AP?194717

SECOND LI NL=-ALHUAL TECHNICAL REPORT
(13 July 1970- 12 Jonuary 197])
FOR THE PROJICT
COMNPILLR DESIGN FOR THE ILLIAC IV

Massachusatts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC

NATIONAL TECHNICAL
INFORMATION SERVICE
Springfield, Va. 2.

qv

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

! ' MASSACHUBGETT. COIAPUTEN ASEBCI ATEDS
S aomsowor APFIILD TN RID L

- LAKESIOE CFFICC PARK « WARLHIELD, MALLACHUSETIS OHLO « (GI7 40 2LAD

SECONRD SIMIE-ALIUAL TECHUNIC T RUPORT
(13 July 1970- 12 Jenuay 197))
FOR THE PROJLCT
COMPILIR DESIGN IFFOR THE ILLIAC IV

Principal Investigator and Project Leader:

Robert E. Millstein Phone (617) 245-9540
ARPA Order Number ARPA 1554
Program Code Number 0D30

Contractor: Applicd Data Rescarch, Inc.
Contract No.: DAHCO04 70 C 0023
Effective Date: 13 January 1970

Expiration Date: 12 October 1971

Amount: $303,012.50

Sponsorcd by

Advanced Rescarch Projects Agency
ARPA Order No, 1554

ABSTRACT

The ILLIAC FORTRAN Compiler may be churacterized as a series
of transformations on tha source input stream. FORTRAN code is trans-
formed into o represceniation which c¢::ploits ILLIAC parallclism. This
transformation i8 accomplished by detecting individual statements within
DO loops which may be executed {n parallel {or values of the DO indices,
and determining an ordering which preserves d: ta dependencies. While
the result of this effort affords ILLINC parallelism, it is insensitive to
two major characteristics of ILLIAC hardware: an enormous disk latency,
and an ability to overlap execution of sequential and parallel components
of the hardwarce. In order to fully exploit the capabilities of the ILLIAC,
two more transformations are effected. First, code is restructured to
minimize the cifect of disk latency. Second, operations are allocated to
maximize CU-PE overlap. At this stage it is appropriate to generate
ILLIAC code.

r. X

TABLE OF GONTENTS

I. INtroducCtion.eccoveccescosssooscscoscsccsoosssssscocsocsse
II. The Dotection of Parallelism in DO LOOPBeeessscsssssoscososs
I, ILLIAC 1I/O Optimization.cseeeeccosccossccsscoscoscsssossscs
IV. ILLIAC Overlap OptimizatiONecesccccooscosccccsscscossscssccss
AppendiX Aceeocoseocessscsocsscoscosociocscsssessocoscsns
AppendixX Beeosoosrssocosteocsoscrorsssascossssscsossocsssns

Appendixc..........'.OOOOOOOC....OO.......O'..OOO..C....

23
30
37
50
66

1.

L._INTRODUCTION

The basic architecture of the ILLIAC IV Fortran Compiler may be
characterized as a series of transformations (each representing a
compilation phase) on the FORTRAN source input string. The first
phasc parscs the input strcam and gencrates a flow graph in which
each statement is represented as a node.

The parsed string and flow graph depict an execution process
which has been coded sequentially. It may contain operations which
exhibit ILLIAC-exploitable parallelism. Detoction of ILLIAC exploit-
able parallelism involves doetecting individual statements within DO
loops which may be executed in parallel for values of the DO indices,
and determining a statement ordering which permits parallel execution
without altering data dependencies. Chapter II, which examines
parallelism detection is primarily concerned with data dependency and
statement ordering. Appendix A provides a technique for detecting data
dependencies in an arbitrarily complex flow graph,

By means of the parallelism algorithm, the flow graph is appropriately
transformed. The parsed input stream is replaced by N-address macros
which permit symbolic references (i.e., A(I,H2) is a legal address).

At this point is is feasible to examine storagc requirements with
respect to I/O demands. Chapter III is concerned with optimizing 1/0 for
large arrays. If this procedure dictates a new statement oi‘dering, the
appropriate transformations are effected. The examination of FORTRAN
statement orderings provided an insight into the nature of partial orderings.
These observations are contained in Appendix B.

After reordering in order to minimize I/O latency, array rcference
macros are expanded according to the array methodology described in the
First Semi-Annual Report. The resulting pseudo code may be further optimized
to take advantage of CU-PE execution overlap. Chapter IV defines
ILLIAC optimization goals with respect to overlap, and provides a method
for allocating instructions between CU and a single PE for sequential code.
Appendix C specifies the upper boundary for execution savings in an overlap
optimization effort.

At this state it is appropriate to generate ILLIAC IV code.

This section consists of two distinct parts. The first of these
represents an overview of the naturc and aims of the procedure for
detecting parallelism in DO loops cxploitable on the ILLIAC IV. The
socond {8 concerned with a particular aspect of this procedurc: It is
a discussion of the problein of data dependency detection in certain re-
stricted but basic situations involving nested DO loops and multi-
dimensioned arrays,

In the discussion of data dependcncy detection in both the present
and previous semi-annual reports, rclatively simple flow logic has been
assumed for clarity of explication. In actual practice, of course, such
simplicity is not likely to be the rule. Hence, included in Appendix A is
the basis of a general algorithm, based largely on p-graph theory, for
detecting data dependency in loops with any degree of control complexity.

PART 1; AN OVERVIEW

The goal of the parallelism procedure is the examination of
FORTRAN DO loops in order to determine how much of the calculation,
if any, can be done in parallel on the DO index variable. Manipula-
tion of code will be performed whenever possible to maximize the
amount of parallel computation. The analysis to accomplish the above
will necessarily be restricted as to the complexity of code it can deal
with; that is, in some cases (hopefully a small percentage) no attempt
will be made to manipulate the code to effect parallelism,

RESTRICTIONS

1. The analysis of DO loops will extend to detcction of parallelism

on the index variable along 2 dimensions in a DO nest. In a DO loop
nested 3 or mere levels deecp, code is analyzed for parallelism in

the innermost DO variable, then in the next nesting DO loop variable,
etc., until parallelism along 2 dimensions has been found. Along all

othor dimensions, scquential execution is assumed, Example:

DO 1 9 .
A(l) =

B(1pe

DO K
C (1,K) =

DO L
D (1K,L)= -

The L loop is the only one nested 3 or more deep. The code in
this loop is analyzed first with respect to the L variable, then K,
then I. If parallelism is found along the L and K dimensions, say,
then with respect to the I dimension the code will be executed sequen-
tially. Outside the L loop, code is examined for parallelism along
1 or 2 dimensions, as the case may be.

2. At present, interral (non-DO) cycles in a DO loop are considered
as a special case: a cycle will be examined for parallelism (in the
DO variable) as it stands; no attempt will F2 made to manipulate

the code to make parallelism possible, In relation to the rest of

the code in the loop, » cycle (or nest of cycles) will be treated as

a "black box" containing only a list of definitions and refereaces.

3. 'Subscripted variables. The procedure {8 based heavily on the
analysis and ordering of the subscripts of array variables, primarily
for the determination of inter-loop data dependencies. Only cases
having subscripts of the standard linear form kHc where I is the

DO variable will be fully analyzed. Otherwise, it will be assumed
that nothing is known about the relative value of a subscript and the
"worst possible case" i{s assumed. This in general will force sequential
execution of the affected code. 2 possible exception to the above
restriction (since it appears to occur commonly) i8 a subscript which is
a linear form in » non-DO variable which i8, however, easily detected
to be a linear form in the DO variable.

4. So far as the analysis described here i8s concerned, a case of
"detccted parillelism" is a plece of code for which it has been
determined that the associated data dependencies are such that each
statement can be executed simultaneously for all values of the index

4.

variable. No represontation is made, however, that the data for

the computations can be presented simultancously to the prooessing .
elements. That is, thec analysis looks for concurrency of operator

execution, but not opmand fetching. In the statements:

A1) = B() + C(1?)
Z () = Y(I) + FUNCT(1)

it may be possible to pcrform the addition and store operations in
parallel (on 1). However, the fetching of elements of C in the first
statement may require a complex scquence of instructions. In the
second statement, calculation of the function FUNCT might require
all processors; the values FUNCT(I) would ther. have to be generated
sequentially.

P2RALLELISM PROCEDURE
Qutline:

1. Determination of data dependencies

2. Stating the ordering relations for parallel execution

Causal chains
Branches and merges
Cycles

3. Determin~tion of optimal total ordering to minimize overwrite

o eterminntion ata dencies

Assume a technique equivalent to the p-graph algorithm to be
applied to the loop code. For input to the algorithm, a "p-graph" for
each variable (or uniquely subscripted variable) is represented; the
nodes of the graph correspond generally to the uses and definitions of
variables; additional nodes for merge points and the entry and exit
points are supplied. Application of the algorithm gives all data

-dependencies for non-subscripted variables, that is, a variable use is
explicitly related to one or more "circled" nodes which might have
generated its present value. (It is assumed that the algorithm keeps
track of all circled nodes associated with a merge node.)

Vor subuse-itod varialles, the alguiithm glves all intra=-
looj: depondumices; the dotermination of inter=loop depondoncios is
more c.anplex. |l the graph lor a subscripted variable shows a use
of it: initial value (cithor dircetly or via a morge), then it must be
doteinined il this value coul * have boon generated in a previous
fteration of the loap. To do this, the graphs for the samu array variable
are ansigned indices accurding w descending value of their Litoral
suhscripts®, For cxample, Il urray variable A appears in a loop on index I
with subsecripts I-1, 1, k1, then the A(l+1) graph is assigned 1, A(D) graph
2, ctc. To find o possiblo goncration in a provious loop iteration for a
subscripted variable vse with indcx n, the graphs cotrosponding to
indices n-1, n-2, otc., arc examined in turn. The first graph encountered
having a non-initial value at its exit node gives an inter-loop dopendency,
f.c., the valuc was gonerated at tho node(s) generating the exit value,
If the node is & mergo node with an initial value as input, the search
for inter-loop dependencies is continued, halting finally when only
non-initial values are encountered, or when all the p-grephs have been
examined. It should be noted that this technique is made feasiblo by the
observation that a'.hough the number of literal subscript expressions
appoaring in the source text within the range of the loop is in principle
unlimited, it is in fact usually rather small.

Subscripting Non-Subscripted Varishles
Non-subscripted variables will have to be subscripted in some cases in
order to execute statements in parallel:

DO !
1 C= A()/D
2 B(D=C* FUNCT(C)

In this example, C would have to be replaced by a vector, say C(),
in order to exocute all definitions of C in parallel in statement 1.
Both references to C in statement 2 would of course also be replaced
by C(). The variable D on the other hand need only be "broadcast”
simultaneously to all processors since its value is the same for all 1.
In general, a non subscripted variable (and its dependoncies) will be
subscripted when 1t is defined in an assignment statement whose right

*Only subscripts of standard form ki+ c will be ordered. Other subscripts
are considercd "indcterminate”, f.e., possibly having any index value,

6.

hand side is (directly or indirvotly) & funciion of the DO variable.

The subscripting will take two forms. For intra-loop dependencing,
as (n tho above example, tho subscript assigned is ident! ~al

for the definition and all its rofuroncos. [or inter-loop dopendoncios,
that is, when the value for a usc of the variahlo was gonerated

in the provious itoration=--for oxamplo:

DO 1
1 B() = C* FUNCT(C)
2 C = AlF1)/D
the use will be assigned a subscript value 1 loss than its definition.

The above example moy be reformulatod:

DO 1
1 8()) ~ C(1-1) * PUNCT(C(I-1))
2 C()= A(1)/D

Assuming the first eloment of the vector C initialized to the value of C
before entry into the loop, the above formulation is equivalent. Of
ocourse Jor perullel exeoution of this loop, statements 1 and 2 must be
reversed (see next section).

7.

2, _Ordering Relutions for Parallel Executlon

The condition for parallel execution is that in inter-loop
dependencios, all value gencerations relevant to a variable use
prccede that use. ‘To find out if it is possible to rearrange the code
in the loop to meet this condition and at the same time preserve the
essential data dopendencies, a sct of precedence relations might
be constructed as follows., Assume that p-graph nodes have been
numberced so that corresponding nodes on different graphs have the
same numbcr., Represent eachi data dependency by the relation:
nl < n2 where n2 is the node number of a variable use and nl the
node where its value was generated. (A relation for each possible
generation, if more than one, must be stated,) If the total set of
relations is examined and found consistent, i.e., if there are no
cycles, then the DO loon can be made to be executed in parallel.
There are casy techniquee applicable to Boolean precedence matrices
for detecting cycles and for determining total orderings from the given
partial ordering (1,2,3].,

If cycles are found in the ordering, then there ars dependencies
which represent real causal chains in the DO loop, for example:

A(D) = A(I-1)

which must be executed sequentially. The following examples illustrate
another causal chain and a similar case which is not a chain:

DO 1 ations
1 X (D)= A(I-1) X 1< 2
2 A(I) = X(I)*2 A: 2 < 1
DO 1
1 X(I) = A(I-1) A 2 <]
2 A = Y(D X, Y: no dependencies

In general, only maximal cycles will be considered: the sequence

of operations represented by each cycle will have to be executed
sequentially (in the original order). However, all other operations in
the DO loop (if any), can be performed in parallel. A total ordering can
be determined by considering each cycle a single node and restating the
ordering restrictions accordingly.

Branches an erqges

Rearrangement of code must necessarily take into account the flow
logic of the loop. If the loop contains no cycles - only branches
and merges - the problem is simple, Assume that in general all
operations are associated with "mode sets", that is, with data
words set to indicate the values of the DO variable over which an
operation is to be defined, (If the loop contained only "straight
line" code, all mode sets would conceptually be set to the entire
DO index range.) Assume that at execution of an IF statement all
relevant mode sets are set appropriately. Then it is only necessary
to add to the data dependency ordering relations the conditions

that setting of mode sets precede the operations dependent on them,

Example:
DO 1
1 B() =A(I-1)+1
2 IF (I‘>‘__ 5)
(I> 5) / Ny (1s55)
3 ED=B(I) -1 4A(D) = A(I) + 1
s L

Assume siatement 2 sets mode set 1 for I> 5 and mode set 2 forIs 5,

Statement 3 is associated with mode set 1, statement 4 with mode set 2,

The ordering relations are:
A:

B:
- Mode sets:

N DN e
AANAA
o D)

This gives the total ordering:
2<4<1<3

The loop is therefore executable in parallel as follows:

Mode Sets
2 IF (I>5) All 1
Sets mode sets
1 and 2
4 A(I)=A(I)+1 I in mode set 2

1 B(I) = A(I-1) + 1 All I
3 B(=B()-1 I in mode set 1

Example:
DO 1
1 C(D = A(I-1)
2 IF (1>05)
(I> 5) zf'/ _3 (I=5)
3 A(D)=D()+1 4 A)=C(D)+1
\\.$

Assume mode sets as before. The ordering relations are:

A: 4<1
3«1
C: 1<4
Mode 2« 3
Sets:
2< 1

Total ordering:
2 <3 <cycle (1,4)

The cycle forces sequential execution of the pair (1,4), but 2 and

3 can be executed in parallel:

Mode Sets
21IF (I>5) All 1
Sets r;ode sets
. 1,
3A(I)=D(1) + 1 I in mode set 1

Sequential loop:

1C(I) = a(1-1) All 1
4 A(D)=C(I) + 1 I in mode set 2

10,

Cycles

After data dependencies have been determined, internal (nests of)
cycles are examined. If there is found to be any inter-loop depen-
dency within a cycle, the loop cannot be executed in parallel (on the
DO variable) as it stands:

DO 10 1

J =1
1 A(I) = MI)+ 1 é

B(I) = B(1) + A(I-1)

J=T+1

IF J<1) GOTO1
10 CONTINUE

In this example, A(I-1) is dependent on the final definition of
A(I), that is, the value at completion of the internal cycle. In
this case, the cycle could be split to permit parallel execution:

DO 10 I
J= 1
1 A(D=2a(D+1 :
oy)
}F (II<I)GO'P01)
1x B(D) = B(I) + A(I-1) ¢
J=J+1 .l
IFJ<1) GO TO lx
10 CONTINUE

In the following example no such manipulation is possible because of
the B(I) dependency in the IF statement:
DO 10 1
1 A(D= A+
B(I) = B(I) + A(I-1)
IF (B(Il<C) GO TO 1
10 CONTINUE
At present, the proposed procedure simply declires a cycle executable
in parallel on the DO variable or not, depending on the absence or
presence of inter-loop dependencies. Some investigation of "cycle
splitting” for the general case shows the analysis to be more complex
than the first example suggests,

A cycle will be represented in the ordering reclations by a single
node at which »1l variable uses dependent on values generated
before entry to the cycle and all variable definitions occurring‘

in the cycle are associated. The latter represent the final

values of variables on exit from the cycle. It may be that examina-
tion of all the ordering relations shows a cycle node to be in a
causal chain sequence. In this case, the cycle is always executed
sequecntially on the DO variable in its place within the sequence.

11.

3. The Optimal Total Ordering: Overwrite Considerations

Thus far, the requirements laid down for ordering a DO
loop to permit parallel execution have excluded consideration of
overwrite, that is, the redefinition of a variable or array occurring
before all uses of the previous definition have taken place.
Preventing overwrite is considered a secondary requirement in
ordering the loop because, if need be, it can be handied by using
temporary storage. However, this incurs a cost in space and, in
some cases, also in time*,

The ordering relations discussed in the last section define
a partial ordering of the operations in a DO loop which implies some
set of total orderings. The problem then is to choose the ordering
that minimizes overwrite (according to some criteria). In cases
where there are relatively few orderings to choose from, any ad hoc
solution will probably suffice. The general case, however, may
invelve infinite combinatorics and apparently no gencral solution
to this problem has been found, Heuristic solutions will be investi-
gated based on experience with the 1/O latency problem.

* Extra code may be needed to restore values to permanent arrays on
exit from the DO loop. It may also be needed when overwrite results
from re-ordering the original definitions in a loop, causing incorrect
exit values.

13.

PART 2: DATA DEPENDLENCY IN NESTED DO LOOPS

With regard to the general problem of extending the present methods
of analysis 10 comprehend cases involving multi-dimensioned arrays and
nested DO loops: Consider a restricted situation in which we have two
tightly nested loops ("tightly" meaning here that all code contained within
the outer loop is contained within the inner), the outer on I and the inner
on J and both using an increment value of +1, and references to a two-
dimensioned array A, in all of which the first index is of the form I+c,
the second of the form J+k, where ¢ and k are integers, Assume that
there are no control transfer statements,

For any given statement in the loops containing a right-side reference
to A, say statement X, we wish to determine whether there are any ordering
constraints on X for ‘ts SIM executionon 1) J, 2) I, and 3) I and J together.
More precisely, we are interested in the ordering of statements necessary in
transforming the nest of simple DO loops into any of the following three nests:
1) DO SEQ I/DO SIM J, 2) DO SIM I/DO SEQJ, and 3) DO SIM I/DO SIV J.
(For the present, we shall not be concerned with overwrite problems -~
“ordering constraints" in this context will refer simply to those relationships
between statements necessary in order that the values of an array be generated
before they are used.) The following discussion, for the present purpose
of clarity, makes no use of the p-graph concept and terminology.

The search for ordering constraints involves, as before, examining the
rest of the loop code for dependency relations, to see if the values required
for the reference to A in x are generated elsewhere in the nest, But whereas
in the case of single loops there were essentially only two kinds of data
dependency relations, referred to as " intra-loop” and "inter-loop" dependencies,
which were of more or less equal significance in transforming the code to permit
exploitation of ILLIAC-type parallelism, a nest of two loops introduces a
great deal more complexity. It is no longer true, for example, that a data
dependency relationship necessarily implies an ordering constraint.
Specifically, there are three distinct kinds of data dependency relations
possible, one of which has three different varieties; each of this total
of five types has slightly different implications for the transformation of
the code; and one reference to an array can be dependent on any number of
other statements in various of these ways,

The most straightforward situation is one involving what we shall call
simply an " intra-loop" dependency relation, which is precisely analogous
to the like-named relation in single-loop code. For example, suppose that
the following statements occur in a nested loop of the sort under considera-
tion:

'y MLI =B@L] +CO)

x DU, = AL +1

Assuming that no other statement with a left-side term A (I,]) intervenes,
every value uscd by the 1eference to A in statement x is generated by
statement y during the same iteration of the loop code. In such a situation,
all that is necessary (so far as this particulur reference to » is concerned)
for the DO nest to be transformed into any of tne three ncsts described
above is that statement y precede statement x.

A slightly more coniplicated but still fairly straightforward situation is
one involving what we shall call an "intra/inter-loop" dependency relation,
that is, where values are generated and used within a single iteration of
the outer loop but in different iterations of the inner loop; for example:

y A(I,J+1) = B(I,]) + C(J)

x D(L]) = A(LJ)

When, say, I=] and J=1, statement y generates a value for A(1,2); when]J

is incremented and the code executed again, statement x uses this value.
More generally, if we represent the reference to A in statement x by A(f 1 fz) ,
then this kind of dependency relation can occur only if there is at least

one statement y with left-side term I\(gl, 92) such that gl=f1——otherwise
there could be no interaction betwecen the two for a single value of I-~and
gz>f2--otherwise X would use a value for any particular element of A before y
could generate one. If there is more than one such reterence to », the
particular statement generating the values used in x can be determined by
examining these references with respect to the second indices alone by a
procedure esscntially identical to that described in an earlie: report for
singly-dimensioned airays in single loops. The statement, say y, thus
located must precede x in any transformation of the DO nest to the first or
third type of the SIM ncsts listed above; however, for the second type,
involving SIM execution on I alonec, this dependency relation requires no
ordering constraints, since the scquential exccution with respect to J will
automatically ensure that generation preccde use.

14.

15.

The situations counsidered thus far are not in principle different
from those ¢ncountered in the discussion of singly-dimensioned arrays
in single loops. At this point in the analysis, however, the consequences
of the nestedness begin to make themselves felt, Suppose, for example,
that a reference A(f], f2) in statement x was found to use values gencrated
by statement y with lcit-side term A(gl=f1, gz) in an earlier iteration of the
inner loop but during the seme iteration of the outer loop--that is, an
intra/inter-loop dependency exists between x and y. As in the case of
single loops, the fact that the dependency is inter-loop with respect to J
implies that during at least one iteration of the J loop (specifically, during
(gz-fz) iterations) statement x will use an "initial value” of A; but whereas
"initial" in the former case meant that the value was generated prior to
entry into the loop, here it means simply that the value was generated
before the present execution of the J loop was initiated--it may or may not
have been gcnerated by a statement other than y during an earlier execution
of the J loop, that is, during a previous iteration of the I loop.

Even if an intra/inter-loop dependency is discovered, then, the search
for generating statements must continue. (This, of course, is obviously
not the case for a simple intra~loop dependency). Only statements containing
left-side instances of A with first indic es larger than that of the reference
to A in X are candidates; those with smaller first indices clearly could not
generate values used in x in earlier iterations of the I loop, Disregarding
for the moment the conditions imposed by the existence of a finite test
value for the DO loops, it should be clear that all of these definition
statements will generate values for some of the elements of the array
referenced in x prior to that reference--what must be determined is which
statement is the last to do 8o for any given element.

If two left-side terms have different first indices, the one with the
larger index will generate a value for a particular element of A during an
earlier iteration of the outer loop than the other; if two terms have identical
first indices and different second indices, the one with the larger second
index will generate such a value during the same iteration of the outer loop
but during an earlier iteration of the inner loop; and finally, if both indices
are identical, the original ordering of the statements determines the priorily
of value generation. Tentatively, then, the statement we seek would be a
member of the set of the candidate statements with the lowest first index in
the left-side term, and, of these, the one with the smallest second index, and,

16.

if there are more than one of these, the one occurring latest in the loop code.

If an intra/inter~loop dependency had previously been discovered,
involving a definition of I\(gl, gz) in statement y, then of course a further
restriction is that the second index be smaller than gz-—othcrwise statement
y overwrites all the values before they can be used in x. If the statement
selected by the procedure just described fails to meet this requirement,
all statement s with left~side instunces of A with the same first index
are excluded from considcration (since they too would necessarily be
overwritten by y) and the search begun again with the next greater first
index, Supposc that, eventually, statement z, with left-side term I\(hl, hz)
is selected. If h2 = fz, then z will generate values for all those references to in X
(after the first (hl-f 1) fterations of the outer loop) for which y fails to
generate values. If, however, h2 > fz, then there will remain at least one
iteration of the J loop (to be precise, (hz-fz) iterations, again after the
first (hl-fl) iterations of the outer loop) for which x will use an "initial
value" for the A reference. Conscquently, the search must be continued.,

Clearly any statements with a left-side reference to A with a first index
equal to hl are excluded; further, there is now a restriction on the second
index, namely that it be smaller than hz. The search continues in this
manner and terminates in one of two ways: either no A definition statements
remain for consideration, or sufficient generating statements have been
found to produce the greatest possible number of values for the reference to
Ain x,

The preceding discussion, however, omitted any consideration of the
consequences of particular values for the DO loop parameters. The procedure
described above must be modified in certain ways to take these into account,
Consider, to begin with, the initial and test values of the outer loop;
call them oy and Bye The value RI =By-apt 1 represents the number of
iterations of the outer loop that occur during a single execution. If the
difference between the first index of a left-side instance of A and fl is
greater than or equal to RI' then any interaction between the two refcrences
is precluded; the search described above, then, ceases when such statements
are the only ones remaining to be examined.

Now consider the corresponding parameters in the inncr loop, aI, BI'
and RI = al - aj + 1. These have an analogous effect: no siatement with a

left-side reference Mp,q) can generate values used in x if (q-f) »
(in both inter-aud intra/inner-loop dependencies). Additionally, no
statcment need be considered if (fz-q) Z R,. The formucr case, of course,
occurs when q is too much larger than fz, the latter when it {8 too much
smaller. These restrictions may be restated as 1limits on the value of q:
it must be smaller than an upper limit LI = RI +f2 and larger than a lower
Hinit]'Il -—-fz-RI. These limits are modified in the course of the scarch by
the discovery of generating statements., Suppose a statement y with left-
side term A(gl, gz) is determined to gencrote values uscd in x. 1f 92"2'
y will generate valucs for all referances to A in x after the first (ql-fl)
iterations of the outer loop; and since no statement remaining to he ex~
amined can have a smaller first index, the search is tecrminated., If 92>f2,
(as it must be in an intra/inter-loop dependency, and may be othcrwise),
then LIZ is set to g since any remaining statement with a second index
higher than g, wil] fail to generate any values that could be used by the
reference to A in x other than oncs that will be overwritten by y. If g, < fz,
1 is set to 99 for similar reasons.,

These limiting values provide one of the direct tests for terminating
the search for generating statements: If (LIZ-LII) s RI' then there exist no
statements remaining tn be examined that could generate values used by the
reference to A in x. (The satisfaction of this condition means, loosely
speaking, that two generating statements have been found, one with a left-
term second index smaller than 1.’2 ,» the other with a left-term second index
larger than f2' that are "close” enough to "overlap* --that is, fz takes no
value in the loop that is not taken by the second index of one or the other
of the two generating statements,)

An additional consequence of the finiteness of BI that might be noted
_ here is that several generating statements may have identical first indices;
for example:

A(+1,]) = B(1,]) + C(Q)

CA(I+1, J+2) = D(1,]) + C(})

H eeaN oo ¢

E(1,]) = MI,J4H4) + 1

17,

18,

If] ranges from 1 to 10, then y will generate values for use in x for
A(1,5) to A(1,10), and z for A(1,11) and A(I,12), for ull | except aj.

Por any given first index, howevoer, there i8 at most o generating
statemont with a socond index equul to or greater than ., .,

All of the cases dincusscd ahove where x is found © depend on a

statement with a larger first indes: inay be thought of a.: sfinply “inter-
loop" dependencies. ‘The threc possible varicties of intcr-loop dependency,
however, have rather dilfcrent in.plications for the reordering of state-
ments in cflecting a transformation of the NG luops into a DO SIN. nest.
In no casc is there any ordering constraint for the tranciormation into the first
type of nest, involving SIM cxccution on J alone, since scquential execution
with respect to I will engure that generation precede use. In every case
the generating statement must precede x for the third type of nest, the
SIV./SIM nest. It is for the sccond type of nest, involving SIM exccution
on I alone, that the consequences differ: If the second index is cqual to
fz. then the generating statement must precede x; if it i3 greater than fz
there is no constraint; while if it less than fz, SIV exccution on 1 alone
cannot be effected.

The following flowchart represcnts a precise statement of the procedure
described in the preceding pages. It is assumed that all N left-side
instances of » in the body of the loop havc been located, and that they have
been listed in a table, along with associated statement numbers (which
have been assigned sequentially in the original order), in order of increasing
indices, the second index varying more rapidly, and, where pairs of indices
are identical, in decreasing order of statement number. In the flowchart,
the symbols ¢ and k rcpresent the first and sccond index constant modifiers of the
reference to A in %; the symbols 8.+ P and q,, represent, respectively,
the statement number and the first and second index constant modifiers
of the mth entry in the table. (Note that since it is the difference between
indices that determine the decisions in searching for data dependency re-
lationships, it is only the constant modifiers that are significant.)

Mn entry is initially examined on the first page of the flowchart; if it is

potentially involved in an intra-loop dependency, it is accepted or rejected
on that page; if it is potentially involved in sn intra/inter-loop dependency,
it is tested on the second page; and if it is potentially involved in an inter-

loop dependency, it is tested on the third page. Hexagonal boxes contain
the results; . P x" mcans that statement I must precede x in the
transformed code, for SIM execution on the loop variables listed at the
bottom of the hox (whore I+] refers to SIM execution on both variables
together) .

The flowchart should not be taken to be more than a precise
summary of the material presented in the test. First of all, it is obviously
valid only for nested loops of the restricted sort described at the outset
of this section, Secondly, the fin=1 form of the algorithm for detecting
data dependuncy in nested loops will probably be closer in spirit to the one
described in fppendi» » for single loops. Finally, the algorithm inherent
in this flowchart does not necessarily embody the basic strategy to be
pursued in searching for ILLIAC-exploitable parallelism, For example,
rather than simply determining all possible ordering constraints arising
from data dependency relationships, it might be better to search for only
the kinds of data dependency relationships relevant to cach of the possible
transformations of the nest, considered sequentially in order of their
predetermined desirability (which is related, for example, to the ranges
of the DO variables), halting as soon as a particular transformation is

determined to be possible,

19.

rejeqt“entries with first index < ¢

- fele =2 S = e e e e Y

/ . '
\~.\ B ey |

L

e L EXIT .\\

./

- -- l

|

test first index for
potential inter-looon
'dependency; if found,
lgo to B for further
ltesting

- = = e

m=m+1 :]

test second index for
t.._potential intra/inter-1oon
dependency; i€ found, ao
to A for further testing

- o @ e e - e -

iboth indices equal: test
(for intra-loon denendency:
i1f found, note ordering

lconstraint and exit

s Ao et o s—————: ¢ e o o

test for intra/inter-loon dependency; if
found, note ordering constraint and reset EJZ

- e e e e e ae e e e e @ e - e e e me @ w e

reject all other entries
with same first index

- em e = e —a

21

. test if first index helow
f?hpper bound; if not, exit

|
B EXIT

U

A4S

o e — e e = n ey

test!if
second in-
dex within
boun?s

reset second
index bounds

L é}b f/’.":
| I
| /

test if further

'dependency rela-
itions possible

AT, NLIAC I/O OPTIMIZATION

The following scction is concerncd with minimizing I/0 requests
for large arrays. Because of disk latency, this effort is essential
to cffective use of the ILLIAC IV, The scope of the approach is limited
to casces where array refercnces in a small number of contiguous state-
ments require more space than i3 available in corc. Attempts are made
to re-order these statements such that like array references appear in
adjacent statements,

Results have been disappointing and future effort will be directed
at leaving statement order intact and calling I/0 as early as possible.
By partitioning arrays according td which program nodes refercnce them
(as suggested by T. C. Lowe [47),and then reducing the graph of the program
until partition size exceeds core size, it may be possible to locate
essential 170 calls. Once it is determined where 1/0 calls are essential
and what arrays thcsa calls reference, the problem of relocating them is
similar to removing invariant calculation from DO loops, a technique which
already exists in the literature [1].

I/0 ORIENTED STATEMENT PERMUTER

I. Purpose; The ratio of disk-seek time to memory time is approximately
4 orders of magnitude on ILLIAC IV. For this reason it is advantageous

to issue I/0 calls as early as possible, hopefully ininimizing time spent
waiting for material from disk. It is possible (by rearranging statements
while preserving data dependencies) to maximize the amount of I/O which
can be backgrounded. The purpose of this effort has been to examine
procedures for accomplishing such a rearrangement that will entail as

little cost in combinatorics as possible. The problem may be stated
formally as;: Given a parial order on a finite set and a cost function associated
with each linear order on the set, find the linear order of minimal cost that
is consistent with the partial order,

II. Scope After the rather intensive work described below had been
conducted it became apparent that the scope of this effort is somewhat

more limited than had been anticipated. The specific technique described
deals with 170 problems of a very local nature, and is applicable in situations
which do not secm to arise with astonishing frequency. The effort did,
however, afford the investigator deep insight into the nature of FORTRAN

code and the possibilities for its deformation,

23.

III. The Permutation Gencrator

This routine has two parts. Part I computes a partial order matrix,
using Warshall's algorithm [3] to obtain the transitive closure of a set
of relations of the form a .1t. b, where a and b are statement numbers.
Part II generates permutations of the siatements consistent with the
matrix from Part I. In addition, Part II is loaded with switches and
heuristics in én effort to find as short a path as possible io the minimal

permutation. These heuristics will be described in section VI,

III. 1 Part I--the matrix gencrator
The data dependencies are gencrated as follows:
(note: .p. is our partial order relation)
L(a)= variable appearing on left of statement a
R(a)= variables appearing on right of statement &

a,p.b iff:
1) @< b)and (R (a)M L(b) #0), or

2) (a<b)and (L(»)M R(b) # @), or

3) (a<b)and (L(a)=L(b))and Gx b < x < inf{y|L(y)=L(b),
y> b, R (M L(b) #6}.

Condition (3) is actually too strong, for it defines not & .p. re-
lation but an anti-contiguity relation. If (3) is met, then the restriction
on a is that it may not appear betwecen b and any statement whose right
side references the "b" activation of variable L(b). In the test program,
this condition was overlooked entirely, but it has had little effect on the
results and in no way invalidates them,

After the data dependencies are computed, Warshall's algorithm is
applied to obtain the transitive closure--an upper ti‘iangular boolean
matrix whose (i, j)th entry reflects the truth value of the statement "i.p.j".

II1.2 The basic permutation generator

The permutation generator is driven by a mask matrix and auxili~ry
tables, all computed from the closed partial order matrix.

II1.2.1 The mask metrix (MSK1)
This is a boolean n x n matrix, where n is the nummber of statecments

being permuted. Each column is a position in the final lincar order,
The (i,§)th entry is 0 if a placement of statement 1 in position j is legal,

24.

-1 otherwise. The {nitial sctting of the matrix is determined by the NP
and NF tables helow,

III.2.2 The auxiliary tables

1. TRES: an n-vector which contains the final linear order,
2. JROW, JCOL: n=-vectors containing the number of zeroes in a
given row {column) of MSK1,
3. NP, NF: n-veclors containing the number of statements which
must precede (follow) a given statement. Row I of MSK1 originally
contains NP(I) -1's, followed by n-NP(I)-NF(I) 0's,followed by NF(I)
-1's. In words, a statement which must precede (follow) NF(I) statements
(NP(I) statements) cannot appear in any of the last (first) NF(I) (NP(I)) positions.

I11.2.3 The algorithm

This is a stack algorithm which places statement after statement
into IRES until either all statements have been placed or an inconsis-
tency has been dctected. Subsequent work has indicated that there may
be a slightly more efficient algorithm (see Appendix B)

1. L= 1 (setstack depth),

2, Restore MSK1 and tables to (L-1) state (Ostate is original state).
3. LL=IORD(LL) (statements are handled in a specific order, dis-
cussed below).

4, IPERM(LL)=IPERM(LL+1)(move to next permutation at this level).

S. IPERM(LL) .gt.JROW(LL)? (NO, ¢o to 7),

6. Yes, done with this level, pop stack
L=1? (YES, done),
1=L~1
go to 2
7. Place LL in IPERM(LL)th open position in LLth row of MSK1,

8. Mask out row and column of MSK1 taken (JCOL,JROW=1),

g, Mask out all open positions before(after) taken position in
rows of statements which must follow(precede) statement LL.
Also adjust JROW, JCOL,

10. Is any JROW or JCOL = 0? (YES means as inconsistency, goto 2)

11, Is any JROW or JCOL-1? (YES means we have a forced entry;
NO, gotol2)

12. Any more to do? (NO, done; YES, push stack: L=I+1, joto3).

25.

201

There are some obvious bookkeeping details which have been omitted,
but in essence the above statement of the algorithm is correct.

We mentioned that the statements are done in a specific order,
The reason for this is that it is desirablc to mintmize the number of
non-hits (yeses at 10). To do this, we do statemecnts in incrcasing
order of number of original open spaces (0's) in MSK1. Thus crrors are
less likely to occur, since as 1estrictions (i.e. the number of masked-out
rows and columns) increase we are dealing with elements which had more
open spaces to start with, and so can "stund" to have some crossed out.

IV. The cost function

The cost function has becen designed to be the simplest non-trivial
I/0 simulator possible, Given a permutation it computes total and
critical (i.e spent waiting) I/0 time. Effort is madc to background
I/0, but the analysis is not necessarily the most sophisticated possible.

V. The raw result,

For sets of statements of order 7-8 or fewer, assuming that the
number of order relations is not impossibly small, it is feasible to
examine every linear order to dctermine the one with minimal cost.
For largcr sets the combinatoric nature of the problem asserts itself,
and heuristics must be applied. In general it i8 possible to apply
heuristics to sets of order 12 or lower, so larger sets are chopped
into units of order 10-12.

VI. Heuristic approaches

1. Civing up after a_certain number of legal permutations have been found.
This method assumes that if an approach (i.e. some other heuristic) is
good it will generate low-cost orderings quickly, and thus if no such
orderings are found carly it is safe to quit. This mecthod is used in
conjunction with method 2 below,

2., Generating only those permutations which have all n references

to at least one variable in nt+1 contiguous statements (n cont-

iguous statements was found to be much too restrictive, and n+2 or
greater is too lax). This approach does well, as it should, Thc reasoning
behind it is that any good permutation must have at lcast one array
resident in core for a while (to minimize critical 1/0) 50 there will be
more time for backgrounding. The problems with this approach arc first

that there is bound to be some duplication of effort between segments
dealing with dilferent variables (the same permutation may be a hit
for more than onc variable), and second that it is not always clear which
variables should be made contiguous with réspect to references. The
first problem is cffectively unavoidable, but does not appear to be
too scrious, for when it arises it means that the permutation we are
looking at is probably good (aftcr all, if one contiguity is good,
how bad can two be?), and we may find some better ones nearby, as
it is an observed fact that good permutations tend to cluster (be
generated closc to one another).

The second problem is more difficult. Generating permutations based
on each variable eats up much of the time advantage of the method.
With all variables being examined(the test program uses 12 variables,
though it is wildly unlikely that more than 6 or 7 of them will be
arrangcable in the requircd contiguity, and the program recognizes
such cases quickly), this method produces slightly better results in
slightly shorter time than does the raw method (no heuristics except
to give up after finding, say, 1000 legal permutations), There do appear to be
some reasonable heuristics to determinc which 4 or 5 variables are
likely to be best, but these have not been looked into too closely.

The cutoif procedure for this method is interesting, for it has
effected huge time cuts with no noticeable loss in power. Examination
¢f permutations based on a variable is terminated if no improvement is found
in the first 25 legal permutations, or if the only improvements in the first
hundred were in the first ten, or if 125 permutations are examined with no
improvement. In each case improvement means improvement over the
previous best permutation, where the first permutation is the original linear
order. The rationalizations for the three cutoff points are: 1) good variables
are good early; 2) variables tend to be characterized by the first few
permutations they generate; 3) No cases have been observed where sparse
permutations were especially good, and even some of the best sparse ones
have been improved on by other variables.

3. Generating only a very small class of germutétions, but doing
a fair bit of analysis ‘o parametrize the class. The analysis consists

of the following steps:

28.

1. Create a table of all refercnces to all variables (i.c. a

list of statements for each variable).

2. Determine which pairs of statements arc "cood" in the sense
of having many variables in common and also being able to be
made contiguous.

3. Require as many disjoint pairs as possible t¢ be contiguous.

There is evidence that this method is the best of all, effecting a time

cut of from 1 to 2 orders of magnitude over (2), and with possibly

better results. It is based on the theory that instecad of secarching

a large set of permutations, we will attempt to gencrate only permu=-
tations that are close to minimal. It seems clear that the statements
paired are the very essence of a minimal permutation, and in fact may

be close to comprising sets of necessary and sufficient conditions for

a permutation to be minimal. The one drawback to this method is that
unless at least two disjoint pairs are found (and three is .auch better),
there is not enough reduction done to ensure that the resiricted class

of permutations is small enough, for th ‘'ea of this method is to test all
permutations which are legal by the above parameters. In about half the
cases we cannot find two fairly powerful (two or morec variables in common)
disjoint pairs. A possible hybrid of methods (2) and (3), would seem to
solve the problem, but this has not been tested.

VII. The algorithms were implemented on a PDP-10 computer. The
percentage reduction is from original orderings of random statemcnts.
The table on the following page summarizes the results of thesc efforts.,

29,

Percentadce Reduction

Method —fAverage _ t{Average CU Timo)
ns? Ssn=l2 . 212

All permutations Maximum (usually 2st=15 =180 t proqprtlonal
about 50) tok

All permutations close to maximum 2st=15 t=180 ——-

(with cutoff applied 10-15 -——- ——— t300

for n>12)

Method 2 30-50 ——- ts30 -—-

(usually about per variable

1/2 of the variables

are tested, Analysis
might reduce this

1/4 to 1/3 for significant

saving)
Mecthod 3 close to maximumn ——— 15=t30 -
(can only mect (estimatec)

conditions 1/2 time)

IV, _ILL'AG QVRRIAL OPTIMIZATION_
The following scction is concurned with executiun lilme opthuization,
Because of the unconvantionality of the ILLIAC, techniques are intro-
duced by describing counter cxainples to usual optimization methods .
An attempt §8 made to define optimization goals and the limits of their
offectiveness., A simple optimization algorithm i8 dntroduced, and a
characterization of thc optimizution problem s specificd.

A Conventional *pproach to an Unconventiorn il Machize

Becausc the number of PP's in the ILLIAC iV {g linitced to sixty-
four, the EXTENDED I'OKTRAN Comp:tler maps cach SIV assignment
statement whose SIM variable is greater than sixty-four into a control

loop and an assignment of sixty-four values. The conirol loop itcrates
the assignment until it is e<ecuted for all valucs of the TSIV, varfable,
More than onc SIM assignment statement may occur witiiin a DO SIM
loop. 8ince each statement within the loop is completed before pro-
ceeding to the next, an identical control loop is geners:cd for each
assignment statement. I'rom a conventional optimization point of vicw,
the repetition of identical loops is time consuming and, in cases where

data dependency and overwrite considerations do not interlere, unnecessary,

The reduction of identical control loops to a sinyle loop encompas:ing
all the acsignmont statements in a DO SIM loop, appears to be an
effective optimization technique.

Because of overlap between CU and PE exccuticn, the anticipated
gain in execution time is negligible. Control instructions are executed
in the CU; SIM assignments in the PE's, Since CU and PE execution
overlap, unless, in a given SIM assignment, the CU execcution time is
greater than PE execution time, the elimination of CU instructions v:ill
not change combined execution time. An examination of the timing cf the
instructions we anticipatec generating for SIM assignment statements has
shown that, except in the simplest cases, commbining control loops is an
ineffective optimization technique.

30,

Balancivg by Allecition

In order to account for execution overlap between CU and PE
processing,the concept of code dominance has been developed, We
hypothesize that ILLIAC code may be broken into segments in which
either the CU or PL instructions take longer to execute, We call the
processor which takes longer to execute, and therefore, determines
the exccution time of that segment, the dominant resource for that
segment. In the previous example, SIM assignment statements arc PE
dominant, ILLIAC optimization efforts must be directed at the dominant
resource,

If neither processor is idle over a portion of code, then execution
is balanced. Since, in the casc of sequential code, it may be possible
to execute instructions in either the CU or a single PE, reduction in
exccution time may be achicved by rcassigning instructions from the
dominant to the idle resource. This procedure will be referred to as
balancing by allocation.

A second example of the unconventionality of ILLIAC optimization:
Balancing by Relocation.

A "machine independent" optimization technique which has been

examined in the literature is the removal of invariant calculation from
program loops. In the case of ILLIAC code, significant reduction in
execution time may be achieved by moving invariant calculation into
program loops. ?ssume that a programmer has coded a simple assignment
statement of the form A=B+C followed by a SIM assignment statement
whose SIM variable range is greater than sixty-four. The simple
assignment statement is inter-changeable; that is, it may be executed

in either the CU or a single PE. The SIM assignment statement gencrates
a control loop and an assignment of sixty-four values. This code

is PE dominant. Clearly, execution ig reduced by allocating the simple
assignment statement to the CU and moving the CU code into the PE
dominant loop. (We assume that the difference between PEand CU time
within the loop is greoter or equal to the CU time necessary to execute
A=B+C). Moving code within a processor to a scgment where the same

processor is idle will be referred to as balancing by relocation.

* ok k
In summary, exccution overlap requires unconventional optimization
techniques; allocation and relocation. The first balences by allocating
instructions between processors, The second balances by relocating

instructions within a processor.

The Indeterminancy of Code Dominance

Execution is a dynamic process, If Maxwell's demon were available,
then we could identiiy, at each moment of execution, the dominant resource.
Because of the unavailability of such a device we would like to ascribe
the condition of dominance to ILLIAC codc rather than the ILLIAC processors.
We could then allocate and relocate by means of an algorithm which
segments the code such that each segment has a distinct dominance.
Unfortunately, this situation docs not obtain, Each transfer from a
dominant portion of code carries with it a 'surplus' of unexecuted instructions
which will effect the dominance of the subsequent portion of code to be
executed.

For example, a program block is coded such that a large number of
instructions are interchangeable. The block's entry is a merge; one
side of the merge is balanced, the other is PE dominant. If execution
proceeds from the PE dominant branch of tiie merge, then the block is
optimized by making it CU dominant. If execution proceeds from the
balanced branch of the merge, then the block is optimized by balancing
it, Resource dominance is both a function of the code being executed and
the preceeding code awaiting execution. This condition is somcwhat
ameliorated by the ILLIAC overlap design, which only queues PE instructions,
Consequently, an unexecuted surplus can only occur in the case of PE
dominance. Local balancing is a reasonable optimization goal in the sense

that it reduces execution time in comparison with cxccuting all interchangeable

instructions in a single PE. Trom a global point of view, a knowledgc of 'the
most probable path of execution' can make optimization efforts more
effective.

— TN Y

33.

Conventional optimization techniques implicitly assume that
the fewer instructions executed, the more optimal the code. Techniques
which account for overlap do not obey this optimization rule, Nor
can this rule be repluced by a local balancing rule. Unfortunately, as
this examplc has shown, it is not sufficient to say that locally balanced
code is optimal code.

A Restriction on Balancing ILLIAC Code

A simplifying assumption, namely that transmission time between
the two processors is negligible, must be abandoned, A timing asymmetry
of significant proportions substantially effects optimization efforts. In
general, a load from a single PE to the CU takes twelve times as long
as a load from the CU to a PE. There are two ways of approaching this
asymmetry.

The first is to restrict the allocation of interchangeable instructions
such that PE to CU dependencies (i.e., an operation in the CU utilizes
an operand in a PE) do not occur, This is the approach utilized in our
allocation algorithm.

A second approach permits PE to CU dependencies, but establishes
some minimum number of contiguous CU instructions whiech must follow
the dependency. Our rationale is that the time necessary to load a CU
from a PE can be averaged into the overall cost of executing that portion
of code in the CU, In the following section it is assumed that inter-
processor latency has been accounted for,

Estimating Optimization Effectiveness
Assuming that ILLIAC code can be balanced, it is possible to

determine the upper boundary of the optimization effectiveness. That
the code can be balanced implies that interchangeable instructions
(in this case, sequential code composed of arithmetic statements
involving integer addition and subtraction) are available.

Our approach is to assume that a balanced program exists, move
the CU interchangeable instructions to a single PE, and compare execution
time. (See Appendix C). In brief, allocating and relocating are equally
effcctive, but CU storage optimization (i.e. the utilization of local
memory for CU operands) §s cssential to the balancing effort. The upper
bound for a CU optimized balancing effort is 33 per cent reduction in

execution time; if CU memory is not optimizcd, then thc boundary is
15 per cent.

An Inexpensive Algorithm

The optimization algorithm we propose is.inexpens.i.ve . Its
advantages are that it achieves whatever optimization is casily
attainable with minimal cffort, .While only applicable to sequential

code, we suspect the approach might be extended to encompass control
loops in SIM assignments.

The algorithm is basecd on the following obhservations about partitions
of macros gencrated by sequential TORTRAN code. Partition sequential
macros into subsets which have no data dependencies with respect to
each other. Members of the subsctis are linearly ordered. We obscrve
that the execution of any two subscts may overlap., Ideally, all the
instructions in one subset would be allocated to the CU, and all the
instructions in the other subset would be allocated to a PE. In reality,
the CU instruction set is so limited that in many cases, only a portion
of the macros in a subset may be executed in the CU. We, therefore,
make the following allocation restrictions.

A subset may be entirely allocated to the CU. A subset may be
entirely allocated to a PE. A subset may be allocated such that execution
begins in the CU and terminates in a PE, in which case the subset will
have a single CU to PE dependency.

Observe that if we allocate according to these rules, then there will
be no PE to CU dependencies. Now, for any subset, refer to those macros
allocated to the CU as the CU portion of that subset, and the macros
allocated to a PE as the PE portion c¢f that subset. A subset may have a
CU portion, a PE portion, or both.

Observe that for any two subsets, the execution of a CU portion
and a PE portion may overlap. The objective of the allocation algorithm
is to execute the PE portion of the nth subset, while executing the CU
portion of the nt+1 subset.

We now introduce timing considerations. Although the subsets may
be executed in any order, it is desirable to avoid the following condition:
the execution of the PE portion of a subset is delayed becausc the execution
of the CU portion of that same subsct 1s not complete,

34,

35.

We therefore, introduce the {ollowing ordering restrictions. For
cach portion of a subsct, compute an execution time estimate for the
respective processor. Order the subsets such that for each CU to
PE dependency, the sum {over all the previous subscts) of the CU time
is less than the sum of the PE time. The resulting ordering is: Subsets
with PE portions alone [irst. Subsets with CU portions alone last.
Subscts with both portions ascending from maximal PE and minimal CU
to minimal PL and maximal CU. A brief description of the algorithin
follows.

The subsets corrcspond to FORTRAN statemcents which have no
data dependencies with respect to one another. Apply @ method proposed
by Ramamoorthy [2] to partition sequential statcments. The macros
generated by these statements correspond to the linearly ordered macros
which are members of thc subsets.

Apply the following allocation rule: Assign the macros in a statement
to the CU until an PF dependent macro (i.e., a multiply) is encountered.
Assign that instruction and the remainder of that statement to a single PE.
Attach an execution time estimate to the portions of each statement.
Assign an index to each statement according to the difference between CU
and PE estimates. Order the statements according to the value of the
index, smallest values first. The resulting order minimizes PE idle time.

In order to take advantage of hardware buffering, care must be
taken when issuing code to interleave CU and PE instructions.

A Characterization of a Block Optimizer for EXTENDED FORTRAN

The following characterization is for a block optimizer, In the
case of EXTENDED FORTRAN we define a block as a set of statements
in sequential order having one entry and multiple exits. Since each
statement in a DO SIM loop is executed in sequential order, a block
may contain SIM assignment statements, each with an identical control
loop. For our present purposes, the cyclical nature of the SIM control
loop will not explicitly appear except as a marking.

A block of ILLIAC code may be characterized as a marked tree,
with nodes and edges corresponding to operations and operands re-
spectively. Depending on the character of the operation it represents,
a nodc is marked PE dcpendent, CU dependent, or interchangeable.

In addition, the nodes which, in the actual code, are nested in SIM
control loops arc identificd as {terated nodes.

Allocation may be characterized as a reduction procedurc applicd
to the tree. The objective of such a procedurc is a tree of CU and PL
nodes., While in the previous algorithm, the first PE node encounterced
consigned the remaindrr of the statement to a PE, a more extensive
cxamination might reveal that a large number of interchangcable instructions
warrant returning calculations to the CU. Consequently, the {irst re-
duction combines interchangeable nodes and assigns CU timing estimates
to them. The second reduction begins in a CU node and conibines
CU and interchangeable nodes until a PE node is encountered. PE nodes
are combined until an interchangeable node is encountered. If the
CU time estimate for the interchangeable node is above son:c minimum
(this is a function of PE to CU latency and is unknown at this point),
then assign a new CU node and continue, Otherwise, combine the
interchangeable node with the PE node. Continue this reduction until
the tree contains no interchangeable nodes.

Relocation may be characterized as a deformation of the reduced
tree. While in the previous algorithm, the ordering restrictions
were quite simple, in the present case, the determination of orderings
appears to be computaticnally explosive. The nodes must be ordered
such that data dependencies are preserved and that timing order
correlates to logical order. In other words, for cach CU-PE dependency,
the sum of CU time is less than the sum of PE timne; for each PE-CU
dependency, the converse. In addition, care must be taken to keep
iterated nodes clustered. A further restriction is that only invariant
calculations may be moved into interated clusters.

We suspect that an extension of the first algorithm, i.e. partitioning
statements before reducing the graph,will prove to be the most practical
optimization approach to ILLIAC code.

36,

APPDNDIX A: A CORITHM 1OR DETERM INING DATA DEPENDENCIES

This algorithni is bascd primarily on the p-graph material presented
in Shapiro and Scini's The kepresentalion of Algorithins [5]. The final

section, on subneripted varisble dependoencies, extends the analysis to
include PO loops referencing singly-dimensioned arrays, which of course
potentially embody parallelicin exploitable on the ILLIAC IV,

The main sections of the algorithm are:

1) Analysis of the flow logic and accumulation
of variable usc statistics

2) Completion of p-graphs, by flow block and by node

3) Dectection of inter-DO loop dependencies for
subscripted variables,

DLTERMINATION OF TLOW BTOCKS

One scan is made over the code to determine the basic flow
blocks and,at the same time, record all variable uses within each flow
block. It is initially assumed that statemente having labels are
referenced elsewhere, that is, are the start of a new flow bloc}.:, in
order to eliminate an extra scan, Information is also recorded in terms
of "nodes" to provide the skeleton for the final p-graphs: statements are
broken down into one or more nodes according to type and additional
nodés are assigned to the entry and exit points of each flow block.

The scan records flow data in a Flow _Block Table having one entry

per flow block. Entry format:

| re#! nopen | nopex ! raser | prr | rer |
FBi: flow block nuinber
NODEN: entry node number
NODIX: exit node number
LABEL: label of first statement in block (if any)

DEF: defined flag = ON if LABEL is the label of some
statement; OFF, otherwise,

REF: referenced pointer pointing to the chain of flow
blocks which reference (transfer)to this flow
block. 7cro if none.

A work arca WA is used to store the REY chains.,

37.

- Procedure;
Initializc:
CF(Control Flag) = ON
FTF(rall Through I'lag) = ON
CFB(Current Flovs Block) = 0
y NODL = 0
&K) T e ¥ Search Flow i
- Is statement _Y . Table for — No.—.%(B
labellcd? & label N?
| Y | __
. o W e
cr= on? —N./DY DLY = ON? - “-—[ERROR.

@._..*__.. -

Y N\ N l

FrF=oNy N, BROR T (¢

Make new entry
in I'low Table:
LABEL = label (if any)

NODEX (CFB-1) = NODE+1
NODEN(CFB) = NODE+2
NODE = NODE+2

|

FIF = éN? S \ AR
Y |
Make entry = (CFB-1) |
]

in WA and chain
via REF(CFB)

Test current statement

and reset flags:
1y

CF= ON if control statement
FTF = ON If fall through to
.next statement

4 N R
CF = ON -_-._-.*..__"Q;/\}

v |
L

38.

.\/
Tor each daesiination label:

Search Flow Table for
label, making new entry
it not there

chain CFB into REF
_— , of entry

“Variabla
Use

Data __ 7

\

Next ! Statement

v (»

The flow block part of the procedure is completed by the construction of

the I low Block Connectivitv Matrix TBCM from the completer! Flow Block
Table. This is a 2-dimensional Boolean matrix giving the direct connections
betwcen flow blocks: FBCM(I,]) = 1 if flow block I transfers to flow block J.

To construct the matrix, the Flow Table entries arc cycled. For each entry,
J = FB# and I = RLF(J) chain flow block numbers., FBCM (I,J) = 1 for all
such I,J pairs.

The following additional errors may be found:

1) J= 0 => statement label referenced but not defined
2) REr'= 0 => labeled statement not accessible

3) FBCM(IJ) = 1 and there is no other non-zero element
in row I or column J => flow block J can be
appended to flow block I,

This is the case of generation of an extraneous flow
block. It probably does not pay to fix it,

Artificial entry and cxit blocks are added to the set of flow blocks. The
entry block, numbcered 0, precedes all original entry blocks. The exit
block, numbered N = (last flow block number + 1), succeeds all original
exit blocks.

39.

10,

Variable Use Data

At the same time that a statement is passed through the flow block
scan it is also examincd for variable uscs. The data collected here will
furnish a record for cach varieble of its definitions/references in each
flow block and at each node within o block. Redundant information is
recorded, that ig, by flow block as well as node, since the next procedure -
completion of p--graphs - can he more economically ¢xecuted over flow
blocks than individual nodecs.

Statements are broken down into nodes in the obvious way: assigmaent
statements (or the assignment part of a logical I¥) become 2 nodes - the
right hand side (usc = refcrenced) followed by the left hond side (use =
defined, except subscripts). The first (or only) node of an IF statement
represents the conditional expression (use = refercnced). READ/WRITE
statements are single nodes (use =defined/referenced),

The data may be recorded as follows. Assume that a symbol table
for all variables has alrcady been generated and that the variusbles at this
stage are rapresented by pointers into the symbol table., A ncw symbol
table field USCPTR will be temporarily sppended. For cach rariable, its
USEPIR field will contain a pointer to a chain of data entries in the work
area WA describing its uses. There are 2 types of data chains constructed
in WA, The first, the flow block chain, is located directly by USCPTR.
The fields of a flow block entry are:

1) FB#: flow block number.

2) R : referenced flag. ON if variable is referenced
in this flow block.

3) D : defined flag analogous to R,

4) D node: node number of last definition of variable
in the block,

§) NPTR: pointer to node chain for this flo' block,
6) FLINK: ptr to next flow block entry for this variable,

41,

Tho :'.c‘c_‘md type of chain is the node chain which is located by the
NPTR of it 1tow block entiy, The node entry {iclds arc:

1) N¥ : node naaber
2) R/ referenced or defined flag
3) N'L: pointor o next node entry in the chain,

Schematicolily:

SYMUBCI.
TABLL USEPTR WA
. S e
V2 o S T ey B B e s ot
: i | *[FB#{ R| D DNODE | NPTR FLINK |
t . _",,.-"" !
| - |_N#T_R/D | NLINK '
|] o e . !
) | | N T
| ' :
—— I :
| e T
T e

The process of recording the above data is simple. As each statement is
passed through the scan, it is broken down into nodes and each node

is examined for variablec appearances. The USEPTR field of each variable
is accesscd to locate its current flow block entry in WA. If the FB#

of this entry = CFB (current flow block), the R/D/DNODE fields are
appropriatcly updated. If FB#< CFB or USEPTR= 0, a new flow block entry
is made and chained in via USEPTR, FB# = CI'B and other ficlds are set
appropriatcly. In both cases, a node entry is also generatad.

For all variables, data for the entry and cxit blocks is the sam«:
for the entry block, D = ON at its single node DNODL = 1; for the
exit block, R= ON ut its single node = (last assigned node + 1),

COMPLEITON OF_THT:_F-GRAPH

The preceeding procedures need be performed only once over the code
to be snalyzcd; the [cllowing procedures muct be applicd separatcly to cach
variable in the code.

As stated earlier, the complelion process will be performed over the
flow blocks of the program rather than the individual nodes, In geoneral,
each flow block will be thought of as having 2 nodes ~ &n cntry and an
exit node. All entry nodes will initially be 1eference (* uncircled")
nodes. If o definition takes place within the block, the exit node will be
circled, referring to the last definition in the block. The result of this
procedure \ill be the determination of the "cquivalence class" to which
a variable belongs at the entry node of every flow block., (It is then trivial
to resolve data dependcncies node-wise within flow blocks.) An equivalence
class will be defined by the type and place of generation of the class.

A class gencrated by a single definition is designated type "D"; by a merge,
type "M", The place of generation is the flow block at the node of dcfirition
in the first case, the merge block at its entry node in the second case,

The procedure described here is based on the p-giaph algorithm with
some modifications, Initially, all originally circled nodes are "propzgated"
to their successors, but thereafter only new merge nodes are propagated
until no more are found. This raises the problem of "zecroing out” only the
subset of non-merge nodes affecicd by @ new merge node. Howcver, since it
seems desirable anyway to keep track of the sct of cquivalence classes related
to eachnerge node, this can be done in a way that will record the equivalence
class associated with cvery entry to a merge. Thus a ncw class always
overlays the old class in its assigned slot without destroying any information.

42,

Joror | A

b Pooes b - Chesn v aonds, Hins matax porallels the 'PBCGM but
ooyt e i e thbva b nec elasaen, The element 'BCM (1,))
Givoovull e o et e coelans taased frone flow block o

flove Lleev T T Dootot e nccntry g type/FEY whare type= Dor M,

Pl nen-her oLl Blea o re e ction of eless ocecur:,

USi vl b cn onty p o HQow bloc:, Bntry foranits

R I PMCDE 0 M NEC/MNGDE

This tabl - dese O o the civcted nod s and the equivalence ¢l.:ss on

ontry (o cach [oow block, rac R, D, PRODE fiells are taken directly

frors the flow BLoe chain dota generatod in the lost procedure. The M

fiaa ix turned O when a 10w block 15 found to be a me~ge point of

more tho n 1 equivalence ciass, The NEC/MNODE desertbes the entry equiva-
lence class (N'.C) tor this flow block unless M is (3N, when it designates

the entry node (WMIJOLE) fnstead,

MUIST = Merge Lant, The numbers of ncrge blocks are placed on this
Mst as they arce drscovere:d during the procedure,

S8ST K - Successor Stack. Push down stack used to store the numbers of
successor flow blocks of a node during the propogation process. Entry
forim~t: TFL, SI'L (sce below)

CEC - Curmrent Lquivalence: Class,. Same format as ECM entry.
Crs - Current Tlow Block.
Prp - Propagating Flow Block,

SrB - Successor Flow Block,

13.

cod

|-

e

¥
3
IZ

D= ON
for any
flow block?

D (Ci2) = ONY

" Propagatc’,
[ces N
. D/CIB ./

Noxt
flov: block

last

l 1

Takc entry
from MLIST
= CIB

g

——D(CFB)= ON?
N !
‘Frupagatc \
! CnC= \
\m/cre_,

!

B o oo - ¢ me e reeme o o -

R

all NEC
= D/0

N. ..

e e @ w s .

~—- =% CI'l~ CTB4 1

= XL

Proge iz e

v
Pi'B = Cri

Stach Lnecessors
to PR (PBCMN 1w #PFB)
on SarACK

) .
Pop. SSTACK . no som S o "RI‘TUQ'
entv = PFR, SI'R more: T /
I .
y*r LEC\ (PFB, &1B) = CEC?
N

I\

Sct ECM (F1'n, SFB) = CIC

'/

y# . —.. . M (SFB): ON?

N
2

Scan ECM column _ .. . N..
#SI'B for any ‘
entry # CEC

Yhk

‘V'
Covmn o e . __8ct MI(SFB)= ON
Add SFB to MLIJST

[

Y# D (SFrB) = ON?
' N

—ee PP = 8FB

* Stop propagation at completion of cycle
*+ Giop propagation at clrcled node

**% New merge

The procedwre is conpleied by the filling in of the NLU/MNODL fields

of the USE table. IT N = QFUF for,say,the entiy Tor [low blocl £, NEC

is obtaincd by scamming column J for any non-null catty (31) are the sane).
If M == ON, MNODE is scl to the entry node of the {low blcel (NODEN
ficld of the Ylow Block Tablr). Note that the sot of merging classcs in
the latter casce §s obtainable from the ECN column carrespuiciing to iic

merge bloc).,

The complcied USE Table, together with the FBCM giving the connections
between flow bloclis, defines the flow block p-graph.,

The next procedure passes over the nodes of the flow blockes to nake the
final assignment of equivalence classes. The information ic obtained
from the USE Table and the noude chains generated in the Variable Use
Data section. Thrce fields will be added to cach node entry to record
the equivalence class:

FDLF = flow block number of the class
NDEF = node number of the class
TDEF = type of class: Dor M

46,

Pracedu. o

Loop e

sloct choie i WA tocated_by USERTR (vardable):
e MR) Q)
TORI, VDEF = KEC(TRE)

I 1her = D, NDEU = DNODIL (I'DEF)

If THEY == M, NDEI'= MNODL (FDEF)

If M(I'Ri) = ON:
TDLI = M
FDLED = IR
NDLF = MNOD(FBE

~—=-1{ R(N#) = O, cnier current TDLD', FDLET, NI in node entry
If D(ND) - ON, reset FDET = FB#

; NDLF = N§

TDLF =D

Next node entry
end of chain

v
oo Next flow block cntry

end of chain

v
Exit .

48,

SUBSCRIPTED VARIAL] 1§

The previous analysit does not distinguish between diffoient elements of the
same array in determiining dato dependencies. Worl: in this arca has becn
done only within the limited context of the 1ILLIAC problem, that is, the
analysis of DO inde: subscripicd variables in DO louwy code for thao

purpose of finding inicr-loop dorcndencics, The previous proc Jdures can

be rather simply modificd to fiud Jdependencies in Lthis special caso:
¥

Variable Use Data

A “subscript" chain i: interpose @ at a leval higher than the flovw hlock
chain. A subscript entry {s maede for cach vnique subscript form associated

with an array variable.

SYMEOL
TABLT USEPTR wh
ARRAY VAR, R i -
P | | lss| 1op ' SSLINK |
i | N
| i i B o
@' l ctc. '
5 : é i . .‘]'_'.....-...-. N- o
s | S§ T
e | : l..Sb.L e

P eme e e ce——
et L S TSN

Completion of i-Craph

This procedure, thoagh the propagatt »n process, is performed separately
for caoch snboorsct form of the array variable, In this case, multiple

ECM ud USE todes must boe hept - « set for cach subscript form.,
The subseript fosr are the a examined and are assigned indices 1,2, «¢¢,n

when ihere is a vie of anivitial value (equivalence class N/0) on the p-graph
correcponding to index n' = 1 and there is anothor graph of index n" < n'
shoviing a non-ivitial value of the exit block, That is, in this case the

value for the DYO use was actually generated in @ previous iteration of the
loop.

The following procadure »jolates the data tables to reflect inter-loop
dependoencies, 1t is necessary now to append a subscript index field
to LCN cntries sirce there will be "crocs p-graph” references. (In the
initia) completion, all indicos = the index of the graph), The NEC field
of Usl’ entries et be similorly expanded.

(1) 1-1

(2) The NEC/WiNODE 1delds of the USE table for index I are completed.
The value (cntry equivalence class) for the exit block will re-define
all D/0 equivalence classes for index (I+1). If this value is itself
D/0, skip to step (4).

(3) The ECM corresponding to index (I+1) is scanned and all appearances
of D/0 are rcplaced by the above value, setling subscript index =
index of this value. In particular, values in the column corresponding
to the exit block are now updated.

(4) 1=H1., Ifl= n, go back to (2).

149,

«

aczording to decieasing waiue of the subsceripls. An inter-loop dependency occuis

APPLNDIX B: OBSIRVATIONS ON_PARTIAL ORDERINGS

Problem:

Def 1:

Def 2:

Def 3:
Def 4:

Def 5:

Civen a [inite set A and an irreflexive partial order v C7 2 A,
how miny lincar orders on ! are consistent with r?

rC A x Ais an irreflexive partial order if

1) Vac A, (a,0)dr

2) (a,b) b,c)eor

Note: (a,b) « ris alsc written as a -:rb or 4 < b {f r is uvnderstood.

Tt

cmma l: i roandr, arc (irrellesive) partial aders then g P ry ie

o 1 2
a partial ordcr,
Proof: 1) Vaeh, (a,a) ¢ ry (‘ r,
2) (a,b) ¢ rlf‘ o> (a,b) ¢ ryr Ty
(b,c) ¢ rlﬁ r, => (b,c) rye Ty
thus (a,c) ¢ rye and (a,c) ¢ Iys SO (a,c) ¢ rlf" Ty
andvV¥a,becA,afb-(b,a)eror(a,b)er
Lincar orders arc also called chaing.

If {a .an] C A is lincarly ordered by ay < a, < ..0<a, then

10
we denote this by < a,, az,...an>C ri.e. <Apreedd > {(al,aj)

| 1si<j=n})

The restriction of r to BC A, written r|B, is the set{(a,b) - rla,b,¢ B}
The primitive of a partial order r, writicn p(r) is the set

(@B er| F cehladd, eher],

Note: In Graph Theory the primitive is sometimcs called the

Hasse diagram.

The transitive closure of a subset QC A x A is defined by;
C@={Q'DQ| Q' C A x Ais a partial order}
It follows tmmcdiately from Lemma 1 that C(Q) is either a partial

order or all of A % A,

[da]

—~

ot G
Lo "
Lemma 3:
Proof:

(' S) 5 ¢ i Vo o : !)
' () i (";1'001 l“. !)l...'(,n!‘..."lnLn)J t}len 1l g._t__l'd_(l (&J] (‘,

kil G et ke
AN IO I T DTS 1,...,!;1]

() +, Jso, il ,‘il '.‘Xz

Preofs vet Lo A :\'2.

thie N ~';-;\;l) but b fomma 1, CX) s a partial order (unless it

‘

AN . < .-\, : 3
uhncmﬂ J(&Q

If O {5 a partial order and Q’_‘)Xl, then Q")(z

is n s A which coe CX 1) 1 (Xz) for any XZC A >t A)

Thus, since C(Xl)is.: o partial o:der containing XZ' the intersection of all
artial ¢ ' o containing XZ is contained in C(Xl). Thus qxz) - C(Xl).
Noew consi ior rand iis primitive p(r). Since p() Cr.Cp@)C r.

issume th - inclusion is proper. Thus 3 (a,b) e r such that (a,b) - C(p(r).
Now ¢ - (a,0), (¢,b) e rfor otherwise (a,b) e p)C Clp (). Also
not both (1,¢) and (c.b) may be in r(r) for otherwise any partial

order contoining p(r) vwould contain (a,b) by transitivity and (a,b)
vould be in n(r). Assume withcut loss of generality that (a,c) ¢ p(r).
Thus 7 ¢y 3 (a,cl), (cl, ¢) ¢ r. Further ¢, £ {a,b,c] for by
transitivity (c,b) ¢ r and we know that (Cl' c) and (a,c) e r. At the

’

nih step wo have ¢/ {a,b,c,cp,0,, ... 'cn-l} .

Thus we will create on infinite sequence of distinct points of A.

But A {s finite, Hence the inclusion cannot be preper, and C (p(r)) - r.
I'or any pardal order r there 1s a linear order L such that LC r.

Also, if 1. iz a Muear order on A and o(A) = n, o (L) = n(n-1)/2

l.et v be @ partial order on A, If r is linear we are done, so

assume it is not. Thus J a,bc a 5 (a,b) and (b,a) #r. Let

ry - Cal. {(+, b)), ry is a partial order properly containing r.
Lssume ry not linear, Thus 7. ay byeh s (al,bl)and (bl,al) dr.
P'rocecditg in this mannoer we can construct an infinite ascending

sequence of subsets of A x A, Thus for sonie n,rn ris a lincar order,

Yowlel ') nand 1. be a lincar order on A, Considoer x e A

Vyeh . vY# %, (X,y) e Lor (y,x) e L but not both, ‘Thus cach » appears in
n-1 clemonts of 1.. Thus o(l) -~ n (n-1)/j, wheaice j is the nunber of

times we have counted cach patr, But j = 2 because (x,y) is counted
exactly twice: once as a puir containiing x and once as a pair

containing y.

fael o8

et 9;

Dof 10:

Lemma 4:7{ NUTEE v > and <b

wK
o

boihe e Canor et el clemant o, when A ds ordered by r, is
O S T I I PR T I
DY Cthe reths o netab A, Aordered by 1, s
]‘l' (F) I P (IO §) PR Y (D B
Tin prrcde e o Hollon) set af o subsot X of A fs the sct of
proinal (o) elom ety of {yoa] xeN=>yax} ({y cl\l xen=>y>x })

oo a partial order ris o point a such that:

SRDIRIAN

D e p@)!
2) c,(l'r(._.)) > Zor ()(I‘r(u)) - 2 (or both)

If o (l‘r) (@) 2, aizc aleft merge point, Similarly, if o(f; (@) 2, a
is o right moerge woint

Let p (o) b the sot ot moerge points of ¢

A chain iy wea > Crods a base_chain of r iff:

) no dids ancrge pointofrforl< i< n

2) (b,ag)y pl) =>Dbcu ()

3) (u, .0) s pl) =>ca pfr)

A pair of merge points of r, pl,pz) ., is rcady if there are base chains
Shpeeea and <b,...b_ > of r such that {(pl’“l) . (pl'bl) , (an,pz)
(bm,pz)} < opl)

1 .bm> are basc cliains of r they are equal or
disjoint,

Proof: Supposc a

| ¢ <al, oc .,nn>' . We will show that

<ul, 5 0 '-'“n> is thc only base chain containing a . This will clearly be
sufficient to prove the Lemma. Thus let <1)1, .o '-'bm> be another base

chain contiininy 9y and let iy = bj'
If i=1then D bj co P (”i) C u(). 1Thus P (bj) C plr)and j= 1 since

no menibr of a base chain is merge point. I£44 1 then P (a) = {ai-l}

" g 1, - N O = T wedire g s g =
and Xr (g,j‘ {l»j_]} , O ‘i'] = bj--'l and rroeaeding by induction dl b.l'

Wo can sinotarhy shows that for amy K, ay =]"k‘ Thuns we arce done unless

m 7 n. Assume m) n withoul loss of gencrality. Sinee I‘r(un) -~ Jor
{a merge point} then Pr (bn) - or {a wrige point) . Thus

bn+1 €< bl’ . d .,bm.:\, som - N,

Def 11: The completion of r on A is the partial order on the set
AL A, p) = A* defined by
r* = C (pr) U XyY), where
X={(A, a)| P (a) = @)
Y = {a, o) | 1-‘r (@) - 4}
Def 12: A lattice is a partial order such that the operations inf and sup
on all pairs of elements are well defined.
Def 13: A path from a to b (both in A) is an n-tuple (cl, coe ,cn) such that

1) Cy, = U4;C_ =D
n

1
2) Vizn-1, (c;, ¢y) ¢ pl)

Def14: ¥ C Ais a cluster if
1) oX) =2
2) X, yeX= Pr(x) = Pr(y) and Fr(x)==Fr(y)

Def15: T(C ris a tangle if
1) There is a least element . and a greatest element g in T
2) 1by. by, s .bg e T! such that

a) b1< bz, b3, b4, b5

b) bZ' b3, <b,

c) b2 <b5
d) no relation in r holds between b2' b3 or b4 ’bS

e) if sup {bZ! b3} and inf {b4, bs} exist, sup £ inf

Theorem_1: If r is a partial order on A then r* is a lattice or r* contains a
tangle.

Proof: Suppose r* is not a lattice. Then since a ¢ A=> A < a < p the only
way r* can fail to be a lattice if if =] a,b, ¢ A such that (ceA| cza, azb)
contains at least two minimal elements, or if a similar statement
holds about {ce A| c= a, c= b} |
Assume without loss of generality that Cy and c, are distinct

minimal clements of {ce A | ¢z a, cz b}, Inow claim that there

is a tanglc inr*,

.
DU,

5 - o Y — . i - Pt = "; 2o o %38 .
Proof of Claim: Jeta= A, B=p, b ~u, by=0a, by=b, by cp by cy

Then we have a) b1 < bZ' 133, b4, 1)5 trivially
b) bZ' b3 < b4 since b4 ¢ {cer| ¢z b,c, = A} and the
interscclion of this set with {a,b} is @ because
if a (say) is in thc set then it would be the only
minimal clement and we have assumed thoere
are at lcast two.
¢) b,< b, for the same recason.

2 5

d) No relation holds between b, and b3 because

2
otherwise the greater one would be in {cel| exb,
c& a}. No relation holds between b, and by
since they are distinct minimal elements of a
set.
e) sup {bz, b3] dees not exist by assumption.
Thus if 1* is not a lattice it contains a tangle.
Def16: X CY is a segment iff:
1) Y is a lattice,
2)% 'a, B ¢ X' such that
a) xeX'=>og=xs8
b) o= x=B =>x¢e X orxisamember of

a base chain of Y connecting o and g.

Def 17: A segment X is closed underr if V x ¢ X',

(v,x) e plr) or (x,y) € plr) = % = sup X' orx = inf X or y € x .
Theorem 2: If X Is a closed segment of Y and X contains a tangle, cluster,
or ready pair of merge points then Y contains the same tangle,
cluster or ready pair.
Proof: 1) tangle: Since Y C X, the X-tangle would fail to be a Y-tangle
if bz and b3 or b4 and bs were comparable inY. But for this to be

true (say for example b2 <y b3) then ye Yy - 5! bz <Y v < , bs.

Theorem 3;

Proof:

But since neither bz nor b3 can be inf X' or sup X' this is impossible.
The only other possibility is that inf {b4, bs} >x% 1115{ {b4, bs} or

sup {b2, b3} <y sup {bz, b3} and this would violate closure.
Y ' X

a) T yeY'-X', s Cy € C suchthatcl<y < ¢,, Or
b) 7 yeY X', ¢, eCy y<c and y < ¢, ory> ¢, and
y Y Cy

But either of these conditions would contradict the closedness of X.
3) rcady pair: If (Xl’ XZ) is X-ready fhen the only way it can
fail to be Y-ready is if one of the chains connecting X1 and X2
is not a base chain of Y, But this can only happenif -] ye Y =X,
b1 e < bl’ co ,bn > connecting X1 and X2 such that (y,bi) e p(Y) or

(bi,Y) e p(Y). But this contradicts the closedness of X.

If a lattice contains a non-trivial (i,e. one that does not
consi st of a single chain) segment which contains a tangle,
cluster or ready pair then the lattice also contains a tangle,
cluster or ready pair (not necessarily the same one). Let r be a
lattice, X a segment of r.

Consider Z2= {z ¢ X' | inf u(r|X) = z = sup p(r|X).
r| X ' r| X

r\ Z is a segment of r and any tangle, cluster or ready pair in X
must also be in r| Z, If r| Z is closed under r then by Theorem 2
we are done. Therefore, assume r| Z is not closed under r, and
without loss of generality assume j vert-2,8¢2% (z,¥)er.

Then let by = inf Z, b2 = Z, b3 = any element of Z not comparable or

1
equal to Z, b4 = sup 7, b5 =y. This is clearly an r-tangle,
The only problem which could arise is if z above is comparable to

every other point of Z. If not all clements of Z which connect to the

outside (i.e. violate closure) have this property then we simply

choose one which does not have it and we arq dore., ‘i'hus assuin?

1

2, € Z,yert-2% with (y,zo) ¢ plr) or (zc_‘, y) e p(r)=>V = ¢ Z—{z.(_'
(zo\z) er|Zor (z, z,) & r|z.

Let the elements of Z satisfying this condition bo 2% - {:~:l, Ziyr oo .::},}
and assume zl < z2 < oo €2

We know that if any (z,, zj) is ready in r{Z then by Theorem 2 we are

done, so at most one base chain of r‘ 7 connccts any two elements of 2%,

Now let 2° = {zcd] 2 = zl}; Zi== {acd | g7 ""'i-l-l} , Iz k-1,
7K o {zeZ | 2z, =2},

It is clear that the r| Zi are segments of r, and I ¢laim now

that they are closed under r. For assume 3 y e 1r' - Zi, z, € Zi 5
{y, zo) ¢ p(r) or (zo'y) ¢ p(r) but v is not comparable with either

inf Zi or suij'. Then, since zo cannot be a point violating
closureof Z, ye¢ 2., ButVze¢ Z, sup Zi and inf Z.l are

comparable to z. Hence the Zi arc closed under r,

I now claim further that any tangle, cluster or ready pair of 2

must lie wholly within one of the Zi.

a) ready pair; Assume {a,b}(C Zisreadyanda< b, a ¢ 2o

b ¢ Zi then a is an end-point of Zi since the 7' are closed,But now let
b e Z’, so b must be an endpoint of Zj. But by construction of

the Zi, no pair of endpoints can be rcady unless they are endpoints
of the same Zi.

b) tangle: In this case we will modify the claiin to assert that if
there is a tangle in 72 then one must lie wholly within a Zi. To show
this it is sufficient to show that in a Z-tangle bZ’ b3, 1)4 and b5

are in the same .7.1 for none of them may be an endpoint, so the
endpoints of the Z1 will do for g and 5.

Thus assunic there is a /- tangle, Clearly 1)2 and b.,} are in Lhe same

. .
Z.i as b, and b, respectively, for any alement of one 2 is comparable
3 5

L= "

to iny clement of another. 72lso, since sup {I)z, 1')3} £ inf
{b4, })5} b5 it in the same Z1 as the sup, But this is the same
as the one b2 and b3 are in so b2’ b3, b4 and bS are all in the
samo Zi.

c) cluster: Since no two clements of a cluster are comparable
they all must be in the same Zi.

Now since the Zi are closed under r, any tangle, cluster or

i . , , ol
ready pair ina 7 isone inr., Butanyonein Xis oneina 7.

Hence anyone in X is one in r and we are done.

Procedurce:

The purpose of this procedure is to construct an ascending sequence of
partial orders on A, (W1) e 'Wn) , together with a sequence of numbers (T1 seee ’Tn)
with the property that if Ni is the number of lincar orders on the set Wi’ Ti Ni is
a constant for all i,

To do this we will define set functions vy and Vg defined on partial orders of 2,
The range of vy will be partial orders of A and the range of \Z) will be the natural
numbers ,

Now:

Given A, rC A x A an irreflexive partial order:

Wl = T} T1 =1

W,y =r U<a1 s oee,8 > Whore <a,,...,8> is any lnear order of the

elements of A-1'; Ty = [o(A-r')]!

W,=W,* T, =T

3 2 3 2
forn> 3, Wn = vy (Wn_l); Tnz [VZ(Wn-l)] Tn—l

Definition of Vir Yy (argument will be called r);

1) If there is an r-cluster X C A, then if X = {Xl' e ,xn}

vy (1) = Cirf (A =X) Uf (a,x1)| aeP (X)}U {(xn,b)| beP. (X)] Uy seeesx >]

Vo (r) = n!

2) If there is no cluster contained inr but 7 p,, p, < plr) - P,) is
A4 Ppe Py

b 1
ready, then if xl, Xoyeeo® are all the basc chains of r conncciing Py aiel p

N7

L

1(r) C [(pO)~({(sup \‘ , pz) | 1=1s n-1} U{(pl, inf xi' Y | 2eisn})y L)

{ (sup Xi’ inf xi—i—l) | 12 isn-13]

) (x1> 1
=1

B e g

3) 1If there is no clusicr or ready pair, then

a) r consists of one choin, in which case vl(r) =r, VZ(r) =1, or

b) There is a tangle T{_r (sce Theorem 4 below),
In case (b) congider the sot ¥V of base chains of r which are contained in
T and which mcet the following conditions:

1) ye Ye=ad(T) » d(r(T-y"))

2) y ¢ Y= there is a path from Xy to Zy containing no

element of v',

Note: [xy}= P, (y),{ZY}= Fo(v')
Now denote the paths from Xy Lo Zy by = y' l=is ky
For each y partition the set of paths into equivalence classes by number of merge
points on cach path. Choose from the class with the fewest merge points any
path which has the maximal number of points of all paths in the class.
Call this path Fy.
Let 1(y) be the length of chainy

m(y) be this number of merge points on Ty -

aly) = [1{y) + m(y) .9
[Iy)] mG377]

Choose y*e Y such that g(y*)is minimal ,

Now considering only the merge points in Tyw We have g(y*)

order-preserving permutations of these with the points of y.

In other words there are g(y*) linear orders on the set y*'U [pu @M wy*] which
are cousistent with r on this set,

Let & (1) Ty be {mi, . .mn} , n=m(y*)

* = i = *
y¥ =<z, .02, 0= Uy)

000 be the lincar orders mentioned above.

Let L{] = off z-;y*'|(z,ml) & A'j])

L'jn= offz ¢ y* l (mn,'/.) € ,\.’7)
E;(= olfze y* | (mk,z), (Z’mkﬂ) c ,\j }),1=ksn-l
FO = o({f ¢ 71';,* | (f,ml) er})

Pn= o({fewy* ‘ (mn,f) e r})

K=
The sets are partitions of y* and ﬂy* representing the points hetween

F, = 0({f€ Tr;,‘k I (rﬂklf)l (f,mk.*.l) € r}), 1._5 k?.,; n-1

successive pairs of merge points,
Now, if L is any lineer order on T',

vl(r) = (r-T)U L

\glsf.‘ﬁ).y TN, j .\]
\\) : ! Ly + Fkn Vo ([T=y* U A‘
/ | Fy ’I }

/ ! .-) J

L =0 . a

Theoren 4: If r is a partial order on A such that 1 = A and if r is not
a linear order, then r* must have at least one cluster, tangle or ready
pair of merge points.
Proof: We proceed by inducticn or the number of base chains of r*,
a) There is no base chain of r*,
Thus, since r' = A, all members of A are merge points of r*¥, Wea will show
there is a cluster or tangle in r*, We may assume r* is a lattice or we
would be done by Theorem 1. Consider }"r*(x). Each element of this set
has at least twn successors because they are all merge points and they have
only one predecescor (A). We know a,b ¢ Fal A) => Pr*(b) ,:’: F ,(0) because r* is
a lattice, Now assume Ja, be Fa) F @ F, by # . Since r* is a lattice

this means 7 ¢ 3F, (a7 (b) = {c}. Let b =2, b, - abg=b, b =c, by = T, (a)-{c].

Itis streicontiorvard (0 vty thal 1o OeInTs— TaIgIC,: T II WC mCcTrrerooo
a and b, hovvever, was thel 1‘[* (aYy: lr*(b) 4 ff and Pr*(;z) N Pr*(b) 4 1. We
will now shows that there «re alway s an a and b meeting these conditions,
Let M = maximum length ol all paths from A to p : we will proceed by
induction on M.

Il M =2 2 then we cannot have a lattice with all merge pointe, so let M = 3.

L4
'.’// 5 - ,-:\ oy
A .:. - ry e ':...5. R e p
~._V ~ 6 . -
DR S

The above graph is a lattice of all merge points with M = 3,

Now consider Tr* (A). This has at lcast two elements because otherwise

_4 ac Pr* (p) with only one preceder and one follower and hence violating
our conditions. Now consider I' 4(a), ac Fe (A). P ¢ F,(a) because

a would then not be a merge point., Also,© (Pr* (@)) > 1 for the same reason,
Now T, (F ,(a)) ={p} , so T, (a) is a cluster unless dbeF, (M),

ceF, (@, bfa,z cel, (b) . But this would mean that T, (b)(™ P, (a) # 8
and we would have a tangle.

Thercfore, assume our hypothesis is true for 3 2 M s k., We wish to prove it
forM=k+ 1,

Let us therefore suppose that we have r*3 M= k4 1l,u (r*) D) A. Consider

Fr* (X). We may assume that O(Pr* A)) > 1 for otherwise r* | [A* - Fr* (A)]
would have a tangle, cluster, or ready pair by our induction hypothesis , hence
so would r* | A* - {A }, and hence so would r*, We may further assume that
a, be Fr*(A)=> Fr*(7‘\)y Pr*(b) = ff, for if not we know we would have a
tangle and we would be doric,

Let B= A% - {a v A| Jbe ¥, (A) > ae F,(b)}. If we now consider r* |B

we have a partiol order such that M = k. Thus if r* |B contains no non-merge
points it will contain a cluster or tangle. But the only way for this to not

happen is if a, be M*=B D T, (@) ™ F () = @. But then we would have a

. :

=] | pA S T ¥
unless tnis set is empty. Bui if this scl is empty ticn a cannot be a merge
point. llence we may assumc rf-‘| B has a langle or u cluster.
If r*lB contains & tongle then this is also an r* tanagle unless the "not
comparable” condition on 1)2 , h3 and 134, 1;5 fail or if a new sup for bz
3 ¢s5 less than a new inf {or 1)4 and bs. But the [irst case cannot
happen by the definition of a rostriction ¢f a parlial order. Tor the second

and b

case to happen we would need ,l)p {bz, bg} = irxl{ {})4, }35} e h¥ - B,

But this cannot happen since we are assuming that Fr* (bz) and Pr* (bg) are
disjoint if bZ' b3' ¢ Fr* (A) which would be a necessary condition for sup
{by, b3} c A% - B,

Hence if r*| B contsins a tangle so does 1.

Now r*| B canmot contain a cluster unless it contains a tangle because it is
a lattice if it has no tangle, and every point is a merge point. In a lattice
every cluster has a unique follower and a unique predecessor and hence its

elements cannot be merge points,

Hence if r* contains only merge points it contains a cluster or a tangle.

65,

Now assuine that if L is the numbor of base chains of a lattice. K= p means

that the lattice has a cluster, tangle, or ready pair. ILet r* have ptl base chains,

Consider any right r*-merge point w1 and the secgment M = r# ‘{yl%’.zm} .
If M has p or fewer base chains then it has a tangle, clusier, or ready pair, and by
Theorem 3 so does r*, Il M has al least p+l base chains congider the set of right
merge points of M greater than m. Assuming thils set is non-empty let my be a minimal
clement of it and let M, = r {v|y -'_:-ml} . My (C M since m;>msoy>m =>
y>m, If M1 has p or fewer base chains then apply Theorem 3 to show r* has a
cluster, tangle, or ready pair, so assume Ml has at least p+l base chains.
Proceeding as above we obtain a sequence of non-trivial segments of r*, each one
properly contained in the preceding one. Since r* is finite this sequence must
terminate, but it can do so only if

1) for some i, Mi has p or fcwer base chains, or

2) for some i, M i contains no right merge points other

than m;.

In casc I an application of Theorem 3 shows that r* has a cluster, tangle, or ready
pair, so let us consider case II. Let L be the set of left merge points of Ml' and let
x be a minimal element of L, ¥ # my since m, is not a left merge point of Ml' SO
X>m,. Also,:-) a,beM; > m<a < x and m, < b <X and a, b are not comparable

1

in Mi' This is true because (mi,x) £ Ml and by the minimality of x: Thus

there is a path from m, to X containing a and no merge points, and a path containing

i
b and no merge points (by the minimality ofx). Since a and b are not comparable
they cannot be on the same base chain, so by Lemma 4 there are two base chains
connecting my andx, so (mi,x) is rcady, and by Theorem 3 r* contains a cluster,

tangle, or ready pair, Our induction is now complete. Hence, the completion of any.

non-trivial partial order contains a cluster, tangle, or ready pair of merge points.,

Q.E.D.

APPENDIN C: Deternnining the Boundries of Optimization Effectivennss

Our approach is to assume that a balarced prograin exists, move the
CU interchangeable instructions to a single PE, and compare exccution
time. We first consider a block of code in which all the instructions are
interchangeable. TFor present purposes we further assume that each inter-
changceable instruction takes approximately the same amount of timec to
execule in its respective processor. Call average instruction times
Tcu and Tpe. Lect Npe = the number of PE instructions and Ncu = the
number of CU instructions. Assume a balanced segment of code executed
in time T. Since execution is balanced: T = (Npc)(Ipe) = {(Ncu)(Tcu) + Npe;
that is, the product of the numbcr of instructions and average instruction
time in the PE's is eqgual to that same product in the CU plus an additional
tick to decode cach PE instruction

Hence; Ncu = (Npe)(Tpe-1)
Tcu

If all the instructions were executed in the PL's, then the total execution

time would be: '
T = [Npe + (Npe)(Tpe-1)1(Tpe)
Tcu

The ratio of balanced to single processor execution is:

(Npe) (Tpe) = .—-Tou
(Npe)(Tpe)[1 + (Tpe~-1)] Tcut+Tpe-1
Teu
The savings factor is: { — Tcu - Tpe-1

Tcu+Tpe-1 Teut+Tpe-1

An examination of the second case, namely that a scgment contains
PE exclusive instructions (i.e. SIM assignments) and a suificient number
of inter-changeable instructions to balance them, yields the same result.
This is due to the fact that regardless of what is being cxecuted in the
PE's, the interchanaecable instructions removcd from the CU end placed
in a single PE will increase execution by the same margin., Hence
allocation and relocation as equally cffective tochniques, .
Estimates of execution savings are basced on a number of simplilying
assumptions.
With regard to average execution time, some instructions arc
combined. For examplce, a PE ‘lood' is interprated as ¢ load to the R °
register and a route. CU avcerage cxecution iz detemiin @i {or two cises;

optimized and unoptimized, For ontimized cxccution it is assumed that a sincle

66.

ot

load from Pl memory is required {for cight references to local menmory.
In the unopiimized case, it is assumed that each refercnce to local
memory requires un additional load from PLnemory. In cither case,

a 'load' is the combinrcd instructions.

e

Interchangceiablae Operation I'E CU Optimized CU Unoptimized
LOAD ADD 3 4 11
s0B
OPERATION | Or 3 1 11
\ Ltc.
STORE 3 4 - 11
Estimated Savings - 33% 15%
(6]

67.

B 2 D B0

g

S A

1.

2.

3.

4.

REFERENCES

Allen, F, E. Proygram optimization. In Halpern, Mark
1., and Shaw, Christopher J. (eds.), Annual Review
in Automatic Programming §, 239-307., Pergamon Press,
Oxford, 1909.

Ramamoorthy, C. V., and Gonzalez, M. J. A survey of
techniques for recognizing parallel processable
strecams in computer programs. Proc. &TIPS 1969 TFall
Joint Comput. Conf. 35, 1-15.

Warshall, Stephen. A thcorem on Boolean matrices.
IO ACM '9' l oano 1962), 11-120

Lowe, Thomas C. Analysis of Boolean program models for
time-shared, paged envirenments. Commme. AChl 12, 4
(Apr. 1969), 199-205.

Shapiro, Robert M., and Saint, Herry. The Represcniation
of Algorithms. RADC-1R-69-313, Volu:ino I, Tiral
Technical Report. /pplied Dati: Research, Inc.,
Wakefield, Mass., Sept. 1969,

Burroughs Corporation. ILLIAC IV Syster:s Characteristics
and Programming Manual. IL4-Piv1. Purroughs
Corporation, Paoli, Penna., June 1563,

