




1,      Introduction 

In the analysis of system reliability, one is often concerned with 

properties of a system life distribution which can be guaranteed from 

properties of component life distributions without reference to details 

of the system structure.    We consider here some properties that the life 

distribution of every coherent system will inherit from component life 

distributions.    A class of survival functions (those which possess a given 

property) Is said to be closed under the formation of coherent systems if 

the survival function of every coherent system is in the class whenever 

the component survival functions are all in the class.    Birnbaum, Esary 

and Marshall (1966) have shown that the class of survival functions 

with increasing hazard rate average (IHRA) is closed under the formation 

of coherent systems.    Moreover, this is the smallest class of survival 

functions which is closed both under formation of coherent systems end 

limits in distribution,  and which contains the exponential survival 

functions.   Following the methods of Birnbaum, Esary and Marshall (1966), 

we obtain here a number of other closed classes,  together with the 

associated subclasses that play fa generating role like the exponential 

class in the IHRA case. 

Not all of the closed classes obtained have clear interpretations 

in the context of reliability theory, because some classes consist of 

survival functions supported by the whole real line or even by the 

negative axis. 

In addition to these results, several methods are presented for 

deriving closed classes from closed classes. 

i 
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2,      Preliminaries 

We present here some required definitions, notations and preliminary 

remarks.    Except for some minor extensions, these ideas are not newj 

see, e.g., Birnbaum, Esary and Saunders (1961), Barlow and Proschan 

(1965»  p.  202), Birnbaum, Esary and Marshall (1966), Esary and Marshall 

(1970),  and Esary, Marshall and Proschan (1970). 

A function 4» on (x « (x.,"^x ) :  x.  = 0   or 1 for all i) which 

takes the values 0 or 1 is called a semi-coherent structure function 

of order n if 9 is non-decreasing in each of its arguments.    If in 

addition,   ^(0,   ••',0) «0 and ^(1,•••,!) - 1, then 4> is said to be 

coherent. 

The reliability function   h   of a semi-coherent structure   ^   is 

a function on    (p ■ (p.,  .... pj : 0 < p. < 1   for all l) which is 
tv X B -      1   - 

defined via Independent Bernoulli random variables X. with expectations 

^1' h' * ■ 1»2''"»n* by 

h(p^»».»»Pn) ■ E^(X^, ...,Xn) . 

We refer to such a function as a coherent reliability function if  ^ is 

coherent. 

A survival function f is a function such that f ■ 1 - F   for some 

right-continuous proper distribution function F.    This terminology is 

most appropriate when F(0) ■ 0, but we wish not to imply such a restriction. 

For any coherent reliability function    h   and survival functions 

f.,...,f ,    it is obvious that 

(2.1) F(t) - h(f1(t),...,fn(t))    ,    -»< t < « 

defines a survival function f.    For any family S of coherent reliability 

functions and any family y of survival functions, we denote by y 
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the class of all survival functions P which have the form of (2.1) for 

some h c S and some F.,...,? eT .    In particular, when S is the family 

CS 
of all coherent reliability functions, we use the notation y  in place 

of y3,  and call T      the closure of Jp" under the formation of coherent 

systems. 

The formation of r       is a bona fide closure operation in that, 

(i) the closure of   7"   contains JF,  (11) the closure of   T   contains 

the closure ot y&   whenever   'r   contains^,   (Hi) the closure is closed, 

and (iv) the closure of the empty set  Is empty.     See Birnbaum,  Esary and 

Marshall (1966,  p. 820).    In general, the formation of 'i     fails to be 

a closure operation unless 

(2.2) 

h,h,,...,h e S where h is of order n >^ h e S, where J 1  ' n ' 

h*^^,...,?^^ - Mh^ (1)),...,hn(p
(n))), 

and 

(2.3)     the reliability function h(p) - p of order 1 is in S. 

If (2.2) and (2.3) hold, we call S a closed family of reliability functions, 

and refer to r as the closure of > under the formation of S-systema. 

The survival function P of (2.1) can be interpreted physically as 

representing the life distribution of a coherent system with structure 

function ^ , reliability function h, and mutually Independent components 

with life distribution« P.,...,P . To see this, let 

X (t) ■ 1 for t < Tj^, and X^t) ■ 0 for t > T^ 1 ■ 1,2, ...,n, 

(2.U) 

X(t) ■ 1 for t < T,  and X(t) ■ 0 for t > T, 

where T. has distribution P. and is the failure time of the 1  component. 

t 
** 
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i a 1,2,...,11,    T has distribution F and is the system  failure  time.     Then, 

(2.5) X(t) -^(XjU),...^)), 

E X^t) - ^(t), i - l,2,...,n,    and    E X(t) - f(t) » htf^t),. ..,?n(t)). 

An interesting generalization is obtained when (2.1) is replaced by 

(2.6) P(t) - ht(F1(t),...,Fn(t)) ,    -c»3<t<cw; 

In this case (2.5) is replaced by 

(2.7) X(t) «^(X^t),...,Xn(t)) . 

where h.   is the reliability function of«*..   We shall call if,  -o< t <*') 

a tine-degrading coherent structure if 4 , -•«»< t <*>,    are semi-coherent 

structure functions of a common order,  say n, satisfying 

(2.8) ^ (x) >^4.(x)    for all    x   and    s < t , 

(2.9) for some B, <p (!,...,!) ■ 1^    for some t, ^.(O,...^) ■ 0, 
8 X 

(2.10) ^(x)    is right continuous in t. 

Condition (2.8) guarantees that f in (2.6) is decreasing^  (2.9) guarantees 

lim f(t) - 1,    lim f(t) - o; condition (2.10) guarantees that 9 Is right 

continuous.    Closure of a class of survival functions under the formation 

of time degrading coherent systems is defined In the obvious way. 
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3.  Closure Under Coherent and Time-Degrading Coherent Systems 

The folloving proposition records the fact that closure under for- 

mation of coherent systems is often equivalent to closure under formation 

of time-degrading coherent systems. 

3.1 Proposition. If yIs a class of survival functions which Is closed 

under the formation of coherent systems, and if 7 contains the degenerate 

survival functions, then r is closed under the formation of time-degrading 

coherent systems. 

Proof. We suppose that F(t) = h. (P.(t),...,? (t)) where <j>.     satisfies 

(2.8), (2.9), (2.10), and f ,..,fn tT.    We must show that F € f. 

Because there are only finitely many coherent structures of order n, 

there exist finitely many points -»= t- < t. < ... < t < t , ■ oa 

such that h (p) » h (p) for all p whenever t, < r < s < t. . for 

some J. With an abuse of notation, we write h in place of h when 
O X» 

t < t < t,, and h. in place of h.. when t. < t < t. ., J » 1,2, ,..,m. 
0      1     J t     j -    j+i 

Consider now the structure function ^>  of order m+n defined by 

AM) •! - u -^5))Tr".0 (1 - y^^Cx)), 

where <p.    is the semi-coherent structure function corresponding to h.. 

This structure function is diagramed in Pig.  3>1* 

"5^ 

TJ*J[ '2 -r- 

sutr 
Figure 3*1 

I 
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Prom (2.8), it follows that PJx) > ... ^^(x) for all x.  If 

{Yi(t), -«o< t <•») Is the degenerate process 

Y^t) »1 for t < til Yi(t) • 0 for t > t1, i - 1,2,,.,,m, 

and if X(t) = (X^t),.,.^ (t)) is defined as in (2.4), then 

<Ax(t), Y(t)) 5^i(x(t)) , ^ < t < ti+1 , i - 0,l,...,m+l. 

Thus, in our original notation (with £ corresponding to h ), 
Xi w 

f*(X(t), Y(t)) - *t(X(t)) ,  -«,< t <-o . 

This means that since F^t) - E Xi(t), P(t) » h (f^t),...,Fn(t)) 

has the representation 

f(t) = E^(X(t), Y(t)) = h*(f1(t),...,Fn(t), G1(t),...,Gm(t)), 

where F,,...,! €^ and G. (degenerate at t^^) e% i = 1,2,...,m. 

Since 9 is coherent and since r is closed under the formation of 

coherent systems, ¥ e f.ll 
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^.      Operations Which Generate Closed Classes From Closed Clasees 

There are a number of operations which generate classes closed under 

the formation of coherent systems from similarly closed classes.    A few 

such operations are listed In the following theorem: 

k.l   Theorem.      Let S be a closed family of coherent reliability functions. 

If   T   la closed under the formation of S-systems,  I.e.,  if   ? »f6, then 

the following classes are also closed In the same sense: 

(a) ^       3 (F:  F   Is the limit In distribution of some sequence of 

survival functions in T), 

(b) J^*0 a {F:  Pef and F is absolutely continuous), 

(c) J*1 »  (F:    for some   G eT,    P(t) » G(!5(t)),  -*< t <•«»),    where   S   is 

a right continuous non-decreasing function on (-«^•) such that 

limtJi>ooS(t) > b, limt^_|>oS(t) < a, and a < b satisfy P(a)  - F(b) = 1 

for Pc?", 

(d) 91 '  if :  for some G €?,  F(t) «1   for   t < a, F(t) « G(t) for 

a<t<b,     F(t) «0   for    t > b), 

(e) f0* « {F:    for some G eT, P(t) « G(t)   for all t e A), where AC R 

(f) f80 =  {P:    for some   G e ?",    P(t) > G(t),  -«< t <•»), 

T      = if:    for some   G €?",    F(t) < G(t),  -•»< t <««>). 

These examples can be easily obtained as applications of tue following 

propositions.    In these propositions,  S need not be closed,  except where 

noted. 

U.2    Proposition   f ^s
c ^ S,LD ^ 

For S the family of all reliability functions, this result has been 

given by Birnbaum, Esary and Marshall (1966).    If    S   is closed,  then 

by putting ^     in place of  ^ in this proposition, we obtain that 

y S,IiD,S mfS,U) 

„a^^^^^MM 
I 
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k.3.  Proposition ^ac,Sc T-3'60: 

Proof. Fef80'8 implies f(t) • h(f1(t),...,Fn(t)) where each 

F. e^ , h€S. This means P €? . Moreover F is absolutely continuous 

(see Esary snd Marshall, 1970, Application 5.3), so that Ft?  ,ac. ii 

It can be that rS**cT*C,S>  i8 false. E.g., suppose that f = CF^.^) 

where P. is absolutely continuous and has suport [0,1], and P. is 

absolutely continuous except for a discontinuity at 2. Suppose that 

S 3 (h) consists of but one reliability function, h(p1#p2) B p^Pg* 

Then r S,aC - if*,  P^g), f ac'S - iff]. 

k.k   Proposition y^s-fS^. 

Proof. If P cF^' j there exists a reliability function h e S (of 

some order, say n, and ^•••*Fn €T  such that P(t) ■ h(F1(t),.,.,Fn(t)). 

Since ^ cf^, ^(t) - G1(S(t)) for some ^ eT.    Morever, F(t) - G(lf(t)) 

where G(t) = h(51(t),...,Gn(t)), i.e., F e?8'*. Conversely  if 

F ej" ' , there exists for some n a reliability function h € S of 

order n and 6.f...,5n e?
8 such that ?(t) = 5(S(t)) = h(G1(S(t)),..., 

Gn(^(t))) - h(F1(t),...,fn(t)), where ^cT5, Thus P € T^ . (I 

In a rather different form, and with S the class of all reliability 

functions, this proposition has been given by Esary and Marshall (1970, 

Application 5.1)• 

We obtain from Proposition U.U   the following corollary which has 

an important application in § 5* 

U.5   Corollary.    If^fl8   -r, then/^8 =rS;    it/S3'™ *<F,    then 
yS,S,LDs?S# 

Proof.   To obtain the first assertion,  note from Proposition ktk that 

/!f**S mJS>* ;    but.i/3'    »?'S.   The second assertion follows similarly, 

but requires addltonally the fact that^tf^1^ =Jtu>>'s, \\ 
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^.6   Proposition '-T1'3 nf3'1 . 

Proof.    This follows directly from Proposition k,k with   1f(x) »^ -»y x <   a, 

5(x) » x,  a < x < b,   ^(x) ■», x > b. 11 

U.7 Proposition y CA^s a y s>CA ^ 

-   CA S       -       ■        • 
Proof. If F ef ' ,  then P(t) - h(?1(t),...,Pn(t)) for some h € S 

-     -    CA -       - 
and some Fj/•••»?, cf . This implies that P(t) » h(G1(t),..,, 

Gn(t)) for some Ö1,...,Gn ef , so that T erS,Ck ,    The proof of the 

converse is similar. || 

One can, with Inclusion only, generalize Propositions k,6  and U.7 

as follows: Let [T^A]    be the set of all survival functions that 

coincide on A with a member of f , and that coincide off A with a 

member of/if, 

U.8 Proposition {T^A)8 C^tf^A). 

The proof is similar to proofs previously given. If A = [a,b] and 

the survival functions if   have no mass outside A, then this result 

follows from Proposition U.C. If ytf   consists of all survival proba- 

bilities, this result follows from Proposition It.7. 

U.9 Proposition ■» ^s
r y S, SG 8nd ^SL, Sc ^ S, SL^ 

The proof is again similar to those previously given. 

. 
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5.  Some Clai»ei gloigd Under the Punctlon of Coherent aysteme 

Probably the most important clasi of survival functions known to 

be closed under the formaticn of coherent systems is the class of survi- 

val functions with an increasing (i.e., non-decreasing)"hazard rate 

average". If a distribution function F has a density t,  then it has 

a hazard rate r defined by r(t) ■ f(t)/F(t) for all t such that 

F(t) > 0. The condition that F(0) ■ 1 and that the hazard rate average 

-1 * 
t" / r(x)dx is increasing in t > 0 is equivalent to the condition that 

o 

(5.1)   log #(at) < - a log f(t) whenever 0 < a < 1 and t > 0. 

Whether or not F has a density, we say that F has an Increasing 

hazard rate average if (5.1) is satisfied and we denote the class of 

such functions by (IHRA). The exponential survival functions (i.e., 

those which for some ^ > 0 have the form e"   for t > 0) consti- 

tute the subclass, denoted by (exp), for which equality holds in (5.1). 

Birnbaum, Esary and Marshall (1966) show that 

{exp)CS,IlD = (IHRA), and that {IHRA)CS = (IHRA) . 

Another class of survival functions F which is closed under the 

formation of coherent systems are those which satisfy F(t) > F(x+t)/F(x). 

Because the right side of this inequality can be interpreted as a condi- 

tional survival probability given survival to time x, survival functions 

which satisfy the inequality are said to be new better than used, and 

the class is denoted by (NBü). The fact thet (NBU)  = {NBU) is 

proved by Esary, Marshall and Proschan (1970). No interesting proper 

subclass f   of (NBU) is known which satisfies either T  « (NBU) 

or ^.CS,!!) m  {yBu)^ We 8hall not further discuss the class (NBU) or 

related classes which can be obtained from it using Theorem U.l, 
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There are a number of other classes of survival functions which 

are easily shown to be closed under the formation of coherent systems. 

For example, those survival functions which are absolutely continuous, 

those which are discrete, those which are singular, and those which are 

degenerate, each constitute a closed class. 

Consider again the IHRA case. Let G(t) ■ e"*, t > 0, and let 

y - (P : Ö'1 ?(at) < a 5"1 F(t) for all a€(0,lj and t > 0) , 

^T« (F : G'1 F(at) » a G*1 F(t) for all a€(0,l] and t > 0) . 

Then ?" - {IHRA} , ^- (exp), and we know that XfCS,I<D -T, fCS -f . 

It is of Interest to ask if other survival functions can play the role 

of the exponential G(t) » e' , t > 0, in this development. 

To answer this question, we recall that Birnbaum, Esary and Marshall 

(1966) obtain the exponential-IHRA result described above via an inequality 

for reliability functions. Moreover, only a special case of their 

Inequality is utilized in proving that (exp) '  ■ {IHRA}.  In the 

remainder of this paper, we show that other special cases of the inequality 

also have potential for proving closure results. 

The Inequality of Birnbaum, Esary and Marshall (1966) is given in 

the following lemma. 

5.1 Lemma. Let h be a coherent reliability function of order n. Iff' 

is b. function on [0,1] satisfying 

rlKy) + (l-r)TKx) + (y-x)Y'(r) >v(ry+(i-r)x) 

(5.2) 

for all   r,x   and y   such that   0<r<l,    0<x<y<l, 

and 

I* 
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-Ho) -f(i) . o , 

then 

n 
(5.M Z  ^(pJ^hM/dp >V'h(p) . 

The class of functions V  which satisfy (5.2) and (5.3), and the 

class which satisfies (5.^) are discussed in some detail in §6. We 

remark here that ^(z) « - z log z, fAz) *  -(l-z)log(l-z) and 

^.(z) = z(l-z), 0 < z < 1 all satisfy (5.2) and (5.3). For the special 

case "V a'f ^ (S.M was obtained by Esary and Proschan (1963) for the 

still more special case that V * Vo and p = ... = p , (5.^) was obtained 

by Moore and Shannon (1956). 

The case if «1^ was used by Birnbaum, Esary and Marshall (1966). In 

this case, Esary, Marshall and Proschan (1970) have shown that (5.10 can 

be rewritten in the form 

^(ax) < a7i(x) 0 < a < 1, 0 < x1 <«», i - l,2,...,n , 

where 

"xl    *xn 
^(^jc) « - log h(e  ,...,e  ) , 0 < x^ <*>,    i « 1,2,...,n . 

They found this form to be particularly convenient In proving that the 

IHRA distributions are closed under the formation of coherent systems. 

The function t is called the hazard transform of the coherent 

system because it gives the system hazard function R in terms of com- 

ponent hazard functions R.: 

R(t) -^(R1(t),...,Rn(t)) 

(The hazard function of a distribution   F   is given by    -log F(t),    and 
t 

is the integral   /   r(x)dx   of the more familiar hazard rate   r). 
o 
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In the definition of the hazard transform, the exponential function 

can he replaced by certain other survival functions G. Suppose that 

G(0) ■ 0 and that G has a positive derivative g on (0,«). Then G 

has an Inverse G_1 on [0,1] which satisfies 

GG " (p) = P whenever 0 < p < 1, and S   G(x) ■ x whenever 0 < x <«» 

In this case, the G-hazard transform ft    of a semi-coherent structure 

with reliability function h of order n is given by 

f?(x) » 5 "1h(G(x1),...,G(xn)), 0 < xi <•», i « 1,2,...,n . 

5.2 Lemma. Let G be a distribution function such that G(0) = 0 and 

suppose that G has a positive derivative g on (0,*°). If V * defined 

by 

(5.5) ^(i) ■ 5 '^zj'g 5 ^(t), 0 < z < 1, and ^(0) «V(l) = 0, 

satisfies (5*2) and if tj   is the G-hazard transform of a coherent structure 

of order n, then 

(5.6) *f(ax) < aif(x) , 0<a<l, 0 < xi  <•*», 1 ■ 1,2,...,n . 

We defer the proofs of these lemmas to f 6.    However, we remark 

that (5.6) can be reformulated as a monotoniclty condition, and that (5.^) 

is the corresponding condition that a derivative be non-negative. 

Let   d   be the class of all survival functions   6   for which 

(i)    G(0) > 0    and   G   has a positive derivative on    (0,*?),    and 

(11)    the G-hazard transform   t   of every coherent structure satisfies 

(5.6),    Lemma    5.2    provides a sufficient condition for   G cd. 

Consider now the utility of (5.6) for obtaining closed classes. 

( 
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5.3   Theorem.    If Ge& and if 

JQ -  (F : 5 "1 F(at) < «G ^ F(t)    for all   a€[0,ll    and all t > 0), 

yHG m if :  G'1 F(at) - aG ^ F(t)    for all   a€[0,l]    and all t > 0), 

then 

FG
CS-?o' ■"* ^o08'"1 ' fo • 

Proof. Let F be the survival function of a coherent system with reliability 

function h, G-hazard transform t? * and component survival functions 

F.,...,? € f-.    If 0 < a < 1 and t>0, then 

5 '1 ?(at) - G "1 hCF^at),...,Fn(at)) -7(5 '
1 F^at),...^ "1 Fn(at)) 

< ^(aG ml F^t),...^ ml Fn(t)) < a^(G '
1 F^t),...^ "1 Pn(t)) . aF(t) 

The first inequality follows from the fact that 1    Is Increasing and each 

F. € 9"_. The second Inequality follows because G € ft so that (5.6) holds. 
1   u 

This means that T^c^,  and hence TQ3 »J". 

Clearly ^f0
CS,Lc9-G. The proof that ^^^'^   Is virtually the 

same rs the proof given by Birnbaum, Esary and Marshall (1966) for the case 

that G(t) » e"*, t > 0. || 

Note that if P C/f^,, then for seme e > 0, 

F(t) » G(ct). 

5.U Corollary« If G c Q and if t   is an increasing function satisfying 

lim  lJ(t) < 0,  lim  ^(t) «•* 

and if 

J 
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9^  • {f : 5 ^ f(t)/if(t) 1« Don-decrcMiag In t for vhlch ^(t) > 0) 

A - (f s G " f(t)/5(t) it constant in t     for which 5 (t) > 0), 

Tj'CS-^, ** A*><*>U> m f* . 

Proof. This result follows from Theorem 5.3 and Corollary U,5. // 

Here it is trivial that M*   is the set of all survival functions 

which, for some c > 0, have the form F(t) « G(e!f(t)), t such that ^(t) > 0. 

Observe that if ^ end *f2 satisfy the condtions of Corollary 5,k,  If 

52(t) > 0 ioplies ^^^(t) > 0 and if 51(t)/^(t) is increasing in t for 

which 52(t) > 0, then 

^1  ^2 

5.5 Corollary. Let '^ be a function satisfying (5*^) for all coherent 

reliability functions h, and let ö(t) > 0 for all t. Then 

y- (P : P has a density f and f(t)/ff(t) >©(t) for all t) 

Is closed under the formation of coherent systems. 

A proof of Corollary 5*5 een be given by utilising (5.^) and slightly 

modifying the proof of Theorem U.l, Birnbaum^ Esary and Marshall (1966). 

The corollary can also be obtained from Theorem U.l(b) and Corollary 5*^ 

with 5(t)>0 and ^(t) -^'(tVSCt). 

Remark. We have assumed that if G c £, then G(0) ■ 0 and G has a positive 

derivative on (0,*>). Most of the above development esn be modified to 

eliminate these conditions, although one must still be able to define 5 " . 

We have avoided the extra complexities this entails, because the only known 

G for which (5.6) holds do in fact satisfy our assumed conditions. 

i 
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Although the class Q.   and corresponding functions y/   defined by 

(5*5) are discussed in $ 6, ve consider some important exsnples here. 

5.6 Example. Fran the viewpoint of reliability theory, the most important 

results are obtained with 

(5.8)  5(t) ■ e"*, t > 0, i.e., f (z) » - z log z, 0 < z < 1 . 

Here, 

T^ ' if '.  [-log f(t)]A(t) is increasing in t for which ^(t)> 0), 

and 

.y#G   ' if : Ht)  » e"e^tJ, c > 0, t such that ^(t) > 0) . 

With 'j(t) » t, ^ « (IHRA)  and/^. . (exp). With quite general 
Q 0 

$,  the class TG     «as introduced by Saunders (1968). 

With *S(t) - ta, a > 0, t > 0, ^G  consists of the Weibull distributions 

with shape parameter a. Use of this fact has been made by Barlow and Gupta 

(1969). From (5*7) or directly, we see that the closed classes 

91J ■ (P : (- log f(t)l/ta is increasing in t > O) 

are nested:    *^ CT^        when a > ß . 

Of course, Weibull distributions are extreme value distributions for 

minimums. Other extreme value distributions arise in our context in a simi- 

lar fashion. If 5(t) - e0*, a > 0, -«:< t <^, then F ey^J,^ has the form 

F(t) ■ exp(-ce ) , -<»< t <"o, c > 0, 

and if 5(t) ■ (-t)"0, t < 0, a > 0, then f «^'J5 has the form 

f(t) « exp{.o(-t)a), t < 0, c > 0. 
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Another interesting ease is S(t) ■ e01 - 1, a > 0, t > 0. Here 
.   t 
F Cy^Q  has the form of a Gompertz distribution 

P(t) » exp[-e{em'.l)],    t > 0, c > 0. 

Hore generalOy, if 5(t) « - log fl(t) ■ ^(t) is the harord function of 

the survival function H, then it is easily cheeked that 

^ - if : f{t) •  [fl(t)lc for all t, some c > 0) 

5.7 Exaragle. Let 

(5.9)    ö(t) - 1 - e'^1, t > 0, i.e., ^(z) - - (1-s) log(l-z) 

Closed classes obtained here have the form 

*Q   -  (f :  - ^(t) log P(t)    is decreasing in   t   for which   ^(t) > 0) 

and the corresponding generating class is 

s%   * if i P(t) - exp[-b/!l(t)],    b > 0,    t   for which '^(t) > 0). 

Here, there are choices for   '5   such that sff* consists of extreme value 

distributions for oaximuos: 

(i)    If   ^(t) • (-t)"0,    a > 0,    t > 0,    then 

y(f* - (P : P(t) - exp[-b(-t)a],    t < 0,    b > 0). 

(ii)    If   B(t) - e*,  -*< t <oo,    then 

sV-T » if : P(t) - expt-be'*!,    -•»< t <», b > o). 

-L. 
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(Hi) If S(t) ■ ta, a > 0, t > 0, then 

^G « {P : F(t) « exp[-bt"a], t > o, b > O), 

With   'S(t) » -l/log H(t), 

.^J, = {f : F(t) = [H(t)]  for all t, some b > 0). 

3.8 Example. Let 

(5.10)   5(t) = l/(l+t), t > 0, i.e., VCz) = 2(l-z). 

Here, closed classes T„     have the form 
u 

_, <« 
^G = (f t  F(t)/F(t)^(t) is increasing in t such that ^(t) > 0), 

and the corresponding generating class is 

^- {P : P(t) = l/[l-fc'§(t)], c > Oj. 

An interesting special case is   ^(t) » e ,    -*< t <'»,    in which case 

^^   is a fsmily of logistic distributions.    If   '«j(t) = ta, then   P iny^ 

is of the form   f{t) ■ l/[l+ct ]j    this is the survival function of a ratio 

of two variables which have Weibull distributions, each with shape parameter 

a. 

It is not difficult to verify that the closed class f„ J with 

•^(x) » x(l-x) contains both T.' with -^-(x) = - x log x and T^ 

with  ^(x) - -(1-x) log(l-x). 

Early in this section, we asked what survival functions   G   can 

replace the exponential   e" ,  t > 0   in the result    (exp)    '      = {IHRA). 

We have given a sufficient condition   (G e&) and some examples)  it may 

also be worth showing by example that some conditions are indeed necessary. 
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5.9   Example.    Let   Ö(t) »   X/l^t,    0 < t <   | ,    G(t) - exp[-2 log   UT   t], 

t > |.    Then   G ■1(u) » 1-u2,    l/ \J2 < \x < 1,    5 ^(u) - - log u/2 log l/I, 

0 < u < 1/ tT?    .    Let 

-1 s -1 ytfG = {F :  G       #(at) » aG       f(t), 0 < a < 1   and   t > 0), 

J- =  (F :   G '1 F{at) < aG '1 F(t), 0<a<l    and    t>0). 

Then, with the reliability function h(p ,p2) = p,^» we see that 

F(t) - G 2(t) €,/^,CS. But for t < ^ t"1 G ^ G 2(t) « 2 -t2 is decreasing 

in t,  so that G i   ^ and thus Sf^'^q. 'f„. 

i -■- 
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6.   Further Details 

In f 3, ve introduced the class Q of survival functions   G   for 

which the   G - hazard transform   f?   of all coherent systems satisfies 

^(ax) < a^(x) . 

In this section, we investigate some properties of the class tf* of functions V 

which satisfy the basic inequality (5.10 for all rellsbiUty functions h. 

An implicstion of Lemma 5.2 is that G *&    if Viz)  = 5 " (z) gG ' (z) €^ . 

Proof of Lemms 5*1 

We prove {5.h)  for all semi-coherent reliability functione h of order 

n by Induction on n. If n-1, then h(p) ■ 0, h(p) = 1 or h(p) = p> 

in each case, (5.10 is trivial in view of (5.3). Suppose then that (5A) 

holds for n ■ m-1 and that h is a reliability function of order m. 

If   h(p ,0^ - h^, ...,pm-1,0)    and   hCp,!^) - hCpj,...,?^^,!)    then 

h(p) - p,,, h(p,l ) + (1-PJ h(p,0 ).    Thus 
-x m     w   in m       »~   m 

m m-1 
z y>M t h(p)/^ Pi ■ z   v(Pi) ^ h(p)/^?!+ ^pm) ^ h( p)/^Pi 

i»i        '"        i"i 

m-l m-1 
- PmZ       ^(Pi) 3 h(p,lta)/dp1 + (l-Pm)Z        V(Pi) ^(|,0m)/dPi +V<Pm)^(£)'" ^ 

i«l        - - * i^ 

>• Pm^S'V + (1-I,m) ^h(^0a) +^p«)[h^1m) " h(^0m)] 

>ftemhW + ^ ' pm) ^P'0«^ 'WV ' 

The first inequslity is from the induction hypothesis; the second follows 

from (5.2). 11 

m 
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Proof of Lemma 5.2 

Observe fii^t that (5.6) Is equivalent to  >7(ax)/e   increasing In 

a £(0,l]    whenever each   x, > 0.    Thus. 
1 • 

Z Zj yj—   >V(l),    if each   zi > 0    . (6.1) 

We compute 

n(z) ah(u) 
— -  - G -^ h(G(z1),...5(zn))T~   ^(5(2i) 5(Zn)) gC^) . 

-IV .Ä -1 ^ince -G "    ^p) - l/[gG      (p)] > 0,     (6.1) is equivalent to 

ah(u) 
ä -1' .A -1. 

2zi^zi) TV^zi)—5(2„)) - 5 " ^ * ^ " h(ij) .u.(5(^..M5(zn)) ' 

With G(z1) » pi end «/'(P) « G ^(p) • gG ^(p), this inequality becomes 

(5.10 J 

6.1 Proposition. If "f is continuous, then equality holds in (5.1+) 

identically in P If and only if one of the following conditions holds: 

(i) Y'(u) « - culogu for some c > 0 and 

(ii) '"'Hu) » - c(l-u)log(l-u) for some c > 0 and 

h(5)Bl-'IW1-pi)» 
(lii) ^(u) - 0, 0 < u < 1 

(iv) h(p) = 1 for all p, or h(p) ■ 0 for all p; 

(v) n « 1 . 

The set E Indexes the essential components of the structure, i.e., 

the components upon which (|)(x) and h(p) truly depend. From a practical 

viewpoint there is no loss in assuming that all components are essential, 

and with this assumption, the statement of Proposition 6.1 is somewhat simplified. 

tmmtmmmtmmm *m 
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A result related to Proposition 6.1 has been given by Esary, Marshall 

and Proschan (1970, Theorem 4.1). There, it is assumed that^Cp) = - plogp, 

and that equality holds in (5.6) for some triplet a.^Bp and a + a-j 

the conclusion is that h has the form (i) of Proposition 6,1. 

Proof of Proposition 6.1.  It is easily checked that (5.'+) becomes an 

equality whenever one of these conditions is satisfied (case (Iv) requires the 

result y e C    Implies 'V(O) =W{1) = 0 that we prove below in Proposition 6,6), 

Suppose that equality hülds in (5.10 for all p, and that none of the 

conditions {Hi),   (iv) or (v) hold. In order to prove that this Implies 

(i) or (11), we suppose in addition that h is the reliability function 

of a coherent system with a minimal path set P  and a minimal cut set K 

both of size at least 2, and show that this leads to a contradiction.  (Minlmel 

path and cut sets are discussed by Birnbaum, Esary and Saunders (1961), and 

by Esary and Proschan (1963))« 

If P is a minimal path set, 

h(p) = 7ri£p Pi  whenever Pi = 0, 1 ^ P. 

Equality in {5.h)  then yields 

ZleP^pi)frjer,^lpJay(TTiePPi) if Pi = 0' ^^ 

If P contains at least two elements, the transformation 6(u) »^(e )/e 

converts this functional equation to Cauchy's equation 

^leP e(ui) = e^ieP ^  ui - 0' i€P' 

Since we have assumed that Y is continuous, it follows that © is continu- 

ous so that 6 (u) = au, i.e., T^(u) = - culogu. Since we have assumed (ill) 

does not hold, and since -culo -u falls to satisfy (5.3) unless c > 0, 

we conclude that c -> 0. 

If K is a minimal cut set, 

h(£) = 1 -"n'i€K(l-Pi) whenever pi = 1, !/&, 
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and equality in (5.1*) yields 

This functional equation can also be transformed to Cauchy's equation and 

we can conclude that ^(u) ■ - c(l-u)log(l-u), c > 0. 

These two definitions of If cannot be reconciled, and we conclude 

that either all minimal path sets are of size 1 (' 'p) ■ 1 "^-»(l-P*))* 

or all minimal cut sets are of size 1 (h(p) «IT. „p.). |l 

There are several interesting properties of the class £* of functions 

if satisfying {5,k),  which we enumerate in the following propositions. 

b.2 Proposition.  If V «^T» theny'(O) - V<1) ■ 0» 

Proof. From (5.U) with h(p) ■ p.pg and h(p) ■ 1 - (l-P1)(l-P2) we have 

p1^2) + h^i*  ^V'(P1P2
) and fr-Pg'V^V + (i'h**^  -^^l + P2 " h^' 

With Pi " ^2 " 0' lt f0ll0W8 that 0 ^'^(O) and 2^0) > 0. Thus ^(0) - 0, 

and yD(0) =^(1) - 0. K 

6.3 Proposition. ^ is a pointed (proper) convex cone. 

Proof. It is easily seen that £7 is a convex cone, i.e., y*, and y^g e^T 

implies cJk + Cg'fg € £   whenever c1 > 0, c2 > 0. That £   is pointed 

(i.e., feg, -ftC  implies ^«0) follows from Proposition 6.1, slice feC 

and -fc^T implies that equality holds in (5.^) for all reliability finotions 

h, and this implies f (u) > 0. (( 

6.U Proposition.  ^ is closed under the foraation o* maximums. 

Proof. If "ieC,  acA, then since ^»»(pV^p. > 0, 

i«l i»l 
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for all aeA.    Hence 

n 

6.5 Propogltlon.      If   ^ e^*, then ^ D€/C    where ^^u) = ^(1-u). 

Proof.    If   h   is the rellahillty function of a coherent structure (j> 

and   h (p) « 1 - h(l-p.,.,.,l-p ),    then   h     is the reliability function 

of the coherent structure   6     defined by   d> (x) = 1 - i>(l - x,,...,l-x ). •    ,*» ■ in 

Sinoe   ^hD(p)Ap1 =-ih(l-p1,...,l-pn)/<)pi,    we have 2     >'D(pi))h
D(p)/l)p1 = 

-Z    'V'(l-P1)>h(l-P1,...,l-Pn)/()P1 >^h(l-p ,...,1-Pn) =fV(p). /I 
j«l 

It is easily seen that Propositions 6,3, 6.U and 6.5 remain true if 

^ is replaced by the class of continuous functions satisfying (5*4)» for 

all reliability functions   h.    Also,  these propositions are true if   C is 

replaced by the class of functions satisfying (5.2), or (5*2) and (5.3)* 

The question of whether there exist discontinuous functions in   ^   has not 

been resolved. 

6.6 Proposition.    If y-c^T is continuous on (0,1), then 'V'(u) > 0,    0 < u < 1. 

Proof.    A sequence of "k out of n" systems (<).    (x) ■ 1   if    s (x) » ^■■^^ K, n /»/ n -» 
5      x. > k,    A.     (x) «0   if   S (x) < k)    chosen so that   n ^-»o   while '*\,i" 'a, n~ n~ 1"1 
k/n -> 0,    0 < 9 < 1   has the property that 

\ n(P,...,P) ■ P{Sn(X1,...,Xn)/n > k/n) ->   1   If   p > 9 

-Hk   0   if   p < 9 , 

where X. are independent random variables such that P(xi ■ l) • p, 

P(X1 > 0) « 1 - p. Thus, the set of points 9c(0,l) such that 

h. (0,...,9) B 9 for some k,n 
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is dense in [0,1],    Moreover for such a point    0, 

Zsi)\JPV'-->*a)/*Pt\Vim„,^ - dh^n(e,...,9)/d* > i , 

so that  ^(©) < 0   means 

I 
<^©) -^h(0,...,«) . 

n -a h(p) 

V—Pn"9 

This contradicts (5.1*). Consequently the set of points 9 such that 

Y-(O) > 0 is dense in [0,1], so the proof is complete by continuity of 'f J( 

We wish to correct an error in an earlier paper (Birnbaum, Esary and 

Marshall (1966)). There, the statement is made (p. 820) that f c^T 

implies r is concave. That this is false can be seen by taking f & max 

("/j/V^), where ^.(u) m  - ulogu and '^(u) = V, (u)j V«^ by Proposition 

6.3» but f   is not concave. It is true, however, that "/c^ implies 

•^(Px) -^(P^) >V'(P1+P2-P1P2) -f(P2)» This is a concavity-like property, 

sirce ^ < P-^-PjFg and Pl'PlP2 " (Pi+P2"PlP2^ " P2* 

/ 
^^.•m 
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