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1.  Introduction

In the analysis of system relisbility, one is often concerned with
properties of a system life distribution which can be guaranteed from
properties of component life distributions without reference to detsils
of the system structure. We consider here some properties thet the life

distribution of every coherent system will inherit from component life

distributions. A class of survival functions (those which possess a given

property) is seid to be closed under the formation of coherent systems if
the survival function of every coherent system is in the class whenever
the component survival functions are all in the cless. Birnbaum, Esary
and Marshell (1966) have shown that the class of survivel functions

with increasing hazerd rate average (IHRA) is closed under the formation
of coherent systems. Moreover, this is the smallest class of survival
functions which is closed both under formetion of coherent systems and
limits in distribution, and which conteins the exponentisl survival
functions. Following the methods of Birnbaum, Esery and Marshall (1966),
ve obtain here & number of other closed clssses, together with the
assoclated subclasses that play u generesting role like the exponential
class in the IHRA case.

Not all of the closed classes obtained have clear interpretations
in the context of relisbility theory, because some classes consist of
survival functions supported by the whole real line or even by the
negative axis.

In addition to these results, several methods are presented for

deriving closed classes from closed classes.
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2. Preliminaries

We present here some required definitions, notations and preliminary
remarks. Except for some minor extensions, these ideas are not new,
see, e.g., Birnbsum, Esary and Saunders (1961), Barlow end Proschan
(1965, p. 202), Birnbaum, Esary end Marshall (1966), Esary and Marshall
(1970), and Esary, Marshall end Proschen (1970).

A function ¢ on (x = (xl,"',xn) : x, =0 or 1l for nll i} which

i
takes the velues O or 1 is called a semi-coherent structure function

of order n if ¢ is non-decreasing in each of its arguments. If in
sddition, ¢(0, ***,0) = O and @(1,°**,1) = 1, then ¢ is said to be
coherent.

The reliability function h of a semi-coherent structure ¢ 1is
a function on (_g - (pl, "‘-'pn) :0<p <1 forall 1) vhich is
defined via independent Bernoulli random variables )(1 with expectations

EX, = pi) i= 1,2,ooo,n, by

i
h(pl,...,pn) - E¢(xl,...,xn) g

We refer to such a function as a coherent relisbility functionm if ¢ is

coherent.

A survival function # 1s & function such that # = 1 - F for some

right-continuous proper distribution function F. This terminology is

most appropriate when F(0) = O, but we wish not to imply such a restriction.

For any coherent reliability function h and survival functions

Pl,...,Fn, it is obvious that
(2.1) F(t) = h(il(t),...,!n(t)) , -®<t<g®

defines a survival function F. Por any family S of coherent reliability

functions and any family F of survivel functions, we denote by ?‘s
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the class of all survival functions F which have the form of (2.1) for

some h € S and some 17‘1, ...,f‘n € F. In particular, when S is the family

of all coherent reliability functions, we use the notation IFCS

of , and call ?CS the closure of ¥ under the formation of coherent

in place

systems,
L8

The formation of F is a bona fide closure operation in that,
(1) the closure of ¥ contains F, (11) the closure of F contains
the closure of &/ whenever 7 conteins.4&, (iii) the closure is closed,
and (iv) the closure of the empty set is empty. See Birnbaum, Esary and

oS

Marshall (1966, p. 820). 1In generel, the formation of $° fails to be

a2 closure operation unless

h,hl,...,hn € S vhere h 1is of order n = ﬁ*e S, where
(2.2)
ﬁ'(g'(l):---:g(n)) = h(hlg (1))10--:hn(2(n)))’

and

(2.3) the reliability function h(p) = p of order 1 is in S.

Ir (2.2) end (2.3) hold, we csll S & closed family of reliability functions,
1]

and refer to 7° as the closure of # under the formation of S-systems.
The survivel function F of (2.1) can be interpreted physicelly as

representing the life distribution of & coherent system with structure

function ¢ , reliability function h, and mutually independent components

with life distributions ’1"“":1' To see this, let

xi(t) =1 fort <T,, and Xi(t) =0 fort>T,1x=12...,n,
(2.“)
X(t) =1for t<T, and X(t) =0 fort>T,

vhere T, has distribution ri end 1s the feilure time of the 1th component,
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i=1,2...yn, T has distribution F end is the system fgilure time. Then,

(2.5) X(t) = (X, (t), .00, X (t)),

E xi(t) - fi(t), i=12,...,n, and E X(t) = }(t) = n(il(t),...,i‘n(t)).
An interesting generalization is obtained when (2.1) is replaced by

(2.6) Ft) = ht(lt"l(t),...,f'n(t)) , =<t <,

In this case (2.5) is replaced by

(2.7) X(t) = (X (t),..05X (£)) .

vhere ht is the reliebility function of ¢t. We shall cell (‘1';, -ox t <o)

a time-degrading coherent structure if ét, -00< ¢ <o, are semi-coherent

structure functions of a common order, say n, satisfying

(2.8) 1‘!'(5) Z'Pt(f) for ell x amd s<t,
(2.9) for some s, fps(l,...,l) = 1, for some t, ¢t(o,...,o) = 0,
(2.10) ¢t(.’.‘) is right continuous in t.

Condition (2.8) guarantees that ¥ in (2.6) is decreasing, (2.9) guerantees

1im f(t) = 1, lim #t) = O) condition (2.10) guarantees that P is right
ty-w te0n

continuous, Closure of a class of survival functions under the formstion

of time degrading coherent systems is defined in the obvious way.
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3. Closure Under Coherent and Time-Degading Coherent Systems

The following proposition records the fact that closure under for-
mation of coherent systems is often equivalent to closure under formation
of time-degrading coherent systems.

3.1 Proposition. If F is a class of survival functions which is closed
under the formation of coherent systems, and if 7 contains the degenerate
survival functions, then F 1is closed under the formation of time-degrading
coherent systems.

Proof. We suppose that F(t) = ht(f'l(t),...,Fn(t)) vhere ¢, sstisfies
(2.8), (2.9), (2.10), end f‘l,..,f'n € F. We must show that F ¢ ¥F.

Becsuse there are only finitely meny coherent structures of order n,

there exist finitely many points -e= to < tl < wie € tm < tm+1 = o

such that hr(.B) = hs(g) for all p whenever tJ <r<sx< tJ+l for

some j. With an sbuse of notation, we write ho in plece of ht when
to<t<t, and h J=12.0.,)m,

in place of ht wvhen t, <t <t

1 J J J+l’

Consider now the structure function ¢*P of order m+n defined by
« m-l

'P(})!) = 1 - (l -¢m(5))n1-o (l - y1+1 ¢1(5)) ’

where 4)1 is the semi-coherent structure function corresponding to hi'

This structure function is diagramed in Fig. 3.1l.

) R
‘1(5 Yo
¢,.1(%) Yn
[ HEY)
Figure 3.1
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From (2.8), it follows that 4’0(5) 20026 (x) for all x. If

{Yi(t), <0< t <®) 1s the degenerate process

Yi(t)-l for t <t yi(t)-o for t >t IE -y T8

1’ 12

end if ;5(1-.) = (xl(t),...,xn(t)) is defined as in (2.4), then
”*
P (x(t), Y(¢)) =@, (x(t)) , ¢, St<t ., 1=01,.0.,ml,
Thus, in our original notation (with ¢ ¢ corresponding to ht) A
F(X(t), Y(e)) = #,(X(t) , -m<t <o,

This means that since i‘i(t) = E X, (t), F(t) = ht(f'l(t),...,f‘n(t))

has the representation
F(t) = BeX(t), X(£)) = B (F(t),..0,F (2), G(t),...,8(¢)),

vhere F,...,F €%, and 51

Since ¢* is coherent and since ¥ is closed under the formation of

(degenerate at t,) ef, 1 =1,2,...,m.

coherent systems, F € %. |l
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L, Operations Which Generate Closed Classes From Closed Classes

There are a number of operations which generate classes closed under
the formation of coherent systems from similarly closed classes. A few
such operations are listed in the following theorem:

4.1 Theorem. Let S be a clesed family of coherent reliability functionms.
If F 1is closed under the formation of S-systems, i.,e,, if ¥ =TG, then
the following classes are also closed in the same sense: l

(a) ?'LD = (F: F 1s the limit in distribution of some sequence of

survival functions in 7},

(b) #° = (F: FeF and F 38 absolutely continuous),

(c) ¥ = (1 for some G e¥F, F(t) = G(§(t)), -~< t <=), where § is
a right continuous non-decreasing function on (-= ®) such that
Um, , 5(t) 2 b, Un, __5(t) <a, and & <b satisty F(a) - F(b) = 1
for F ¢ ¥,

(d) #1 o (F: for some § €e¥, F(t) =1 for t<a, F(t) = G(t) for
a<t<d, F(t) =0 for t >bl,

(e) ’ch = (F: for some G €F, F(t) = G(t) for all t € A}, vhere AC R

(2) #56 _ (f: for some G ¢ F, F(t) >G6(t), -e<t <=},
75U o (B for some G ¥, F(t) < G(t), -%~< t <],

These examples can be easily obtained as applications of tiie following
propositions, In these propositions, S need not be closed, except where

noted,

L,2 Proposition ¥ LD, Sc ¥ LD

For S the family of all reliability functions, this result has been
given by Birnbaum, Esary and Marshall (1966). If S 1is closed, then
by putting ¥ S in place of F in this proposition, we obtain that

7 SHLD,S _g-5,1D
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4.3. Proposition F 3% 5c 3 SreC,
Proof. F e F2%'S implies Ft) = h(f‘l(t),...,f‘n(t)) where each

F-‘i e;_»-ac, heS. This means F e?s. Moreover F 18 absolutely con‘.inuous

ac
Sy ol

(see Esary and Marshall, 1970, Application 5.3), so that F e¥

It can be that ?.S,acc ?_ac,s’ is false. E.g., suppose that ¥ = (Fl,.“a)

where Fl is absolutely continuous end has suport [0,1], and F2 is

absolutely continuous except for a discontinuity at 2. Suppose that
S = {h}] consists of but one reliability function, h(pl,pa) = PPy

2 2].

Then F 9% . {f‘l 5 f‘lf‘al, Foes [i'l"l

b4 Proposition F5/5 .F 55,

Proof. If F ¢ F35, there exists a reliability function h e S (of

gome order, say n, and il”"’i‘n e FY such that F(t) = h(f‘l(t),...,f‘n(t)).

Since ﬁi e?’s, ?i(t) = 51(3(1'.)) for some (31 ¢F. Morever, F(t) = G(¥(t))

vwhere G(t) = h(al(t),...,én(t)), i.e., F eF I8, Conversely. if
F e}'s’k , there exists for some n a reliability function h € § of
order n and 51,...,('}n e?s such that F(t) = G(5(t)) = h((".l(!(t)),...,
('}n(S(t))) = h(i'l(t),...,Fn(t)), vhere fi ¢F5, Thus F eS8, |l

In a rather different form, and with S the class of all relisbility
functions, this proposition has been given by Esary and Marshall {1570,
Application 5.1).

We obtain from Proposition 4.4 the fcllowing corollary which has
an important application in § 5.
4.5 Corollary. If A% =7, then 4% 573, 1 450 7 then

/y'S,S,LD It ?3.

Proof. To obtein the first assertion, note from Proposition 4.4 that
ﬂf’s _/IS,S ; but ¥ 5,8 = ?5. The second assertion follows similarly,

but requires additonally the fact tmat 4% LD _ 4LD,¥ ||

e

o S A ks ol i i B b o S TR LN e s .

P
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b,6 Proposition ‘}‘I’S -?S’I 8

Proof. Tris follows directly from Proposition h.,b with ¥(x) » -m x < e,

5(x) = x, a <x<b, §(x) =co, xzb.l\

k.7 Proposition ¥ CA, S | ¥ 5,CA

Proof. If F ¢ MS

, then F(t) a h(ﬁl(t),...,i-'*n(t)) for some h ¢ S
and some F,...,F €7 Tnis implies that F(t) = (G (t),...,
En(t)) for some Gl,...,ﬁn ¢ ¥ , so that F eFICA | e proof of the
converse is similar, u

One can, with inclusion only, generalize Propositions 4.6 and 4.7
as follows: Let (F,4A) be the set of all survivel functions that
coincide on A with a member of ¥ , and that coincide off A with a

member of /Y,

4.8 Proposition (F,4;4)5 c(¥5,55;a).

The proof is similar to proofs previously given. If A = [a,b] and
the survival functions § have no mess outside A, then this result
follows from Proposition 4.C. If .4 consists of all survival proba-

bilities, this result follows from Proposition L.7.

4.9 Proposition ¢ SG, SC 758 g 558 ¢85S0

The proof is again similar to those meviously given,

e e e AT 0 TP U PP our YOV B PRI
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5 Some Classes Closed Under the Function of Coherent Systems

Probably the most important class of survival functions known to
be closed under the formaticn of coherent systems is the class of survi-
val functions with an increasing (i.e., non-decreasing)"hezerd rate
average”, If a distribution function F has a density f, then it has
& hazard rate r defined by r(t) = £(t)/F(t) for all t such that
F(t) > 0. The condition that F(O) = 1 and that the hazard rate average

t
t-l [ r(x)dx is increasing in t > 0 is equivalent to the condition that
0

(5.1) log F(at) < - alog #(t) whenever 0 <a<l ed t>0,

Whether or not F has a density, we ssy that F has an increasing
hazerd rate average if (5.1) is satisfied and we denote the class of
such functions by (IHRA). The exponential survival functions (i.e.,

those which for some ] >0 have the form el

for t >0) consti-
tute the subclass, denoted by {exp), for which equality holds in (5.1).

Birnbaum, Esary end Marshall (1966) show that

CS, LD LE

= (IHRA), end that (IHRA = {IHRA) .

{exp

Another class of survivel functions F which is closed under the
formation of coherent systems are those which satisfy F(t) > F(x+t)/F(x).
Because the right side of this inequality cen be interpreted as a condi-
tionsl survival probability given survival to time x, survival functions

which satisfy the inequelity are said to be new better than used, and

the class is denoted by (NBU}. The fact thet {NBU]CS = {NBU) is
proved by Esary, Marshall and Proschan (1970). No interesting proper
subclass ¥ of (NBU} 1is known which satisfies either 7 °° = (NBU)
or 7D . (NBU). We shall not further discuss the class (NBU} or

related classes which can be obtained from it using Theorem L.,l.




There are a number of other classes of survival functions which
ere easily shown to be closed under the formation of coherent systems.
For example, those survival functions which are absolutely continuous,
those which are discrete, those which are singular, and those which are
degenerate, each constitute a closed class.

Consider sgain the IHRA case, Let &(t) = ™", t >0, and let
§a=(F: 5" F(at) < a gL F(t) for a1l ae(0,1) and t>0),
A= (P 5-1 F(at) = a 5‘1 F(t) for-all ae(0,1] and t > o} .

Then ¥ = {IHRA} , &= {exp), and we know that 4C8, LD =F, FC5 .7
It is of interest to ask if other survival functions can play the role
of the exponential G(t) = e't, t >0, in this development.

To answer this question, we reca]i that Birnbaum, Esary and Marshell
(1966) obtain the exponential-IHRA result described above via an inequality
for reliability functions. Moreover, only a special case of their

LD _ (IHRA). In the

inequelity is utilized in proving that (exp]cs’
remainder of this paper, we show that other special cases of the inequality

also have potential for proving closure results,

The inequality of Birnbaum, Esary and Marshall (1966) is given in

the following lemma.

5.1 Lemma, Let h be a coherent reliability function of order n. If ¥

is &» function on [0,1] satisfying

rHy) + (1-r) ¥(x) + (y=x) ¥(r) >y (ry+(1l-r)x)
(5.2)
for all r,x and y such that 0<r<1l, 0<x<y<l1l,

and
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v(0) =¥(1) = 0,
then

n
(5.4) z l1"(1)1) on(p)/op; >¥n(p) .

The class of functions % which satisfy (5.2) and (5.3), and the
class which satisfies (5.4) are discussed in some detail in § 6. We
remark here that Vﬁﬁz) = -2 log z,’wé(z) = =(l-z)log(l-2) eand
yg(z) = 2(1-z), 0 <z <1 all satisfy (5.2) and (5.3). For the special
case Y =’¢3, (5.4) was obtained by Esary and Proschan (1962) for the
still more special case that V¥ ='¢3 and p; = ... = P, (5.4) was obtained
by Moore and Shannon (1956).

The case % -1pl vas used by Birnbaum, Esary and Marshall (1966). In
this case, Esary, Marshall and Proschan (1970) have shown that (5.l4) can

be rewritten in the form

7(ax) < a'q(i) 0<agl 0<x <=, {i=s1l,2,...,1,

vhere
=X =X

'7(}.) e 108 h(e 1,00.,3 ﬂ)

y Osx <w, 1-1,2,oco,n .

i

They found this form to be particularly convenient in proving that the
IHRA distributions are closed under the formation of coherent systems.

The function % is called the hazard transform of the coherent

system because it gives the system hazard function R in terms of com-

ponent hazard functions Riz
R(t) =% (Ry(t),...,R (¢))

(The hazard function of a distribution F is given by -log F(t), and

t
is the integral J r(x)dx of the more familiar hazard rate r).
o
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In the definition of the hazard transform, the exponential function
can be replaced by certain other survival functions G. Suppose that
G(0) = 0 and that G has a positive derivative g on (0,®), Then G
has an inverse G * on [0,1] which satisfies

GG l(p) = p vhenever 0<p<l, and § 2 G(x) = x vhenever 0 < x <%,

In this case, the G-hazard transform % of a semi-coherent structure

with reliability function h of order n is given by

2(x) = & n(8(x)),..0,8(x ), 0<x <m, 121,20,

i
5.2 Lemma, Let G be a distribution function such that G(0) = 0 end
suppose that G has a positive derivative g on (0,»)., If ¥, defined

by
(5.5) w(z) =G Yz)e § Hz), 0<z<1, and 4(0) =¢(1) =0,

satisfies (5.2) and if % is the G-hazard transform of a coherent structure

of order n, then

(5.6) #(ex) <am(x) , 0<a<l, 0<x, <®, i =1,2,...,n.,

i

We defer the proofs of these lemmas to § 6. However, we remark
that (5.6) can be reformulated as a monotonicity condition, and that (5.4)
is the corresponding condition that a derivative be non-negative,

Let G bve the class of all survival functions § for which
(1) 6(0) =0 and G has a positive derivative on (0O,m), and
(11) the G-hazard transform 1 of every coherent structure satisfies
(5.6), Lemma 5.2 provides a sufficient condition for G eQ.

Consider now the utility of (5.6) for obtaining closed classes.
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5.3 Theorem. If Ge@ and if

Fo=F:¢ "l F(at) < o "L F(t) for all ae[0,1] and all t >0),

HAy=F: G "l F(at) = a6 ! F(t) for all ae[0,1] and all t > 0J,

then

cs Cs,LD
¥ =%5» emd =%
Proof. Let F be the survival function of a coherent gystem with reliability
function h, G-hazard transform % , and component survival functions

FloeeesF €Fe If0<a<l and t 20, then
6 7t Hat) = & 7 n(F (at),...,F (at) =n(E L F (at),...,6 7 F (ar))
< (a8 L F(t),0n0,08 LE(4) con(E TTF(0),000,& THF (1)) = aF(t)

The first inequality follows from the fact that 7 1is increasing and each
i:l. € ¢'G. The second inequality follows because G € & so that (5.6) holds.
This means that ?GCSC ¥, and hence ?GCS =F.

Clearly /4 .°
same ¢3 the proof given by Birnbaum, Esary and Marshall (1966) for the case

LD

ID ~ . fThe proof that ¥.c¥ S 5 yireually the
CJg G G

that &(t) = e %, ¢ >o0.

Note that if P e/yc, then for some ¢ > 0,

F(t) = G(ct).
5.4 Corollary. If G e and if § 4is an increasing function satisfying

ln  $(t) <0, lim §(t) =w,
treve te

and if
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?: - (F: 371 P(t)/$(t) 1s non-decreasing in t for which §(t) > 0)

.s - -
AG a(P:52 F(t)/5(t) 1s constant in t for which % (t) > 0],
then

5,CS ¥ %,CS,LD s
o -%,uﬂ%” =F .

Proof. This result follovs from Theorem 5.3 and Corollary 4.5.i
Here it is trivial that /ffas is the set of all survival functions
which, for some c > 0, have the form F(t) = G(c¥§(t)), t such that 5(t) >O0.
Observe that if El and §2 satisfy the condtions of Corollary 5.4, if
§2(t) > 0 implies 'gl(t) >0 and if }l(t)/Ee(t) 16 increasing in t for

which ga(t) >0, then

5
(5.7) %3%702-

5.5 Corollary. Let ‘Y be a function satisfying (5.4) for all coherent
veliability functions h, and let ©(t) >0 for all t. Then

Fa=(F: 7 has adensity £ and f£(t)/¥f(t) >o(t) for all t)

is closed under the formation of coherent systems.

A proof of Corollary 5.5 can be given by utilizing (5.4) and slightly
modifying the proof of Theorem 4.1, Birnbaum, Esary and Marshall (1966).
The corollary can also be obtained from Theorem 4.1(b) and Corollary S.u
with §(t) >0 and &(t) = ¥'(t)/5(¢).
Remark. We have ussumed thet if G ¢ @, then G(0) = O and G has s positive
derivative on (0,»). Most of the above development can be modified to
eliminate these conditions, although one must still be able to define 6 '1.
We have avoided the extra complexities this entails, because the only known
G for vhich (5.6) holds do in fact satisfy our assumed conditions.
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Although the class (@ and corresponding functions Y defined by

(5.5) are discussed in § 6, we consider some important examples here.

5.6 Example. From the viewpoint of reliability theory, the most important

results are obtained with
(5.8) G&(t) = e't, t>0, i.e., p(z)=-210gz, 0<z<1.

Here,

?.GS = (F: [-log #(t)]/5(t) 1s increasing in t for which §(t)> 0],

,/%3- (F: #t) = e-cS(t), c>0, t such that 5(t) >0) .

with ¥(t) = t, ?’GE = (IHRA} and /%S- (exp). With quite general
S, the class TGS vas introduced by Saunders (1968).

With §(t) = ta, a>0, t >0, A/GS consists of the Weibull distributions
with shape parameter Qa, Use of this fact has been made by Barlow and Gupta

(1969). From (5.7) or directly, we see that the closed classes

?af = (F: [~ log f(t)]/ta is increasing in t > 0)
x (]
are nested: ‘Tct C?'Gt vhen a>p8 .
Of course, Weidbull distributions are extreme value distributions for
minimums. Other extreme value distributions arise in our context in a simi-

at

lar fashion, If §(t) =e , @a>0, =<t <™, then F e/{,’G"' has the form

i‘(t) = exp[-cem'] y =<t <™, ¢ >0,
-Q P
and 1f %(t) = (=t)™, t <0, a>0, then F e/JG has the form

F(t) = expl-c(t)¥), t<o, ¢>o0.
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Another interesting case 1s 5(t) = & . 1, a>0, t >0, Here

F e,/‘li}g has the form of a Gompertz distribution
= at

More generally, if 5(t) = - log fi(t) = Rﬂ(t) is the hazard function of

the survival function H, then it is easily checked that
A3 (F i Ke) = (A(6)]° for all t, some c >0

5.7 Example, Let
(5.9) 8(t) =1 - e'l/t, t>0, i.e.,, ¥(2) = - (l-z) log(l-z)
Closed classes obtained here have the form

‘r": = (F: - ¥(t) log P(t) 1s decreasing in t for which $5(t) > 0)
and the corresponding generating class is

/fég- (F : P(t) = exp[-b/E(t)]), b >0, t for vhich %(t) > 0).

Here, there are choices for § such that /./’Gy consists of extreme value

distributions for maximums:
(1) If $(t) = ()% a>0, t>0, then
A5« (F: P(t) = expl-(-t)%, t <0, b>ol.
(11) Ir 5(t) = e, -m< t <m, then

A5 e (B 1 P(t) = expl-be™], -w<t <, b> o),




-18 -

(111) 1 s(t) =t% a>0, t>0, then
/‘JGS. (F : F(t) = exp[-bt™®), t >0, b>0J.
With S(t) = -1/1og H(t),

/.fcs= (F: F(t) = [H(t)]® for all t, some b > O).

5.8 Example. Let
(5.10) G(t) = 1/(1+4t), t >0, i.e., ¥(z) = z(1-z).
Here, closed classes ?G% have the form
(Fng (F: P(t)/F(t)5(t) 1s increasing in t such that %(t) > 0],
and the corresponding generating class is
/,/G‘;, (F: F(t) = 1/(1+e(t)], c >o0l,

An interesting special case is S(t) = et, -»< t <%, 1in which case
/JGS is a family of logistic distributions. If %(t) = ta, then F 1:1/«'(;g
is of the form F(t) = 1/[1+cta]; this is the survival function of a ratio
of two variables which have Weibull distributions, each with shape parameter
Q.
It 4s not difficult to verify that the closed class ?G% with
s

¢(x) = x(l-x) contains both TG vith (x) = = x log x and ?‘GE

wvith %(x) = -(1-x) log(1l-x).
Early in this section, we asked what survival functions G can

bt >0 in the result (exp)®S D . (1HRA).

replace the exponential e~
We have given a sufficient condition (5 € ) and some examples; it may

also be vorth showing by example that some conditions are indeed necessary.

T e T
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, G(t) = exp[-2 log 2 t],

[y 1 o

5.9 Example. Let &(t) = V1%, 0<t<

tzé. Then & “H(u) = 1-v®, 1/ VZ<u<1, & Hu) = - log u/2 log V7,
0<u<l/ V2 . Let
/fG={17‘:5'1i‘(at)=a6'lﬁ(t),05a51 and t >0},
?G=(f':6'1F(at)§ac';'lf(t),05a51 and t > 0J.

Then, with the reliability function h(pl, p2) = p Dy Ve see that

F(t) = G 2(1‘.) e./qccs. But for t < %, t1g 1§ 2(1'.) o2 =t° 1s decreasing
=2 ; CS,LD _
in t, 8o that G ° ¢ Ty end thus /fG ¢ 7y
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6. PFurther Details
In §5, wve introduced the class ( of survival functions G for

which the G -hazard transform f! of all coherent systems satisfies

7(ax) < an(x) .

In this section, we investigate some properties of the class £ of functions ¥
which satisfy the basic inequality (5.4) for all reliebility functions h.

An implicetion of Lemma 5.2 is that G €& 1f ¥(z) = & ~(z) &b ROKTE
Proof of Lemms 5.1

We prove (5.4) for all semi-coherent reliability functions h of order
n by induction on n. If n=l, then h(p) =0, h(p) =1 or h(p) =p;
in each case, (5.4) is trivial in view of (5.3). Suppose then that (5.k)

holds for n = m-1 and that h 1is a reliability function of order m.
If h('g'om) - h(pll""pm_l)o) and h(g’lm) = h(pl’...’pm'l,l) then

h(p) = gy (R, 1) + (1-p;) h(p,0y). Thus
o n-l
Z; 1"?“’1‘) »h(p)/ap 'Zi' L ¥(p,) 30(p)/dp, +¥(m,) ¥ n(p)/3p,

m-1l m-1
. mei_l %(p,)30(p,2 )op, + (1-1’111)2'1-l w(p,) on(5,0,)/op, + A Jan(p) "9,

> pn(p, 1) + (2-p) ¥h(p,0.) +7%(p,) [n(p,1 ) - h(p,0,)]
>Y(pp(p,2) + (1 - p)) h(p,0,)) =¥n(p) .

The first inequslity is from the induction hypothesis; the second follows

from (5.2). [




Proof of Lemma 5.2

Observe first that (5.6) is equivalent to % (ax)/a increasing in

a €(0,1] whenever each x;, 2 0. Thus,
) - anz)
(6.1) 2% 5T, >7%(z), 1f each z, >0 .
We compute
37(2) - =]' - 3 ah(g)
T 00 Rl e Bz )R Jun @z, ), e, Bz ) %)

Since =G -l'kp) - /(a6 “Y(p)) > 0, (6.1) is equivalent to
- 3h(g) S &) - =1
22480%1) T un(@2))y00sB(z)) 28 MW 60 TR n iz, 0B ))

with 5(21) =p, end ¥(p) = ¢ 'l(p) . g 'l(p), this inequality becomes

‘s5,4), I

6.1 Proposition. If “/ is continuous, then equality holds in (5.4)
identically in P if and only if one of the following conditions holds:

(1) y(u) = - culogu for some c >0 and

h(g) = n—ieEpi b

(11) %(u) = - c(l-u)log(l-u) for some ¢ >0 and
h(p) = 1 -T, (1-p,);
(111) ¥(u) =0, 0<u<1
(iv) h(g) =1 for all p, or h(p) = 0 for all b
(v) n=1,.

The set E 1indexes the essential components of the structure, i.e.,
the components upon which $(x) and h(g) truly depend. From a practical

viewpoint there is no loss in assuming that all components are essential,

and with this sssumption, the statement of Proposition 6.1 is somewhat simplified.




-22 -

A result related to Proposition 6.1 has been given by Essry, Marshall
and Proschan (1970, Theorem 4,1). There, it is assumed that ¥(p) = - plogp,

and thet equality holds in (5.6) for some triplet a,,a, and a, + 8,

1’72 1
the conclusion is that h hes the form (i) of Proposition 6.1.

Proof of Proposition 6.,1. It is easily checked that (5.4) becomes an

equality whenever one of these conditions is satisfied (case (iv) requires the

result ¥ € L implies w(0) =w(l) = O that we prove below in Proposition 6.6).
Suppose thet equality holds in (5.4) for all Py and that none of the

conditions (iii), (iv) or (v) hold. In order to prove that this implies

(1) or (ii), we suppose in eddition that h is the reliability function

of a coherent system with a minimal path set P &and a minimsel cut set K

both of size at least 2, and show that this leads to a contradiction. (Minimel

path and cut sets are discussed by Birnbaum, Esary and Seunders (1S6l), and

by Esery and Proschan (1963)).

If P is a minimel path set,

hip) = T whenever p, = 0, i £ P

ieP pi

Equality in (5.4) then ylelds

zm,w(pi)TrJer,J,4jL Py =¥(M, pPy) if p, =0, 1 £P.

If P contains st least two elements, the transformation ©(u) =-.\y(eu)/eu

converts this functional equation to Cauchy's eguation

2 e(u,) = 8=

1) .

{ S0, ieP.

1¢P tep %)
Since we have assumed that 1 is continuous, it follows that © is continu-
ous so that © (u) = su, i.e., Y (u) = - culogu. Since we have assumed (iii)
does not hold, and since -culo:u fails to satisfy (5.3) unless c >0,
we conclude that ¢ -~ O.

If K is a minimal cut set,

h(p) = 1 -7y k(1-p;) vhenever p, =1, 14K,
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and equality in (5.4) yields
Ziel(yb(pi)ﬂelsj;‘i(l.pj)' (l-witl((l-pi)) ir pi =1, ifK.

This functional equation can also be transformed to Cauchy's equation and
ve can conclude that % (u) = - c(l-u)log(l-u), ¢ > 0.

These two definitions of ¢/ cannot be reconciled, and ve conclude
that either all minimal path sets are of size 1 (' fg) =1 -TTieE(l-pi)),
or all minimel cut sets are of size 1 (n(p) =T, _.p,). ||

There are several interesting properties of the class /; of functions

} satisfying (5.4), which we enumerate in the following propositions.

6.2 Proposition. If ¥ €, thenP(0) = (1) = 0.

Proof. From (5.4) with h(p) = p,p, and h(p) = 1 - (1-p )(1-p,) we have
Pyo,) + ByHP) 29 (ppy) and (1-py) ¥(p)) + (1-p)) ¥(py) 24(P, + B, - P D),
With Py = P, = 0, it follows that 0 >3(0) and 2¢0) > 0. Thus §(0) = O,

and ¥2(0) =y (1) = 0. |

6.3 Proposition. (; is a pointed (proper) convex cone.
Proof, It is easily seen that [ is a convex cone, i.e., ¥, and yz €l

implies c. ¥, + c,¥, € whenever ¢, >0, ¢, > 0. That {, 1is pointed

1h
(i.e., v€¢C, Y€ implies ¥ = O) follovs from Proposition 6.1, siice ¥erl
and -Ye(, implies that equality holds in (5.4) for all reliability finctions

h, and this implies ¥ (u) = O. i

6.4 Proposition. (, 1s closed under the formation o“ maximums,

Proof. If ‘+aeC, aeA, then since 3h(g)/)pi >0,
n n
21-1 max__, ¥,(p) Y 0(p)/opy 2 Z Yo(Py) I0(p)/2p; >,h(p)
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for all acA. Hence

n .
Z'i_l max, ., Yo (P ) 20(p)/op > max, , #,h(p). |

6.5 Proposition. If ¥ ef , then Z/De[, vhere z}‘D(u) =% (1-u).

Proof. If h is the reliability function of a coherent structure ¢

D

and hD(g) =1 - h(l-,pl,...,l-pn), then h~ 1is the reliability function

of the coherent structure ¢D defined by ¢D(x) =1-601 - xl,...,l-x ).
n

Since h (p)/al;,:l = ,h(l-pl,...,l -p )/opi, ve have /1 Y (p )>h (Il')/.)pi
n
= }:; lv(l-pi))h(l.pl,.'.,l-p )/opi >Ph(l-p1’ono)l p ) = ¢ (B)' ”

It 1s easily seen that Propositions 6.3, 6.4 and 6.5 remain true if
> 1s replaced by the class of continuous functions satisfying (5.4), for
all reliability functions h. Also, these propositions are true if [ is
replaced by the class of functions satisfying (5.2), or (5.2) and (5.3).
The question of whether there exist discontinuous functions in (’ hes not

been resolved.

6.6 Proposition. If ¥eL is continuous on (0,1), then ¥ (u) >0, 0<u<l.
Proof. A sequence of "k out of n" systems (Ok n(x) =1 1if sn(x) =
——— 0l A RS

n
,"ji 1 x 2k ¢k,n(’~‘-) =0 1if Sn(f) < k) chosen 80 that n oo while
k/n>0, 0 <@ <1 has the property that

hk’n(p,...,p) = PS5 (Xy500sX )/n > k/n} > 1 1f p> 6

vhere X, ere independent random varisbles such that Plx, =1} = p,

b
P(xi = 0) = 1 - p. Thus, the set of points @e(0,1) such that

b n(O,o--,O) = @ for some k,n
H
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is dense in [0,1]. Moreover for such a point #,

n

/g=l ahk’n(pl’...’pn)/apJ|Pl=u.=pn=0 = dhk,n(o,ooo,O)/do > l >

80 that (@) <O means

n 2 h(p)
Z- Zf(o)b P = <.‘7‘(°) ..?h(o’ooo,e) .
‘j=1 J pl=uo'pn’°

This contradicts (5.4). Consequently the set of points @ such that

%(0) >0 is dense in [0,1], so0 the proof is complete by continuity of ¥ Al

We wish to correct an error in ean earlier paper (Birnbaum, Esary and

Marshall (1966)). There, the statement is made (p. 820) that Fe ¢

implies ¥ 1is concave. That this is false can be seen by taking ¥ = max

(fll,‘lfe). where ’S‘l(u) = - ulogu and ¥,(u) = zr"lD(u); Y €¢/; by Proposition
6.3, but ¥ is not concave, It is true, however, that ¥ e/ implies
“%(Pl) -Zf(Plpa) zlf(pl-fpa-plpe) -V(pa). This is a concavity-like property,

sirce p, <P +P,-PyF, and P, PP, = (Py+Py-P;P,) = Py
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