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ABSTRACT

In Section I an attempt is made to derive the degeneracy factor
of Eyring's Significant Structure Theory for a particular model of a
solid with vacant lattice sites. A form is obtained which differs, -
from that obtained by Eyring and which gives results less satisfactory
than Eyring's factor when compared with Hugoniot data.

In Section II some equilibrium Hugoniot states are calculated for
a mixture of two materials and the formulae are applied to combinations
of quartz-like and polyethylene-like materials. Gruneisen parameters
are found to differ somewhat from those calculated with a simple mass­
weighted mixing formula and, in general, the properties of the more
compressible material tend to dominate. Some elastic ~alculations are
made for various composite configurations. It is noted that conditions
of uniaxial strain are violated,and that the relation,s between mean
pressure and volume are sensitive to the boundary condition on the face
of the composite. Some comments are made about devia~ions from equili­
brium.

Conventional methods for reducing ultrasonic velocity data taken
at high pressures require a priori knowledge of the compressibility as
a function of pressure if elastic constants are to be calculated. In
Section III an iterative procedure is outlined which makes it possible
to determine the elastic constants provided only that 'ambient pressure
values of thermal expansion coefficient, its temperature derivative, and
specific heat at constant pressure are known. The method is applied to
travel time measurements in NaCl and KCl made by Bartels and Schuele.
The new procedure changes values of the elastic constants by about 1%.
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Section IV extends the above iterative procedure to include data
and constants for crystals of arbitrary symmetry. It is applied to
calcite and rutite for illustration.
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PART I

EQUATION OF STATE FROM SIGNIFICANT STRUCTURE THEORY
C. T. Tung

Two computations have been made in attempts to impr6ve the Signifi­
cant Structure Theory described in Technical Summary Report No.3. The
theory requires at every P and T ,the computation of the "sol id" part of
the volume, Vs ' before the liquid volume, V, can be determined. In Sum­
mary Report No.3, Vs is computed from an extrapolation of the experimental
solidus for argon. It appears logically superior to use the solid part
of the partition function to compute V , even though this is out of the'. s· .
equilibrium range of the solid phase. The program was modified to accomp-
1ish this, but the results were unsati sfactory, apparently because the
solid partition function is unsatisfactory for outside the equilibrium
region.

In the Significant Structure Theory of liquids, a partiton function
of a liquid is considered as three parts: solid partition function, degen­
eracy factor, and gas partition function. Two proportionality constants are
introduced into the degeneracy factor of Eyring,'s model and they are deter­
mined by fitting the thermodynamic properties at normal conditions; it is
doubtful that these two constants are really constant over a wide range of
pressures and temperatures. To avoi d thi s confus ion and to search for' a .
more realistic mathematical description of the degeneracy factor, we give
an elementary derivation of this factor for simple liqUids (such as argon,
xenon, neon, krypton, etc.) based on some simple geometrical configurations.

Let us define the following:
cjl(r) -- intermolecular potential of separation distance r .. ·

Vs -- molar volume of solid.
V molar volume of liquid.

X = Vs/V -- probability for a site to be occupied by a molecule.



y ::: (V-Vs)/V -- probability for a site being empty (hole).
M-- coordination number (=12).
a -- nearest neighbor distance.

As far as a given atom A is concerned, the positional degeneracy of
atom A is essentially determined by its nearest neighboring populations of
atoms and holes. There are thi-rteen types of geometrical configurations as
follows (actual picture being three-dimensional):

(. denoting atom and D denoting hole)

type j = a 1 j 12

configuration

no hole
adjacent

to A

,1 ho1 e
adjacent

to A

j holes
adjacent

to A

12 holes
adjacent

to A

probabi 1tty
of jth type

E.
J

total energy
of atom A in

jth type

Eo is the total energy of atom A when the first shell is completely filled.
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Let us denote the averaged total energy of atom A over twelve con­
figurations as E. Then, we have

12 12
I= . I P.E. = I C~2x12-j[E - jt(a)]yj

j=O J J j=O J 0

= E (x + y)12 - ~(a)Y[a(X + y)12/ ay]
o

Now, let us observe

exp(-E/kT) = [exp(-Eo/kT)][exp(+12~(a)(V - Vs)/VkT)].

Thus, we get

(1.1)

positional degeneracy factor = exp[+12¢(a)(V - Vs)/VkT]. (1.2)

If 1+12¢(a)(V - Vs)/VkT! « 1, we have

positional degeneracy factor = 1 + 12¢(a)(V - Vs)/VkT. (1.3)

Here, nearest neighbor distance, a, can be expressed in terms ofVs by

a = (l2V
s
/N)1/3, N being Avogadro's number.

The validity of Eq. (1.2) or Eq. (1.3) is restricted to the condition that
¢(a) be positive, since the positional degeneracy factor must always be
greater than or equal to one.

3



Replacing Eyring's degeneracy factor, g= 1 + nhexp[-aEsVs/(V-Vs)NkT],
by Eq. (1.2), we calculate the Hugoniot. The results are less satisfactory
than those obtained with the Eyring model, indicating that his factor sum­
marizes effects other than the spatial degeneracy considered here.
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PART II

COMPRESSION OF COMPOSITE MATERIALS
G. E. Duvall and S. M. Taylor, Jr.

2.1 INTRODUCTION

We define a composite material as one in which the physical properties
vary from point to point, usually, but not necessarily, periodically. A
lattice of mass points with interacting forces is an example of such a sys­
tem, and the study of wave propagation in lattices is very old. Sir Isaac
Newton studied the propagation of waves in a one-dimensional lattice as

sUbstitute for a continuous string. With mathematical tools available to
him he found the lumped constant system to be simpler than the continuum.
Sir William Hamilton also studied the one-dimensional lattice and found
the equivalent of the Schroedinger solution, though it was not so concisely
expressed since Bessel functions had not yet been invented. In the latter
part of the nineteenth century Lord Baden-Powell and later Lord Kelvin used
the one-dimensional lattice as a model for the study of optical dispersion.

In modern physical science and technology, problems of x-ray diffrac­
tion, electronic, mechanical and thermal properties of solids, E-M antennae
design, and even astrophysics all hinge upon the effects of wave propagation
in periodic or aperiodic structures or systems.

Problems in the present context vary somewhat from those conventionally
associated with lattices because it is not always possible to ignore details
of propagation within the components of the composite material and because
problems of finite amplitude waves are often involved. This means that the
dispersion phenomena which are associated with any lattice become more com­
plicated and that the superposition of multiple disturbances is no longer
permitted. In spectral terms this means that propagation velocity depends
on both frequency and amplitude and that waves of a single arbitrary frequency

5



cannot be propagated. In such circumstances it is sometimes helpful to
consider and attempt to understand a very specific and well-defined simple

problem, which may then serve as a base for the understanding of more com­
plicated problems.

For this purpose we consider a half-space of the composite material

and suppose that the free surface is subjected to a step-change in pressure
or velocity normal to the surface. This state of pressure or velocity at

".the free surface is maintained indefinitely and we may inquire about the
development and structure of the wavefront, deviations from conditions of
uniaxial strain, and the equilibrium states in a region long after the wave­

front has passed.

Simple as this problem is, its complete solution is still veryambi­
tious and we confine ourselves for the present to questions about the
equilibrium state, with some remarks about the developing wavefront.

2.2 EQUILIBRIUM COMPRESSION OF TWO FLUIDS

A. B. Wood many years ago considered a composite system consisting of
small gas bubbles dispersed in water. 2. l He argued that at low frequencies
there should be local equilibrium of temperature and pressure amongst gas
bubbles and water; that each should assume a volume appropriate to that
pressure and temperature, and that the derivative of the resulting pres­
sure-volume relation would accordingly give the sound velocity. To a first
approximation the water could be assumed rigid, then the sound velocity is

c '" (Pip R)1/2(1 + R)
o (2.1)

where P is ambient pressure, Po = density of water and R is the volume ratio
of gas to water at P and temperature T.

As would be expected, sound velocities predicted by Eq. (2.1) can be
very low, as little as a few meters/second. Equation (2.1) has a broad
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minimum at R = 1 with c = 10 meters/sec when P = 1 bar, with c rising
steeply for both large and small R (Fig. 2.1). H. B. Karpltis, in work
reported about ten years ago, refined Wood's model and tested it experi­
mentally for considerable range of parameters. 2.2,2.3 His results are
summarized in Fig. 2.1, taken from reference 2.2. The frequencies at which
measurements were made were less than 10% of the mean resonant frequency of
the bubbles, and he concluded that there was no significant frequency dis­
persion.

The principles on which Woodis model are based are well founded and
can be extended to other materials. When a compression front passes over a
mixture of two materials there will be an initial period in which stress
equilibrium is being established. The duration of this period will be the
order of several times the larger of the two numbers ti/c i , i =1,2, where
t and c are characteristic dimension and sound velocity of the two compo­
nents respectively. As a result of compression, each component will
experience a temperature rise determined by the stress field and by its
own material properties. Roughly speaking, when stress equilibrium has been
established, temperatures Tl and T2 will exist in the two components. Neg­
lecting convection and radiation, which will accelerate· the process, these
two temperatures will be equalized in a time the order of several times the

larger of the two numbers CiPiti2/Ki' i = 1,2, whereC i , Pi' ii' Ki are
specific heat, density, dimension and thermal conductivity of the. ith com­
ponent respectively. The time required for thermal equilibration is
normally much greater than that required for stress equilibration. The
ratio of the latter time to the former is the order of t/A, where A is the
scattering mean free path for phonons. A may range from a single lattice
cell diameter in a disordered structure to grain size in a highly ordered
structure.

Sufficiently far behind the front of the shock, then, we expect stress
and temperature equilibrium to exist. If the materials be liquid, this
reduces to equilibrium in P and T. In either liquid or solid case the
thermodynamics of compression are appropriately described by the Gibbs func­
tions of the two components and of the mixture. If interfacial energies are

7
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negligible, we can disregard, for the present, the sizes and shapes of the
components and consider only their mass fractions. Let A be the mass frac­
tion of component 2 and 1 ~ A that of component 1. Then the Gibbs function
for unit mass of the mixture is

where subscripts 111 11 and 112 11 refer to the two components. Other thermody­
hamic functions are obtained as derivatives of Eq. (2.2):

specific volume: V = (aG/3P)t - Gp (2.3)

= (l - A)Vl + AV2 (2.4 )

specific entropy: S = -(aG/ClT)p - -GT (2.5)

= (1 - A)Sl + AS2 (2.6)

isothermal compressibility:

s = -(l/V)(aV/aP)T = -Gpp/V

thermal expansion coefficient:

specific heat at constant pressure:

9
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(2.10)
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G and its derivatives are assumed to be continuous, so the definitions in
Eqs. (2.7), (2.9) and (2.11) lead to the following identities, which can
be of use in evaluating experimental data:

(2.13) ,

(2.14)

In the application of Eqs. (2.2) - (2.12), we assume the thermodynamic pro­
perties of the two components to be known. These equations provide procedures
for computing properties of the mixture.

If the compression front envisioned in this problem ever achieves what
can be described as a steady profile, then the jump conditions can be applied
to relate the equilibrium state behind the front to that;ahead. The thermo­
dynamics of compression are then summarized in the Rankine-Hugoniot Equation,

E = Eo + (1/2)(P + Po)(Vo - V), (2.15)

and in the first and second laws of thermodynamics. Differentiating Eq.
(2.l5), we have

dE = (1/2)(Vo - V)dP - (1/2)(P + Po)dV = TdS - PdV

or

TdS = (1/2)(Vo - V)dP + (1/2)(P - Po)dV (2.16)

Expressing both V and S in terms of P and T, as in Eqs~ (2.3) and (2.4) we
obtain for the equation of the Hugoniot in the T, P plane:

dT = 'dP[(V - V) - SV(P - P ) + TaV]/[2Cp - aV(P - P )]o ,0 ,0
(2.17)

Integration of Eq. (2.17) makes it possible to evaluate any thermodynamic
parameter in the equilibrium compressed state, provided Gl(P,T), G2(P,T)
and A are known.

10



The Gruneisen parameter r and sound velocity c are readily obtained
from the above expressions. From the definition of sound velocity:

(2.18)

(2.19)

Substituting (2.19) into (2.18) yields

The Gruneisen parameter is calculated in similar fashion;

(2.20)

Since

Eq. (2.21) becomes

r = (V/CV)(aP/aT)v = Va/CvS

2Cv =Cp - aVT/S,

222r = aV /(sVC p - a VT).

(2.21 )

(2.22)

In computing c and r for the mixture, V, aV, sV and Cp are to be determined
from Eqs. (2.4), (2.8), (2.10) and (2.12), then substituted· into Eqs. (2.20)
and (2.22).

In illustrating the above relations and procedures, we would like to
say that we had created Gibbs functions for two substances which were. con­
sistent with all av~ilable experimental data and had all of th~ proper
limiting behavior. Unfortunately we can't. What we have done is to create
rather conventional descriptions of a quartz-like material and a polyethylene­
like material and use these to illustrate the effects of varying A on the
above parameters. The following assumptions were made for each material:

11



CVi = cons tant .

b" = r.jv. = constant, ,

i = 1,2 (2.23)

(2.24)

(2.25)

1 (2.26)

The following constants were used:

Polyethylene Quartz

i 1 2

bi , glee .3887 .7832

CVi ' Mbcc/gO 1.436 x 10-5 .56 x 10-5

Vio ' cc/g 1.035 '.378

rio 10.2 5.58

Si 0'
Mb- l 19.31 2.70

The results of computations are shown in Figs. 2.2 - 2.6. Most are
not particularly remarkable. Figure 2.2 shows that temperature along the
Hugoniot increases very rapidly when a little ptlyethylene is added to
quartz, and that the rate of change of temperature decreases as the amount
of polyethylene increases. This is the kind of effect to be expected when
a compressible material is added to a relatively incompressible one. The
nearly linear change in VIVo for fixed P shown in Fig. 2.3 shows that vol­
ume is but little affected by temperature changes on the Hugoniot, again as
expected. In Fig. 2.4 the Gruneisen parameter, computed from Eq. (2.22),
is compared for ~ = 0.50 with a simple mass-weighted average:

r = (1 - A)r l + Ar 2

12

(2.27)
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Figure 2.5 shows perhaps'the most interesting result. Although r/v is
assumed constant for each component, the resul tant for ;the mixture is quite
strongly volume dependent; the mass weighted average valu,es differ appre­
ciably from the correct values. Sound velocities, show,n in Fig. 2.6, change
almost linearly with A.

These results on variations of rand r/V with volume and with A are,
worthy of particular note. Attempts have been made elsewhere to characterize
multicomponent materials in terms of effective r's in such a way that the
effective r turns out to be approximately equal to or less than that of
the lower constituent. Experiments performed to check these calculations
have produced pressures lower than calculated values by as much as 56 per­
cent, indicating that the effective Gruneisen parameter was even lower than
estimated. This result is contrary to those shown in Fig. 2.4; however,
experiments were performed with slightly porous samples, and this fact calls
the results into question.

The influence of varying r on the stress field has been the subject
of extensive debate. It seems fairly certain that in some circumstances it
can have a substantial effect. For that reason it is most appropriately cal­
culated by the procedure given here when equilibrium conditions are expected.
If they are not, it is of no significance anyway.

2.3 LOCAL DEVIATIONS FROM UNIAXIAL STRAIN

The feature of plane stress wave propagation in homogeneous materials
which most clearly distinguishes it from other geometries is the exact main­
tenance of uniaxial strain; no material particle of a continuum undergoes
any motion in a direction parallel to the wavefront. This is one of the
first conditions to fail in a composite material, except in a special case
discussed below.

To illustrate the point ~e consider several special cases:

16
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2.3.1 Two Fluids; Slabs in Propagation Direction

The fluid structure is assumed to be symmetric so that on com­
pression from Xo to x the cell width, a , remains constant. The totalo .
specific volumes before· and after compression are given by Eq. (2.4). Apply-
ing this to the system of Fig. 2.7 yields the relations

wx = V2(P + dP, T + dT)~

(a0 - w) x = V,. (P + dP, T + dT)(1 - ~)

If we choose :'0 so the mass of the cell is one gram,let x - Xo = d)(, w - wo
= dW, V2(P + dP, T + dT) - V2(P,T) = dV2, etc., the lateral strain resulting

from compression dx is

(2.28)

(2.29)

These satisfy the cell condition J;o EydY = O.

2.3.2 Two Fluids; Slabs Parallel to Wave Fro~t

In this case, shown in Fig. 2.8, lateral strain, Ey ' is iden­
tically zero, dx = dV, dw = dV2.

2.3.3 Two Fluids; Rods Normal to Wave Front

Symmetry produces a rectangular cell, of dimensions Yo by zo'
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on the boundary of which the particle motion is normal to the plane of the,
paper (Fi~.2.9). Again choosing Xo so as to produce a cell of unit mass,
we have

= V

2TIa x = Ax = AVa a 002

After compression x = Xo + dx, a = ao + da, A= Ao + dAr

Adx + x dA =AdV
002

(y z - A )dx - x dA =' (1 - .A)dV
la a 0 0

The relative change in area of the rod is

If it remains circular in cross-section, the radial strain is

2.3.4 Two Fluids; Rods Parallel to Wave Front

(2.30)

(2.31 )

I

The mass per unit length of the cell shown in Fig.'2.10 is

That of the cylinder is
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When pressure P is applied as shown, the area of the rod changes by an
amount dA = MAdV2; if it retains its circular cross-section the radial
strain at its periphery is

. (2.32) ,

The same result is obtained if the rods are staggered so that
the undistorted cell is hexagonal.

2.3.5 Elastic Slabs Normal to Wave Front2.4

In this case, shown in Fig. 2.11, it is not enough to apply
a uniform pressure in the direction of compression. Instead we suppose the
cell to be compressed by a ri gi d pi ston dri ven by a force F per unit 1ength.
Then the mean pressure acting over the cell ·isp;" F/ao' Underthe·assumed
conditions the x-displacement is the same for both components, so

In the not~tion of Fig. 2.11 we def1ne specific volumes V1 , V2, V:

v = a x .o 0'

Differentiating these, we have

a dx =dV,o '

For small dx:

w dx + x dw = AdV2;o . 0

,
(ao - w )dx - x dw = (1'- A)dV1o 0 .

Ey2 - dw/wo = dV2/V2 EX; E:x = dx/xo

Eyl = -dw/(a - w ) = dVl/Vl - EXa 0

Ezl = Ez2 = a
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Assuming Hooke's law with lame constants l" ~" l2' ~2:

Ox, = l,dV,/V, + 2~,E:x

0y' = (ll + 211l )dV1IV1 - 2~,E:x

°zl = l,dV,/V,

°x2 = l2dV 2/V2 + 2112E:x

°y2 = (l2 + 2~2)dV2/V2 - 2112E: x

°z2 -- L2dV2/V2

In addition we have the relations

0yl = °y2

°x1(l - A) V1 + °x2 AV2 =

Define

-Fxo

a = l + 2~

Then the above equations yield the following:

dVl!V, . = E:x[l + (L 2 ~ Ll)/VlQ]

d~/V2= E:x[' - (L2 - L, )/V2Q]

E:yl = E:x(L2 - Ll )/V,Q

27
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£y2 = -£x(L2 - Ll )/V2Q (2.36)

°xl = Ex[al + Ll(L l - Ll)/V1Q] (2.37)

°yl = £x[L1 + a1(L2 - L1)/V1Q] (2.38)

°zl = Ll£x[l + (L2 - Ll)/V1Q] (2.39)

°X2 = £X[a2 + L2(Ll - L2)/V2Q] (2.40)

°y2 = E:x[L2 + a2(Ll - L
2

)/V2Q] (2.41)

°z2 = L2£x[1 + (Ll - L2)/ V2Q] (2.42)

To a first approximation, waves will be transmitted down the slab with velo­
cities given by

2
cl = Vldoxl/d£x = [al + Ll (L2 - Ll)/V1Q]Vl

2c2 = V2dOx2/ d£x = [a2 + L2(L l - L2)/V2Q]V 2

(2.43)

(2.44)

For comparison, the velocity of waves on a thin plate in air is given by

2cp = (a - L~)/p

where

Poisson's ratio = s/(l + s)

(2.45)

s plays the same role in extension of a plate with £ = 0 as Poisson's ratio. z
in extension of a bar. Comparing Eqs.·(2~43) and (2.44) with (2.45) shows
that effective values of ~ can be defined for each component:

~l eff = (Ll - L2)/V1Q

~2 eff = (L2 - Ll )/ V2Q

28
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If, for example, L2 > Ll , ~1 eff < 0 and component "l" contracts laterally
when F > O. As Ll + 0, ~2 eff + ~2 = L2/a2, and component "2" becomes an
unsupported plate. When L2 = Ll , uniaxial strain exists.

If components 2 and 1 have large and small moduli, respec­
tively, compression in the x-direction produces a resolved shear stress,
O'x2 - O'y2' in.2which will ultimately lead to structural failure of 2. A
non-zero modulus in component 1 delays failure of 2 when loading is increased.
For example, let failure occur when

222(0' - 0') + (0' - 0') + (0' - 0' )
X Y X z Y z

Then for an unsupported plate with given EX

(2.48)

(2.49 )

When ~ = ~eff' ~ =~eff; when ~ = 0, uniaxial strain obtains and ; = 0,
~ = ~o· Then when L2 > Ll

Failure then occurs for a value of O'x less than the failure value in uni- .
axial strain and greater than that for an unsupported plate. Under the

same conditions, ~l eff < a and ~l eff < ~o' so the value of O'x at which
failure of 1 occurs is greater than for uniaxial strain.

The net result of all this is that waves in the softer compo­
nent will travel faster than in uniaxial strain, those in the stiffer
component will travel more slowly than in uniaxial strain, and that there
will, in general, be two cusps in the (px,V) or, (o-X,EX) curve for the com­
posite due to elastic failure of the components.

The above discussion has been cast in terms of linear elastic
materials for convenience and because the results are explicit. The results
are readily generalized if E and a are replaced by dE and dO', respectively.
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2.4 DEVIATIONS FROM EQUILIBRIUM

As stated in Section 2.2~ thermal equilibration takes longer than
stress equilibration. The time required depends upon dimensions and mate­
rials; and in many real and experimental situations, thermal equilibrium
will not be reached. Fortunately wave propagation is sometimes insensitive
to thermal effects, unless they produce phase transitions or chemical reac­
tions. In any exceptional cases which must be treated, the effects can be
bounded by assuming isothermal compression on the one hand and adiabatic
on the other.

For inert, fixed inhomogeneities, stress equilibration time", aRJc,
1 < a < 10, will usually be a reliable guide. If the inhomogeneities are
not inert or are not fixed, a new set of rules applies. The most notable
example is in the effect of dislocations on precursor decay. The mechanics
of any such case must be examined in detail in order to 'make any estimate
of equilibration time. Another practical example of such a case is that of
a granular material in which small grains may slide over one another under
the influence of shear forces and friction.

There is another manner in which the usual concepts of equilibration,
discussed in Sections 2.2 and 2.3, may be violated: In Fig. 2.11 an ele­
ment of a cel1 is assumed to be compressed uniformly by a ri'gid piston so
that EX is the same for each component. If, in fact, a real x-travelling
shock were being produced, one component would be compressed more than the
other, resulting in relative motion at the interfaces and in different stress

.. conditions from those obtained in Section 2.3.5, unless the shock were too
weak to break the interface bond.

Consider, for example, alternate slabs of quartz and polyethylene in
the geometry of Fig. 2.12. A uniform pressure, Pl' is applied to the top
of the column and held there. Wave propagation velocity in quartz is greater
than in polyethylene, so waves in the center slab outrun those on the sides.
A true steady state is never reached. However a kind of equilibrium may be
achieved. The compression wave causes the quartz slab to expand, radiating
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energy into the polyethylene ahead of the polyethylene wave front. This
tends to inhibit the rate of propagation of energy in qu~rtz. If we sup­
pose that this effect is great enough, we may assume the jump conditions
to be approximately satisfied across a wavefront travelling down the cell
with velocity D in both components. Then the jump condi.tions for mass and
momentum become

p .u .D = p.y.(D - u.)
01 01 1 1 1

(2.50)

(2.51)

= 1,2;

a - wo '

Define Vl :: (ao - w)xl ' V2 :: wx2, where xl and x2 are the respective
lengths in 111 11 and "2" of elements which originally had lengths xo' Define
Xo so that the mass of the undisturbed cell of volume xoao is unity. Then
the jump conditions can be summarized in the relation

(2.52)

If we examine the stress and strain in the compressed region, we get a set
of relations identical to those set forth in Section 2.3.5, except that

0xl = °x2 = -Pl and Exl I Ex2 ' This leads to the following results
for the linear elastic case:

(2.53)

(2.54)

(2.55)

(2.56)



(2.57)

where

v = Poisson's ratio

(2.58)

The analogous quantities for component,2 are obtained by interchanging the, .
~, '

indices 111 11 and "2", except on Pl' Under the assumed conditions the maxi-
mum resolved shear stress, (ax - a

y
}/2, is the same for both components.

, , The effects of changing the boundary condition, are best displayed by. ' . ~. . . . '

comparing values of ~eff from Eqs. (2.47) and (2.58):

A = a .25 .50 .75 1.00

;2 eff (Eq. 2.47) .0344 .0341 .0334 .0316 0

~2 eff (Eq. 2.58) -.5932 -.590 -.583 -.563 a

III ;::: .0116 Mb, 112 = .452 Mb

1 - polyethylene, 2 - quartz
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PART III

AN ITERATIVE PROCEDURE TO ESTIMATE THE VALUES OF ELASTIC
CONSTANTS OF A CUBIC SOLID AT HIGH PRESSURES FROM SOUND

WAVE VELOCITY MEASUREMENTS
Dattatraya P. Dandekar

3.1 INTRODUCTION

An investigator attempting to determine the variation of elastic con­
stants of solids with pressure by ultrasonic measurements on new (or even
well known) materials may find that the needed compressibility measurements
are either unavailable or if available are unreliable. Cook's method
. .

enables one to obtain an estimate of the values of the elastic constants of
a 'solid at high pressure without! priori knowledge of the compressibility
of the substance. 3.1 In developing the estimating procedure Cook assumed
that the parameter 6(P} (c.f. General Notation and Analysis, Eq. (3.5}),
remained constant with pressure. The value of 6(P) at any pressure P is
given by its magnitude at one atmosphere. Ruoff3.2 extended the results
of Cook in the case of cubic solids by presenting an estimating procedure
which permitted the parameter ~(P) to vary with pressure. This was done
by expressing ~(P) in a power series expansion given by (3.1):

~(P) = ~(P=l)+ p(illtl) + i [a2~(p)] +.. (3.1)
aP P+l 2 ap2 P+l

where the quantities on the right-hand side of (3.1) are evaluated at one
atmosphere.

Even so the lack of relevant data in the case of most materials limits
I

one to the first derivative of ~(P). This is easily seen by differentiating
6(P) with respect to pressure P. The present work develops an iterative
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procedure to estimate the values of the elastic constants of cubic solids
at high pressure which differs from the one developed by Ruoff with respect
to the assumptions regarding (i) the pressure derivative of the thermal
volume expansion coefficient at a temperature T, (ii) the temperature
derivative of the volume thermal expansion coefficient at a pressure P, and
(iii) the estimation procedure for ~(P). It is shown here that no assump­
tions regarding (i) and (ii) are necessary in order to estimate the elastic
constants of cubic solids at higher pressures provided the ultrasonic measure­
ments are made as a function of pressure at more than two temperatures. This
enables one to compute a more realistic estimate of elast~c constants of cubic
solids as a function of pressure~

,The size, density and elastic constants of a ma~erial specimen change
with the application of pressure. Concomitant changes are observed in the
value of the resonant or null frequencies of a standing wave and also in
the measurement of travel-time for a pulse between flat parallel faces of the

, .
specimen .. T~e analysis presented in this paper refers to frequency measure-
ments but is equally valid for the travel-time measurements of an elastic
wave propagated in a medium.

3.2 GENERAL NOTATION AND ANALYSIS

By a solid we always refer to a cubic solid. Even though the quan-. .

tities dealt with here refer to a pressure P and a temperature T, for
,

simplicity the relevant suffix' for the temperature is dropped from the
general notation.

p(P}:

S(P}:

Cp(P): '

the density of the material at pressure P

volume-expansion coefficient of the material at pressure P

specific heat at constant-pressure of the material at
pressure P

adiabatic bulk modulus of the material at pressure P

isothermal bulk modulus of the material at pressure P
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isothermal compressibility of the material at pressure P

the thickness of the specimen used in the measurement of
the Jth velocity mode at pressure P

V{J,P):

'r(J,P):

F(I,J,P):
: ,

N{I,J,P):

T(I,J,P):

IMP{J,P):

K(I,J,P):

V{l ,P):

V{2,P):

V{3,P):

Pl < P; P1 = 1 = 1 atm or 1 bar, only in the case of
cubic material

the Jth velocity mode in the material at pressure P

the travel-time for the Jth velocity mode at pressure P

the Ith null frequency observed for the Jth velocitY,mode
in the material at pressure P

the number of 1/2 wavelengths in the specimen corresponding
to F(I ,J, P)

the travel~time in the specimen corresponding to F(I,J,P)

mechanical impedance of quartz transducer for Jth velocity
mode at pressure P

IMP(J,P)/mechanica1 impedance of the material corresponding
to T (I ,J, P)

longitudinal velocity in the (100) direction at pressure P

shear velocity: in the (100) direction at pressure P

longitudinal velocity in the (110) direction at pressure P

We need only know any three independent velocity modes in order to ob­
tain the three el~stic constants of a solid. In this paper the resonant
frequencies measured as a function of pressure for the longitudinal modes of
propagation in the (100) and (110) directions and the shear mode of propaga­
tion in the (100) direction have been used. 3.3

We also assume the following:

(i) The temperature dependence of the volume, or the linear expansion coef­
ficient at a temperature T and one atmosphere is known;

(ii) the specific heat at temperature T and one atmosphere is known; and
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(i i 1) [:llinJ - [as(Pl )] :h p. P hold.s.. 3 . 4
aT P - aT· p , w ere ~ l'

1

Then the procedure outlined below can be used to estimate the elastic con­
stants of solids at higher pressures, without reference to ~ priori knowledge
of the compressibility of the substance.

2The relation between the adiabatic bulk modulus and V (J,P), (J = 1,3),
in a cubic solid may be written as

Relation (3.1), expressed in terms of L(J,Pl ), T(J,P), A{P) and P(Pl)' is
given as relation {3.3}:

S 4 x L2{3,Pl )
B (P) = (1/3)p{P,) x A{P) x {-~2""---­

T (3,P)

3where.p(P) =A (P) x P(Pl).

24 x L (2,P
l

)

. 2
T (2,P)

i

By the definition of isothermal bulk modulus we obtain

BT{P) = -Vol. (p) (a vof~ (P)}T = pcp) (a~(p)JT· = A~P) (a~(p)JT

where Vol. (P) == l/p(P). If

2 . S
A(P) = S (Pl x B (Pl x T.

. p P) x Cp P}

0.4)' I
I

I

I

(3.5)

where temperature T is in degrees Kelvin, then

(3.6) .

I

I.

l

Using Williams and Lamb ' s3.5 method of ultrasonic wave vel~city measurements
as modified by Colvin,3.6 transit time for·the v~rious wave propagations is
obtained from the following relations:
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N(I,J,P) = (3.7)

T(I,J,P) = K(I,J,P){ 1 l}
2 F(R,J,P) - F(I,J,P) (3.8)

In the above expressions K(I,J,P) may be written as

K(I J P) = IMP(J(P) _IMP(J,P) x T(J,P) ,
, , p(p) x V J,p) - p(P

l
) x A2(P) x L(J,P

l
)

where IMP(J,P) is the mechanical impedance of the transducer for the Jth
velocity mode at pressure P.

It is evident from relation (3:8) that if the measurements are made
near F(R,J,P) any error in the estimation of T(I,J,P) due to inaccurate
knowledge of K(I,J,P) becomes negligible.

By integrating relation (3.4) we obtain

(3.9)

, '[P-P JA(P) = A(Pl ) x expo T',
3 x B (P)

(3.W)

Two things should be noted regarding the derivation of (3.l0) from (3.4):
(i) in the definition of isothermal bulk modulus at a pressure P, one could
obtain its value by either decreasi~g or increasing the pressure slightly;
and (ii) when integrating (3.4) it must be remembered that it is implied
in the definition of BT(P) that it remains constant over the range of inte­
gration Pl to P. In expression (3.10) it is implied that the isothermal
bulk modulus of a substance at pressure P has been obtained by decreasing the
pressure from P to Pl. The expression for A(P) as derived above differs from
that obtained by follOWing either Cook1s or Ruoff's procedures. The expres­
sion for A(P) that will be obtained by following Cook's or Ruoff's procedure
may be given by
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. >.(P) = 1 + 1 2 f~ [1 + 6{p)]
p(l) L (1)

[
4 4

2 - 2
L (3,P) L (2,P)

(3.11)

where L(J,l) = L(l), and [1 + 6(P)] is a constant in Cook's method and
equals [1 + 6(1)] but is a variable in Ruoff's method.

where L2(P)/T2(P) is an abbreviation for the coefficient of p(P) in Eq. (3.2).
Then ~(P) in (3.5) may be written as

2 2
~(P) = S (P) x T x L (P)

/(P) x Cp(P)

and the logarithmic derivative of ~(P) yields

1 (all(p)) = 2 (llitl) + 2 (2..Utl)
~ aP T STPT aP T ITPT aP :

, .

2[.h1flJ. 1 .[aCp(p)J
- ~ aP T - cpTPT aP

From thermodynamics, we know that

[llitlJ = - [axT (P)J
aP T aT p
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and

laC (P)] [JP = _. T {ltltl + l/(P)}
aP T PTP1 aT· P

Hence, in the 1imi t as P -+ 1, the express ion (3. 14) reduces to

1 [~] _ 2 [axT(p)] _ ~ xT(l)
t:nT aP T,P-+l = am aT· P-+l 3

(3.16)

(3.17)

Thus the magnitude of the first derivative of ~(P) in the limit as P -+ 1 may
be determined if (axT(p)/aT)p=l' (a~(p)/aT)p=l' ~(l), and Cp(l) are known a
and the value of ~(P) may be approximated at a pressure P by

~(P) = ~(l) + p(~)
aP P-+l,T

(3.18)

Similarly the higher derivatives of A(P) may be evaluated if the relevant
thermodynamic data are available.

The expression for A(P) in the new method, i.e. relation (3.10) des­
described in this paper,is seen to differ from the earJier two works for
two reasons. In their works, . (i) . A(P) is defined as L(J,l)/L(J,P), and
(ii) ~(P) is estimated by a different procedure.

The quantities measured or known are p(l), L(J,l), F(I,J,P) orT(J,P),
P and T. For quartz transducers, IMP(J,P) and F(R,J,P} can be obtained
safely to 4000 bars and .from room temperature to 900 Kfrom the work of
McSkimin and Andreatch. 3.7 This information is not required if the ultra~

sonic measurements are of the travel-times. ~(P) is usually known only as
a function of temperature at one atmosphere. However? the variation in the
elastic constants with temperature at pressure P provide? one with the tem­
perature derivative of the isothermal compressibility. And from relation

41



(3.15) one may obtain S(P) at temperature T if S(P) is known at one atmo­

sphere and temperature T. In a normal substance where P, < P,

(3.19)

holds. So, to assume that

(3.20)

ensures that the value of ~(P) obtained from (3.5) is underestimated. If
ultrasonic measurements are made as a function of pressure at more than one
temperature, abetter estimate of (ClxT(p}/aT}p may be obtained by simply
incorporating (ClXT(P}/ClT}pas an additional parameter to'be iterated according
to the scheme presented in Figure 3.2. Where such information is unavail­
able (3.19) or (3.20) may be used. Similarly the computation of Cp(P) from
relation (3.16) by assuming

[
ClS(Pl )J

ClT P '.
1 = 1

(3.21 )

implies that the resulting values of Cp(P} from relation (3.16) will also
be underestimated. However, the resultant error in the estimated value of
~(P) due to the intrinsic under~stimation of S(P) and Cp(P} is likely to be
small, up to 3-4 kilobars for most materials. Thus everything in expression
(3.5) except BS(P) and p(P} is either known or may be approximated with
reasonable accuracy.

The iterative procedure described below is that presented in Figure 3.1,
because we feel that the understanding of the procedure given in Figure 3.2
will be facilitated by an understanding of the simpler procedure. Thus the
iterative procedure described assumes that relations (3.20) and (3.2l) hold.

At P = 1 atmosphere, all the quantities involved are known; no itera­
tion is required to estimate the required elastic constants of solids.
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Set A

Set K=K

Increase Pressure (P)

Set A(p)=A(prectding Pressure)

$
Jth velocity mode

$
Ith resonant frequency

~ next I or
Set K(I,J,P)=l.O

N(I,J ,P)
-r(I,J,P)
V(I,J,P)
K'(I,J,P}

If K'=K

When all velocity modes
are calculated

as(p)

A(P}
aT {P}

A' (P)

If A'{P)tA(Preceding Iteration)

FIGURE 3.1
A Flow Chart of the Iterative
Procedure to Estimate the Varia­
tion in the Elastic Constant of
a Cubic Solid with Pressure When
the Elastic Wave Velocities a~e .
Obtained from the Measurement of
the Resonant Frequencies of a
Standing Wave as a Function of
Pressure at a Fixed Temperature.

If A'{P}=A{P}

All other
parameters

at pressure P
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next velocity mode

Increase Pressure (P)
-l-

Temperature (T)
-!t

Set A(P.T)=A(Preced1ng Pressure. T)

Set A(P,T):A'(P,T) ~

Set A(P,T)=A(Preceding Pressure, T)

Set '(P,T)="(P,T) ~
Jth velocity mode at

Pressure P and Temperature T

next temperature

L(J,P,T)
V(J,P,T)

When all velocity modes
are calculated at Pressure P

and Temperature T

BS(P,T)

[dCp~:,T»)

lI(P,T)

BT(p,T)
A'(P,T)

If A'(P,T)rA(Preceding Iteration, T)

If A'(P,T)=A(P,T)

When all BT(p,T) are
calculated at Pressure P
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If A'(P,T)fA(Preceding Iteration, T)

FIGURE 3.2 If A'(P,T)=A(P,T)
A Flow Chart of the Iterative
Procedure to Estimate the r----------------~~-----------------,
Variation in the Elastic Con- All other parameters at
stants of a Cubic Solid with Pressure P and all Temperatures.Pressure when the Travel-time~--------- --,r-- ~

Measurements are made as a
Function of Pressure at more
than Two Temperatures. A(P,T)
= [ax(p,T)/aT]p'



At the next higher pressure all the fundamental quantities in the
relations (3.3), (3.5), (3.6), (3.7), (3.8), (3.9), and (3.10), except A(P)
and K(I,J,P) are known. The procedure developed here involves a two stage
iteration, one at the level of pressure and the other on the Ith null fre­
quency of the Jth mode. We set A(P) = A(preceding pressure) and K(I,J,P) =

1 and estimate N(I,J,P) and T(I,J,P) and K(I,J,P). If the value of K(I,J,P)
thus obtained agrees with the previously assigned value we compute N(I,J,P)
for the (I + l)th frequency. If this value of K(I,J,P) does not agree with
the previously assigned value these values of N(I,J,P) and T(I,J,P) are cor­
rected by setting K(I,J,P) equal to the value obtained last, and iterating
allover again. This is repeated till two consecutive estimates of K(I,J,P)
are the same. A similar computation is performed for all the velocity modes.
By interpolation, from these T(I,J,P)l s one obtains values corresponding to
F(R,J,P), each of which is called T(J,P). These T(J,P)I S in turn are used
to obtain V(J,P) which together with p(P) yield an estimate of BS(P), ~(P),

BT(P), and finally A(P). If the value of A(P) thus obtained agrees with the
previously assigned value. the estimates of BS(P) and BT(P) are correct. If
this value of A(P) does not agree with the previously assigned value these
BS(P) and BT(P} are corrected by means of setting A(P) equal to the value of
A(P) obtained last and iterating allover again. This is repeated till two
consecutive estimates of A(P) are the same. Once this is known all other
elastic constant parameters may be obtained. This iterative procedure is
sketched diagramatically in Figure 3.1.

Table 3.1 displays the estimates of the pressure derivatives of the
adiabatic and isothermal bulk moduli of NaCl and KCl at 295 0 and 195°K ob­
tained from the above mentioned iterative procedure. The required travel
time data as a function of pressure for this computation were reconstructed
from the pressure derivatives of the travel-time for the various elastic wave
velocities given in the paper of Bartels and Schuele. 3.8 All 'other ancillary
data used were also taken from reference 3.8. It may be seen that the esti­
mates of the pressure derivatives of the bulk moduli of NaCl and KCl obtained
in the present work for pressures ranging up to 1.7 kb differ slightly from
those obtained by Bartels and Schuele. However, such differences may become
significant at higher pressures. It should be noted further that the iterative
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TABLE 3.1

The Pressure Derivative of the Adiabatic and Isothermal Bulk Moduli of
NaCl and KCl as Obtained by Bartels and Schuele (B and S), and as

Obtained in the Present Work (D) from the Data of Bartels and Schuele.

Bulk Modulus

Band S D

NaC1

295°K

Adiabatic 5.27 5.33

Isothermal 5.35 5.38

195°K

Adiabatic 5.13 5.18

Isothermal 5.20 5.23

KCl

295°K

Adiabatic 5.34 5.36

Isothermal 5.41 5.44

195°K

Adiabatic 5.34 5'.36

Isothermal 5.41 5.43
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.

procedure outlined in the present work may be easily applied to determine
the variation in the elastic constants of an isotropic solid.

Figure 3.2 is the schematic representation of the iteration procedure
when the travel-time measurements are made as a function of pressure at more
than two temperatures .

We are in the process 'of develo'ping a variant of this iterative pro­
cedure designed to estimate the elastic constants of a non-cubic solid as
a function of pressure.
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PART IV

AN ITERATIVE SCHEME TO ESTIMATE THE VALUES OF ELASTIC CONSTANTS
OF A SOLID AT HIGH PRESSURES FROM SOUND WAVE VELOCITY MEASUREMENTS

Dattatraya P. Dandekar

4.1 INTRODUCTION

In Section III we presented an iterative procedure to estimate the
values of elastic constants of cubic and isotropic solids at high pressures
from sound wave velocity measurements under the assumption that the concomi­
tant compressibility measurements are unknown. This procedure resembled
procedures developed by Cook4. l and Ruoff4.2 with regard to the use of the
principle of self-consistent integration but differed from both with regard
to the assumption of the variation ~n A(P,T), defined as B2(P,T) x T/xS(P,T)
x p(P,T) x Cp(P,T), with pressure and temperature and also with regard to
the method of estimating ~(P,T). This work presents a similar procedure
which permits estimation of the values of elastic constants of a noncubic
crystalline solid at high pressures from measurements of sound wave velo­
cities. The iterative scheme presented here is a general one. When the
ultrasonic measurements are made as a function of pressure at more than two
temperatures no restrictive. assumptions are required. However, when such
measurements are made as a function of pressure at only one temperature, two
additional assumptions become necessary before the iterative procedure can
be applied.

These two assumptions are:

(i) The temperature derivatives of the linear compressibilities of a solid
are independent of pressure.

(ii) The temperature derivatives of the linear thermal expansion coeffi­
cients are independent of pressure.

If measurements are made at two temperatures, assumption (ii) is required.
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For simplicity of presentation the analysis presented refers to mea­

surements of the transit time of an elastic wave propagated in an anisotropic
medium rather than to measurements of resonant frequency. Since application

of pressure changes the density, size and elastic properties of a solid,
which is reflected by a concomitant change in the transit time of an elas­
tic wave propagated in the solid, the change in transit time with pressure
contains all the desired information about the changes brought about in a
solid due to the application of pressure.

4.2 CONVENTIONS AND NOTATIONS

The elastic constants of a solid may be represented by reference to
any Cartesian coordinate system (x,y,z). However, it is convenient to refer
them to a system of coordinates having some relation t0 1the crystal axes 1

(a,b,c). In this work, whenever applicable the relationship between the
Cartesian coordinate system (x,y,z) and the crystal axes (a,b,c) is the one
adopted by the IRE Standards Committee. 4.3 The number of elastic constants
(C ijkt ) necessary to characterize the elastic property of a solid depends
upon the crystal class to which the solid belongs. The subscripts of these
constants were contracted to (C pq ) by following the usual convention of
writing the subscript ij, kt = 11, 22, 33, 23, 12, 12 by p, q = 1, 2, 3,
4, 5, 6 so as to represent these Cpq by a 6x6 matrix, denoted by [C pq]. The

corresponding 6x6 matrix of the elastic compliances Spq may be obtained from
Cpq by using the matrix relation between them, namely

..

(4.1)

where [ I ] is a 6x6 unit matrix. The Cpq matrices for different crystal
classes may be found in reference 4.4.

4.2.1 Notation

P: Pressure
T: Temperature
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p(P,T):
x(t,m,n,P,T):

13(R..,m,n,P,T):

x(P,T):
13(P,T):
L(R..,m,n,J,P,T):

T(t,m,n,J,P,T):

V(£,m,n,J,P,T):

.:I.(t,m,n,J,P,T):

Density of a solid at pressure P and temperature T
Linear compressibility of the solid in the direction whose
direction cosines are given by £, m, and n at P and T
Linear thermal expansion coefficient of the solid in the
direction whose direction cosines are given by t, m, and
n at P and T
Volume compressibility of the solid at P and T
Volume thermal expansion of the solid at P and T
Width of the specimen used to measure the Jth velocity mode
in the solid in the direction such that £, m, n are the
direction ~osines at P and T
Transit time of the Jth wave velocity mode corresponding to
L(R.,m,n,J,P,T)
The Jth velocity in the solid in the direction whose direc­
tion cosines are 2, m, and n at P and T
L(R.,m,n,J,p1,T)
L(R.,m,n,J,P,T} where Pl < P, and Pl equal to unity indi­

cates one atmosphere pressure
Specific heat of the solid at constant P and T

The superscripts T and S attached to a quantity indicate its isothermal and
adiabatic value respectively.

4.3 PRELIMINARIES

The various relations used in the iterative procedure to be described
originate either in the theory of elastic wave propagation in a solid or ;n
thermodynamic theory. These general relations are presented with brief intro­
ductory remarks drawn from the two theories and appended only to clarify the

material of this paper.

4.3.1 Relations Obtained from the Theory of Elastic Wave Propagation

The elastic constants of a solid are determined by measuring
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the velocities with which elastic waves are propagated along several direc­
tions in the solid. The number of velocity measurements needed to understand
the elastic property of the solid depends on the crystallographic class to
which it belongs. Christoffel's equations (e.g. Eq. (~.2)), which are
applicable to any crystalline system, give the relationship between measured
velocities and elastic constants. In general, for a plane wave propagated

in a crystal having direction cosines JI., m, n, the three possible wave velo­
cities V may be found in terms of the elastic constants Cpq from the roots of
Christoffel's equations.

2 A12 A23All - pV

A12
2 A23 aAA22 - pV =

A13 A23
2A33 - pV

(4.2)

where

A.•
lJ

(4.3)

It follows that pV2 is related to Cijkt in a manner which is
determined by the direction in which a wave is propagated. Three different
velocities of propagation imply that the three displacement vectors associ­
ated with these velocities are mutually perpendicular and hence independent.
Usually the three waves are mixed; one is predominantly longitudinal and the
other two are predominantly shear. Pure waves may be propagated only in a
few special crystallographic directions. The location' of the pure mode
directions in crystals of various symmetries have been investigated exhaus­
tively by Borgnis4.5 and Brugger. 4.6

4.3.2 Thermodynamic Relations

These relations serve two purposes:
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(i) To evaluate the pressure derivatives of the specific heat and the
linear thermal expansions in the three principal directions of the
solid at pressure P and temperature T, and

(ii) To convert the adiabatic quantities into their isothermal counterparts
at pressure P and temperature T.

The adiabatic and isothermal elastic compliances are related by

5~jkt(P,T) - 51j kt(P,T) = -Sij(P,T) Skt(P,T) . T/Cp(P,T) x p(P,T) (4.4)

5When expressed in our notation the following relation between x (t,m,n,P,T)
Tand x (t,m,n,P,T) results.

T( ) _ 5( ) + S(P,T) x T .x t,m,n,P,T - x t,m,n,P,T p(P,T) x Cp(P,T)

where

2 2 ) 2{s(l,O,O,P,T)t + S(O,l,O,P,T)m + S(O,O,l ,P,T n } (4.5)

and

S(P,T) _ S(l,O,O,P,T) + S(O,l,O,P,T) + S(O,O,l,P,T) (4.6)

x(t,m,n,P,T)
2 2= (511 + 512 + 513 ) + (512 + 522 + 523 )m

2+ (513 + 523 + 533 )n (4.7)

Equation (4.5) may also be written as

T 5 )x (t,m,n,P,T) = x (t,m,n,P,T) + A(t,m,n,P,T -

where

_ S(P,T) x T {( ) 2
A(t,m,n,P,T) - p(P,T) x Cp(P,T) S 1,O,0,P,T

22}+ S(O,l,O,P,T)m + S(O,O,l,P,T)n
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From the definition of isothermal linear compressibi1itYt we have

(4.9)

Since the subscript J has no significance in the above re1ation t it has been

omitted from L(l,m,n,J tPtT). By integrating Eq. (4.9) with respect to pres­
sure, we obtain

(4.10)

The above integration is performed by assuming that the compressibility is
determined by reducing the pressure from P to P1 and by taking into account

the definition (4.8) which implies xT(l tmtntP,T) remains' constant in the
range of integration P to Pl. Again the temperature derivative of linear
compressibility is related to the pressure derivative of the linear thermal
expansion of a material by

(4.11)

and the pressure derivative of specific heat may be written as

(4.12)

The use of the above set of relations enables one to estimate the values of
the elastic constants of a solid at high pressure without .! priori knowledge
of the compressibility of the substance.

4.4 GENERAL ITERATIVE SCHEME

In general the iterative scheme proposed here attempts to obtain se1f­
consistent estimates of A(ltmtn,PtT) in the three principal directions, i.e.
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. A(l,O,O,P,T), A(O,l,O,P,T) and. A(O,O,l,P,T) at pressure P and temperature
T. The iterative procedure presented below assumes the following:

(i) The temperature dependence of the linear expansion coefficients are
known at one atmosphere.

(ii) The value of specific heat is known as a function of temperature at
one atmosphere.

(iii) An adequate number of velocity measurements are made to extract
information about elastic properties of the solid as a function of
pressure at more than one atmosphere.

Then, at P = 1 and within the experimental range of temperature, all
the quantities in the above set of 12 relations are known; no iteration is
required to estimate the values of the elastic constants of a solid as a
function of temperature at one atmosphere.

At the next higher pressure all the quantities except A(l,m,n,P,T) in
the above set of relations are known. The procedure developed here involves

. a three-stage iteration in order to yield a self-consistent estimate of not
only the elastic constants but also of pressure and temperature derivatives
of the linear thermal expansion and of the specific heat at pressure P and
temperature T. The three stages of iteration ar~ done at the levels of
pressure, temperature and the three principal directions of the solid. To
initiate the procedure, we set

and

·[axT(i,m,n,p,T)]
aT P

= (4.13)

[
as(l,m,n,p,T)] =

aT .p
[
as(i,m,n,Pl,T)]

aT P
1

(4.14)

where Pl is the preceding value of pressure. These enable us to compute
S(l,m,n,P,T) and Cp(P,T).
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Next we set

(4.15)

With this assumption, we compute p(P,T) from the relation

1 (ap{p,T)] = T(p T)
·p(P,T) aP T x ,

T T ~ T .
= x (l,D,D,P,T) + x (D,l,D,P,T) + x (D,D,l,P,T) (4.16)

and L(l,m,n,P,T); these with the knbwn values of T(I,m,n,J,P,T) enable us
to estimate C~q(P,T) from Eqs. (4.2). The use of relations (4.1), (4.4),

(4. 11) and (4.12) together with assumpti ons (4.13) and (4.14) provi des

estimates of the values of S~q(P,T). From these estimates' of S~q(P,T} we
obtain xT(1,m,n,P,T), which in turn by relation (4.10) yields a new esti­
mate of>"(1,m,n,P,T). If the new values of >"(1,m,n,P.,T) in the three
principal directions agree with their respective values assumed at the
begi~ning of the iteration, the estimated values of the elastic constants
are correct and consistent with the assumptions represented by relations
(4.13) and (4.14). If these values of A(I,m,n,P,T) do not agree with the
previously assumed values, the iteration is repeated with these new values
of A(I,m,n,P,T) as starting values, and all the quantities are recalculated.
This process is repeated until two successive estimates of, A(I,m,n,P,T) in
the three respective principal directions are equal in magnitude at the pres­
sure P and a temperature T. This whole iteration procedur,e is carried out at
the pressure P and at all the temperatures at which travel-time measurements
are made. When all the elastic cons~ants of a solid are estimated in the
above manner at the pressure P as a function of temperature, we obtain new
estimates of [axT{I,m,n,P,T)/aT]p and [as{l,m,n,P,T)/aT]p' If these new
values of [axT(I,m,n,P,T)/aT]p and [as(I,m,n,P,T)/aT]p in ,the three principal
directions agree with their respective a~signed values at the beginning of
the iteration, the estimated values of the elastic constants at th~ pressure
P and all the temperatures are correct. If these new values of [axT(1,m,n,p,T)/aT]p
and/or [as(I,m,n,P,T)/aT]p do not agree with their previously assigned values,
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the iterative procedure is repeated with these new values as the starting
point. Such a procedure is repeated until two consecutive estimates of
[axT(t,m,n,p,T)/aT]p and [as(t,m,n,P,T)/aT]p agree with their respective
initial values in all the three principal directions; The iterative pro­
cedure descri bed above is represented by a f1 ow chart in Fi gure 4. 1.

The net outcome of the above-mentioned procedure is to yield (i)
values of the elastic constants as functions of pressure and temperature,
(ii) values of the partial temperature and pressure derivatives of the
linear thermal expansion coefficient as functions of pressure and tempera­
ture, and (iii) the pressure derivative of th~ specific heat as a function
of temperature. If, however, the transit times of the elastic waves in a
solid are measured as functions of pressure at only one temperature, then
values of the elastic constants of the solid may be estimated at high pres­
sures (i) by interpreting Pl in relations (4.13) and (4.14) to signify the
preceding pressure at which these quantities are known, and (ii) by
omitting the iterations on [a/(t,m,n,p,T)/aTJ p and [as(.Q"m,n,P,T)/aTJ p in
the above scheme.

Table 4.1 gives two sets of values of the elastic constants of cal­
cite with pressure at 298°K. Both are based on the data of reference 4.7,
but" the one labelled "D" was obtained without iteration, using Bridgman's
value for compressibility; the other was obtained from the present itera­
tive procedure in conjunction with the required thermodynamic data. The
sources of these thermodynamic data are indicated under the table. These
two sets of estimates of C.. of calcite are in good agreement. A similar

lJ
calculation performed on the ultrasonic data of rutile is shown in Table 4.2.

We are in the process of analyzing the relevant ultrasonic data on
several crystalline solids.
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Increase Pressure (P)
~

Temperature (T)
~

In the three principal directions
r.S~e~t:-'-~~~~~"'T"I"'T":'~~-;::-~"Set A(~ .m •n•P•T)=A( ~ •m. n•P1>T)

r-~~~----~~------~and B{t.m.n.P.T)=B{t.m.n.P1.T)

a{t.m.n.P.T)
S(P.T)

In the three principal directions
~~~~~~~+Set ~(t,m,n.p,T)=~(t,m.n'Pl.T)

next temperature

Jth velocity mde at P and T

L(R..m,n.J.P,T)
V(R.,m,n,J.P,T)

When all velocity modes are
calculated at P and T

CSpq{P,T)
SSpq(P,T)

xS(t,m.n.P,T)
fltR.,m.n.p. T)
X (R.,m,n,P.T)
~'(R.,m.n,P.T)

If ~'(R..m.n.P.T)1A(R..m,n.P.T

next velocity mode

If A{R..m,n.P,T)=A'{t.m.n.P,T) in
each of the three principal directions

When all xT(R.,m.n.P.T) and
L(t.m,n.P,T) are calculated at P

A'(R..m,n.P,T)
B' (t,m.n.P.T)

If B' (~.m.n.P.T)rB(t.m.n.P.T)
or if A' t.m.n.P.T)1A(R..m.n.P.T)

If A(t.m.n.P.T)=A'(t.m.n.P.T)
and B{~.m.n.P,T)=B'(t,m.n.P,T)

in each of the three principal directions·
FIGURE 4.1

A Flow Chart of the Iterative Scheme to Esti-r-~ ~
mate the Values of the Elastic Constants of a
Solid as a Function ~f Prrssure and Tempera­
ture. A(t.m.n.P,T) - [ax (~.m,n.p,T)/oT]p

and B(R..m.n.P.T) [os(t.m,n.P,T)/oT]p.

~---------------------------------~~-~~~
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TABLE 4.1

Adiabatic Elastic Constants (in units of 1011 dyn/cm2) of Calcite with Pressure at 298°K as Obtained by
Dandekar4.7 (D) and as Obtained by the Iterative Procedure (IP) from the same Ultrasonic Data.

Pressure Cll C33 C44 C66 C14 C13
Kbar -

D IP D IP D IP D IP D IP D IP

+0.05 +0.05 +0.02 +0.07 +0.06 +0.33

0.001 14.626 14.626 8.531 8.531 3.405 3.405 4.328 4.328 -2.076 -2.076 5.076 5.076
2.0 14.650 14.651 8.526 8.527 3.453 3.453 4.335 4.336 -2.078 -2.080 5.190 5.179
4.0 14.674 14.676 8.522 8.522 3.468 3.468 4.342 4.343 -2.101 -2.100 5.419 5.402
6.0 14.697 14.700 8.518 8.516 3.449 3.448 4.349 4.350 -2.137 -2.138 5.757 5.734

Sources of the values of thermodynamic parameters:
Thermal Expansion Coefficients: R. K. Kirby, J. Res. NBS, ~, Phys. Chern. 71A, 363 (1967).
Specific Heat Value: J. S. Arthur, J. App1. Phys. 21,732 (1950).
Temperature Derivatives of the Compressibi1ities at 1 atm, Ref. 4.1.
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TABLE 4.. 2

Adiabatic Elastic Constants (in ki1obars) of Single Crystal Rutile with Pressure at 298°K Obtained by
Manghanani 4.8 (M) and by Iterative Procedure (IP) from Manghanani 's Data.

Pressure Cll C33 C44 . C66 C12 Cl3
Kbar M IP M IP M IP M IP M IP M IP

0;001 2714.3 2714.3 4839.5 48\39:5 1244.3 1244.3 1947.7 1947.7 1779.6 1779.6 1495.7 1495.7,
1. 25 2722.4 2722.4 4849.9 4850.8 1245.7 1245.2 1955.7 1955.7 1791. 0 1791.0 1502.0 1503.4
2.50 2730.5 2730.4 4860.3 4862; 1 1247. 1 1246.3 1963.8 1963.7 1802.3 1802.3 1508.3 1509.6

5.00 2746.7 2746.6 4881.2 4884.7 1249.8 1248.4 1979.9 1979.7 1825.1 1825.1 1520.8 1522.2

7.50 2762.8 2862.8 4902.0 4907.3 1252.6 1250.5 1996.0 1995.9 1847.8 1847.8 1533.4 1534.8
,

Sources of the values of thermodynamic parameters:
Thermal Expansion Coefficients:R. K. Kirby, M. Res. NBS, ~, Phys. Chem. 71A, 363 (1967}.
Speci fi cHeat .Va1ue: . J." ~ . Arthur , J. App1. ~~ys . .?l, 732 (19~O) .
Temperature Derivatives of the Compressibi1ities at 1 atm, Ref. 4.1.
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