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QUANTITATIVE PROPERTIES OF DELTA CHANNEL NEIWORKS

J. S. Smart and V. L. Moruzz.

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT: Some simple procedures are developed for studying the topologic and
geometric properties of delta distributary systems. A delta channel network has
three kinds of vertices (forks, junctions, and outlets) and six kinds of links,
each corresponding to one of the six possible combinations of upstream and
downstream vertices. Various functions of the vertex and link numbers may be
used to specify the topologic properties of the network. A particularly useful
function is the recombination factor, or ratio of number of junctions to number
of forks. This ratio varies from zero for networks with no recombination to
unity for braided streams.

A detailed toplogic study of the networks of five natural deltas
(Colville, Irrawaddy, Yukon, Niger, and Parana) shows recombination factors
ranging from 0.5 to 0.85. The frequency of different kinds of links can be
explained reasonably well by a simple model that assumes random connection of
vertices. The link lengths for a given network appear to belong to a common
distribution and to depend relatively little on location with respect to the
coast. The results on the Parana suggest that it should be considered as two
deltas in tandem, each with its characteristic recombination factor.



INTRODUCTION

I A channel network, as defined by Shreve (1966, p. 20), consists of the

, channels upstream from an arbitrarily chosen point (called the outlet) in a

drainage network. Although the geometric structures of channel networks may

differ widely from one to another, the topologic structures all have certain

features in common. Each network is characterized by a given number of sources,

from which single Ichannels, or streams, are initiated. As the network develops

downstream, the number of channels is reduced by successive combination of pairs

of streams into one, until finally the outlet channel is created by the last

two. Branching or dividing in the downstream direction does not occur (or is

simply neglected if it occurs on a limited scale). The concept of a channel

network has proved to be of both theoretical and practical importance in

drainage basin analysis. Recent developments in the field have been comprehen-

sively reviewed by Haggett and Chorley (1969).

Two other kinds of networks are important in drainage basin geomorphology.,

both involve the branching of single channels into two, as well as the

combination process mentioned above. Braided channel networks are alternatives

to the single-thread streams that constitute ordinary channel networks; they

consist of multiple branching and reuniting (anastomosing) channels that begin

with and terminate in a single stream. Delta channel networks are the

Ii distributary systems of deltas. They also start from a single channel, but

i! the branching process predominates so that the typical fan-like form is

developed, and the network terminates in multiple outlets at the coast. Clearly

~both braided and delta networks are topologically considerably more complex

, than ordinary channel networks. Howard et al. (1970) have recently made an

~extensive quantitative study of braided systems. In this paper, we present

il the results of a preliminary study of the quantitative properties f delta

li channel networks.

,I
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GENERAL PROCEDURES AND DEFINITIONS

Figure la shows an actual delta pattern and Figure lb the channel network

derived from it by procedures described below. First of all, only those channels

below the delta source (bifurcation furthest upstream) are considered.

Additional tributaries (such as a of Figure la) are neglected, as are the small

streams (b, c) that drain off into interior basins. These omissions appear to

be justifiable as long as the physically important properties (e.g., discharge)

are small compared to those ot the mainstream. Channels that are deicted on

the map by double lines are represented in Figure lb by their center lines. In

principle, it might be better to represent them by their thalwegs, but this

information is rarely available. No more than three channels are allowed to

join at a point. Apparent exceptions, such as d, must be resolved by more

detailed mapping or by an arbitrary, but generally unimportant, decision.

A delta channel network of even moderate size contains so much detail that

it would be awkward, if not self-defeating, to try to include all of it in a

quantitative analysis. Consequently, in addition to the general procedures

described above, each investigator may impose certain specific rules, germane

to his own study, that are intended to eliminate unnecessary detail. Thus a

hydrologist might choose to omit channel segments that carry less than some

minimum discharge; a transportation expert might neglect all channels that have

less than some minimum depth. Networks obtained from the same map by these two

sets of rules could be quite different. As examples of special rules, in

Figure lb, those channels indicated on the map by only a single line (c, e) and

the smallest island (f) are omitted.

The channel network of Figure ib, an abstraction of the actual network of

Figure ]a, is called in mathematics a directed gra2h. Although we do not make

formal use of graph theory in our analysis, the general approach is guided by

graph theoretical considerations. First, it is necessary to provide some

reasonably precise definitions of the concepts employed. Points at which

channels intersect or terminate are called vertices, and are indicated by dots

in Figure lb. A channel segment connecting two successive vertices is called a

link. An area bounded by channels and having no channels in the interior is

called an enclosure, and an area bounded by only two links (stream divides and

recombines without any intervening vertices) is called a simple enclosure.

The network of Figure lb contains two enclosures, A and B, neither of which is
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simple.

DERIVATION OF TOPOLOGIC PROPERTIES

Classification Gf Vertices

Probably the two most %tseful parameters in characterizing a delta network

are the number of vertices, NV, and the number of links, NL. The network of

Figure lb has 13 vertices and 14 links. Note that there are three different

kinds of vertices: forks (one channel divides into two), junctions (two

channels combine to fcrm one), and outlets (channel terminates). In Figure

Ib, vertices 1, 3, 4, 5, 7, and 8 are forks, 2 and 6 are junctions, and 9

through 13 are outlets. The source vertex (1) is defined to be a fork, since it

is fed by a single channel not included in the delta network. We have

Nv M NF +N N 0 (1)

This classfication of vertices is useful in developing a formal procedure

for generating channel networks. First, the source vertex may be considered as

generating two links, each of which terminates in a vertex. If one of these new

vertices is a fork, two more links and vertices are produced. If it is a

junction, it is located on the interior of an existing channel, thus increasing

the number of links by one without changing the number of vertices. If it is an

outlet, nothing new is added. For example, the network of Figure lb can be

generated by the following sequence: 1-5, 1-4, 4-3, 4-7, 3-2, 3-8, 7-6, 7-13,

5-9, 5-10, 8-11, 8-12, where the numbers identify the vertices at the upstream

and downstream ends, respectively, of channel segments. We should perhaps make

it clear that this sequence is not intended to have any relation to the

chronological development of the actual network of Figure la. It is merely a

formal recipe for reproducing the topologic properties of the network of

Figure lb.

Recapitulating, a fork generates two new links and two new vertices; a

junction generates one link; and an outlet generates nothing. Thus we have

NV = 2NF + 1 (2)

where the last term accounts for the source vertex. Then

N F - (Nv - 1) k3)

• • mm m( • m • • F V m ( m m m m
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N + N 0  h(Nv + 1) (4)

Thus a delta channel network with NV vertices has exactly (NV - 1) forks, while

the remaining (NV + 1) vertices are divided between junctions and outlets.

Note that NV is always odd.

Our rules for generating a network also lead to

NL - 2NF + N (5)

By rombining (2) and (5), we find

N, - 1 + N - NV  (6)
If LV

The reader may easily verify that N is also the number of enclosures in the

network. Incidentally, N is krown in graph theory as the cyclomatic number.

Howard et al. (1970) have used it in analyzing braided stream networks.

From (1), (3), and (6), we find

No m(3Nv - 2NL - l) (7)

The five variables NV, NL, NF, NJ, and No, are related is such a way that

if either of (NV , NF) and any one of (NL , N , N0 ) are known the other three can

be found. In making determinations for large networks, it appears that counting

NV and N0 is generally fastest and least likely to produce errors.

A delta channel network is not required to have any junctions but it must

have at least one outlet; thus the minimum possible values of N and N are

zero and unity, respectively. A channel network with one source and one outlet

really corresponds to a braided stream, but it may be considered as a limiting

case of a delta network. The ranges of possible values of NJ, N0 , and NL are

as follows:

Nj O , 1, 2, .. h(N V - 1).

NO (N v +  ((N v - 3), 1.

NL: Nv - 1, NV , Nv + 1, ... 3 (N- ).
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As stated tefore, selection of one variable determines the other two (as
functions of NV). For example, if NJ- 1, then No = (NV - 1), and N L  N

It may be expected that various topologic properties of channel networks

can be efficiently characterized by appropriate functions of these five

parameters. In investigating eeveral possibilities, we found one which

appeared to be particularly useful. The recombination factor, a, is the ratio

of number of junctions to number of forks (or maximum possible number of

junctions).

aWNJ - 2N

N N -l (8)

Alpha takes on values ranging from zero for a network with no junctions to unity

for a braided stream. Examples of its application are given in the next section.

The results and ideas expressed in equation (1-8) could undoubtedly be

inferred from one of the standard texts on graph theory, such as Berge (1962).

The relovant theorems in such texts, however, seldom apply to our specific model,

and thus require either generalization or specialization. It seemed preferable

instead to develop the necessary relations by simple heuristic methods, as we

have do.,e.

Classification of Links

There are six kinds of links in a delta network - FF, FJ, JF, JJ, FO, and

JO, where the letters identify the kinds of vertices at the upstream and down-

stream ends, respectively. The way in which the total number of links in a

given network are distributed among these six classes depends in part on N and
L

NV but is not completely determined by them. This later point can easily be

verified by constructing pairs of networks which have the same NL and NV but

different link distributions; an example is shown in Figure 2(a and b). For

qdantitative relations, we have of course

nFF + nFJ + nJF + nji + nFO + n = N . (9)

There are, however, more detailed conditions which the link numbers must satisfy.
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nFF + nFJ + nFO - 2NF (lOa)

nJF + n j + njo - Nj (10b)

nFF  +n -N - 1 (10c)

nFJ + njj - 2Nj (lOd)

nFO + njo = 1O (lOe)

Equation lOa simply states that the total number of links originating at a fork

is twice the number of forks; the other equations have similarly obvious

interpretations. There are five equations in six unknowns, indicating, as

stated above, that knowledge of NL and N is not sufficient to completely

determine the link numbers. (Additional relations that we might try to use,

such as equation 9, are not independent of the set of five.) By employing the

usual procedures, we can show that the coefficient and augmented matrices of

equations lOa-e both have rank four, which means riat four of the unknowns can

be obtained as functions of the other two (but not any two). Specifically,

complete solutions can be obtained if either of (nFo, njo) and any one of the

other four are known, or if nFJ and either of (nFF, njF) are known.

Less information is required for some special cases. For example, if there

are no junctions (a a 0), nFF - NF - 1, nFO = NF + 1, nFj = nJF U nj - n JO M 0.

This case is isomorphic to that of ordinary channel networks (Shreve, 1966). At

the other extreme, if a - 1, we find nFo a 0, njo U 1, nFF - njj. Two of the

unknowns can be determined if the third is given.

The fact that there are different link distributions for the same NL and

NV suggests a statistical approach to the problem. Lacking a detailed

statistical theory, we offer here a model which, though clearly oversimplified,

is useful in exhibiting the broad features of link distributions. We assume

that all vertices are connected at random, so that, for example, the fraction of

FJ links is simply the product of the respective probabilities of finding a fork
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and a junction. That is,

fFJ = nF-J  NFNj/N 2  ()

NL

with analogous relations for the other kinds of links. Now delta networks are

obviously not connected in a completely random fashion (for instance, all out-

lets tend to occur at roughly the same number of link traversals from the

source), but it would appear that the model should be better for large networks

than for small ones, simply because the number of ways of making connections

increases very rapidly with Nv. Accordingly, we shall restrict the application

of the model to networks above some minimum size, say N >50.
V

A useful way to demonstrate the consequences of this model is to express

N , NO , and NL as functions of a, calculate the expected link frequencies as

functions of a and NV and take the limits as NV approaches infinity. The

relative link frequencies car. be expressed as fractions with a common
2

denominator (2 + a) and numerators given by the matrix

F 1 0

F 2 4a 2(1 - a)

JI a 2a2  ( - a)

Thus fFJ = 4a/(2 + a)2

These quantities are shown plotted against a in Figure 3. A few pertinent

features may be noted. For values of a greater than 1, which range appears to

include most natural networks, the links are predominantly FF and FJ, with nFJ

greater than or less than nFF depending on whether a is greater than or less than

. Two of the link numbers, nFF and nFO, decrease monotonically with increasing

a while nFJ, nJF and njj all increase monotonically. The fraction of JO links

has a maximum (0.042) at a - 0.4. This last observation is easily understood

qualitatively; for small a, there are not many junctions and for large a, there

are not many outlets.

As we have no way of making a quantitative assessment of the validity of
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this model, its usefulness can be determined only by making a direct comparison

with data on actual delta networks. This comparison is carried out in a later

section, and as we shall see, the model, though often wrong in detail, provides

a good general description of link distributions for natural networks.

The Connectivity Matrix

The preceding parts of this section have dealt with various kinds of

topologic information on delta networks. All of this information, and, indeed,

all topologic information about a given network, can be obtained from the

connectivity matrix, C, a square matrix with NV rows and columns. Rules for

constructing C are as follows. If the ith row and j vertices of the network

are the upstream and downstream ends, respectively, of a link, then the element
nthith jth

in the i row and j column of C is one. As a spr:cial case of this rule, if
th

the i vertex is a fork whose branches recombine at j to form a simple

enclosure, then the (i, j) element of C is two. All other elements of C are

zero. The connectivity matrix for the network of Figure lb is

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0 0 0 0 0

3 0 1 0 0 0 1 0 0 0 0 0 0 0

4 0 0 1 0 0 0 1 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 1 1 0 0 0

C 6 0 0 0 0 0 0 0 1 0 0 0 0 0 (12)

7 0 0 0 0 0 1 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 1 1 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0
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The topologic properties of the network can be determined by simple

manipulation of the matrix elements of C. NV is of course the number of rows

or columns; NL is the sum of all matrix elements. Outlets, junctions, and

forks can be identified by the fact that the sums along the corresponding rows

are zero, one, and two, respectively. The link corresponding to the (i, J)

position in C can be classified by identifying the kinds of vertices associated

with the ith and jth rows.

The total number of different paths from the source to the coast (N ) is a
P

parameter of some interest in the analysis of natural delta networks (Coleman

and Wright, private communication). For the extreme cases a - 0 and c = 1,

the number of paths is just N + 1. For the intermediate cases, Np is very
F

sensitive to the exact topologic structure of the network and can be much

greater than N + 1. Figure 2 shows two networks (b and c) which have the same
F

vertex and link numbers but different Np, so that we obviously cannot express

N as a function of the previously derived topologic properties. We show how
P

the connectivity matrix can be used to determine N for any given delta
PN

network. It is a well-known result of network theory that CN gives the total

number of N-link steps between pairs of vertices. If the longest path from the

source to the outlet is M (in number of links traversed), then the sum

C + C2 + C3 + ... + CM gives the total number of paths of any length between

pairs of ,ertices. V is the sum of elements in the first row and in the

columns corresponding to the outlets. For the matrix of equation 13, we find

M = 5, Np = 9, with 2, 2, 2, 2, and 1 paths to outlets 9, 10, 11, 12, and 13,

respectively.

ANALYSIS OF NATURAL SYSTEMS

General Rules for Map Studies

In this section, we report the results of a topologic analysis of five

natural deltas, the Colville, the Irrawaddy, the Niger, the Parana, and the

Yukon. The selection of deltas to be studied was made almost entirely on the

basis of availability of maps. The derived channel networks are shown in

Figures 4a-e, and the maps from which they were obtained are listed in Table 1.

The following general rules were used in obtaining the networks:

1. The study was limited to the active area of the delta. Table 1
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lists the approximate locations of the delta sources. The

most difficult decision on this point concerned the Irrawaddy,

where the active area is rather tenuously connected to a much

larger network.

2. We considered only those channels that were indicated on the

map by double lines. An exception to this rule occurred for

the Niger delta. The two maps used in that study were prepared

with different conventions in representing the streams, so that

double-line channels on NB-32 turn into single-line channels on

NB-31. Thus, it was necessary to make a rather arbitrary selection

of channels on NB-31; fortunately, most of the active area is on

NB-32.

3. Islands with areas less than about 0.02 in2 on the map were

neglected. This corresponds to actual areas of 0.02, 0.31,

and 5.0 mi2 for scales of i to 63360, 250000, and 1000000,

respectively.

4. Some transverse channels near the coast that appeared to have a

tidal origin were ignored. This rule also resulted in some rather

arbitrary decisions but we found that an appreciable range of

alternate choices gave surprisingly small variation in topologic

properties.

5. The completed ne-works have occasional links where it is difficult

to determine the direction of flow. The choice in such cases does

not affect the vertex distribution but it can affect the link

distribution and can make a substantial difference in Np,

Topologic Properties

Table 2 lists the topologic properties of the five delta networks. Most

of the results were obtained via a computer program that takes the connectivity

matrix as input. It should be noted, however, that they can also be obtained by

direct counting methods with relatively little labor. A recommended procedure

is to begin by counting NV and N and then to calculate NF, N., and N . In
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determining the link numbers, if one set of interior links (FF, F:, JF, or JJ)

and one set of exterior links (FO or JO) is counted, the other four can be

calculated from equations lOa-e. In practice, we have found it advisable to

count two sets of interior links as a check against error. The counting can

be greatly facilitated by color-coding the vertices. Perhaps the best way to

obtain N is to begin at the source and count the number of paths to links that

are successively further and further away. Whenever a fork is traversed, the

number of paths does not change; whenever a junction is traversed, the number

of paths t: the link immediately downstream is just the sum of the respective

number of paths to the two links immediately upst:eam.

Note that the values of a in Table 2 lie in the range 0.5 - 0.9. One

common characteristic of four of the five cases is that if we consider

successively larger subnetworks, each with the original source, the subnetworks

quickly attain a-values comparable with that of the complete network and

remain relatively constant thereafter. As an example, for the Yukon with

subnetworks having NV - 13, 25, 43, 63, 95, and 135, the a-values are 0.50, 0.67,

0.62, 0.71, 0.68, and 0.66, respectively; the Colville, the Irrawaddy, and the

Niger behave similarly. For the Parana, however, a rises to 0.86 and then

decreases steadily to 0.51 for the complete network. This variation in a

correlates well with the geometry of the network shown in Figure 4e. For the

first three-quarters of its length, the Parana delta remains confined to a

relatively narrow region, rather more like a braidea stream than a delta; in

the laet quarter, it begins to develop the typical delta shape.

The great variability in Np is strikingly exhibited in Table 2. The

Yukon and Niger deltas have very similar values of NL and NV, but Np for the

Yukon is about six times that for the Niger. A similar difference occurs in

comparing the Irrawaddy with the Parana.

Table 3 gives the link distribution frequencies as obtained from the link

number data of Table 2 and from Figure 3. We see that the random connection

model gives surprisingly good results considering its simplicity and the lack

of theoretical justification for it. The greatest relative error occurs in

the prediction of fFO and f for the Colville, Irrawaddy, and Niger. In two

cases, the observed values of f are considerably greater than the theoretical

maximum of 0.042.
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It is not immediately obvious whether the deviations from the random

ccnnection model are in themselves random or whether they have some pattern.

From physical considerations the most likely kind of deviation would be a non-

randomness in the location of forks and junctions with respect to their distance

from the source. In order to check this point, we define the topologic

distance, X, of a vertex from the source as the minimum number of links which

must be traversed in the direction of flow in order to reach the vertex from

the source. For example, the topologic distance for vertex 5 in Figure lb is

two. We have used the Kolmogorov-Smirnov test to determine whether there is

any difference in the distributions of the topologic distances for forks and

junctions, respectively, in the five deltas. The results are mixed. The

Colville and Yukon deltas show no significant difference at the five percent

level in the distributions of XF and X . For the Irrawaddy and Niger deltas,

the forks are located significantly nearer the source than are junctions;

for the Parana, the reverse is true. This last observation can be correlated

with the unusual structure of the Parana delta. Forks and junctions are

distributed uniformly in the elongated region but there is a considerable

predominance of forks in the area near the mouth.

Geometric Properties

Link lengths were measured with an architect's scale, the curved links

being approximated by a series of straight-line segments. Measurements were

made to the nearest 1/40 inch, corresponding to 0.025, 0.1 and 0.4 mi for scales

of 1 to 63360, 250000, and 1000000, respectively. The absolute accuracy is of

course somewhat less. Table 4 gives some descriptive statistics on link

lengths for the five deltas. Comparison of means and standard deviations is

of course significant only for networks taken from maps of the same scale. All

five sets of links have roughly the same sort of right-skewed distribution, as

indicated by columns four and five.

The length distributions of different kinds of links (FF, FJ, etc.) were

compared by various non-parametric tests. The occurrence of significant

differences at the five percent level was just about in the 1 out of 20 ratio

that would be expected by chance if the null hypothesis holds. Thus, one may

assume that all link lengths for a given network are taken from the same

distribution.
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The above result does not preclude the possibility that the length of a

link may still depend on its location. In particular, one could look for

correlation between link length and A, but it seems preferable to use a

geometric measure of distance in this case. We have tried several length

parameters (for example, straight-line distance from source to upstream and

of link, and channel distance from source to midpoint of link) and used the

Spearman rank correlation test for comparing the behavior of length parameters

and the corresponding link lengths. Again the frequency of rejection of the

null hypothesis for four of the deltas was not greater than that expected

from chance, but it is worth noting that the great majority of the correlation

coefficients were negative. The Parana again proved to be an exception; as

can be seen clearly from the map in Figure 4e, the link lengths in the region

near the coast are appreciably shorter that, those in remainder of the delti'.

SUJMARY

In this paper, we have devised some simple basic procedures for the

quantitative analysis of delta channel networks. These procedures were

suggested by, but are generally different from, those devel.oped by Horton,

Strahler, Shreve, and others for ordinary channel networks. We should point

out, however, that there are factors that suggest that this type of approach

may be less productive, given the same effort, for delta networks than for

ordinary networks. First, the topologic structure varies markedly with river

stage, the maximum complexity occurring somewhere between low and flood stage.

Howard et al. (1970) have noted this same problem in the analysis of braided

networks. Also, for many deltas, the network properties for given stage are

continually changing, with new channels being added and old ones abandoned.

In this case, we are inclined to believe that that statistical distribution

of the topologic and geometric properties probably remain relatively constant

in time, but we have no evidence either for or against this speculation.

Finally, in delta channels near the coast, the width is often of the same

order of magnitude as the link length, a situation that makes the concepts

of link and link length somewhat ambiguous. Without specific investigations

of each point, it is not clear just how serious these difficulties are.

Our procedures for analyzing delta networks begin with simple counts of

vertex and link numbers. There are three kinds of vertices (forks, junctions,
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and outlets) and six kinds of links, each corresponding to one of the six

possible combinations of upstream and downstream vertices. The numbers of

different kinds of links and vertices help characterize the topologic

properties of the networks; functions of these numbers, such as the

recombination factor, may be used to specify particular features.

A quantitative study of five natural deltas sirow that their channel

networks have certain topologic and geometric features in common. Each

network appears to have a characteristic recombination factor that i's attained

after relatively few vertices have been developed. (The Parana, which is an

apparent exception to this simple rule, can be considered as two deltas in

tandem, with a different recombination factors.) The link distribution

in deltas can be described reasonably well by a simple model that assumes

random connection of vertices. The link lengths for a given network all

appear to belong to a common distribution and to depend very little on geometric

location.

We feel that these conclusions are well-substantiated for our sample of

five deltas, and that they can be used as starting points for future

research. (It would of course be dangerous to infer, without further

study, that they represent general properties of all natural delta networks.)

One specific topic of investigation suggested by our results is the correlation

of the topologic and physical properties of deltas.
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Table 2. Topologic Properties of Delta Networks

Delta

Property Colville Irrawaddy Yukon Niger Parana

NV 107 71 135 131 71

NL 140 100 178 181 88

N0  20 6 24 15 18

NF 53 35 67 65 35

N 34 30 44 51 18

0.642 0.857 0.657 0.785 0.514

nFF 37 25 47 49 27

nFj 61 43 69 78 28

n JF 15 9 19 15 7

n 7 17 19 24 8

n 8 2 18 3 15FO

n 12 4 6 12 3JO

N 244 129 5038 815 623

N /N 2.28 1.82 37.3 6.22 8.78
p V

N /N 12.2 21.5 210 54.3 34.6
P 0
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Table 3. Link Distribution Frequencies

Kind of Link Colville Irrawaddy Yuko.n Niger Parana
obs. calc. obs. calc. obs. calc. obs. calc. obs. calc.

FF 0.26 0.29 0.25 0.25 0.26 0.28 10.27 0.26 0.31 0.32

FJ 0.43 0.37 0.43 0.42 0.39 0.37 0.43 0.40 0.32 0.33

JF 0.11 0.09 0.09 0.10 0.11 0.09 0.08 0.10 0.08 0.08

0.05 0.12 0.17 0.18 0.11 0.12 0.13 0.16 0.09 0.08

FO 0.06 0.10 0.02 0.03 0.10 0.10 0.02 0.06 0.17 0.15

JO 0.09 0.03 0.04 0.02 0.03 0.03 0.07 0.02 0.03 0.04

..... i I .v
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Table 4. Link Length Statistics

Delta NL  i(mi) o(mi) CV % less
than mean

Colville 140 1.01 0.85 0.84 66.5

Irrawaddy 100 6.0 5.1 0.85 58.0

Yukon 178 3.0 3.1 1.03 68.0

Niger 181 7.1 6.1 0.86 60.2

Parana 88 9.0 9.9 1.10 68.2
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e 2 A 4

f 6 8

((a)

Figure l(a). Outline of a natural delta network taken from a map. (b) Ihe
channel network derived from it. Letters and numbers are
explained in the text.
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COLVILLE

4(a)

Figure 4. Channel networks for five natural deltas: (a) Colville,
(b) Irrawaddy, (c) Yukon, (d) Niger, (e) Parana.
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I RRAWADDY

5mi

4 (b)
Figure 4. Channel networks for five natural deltas: (a) Colville,

(b) Irrawaddy, (c) Yukon, (d) Niger, (e) Parana.
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RV~ 2  NL 26 No= 5 NF 10 Nj=6

(a) (b) (C)

nFF 6 77
n~j 12 10 10

nJF 32 2
njj 0 22

n 2 33
3 2 2

Np Is 21 19

Figure 2. Three hypothetical channel networks with the same numbers of
links and vertices. (a) and (b) have different link distributions
and different values of N .(b) and (c) have the same link
distribution but different N



22

0.5

0.4- FF

0.3-

0.2-

0.1 
-- J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a

Figure 3. Relative link frequencies as a function of the recombination
factor.
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4(c)

Figure 4. Channel networks f or five natural deltas: (a) Colville,
(b) Irrawaddy, (c) Yukon, (d) Niger, (a) Parana.
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Figure 4. Channel networks for five natural deltas: (a) Colville,
(b) Irrawaddy, (c) Yukon, (d) Niger, (e) Parana.
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PARANA

l0mi

4(e)

Figure 4. Channel networks for five natural deltas: (a) Colville,
(b) Irrawaddy, (c) Yukon, (d) Niger, (e) Parana.
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