
7 Mar 70	1815	Temp-Ozone-Wind
7 Mar 70	1820	Temperature-Wind
7 Mar 70	2015	Temp-Ozone-Wind
7 Mar 70	2020	Temperature-Wind

TABLE !!

TOTAL OZONE MEASURED WITH A DOBSON SPECTROPHOTOMETER AT

TALLAHASSEE, FLORIDA (30°23'N, 84°22'W)

Date	Time (EST)	Total (m-atm-cm)
5 Mar 70	10-50-30	320
5 Mar 70	10-51-30	326
5 Mar 70	11-58-45	324
5 Mar 70	12-01-45	320
5 Mar 70	15-21-00	342
5 Mar 70	15-23-30	342
6 Mar 70	10-00-00	34 (
6 Mar 70	10-01-00	340
6 Mar 70	12-16-30	343
6 Mar 70	12-18-45	343
6 Mar 70	15-30-00	336
6 Mar 70	15-32-30	336
7 Mar 70	10-19-00	375
7 Mar 70	10-20-00	375
7 Mar 70	12-00-30	375
7 Mar 70	12-03-00	375
7 Mar 70	14-33-00	414
7 Mar 70	14-39-00	414
9 Mar 70	12-16-15	372
10 Mar 70	12-01-00	350

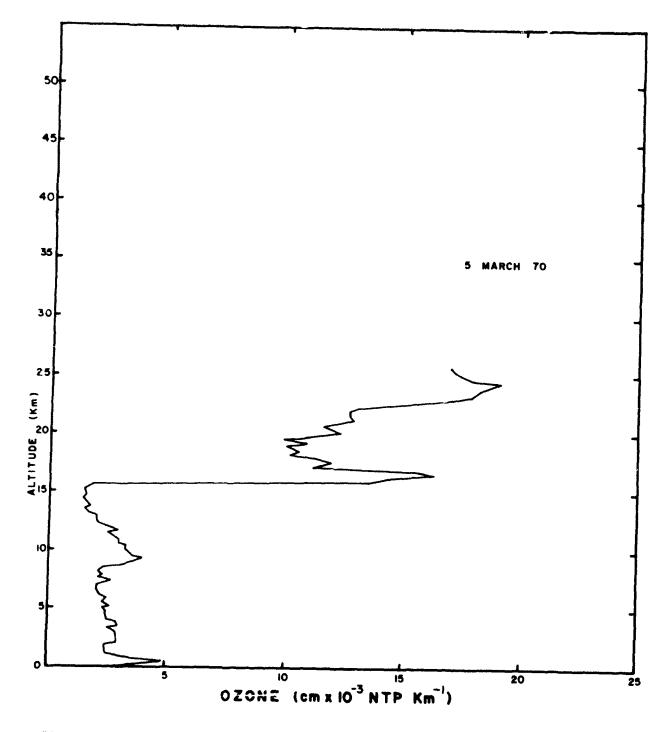


Figure 3. Ozone Concentration Obtained from the Mast Electrochemical Ozone-sonde Flown on 5 March 1970, 1600 EST.

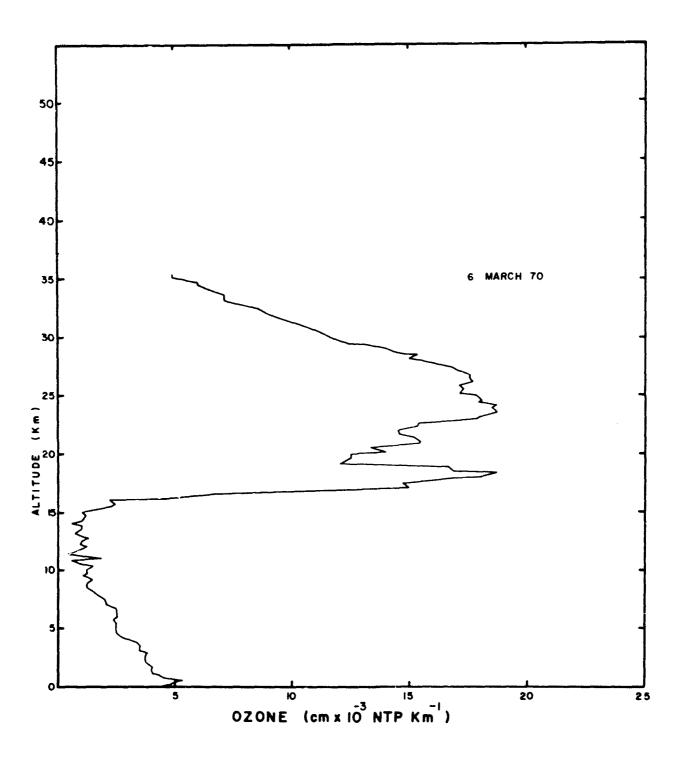


Figure 4. Ozone Concentration Obtained from the Mast Electrochemical Ozonesonde Flown on 6 March 1970, 1800 EST.

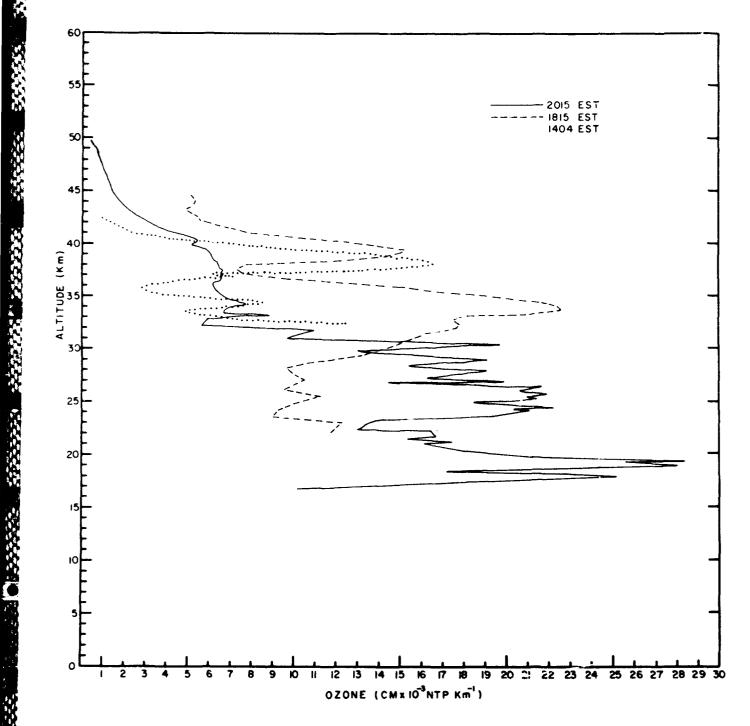


Figure 5. Ozone Concentration with Altitude as Obtained from Three Rocket Soundings on 7 March 1970.

compared to the 2015 EST sounding. The measurements made for the total ozone at Tallahassee during that week (Table II) show some variation from day to day. On 7 March, before the first contact, total ozone measured was 375 m-atm-cm, and just after the fourth contact it was measured to be 414 m-atm-cm, showing an increase of more than 10 percent. This is the first time so much increase in total ozone has been reported from measurements with a Dobson spectrophotometer due to a solar eclipse.

Temperature and Wind

Temperatures recorded on the day of the eclipse are shown in Figures 6 and 7. The thermal field shown in Figure 8 was analyzed from temperature values measured by the Arcasonde system. These analyses indicate that a marked warming was observed in the stratosphere during the partial solar eclipse. The temperatures observed near the time of totality in the lower and middle stratosphere are considerably higher than those observed during the previous afternoon. For example, the temperature difference is 9.1°C at 25 km, 12.4°C at 30 km, and 14.8°C at 35 km.

Several influences appear to be effective in altering the thermal structure during this time frame. A small portion of the heating can be attributed to the diurnal variation of the temperature. Beyers, Miers, and Reed [II] report that the time of maximum temperature over white Sands Missile Range, New Mexico, at 40 km in February is 1400 MST and the amplitude is only 2°C. Thus an increase of 12°C at 40 km during the partial eclipse cannot be ascribed to the diurnal variation.

The appearance of a weak anticyclone over the southeastern states on 7 March accounts for the relatively weak and disorganized circulation at the 10 mb level (Figure 10). Horizontal divergence along with warm air advection which is associated with this synoptic-scale system could well have been responsible for additional heating. Figures 9, 10, and 11 show the movement of this anticyclone at 10 mb from the Gulf of Mexico across southeastern United States.

Unfortunately, temperature and wind observations were not available above the stratopause level during the totality due to the effect of heavy rains on the radar acquisition of Arcasonde payloads and weak signals received by the ground-based GMD's. However, a similar experiment was conducted at Wallops Island, Virginia, during the eclipse [12]. Their temperature analyses showed cooling between 45 and 55 km altitude which they associated with the eclipse. It is reasonable to assume that this cooling existed at the same levels over Eglin AFB, Florida. There is thus the implication that this cooling gen-

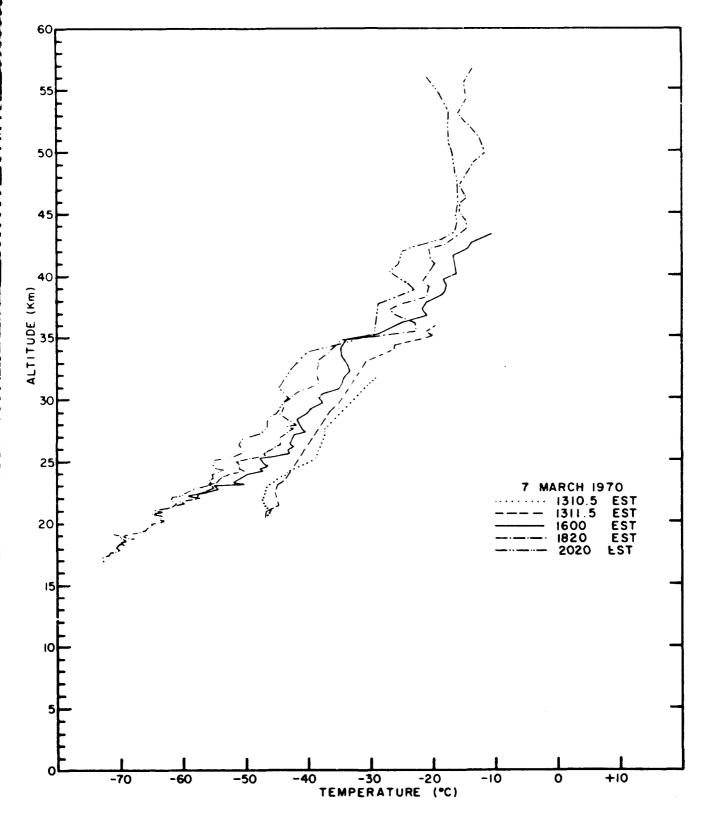


Figure 6. Temperature Data Obtained from Arcasonde IA on 7 March 1970.

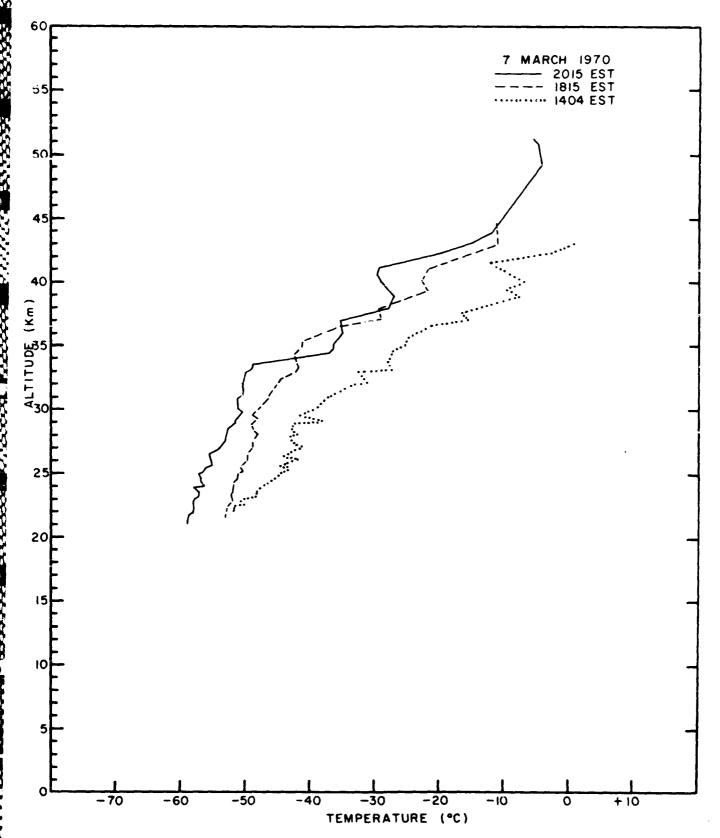
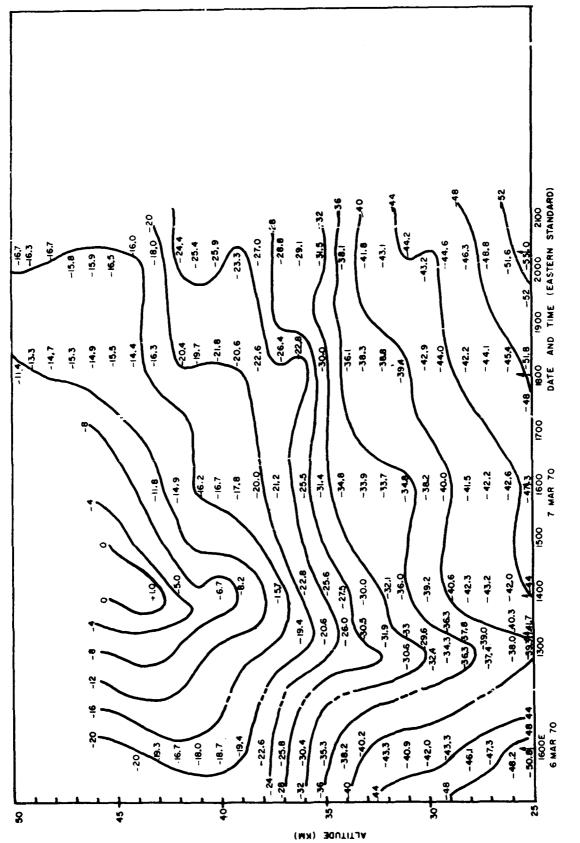



Figure 7. Temperature Data Obtained from STS-Ozone Sensor on 7 March 1970.

STANDARD STANDARD SECTION

Isothermal Analysis of Temperature Data. Isotherms are drawn for intervals of $4^{\circ}C$. Only Arcasonde temperatures are included in this analysis. Figure 8.

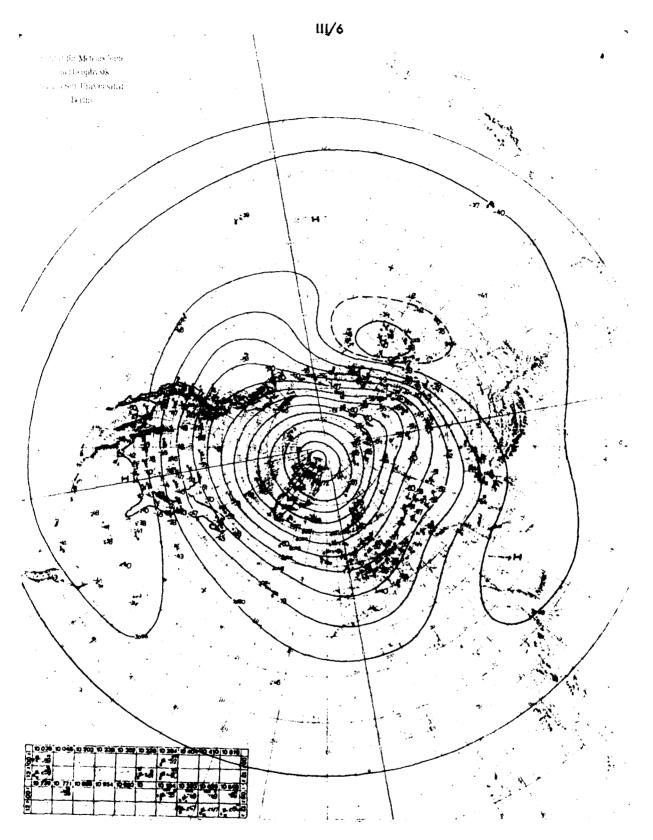


Figure 9. Ten Millibar Constant Pressure Analysis Provided by the Free University of Berlin for 6 March 1970.

Figure 10. Ten Millibar Constant Pressure Analysis Provided by the Free University of Berlin for 7 March 1970.

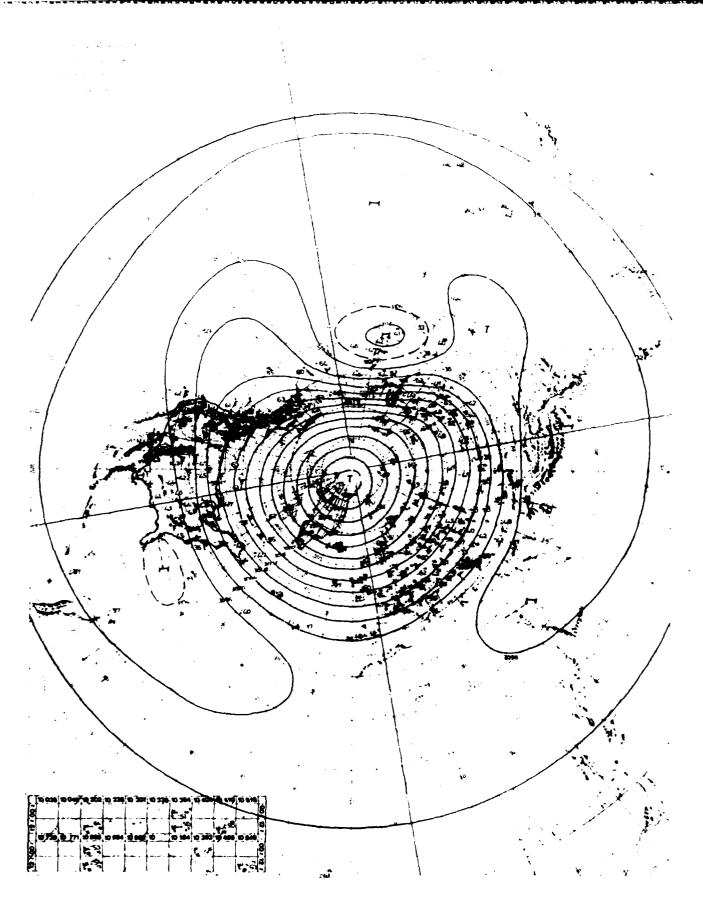
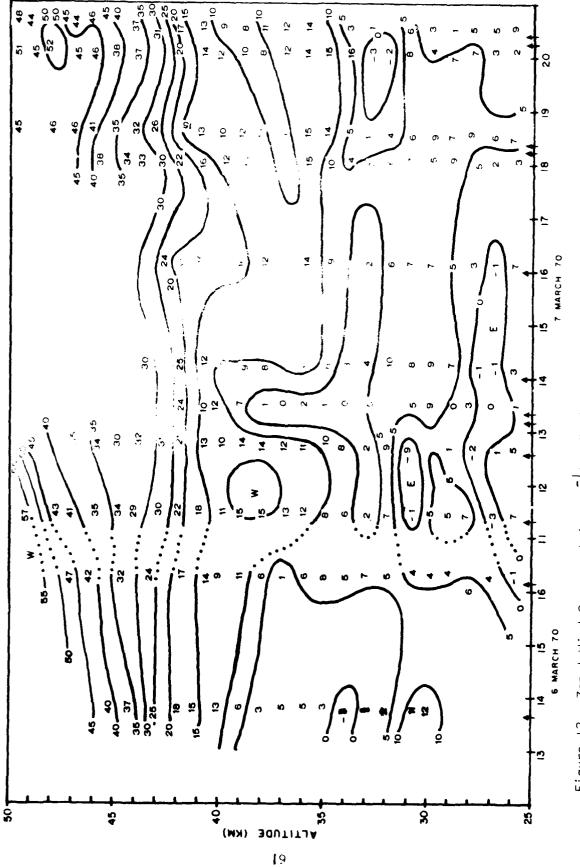


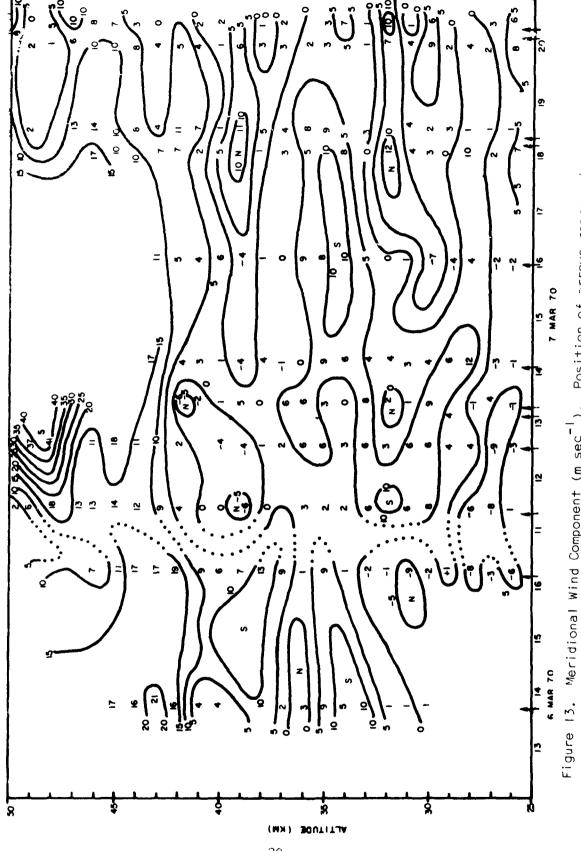
Figure II. Ten Millibar Constant Pressure Analysis Provided by the Free University of Berlin for 8 March 1970.

SECTION OF THE PROPERTY OF THE

erated downward motion and subsequent compressional heating in the upper and middle stratosphere (below 45 km).


In general, the zonal wind components (Figure 12) and meridional wind components (Figure 13) are characterized by a weak and variable flow during 6 and 7 March. The mean component winds for March at Cape Kennedy, Florida, based on a five-year period, 1964-1968, show south and west winds prevailing throughout the stratosphere [13]. The only apparent correlation between changes in the wind field and the solar eclipse was the occurrence of a marked minimum in the west winds during the partial eclipse from 36 to 40 km.

CONCLUSIONS


The experimental study made at Eglin Air Force Base, Florida, indicates that the solar eclipse produced a significant perturbation in the stratosphere. The observations obtained during this period show that there was an appreciable increase in temperature, decrease in zonal wind field, and increase in ozone concentration. This ozone concentration increase persisted for at least four hours. A comparatively large increase in total ozone appears to have resulted due to the eclipse.

ACKNOWLEDGMENTS

The authors wish to acknowledge the help received from the personnel of Schellenger Research Laboratories, the University of Texas at El Paso, who contributed to the success of this study. Special thanks are due Mr. John Frei for instrument development and Mr. John Sisson for data reduction.

Zonal Wind Component (m sec_'). Position of arrows represents approximate time (EST) of rocket observation. Zonal Wind Component (m sec). Figure 12.

Charles and Charles

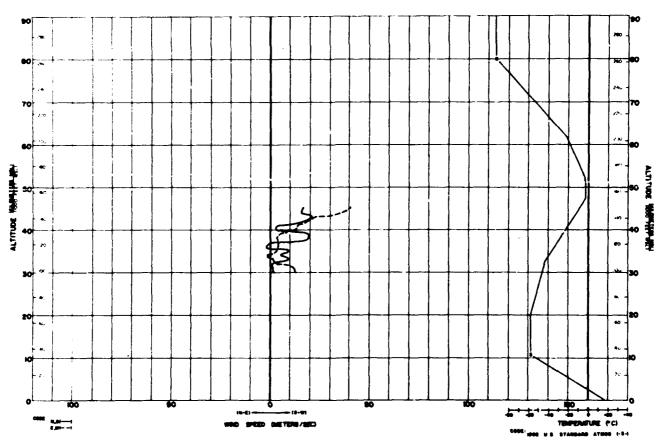
55555555

STATEST STATEST STATES SACRED VINCENS

Meridional Wind Component (m sec $^{-1}$). Position of arrows represents approximate time (EST) of rocket observation.

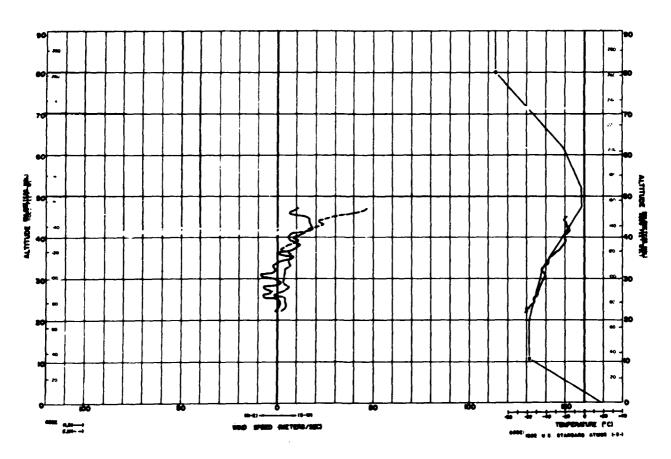
LITERATURE CITED

- 1. Stranz, D., 1961, "Ozone Measurements During Solar Eclipse," Tellus, 13, 276.
- 2. Bojkov, R. D., 1968, "The Ozone Variation During the Solar Eclipse of 20 May 1966," Tellus, 20, 417.
- 3. Randhawa, J. S., 1968, "Mesospheric Ozone Measuremen's During a Solar Eclipse," J. Geophy. Res., 75, 493-495.
- 4. Beyers, N. J., and B. T. Miers, 1965, "Diurnal Temperature Change in the Atmosphere Between 30 and 60 Kilometers over White Sands Missile Range," J. Atmos. Sci., 22, 262-266.
- 5. Miers, B. T., 1965, "Wind Oscillations Between 30 and 60 Kilometers over White Sands Missile Range, New Mexico," J. Atmos. Sci., 22, 282-287.
- 6. Randhawa, J. S., 1967, "Ozonesonde for Rocket Flight," Nature 213, 53-54.
- 7. Regener, V. H., 1964, "Measurement of Atmospheric Ozone with the Chemiluminescent Method," J. Geophy. Res., 69, 3795-3800.
- 8. Atlantic Research Corporation, 1960, "Arcas Rocketsonde System, High Altitude and Meteorological Sounding Rocket."
- 9. Brewer, A. W., and J. R. Milford, 1960, "The Oxford-Kew Ozone-sonde," Proc. Roy. Soc., A 256, 470-495.
- 10. Hunt, B. G., 1965, "A Theoretical Study of the Changes Occurring in the Ozonesphere During a Total Eclipse of the Sun," Tellus, 17, 516.
- II. Beyers, N. J., B. T. Miers, and R. J. Reed, 1966, "Diurnal Tidal Motions Near the Stratopause During 48 Hours at White Sands Missile Range," J. Atmos. Sci., 23, 325-333.
- 12. Henry, R. M., and R. S. Quiroz, 1970, "Preliminary Results From a Meteorological Rocket Experiment," Nature, 226, 1108-1110.
- 13. World Data Center A, March 1968, "Data Report Meteorological Rocket Network Firing," Vol. V, No. 3.

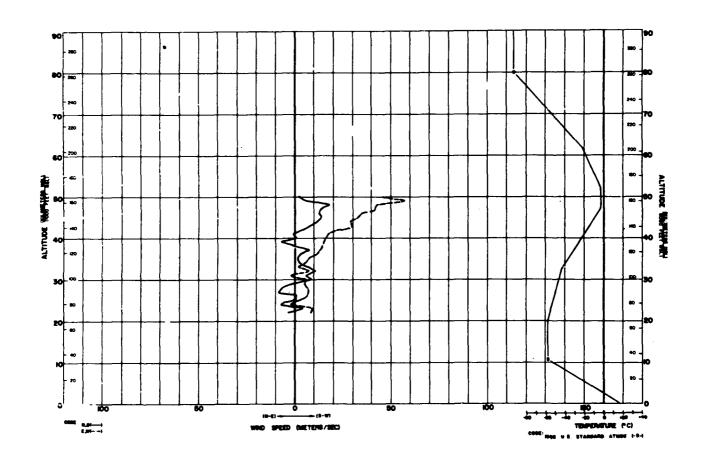

APPENDIX A

METEOROLOGICAL ROCKET SOUNDING DATA

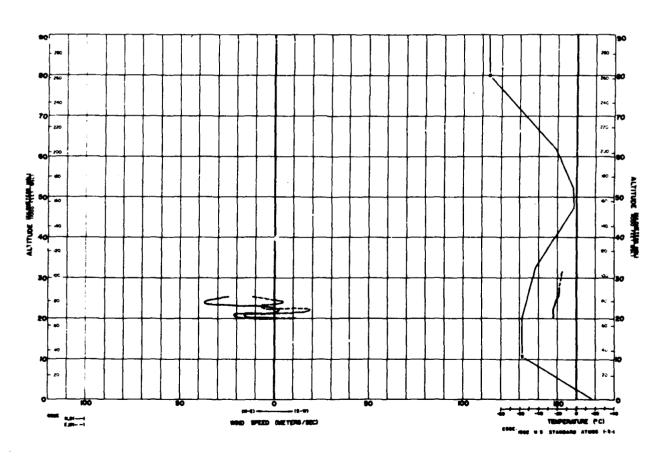
METHOROLOGICAL ROCKET SOUNDING DATA


SOCOCO MINISTER

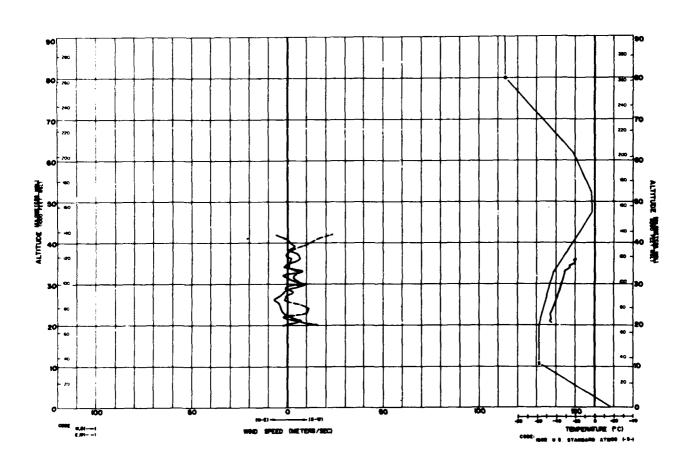
BOLIN AFB. FLORIDA	ARCAS 1	6 KARCH 1970	1339 257	ARCASONDE
ALTITUDE KM	-H + S VELOCITY M/SEC	−E + W VELA M/SEC		TEMPERATURE C
45.00 44.00 44.00 41.00 41.00 41.00 42.00 42.00 43.00 44.00 44.00 44.00 44.00 44.00 44.00 45.00 46	16.7% 17.71 11.11 17.87 4.17 4.18 4.55 9.05 1.7 -1.74 9.15 1.55 9.75 1.52	40.28 77.18 75.38 18.56 14.71 15.45 5.75 5.74 4.06 5.40 -1.7		
1. "	.98 1.⊴1	1 6		


CONTROLOGICAL ROCKET SOUNDING DATE

MOLIN AFB, FLORIDA	VIICUS 5	6 MARCH 1970 16	ARCABORDE
ALTITUDE IDI	-8 · S VELOCITY N/SEC	-E + W VELOCITY H/SEC	TROPERATURE °C
67.∞	10.71	⊌ 6.π	
46.0 0	6.5€	الله. نبا	
\$5.00	11.45	5 2.15	
₩.no	17.58	.2.88	° 0.€
45.00	17.44	26.90	-19.5
₩2.00	18.94	17.51	-16.7
41.00	8.92	14.00	-18. 0
NO.00	5.81	9.28	- ∽0.0
59.00	6.51	10.55	-19.2
38.00	12.52	5.79	-∻5. ∪
37.00	9.51	1.17	-≈6. 0
36.00	.45	6.05	-30.6
55.00	8.55	7.91	-35.4
54.00	1.51	5.26	-58.5
33.00	مغ. هـ	6.53	⊸o. 2
52.00	-,44	4.8∪	→ 5.1
31.00	-8.56	4.45	→1. ;
50.00	₹.18	5.9€	
29.00	1.15	5.6≤	خ.و⊷
26,00	-6.76	シ. た	
27.00	-5.50	4.00	⊸ 7.1
26.00	-6. €5	-1.59	-48.7
25.00	7 ∪	4.57	-51.5
24.00	.51	4.65	-× .9
23.00	.26	4.92	-56.8
22.00	75	2.98	-59.5

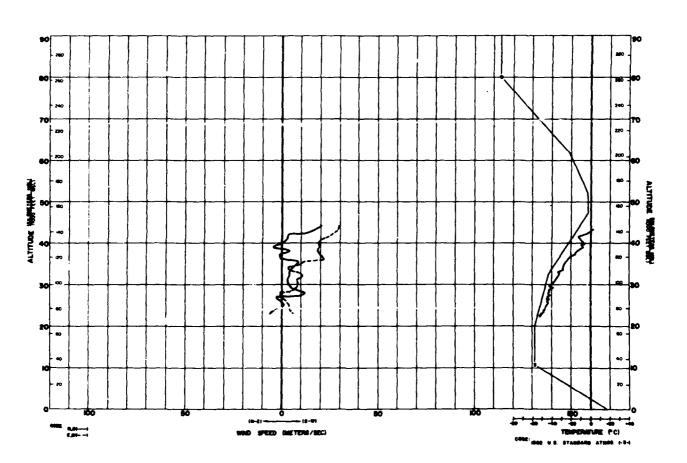

METHOROLOGICAL ROCKET SOUNDING DATA

BELIE AFB, FLORIDA	ARCAS 1	7 MARCH 1970 1121	ARCABONDE
ALTITUDE EM	-# + S VELOCITY N/SBC	-E + W VELOCITY M/SEC	TEOPERATURE
50.00	2.15	46.06	
ka no	5.85	57.15	
₩ĕ.00	17.85	42.95	
47.00	13.84	12 25	
46.00	12.94	35.39	
45.00	14.28	33.59	
44.00	12.07	29.25	
43.00	8.57	29.91	
42.00	4.01	22.16	
41.00	18	17.98	
40.00	.19	10.63	
39.00	-6.15	15.13	
38.00	o8	14.57	
37.00	7.20	13.25	
36.00	3.20	11.65	
35.00	1.75	7.9€	
35.00 34.00	2.01	5.64	
33.00	6.30	1.91	
32.00	10.21	7.31	
31.00	6.45	-1.35	
30.00	8.08	5.47	
29.00	-1.32	5.01	
28.00	-6.50	6.74	
27.00	-8.56	-3.01	
26.00	-55	6 .5 0	
25.00	.41	4.12	
24.00	-6.9 4	-1.76	
23.00	4.64	9.46	
22.00	-3.94	9.25	

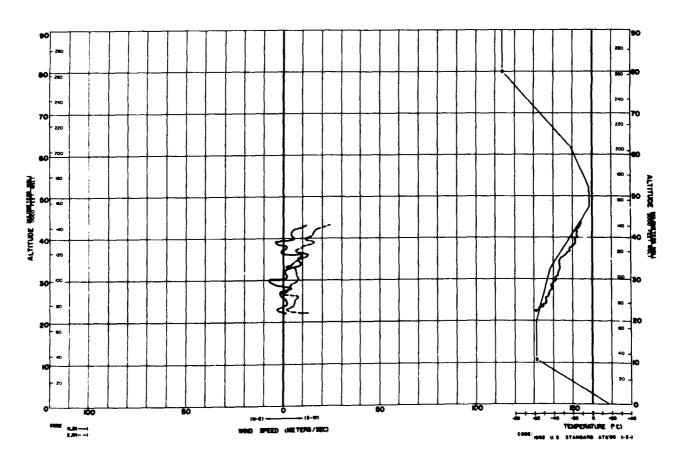

METROBOLOGICAL ROCKET SOUNDING DATA

BOLIS AFB, FLORIDA	ARCAS 2	7 MARCE 1970	1310.5	ARCASOMOE
ALTITUDE 104	-# + 8 VELOCITY N/SEC	-E + W VE M/SEC		TROFERATURE *C
25.00	-24.79	-12.7	3	-39.8
25.00	-37.35	4.9	6	→ 5.5
25.00	-21.21	7.7	4	46.3
22.00	2.84	7.7 18.7	Ö	→7.2
21.00	-20.31	-15.4		-46.1
20.00	2.71	10.1	6	

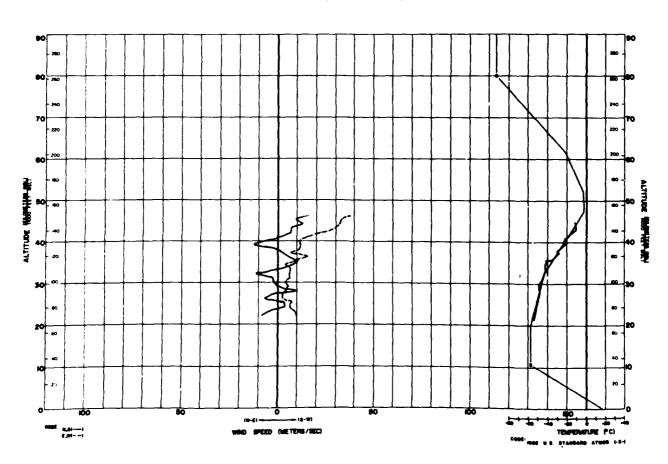
METHOROLOGICAL ROCKET SOUNDING DATA


EGLIN AFB, FLORIDA	ARCAS 5	7 MARCH 1970	1311.5	ARCASONDE
ALTITUDE KM	-H + S VELOCITY M/SEC	−E + W VE M/SB		TEMPERATURE C
12.00	-5.97	23.56		
41.00	-1.56	10.03		
40.00	.86	12.08		
39.∞	4.69	7.17		
38.00	.19	1.18		
37.∞	5.81	18		
36.00	6.35	1.50		
35.30	2.96	1.17		-20.5
34.00	17	.14		-26.4
33.00	7.79	5.19		-30.5
32,00	-1.98	4.22		-31.9
31.00	.87	4,54		-35.1
50.00	9.25	9,16		-34.7
29.00	4.23	27		-36.2
28,00	-1.12	3,26		-3 7.8
27.00	-4.12	23		-39.0
26.00	-6.84	7 1		-40.1
25,00	-4.74	4.42		-41.5
24,00	-3.84	11.78		و.9س
23,00	-2.51	10.16		-45.0
22.00	.63	-2.17		و.بنيد
21.00	6.97	1.57		-46.5
20.00	-1.58	16.56		· · · •

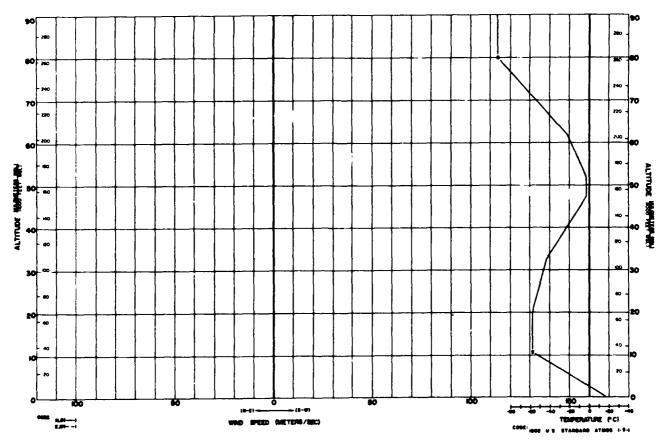
METBOROLOGICAL ROCKET SOUNDING DATA


EGLIN AFB, F	LORIDA ARCAS 4	7 MARCE 1970	1404 ESP	STS-OZOMESONDE
ALTITUDE NA	-H + S VELOCITY N/SEC	- S + W VELOCITY M/SEC	TEMPERATURE °C	OZONE Ceros/Kon x 10
42.29	10.00	28.00	-2.3	-95
41.84	3.35	24.02	-7.0	1.38
41.41	3.20	18.00	-11.9	1.87
40.98	2.25	11.80	-10.5	2.34
40.56	2.75	10.10	-8.8	3.21
40.16	2.05	9.51	-8.0	5.00
39.76	.00	9.06	-8. c	7.39
59.37	-1.95	9.15	-9.0	9.89
98.99	-4.30	9.12	-8.1	13.00
38.62	-3.90	9.00	-8.7	14.42
38.25	1.00	8.58	-11.5	16.19
37.91	4.00	8.50	-14.4	16.53
37.57	2.00	8.85	-16.0	15.43
37.40	1.61	9.02	-16.4	14.09
37.24	.50	9.42	-16.3	12.59
36.91	96	9.95	-16.0	6.11
36:72	98	10.00	-17.9	7.05
36.59	~.99	9.31	-20.9	6.38
36.29	80	10.97	-22.2	4.37
35.99	48	11.15	-23.0	3.23
35.55	2.60	ابُو.8	-24.9	2.82
35.12	5.85	6.00	-25.0	5.01
34.70	7.75	4.59	-26.0	4.81
3 4.2 8	6.70	3.60	-27.3	8.39
33.88	5.50	3.30	-27.7	7.15
33.49	5.00	3.85	-e7.8	4.87
33.12	4.86	4.00	-e7.5	5.36
32.77	4.18	5.36	-32.5	7.45
32.11	4.05	8.80	-31.7	12.63

The second possesses


MUSTHOROLOGICAL ROCKET SOUNDING DATA

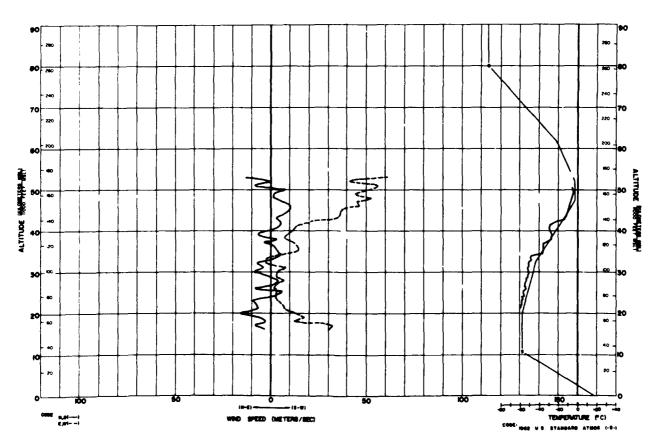
EGLIE APB, FLORI	DA ARCAS 5	7 MARCE 1970 1600 1887	ARCASONDE
NM ALTITUDE	-B +S VELOCITY N/SEC	-E +W VELOCITY M/SEC	TEMPERATURE *C
49.00	11.31	24.19	-11.7
42.00	5.04	17.04	-14.9
41.00	4.48	15.09	-16.2
40.00	5.65	11.64	-16.7
39.00	⊸. 05	15.53	-17.8
38.00	•79	11.74	-20.0
37.00	36	7.21	~21.0
36.00	9.07	13.55	-25.6
35.0 0	7.94	8.72	-30.0
34.00	9.78	5.16	-34.9
33.00	5.04	1.73	-33.9
32.00	.05	6.32	-33.7
31.00	1.28	6.92	-35.0
30.00	-7.33	7.28	-38.0
29.00	-4.56	4.86	-40.1
28.00	4.28	2.65	-41.5
27.00	-2.46	-1.27	-42.1
26.00	-2.16	7.17	-43.0
25.00	1.27	6.74	-47.2
24.00	1.51	5.80	49.0
25.00	-5.27	2.51	-50.0
22.00	-93	13.33	-57.8


METHOROLOGICAL ROCKET SOUNDING DATA

EGLIN APB,	FLORIDA ARCA	s 6 7 MARCH 1970	1815 nor	STS-OZOMESONDE
ALTITUDE KM	-H + S VELOCITY M/SEC	-e + w velocity m/sec	T BO ERATURE *C	OZONE CHO _B /KON X 10
44.31	12.05	33.19	-11.0	5.02
44.00	13.15	52.98	-11.0	5.18
43.69	12.69	32.50	-10.9	5.18
43.39	10.50	31.01	-10.8	5.14
43.09	8.85	50.14	-10.B	5.06
42.81	7.25	29.00	-10.7	4.80
42.52	7.20	25.00	-12.9	5.18
H2.25	7.19	23.02	-14.0	5.36
41.98	7.00	21.30	-16.0	5.44
41.71	6.00	50.00	-17.0	5.85
41.45	4.10	18.05	-19.0	6.22
41.19	3.19	17.00	-20.2	6.68
40.69	.11	15.00	-21.8	7.12
40.20	-4.30	12.99	-22.4	10.12
39.73	-8.56	12.25	-22.1	12.26
39.28	-11.58	12.76	-21.6	14.21
58.98	-12.30	12.95	-23.0	15.11
38.84	-11.96	12.90	-24.0 -26.0	15.11 14.14
38.41	-8.09	12.87	-26.0 -28.7	11.44
37-99	-2.00	12.66		7.65
37.58	•59	11.00	-29.3	7.24
37.20	1.99	9.10	-29.0	7.58
36.82	2.87	7.30	-51.0 -35.4	9.26
36.45 36.10	3-75	10.50 11.89	-57.5	10.80
35.75	4.25 5.23	14.25	-59.0	12.38
35.42	7.01	11.61	40.7	15.00
35.08	9.13	9.13	⊒î.i	15.94
34.76	9.85	8.00	41.6	17.66
34.45	9.00	6.25	42.0	19.58
34.22	8.50	5.00	-42.4	20.70
33.92	7.00	4.10	-¥2.1	21.75
			-12.0	22.26
35.65	5.51	4.75		
55.28	7.21	6.25	-44.4 -42.0	22.50
32.95 32.62	85 -2.75	7.29	-42.0 -42.8	20.96 18.08
52.50		6.99 6.29	-42.0 -44.5	17.44
32.50 31.98	-6.90 -11.00	6.30	-44.9 -44.9	
31.67				17.74
31.38	-9.50 -6.00	6.52	45.3	17.62 * 02
21.30	-6,00	6.50	-45.6	. ns

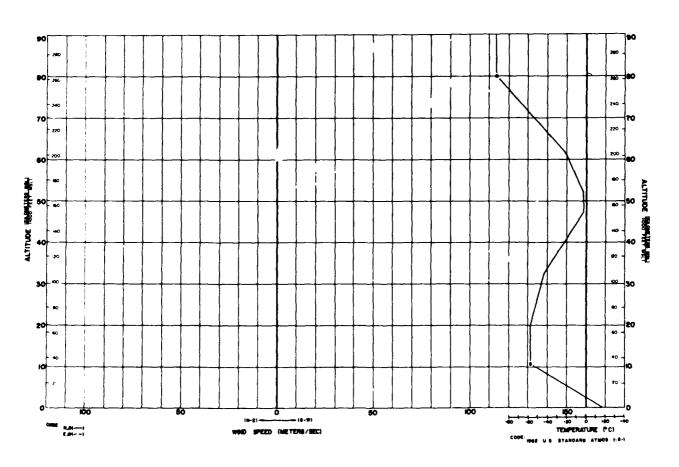
ARCAS 6 7 MARCE 1970

ALTTRUDE	-E + S VELOCITY M/SEC	-E + W VELOCITY M/SEC	TEMPERATURE C	0ZOWE CmCg/Km X 10 -3
31.09	-3.79	6.50	-46.1	16.09
30.54	-3.32	5.11	⊸6.9	15.52
30.00	-3.28	4.57	→7.9	14.70
29.50	-1.85	5.09	- 48.8	13.99
29.03	27	5.75	-48.4	13.16
26.56	4.00	5.80	-48.8	11.59
28.14	8.20	4.92	48. 0	10.35
27.70	9,00	3,90	-48.3	9.56
27.27	3.93	3.95	-48.4	9.82
26.66	-3.98	2.50	49.0	10.42
25.76	-4.ôô	2.75	-4 <u>9.9</u>	9.45
25.10	2,00	5.32	-50.4	11.10
24.45	3.13	6,90	-51.3	9.79
25.85	3.20	6.25	-51.7	9.15
23.28	-é.6o	7,21	-52.0	8.96
22.57	-5.96	8,99	-52.1	12.15
21.89	-2.50	2.77	-52.9	11.62

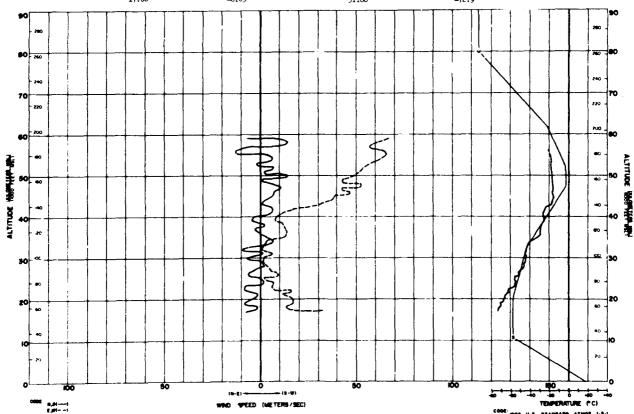


NETTEDBOLOGICAL ROCKET SOURDING DATA

MALTI MAY, FIGURE 4, 19 TRACTITY TO PROPERTY TO THE PROPERTY T)(III)	OMOLO	GICAL	ROCK	ET 80		IG DA	TA .													
70.00 7.00 10.00 1						BOL.	75 AZ	ъ, п	ORID	A		ARC	AB 7			7 W	RCE 1	1970		1	82 0			ARC	ABOR	DE							
71.00 9.15 67.65 14.17 1								3			-#			ITY			-1			CITY			1	DIPE	ATUR	Œ							
# 6.00						5	7.00					5.6 9.1	1					67 67	7.91 7.26														
23.00 6.67 8.6.00 -1.5.00						5	6.00 5.00					5.9 15.9	0 2					67 62	7.56 2.49					-14.	7								
1.1.00 1.2.00 1.						5:	5.00					6.6	7					63	1.06					-15.	6								
12-68						5	1.00					5.6	5					60	.51					-12.	3								
## 10						4	9.00					12.6	8					45	5.00					-11.	7								
10-90 12-54 1-12-56 1-						h '	7.00											40	5.59 5.41					-14.	9								
19.00 1.98 15.20						4	5.00					10.2	9					35	5.41					-15.	3								
12.00 7.20 12.77 1-9.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 1						4	5.00					4.3	8					2€	5.21					-16.	7								
39.00 1-1.95 11.69 -0.6 39.00 7.68 15.44 -0.1 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.44 -0.6 39.00 7.68 15.46 15.46 15.46 15.46 15.46 15						4	1.00					7.2	1					12	-97					-19.	8								
77.00 3.66 8.66						31	9.00					-11.5	2					13	1.89					-2 0.	6								
35.00 9.66 13.66 -36.0 35.00 5.10 5.66 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 -36.0 32.00 10.29 5.96 10.20 32.00 10.20 5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.1						3	7.00					3.9	8					ε	3.66					-26.	4								
33.00						3	5.00					9.2	6					13	5.64					-30.	0								
28.00						3	3.00					3.0	9						.96					-38.	2								
28.00						3	1.00					→.0	9					é	5.40 1.00					-39.	6								
35.00 -7.35						2	9.00					-3.4	1					7	1.21					-44.	1								
24.00 -3.18 1.79 -52.2 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1						24	6.00					1.2	8 9					7	.02					→5.	6								
22.00 -10.15 13.07 -50.7						2	4.00					-5.1	8					1	.47 1.79					-5 2.	2								
10.00 -7.19 13.22 -69.3 10.29						2	2.00					-10.4	5					13	.07					-57.	7								
						2	0.00					-7.1	9					13	.52					-64.	3								
	•	ю[_	<u> </u>	-	Т	_	_		7.0				_			·· <i>-</i> -	1			_	-09 .	,		-	Ι-	T	г-	Т	90	
					1		1		1	-				1		1		1											1	1	280 -	!	
			<u> </u>					\perp						<u>_</u>						_	<u> </u>	$oxed{oxed}$	_	<u></u>			1_	L	1	L		*	
	•	***							- {			ı									1			ļ	\	\downarrow				l	["]		
		240					1		1	- (l				}			l			ļ			1		1		240 -		
	1	- 1			7	7	\top		1	7												T				1	1	I^-			220 -	70	
								İ		1])									1			•				\setminus		1			
ALTITUDE MONTH AND THE PARTY OF	•	100	┼-	-	\dashv	+	+	\dashv	+	+	-	-	_	l-		-	-	-		-	-	-	-	-		╁╌	+-	-	ackslash	\vdash	200	•0	
	2 :	•	}			-			-	}		}		١٤		İ				5				}			}	1	V		-∞-		>
	₹.	10	<u> </u>		\perp	_	4	\perp		\downarrow	_	\rightarrow		\leq						_		L.	_			↓_	↓_	<u> </u>	1))	L_		80	2
	\$	[~					ļ			- [- [Į			6	ļ	_)	ļ				1				'		11/		-		
	8	1	Ì						-			į į		15	بر إ	ļ'					ļ								V				•
30 00 00 00 00 00 00 00 00 00 00 00 00 0	Ę	10				1	1			1			ľ		5_											1		17				40	
20 00 00 00 00 00 00 00 00 00 00 00 00 0	₹	•	Ì			1	1			Ì	1			درا	7								Ì				Ι.		1				æ
20 - 60 - (1-4) -	3	∞ .			+	+	-	+	\rightarrow	\dashv			\bar{z}	1							-	-	-	-		┼-	\ \ \	!	├-	}—		30	
20 - 60 - (1-4) -						-	-		-	1		}	کے	تحرح						}		İ			i	}	\mu	1					
50 (I-4) (I-						\bot						4			1	_										L	1	L				20	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	•												`													1					• 0 -		
50 (In-t) 50 (In									ļ	- }				١,						1										1			
0 100 (0-1)		10		-		_	+	-	_	\dashv	1					 	-	-	 	 	 	<u> </u>	 		-	+	-	┖	 	-	 	ю	
00 80 0 80 00 100 100 100 100 100 100 10		100			{	}		-												ł								\	1		\$0 -		
(R-E)		0	أيسا					50		\perp		[_	<u>, </u>		<u> </u>			0	L	<u>L_</u>		L	SO	L	<u></u>		١.,	80	/		0	
		coast						-			عين					BC)		•					•	-		-	± ·		-io				


METFOROLOGICAL ROCKET SOUNDING DATA

EGLIN AFB, FI	CORIDA ARCAS 8	7 MARCH 1970	2015	STS-CZONESONDE
KM ALTITUDE	-N + S VELOCITY N/SEC	-E + W VFT.OCITY M/SEC	TEMPERATURE C	OZONE CmO ₃ /Km X 10 ⁻³
49.71	5,95	49.48	-4.1	.35
49.35	2.27	46.91	_4 .0	.49
49.00	1.54	44.93	-4.0	.58
48.66	1.23	47.00		.70
44.73	9.48	37.31		1.48
44.21	8.12	36.75		1.60
43.70	6.78	36.10	-12.2	1.83
43.22	4.11	35.11	-14.0	2.09
12.75	4.00	32.66	-15.5	2.46
42.30	5.13	26.00	-19.0	2.78
41.85	5.36	18.24	-22.5	3.22
41.42	5.00	15.14	-26.5	3.77
41.00	4.78	14.00	-29.2	4.26
40.60	3.11	12.98	-29.4	4.84
40.20	1.00	12.11	-29.0	5.39
39.82	-2.00	11.10	-28.6	5.08
39.44	4.12	10.09	-27.9	5.89
39.07	5.99	9.91	₹7.3	5.94
38.70		8.84		6.06
	6.14		-27.0	6.21
38.35	-1.00	8.00	-27.2	
<u>58.∞</u>	3.17	7.83	- ≥?.?	6.35
37.67	1.31	8.12	-29. 1	6.44
37.36	-1.85	10.53	-31.2	6.61
37.05	-3.00	10.98	-34.4	6.50
36.74	-3.0 <u>c</u>	13.00	-35.0	6.55
36.44	47	14.00	-55.0	6.44
36.15	1.13	الماء الماء	-54.8	6.15
35.88	s.oc	14.72	-34.9	6.15
35.42	2.72	14.85	-35.7	6.26
35.00	5.00	14.91	-36 3	6.50
34.58	3.92	13.00	-36.6	6.87
34.18	4.98	6.12	-4 0.7	7.68
33.80	4.77	3.98	-44.5	6.84
33.44	2.97	.72	-48. 8	6.61
33.08	2.00	-1.97	49.1	8.82
32.74	-1.11	-2.47	-50.0	5.94
32.06	-7.10	-2.45	-50.3	5.51
31.55	-6, ∞	1.54	-50.1	10.90
30.99	-3.98	7.41	-50.6	9.63
30.41	-7.00	4.43	-51.0	19.72


ARCAS 8 7 MARCH 197

ALTITUDE KM	-N + S VELOCITY M/SEC	-E + W VILLOCITY M/SEC	TEMPERATURE	020nc 0m0s/Km X 10 ⁻³
15. (1				10.00
29.64	-7.11	5.91 4.12	-: -51.>	12.99 19.05
.8.95 .8.37	9.	6.55	-52.6	15.34
.7.85	5,30 4 14	6.74	-52.8	19.00
.7.16	1.13	4.17	-53.8	16.21
		3.05	-54.0	19.78
26 . 93 26.77	12 84	2.98	-54.0	14.44
26.42	04 -4.18	1.98	-55.5	21.69
26.00		1.80		20.59
25.62	-7.82 -6.28	1.99	-55.3 -55.1	21.95
25 .48		2.16		20.91
	-2.∞		-55.3	20.91
25.25	•50	2.46 3.00	-56.2 -57.0	18.44
24.90 24.33	5.79	3.90 3.90		22.21
	2.84		-56.7	20.27
24.11	1.31	4.18	-56. 5	21.05
24,01	1.00	4.23	-56.3	19.26
23.50	-3.96	5.09	-57.1	14.18
23.09	-9.00	5.99	-57.4	15.46
22.95	-9.61	6,18	-57.7	
22.41	-8.15	7.10	-58. 0	12.99
22.03	-7.50	7.63	58. 0	16.38
21.54	-7.91	9.11	-58.8	16.65
21.50	-6.52	11.56	-58.8	15.30
21.14	-6.23	11.98	-58.9	17.37
20.97	-6.52	14.00	-58.9	16.12
20.29	-11.71	14.56		17.78
19.66	-12.97	16.72		21.20
19.29	-8. 00	13.91		28.30
19.14	-7.14	13.00		25.61
18.97	-6.00	12.80		27.96
18.44	-3.64	24.11		17.20
18.13	91. بخ−	29.85		22.59
17.72	-4.∞	32.00		25.08
17.41	-6.45	31.05		17.63
16.63	-6.00			10.13
16.36	-4.51			15.98

METEOROLOGICAL ROCKET SOUNDING DATA

EGLIH AFB, FLORIDA	ARCAS 9	7 MARCE 1970	2020 107	ARCASONDE
ALTITUDE KM	-N + S VELOCITY M/SEC	-E → W VELC M/SEC	CITY	T emperature °C
59.00	-7.37	676		
58,00	14.45	60.24		
57.00	وه. السا	57.98		
56.00	-13,60	6.20		
55.30	1.50	65,50		-19.1
54.00	5.61	64.17		-18.0
53.00	-1.47	31.66		-17.1
52.00	6.32	94.00		-17.5
51.00	2.51	بلت. 13		-17.1
50.00	14.35	48.25		-16.7
49.00	.43	43.58		-16.3
48.00	5.43	51.68		-16.0
47.00	10.07	43.78		-15.9
46.00	7.88	46.05		-15.9
45.00	6.60	39,96		-16.0
k4.00	3.40	37.29		-16.0
45.00	.04	30.87		-18.0
اللهُ . ن٥٥	5.86	17.49		-24.5
41.00	5.34	12.77		-25.5
40.00	-€.52	8.53		-26.0
59.00	4.69	7.50		-23.2
58.00	1.27	11.34		-27.0
57.00	-2.27	12.53		-28.9
36.00	18	14.19		-23.0
55.00	2.B4	13.07		-11.0
34.00	6.61	5.36		-58.0
33.00	.52	.97		<u>-41.8</u>
52.00	-9.67	.01		-45.1
51.00	.61	6.07		-44.1
30.00	-6.23	2.56		-43.1
29.00	.31	.73		44.6
28.00	1.25	4.53		-46.2
27.00	-3.36	5.09		٠.٥ والم
26.00	-5.79	9.25		-50.6
25.00	24	2.16		-55.0
24.00	94	7.05		-55.0
23.00	-8.04	6.85		-55.9
22.00	-7.55	15,85		-61.8
21.00	-1.47	11.79		-64.8
20.00	-12.97	15.84		-66.0
19.00	-8.97	16.17		-70.5
18.00	-1.95	14.15		-70.5
17.00	-6.03	31.88		-72.9

ATMOSPHERIC SCIENCES RESEARCH PAPERS

- Webb, W.L., "Development of Droplet Size Distributions in the Atmosphere," June 1954.
- Hansen, F. V., and H. Rachele, "Wind Structure Analysis and Forecasting Methods for Rockets," June 1954. 2.
- Webb, W. L., "Net Electrification of Water Droplets at the Earth's Surface," J. Me-3. teorol., December 1954.
- Mitchell, R., "The Determination of Non-Ballistic Projectile Trajectories," March 1955.
- Webb, W. L., and A. McPike, "Sound Ranging Technique for Determining the Tra-5.
- jectory of Supersonic Missiles," #1, March 1955.

 Mitchell, R., and W. L. Webb, "Electromagnetic Radiation through the Atmosphere," #1, April 1955.

 Webb, W. L., A. McPike, and H. Thompson, "Sound Ranging Technique for Deter-6.
- mining the Trajectory of Supersonic Missiles," #2, July 1955.

 Barichivich, A., "Meteorological Effects on the Refractive Index and Curvature of
- 8.
- Microwaves in the Atmosphere," August 1955. Webb, W. L., A. McPike and H. Thompson, "Sound Ranging Technique for Deter-9. mining the Trajectory of Supersonic Missiles," #3, September 1955.
- Mitchell, R., "Notes on the Theory of Longitudinal Wave Motion in the Atmo-10. sphere," February 1956.
- Webb, W. L., "Particulate Counts in Natural Ciouus, Webb, W. L., "Wind Effect on the Aerobee," #1, May 1956. "Particulate Counts in Natural Clouds," J. Meteorol., April 1956. 11.
- 12.
- 13.
- Rachele, H., and L. Anderson, "Wind Effect on the Aerobee," #2, August 1956. Beyers, N., "Electromagnetic Radiation through the Atmosphere," #2, January 1957.
- 15.
- 16.
- Hansen, F. V., "Wind Effect on the Aerobee," #3, January 1957. Kershner, J., and H. Bear, "Wind Effect on the Aerobee," #4, January 1957. Hoidale, G., "Electromagnetic Radiation through the Atmosphere," #3, February
- Querfeld, C. W., "The Index of Refraction of the Atmosphere for 2.2 Micron Radi-18. ation," March 1957.
- White, Lloyd, "Wind Effect on the Aerobee," #5, March 1957.
- Kershner, J. G., "Development of a Method for Forecasting Component Ballistic 20. Wind," August 1957.
- 21.
- Layton, Ivan, "Atmospheric Particle Size Distribution," December 1957. Rachele, Henry and W. H. Hatch, "Wind Effect on the Aerobee," #6, February 22. 1958.
- Beyers, N. J., "Electromagnetic Radiation through the Atmosphere," #4, March 23. 1958.
- Prosser, Shirley J., "Electromagnetic Radiation through the Atmosphere," #5, 24. April 1958.
- Armendariz, M., and P. H. Taft, "Double Theodolite Ballistic Wind Computations," 25. June 1958.
- Jenkins, K. R. and W. L. Webb, "Rocket Wind Measurements," June 1958.
- Jenkins, K. R., "Measurement of High Altitude Winds with Loki," July 1958.
- Hoidale, G., "Electromagnetic Propagation through the Atmosphere," #6, February 1959.
- 29. McLardie, M., R. Helvey, and L. Traylor, "Low-Level Wind Profile Prediction Techniques," #1, June 1959.
- 30.
- Lamberth, Roy, "Gustiness at White Sands Missile Range," #1, May 1959.

 Beyers, N. J., B. Hinds, and G. Hoidale, "Electromagnetic Propagation through the Atmosphere," #7, June 1959.
- Beyers, N. J., "Radar Refraction at Low Elevation Angles (U)," Proceedings of the 32. Army Science Conference, June 1959.
 White, L., O. W. Thiele and P. H. Taft, "Summary of Ballistic and Meteorological
- 33. Support During IGY Operations at Fort Churchill, Canada," August 1959.
- Hainline, D. A., "Drag Cord-Aerovane Equation Analysis for Computer Application," August 1959.
- Hoidale, G. B., "Slope-Valley Wind at WSMR," October 1959. 35.
- Webb, W. L., and K. R. Jenkins, "High Altitude Wind Measurements," J. Meteorol., 16, 5, October 1959.

- White, Lloyd, "Wind Effect on the Aerobee," #9, October 1959.
- Webb, W. L., J. W. Coffman, and G. Q. Clark, "A High Altitude Acoustic Sensing 38. System," December 1959.
- 39. Webb, W. L., and K. R. Jenkins, "Application of Meteorological Rocket Systems," J. Geophys. Res., 64, 11, November 1959.
- Duncan, Louis, "Wind Effect on the Aerobee." #10, February 1960. 40.
- Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #2, February 1960. 41.
- Webb, W. L., and K. R. Jenkins, "Rocket Sounding of High-Altitude Parameters," 42. Proc. GM Rel. Symp., Dept. of Defense, February 1960.
- Armendariz, M., and H. H. Monahan, "A Comparison Between the Double Theodo-43. lite and Single-Theodolite Wind Measuring Systems," April 1960.
- 44.
- **4**5.
- 46.
- Jenkins, K. R., and P. H. Taft, "Weather Elements in the Tularosa Basin," July 1960. Beyers, N. J., "Preliminary Radar Performance Data on Passive Rocket-Borne Wind Sensors," IRE TRANS, MIL ELECT, MIL-4, 2-3, April-July 1960. Webb, W. L., and K. R. Jenkins, "Speed of Sound in the Stratosphere," June 1960. Webb, W. L., K. R. Jenkins, and G. Q. Clark, "Rocket Sounding of High Atmosphere Meteorological Parameters," IRE Trans. Mil. Elect., MIL-4, 2-3, April July, 1960. 47. April-July 1960.
- Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #3, September 48.
- Beyers, N. J., and O. W. Thiele, "Meteorological Wind Sensors," August 1960. 49.
- Armijo, Larry, "Determination of Trajectories Using Range Data from Three Noncolinear Radar Stations," September 1960.

 Carnes, Patsy Sue, "Temperature Variations in the First 200 Feet of the Atmo-
- 51. sphere in an Arid Region," July 1961.
- Springer, H. S., and R. O. Olsen, "Launch Noise Distribution of Nike-Zeus Mis-52. siles," July 1961.
- Thiele, O. W., "Density and Pressure Profiles Derived from Meteorological Rocket Measurements," September 1961. 53.
- Diamond, M. and A. B. Gray, "Accuracy of Missile Sound Ranging," November 54. 1961.
- Lamberth, R. L. and D. R. Veith, "Variability of Surface Wind in Short Distances," 55. #1, October 1961. Swanson, R. N., "Low-Level Wind Measurements for Ballistic Missile Application,"
- 56. January 1962.
- 57. Lamberth, R. L. and J. H. Grace, "Gustiness at White Sands Missile Range," #2, January 1962
- Swanson, R. N. and M. M. Hoidale, "Low-Level Wind Profile Prediction Tech-58. niques," #4, January 1962. Rachele, Henry, "Surface Wind Model for Unguided Rockets Using Spectrum and 59.
- Cross Spectrum Techniques," January 1962. Rachele, Henry, "Sound Propagation through a Windy Atmosphere," #2, Febru-60.
- ary 1962.
- Webb, W. L., and K. R. Jenkins, "Sonic Structure of the Mesosphere," J. Acous. 61. Soc. Amer., 34, 2, February 1962.
- Tourin, M. H. and M. M. Hoidale, "Low-Level Turbulence Characteristics at White Sands Missile Range," April 1962. 62.
- Miers, Bruce T., "Mesospheric Wind Reversal over White Sands Missile Range," March 1962.
- Fisher, E., R. Lee and H. Rachele, "Meteorological Effects on an Acoustic Wave 64. within a Sound Ranging Array," May 1962.
- Walter, E. L., "Six Variable Ballistic Model for a Rocket," June 1962. Webb, W. L., "Detailed Acoustic Structure Above the Tropopause," J. Applied Me-66. teorol., 1, 2, June 1962.
- Jenkins, K. R., "Empirical Comparisons of Meteorological Rocket Wind Sensors," J. Appl. Meteor., June 1962.

 Lamberth, Roy, "Wind Variability Estimates as a Function of Sampling Interval,"
- 68. July 1962.

 Rachele, Henry, "Surface Wind Sampling Periods for Unguided Rocket Impact Pre-
- diction," July 1962.
- Traylor, Larry, "Coriolis Effects on the Aerobee-Hi Sounding Rocket," August 1962. 70
- McCoy, J., and G. Q. Clark, "Meteorological Rocket Thermometry," August 1962. 71.
- Rachele, Henry, "Real-Time Prelaunch Impact Prediction System," August 1962.

- 73. Beyers, N. J., O. W. Thiele, and N. K. Wagner, "Performance Characteristics of Meteorlogical Rocket Wind and Temperature Sensors," October 1962.
- 74. Coffman, J., and R. Price, "Some Errors Associated with Acoustical Wind Measurements through a Layer," October 1962.
- 75. Armendariz, M., E. Fisher, and J. Serna, "Wind Shear in the Jet Stream at WS-MR," November 1962.
- 76. Armendariz, M., F. Hansen, and S. Carnes, "Wind Variability and its Effect on Rocket Impact Prediction," January 1963.
- 77. Querfeld, C., and Wayne Yunker, "Pure Rotational Spectrum of Water Vapor, I: Table of Line Parameters," February 1963.
- 78. Webb, W. L., "Acoustic Component of Turbulence," J. Applied Meteorol., 2, 2, April 1963.
- 79. Beyers, N. and L. Engberg, "Seasonal Variability in the Upper Atmosphere," May 1963.
- Williamson, L. E., "Atmospheric Acoustic Structure of the Sub-polar Fall," May 1963. 80.
- Lamberth, Roy and D. Veith, "Upper Wind Correlations in Southwestern United States," June 1963.
- 82. Sandlin, E., "An analysis of Wind Shear Differences as Measured by AN/FPS-16 Radar and AN/GMD-1B Rawinsonde," August 1963.
- Diamond, M. and R. P. Lee, "Statistical Data on Atmospheric Design Properties Above 30 km," August 1963. 83.
- Thiele, O. W., "Mesospheric Density Variability Based on Recent Meteorological Rocket Measurements," J. Applied Meteorol., 2, 5, October 1963.

 Diamond, M., and O. Essenwanger, "Statistical Data on Atmospheric Design Prop-84.
- 85. erties to 30 km," Astro. Aero. Engr., December 1963.
- 86. Hansen, F. V., "Turbulence Characteristics of the First 62 Meters of the Atmo-
- sphere," December 1963.

 Morris, J. E., and B. T. Miers, "Circulation Disturbances Between 25 and 70 kilometers Associated with the Sudden Warming of 1963," J. of Geophys. 87. Res., January 1964.
- Thiele, O. W., "Some Observed Short Term and Diurnal Variations of Stratospher-88. ic Density Above 30 km," January 1964.
- Sandlin, R. E., Jr. and E. Armijo, "An Analysis of AN/FPS-16 Radar and AN/GMD-1B Rawinsonde Data Differences," January 1964. 89.
- Miers, B. T., and N. J. Beyers, "Rocketsonde Wind and Temperature Measure-90. ments Between 30 and 70 km for Selected Stations," J. Applied Meteorol., February 1964.
- Webb, W. L., "The Dynamic Stratosphere," Astronautics and Aerospace Engineer-91. ing, March 1964. H., "Acoustic Measurements of Wind through a Layer," March 1964.
- 92.
- Low, R. D. H., "Acoustic Measurements of Wind through a Layer," March 1964. Diamond. M., "Cross Wind Effect on Sound Propagation," J. Applied Meteorol., 93. April 1964.
- Lee, R. P., "Acoustic Ray Tracing," April 1964. 94.
- 95. Reynolds, R. D., "Investigation of the Effect of Lapse Rate on Balloon Ascent Rate," May 1964.
- 96. "Scale of Stratospheric Detail Structure," Space Research V, May Webb, W. L., 1964.
- Barber, T. L., "Proposed X-Ray-Infrared Method for Identification of Atmospheric Mineral Dust," June 1964. 97.
- Thiele, O. W., "Ballistic Procedures for Unguided Rocket Studies of Nuclear Environ-98. ments (U)," Proceedings of the Army Science Conference, June 1964. Horn, J. D., and E. J. Trawle, "Orographic Effects on Wind Variability," July 1964. Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the
- 100. Earth's Atmosphere in the 250 to 500 Wave Number Interval." #1, September 1964.
- 101. Duncan, L. D., R. Ensey, and B. Engebos, "Athena Launch Angle Determination," September 1964.
 Thiele, O. W., "Feasibility Experiment for Measuring Atmospheric Density Through
- 102. the Altitude Range of 60 to 100 KM Over White Sands Missile Range, October 1964.
- 103. Duncan, L. D., and R. Ensey, "Six-Degree-of-Freedom Digital Simulation Model for Unguided, Fin-Stabilized Rockets," November 1964.

- 104. Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval," #2, November 1964.
- Webb, W. L., "Stratospheric Solar Response," J. Atmos. Sci., November 1964. 105.
- McCoy, J. and G. Clark, "Rocketsonde Measurement of Stratospheric Temperature," 106. December 1964.
- Farone, W. A., "Electromagnetic Scattering from Radially Inhomogeneous Spheres 107. as Applied to the Problem of Clear Atmosphere Radar Echoes," December 1964.
- Farone, W. A., "The Effect of the Solid Angle of Illumination or Observation on the 108. Color Spectra of 'White Light' Scattered by Cylinders," January 1965.
- Wilhamson, L. E., "Seasonal and Regional Characteristics of Acoustic Atmospheres," 109. J. Geophys. Res. January 1965.
- 110.
- Armendariz, M., "Ballistic Wind Variability at Green River, Utah," January 1965. Low, R. D. H., "Sound Speed Variability Due to Atmospheric Composition," Janu-111. ıry 1965.
- 112. Querfeld, C. W., 'Mie Atmospheric Optics," J. Opt. Soc. Amer., January 1965.
- Coffman, J., "A Measurement of the Effect of Atmospheric Turbulence on the Coherent Properties of a Sound Wave," January 1965. 113.
- Rachele, H., and D. Veith, "Surface Wind Sampling for Unguided Rocket Impact 114. Prediction," January 1965.
- Ballard, H., and M. Izquierdo, "Reduction of Microphone Wind Noise by the Gen-115. eration of a Proper Turbulent Flow," February 1965.
- Mireles, R., "An Algorithm for Computing Half Widths of Overlapping Lines on Ex-116.
- perimental Spectra," February 1965.
 "Inaccuracies of the Single-Theodolite Wind Measuring System in Ballistic Application," February 1965. 117. Richart, H.,
- "Theoretical and Practical Study of Aerobee-150 Ballistics," March 118. D'Arcy, M., 1965.
- "Improved Method for the Reduction of Rocketsonde Temperature Da-McCoy, J... 119. ta." March 1965.
- "Uniqueness Theorem in Inverse Electromagnetic Cylindrical Scatter-Mireles, R., 120.
- ing," April 1965.

 Coffman, J., "The Focusing of Sound Propagating Vertically in a Horizontally Stratified Medium," April 1965. 121.
- Farone, W. A., and C. Querfeld, "Electromagnetic Scattering from an Infinite Cir-122.
- 123.
- cular Cylinder at Oblique Incidence," April 1965.

 Rachele, H., "Sound Propagation through a Windy Atmosphere," April 1965.

 Miers, B., "Upper Stratospheric Circulation over Ascension Island," April 1965.

 ider, L., and M. Armendarz, "A Comparison of Pibal and Tower Wind Measure-124. 125.
- ments," April 1965. Hoidale, G. B., "Meteorological Conditions Allowing a Rare Observation of 24 Micron Solar Radiation Near Sea Level." Meteorol. Magazine, May 1965. 126.
- Beyers, N. J., and B. T. Miers, "Diurnal Temperature Change in the Atmosphere 127. Between 30 and 60 km over White Sands Missile Range," J. Atmos. Sci., May 1965.
- 128.
- Querfeld, C., and W. A. Farone, "Tables of the Mie Forward Lobe," May 1965. Farone, W. A., Generalization of Rayleigh-Gans Scattering from Radially Inhomogeneous Spheres," J. Opt. Soc. Amer., June 1965. 129.
- Diamond, M., "Note on Mesospheric Winds Above White Sands Missile Range," J. 130. Applied Meteorol., June 1965.
- Clark, G. Q., and J. G. McCoy, "Measurement of Stratospheric Temperature," J. Applied Meteorol., June 1965. 131.
- Hall, T., G. Hoidale, R. Mireles, and C. Querfeld, "Spectral Transmissivity of the 132. Earth's Atmosphere in the 250 to 500 Wave Number Interval," #3, July 1965.
- McCoy, J., and C. Tate, "The Delta-T Meteorological Rocket Payload," June 1964. 133.
- Horn, J. D., "Obstacle Influence in a Wind Tunnel," July 1965. McCoy, J., "An AC Probe for the Measurement of Electron Density and Collision 135. Frequency in the Lower Ionosphere," July 1965.
- Miers, B. T., M. D. Kays, O. W. Thiele and E. M. Newby, "Investigation of Short Term Variations of Several Atmospheric Parameters Above 30 KM," 136. July 1965.

Serna, J., "An Acoustic Ray Tracing Method for Digital Computation," September

Webb, W. L., "Morphology of Noctilucent Clouds," J. Geophys. Res., 70, 18, 4463-138. 4475, September 1965.

Kays, M., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical Motions in the Upper Stratosphere," J. Geophys. Res., 70, 18, 4453-4462, 139. September 1965.

Rider, L., "Low-Level Jet at White Sands Missile Range," September 1965. 140.

Lamberth, R. L., R. Reynolds, and Morton Wurtele, "The Mountain Lee Wave at White Sands Missile Range," Bull. Amer. Meteorol. Soc., 46, 10, October 1965.

Reynolds, R. and R. L. Lamberth, "Ambient Temperature Measurements from Ra-142. diosondes Flown on Constant-Level Balloons," October 1965.

McClurey, E., "Theoretical Trajectory Performance of the Five-Inch Gun Probe System," October 1965. 143

Pena, R. and M. Diamond, "Atmospheric Sound Propagation near the Earth's Surface," October 1965. 144.

Mason, J. B., "A Study of the Feasibility of Using Radar Chaff For Stratospheric Temperature Measurements," November 1965. 145.

Diamond, M., and R. P. Lee, "Long-Range Atmospheric Sound Propagation," J. 146. Geophys. Res., 70, 22, November 1965.

Lamberth, R. L., "On the Measurement of Dust Devil Parameters," November 1965. 147.

Hansen, F. V., and P. S. Hansen, "Formation of an Internal Boundary over Heter-148. ogeneous Terrain," November 1965. , "Mechanics of Stratospheric Seasonal Reversals," November 1965.

149. Webb, W. L.,

U. S. Army Electronics R & D Activity, "U. S. Army Participation in the Meteorological Rocket Network," January 1966. 150.

Rider, L. J., and M. Armendariz, "Low-Level Jet Winds at Green River, Utah," Feb-151. ruary 1966.

152.

Webb, W. L., "Diurnal Variations in the Stratospheric Circulation," February 1966. Beyers, N. J., B. T. Miers, and R. J. Reed. "Diurnal Tidal Motions near the Strato-153. pause During 48 Hours at WSMR," February 1966.

Webb, W. L., "The Stratospheric Tidal Jet," February 1966.

Hall, J. T., "Focal Properties of a Plane Grating in a Convergent Beam," February 155. 1966.

Duncan, L. D., and Henry Rachele, "Real-Time Meteorological System for Firing of Unguided Rockets," February 1966. 156.

Kays, M. D., "A Note on the Comparison of Rocket and Estimated Geostrophic Winds 157. at the 10-mb Level," J. Appl. Meteor., February 1966.
Rider, L., and M. Armendariz, "A Comparison of Pibal and Tower Wind Measure-

158. ments," J. Appl. Meteor., 5, February 1966

159. Duncan, L. D., "Coordinate Transformations in Trajectory Simulations," February

Williamson, L. E., "Gun-Launched Vertical Probes at White Sands Missile Range," 160. February 1966.

161. Randhawa, J. S., Ozone Measurements with Rocket-Borne Ozonesondes," March 1966.

162. Armendariz, Manuel, and Laurence J. Rider, "Wind Shear for Small Thickness Lav-

ers," March 1966.

Low, R. D. H., "Continuous Determination of the Average Sound Velocity over an Arbitrary Path," March 1966.

"Dishardson Number Tables for the Surface Boundary Layer," 163.

164. March 1966.

Cochran, V. C., E. M. D'Arcy, and Florencio Ramirez, "Digital Computer Program for Five-Degree-of-Freedom Trajectory," March 1966. 165.

Thiele, O. W., and N. J. Beyers, "Comparison of Rocketsonde and Radiosonde Temp-166. eratures and a Verification of Computed Rocketsonde Pressure and Density," April 1966. Thiele, O. W., "Observed Diurnal Oscillations of Pressure and Density in the Upper

167. Stratosphere and Lower Mesosphere," April 1966. Kays, M. D., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical

168. Motions in the Upper Stratosphere," J. Geophy. Res., April 1966.

169. Hansen, F. V., "The Richardson Number in the Planetary Boundary Layer," May 170. Ballard, H. N., "The Measurement of Temperature in the Stratosphere and Mesosphere," June 1966. Hansen, Frank V., "The Ratio of the Exchange Coefficients for Heat and Momentum

171. in a Homogeneous, Thermally Stratified Atmosphere," June 1966.

Hansen, Frank V., "Comparison of Nine Profile Models for the Diabatic Boundary Layer," June 1966. 172.

Rachele, henry, "A Sound-Ranging Technique for Locating Supersonic Missiles." 173. May 1966.

Farone, W. A., and C. W. Querfeld, "Electromagnetic Scattering from Inhomogeneous 174. Infinite Cylinders at Oblique Incidence," J. Opt. Soc. Amer. 56, 4, 476 480, April 1966.
non, "Determination of Parameters in Absorption Spectra by Numerical

175. Mireles, Ramon, Minimization Techniques," J. Opt. Soc. Amer. 56, 5, 644-647, May 1966.

Reynolds, R., and R. L. Lambertn, "Amoient Temperature Measurements from Ra-176. diosondes Flown on Constant-Level Balloons," J. Appl. Meteorol., 5, 3, 304-307, June 1966.

Hall, James T., "Focal Properties of a Plane Grating in a Convergent Beam," Appl. 177.

Opt., 5, 1051, June 1966

Rider, Laurence J., "Low-Level Jet at White Sands Missile Range," J. Appl. Meteorol., 5, 3, 283-287, June 1966.

McCluney, Eugene, "Projectile Dispersion as Caused by Barrel Displacement in the 5-Inch Gun Probe System," July 1966. 178.

179.

Armendariz, Manuel, and Laurence J. Rider, "Wind Shear Calculations for Small 180. Shear Layers," June 1966.

Lamberth, Roy L., and Manuel Armendariz, "Upper Wind Correlations in the Cen-181. tral Rocky Mountains," June 1966.

Hansen, Frank V., and Virgil D. Lang, "The Wind Regime in the First 62 Meters of

182. the Atmosphere," June 1966.

Randhawa, Jagir S., "Rocket-Borne Ozonesonde," July 1966. 183.

Rachele, Henry, and L. D. Duncan, "The Desirability of Using a Fast Sampling Rate 184. for Computing Wind Velocity from Pilot-Balloon Data," July 1966. Hinds, B. D., and R. G. Pappas, "A Comparison of Three Methods for the Cor-

185.

rection of Radar Elevation Angle Refraction Errors," August 1966. Riedmuller, G. F., and T. L. Barber, "A Mineral Transition in Atmospheric Dust 186. Transport," August 1966.

Hall, J. T., C. W. Querfeld, and G. B. Hoidale, "Spectral Transmissivity of the 187. Earth's Atmosphere in the 250 to 500 Wave Number Interval," Part IV (Final), July 1966.

188.

Duncan, L. D. and B. F. Engebos, "Techniques for Computing Launcher Settings for Unguided Rockets," September 1966.

Duncan, L. D., "Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model," September 1966. 189.

Miller, Walter B., "Consideration of Some Problems in Curve Fitting," September 190. 1966.

191.

Cermak, J. E., and J. D. Horn, "The Tower Shadow Effect," August 1966. Webb, W. L., "Stratospheric Circulation Response to a Solar Eclipse," October 1966. 192.

193.

Kennedy, Bruce, "Muzzle Velocity Measurement," October 1966.

Traylor, Larry E., "A Refinement Technique for Unguided Rocket Drag Coefficients," October 1966

Nusbaum, Henry, "A Reagent for the Simultaneous Microscope Determination of 194.

195. Quartz and Halides," October 1966. Kays, Marvin and R. O. Olsen, "Improved Rocketsonde Parachute-derived Wind

196. Profiles," October 1966.

Engebos, Bernard F. and Duncan, Louis D., "A Nomogram for Field Determina-197. tion of Launcher Angles for Unguided Rockets," October 1966.

Webb, W. L., "Midlatitude Clouds in the Upper Atmosphere," November 1966. 198.

Hansen, Frank V., "The Lateral Intensity of Turbulence as a Function of Stability," 199. November 1966.

Rider, L. J. and M. Armendariz, "Differences of Tower and Pibal Wind Profiles," 200. November 1966.

Lee, Robert P., "A Comparison of Eight Mathematical Models for Atmospheric 201.

Acoustical Ray Tracing," November 1966.

Low, R. D. H., et al., "Acoustical and Meteorological Data Report SOTRAN I and II," November 1966. 202.

- Hunt, J. A. and J. D. Horn, "Drag Plate Balance," December 1966.
- Armendariz, M., and H. Rachele, "Determination of a Representative Wind Profile from Balloon Data," December 1966. 204.
- Hansen, Frank V., "The Aerodynamic Roughness of the Complex Terrain of White 205. Sands Missile Range," January 1967.
- Morris, James E., "Wind Measurements in the Subpolar Mesopause Region," Jan-206. uary 1967.
- Hall, James T., "Attenuation of Millimeter Wavelength Radiation by Gaseous Water," January 1967. 207.
- Thiele, O. W., and N. J. Beyers, "Upper Atmosphere Pressure Measurements With 208.
- Thermal Conductivity Gauges," January 1967.

 Armendariz, M., and H. Rachele, "Determination of a Representative Wind Profile 209. from Balloon Data" January 1967.
- Hansen, F. V., "The Aerodynamic Roughness of the Complex Terrain of White Sands 210. Missile Range, New Mexico," January 1967.
- D'Arcy, Edward M., "Some Applications of Wind to Unguided Rocket Impact Prediction," March 1967. 211.
- Kennedy, Bruce, "Operation Manual for Stratosphere Temperature Sonde," March 212. 1967.
- Hoidale, G. B., S. M. Smith, A. J. Blanco, and T. L. Barber, "A Study of Atmosphe-213. ric Dust," March 1967.
- Longyear, J. Q., "An Algorithm for Obtaining Solutions to Laplace's Titad Equa-214. tions," March 1967.
- Rider, L. J., "A Comparison of Pibal with Raob and Rawin Wind Measurements," 215. April 1967.
- Breeland, A. H., and R. S. Bonner, "Results of Tests Involving Hemispherical Wind 216. Screens in the Reduction of Wind Noise," April 1967.
- Webb, Willis L., and Max C. Bolen, "The D-region Fair-Weather Electric Field," 217. April 1967.
- Kubinski, Stanley F., "A Comparative Evaluation of the Automatic Tracking Pilot-Balloon Wind Measuring System," April 1967. 218.
- Miller, Walter B., and Henry Rachele, "On Nonparametric Testing of the Nature of 219. Certain Time Series," April 1967.
- Hansen, Frank V., "Spacial and Temporal Distribution of the Gradient Richardson 220. Number in the Surface and Planetary Layers," May 1967.
- 221.
- Randhawa, Jagir S., "Diurnal Variation of Ozone at High Altitudes," May 1967. Ballard, Harold N., "A Review of Seven Papers Concerning the Measurement of 222. Temperature in the Stratosphere and Mesosphere," May 1967.
- 223. Williams, Ben H., "Synoptic Analyses of the Upper Stratospheric Circulation During the Late Winter Storm Period of 1966," May 1967.
- Horn, J. D., and J. A. Hunt, "System Design for the Atmospheric Sciences Office 224. Wind Research Facility," May 1967.
- Miller, Walter B., and Henry Rachele, "Dynamic Evaluation of Radar and Photo 225. Tracking Systems, " May 1967.
- Bonner, Robert S., and Ralph H. Rohwer, "Acoustical and Meteorological Data Report SOTRAN III and IV," May 1967. 226.
- Rider, L. J., "On Time Variability of Wind at White Sands Missile Range. New Mex-227. ico," June 1967.
- Randhawa, Jagir S., "Mesospheric Ozone Measurements During a Solar Eclipse," 228. June 1967.
- Beyers, N. J., and B. T. Miers, "A Tidal Experiment in the Equatorial Stratosphere over Ascension Island (8S)", June 1967. 229.
- Miller, W. B., and H. Rachele, "On the Behavior of Derivative Processes," June 1967 230.
- Walters, Randall K., "Numerical Integration Methods for Ballistic Rocket Trajec-231. tory Simulation Programs," June 1967.
- 232. Hansen, Frank V., "A Diabatic Surface Boundary Layer Model," July 1967.
- Butler, Ralph L., and James K. Hall, "Comparison of Two Wind Measuring Sys-233. tems with the Contraves Photo-Theodolite," July 1967.
- Webb, Willis L., "The Source of Atmospheric Electrification," June 1967. 234.

- Hinds, B. D., "Radar Tracking Anomalies over an Arid Interior Basin," August 1967.
- Christian, Larry O., "Radar Cross Sections for Totally Reflecting Spheres," August 236. 1967.
- D'Arcy, Edward M., "Theoretical Dispersion Analysis of the Aerobee 350," August 237. 1967.
- Anon., "Technical Data Package for Rocket-Borne Temperature Sensor," August 238.1967.
- Glass, Roy I., Roy L. Lamberth, and Ralph D. Reynolds, "A High Resolution Con-239. tinuous Pressure Sensor Modification for Radiosondes," August 1967.
- Low, Richard D. H., "Acoustic Measurement of Supersaturation in a Warm Cloud," 240. August 1967.
- Rubio, Roberto, and Harold N. Balland, "Time Response and Aerodynamic Meaning 241. of Atmospheric Temperature Sensing Elements," August 1967.
- Seagraves, Mary Ann B., "Theoretical Performance Characteristics and Wind Effects 242.for the Aerobee 150," August 1967.
- Duncan, Louis Dean, "Channel Capacity and Coding," August 1967. 243.
- Dunaway, C. L., and Mary Ann B. Seagraves, "Launcher Settings Versus Jack Settings for Aerobee 150 Launchers Launch Complex 35, White Sands 244. Missile Range, New Mexico," August 1967.
- 245. Duncan, Louis D., and Bernard F. Engebos, "A Six-Degree-of-Freedom Digital Computer Program for Trajectory Simulation," October 1967.
- Rider, Laurence J., and Manuel Armendariz, "A Comparison of Simultaneous Wind 246. Profiles Derived from Smooth and Roughened Spheres," September 1967.
- Reynolds, Ralph D., Roy L. Lamberth, and Morton G. Wurtele, "Mountain Wave 247. Theory vs Field Test Measurements," September 1967.
- Lee, Robert P., "Probabilistic Model for Acoustic Sound Ranging." October 1967. 248.
- Williamson, L. Edwin, and Bruce Kennedy, "Meteorological Shell for Standard Artil-249. lery Pieces - A Feasibility Study," October 1967.
- Rohwer, Ralph H., "Acoustical, Meteorological and Seismic Data Report SOTRAN V and VI," October 1967. 250.
- Nordquist, Walter S., Jr., "A Study in Acoustic Direction Finding," November 1967. Nordquist, Walter S., Jr., "A Study of Acoustic Monitoring of the Gun Probe Sys-251.
- 252.tem," November 1967.
- Avara, E. P., and B. T. Miers, "A Data Reduction Technique for Meteorological Wind Data above 30 Kilometers," December 1967. 253.

- Hansen, Frank V., "Predicting Diffusion of Atmospheric Contaminants by Consideration of Turbulent Characteristics of WSMR," January 1968. 254.
- 255.
- Randhawa, Jagir S., "Rocket Measurements of Atmospheric Ozone," January 1968. D'Arcy, Edward M., "Meteorological Requirements for the Aerobee-350," January 256. 1968.
- D'Arcy, Edward M., "A Computer Study of the Wind Frequency Response of Un-257. guided Rockets," February 1968.
- Williamson, L. Edwin, "Gun Launched Probes Parachute Expulsion Tests Under 258. Simulated Environment," February 1968.
- 259. Beyers, Norman J., Bruce T. Miers, and Elton P. Avara, "The Diurnal Tide Near the Stratopause over White Sands Missile Range, New Mexico," February 1968.
- 260. Traylor, Larry E., "Preliminary Study of the Wind Frequency Response of the Honest John M50 Tactical Rocket," March 1968.
- Engebos, B. F., and L. D. Duncan, "Real-Time Computations of Pilot Balloon 261. Winds," March 1968.
- 262. Butler, Ralph and L. D. Duncan, "Empirical Estimates of Errors in Double-Theodolite Wind Measurements," February 1968.
- Kennedy, Bruce, et al., "Thin Film Temperature Sensor," March 1968. 263.
- Bruce, Dr. Rufus, James Mason, Dr. Kenneth White and Richard B. Gomez, "An 264. Estimate of the Atmospheric Propagation Characteristics of 1.54 Micron Laser Energy," March 1968.

Ballard, Harold N., Jagir S. Randhawa, and Willis L. Webb, "Stratospheric Circulation Response to a Solar Eclipse," March 1968.

Johnson, James L., and Orville C. Kuberski, "Timing Controlled Pulse Generator," 266. April 1968.

Blanco, Abel J., and Glenn B. Hoidale, "Infrared Absorption Spectra of Atmospheric 267.

Dust," May 1968.

Jacobs, Willie N., "Automatic Pibal Tracking System," May 1968. 268.

Morris, James E., and Marvin D. Kays, "Circulation in the Arctic Mesosphere in Summer," June 1968.

Mason, James B., "Detection of Atmospheric Oxygen Using a Tuned Ruby Laser," **269**.

270. June 1968.

Armendariz, Manuel, and Virgil D. Lang, "Wind Correlation and Variability in Time 271. and Space," July 1968.

Webb, Willis L., "Tropospheric Electrical Structure," July 1968.

272.

Miers, Bruce T., and Elton P. Avara, "Analysis of High-Frequency Components of AN/FPS-16 Radar Data," August 1968. 273.

Dunaway, Gordon L., "A Practical Field Wind Compensation Technique for Unguided Rockets," August 1968.

Seagraves, Mary Ann B., and Barry Butler, "Performance Characteristics and Wind 274.

275. Effects for the Aerobee 150 with VAM Booster," September 1968.

Low, Richard D. H., "A Generalized Equation for Droplet Growth Due to the Solu-276. tion Effect," September 1968.

Jenkins, Kenneth R., "Meteorological Research, Development, Test, and Evaluation

277. Rocket," September 1968.

278. Williams, Ben H., and Bruce T. Miers, "The Synoptic Events of the Stratospheric

Warming of December 1967 - January 1968," September 1968.

Tate, C. L., and Bruce W. Kennedy, "Technical Data Package for Atmospheric 279. Temperature Sensor Mini-Loki," September 1968.

Rider, Laurence J., Manuel Armendariz, and Frank V. Hansen, "A Study of Wind 280. and Temperature Variability at White Sands Missile Range, New Mexico," September 1968.

Duncan, Louis D., and Walter B. Miller, "The Hull of a Channel," September 1968. 281.

Hansen, Frank V., and Gary A. Ethridge, "Diffusion Nomograms and Tables for 282.

Rocket Propellants and Combustion By-Products," January 1968. Walters, Randall K., and Bernard F. Engebos, "An Improved Method of Error Con-283. trol for Runge-Kutta Numerical Integration," October 1968.

Miller, Walter B., "A Non-Entropy Approach to Some Topics in Channel Theory,"

284. November 1968.

285. Armendariz, Manuel, Laurence J. Rider, and Frank V. Hansen, "Turbulent Charac-

teristics in the Surface Boundary Layer," November 1968.
Randhawa, Jagir S., "Rocket Measurements of the Diurnal Variation of Atmospheric Ozone," December 1968. 286.

Randhawa, Jagir S., "A Guide to Rocketsonde Measurements of Atmospheric Ozone," 287. January 1969.

288.

Webb, Willis L., "Solar Control of the Stratospheric Circulation," February 1969.
Lee, Robert P., "A Dimensional Analysis of the Errors of Atmospheric Sound Ranging," March 1969.
Barber, T. L., "Degradation of Laser Optical Surfaces," March 1969. 289.

290.

Barber, T. L., "Degradation of Laser Optical Surfaces," March 1969. D'Arcy, E. M., "Diffusion of Resonance Excitation Through a One-Dimensional Gas," March 1969.

Randhawa, J. S., "Ozone Measurements from a Stable Platform near the Strato-292. pause Level," March 1969.

Rubio, Roberto, "Faraday Rotation System for Measuring Electron Densities," 293. March 1969.

294. Olsen, Robert, "A Design Plan for Investigating the Atmospheric Environment As-

sociated with High Altitude Nuclear Testing," March 1969.

Monahan, H. H., M. Armendariz, and V. D. Lang, "Estimates of Wind Variability Between 100 and 900 Meters," April 1969. 295.

296. Rinehart, G. S., "Fog Drop Size Distributions - Measurement Methods and Evaluation," April 1969.

297. D'Arcy, Edward M., and Henry Rachele, "Proposed Prelaunch Real-Time Impact Prediction System for the Aerobee-350 Rocket," May 1969.

Low, Richard D. H., "A Comprehensive Report on Nineteen Condensation Nuclei (Part I - Equilibrium Growth and Physical Properties)," May 1969. 298.

Randhawa, J. S., "Vertical Distribution of Ozone in the Winter Subpolar Region," 299. June 1969.

Rider, Laurence J., and Manuel Armendariz, "Vertical Wind Component Estimates 300. up to 1.2km Above Ground, July 1969.

Duncan, L. D., and Bernard F. Engebos, "A Rapidly Converging Iterative Technique 301. for Computing Wind Compensation Launcher Settings for Unguided Rockets," July 1969. Gomez, R. B. and K. O. White, "Erbium Laser Propagation in Simulated Atmos-

302. pheres I. Description of Experimental Apparatus and Preliminary Results,"July 1969.

Hansen, Frank V., and Juana Serna, "A Dimensionless Solution for the Wind and 303. Temperature Profiles in the Surface Boundary Layer," September 1969.

304.

305.

Webb, Willis L., "Global Electrical Currents," October 1969.
Webb, Willis L., "The Cold Earth," October, 1969.

Johnson, Neil L., "Program Description for the Automatic Graphical Presentation 306. of Atmospheric Temperature-Pressure Data on a Skew T, Log P diagram 'SKEWT'," September 1969.

Hoidale, G. B., A. J. Blanco, N. L. Johnson, and R. V. Doorey, "Variations in the 307. Absorbtion Spectra of Atmospheric Dust," October 1969.

Campbell, G. S., "Measurement of Air Temperature Fluctuations with Thermo-308.

couples," October 1969.

Miers, B. T., and R. O. Olsen, "Short-Term Density Variations Over White Sands 309. Missile Range," October 1969.
White, K. O., and S. A. Schleusener, "Real Time Laser Propagation Data Analysis

310. Technique," October 1969.

Randhawa, J. S., "Technical Data Package for Rocket-Borne Ozonesonde," October 311. 1969.

Ballard, Harold N., "The Thermistor Measurement of Temperature in the 30-65 km Atmospheric Region," November 1969.

Miers, B. T., and J. E. Morris, "Circulation in the Equatorial Mesosphere in Win-312.

313. ter," November 1969.

Nordquist, Walter S., Jr. "Determination of the Temperature and Pressure of the 314. Lifting Condensation Level," November 1969.

Beyers, N. J., and B. T. Miers, "Measurements from a Zero-Pressure Balloon in the 315. Stratopause (48 km)." December 1969.

316.

Ballard, H. N., N. J. Beyers, and M. Izquierdo, "A Constant-Altitude Experiment at 48 Kilometers," December 1969.

Dunaway, Gordon L., "A Wind-Weighting Technique to Predict Velocity Vector Azimuth Angles for Unguided Rockets," December 1969. 317.

Olsen, Robert O., "An Evaluation of Inflatable Falling Sphere Density Data," Dec-318. ember 1969.

Sharpe, J. M., Jr., "Nacreous Clouds at White Sands Missile Range," January 1970. 319.

Seagraves, M. A. B., and M. E. Hoidale, "Unguided Rockets: Fundamentals of Prelaunch Impact Prediction," January 1970. 320.

Beyers, N. J., and B. T. Miers, "Measurements from a Zero-Pressure Balloon in the Stratopause (48 km)," December 1969. 321.

Ballard, H. N., N. J. Beyers, and M. Izquierdo, "A Constant-Altitude Experiment at 48 Kilometers," December 1969. 322.

Seagraves, M. A. B., "Theoretical Performance Characteristics and Wind Effects for 323. the Aerobee 170," February 1970.

Sharpe, J. M., Jr., "Nacreous Clouds at White Sands Missile Range." January 1970.

Seagraves, M. A. B., and M. E. Hoidal: "Unguided Rockets: Fundamentals of Prelaunch Impact Prediction," January 1970.

Seagraves, M. A. B., "Theoretical Performance Characteristics and Wind Effects for

324. 325.

326. the Aerobee 170," February 1970. 327.

Webb, W. L., "Atmospheric Neutral-Electrical Interactions," March 1970. White, K. O., E. H. Holt, and R. F. Woodcock, "The Erbium Doped Glass Laser -328. Performance and Atmospheric Propagation Characteristics," March 1970

Randhawa, J. S., "A Balloon Measurement of Ozone Near Sunrise," April 1970. 329.

Kays, Marvin, and E. P. Avara, "Errors Associated with Meteorological Data above 330. 30 km," April 1970.

Eddy, Amos, E. P. Avara, Marvin Kays, and Marty Yerg, "A Technique to Identify Certain Relative Errors in Radar X-Y Plots," May 1970. 331. Certain Relative Errors in Radar X-Y Plots," May 1970.
Rinehart, Gayle S., "A New Method for Detecting Micron-Sized Sulfate and Water-

332. Soluble Particles and Its Usage," May 1970.

Miller, W. B., L. E. Traylor, and A. J. Blanco, "Some Statistical Aspects of Power 333. Law Profiles," May 1970.

Hansen, F. V., and J. Serna, "Numerical Interpretation of the Wind, Temperature

334. and Specific Humidity Profiles for the Surface Boundary Layer of the Atmosphere." June 1970.

Miers, B. T., and J. E. Morris, "Mesospheric Winds over Ascension Island in Janu-

335. ary," July 1970.

Pries, T. H., "Strong Surface Wind Gusts at Holloman AFB (March-May)," July

336. 1970.

Campbell, G. S., F. V. Hansen, and R. A. Dise, "Turbulence Data Derived from Meas-337. urements on the 32-Meter Tower Facility: White Sands Missile Range,

New Mexico," July 1970.

D'Arcy, E. M., and B. F. Engebos, "Wind Effects On Unguided Rockets Fired Near Maximum Range," July 1970. 338.

Monahan, H. H., and M. Armendariz, "Gust Factor Variations with Height and At-339. mospheric Stability," August 1970. Rider, L. J., and M. Armendariz, "Nocturnal Maximum Winds in the Planetary

340. Boundary Layer at WSMR," August 1970.

Hansen, F. V., "A Technique for Determining Vertical Gradients of Wind and Temp-341. erature in the Surface Boundary Layer," August 1970.

342.

Webb, W. L., "Electrical Structure of the D- and E-Region," July 1970. Hansen, F.V., "An Examination of the Exponential Power Law in the Surface Bound-343.

ary Layer," September 1970.

Duncan, L. D., and R. K. Walters, "Editing of Radiosonde Angular Data," Septem-344. ber 1970.

Duncan, L. D., and W. J. Vechione, "Vacuum-Tube Launchers and Boosters," Sep-345. tember 1970.

Rinehart, Gayle S., "Humidity Generating Apparatus and Microscope Chamber for 346.

Use with Flowing Gas Atmospheres," October 1970.

Lindberg, James D., "The UncertaintyPrinciple: A Limitation on Meteor Trail Radar Wind Measurements," October 1970. 347.

Randhawa, J. S., "Technical Data Package for Rocket-Borne Ozone-Temperature 348. Sensor," October 1970.

Miller, W. B., A. J. Blanco, and L. E. Traylor, "Impact Deflection Estimators from 349. Single Wind Measurements," September 1970.

Miers, B. T., R. O. Olsen, and E. P. Avara, "Short Time Period Atmospheric Density 350. Variations and A Determination of Density Errors from Selected Rocket-sonde Sensors," October 1970.

Rinehart, Gayle S., "Sulfates and Other Water Solubles Larger than 0.15 Radius in 351. a Continental Nonurban Atmosphere," October 1970.

Shinn, J. H., "An Introduction to the Hyperbolic Diffusion Equation," November 352.

Avara, E. P., and M. Kays, "Some Aspects of the Harmonic Analysis of Irregularly 353. Spaced Data," November 1970.

354. Randhawa, J. S., B. H. Williams, and M. D. Kays, "Meteorological Influence of a Solar Eclipse on the Stratosphere," December 1970.

DISTRIBUTION LIST

ID#/C	YS	213/1	Commander
	DEPARTMENT OF DEFENSE		U.S. Naval Weapons Laboratory ATTN: KXR Dahlgren, Virginia 22448
101/50	Defense Documentation Center ATTN: DDC-TCA Cameron Station (Bldg 5) Alexandria, Virginia 22314	214/1	Commander, Naval Air Systems Command Meteorological Division (AIR-540) Washington, D.C. 20360
102/1	Dir of Defense Research & Engineering ATTN: Technical Library RM 3E-1039, The Pentagon Washington, D.C. 20301	216/1	Commander Naval Weather Service Command Washington Navy Yard (Bldg 200) Washington, D.C. 20390
103/1	Joint Chiefs of Staff ATTN: Spec Asst Environmental Svcs Washington, D.C. 20301		DEPARTMENT OF THE AIR FORCE
106/1	Defense Intelligence Agency ATTN: DIAAP-10A2 Washington, D.C. 20301	302/1	Air Force Cambridge Rsch Labs ATTN: CREW L. G. Hanscom Field Bedford, Massachusetts 01730
108/1	Director, Defense Atomic Support Agency ATTN: Technical Library Washington, D.C. 20305	303/1	Air Force Cambridge Rsch Labs ATTN: CREW L. G. Hanscom Field Bedford, Massachusetts 01730
	DEPARTMENT OF THE NAVY	304/1	Air Force Cambridge Rsch Labs ATTN: CRH
201/1	Naval Ships Systems Command ATTN: CODE 20526 (Technical Lib) Main Navy Bldg, Rm 1528		L. G. Hanscom Field Bedford, Massachusetts 01730
	Washington, D.C. 20325	305/1	Air Force Cambridge Rsch Labs ATTN: CRER
205/2	Director U.S. Naval Research Laboratory ATTN: CODE 2027		L. G. Hanscom Field Bedford, Massachusetts 01730
206/1	Washington, D.C. 20390 Commanding Officer and Director	306/1	Electronic Systems Div (ESSIE) L. G. Hanscom Field Bedford, Massachusetts 01730
	U.S. Navy Électronics Laboratory ATTN: Library San Diego, California 92152	307/2	Electronic Systems Division (ESTI)
207/1	Commander		L. G. Hanscom Field Bedford, Massachusetts 01730
	U.S. Naval Ordnance Laboratory ATTN: Technical Library White Oak, Silver Spring, Maryland 20910	310/1	Recon Central AVRS AF Avionics Laboratory Wright-Patterson AFB, Ohio 45433
208/1	Officer in Charge Navy Weather Research Facility Bldg R-48. Naval Air Station Norfolk, Virginia 23511	311/1	HQ. Air Weather Service ATTN: AWVAS/TF (R.G. Stone) Scott Air Force Base, Illinois 62225
209/1	Commander Naval Electronic Systems Comd HQ	312.1	U.S. Air Force Security Service ATTN: TSG San Antonio, Texas 78241
	ATPN: CODE 05611 Washington, D.C. 20360	313/1	Armament Development & Test Center ATTN: ADBPS-12
210/1	Commandant, Marine Corps HQ. U.S. Marine Corps ATTN: CODE A04C	314/1	HQ. Air Force Systems Command
212/1	Washington, D.C. 20380 Marine Corps Development and		ATTN: SCTSE Andrews AFB, Maryland 20331
4.2/ I	Development Cen, ATTN: C-E Div Quantico, Virginia 22134	319/1	Air Force Weapons Laboratory ATTN: WLIL Kirtland AFB, New Mexico 87117

	DEPARTMENT OF THE ARMY	437/1	Commanding General U.S. Army Munitions Command
401 I	Ofc of Asst Ch of Staff For DS-SSS Department of the Army Rm 3C466, The Pentagon		ATTN: AMSMU-RE-R Dover, New Jersey 07801
	Washington, D.C. 20315	438 1	Commanding General U.S. Army Munitions Command
402/1	Asst Ch of Staff for Force Development CRR Nuclear On actions Di		Operations Research Group Edgewood Arsenal, Maryland 21010
	CBR Nuclear Operations Directorate Department of the Army Washington, D. C. 20310	439/1	Commanding General U.S. Army Munitions Command ATTN: AMSMU-RE-P
405 1	Ofc, Asst Sec of the Army (R&D) ATTN: Asst for Research	*****	Dover, New Jersey 07801
	Rm 3-E-373, The Pentagon Washington, D. C. 20310	442/1	Commanding Officer Harry Diamond Laboratories ATPN: Library Washington, D.C. 20438
406/2	Chief of Research and Development		washington, 15.C. 20408
.00 /	Department of the Army Washington, D.C. 20315	445,1	Commanding General U.S. Army Natick Laboratories ATTN: AMXRE-EG
409/1	Commanding General U.S. Army Materiel Command		Natick, Massachusetts 01760
	ATTN: AMCMA-EE Washington, D.C. 20315	448 1	Commanding Officer Picatinny Arsenal ATTN: SMUPA-TV1
414/1	Commanding General		Dover, New Jersey 07801
	U.S. Army Materiel Command ATTN: AMCRD-TV	449 2	Commanding Officer
416/1	Washington, D.C. 20315		Picatinny Arsenal ATTN: SMPUA-VA6, Bldg 59 Dover, New Jersey 07801
410-1	Commanding General U.S. Army Materiel Command	450:+	
	ATTN: AMCRD-TV Washington, D.C. 20315	453 T	Commanding Officer Fort Detrick ATTN: SMUFD-AS-S
418/T	Commanding General		Frederick, Maryland 21701
	U.S. Missile Command ATTN: AMSMI-RRA, Bldg 5429 Redstone Arsenal, Alabama 35809	454 / 1	Commanding Officer Fort Detrick ATTN: Tech Library SMUFD-AE-T Frederick, Maryland 21701
421/3	CG. U.S. Army Missile Command Redstone Scientific Info Center	450.4	•
	ATTN: Chief, Document Section Redstone Arsenal, Alabama 35809	459/1	Commanding Officer Edgewood Arsenal ATTN: SMUEA-TSTI-TL Edgewood Arsenal, Maryland 21010
427/2	Commanding General U.S. Army Combat Dev Cmd	460/2	Commanding Officer
	Combat Support Group	100 2	 U.S. Army Nuclear Defense Laboratory
	Fort Belvoir, Virginia 22060		ATTN: Library Edgewood Arsenal, Maryland 21010
428/1	Commanding General U.S. Army Combat Dev Command ATTN: CDCMR-E	463/1	President U.S. Army Artillery Board
	Fort Belvoir, Virginia 22060		Fort Sill, Oklahoma 73503
430/1	Commanding Officer USACDC CBR Agency ATTN: Mr. N. W. Bush	464/2	Commanding Officer Aberdeen Proving Ground ATTN: Technical Library, Bldg 313
	Fort McClellan, Alabama 36201		Aberdeen Proving Ground MD 21005
432/1	Commanding Officer	469 1	Commanding Officer U.S. Army Ballistics Rsch Labs
404/ 1	USACDC Artillery Agency Fort Sill, Oklahoma 73503		ATTN: Tech Info Div Aberdeen Proving Ground, MD 21005
436/1	Commanding General	472 (1	Commanding Officer
	U.S. Army Test & Evaluation Cmd		U.S. Army Limited Warfare Lab ATTN: CRDLWL-7C
	Aberdeen Proving Ground, MD 21005		Aberdeen Proving Ground, MD 21005

475 /1	Commanding Officer USA Garrison ATTN: Technical Reference Div Fort Huachuca, Arizona 85613		
479	Chief, A.M. & EW Division ATTN, USAEPG-STEEP-TD Fort Huachuca, Arizona 85613	605 1	U.S. Army Liaison Office Milt-Lincoln Laboratory, Rm A-210 P. O. Box 73 Lexington, Mass. 02173
483 1	Commander U.S. Army Research Office (DURHAM) Box CM-DUKE Station Durham, North Carolina 27706	606 (1	Headquarters U.S. Army Combat Developments Command ATTN: CDCLN-EL
488. 2	USA Security Agry Combat Dev Actv ATTN:IACDA-P(T) & IACDA-P (L) Arlington Hall Station, Bldg 420 Arlington, Virginia 22212	607/1	Fort Belvoir, Virginia 22060 Commanding General U.S. Army Tank-Automotive Cmd
489 1	U.S. Army Security Agey Processing Ctr ATTN: IAVAPC-R&D Warrenton, Virginia 22186	608/1	ATTN: AMSTA-Z, Mr. R. McGrego Warren, Michigan 48090 USAECOM Liaison Ofc, Stanford
4 9 0/1	Technical Support Directorate ATTN: Technical Library Bldg 3330	000/1	University Solid State Electronics Lab McCullough Bldg Stanford, California 94305
491-1	Edgewood Arsenal, Maryland 26010 Commandant U.S. Army Chemical Center & School Micrometeorological Section	612/1	Commanding Officer USAECOM MET Support Activity ATTN: SELHU-C Fort Huachuca, Arizona 85613
492 1	(Chem. Br.) Fort McClellan, Alabama 36201 Commandant	613/1	Chief, Atmos Sciences Res Div ASL, USAECOM, ATTN: AMSEL-BL-RD
402 1	U.S. Army Air Defense School ATTN: C&S Dept, MSL SCI DIV Fort Bliss, Texas 79916	679/1	For Huachuca, Arizona 85613 Commanding Officer U.S. Army Electronics Command
493/2	Director USA Engr Waterways Exper Station ATTN: Research Center Library	679 ⁻ 1	ATTN: AMSEL-GG-DD Fort Monmouth, New Jersey 07703 Commanding Officer
49 5/1	Vicksburg, Mississippi 39180 CG. Deserct Test Center ATTN: STEPD-TT-ME(S) MET DIV Bldg 103, Soldiers Circle	079 1	U. S. Army Electronics Command ATTN: AMSELEW Fort Monmouth, New Jersey 07703
496 T	Fort Douglas, Utah 84113 Commanding General USA CDC Combat Arms Group Ft. Leavenworth, Kansas 66027	679×1	Commanding Officer U.S. Army Electronics Command ATTN: AMSEL-ME-NMP-PS Fort Moumouth, New Jersey 07703
497/1	Commanding Officer USA Aviation Materiel Labs ATTN: Technical Director Fort Eustis, Virginia 23604	679 1	Commanding Officer U.S. Army Electronics Command ATTN: AMSEL-TD-TI Fort Monicouth, New Jersey 07703
503/1	Director U.S. Army Advanced Matl Concepts Agcy ATTN: AMXAM Washington, D.C. 20315	679 1	Commanding Officer U.S. Army Electronics Command ATTN: AMSEL-RD-MT Fort Monmouth, New Jersey 07703
504 / 1	Commanding General U.S. Army Materiel Command ATTN: AMCRD-R (H. COHEN) Washington, D.C. 20315	67971	Commanding Officer U. S. Army Electronics Command ATTN: AMSELXL-D Fort Monmouth, New Jersey 07703
5 9 6/1	Commanding Officer U.S. Army Combat Developments Cmd Communications-Electronics Agency Fort Monmouth, New Jersey 07703	679 1	Commanding Officer U.S. Army Electronics Command ATTN: AMSEL-WL-D Fort Monmouth, New Jersey 07703

• 7

679 1	Commanding Officer U. S. Army Electronics Command ATTN: AMSEL-NL-D Fort Monmouth, New Jersey 07703	902/1	Federal Aviation Administration 800 Independence Ave, S.W. Washington, D.C. 20590
679 1	Commanding Officer U. S. Army Electronics Command ATTN: AMSEL-KL-D Fort Monmouth, New Jersey 07703	903/1	Atmospheric Sciences Library Environmental Science Svcs Admin Silver Springs, Maryland 20910
679 1	Commanding Officer U. S. Army Electronics Command ATTN: AMSEL-VL-D Fort Monmouth, New Jersey 07703	904/1	Air Resources Cincinnati Laboratory C/O National Air Pollution Cont Admin. 5710 Wooster Pike Cincinnati, Ohio 45227
679/3	Commanding General U. S. Army Electronics Command ATTN: AMSEL-CT-D Fort Monmouth, New Jersey 07703	905/1	U.S. Department of Agriculture ATTN: William A. Main University of Minnesota St. Paul, Minnesota 55101
679/1	Commanding Officer U.S. Army Electronics Command ATTN: AMSEL-SC	907/1	Chief, Fallout Studies Branch Division of Biology & Medicine Atomic Energy Commission Washington, D.C. 20545
679.1	Fort Monmouth. New Jersey 07703 Commanding Officer U. S. Army Electronics Command ATTN: AMSEL-RD-D Fort Monmouth. New Jersey 07703	908/1	NASA Headquarters Meteorology & Sounding Br. (Code SAM) Space Applications Programs Washington, D.C. 20546
679/1	Commanding Officer U. S. Army Electronics Command ATTN: AMSEL-RD-LNF Fort Monmouth, New Jersey 07703	910/1	Director Atmospheric Physics & Chem Lab Room 31 ESSA-Department of Commerce Boulder, Colorado 80302
702 /1	Institute of Science & Technology The University of Michigan P. O. Box 618. (IRIA) Library Ann Arbor, Michigan 84107	911/1	Natl Center for Atmospheric Research NCAR Library, Acquisitions-Report Boulder, Colorado 80302
703/2	NASA Scientific & Tecn Info Facility ATTN: Acquisitions Branch (S-AK/DL) College Fark, Maryland 20740	912/1	OCE, Bureau of Reclamation ATTN: D755, Bldg 67 Denver, Colorado 80225
707/1	Target Signature Analysis Cen Willow Run Labs-Inst of Sci & Tech University of Michigan, P.O. Box 618 Ann Arbor, Michigan 48107	913/1	National Oceanographic Data Cen Code 2220 Bldg 160, WNY Washington, D.C. 20390
709 /1	Battelle-Defender Info Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	UNCL RIBU	OWING ADDRESSEES TO RECEIVE ASSIFIED REPORTS THAT USE DIST- TION STATEMENT NUMBER 1
714/1	Infrared Info & Analysis Cen University of Michigan Inst of Science & Technology P. O. Box 618.	604/1	U.S. Army Liaison Office MIT, Bldg 26, Rm 131 77 Massachusetts Ave. Cambridge, Mass. 02139
721/3	Ann Arbor, Michigan 48107 VELA Seismic Info Center University of Michigan	2	ATTN: Exchange & Gift Division Washington, D.C. 20540
	P. O. Box 618 Ann Arbor, Michigan 48107 LOWING ADDRESSEES TO RECEIVE CLASSIFIED REPORTS ONLY	810/1	Dir. of Meteorological Systems Office of Applications (FM) Natl Aero & Space Admin Washington, D.C. 20546
901/1	Head, Atmospheric Sciences Section National Science Foundation 1800 G Street, N. W. Washington, D.C. 20550	811/1	Director U. S. Weather Bureau ATTN: Librarian Washington, D.C. 20235

Dr. A. D. Belmont Research Division Control Data Corporation Minneapolis, Minnesota 55440

Dennis W. Camp R-Aero-YE Marshall Space Flight Center Huntsville, Alabama 35812

Commandant U.S. Army Artillery & Missile School ATTN: AKPSIAS-G-RA-RK Tunnery R&A Division, Rocket Branch Fort Sill, Oklahoma 73503

Technical Library WSMR, N. M. 88002

Commander
Air Force Cambridge Research Labs
ATTN: AFCRL-CRER (Mr. Leviton)
L. G. Hanscom Field
Bedford, Mass. 01730

George C. Marshall Space Flight Cen Aerospace Environment Division Aero-Astrodynamics Lab., NASA Huntsville, Alabama 35812

Office of Special Asst for Environmental Services Organization of the Chiefs of Staff ATTN: Lt. Col. Hampton Washington, D.C. 20301

Geophysics Office ATTN: CODE 3250 Pacific Missile Range Point Mugu, California 93041

UNCLASSIFIED Security Classification				
	CONTROL DATA - R	& D .		
(Security classification of title, body of ebatract and		entered when t		
ORIGINATING ACTIVITY (Corporate author)				
Atmospheric Sciences Laboratory White Sands Missile Range, New Mex	ico	26. GROUP		
milito ballas Missite Kange, New Mox			PAGES 72. NO. OF REFS 13 REPORT NUMBER(5) TNO(5) (Any other numbers that may be acalgued th, New Jersey Se on the earth's lower rida, where a solar eclipse des and eight Arcasondes esosphere at times prior to, o electrochemical ozone—lting temperature, wind and during the totality. An	
REPORT TITLE	***			
METEOROLOGICAL INFLUENCE OF A SOLA	R ECLIPSE ON THE	STRATOSPH	IERE	
DESCRIPTIVE NOTES (Type of report and inclusive dates)				
AUTHOR(S) (First name, middle initial, last name)				
J. S. Randhawa M. D. Kays				
B. H. Williams				
REPORT DATE				
December 1970	36	F PAGES	I	
CONTRACT OR GRANT NO.	Sa. ORIGINATOR	S REPORT N	JMBER(\$)	
	E0014 E745			
PROJECT NO.	ECOM-5345			
DA Tool, No. ITACLICODEZA LO		RT NO(S) (Am	y other numbers that may be assigned	
DA Task No. 1T061102B53A-18	this report)			
DISTRIBUTION STATEMENT				
This document has been approved for	r public release	and sale;	its distribution	
is unlimited.				
SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY AC	TIVITY	
	Fort Monm	outh, New	Jersey	
ABSTRACT				
An experiment to study the influence				
atmosphere was conducted at Eglin /				
occurred on 7 March 1970. Three to				
during, and after the total eclipse				
sondes were flown on balloons on 5				
ozone data are presented. No meas	urements were mad	e during	the totality. An	
increase in ozone was measured dur				
the middle stratosphere during the		wing tie	eld were observed in	
the middle stratosphere during the	partial compae.			
	•			
D Pon 1473 REPLACES DO FORM 1473. 1	JAN 64, WHICH IS		- 	
D POR 1473 REPLACES DO PORM 1473.	UN	CLASSIFIE		
		Secu	rity Classification	

UNCLASSIFIED

I. Solar Eclipse 2. Ozone Concentration 3. Rocket -borne Ozonesonde 4. Dobos Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA		Security Classification									
I. Solar Eclipse 2. Ozone Concentration 3. Rocket-borne Ozonesonde 4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA	14.	KEY WORDS									
2. Ozone Concentration 3. Rocket-borne Ozonesonde 4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA			ROLE	WT	ROLE	WT	ROLE	WT			
2. Ozone Concentration 3. Rocket-borne Ozonesonde 4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA			{								
2. Ozone Concentration 3. Rocket-borne Ozonesonde 4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA	1.	Solar Eclipse	1			1	l				
3. Rocket-borne Ozonesonde 4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA	2	Ozone Concentration	1 1			l					
4. Dobson Spectrophotometer 5. STS-Ozonesonde 6. Arcas IA			1		i I	l		1			
5. STS-Ozonesonde 6. Arcas IA					[l	1				
6. Arcas IA		DODSON Spectrophotometer		ĺ	i	i					
						l					
	6.	Arcas IA	1			l	į į				
	į				!	ŀ					
						i					
					•	l	1				
			1								
					1	}					
]		ľ						
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ŀ		1	1	1			
					1						
			i '	1	1	1	1				
			1	I	l .	1	1				
			i	l	•	1	1				
			1	Ì		l					
			1	1	1]				
			i			ł]				
			1	ì	1			}			
			1	l			1				
)]	1	Ì]				
			1	l		ł					
			1	1	1]	ľ				
			l	l	[!					
			1	i	l	!	1				
]	l	į	į					
				Î	i ,	i	1				
						l À	! !				
							j .				
			Į		ļ	Į.					
			1		Ì	i					
							(·				
			1		ľ	ŀ					
					1	i					
			j i			l					
			1			l	}				
			į į			l	1				
			j i		}	ı	}				
	Ī		,			1	1	, ,			
	l		1 1		}	1					
					j	Ĭ	Į į				
	Ī		\		!	l	1				
	1			1		l					
			1			ì]				
	Ī					l					
	ŀ])	1]				
	ŀ					Ī	1				
	l]]				
	1					Ī	[
			}			l]				
] .								
			i]		f i				
			1				į i				
				Ì		l					
						L	<u></u>				

UNCLASSIFIED

Security Classification AFIC/HAFE Codes