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ABSTRACT

This report demenstrates the applicability of classical statistical
techniques to problems involving compression and classification of multi-
variate data, The theoretical foundations of two such techniques, intrinsic
analysis and discriminant analysis, are treated in detail. Efficient digital
computer Implementation 1s discussed, including the combined application of
intrinsic and discriminant analysis and a new algorithm for computing approx-
Imate intrinsic bases for very large problems. Experimental results are
presented on the application of these techniques as feature extractors in a
signal classification problem. Also included is a description of the inter-
active graphles-oriented system software which has been developed to facili-
tate the application of these techniques.
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Section I

INTRODUCTION

The research effort reported herein has been directed toward the im-
plementation of an interactive, graphics oriented computer system for the
representation, analysis and classification of multivariate data, Work has
proceeded in two parallel areas: development of the appropriate analytical
techniques for, and design of, a software system tailored to the requirements
of such a facility, The ultimate purpose of the system 1is to provide a tool
for the systems engineer or scientlst dealing with large scale problems re-
quiring reduction and/or classification of high dimensional data, by supply-
ing a means of evaluating the effectiveness (or lack of effectiveness) of
proposed approaches to his specific problems., The system can also be used
to investigate the interrelationships among standard analytical techniques
and to develop new data analysis methods.

The typical application deals with sets of data whose members are
measurement vectors, for example, simultaneous outputs of a bank of sensors
or discrete time samples of a continuous function. It is easy to display
these vectors component by component, but this reveals 1little information
about the overall statistical properties of the random processes from which
they have been sampled, Therefore it 1s desirable to find two-dimensional
representations for the measurement space in which the members of entire
data sets appear as projected points., If the coordinates of this repre-
sentation are chosen Judiciously, the resulting projection may yleld valu-
able insight into the statistical relationships among the data elements.

One of the major goals of this effort has been the develcopment of
analytical methods for selecting such coordinates, These include means for
efficlent representation of data sets with highly redundant measurements
(intrinsic analysis, Section II) and for viewing the separability of several
distinct data sets (discrir.inant analysis, Section III)., Classification prob-
lems require automatic pattern recogniticn algorithms. The pattern classifi-

cation problem and several specific metheds are discussed in Section IV,
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The primary consideration in the selection of all of these methods 1s
that they have a sound mathematical formulation., This 1s to assure that the
resulting system 1s sufficiently general to be applicable to a wide range of
problems, and to facilitate the analysis of its performance, We, therefore,
have avoided methods requiring interactive human supervision in their execu-
tion. Human interaction is generally restricted to the selection of the se-
qQuence of processes, with their parameters, to be applied to the data and
control of the interactive display programs,

By applying sequences of elementary processes and observing the re-
sults at each stage, the user may develop compound procedures appropriate to
his application, To emphasize the value of this building block approach,
this report stresses the interrelationships among the analytical techniques.
An example involving the application of information compression methods as
feature extractors to improve the performance of a pattern classification
algorithm is presented in Section V.

The computer software which has been designed to aid in the implemen-
tation of this system is described in Section VI. This includes a disk file
system, an on-1line monitor, an interactive vector projection display program
and an extended macro assembly language, in addition to the mathematical
routines,

The mathematical developments which follow are descriptive enough
for the general reader with limited mathematical background to understand
the underlying concepts, although familiarity with probability theory and
matrix algebra is deslrable. Extensive use 1s made of the concept of a ran-
dom vector, which 1s a vector whose components are random variables. No no-
tational convention is used to distinguish scalars, vectors and matrices;
the distinctions should be clear from context. Vectors are always column
vectors; traasposes of vectors are always row vectors. Specific notations

are defined as needed in the text,




Section II

INFORMATION COMPRESSION

A major problem in many data analysis and classification problems, as
Wwell as data transmission applications, 1s the high dimensionality of the
data, Data vectors arising from sampled continuous signals or their Fourier
transforms, for example, typically contain hundreds or thousands of sample
points. All but the most straightforward data analysis and pattern recog-
nition techniques tend to bog down in numerical computations or become in-
effective when dealing with such large problems. One way to alleviate such
problems is to find a more compact representation for the data which pre-
serves as much as possible of 1ts original information content. We shall
refer to this process as information compression or dimension reduction.

The canonical data representation to be developed here is similar to
Fourier analysis in that 1its components are inner products of the data with
members of an orthogonal function set., However, the form of the orthogonal
functions 1s not restricted to sinusoids. Thus 1t may be thought of as
generalized harmonic analysis., It also has the desirable property that its

components are uncorrelated,

Essentially the same technique has been developed by many authors in
several disciplines., In multivariate statistics (w11ks1 and Andersonz) it
is referred to as principal components analysis, It was applied by Kramer

and Mathews3 to speech bandwidth compression by encoding the output of a

N
channel vocoder, The term intrinsic analysis 1s due to Young and Huggins

5

and 1s also used by Walter” and Colomb.6 In communication theory (Daven-
port and Root7) and probability ‘leory (Loéves) i1t appears as Loéve-

Karhunen analysis. The technique 1s equally applicable to continuous (real

or complex-valued) functions or vectors, For our purposes, the vector formu-
lation is more convenient, and will be developed here. The extension to con-
)

tinuous functions is routine (see Colomb6 or Watanabe
The approximate data representations obtained through intrinsic

3
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analysis are optimal in the least mean square error sense. It develops that
they are also optimal 1in the sense of minimizing an entropy function defined

on the coefficients, This 1c shown by Watanabe,9

who relates these two prop-
erties In the context of a pattern clustering and recognition problem. An
instructive proof of the error minimization property is given by Anderson.2
Mostly for heuristic purposes, we offer here a simplified version which re-
lles more heavily on algebraic eigenvalue theory. We will also relate

Watanabe's results on entropy minimization.

1. Intrinsic Analysis

Let X be a random vector in the n-dimensional real vector space V
with probability density function p(X). If F(X) 1s a function of X, the
expectation of F(X) 1s defined by

J F(X) p(X) &

EF(X) =
'
The mean vector u of X 1is
uw = EX

and the autocorrelation matrix A of X 1s

A = EXX'

where prime denotes transpose., A 1is symmetric (A(1,J) = A(J,1)) and the
element A(1,J) = F X(1) X(J) is the correlation of t'e i-th and j-th elements
of X. The euclidian norm, or length, or a vector v in V 1s

n 1
Hell = [%v (J)2 2
J=1

We define the energy of X as the expected value of the squared norm of X,

namely

n
Ex) = Ellx|1? = E £ x(?
3=1




Note that the energy of X 1is equal to the trace of A:

n 2 n
E(X) = £ EX(3)) = =% AJJ = tr A
J=1 J=1

Our approach to the dimension reduction problem is to find, for any

k <n, a k-dimensional subspace V, of V which maximizes “he :nergy of

k
the approximation of X by projection onto Vk. It 1s suffici-»nt to find
k orthonormal vectors {¢1|1=1,...,k} which span V. By orthormal, we
mean that
' —-—
0, ¢J =0 for 1#)
¢i 6, =1 for 1=1,...,k

The coordinates of X in V

. are the projections of X on the ¢

1
i ¢1 X

(e
L}

and the approximation of X 1in the standard basis of V 1is

[t
[}

n M=
[¢)

which permits reconstruction of the n-space representation of the approxima-
tion,
We define the relevance e of o
J

1 in representing X as the mean

squared projection of X on ¢

o | 2

Let 6k be the matrix whose columns are the @i. Then the projection from
V onto the ék basis of Vk i1s given by the standard change of basis trans-
formation
X, =8 X
k= 'k

R 5
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and the encrgy £ the desired optimal approximation s

. k k
ag) - Hl g x[1Patn oy x? e £ o
a1 ge1

Sco maximizing Lthe enersy of approximation {n a subspace i3 equivalent to max-
imizing the sum ' the relevances of the basis vectors,
When k = 1, with 01 denoted by @, the problem is to maximize

o, = E(8'X)(X'8) =o' E(XX') & =o' A0

|
which i3 the quadratic form associated with A, the autocorrelation matrix
of X, So the normal vector ¢ which maximizes o must maximize the quad-
ratic form of A 3ubject to the normality constraint ¢' ¢ - 1 = 0, Using
the Lagrange multiplier A, define

a=¢' 20 -1 (0" 0-1)

The vector of partial derivatives of o w.,r.t. the components of ¢ {is,
according to Anderson,z p. 347,

g% = 2A0 - 208

If ¢ maximizes O'Ad with ¢'0 - 1 = 0, 3/3® must be zero, which yields

Ad = )0

the alrebralc eigenvalue equation, Since A 1s an utocorrelation matrix,
1t 1s positive cemidefinite, that is, all of 1its eigenvalues are ncne-
negative, Premultiplying by @', we have @'A® = ¢'\0 = ), which implies
that 2, =13, S: the maximum possible relevance to X of a normal basis

"1
vector is Kl' the largest ecigenvalue of A and that vector is the eigen-
vector Gl of A corresponding to 11.

We extend this result to arbitrary k by indu:tion, Having deter-

mined 61""’01-1 and E(i we seek the optimal orthonormal basis for

1.1}

V1 and its energy E(xi). Thic basis must include ¢1,...,¢1_1, for other-
wise E(ii) determined by the new basis could be improved by substituting




7
the missing ¢'s for members of the new basis orthogonal to the @'s con-
tained in vl-l’ since the ol4 basis 1s optimal for k = {1, So the problem
ic to maximize the additional energy E‘il) - F‘dl-l) obtained by adding one
more basis vector. Az before, this tr o, = 0;561. which leads to the eigen-
value equation, Therefore, the maximum additional energy i{s obtained by
projection on the cigenvec.or @& cf A correcponding to the largest remain-
ing cigenvalue )‘1 of A, and

E(R,) - E(R, ) =0, =)

i i

We conclude that the k«limensional subspace Vk of V which contains
the greatest fraction of the energy of X s spanned by the eigenvectors
°1"“’¢k of the autocorrelation matrix A of X corresponding to the k
larges. cigenvalues kl.....lk. The 01 are called the intrinsic basis
vectors of X. The energy of the approximation in Vk is

i k k
E(X,)= T o, = ¥
B BT

where o J is the relevance of OJ to X. A convenient measure of the pcr-
formance of the intrinsic analysis is the fraction of the energy retained,
which 1is

k
a A
E(X,) o 1
EMX) tra

The above treatment is valid if L # )'J whenever { ¥ J and =0,
1i=1,,...,m. Equal eigenvalues determine an eigensubspace of the corres-
ponding dimension and within this subspace, the orthonormal intrinsic basis
vectors may be chosen arbitrarily., Similarly, zero eigenvalues determine a
subspace orthogonal to the rest of the eigenspace. For a detailed treatment
of these special cases, See Ander-son.2

Maximization of the energy in the intrinsic basis approximation is
equivalent to minimization of the mean square error of the approximation., 7o
see this, we observe that when k =n, the intrinsic basis approximation is
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exact, 80 Ilvnll = ||v]]. The mean square error (the average squared norm
of the error vector) 13 then

. s a2
e () =€ellX - %Il

E ot (0'%)2
Jnk+l Jx

n tos 2 k 2
E(T (ox)° - 2(¢3X))
=1 Ja1

1 ! 2
elle; xIf - €l x|

E(X) - E(;Ek)

Expressing the approximation energy in terms of the eigenvalues, the error
becomes

and as a fraction of total energy, the error is

k
e(X,) et
EXT " ! CtFE

Intrinsic analysis corresponds very closely to a method of multivari-
ate statistics called principal components analysis. The relationship be-
tween these two techniques 1s as follows: 1f the mean u of X 18 nonzero,
the first intrinsic basis vector ¢1 may tend to resemble it. If X 1s
symmetrically distributed about u # 0, then ¢1 1s a scalar multiple of u.
On the other hand, 1t 1is noted by Colomb, p. 13, that there exist distribu-
tions with zeroc mean having the same covariance matrix as a distribution
with an arbitrary mean u, In practical situations, however, we may expect
that 1f o« 1s large, ¢1 will tend to have high correlations with most of
the elements of X and, therefore, have a strong similarity to u. 1In




problems where interest is focused on covariances among the elements of X
rather than on cross correlaticus, 1t 1s desirable to eliminate this effect

of the mean vector by performing the intrinsic analysis on the variable X-u,
which has zero mean. This 1s called principal components analysis., The auto-
correlation matrix % of X-u 1s called the covariance matrix of X. A
diagonal element of this matrix, g (X(1) - u.(i))2 is the variance of X(1);

a non-diagonal element, g (X(1) - «(1)) (X(J) - u(J)) 1s the covariance of
X(1) and X(J). With this change, references to energy in the development

for intrinsic analysis may be read as variance, which is the energy of X-u.

The eigenvectors of T are called the principal components of X because,

properly ordered, they account for the "principal components" of the variance
of X about u.

At the level of machine calculations, these techniques are easily in-
terchangeable because the autocorrelation and mean of X determine 1ts co-

variance hy the following relation

E(X-u)(X-u)'

™~
[}

E(xx' - xu' - wx' + w')

Exx' -Exu' - wEx' + uu'

A-uu.'

Watanabe9 has shown that intrinsic analysis satisfles another con-
sideration in selecting a basis for information compression, This 1s that
the relevance measures 01 should be highly concentrated on a few cf the
basis vectors rather than spread out more evenly., If ‘l’l"""&n is any
orthonormal basis of V and we normalize X so that E(X) = 1, then c1

1S a probability measure on {ﬂ:i} with

It 1s then possible to introduce the entropy function

| ne I

H(Y) = -

¢, log ¢
1 1

1 1
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which 1s a measure of the concentration of the p's. Watanabe demonstrates
that the Intrinsic basis minimizes the entropy function as well as the mean

square error.

2, Estimates of the Intrinsic Basis
In practice, the mean u and autocorrelation A of the random vector X

are seldom available, It 1s then necessary to estimate them from a finite
sample {xl,...,xm} of X. The estimates are simple averages involving the

sample vectors

>

o
I
S

Y
0
EX
M3
»
s

Estimates of the intrinsic basis vectors 61""'6n a?d their relevances
il""’in are given Ly the eigensystem of A (or of £ =A - ud' 1in the
case of principal components analysis). Anderson,2 p. 279, shows that 1if
the distribution of X 1is multivariate normal, then this process defines
the maximum likellhood estimates of ¢1,...,¢n and xl,...,xn.

In real problems, the distributions involved are usually not multi-
variate normal and are frequently unknown., However, it 1is demonstrated by
K. Miller in Ref. 6, p. 7, that A (or £) 1s the minimum variance linear
unbiased estimate of A (or ). Since the eigenvalues and elgenvectors are
highly nonlinear functions of ﬂ, it 1s difficult to infer from this the
variance of the errors in the estimated eigensystems, Here we will merely f
ment ion some conclusions of a detailed discussion of the problem by Colomb,
pp. 18-24, First, the eigenvalues are stable with respsct to perturbations
of A 1in that, under certain conditions, thelr variances are apprcximately

equal tc the varilances of the diagonal elements of the error matrix A-ﬁ.

Second, the eigenvectors are very stable 1if their eigenvalues are well sep-
arated "and as the eigenvalues get close together ., . . the stability de-
creases until, when the separation of the values is of the order of the
perturbation, no certain Information 1s attained about any individual eigen-
vect-r," In the specific vroblems studied thus far, the largest eigenvalues

are mozt separated while eigenvalues belonging to low-energy subspaces tend
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to cluster together. However, if the best elgenvectors collectively are
used to represent X (which is the typical case) the errors in the elgen-
vectors resulting from confusion with other elgenvectours belng used are not
harmful. Thus, the accuracy of the resulting represcentation may be better
than that indicated by consideration of the elgenvectors separately., Fi-
nally 1t 1is noted that the ambiguity in A ucually decreases as the square
root of the number of samples increases,

Errors in the intrincic basis can also result from measurement and
computational errors, For purposes of errcr analysic, these can be treated
as part of the ambigulty of A. While measurement errors (senscr additive
noise and quantization noise) are unavoidable, they are likely to be less
significant than the statistical sampling error already mentioned, In
implementations using a general purpose digital computer, the computational
error may be reduced to Insignificance by using an accurate elgensystem
algorithm such as Householder's Method (see w11kinson,10 pp. 290-335),

3. Approximations for Large Problems

In many information compression problems, the dimension n of the
sample data 1s In the hundreds or thousands. Such high dimensions intro-
duce large costs In terms of both computation time and computer memory.

The time required for estimation of the autocorrelation matrix increases
with n2 and for calculation of 1ts eigensystem roughly with n3. More
serlous, perhaps, are the random access memory requirements of these proc-
esses, Unless the efflciency of the computations 1s drastically reduced,

it 1s necessary to retaln the entire matrix in memory simultaneously. Since
it is symmetric, this means that at least n(n+l)/2 1locations are required,
Thus 1f there are S avallable storage locations, the maximum dimension
which can be handled is less than .25. For problems too large for exist-
ing hardware, 1t 1s sometimes possible to cbtaln useful cpproximations of
the estimated Intrinsic basis by the prccelure dcscribed by Roper'.11 The
rest of this section 1t devoted to a summary of thilc method.

The 1dea behind the approximation is to hreak a large elgensystem
problem up 1Into several small ones and use thelr solutlons to reduce the
size of the problem; this 15 equivalent to a plecewice dimension reduction
by intrinsic analysis., We denote the n-dimensional symmetric matrix in

question (1n this case, the estimated autocorrelation matrix) by M, and its




true cigensystem by (A,¥). We partition M symmetrically into p2 sub-

matrices M and find the eigensystems (Ai,éi) of the p diagonal sub-

1y
11 pNext we discard all but the k1 most relevant eigenvectors

from each 51 (= k1 =k -~ n), and form the n X * matrix % with the ¢

matrices M

i

1=1
as submatrices along the dlagonal and zeros elsewhere, Note that $ 1in-
herits the orthonormality of the ‘i' Therefore, & can be used to trans-

form M into a k X k dimensional approximation
Mo=23'M¢

whose elger.isystem, given by M6 =8 A, satisfies

o' M = A
Combining these, we have
6 8' Moo =R
If we define
v =508
the above relation becomes
VMY o= A

~ ~

and (A, ¥)1s the approximation of the first k members of (A, ¥)., It is
easy to show that the columns of ¥ are orthonormal, so 1f M 1s an es-
timated autocorrelation matrix, the above expression implies that the rel-
evances of the approximate elgenvectors (to the energy of the sample vectors)
are equal to the correspcnding approximate eigenvalues, This fact can help

determine the value of such approximations in dimension reduction problems,

but unfortunately 1t cannot tell uc how far we are from the optimal repre-
| sentation, To minimize this devibtion, 1t 1s advisable to make k as large

as possible even *hough fewer components may be used in the final representa-

tion.
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One further refinement 1is possible (and necessary if M does not fit

in memory). In addition to speeding up the eigensystem calculations, it

allows us to reduce the time required for computation of M. This 1s done

~

by computing directly only the Mii' The Mij are then computed from data

vectors in the reduced & basis. The savings realized are substantial,
especially when the number of sample vectors 1s large, Detalls on imple-
mentation and further discussion of the reductions in computation time may

be found in Roper.11




Section IITI

DISCRIMINATION AMONG SAMPLE CLASSES

In the previous section we were concerned with samples of a single
random vector, Here we will consider several distinct classes of samples
drawn from random vectors with different multlvariate distribution functions.

The methods described here are motivated by the requirements of a
graphics-oriented data analysis facility, In the typical data reduction
and classification problem, the sclentist or systems engineer 1s concerned
with whether the available measurements (components of the sample vectors)
are adequate to determine class membership, and with which class the meas-
urements are most useful, For projection on a computer display, a two-
dimensional subspace of the measurement space must be selected. Coordinate
projections are not very useful since they 1ignore the information in all
but two of the measurements. Intrinsic basis representations embody in-
formation from all or most of the measurements, but make nc use of class
membership infoermation. The alternative suggested here s a low-dimensicnal
representation for the sample vectors which tends to cluster together samples
within each individual class while emphasizing the varilations among all the
classes. Such a projection gives the analyst the optional two-dimensional
linear projection of his classification problem which can yleld insights
into its statistical characteristicr, for example, the degree of linear
separabllity of the sample classes,

One further motlvation for using such representations lies in the im-
plementation of automatic pattern classification algorithms, The performance
of most alzorithms 1s Improved 1if the pattern vectors are first subjected to
a transformation which clusters samples within the same class,

This scction begins with a derivation of the discriminant analysis
technique, There follows a discussion of estimation and computation of the
d1scriminants, A serious computational problem arises when the number of
sample vectors 1s small relative to their dimension. A way of circumventing

thils problem by prior application of intrinsic analysis 1s suggested,

14
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1. Discriminant Analysis

Discriminant analysis, like principal components analysic, is a tech-
nique of multivariate analysis of variance. It 15 developed by Hotelling12
and w11ks.1 A detailed expositicn, with applications to the data display
prcblem, is offered by Colomb.13 As in Section IT, cur exposition will be-
gin by treating random vectorz. Then, with the theoretical groundwork es-
tablishad, 1t will be expanded to include finite samples of them.

Let xl,...,xr be n-dimensional random vectors with mean vectors
Upseseslh, and covariance matrices wl,...,wr. Each random vector Xi is
identified with a sample class Ci'

which describes covariance about class means, 1s obtained by averaging the

The within-class covarlance matrix,

covariance matrices of the classes

and the among-classes covarlance matrix, which describes covariance of the

class means about the grand mean, 1s

Principal components analysis produces vectors, or directions, in which the
covariance of a randcm vector 1s maximized. Discriminant analysis finds
vectors which maximize the among groups covarilance while minimizing the with-
in groups covariance. From the discussion of intrinsic analysis, we recall
that the relevance of a vector @ to the covariance described by = 1is

¢'T¢., Thus we want to find a discriminant vector d which maximizes

_d'Ad

a'wd

SN N
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the ratio of the relevances, or variances in the direction of d. This can
be accomplished by maximizing oi with 05

to denote a Lagrange multiplier, a necessary condition for this maximization
is

held constant. Agaln using A

_5 1 ’ 3t = i
3 Ld Ad - A/d'wa - conatant)J =0
2Ad - A2Wd =0
or
Ad = A Wd

This is the generalized algebralc eigenvalue equation, The number of dis-
tinct, non-trivial solutions (diseriminant vectors) 1s equal to the rank
of A, which is r-1 (the number of classes minus one), The subspace

rol is called the discriminant space., (Since the dis-
criminant vectors are not necessarily orthonormal, it 1s desirable, 1in prac-

spanned by dl,...,d

tice, to orthogonalize them to obtain an orthonormal basis for the discrim-
inant space,) Finally, we note that since we can pre-multiply the above by
d' to obtain d'Ad = d'AWd, we have

2

y o dlad %
“qWd C 3
%

Therefore, the elgenvalues indicate the ratlo of the among-class to the with-

in-class variances of projections on the corresponding discriminants,

2, Discriminant Computations

One of the advantages of intrinsic analysis 1s its abllity to reduce
a high dimensional set of data with redundant measurements to a lower dimen-
sional representation., Provided that the number of samples avallable be suf-
ficlent to provide a reasonable estimate of the intrinsic basis, The situa-
tion 1s quite different with discriminant analysis. As we shall see, the
discriminant computations are impossible if the number of samples 1is less

P
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than their dimension,

Suppose the random vectors X i=1,..,r are rcpresented by sets of

1’
sample vectors

m
1 i

oM

{X1JIJ=1,...,m1} were m = ]

the means and covariance matrices of the sample classes are estimated by

2
i m

-
L
[
[WN
Cn
(=S
Cn
| =4
[
| =4
[wY

The grand mean and among-groups covariance matrix are estimated by

L 1 = T
b == 121 LY A= = Z mu -

and the within-groups covariance matrix by

Estimates of the discriminants are the solutions of generalized eigenvalue

equation
Ad = § Wd

which may be reduced to the ordinary eigenvalue equation by a fast and ac-
curate process given by w11kinson,10 pp. 337-40, For details of the com-
putations and a discussion of the numerical errors involved, the reader is

13 pp. 18-20, The fact which concerns us here is that

referred to Colomb,
the reduction requires what amounts to an inversion of W. The rank of W

1s less than or equal to m-r, So if

m<n-+r
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where n 18 the dimension of the samples, W 1s singular and its inverse
does not extist, Streeter and Raviv, 14 p. 16, have experimentally evaluated
three differcnt means of avoiding this singularity problem, including the
Moore=-Penrose generalized inverse and the 'H' inverse of T. Harley.
Both of these apprcaches {introduce artificial constraints on the solution
and are cumbersome tu implement, The third approach, suggested by Streeter
and Raviv, gave the best results, Their idea is to use intrinsic analysis
to reduce the dimension of the samples so that the discriminants may be
computed,

It has been found convenient to use principal comporentsanalysis rather
than intrinsic analysis, The principal components ¢1,....ok are eigenvec-
tors of the total covariance matrix of all the samples about the grand mean

r mi

T L ox, X, - w
11 g=1 WU

-3
n
3|

It can easily be shown that

T=A+W

that is, the total covariance equals the among-classes covariance plus the
within-class covariance,

The samples are represented using the first k principal components
as

>
ool
tad

13~ "k *1y

where

BT = A

the approximate covariance matrices A and ﬁ are then computed as before

using the and the new discriminant vectors are the solutions of

xiJ'

Ra =% W4
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Even when 1t 1s not mathematically necessary, tnis apprcximation may
be valuable in reducling the storage requirements for discriminant analysis,
which are roughly twice those of princinal components analysis, or bhecause
of the time savings resulting from the lowercd dimension of the discrimi-

13

nant problem, Those savings are detailed by Colomb, pp. 20-23, who shows

how to obtain further savings by taking advantage of the fact that

This follows because A + W = @, which, in the principal components basis,

is Ak' This makes 1t possible to avoid direct calculation of W and even
the transformation of the sample vectors, since A can be obtained by trans-
forming only the class means.

The principal components approximation can also he useful in improv-
ing the accuracy of the discriminant vectors. Even when W 15 not singu-
lar, it may be very ill-conditioned. (The condition number of a symmetric
matrix 1s the ratio of its largest and smallest eigenvalues.) An 111-
conditioned W may introduce instabilities into the inversion process and
errors in the resulting discriminant vectors and values, The discriminant

equation may be rewritten

Ad

§ (T-A)d

or

Ad

]
-3
[}

Solution of this form requires Ilnversion of T, but in the principal compo-
nents basis, T = Ak is diagonal. Thus, by an appropriate cholce of the re-
duced dimension k, we may ensure that T has any required condition num-

ber, The only remaining question is that of the optimal choice of k. This

problem 1s treated 1n great detall by Colomb.15




Section IV
METHODS OF DATA CLASSIFICATION

In many instances the ultimate goal of the information compression
and discrimination techniques described above 1s the efficient implementa-
tion of a procedure for data classification or sorting., We are concerned
here with classification of observations into one of several previously
known categories. The pattern recognition problem has been formulated in
several disciplines, including information theory, switching theory and
control theory, and an informative survey of the fileld 1s offered by Nagy.
We will review here the usual formulation in terms of statistical decision
theory. Works of general interest in thils area include Sebestyen,17
Highleyman18 and Nilsson.19 The treatment by Nilsson 1s most convenient
and will be drawn on heavily here., We will discuss the implementation of
pattern classifiers using discriminant functions, some optimal methods for
normally distributed patterns, and the problem of estimating unknown
multivariate probability density functions (called densities, for conveni-
ence) from finite training samples. We will review several approaches to

this problem and discuss the most promising in some detail.

1. Bayes Optimal Decision Rules
Statistical decislon theory provides a means of specifying rules
for pattern classification which are optimal in the sense of minimizing

average losses due to incorrect classification. A good treatment of this
approach is found in Robbins.20 We assume the existence of r pattern
categories 4 with a priori probabilities of occurrence p(1i), for
i=1,...,r. We must also specify a loss function L(iIJ) which represents
the lcss resulting from assigning to category 1 a pattern which actually

belongs to category J. Using the loss function, the conditional average

loss of assigning patterm X to category 1 1s defined by

L (X) =

(S
n M

. (1] 3) p(3]x)

20

16
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where D(JlX) is the probability that, given X, 1its category 1c actually J.
The average loss 1s, therefore, minimized by assigning each X to the cate-

gory 10 for which

L, (X) SL,(X) for i =1,...,r
o]

Such a decision rule 1s called a Bayes strategy. Using Bayes' rule we may

_ p(x}J) r(y)
pial)- 2UEL L)

where p(XIJ) is the density function of category J evaluated at X.

write

The conditional average loss then becomes

i r
L,(X) = Sty ng (1] 3) p(x|3) p(9)

Since P(X) 1s independent of 1, it need not be evaluated in minimizing
Li(x). It remains to evaluate the probability density functions p(X|J1)
of each category at X. This i1s the central problem of pattern classifi-
cation. In some instances the losses incurred by all misclassifications
are equal, This situation is described by the symmetric loss function

L1l =1 - 5y

which is zero for correct classifications and one otherwise, The problem

is then reduced to minimizing

- p(X{1) p(1)

which, 1f all categories are equally likely, 1s equivalent to maximizing
p(xli). Such a rule is called a maximum likellhood decision rule,

The Bayes strategy mcy be explicitly implemented only if the p(XIJ)
are already known, In practical situations, this is not the case and the

densities must be estimated from samples of the categories. Thelr functional
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form 1. sometimes known in advance (or more often assumed), In this case the
problem 1is reduced to estimating the parameters of the density functions,

This is called the "parametric" approach, For certain forms, notably the mul-
tivariate normal, convenient realizations of the optimal decision rules have
been derived, several of which are described in this section, The weakness

of this approach 1s that actual density functions do not usually conform to
the assumed forms; this can result in badly suboptimal decision rules, An
example of this is the case where the actual densities are multimedal,

The opposite "nonparametric" approach makes no assumptions about the
density functlons, except that they are reasonably smooth, and 1t approximates
the entire function from sample patterns, These approximations become impracti-
cal as the dimension of the pattern vectors increases, because their domain
is the pattern space and the number of points involved in a discrete approx-
imation increases exporentially with the dimension, The problem is sim-
plified if the components of the pattern vectors are statistically independent,
for then

n
p(xlg) =TT px,19)
k=1

where n 1s the dimension., Here we need only approximate n univariate
densities for each category. If the components are not independent, but the
categories have equal covarlance matrices, then new, independent varlables
may be found by diagonalizing the covariance matrices (see Section II), How-
ever, bthere appears to be no general solution to the approximation problem.
Most practical schemes approximate the densities indirectly through the use
of discriminant functions (see below) which are equivalent, in terms of
classification, to certain density function approximations. This problem,
and various attempts to solve 1t, are discussed in greater detall under

"Nonparametric Methods,"

2. Discriminant Functions and Decision Surfaces

The theoretical foundation for the concept of discriminant functions
and their role in pattern classification is summarized below. (The discrim-
inant tuncticnc cf decision theory should not be confused with the discrim-

fnant vectors of multivariate analysis of variance, treated in Section III.)

Geometrically, a pattern classification rule is equivalent to a
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partition of the pattern spece into disjoint regions corresponding to the

categorles, These reglonc are called decision regions and the surfaces sep-

arating them are called decisicn curfacrc. The decision regionc Rl”"’Rr

of any r-category pattern classifier may be implicitly defined by a set of
r discriminant functions gl(X),...,gP(X) which satisfy, for every X in

Ry

g,(X) > gJ(X) for 1,3=1,...,r

Then the declsion surface separating Ri from RJ is given by

g,(X) - g,(x) = 0

For example, the discriminant functions which determinc: the decision regions
of the Bayes strategy are the negatives of the average loss functions:
L, (X). |

Discriminant functions are widely used in pattern recognition applica-
tions because of their relative ease of implementation. However, as the prob-
ability densities of the pattern classes become more complex, so do the cor-
responding optimal discriminant functions. Therefore, much work in pattern
recognition theory has been devoted to finding suboptimal discriminants of
simple forms which closely approximate the performance of optimal functions.
It 1is desirable to consider families of discriminant functions where members
are determined by a modest number of parameters (which must be stored in any
implementation of the resulting classifier), There is a useful class of
function families whose members depend linearly on their welghts, Such dis-
criminant functions are referred to by Nilsson as % functions and may be
written

3(X) =w, +w rl(x) i ges F erM(x)

0 1

where the fi(x), 1=1,...,M, are linearly independent, real, single valued
functicns independent of the weights. The number of weights M + 1, which
determine the & function, 1s called the number of degrees of freedom of

the family. We will consider here only ¢ function families whose members
are polynomial functions of the components of X. The potential performance
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of polynomial discriminant functions increases with the degree of the poly-

nomials, but so does the number of weights necessary to implement them. In !

d +n -
n -1
necessary to limit the maximum degree d of the polynomials,

fact, incrﬁising the maximum degree of the polynomials from d-1 to d adds
1

possible degrees of freedom when n > d. It 1s, therefore, 4
When d =1, we have
fi(X) =X, for 1=1,...,n

and the & funct'ons are linear in the components of X, with n+l degrees

of freedom. For d=2, the fi are of the form

p P
ri(x) =x 1x 2 for k.,k

kl k2 172

= lgnoopn
P»p, = 0,1

resulting in quadric & functions with (n+l) (n+2)/2 degrees of freedom.

In general, the f, are d-th degrees polynomials

1

fi(X) =X for kl....'k =1,.-.,n

d

pln'-oopd =0, 1

and the @ functions are general d-th degree polynomials in the components
of X with d;n) degrees of freedom, Note that at least in theory, an ar-
bitrary continuous discriminant function (for example, the 1likelihood func-
tions p(Xli)) may be approximated to any desired degree of accuracy by ap-
propriate choice of d, Later we will realize the usefulness of this fact,
It 1s Instructive to consider the shape of the decision regions
defined by polynomial discriminant functions, Since categories are assigned
by finding the maximum gi(x), the decision surface separating regions Ra

and Rb satisfies
g, (X) - g (X) =0

Since linear decision functions have the form g(X) = LA + WX

this 1s

+ vee ann,

1

1




+c--+(wa -Wb)72+(w -W)=O

Thus each decision region of a linear puttern claccifier 1s convex and 15
bonded by no more than r - 1 hyperplanec of dimension n - 1.

A quadric discriminant function has the form

d d d
g(x) = Wy + T wx,+ Z T q

o1 T35 ey BT

and 1s determined by its 1 + n + n(n-1)/2 weights. This can be expressed

in matrix form as
glX) - wy +W'x + X'Qx

where W 1s the vector whose elements are the linear weights and Q s
the symmetric matrix whose elements are the weights of the quadratic terms.

So the quadric decision surface separating Ea and Rb satisfles

X', - Q)+ (W, -W)'K + (wao - wbo)
The shape of the quadric surface depends upon the gquadratic form X'(Qa - Qb)x.
If (Qa - Qb) is positive (or negative) definite, the surface is called a
hyperellipsoid; if (Qa - Qb) is not positive (or negative definite, the sur-
face 1s called a hyperhyperboloid. 1In general, polynomial discriminant
functions of degree d result in d-th order declision surfaces in the pat-
tern space,

The higher the order of the optimal pclynomial decisicn surface, the
better 1its ability to separate pattern categcries with complex distributions,
A set of categories which can be correctly identified by linear decision
functions 1s called linearly separable., A family cf % functivns iz deter-

mined by 1its component functions ri(x), i=1,...,M. These component functicns

can be used to define a transformation
F(X) = (fl(X),.oo;fM(x))

from the pattern space into an M-dimensional space called the % space.
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Thus a decision surface in the pattern space implied by a given set of ¢
functions has corresponding to it a hyperplane in the & space. If a set
of categories 1s correctly identified by the ¢ functions, 1t 1s linearly
separable in the & space. In Section V we will see that the feature ex-
traction problem may be viewed as the choice of an appropriate set of &

functions.

3. Discriminant Functions for Normal Populations

If the probabllity density functions of the categories are multivari-
ate normal, the optimal discriminant functions for a symmetric loss function

19

may be derived explicitly (see Nilsson, P. 55). They are

g (X) =wg + [ (X -u,) Tt (X - w) ]

where uy and Ei are the mean vector and covarilance matrix of category 1,

0. in p(1) - 1/2 lnlfil, for 1=1,...,r« S0 the optimum discriminant

functions for normal patterns are quadric.

and w

In the case of equal covariance matrices these can be reduced to
linear discriminant functions, Furthermore, 1if the covariance matrices are
the identity and the a priori probabilities are equal, the (maximum likeli-
hood) discriminants are given by

gi(X) =x' My - 1/2 uiui for 1 =1,...,0

Notice that equivalent classifications are obtained by minimizing the squared
distance from X to by s which is

2
dist (x,u.i) = (X - u.i)' (X - “1) =X'x -2x' by + p,iui

t-cause X'X 1s coustant over 1, and so may be eliminated, These linear
discriminants are widely used when little is known about the distributions of
the patterns because they satisfy the intuitive notion that unknown patterns
should be assigned to categories (represented by the means) to which they

are close, Due to these considerations, we will use the mirnimum distance
criterion to demonstrate empirically the value of intrinsilc analysis and dis-
criminant analysis for pattern classification In an experiment described in

Section V.,




4, Nonparametric Approaches

We now return to the problem of approximating arbitrary multivariate
density functions from training samples. As we have seen, 1f the components
of the patterns are statistically independent, these can be written as
products of univariate densities., But the independence assumption is not
usually Justified, so we must, in effect, estimate the Joint probabilities of
the components of each possible pattern vector, For high dimensional pattern
spaces this 1s very impractical and it 1s necessary to find some means of
representing the densities indirectly. A productive technique for binary pat-
terns is reported by Chow.21 Here the pattern space B comprises the gl
vertices of an n-dimensional cube; the density functions are expanded as lin-
ear combinstions of Walsh-Rademacher functions, which form a complete ortho-
normal basls for the space of real valued functions on B.

For continuous patterns the density function space becomes Infinite
dimensional, Various formal expansions for the continuous case have been pro-
posed, for example, using Laguerre polynomials (Krishnomoorthyzz), but they
are quite impractical, Kanal,23 pp. 4-20, reviews the problem of constructing
orthonormal expansions and concludes: "In the multivariate case we are really
faced with the curse of dimensionality and the prospect of constructing prac-
tical systems for adaptively approximating likelihood functions based on or-
thogonal expansions seems dim,"

. Another alternative 1s to give up direct estimation of densities and
adopt a classification procedure which deals with the sample patterns di-
rectly and only implicitly involves the densities. Perhaps the most straight-
forward approach of this type 1s the "nearest neighbor decision rule" by
which an unknown pattern 1s assigned to the category containing the training
sample closest to 1t according to some metric defined on the pattern space,
This is equivalent to the minimum distance criterion already describ:d, with
each sample point defining 1ts own subcategory. The resulting decision sur-
faces are plecewlse linear and will, in general, perform better than the op-
timal linear boundaries, It has been shown by Cover and Hartzu that the er-
ror rate of this rule is at most twice that of the Bayes optimal classifier
for an infinitely large training set. Of course, the problem 1is that as the
number of training samples increases 1t becomes impractical to compute dis-
tances to all of them. One methnd which 1s frequently used to overcome this
difficulty involves partitioning the samples into subcategories which tend
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to cluster together, Modal points (typically means) of these subcatcgories
are then used to implement the nearest neighbor rule, See, for example,
Firschien and Fisrhler.?s This "mode seeking" approach can be very sroduc-
tive but gsome care muct be taken in the selection of clustering algorithms
and their parameters for specific problems. 1In fact, according to Sammon,26
p. 11, the performance of all known clustering algorithms i{s so sensitive

to the settings of their parameters that "the proper setting usually can only
be determined by a trial and errcr method."

Closely related to this is the attempt by Sebestyen27 to estimate an
arbitrary density function as the mean of a small number of normal densities
approximated from subcategories, Besides ad hoc rules for "adaptive sample
set construction," this approach involves division of the pattern space into
cells and, therefore, runs into difficulty as the dimensicn increases., The
fundamental assumption of both the mode seeking and adaptive sample set con-
struction methods is that the densities in question can be well represented
as the sum of symmetr!c normal densities., Thus they are particularly effec-
t1ive in handling multi-modal densities,

The idea of approximating density functions as means of normal den-
sities 1s carried to 1its logical extreme in an elegant technique proposed by
Specht,28 who generates a symmetric density of normal form

o 1% - 5,112
g = exp
i (Zn)n720n 2é2

about each sample pattern S These "interpolation functions" are aver-

aged over all patterns in th: training set to obtaln the approximation, It
is shown, p. 31, that as the number of samples becomes infinite, and as the
"smoothing parameter" = — 0, the approximation converges to the true
density wherever it 15 continuous, In order to evaluate the approximation,
the exponentials in the interpolation functions are written, using the seriles
expansion, as polynomials 1in the components of X, The truncated expansions
may then be used in d-th degree polynomial discriminant functions to im-
plement a Bayes strategy. This is referred to as the "polynomial discrimi-
nant method,"

It 15 interesting to note that as ¢ = =, the resulting decision rule

becomes the minimum distance classifier, and ac 5 = 0 it becomes the nearest
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neighbor rule; the corresponding decision surfaces range from strictly linear
to highly nonlinear., 1In practice, the shape o' the decision surfaces also
depends on the degree d of the truncated polynomial approximation. (See
Section IV-2 ahove.) Generally speaking, the higher the degree, the larger
the value of ~ necessary to obtain an adeqQuately smooth approximaticn,

This method, like all others, 18 subject to "the curse of dimension-
ality." Specht shows that the number of training samples required to obtain
approximations of a given quality increases exponentially with the dimension
of the pattern space. (It also increases as ¢ 1s made smaller.) Neverthe-
less, the polynomial discriminant method seems to be applicable when only a
small number of training samples 1s available. In fact, in an experiment
involving separation of normally distributed categories, it actually out-
prerformed the optimal (quadratic) classifier (see Section IV-3) based on es-
timates of the means and covariances, In the experiments eight samples were
drawn from each cstegory, but since their dimension was only five, 1t may not
be valid to extrapolate the results “o higher dimensions.

Finally, the polynomial discriminant method shares the practical ad-
vantages of matched filter methods over most other techniques. The coefficients
of the polynomials are simple averages of the corresponding coefficients c¢con-
tributed by each training sample., Thus the classifier may be made adaptive
simply by updating the discriminant functions as new samples are obtained,
Also, unlike iterative techniques, only one look at each sample 1is required.
The classifier can adapt to time varying statisties if exponential smoothing
i1s used to update the coefficients, From both the practical and theoretical

! viewpoints, Specht's method 1is, in this author's opinion, the most promising
nonparametric approach to Bayes optimal classification.




Section V

INFORMATION COMPRESSION APPLIED TO
DATA CLASSIFICATION PROBLEMS

In the previous Section we considered the pattern classification
problem in isolation. The design of a system for pattern recognition gen-
erally includes two other stages: feature extraction, the problem of what

measurements to use, and optimization of system parameters, Since the op-
timal parameters are dependent on the statistical properties of the data,
they are usually estimated empirically; this problem will not be discussed
further., This Section considers the feature extraction problem and the
applicability of principal components analysis and discriminant analysis.
Experimental results are described in which both methods were used as feature
extractors for a minimum distance classifier.

1. The Feature Extraction Problem

Feature extraction is the process of selecting a relatively small
number of measurements or combinations of measurements which tend to de-
scribe the characteristic features of the pattern classes, There are two
basic goals: (a) minimizing the number of features and the resulting dimen-
sion of the classifier, and (b) finding features which determine a space in
which the members of each pattern class will tend to cluster together, thus
improving the performance of the classifier or making it possible to use a
simpler algorithm, In some Instances physical considerations will indicate
an appropriate choice of measurements and feature extractlon is primarily
an engineering problem, Our consideration here 1s restricted to the situa-

tion in which a well defined set of sensor measurements already exists and

the problem is to select features from these measurements, 1In this context

featurs cxtraction may be thought of ac a mapping from the measurement space

into a "feature space" which accomplishes either or both of the above goals,
In Section IV-2 we saw that the component functions of a 3 function

family determine a mapping from the measurement space into the 4% space, in

30
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which the decision regions are linear, The choice of good component functions
may thus be regarded as feature selection if 1t improvec the performance of a
linear classifler in the ¢ space. Consider, for example, the polynomial
diseriminant function of Section IV-L, The terms of the polynomials are the
component functions, Goal (b) of feature extraction is satisfied by these
polynomial terms, because as the degree of the polynomials increases the
Bayes optimal classifier 1s more nearly approximated, But goal (a) is not,
because the number of terms increases rapidly with the degree of the poly-
nomials so that the number of measurements 1is actuolly increased. Specht,28
however, proposes methods for eliminating terms which are least useful in
classification,

The feature extraction problem does not lend itself to a general so-
lution, This is partly because the goodness of the features can ultimate gy
be judged only on the performance of the recognition system, which depends
also on the classification algorithm used, Another difficulty is the un-
bounded number of feature space transformations which are possible, If we
consider only selection of measurements, for example, there are 1;) possible
subsets of p measurements chosen from a set of n. Some workers'report
success by simply choosing random subsets of redundant measurement sets.
Another approach 1s to define some measure of the information content of
each measurement relative to the classification of training categories,
Measurements are then selected which have the largest information content,
Since the above techniques treat measurements separately, they ignore the
Joint densities of the measurements, A nonparametric method for evaluating
measurement subsets which does consider the Joint densities 1s proposed by
Fu.29 This method employs direct estimation from multivariate density
estimates of the error probability of a particular measurement subset; how-
ever, it of’aers no guidance for the choice of prospective subsets, For
more detailed discussions of feature extraction and references, consult Fu
or Nagy, 16 pp. 852-854, 1In the remainder cf this Section, we consider
the application of intrinsic analysis and discriminant analysis to the

feature extraction problem,

2, Application of Principal Components Analysis and Discriminant Analysis

The linear dimension reducticn and data discrimination techniques re-
viewed in Sections II and III find useful application in feature extraction,

They produce linear transformations which may be applled to the measurement

e
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space to obtain reduced dimension and improved performance of pattern classi-
fiers, or at least linear classifiers, which we shall consider here, High-
leyman,18 p. 1505, chows that any pattern classifier using linear discrimi-
nant functions 1is invariant under nonsingular linear transformations of the
measurement space., But an appropriate singular (dimension reducing) trans-
formation can improve performance,

Principal components applied to the pooled sample sets (Section III-2)
ylelds a linear transformation into the subspace of the measurement space
spanned by the principal components. This transformation acts as a subop-
timal feature selector by reducing the linear redundancy of the measurements.
We have seen that the coefficients in the subspace are mubtually uncorrelated
over the ensemble of all the categories, This fact may tend to simplify the
densities in the principal components basis. Also, by eliminating low vari-
ance components, the transformation could actually ellminate random nolse
present in the measurements, But its primary applicability 1is to goal (a)
of feature extraction, dimension reduction, In an application to crop clas-
sification (Fu29) this approach was compared with the method of minimizing
estimated error probabilities, The results were about equal 1f more than
three features were allowed.

The above method does not consider class membership information and
so could discard components related to it. The natural remedy to this
danger 1s discriminant analysis, which maximizes the variance of class means
relative to within class variance, The dimension reduction is extreme, since
the number of discriminants is one less than the number of categories. Thus
if there 1s a small number of categories, the representation in the discrim-
inant space may not be adequate to represent complicated densities. We shall
see, on the other hand, that i1t can be very effective for problems with any
degree of linear separabllity.

3., Experimental Results

Principal components analysis and discriminant analysis were applied
to a classification problem involving aircraft radar frequency signatures.
Each sample pattern comprised measurements of 320 frequency components. Eight
distinct categories were represented by a total of 281 samples. The samples
of each category, an average of 35, were dlvided as evenly as possible into
a training set and a testing set, Mean vectors of the categories and the

grand mean were 2stimated from the tralning sets. Principal components of
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the pooled training sets were estimated by the arproximation method descriled
in Section II-3. To reduce the dimension sufficiently to compute cstimated
discriminant vectors for the training sets, the samples were represented in
terms of the ©4r»st 70 principal components. The representation retained 97%
of the variance of the training data, while achiersing a dimension compressicn
of more than four to one, Finally, the seven discriminant vectors were or-
thogonalized to form a basis for the discriminant space.

The approximate principal components and the orthonormalized discrimi-
nants both span subspaces of the pattern space with origin at u, the grand
mean, Representations of the pattern vectors and the category mean vector
estimates in these subspaces were obtailned by the change of basis transforma-

tions

=y (X-u)

e
|

X, =D' (X,) =D"' (X-u) = (¥D)' (X-u)

D
where X 1s a vector in the pattern space and the columns of ¥ and D are
the principal components and the discriminant vectors,

The minimum distance classification algorithm described in Section
IV-3 was applied to the test patterns directly and in these two representa-
tions, The error rate in the original basis was 26,3%.

At best, the principal components representation improved this per-
formance only negligibly, to 25.5%. On the other hand, 1t did at least as
well even after components accounting for 15% of the variance of the train-
ing data (all but 17) had been discarded, a dimension reduction of twenty
to one, (Due to statistical errors in the estimation of the principal com-
ponents, 1t is 1likely that more than 15% of the variance of the tost data
was ignored in this representation.) As even more of the principal cempc-
nents were discarded, the error rate increased gradually tc 30% for five
vectors (43% of variance ignored) and rose sharply thereafter. There were
only two instances in which the error rate actually decreased with Increased
loss of variance, at dimension 22 and 7; in both cases, the decrease was
slight. These results are reasonable since the principal components rep-
resentation preserves optimally the (squared) lengths of the patterns and

the classifier compares distances to category means, which are lengths of
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difference vectors, Since no significant improvement in classification was
achieved, the primary value of principal components analysis was the reduc-
tion of the dimension so that discriminant analysis could be applied.

As expected, the performance of the minimum distance classifier im-
proved substantially in the discriminant basis, with an error rate of 7.3%.
This error is attributable to statistical error in estimation of the dis-
criminants and mean vectors, because the test patterns are linearly separable.
This was demonstrated by computing optimal discriminants directly from the
test samples; that representation reduced the errsr rate to zero. For pur-
poses of comparison, the mean vectors and principal components were also
computed directly from the test data classification of the untransformed
test data with the exact means resulting in an error rate of 19.7%; the
difference between this and the "honest" error rate of 26.3% can be attributed
to errors in estimation of the means from the training data, The percent
error rates are summarized in the box below. It should be emphasized that
the results in the second row cannot be achieved in practice and are in-

cluded only to pcint out the estimation problem.

Means and Representation used
basis

estimated Original First 20 Discriminant
from data principal vectors

components

Training

samples 26.3 25+5 7.3

Test

samples 19.7 19.7 0.0




Section VI
IMPLEMENTATION

Most of the above methods for data compression and classification
‘have been implemented on the Dynamic Experimental Processor (DX-1) at the
Multisensor Signal Processing Branch, Air Force Cambridge Research Lab-
oratories. The hardware configuration includes two Digital Equipment Cor-
poration PDP-1 central processors, an IBM 2311 disk storage unit, several
CRT display consoles Including a DEC color display, and a core-buffered, ‘
line-generating display unit called the Experimental Display Processor
(XDP), which drives two of the consoles. In order to create a suitable
environment for the development and operation of the computer programs
involved, 1t has been necessiury to design an operating system which provides
the appropriate interactive data management and program execution capabil-
ities.

A fundamental requirement is the ability to symbolically identify
files of vectors on-line for random access storage and retrieval. This
is accomplished by a disk based, fixed record length flle system. Vari-
able length information, including programs and relocatable subroutines
{s stored in partitioned files.

Programs are named, stored, loaded and executed on-line by the sys-

tem monitor. Data files may also be manipulated through the monitor. Each

user or problem is assigned a code which assures unique 1identification of
his partitioned files and data files. Each user has read/write access to
his own files and read-only access to all others. Thus all programs and
data In the system may be shared by all users.

A convenient means of visually evaluating the results of data repre-
sentation algorithms 1s provided by an interactive vector display program
for the color CRT. Vectors may be displayed as graphs of thelr components
or as projJected points on a hyperplane determined by an arbltrary pair cf
vectors, or both, under user control. Commands are alsc supplied for scal-

ing the proJected images, saving them In random access s*orage, and
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rotat ing the projection plane, in real time, to a plane determined by two new
axes, The prorcram 1s particularly flexible because of the on-line access to
all data vectors by file name, which 1s provided by the vector file system.

To facllitate the programming of the data analysis algorithms, a special
purpose language, called AMAC (Assembler Macros for Algebraic Computations),
has been designed., Important features of AMAC include a run-time storage
allocation capablility, vector and matrix manipulation instructions and a com-
prehensive set of input/output macros.

Numerical algorithms for the system have been programmed to be as mod-
ular as possible, to allow flexibility in choosing the processes to be car-
ried out. Therefore many ¢f the techniques described in earller sections re-
quire execution of several of the program modules described in this section,
To simplify the execution process, 1t would be useful for the system to
"remember" sequences of program calls which could then be activated by a
single monitor command. Steps toward this goal are discussed at the end of
this section,

1, Data Management

Random access storage for the DX-1 system is an IBM 2311 magnetic disk
storage unit. The portion of the operating system which controls storage
and retrieval of information on the (isk 1s called the Disk File System. It
stores information in fixed record length files, which 1s a particularly con-
venlent form for vector data., An ID table 1s maintained which contains a

unique six character name for each file and its size and location on the disk.
(The first character of each file name is used by the system to designate the
user or problem to which the fille belongs, leaving five characters to be sup-
plied by the user.) When a file is created, its name must be specified, along
with its record length (number of data clements in each record) and element
length (number of 18-bit words in each element), These parameters are fixed
and are stored in the flle system ID table along with the current flle length
and the physical location of records on the disk. The file length is never
specified explicitly and may be increased at any time simply by writing more
records., Reccrds may be rewrltten at any time,

The basic Disk Fille System commands are available to the user through
the on-1line monitor and to programs as standard I/0 macros. They are the

fellowing:
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assign - specify fille parameters and enter file name in ID table
rename - change name of a file already assignen

delete - erase file and its ID table entry

lookup - retrieve file parameters (including file length) from ID

table
write - write one or more contiguous reccrds
read - read one or more contiguous reccrds

For a thorough discussion of the implementation, characteristics and main-
tenance of the Disk Fille System, see Ref. 30.

The operating system also includes routines which handle partitioned
files for variable length information., Each partitioned flle occuples two
ordinary files, a table of contents flle, and a file for the actual informa-
tion. Members of partitioned files are glven six character alphanumeric
names which are unique within the file, The flle names are determined by
the user identification and a type code. Partitioned file types used and
anticipated include programs, relocatable subroutines, source programs,
documentation and procedure definitions. Thus all programs belonging to a
glven user, for example, are stored in one partitioned file. By combining
several separate elements of information into a single flle, partitioned

files Increase disk space utillization and reduce average access time.

2. The On-Line Monitor
The monitor controls user identification, program storage, loading

and execution, as well as on-line operations on data files. When using the
system, each individual ordinarily supplies hils 1ldentification character,
which 1s added to his data file names and partitioned file names. One char-
acter, 1, is reserved to decignate library files. This identification ccde
must be used In order to update library filles, and 15 assumed until the user
provides his own code. The user 15 allowed to ascign, rename, delete and
write only files whose names are prefixed with his ccde, He may read or lock
up files prefixed with either his own cr the llbrary ccde, or other flles by
supplying an overriding prefix code,

Monitor commands are 1ssued cn the console typewriter cr Soroban dis-
play keyboard, using only lower case characters. The format 1s a command
symbol followed possibly by argument symbols separated by break characters,
Legal symbol:s may contain alphanumeric characters, period or minus, All

other characiers, including comma, slash, space, tab, and carrlage return,
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are bhreak characters which terminate symbols. Two special break characte:s
are used to erase previous input, Backspaces erase previous characters and
middle dot eraces the entire command, Monitor commands and their descrip-
tions are listed on page 39, Optional Information 1s enclosed in brackets.
The single character prefix, separated by a slash, overrides the current
user identification, and the three character prefix designates a partitioned
file type. Each of the commands may be abbreviated to three characters.,

The mask feature should be explained further. The parentheses may enclose
up to flve characters, any of which may be blank. All filles are selected
whose names correspond in the non-blank characters. If no characters are
contained within the parentheses, all files are selected.

3, Dynamic Color Display of Vector Data

Graphic manipulations of the vector data fiies are carried out by a
separate display program which is accessed through the monitor. 1Its pri-
mary function is vector projection of one or more flles of vectors on a
plane determined by any palr of non-collinear vectors. The program assigns
a different color to each fille to allow easy identification of the projected
points. Such a proJection may then be scaled up or down or transformed con-
tinuously into u projectlon on a new palr of coordinate axes. These func-
tions, together with the data compression and discrimination algorithms
already described, ald the user in discerning statistical relationships
among several sets of data vectors, Properties of particular vectors may
be presented by selecting one of the projected points with the light pen.
This causes a graph of the coordinates of the projected vector to be dis-
played along with the proJection, Graphs of the corresponding vector in
different basis representations (and therefore different disk files) may
also be requested., The sequence of display manipulations 1s determined by
issuing ccmmands on the display console keyboard., The effects of these
commands are described In detail below.

Newdata: The program initlalizes the display, requests a list of
namés of files of vectors to be displayed, che:ks 1ts validity, and di-
vides all the data by the norm of the longest vector to assure that all pro-
Jectlons will fit on the screen,

Project: The program asks for horizontal and vertical axes, which
are specified by vector file name and loglcal record index within each

file, These vectors are normalized to unit length so that only their




DX-1 MONITOR COMMAND FORMATS

Program Commands

user Examine current user identification
user u Supply us=2r identification letter
store pgname, 1al,fal,...,sa Store program on disk - ia 1s initial

address and fa 1s final address of each
block, sa 1s start address

load [u/] pgname[,m] Load program into module m

start Start loaded program

call [u/Tpgname Load and start program

11st [u/](pgname] Type names of programs of current or in-

dicated user; type program addressaes 1if
pgname 1s specified
newname oldnam,newnam Change program name

remove pghame Delete program

Data File Commands

assign fname,eltlen,reclen Assign f1le parameters - fname 1s file

name, eltlen 1s element length, reclen
is record length

write fname, ia, index,nrecs Write into file - ia 1s octal lccation
of first record, index is position of

record in file, nrecs 1s number of records

transferred

read [u/]fname.is,index,nrecs Read from flle of current cor indicated
user

rename " pft/]oldnam, newnam Change file cr partition name

delete [pft/]fname Delete file or partition

delete (mask) Delete matching files

lookup [u/]} pft/][ fname] Type file or partition names of current

or Indicated user; type flle parameters
if fname 1is specified

lookup [u/7(mask) Type matching file names of current or
indicated user
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directions are used, In general the axes are not orthogonal and covariant
proJection 1o used, whereby a projected point is displayed at the inter-
section of the normals to the axes. ProjJection axes typically used include
principal componente, diseriminant vectors, category mean vectors and stan-
dard basis vectors (for coordinate projection),

Seale: Due to the normalizatlion of the data, the projections fre-
quently <o not f111 the displayable area of the color CRT. The scale com-
mand allows the picture to be expanded (or contracted) in increments spec-
{f1ed by the user,

Rotate: This command transforms the current projection into a pro-
Jection of the same vectors onto a plane determined by a new pair of axes.
Selection and normalization of the axes are carried out as in "project."
The program in effect generates a whole sequence of projJection planes,
whose axes are located at equal angular intervals between the original
axes and the new axes. The projections of the data vectors are computed
directly only on the new axes. The projections on all of the intermedlate
axes are compubted, In real time, using formulae involving sines and cosines
of sums of angles, These calculations are so efficilent that a great num-
ber of intermedlate projections may be generated 1n a short time, even for
hundreds of data vectors. The effect produced 1s an apparently continuous
rotation of the plane of projection The user controls the speed (and
smoothness) of this rotation by his choice of the number of intermediate
projecticns., The rotation may be interrupted midway or reversed by sense
switch control,

This feature has several applications. It faclllitates the compari-
son of projection planes by allowing the user to follow the movement of
individual points between them. It makes possible visual evaluation of the
"stab1l1ty" of a projection with respect to perturbations of its axes,
Finally, the user may "explore" the vector space to discover projection
planes (on Intermediate axes) which may appear more desirable than those
which are directly available,

Graph: Two modes are avallable for selection of vectors to be dis-
played in their compcnent representations. Any vector already proJjected
may be pointed out on the display screen with the light pen. Alternatively,
any vector stored in a disk file may be indicated by flle name and record
index, Up to five graphs are displayed beside the current projection,
Thelr cclors arce selected by the user to aid in distingulshing the graphs

from sne ancther,
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4, Program Development
The DX-1 is an experimental cyctem which undergocs frequent hardwarc

modification. So programs are coded in the DX-1 MIDAS acsembly language,
which can be easily moudified to accommodate new instructions and I/0 opera-
tions, Coding of complicated mathematical algorithms, however, 1s difficult
and tedious at the level of machine instructicns., Therefors, a set of MIDAS
macro instructions, called AMAC, has been written which provides some of the
power of an algorithmic language without sacrificing the flexibility of az-
sembly language.

AMAC includes a limited form of arithmetic statement with subscripted
variables which may also contain bit manipulation and logical operations.
Among, other FORTRAN-like features are instructions for locping, conditional
execution and subroutine linkage and a library of arithmetic function sub-
routines., Unlike FORTRAN, AMAC allows run-time storage allocation, Fs-
pecially useful in this effort have been macros which call subroutines per-
forming matrix/vector operations typically involved in statistical applications,
such as inner products, sums, differences, and matrix products.

AMAC contains an integrated set of character-oriented I/0 macros for
the on-line typewriter, display console keyboard, paper tape reader, and
punch and CRT display. Specific devices and formats are specifled as argu-
ments of the macros; thus the effective device may be a run-time variable.
Disk I/0 1s performed by the macros described in Section VI-1., A thorough
description of AMAC may be found in Ref. 31.

The program modules used in the experiments of Section 7 are executed
by the monitor commands described below., Argvments are currently reqQuested
individually by the programs, but for clarlty they are Indicated here as
lists, Parentheses contain arguments which may be lists; brackets indicato
arguments which may be omitted.
call intan((files), dim, rdim,[gmean],[switch]l,eigsys)

Performsintrinsic analysis on the (pooled) vectors contained in flles,
The first dim clements of each vector are used; rdim eigenvalues and
elgenvectors are computed, The values are typed out on-"1ine and the
vectors are written into the fille to be named eigsys. The grand mean
is written in file gmean if the name 1s supplied, Intrinsi- analysis
1s performed 1if switch 1s nonzero; principal components (data centered

about the mean) if it 1is null.
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call chbas((1files),dim,[vector], basis], (ofiles))

Performs the translation and change of basis transformati.n
output = basis' (input-vector)

on the first dim components of the vectors in ifiles. The dimension of
the output vectors written in oflles is the number of vectors 1in basis
(1ts file length). 1If vector is null, only the matrix multiplication is
performed; 1f basis 1s null, only the vector difference. This program
Is typlcally used to transform Jdata into an intrinsic or principal com-
ponents baslis,

call intanp((ifiles),dim,p,rdim, gmean],swicch,prteig)

call chbasp((1files,dim,p, gmean],prteig, (ofiles))
These programs are used together to perform the preliminary reduction
tor the approximate intrinsic analysis described in Section II-3. The
vectors 1n 1files are partitioned into p equal segments to produce
segment eigensystems which are stored in prteig. The programs and
their arguments ifiles, dim, rdim, mean, switch and ofiles are analogous
to those described above, The output in ofiles 1s processed by intan
and chbas to complete the approximation process.

call means((files),means,[gmean])
Computes mean vectors for all inputfiles and writes them in means; writes
the grand mean in gmean 1if specified.

call discrm((files),dim,  gmean],mean,dvecs)
Performs linear discriminant analysis on the first dim components of the
vectors 1n filles, Each file represents one pattern category. Discrim-
inant vectcrs are written in file dvecs; eigenvalues are typed on-line.

Category meanc are written in means; the grand mean is written in gmean
1f indicated,

call orthog(ifiie,~f1le)
The vectors in ifile are orthogonalized and written in ofile.

call mindis((f1les),dim,means,[basis])
Applies the minimum distance classification ruie to the first dim com-
ponents of the vectors in files. The vectors in means are used as pro-
totype patterns. If basis is not null, both data and means are first
transformed into it, If the number of files matches the number of means,
error percentages are printed in addition to a confusion matrix.



5. Extensions of the System
One of the goals of this effort has been to provide a facility for

experimentally discovering or verifying sequences of analytical methods use-

ful in data reduction and clascification problems. Due to the modular nature
of the algorithms developed for the system, the typical procedure may requlre
calling several separate programs, The user must remember the sequence of
orograms to be performed along with the argument 1lists of each, whilch, as

the above examples indicate, are often highly redundant., To easec the burden,
a "cataloged procedure" facility has been designed. It will add three new
commands to the monitor: deflne, termin and exec. The procedure name 1is
supplied to define along with a 1ist of dummy arguments. Any seqQuence of le-
gitimate monitor commands using constant or dummy arguments follows. The
definition is ended by the termin command. A procedure thus defined may then
be invoked by the exec command with the procedure name and a list of actual
arguments,

For example

define intrep(1list/old,dim/dec,rdim/dec,eigsys/new, o0l ist/new)

call intan (1list,dim,rdim,,,eligsys)

call chbas (ilist,dim,,elgsys,olist)

‘delete elgsys

termin
will make pcsclble the command

exec intrep ((filel,file2),120,30,,psi, (f1lell,file21))
which produces the Intrinsic basis representation of the vectors in filel
and fi1le2 and then deletes the eigensystem from the disk.

A problem which arises immediately 1s argument screening. If argu-
ments are to be supplied all at once 1n lists, there 1s a strcng possibility
of out-of-order arguments which would cause execution errors, Therefore, an
argument processing routine will be added to ihe operating system which will
screen arguments requested by programs for proper type and format, 3o thet
procedure arguments may be screened before the programs are called, thelir
types are indicated in the definition by characters attached to the dummy

names., The argument types currently recognized are the following:
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Code
\)].d

new
net
dec
flo

ftex

Format of Argument

previously assigned file id

1d of file assigned by this procedure
octal integer

decimal integer

floating point number

arbitrary text enclosed in brackets

Finally, as the library o” nrograms and procedures grows, it will be

increasingly deslrable to provide on-line graphic system documentation. This

can be supplied by monitor commands to list the names of avallable procedures

and display short writeups and argument descriptions for specific programs

and procedures, which could be stored conveniently in partitioned files.
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Section VII
SUMMARY AND CONCLUSIONS

This research has extended the theoretical foundations and developed
the practical techniques necessary for implementation of an interactive
multivariate data analysis facility. The analytical problems treated can
be broken down roughly into three areas: efficient representation of high-
dimensional information, representation of multicategory information for
graphic display and determination cof optimal or satisfactory decision pro-
cedures for deta classification. Classical multivariate statistical methods
have proven valuable in these applications. Principal components analysis
(or intrinsic analysis)effects compression of vector data with minimum
mean square error, Linear discriminant anflysis produces axes which maxi-
mize the variance of multicategory data relative to the varlance within
categories,

These methods have been implemented on the Experimental Dynamic Pro-
cessor (DX-1) at AFCRL, using state-of-the-art algebraic eigensystem al-
gorithms, Also a new eilgensystem approximation techniciie has been devel-
oped which allows approximate Intrinsic analysis to be applied tec very high
dimensional problems which would otherwise be intractable due to computer
time and storage requirements. The dimension of data to which discriminant
analysis can be applied is limited by storage requirements and by the number
of samples avallable, Both of these limitations have been over~ome by first
representing the data in a truncated intrinsic basis. This has also re-
duced the computation time required for the discriminant analysis,

In an interactive computer data analysis system, these methods are
valuable in displaying information in a form which elucldates its statistical
characteristices. This can help the system engineer or scientist determine
the structure and degree of complexity of his problem. Since the ultimate
goal of most data analysis systems 1s usually to improve 2 real world de-
cision process, the applicebllity of these methods to pattern classification

problems was considered, The minimum risk Bayes strategy for pattern
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recognition was reviewed, as well as the concept of discriminant functions
and thelr equivalent decision surfaces in the pattern space, It was also
noted that when the measurements which make up the patterns are very numer-
ous and/or highly Interrelated, many pattern classification algorithms cannot
be used effectively, It is then necessary to transform the original measure-
ments into fewer and/or better measurements. This process 1s called feature
extraction,

To test the applicability of intrinsic analysis and discriminant anal-
ysis to feature extraction, a commonly used, matched filter-type classifier
was choson: the minimum distance rule, which classifies an unknown pattern
in the category to whose mean it 1s nearest. (This strategy 1s implemented
by linear discriminant functions which are negatives of squared distances
from category means, and is Bayes optimal when the categories have symmetric
normal probability densities.) The minimum distance rule was applied to an
aircraft radar frequency signatur- classification problem of high dimension
with (a) no feature extraction, (b) feature extraction by principal compo-
nents analys's, and (c) feature extraction by discriminant analysis. Prin-
cipal components analysis greatly reduced the number of measurements but did
not significantly improve the performance of the classifier, Discriminant
analysis reduced the dimension even further and reduced the error rate sub-
stantially. These resultsare to be expected, since principal components are
vectors which preserve, as well as possible, sqQuared distances of all pat-
terns from the origin in the pattern space; whereas discriminant vectors
emphasize variance among categories.,

All of the transformations described above for data reduction and
classification are linear. They performed reasonably well because the cate-
gory densities were essentially unimodal., Other experiments have shown that
their performance is much worse when more complex, multimodal densities are
involved. Nonlinear methods are then needed, which can estimate the densi-
ties directly in order to implement optimal decision rules. To this end
most researchers have advocated either histograms or orthogonal expansions.
For pattern dimensions greater than two, the former are too cumbersome, re-
quiring a great deal of manual supervision, and the latter are hopelessly
complicated, D. Spechtz has successfully employed a far more promising
approach involving multinomial expansions of multivariate density function
estimates., It appears that future work along these lines should be directed
toward development and refinement of his technique.
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Implementation and effective utilization of an interactive data anal-

ysis faci1lity using the methods described here has required the design of un

operating system tailored to 1its needs. Its features Include a disk-basec

vector file system for convenient manipulation of vector data, an on-line

system monitor, a dynamic, culor vector projection program, and a cpecial

purpose programming language. The need for such special purpcse scftware
and the high demands in computation time of many of the algorithms involved

indicate that such systems can best be implemented on small or medium-scale

dedicated machines rather than on large-scale, time-shared configurations.
The color CRT provides easy identification of proJected points by

category, which is valuable in classification problems. We have seen that
discriminant analysis can determine good projJection planes for multicategory
data., It should be noted, however, that some intrinsically complex problems

may not be sufficilently well represented by any two dimensional projection.

Therefore, such displays should be used to augment the intuiltion but not to

draw hard conclusions about the data structures involved,

The implementation of the algorlithms has been as modular as possible
to allow the greatest flexibility in their application, The vector pro-
Jection program allows the results of intermediate results to be visually

evaluated., Once a useful sequence of operations has been established, 1t

is desirable, for simplicity of operation, to define it as a single pro-

cedure. For this purpose, future additions to the system will include a

cataloged procedure facility. Also needed 1s a provision for on-line graphile

documentation of programs and procedures,
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