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Tho ILL1AC FORTRAN Compiler may be oharactarlzed OR a ••riet 
of transfommtlons on the! uourco Input stream.  FORTRAN code i§ traiM- 
formod into a rcprcscnuilion which cv.plolts ILLIAC parallelism.  This 
trunsformalion is accomplished by delecting individual statements within 
DO loops   which may be executed in parallel for values of the DO indices, 
and determining an ordering which preserves d« ta dependencies.  While 
the result of this effort affords ILLIAC parallelism, it is insensitive to 
two major characteristics of ILLIAC hardware: an enoimous disk latency, 
and an ability to overlap execution of sequential and parallel components 
of the hardware.   In order to fully exploit the capabilities of the ILLIAC, 
two more transformations are effected.   First, code is restructured to 
minimize the effect of disk latency.  Second, operations are allocated to 
maximize CU-PE overlap.  At this stage it is appropriate to generate 
ILLIAC code. 
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1. 

;TION 

The bdttic urchitccturc of the ILLIAC IV Fortran Compiler may bo 
chartictcrizod as a serio» of tronsformcitions (each representing a 
compilation phase) on the FORTRAN source Input string.  The first 
phase parses the input stream and generates a flow graph in which 
each statement is represented as a node. 

The parsed string and flow graph depict an execution process 
which has been coded sequentially.   It may contain operations which 
exhibit ILLIAC-exploitable parallelism.   Detection of ILLIAC exploit- 
able parallelism Involves detecting individual statements within DO 
loops   which may be executed in parallel for values of the DO indices # 

and determining a statement ordering which permits parallel execution 
without altering data dependencies.   Chapter II, which examines 
parallelism detection Is primarily concerned with data dependency and 
statement ordering.   Appendix A provides a technique for detecting data 
dependencies in an arbitrarily complex flow graph. 

By means of the parallelism algorithm, the flow graph is appropriately 
transformed.   The parsed input stream Is replaced by N-address macros 
which permit symbolic references (i.e. f A(I,jFt-2) is a legal address). 

At this point is is feasible to examine storage requirements with 
respect to I/O demands.   Chapter III is concerned with optimizing I/O for 
large arrays.   If this procedure dictates a new statement ordering« the 
appropriate transformations are effected.   The examination of FORTRAN 
statement orderings provided an insight into the nature of partial orderlngs. 
These observations are contained in Appendix B. 

After reordering in order to minimize I/O latency, array reference 
macros are expanded according to the array methodology described in the 
First Seml-Annual Report.   The resulting pseudo code may be further optimized 
to take advantage of CU-PE execution overlap.   Chapter IV defines 
ILLIAC optimization goals with respect to overlap, and provides a method 
for allocating instructions between CU and a single PE for sequential code. 
Appendix C specifies the upper boundary for execution savings in an overlap 
optimization effort. 

At this state it is appropriate to generate ILLIAC IV code. 
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11.   THC DETECTION OF PARALLELISM IN DO LOOPS 

This sootion comUsts of two distinct parts.   The first of those 

represents en overview of the nature and aims of the procedure for 

detecting parallelism in DO loops exploitable on the ILLIAC IV.   The 

second is concerned with u particulm aspect of this procedure:   It is 

a discussion of the problem of data dependency detection In certain re- 

stricted but basic situations involving nested DO loops nnd multi- 
dimensioned arrays. 

In the discussion of date dependency detection in both the present 

and previous semi-annual reports, relatively simple flow logic has been 

assumed for clarity of explication.   In actual practice, of course, such 

simplicity is not likely to be the rule.   Hence, Included in Appendix A is 

the basis of a general algorithm, based largely on p-graph theory, for 

detecting data dependency In loops with any degree of control complexity. 

PART 1;   AN OVERVIEW 

The goal of the parallelism procedure is the examination of 

FORTRAN DO loops in order to determine how much of the calculation, 
if any, can be done in parallel on the DO index variable.   Manipula- 

tion of code will be performed whenever possible to maximize the 

amount of parallel computation.   The analysis to accomplish the above 

will necessarily be restricted as to the complexity of code it can deal 

with; that is, in some cases (hopefully a small percentage) no attempt 

will be made to manipulate the code to effect parallelism. 

RESTRICTIONS 

1.     The analysis of DO loops will extend to detection of parallelism 

on the index variable along 2 dimensions in a DO nest.   In a DO loop 
nested 3 or mere levels deep, code Is analyzed for parallelism in 

the innermost DO variable, then in the next nesting DO loop variable, 

etc,, until parallelism along 2 dimensions has been found.   Along all 



othor dimensions, sequential execution Is assumed.  Cxsmplt: 

DO     I 

B(M)- J 
DO     K 
C(1.K) = 

DO     L 
D (I.K.L) 1- 

The L loop is the only one nested 3 or more deep.  The cod« in 
this loop is analyzed first with respect to the L variable, then K, 
then I.   If parallelism is found along the L and K dimensions, say, 
then with respect to the I dimension the code will be executed sequen- 
tially.  Outside the L loop, code is examined for parallelism along 
1 or 2 dimensions, as the case may be. 

2. At present, interr*! (non-DO) cycles in a DO loop are considered 
as a special case:   a cycle will be examined for parallelism (in the 
DO variable) as it stands; no attempt will he made to manipulate 
the code to make parallelism possible.   In relation to the rest of 
the code in the loop, * cycle (or nest of cycles) will be treated as 
a " black box" containing only a list of definitions and references. 

3. Subscripted variables.   The procedure is based heavily on the 
analysis and ordering of the subscripts of array variables, primarily 
for the determination of inter-loop data dependencies.   Only cases 
having subscripts of the standard linear form kl+c where I is the 
DO variable will be fully analyzed.  Otherwise, it will be assumed 
that nothing is known about the relative value of a subscript and the 
"worst possible case" is assumed.   This in general will force sequential 
execution of the affected code.   A possible exception to the above 
restriction (since it appears to occur commonly) is a subscript which is 
a linear form in » non-DO variable which is, however, easily detected 
to be a linear form in the DO variable. 

4. So far as the analysis described here is concerned, a case of 
"detected parrtllelism" is a piece of code for which it has been 
determined that the associated data dependencies are such that each 
statement can be executed simultaneously for all values of the index 



voriable.  No raprttontatlon it mfldo, however, ÜMt tho dat« for 
UM oomputationt can bo pretenled »Imultancoutly to the proeottlng 
•lemonts.  That it, tho analytit lookt for ooncurronoy of optrator 
oxacutlon, but not opoiand fetching.  In tho ttitaraantt: 

A(I)-B(I) +C(I2) 
Z (I) - Y(I) + PUNCT(I) 

it may be possible to perform tho «ulJlUon and store operations in 
parallel (on I).   However, the fetching of elements of C in the first 
statement may require a complex sequence of instructions.  In the 
second statement, calculation of the function FUNCT might require 
all processors; tho values FUNCT(I) would then have to be generated 
sequentially. 

P^RAUfEMSM PRQgEPVRE 

Outline; 
1. Determination of data dependencies 

2. Stating the ordering relations for parallel execution 
Causal chains 
Branches and merges 
Cycles 

3. Determination of optimal total ordering to minimize overwrite 

1.    Determination of Data Dependencies 

Assume a technique equivalent to the p-graph algorithm to be 
applied to the loop code.  For input to the algorithm, a "p-graph" for 
each variable (or uniquely subscripted variable) is represented; the 
nodes of the graph correspond generally to the uses and definitions of 
variables; additional nodes for merge points and the entry and exit 
points are supplied.   Application of the algorithm gives all data 
dependencies for non-subscripted variables, that is, a variable use Is 
explicitly related to one or more "circled" nodes which might have 
generated its present value.   (It is assumed that the algorithm keeps 
track of all circled nodes associated with a merge node.) 
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lur uubfrt*: •<! vari.ihlcn« tho aiguiithm glvt«8 «11 Intra- 
loui« «I« (w»iKlvm-U"i; th« fJotmmiiuUon o( Intor-loop cloimndonolot U 
more* complex.   II ihv oraph li»r a lubscrliitod varUilil« »hour« « UM 

of im Initial V.IIIK Umot dlroetly w via * merge), Uirn It aiutt be 
detnuilitcd II ihia value cxmi   luvr been generated In a previous 
Itvrtition of the lonp. To do Uil», the graph« for the SOUMI enrey vorleble 
arc otiMlgnffd imliccit acctmllng to descending value of their literal 
tuhsrripts*.  For example, if «nray variable A appears In a loop on Index I 
with Kubscrlpis 1-1, I, H lt then tho A(lf 1) graph Is assigned lt A(0 graph 
2« etc.  Tb und 0 posslblo gvnorailon In a previous loop Itsralkm for a 
subncripiod varlabli? i'so with Index n, tho graphs ootrespondlng to 
indicos n-l# n-2« etc., are examined In turn. The first graph enoounteted 
having 0 non-lnitlal value at Its ex*t node gives en inter-loop dependenoy. 
I.e., tho value was generated at the nodo(s) generetino the enlt value« 
If the node is a merge node with an Initial value as input« the search 
for inter-loop dependencies is continued, halting finally when only 
non-initial values ore encountered, or when all the p-grepht have been 
examined.  It should be noted that this technique is made feeslhlo by the 
observation that a* Jiough the number of literal subscript exprassions 
appearing in the source text within the range of the loop is In principle 
unlimited, it is in fact usually rather snail. 

Subscflntina Non-8ubscriDtad Varinhlas 
Non-subscripted variables will have to be subscripted in some eases la 
order to execute statements in parallel: 

DO   I 
1 C- A(D/D 
2 B(I)-C*FUNCT(0 

In this example, C would have to be replaced by a vector, say C(0« 
in order to execute all definitions of C in parallel in statement I* 
Both references to C in statement 2 would of course else be replaced 
by C(0.  The variable D on the other hand need only be "broedcest" 
simultaneously to all processors since its value is the same for all I. 
In general, a non subscripted variable (and its dependencies) will be 
subscripted when it is defined in an assignment statement whose right 

♦Only subscripts of standard form kHcwill be ordered.  Other subscripts 
are considered Nindctem)lnateH

# i.e., possibly having any index value« 
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tead lid« It (dlfoolly or Indlrootly) a funoilon ol tbo DO vartoblo. 
Iht mibtcripttiip will tak« two fomf • Tor Intra-loop dcpandoncloi, 
M In UM wtom mmmpto, the subtorlpt aiilgnod la Idem''*«! 
for Iht dtfltltlon and all lit roforonoea« Tor Inter-loop dopendondoi« 
ttot It« whan tho walua for a uao of tha voriahla waa gonoraiod 
In tha provlout Iteration—lor example: 

DO   1 
I   i(0 - C • rUNCT(0 
10« A(lfl)/D 

the uto will bt aaalgned a aubacrlpt value 1 Icaa than Its definition. 
Tha above example »ay bo refonnulated: 

00   1 
1   B(D » Ctt-l) • PUNCT(C(M)) 
I   CO)- A(IM)/D 

Uttftog the first element of the veotor C Initialised to the value of C 
before entry Into the loop« the above fonnulatlon la equivalent* Of 
eourtt«for parallel exeoutlon of this loop« statements 1 and 2 must bo 
revwted (tet nextttetloal* 
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2.    Ord< i ir.fj Kclijtlons for Pür>illül Execution 

The condition for parallel execution is that in inter-loop 
dependoncios, all value generations relevant to a variable use 
precede that use.   To find out If it is possible to rearrange the code 
in the loop to meet this condition and at the same time preserve the 
essential data dependencies, a set of precedence relations might 
be constructed as follows,   assume that p-graph nodes have been 
numbered HO that corresponding nodes on different graphs have the 
same number.   Represent each da tu dependency by the relation: 
nl < n2 where n2 is the node number of a variable use and nl the 
node where its value was generated.   (A relation for each possible 
generation, if more than one, must bo stated.)  If the total sot of 
relations is examined and found consistent, i.e., if there are no 
cycles, then the DO loco can be made to be executed in parallel. 
There are easy techniques applicable to Boolean precedence matrices 
for detecting cycles and for determining total orderings from the given 
partial ordering [ 1,2,3] • 

If cycles are found in the ordering, then there are dependencies 
which represent real causal chains in the DO loop, for example: 

A(I) -  A(I-l) 

which must be executed sequentially.   The following examples illustrate 
another causal chain and a similar case which is not a chain: 

1 
2 

DO  I 
X(I)-A(I-1) 
A (I) - X(I)*2 

X:   1 <  2 
A:  2 <   1 

1 
2 

DO  I 
X (I) -   A(I-l) 
A(I)   -  Y(I) 

A:  2 <   1 
X, Y:  no dependencies 

In general, only maximal cycles will be considered:  the sequence 
of operations represented by each cycle will have to be executed 
sequentially (in the original order).   However, all other operations in 
the DO loop (if any), can be performed in parallel.   A total ordering can 
be determined by considering each cycle a single node and restating the 
ordering restrictions accordingly. 



Branches and Merges 

Rearrangement of code must necessarily take Into account the flow 
logic of the loop.   If the loop contains no cycles - only branches 
and merges - the problem is simple.   Assume that in general all 
operations are associated with "mode sets", that is, with data 
words set to indicate the values of the DO variable over which an 
operation is to be defined.   (If the loop contained only "straight 
line" code, all mode sets would conceptually be set to the entire 
DO index range.)   Assume that at execution of an IF statement all 
relevant mode sets are set appropriately.   Then it is only necessary 
to add to the data dependency ordering relations the conditions 
that setting of mode sets precede the operations dependent on them. 

Example: 

DO    I 
1 B (I)  = A(I-l) + 1 
2 IF    (I > 5) 

(I>5) < ^    (IS 5) 
3   B(I) « B(I) - 1 4 A(I) = A(I) + 1 

Assume statement 2 sets mode set 1 for I > 5 and mode set 2 for I s 5, 
Statement 3 is associated with mode set 1, statement 4 with mode set 2. 
The ordering relations are: 

A: 4< 1 
B: 1< 3 
Mode sets:    2 < 3 

2< 4 

This gives the total ordering: 

2< 4< 1< 3 

The loop is therefore executable in parallel as follows: 

Mode Sets 

2 IF (I > 5) All I 
Sets mode sets 

1 and 2 
4  A(I) = A(I) + 1 I in mode set 2 
1   B(I)= A(I-1)+ 1        All I 
3 B(I) = B(I) - 1 I in mode set 1 



Example: 

9. 

(I> 5) 

DO    I 
1 C(I) = A(I-l) 
2 IP    (I > 5) 

L'. 

3   A(I) - D(I) + 1 v 
(IS 5) 

4 A(I) = C(I) + 1 

Assume mode sets as before.    The ordering relations are: 

A: 4< 1 
3 < 1 

C: 1< 4 
Mode    2 < 3 
Sets: 

2< 4 

Total ordering: 

2 < 3 < cycle (1,4) 

The cycle forces sequential execution of the pair (1,4), but 2 and 

3 can be executed in parallel: 

2 IF  (I > 5) 
Sets mode sets 

1.2 
3 A(I) • D(I) 4 1 

Sequential loop: 

c 1 C(I) - A(I-l) 
4 A(I) - C(I) + 1 

Mode Sets 

All I 

I in mode set 1 

All I 
I in mode set 2 
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Cycles 

After data dependencies have been determined, internal (nests of) 

cycles are examined.   If there is found to be any inter-loop depen- 

dency within a cycle, the loop cannot be executed in parallel (on the 

DO variable) as it stands: 

DO    10    I 
J =    1 

1     A(I) = A (I) + 1 
B(I)= B(l) H A(I-l) 
r = j+ 1 
IF   Q < 1)   GO TO 1   _ 

10    CONTINUE 

In this example, A(I-l) is dependent on the final definition of 

A(I), that is, the value at completion of the internal cycle.   In 

this case, the cycle could be split to permit parallel execution: 

DO    10    I 
J -    1 

1    A(I) = A(I) + 1 
J»T+ 1 
IF   (J < I) GO TO 
J- 1 

lx   B(I)» B(I)+A(I-l) 
I-J+ 1 
IF 0 < 1) GO TO 

10    CONTINUE 
lx  J 

In the following example no such manipulation is possible because of 

the B(I) dependency in the IF statement: 

DO    10   I 
1    A(I) «= A(I) + 1 

B(I)-B(I)+A(I-l) 
IF   (B(I) < C)   GO TO 1 

10   CONTINUE 

At present, the proposed procedure simply declares a cycle executable 

in parallel on the DO variable or not, depending on the absence or 

presence of Inter-loop dependencies.   Some investigation of "cycle 

splitting" for the general case shows the analysis to be more complex 
than the flnt example suggests. 
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r 

A cycle will be represented in the ordering relations by a single 

node ät which r>l\ variable uses dependent on values generated 

before entry to the cycle and all variable definitions occurring 

in the cycle are associated.   The latter represent the final 

values of variables on exit from the cycle.   It may be that examina- 

tion of all the ordering relations shows a cycle node to be in a 
causal chain sequence.   In this case, the cycle is always executed 
sequentially on the DO variable in its place within the sequence. 



3.    The Optimal Total Ordering;   Overwrite Considerations 

Thus far, the requirements laid down for ordering a DO 
loop to permit parallel execution have excluded consideration of 

overwrite, that is, the redefinition of a variable or array occurring 

before all uses of the previous definition have taken place. 

Preventing overwrite is considered a secondary requirement in 
ordering the loop because, if need be, it can be handled by using 

temporary storage.   However, this incurs a cost in space and, in 

some cases, also in time*. 

The ordering relations discussed in the last section define 

a partial ordering of the operations in a DO loop which implies some 

set of total orderings.   The problem then is to choose the ordering 

that minimizes overwrite (according to some criteria).   In cases 

where there are relatively few orderings to choose from, any ad hoc 

solution will probably suffice.   The general case, however, may 

involve infinite combinatorics and apparently no general solution 
to this problem has been found.   Heuristic solutions will be investi- 

gated based on experience with the I/O latency problem. 

* Extra code may be needed to restore values to permanent arrays on 

exit from the DO loop.   It may also be needed when overwrite results 

from re-ordering the original definitions in a loop, causing incorrect 
exit values, 
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PART 2;   DATA DEPENDENCY IN NESTED DO LOOPS 

With regard to the general problem of extending the present methods 
of analysis to comprehend cases involving multi-dimensioned arrays and 
nested DO loops:   Consider a restricted situation in which we have two 
tightly nested loops ("lightly" meaning here that all code contained within 
the outer loop is contained within the inner), the outer on I and the inner 
on J and both using an increment value of +1, and references to a two- 
dimensioned array A, in all of which the first index is of the form I+c, 
the second of the form J+k, where c and k are integers.   Assume that 
there are no control transfer statements. 

For any given statement in the loops containing a right-side reference 
to A, say statement x. we wish to determine whether there are any ordering 
constraints on x for Us SIM execution on 1) J, 2) I, and 3) I and J together. 
More precisely, we are interested in the ordering of statements necessary in 
transforming the nest of simple DO loops into any of the following three nests: 
1)   DO SEQ I/DO SIM J, 2) DO SIM I^DO SEQ J. and 3) DO SIM I/DO SIM J. 
(For the present, we shall not be concerned with overwrite problems — 
"ordering constraints" in this context will refer simply to those relationships 
between statements necessary in order that the values of an array be generated 
before they are used.)   The following discussion, for the present purpose 
of clarity, makes no use of the p-graph concept and terminology. 

The search for ordering constraints involves, as before, examining the 
rest of the loop code for dependency relations, to see if the values required 
for the reference to A in x are generated elsewhere in the nest.   But whereas 
in the case of single loops there were essentially only two kinds of data 
dependency relations, referred to as " intra-loop" and "inter-loop" dependencies, 
which were of more or less equal significance in transforming the code to permit 
exploitation of ILLIAC-type parallelism, a nest of two loops introduces a 
great deal more complexity.   It is no longer true, for example, that a data 
dependency relationship necessarily implies an ordering constraint. 
Specifically, there are three distinct kinds of data dependency relations 
possible, one of which has three different varieties; each of this total 
of five types has slightly different implications for the transformation of 
the code; and one reference to an array can be dependent on any number of 
other statements in various of these ways. 
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The most straightforward situation is one involving what we shall call 

simply an " intra-loop" dependency relation, which is precisely analogous 

to the like-named relation in single-loop code.   For example, suppose that 

the following statements occur in a nested loop of the sort under considera- 

tion: 

y   A(I,J)  = B(I,J) + C(J) 

X    D(I,J)   =   A(I.J) l  1 

Assuming that no other statement with a left-side term MlJ) intervenes, 

every value used by the loference to A in statement x is generated by 

statement ^ during the same Iteration of the loop code.   In such a situation, 

all that Is necessary (so far as this particular reference to ^ is concerned) 

for the DO nest to be transformed into any of the three nests described 

above is that statement ^ precede statement x. 

A slightly more complicated but still fairly straightforward situation is 

one Involving what we shall call an "intra/inter-loop" dependency relation, 

that ls# where values are generated and used within a single iteration of 

the outer loop but in different iterations of the inner loop; for example: 

y A(I,J+1)  » B(IJ) + C(J) 

x D{IJ)  «   A(IJ) 

When, say, 1=1 and J=l, statement^ generates a value for A(l,2); when J 

is Incremented and the code executed again, statement x uses this value. 

More generally, if we represent the reference to A in statement x by ACf., f«), 

then this kind of dependency relation can occur only if there is at least 

one statement Y with left-side term A(g1, gj such that g.cf.—otherwise 

there could be no interaction between the two for a single value of I—and 

9^2—otherwise x would use a value for any particular element of A before ^ 
could generate one.   If there is more than one such reterence to ^, the 

particular statement generating the values used in x can be determined by 
examining these references with respect to the second indices alone by a 

procedure essentially identical to that described in an earlie» report for 

singly-dimensioned arrays in single loops.   The statement, sayy, thus 

located must precede x in any transformation of the DO nest to the first or 

third type of the SIM nests listed above; however, for the second type, 

involving SIN1 execution on I alone, this dependency relation requires no 

ordering constraints, since the sequential execution with respect to J will 

automatically ensure that generation precede use. 
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The situations coiisidered thus far are not in principle different 
from those encountered in the discussion of singly-dimensioned arrays 
in single loops.   At this point in the analysis, however, the consequences 
of the nestedncss begin to make themselves felt.   Suppose, for example, 
that a reference A(f,, fj in statement x was found to use values generated 
by statement y with lelt-side term h{g.=f., gj in an earlier iteration of the 
inner loop but during the seme iteration of the outer loop—that Is, an 
intra/inter-loop dependency exists between x and jr.    As In the case of 
single loops , the fact that the dependency is inter-loop with respect to J 
implies that during at least one iteration of the J loop (specifically, during 
(go-fo) iterations) statement x will use an "Initial value" of A; but whereas 
"initial" in the former case meant that the value was generated prior to 
entry into the loop, hero it means simply that the value was generated 
before the present execution of the J loop was Initiated—It may or may not 
have been generated by a statement other than Y. during an earlier execution 
of the J loop, that is, during a previous iteration of the I loop. 

Even if an intra/intcr-loop dependency is discovered, then, the search 
for generating statements must continue.   (This, of course, is obviously 
not the case for a simple intra-loop dependency).  Only statements containing 
left-side instances of A with first indie es larger than that of the reference 
to A in x are candidates; those with smaller first Indices clearly could not 
generate values used in x in earlier iterations of the I loop.   Disregarding 

for the moment the conditions imposed by the existence of a finite test 
value for the DO loops, it should be clear that alj of these definition 
statements will generate values for some of the elements of the array 
referenced in x prior to that reference—what must be determined is which 
statement is the last to do so for any given element. 

If two left-side terms have different first indices, the one with the 
larger index will generate a value for a particular element of A during an 
earlier iteration of the outer loop than the other; if two terms have identical 
first Indices and different second Indices, the one with the larger second 
index will generate such a value during the same iteration of the outer loop 
but during an earlier iteration of the inner loop; and finally, if both indices 
are identical, the original ordering of the statements determines the priority 
of value generation.   Tentatively, then, the statement we seek would be a 
member of the set of the candidate statements with the lowest first index in 
the left-side term, and, of these, the one with the smallest second index, and. 
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If there are more than one of those, the one occurring latest In the loop code. 

If an Intra/lnter-loop dependency had previously been discovered, 
Involving a definition of A(g  , g2) in statement ^, then of course a further 

restriction is that the second index be smaller than g2—otherwise statement 

^overwrites all the values before they can be used in x.   If the statement 

selected by the procedure just described fails to meet this requirement, 

all statements with left-side instances of A with the same first index 

are excluded from consideration (since they too would necessarily be 

overwritten by %) and the search begun again with the next greater first 

index.   Suppose that, eventually, statement z, with left-side term MK, lu) 

is selected.   If h« $ f,, then z will generate values for all those references to ^ in x 
(after the first (h.-f.) iterations of the outer loop) for which % fails to 

generate values.   If, however, h9 > f , then there will remain at least one 

iteration of the J loop (to be precise,(h2-f2) iterations, again after the 

first (hj-fj iterations of the outer loop) for which x will use an "initial 

value" for the A reference.   Consequently, the search must be continued. 

Clearly any statements with a left-side reference to A with a first index 

equal to h. are excluded; further, there is now a restriction on the second 

index, namely that it be smaller than h«.   The search continues in this 

manner and terminates in one of two ways:   either no A definition statements 

remain for consideration, or sufficient generating statements have been 

found to produce the greatest possible number of values for the reference to 
A in x. 

The preceding discussion, however, omitted any consideration of the 

consequences of particular values for the DO loop parameters.   The procedure 

described above must be modified in certain ways to take these into account. 

Consider, to begin with, the initial and test values of the outer loop; 

call them aj and g..   The value Rj!= ßr - otr + 1 represents the number of 
Iterations of the outer loop that occur during a single execution.   If the 

difference between the first index of a left-side instance of A and f. is 

greater than or equal to Rj, then any interaction between the two references 
is precluded; the search described above, then, ceases when such statements 

are the only ones remaining to be examined. 
Now consider the corresponding parameters in the inner loop, aT, ßT, 

and RT = ß. - otr + 1.   These have an analogous effect: no statement with a 
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left-aide referenco A(p,q) can gonörnto values used In x If (q-f ) ?• R- 
(in both inlcr-dml iiilio/innor-loop dcpendoncles).   Additionally, no 
statonumt need bo considered if (f^'Q) S R..   The fomtcr case, of course. 
occurs when q is too much lorgor than f,» the latter when it is too much 
smaller.   These restrictions inuy bo restated as limits on the value of q: 
it must be smaller than an upper limit L.« R- +f2 and larger than a lower 
liinlt IJJ ""^"'H*   ihose 1,mits are modified in Äo course of the search by 
the discovery of generating statements.   Suppose a stntomont £ with left- 
side term Afg., gj is determined to generate values used Inx.   If gA«!,« 
% will generate values for all references to A In x after the first (Qi-fi) 
iterations of the outer loop; and since no statement remaining to be ex- 
amined can have a smaller first index, the search is terminated.   If g*^«' 
(as it must be in an intra/inter-loop dependency, and may be otherwise), 
then Lj2 is set to g^. since any remaining statement with a second index 
higher than g, will fail to generate any values that could be used by the 
reference to A in x other than ones that will be overwritten by x»   M g« < ^9' 
Lj, is set to g« for similar reasons. 

These limiting values provide one of the direct tests for terminating 
the search for generating statements:   If (Lro"^) - ^r» t^en there exist no 
statements remaining to be examined that could generate values used by the 
reference to A in x.   (The satisfaction of this condition means, loosely 
speaking, that two generating statements have been found, one with a left- 
term second index smaller than f«, the other with a left-term second index 
larger than f2, that are "close" enough to "overlap"—that is, f« takes no 
value in the loop that is not taken by the second index of one or the other 
of the two generating statements.) 

An additional consequence of the finiteness of ß. that might be noted 
here is that several generating statements may have identical first indices; 
for example: 

y   A(I+1,J)    «B(IJ) + ca) 

2. A(I+1, J+2)=D(I,J)+C(J) 

x   E(IJ) =   MlJ+4)+ 1 
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If J ranges from 1 to 10, thon^ will geneuite volue& for use In x for 
ACI.S) to Ad. 10)# and z for MMD and A(1.12), for ull I except aj. 
For any given first index, howovor, there is at most ouc. gonerotlnc) 
statement with a second index equal to or greater than .'7. 

All of the cases dltscusscd ohove where x is found tc depend on n 
statement with a larger first index may be thought of a.; siinp)y "inlct- 
loopN dependencies,   'ihe three possible varieties of intcr-loop dependency, 
however, have rather difforenl in.plications for the rcordorlng of state- 
ments in effecting a transformation of the DC loops into a DO SIN' nest. 
In no case is there any ordering constraint for the tranrtormation into the first 
type of nest, involving SIM execution on J alone, since sequential execution 
with respect to I will ensure that generation precede use.   In every case 
the generating statement must precede x for the third type of nest, the 
SIM/SIM nest.   It Is for the second type of nest, involving SIM execution 
on I alone, that the consequences differ:   If the second index is equal to 
f«, then the generating statement must precede x; if it is greater than f« 
there Is no constraint; whlie If it less than f», SIV execution on I alone 
cannot be effected. 

The following flowchart represents a precise statement of the procedure 
described In the preceding pages.   It is assumed that all N left-side 
instances of * in the body of the loop have been located, and that they have 
been listed In a table, along with associated statement numbers (which 
have been assigned sequentially in the original order),  in order of increasing 
indices, the second index varying more rapidly, and, where pairs of indices 
are identical, in decreasing order of statement number.  In the flowchart, 
the symbols c and k represent the first and second index constant modifiers of the 
reference to A inn; the symbols s   , p   , and q   represent, respectively, 
the statement number and the first and second index constant modifiers 
of the m     entry in the table.   (Note that since it is the difference between 
indices that determine the decisions in searching for data dependency re- 
lationships,   it is only the constant modifiers that are significant.) 
An entry is initially examined on the first page of the flowchart; if it is 
potentially involved in an intra-loop dependency, it is accepted or rejected 
on that page; if it is potentially involved in an intra/inter-loop dependency, 
it is tested on the second page; and if it is potentially involved in an inter- 
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loop ck'iK'iKloncy, il is tested on the third page.   Hexagonal boxes contain 

the results: "s     P x" moans that statement s    must precede x in the in m ' 
transformed code, for SIM execution on the loop variables listed at the 

bottom of tin! box (v/horo I+J refers to SIW execution on both variables 

together). 

The flowchart should not be taken to be more than a precise 

summary of the material presented in the test.   First of all, it is obviously 

valid only for nested loops of the restricted sort described at the outset 

of this section.   Secondly, the fimil form of the algorithm for detecting 

data dependency in nested loops will probably  be closer in spirit to the one 

described in appendix ft for single loops.   Finally, the algorithm inherent 

in this flowchart does not necessarily embody the basic strategy to be 

pursued in searching for ILLIAC-exploitable parallelism.   For example, 

rather than simply determining all possible ordering constraints arising 

from data dependency relationships, it might be better to search for only 
the hinds of data dependency relationships relevant to each of the possible 

transformations of the nest, considered sequentially in order of their 

predetermined desirability (which is related, for example, to the ranges 

of the DO variables), halting as soon as a particular transformation is 

determined to be possible. 
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_fTI.   TI.UAC I/O OPTIMIZATION 

The following section is concerned with minimizing I/O requests 

for large an ays.   Because of disk latency, this effort Is essential 

to effective use of the ILLIAC IV.   The scope of the approach is limited 

to cases where array references in a small number of contiguous state- 

ments require more space than is available In core.   Attempts are made 

to re-order these statements such that like array references appear in 

adjacent statements, 

Results have been disappointing and future effort will be directed 

at leaving statement order intact and calling I/O as early as possible. 

By partitioning arrays according to which program nodes reference them 

(as suggested by T. C. Lowe [4])/and then reducing the graph of the program 
until partition size exceeds core size, it may be possible to locate 
essential I/O calls.   Once it is determined where I/O calls are essential 

and what arrays these calls reference, the problem of relocating them is 

similar to removing   invariant calculation from DO loops, a technique which 

already exists in the literature   [1] , 

I/O ORIENTED STATEMENT PERMUTER 

I«     Purpose;     The ratio of disk-seek time to memory time is approximately 

4 orders of magnitude on ILLIAC IV.   For this reason it is advantageous 

to issue I/O calls as early as possible, hopefully minimizing time spent 

waiting for material from disk.   It is possible (by rearranging statements 

while preserving data dependencies) to maximize the amount of I/O which 

can be backgrounded.   The purpose of this effort has been to examine 
procedures for accomplishing such a rearrangement that will entail as 

little cost in combinatorics as possible.   The problem may be stated 

formally as:   Given a parial order on a finite set and a cost function associated 

with each linear order on the set, find the linear order of minimal cost that 

is consistent with the partial order. 

II.   Scope     After the rather intensive work described below had been 

conducted it became apparent that the scope of this effort is somewhat 

more limited than had been anticipated.   The specific technique   described 

deals with 1^0 problems of a very local nature, and is applicable In situations 
which do not seem to arise with astonishing frequency.   The effort did, 

however, afford the investigator deep insight into the nature of FORTRAN 

code and the possibi.Uties for its deformation. 
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III. The Permutation Generator 

This routine has two parts.   Part I computes a partial order matrix, 
using Warshall's algorithm [3] to obtain the transitive closure of a set 

of relations of the form a .It. b, where a and b are statement numbers. 

Part II generates permutations of the PUitements consistent with the 

matrix from Part I.   In addition. Part II is loaded with switches and 
heuristics in an effort to find as short a path us possible io the minimal 

permutation.   These heuristics will be described in seclion VI. 

III.l Part I—the matrix generator 
The data dependencies are generated as follows: 

(note:   .p. is our partial order relation) 

L(a)= variable appearing on left of statement a 

R(a)= variables appearing on right of statement a 

a.p.b iff: 

1) (a < b) and (R (a) D L(b) ^ 0), or 

2) (a < b) and (LHO R(b) ^ 0). or 

3) (a < b) and (L(a)=L(b))and "x Sb < x < inf(y|L(y)=L(b), 
y> b, RWr L(b) ^0} . 

Condition (3) is actually too strong, for it defines not e .p. re- 

lation but an anti-contiguity relation.   If (3) is met, then the restriction 

on a is that it may not appear between b and any statement whose right 

side references the "b" activation of variable L(b),   In the test program, 

this condition was overlooked entirely, but it has had little effect on the 
results and in no way invalidates them. 

After the data dependencies are computed, Warshall's algorithm is 

applied to obtain the transitive closure—an upper triangular boolean 

matrix whose (i,J)th entry reflects the truth value of the statement "i.p.J". 

ni.2   The basic permutation generator 

The permutation generator is driven by a mask matrix and auxiliary 

tables, all computed from the closed partial order matrix. 

III.2.1  The mask m?trix (MSK1) 

This is a boolean n x n matrix, where n is the number of statements 
being pennuted.   Each column is a position in the final linear order, 

The (ij)th entry is 0 if a placement of statement i in position j is leg^l, 
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-1 otherwise.   The initial setting of the matrix Is determined by the NP 
and NF tables below. 

111.2.2 The auxiliary tables 

1. IRES:   an n-vector which contains the final linear order. 

2. JROW, JCOL:   n-vectors containing the number of zeroes in a 

given row (column) of MSK1, 

3. NP, NF:   n-vectors containing the number of statements which 

must precede (follow) a given statement.   Row I of MSK1 originally 

contains NP(I)  -I's, followed by n-NP(I)-NF(I) O's^ollowed by NF(I) 

-I's.   In words, a statement which must precede (follow) NF(I) statements 

(NP(I) statements) cannot appear in any of the last (first) NF(I) (NP(I)) positions. 

111.2.3 The algorithm 

This is a stack algorithm which places statement after statement 
into IRES until either all statements have been placed or an inconsis- 

tency has been detected.   Subsequent work has indicated that there may 
be a slightly more efficient algorithm (see Appendix B) 

1. L= 1 (setstack depth). 
2. Restore MSK1 and tables to (L-l) state (Ostate is original state). 

3. LLFIORD(LL)   (statements are handled in a specific order, dis- 
cussed below). 

4. IPERM (LL)=IPERM(LL+1) (move to next permutation at this level). 

5. IPERM(LL) .gt.JROW(LL)?    (NO, go to 7). 

6. Yes, done with this level, pop stack 
LFI? (YES, done). 
1/=L-1 
go to 2 

7. Place LL in IPERM (LL)th open position in LLth row of MSK1. 

8. Mask out row and column of MSK1 taken (JCOL,JROW=l). 

9. Mask out all open positions bcfore(after) taken position in 
rows of statements which must follow(precede) statement LL. 
Also adjust JROW, JCOL. 

10. Is any JROW or JCOL = 0?   (YES means as inconsistency, goto 2) 

11. Is any JROW or JCOL-1?  (YES means we have a forced entry; 
NO. goto 12) 

12. Any more to do? (NO, done; YES, push stack: L=I/fl, jotoS). 
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There are some obvious bookkeeping details which have been omitted, 

but in essence the above statement of the algorithm is correct. 

We mentioned that the statements are done in a specific order. 

The reason for this is that it is desirable to minimize the number of 

non-hits (yeses   at 10).   To do this, we do statements in increasing 

order of number of original open spaces (0's) in MSK1.   Thus errors are 

less likely to occur, since as restrictions (i.e. the number of rnasked-out 
rows and columns) increase V/G are dealing with eloments which had more 

open spaces to start with, and so can "stand" to have some crossed out. 

IV. The cost function 

The cost function has been designed to be the simplest non-trivial 

I/O simulator possible.   Given a permutation it computes total and 

critical   (i.e spent waiting) I/O time.   Effort is made to background 

I/O, but the analysis is not necessarily the most sophisticated possible. 

V. The raw result. 

For sets of statements of order 7-8 or fewer, assuming that the 
number of order relations is not impossibly small, it is feasible to 

examine every linear order to determine the one with minimal cost. 

For larger sets the combinatoric nature of the problem asserts itself, 

and heuristics must be applied. In general it is possible to apply 

heuristics to sets of order 12 or lower, so larger sets are chopped 

into units of order 10-12. 

VI. Heuristic approaches 

1. Giving up after a certain number of legal permutations have been found, 

This method assumes that if an approach (i,e. some other heuristic)   is 

good it will generate low-cost orderings quickly, and thus if no such 
orderings are found early it is safe to quit.   This method is used in 
conjunction with method 2 below. 

2. Generating only those permutations which have all n references 

tp at, least one variable in nfl contiguous statements   (n cont- 

iguous statements was found to be much too restrictive, and n+2 or 
greater is too lax).   This approach does well, as it should.   The reasoning 

behind it is that any good permutation must Iv-.ve at least one array 

resident in core for a while (to minimize critical J/Q) ;;o there will be 

more time for backgrounding.   The problems with this approach ore first 
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that there is bound to bo some duplication of effort between segments 

dealing with different variables (the same permutation may be a hit 

for more than one variable), and second that it is not always clear which 

variables should be made contiguous with respect to references.   The 

first problem is effectively unavoidable, but does not appear to be 

too serious, for when it arises it means that the permutation we are 
looking at is probably good (after all. If one contiguity Is good, 

how bad can two bo?), and we may find some better ones nearby, as 

it is an observed fact that good permutations tend to cluster (be 

generated close to one another). 
The second problem is more difficult.   Generating permutations based 

on each variable eats up much of the time advantage of the method. 

With all variables being examined(the test program uses 12 variables, 

though it is wildly unlikely that more than 6 or 7 of them will be 

arrangoable in the required contiguity, and the program recognizes 

such cases quickly), this method produces slightly better results in 

slightly shorter time than does the raw method (no heuristics except 

to give up after finding,say, 1000 legal permutations). There do appear to be 
some reasonable heuristics to determine which 4 or 5 variables are 

likely to be best, but these have not been looked into too closely. 

The cutoff procedure for this method is interesting, for it has 

effected huge time cuts with no noticeable loss in power.   Examination 
cf permutations based on a variable is terminated if no improvement is found 

in the first 25 legal permutations, or if the only improvements in the first 

hundred were in the first ten, or if 125 permutations are examined with no 

improvement.   In each case improvement means improvement over the 
previous best permutation, where the first permutation is the original linear 

order.   The rationalizations for the three cutoff points are:   1)  good variables 
are good early; 2) variables tend to be characterized by the first few 

permutations they generate; 3) No cases have been observed where sparse 

permutations were especially good, and even some of the best sparse ones 

have been improved on by other variables. 

3. Generating only a very small class of permutations, but doing 

a fair bit of analysis :o parametrize the class. The analysis consists 

of the following steps: 
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1. Create a table of all references to all variables (i.e. a 

list of statements for each variable). 

2. Determine which pairs of statements arc "cjood" in the sense 
of having many variables in common and nlso being able to be 

made contiguous. 
3. Require as many disjoint pairs as possible to be contiguous. 

There is evidence that this method is the best of all, effecting a time 

cut of from 1 to 2 orders of magnitude over (2), and with possibly 

better results.   It is based on the theory that instead of searching 

a large set of permutations, we will attempt to generate only permu- 
tations that are close to minimal.   It seems clear that the statements 

paired are the very essence of a minimal permutation, and in fact may 

be close to comprising sets of necessary and sufficient conditions for 
a permutation to be minimal.   The one drawback to this method is that 

unless at least two disjoint pairs are found (and three is much better), 

there is not enough reduction done to ensure that the restricted class 

of permutations is small enough, for th     'ea of this method is to test all 

permutations which are legal by the above parameters.   In about half the 
cases we cannot find two fairly powerful (two or more variables in common) 

disjoint pairs.   A possible hybrid of methods (2) and (3), would seem to 

solve the problem, but this has not been tested. 

VII.  The algorithms were implemented on a PDP-10 computer.   The 

percentage reduction is from original orderlngs of random statements. 
The table on the following page summarizes the results of these efforts. 
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f 
Method 

PercenUuic Reduction 
 (A vor ago)   t{Averaqc' CU Tlmo) 

sei 8» its 12       n>12 

All permutations 

All permutnlions 
(with cutoff applied 
for n>12) 

Method 2 
(usually about 
1/2 of the variables 
are tested.   Analysis 
might reduce this 
1/4 to 1/3 for significant 
saving) 

Method 3 
(can only meet 
conditions 1/2 time) 

Maximum (usually 
about 50) 

close to maximum 
10-15 

30-50 

close to maximum 

2strl5 1il80       t protyprtional 

2stel5 tslSO 

ts30 
per variable 

15s Is 30 
(estimated) 

tsSOO 



IV.   lyjMi OV'-K^l' OPTIMIZATION 

The following section is concurncd will) oxccullon tirno optlini/ntion. 
Because of the unconvantionallty of the Il.LIAC, techniques are intro- 
duced by describing counter cxiiinplcs to u»u<il optimizuiion methods. 
An attempt is made to define o|)ti;nizution gr>uls and the limits of their 
effectiveness.   A simple optimi^utJun dlgorithm Is introduced, and n 
characterization of tlic optimixution problcin is specified. 

A ConvenHonal ^pprouch to «in IjncpnycnUor j! Mr.chj;..- 
Because the number of PF's in iho ILLIAC: iV is lir.ilcJ to sixty- 

four, the nXTENDED KOkTItAN Compiler maps eoch Slh' designment 
statement whose SIM variable is greater than sixty-four into a control 
loop and   an assignment of sixty-four values.   The control loop Itcrwtes 
the assignment until It is executed for all values of the TIM variable. 
More than one SIM assignment statement may occur within a DO SIM 
loop.   Since each statement within the loop is completed before pro- 
ceeding to the next, an identical control loop is generated for each 
assignment statement.   Trom a conventional optimization point of view, 
the repetition of Identical loops is time consuming and, in cases where 
data dependency and overwrite considerations do not interfere, unnecessary. 
The reduction of Identical control loops to a single loop encompassing 
all the assignment statements in a DO SIM loop, appears to be an 
effective optimization technique. 

Because of overlap between CU and PE cxccutic n, the anticipated 
gain in execution time is negligible.   Control instructionr. are executed 
in the CU; SIM assignments in the PE's.   Since CU and PE execution 
overlap, unless, in a given SIM assignment, the CU execution time is 
greater than PE execution time, the elimination of CU instructions will 
not change combined execution time.   An examination of the timing of the 
Instructions we anticipate generating for SIM assignment statements has 
shown that, except in the simplest cases, combining control loops is an 
Ineffective optimization technique. 
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In ordor to account for execution overlap between CU and PE 

proccssiny,the concept of code dominance has been developed.   We 

hypothesize that II.LIAG code may be broken into segments in which 

either the CU or PE instructions take longer to execute.   We call the 

processor which takes longer to oxocuto, and therefore, determines 

the execution time of that segment, the dominant resource for that 

segment.   In the previous example, SIM assignment statements are PE 

dominant.   ILLIAC optimization efforts must be directed at the dominant 

resource. 

If neither processor is idle over a portion of code, then execution 

is balanced.   Since, in the case of sequential code, it may be possible 

to execute instructions in either the CU or a single PE, reduction In 

execution time may be achieved by reassigning instructions from the 

dominant to the idle resource.   This procedure will be referred to as 

balancing by allocation. 

A second example of the unconventionallty of ILLIAQ optimization; 
Balancing by Relocation 

A "machine independent" optimization technique which has been 

examined in the literature is the removal of invariant calculation from 

program loops.   In the case of ILLIAC code, significant reduction in 

execution lime may be achieved by moving invariant calculation »nto 

program loops,   assume that a programmer has coded a simple assignment 

statement of the form A=Bf C followed by a SIM assignment statement 

whose SIM variable range is greater than sixty-four.  The simple 

assignment statement is inter-changeable; that is, it may be executed 

in either the CU or a single PE.   The SIM assignment statement generates 

a control loop and an assignment of sixty-four values.     This code 

is PE dominant.   Clearly, execution if« reduced by allocating the simple 

assignment statement to the CU and moving the CU code into the PE 

dominant loop.   (We assume that the difference between PEand CU time 

within the loop is grcMer or equal to the CU time necessary to execute 

A»Df C).   Moving code within a processor to a segment where the same 
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processor is idle will be referred to as balancing by relocation. 

*** 

In summary, execution overlap requires unconventional optimization 

techniques; allocation and relocation.   The first balances by allocating 

instructions between processors.   The second balances by relocating 

instructions within a processor. 

The Indeterminancy of Code Dominance 

Execution is a dynamic process.   If Maxwell's demon were available, 

then we could identify, at each moment of execution, the dominant resource. 
Because of the unavailability of such a device we would like to ascribe 

the condition of dominance to ILLIAC code rather than the ILLIAC processors. 

We could then allocate and relocate by means of an algorithm which 

segments the code such that each segment has a distinct dominance. 

Unfortunately, this situation does not obtain.   Each transfer from a 

dominant portion of code carries with it a 'surplus' of unexecuted instructions 

which will effect the dominance of the subsequent portion of code to be 

executed. 
For example, a program block is coded such that a large number of 

instructions are interchangeable.   The block's entry is a merge; one 

side of the merge is balanced, the other is PE dominant.   If execution 

proceeds from the PE dominant branch of the merge, then the block is 

optimized by making it CU dominant.   If execution proceeds from the 

balanced branch of the merge, then the block is optimized by balancing 

itf   Resource dominance is both a function of the code being executed and 

the preceeding code awaiting execution.   This condition is somewhat 

ameliorated by the ILLIAC overlap design, which only queues PE instructions. 

Consequently, an unexecuted surplus can only occur in the case of PE 

dominance.   Local balancing is a reasonable optimization goal in tho sense 

that it reduces execution time in comparison with executing all interchangeable 

instructions in a single PE.   Prom a global point of view, a knowledge of 'the 
most probable path of execution' can make optimization efforts more 

effective. 
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Conventional optimisation techniques implicitly assume that 

the fewer instructions executed, the more optimal the code.   Techniques 

which account for overlap do not obey this optimisation rule ,   Nor 

can this rule be rcplüccd by a local balancing rule.   Unfortunately, as 

this example has shown, it is not sufficient to say that locally balanced 
code is optimal code. 

A Restriction on Balancing IT.LIAC Code 

A simplifying assumption, namely that transmission time between 

the two processors is negligible, must be abandoned,   A timing asymmetry 

of significant proportions substantially effects optimization efforts.   In 

general, a load from a single PE to the GU takes twelve times as long 

as a load from the CU to a PE.   There are two ways of approaching this 

asymmetry. 

The first is to restrict the allocation of interchangeable instructions 

such that PE to CU dependencies (i.e., an operation in the CU utilizes 
an operand in a PE) do not occur.   This is the approach utilized in our 

allocation algorithm, 

A second approach permits PE to CU dependencies, but establishes 

some minimum number of contiguous CU instructions which must follow 

the dependency.   Our rationale is that the time necessary to load a CU 

from a PE can be averaged into the overall cost of executing that portion 

of code in the CU.   In the following section it is assumed that inter- 

processor latency has been accounted for. 

Estimating Optimization Effectiveness 

Assuming that ILLIAC code can be balanced, it is possible to 
determine the upper boundary of the optimization effectiveness.   That 

the code can be balanced implies that interchangeable instructions 

(in this case, sequential code composed of arithmetic statements 

involving integer addition and subtraction) are available. 

Our approach is to assume that a balanced program exists, move 

the CU interchangeable instructions to a single PE, and compare execution 

time.   (See Appendix C).   In brief, allocating and relocating are equally 

effective, but CU stoiago optimization (i.e. the utilization of local 

memory for CU operands) is essential to the balancing effort.   The upper 

bound for a CU optimized balancing effort is 33 per cent reduction in 
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execution time; if CU memory is not optimized, then the boundary is 

15 per cent. 

An Inexpensive Aloorlthm, 
The optimization algorithm we propose is inexpensive.   Its 

advantages are that it achieves whatever optimization is easily 

attainable with minimal offort.   While only applicable to sequential 

code, we suspect the approach might be extended to encompass control 

loops in SIM assignments. 

The algorithm is based on the following observations about partitions 

of macros generated by sequential TORTRAN code.   Partition sequential 

macros into subsets which have no data dependencies with respect to 

each other.   Members of the subsets are linearly ordered.   We observe 

that the execution of any two subsets may overlap.   Ideally, all the 
instructions in one subset would be allocated to the CU, end all the 

instructions in the other subset would be allocated to a PE.   In reality, 

the CU instruction set is so limited that in many cases, only a portion 

of the macros in a subset may be executed in the CU,  We, therefore, 

make the following allocation restrictions. 

A subset may be entirely allocated to the CU.   A subset may be 

entirely allocated to a PE.  A subset may be allocated such that execution 

begins in the CU and terminates in a PE, in which case the subset will 

have a single CU to PE dependency. 

Observe that if we allocate according to these rules, then there will 

be no PE to CU dependencies.   Now, for any subset, refer to those macros 

allocated to the CU as the CU portion of that subset, and the macros 

allocated to a PE as the PE portion cf that subset.   A subset may have a 

CU portion, a PE portion, or both. 

Observe that for any two subsets, the execution of a CU portion 

and a PE portion may overlap.   The objective of the allocation algorithm 

is to execute the PE portion of the nth subset, while executing the CU 

portion of the n+1 subset. 

We now introduce timing considerations.   Although the subsets may 

be executed in any order, it is desirable to avoid the followincj condition: 

the execution of the PE portion of a subset is delayed because the execution 

of the CU portion of that same subset is not complete. 
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We therefore, introduce the following ordering restrictions. For 

each portion of a Rub.sot, compute an execution time estimate for the 

respective processor.   Order the subsets such that for each CU to 
PE dependency, the sum    (over all the previous subsets) of the CU time 

is loss than the sum of the PE time.   The resulting ordering is: Subsets 

with PE portions alono first.   Subsets with CU portions alone last. 

Subsets with both portions ascending from maximal PE and minimal CU 

to minimal PE and maximal CU.   A brief description of the algorithm 

follows. 

The subsets correspond to FORTRAN statements which have no 

data dependencies with respect to one another.   Apply a method proposed 

by Ramamoorthy [2] to partitlDn sequential statements.   The macros 

generated by these statements conespond to the linearly ordered macros 

which are members of the subsets. 

Apply the following allocation rule: Assign the macros in a statement 

to the CU until an PE dependent macro (i.e., a multiply) is encountered. 

Assign that instruction and the remainder of that statement to a single PE. 

Attach an execution time estimate to the portions of each statement. 

Assign an index to each statement according to the difference between CU 

and PE estimates.  Order the statements according to the value of the 

Index, smallest values first.   The resulting oidcr minimizes PE idle time. 

In order to take advantage of hardware buffering, care must be 

taken when issuing cede to Interleave CU and PE instructions. 

A Characterization of a Block Optimizer for EXTENDED FORTRAN 

The following characterization is for a block optimizer.   In the 

case of EXTENDED FORTRAN we define a block as a set of statements 

in sequential order having one entry and multiple exits.   Since each 

statement in a DO SIM loop is executed in sequential order, a block 

may contain SIM assignment statements, each with an identical control 

loop.   For our present purposes, the cyclical nature of the SIM control 

loop will not explicitly appear except as a marking. 

A block of ILLIAC code may be characterized as a marked tree, 

with nodes and edges corresponding to operations and operands re- 

spectively.   Depending on the character of the operation it represents, 

a node is marked PE dependent, CU dependent, or interchangeable. 

In addition, the nodes which, in the actual code, are nested in SIM 

control loops are identified as iterated nodes. 



Allocation may be characterized as a reduction procedure applied 

to the tree.   The objective of such a procedure is a tree of CU and Pi; 

nodes.   While   in the previous algorithm, the first PE node encountered 

consigned the remaindrr of the statement to a PE, a more extensive 

examination might reveal that a large number of interchangeable instructions 

warrant returning calculations to the CU.   Consequently, the first re- 

duction combines interchangeable nodes and asfugns CU timing estimates 

to them.   The second reduction begins in a CU node and combines 
CU and interchangeable nodes until a PE node is encountered.   PE nodes 

are combined until an interchangeable node is encountered.   If the 

CU time estimate for the interchangeable node is above some minimum 

(this is a function of PE to CU latency and is unknown at this point), 

then assign a new CU node and continue.   Otherwise, combine the 

interchangeable node with the PE node.   Continue this reduction until 
the tree contains no interchangeable nodes. 

Relocation may be characterized as a deformation of the reduced 

tree.   While in the previous algorithm, the ordering restrictions 

were quite simple, in the present case, the determination of orderings 

appears to be computationally explosive.   The nodes must be ordered 

such that data dependencies are preserved and that timing order 

correlates to logical order.   In other  words, for each CU-PE dependency, 

the sum of CU time is less than the sum of PE time; for each PE-CU 

dependency, the converse.   In addition, care must be taken to keep 

iterated nodes clustered.   A further restriction is that only invariant 

calculations may be moved into interated clusters. 
We suspect that an extension of the first algorithm, i.e. partitioning 

statements before reducing the graph,will prove to be the most practical 

optimization approach to ILLIAC code. 
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MTVWD1X A:   Al .Ci )!UTHM VOll DCTERKMNING DATA DEPENDENCIES 

This algoiilhn, is based primarily on the p-graph material presented 

in Shapiro and Saint's The.KcprcisentnLion of Algorithms        [5 ]. The final 

section, on subr.ciijjted variable dependencies, extends the analysis to 

inclndo DO loops loterencinn sinyly-dinienjsioned arrays, which of course 

potentially embody parallelism exploitable on the ILLIAC IV. 

The main sections of the algorithm are: 

1) Analysis of the flow logic and accumulation 
of variable use statistics 

2) Completion of p-graphs , by flow block and by node 

3) DetecKon of intcr-DO loop dependencies for 
subscripted variables, 

DETERMINATION Of FLOW BLOCKS 

One scan is made over the code to determine the basic flow 

blocks and,at the same time, record all variable uses within each flow 

block.   It is initially assumed that statements having labels are 

referenced elsewhere, that is, are the start of a new flow block, In 

order to eliminate an extra scan.   Inforrmtion is also recorded in terms 

of "nodes" to provide the skeleton for the final p~graphs:   statements are 

broken down into one or more nodes according to type and additional 

nodes are assigned to the entry and exit points of each flow block. 

The scan records flow data in a Flow Block Table having one entry 

per flow block.   Entry format: 

I  FB#!   NODEN   I NODEX ! LABEL  ! DEF   I REF 

FB#: flow block number 

NODEN: entry node number 

NODEX: exit node number 

LABEL: label of first statement in block (if any) 

DEF: defined flag = ON if LABEL is the label of some 
statement; OFF, otherwise, 

REF: referenced pointer pointing to the chain of flow 
blocks which reference (transfer)to this flow 
block.   Zero if none. 

A work area WA is used to store the REF chains. 
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Procedure; 
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v 
Tor each destination label: 

© 

Socirch Flow Table for 
Libel, making new entry 
if not there 

chain   CFB into REF 
of entry 

■; L_ 
Variable    ^ 

Use 

Next 
K 

Statement 

The flov; block part of the procedure is completed by the construction of 

the I low.Block Connectivity Matrix FPCM   from the completed Flow Block 

Table.   This is a 2-dimensional Boolean matrix giving the direct connections 

between flow blocks:   FBCM(I,J) = 1 if flow block I transfers to flow block J. 

To construct the matrix, the Flow Table entries arc cycled.   For each entry, 

J = FB# and I = REF(J) chain flow block numbers.   FBCM (I,y) = 1 for all 

such IJ pairs. 

The following additional errors may be found: 

1) J = 0 =>   statement label referenced but not defined 

2) REF= 0 => labeled statement not accessible 

3) FBCM (I J) = 1 and there is no other non-zero element 
in row I or column J => flow block J can be 
appended to flow block I. 

This is the case of generation of an extraneous flow 
block.   It probably does not pay to fix it. 

Artificial entry and exit blocks are added to the set of flow blocks.   The 

entry block, numbered 0, precedes all original entry blocks.   The exit 

block, numbered N = (last flow block number + 1), succeeds all original 

exit blocks. 



Varlnblc ILso Data 

At the same time that a statement Is passed through the flow block 
scan it is also examined for variable uses.   The data collected here will 
furnish a record for each variable of its definitlon«/references in each 

flow block and at each node within <» block.   Redundant information is 
recorded, that Is, by flow block as woll as node, since the next procedure - 
completion of p-graphs - can be more economically executed over flow 
blocks than individual nodes. 

Statements are broken down into nodes in the obvious way:   assignment 
statements (or the assignment part of a logical IP)   become 2 nodes - the 
right hand side (use = referenced) followed by the loft hand side (use » 
defined, except subscripts).   The first (or only) node of an IF statement 
represents the conditional expression (use » referenced).   READ/WRITE 
statements are single nodes (use »defined/referenced). 

The data may be recorded as follows.   Assume that a symbol table 
for all variables has already been generated and that the variables at this 
stage are represented by pointers into the symbol table.   A now symbol 
table field USCPTR will be temporarily appended.   For each Mriable, its 
USEPTrt field will contain a pointer to a chain of data entries in the work 
area WA describing its uses.   There are 2 types of data chains constructed 
in WA.   The first, the flow block chain, is located directly by USCPTR. 
The fields of a flow block entry are: 

1) FB#:  flow block number. 
2) R    :  referenced flag.   ON if variable is referenced 

in this flow block. 
3) D  :    defined flag analogous to R. 
4) D node:   node number of last definition of variable 

in the block. 
5) NPTR:  pointer to node chain for this flo'v block. 
6) FUNK:  ptr to next flow block entry for this variable. 
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The :.rcv)nd typ'1 v' chain is iho node chain which la located by the 
Nl'TR of it.; ilnv; block <jitiy.   Ihc node entry fields ore: 

1) N"   :   node mnihcr 
2) H/P:   rolcrencr-t or daffiicd flag 
3) N' !.'':%:   point  ! to next node entry In the chain. 

Schomütkvll/: 
SYMI'Cil. 
TABU: USEPTR 

VI 
V2 

WA 

[FB#j Rj n^DNODKjNPTRiriJNK   ' 

I   N#:  R/D     NLINK 

N# 

M 
EBÜL  1 

The process of recording the above data Is simple.   As each statement is 
passed through the scan, it is broken down into nodes and each node 
is examined for variable appearances.   The USEPTR field of each variable 
is accessed to locate its current flow block entry in WA.    If the FB# 
of this entry = CFB (current flow block), the R/D/DNODE fields are 
appropriately updated.   If FB#^ CFB or USEPTR« 0, o new flow block entry 
is made and chained In via USEPTR, FB# = CFB and other fields are set 

appropriately.   In both cases, a node entry is also generated. 
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For all varinbles, data for the entry and oxil blocks is the sanr-: 

for tho entry block, D - ON at ita single node DNODU :   1; for Ihf 

exit block, K» ON e.l its single nodu = (laat assigned node -I- 1). 

GOMPLrnoN OF TUn F-GRAPH 

The preceodlng procedurca n'.od be poiformed only once over the code 

to be analyacd; the füllowing procedures nuicl be applied separately to each 

variable in the code. 

As stated earlier, the complcllon process will be poiTonnod over the 

flow blocks of the program rather thon the individual nodes.   In general, 

each flow block will bo thought of as having 2 nodes - an entry and an 

exit node.   All entry nodes will initially be »cforenco (" uncirclcd") 

nodes.   If a definition takes place within the block, the exit node will be 

circled, referring to the last definition in the block.   The result of this 
procedure will be the dotermination of tho "equivalence class" to which 
a variable belongs at the entry node of every flow block.   (It is then trivial 

to resolve data dependencies  node-wise within flow blocks.)   An equivalence 

class will be defined by the type and place of generation of the class. 

A class generated by a single definition is designated type "D"; by a merge, 
type "M",   The place of generation is the flow block at the node of definition 

in the first case, the merge block at its entry node in the second case. 

The procedure described here is based on the p-graph algorithm with 

some modifications.   Initially, all originally circled nodes are "propagated" 

to their successors, but thereafter only new merge nodes are propagated 

until no more are found.   This raises the problem of "zeroing out" only the 
subset of non-merge nodes affected by a new merge node.   However, since it 

seems desirable anyway to keep track of tho set of equivalence classes related 

to each merge node, this can be done in a wuy that will record the equivalence 

class associated with every entry to a merge.   Thus a new class always 

overlays the old class in its assigned slot without destroying any information. 
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I i .' ■   H:..   i .-, : ■     :   an. : 

Jj.-: I'M!;.    : ("I i-;.  V Jiix.    "I In r. pi UfiX p..r.il l.'ls lb.- IM'v ;M   but 

i! ■ \ .Uu ;; .;!•   :1.       .:;.., •; ilv-il- IK-,   .-l.tsne::.   Tlio i'lotm nt l'RCM (1J) 

(i; i. ■; i.vill) i     'i   ■ 'i-iiv." ii.t:;r! ;'..ur.c<:! fr^::! flow hhn.k 1 lo 

fl' ..• ;,!.(•<   ).    T..    :. •:; ,1 n. tntiv  i::   'lypt-'Tli"" wlu:ic typi: «= D or M, 

IT.'       riftt !>  t (.■    I   ,.  lil«;';  ...;   r«; »(«•!•   '   lion of cl«'^.s occurs, 

H.'i    :   IK     !i ■;• . ::    < ntiy , • r flti-.v hli-t';,    V.ntry for.n it: 

Kir     inxi>i    •   u     Nr.C/'MNoni: 

Tins lib!    .!(■.;(■• •'.• :  the ciif \vA not!  J*  UVJ the pqulv.ilcnce cl :ss on 

oniry m (MC!I f)   ,v blork.   rn.   R, P, hACiDI! Mfi is ore taken directly 
fn.ii-. iho flo.v hi. .': chain d.iM ^«.«ncr.iU I tn the Kir.i procedure.   The M 
fl.in is funicJ (>;; Alun o i'lo.v block in found to be a ine-ge point of 
morv th n 1 equfvakMicv chioü.   Thf KKC/MNODn tlcscrfbos the entry cqulvü- 
lone«' cl.i55s (X'.C) ft>r this flow block unless M Is CW, when It designates 
the (lUry no'lc (Mi.'OUC) Inr-tciid. 

Ml Vll' "   M'Tg^ r.i;??.   The numbers of Ti-.crtje blocks nre placed on this 
list .is they .ire Uü-covcrerl during the procedure. 

SSTCK -    Successor Stock.   Push dov/n stcick used to store the numbers of 
succcütJor flow blocks of a node during the propogcitlon process.   Entry 
formt:   rrU, SIT.   (see below) 

pre - Current r.quivolencc Class.   Same format as ECM entry. 

Cm - Current How Block. 

PIT - Propugatlng Flow Bh.ck, 

SFB - Succcsr.or Plow Block. 
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The procedure is conipJolcd by the fillincj in of Ihr- NCVMNODU fields 

of the USE Uible.   If K' •-■ On' for.nny^hc enUy Tor How bJr.ch fj, NEC 

is obtained by scaiming cohmin J lor any non-jmJl (vniry (';)] »jro the so'iio), 

If M ^ ON, MNODE if. set to the entry node of Lhf do-/.' hk-i:]- (NODEN 

field of the Flow Bloc); Table).   Hole tint the fii.L of »iuitjinc; CLIüSCB in 

the hitter cuise is obtc»in:djle from tlie L'CM column corresponding to Ihc 

merge bloc):. 

The oompleled USE Table, together with the FBCIvl giving the ronneclions 

between flov,' blodwO, defines the flow block p-giciph. 

The next procedure passes over the nodes of the flow blockt- to nvike the 

final assignment of equivalence classes.   The information is obtained 

from the USE Table and the node chsinc generated in the Variable Use 

Data section.   Three fields will be added to each node entry to record 

the equivalence class: 

FDEF >=   flow block number of the class 

NDEF »   node number of the class 

TDEF =   type of class:   D or M 
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PlOPl  'Ml,;   l". 

.s 11 M(ri; )    urr-, 

IDV.V . I'DUF -  i\ri:c(rri;r) 

if TDtir - D, nvn:v = DNODI; (r'Dcr) 
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- If R(N-if) r: on. cnior current TDK?, FDLT, NDKl' in node entry 
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NDFF = NU" 

TDKF  •- D 

Next node entry 
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-Next flow block entry 

end of chain 
h 

Exit 
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SUBSCRIPTED VARIAli] HS 

The previous analysir. does not dlslinguiftli bolwcen diffeiünt elements of the 

same array in determining drit<! dependencJOB.   Vv'orl: in this area has been 

done only within the limited context of the 1IJ.TAC prohJrm, that is, the 

analysis of DO indo;- Kubseriplcrl ■•/ariablor in DO loup eode for the 

purpose of finding intor-loop (ii..-j-niidencic.\;.   The previous proc Jure;; can 

be rather yimp.iy modified to fiud dc^pendeiictas in Lhir. special enno; 

Variable I)se Data 

h "subscript" chain i:. interpür«" i at a levc] higher thin ihc flow block 

chain.   A subscript entry Is IIKKIO for each unique subscüpt forr.i associated 

with an arruy variable. 

SYM COL 
TABLE 

ARRAY VAR. 

DSEPTR W'^ 

ISS)   1PPTR  j SSLUiK 

LF4:.. ;:.: i; 
etc. 

I 
öö  I 
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Con'iili.'tlon^oi .i':-1 '■.'"■ipil 

This itrocfii-lurc,  il ;   Mcjh th«1 propuguti MI process, la performed separately 

foi i-i'-h siibrw.:!!. ! fc;rm of IIK; army variable.   In this case, multiple 

ECM .-.lid USi; t..Mfs nmsl IK: kept - a not for each subscript form. 

The nubsrript fo-'i^f. arc tlv u enamined and arc usfdgned indices 1,2, ... ,n 

cuvxirding to deneasiny i'.siun of Hie subscripts,   fin inter-loop dependency occur? 

when ih.-re is a ii.'.c of an initial \MIUO (equivalence class 1VO) on the p-graph 

corn-^pondincj t:j index n' > 1 and there: is another graph of index n" < n' 

shovii/j a non-ia.di.d v.iluo ,;i the exit block.   That is, in this case the 

value for the DO use was . ctudly generated in a previous iteration of the 

loop, 

The foilowinq pi.'codure tM'dutcs the da la tables to reflect inter-loop 

dependencies,   it  is neces.sc;r/ now to append a subscript index field 

to L'CK: entries since there will be "cross p-graph" references.   (In the 

initial completion, ull indices - the index of the graph).   The NEC field 

of USi'. entries mnsr bo similarly expanded. 

(1) I - 1 

(2) The NEC/MMODE   ilelds of the USE table for index I are completed. 

The value (entry equivalence class) for the exit block will re-deflne 

all D/O equivalence classes for index (1+1).   If this value is itself 

D/O, skip to step (4). 

(3) The ECM corresponding to index (1+1) is scanned and all appearances 

of D/O arc replaced by the above value, setting subscript index« 

index of this value.   In particular, values in the column corresponding 

to the exit block are now updated. 

(4) I - HI.      If I ^ n, go back to (2). 



APPr.NDIX B;   OBbTRVATIONS ON PARTIAL OHIJERING: 

Problem:    Given a fJnito set A and an irrefJoxivo pcirtjal order r O >■ h, 

how njf.'ny linear orders on * «re; consistent with r? 

Def 1: rC.A x A is on irreflej.ivo j)artinl order if 

1) V a c A, (.i,a) ,/r 

2) fd.b) (b.c) c r 

Note:    (a.b) <•:. r ia alsu v;ntlen Uü a < b or a < h if r \v. understood. 

Leimma,!;.   if r, and r„ ?rc Orrefle:.'ivo) partial ouiors thoj) r,  C r« is 

a partial order. 

Proof;   1) V a e A, (a,a) £ v^ C r2 

2)   (a,b) r. t^C i^ (a,b) c r^ r2 

(b.c) € r^O r^ => (b^) r. Tj, T^ 

thus (a,c) c r., and (a,c) c r?, so (3,0) c ri^ r2' 

Def 2:        L C A x A is a linear order if it is an irreflexivc partial order 

and V a, be A, a ^ b r-> (b,a) e r or (a,b) € r 

Linear orders are also culled chains. 

If {a.,..^ ) C A is linearly ordered  by a. < a« < ... <a  , then 

we denote this by < a., a,,. ,,a   >C r [i.e. <«,,,. .a   > - {(a. »a.) 

I l5i<Js nj] 

Def 3:        The restriction of r to BC A, written r| B, is the set {(a.b) c r|a,b,e Bj 

Def 4:        The primitive of a partial order r, wrillun p(r) is the set 

{(a,b) G r| ^ c e A (3,0), (c,b) er}. 

Note;    In Graph Theory the primitive is sometimes called the 

HassedlacTram. 

Def 5:        The transitive closure of a subset QC A  x A is defined by; 

C (0) =P {0' "30 I O'C A x A is a partial order) 

It follows immediately from Lemma 1 that CiQ) Ir: either a partial 

order or all of A x A. 



iH;! (•: l   (}     M :,;, ... ,'i,,   ) ^,n[,,,,'nul   ^ then t! ■• r;-'lr<u;l ol (,', 

\'.'i ill'".i v.-,   i.; ;ii.'(in. •■ i by 

*■/ {"■■;]     i 1 !>,-j 1 k.   } 

U:^■-.::■'■   ^"(')    !, ..u;o# irx( ":x2 ih^nCCXj) ";)c:(x2) 

I'li-nf:.    ' •■ !. /  >:   A      i A  .   If 0 i- a partial order and Q~X, tlicn OKg 

lii'i«; X,.;' : .\\ ) but by l.omnuj 1, C(X) is a partial order (unless it 
< i 

ir. A >  A ii. which c.r.c C(X j)   ": C (X2) foi any X2C A >: A) 

iliii.;, sine C(X,)u; ü ixirtial o:'!<r containing X«, the intersection of all 

r>irlKil ei '  ::. ooni (liiM.-.i X2 is conlnincd in   C(X.).   Thus OtXj T" C(X1). 

Kvv.' con.-ii if) rand iir. primitiv».; p(r).   Since p(r)Cr»C.{p(r))C r' 

/f;r;i.iiu; lb   mclusion is proper.   Thus "j (u,b) e r such that (a.b) ■'. C(p(r)) 

New ;! c     (o.c), (c,h) c r for otherwise (afb) c p(r)C C(p ( r)).   Also 

not both (i ,c) and (c,b) may be in r(r) for otherwise any partial 

order conb.jnimj p(r) would conUiin (a,b) by transitivity and (a,b) 

v.ould bv. in n(r).   Asr.umo without loss of generality that (a,c) if p(r). 

Thus  f, c,   $ (a.c.), (c,, c) e r.   Further c. ^ {a,b,c3 for by 

trun.iitivitv (c,b) c r and we know that (c., c) and (a,c) c r.   At the 

nih step \N\' h;ive c   / [a,b,c,c, (c?,... ,c    .) . 

Thus wc? will croate en infinite sequence of distinct points of A. 

But A is finite.   Hence the inclusion cannot be proper, and C (p(r)) - r. 

Lemma 3;   For any p.ninl order r there is a linear order L such that LC r. 

Also, if 1. is a linear order on A and o(A) - n, o (L) -- n(n-l)/2 

rrSPXl        hot r be a partial order on A.   If r is linear we are done, so 

assume it is not.   Thus 3 a»^ c n D  (a,b) and (b,a) «! T.   Let 

r, - C(il  {('i.b))), r, is a partial order properly containing r. 

Assume r. not linear.     Thus "   a., b. c A ."3 (a. .b^and (b. ,8.)   ^ r. 

i'roceediny in this inannor we can construct an infinite ascending 

;■■( quoncr of subsets of A x A,   Thus for come n,r    "^r is a linear order. 

'ici.v lei ci .)     n and I, be; a   linear order on A.   Consider x e A 
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VycA  ., y / x, (x,y) e L or (y,x) e L bul: not both.   Thus oncli x itppourfi in 

n-1 elcinonts of T...   Thua o{i,) ■■-. a (M-1)/J, wheio j is tho number of 

tlmus wo hüvc counted euch pair.   But j •- 2 because (x,y) is counted 

exactly twice:   once as a p.Jr cont<i.iiiiii:j x and once an a pair 

containing y. 



1 H f 7:        i   i'i" !•:"■   :   ■ •::::oi :.;-i ^\ i,Ii.-nu'Mii ■..( A, vviicM A it-: onlorud by r, is 

i', (•■' ■ (;■ . i (!.,..). PM i 

1')    lii'.- lull.'   • i V;.1,1-"' ■'' ^< A oi'lciftl by r, in 

JV(^)      {!••  ..| (..,b)  ■:  pd)} 

T;:.' piiMi.i-    ,.. >i   f!fil)f!'.v.-]-) ;■.>■! of .i subset X of A Is the set of 

i!;..r.ii,i.il (•  i; ;.; il) chiii.ni ; of   {yc .i j x,-X"> y <x}  ({ycA}xrX~> y>x }) 

IJ-'I.O       M !'..i i.,':. i /_'y r: ,i p u ti.il order r i.'j ü points such thut; 

1) ut  PO)' 

^)  o(I'r(0)  -      ^ oro(r (.<))   • 2 (or both) 

If o(b ) (?.))  ■ 2, a in a left rnoryo point.   Similarly, if o(F (ci))  2, a 

i^; ,i right i;u rcj.,   point 

I,tt /; (i)   b.; lh.; .not r>t niurcjo points of r 

i>o! 9:      A chain <u ,   . .ü > ("r is a baso chnin of r iff: 

J)   no ce j- a ijtcrgo point of i for 1 < i < n 

2) (b,.-^)- p{r) ~> b c ß (r) 

3) (an .c) -: p(r) -> c •-   /((r) 

Doi 10:     A psür of merge points of r, p ,p-), is ready if there are base chains 

<a #.. .,a  >   and <bj(.. .bm> of r such that ((PJ.^J) / (P^b ), (an,P2) 

(bm,P2))Cp(.) 

I.omnui 4:Ii <a,,.. .a > and <b , • • «b  > are base chains of r they are equal or 
* n 1 m 

disjoint. 

Proof:    Suppose n. c  <a1/..,.a >',   We will show that 
i In 

<a ,.. ,a > is the only base chain containing a.,   This will cloarlv be 
i Pi 1 

sufficient to prcive the Lemma.   Thus let <b1.,. .b  > be another base 
1       ■■ in 

chain containing a. and let a   " b , 

If i -^ 1 then a. ■■-- h   y.o P (a.) C A'(r) •   Ibus P   (b ) T   /i(r) and j- 1 since 

no men;!)-r of a ba.se chain i;j merge point.   If i / 1 then P   (a.) -- {a    .} 

an«! I'r (],) - {l)._j), ;'.o ;p  j ~ b      and procoeding by induction a   ~ b.. 

\\\  can :;ir,.'!.,! ly .siic.v rhut for any K, a,  -- bu.   Thun wo are dona unless 



M. 

m / n.   Assumo rn ) n v/lthoul losn o1 cjcncrality.   .Since T^^     0 or 

[a mercjo point] then 1^ (bj   ■ Ö or [n m- i'jc poinlj .   Thus 

n+1 " ^ ~1  rn 
b„. , e < b.,.. .,h > , so in     n. 
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55.    ! 

Def 11:        The coniplotion of r on A is the partial order on the set 

A  U[ X,   p] •--.  A* do fined by 

r* Ä  C (y(t)U XyY), where 

X .-. {(   A, a) 1 Pr (a) •-. 0 } 

Y= {a, ,o) | Fr (a)-. 0] 

Def 12:       A lattice is a partial order such that the operations inf and sup 

on all pairs of elements are well defined. 

Def 13:       A path from a to b (both in A) is an n-tuple (c,,... »c ) such that   i n 

1) c, - a;c   = b In 
2) V i* n-1, (c^ c^j) e p(r) 

Def 14:       X C A is a cluster if 

1) o(X) i5 2 

2) x, y e X =-> Pr(x) « Pr(y) and Fr(x)=Fr(y) 

Def 15:       TC r is a tangle if 

1) There is a least element a and a greatest element ß in T 

2) 3 bi' b»,.. .br e T' such that 

a) b1<b2/b3# b4,b5 

b) b2, b3. < b4 

c) b2 < b5 

d) no relation in r holds between b,, bg or b^ ,b5 

e) if sup {b«, b0] and inf {b4/ bg} exist, sup it inf 

Theorem 1:   If r is a partial order on A then r* is a lattice or r* contains a 

tangle. 

Proof: Suppose r* is not a lattice.   Then since a e A => X < a < p the only 

way r* can fail to be a lattice if if 3 a,b, e A such that {c&AJoSa.cib} 

contains at least two minimal elements, or if a similar statement 

holds about   [c G A j c g a, c ?i b] 

Assume without loss of generality that c, and c2 are distinct 

minimal elements of {c e A }• c5 a, cä b] .   I now claim that there 

is a tangle in r*. 



GG. 

Proof of Claim;     Let a =   *, ß - p . b. r: a , b« -- L1 , b., .=■ b# b. -   c., b       c2 . 

Then we have a)   b. < b^ , b„, b., 1)   trivially 

b)   b2, b3 < b. since b. c fccAj c s b^, l- A] and the 

intersection of this set with [a,b} is 0 because 

if a (soy) is in the set then it would be the only 

mininiril element and we have assumed there 

are at least two. 

c) b„ < b, for the same reason. 

d) No relation holds between b„ and b3 because 

otherwise the greater one would be in {c:-A] csb, 

c & a] .   No relation holds between b. and br 

since they are distinct minimal elements of a 

set. 

e) sup [h?, b-3 dees not exist by assumption. 

Thus if r* is not a lattice it contains a tangle. 

Def 16:      X C Y is a segment iff: 

1)  Y is a lattice. 

2)^: a» ß e X"' such that 

a) XGX,=>a§xgß 

b) a s x s ß => x c X* or x is a member of 

a base chain of Y connecting a and ß . 

Def 17:       A segment X is closed under r if V x G Xf , 

(y,x) G p(r) or (x,y) G p(r) => x = sup X    or x = inf X"   or y e X   . 

Theorem 2:   If X is a closed segment of Y and X contains a tangle, cluster, 

or ready pair of merge points then Y contains the same tangle, 

cluster or ready pair. 

Proof: 1)   tangle:   Since Y C X, the X-tangle would fail to be a Y-tanglc 

if b„ and b„ or b. and b,. were comparable in Y.   But for tins to be 

true (say for example b« <y h^) then 7| yc Y' - X1     hg <   y <     b3. 
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1 

But since neither b„ nor b» can be inf X'   or sup X* this is impossible. 

The only other possibility is that inf (b., b,-} >,.  InL   (b4# br} or 

sup   [b,?, br.} < ^ sup    {by, b„} and this would violeite closure. 
Y X 

2) cluster;,    an X-c)aster C could fail to be a Y-cluster only if: 

a) Zl y e Y1 -X' , c,, c2 e C such that c. < y < c«, or 

b) 3  y e Y"' -X' , c,, Cn e C >,      y < c, and y -^ Cg or y > c, and 

y>'c2. 

But either of these conditions would contradict the closedness of X. 

3) ready pair;    If (X,, XJ is X-ready then the only way it can 

fail to be Y-ready is if one of the chains connecting X, and X2 

is not a base chain of Y.   But this can only happen if :"] y c Y -X', 

b. e < b,,... ,b   > connecting X, and X« such that (y .b.) e p(Y) or 

(b. »y) e p(Y).   But this contradicts the closedness of X. 

Theorem 3;   If a lattice contains a non-trivial (i.e. one that does not 

consist of a single chain) segment which contains a tangle, 

cluster or ready pair then the lattice also contains a tangle, 

cluster or ready pair (not necessarily the same one).   Let r be a 

lattice, X a segment of r. 

Proof; Consider Z = fz e X5 I inf  u(rlX) ^ z g sup M(rlX). 
'  rjX' . rlX-      ' 

rj Z is a segment of r and any tangle, cluster or ready pair in X 

must also be in r| Z.   If rj Z is closed under r then by Theorem 2 

we are done.   Therefore, assume rj Z is not closed under r, and 

v/ithout loss of generality assume "^ y e rl - Z , a G Z ^ (z,y) e r. 

Then let b. ~ Inf Z, b« i. z# b« = any element of Z not comparable or 

equal to Z, b. -_ sup Z, b5 = y.    This is clearly an r-tangle. 

The only problem which could arise is if z above is comparable to 

every other point of Z.   If not all elements of Z which connect to the 

outside (i.e. violate closure) have this property then v/e simply 



choose one v/hich does not have it and we ore done-.   Thus üSSUüO 

zo G Z, y e r1 - Z v/ith (y,zo) e p(r) or (z^, y) c p(r)->V z e Z-fzJ , 

(zov2)     e r|Z or (z, zo) e r|Z. 

Lot the elements of Z satisfying this condition be Z* ■■■ {z,, Zy''' 'Z]J 

and assume z   < z„ < ... <z, . 

We know thot .11 any (z., z.) is ready in r|Z then by Theorem 2 we um 

done, so at most one base chain of rlZ connc-ctr.; any two elements of Z*. 

Now let Z0= [zcZ |  z^ x^; Z1^ (zeZ | 2^; z^^] , ki-h-l; 

Zk= {zeZ \ z^g z}. 

It is clear that the r| Z  are segments of r, and I claim now 

that they are closed under r.   For assume 3 y e r - Z , z   e Z    >, 

(y* 2 ) G p(i") or (2    y) G p(r) but y is not comparable with either 
O Of 

inf Z  or supZ .   Then, since z   cannot be a point violating 

closure of Z, y c Z.   But V z e Z, sup Z  and inf Z   are 

comparable to z.   Hence the Z   arc closed under r. 

I now claim further that any tangle, cluster or ready pair of Z 

must lie wholly within one of the Z , 

a) ready pair;   Assume [a ,b} C Z is ready and a < b, a e Z .   If 

b «f Z  then a is an end-point of Z since the Z' are closed,But now let 

be Z , so b   must be an endpoint of 7/.   But by construction of 

the Z , no pair of endpoints can be ready unless they are endpoints 

of the same Z , 

b) tangle;   In this case  we v/ill modify the claim to assert that if 

there is a tangle in Z then one must lie wholly within a Z .   To show 

this it is sufficient to show that in a Z-tangle bp, b^,, b. and b,. 

are in the same Z    for none of them may be an endpoint, so the 

endpoints of the Z  will do for a ^nd p . 

Thus assume there is a Z-tangle,   Clearly h„ and b. are in the same 

Z   as b,-. and Iv respectively, for any element of one Z   is comparable 
<3 o 



tu  iiiy element of another,   ßlso, since sup [b9, b„] ■/   inf 

{b,, br]   hr in in the sume Z  as the &up.   But this is the same 

as the one b0 and. b- are in so b„, b_, b, and br are all in the 
<i o (i      o      4 b 

same 7. . 

c)   cluster:     Since no two elements of a cluster are comparable 

they all must bo in the same Z . 

Now since the Z  are closed under r, any tangle, cluster or 

ready pair in a Z   is one in r.   But any one in X is one in a Z . 

Hence anyone in X is one in r and we are done. 

Procedure: 

The purpose of this procedure is to construct an ascending sequence of 

partial orders on A, (W,, .. .W ), together with a sequence of numbers (T,,... ,T ) 

with the property that if N, is the number of linear orders on the set W., T. N. is 

a constant for all i. 

To do this we will define set functions v. and v? defined on partial orders of A. 

The range of v. will be partial orders of A and the range of v« will be the natural 

numbers, 

Now: 

Given A, rC A x A an irreflexive partial order: 

W^ r, T1= 1 

W« = r U<a1,... (a   > where <a.,,.. «a > is any linear order of the 

elements of A - r' ; T2 = [o(A-r,)'31 

W3 - W2*J T3 = T2 

for n> 3, Wn. v1 (W^,); Tn = [v^W^^] T^ 

Definition of v., v? (argument will be called r): 

1)   If there is an r-cluster X C A, then ifX= [x,..,, rx ] 

v, (r)= CrrKA-^UKa^x^j a e Pr (X) } U{(xn,b)| b e Pr (X) ] LkXj,... fxn>] 

v2 (r)= n! 



2)   If thero is no cluster contained in r but ~j   p., p,. c  nit) - (p, .P2) is 

ready, then if x., x9,.. .x   are all the base chains of r connecting p   and pn , 

VjW- C [ (p(r)-({(supXi
,  , p2) 1 is i?f n-l}U[(pr inf x^ ) j 2- i^n]))U 

{(supxj, inf x.^) I  12 is n-l}] 

v2 (r) -= 
2 A(X()! : 
^ 1       . J 
n 
nUU.)!] 

1=1    1 



I 
3)   II' there iu no cluster or ready puii , then 

a) r consists OL one choin, in which case vAr) = r, v„(r) = 1, or 

b) There is a tang Je T(,. r (see Theorem 4 below). 

In case (b) consider the sot Y ol base chains of r which are contained in 

T and which meet the following conditions; 

1) ye Y->d(T)> dCi'KT'-y')) 

2) y G Y •-- there is a path from X , to Z   containing no 

element of y' . 

Note:[Ky]- Pr (y), iZy}= Fr (y) 

Now denote the paths from X   to Z   by   7vy, 1 5 i ?■: k 

For each y partition the set of paths into equivalence classes by number of merge 

points on each path.   Choose from the class with the fewest merge points any 

path which has the maximal number of points of all paths in the class. 

Call this path  TT   . 

Let   l(y) be the length of chain y 

m(y) be this number of merge points on Tfy 

g(y) = UMJJIIYL'U 
[l(y)]!rm(y>]T 

Choose y*e Y such thatg(y*)is minimal 4 

Now considering only the merge points in iry* we have g(y*) 

order-pre serving permutations of these with the points of y. 

In other words there are g(y*) linear  orders on the set y*lU   [ M WP TT  *] which 

are consistent with r on this set. 

Let ß WPi t * be [m^ .. .mn} , n - m(y*) 

y* = <z1,...zi>, i- l(y*) 

I A   w «• •.    A g(y*) 
}  be the linear orders mentioned above, 



Let EJj =   o([ 2.y*' 1 {z.mj c  ^1) 

E^ O({ZG y*' |  (mn.-/) e A^]) 

EJ. - o((s £ y*' |  (ink<z), (z,mk+1) e    A.   )). 1 -,: k s n-1 

F0-o({f e vr^ |  (f,!^) G r }) 

Fn-odfe^ | (mn,f) er}) 

Fk « o([f G TT^ |  (rnk.f),  (^mk+:i) er}), Isk $ n-1 

The sets are partitions of y* and TT ^ representing the points botween 

successive pairs of merge points. 

Now, if L is any lineor order on T', 

v^r)» (r-T)U L 

siy.*^   : 

\ 
\ » 
/ 
/ / 

Ji •sN 

Ek+Fk 

k 
..X 

k=.o 
•Ü 

v
2 ([T-y*3u A 

Theorem 4:       If r is a partial order on A such that r" = A and if r is not 

a linear order, then r* must have at least one cluster, tangle or ready 

pair of merge points. 

Proof;    We proceed by induction or the number of base chains of r*. 

a)   There is no base chain of r*. 

Thus, since r' = Ay all members of A are merge points of r*.   We will show 

there is a cluster or tangle in r*.   We may assume r* is a lattice or we 

would be done by Theorem 1,   Consider F A(A  ).   Each element of this set 

has at least two successors because they are all merge points and they have 

only one predecessor (\  ).   We know a,b e Y Ä \ ) ~> F^b) =' F ^(o) because r* is 

a lattice.   Now assume 3 a. be V A\)    F,.A.(a)P F v.(b) -/ $ .   Since r* is a lattice 

this means T) c .5 F .,.(ap F .,.(b) ^ [c} .   Let b. := \, b_ -. a b„=b, b.^c, br s F Ja)-fcl 



)L is s{r.:r;iv;oiv.v:i-a to v. my ihot mn ubiino.1. n tcmgrtr:   TTTX y^ »v.^   -   -,       _.— 

a and b, h: wovor, waü Ih^l V .k {isW   V^)  - (5 and Pr*(a) fl Pr*(b) i 0. "We 

will now shov; thül there   iic alwayr--. an a and b meeting these conditions. 

Let M = maximum length oi" all puthr from  \    to p : we will proceed by 

induction on Ivl. 

If ivl ■': 2 then wo cannot have a lattice- with all merge points, so let M = 3. 

1 4 

The above graph is a lattice of all merge points with M = 3. 

Now consider r ,A (X).      This has at least two elements because otherwise 

-ll   ae P ^ (o)     with only one preceder and one follower and hence violating 

our conditions.   Now consider r ^(a), ac F .. (X  ).  P   si'F ..(a) because 

a would then not be a merge point.   Also,o(F    (a) ) > 1 for the same reason. 

Now F ,(F ^(a) ) 4P} , so F . (a) is a cluster unless   d b e F
r* (^ )' 

c e F ^(a), b ^ a, s   c e F ^ (b),   But this would mean that F^ (b) P Y^ (a) f- 0 

and we would have a tangle. 

Therefore, assume our hypothesis is true for 3 s M ^ k.   We wish to prove it 

f or M = k + 1. 

Let us therefore suppose that we have v*ä M = k •»• 1,/^   (r*) 3  A.   Consider 

F ^ ( A ).   We may assume that o(FrA \)) > 1 for otherwise r* | [ A* - F^ (X   ) ] 

would have a tangle, cluster, or ready pair by our Induction hypothesis , hence 

so would r* | A* - { X ] , and hence so would r*.   We may further assume that 

a, be F ^ X ) => F .jj \ )P    F ^(b) - 0, for if not we know we would have a 

tangle and wo would be done. 

Let B = A* - {a c A |  i be F.* (A ) ^ ae Fr^(b)] .   If we now consider r* |B 

we have a partial order such that M = k.   Thus if r* |B   contains no non-merge 

points it will contoin a cluster or tangle.   But the only way for this to not 

happen is if a, be- A*-B  '•  F .A.(
a)f~   F .^(b) = 0.   But then we would have a 



unless this set is empty,   Bui. if this sc I in empty Ihcn a cannot be a merge 

point.   Hence we may assume r-'j B has a Umgle or a cluster. 

If r*|B contains a tangle then this is also on r* tangle unless the "not 

comparable" condition on b9 , b, and b., br fail or if a new sup for b9 

and b„ .;s less than a new inl for b. and br.   But the first case cannot 

happen by the definition of a restriction oF a partial order.   For the second 

case to huppen we would need   :-up [b,,, b„] - inl [b   , b,.} e A*- B. 

But this cannot happen since we are assuming that F ^ (b9)  and F ^ (bx)   are 

disjoint if b?, b«, e F A. ( \ ) which would be a necessary condition for sup 

{b2/ b3] G A* - B. 

Hence if r*| B contains a tangle so does r-' . 

Now r*|B canrot contain a cluster unless it contains a tangle because it is 

a lattice if it has no tangle, and every point is a merge point.   In a lattice 

every cluster has a unique follower and a unique predecessor and hence its 

elements cannot be merge points. 

Hence if r* contains only merge points it contains a cluster or a tangle. 



yp^m^-r^;^;^-.^--,.^,-.^ _,..._, , T,_., , 

Now assume lluu ii !•; is ihe nuirilmr of böse chains of a lattice.   K? p means 

that the lattice has a cluster, tanciJo, or ready pair.   Let r* have pl-1 base chains. 

Consider any right r*-morgc point w and thf .segment M ■- r* l{y|fSm} . 

If M has p or fewer 'ease1 chains then it has a tangle, cluster, or ready pair, and by 

Theorem 3 so does rA',   It Ivl has at least pH base chains consider the set of right 

merge points of M greater than m.   Assuming this set is non-empty let m, be a minimal 

element of it and let M. - r"A |{yjy L'-m.) .   M, C   M since rn, > m so y > m, -> 

y > m.   If M, has p or fewer base chains then apply Theorem 3 to show r* has a 

cluster, tangle, or ready pair, so assume   M. has at least p+1 base chains. 

Proceeding as above we obtain a sequence of non-trivial segments of r*, each one 

properly contained in the preceding one.   Since r* is finite this sequence must 

terminate, but it can do so only if 

1) for some i, M. has p or fewer base chains, or 

2) for some i, M. contains no right merge points other 

than m.. 

In case I an application of Theorem 3 shows that r* has a cluster, tangle, or ready 

pair, so let us consider case II.    Let L be the set of left merge points of M., and let 

x be a minimal element of L. x ^ m. since m. is not a left merge point of M. # so 

x> m..   Also,3 a, b e M, ,3  m. < a < x and m. < b < x and a, b are not comparable 

In Mj.   This is true because (nyx) ^   M^    and by the minimality of x:   Thus 

there is a path from m. to ^ contain'.ng a and no merge points, and a path containing 

b and no merge points (by the minimality of x).   Since a and b are not comparable 

they cannot be on the same base chain, so by Lemma 4 there are two base chains 

connecting m. andx, so (m^x) is ready, and by Theorem 3 r* contains a cluster, 

tangle, or ready pair.   Our induction is now complete.   Hence, the completion of any 

non-trivial partial order contains a cluster^tangle, or ready palr.of merge points. 

Q.E.D. 

u ö. 
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66. 

APPF.NJJIX C;   Detennining the Boundries of Oplirnizatiou Effectiveness^ 

Our approach is to assume that a balanced program exists, move the 

CU interchangeable instructions to a single PE, and compare execution 

time.   We first consider a block of code in which all the instructions are 

interchangeable.   For present purposes we further assume that each inter- 

changeable instruction takes approximately the same amount of time to 

execute in its respective processor.   Call average instruction times 

Tcu and Tpe.   Let Npe = the number of PE instructions and Neu = the 

number of CU instructions.   Assume a balanced segment of code executed 

in time T.   Since execution is balanced: T= (Npe)(Tpe) = (Neu)(Tcu) + Npe; 
that is, the product of the number of instructions and average instruction 

time in the PE's is equal to that same product, in the CU plus an additional 

tick to decode each PE instruction 
Hence;       Neu- (Npe)(Tpe-1) 

Tcu 

If all the instructions were executed in the PE's, then the total execution 

time would be: 
T= [Npe+ (Npe) (Tpe-1)] (Tpe) 

Tcu 

The ratio of balanced to single processor execution is: 
(Npe) (Tpe) Tcu 

"(Npe) (Tpe) [1 + (Tpc-1)]   ~      Tcu+Tpe-1 
Tcu 

The savings factor is: * Tcu „        Tpe-1 , 
*""    Tcu+Tpe-1        Tcu+Tpe-1 

An examination of the second case, namely that a segment contains 

PE exclusive instructions (i.e. SIM assignments) and a suificicnt number 
of inter-changeable instructions to balance them, yields the same result. 
This is due to the fact that regardless of what is being executed in the 
PE's, the interchanaeable instructions removed from the CU and placed 

in a single PE will increase execution by the same margin.   Hence 
allocation and relocation as equally effective techniques. 

Estimates of execution savings are based on a number of simplifying 

assumptions. 

With regard to average execution time, some instructions arc 
combined.   For example, u PE 'load' is interpreted as a load to the 1<      • 

register and a route.   CU overage execution is delciTnir.   i for two CTHCS;. 

optimised and unoptimized.   For optimized execution it ir. assumed lhat a single 



W^WIWI^^^^^^^^^^^^^^^W^—'I—I      I II      im ■       I       ^-^TC»,^^^,^ 

67. 

load from ?]] ntomory i;.; required for eight references to local memory. 

In the unopLimized case, it is asaurned that each reference to local 

memory requires :A\ adcliilonal load from PE meinory.   In either case, 

a 'load' is the combined instructions. 

Interchange able Operation 

LOAD      rADD 
OPERATION   y^ 

I Etc. 
STORE 

Estimated Savings 

PE 

3 

CU Optimized 

4 

CU Unoptimized 

11 

3 4 11 

3 4 

33% 

11 

15% 

[6] 
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