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ABSTRACT 

This report demonstrates the applicability of classical statistical 

techniques to problems Involving compression and classificatlor  of multl- 

varlate data.    The theoretical foundations of two such techniques,   intrinsic 

analysis and discriminant analysis,  are treated in detail.    Efficient digital 

computer implementation is discussed,   Including the combined application of 

Intrinsic and discriminant analysis and a new algorithm for computing approx- 

imate intrinsic bases for very large problems.    Experimental results are 

presented on the application of these techniques as feature extractors in a 

signal  classification problem.    Also included is a description of the inter- 

active graphics-oriented system software which has been developed to facili- 

tate the application of these techniques. 
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Section I 

INTRODUCTION 

The research effort reported herein has been directed toward the Im- 

plementation of an Interactive, graphics oriented computer system for the 

representation, analysis and classification of multivarlate data.    Work has 

proceeded In two parallel areas:    development of the appropriate analytical 

techniques for,  and design of,  a software system tailored to the requirements 

of such a facility.    The ultimate purpose of the system Is to provide a tool 

for the systems engineer or scientist dealing with large scale problems re- 

quiring reduction and/or classification of high dimensional data, by supply- 

ing a means of evaluating the effectiveness  (or lack of effectiveness) of 

proposed approaches to his specific problems.    The system can also be used 

to Investigate the interrelationships among standard analytical techniques 

and to develop new data analysis methods. 

The typical application deals with sets of data whose members are 

measurement vectors, for example,  simultaneous outputs of a bank of sensors 

or discrete time samples  of a continuous function.    It is easy to display 

these vectors component by component, but this reveals little information 

about the overall statistical properties of the random processes from which 

they have been sampled.    Therefore it is desirable to find two-dimensional 

representations for the measurement space in which the members of entire 

data sets appear as projected points.    If the coordinates of this repre- 

sentation are chosen Judiciously,  the resulting projection may yield valu- 

able Insight Into the statistical relationships among the data elements. 

One of the major goals of this effort has been the development of 

analytical methods for selecting such coordinates.    These include means for 

efficient representation of data sets with highly redundant measurements 

(intrinsic analysis. Section II) and for viewing the separability of several 

distinct data sets  (dlscrlx..lnant analysis. Section III).    Classification prob- 

lems require automatic pattern recognition algorithms.    The pattern classifi- 

cation problem and several specific methods are discussed in Section IV. 



The primary consideration In the selection of all of these methods Is 

that they have a sound mathematical formulation. This Is to assure that the 

resulting system Is sufficiently general to be applicable to a wide range of 

problems, and to facilitate the analysis of Its performance. We, therefore, 

have avoided methods requiring Interactive human supervision In their execu- 
tion. Human Interaction Is generally restricted to the selection of the se- 

quence of processes, with their parameters, to be applied to the data and 

control of the interactive display programs. 

By applying sequences of elementary processes and observing the re- 

sults at each stage, the user may develop compound procedures appropriate to 

his application.    To emphasize the value of this building block approach, 

this report stresses the interrelationships among the analytical techniques. 

An example involving the application of information compression methods as 

feature extractors to improve the performance of a pattern classification 

algorithm is presented in Section V. 

The computer software which has been designed to aid in the implemen- 

tation of this system is described in Section VI.    This includes a disk file 

system, an on-line monitor,  an interactive vector projection display program 

and an extended macro assembly language,  in addition to the mathematical 

routines. 

The mathematical developments which follow are descriptive enough 

for the general reader with limited mathematical background to understand 

the underlying concepts, although familiarity with probability theory and 

matrix algebra Is deslrablt.    Extensive use is made of the concept of a ran- 

dom vector, which is a vector whose components are random variables.    No no- 

tatlonal convention is used to distinguish scalars, vectors and matrices; 

the distinctions should be clear from context.    Vectors are always column 

vectors; transposes of vectors are always row vectors.    Specific notations 

are defined as needed in the text. 
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Section II 

INFORMATION COMPRESSION 

A major problem in many data analysis and classification problems,  as 

well as data transmission applications,  is the high dimensionality of the 

data.   Data vectors arising from sampled continuous signals or their Fourier 

transforms, for example,  typically contain hundreds or thousands of sample 

points.   All but the most straightforward data analysis and pattern recog- 

nition techniques tend to bog down in numerical computations or become In- 

effective when dealing with such large problems.    One way to alleviate such 

problems is to find a more compact representation for the data which pre- 

serves as much as possible of its original information content.    We shall 

refer to this process as information compression or dimension reduction. 

The canonical data representation to be developed here is similar to 

Fourier analysis in that its components are inner products of the data with 

members of an orthogonal function set. However, the form of the orthogonal 

functions is not restricted to sinusoids. Thus it may be thought of as 

generalized harmonic analysis. It also has the desirable property that Its 

components are uncorrelated. 

Essentially the same technique has been developed by many authors  in 
1 2 several disciplines.    In multivariate statistics  (Wilks   and Anderson )  it 

is referred to as principal components analysis. It was applied by Kramer 

and Mathews    to speech bandwidth compression by encoding the output of a 

channel vocoder.    The term intrinsic analysis is due to Young and Hugglns _      __   ^ 

and is also used by Walter   and Colomb.      In communication theory (Daven- 

port and Root') and probability theory (Lo^ve  )   it appears as Loeve- 

Karhunen analysis.    The technique Is equally applicable to continuous (real 

or complex-valued) functions or vectors.    For our purposes, the vector formu- 

lation is more convenient, and will be developed here.   The extension to con- 
6 9 

tlnuous functions is routine  (see Colomb    or Watanabe ). 

The approximate data representations obtained through intrinsic 

3 



analycls are optimal In the least mean square error sense. It develops that 

they arc alno optimal  In the sense of minimizing an entropy function defined 
9 

on the coefficients.    This  Is shown by Watanabe,    who relates these two prop- 

erties  In the context of a pattern clustering and recognition problem.    An 

Instructive proof of the error minimization property is given by Anderson. 

Mostly for heuristic purposes, we offer here a simplified version which re- 

lies more heavily on algebraic eigenvalue theory.    We will also relate 

Watanabe's results on entropy minimization. 

1.    Intrinsic Analysis 

Let   X    be a random vector in the n-dimensional real vector space   V 

with probability density function   p(X).    If   P(X)    is a function of   X,  the 

expectation of   F(X)     is defined by 

J' E P{X)    =   J  P(X) p(X) dX 
V 

The mean vector u. of X is 

u =  EX 

and the autocorrelation matrix A of X is 

A = EX X* 

where prime denotes transpose.   A   is symmetric    (A(lt^) ■ A(J,i)) and the 

element A(1,J) =   E x(l) X(J) is the correlation of tye i-th and J-th elements 

of   X.    The euclldlan norm,  or length,  or a vector   v    in   V  is 

INI  = /|v(j)2V 

We define the energy of X as the expected value of the squared norm of X, 

namely 

E(X)  = E||x||2 = E E X(J)2 

J=l 
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Note that the energy of   X    Is equal to the trace of    A: 

n p n 
E(X)    =     S    E(X(J))       =     ?:    A      =    tr A 

J=l J=l    JJ 

Our approach to the dimension reduction problem is to find,  for any 

k < n,  a k-dlmensional subspace    V.     of    V   which maximizes '.he  onergy of 

the approximation of   X   by projection onto   V, .    It Is sufficient to find 

k    orthonormal vectors    {^.11=1, ,..,k}    which span   V,.    By orth anormal, we 
1 K •■" 

mean that 

dj dj = 0    for l/j 

dj ^ = 1    for 1=1,...,k 

The coordinates of   X    in V.    are the projections of   X    on the    d. 

c1 = 0; X 

and the approximation of   X    in the standard basis of   V   Is 

X    =   S    c    0 
K     1=1    1    1 

which permits reconstruction of the n-space representation of the approxima- 

tion. 

We define the relevance o. of d. in representing X as the mean 

squared projection of X on 0. 

o1 =   E(di X)2 = E(c2) 

Let S. be the matrix whose columns are the 0.. Then the projection from 

V onto the «.  basis of V.  is given by the standard change of basis trans- 

formation 

V <x 



and the enor^y    f th<' .k-alr^d nptlmal approximation Is 

k k 
KfXj        fH   C X ||2 - t   E    (dl X)? -   E   o. 

K K l-l      l 1-1    1 

So maxlmlrliv the energy of approxtmatlon In a subspace Is equivalent to max- 
imizing the oun   f tho rolovannes of the basis vectors. 

WJvn   k - 1, with   d,    denoted by   0, the problem Is to maximize 

o1  »  f (d'X)(X,Ä)  - «'   E (XX1)  6 ' 0' M 

whloh is the quadratic  form associated with   A«  the autocorrelation matrix 
of   X.   So tho normal vector   Ö   which maximizes   0    must maximize the quad- 
ratic form of   A   subject to the normality constraint   d' 0 - 1 > 0.    Using 
the Lagrango multiplier   \, define 

cr - *' Ad - \ (Ö1 Ö - 1) 

The vector of partial derivatives of   er   w.r.t. the components of   d   Is, 
2 

according to Anderson,    p. 3^7i 

|| ■ 2Ad - 2U 

If    ö   maxlmlzen    d Ad   with    d'd - 1 « 0, da/dd   must be zero, which yields 

AÖ - M 

the algebraic eigenvalue equation.   Since   A    Is an    atocorrelatlon matrix, 
It   Is positive semldeflnlte,  that Is, all of Its eigenvalues are ncn- 
negatlve.    Premultlplying by    0*, we have    d Ad = d'Xd - \, which Implies 
that    a    a X.    S: the maximum possible relevance to   X    of a normal basis 
vector is    \ ,  the largest eigenvalue of   A   and that vector Is the eigen- 
vector   d,    of    A    corresponding to    X.. 

We oxtend this result to arbitrary   k    by induction.    Having deter- 
mined    d,,...,d.  ,    and    E(X.  .), we seek the optimal orthonormal basis for 

V,    and its energy    E(X.).    Thlc basis must include    ^»•••»^<.i»  for other- 
wise   E(X.)    detomlned by the new basis could be improved by substituting 



7 
the missing   tf's    for members of the new basis orthogonal to the   d'a con» 

talned In   V, ., since the old basis Is optimal for k ■ 1-1.   So the problem 

la to maximize the additional energy EtiL)  - Btft* ,) obtained by adding one 
more basis vector.    As befor«, this le    o.  ■ dlAd., which leads to the eigen- 

value equation.    Therefore, the maximum additional energy Is obtained by 

projection on the olgonvecor   d   or   A   corresponding to the largest remain- 
ing eigenvalue   X.    of   A, and 

ElXj)  - EIX^j)  • Oj " Xj 

We conclude that the k«dimensional subspaee   V.    of   V   which contains 
the greatest fraction of the energy of   X    Is spanned by the eigenvectors 
0,,...,^ of the autocorrelation matrix   A   of   X   corresponding to the   k 
largest eigenvalues    \.t....X. .   The   0.    are called the Intrinsic basis 
vectors of   X.   The energy of the approximation In   Vk   la 

k k 
E(X ) - r o. - T:  XV K     j-i  1    j-i  K 

where   o.    Is the relevance of   0.   to   X.    A convenient measure of the per- 

formance of the Intrinsic analysis Is the fraction of the energy retained, 

which Is 

k 

XV       trA 

The above treatment Is valid If   X. >< > . whenever    1 / J and ).. =0, 
1 « l,.....m.   Equal eigenvalues determine an elgensubspace of the corres- 
ponding dimension and within this subspaee,  the orthonormal Intrinsic basis 
vectors may be chosen arbitrarily.   Similarly,  nero eigenvalues determine a 
subspaee orthogonal to the rest of the elgenspace.   For a detailed treatment 

2 
of these special cases, see Anderson. 

Maximization of the energy in the Intrinsic basis approximation is 
equivalent to minimization of the mean square error of the approximation.    To 
see this, we observe that when   k » n,  the intrinsic basis approximation Is 
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ex 
of the error vrctor)  is then 

exact, oo llvl(  • ||v(|.   The mean square error (the average squared norm 

.(^■Ei^-itjr 

n _ 

J"k+1    J 

-  E (?    (dlx)2  -   ^ (*;x)2) 
J-l      J J-l    J 

- Ell^xll - Ell^xM2 

= E(X) - E(Xk) 

Expressing the approximation energy In terms of the eigenvalues, the error 

becomes 

€ (X.) = E(X) - 'S X. = trA - S X. 
K        J=l J       J=l J 

and as a fraction of total energy, the error is 

ETXT "    tr A 

Intrinsic analysis corresponds very closely to a method of multlvari- 

ate statistics called principal components analysis.   The relationship be- 

tween these two techniques is as follows:     if the mean   u    of   X    is nonzero, 

the first intrinsic basis vector    d,    may tend to resemble it.    If   X    is 

symmetrically distributed about    u / 0,  then 6.   is a scalar multiple of    u. 

On the other hand,   it  is noted by Colomb,    p.  13, that there exist distribu- 

tions with zero mean having the same covariance matrix as a distribution 

with an arbitrary mean    u.    In practical situations, however, we may expect 

that If    a    is large,    d, will tend to have high correlations with most of 

the elements of    X    and,  therefore, have a strong similarity to a.    In 
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problems where  Interest Is focused on covarlances among the elements of   X 

rather than on cross correlations,   It Is desirable to eliminate this effect 

of the mean vector by performing the intrinsic analysis on the variable   X-u, 

which has zero mean.   This  is called principal components analysis.    The auto- 

correlation matrix   ^   of    X-u    is  called  the covariance matrix of   X.      A 

diagonal element of this matrix,   £ (X(i)   - u,(i))'' is the variance of X(l); 

a non-diagonal element,     gfXU)   - u(i))   (X(J)  - u(j))  is the covariance of 

X{1) and X(J).    With this change,  references to energy in the development 

for intrinsic analysis may be read as variance, which Is the energy of   X-iJ,. 

The eigenvectors of   S   are called the principal components of   X    because, 

properly ordered,  they account for the  "principal components"  of the variance 

of   X    about    u. 

At the level of machine calculations, these techniques are easily in- 

terchangeable because the autocorrelation and mean of   X    determine its co- 

variance by the  following relation 

Z =   EU-aHX-u}' 

=   EfXX1   - Xa'  - uX1 + M-a') 

=   EXX    -EXu    -uEX    +1x11 

=      A  - ua 

a 
Watanabe    has shown that intrinsic analysis satisfies another con- 

sideration In selecting a basis for information compression.    This is that 

the relevance measures   o.    should be highly concentrated on a few of the 

basis vectors rather than spread out more evenly.    If   •)..,.. .,4    is any 

orthonormal basis of   V   and we normalize   X   so that    E(X)  = 1,   then   c. 

is a probability measure on    b.}    with 

n 
o    > 0    ,      E   :    = 1 

1 " 1=1    1 

It Is then possible to Introduce the entropy function 

n 
H (Y) = -E c log c 

1=1  1 
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which Is a measure of the concentration of the p's. Watanabe demonstrates 

that the Intrinsic basis minimizes the entropy function as well as the mean 

square error. 

2.    Estimates of the Intrinsic Basis 

In practice,  the mean   \i and autocorrelation   A    of the random vector   X 

are seldom available.    It is then necessary to estimate them from a finite 

sample    {x , ...,x }    of   X.    The estimates are simple averages involving the 

sample vectors 

Ä      1    m 

m i=i   i 

*    i   m 

A = i   S    x.x' 
m 1=1    1 1 

Estimates of the  intrinsic basis vectors    0ir,..,S   and their relevances 

L,....^    are given by the eigensystem of    A (or of   E = A - uil'  In the 

case of principal components analysis).    Anderson,    p. 279,  shows that if 

the distribution of   X    is multivariate normal, then this process defines 

the maximum likelihood estimates of    d,,...,*     and    X.,...,X  . 

In real problems, the distributions involved are usually not multi- 

variate normal and are frequently unknown.    However,  it is demonstrated by 

K. Miller In Ref. 6, p. 7,  that    A (or E)  is the minimum variance linear 

unbiased estimate of   A (or y,).    Since the eigenvalues and eigenvectors are 

highly nonlinear functions of   A,   it is difficult to infer from this the 

variance of the errors in the estimated elgensystems.    Here we will merely 

mention some conclusions of a detailed discussion of the problem by Colorab, 

pp.  l8-?U.    First,  the eigenvalues are stable with respect to perturbations 

of    A    in that,  under certain conditions,  their variances are approximately 

equal to the variances of the diagonal elements of the error matrix   A-A. 

Second,  the eigenvectors are very stable  if their eigenvalues are well sep- 

arated "and as  the eigenvalues get close together ,   ,   . the stability de- 

creases until,  when the separation of the values is of the order of the 

perturbation,  no certain Information is attained about any Individual elgen- 

vector."    In the specific problems studied thus far,  the largest eigenvalues 

are nost separated while eigenvalues    belonging to low-energy subspaces tend 
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to cluster together.    However,   if the best eigenvectors collectively are 

used to represent   X    (which is the typical case)    the errors  in the eigen- 

vectors resulting from confusion with other eigenvectors  being uced are not 

harmful.    Thus,  the accuracy of the resulting representation may be better 

than that  indicated by consideration of the eigenvectors separately.    Fi- 

nally it  is noted that the ambiguity  In   A    usually decreases as the square 

root  of the number of samples  Increases. 

Errors in the intrinsic basis  can also result  from measurement and 

computational errors.    For purposes  of error analysis,   these can be treated 

as part of the ambiguity of    A.    While measurement errors   (sensor additive 

noise and quantization noise)  are unavoidable,  they are likely to be less 

significant  than the statistical sampling error already mentioned.    In 

implementations using a general purpose digital computer,  the computational 

error may be reduced to insignificance by using an accurate eigensystem 

algorithm such as Householder's Method  (see Wilkinson,       pp.  290-535). 

3.    Approximations for Large Problems 

In many infürmation compression problems, the dimension n of the 

sample data is In the hundreds or thousands. Such high dimensions intro- 

duce large  costs in terms of both computation time and computer memory. 

The time required for estimation of the autocorrelation matrix increases 
2 3 with    n     and for calculation of its eigensystem roughly with   n .    More 

serious,  perhaps,  are the random access memory requirements  of these proc- 

esses.    Unless the efficiency of the computations is drastically reduced, 

it is necessary to retain the entire matrix in memory simultaneously.    Since 

It is symmetric, this means that at least    n(n+l)/2    locations are required. 

Thus  if there are    S    available storage locations,   the maximum dimension 

which can be handled  is  less than    /2S.    For problems  too large for exist- 

ing hardware,   it is sometimes  possible to obtain useful c.pproxlmations  of 

the estimated  Intrinsic basis by the procedure described  by Roper.  '    The 

rest of this  section Is devoted to a summary of this method. 

The  Idea behind the approximation is to break a  large  eigensystem 

problem up  into several small ones and use their solutions  to reduce the 

size of the problem;  this  is equivalent to a plecewise dimension reduction 

by intrinsic analysis.    We denote  the n-dimensional symmetric matrix in 

question (In this case,   the estimated autocorrelation matrix)  by   M,  and  its 



2 
true elgennyctom by (Ajf). We partition M symmetrically Into p  sub- 

matrices M , and find the elgensystems {A.,$,) of the p diagonal sub- 

matrices M... Next we discard all but the k, most relevant eigenvectors 
11 p 1 

from each *. (t k = k •- n), and form the n X ' matrix f with the $. 
1=1 1 

as submatrlces along the diagonal and zeros elsewhere. Note that $ In- 

herits the orthonormallty of the ^,. Therefore 

form M Into a k x k dimensional approximation 

herlts the orthonormallty of the *. Therefore, $ can be used to trans- 

M = #' M I 

whose elgensystem,  given by    M 6  = 6  A,  satisfies 

e'  M t)  =    A 

Combining these, we have 

6 $' M $ 9 = A 

If we define 

v = $ 

the above relation becomes 

w' M ¥ = A 

and  (A,  y) Is the approximation of the first    k   members of    (A, y).    It Is 

easy  to show that the columns  of    Y    are orthonormal,   so If    M    Is an es- 

timated autocorrelation matrix,   the above expression Implies that the rel- 

evances of the approximate eigenvectors (to the energy of the sample vectors) 

are equal to the correspcndlng approximate eigenvalues.    This fact can help 

determine  the value of such approximations  In dimension reduction problems, 

but unfortunately it cannot tell u^ how far we are from the optimal repre- 

sentation.    To minimise this deviation,  it is advisable to make    k   as  large 

as possible even though fewer components may be used  in the final representa- 

tion. 
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One further refinement is possible (and necessary If M does not fit 

In memory). In addition to speeding up the elgensystem calculations. It 

allows us to reduce the time required for computation of M. This Is done 

by computinp; directly only the M... The M. . are then computed from data 

vectors in the reduced $ basis. The savings realized are substantial, 

especially when the number of sample vectors is large. Details on imple- 

mentation and further discussion of the reductions In computation time may 

be found in Roper. 



Section III 

DISCRIMINATION AMONG SAMPLE CLASSES 

In the previous section we were concerned with samples of a single 

random vector. Here we will consider several distinct classes of samples 

drawn from random vectors with different multlvarlate distribution functions. 

The methods described here are motivated by the requirements of a 

graphics-oriented data analysis facility.    In the typical data reduction 

and classification problem,  the scientist or systems engineer is concerned 

with whether the available measurements (components of the sample vectors) 

are adequate to determine class membership,  and with which class the meas- 

urements are most useful.    For projection on a computer display, a two- 

dimensional subspace of the measurement space must be selected.    Coordinate 

projections are not very useful since they Ignore the information in all 

but two of the measurements.    Intrinsic basis representations embody in- 

formation from all or most of the measurements,  but make no use of class 

membership Information.    The alternative suggested here  's a low-dimensional 

representation for the sample vectors which tends to cluster together samples 

within each individual class while emphasizing the variations among all the 

classes.    Such a projection gives the analyst the optional two-dimensional 

linear projection of his classification problem which can yield Insights 

into its statistical characterlsticr,  for example,  the degree of linear 

separability of the sample classes. 

One further motivation for using such representations lies in the im- 

plementation of automatic pattern classification algorithms.    The performance 

of most algorithms  is  improved  if the pattern vectors are first subjected to 

a transformation which clusters samples within the same class. 

This srction begins with a derivation of the discriminant analysis 

technique.    There follows a discussion of estimation and computation of the 

discriminants.    A serious computational problem arises when the number of 

sample vectors is small relative to their dimension.    A way of circumventing 

this problem by prior application of Intrinsic analysis  is suggested, 

14 



15 

1.    Discriminant Analysis 

Discriminant analysis,  like principal components analysis,   Is a tech- 
12 

nlque of multlvarlate analysis of variance.    It  Is developed by Hotelllng 

and Wllks.      A detailed exposition,  with applications to the data display 

problem.   Is offered by Colomb.        As  In Section II,  our exposition will be- 

gin by treating random vectors.    Then,  with the theoretical groundwork es- 

tablished,   It will be expanded to Include  finite samples of them. 

Let X..,...,X    be n-dlmenslonal random vectors with mean vectors 

ii.,,...,u    and covarlance matrices W,,..,,W  .    Each random vector    X.     Is 

Identified with a sample class    C..    The within-class covarlance matrix, 

which describes covarlance about class means,  is obtained by averaging the 

covarlance matrices of the classes 

1    r 

w=F   Z   W 
i=l 

the grand mean is the average of the class means 

i L 
n = - E \x 

1=1 

and the among-classes covarlance matrix,  which describes covarlance of the 

class means about the grand mean,  is 

A = - y  u.u. - uu 
r 1=1 1 1 

Principal components analysis produces vectors,  or directions,   in which the 

covarlance of a random vector Is maximized.    Discriminant analysis  finds 

vectors which maximize the among groups  covarlance while minimizing the with- 

in groups covarlance.    Prom the discussion of intrinsic analysis,  we recall 

that the relevance of a vector   d   to the covarlance described by    S    is 

0'^.    Thus we want to find a discriminant vector    d   which maximizes 

2 
ÜA 

2 
^w 

d'Ad 

d'wd 
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the ratio of the relevances,  or variances In the direction of   d.    This can 
2 2 be accomplished by maximizing   a.    with    a.    held constant.    Again using    \ 

to denote a Lagrange multiplier, a necessary condition for this maximization 

is 

—   jd'Ad - X.'d'Wd  - constant)! = 0 

2 Ad - X 2 Wd = 0 

or 

Ad   =    \Wd 

This Is the generalized algebraic eigenvalue equation.   The number of dis- 

tinct, non-trlvlal solutions (discrlMnant vectors)  Is equal to the rank 

of   A,    which Is    r-1    (the number of classes minus one).   The subspace 

spanned    by   d1,,.,,d is called the discriminant space.    (Since the dis- 

criminant vectors are not necessarily orthonormal,   it is desirable,   in prac- 

tice, to orthogonalize them to obtain an orthonormal basis for the discrim- 

inant space.)    Finally, we note that since we can pre-multlply the above by 

d'  to obtain   d'Ad = d'Wfd, we have 

2 
.      d'Ad.^A 
K     (TM ~    2 

aW 

Therefore, the eigenvalues indicate the ratio of the among-class to the with- 

in-class variances of projections on the corresponding discriminants. 

2.    Discriminant Computations 

One of the advantages of intrinsic analysis is its ability to reduce 

a high dimensional set of data with redundant measurements to a lower dimen- 

sional representation.    Provided that the number of samples available be suf- 

ficient to provide a reasonable estimate of the intrinsic basis.    The situa- 

tion Is quite different with discriminant analysis.    As we shall see,  the 

discriminant computations are impossible if the number of samples is less 
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than their dimension. 

Suppose the random vectors    X.,   1=1,..,r   are represented by sets of 

sample vectors 

{xiJj=l,...,m1|    were 
r 

-4 *id--. • ••."'* |     "-*- m =   i.   m ij u 1=1    i 

the means and covarlance matrices of the sample classes are estimated by 

m. m 

^1     mi .^     IJ  ' 1     mi    .^    IJ     IJ        11 

The grand mean and among-groups covarlance matrix are estimated by 

1    r I    r 

m._,    11 m ._,    1 l l 

and the wlthln-groups covarlance matrix by 

1    r, 

m 1=1    1 1 

Estimates of the discriminants are the solutions of generalized eigenvalue 

equation 

Ad = 6 Wd 

which may be reduced to the ordinary eigenvalue equation by a fast and ac- 

curate process given by Wilkinson,  pp. 337-^0. For details of the com- 

putations and a discussion of the numerical errors Involved, the reader Is 

referred to Colomb,  pp. 18-20. The fact which concerns us here Is that 

the reduction requires what amounts to an Inversion of W, The rank of W 

Is less than or equal to m-r. So If 

m < n + r 
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where    n    Is the fllmenalon of thu samples,    W    Is singular and Its  Inverse 
14 does not exist.    3treetor and Ravlv,        p.  l6, have experimentally evaluated 

three different rnean^ of avoiding this singularity problem,  Including the 
Mooro-Penroso genorallzed  Inverse and the    'H'  Inverse of T. Harloy. 

Both of thesp approach-js  Introduce artificial constraints on the solution 
and are cumbersome tu Implement.    The third approach,  suggested by Streeter 

and Ravlv, gave the best results.    Their Idea Is to use intrinsic analysis 

to reduce the dimension of the samples so that the discriminants may be 
computed. 

It has been found convenient to use principal components analysis rather 

than intrinsic analysis.    The principal components    *i»«"»\   are eigenvec- 
tors of the total covarlance matrix of all the samples about the grand mean 

T = i   ^     Z   x..x    '  - uu' 
m 1-1 J-l    1J 1J 

It can easily be shown that 

T = A + W 

that is, the total covarlance equals the among-classes covarlance plus the 
withln-class covarlance. 

The samples are represented using the first    k    principal components 
as 

x.. = #,' x. 1J      rk "1J 

where 

*k T *k = ^ 

the approximate covarlance matrices    A   and   W   are then computed as before 
using the    x,.,  and the new discriminant vectors are the solutions of 

Ad   = « tfd 
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Even when It Is not mathematically necessary, tnls apprcxlmatlon may 

bo valuable In reducing the storage requirements for discriminant analysis, 

which are roughly twice thoco of principal components analysis, or because 

of the time savings resulting from the lowered dimension of the discrimi- 

nant problem. Those savings are detailed by Colomb,   pp. ^0-23, who shows 

how to obtain further savings by taking advantage of the fact that 

W = Ak-A 

This follows because A + W = T, which, In the principal components basis, 

is A. . This makes it possible to avoid direct calculation of W and even 

the transformation of the sample vectors, since A can be obtained by trans- 

forming only the class means. 

The principal components approximation can also be useful in improv- 

ing the accuracy of the discriminant vectors. Even when W is not singu- 

lar, it may be very ill-conditioned. (The condition number of a symmetric 

matrix is the ratio of its largest and smallest eigenvalues.) An ill- 

conditioned W may introduce instabilities into the inversion process and 

errors In the resulting discriminant vectors and values. The discriminant 

equation may be rewritten 

Ad = 6 (T-A)d 

or 

Ad = tr^r Td 
1-0 

Solution of this form requires inversion of T, but in the principal compo- 

nents basis, T = A^ is diagonal. Thus, by an appropriate choice of the re- 

duced dimension k, we may ensure that f has any required condition num- 

ber. The only remaining question is that of the optimal choice of k. This 
15 problem is treated in great detail by Colomb. 



Section IV 

METHODS OF DATA CLASSIFICATION 

In many Instances the ultimate goal of the Information compression 

and discrimination techniques described above Is the efficient Implementa- 

tion of a procedure for data classification or sorting. We are concerned 

here with classification of observations Into one of several previously 

known categories. The pattern recognition problem has been formulated in 

several disciplines, including information theory, switching theory and 

control theory, and an informative survey of the field is offered by Nagy. 

We will review here the usual formulation in terms of statistical decision 
17 

theory. Works of general interest in this area include Sebestyen, ' 

Highleyman  and Nilsson.   The treatment by Nilsson is most convenient 

and will be drawn on heavily here. We will discuss the implementation of 

pattern classifiers using discriminant functions, some optimal methods for 

normally distributed patterns, and the problem of estimating unknown 

multlvariate probability density functions (called densities, for conveni- 

ence) from finite training samples. We will review several approaches to 

this problem and discuss the most promising in some detail. 

1. Bayes Optimal Decision Rules 

Statistical decision theory provides a means of specifying rules 

for pattern classification which are optimal in the sense of minimizing 

average losses due to incorrect classification, A good treatment of this 

approach is found in Robblns,   We assume the existence of r pattern 

categories C. with a priori probabilities of occurrence p(i), for 

1=1,.,.,r. We must also specify a loss function Jt(l|j) which represents 

the leas resulting from assigning to category i a pattern which actually 

belongs to category J. Using the loss function, the conditional average 

loss of assigning pattern X to category 1 is defined by 

r 
L (X) = Z i(l|j) p(j|x) 
1     J=l 

20 
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where p(j|x) Is the probability that, given X, Its category Is actually J. 

The average loss Is, therefore, minimized by assigning each X to the cate- 

gory 1  for which 

L.  (X) < L^X) for 1 = l,...,r 
o 

Such a decision rule is called a Bayes strategy. Using Bay es' rule we may 

write 

P(J|X)= p(xljV(J) 
pTxT 

where pUlj) is the density function of category J evaluated at X. 

The conditional average loss then becomes 

,   r 
Li(x) =FTxT s Jt(1';,) ^^ p(J) p

-' J=l 

Since    P(X)    is independent of    1,  it need not be evaluated in minimizing 

L.(X).    It remains to evaluate the probability density functions    p(x|j) 

of each category at   X.   This Is the central problem of pattern classifi- 

cation.    In some Instances the losses incurred by all mlsclasslflcatlons 

are equal.    This situation is described by the symmetric loss function 

Jt(l|j) = 1 - «u 

which Is zero for correct classifications and one otherwise. The problem 

is then reduced to minimizing 

L1(X) " 1 pfxl  

which, if all categories are equally likely, is equivalent to maximizing 

p(x|l). Such a rule is called a maximum likelihood decision rule. 

The Bayes strategy may be explicitly Implemented only if the p(x|j) 

are already known. In practical situations, this is not the case and the 

densities must be estimated from samples of the categories. Their functional 
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form i-w sometimes known In advance (or more often assumed). In this case the 

problem Is reduced to estimating the parameters of the density functions. 

This is called the "parametric" approach. For certain forms, notably the mul- 

tlvarlate normal, convenient realizations of the optimal decision rules have 

been derived, levoral of which are described in this section. The weakness 

of this approach is that actual density functions do not usually conform to 

the assumed forms; this can result in badly suboptimal decision rules. An 

example of this is the case where the actual densities are multiracdal. 

The opposite "nonparametric" approach makes no assumptions about the 

density functions, except that they are reasonably smooth, and it approximates 

the entire function from sample patterns. These approximations become impracti- 

cal as the dimension of the pattern vectors Increases, because their domain 

is the pattern space and the number of points Involved in a discrete approx- 

imation increases exponentially with the dimension. The problem is sim- 

plified if the components of the pattern vectors are statistically Independent, 

for then 

n 

P(x|j) =11 P(xjj) 
k=l   K 

where    n   is the dimension.   Here we need only approximate   n   unlvarlate 

densities for each category.    If the components are not Independent, but the 

categories have equal covarlance matrices,  then new.  Independent variables 

may be found by diagonalizing the covarlance matrices (see Section II).    How- 

ever,  there appears to be no general solution to the approximation problem. 

Most practical schemes approximate the densities indirectly through the use 

of discriminant functions (see below) which are equivalent,  in terms of 

classification,  to certain density function approximations.    This problem, 

and various attempts to solve it,  are discussed In greater detail under 

"Nonparametric Methods." 

2,    Discriminant Functions and Decision Surfaces 

The theoretical foundation for the concept of discriminant functions 

and their role in pattern classification is summarized below.    (The discrim- 

inant iMrictlrnc of decision theory should not be confused with the discrim- 

inant vectors of multlvarlate analysis of variance,  treated in Section III.) 

Geometrically,  a pattern classification rule is equivalent to a 
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partition of the pattern sp?oe Into disjoint regions corresponding to the 

categories.    These regions  are called decision regions and the surfaces sep- 

arating them are called declslcn surfaces.    The decision regions    R..,...,R 

of any r-category pattern classifier may be Implicitly defined by a set  of 

r discriminant functions    g-jU),...^ (X) which satisfy,  for every   X    in 

Rl 

g^X) 2 SM)    for    l,J=l,...,r 

Then the decision surface separating   R.    from   R.    Is given by 

g^X)  - gjlX) = 0 

For example,  the discriminant functions which determine the decision regions 

of the Bayes strategy are the negatives of the average loss functions: 

-L1(X). 

Discriminant functions are widely used in pattern recognition applica- 

tions because of their relative ease of Implementation.    However, as the prob- 

ability densities of the pattern classes become more complex,  so do the cor- 

responding optimal discriminant functions.   Therefore, much work In pattern 

recognition theory has been devoted to finding suboptimal discriminants of 

simple forms which closely approximate the performance of optimal functions. 

It Is desirable to consider families of discriminant functions where members 

are determined by a modest number of parameters (which must be stored in any 

implementation of the resulting classifier).   There Is a useful class of 

function families whose members depend linearly on their weights.   Such dis- 

criminant functions are referred to by Nllsson as    $ functions and may be 

written 

$(X) = w0 + w1 f^X) + ... + wMfM(X) 

where the    f.(X),  1=1,...,M, are linearly Independent, real,  single valued 

functions Independent of the weights.    The number of weights    M + 1, which 

determine the    *    function,  is called the number of degrees of freedom of 

the family.    We will consider here only    $    function families whose members 

are polynomial functions of the components of   X.    The potential performance 
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of polynomial discriminant functions Increases with the degree of the poly- 

nomials, but so does the number of weights necessary to Implement them. In 
f 

fact, Increasing the maximum degree of the polynomials from d-1 to d adds tact,   mcrea 

possible degrees of freedom when n > d.    It  Is,   therefore, 

necessary to limit the maximum degree    d    of the polynomials. 

When    d = 1,  we have 

MX) = x    for 1=1,...,n 

and the $ funct.'ons are 1 Inear In the components of X, with n+1 degrees 

of freedom. For d-2, the f. are of the form 

Pl  P2 f (X) = x   x       for k ,k2 = 1, ,..,n 

P1,p2 =0,1 

resulting In quadrlc    f    functions with (n+1)  (n+2)/2 degrees of freedom. 

In general,  the    f     are d-th   degrees polynomials 

P,      P2 Pd 
f1(X) = xk     xk        '** \ for k

1»"«»kd = l....»n 
12 d 

P|i •• ..Pjj = 0,   1 

and the    9 functions are general   d-th   degree polynomials in the components 

of   X   with  (    n)    degrees of freedom.    Note that at least In theory, an ar- 

bitrary continuous discriminant function (for example,  the likelihood func- 

tions    p(x|l))   may be approximated to any desired degree of accuracy by ap- 

oroprlate choice of   d.    Later we will realize the usefulness of this fact. 

It  is  Instructive to consider the shape of the decision regions 

defined by polynomial discriminant functions.    Since categories are assigned 

by finding the maximum   g.(X),  the decision surface separating regions   R 

and    R.     satisfies b 

ga(x) - gb(x) = 0 

Since linear decision functions have the form   g(X) = w. + w.x.. + .., w x , oil n n 
this  Is 
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{\  ■ V5 Xl+  ••• + (Wa    -Wb  ) \ + (Wan  " V  =0 

11 n n 0 0 

Thus each decision region of a linear pattern classifier Is convex and  Is 

bonded by no more  than    r  - 1    hyperplanes  uf dimension    n - 1. 

A quadrlc discriminant  function has the form 

g(X)  - w    +   Z   w x   +   Z     E    q,,x x 
U      J=l    J J      J=l k=J    JK J K 

and Is determined by its 1 + n + n(n-l)/2 weights. This can be expressed 

in matrix form as 

g(X) - w0 + W'X + X'QX 

where W is the vector whose elements are the linear weights and Q is 

the symmetric matrix whose elements are the weights of the quadratic terms. 

So the quadrlc decision surface separating Rr and R satisfies 
d D 

x,(Qa -Qb)x + (wa - Vx + 
(\'\] = n 

The shape of the quadrlc surface depends upon the quadratic form XMQ    - fth)
x» 

If (Q    - (^ )  Is positive  (or negative) definite,  the surface is called a 

hyperellipsoid; if (Q    - Q. )  is not positive (or negative definite,  the sur- 

face is called a hyperhyperboloid.   In general,  polynomial discriminant 

functions of degree    d    result In d-th order decision surfaces in the pat- 

tern space. 

The higher the order of the optimal polynomial decision surface,  the 

better its ability to separate pattern categories with complex distributions. 

A set of categories which can be correctly identified by linear decision 

functions Is  called linearly separable.    A ^amily of    i    functions  Is deter- 

mined by its component functions    f.(X),  1-1,...,M.    These component functions 

can be used to define a transformation 

F(X) = (f^X),....^)) 

from the pattern space into an M-dlmenslonal space called the $ space. 
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Thus a decision surface In the pattern space implied by a given set of   $ 

functions has corresponding to it a hyperplane in the    $    space.    If a set 

of categories is correctly identified by the    #    functions,  it is linearly 

separable In the    *    space.    In Section V we will see that the feature ex- 

traction problem may be viewed as the choice of an appropriate set of    $ 

functions. 

3.    Discriminant Functions for Normal Populations 

If the probability density functions of the categories are multivarl- 

ate normal,  the optimal discriminant functions for a symmetric loss function 
19 may be derived explicitly (see Nllsson,        p.  55).    They are 

g^X)  = w0 + [(X - i^)' E"1 (X  - tij) 
1'J 

where u and T!  are the mean vector and covarlance matrix of category 1, 

and w0 = In p(l) - l/2 Inl^.l, for 1=1,,..,r. So the optimum discriminant 

functions for normal patterns are quadric. 

In the case of equal covarlance matrices these can be reduced to 

linear discriminant functions. Furthermore, if the covarlance matrices are 

the Identity and the a priori probabilities are equal, the (maximum likeli- 

hood) discriminants are given by 

g^X) = X1 ^ - 1/2 uj^ for 1 = 1,...,] 

Notice that equivalent classifications are obtained by minimizing the squared 

distance from X to u., which is 

dlst2 (X,^) = (X - a1)
1 (X - u1) = X'X - 2 X* ^ + n^ 

b cause    X'X    is constant over    1, and so may be eliminated.    These linear 

discriminants are widely used when little is known about the distributions of 

the patterns because they satisfy the Intuitive notion that unknown patterns 

should be assigned to categories  (represented by the means) to which they 

are close.    Due to these considerations, we will use the minimum distance 

criterion to demonstrate empirically the value of Intrinsic analysis and dis- 

criminant analysis for pattern classification in an experiment described In 

Section V. 
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4.    Nonparametrlc Approaches 

We now return to the problem of approximating arbitrary multivariato 

density functions from training samples.    As we have seen,   if the components 

of the patterns are statistically independent,  these can be written as 

products of univariate densities.    But the independence assumption is not 

usually Justified,  so we must,  in effect, estimate the Joint probabilities of 

the components of each possible pattern vector.    For high dimensional pattern 

spaces this is very impractical and it is necessary to find some means of 

representing the densities Indirectly.    A productive technique for binary pat- 

terns is reported by Chow.       Here the pattern space   B   comprises the    2 

vertices of an n-dlmenslonal cube; the density functions are expanded as lin- 

ear comblnstions of Walsh-Rademacher functions, which form a complete ortho- 

normal basis for the space of real valued functions on   B. 

For continuous patterns the density function space becomes Infinite 

dimensional.    Various formal expansions for the continuous case have been pro- 
22 

posed, for example, using Laguerre polynomials (Krishnomoorthy    ), but they 
23 

are quite impractical,    Kanal,      pp. 4-20, reviews the problem of constructing 

orthonormal expansions and concludes:    "In the multivariate case we are really 

faced with the curse of dimensionality and the prospect of constructing prac- 

tical systems for adaptlvely approximating likelihood functions based on or- 

thogonal expansions seems dim." 

, Another alternative Is to give up direct estimation of densities and 

adopt a classification procedure which deals with the sample patterns di- 

rectly and only implicitly Involves the densities.    Perhaps the most straight- 

forward approach of this type is the "nearest neighbor decision rule" by 

which an unknown pattern is assigned to the category containing the training 

sample closest to it according to some metric defined on the pattern space. 

This is equivalent to the minimum distance criterion already described, with 

each sample point defining its own subcategory.    The resulting decision sur- 

faces are plecewlse linear and will,  in general,  perform better than the cp- 
24 

tlmal linear boundaries.    It has been shown by Cover and Hart      that the er- 

ror rate of this rule is at most twice that of the Bayes optimal classifier 

for an infinitely large training set.    Of course,  the problem Is that as the 

number of training samples increases it becomes impractical to compute dis- 

tances to all of them.    One method which is frequently used to overcome this 

difficulty Involves partitioning the samples into subcategorles which tend 

mam 
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to cluster tognthor.    Modal points  (typically means) of theae subcatogorles 

are then uood to Implement the nearest neighbor rule.   See,  for example, 

Plrsohlen and Plnrhler.'      This "mode seeking" approach can be very produc- 

tive but some rare must be taken in the selection of clustering algorithms 

and their parameters  for specific problems.    In fact, according to Sammon, 

p.  11, the performance of all known clustering algorithms Is so sensitive 

to the settings of their parameters that "the proper setting usually can only 

be determined by a trial and error method." 
27 

Closely related to this Is the attempt by Sebestyen     to estimate an 

arbitrary density function as the mean of a small number of normal densities 

approximated from subcategories.    Besides ad hoc rules for "adaptive sample 

set construction," this approach involves division of the pattern space into 

cells and,  therefore,  runs into difficulty as the dimension increases.    The 

fundamental assumption of both the mode seeking and adaptive sample set con- 

struction methods Is that the densities in question can be well represented 

as the sum of symmetric normal densities.   Thus they are particularly effec- 

tive in handling mult 1-modal densities. 

The idea of approximating density functions as means of normal den- 

sities is carried to its logical extreme in an elegant technique proposed by 
28 

Specht,     who generates a symmetric density of normal form 

^^ = STTT   exp 
1 {2TT)n/ an 

•iix-sjr 
1— 

2a 

about each sample pattern S.. These "interpolation functions" are aver- 

aged over all patterns in the training set to obtain the approximation. It 

is shown, p. 31, that as the number of samples becomes infinite, and as the 

"smoothing parameter" a -• 0, the approximation converges to the true 

density wherever It is continuous. In order to evaluate the approximation, 

the exponentials In the interpolation functions are written, using the series 

expansion, as polynomials in the components of X. The truncated expansions 

may then be used in d-th degree polynomial discriminant functions to im- 

plement a Bayes strategy. This is referred to as the "polynomial discrimi- 

nant method." 

It is interesting to note that as c -* *,  the resulting decision rule 

becomer, the minimum distance classifier, and as 7 ■* 0 it becomes the nearest 
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neighbor rule; the corresponding declolon surfaces range from strictly linear 

to highly nonlinear. In practice, the shape o ' the decision surfaces also 

depends on the degree d of the trurioated polynomial approximation, (See 

Section IV-2 above.) Generally r-peaklng, the higher the degree, the larger 

the value of ? necessary to obtain an adequately smooth approximation. 

This method, like all others. Is subject to "the curse of dimension- 

ality," Specht shows that the number of training samples required to obtain 

approximations of a given quality Increases exponentially with the dimension 

of the pattern space, (It also Increases as c   Is made smaller.) Neverthe- 

less, the polynomial discriminant method seems to be applicable when only a 

small number of training samples Is available. In fact, In an experiment 

Involving separation of normally distributed categories. It actually out- 

performed the optimal (quadratic) classifier (see Section IV-3) based on es- 

timates of the means and covarlances. In the experiments eight samples were 

drawn from each category, but since their dimension was only five, It may not 

be valid to extrapolate the results ';o higher dimensions. 

Finally, the polynomial discriminant method shares the practical ad- 

vantages of matched filter methods over most other techniques. The coefficients 

of the polynomials are simple averages of the corresponding coefficients con- 

tributed by each training sample. Thus the classifier may be made adaptive 

simply by updating the discriminant functions as new samples are obtained. 

Also, unlike iterative techniques, only one look at each sample is required. 

The classifier can adapt to time varying statistics If exponential smoothing 

Is used to update the coefficients. Prom both the practical and theoretical 

viewpoints, Specht's method Is, In this author's opinion, the most promising 

nonparametrlc approach to Bayes optimal classification. 



Section V 

INFORMATION COMPRESSION APPLIED TO 

DATA CLASSIFICATION PROBLEMS 

In the previous Section we considered the pattern classification 

problem In isolation.    The design of a system for pattern recognition gen- 

erally Includes two other stages:    feature extraction,  the problem of what 

measurements to use, and optimization of system parameters.   Since the op- 

timal parameters are dependent on the statistical properties of the data, 

they are usually estimated empirically; this problem will not be discussed 

further.    This Section considers the feature extraction problem and the 

applicability of principal components analysis and discriminant analysis. 

Experimental results are described in which both methods were used as feature 

extractors for a minimum distance classifier, 

1.    The Feature Extraction Problem 

Feature extraction is the process of selecting a relatively small 

number of measurements or combinations of measurements which tend to de- 

scribe the characteristic features of the pattern classes.   There are two 

basic goals:    (a) minimizing the number of features and the resulting dimen- 

sion of the classifier,  and (b) finding features which determine a space In 

which the members of each pattern class will tend to cluster together, thus 

Improving the performance of the classifier or making it possible to use a 

simpler algorithm.    In some Instances physical considerations will Indicate 

an appropriate choice of measurements and feature extraction is primarily 

an engineering problem.    Our consideration here is restricted to the situa- 

tion In which a well defined set of sensor measurements already exists and 

the problem is to select  features from these measurements.    In this context 

feature extraction may be thought of as a mapping from the measurement space 

into a  "feature space" which accomplishes either or both of the above goals. 

In Section IV-2 we saw that the component functions of a    *    function 

family determine a mapping from the measurement space  into the    I    space,   in 

30 
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which the decision regions are linear.    The choice of good component functions 

may thus be regarded as feature selection If it Improves the performance of a 

linear classifier In the    *   space.    Consider,  for example,  the polynomial 

discriminant function of Section lY-11.    The terms of the polynomials are the 

component functions.    Goal (b) of feature extraction Is satisfied by these 

polynomial terms,  because as the degree of the polynomials Increases the 

Bayes optimal classifier Is more nearly approximated.   But goal (a)  Is not, 

because the number of terms Increases rapidly with the degree of the poly- 
28 

nomlals so that the number of measurements  Is actuolly Increased,    Specht, 

however, proposes methods for eliminating terms which are least useful In 

classification. 

The feature extraction problem does not lend Itself to a general so- 

lution.   This Is partly because the goodness of the features can ultimate j 

be Judged only on the performance of the recognition system, which depends 

also on the classification algorithm used.    Another difficulty Is the un- 

bounded number of feature space transformations which are possible.    If we 

consider only selection of measurements,  for example, there are I   j possible 

subsets of   p   measurements chosen from a set of   n.   Some workers'report 

success by simply choosing random subsets of redundant measurement sets. 

Another approach is to define some measure of the Information content of 

each measurement relative to the classification of training categories. 

Measurements are then selected which have the largest information content. 

Since the above techniques treat measurements separately, they Ignore the 

Joint densities of the measurements,    A nonparametrlc method for evaluating 

measurement subsets which does consider the Joint densities is proposed by 
29 

Fu.       This method employs direct estimation from multivarlate density 

estimates of the error probability of a particular measurement subset; how- 

ever.  It of Tars no guidance for the choice of prospective subsets.    For 

more detailed discussions of feature extraction and references,  consult Fu 

or Nagy,        pp. 852-85'+.    In the remainder of this Section, we consider 

the application of intrinsic analysis and discriminant analysis to  the 

feature extraction problem. 

2.   Application of Principal Components Analysis and Discriminant Analysis 

The linear dimension reduction and data discrimination techniques re- 

viewed in Sections II and III find useful application in feature extraction. 

They produce linear transformations which may be applied to the measurement 
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space to obtain reduced dimension and Improved performance of pattern classi- 

fiers,  or at least linear classifiers, which we shall consider here.    Hlgh- 
18 

leyman,      p.  1505,  shows that any pattern classifier using linear discrimi- 

nant functions  Is  Invariant under nonsIngular linear transformations of the 

measurement space.    But an appropriate singular (dimension reducing)  trans- 

formation can improve performance. 

Principal components applied to the pooled sample sets (Section III-2) 

yields a linear transformation into the subspace of the measurement space 

spanned by the principal components.    This transformation acts as a subop- 

timal feature selector by reducing the linear redundancy of the measurements. 

We have seen that the coefficients in the subspace are mutually uncorrelated 

over the ensemble of all the categories.    This fact may tend to simplify the 

densities in the principal components basis.    Also, by eliminating low vari- 

ance components,  the transformation could actually eliminate random noise 

present in the measurements.   But its primary applicability is to goal (a) 

of feature extraction,  dimension reduction.    In an application to crop clas- 
29 

sification (Pu    )  this approach was compared with the method of minimizing 

estimated error probabilities.    The results were about equal if more than 

three features were allowed. 

The above method does not consider class membership information and 

so could discard components related to it.    The natural remedy to this 

danger is discriminant analysis, which maximizes the variance of class means 

relative to within class variance.    The dimension reduction is extreme,  since 

the number of discriminants is one less than the number of categories.    Thus 

if there is a small number of categories,  the representation in the discrim- 

inant space may not be adequate to represent complicated densities.    We shall 

see, on the other hand,  that it can be very effective for problems with any 

degree of linear separability, 

3,    Experimental Results 

Principal components analysis and discriminant analysis were applied 

to a classification problem involving aircraft radar frequency signatures. 

Each sample pattern comprised measurements of 320 frequency components.    Eight 

distinct categories were represented by a total of ?8l samples.    The samples 

of each category,  an average of 35. were divided as evenly as possible into 

a training set and a testing set.    Mean vectors of the categories and the 

grand mean were estimated from the training sets.    Principal components of 

mtmm 
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the pooled training sets were estimated by the approximation method described 

In Section II-3.    To reduce the dimension sufficiently to compute estimated 

discriminant vectors for the training sets,  the samples were represented  In 

terms of thr   ^"St 70 principal components.    The representation retained  97^ 

of the variance of the training data,  while achieving a dimension compression 

of more than four to one.    Finally,   the seven discriminant vectors were or- 

thogonallzed to form a basis for the discriminant space. 

The approximate principal components and the orthonormallzed discrimi- 

nants both span subspaces of the pattern space with origin at    u,  the grand 

mean.    Representations of the pattern vectors and the category mean vector 

estimates In these subspaces were obtained by the change of basis transforma- 

tions 

Xv = Y'   (X-M.) 

XD =Dl   (Xv)  =D,v,  (X-u) = (YD)'   (X-u) 

where   X    Is a vector In the pattern space and the columns of    V    and   D    are 

the principal components and the discriminant vectors. 

The minimum distance classification algorithm described  In Section 

IV-3 was applied to the test patterns directly and in these two representa- 

tions.    The error rate in the original basis was 26.3%, 

At best,  the principal components representation Improved this per- 

formance only negligibly,  to 25.5^,    On the other hand,   It did at least as 

well even after components accounting for 15^ of the variance of the train- 

ing data (all but 17) had been discarded,  a dimension reduction of twenty 

to one.    (Due to statistical errors  In the estimation of the principal com- 

ponents.   It  is  likely that more  than 15$ of the variance  of the test data 

was  Ignored  in this representation.)     As even more of the principal compo- 

nents were discarded,  the error rate   Increased gradually tc  307; for five 

vectors   (43$ of variance  Ignored)  and rose sharply thereafter.    There were 

only two Instances In which the error rate actually decreased with Increased 

loss of variance, at dimension 22 and 7;  in both cases,   the decrease was 

slight.    These results are reasonable since the principal components rep- 

resentation preserves optimally the  (squared) lengths of the patterns and 

the classifier compares distances to category means, which are lengths of 
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difference vectors. Since no significant Improvement In classification was 

achieved, the primary value of principal components analysis was the reduc- 

tion of the dimension so that discriminant analysis could be applied. 

As expected,  the performance  of the minimum distance classifier Im- 

proved substantially In the discriminant basis, with an error rate of 1.3%. 

This error Is attributable to statistical error In estimation of the dis- 

criminants and mean vectors,  because the test patterns are linearly separable. 

This was demonstrated by computing optimal discriminants directly from the 

test samples;  that representation reduced the erro:' rate to zero.    For pur- 

poses of comparison, the mean vectors and principal components were also 

computed directly from the test data classification of the xmtransformed 

test data with the exact means resulting in an error rate of 19.7^; the 

difference between this and the "honest" error rate of 26.3% can be attributed 

to errors  In estimation of the means from the training data.    The percent 

error rates are summarized In the box below.    It should be emphasized that 

the results  In the second row cannot be achieved In practice and are In- 

cluded only to point out the estimation problem. 

Means and 
basis 

estimated 
from 

Representation used 

Original 
data 

First 20 
principal 
components 

Discriminant 
vectors 

Training 
samples 26.3 25.5 7.3 

Test 
samples 19.7 19.7 0.0 



Section VI 

IMPLEMENTATION 

Most of the above methods for data compression and classification 

have been Implemented on the Dynamic Experimental Processor (DX-1) at the 

Multlsensor Signal Processing Branch, Air Force Cambridge Research Lab- 

oratories.    The hardware configuration Includes two Digital Equipment Cor- 

poration PDP-1 central processors,  an IBM 2311 disk storage unit,  several 

CRT display consoles Including a DEC  color display, and a core-buffered, 

line-generating display unit called the Experimental Display Processor 

(XDP),  which drives two of the consoles.    In order to create a suitable 

environment for the development and operation of the computer programs 

Involved,   It has been necessary to design an operating system which provides 

the appropriate interactive data management and program rxecution capabil- 

ities. 

A fundamental requirement is the ability to symbolically identify 

files of vectors on-line for random access storage and retrieval.    This 

Is accomplished by a disk based,  fixed record length file system.    Vari- 

able length information,   Including programs and relocatable subroutines 

Is stored in partitioned files. 

Programs are named,  stored,   loaded and executed on-line by the sys- 

tem monitor.    Data files may also be manipulated through the monitor.    Each 

user or problem Is assigned a code whl^h assures unique  Identification of 

his partitioned files and data files.    Each user has read/write access to 

his own files and read-only access to all others.    Thuz all programs and 

data in the system may be shared by all users. 

A convenient means of visually evaluating the results of data repre- 

sentation algorithms Is provided by an Interactive vector display program 

for the color CRT.    Vectors may be displayed as graphs of their components 

or as projected points on a hyperplane determined by an arbitrary pair of 

vectors,   or both, under user control.    Commands are also supplied for scal- 

ing the projected Images,  saving them In random access storage, and 
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rotating the projection plane, In real time, to a plane determined by two new 

axes. The program is particularly flexible because of the on-line access to 

all data vectora by file name, which is provided by the vector file system. 

To facilitate the programming of the data analysis algorithms, a special 

purpose language, called AMAC (Assembler Macros for Algebraic Computations), 

has been designed. Important features of AMAC include a run-time storage 

allocation capability, vector and matrix manipulation instructions and a com- 

prehensive set of input/output macros. 

Numerical algorithms for the system have been programmed to be as mod- 

ular as possible, to allow flexibility in choosing the processes to be car- 

ried out. Therefore many of the techniques described in earlier sections re- 

quire execution of several of the program modules described in this section. 

To simplify the execution process, it would be useful for the system to 

"remember" sequences of program calls which could then be activated by a 

single monitor command. Steps toward this goal are discussed at the end of 

this section. 

1. Data Management 

Random access storage for the DX-1 system is an IBM 2311 magnetic disk 

storage unit. The portion of the operating system which controls storage 

and retrieval of Information on the Cisk is called the Disk Pile System. It 

stores information in fixed record length files, which is a particularly con- 

venient form for vector data. An ID table is maintained which contains a 

unique six character name for each file and its size and location on the disk, 

(The first character of each file name is used by the system to designate the 

user or problem to which the file belongs, leaving five characters to be sup- 

plied by the user.) When a file is created, its name must be specified, along 

with its record length (number of data elements in each record) and element 

length (number of l8-blt words in each element). These parameters are fixed 

and are stored In the file system ID table along with the current file length 

and the physical location of records on the disk. The file length is never 

specified explicitly and may be increased at any time simply by writing more 

records. Records may be rewritten at any time. 

Ihe basic Disk Pile System commands are available to the user through 

the on-line monitor and to programs as standard I/O macros. They are the 

following: 
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assign - specify file parameters and enter file name In ID table 

rename - change name  of a file already assigned 

delete - erase file and Its ID table entry 

lookup - retrieve file parameters  (Including file length)  from ID 

table 

write    - write one  or more contiguous records 

read      - read one or more contiguous records 

For a thorough discussion of the Implementation,   characteristics and main- 

tenance of the Disk Pile System, see Ref. 30. 

The operating system also Includes routines which handle partitioned 

files for variable length Information.    Each partitioned file occupies two 

ordinary files,  a table of contents file,  and a file for the actual Informa- 

tion.    Members of partitioned files are given six character alphanumeric 

names which are unique within the file.    The file names are determined by 

the user Identification and a type code.    Partitioned file types used and 

anticipated Include programs,  relocatable subroutines,  source programs, 

documentation and procedure definitions.    Thus all programs belonging to a 

given user,  for example,  are stored In one partitioned file.    By combining 

several separate elements of Information Into a single file, partitioned 

files Increase disk space utilization and reduce average access time. 

2.    The On-Llne Monitor 

The monitor controls user Identification,  program storage,  loading 

and execution, as well as  on-line operations on data files.    When using the 

system,  each Individual ordinarily supplies his  identification character, 

which is added to his data file names and partitioned file names.    One char- 

acter,  1,  is reserved to designate library files.    This  Identification code 

must  be used in order to update library files,   and  is  assumed until the user 

provides his own code.    The user is allowed  to assign,   rename,  delete and 

write only files whose names are prefixed with his  code.    He may read or  lock- 

up files prefixed with either his own cr the  library cede,  or other files by 

supplying an overriding prefix code. 

Monitor commands are  Issued on the console typewriter    cr Soroban dis- 

play keyboard, using only lower case characters.    The format is a command 

symbol followed possibly by argument symbols separated by break characters. 

Legal symbols may contain alphanumeric  characters,   period or minus.    All 

other characters,   including comma, slash,  öpace,  tab,  and carriage return, 
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are break characters which terminate symbols.    Two special break characte:s 

are used to erase previous  Input,    Backspaces erase previous characters and 

middle dot erase:',  the entire command.    Monitor commands and their descrip- 

tions  are  listed  on page  39.    Optional Information Is  enclosed In    brackets. 

The single character prefix,   separated by a slash,  overrides the current 

user  Identification,  and  the three character prefix designates a partitioned 

file type.    Each of the commands may be abbreviated to three characters. 

The mask feature should be explained further.    The parentheses may enclose 

up to five characters,  any of which may be blank.    All files are selected 

whose names correspond  In the non-blank characters.    If no characters are 

contained within the parentheses, all files are selected. 

3.    Dynamic Color Display of Vector Data 

Graphic manipulations of the vector data flies are carried out by a 

separate display program which Is accessed through the monitor.    Its pri- 

mary function is vector projection of one or more files of vectors on a 

plane determined by any pair of non-collnear vectors.    The program assigns 

a different color to each file to allow easy Identification of the projected 

points.    Such a projection may then be scaled up or down or transformed con- 

tinuously into h projection on a new pair of coordinate axes.    These func- 

tions,   together with the data compression and discrimination algorithms 

already described,  aid the user in discerning statistical relationships 

among several sets of data vectors.    Properties  of particular vectors may 

be presented by selecting one of the projected points with the light pen. 

This causes a graph of the coordinates of the projected vector to be dis- 

played along with the projection.    Graphs of the corresponding vector in 

different basis representations  (and therefore different disk files) may 

also be requested.    The sequence of display manipulations is determined by 

Issuing commands on the display console keyboard.    The effects of these 

commands are described  in detail below. 

Newdata;    The program Initializes the display,  requests a list of 

names of files  of vectors  to be displayed,   checks  its validity,  and di- 

vides all the data by the norm of the longest vector to assure that all pro- 

jections will fit on the screen. 

Project:    The program asks for horizontal and vertical axes, which 

are specified by vector file name and logical record  index within each 

fil<%    These veccors are normalized to unit length so that only their 



39 

DX-1 MONITOR COMMAND FORMATS 

Program Commands 

user 

user u 

store pgname, lal,fal,...,sa 

load [u/] pgname[,m] 

start 

call [u/1pgname 

list [u/][pgname] 

newname oldnam,newnam 

remove pgname 

Examine current user Identification 

Supply us=r Identification letter 

Store program on disk - la Is Initial 

address and fa Is final address of each 

block, sa Is start address 

Load program Into module m 

Start loaded program 

Load and start program 

Type names of programs of current or In- 

dicated user; type program addresses If 

pgname Is specified 

Change program name 

Delete program 

Data Pile Commands 

assign fname,eitlen,reden 

write fname, la, index, nrees 

read [u/]fname. Is, Index,nrecs 

rename [pft/]oldnam,newnam 

delete Cpft/]fname 

delete (mask) 

lookup [u/]rpft/][fname] 

lookup [u/](mask) 

Assign file parameters - fname is file 

name, eitlen is element length, reden 

Is record length 

Write into file - la is octal location 

of first record, Index is position of 

record in file, nrecs is number of records 

transferred 

Read from file of current or Indicated 

user 

Change file cr partition name 

Delete file or partition 

Delete matching files 

Type file or partition names of current 

or indicated user; type file parameters 

if fname is specified 

Type matching file names of current or 

indicated user 



directions are uood. In general the axes are not orthogonal and covarlant 

projection lr us^d, whereby a projected point Is displayed at the inter- 

aectlon "f the nL^rnial;; to the axes. Projection axes typically used Include 

principal coraponentn, discriminant vectors, category mean vectors and stan- 

dard basis vectors (for coordinate projection). 

3cal^: Due to the normalization of the data, the projections fre- 

quently tlo not fill the dlsplayable area of the color CRT. The scale com- 

mand allows the picture to be expanded (or contracted) In Increments spec- 

ified by the user. 

Rotate: This command transforms the current projection into a pro- 

jection of the same vectors onto a plane determined by a new pair of axes. 

Selection and normalization of the axes are carried out as In "project." 

The program In effect generates a whole sequence of projection planes, 

whose axes are located at equal angular intervals between the original 

axes and the new axes. The projections of the data vectors are computed 

directly only on the new axes. The projections on all of the intermediate 

axes are computed, In real time, using formulae involving sines and cosines 

of sums of angles. These calculations are so efficient that a great num- 

ber of Intermediate projections may be generated in a short time, even for 

hundreds of data vectors. The effect produced is an apparently continuous 

rotation of the plane of projection  The user controls the speed (and 

smoothness) of this rotation by his choice of the number of intermediate 

projections. The rotation may be interrupted midway or reversed by sense 

switch control. 

This feature has several applications. It facilitates the compari- 

son of projection planes by allowing the user to follow the movement of 

Individual points between them. It makes possible visual evaluation of the 

"stability" of a projection with respect to perturbations of its axes. 

Finally, the user may "explore" the vector space to discover projection 

planes (on Intermediate axes) which may appear more desirable than those 

which are directly available. 

Graph: Two modes are available for selection of vectors to be dis- 

played In their component representations. Any vector already projected 

may be pointed out on the display screen with the light pen. Alternatively, 

any vector stored in a disk file may be indicated by file name and record 

Index. Up to five graphs are displayed beside the current projection. 

Their colors are selected by the user to aid in distinguishing the graphs 

from one another. 
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4.    Program Development 

The DX-1 Is an experimental system which undergoes frequent hardware 

modification.    So programs are coded In the DX-1 MIDAS assembly language, 

which can be easily modified to accommodate new Instructions and I/O opern- 

tlons.    Coding of complicated mathematical algorithms, however,   Is difficult 

and tedious at the level of machine  Instructions.    Therefore,  a set of MIDAS 

macro Instructions,  called AMAC, has been written which provides some of the 

power of an algorithmic language without sacrificing the flexibility of as- 

sembly language. 

AMAC  Includes a limited form of arithmetic statement with subscripted 

variables which may also contain bit manipulation and logical operations. 

Among other FORTRAN-llke features are instructions for looping,   conditional 

execution and subroutine linkage and a library of arithmetic function sub- 

routines.    Unlike FORTRAN,  AMAC allows run-time storage allocation.    Es- 

pecially useful In this effort have been macros which call subroutines per- 

forming matrix/vector operations typically Involved In statistical applications, 

such as Inner products, sums, differences,  and matrix products. 

AMAC contains an Integrated set of character-oriented i/o macros for 

the on-line typewriter, display console keyboard, paper tape reader,  and 

punch and CRT display.   Specific devices and formats are specified as argu- 

ments of the macros; thus the effective device may be a run-time variable. 

Disk i/o IS performed by the macros described in Section VI-1.    A thorough 

description of AMAC may be found in Ref. 31. 

The program modules used in the experiments of Section TT are executed 

by the monitor commands described below.    Argiunents are currently requested 

individually by the programs,  but for clarity they are indicated here as 

lists.    Parentheses contain arguments which may be lists; brackets  Indicate 

arguments which may be omitted. 

call intan((files), dim, rdlm,[gmean],[switch],elgsys) 

Performs intrinsic analysis on the  (pooled) vectors contained In files. 

The first dim elements of each vector are used; rdin eigenvalues and 

eigenvectors are computed.    The values are typed out on-Mne and the 

vectors are written Into the file to be named eig^ys.    The grand mean 

is written In file gmean if the name Is supplied.    Intrinsic analysis 

is performed If switch is nonzero; principal components  (data centered 

about the mean)  if it is null. 
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5. Extensions of the System 

One of the goals of this effort has boen to provide a facility for 

experimentally discovering or verifying sequences of analytical methods use- 

ful in data reduction and classification problems. Due to the modular n&tur^ 

of the algorithms developed for the system, the typical procedure may require 

calling several separate programs. The user must remember the sequence of 

programs to be performed along with the argument lists of each, which, as 

the above examples Indicate, are often highly redundant. To ease the burden, 

a "cataloged procedure" facility has been designed.  It will add three new 

commands to the monitor: define, termin and exec. The procedure name is 

supplied to define along with a list of dummy arguments. Any sequence of le- 

gitimate monitor commands using constant or dummy arguments follows. The 

definition is ended by the termin command. A procedure thus defined may then 

be invoked by the exec command with the procedure name and a list of actual 

arguments. 

For example 

define    lntrep(illst/old,dim/dec,rdim/dec,elgsys/new,o.ilst/new) 

call intan (illst.dim.rdim,,,elgsys) 

call chbas ( Hist,dim, ,eigsys,olist) 

delete    elgsys 

termin 

will make pc^ ible the command 

exec intrep ((filel,file2),120,30,,psl,(filell,flle21)) 

which produces the intrinsic basis representation of the vectors in fllel 

and file2 and then deletes the eigensystem from the disk. 

A problem which arises Immediately is argument screening. If argu- 

ments are to be supplied all at once in lists, there is a strong possibility 

of out-of-order arguments which would cause execution errors. Therefore, an 

argument processing routine will be added to Ihe operating system which will 

screen arguments requested by programs for proper type and format. So that 

procedure arguments may be screened before the programs are called, their 

types are indicated in the definition by characters attached to the dummy 

names. The argument types currently recognized are the following: 
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Code Format of Argument 

old previously assigned  file  Id 

new Id  of file assigned by this procedure 

net octal  Integer 

dec decimal   Integer 

flo floating point number 

tex arbitrary text enclosed  In brackets 

Finally,  as  the  library o" programs and procedures grows.   It will be 

Increasingly desirable  to provide on-line graphic system documentation.    This 

can be supplied  by monitor commands  to  list  the names of available procedures 

and display short wrlteups and argument descriptions for specific programs 

and procedures,  which could be stored conveniently  In partitioned files. 



Section VII 

SUMMARY AND CONCLUSIONS 

This research has extended the theoretical foundations and developed 

the practical techniques necessary for Implementation of an Interactive 

multlvarlate data analysis facility. The analytical problems treated can 

be broken down roughly Into three areas: efficient representation of hlgh- 

dlmenslonal Information, representation of multlcategory Information for 

graphic display and determination of optimal or satisfactory decision pro- 

cedures for data classification. Classical multlvarlate statistical methods 

have proven valuable in these applications. Principal components analysis 

(or intrinsic analysis) effects compression of vector data ulth minimum 

mean square error. Linear discriminant anflysis produces axes which maxi- 

mize the variance of multlcategory data relative to the variance within 

categories. 

These methods have been implemented on the Experimental Dynamic Pro- 

cessor (DX-1) at APCRL, using state-of-the-art algebraic elgensystem al- 

gorithms. Also a new elgensystem approximation technirue has been devel- 

oped which allows approximate intrinsic analysis to be applied to very high 

dimensional problems which would otherwise be intractable due to computer 

time and storage requirements. The dimension of data to which discriminant 

analysis can be applied Is limited by storage requirements and by the number 

of samples available. Both of these limitations have been overcome by first 

representing the data In a truncated Intrinsic basis. This has also re- 

duced the computation time required for the discriminant analysis. 

In an interactive computer data analysis system, these methods are 

valuable in displaying Information In a form which elucidates Its statistical 

characteristics. This can help the system engineer or scientist determine 

the structure and degree of complexity of his problem. Since the ultimate 

goal of most data analysis systems is usually to Improve B  real world de- 

cision process, the applicability of these methods to pattern classification 

problems was considered. The minimum risk Bayes strategy for pattern 
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Implementation and effective utilization of an Interactive data anal- 

ysis facility using the methods described here has required the design of an 

operating system tailored to Its needs.    Its  features include a dlsk-bast'i 

vector file system for convenient manipulation of vector data,  an on-line 

system monitor, a dynamic,  culor vector projection program,  and a special 

purpose programming language.    The need for such special purpose software 

and the high demands In computation time of many of the algorithms Involved 

Indicate that such systems can best be  implemented  on small  or medium-scale 

dedicated machines rather than on large-scale,  time-shared configurations. 

The color CRT provides easy  identification of projected points by 

category, which is valuable In classification problems.    We have seen that 

discriminant analysis can determine good projection planes for multlcategory 

data.    It should be noted, however,   that some intrinsically complex problems 

may not be sufficiently well represented by any two dimensional projection. 

Therefore,   such displays should be used to augment the Intuition but not to 

draw hard conclusions about the data structures Involved. 

The implementation of the algorithms has been as modular as possible 

to allow the greatest flexibility In their application.    The vector pro- 

jection program allows the results of intermediate results to be visually 

evaluated.    Once a useful sequence of operations has been established,  it 

is desirable,  for simplicity of operation,  to define it as a single pro- 

cedure.    For this purpose, future additions to the system will include a 

cataloged procedure facility.    Also needed Is a provision for on-line graphic 

documentation of programs and procedures. 

■Ml 





50 

lU.    Streeter, D. and J. Ravlv,   Research on Advanced Computer Methods for 
Biological Data Processing.    Report No. AMRL TR-bb-PI,   IBM Corp., 
1966.    (AD 637 WT.  

15. Colomb, R.    Effects of Computing Discriminants in a Truncated Intrinsic 
Basis.    Interim Tech. Report, Contract P1962Ö-67-C-0150, Systems 
Research Labs.,  Inc.,  1968. 

16. Nagy,  G.    "State of the Art In Pattern Recognition," Proc.  IEEE, 
Vol.  56, No.  5,  PP. 836-862, May 1968. 

17. Sebestyen, G. Decision-Making Processes In Pattern Recognition ACM 
Monograph^    New York:    Macmlllan,  1962. 

IB.    Hlghleyman, W.    "Linear Decision Functions,  with Application to Pattern 
Recognition,"    Proc. IRE, Vol.  150,  pp.  1501-151^,  June 1962. 

19. Nllsson, N. Learning Machines.    New York:    McGraw-Hill,  1965. 

20. Robblns, H.    "The Empirical Bayes Approach to Statistical Decision Prob- 
lems," Annals of Mathematical Statistics,  Vol. 35, No.  1, March 
196"+. 

21. Chow, C.    "A Class  of Nonlinear Rec^nltlon Procedures,"    IEEE Trans. 
on Systems Science, Vol. SSC-2, No. 2,  pp.  101-109, December 1966. 

22. Krlshnamoorthy,  A.  and M. Parthasarathy.    "A Multlvariate Gamma Type 
Distribution," Annals of Math. Statistics, Vol. 22, pp.  5^9-557, 
1951. 

23. Kanal, L. and K. Abend.    Adaptive Modelling of Likelihood Classification - I, 
Report No. RADC-TR-66-190,  Phllco Corp.,   19bb.    (AD 636 519). 

24. Cover, T. and P. Hart.    "Nearest Neighbor Pattern Classification,"  IEEE 
Trans, on Information Theory,  IT-13,  pp. 21-27, January 1967. 

25. Pirschien, 0. and M. Pischler.    "Automatic Subclass Determination for 
Pattern Recognition Applications," IEEE Trans, on Electronic Com- 
puters, EC-12,   No.  2,  pp.  137-141,  April  TWT. ~ 

26. Sammon, J.    On-Line Pattern Analysis and Recognition System (OLPARS). 
Report No. RADC-TR-6Ö-263, Rome Air Development Center,   I960. 
(AD 675 212). 

27. Sebestyen,  G. and J.  Edle.    "Pattern Recognition Research."    Report No. 
APCRL-6i+-821,  Litton Systems,  Inc., Waltham, Mass.,  19614. 

28. Specht, D.    Generation of Polynomial Discriminant Functions for Pattern 
Recognition.    Report No. SEL-66-029,  Stanford University,  Stanford, 
Cal.;i966.    (AD 487 537). 

2 9.    Pu, K. S.,  et al.     "Feature Selection in Pattern Recognition,"  IEEE 
Trans,  on Systems Science,  Vol. SCC-6,  No.   1,  January 1970. 

mmm 



51 

50.    Roper,  R.    The DX-1 Disk File System.    Interim Tech. Report, Contract 
Figö.'S-fjy-C-Ol^O,  Systeme Research Labs.,  Inc.,   1969. 

31.    Roper,  R.,  N. Chase and R. Daesen.    Assembler Macros  for Algebraic 
Computations;    AMAC User's Manual.    Interim Tech. Report, Contract 
FI962Ö-67-C-OI50,  Systems Research Labs.,  Inc.,   1970. 



Vnclasslflftd 
Security Clastification 

DOCUMENT CONTROL DATA • R&D 
(Security clatsification of title, body of abstract and indexing annotation mutt be entered when the overall report is classified) 

t.  ONIGINATING ACTIVITY (Coiporote author) 

SYSTEMS RESEARCH LABORATORIES,   INC. 
7001 Indian Ripple Road 
Dayton, Ohio H5W0 

2a.   REDOUT SECUniTY CLASSIFICATION 

Unclassified 
IS   GNOUP 

J.    REPORT TITLE 

ANALYTICAL AND INTERACTIVE TECHNIQUES FOR 
MULTIVARIATE DATA ANALYSIS AND CLASSIFICATION 

4.   DESCRIPTIVE NOTES (Type of report and inclusive dales) 

Final Scientific Report,  1 December 1966 through 31 May 1970, Approved ^ Dec.  197( 
s.   AUTHOR(S) (First none, middle initial, last none) 

Robert B. Roper 

55  NO. or REFS 

11  
t.   REPORT DATE 

25 September 1970 
TO,  TOTAL NO. OF PAGES 

5^ 
■O.    CONTRACT OR GRANT NO. 

P19628.67-C-0150 
b.    PROJECT, TASK, WORK UNIT NOS. 

5632,    563201,    56320101 
C.    OOD CLEMENT 

61102P 
d.    OOD SUICLCMCNT 

681305 

la.   ORIGINATOR'S REPORT ttummtHS) 

60606    Final Report 

»6.  OTHER JtKPORT HOIS) (Any other numbers that may be 
OMifRM MM report/ 

W.   DISTRIBUTION STATEMENT 

1 - Distribution of this document Is unlimited. It may be released to the 
Clearinghouse, Department of Commerce, for sale to the general public. 

II   SPONMRINO MILITARY ACTIVITV 

Air Force Cambridge Research Laboratories 
L. G. Hanscom Field 
Bedford, Massachusetts 01730 

II.   SUPPLEMENTARY NOTES 

Tech, Other 
LitM) 

13.   ABSTRACT 

This report demonstrates the applicability of classical statistical 
techniques to problems Involving compression and classification of multlvarlate 
data.    The theoretical foundations of two such techniques,   Intrinsic analysis 
and discriminant analysis,  are treated In detail.    Efficient digital computer 
Implementation Is discussed,   including the combined application of Intrinsic 
and discriminant analysis and a new algorithm for computing approximate  intrinsic 
bases for very large problems.    Experimental results are presented on the appli- 
cation of these techniques as feature extractors  in a signal classiflcaticn 
problem.    Also Included Is a description of the  interactive graphics-oriented 
system software which has been developed to facilitate the application of these 
techniques. 

DD   F FORM      1473 
OV ss 

Unclassified 
Security Classification 



Unclassified 
Security Claasification 

14. 
KCV WORDS 

LINK A 

NOUC 

LINK ■ 

ROLC 

LINK C 

ROLC WT 

Information Compression 
Pattern Classification 
Feature Extraction 
Multlvarlate Statistical Analysis 
Principal Components Analysis 
Discriminant Analysis 
Interactive Graphics 

Unclassified 
Security Claaaifi cation 

mk      i     imiMaMii iii 


