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ABSTRACT

The problem of the analysis of free turbulent mixing is
complex, and some empiricism is always necessary to obtain a
solution. This has led to a proliferation of experiments and
of semi-empirical models for the turbulent shear stress. All
of these models will correlate experimental data well in some
region of a particular flow, but not in others. None has been
tested over as broad a range as is possible. The ultimate
goal of this study is to confront each important model for the
turbulent shear stress with as broad a range of experimental
data as possible. From this confrontation come two sets of
conclusions--one detailing those models presently suitable for
engineering use, and the second establishing the models which
show promise of becoming more generally applicable with further
development.
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INTRODUCTION

Free turbulent mixing may be defined as that class
of turbulent flows in which there is no direct effect of
solid boundaries on the flow. There may be an indirect
effect; the free mixing process may have been generated by
the action of a solid boundary, as for e#ample, in the wake.
Although turbulent flows contained within ducts are
included in this study, the turbulent flow cannot impinge on
a wall. The class of flows considered in this study is
further restricted to coflowing streams, with zero axial
pressure gradient. Thus the ducted flows covered must be
contained within ducts sufficiently large for the pressure
gradient to be negligible.

The understanding of the process of free turbu-
lent mixing is of fundamental importance to the description
of the phenomena that occur in many devices of practical
engineering interest. Such phenomena include the fuel-
oxidizer mixing processes in propulsive devices such as the
scramjet and air-augmented rocket, in the combustion
systems of turbojet engines, and the turbulent mixing
processes in jet pumps and in wakes. In another field, the
study of the acoustic properties of jets itseif involves
the understanding of their turbulent structure. In all of
these flows, the fundamental problem remains the same:

although the appropriate equations of motion can be
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formulated, they cannot be solved in closed form; indeed,
the mathematical statement always contains more unknowns
than equations, and thus empirical information must always
be included before the solution to the problem may be sought.

Considerable experimental work has been done in
recent years on various free turbulent mixing flows, both in
the investigation of their mean flow field and, through the
development of vastly improved hot wire anemometer equip-
ment, in the investigation of their fine scale turbulent
structure. The rapid development of computer technology in
recent years has made feasible theoretical approaches to
the problem which are capable of treating the problem of
turbulent mixing in much more detail than has heretofore
been possible. But at the same time the recent appearance
of these advances has pointed up the lack of any reliable
guide to the available experimental results and theoretical
-models in the field,

The earliest theoretical models of turbulent flow
sought to reduce the mathematical formulation of the
problem to one similar to a laminar flow, since techniques
were then known for the analytical treatment of laminar
flow problems. The result of these attempts was the
mddelling of a turbulent flow as analogous to a laminar
flow witﬁ the laminar viscosity, a function only of the
fluid, réplaced by an "eddy viscosity" which is a function

only of the flow process. As information concerning the
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unsteady structure of turbulent flows became available, it
became increasingly apparent that turbulent flows behaved
‘physically quite differently from laminar flows. Thus the
analytical and experimental work proceeded in two separate
directions--on the one hand theoretical treatments using
eddy viscosity models and experiments in which the gross
mean flow characteristics were measured for flows of
practical interest, and on the other hand statistical
theoretical treatments, which often were bereft of engi-
neering usefulness, and experiments in which the turbulent
fluctuations were measured in flows of purely academic
interest. Further, theoretical treatments often tended
towards the development of a model to fit one experiment
without regard to its general implications and experiments
often were madg solely to test a specific model.

After four decades of this sort of development,
the field of free turbulent mixing presents a rather
formidable maze of often conflicting models combined with
many experimental investigations of different facets of the
overall problem. The practicing engineer, faced with this
chaotic situation, can only investigate a small fraction of
the available literature, and often does not have time to
evaluate and compare the results he obtains with other
results in the field. In this study such an analysis and
comparison of all of the major experimental work which has

been done in the field of free turbulent mixing is
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performed. From the results of this evaluation a group of
reliable experiments covering the broadest possible range of
turbulent free mixing flows is selected. The second phase
of this study then involves the selection of the most
commonly used analytical models for the free turbulent eddy
viscosity, as well as models which, while not commonly used
as yet, appear to show some interesting aspects, and models
in which the eddy viscosity is replaced by more direct
relationships for the turbulent shear stress.

All of the models selected, ranging from the
classical mixing-length concept of Prandtl through.the
relatively recent displacement thickness eddy viscosity
model and the kinetic energy theory, in which the turbulent
shear stress is related directly to the turbulent kinetic
energy, are then used to compute analytically the selected
filow fields. These computations are made using a recently
developed finite-difference computational technique which
has been modified and developed to allow calculations to be
made of free mixing flows with arbitrary eddy viscosity
models; or with the use of the turbulent kinetic energy
equation to evaluate the turbulent shear stress. The
results of these calculations are used to evaluate the per-
formance of the various predictive models against a large
cross-section of experimental information. Because the

same computational technique is used in all calculations,
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the differences that remain between predictions must be
caused by the eddy viscosity model chosen.

The overriding consideration in the evaluation of
these theoretical models is how well a given model stands up
to the challenge of comparison of its predictions with
experiments throughout the entire range of free turbulent
flows. Those models for eddy viscosity or turbulent shear
that best meet this challenge are those which have the
widest range of applicability and thus the greatest engi-
neering usefulness. In this study, specific recommenda-
tions are presented concerning those models which appear to
be most useful and reliable for engineering calculations of
free turbulent.mixing.

The work described in this study can be divided
into two main parts. In the first part the re&iew and
evaluation of the experimental data are described. Because
it is imperative for the confrontation of theory and experi-
ment that follows in the second part that each experiment
be closely examined, this first part is necessarily lengthy..
Howevei, in each Chapter the most. important conclusions of
of the evaluation have been assembled in a summary section,
which can pe read independently, with each Chapter then
serving to contain the supporting material for the conclu-
sions stated in its summary. If only the summaries are
used; the reader will gain a reasonably qqick overview of

the experimental data on free turbulent mixing.
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In the second part, experiments selected from
those described in the first part are used to confront the
predictions of various models. Once again, for a quick
review of the various models to be considered, the summaries
of the appropriate Chapters will suffice, but here it is
recommended that both the discussion of results in Chapter 9
and the conclusions and recommendations in Chapter 10 be
read in detail. Finally, liberal use of appendices is made
in order to facilitate a detailed investigation of various
facets of this study that do not conveniently fit into any
particular Chapter.

The material covered in this study involves work
reported up to March, 1970. Because of this obviously
arbitrary cutoff date, some interesting recent work has had
to be neglected. The reader will also note that there is
little reference to the extensive Russian literature on the
subject of free turbulent mixing. This is primarily caused
by the demands of this study for extensive and detailed
reéorting of both experiments and theoretical treatments.
The Russian literature, at least as it is available in this
country, is in general not reported in sufficient detail to

be used here.
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CHAPTER 1

METHODS OF ANALYSIS OF THE EXPERIMENTAL DATA

General Criteria

The first question in the evaluation of a given
set of experimental data must obviously be "what experi-
mental results are presented?" There can be a great
variety of answers for any given flow. Most commonly in
free mixing flow experiments the velocity profiles at
several axial stations are presented, along with axial
distributions of the centerline velocity. If the flow
involves temperature or composition differences between two
streams or between a single stream and its surroundings,
lateral profiles and axial distributions of:the centerline
value of the temperature or composition are commonly
presented.

To define the minimum necessary amount of data
for the purposes of this study, it is necessary to discuss
the basic check which will be made on a given piece of
data. The primary check, applicable to all free mixing
flows, involves the momentum flow rate through any arbi-
trary control volume enclosing the flow. Figure 1.1
depicts such a control volume schematically; it is taken as
extending far enough into the external flow so that the

axial velocity equals the constant external velocity.
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Newton's second laﬁ for any control volume states that the
net force acting on the surfaces of the control volume is
equal to the change in momentum flow rate through the con-
trol volume. But none of the surfaces of this control
volume (1-2-3-4 on Figure 1l.1) are physical walls or
boundaries of the flow; therefore, in the absence of a
pressure gradient there can be no net force exerted on
them. The change in momentum flow rate in a free mixing
flow must then be zero, so that at any lateral plane in the
flow, such as 1-2, the momentum flow rate must equal that
across any other section, i.e., 4-3 on-Figure 1.1 If an
axial pressure gradient exists in the flow then there must
be a change in the momentum flow rate through the control
volume of exactly sufficient magnitude to balance the pres-
sure forces acting on the control volume; further, the
external velocity U_ will no longer be constant.

The primary test for a given set of zero axial
pressure grédient free mixing data is then that it exhibit
a constant value of momentum flow rate from one axial
station to the next. In this study, the excess momentum
flow rate is used instead of the total momentum flow rate.
This parameter represents the increase in momentum flow
rate of a particular flow over the momentum flow rate
represented by the constant background velocity, and is a

considerably more sensitive parameter than the total
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momentum flow rate. For a wake, in which velocities are
lower than the background velocity, this parameter of course
becomes a momentum deficit.

To unequivocally evaluate the excess momentum
flow rate, it is necessary to know lateral profiles of the
velocity and density at several axial stations, as is shown
in Appendix A, assuming constant static pressure. This
requirement méy be eased slightly in an incompressible flow
that exhibits geometric similarity, which is defined below.
The evaluation of the excess momentum flow rate in this
case is also describéd in Appendix A. But in general, in
order to judge the accuracy of a given experiment, the
fundamental requirement is that it contain sufficient data
to ‘evaluate the e#cess momentum flow at several lateral
cross sections. (Because this quantity is evaluated by
integrating the local excess momentum flow rate per unit
area over the area represented by a lateral end of the
control volume, with its edges taken to + «, it is
referred to in the following text as the excess momentum
flux integral or simply momentum integral.)

A second test of a given experiment is of course
how well it compares with other similar experiments. This
is essentially a subjective test, but it is unlikely that
two experiments with similar configurations will both
satisfy the momentum integral criterion and yet show widely

different behavior. If something of this order occurs, it
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may indicate that one of the two flows is not really the
same flow configuration as the other. An example of this
situation might be two coaxial free mixing experiments, one
of which shows a markedly greater initial rate of decay of
centerline composition than the other. If the different
flows have markedly different jet-to-external-stream
velocity ratios, such that the ratio in the case which
shows a greater centerline decay is very much less than
unity, then it may be that the much-less-than-unity case is
exhibiting a somewhat wake-like behavior in the early part
of the mixing region, while the other flow behaves more
like an ordinary coaxial-jet free mixing process. The wake-
like behavior referred to may perhaps be manifested in
strong pressure gradients and the existence of regions of
local recirculation.

In recent years a new approach to the theory of
free turbulence has been developed which involves using the
turbulent kinetic energy equation to evaluate the turbulent
shear stress. Such a method of course depends on the
existence of a fairly general relationship between the
turbulent shear stress, 1, and the turbulent kinetic energy
per unit mass, k. Because of its importance in the kinetic
energy theory, the existence of a relationship between Tt
and k is evaluated in this study for all experiments which
include sufficient data, and it is found that a linear

relationship

11
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T = alpk (1.1)

where a, may be a function of the lateral coordinate is
quite general. Further it is found that the shape of the
lateral variation of a; is reasonably consistent from
experiment to experiment in a given flow configuration.
Thus Equation (1.l1) and the consistent lateral behavior of
a, provide additional criteria for judging those experi-
ments for which sufficient data are available.
Summarizing, the primary criteria are that the
experimental results be complete enough for an unequivocal
evaluation of the excess momentum flux integral, and that
the value of this integral be nearly constant. To further
define the phrase "nearly constant," it has been observed
in the course of this study that acceptable experiments
generally show deviations from a constant wvalue of the
excess momentum integral of ten percent or less. A
secondary criterion is that the results be consistent with
other results for similar configurations. Further, the
relationship between turbulent shear stress and turbulent
kinetic energy can be used to provide additional evidence

in those flows for which data is available.

Methods of Presentation

It has been commonly observed that if U, repre-
sents the centerline velocity, Uo the free stream velocity,

and /2 the lateral position at which U - U = 1/2(Uc - Uo),

12
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then for all axial stations greater than a certain axial
station (which varies with the type of flow), one can
.collapée the measured velocity profile data to a single

function

Uu-u ,
_— = f( ) (1.2)
U = Y5 ¥1/2

This is true for two-dimensional and axisymmetric jets with
still surroundings (U°'= 0), wakes, and for two-stream jets.
With some modification an expression similar to Equation
(1.2) can be written for two-dimensional mixing layers.
Indeed, the function itself is grossly the same for all
free mixing flows. 1In cases in which temperature and con-
centration differences appear between streams in a flow, it
is observed that the total enthalpy and concentration
ratios also exhibit geometric similarity.

Because of this observation of geometric simi-
larity, the axial decay curves, i.e., the curves of
Uc - Uo/Uj - U, versus x/D, where Uj is the nozzle exit
velocity and D the nozzle diameter (or width) become
important parameters in comparing experiments with each
other and in comparing the results of calculations with
experiment. There are a number of ways in which axial
decay curves may be presented. As will be discussed below,
all free-mixing jet flows can be divided into two mixing

regimes, the first of which is called the potential core.

13
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It is empirically observed that downstream of the end of
this potential core the decay curves for a given configura-
tion tend to all have the same behavior, which may be

described by a function of the form

g -0 -n
c o _ X
v, -0, *D (1.3)

where k is a constant for any given flow. Therefore, if log
(Uc - Uo/Uj - Uo) is plotted versus log (x/D), a family of
straight lines of slope (-n) results. This fact makes it
particularly easy to compare various results with one
another, and to determine for a theoretical analysis both
its level of agreement with the data and the treqd this
agreement shows with increasing x; 'i,e., whether the agree-
ment can be expected to improve or become worse with
increasing axial distance. Because of these advantages,
logarithmic plots of axial velocity-, temperature-, and
composition-ratio decay will be used as the primary medium
for comparison of results.

Since it is observed that all of the axial decay
curves for a given configuration have about the same slope
downstream of the end of the potential core, but that the
potential core length X varies from experiment to experi-

ment, it is natural to investigate how the potential core

14
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effect may be removed from the results. Because of the
logarithmic nature described above, this may best be done by

plotting

c o _ X
______; = kz(i" (1.4)

where k, is another constant. 1Indeed, it is shown in
Appendix B that for certain simple flows, if geometric
similarity is assumed, the integral momentum flux is
constant, and the local width scale rl/2 is assumed to vary
proportionally to xn, then the determining parameter for
the flow is xc/D. However, even in the simplest flows no
universal way is known to evaluate xc/D. Thus Equation
(1.4) does not provide any information of practical

interest.
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CHAPTER 2

CONSTANT-DENSITY SINGLE-STREAM FLOWS:

EXPERIMENTAL DATA

Conceptually, the constant-density single-stream
flow (sometimes referred to as the submerged jet) is, with
the possible exception of the incompressible wake, the
simplest class of free mixing flows. Thus it is no sur-
prise that this class of flows is the most thoroughly
investigated in the field of free turbulent mixing.
Because there are no density gradients, and the flow
velocities are low, the application of hot-wire equipment
to the investigation of the turbulent structure in such
flows is straightforward. Most of the available informa-
tion on turbulent structure is concerned with such constant-
density single-stream flows as will be described in this
Chapter. The individual flows to be investigated include
the two-dimensional and circular jet, and the two-

dimensional mixing layer.

The Two-Dimensional Jet

The flow field produced by a two-dimensional jet
exhausting into still surroundings can, in general, be
broken into two regimes. Where the jet exits from the
nozzle, as shown schematically in Figure 2.1, regions of

_turbulent mixing are formed at either edge of the slot.
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The width of the turbulent mixing region expands in the
downstream direction, so that it encroaches both on the
external still fluid and on the non-turbulent potential core
region between the two mixing layers. At the point where
the two mixing layers meet, the potential core disappears,
and the potential core region, or first regime of mixing,
undergoes a transition to the second regime in which turbu-
lent flow is encountered all the way across the jet.

The mixing model just described is idealized. 1In
reality, there is ordinarily some low level of turbulence
existing in the potential core, and the lines of demarca-
tion between the turbulent mixing region and non-turbulent
fluid are not distinct. If a fast response probe is held
close to the edge of a turbulent jet, it will sense
alternate periods in which both turbulent and non-turbulent
patches of fluid are swept by. This phenomenon, called
intermittency, has been observed in all free turbulent
flows (in the two-dimensional jet by Hannum and Griffith
[1]).l The presence of intermittency means that the
boundary between the turbulent mixing region and non-
turbulent fluid is random; it "blurs" the lines of
demarcation. ‘Further, the change from regime I to regime

II is not abrupt, as idealized in Figure 2.l1; rather there

1Numbers in brackets refer to similarly numbered
references in the bibliography.

18



AEDC-TR-71-36

is a transition regime where the behavior of the flow
gradually changes from the characteristic behavior of the
first regime to that of the second. WNevertheless, the
idealized picture of Figure 2.1 is important in two
respects: as an aid to the understanding of the character-
istics of the two-dimensional jet flow and as a model for
the mathematical simulation of the flow.

A truly two-dimensional flowlis difficult to
realize experimentally, as £he physical necessity of
limiting the length of the slot (L on Figure 2.1)
unavoidably introduces three-dimensional end effects into
the flow. A true two~dimensional flow can only be approxi-
mated, and this only through the use of a suitably high
aspect ratio, L/h on Figure 2.1. The maintenance of two-
dimensionality also limits the downstream distance over
which the jet may be measured. Van der Hegge Zijnen [2]
states that the slot jet will approximate the true two-
dimensional case in the plane of symmetry perpendicular to
the slot provided that the downstream distance is not
farther than 2L. Newman [3] regards the end effects as
distorting some experimental results by causing the rate of
growth of the mixing layer to be too slow, presumably
through the action of end vo;tices which induce spanwise
‘flows and thus thin the mixing layer. An additional
problem arises when the slot jet has to be for practical

reasons enclosed in a duct. Care must be taken that the
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duct be sufficiently large compared to the slot. Foss and
Jones [4] report that the structure of a rectangular jet
enclosed in a duct can be significantly different from that
of a free jet.

The ideal two-dimensional jet has no character-
istic length (Townsend [5], page 173), which means not only
that the fluid viscosity and jet velocity comple*=2ly
specify the whole flow, but also that a characteristic
Reynolds number for the whole flow cannot be defined. This
in turn implies that all two-dimensional jets are dynami-
cally similar. Under this condition it can be shown from
the equations of motion (see for example, Newman (3], also
Appendix C) that in the self-preserving region, in which
the profiles of velocity and shear stress exhibit
similarity, the centerline velocity ratio Uc/Uj varies as

(x/h) ~1/2 1/2

and the jet width is proportional to (x/h)
All of the two-dimensional jet experiments reported in this
Chapter exhibit over some region an “x—l/z“ decay of
centerline velocity, as is indicated by Figure 2.2. The
region beyond which similarity prevails is reported as

x/h > 20 by Miller and Comings [6] but Heskestad [7]
reports similarity occurring only for x/h > 65. In this
connection, however, the definition of "similarity" is
important as the velocity profile is observed to take on a

similar profile shape (i.e., one in which the velocity

profile, plotted as U/Uc versus y/x, does not vary with x)
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earlier than the turbulent shear stress profile. In addi-
tion, Heskestad reported that a "subrange" existed in his
jet in the region 10 < x/h < 30 in which the centerline
velocity decay approximated a self-preserving form,
although a different form than that exhibited further down-
stream.

Although there can be no Reynolds number defined
for the whole flow in an ideal flow, a Reynolds number for
the actual jet can be defined at the jet exit, and in the
early part of the flow some variation of centerline
velocity decay behavior with this Reynolds number is
observed. From an examination of experimental data,

Newman [3] concludes that there are no important variations
due to changes in slot conditions beyond a few tens of slot
heights downstream. However, as Figure 2.3 shows, there is
an apparently persistent data shift present between
Heskestad's [7] data and that reported by Albertson, Dai,
Jensen, and Rouse [8]. As is shown in Table 2.1, the
Reynolds number (based on the slot height) for the latter

4 t0 1.1 x 10%, while Heskestad's

measurements were made at a Reynolds number of 3.4 x 104.

data ranged from 0.17 x 10

There is thus a Reynolds number change of .a factor of
between 3 and 20 between the two experiments. Seme recent
work, by Flora and Goldschmidt {9] indicates that this type
of shift may be not so much because of Reynolds number

differences, but rather because of differences in initial
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Figure 2.3, Comparison of axial decay data of Heskestad [7]
with that of Albertson, et al., [8].
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TABLE 2.1

THE TWO~DIMENSIONAL JET-INTO-STILL~AIR

Momentum
" —4 Slot Aspect Maximum /L Check,,
Experimenter Ref. Year Re™ x 10 Ratio x/h max Percent

Forthmann® 3 1934 7.1 20 25 1.25 -
van der Hegge
Zijnen 2 1949 1.33 20 40 2.0 4
Albertson, Dai,
Jensen, and Rouse 8 1950 0.17-1.33 288-2300 2000 0.87 10
Reichardt® 3 1951 2.4 21 100 4.77 -
Miller and Comings 6 1958 1.78 40 40 1.0 4,25
Nakaguchi® 3 1961 0.9-1.6 133 100 0.75 -
Olson® 3 1962 0.9 12 16 1.33 -
Knystautas® 3 1964 0.7-1.3 98-195 350 3.57-1.79 -
Gartshore® 3 1965 1.7 167 200 1.20 -
Heskestad 7 1966 3.4 120 162 1.35 6
Prosser and Fisher 10 1966 - - 16 - -

2pagsed on slot height, h.

bMaxim.um deviation, percent of average.

CSummarized in Newman [3].
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turbulent intensity. Presumably this would also explain why
there is less difference between the Re = 0.17 x 104 and the
Re = 1.1 x 104 measurements of Albertson, Dai, Jensen, and
Rouse [8] than between their Re = 1.1 x lO4 results and
Heskestad's Re = 3.4 x 104 results.

An interesting point raised by Figure 2.3
involves the fact that the curves shown will collapse
together if plotted versus x/xc rather than x/d, providing
that S the potential core length, is obtained by

1/2 to the line

extrapolating the line Uc/Uj « (x/d)"
Uc/Uj = 1.0. This implies that the effect of the condi-
tions at the origin of mixing is felt at least as far down-
stream as 100 slot heights.

The important parameters of the available two-
dimensional jet-into-still-air experiments are given in
Table 2.1. Some of these experiments have not been
included iﬁ the discussion which follows; the data are from
Newman [3] and are included here for completeness. One
item from this table worthy of note is that although the
decay measurements of Albertson, Dai, Jensen, and Rouse [8]
are carried down to x/h = 2000, the slit width used is so
small that xmax/L remains less than 1. Most of the measure-
ments can be seen to fall within the two-dimensionality
requirement described by van der Hegge Zijnen [2] with the

exception of those of Reichardt and of Knystautas, both

reported by Newman [3]. It can also be seen from Table 2.1
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that the Reynolds number range of the measurements is quite
small, with only the measurements of Forthmann, reported by
Newman [3] and Heskestad [7] being at a substantially
different Reynolds number than the others.

Two of the experiments to be considered in this
section are primarily concerned with mean flow measurements
(as opposed to measurements of the turbulent fluctuations);
these are the experiments of van der Hegge Zijnen [2] and
Albertson, Dai, Jensen, and Rouse [8]. Both of these
experiments involved substantially the same Reynolds number
range, and as would be expected, the axial decay of center-
line velocity data from these two experiments agree quite
well, This is shown in Figure 2.4, in which the axial
range plotted is limited to 1 < x/h < 100. There is some
deviation between the results at Re, = 1.33 x 104 and Re, =
0.53 x 104, but it is not sufficiently greater than the
experimental scatter to be significant. The solid curve
indicates the x 172 decay predicted by similarity con-
siderations.

Both van der Hegge Zijnen [2] and Albertson, Dai,
Jensen, and Rouse [8] indicate that the velocity profiles
obtained became approximately similar for x/h > 20, the
approximation becoming better further downstream. Indi-

vidual profiles are not available from Reference [2]

because of the small size of the figures in that reference.
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It is possible to obtain similar data from Reference [8].
Representative profiles thained from Reference (8] are pre-
sented in Figure 2.5.

Measurements of turbulence intensities are pre-
sented in three of the papers considered. Experiments in
which the turbulent intensity components u' and v' and the
turbulent shear correlation uv were measured in a two-
dimensional jet are presented by van der Hegge Zijnen ([2]}.
These measurements were made in a jet from a 1.0 x 25 cm
(0.394 x 9.84 inch) slot at Uj = 2000 cm/sec (65.6 ft/sec).
Miller and Comings [6] made measurements of the turbulent
velocity fluctuation v', the mean velocity U and the
average static pressure p in a 72 ft/sec jet from a
0.5 x 20 inch slot. From these measurements, v', V, and
the turbulent shear stress v were deduced using the
integral forms of the continuity, x-momentum, and y-
momentum equations. Both van der Hegge Zijnen and Miller
and Comings carried out lateral profile measurements at
several downstream locations; the former at x/h = 17.5, 20,
22,5, 30, and 35, and the latter at x/h = 10, 20, 30, and
40. On the other hand, Heskestad [7] measured the compo-
nents of the turbulent kinetic energy equation (except for
ﬁhe pressure-velocity correlation) as well as u', v', w',
and uv, providing more detail, but at only one station in

the flow, x/h = 101.
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Centerline velocity decay data are shown for these
three experiments in Figure 2.6. As can be seen from Table
2.1, page 24, the Heskestad data are at a jet exit Reynplds
nuuwer of 3.4 x 104, which is about twice the Reynolds
number for the other two cases. As would be expected from
the previous discussion of the persistence of the effect of

=172 passed

the initial conditions, lines of Uc/Uj © X
through the data exhibit a quite obvious shift with jet
exit Reynolds number. The x-l/2 proportionality is that
demanded by conservation of momén£um under the assumptions
of similar veloc;ty profiles and linear spread rate; both
of these assumptions are borne out by the experimental data
under consideration.

Figqures 2.7, 2.8, and 2.9 compare, respectively,
profiles of u'/U, , v'/U, , and T/pU2(= |EV|/U§) versus the

nondimensional lateral coordinate n,

where x is the virtual origin length. This quantity arises
from the classical model of a jet flow, in which the flow is
characterized as emerging from a point source. To relate a
real flow to this classical model, it is necessary to define
a point, usually upstream.of the actual physical origin of
the jet (although it can also be downstream) from which an
equivalent point source jet would have issued. This is

usually accomplished by extrapolating the observed
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Figure 2.7. Axial turbulent intensity variation, 2D jet-
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Figure 2.9. Turbulent shear stress variation, 2D jet-into-
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downstream rate of spread back to the point of zero thick-
ness. There are two profiles in each case for the van der
Hegge Zijnen [11] measurements, one representing his
"corrected" data and the other his "uncorrected" data. His
correction brings the measured turbulent shear stress level
up to that obtained by integration of the mean flow velocity
profiles. Both the van der Hegge Zijnen measurements and
those of Miller and Comings [6] were made at x/h = 20;
Heskestad's measurements were at x/h = 101. If similarity
exists for the turbulent intensity and shear profiles by
x/h = 20, all of the curves (excepting possibly the van. der
Hegge Zijnen "uncorrected" casé).should coincide. Looking
at the u'/U_ , v'/U, , and IEVI/Ug plots (Figures 2.7
through 2.9), it seems that complete similarity does not
exist by x/h = 20. This of course agrees with Heskestad's
conclusion. It must be noted in considering these figures
that the only one of the three quantities depicted that was
actually measured by Miller and Comings was u'/Uc , and that
the data of van der Hegge Zijnen can be obtained from the
curves of Reference [1l] only with great difficulty (and
probably great error), because of the small size of the
figures presented.

From Figures 2.7 through 2.9, it appears that the
data of Miller and Comings [6], obtained with a minimum of
measurements, agree fairly well with that of Heskestad.

There is, however, an alternate way of coﬁparing these
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experiments. It has been shown in Reference [12] that an
approximate linear relationship exists between the turbulent
shear stress, T = puv, and the turbulent kinetic energy per

2 + w'2] over a wide range of

unit mass k = l/2[u'2 + v!
experimental conditions. This relationship can be expressed

as
T = alpk (2.2)

where ay is approximately constant over a portion of the
flow field, but approaches zero on the centerline and at the
outer edge. If the data shown in Figures 2.7 through 2.9

are used to obtain

2
1:/pUc

2
k/Uc

a; = (2.3)
as a function of n, Figure 2.10 results. From Figure 2.10,
it can be seen that both the uncorrected and the corrected
van der Hegge Zijnen data agree well with the Heskestad
data (the corrected better than the uncorrected), while the
data of Miller and Comings deviate strongly, particularly
for the large n. Because both van der Hegge Zijnen and
Heskestad made independent measurements of both turbulent
intensities and the turbulent shear stress, while Miller
and Comings did not, the deviation shown. in Figure 2.10
indicates that the latter data should be treated witn some

suspicion.
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Figure 2.10. Ratio of turbulent shear stress to turbulent
kinetic energy, 2D jet-into-still-air.
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Before leaving the subject of the two-dimensional
jet into still air, one further experiment should be
mentioned, although it does not add anything further insofar
as experimental information is concerned. This is the
investigation into the structure of a two-dimensional jet
carried out by Csanady [13]. Primarily aimed at the problem
of jet noise suppression, it is one of a number of analyses
which look for relationship‘s between the sound produced by a
jet and the turbulent intensity in the jet. Of greatest
interest to the present report is Csanady's conclusion,
based on his own experiment and others', that the produc-
tion, diffusion, and dissipation of turbulent energy may be
expressed in terms of an eddy viscosity, eddy diffusivity
of turbulent energy, and a turbulence microscale: respec-
tively, all being constant for a given cross-section. This
conclusion is of some importance to the application of the

turbulent kinetic energy method to free turbulent mixing.

The Two-Dimensional Mixing Layer

The ideal two-dimensional mixing layer is a
hypothetical flow which can be visualized as .occurring when
a uhiform semi-infinite stream, initially separated from a
region at rest by an- infinitesimal divider, mixes with a
stagnant region. Then at x = 0, Figure 2.11 (a), a mixing
region develops and propagates into both the stream at rest
and the moving stream. Since boundary layer development on

the dividing plate is unavoidable, the ideal two-dimensional
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Figure 2.11. Types of two-dimensional mixing lavers.
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mixing layer can in practice only be approximated. There
are a number of different ways in which the approximation
can be done. Four different approaches to it are described
in this section.

The flow from the edge of a boundary layer bump,
as shown schematically in Figure 2.11 (b}, will approximate
a two-dimensional mixing layer for a part of the distance
down to where the separated boundary layer reattaches to the
plate. Such a flow has been experimentally investigated by
Mueller [14]. Another approximation with some of the
characteristics of the configuration of Mueller is the flow
of a boundary layer into a cavity, as shown schematically
in Figure 2.11 (c). In both of these flows there is a
characteristic ratio, step height/distance to reattachment
(h/2) in Figure 2.11 (b) and cavity height/cavity width
(h/b) in Figure 2.11 (c), which determines to some extent
the behavior of the flow; in both cases there also exist
vortices (one or more) in the flow below the mixing region.
Because of the existence of these vortices the mixing iayer
is not actually interacting with a stagnant flow. Haugen
and Dhanak [15] have investigated the free mixing portion of
a cavity flow in some detail.

Somewhat better approximations to the ideal two-
dimensional mixing layer are provided by the next two flows
to be considered. The mixing layer at the edge of an

axisymmetric jet flowing into still air will approximate a

41



AEDC-TR-71-36

two-dimensionai mixing layer as long as the jet radius
is sufficiently greater than the mixing layer thickness, §,
as shown in Figure 2.11 (d). Such a configuration was
investigated by A. J. Chapman [16]. Finally, the closeqt
approximatiop to the ideal mixing layer flow is achieved in
the first regime of a two-dimensional jet. By dividing the
jet with a splitter plate and investigating one side of the
first regime, the "half jet" flow, investigated by Liepmann
and Laufer [17] is formed. Such a flow is shown schemati-
cally in Figure 2.11 (e).

In the ideal flow there can be no characteristic
Reynolds number, as there is no characteristic dimension of
the flow. On the other hand, in the real flows a charac~-
teristic dimension might be taken to be the boundary layer

thickness at the start of the free mixing process, § , and

o
a characteristic Reynolds number defined. It is observed
for the two-dimensional mixing layers formed in the first
regime of both two-dimensional [17] and axisymmetric [18]

5 the

jet that by an x-Reynolds number (ij/v) of 3.5 x 10
velocity profiles have become fully developed; that is that
the measurements collapse together when U/Uj is plotted as
a function of n = y/x. Based on the assumption of similar
velocity profiles, it is shown in Reference [17] that the

spreading rate of the two-dimensional mixing layer is linear

with distance.
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The separated boundary layer flow of Mueller [14]
‘and the cavity flow of Haugen and Dhanak [15] have certain
superficial similarities, as described above, and thus they
will 'be discussed together. Mueller measured the turbulent
fluctuations u' and v' and the shear stress correlation uv
in a flow configuration such as that sketched in Figure
2.1; (b), page 40. .For a step height of 0.75 inch corre-
sponding to a Reynolds number Re, = 3.6 x 104, he was able
to achieve fully developed turbulent mixing in the free
mixing layer.2 Mueller also experimented with step heights
of 0.5 and 0.25 inch. Presumably these did not produce
free mixing layers long enough for fully developed mixing
to occur. The boundary. layer thickness at the point of
departure from the edge of the step was of the order of
0.75 inch, so that the Reynolds number based on initial
boundary thickness was also 3.6 x 10%. The length £ to
reattachment wés 5.15 inches.

Haugen and Dhanak [15] investigated the flow into
a cavity, such as sketched schematically in- Figure 2.11 (c).
Their apparatus enabled them to adjust both the cavity width
b and the initial boundary layer thickness 60. Measurements

were made of the fluctuating velocity component in the

2However, even at the point of reatgachment,
x/h = 6.8, the x-Reynolds number is 2.48 x 10°, somewhat
lower than the Reynolds number required for a fully
developed profile as described by Liepmann and Laufer [17]
and Bradshaw, et al., [18].
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x-direction, u', and the turbulent shear stress uv. These
measurements were made at x/b = 0.50, so that with a cavity
width b of 2.50 inches, Re, = 6.63 x 10%, which is far below
the apparent requirement for a fully developed profile.

The turbulence intensity measurements made by
Mueller [14] indicate that in this configuration
v'/U = 2 u'/U. It is unlikely that the unmeasured fluctua-
tion component w'/U would also be twice u'/U, so that for

these data the following assumption has been made: For

Mueller's data

k _ 1l . ,u'.2 v', 2 w', 2
—2-—5[(U—) + (U—') + (U—') ]

HH

l,,w,2 v',2 u',2
5[(5) + (U—') + (ﬁ—) ]

Fo? + (392 (2.4)

N

o

Because Haugen and Dhanak [15] use somewhat the same con-
figuration, but measure only u'/U, the following assumption

is made:

L l.' 2 2u',2 u', 2, _ u', 2
x -i-[(u—-) + (T + (U—') ]l = 3(3—) (2-.5)

<47

Under these assumptions, calculations of k/U2 and EVVUZ =

--i'/pU2 result in Figure 2.12, which indicates that the
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Haugen and Dhanak [15].
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average value of a; = T/pk may be somewhat less here than it
is for other configurations, such as the two-dimensional jet
into still air, and as will be seen, axisymmetric jets and
wakes. However, the experimental scatter and the assump-
tions necessary to obtain Figure 2.12 preclude reaching any
detailed conclusion from these data. Further, the extremely
lafge values of k/U2 measured by Haugen and Dhanak, which
arise from values of u'/U of 0.6 or more, cast serious
doubts on the accuracy of these measurements.

Chapman [16] experimentally investigated the
approximately two-dimensional mixing layer, unbounded on
both sides, found in the first regime of a circular free
jet. This configuration is similar to Figure 2.11 (d),
page 40. The jet diameter for most of his tests was 2.50
inches (63.5 mm). Various lengths of nozzle section,
ranging from ¢ to 65 mm were used to generate different
initial boundary layer thicknesses and different exponents
for the assuﬁed power-law variation of velocity profile. Of
the sixteen different experiments, with different initial
thicknesses 60 and exponents m,3 nozzle exit boundary layer
data are given for three and velocity ratio plots at several
downstream locations for five. Only two of the initial
boundary layer plots are for tests for which the downstream

data are given. Tests for which velocity profile data are

*n is defined by the equation U/Uo = (y/Go)l/m.
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available are summarized in Table 2.2. All profiles are
presented by Chapman in transformed coordinates, U/Uo versus
n = Ay/x where A is a constant, x is a coordinate measured
along the free streamline, and y is a coordinate normal to x.
Sufficient information to convert to physical coordinates is
given only for the m = 4.0 and m = 7.0 cases. Chapman-
encountered difficulty in converting the other cases, with
large discrepancies appearing between the theoretically
predicted conversion factor and the one necessary for good
agreement with experimental data. One possible explanation
for some of these discrepancies is apparent in Table 2.2.

If one very crudely relates the two-dimensionality of the
flow to the error resulting from assuming that the flow

area per unit length (circumference) is simply §, the mixing
layer thickness, it is quickly shown that the fractional
error involved is of the order of §/D, where D is the jet
diameter. From Table 2.2 it can be clearly seen that this
ratio is substantial, for all but the m = 7.0 case, even at
the initial station, indicating that the assumption of two-
dimensionality for this flow is not particularly good.
Interestingly enough, momentum checks (made without assuming
two~dimensional flow) for the two cases which can.be con-
verted to physical variables indicate that the more nearly

two~dimensional flow measurements are also quite accurate.
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TABLE 2.2

TESTS FOR WHICH VELOCITY PROFILE DATA ARE GIVEN; A. J. CHAPMAN [16]

Initial

Jet Velocity § Axial Stations for Velocity Boundary Momshtym Check
U_ (cm/sec) o § /D Profile Data, x/§ Layer Percent of
(o} (mm) o/ 75 m ! o Profile? Average

4520 7.4 0.1l6e 2.3 0.95, 2.7, 4.7, 7.4 yes -

4700 7.4 0.l116 3.0 3.0, 7.0, 13.8 no -

4650 9.5 0.150 4.0 1.6, 3.2, 6.4, 10.75 yes 4.77

4370 10.0 0.158 5.0 2.0, 4.0, 6.0, 8.0 no . -

65502 3.0 0.068 7.0 2.0, 3.3, 4.7, 9.7 no 0.37

qused 0.875 inch

(22.2 mm) nozzle exit.
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Velocity profiles for the m = 7 case and the m = 4 case, con-
verted to physical variables, are presented in Figures 2.13
and 2,14, respectively.

The two-dimensional half jet experiment of
Liepmann and Laufer [17] was a configuration such as that
sketched in Figure 2.11 (e), page 40. Such a configuration
is, with the closely similar first regime of a two-
dimensional jet (the half-jet being as the name implies
half of the two-dimensional jet), the closest approximation
to the ideal two-dimensional mixing layer attainable. The
reason for the dividing piate which reduced the configura-
tion to a half-jet is, according to Liepmann and Laufer, to
reduce the influence of any draft in the room on the half
jet and improve its two-dimensional character. Csanady
[13] , however, cautions that it is conceivable that the
presence of the divider could introduce a somewhat different
large-eddy pattern to the flow than might be the case
without it; however, Csanady's analysis indicates that even
if so this would not introduce a significant influence.

In Liepmann and Laufer's apparatus the jet emerged
from a 7.5-inch by 60-inch slot, for an 8:1 aspéct ratio, at
59 feet per second. The boundary layer- at the end of the
slot was- laminar, 0;1 cm thick; the mixing layer underwent a
transition to turbulent flow at x ~ 6 cm and became fully-
developed (based on velocity profile similarity) for

X ~ 30 cm, or at a length Reynolds number of 3,7 x 105. The
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Figure 2.13. Mean velocity profiles, 2D mixing layer,
Chapman, test 5.
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result that the flow was fully-developed at Re, = 3.7 x 10°

was confirmed by Bradshaw, et al., [18] in the first regime
of a circular jet.

Liepmann and Laufer presented mean velocity pro-
files, distributions of the longitudinal and lateral
components of the fluctuating turbulent velocity, and of
the turbulent shear, and distributions of correlation
coefficients and terms of interest in the kinetic energy
equation, at three axial stations: x = 30, 54.3, and 75 cm.
All distributions were presented with the lateral.coordinate

y nondimensionalized by 6, where

U U
6 = f—(l - =) dy (2.6)
UO UO

== 00

is the momentum defect thickness at the axial station. The
exception was the mean velocity, which was presented both as
a function of y/6 and of y. During the course of the
present investigation, © was evaluated and the values
obtained are given in Figure 2.15 along with a comparison of
the velocity profiles obtained from the nondimensional
profiles and the profiles given as a function of the
physical variable y by Liepmann and Laufer.

The linear relationship between turbulent shear
and turbulent kinetic energy demonstrated in Reference [12]
is well supportea by this data, as shown in Figure 2.16,

while a profile of the parameter a, versus the lateral
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Figure 2.16., Relation between turbulent shear stress and
turbulent kinetic energy, 2D mixing layer.
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coordinate qualitatively similar to those already seen for
the two-dimensional jet is also obtainéd. This is shown iﬁ
Pigure 2.17. Results of the evaluation of the momentum
deficit integral for this experiment indicate that these
measurements achieved a good level of accuracy; the maximum
deviation in the integral momentum deficit is 2.4 percent of
its average value.

. Liepmann and Laufer compared the hot-wire shear
stress profiles they measured with shear stresses calculated
using an integral technique and assuming an error-function
velocity profile, which is in good agreement with their
experimental results. W. L. Chow [l9] repeated these
calculations, using the same form for the velocity profile
and the same method for evaluation of the constants involved
as Liepmann and Laufer used, and found that the latter work
was in error. Furthermore, Chow stated that the value of
the constant of integration chosen by Liepmann and Laufer
was based on incorrect physics; the turbulent shear stress
does not have its maximum at the inflection point of the
profile for an error function profile. Figure 2.18 illus-
trates the results obtained by Liepmann and Laufer and by
Chow, in comparison with the experimental data. It should
be noted that discrepancies between the measured turbulent
shear stress and that obtained from the mean flow profile

are encountered in nearly every turbulent flow experiment.
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The Circular Jet

The largest single group of experiments in free
turbulent mixing is that concerned with the circular jet
into still air, as this configuration is probably the
easiest to realize experimentally. In general, the flow
resembles the two-dimensional jet into still air already
described. As shown in Figure 2.19, the flow can be divided
into two major regimes, coupled together by one transition
regime and separated from the nozzle by another transition
regime. This first transition regime, in which the turbu-
lent structure changes from a boundary-layer character to
that of a free mixing layer, is usually small compared with
the nozzle dimensions, probably comparable in length to the
thickness of the boundary layer at the exit of the nozzle.
It is followed by a quasi-plane mixing layer in which the
flow is self-preserving, and velocity and intensity profiles
are geometrically similar when plotted against
(n=y - ro)/x [18). This regime is called "Regime I" on
Figure 2.19. Departures from similarity begin as the
thickness of the mixing layer becomes an appreciable frac-
tion of the nozzle radius, and the flow enters a second
transition region. Some distance downstream a second self-
preserving state is reached. The distance from the nozzle
exit to this region (Regime II in Figure 2.19) is given
variously as 10 diameters [8] to 20 diameters [18];

Wygnanski and Fiedler [20], on the other hand, state that
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"true" self preservation--i.e., geometrically similar pro-
files of not only the mean flow quantities but also the
turbulence intensities and the turbulent shear stress, as
well as Uc/Uj « x_l and lateral width scale proportional to
x--is not reached until more than 70 diameters downstream.
For the purpose of discussion, the beginning of the second
regime will be taken to be at the point where the mean
velocity profiles become geometrically similar! i.e., by
x/D = 20.

As for the two-dimensional jet, there is a scale
effect of the jet Reynolds number which seems to persist
qguite far downstream, as shown in Figure 2.20 taken from
Baines [21]. Newman [3] (see Appendix C), shows that for
the circular jet in still surroundings under the assumption

of similar velocity profiles in the variable

n=r/b

where b is the local width, Uc/Uj « (x/D)-1 and b = x for
self-preservation. It can be seen from Figure 2.20 that

the data of Baines remain shifted as long as these relations
hold. 1Indeed it can be shown {(Appendix B) that under the
assumption of similar profiles the equations for the decay
of mean flow quantities can be written for the circular jet,
as for the two-dimensional jet, in terms of one parameter,
the nondimensionalized core length, xc/D. ;t can also be

shown (as in Appendix B) that for incompressible coaxial
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jets, similar profiles and the equation of conservation of
momentum lead to expressions for the velocity decay con-
taining only the potential core length and the stream
velocity ratio.

This dependence of the downstream decay rates on
the potential core length makes the flow visualization
experiment performed by Binnie [22] of some interest. By
using a jet of a mixture of a solution of iodine in
potassium iodide with a solution of starch, a deep blue
color is obtained. The jet drops through a short airspace
into a tank, filled with a solution of sodium thiosulfate
("hypo"), which instantly removes the color. By this means
the potential core region is selectively visualized.
Although the experiment is flawed by the density dis-
continuity that the jet undergoes in passing from air to
liguid, not to mention the free-surface effects, the obser-
vation that the core ends in a "wagging tail" is of
interest. This may indicate the presence of alternating
vortices at the end of the core. It may also be, as far as
free mixing is concerned, an entireiy spurious effect of the
peculiar geometry used; however, the technique appears to be
worth adapting to a true free mixing flow.

Table 2.3 gives the important parameters for the
circular jet experiments included in this section. All of
the regimes of interest have been investigated, with the

exception of the first transition regime. Diameter Reynolds
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TABLE 2.3

THE CONSTANT-DENSITY CIRCULAR JET INTO STILL AIR

" D Momentum
j 3j Re A Maximum Check.b
Investigator Ref. Year £t/sec in. x10-4 x/D Percent
Corrsin 23 1943 32.7 1.0 1.75 40 35 at x/D=40
Hinze and van der
Hegge 2Zijnen 24 1949 131.0 1.0 6.7 40 -
Baines 21 1950 - - 2.1 58 -
- - 7.1 60 -
Albertson, et al. 8 1950 102.5 1.0 5.45 65 <10 at x/D=60
165.0 0.5 4.38 120 (author's
170.0 0.25 2.26 250 measurement)
Corrsin and c
Uberoi 25 1950 65-115 1.0 3.4-6.1 25 <10
Taylor, et al. 26 1851 3%0.0 0.9 18.6 31.5 < 4
Alexander, et al. 27 1953 49.0 0.898 2,33 30 -
57.0 2.71 30 -
92.0 4.38 30 -
104.0 4.95 . 30 -
177.0 8.43 30 -
363.0 17.25 30 <4 at x/pD=109
403.0 19.18 30 -
803.0 38.22 30 -
Davies, et al. 28 1963 (M=0.2) 1.0 - 10 -
Bradshaw, et al. 18 1964 (M=0.3) 2.0 35.0 7.5 <1 at x/D=7.5
Sami 29 1966 35.0 12.0 22.0 10 5 at x/D=10
Wygnanski and .
Piedler 20 1969 236.0 1.04 13.0 87.5 7 at x/D=45e
167.0 9.24 97.5 8 at x/D=97.5€

aReynolds number based on jet diameter, Dj'

bMomentum check in maximum percent deviation from average.
Ccalculated using similarity expressions and measured width.
dAuthor's measurement.

o sets of curves, one 30 < x/D < 50, second 60 < x/D < 97.5.
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4 to 3.8 x 105, with measurements

numbers range from 2.3 x 10
being carried to 250 diameters downstream. Axial and radial
distributions of the mean flow velocity have been obtained
by a number of investigators, as summarized in Table 2.3.
Centerline velocity ratio decay data taken from these
experiments are summarized in Figure 2.21, from which it can
be seen that all of the experiments adhere fairly closely to

1 as demanded by con-

the family of curves Uc/Uj « (x/D)"
servation of momentum under the assumption of self-
preservation of velocity profiles. The two lines drawn
indicate the limits of nozzle  exit Reynolds number
encountered in these tests. It can be seen that the length
of the velocity potential core increases with increasing
Reynolds number. This curve does not, however, take into
account the effects of turbulent intensity level at the
nozzle exit, as these data are not generally reported.
Changes in the level of turbulent intensity at the jet exit
may also have an influence on the length of the potential
core, as described by Flora and Goldschmidt [9].

The experiments of Taylor, Grimmett, and Comings
[26] are reported in terms of the ratio of the square root
‘0of the momentum flux density to the density\/zaiyp, rather
than the normally reported velocity. This is due to
qguestions that arise when a total head tube is used in a
turbulent flow concerning the effect of instantaneous turbu-

lent velocity fluctuations on the pressure reading. In an
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Figure 2.21. Axial decay of centerline velocity ratio,
circular jet-into-still-air.
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incompressible flow if the instantaneous velocity is written
as the sum of an average velocity U and a fluctuating

velocity u (whose time-average is zero), one has

U=TU+u

80O

u2 = T2 + 20u + u?

Taking the time average
2 _ =2 o= 2 =2 2
U u

U = + 20u + v = 0° +

Thus, in incompressible flow, p = p and

pU = p T° + p (2.7)
so that
ou? = 5 T?

Equation (2.7) implies that the reading of a total head tube
will increase with increasing turbulent intensity. However,
as reported by Hinze [30, page 135], when this effect was
investigated by Alexander, Baron and Comings [27], they
found that the total head tube reading decreased markedly
with increasing relative turbulent intensity. Because of
observations such as this, and the fact that from Equation

(2.7)
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002 = 5 T2IL + (u2/T2)] (2.8)
so that for
1/_7
u'/uU =\yu“ /U = 0.2
2 2

pU“ = 1.04 pU

the deviation of the total head tube reading caused by
changes in turbulent intensities are commonly ignhored.

Hinze and van der Hegge Zijnen [24] present their
data both in uncorrected form and using a correction similar
to Equation (2.8) with intensity data taken from Corrsin
[23]. There is no significant difference between the
results, particularly at the scale represented by the
figures in Reference [24]. In addition to measuring the
momentum flux in the jet, they also made measurements of
temperature distribution in a jet heated to approximately
30°C above the surroundings, and mass transfer measure-
ments in a jet seeded with town gas at an initial concen-
tration of one percent by volume. These measurements
indicate that heat and mass mix appreciably faster than
momentum, and that the rates of spread of temperature and
concentration are equal. They find that the temperature
spreading-rate is slower than that reported by Corrsin [23];.
however, the accuracy of the experiments of Reference [23]

must be seriously questioned, as will be discussed below.
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Albertson, Dai, Jensen, and Rouse [8] measured the
axial decay of centerline velocity in a circular jet down to
250 diameters from the jet exit. Data taken from their work
are shown in Figure 2.22, from which it can be seen that

these data follow the "x-l

" decay characteristic of flows
with similar profiles quite well.

Alexander, Baron, and Comings [27] measured center-
line velocity ratio decays for a 0.898 inch diameter jet
over the Reynolds number (based on jet diameter) range from
2.3 x 104 to 3.8 x 105. In their experiments their pitot
pressure measurements were assumed to represent the quantity
;Ef; in the following discussion, the assumption U = 3577;
has been made, which from the work of Hinze and van der
Hegge Zijnen [24] introduces very little error, especially
on the centerline. Table 2.4 lists the centerline velocity
ratios measured by Alexander, Baron, and Comings for seven
tests in the Reynolds number range listed above. These data
are plotted in Figure 2.23, in which straight lines repre-

senting the relation U/U  « (x/D)_1

have been drawn through
the data. The intersections of these lines with the line
Uc/Uj = 1 defines the length of the potential core. These
data have been used in this study to obtain an empirical
relation for the core length as a function of jet Reynolds

number, which is given by

o

=S = 2.13 (Re)?"0%7 (2.9)

o
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Figure 2.22, Axial decay of centerline velocity ratio, data
of Albertson, Dai, Jensen, and Rouse [8].
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VELOCITY DECAY

TABLE 2.4

DATA FROM REFERENCE ([27]

ﬁ;TEE/sec) 49 57 92 104 177 403 803
ReD(x10'4) 2.33 2.71 4.38 4.95 8.42 19.18 38.22
T/T,

x/D

10 0.620 0.608 0.556 0.567 0.664 0.683 0.716
12 0.521 0.510 0.477 0.484 0.559 0.585 0.604
14 0.449 0.440 0.422 0.424 0.484 0.509 0.527
16 0.392 0.383 0.374 0.379 0.431 0.445 0.465
18 0.346 0.338 0.331 0.334 0.389 0.396 0.414
20 0.315 0.307 0.298 0.302 0.346 0.352 0.370
25 0.249 0.243 0.231 0.237 0.272 0.274 0.288
3p 0.210 0.202 0.202 0.200 0.226 0.232 0.237
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A comparison of the core lengths predicted by Equation (2.9)
with those obtained from the experimental data in the same
manner is presented in Table 2.5; in all but one case the
empirical relation comes within 10 percent of the actual
core length and it is generally considerably better.

This empirical correlation can be carried one step
further. Baines [21] and Albertson, et. al., [8] show that
under the assumption of similar velocity profiles and linear

spreading rate, conservation of momentum leads to the result

Uc .
T 1 for x < xc
]
> (2.10)
U X
c . _<
ﬁ: =z for x > xc J
o
Combining (2.9) and (2.10),
S o1 for £ < 2.13 (rey)0-0%7 |
Uj D - “° d
? (2.11)
Uc
= == 0.097 X -1 /

These relations are also derived in Appendix B. Figure 2.24
shows a comparison of these relations with one set of the

experimental data of Reference [27]. It should be noted that
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TABLE 2.5

COMPARISON OF CORE LENGTH PREDICTIONS

Turbulence x_/D k /D
Intensity, Re x10_4 c c Error
Investigator Ref. Percent D Predicted Measured Percent?
Baines 21 0.008 7.0 6.35 7.0 10.0
0.004 7.0 6.35 6.05 5.0
0.008 3.0 5.85 6.05 3.33
0.004 3.0 5.85 -5.60 4.46
Corrsin 23 0.005 1.75 5.4 5.6 3.56
Hinze and van
der Hegge b
Zijnen 24 n.a. 6.7 6.25 6.5 3.85
Taylor, et al. 26 n.a.P 1.86 5.45 6.5 15.8
Albertson, b
et al. 8 n.a. 5.45 6.2 6.2 0
Corrsin and b
Uberoi 25 n.a. 3.55-6.1 5.9-6.3 6.5 3.1-9.25
Wygnanski and b
Fiedler 20 n.a. 9.24 6.6 6.4 3.2

aPercent of measured value.

b,

n.a." indicates data not reported.
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Figure 2.24, Comparison of empirical relation with axial
velocity decay data of Alexander, et al., [27].
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equations such as (2.l1ll) are unable to represent the actual
centerline decay behavior in the transition region from
X/D = 2 to about x/D = 10.

Similarity of mean velocity profiles is always
observed in the circular jet into still air. Fornlarge
x/D, these profiles take on a self-preserving shape
becoming a function only of the self-preserving coordinate
r/x. Figure 2.25 provides an example of the shape of the
veloéity profile encountered.

Axial mean velocity decay data from three experi-
ments concerned with measurements of the turbulence
structure are shown in Figure 2.26. The axial decay curve
for the data of Baines [21] is also shown. The convergence
of the data of Wygnanski and Fiedler [20] and that of
Baines [21], despite the wide variation in jet exit Reynolds
number, is not easily explained. The turbulence intensities
(u'/U) at the jet exit were reported by Wygnanski and
Fiedler to be 0.001 and by Baines to be 0.004. 1If, as
reported by Flora and Goldschmidt [9], the effect of
increasing turbulence intensity is to enhance the mixing,
decreasing the length of the potential core, while by
Equation (2.9) the effect of increasing jet exit Reynolds
number is to increase the length of the potential core, one
would expect the data of Wygnanski and Fiedler to be con-
siderably shifted relative to that of Baines. It must be

noted that the effect of either the jet exit Reynolds number
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Figure 2.25. Velocity profiles in the fully-developed
region, from Wygnanski and Fiedler (20]: circular jet,
Zero secondary.
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or the initial level of turbulence intensity on the length
of the potential core is very incompletely understood.

It can clearly be seen from Figure 2.26 that the
axial decay data of Corrsin deviate markedly from the' trend
established by all of the other data for this configuration.
This deviation is consistent with the fact that the
momentum integral is not satisfied for this flow. Table 2.6
below lists in detail the results of the calculation of the

parameter M, where

o 3

TABLE 2.6

MOMENTUM INTEGRAL RESULTS FOR
DATA OF CORRSIN

X/D M
5 0.5304
10 0.7223
20 0.4118
30 0.3652
40 0.2995

The values of M shown in Table 2.6 were calculated using the

measured velocity profiles of Reference [23]; the continual
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decrease in the value (which to satisfy the criterion of
conservation of momentum should be constant) agrees with the
data of Figure 2.26 which show a continual decrease in the
value of U/Uj on the centerline for the Corrsin data com-
pared to other available data for this flow.

Further evidence of the existence of this
discrepancy is shown in Figure 2.27 which compares with the
axial turbulent intensities measured by Corrsin (23] with
those measured by Corrsin and Uberoi [25] in a similar
apparatus. The investigation of Corrsin and Uberoi was
priparily concerned with the flow of a highly-heated jet
into still surroundings; however, some check data were taken
in a one inch jet with only a small temperature difference
(15°C). These latter data were used in constructing Figure
2,.27. Comparison of the original Corrsin data with that of
Corrsin and Uberoi shows that there is substantial dis-
agreement, despite the similarity of conditions and axial
position. If, however, the value of the centerline velocity
ratio is adjusted from the value of 0.255 measured at
x/D = 20 by Corrsin, to the value of 0.33 measured at
x/D = 20 by Corrsin and Uberoi (whose data satisfy the
criterion of the constancy of the momentum integral to
within ten percent--Table 2.3, page 65), the curve labeled
"corrected Uc“ on Figure 2.27 is obtained. This curve is
seen to provide much better agreement with the data of

Corrsin and Uberoi.
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Figure 2:27. Comparison of measurements of axial turbulent
intensity, data of Corrsin [23] and of Corrsin and
Uberoi [25].
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Two of the turbulence structure experiments were
concerned primarily with the first regime of mixing--those
of Davies, et al., [28] (also Davies [31]) and Bradshaw
et al., [18]. The first of these is primarily an investi-
. gation of the noise production of a turbulent jet and hence
provides little experimental information of interest in this
study. The description provided by Davies, et al., [28] of
the flow in the first regime is however of some interest:
. « « there is an initial zone in which the turbu-
lence intensity grows rapidly. The extent of this
is only a few inches and depends on the dimensions
of the boundary layer flow at the jet orifice.
Beyond this is a region extending well past the end
of the potential core in which the intensity is
constant and the flow is in equilibrium. . . .
The present results indicate that a . . . self-
preserving region extends from eight or so
diameters to close to the jet orifice. . . .
Two points are of interest in this description. One is that
a self-preserving region exists well past the end of the
first regime (the length of the potential core in this
experiment was 4.5 diameters) through the transition region
and into the second regime. The other is the description of
an "initial zone in which the turbulent intensity grows
rapidly." This phenomenon will be encountered again in the
study of the developing wake flow behind a flat plate.
An investigation of the same flow region, from
x/D = 0 to x/D = 7.5 was performed by Bradshaw, et al.,
[18]. In this case profiles of the three components of the

turbulent intensity and the turbulent shear stress were

measured at three stations: x/D = 2, 4, and 7.5. Sami [29]
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performed a detailed study of this region, measuring at
axial locations x/D =1, 3, 6, and 10, all three intensity
components, the turbulent shear stress, and all of the terms
encountered in the turbulent kinetic energy equation except
the pressure-velocity correlation. A not completely
successful attempt was made to measure this quantity also.
Sami's work thus complements that of Bradshaw, et al., [18]
and extends it somewhat farther into the second regime.
Results of these two experiments will be seen to agree quite
well.

The detailed experiments of Wygnanski and Fiedler
[20] may well be the most significant of this section. 1In
these experiments a linearized constant-temperature hot-
wire anemometer was used to probe the flow in the "truly
self-preserving" region of a jet into still air. The "truly
self-preserving" region is that in which not only the mean
velocity profiles but also the turbulent intensity profiles
exhibit self-preservation. In addition to measuring
profiles of the turbulent intensities and shear stress, as
well as the spectral quantities and distributions of the
terms of the turbulent kinetic energy equation, Wygnanski
and Fiedler critically examined the assumptions underlying
the use of hot-wire anemometry. This examination may have
solved one of the most vexing problems in the use of hot-
wire anemometry, which is the apparent inability of the hot-

wire anemometer to accurately measure the level of the
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turbulent shear stress as compared to values of the turbu-
lent shear stress obtained from the mean-flow velocity and
density profiles.

The apparent inability of the hot-wire anemometer
to measure accurately the turbulent shear stress level has
been mentioned before and will be encountered in later
discussions. Most commonly this discrepancy arises when the
measured turbulent shear stresses are compared with those
calculated by integration of the mean flow velocity profilé
(see for example, Reference [24]), but it has also appeared
in the comparison of measurements made by two or more
methods. Thus Jezdinsky [32] in comparing the results
obtained from hot-wire probes and pressure probes of a novel
design in the same flow, finds that the hot-wire measurement
of the turbulent intensity is lower than the pressure-probe
measurement by 10 percent and the discrepancy in shear
stress is 13 percent in the same direction. Wygnanski and
Fiedler [20] attribute this type of error to low-frequency
response errors in the hot-wire equipment previously used.
Their results indicate that if the hot-wire signal is
clipped at 2 Hz, an error of 27 percent will result in the
measurement of :7 with corresponding errors in the other
guantities. It should be noted here that the turbulent
shear stress profiles are measured using a x-wire array,
which is also used to obtain the intensity profiles, by

appropriate manipulation of the hot-wire output signal.
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Thus, if as Wygnanski and Fiedler indicate, errors are
encountered due to electronic clipping of the signal, it
would be expected that these errors would be found in all
components of the turbulence measured. The error in the
shear stress measurement would be the most obvious, as this
quantity, unlike the turbulent intensities, can also be
obtained from mean-flow measurements. The fact that, given
the Wygnanski and Fiedler hypothesis, similar errors would
be made in all turbulence components as well as in the
turbulent shear stress measurement is of obvious importance
in the interpretation of the calculation of the parameter
aj. Wygnanski and Fiedler [20] gquote a comparison 5etween
their measurements of ;7 at x/D = 20 (using a correlator of
their own design tested for linearity to 0.05 Hz) and those
of Corrsin and Uberoi [25] at the same point (using equip-
ment whose frequency response was not tested below 7 Hz):;
the measured values of Corrsin and Uberoi are 25 percent
lower than those of Wygnanski and Fiedler. Further results
obtained by Wygnanski and Fiedler using "standard"
equipment--linear response to 5 Hz--showed ;7 profiles
"gsignificantly lower" than those measured with the equipment
linear to 0.05 Hz and thus in better agreement with the
Corrsin-Uberoi data.

In an attempt to investigate this result further,
Table 2.7 was constructed from the available data for a

number of configurations. While the evidence is not
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TABLE 2.7

CORRELATION BETWEEN LOW-FREQUENCY LIMIT AND ERROR IN
MEASUREMENT OF TURBULENT SHEAR STRESS

Estimated .

Flow Error in Shear Low Frequency
Investigator Year Ref. Configuration Measurement?® Limit, Hz
Corrsin and
Uberoi 1950 25 Axisymmetric 12%, low 7

Jet
Sami 1966 29 Axisymmetric 15%, low n.a.b

Jet
van der Hegge b
Zijnen 1958 12 Plane Jet 20%, low n.a.
Carmody 1964 33 Wake 308, low n.a.P
Bradbury 1965 34 Plane Jet® 0%, slightly low od
Zawacki and b
Weinstein 1968 35 Coaxial Jets 20%, low n.a.
Wygnanski and
Fiedler 1970 36 Mixing Layer 0%, slightly low 0.05

2In percent of mean flow shear.

b

“Nonzero secondary.

dQuoted as "d.c."”

Indicates data unavailable.
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overwhelming, due to a common lack of information about the
low-frequency limit of the equipment used, there is nothing
in Table 2.7 to contradict the conclusion of Wygnanski and
Fiedler. Clearly hot-wire experiments in which care is
taken to provide linear frequency response to the lowest
limit possible would be of interest in a variety of con-
figurations.

Figures 2.28 through 2.30 compare the measurements
of u'/Uc ’ v'/Uc , and GVVUg made by Corrsin [23], Corrsin
and Uberoi [25] (u'/Uc only), Sami [29], Bradshaw, et al.,
[18], and Wygnanski and Fiedler [20] for the circular jet
into still air. Except in Figure 2.28, Corrsin's data are
shown both in "corrected Uc" and "uncorrected Uc" forms.
Possible corrections to account for low-frequency errors as
described above have not been made; they would not change
the general conclusions. From these figures it is clear
that there is a steady increase in the values of all of
these quantities (over most of the profile) with x/D. Since
if similarity existed for the turbulent componenfé the
curves would collapse together, the conclusions of Reference
[20]) regarding "true self-preservation” seem substantiated.
There is, however, a general similarity of profile shape in
the "grossly self-preserving" part of the second regime, for
x/D > 20.

Figure 2.31 shows that the linear relationship

between turbulent shear stress and turbulent kinetic energy
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Figure 2.28. Axial component of turbulent intensity,
circular jet-into-still-air.
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Figure 2.29. Lateral component of turbulent intensity,
circular jet-into-still-air.
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Distribution of turbulent shear stress,
circular jet-into-still-air.
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Figure 2.31. Relation between turbulent shear stress and
turbulent kinetic energy, circular jet-into-still-air.
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already described, Equation (2.2), is well substantiated by
these data, although there appears to be a drift of the
average value of the parameter a; from a value of 0.3 in the
early part of the second regime to 0.2 in the later part.
Figure 2.32 illustrates that, allowing for some scatter in
these measurements, the parameter a; keeps qualitatively the
same sort of profile throughout the second regime, rising
from zero at the centerline to its peak value around

n = 0.10 and then decreasing slowly. The same behavior is
observed in the two-diﬁensional jet. The measurements of
Bradshaw, et al., [18], at x/D = 7.5, may well be in the
transition region between the first and second regimes; this

may explain the shape discrepancy that these data show.

Summar

The velocity decay predicted by self preservation
considerations for the two-dimensional jet, Uc/Uj « (x/D)-l/2
is closely followed in the second regime of mixing by all of
the two-dimensional jet results investigated. Comparison of
the centerline velocity decay curves over a range of
Reynolds numbers (evaluated at the nozzle exit) indicates
that a definite shift in the curves of Uc/Uj versus x/D
occurs, with the higher Reynolds number results exhibiting

an earlier drop from a unity value of Uc/Uj° This indicates
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Figure 2.32, Distribution of the ratio of turbulent shear
stress to the turbulent kinetic energy, circular jet-
into-still-air.
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that the potential core (or first regime) length decreases
with increasing Re, . Flora and Goldschmidt [9] give

evidence that the potential core length is a function of thé
turbulence intensity at the jet exit, and that this parameter
may indeed be more important than the jet exit Reynolds
number in some circumstances. For the circular jet, for
which considerably more data is available, the data show an
increasing potential core length with increasing Reynolds
number. Thus the variation obéerved for the two-dimensional
jet may be entirely a result of the turbulent intensity.

Geometric similarity for the mean-flow velocity
profiles in the two-dimensional jet is achieved by x/h = 20
[6, 8] but complete self-preservation, involving the
profiles of u' and uv as well as the mean velocity U does
not appear to be achieved before x/h = 65 [7]. Turbulence
data are obtained in both the similarity region [12] and the
self-preserving region [7]. These data exhibit comparable
behavior of the parameter a; . which is the ratio of the
turbulent shear stress to the turbulent kinetic energy, with
an average value of about 0.3 being appropriate.

Only a limited amount of data is available for the
two-dimensional turbulent mixing layer. Two of the avail-
able experiments concern free mixing layers developed from
boundary layers [14, 15] and are relatively limited both in
number of measurements and spatial extent of these measure-

ments. The third is the classic two-dimensional half jet
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experiment of Liepmann and Laufer [17]. The half jet
measurements are carried into the region of fully-developed
flow, which occurs by a length Reynolds number gex of

3.7 x 10°.

In contrast to the situation for the two-
dimensional mixing layer, a great deal of experimental
information is available for the circular jet into still
air. These data all support the centerline velocity
expression Uc/Uj « (x/D)-1 quite well in the second regime
of mixing. Geometric similarity of velocity profiles is
achieved between ten (8] and twenty [18] diameters, but
full self-preserving behavior (of turbulent components as
well as mean flow quantities) is not achieved until some
seventy diameters [20]. Unlike the two-dimensional jet,
the length of the potential core increases for increasing
jet Reynolds number [27]. There is sufficient data
available in the case of the circular jet into still air to
determine an empirical correlation for the core length as a

function of jet Reynolds number Rey;: the result is

b

c _ 0.097

-D—- = 2.13 (Red)

It is also possible, given geometric similarity and assuming
a self-preserving form for the axial variation of the local
length scale, to show that the axial decay of centerline

velocity depends only on the length of the potential core.
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This is demonstrated in Appendix B, following References

[8] and [21]. The results are

¢) X
c = X< L
o, - 1fr555
J
U -1 X
c _ 0.097 x x, "¢
q = 2.13(Red) (D) for D > D

which gives fairly good results for this simple configura-
tion.

The first regime of the constant-density jet-into-
still-air has been extensively investigated [18, 28, 29, 31].
These investigations have produced a relatively detailed
description of the initial development of a free turbulent
mixing layer, which is probably valid for other configura-
tions as well. There is seen to be an initial region, of
the order of a few thicknesses of the initial nozzle wall
boundary layer, in which the turbulent intensity (and
turbulent shear stress) increases rapidly. Beyond this a
region in which the turbulent intensity is constant exists,
and extends "well past the end of the potential core" [28].
A transition follows to a situation in which turbulent
mixing occurs from the centerline to the edge of the jet.

All of the experiments on two-dimensional jets
into still surroundings that were evaluated showed good

agreement with the criterion that the momentum integral be
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constant, as well as showing satisfactory two-dimensionality.
The results of Albertson, et al., [8] are noteworthy in that
the measurement of profiles and axial decays was carried out
to x/h = 2000. Turbulence structure investigations were
carried out by both van der Hegge Zijnen [1ll] and Heskestad
[7]; however, the former results are spoiled somewhat by the
extremely small plots presented in Reference [11], while the
latter measurements were performed at only one axial
station. Heskestad's results are, however, quite deéailed,
including an analysis of the terms of the turbulent kinetic
energy equation. Miller and Comings [6] present relatively
few measurements for comparison with other results--their
emphasis was primarily on the pressure field in the two-
dimensional jet--and their use of the conservation equations
to obtain unmeasured quantities complicates analysis of
their data.

As mentioned above, experimental information on
the two-dimensional mixing layer is relatively limited.
Both Mueller [14] and Haugen and Dhanak [15] investigated
mixing layers formed by boundary layers; Mueller studying
the free mixing layer formed from the boundary layer over an
obstruction on a plate and Haugen and Dhanak studying a
cavity-flow free mixing layer. Their data are relatively
limited and exhibit considerable scatter. The two-
dimensional mixing layer measured by Chapman [16] is such

only in an approximate sense, as it is formed on the edge of
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a circular jet. However, at least part of Chapman's results
exhibit two-dimensional behavior reasonably well. Chapman's
work is also noteworthy because of the documentation of the
initial boundary layers at the nozzle lip. The half-jet of
Liepmann and Laufer [17] while subject to some criticism
regarding the applicability of the results to a full two-
dimensional jet flow [13], is both accurate and detailed.
Chow [19]) has shown that their calculation of turbulent
shear stress results for comparison with their experimental
results is incorrect. The actual measurements of turbulent
shear stress are themselves accurate within the usual
limitations of hot-wire shear stress measurements of that
time.

The circular jet into still surroundings is
probably the single most extensively studied free mixing
fiow, as the eleven experiments listed in Table 2.3, page
65, indicate. With one exception, all of the experiments
for which the momentum integral can be calculated provide
satisfactory agreement with the momentum iqtegral criterion.
This exception is the early (1943) data of Corrsin [23]
which fails to hold a constant value of the momentum
integral by some 35 percent.

As in the case of the two-dimensional jet into
still surroundings, the data of Albertson, et al., [8] are
again noteworthy for the extreme axial distance to which

measurements of profiles and axial decays are carried--in
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this case 250 diameters. Alexander, et al., [27] and

Baines [21] both demonstrate variations in the length of the
potential core with the jet Reynolds number, the former
investigating this effect over a Reynolds number range of
2.33 x 104 to 3.82 x 105. Corrsin [23], Hinze and van der
Hegge Zijnen [24], Corrsin and Uberoi [25], Bradshaw, et al,
[18], sami [29], and Wygnanski and Fiedler [20] all present
measurements of the turbulence structure; Bradshaw, et al.,
and Sami in the first and transition regimes, Hinze and van
der Hegge Zijnen in the second regime, and Wygnanski and
Fiedler in the second regime past the onset of self-
preservation. The work of Hinze and van der Hegge Zijnen
again suffers from the very small plots presented in
Reference {24].

Perhaps more important than their detailed
structural measurements is the possible solution that
Wygnanski and Fiedler [20] give to the vexing problem of
turbulent shear stress measurement. Their conclusion that
the reason that hot-wire turbulent shear stress measurements
commonly are some twenty percent lower than the shear
stresses obtained by other means is that a large portion of
the turbulent shear stress is at the very low frequency end
of the spectrum (and therefore involved with the very
largest eddies) clearly should be further investigated.

The greatest need in the investigation of the

mixing of a circular jet with still surroundings is of an

100



AEDC-TR-71-36

experiment in which detailed profiles in the first regime of
mixing are followed by careful axial decay measurements in
the second regime. This problem is lessened somewhat by the
relatively narrow band in which most axial decay of center-
line velocity curves fit (Figure 2.21, page 67), and by the
typical (x/l)_)-l decay behavior of all of the curves repre-
sent. Using these observations, the experiment selected
from the circular-jet—in-still—sufroundings to be used in
confrontation with theory to follow is then made up from the
initial conditions measured by Bradshaw, et al., (at

x/D = 1) t18] followed by an essentially arbitrary (x/D)-l
decay curve. Sami's [29] profiles at x/D = 1 could also be

used.
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CHAPTER 3

CONSTANT-DENSITY TWO-STREAM FLOWS:

EXPERIMENTAL DATA

While the jet into still air is the simplest con-
ceivable free mixing jet flow, embedding the jet in a moving
secondary stream has distinct advantages. The priméry
advantage of this technique is that it simplifies measuring
the very small mean velocities that exist near the edges of
a jet-into-still-air. 1In particular, measurement of the
turbulent fluctuations, which is extremely difficult when
the fluctuating velocities approach the order of magnitude
of the mean velocity, is considerably simplified. This is
because the assumptions made in relating the heat-transfer-
rate fluctuations of the hot-wire to the velocity fluctua-
tions break down when the fluctuations are of the same order
of magnitude as the mean velocity, rendering the interpreta-
tion of the measurements difficult if not impossible.
Embedding the jet in a moving stream reduces the importance
of the problem, as there is always a significant "background"
velocity level. Much the same advantages are apparent in -
the measurement of pitot pressure in a two-stream flow.

The price paid for easing the measurement problem
is the introduction of an additional parameter into the

experiment, which is the velocity ratio between the two

102



AEDC-TR-71-36
streams. In addition, because of the finite size and
capacity of laboratory equipment, it is often necessary to
enclose the outer stream in a duct. This in turn means that
great care must be taken to minimize the effect of the axial
pressure gradient if the results are to be meaningful as an
approximation to free mixing.

In addition to free mixing between a two-
dimensional stream and a moving secondary and an axisym-
metric stream and a moving secondary, wakes, which can be
considered as two-stream mixing with zero primary velocity,
will also be covered in this section. In the case of wakes,
there is of course no velocity ratio parameter encountered,
but there are differences in wake development depending on

the shape and type of body that produces the wake.

Two-Dimensional Jet with Nonzero Secondary

A schematic representation of a two-dimensional
jet embedded in a moving secondary is shown in Figure 3.1.
As for the zero-secondary case, the jet emerges from a
rectangular nozzle of length L and width h. Also as for the
zero-secondary case, the aspect ratio of the nozzle, L/h,
must be large to insure two-dimensionality. Above and below
the center or primary jét a secondary stream emerges. The
length of the secondary-stream nozzle is ordinarily the same
as the primary nozzle; the width is ordinarily considerably
greater. In the true free mixing case two mixing processes

occur simultaneously as the jets leave the nozzle, one
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between the primary and secondary streams and the other
between the secondary stream and the surroundings. The
process of greatest interest is the mixing between the
primary and secondary streams.. Like the two-dimensional
jet-into-still-surroundings this mixing process can be
divided into two regions. In the first regime, or poten-
tial core, the region of turbulent mixing expands both
inward and outward, until the inward expansion reaches the
centerline. At this point the second regime begins. In the
true free-mixing case, the outer stream also mixes on its
outer edge with the quiescent surroundings. This mixing
region also expands downstream, until some distance down-
stream the outer edge of the mixing region between primary
and secondary streams intersects with the mixing region
between the outer stream and the quiescent surroundings.

At this point the third regime begins and the character of
the flow changes, becoming gradually more like the mixing of
a jet-into-still-surroundings. Generally, only the first
and second regimes are of interest.

The length of the second regime can be increased
by increasing the width of the secondary stream, at the cost.
of increased mass flow requirements, or it can be increased
by enclosing the outer stream in a duct. In the latter case
the second regime length is increased as the boundary layer
that forms on the duct wall increases in width much more

slowly than would a free-mixing region. However, the
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ducting of the flow induces an axial pressure gradient
which, if of- sufficient magnitude, can distort the flow from
its free-mixing (and zero pressure gradient) form.

Figures 3.2 and 3.3, taken from the data of
Weinstein, Osterle, and Forstall [37] illustrates the evoiu—
tion of the velocity profile in a two-dimensional two-stream
mixing flow.

Table 3.1 lists the important parameters of the
two-stream two-dimensional flows considered. The Weinstein,
Osterle, and Forstall data represent a series of mean flow
measurements for several secondary-stream-to-primary-stream
velocity ratios ranging from 0.33 to 0.67. Both Bradbury
[34] and Bradbury and Riley [38] present turbulent structure
measurements in relatively low velocity ratio flows, where
the introduction of a non-zero secondary stream velocity is
aimed at improving the accuracy of hot-wire measurements.

It should be noted that the data appearing in Bradbury and
Riley [38] are presented in nondimensional form without
sufficient information to convert to the parameters used
here. However, the same data (presumably) are presented in
Bradbury [39] in a somewhat more suitable form; the data
from the latter paper have been used in the present work.

Axial decay curves for the centerline velocity
ratio for a number of the tests considered here are plotted
in Figures 3.4 and 3.5. The data of van der Hegge Zijnen

[2] for a two-dimensional jet with zero secondary velocity
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TABLE 3.1

THE TWO-DIMENSIONAL CONSTANT-DENSITY JET WITH NONZERO SECONDARY

U Re Momentum
Slot Width Aspect j U_/u _4a Maximum Check,
Investigator Year Ref. (in.) Ratio ft/sec o/ "j x10 x/L PercentbP
Weinstein,
et al. 1956 37 0.5 24 120 0.33 3.2 2.5 6.5
) 0.5 24 140 0.50 3.7 2.5
0.5 24 100 0.50 2.6 2.5
0.5 24 120 0.67 3.2 2.5
Bradbury 1965 34 *0.375 48 155 0.16 3.0 1.425 4
Bradbury and c 5 a
Riley 1967 38 0.375 48 155 0.07 3.0 - 5
0.125 144 0.16
0.125 144 0.31

aReynolds number based on slot height h,
bMaximum deviation from average.
Cpresumed for the aspect ratio 48 case to be equal to Bradbury (1965).

dAuthor's measurement.
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is included for comparison. From these figures the quite
definite influence of the jet velocity ratio is clearly
apparent. No Reynolds number effect such as was found for
the jet in still surroundings is observed. However, any
shift with primary jet Reynolds number would be masked by
the velocity ratio effect in these experiments.

As is demonstrated by Figure 3.6, downstream of
the potential core region the mean velocity profiles for the
two-stream two-dimensional jet can be fit quite well with a
function of the similarity variable n = Y/b1/2° The
parameter b1/2 is the ordinate at yhich the mean velocity
U=10,+ (U, - Uo)/2. Newman ([3], see Appendix C) shows
that true self-preservation--in which the whole flow scales
with two parameters, a width scale and a velocity scale--
only exists in an approximate sense for the two-dimensional
two-stream jet, when the velocity increment U, - Uo is large
compared to U, s OF in the opposite case, when U, - Uo is
small compared to Uo. For the two-dimensional jet, self-
preservation in the large velocity increment case requires
that the velocity ratio (Uc - Uo)/(Uj - Uo) be proportional

—1/2' 36

-1/2 . N
to x . Assuming that (Uc Uo)/(Uj Uo) X
required for self-preservation, and that (U - Uo)/(Uc - Uo)
= £(n), as experimentally observed, Bradbury [39] shows that,
with the additional assumption that the flow in the down-

stream region is dependent only on the overall excess

momentum flux in the jet, equations can be written for the
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Figure 3.6. Comparison of data from Weinstein, Osterle,
and Forstall [37] with data from Bradbury [39] for the
small-perturbation (self-preserving) 2D jet.
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axial decay of centerline veloci£y ratio and the increase of
width of the jet, in terms of the virtual origin X, and the
ratio of velocities A = Uj/Uo. Axial decay equations can be
written in the same manner for the circular jet with nonzero
secondary. Further, Bradbury [39] recommends taking X, = 0,
which results in equations which are functions only of the

parameter A. Thus:

U -U
C ) A X,\=-1/2
—— = 2,5W¢C;: () (3.1)
Uj Uo A-1 ‘h .
and
Ry /2 1
. = 0.109 — (3.2)

X
: b, 0.55.V@§
Vi(a-1y VB
Figure 3.7 shows a comparison between the velocity
decays predicted by Equation (3.1) with experimentally
measured decays. For x/h > 10, Equation (3.1) provides a
reasonably good prediction of the centerline velocity decay
for A = Uj/Uo > 2.0. The prediction improves as Uj/Uo
increases, as would be expected as the criteria for approxi-
mate self-preservation is that U, - UO/Uo + o,
The measurements of turbulent intensities and
turbulent shear stress carried out by Bradbury [37] were
made in the self-preserving region of the jet. 1In

Bradbury's usage, the condition for self-preservation is
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taken to be that (Uc - Uo) o x-l/z; this is observed to

occur for x/h > 30. Bradbury notes that the empirical
expression which fits his velocity decay curve implies,
given conservation of momentum, that the width is not
exactly proportional to x, as self-preservation would
require. However, the departure from self-preservation is
small.

Calculations of the turbulent shear stress and
turbulent kinetic energy were made from the data presented
in Reference ([34], in the self-preserving region. Figure
3.8 shows that the ratio of turbulent shear stress to turbu-
lent kinetic energy follows the linear relationship
encountered earlier quite well. The lateral variation of
the parameter a; as shown in Figure 3.9 is also at least
qgualitatively in agreement with measurements made in other
flows.

Bradbury also presents measurements of turbulence
structure in the self-preserving region. His measurements
show that a significant amount of the turbulent shear stress
is tied up in the large eddies. This conclusion is contrary
to Townsend's [5] large eddy hypothesis (which in part pre-
dicts that the majority of the turbulent shear stress is
tied up in the smaller eddies of the flow); however, it does
agree with some of the measurements of Wygnanski and Fiedler
[20] in the axisymmetric jet into still surroundings. In

this latter work, as discussed in Chapter 2, it was found
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that a significant portion of the shear stress occurs in the
lowest frequency part of the turbulence spectrum, which
implies the largest eddies. In this connection it is note-
worthy, in light of the discussion of the measurement of
turbulent shear stress in Chapter 2, that Bradbury's
measurements of turbulent shear stress agree quite well
([34], Figure 13) with the turbulent shear stress calculated
by integration of the mean velocity profiles.

Axisymmetric Jets with Nonzero Secondary:
Coaxial Jets

As can be seen from the flow schematic of Figure
3.10, the idealized coaxial mixing flow is quite similar to
the idealized two-dimensional two-stream mixing flow, and
the same description applies. Thus there are three flow
regimes: the potential core, the region of complete mixing
of the primary and secondary streams, and the region of
complete mixing of both streams and the surrounding
quiescent fluid. As for the two-dimensional case, in the
idealized flow the surrounding stream extends to + «, and
the surrounding stream velocity Uy remains constant for all
X. This ideal is of course not realizable in practice; two
representative actual approaches are shown in Figure 3.11l.

Figure 3.11 (a) represents a common experimental
approach to coaxial free mixing, exeﬁplified by the appa-
ratus used by Forstall [40, 41]. In this apparatus the

secondary air stream is drawn through a duct surrounding the
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Figure 3.10. Idealized coaxial mixing.
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b. Apparatus of Paulk (Schematic)

Figure 3.11. Experiméntal approximations to true coaxial
free mixing.
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primary jet. While ensuring a relatively long second regime
and providing an experimental setup requiring only a modest
flow capacity, this type of apparatus has the disadvantage
of involving nonzero pressure gradient effects, which can
distort the flow from a true free mixing flow. Figure 3.1l
(b) represents a configuration in which the zero pressure
gradient criterion can be closely approached. The particu-
lar apparatus sketched is that used by Paulk [42]. The
advantage of a Aearly constant-pressure flow is obtained in
this apparatus at the cost of a drastically reduced second
regime. This is caused by the fact that the outer stream,
mixing with quiescent air, mixes faster than the inner
stream, mixing with a moving stream. Thus, for realistic
outer jet sizes the second regime of mixing is abbreviated.
The concepts of local similarity of mean flow
profiles and of self-preservation of the coaxial jet flow
are both useful in the analysis of coaxial free mixing. Of
the two, the former is far more widely applicable. To test
for local similarity the question asked is whether the mean
flow velocity profile (or profile of some other quantity) is
reducible to a function of the lateral coordinate divided by
some suitable local reference length. The local reference
length is commonly taken to be the half radius of the
particular profile: for the velocity profile Xy /2 is the

ordinate at which U = UO + (Uc - Uo)/z. Paulk's data for a
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velocity ratio Uo/Uj = 0.125 [42] is reducible in this form
as Figure 3.12 shows.

Self-preservation of the flow is shown by Newman
([{3], see Appendix C) to exist for a coaxial free mixing
flow only in an approximate sense, when (Uc - Uo)/Uo >> 1 or
(Uc - Uo)/Uo << 1. The first case represents a high ratio
of primary to secondary velocity, and the second a jet with
primary velocity very much less than the secondary. The
criteria for self-preservation in the first case are that
the centerline velocity difference U, - Uo be proportional
to 1/x while at the same time the width scale is propor-
tional to x. Thus self-preservation for coaxial jets
requires that the velocity profiles be reducible as a
function of n = r/x. Figure 3.13 shows that the same data
shown to exhibit local similarity in Figure 3.12 does not
exhibit self-preservation. The conclusion is clearly that
local similarity may be exhibited where self-preservation is
not.

Table 3.2 lists the important parameters for the
coaxial free mixing tests to be considered in this section.
Of these tests, those of Paulk [42] are the only ones in
which the outer stream was not ducted. In four of these
exberiments the density ratio was not unity. Forstall [40],
Fejer, et al., [45], and Paulk [42] used a trace gas, using
helium, argon, and hydrogen, respectively, in order to

investigate the transfer of mass, while both Landis and
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TABLE 3.2

COAXIAL CONSTANT-DENSITY JETS

D Re Momentum
3 Duct j u_/u —48 / Last Check,b
Investigator Year Ref. (in.) Dia. (in.) (ft/sec) o/ "§ xl0 Py Po x/D Percent
Forstall 1950 40 0.25 4.0 180 0.5 2.38 0.92 120 -
(Forstall (41) 0.25 4.0 225 0.2 2.98 0.92 80 10
and Shapiro) 0.25 4.0 120 0.25 1.59 0.92 80 8
0.25 4.0 90 0.5 1.19 0.92 135 23
0.25 4.0 120 0.75 1.59 0.92 130° -
Landis and 1951 43 0.5 4.0 200 0.25 5.3 0.92 32 104
Shapiro 0.5 4.0 220 0.46 5.84 0.92 32 -
0.5 4.0 180 0.75 4.77 0.92 32 -
Curtet and . 1964 44 0.48 3.22 125 0.49 3.2 1.0 50 1®
Ricou 0.48 3.22 226 0.27 5.8 1.0 -
Fejer, et al. 1967 45 1.0 6.0 50-400 1.0 2.7-21 1.0 48¢ -
1.0 6.0 200 0.5 10.6 1.0 36 -
1.0 6.0 300 0.33 15.9 1.0 36 -
1.0 6.0 300 0.67 15.9 1.0 36 -
1.0 6.0 400 0.25 21.2 1.0 36 -
Zawacki and 1968 35 0.356 8x8f 14.1 3.4 0.8 1.0 21.0 59
Weinstein 0.356 gxsf 6.0 8.0 0.34 1.0 14.1 5.5
0.356 8x8 3.0 16.0 0.17 1.0 14.1 6.5
0.356 8x8 1.69 28.5 0.095 1.0 11.2 17.0
0.356 8x8 1.21 39.5 0.069 1.0 11.2 5.5
Paulk 1969 42 0.50 none 40l1.0 0.477 10.65 0.89 18 2.0
405.0 0.125 10.75 0.93 14.5 5.0

%pased on jet diameter Dj and velocity Uj.

bMaximum deviation from average.

€centerline concentration measurements only.

d

Assumes similarity of velocity profiles.

©Includes axial pressure gradient term; author's measurement.

quunre duct.

9Momentum check calculation begins at first "jet-flow" station.
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Shapiro [43] and Paulk [42] used a heated central stream to
investigate the transfer of heat. 1In all cases the small
deviations from unity density ratio do not seem to influence
the results.

The effects of ducting of the outer stream can be
seen in the momentum check for Forstall's data. Forstall's
data are carried to much larger x/D than the other experi-
ments, and as was pointed out by Maczynski [46] the data for
large x are apparently influenced by the presence of the
walls. It would be expected that the influence of the
presence of the walls (and the pressure gradients thereby
generated) would be greater for the more nearly egqual
velocity ratio cases, for in these tests the level of turbu-
lent shear stress is lower than in cases in which there is
a large velocity difference between the streams. Such an
effect shows up in the momentum check. Thus the Uy/Uy = 0.5
case, which is the highest wvelocity ratio case for which
sufficient data are provided by'Forstall [40] to perform a
momentum analysis, is much further out of momentum balance
than the Uo/Uj = 0.2 and 0.25 cases. It is also notable
that in the experiments of Landis and Shapiro ([43] which
used substantially the same type of apparatus as was used
by Forstall, measurements were not reported beyond x/D = 32,
In all of these calculations the axial pressure gradient was
assumed zero; no pressure measurements were presented by

Forstall or by Landis and Shapiro. The apparent lack of a
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wall effect in the Curtet and Ricou [44] momentum balance is
explained by their measurement of the axial pressure
gradient and inclusion of the appropriate term in the
momentum balance.

The data of Zawacki and Weinstein is interesting
because of the very high velocity ratios Uo/Uj measured;
however, the behavior of these flows involves large regions
of recirculating flow, as Has been described by Rozenman
[47].

Of the experiments: listed in Table 3.2, only
those of Forstall {40] (and not Reference [4l]) and Zawacki
and Weinstein [35] include measurements of profiles at
X = 0, and as will be discussed below, both of these experi-
ments are in certain ways beset by problems.

Figure 3.14 presents measured axial decay of
centerline velocity curves selected from the experiments
considered in this section in which the outer stream was
encloéed in a duct. As for the two-dimensional case, a
strong dependence on the velocity ratio parameter can be
seen; the decay beginning progressively later as the
velocity ratio increases. Forstall's data exhibits a
somewhat anomalous behavior which will be gone into in more
detail below.

Certain of the ducted mixing experiments are
compared in Figure 3.15 with the zero pressure gradient

Paulk [42] data. No strong conclusions can be reached
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because of the extremely short second regime investigated by
Paulk; however, the data fall in the appropriate region
compared to the ducted data, exhibiting a lengthening
potential core as the velocity ratio approaches unity.

Forstall's experiments [40, 4l1] involved the
mixing of two coaxial streams of air at low velocities, with
the center jet incorporating about ten percent by volume
helium as a tracer. As shown in Table 3.2, page 126, both
Forstall's Uo/Uj = 0.2 and Uo/Uj = 0.25 cases show only
moderate deviation from momentum balance. His Uo/Uj = 0.5
case deviates substantially, while for the Uo/Uj = 0.75 case
there is not sufficient information available to perform a
momentum check. Closer inspection of Forstall's Uo/Uj = 0.5
case shows several features that are unfortunately not at
all uncommon and which deserve further discussion.

As Figure 3.16 shows, there are at least two
different axial decay curves presented in Reference [40] for
the Uo/ﬁj = 0.5 case. Two of these represent different
nozzle (and secondéry stream) velocities, and thus different
primary jet Reynolds numbers. Figure 3.16 can thus be taken
as evidence for the same sort of shift of the decay curve
with primary jet Reynolds number as is seen in the circular
jet-into-still-surroundings. In addition, Forstall per-
formed measurements with two different nozzles, one 1/4 inch
diameter and the other 1 inch diameter, with the larger

nozzle being used for the near field investigation.
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Forstall's Uo/Uj = 0.5 de?ay data also show, besides the two
distinct curves already mentioned, what appears to be the
beginning of a third decay curve, marked "?" on Figure 3.16.
Since these data only extend to x/D = 16, presumably they
represent data from the one inch diameter nozzle, and thus
data at a nozzle Reynolds number Red = 47,700. This con-
jecture is strengthened by comparison with the data of
Landis and Shapiro [43] at Rey = 53,000.

As was mentioned above, Forstall in Reference [40]
presents initial velocity profiles at the jet exit, x/D = 0.
These profiles are not presented in Forstall and Shapiro,
Reference [41]. If finite-difference techniques are to be
used for comparison with the downstream decay rates, these
profiles (and measured boundary layer thicknesses) are
important, particularly so as the stream velocity ratio
approaches unity. (This is because as the stream velocity
ratio approaches unity the free mixing turbulent shear
stress level decreases and the details of the initial con-
ditions of the flow become more important.) Unfortunately,
the initial profile data presented by Forstall [40] show a
marked asymmetry; further, for the Uo/Uj = 0.5 case, initial
profiles are presented only for the 0.25 inch nozzle. The
effect of the resulting uncertainty in the initial boundary
layer thickness is shown in Figure 3.17, in which the
results of a finite difference calculation of Forstall's

Uo/Uj = 0.5 case are presented as a function of the initial
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boundary layer thickness. The calculations for this example.
used the Prandtl eddy viscosity model--although the par-
ticular eddy viscosity model used ié unimpoffant--aﬁd used
the numerical technique described in Appendix E. The
influence of the choice of initial boundary layer thickness
is apparent. Further, it can be seen that beyond-a certain
value of the initial thickness, the results are unchanged,
as would be expected. The "negligible thickness" curves
also show essentially the same slope as predicted by the
Squire and Trouncer [48] integral (and hence zero initial
boundary layer thickness) calculation at this velocity
ratio. The difference in potential core lengths is due to a
different choice of shear stress model--Squire and Trouncer
use Prandtl's mixing length to evaluate the shear stress at
the half-velocity radius. In the second regime both the
Prandtl eddy viscosity model and the Prandtl mixing length,
with the constants used here, give substantially the same
value for the shear stress at the half-velocity radius.
Experimental evidence for the importance of
initial conditions as the velocity ratio approaches unity is
strikingly illustrated by Figure'3.18. This figure shows
centerline composition (of argon tracer) decay profiles from
the data of Fejer, et al., [45] for a velocity ratio Uo/Uj
of 1.0. The different curves are-a result of changes in the
center jet velocity Uj (and obviously of concomitant changes

in the external velocity Uo) from 50 ft/sec
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(Rep = 2.65 x 10%) to 400 ft/sec (Rey = 21.2 x 10%). apart

D
from the anomalous behavior of the 400 ft/sec case--which it
is argued in Reference [45] is caused by boundary layer
transition effects increasing the mixing rate for all other
cases--there is a steady progression toward increased mixing
rates at increased velocities. This progression is sur-
prisingly counter to the trend observed in both the jet into
still air and the Uo/Uj = 0.5 data of Forstall [40], Figure
3.14, page 129, for which an increase in core length and
decrease in extent of mixing (at a given axial station) with
increase in velocity is shown. Fejer, et al., [45] report
no correlation between turbulent intensity level in the jet
and the rate of mixing. Further, the effect of the ducting
of the outer jet on the mixing rate at this velocity ratio
is unknown, so that the cause of the variation both in core
length and in mixing rate (as evidenced by the increasirng
slope of the-decay curves with increasing velocity) must
remain mysterious. It may be that effects of a laminar-
turbulent transition are included in the observed behavior.
Figure 3.18 does, however, illustrate the need for an
adequate understanding of the initial region in flows which,
because of their near-unity velocity ratio, are dominated by
their initial conditions.

Landis and Shapiro [43] extended the work of
Forstall [40, 41] to the case in which the central stream

¢

temperature is heated above the outer stream temperature,
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thus complementing the mass transfer measurements of
Forstall with measurements of the diffusion of heat. Most
of the data of Reference [43] was taken at temperature
ratios large enough to influence the mixing process;
however, as listed in Table 3.2, page 126, some of the data
are at temperature (and thus density) ratios not much
different from unity. Figure 3.19 shows a comparison of the
data of.Landis and Shapiro with that of Forstall. As might
be expected from the discussion above, the Landis and
Shapiro Uo/Uj = 0.75 case s@ows a strong deviation from a
linear decay curve. However, considering only the early
region of the curve, it is evident that a strong shift with
velocity ratio exists, as has already been pointed out.
Figure 3.19 also shows further evidence of a shift in the
data with the primary-jet Reynolds number in the comparison
of Landis and Shapiro U/Uy = 0.25 data (at Rep = 5.3 x 10%)
with Forstall's U-O/Uj = 0.25 data, taken at ReD = 1.6 x 104.
In addition to the velocity ratio 1.0 case, Fejer,
et al., [45] measured centerline velocity decay data for
several other velocity ratios, ranging from 0.25 to 0.67.
Figure 3.20 shows a comparison between their centerline
decay data and those measured by other investigators at
different primary-jet Reynolds numbers. In this case, the

data of Fejer, et al., which in each case is at a larger

primary-jet Reynolds number than the data with which it is
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compared, can be seen to indicate a decrease in the amount
of mixing at a given axial station with increase in primary
jet Reynolds number.

It should be noted that for Uo/Uj = 0.2, 0.25, and
0.33, Fejer, et al., [45] present the radial variation of

the eddy viscosity, €, defined by

a1
123
©

r

These values are obﬁained-in a manner similar to that used
by Paulk; i.e., through integration of the measured profiles
to various stations, to evaluate the shear stress from the
integral momentum equation. The value of shear stress at a
given radial location is then divided by the value of 3u/3r
obtained using a finite-order polynomial fit to the radial
velocity profile. Surprisingly, however, Fejer, et al.,
[45] do not report velocity profiles corresponding to the
eddy viscosity profiles they report.

Paulk's measurements [42] have already been
described briefly. His apparatus consisted of a central jet
of air with a hydrogen tracer surrounded by a coaxial jet of
air. The outer flow was not ducted, which resulted in an
extremely short second regime. In addition to profiles of
mean flow velocity and concentration, Paulk obtained the

turbulent shear stress through use of the integral mean flow

141



AEDC-TR-71-36

momentum equation and the measured ﬁean flow velocity, con-
centration, and enthalpy profiles.

All of the data considered to this point indicate
that the mean velocity decays approximateiy as x_l, as is
required by self-preservation considerations. The velocity
profiles are locally similar, and can be fit by error func-
tion or cosine profiles, although with some inaccuracy {41,
42, 43]. The experiments run with trace gases or tempera-
ture traces indicate that both.mass and heat diffuse more
rapidly than momentum and that the turbulent Prandtl and
Schmidt numbers are both approximately equal to 0.70.

Curtet and Ricou [44] and Zawacki and Weinstein
[35] both investigated the turbulence structure in coaxial
free jets. An additional study was made by Kobashi [49]:
however, in this case mean velocity profiies are given for
one jet, turbulent fluctuation profiles for a secend, and
turbulent shear stress profiles for still a third. Thus,
this experiment can add little to the former two.

The axial decay of centerline velocity for two of
the cases investigated by Curtet ‘and Ricou [44] is presented
in Figure 3.21. Measurements of two other velocity ratios
were made by Curtet and Ricou, but in these cases the effect
of the pressure gradient due to ducting of the jet was sub-

stantial, Of the two cases presented here, the

Uo/Uj 0.267 case is nearly constant—pressure; and the

Uo/Uj

0.494 flow is in a slightly favorable pressure
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gradient. This difference in pressure gradient is probably
the explanation for the apparent slight difference in slope
of the decay curve for the two runs. Measurements of turbu-
lent intensities and turbulent shear stress were made by
Curtet and Ricou for thé'Uo/Uj = 0.267 case; as for other
hot-wire measurements discussed, the turbulent shear stress
measured is some 20 percent lower than predictéd by integra-
tion of the mean flow profiles.

Axial decays for the data of Zawacki and Weinstein
[35] are presented in Figure 3.22. Rozenmann [47] has
investigated the flow in the initial region of this con-
figuration in detail, and he states that for a velocity
ratio Uo/Uj greater than 13 a recirculation region forms in
the primary jet. Thus, it might be expected that for
velocity ratios greater than 13 the axial decay data of
Zawacki and Weinstein [35] will not look like other coaxial
free jet decay data, and from Figure 3.22 this can be seen
to be the case. Zawacki and Weinstein measured the three
components of the turbulent intensity fluctuation and the
turbulent shear stress, using a hot film probe, for all of
the velocity ratios listed in Figure 3.22 (and Table 3.2,
page 126). Like Curtet and Ricou ([44] their measured shear
stress profiles disagree with those obtained through inte-
gration of the mean flow momentum equation, being some 20

percent low.
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Figure 3.23 shows that the linear rel;tion between
the turbulent shear stress and the turbulent kinetic energy
holds for both the data of Curtet and Ricou and that of
Zawacki and Weinstein. Figures 3.24 and 3.25 show that the
details of the lateral variation of the ratio of turbulent
shear stress to turbulent kinetic energy are gqualitatively
similar, but also show some interesting differences. 1In
Figure 3.24, the parameter a, is plotted versus the non-
dimensional radius--the physical radius divided by an
"effective radius," defined in Reference [44] as the radius

of a cylinder with a volume equal to the excess flow rate

rO
q = 27 I(U - Uo)ydy
(o]

where Ty is the radius at which U = Uo , and a height equal
to U, - Uo. This definition of "effective radius" precludes
direct coﬁparison of the radial variation obtained by Curtet
and Ricou [44] and Zawacki and Weinstein [35]. Figure 3.24
shows that the lateral profiles of ay are gquite similar in
shape at various downstream stations, as is also the case,
although not nearly so strikingly, for the data of Zawacki
and Weinstein [35], Figure 3.25. However, in the coaxial
jet of Curtet and Ricou, at Uo/Uj = 0,267, the peak value of
a, increases from x/D = 5 to 15, and then decreases from

x/D = 15 to 20, while the peak for the Zawacki and Weinstein

data occurs at x/D = 3.4 and then continually decreases. The
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Figure 3.23. Relation between turbulent shear stress and
turbulent kinetic energy, coaxial jets.
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Figure 3.24, Radial variation of ratio of turbulent shear
stress to turbulent kinetic energy, from Curtet and
Ricou [44].
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Figure 3.25, Radial variation of a; ( = ratio of turbulent
shear stress to turbulent kinetic energy), Zawacki and
Weinstein data [35], Uo/Uj = 3.4,
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difference between the flows is quite probably due to the
strong changes in behavior of the flow as Uo/Uj becomes
greater than unity, while the behavior of the data of
Reference [44] may reflect a change from the first regime of

mixing to the second.

Two-Dimensional Wakes

When a uniform flow passes over a two-dimensional
body, that is, one which is essentially infinite in one
direction, the action of viscosity in the fluid layers
closest to the body causes those layers to slow. Thus, the
flow leaving the body is no longer uniform but has a
velocity gradient. If the characteristic Reynolds number
Uod/v, where d is some characteristic dimension of the body,
is high enough, the flow leaving the body will be turbulent
and the velocity deficit caused by the retarding action of
the body will become smoothed out due to the action of
turbulent mixing.

The three flows listed in Table 3.3 all represent
two-dimensional wakes; they differ in the shape of the body
used to create the wake. In the classic experiment of
Townsend [5, 50) the two-dimensional wake is created by a
0.0625 inch diameter circular cylinder spanning a 15 x 15
inch wind tunnel through which flows a 42 ft/sec stream.
Lee [51] generates an effectively two-dimensional wake by

passing a nominally 100 ft/sec stream over an aerodynamic
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TABLE 3.3

TWO-DIMENSTIONAL WAKES

Chzzzgger' Measure-
-3 ment Momentum
Investigator Ref. Year Type Re x 10 Basis Range Check
Townsend 50 1949 Circular 1.36 Cylinder 500-950 b -
Cylinder 4.0b Diameter  1120-2280 -
Lee 51 1966 Aerodynamic 24.0 Momentum 0-120 4%
Body Thickness®
Chevray and
Kovasznay 52 1969 Flat 1.6 Momentum 0-414 1.6% at
Plate Thickness® x/0_ = 86
a .
Basis same as Re.
bFrom Newman [3].
0
®Defined as 0 = I %—(1 - %—)dy.
1 1
o

9€-1L-HL-DA3V
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body. The two-dimensional wake investigated by Chevray and
Kovasznay [52] is formed by passing a 13 ft/sec stream over
a flat plate.

Newman (([3], see Appendix C) shows that the small
increment wake, i.e., the wake for which Uc - Uo << Uo : is
approximately self-preserving, and that for a two-dimensional

self-preserving wake the velocity deficit U, - Uo « x-]'/2

and the width scale b « x1/2. Townsend [50, 5] finds that
self-preservation in the two-dimensional wake is only
achieved for x/d > 500, where d is the cylinder diameter,
and his measurements are carried out downstream of this
point.

On the other hand, both Lee [51] and Chevray and
-Kovasznay [52] made detailed investigations of the initial
region of a two-dimensional wake. Both investigators found
that there is an extremelf rapid increase in velocity on the
wake centerline starting immediately at the trailing edge
of the body. This increase is so rapid that both Lee [51]
and Chevray and Kovasznay [52] found a finite velocity on
the wake centerline as near as they were able to get to the
trailing edge, as shown in Figure 3.26.

Because of its simplicity, and the fact that there
is a finite background velocity on which the turbulent
motion is superimposed, the two-dimensional wake has been
extensively used for studies of the structure of turbulent

flow [5, 53, 54]. All of the experiments considered here

152



g£ql

1.0

0.9

O _
Reeo T

Sym Investigator Ref. 6, in. 0, in. x 1073
-—

O Chevray and

Kovaszaay 52 0.228 2.26 1.58
O Lee 51 0.239 1.00 24 ]

] ] L 1 ! | I ] 1 1 | ] L I
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

x/6o

Figure 3.26.

Increase of centerline velocity, 2D wake.
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involved measurements of the turbulent intensities and
turbulent shear stress; Townsend also measured the terms of
the turbulent kinetic energy equation in the self~preserving
region. Figures 3.27 and 3.28 show that the linear rela-
tionship between turbulent shear stress and turbulent
kinetic-energy observed in all other flows considered to
this point holds also for the two-dimensional wake.
However, Figure 3.28 shows that in the self-preserving
region the average value is considerably different than in
the initial region. It might be noted that the behavior
exhibited in these two figures is somewhat anomalous; one
would expect a decrease in turbulent shear stress downstream
in the wake as the flow approaches isotropic conditions
without perhaps an equivalent decrease in turbulent kinetic
energy, and thus a decrease in the value of a; rather than
the observed increase.

As described before, self-preservation requires

172 1/2

that U_ - U  « X and b « x/“. Thus to test for self-

preservation the lateral variable should be (y/d)/Y(x - xv)/a
or y/vV{x - xVSH where x_ is the virtual origin of the flow.

If similarity is assumed, then

2

)2 = (U, - u)%gm s n=yn

from Newman ([3], Appendix C), and
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Figure 3.27. Relation between turbulent shear stress and
turbulent kinetic energy in the initial region of a
2D wake.
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Figure 3.28. Relation between turbulent shear stress and
turbulent kinetic energy in the self-preserving region

of a 2D wake.
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[ ]
B = (S—2) g
Uo (o]
but
- - -1/2
Uc Uo x (x xv)
s0
Uc - Uo . X - xv
Uo d
and thus
2 X - X
u' v _ 1
(-IE) —3—°=¢ g(n)

The same development can be used for 'any other component of
the turbulence structure. Thus, if the flow is self-
preserving, it should be possible to plot any mean flow or

structure quantity ¢ on a single curve of

x-xv "

¢0—1§——-) versus

X - X
v

Figures 3.29 and 3.30 show that this is indeed the case for
both the turbulent kinetic energy k and the parameter a; for
Townsend's data.

That the initial region of a two-~dimensional wake

is not self-preserving is clearly shown by Figure 3.31 and
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Figure 3.29. Self-preservation of turbulent kinetic energy,
Townsend [50].
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Figure 3.30. Ratio of turbulent shear stress to turbulent
kinetic energy, two-dimensional wake, data of
Townsend ([5] and [50]).

159



AEDC-TR-71-36

S x/0
0.8 I i /% m
) 86
0.7 m 258 -~
a 414
/"\ 0'6 =
trjo® 0.5 ) -
K . Points from Curves
0.4 Faired Through -
o : Original Data
™ 0
ol o

0 I | ] - ]
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
y
N(x - x,)0,

Figure 3.31. Test for self-preservation of turbulent
intensity, Chevray and Kovasznay [52], 2D wake. .
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Figure 3.32. Figure 3.31 shows the axial component of the
turbulent intensity from Chevray and Kovasznay's [52] data
plotted in similarity variables, while Figure 3.32 shows the
turbulent shear stress plotted the same way. Clearly these
profiles do not reduce to one curve, and self-preservation
is not achievéé.

Chevray and Kovasznay's data [52] incorporates a
number of closely spaced profiles, from which, as shown in
Figure 3.33, a very interesting picture of the development
of the parameter a, can be obtained. In Figure 3.33, this
parameter can be seen evolving rather'éapidly from a profilé
guite like fﬁe boundary-layer profiles of this parameter
shown by Bradshaw, et al., [55] to a-profile-characteristic
of a free mixing process, and in particular, to a profiie
gualitatively quite similar to thé'self-preserving profiles
seen in Figure 3.30. This of course is the sort of process
that the flow must undergo as it changes in character from a

boundary-layer to a free-mixing flow.

Axisymmetric Wakes :

Axisymmetric wakes are formed by two types of
bodies, either circular or square disks, the latter in the
far field, or axisymmetric solid bodies, immersed in a
dpifqrm stream. The disks are mounted perpendicular to the
mean flow direction. Axisymmetric bodies, if they are not
spherical, are mounted with their longer axis parallel to

the mean flow direction. As for the two-dimensional wake,
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Figure 3.32, Test for self-preservation: turbulent shear
'~ stress profiles. Chevray and Kovasznay [52], 2D wake.
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Figure 3.33. Evolution of the ratio of the turbulent shear
stress to the turbulent kinetic energy in a two-
dimensional wake. Data of Chevray and Kovasznay (52].
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if the characteristic Reynolds number Uod/v, where d is herd
a characteristic dimension such as the diameter of a |
circular disk or sphere, the length of the short axis of an
ellipsoid of revolution, or the edge 1eﬂgth of a square
disk, is large enough, the axisymmetric wake will be turbu-
lent.

The principal characteristics of the wakes to be
considered in this section are listed in Table 3.4. Not
included in Table 3.4 is the axisymmetric wake experiment
reported by Hwang and Baldwin [60]. This paper is not
included as it deals solely with some details of the
structure of turbulence, without reporting any of the
details of the flow necessary for this study.

There is only one axisymmetric wake experiment,
that of Cooper and Lutzky [56], which is carried far enough
downstream to investigate the existence of self-preservation.
Like the two-dimensional wake, self-preservation for an
axisymmetric wake exists only in an approximate sense, when
(U° - Uc)/Uo << 1, This restricts self-preservation to
large x/D, where the velocity deficit has been reduced to
the point that (Uo - u)/Uo x u'/Uo where u' is the axial
component of the turbulent intensity. For such a case,
Newman (([3], Appendix C) shows that the mean flow velocity
deficit profiles should collapse when plotted as

(1 - U/Uo)[(x-xv)/b)]z/?’ versus y/[(x - xv)bzll/3 where x
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TABLE 3.4

AXISYMMETRIC WAKES

Coeft.
U Reynolds No. Dgag. Momentum

Dia. 1 U.D/V x10-4 D Check,
Investigator Ref. Year (in.) (ft/sec) 3 (Meas.) Percent? Type
Cooper and 56 1955 0.2 35-140 0.362-1.485 - - Disk
Lutzky 0.2b 80-140 0.85 -1.485 1.40 10 Square

o.2g 80-140 0.85 -1.485 - - 2/D= 3 .

0.2 80-140 0.85 -1.485 - - /D= 5

0.2 80-140 0.85 -1.485 - - £/D=10
Carmody 57 1964 2.0 75 - 7.0 13€

6.0 25 7.0 1.14 3d Di sk

0.9 75 3.2
Chevray 58 1968 10.0 90 275.0 0.06 10 Aerodynamic

Body, £/D=6

Gibson,
Chen, and Lin 59 1968 1.5 0.13-13,1 0.10-10 - - Sphere

AMaximum deviation from average.

byidth.

Cat x/p
d

2,

For x/D > 6.

9€-1L-41-003V
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is the distance from the physical origin of the wake to the
virtual origin, and b is a characteristic body dimension.

Figure 3.34 shows that self-preservation is not
achieved by the wake data of Cooper and Lutzky [56] at least
up to x/b = 381, and only marginally, if at all, by
x/b = 68l. In this particular case the wake was produced by
a square disk, and b is the length of an edge of the disk.
It should however be noted that considerable error is likely
to be inherent in obtaining the data shown in Figure 3,34
from the data of Reference [56], so that firm conclusions
regarding the onset of self-preservation for this data
cannot be drawn.

Self-preservation also requires that (Uo - Uc)/U°

be proportional to (x/a) ~2/3

([3], Appendix C). . Figure 3.35
compares the centerline velocity decay data for three of the
experiments considered, with a line representing an
(x/d)-z/3 decay. The data can be seen to approach such a
decay, with the approximation becoming considerably better
as x/D increases. The deviation of the data of Chevray [58]
from the majority of -the other data may represent the same
sort of Reynolds number shift as observed in other con-
figurations; however, the situation is somewhat clouded by
the differences in the type of bodies used to generate the
wake.

Both Carmody [57] and Cooper and Lutzky [56] used

bluff bodies, thin in the dimension parallel to the flow, to
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Test for self-preservation, axisymmetric wake
of a square plate 0.2 in. on a side (b = 0.2 in.), data
of Cooper and Lutzky [56].
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generate their wakes, while Chevray (58] used an aerodynamic
body. Thus, there are fundamental differences in the manner
in which the wake is formed. 1In the case of a bluff body,
the wake is generated from the vortices which emerge from
the edge of the disk; initial boundary layers are negligible.
On the other hand the wake of a symmetric body of revolution
such as Chevray's is formed from the large turbulent,
viscous region created by the separation of the boundary
layer from the surface of the body of revolution. In
Chevray's case this separation always occurred upstream of
the end of the body. Hence the basic mechanism for the
formation of the wake is different in the two cases. If the
same sort of effect of initial conditions observed for other
configurations is to be éxpected in this case, then a shift
of the decay curves such as observed in Figure 3.35 may be
due primarily to the change in wake formation mechanism.
Carmody [57], Chevray [58], and Gibson, et al.,
[59] all investigated in some detail the turbulence
structure of the axisymmetric wake. The last mentioned
investigation was primarily aimed at measurement of the
dissipation rate of turbulent kinetic energy by viscosity,
and of "thermal variance by conduction." To this end
measurements were made in the middle region of the wake of a
sphere in a water tunnel. Both dissipation rates were found

to decrease with streamwise distance approximately as x-z'4
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for up to 60 diameters. No details of the turbulence
structure other than these measurements of kinetic energy
dissipation rate were presented.

Both Carmody [57] and Chevray [58] made detailed
measurements of turbulent intensity and turbulent shear
stress in the early region of the wake, in the former case
the wake of a bluff disk and in the latter of a body of
revolution. Carmody found that his mean flow profiles
became geometrically similar at x/D = 20 while Chevray's
became geometrically similar much earlier, at x/D = 10.

Both Carmody and Chevray noted discrepancies between their
hot-wire turbulent shear measurements and those obtainable
from integration of the mean velocity profiles; neither
reported the lower frequency limit of their hot-wire
equipment.

The ratio of turbulent shear stress to turbulent
kinetic energy for both of these wakes agrees well with the
linear relationship, as for other flows: Figure 3.36.
Figure 3.37 depicts the evolution of the lateral profiles of
the parameter a; in the middle region of Carmody's axisym-
metric wake; the early region is not included because of the
recirculating flows and complex velocity field involved.
However, the velocity fields involved in Chevray's experi-
ments were somewhat less complex and the evolution of the
parameter a, is shown in Figures 3.38 and 3.39 from an axial

position upstream of the end of the wake-producing body to a
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Figure 3.36.

Relation between turbulent shear stress and

turbulent kinetic energy, axisymmetric wakes.
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Figure 3.37. Evolution of the parameter aj; in the middle
region of the axisymmetric wake of a disk. Data from
Carmody [571.
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position well downstream of the body. As observed in the
two-dimensional wake, the parameter a, evolves rapidly from
values and profiles characteristic of the separating
boundary layer on the body to profiles characteristic of a
free shear layer. Especially interesting is the extreme
peak of the parameter a, at x/D = 0, resulting from very
high turbulent shear stresses near the centerline; it is
apparently this sudden jump in turbulent shear stress level
that is responsible for the initial very rapid changes in
mean flow velocity. Also of interest is the fact, observed
here as in the two-dimensional wake ([52] that the peak value
of a, decreases from x/D = 0 to x/D = 1.0 _and then increases
to x/D = 12; it decreases again for the axisymmetric wake at
x/D = 18, This last profile is generally similar to pro-
files measured by Carmody [57] at x/D = 6 and x/D = 9.

One further experiment of interest which is not
included here because of its specialized nature is the
axisymmetric wake investigated by Naudascher [61l]. By
flowing a jet through the center of a wakg-producing disk
and carefully balancing the momentum flux, Naudascher was
able to approximate the wake 6f a self-propelled body. This
was done in order to generate a shear field that changes
into a shear-free field, in order that the approximations
used in isotropic turbulence can be expected to hold. How-

ever, the interest in the present work is primarily in
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relatively strong-shear fields, so the wake of a self-

propelled body will not be pursued further.

Two-Stream Two-Dimensional Mixing Layers

The single stream two-dimensional layer, as
described in Chapter 2, is formed when a two-dimensional
stream mixes with a fluid at rest. The two-stream two-
dimensional layer, on the other hand, forms between two
streams when they merge after an initial separation. When
the two streams are at the same velocity, the resulting
mixing layer is a two-dimensional wake, such as those
investigated by Chevray and Kovasznay [52] and by Lee [51].
When the two streams are of different velocities, the result
is a two-dimensional two-stream mixing layer. As in the
case of the two-dimensional two-stream jet, the primary
reason for investigating this particular flow is that the
existence of a finite level of mean velocity everywhere in
the flow makes hot-wire measurements of turbulent fluctua-
tions easier.

The two-stream two-dimensional mixing layer was
investigated by Lee [51] and Watt [62]. Both investigators
measured the turbulence intensities and turbulent shear
stresses; in addition, Watt [62] measured the various terms
of the turbulent energy equation. Lee's measurements were
made in the initial region of the formation of a mixing
layer from the boundary layers on the sides of the divider.

Figure 3.40 shows the development of the mean velocity
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profile from one characteristic of that created by the
merging of two boundary layers to one characteristic of a
turbulent two-stream two-dimensional mixing layer. Watt
[62] on the other hand made his measurements in the fully-
developed region. His Reynolds number (based on axial
distance x and the velocity of the high-speed stream) ranged
from 5.6 x 105 to 1.73 x 106, while Lee's ranged to
1.6 x 106. Watt shows that his velocity profiles exhibit
geometric similarity for Re, > 5.6 x 105, which agrees with
the observations made by Leipmann and Laufer [17] in a
single-stream two-dimensional mixing layer. Lee's measure-
ments, on the other hand, do not exhibit geometric
similarity, even for Re, = 1.6 x 10° as is shown by Figure
3.41, despite the great difference in velocity between the
two streams. This deviation from geometric similarity may
be caused by the rather large initial boundary layers
obtained by Lee, as well as by the initial angularity of the
flow--the streams are separated by a 10 degree included
angle wedge. Because of this angularity, it is also
possible that the initial region of this flow is not at
constant pressure. Figures 3.42 and 3.43 indicate that in
Watt's experiment, both the turbulent kinetic energy and the
turbulent shear stress are geometrically similar to a
reasonable degree.

The linear relationship between the turbulent

shear stress and the turbulent kinetic energy observed in
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many other flows is also found satisfactory for this type of
mixing layer. Figure 3.44 includes both Lee's [51] and
Watt's [62] data; the relationship can be seen to hold both
in the initial region and in the region of geometric
similarity. For these calculations it was assumed for lLee's
data that w' = v', as w' was not measured by Lee; this
assumption was also made for Watt's data at x = 44 inches.
The lateral variation of the pa;ameter a, for the
two-stream two-dimensional mixing layer in the fully-
developed regime is quite similar to that observed for the
single-stream two-dimensional mixing layer in the fully-
developed regime, as Figure 3.45 demonstrates. 1In the
initial region the lateral behavior of ay shows considerable
scatter, as seen in Figure 3.46. However, a trend toward a
development from a boundary layer profile such as was found
by Chevray and Kovasznay [52] can be discerned on Figure
3.45, with a little imagination. Comparison 6f Figure 3.46

with Figure 3.33, page 163, is helpful in this regard.

Summagx

In the two-dimensional, two-stream jet, self-
preservation can exist only in an approximate sense ([3],
Appendix C) for Uo/Uj << 1,0, If self-preservation exists,
the velocity, turbulent intensity, and turbulent shear
stress profiles will be functions only of the parameter
y/b(x), b(x) will vary as (x/h), and (Uc = UbLAUj - Uo) will

vary as (x/h) /2. For flows that satisfy the condition
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that Uo/Uj << 1.0, self-preservation is achieved for
x/h > 30 [37]. But even for flows that do not satisfy this
condition, the axial variation of the centerline velocity

=1/2 36, 37] as shown on Figure

appears to decay as (x/h)
3.4, page 110. For x/h > 15, geometric similarity of
velocity profiles appears to be achieved [36], where for
geometric similarity (U - Uo)/(Uc - Uo) = f(Y/bl/z)’bl/z is
the value of y for which U = Uo + (Uc - Uo)/z. This is
shown by Figure 3.6, page 113. Figure 3.4 also demonstrates
that the length of the velocity potential core increases as
the ratio Uo/Uj increases towards unity. There is not
sufficient data available to evaluate any Reynolds number
shift in these decay curves that may exist.

For two-dimensional two-stream jets, Bradbury [39]

gives the semi-empirical relations (based on similarity con-

siderations and conservation of momentum)

U -0 -1/2
c o A X

— = 2,57\ [ (%)

Uj U, VA 1 ‘h

b -1
2 = 0.109 F (1 + 233 ‘\/;}:-1
/AO-TY
where
R WER

The expression for centerline velocity decay gives fairly
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good results for A > 2 and x/h > 10, and improves for
increasing A. As with all relations based on similarity
considerations, these should be used with caution.
Self-preservation for coaxial mixing, as for two-
dimensional two-stream mixing, only exists in an approximate
senge for Uo/Uj << 1 ([3]), Appendix C); for this case self-
preservation involves profiles which are functions only of
r/x and axial decays (Uc - Uo)/(Uj - Uo) proportional to
(x/D)-l. Geometric similarity involves velocity profiles
that are functions only of r/rl/2 , where rl/2 is the value
of r for which U = U, + (Uc - Uo)/2. Figure 3.12, page 124,
indicates that geometric similarity exists when Figure 3.13,
page 125, shows true self-preservation does not. However,
as Fiqure 3.14, page 129, shows, axial decays approximately
proportional to (x/D)-1 are commonly achieved. Also from
Figure 3.14 it can be seen that as for the two-dimensional
two-stream jet, the coaxial jet shows an increase in the
length of the potential core with increase of the velocity
ratio Uo/Uj toward 1.0. Unlike the two-dimensional two-
stream jet, there is evidence for a shift in the position of
the axial decay of centerline velocity curves with jet
Reynolds number for this configuration. Part of this
evidence comes from a comparison of the results of Forstall
[40]) and of Landis and Shapiro [43], shown on Figure 3.15,
page 130. This figure indicates a definite increase in

potential core length with primary jet Reynolds number for
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jets with the same primary-to-secondary velocity ratio.
Additional evidence for the effects of initial conditions is
presented by the ¢enterline composition results of Fejer,
et al., [45] at a velocity ratio Uo/Uj of 1.0: Figure 3.18,
page 136. Unfortunately the trend of these data runs
counter to the trend exhibited by the comparison of Figure
3.16, page 132. The reason for this anomaly is not known;
there may have been effects of laminar to turbulent transi-
tion involved.

As for the two-dimensional case, Bradbury [39] has
obtained algebraic relations for velocity decay and width
increase for coaxial jets. Again, these are limited to

large values of A and x/D > 10; they are

j o

r -1/2
L2 2 0,089 E 1o+ 2L X

Turbulence results for both the two-dimensional
two~stream jet [37] and coaxial jets [44, 35] indicate
average values of the parameter a; for all cases of about
0.30. Other experimental results for the diffusion of trace
gases [40, 41], and temperature [42, 43] in essentially
constant density coaxial flows indicate Schmidt numbers of

approximately 0.7 and Prandtl numbers ranging from 0.5 [43]
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to 0.7 [42]. It should be noted that spatial distributions
of the turbulent Prandtl number are presented by Paulk [42];
' such distributions are not available in the other works.

There are two possible experimental methods of
developing two-dimensional wakes in the laboratory--either
through the use of a cylindrical obstacle [50] or an aero-
dynamic body [51, 52]. 1In the latter case, both a flat-
plate [52] and a wedge-shaped body [51] have been used.
Both of these experiments show finite levels of velocity on
the centerline as near as can be measured to the edge of the
wake-producing body, indicating an extremely rapid energiza-
tion of the boundary layer on the edges of the body.
Calculations of the parameter a; for these data indicate an
average value of 0.3 in the early region of the wake [51,
52] risihg to 0.4 in the self-preserving region [50]. Self-
preservation is shown in [50] to occur for x/D > 500. The
initial region is of course not self-preserving. Detailed
measurements of shear stress and kinetic energy show a
fairly rapid change from profiles of the parameter a;
characteristic of a boundary layer, where a; is about
constant [55], to profiles characteristic of free mixing
layers (Figure 3.33, page 163).

Axisymmetric wakes may also be formed in two
ways—--either by a disk-shaped obstacle [56, 57] or by an
axisymmetric aerodynamic body [58]. The different

approaches lead to different initial conditions for the two
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types of flow, as in the latter case thick boundary layers
may be built up, and the wake develops from the separation
of these boundary layers from the body. Again self-
preservation can exist only in an approximate sense ([3],
Appendix C). For the axisymmetric wake the data [56] do not
indicate that a self-preserving state has been reached prior
to x/D = 600, but this value may be in doubt. Self-
preservation leads to an axial decay of centerline velocity
ratio (U - U )/U, proportional to (x/D)_2/3; Figure 3.35,
page 168, indicates that beyond x/D = 10 such a decay curve
is followed fairly well. Both the wakes of a disk [57] and
of an aerodynamic body [58] produce values of the parameter
a, of about 0.3. The rapid increase in the value of a, near
the trailing edge of an aerodynamic body as measured by
Chevray [58], Figure 3.38, page 173, is noteworthy.

For the two-stream mixing layer, Watt [62] finds
that self-preserving velocity profiles are attained at

Rex = 5,6 X 105

, which agrees well with the single stream
value of Re, = 3.7 x 105 shown by Liepmann and Laufer [17]
for the achievement of self-preservation. Self-preservation
is not achieved in the experiments of Lee [52]; probably
because of initial condition effects. Again 0.3 appears to
be a good value for the parameter a, .

Table 3.1, page 109, lists the two-stream, two-

dimensional constant-density flows considered in this

Chapter. All of these flows are in satisfactory agreement
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with the momentum flux criterion. The range of parameter
values (UO/Uj ’ Reh) considered is quite limited, but the
coverage is probably adequate considering the somewhat
academic nature of the flow. Of the three experiments
listed, Weinstein, Osterle, and Forstall [36] is restricted
to mean-flow measurements, while Bradbury [37] and Bradbury
and Riley [38] include turbulent structure measurements.
The latter work is presented only in similarity variables;
however, the mean-flow data of [39] appear to be from the
same experiments.

Coaxial mixing of constant-density streams is one
of the more important free-mixing phenomena. Table 3.2,
page 126, shows that the experimental coverage of this
phenomena is fairly broad, with velocity ratios Uo/Uj
ranging from 0.125 to 39.5 and Reynolds numbers (of the
primary jet) ranging from 6.9 x 102 to 2.12 x 105. Of the
data listed, that of Paulk [42] is the only set in which the
outer stream was not ducted, although the ducts used by
Fejer, et al., [45] and Zawacki and Weinstein [35] appear to
be large enough not to affect the flow. The same cannot be
said of the work of Forstall [40, 41] particularly at the
higher values of Uo/Uj' Here the effect of the walls
appears to have shown up in the momentum integral for the
Uo/Uj = 0.5 case.

Initial velocity profiles are presented only by

Forstall [40, not 41] and Zawacki and Weinstein [35]. Shear
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stress profiles are presentgd by Curtet and Ricou [44],
Zawacki and Weinstein [35] (both obtained from hot-wire.
measurements), and by Paulk [42], obtained from integration
of the mean flow profiles. Fejer, et al., [45] also present
radial profiles of the eddy viscosity for 1 < x/D < 15, for
velocity ratio Uo/Uj = 0.25;.in the range 2 < x/D < 15 for
UO/Uj = 0.33, and in the range 2 < x/D < 24.5 for

UO/Uj = 0.20, However, they do not report corresponding
velocity profiles. The Zawacki and Weinstein data were
obtained at very high values of the ratio UO/Uj , with
center jets that were, in all but the UO/Uj = 3.4 case,
laminar, and these data suffer from effects introduced by
the recirculation phenomena that have been shown to exist
[47] in these flows. Further, the Curtet and Ricou data
[44] were obtained in a duct with a measurable axial pres-
sure gradient. Since free mixing analyses generally take
the axial pressure gradient to be zero, they cannot be used
for direct comparison with these data.

Because of the importance of the coaxial jet
configuration, some data for this configuration should be
selected for comparison with theoretical predictions.
Because the initial profiles are reported in Forstall's
thesis [40], the UO/Uj = 0.20 and Uo/Uj = 0.25 cases from
these data will be used. For comparison with theoretical
approaches which need initial shear stress profiles, the

data of Paulk [42] will be used. This situation is clearly
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not very satisfactory, as only a relatively small range of
UO/Uj can be investigated (0.2 to 0.477). Some higher
velocity ratio data has been obtained by Paulk [42] and
Fejer, et al., [45]; however, further experimental work is
clearly needed for jets with velocity ratios in the range
0.5 to 1.0. But it is in this region that the effects of
the initial condition for such flows be carefully measured
and carefully documented. This indeed is true for any free-
mixing experiment. All theoretical treatments depend to
some extent on the initial conditions that are assumed, and
it is to be expected that the better theories will demand
more detail in the initial conditions. The detail now
available is at best fragmentary. and at worst nonexistent.
A clear need for more experimental research exists in this
area.

Although there are not many experiments on two-
dimensional wakes, as Table 3.3, page 151, shows, those that
exist are very detailed and provide a wealth of information
about the flow. The experiments of Townsend [5, 50] are
well known, and those of Lee [51] and Chevray and Kovasznay
[52] provide needed detail on the initial development.
Because the initial development of a wake-flow from the
turbulent boundary layer flow is a technically interesting
flow, which is also of great value to the understanding of

turbulent free-mixing layers, the data of Chevray and
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Kovasznay [52] has been selected for use in comparison with
theoretical predictions.

The development of an axisymmetric wake is also of
great technical interest. Although there are a number of
experiments available for the incompressible axisymmetric
wake, the majority of them either concern wakes of disks
[56, 57] or do not contain sufficient information for com-
parison with calculations [59]. The wake of a disk in
general includes a large recirculation region immediately
behind the disk, which is not easily amenable to analysis.
However, the wake of the aerodynamic body investigated by
Chevray [58] includes only a small recirculation region,
which may be (to a first approximationg ignored. Thus, this
experiment also has been selected for comparison with

theoretical predictions.
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CHAPTER 4

VARIABLE-DENSITY SINGLE-STREAM FLOWS:

EXPERIMENTAL DATA

Flows with density variations are probably more
common in practical engineering applications than the
constant density flows considered in the previous two
Chaptefé. The density variations involved may be produced
by virtue of compressibility effects, if the flow velocity
(and Mach number) are sufficiently high, or they may be
produced in low-speed flows by variations in temperature
between a flow and its surroundings, or by the use of
different gases. In the most complex cases, compressibility,
temperature, and concentration effects may combine.

Because of the variation in density, the vast
majority of experiments in this area involve only mean-flow
measurements. The heat transfer rate from a hot-wire
depends not only on its temperature, but also on the thermo-
dynamic properties of the gas. If the gas composition (for
two gases), temperature (for a heated single gas system), or
density (in a compressible flow, as well as in the preceding
two cases) has a fluctuating component, the interpretation
of the results of a hot-wire measurement in terms of the
fluctuating velocity components becomes exceedingly

difficult. Those measurements which have been made, such as
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in a two-gas system by Zawacki and Weinstein [35] and in a
heated single-~gas system by Corrsin and Uberoi [25] have
been of the simplest components of turbulence, such as the
axial fluctuatibn u' and the temperature-velocity correla-
tion u#.

Even mean~flow measurements are more complicated
in a variable~density flow; measurements of additional
quantities, such as the gas composition and temperature,
need to be made, and corrections applied, such as those for
the pitot pressure in a supersonic flow. For this reason
the range of parameters to be determined in a given experi-
ment is greater, which leads to increased complication in
evaluation of the experiment and comparison of it with other

experiments.

The Compressible Circular Jet

One of the simplest of the variable density flows
to achieve experimentally, the supersonic jet into quiescent
surroundings, has been the most exhaustively studied. Even
so, the state of knowledge about this flow does not compare
with that for the constant-density jet into still
surroundings. Both two-dimensional and circular supersonic
jet experiments exist, but the two-dimensional jets [63, 64]
are of such low aspect ratio as to be more likely three-
dimensional in character than two-dimensional. Thus,
primary attention will be paid to the circular supersonic

jet. A schematic of the circular supersonic jet is shown in
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Figure 4.1. As in the constant density jet, the mixing can
be divided into two distinct regions, one in which the
turbulent mixing layer is expanding into both the quiescent
surroundings and the essentially nonturbulent potential core
"of the jet, called regime I, and the other in which turbu-
lent mixing extends from the outer edge of the jet to its
centerline, called regime II. Providing that the potential
core of the jet is shock-free, the length of the potential

core, X , will be greater in a supersonic jet than in a

core
low-speed jet of the same gas; a linear increase in
potential core length with Mach number has been often
observed, e.g., Broer and Rietdijk [65] and Anderson and
Johns [66].

To obtain a disturpance-free,'uniform, parallel
flow at the jet exit, the nozzle must be properly designed
and operated fully-expanded, i.e., so that Pe = Pa on
Figure 4.1. The only jets to be considered here are those
that are fully expanded and shock-free. The effects on the
mixing phenomena of the wave phenomena that occur in
improperly expanded nozzles are not clear. Two investiga-
tions have looked at this problem in detail. In one,
Donaldson and Gray [67], neither over- or under-expansion
was found to have a "first-order" effect on the mixing
phenomena. Johannesen [68] on the other hand, experimenting

with nozzles having fairly strong shock waves in the core of

the jet found that jets with a given exit Mach number and
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strong shocks spread very much more rapidly than jets with
the same exit Mach number and no shocks. The jet with
strong shocks was also unsteady; Donaldson and Gray note
that their conclusion applies only when the shock structure
"does not flap."

Table 4.1 presents the important parameters for
the sinéle—jet flows considered in this section. As
mentioned above, both Gooderum, Wood, and Brevoort [63] and
Bershader and Pai [64] performed experiments on flows which
probably suffer from three-dimensional effects. Gooderum,
et al., reported geometric similarity (based on a local
width scale) for their velocity profiles. The Bershader and
Pai data [64] in addition to being probably three-
dimensional, suffers -somewhat from extreme nondimensionali- -
zation: the data presented are shifted both axially (by use
of a virtual origin) and laterally, and are further multi-
plied by a scale factor.

Warren's work [70] represents an extensive
investigation of the supersonic jet, at four Mach numbers
and three ratios (for the subsonic Mach numbers) of jet
total (or stagnation) temperature to ambient temperature,
To_/Ta (see Figure 4.1). The portions of Warren's work
cogsidered in this section involve jets for which
To./Ta = 1; those for To./Ta # 1 will be considered in the

J
following section.
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TABLE 4.1
COMPRESSIBLE JET INTO QUIESCENT AIR

Momentum
Check, Range of

M Dj ReDa Largest Percent Momentum
Investigator Ref. Year Type ) (in.) x10~3 x/D of Avg. Check
Gooderunm,
Wood, and
Brevoort 63 1949 2D 1.6 3x3 - 2.5 - -
Bexrshader )
and Pail 64 1950 2D 1.7 0.394 - - - -
x0.788
Warren 70 1957 Circ. 0.69 2.554 16.3 25 4 4<x/D<15
0.97 2.554 23.5 30 4 4<x/D<20
2.60 2.554 90.5 20 4 10<x/D<20
Pitkin and
Glassman 71 1958 Cirec. 2.60 - - 20 - -
Broer and
Rietdijk 65 1960 Circ. 1.74 0.704 13.2 25 30 x/D=21.4€
Johnnesen 68 1962 cCirc. 1.40  0.75  10.7  93.5 4d  x/p<53.5
69
Eggers 72 1966 Circ. 2.22 1.007 26.5 75 6 x/D<45

%Reynolds number estimated assuming T°j = T, = 530°R if not specified.
bNo velocity profiles presented.
CJet shows marked change in decay at x/D = 20.

dAuthor's measurement.

9€-14-41-003V
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Jets with To./Ta = 1, as all of those in this
section, are commonly considered to be isoenergetic, i.e.,
To = To. everywhere in the flow. This assumption is made by
Warren %70], Pitkin and Glassman [71], Johannesen [68, 69],
and Eggers [72]; however, it has been questioned by Broer
and Rietdijk [65] who measured a five percent axial .
variation in T, in their experiment on a M = 1.74 jet. The
error that a five percent deviation of total temperature

introduces in a velocity calculation is easily estimated.

For a perfect gas

U= /YgR /T M (4.1)
. where
/T "o
T = — (4.2)
1+ Yoiy2)1/2 .
so that Y
= M
U = 1n(/YgR) + ln([l : ;1 211/2) + .
+ 3 InT_ (4.3)

from which the error in the determination of U is obtained
by standard techniques (assuming that y, g, and R are known

exactly)
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M
Al ]
Y-1,2,172
U i 2T~ "fFM 2T
(o] (o]
(1 + 1;1u2)1/2

Assuming for the purposes of this discussion that the Mach

number is known exactly, Af(M) = 0 and

(4.5)

so that a five percent error in To leads to a 2.5 percent
error in the determination of U. Thus taking the total
temperature to be a constant would appear to introduce only
a small error in the calculation of velocity.

All of the investigators in this section assume
that the static pressure is constant and equal to the
ambient pressure throughout the flow field. The static
pressure field was measured by Warren [70, 73], who found
that the static pressure is not constant either axially or
laterally. The variation in static pressure appears to
increase with jet Mach number; at M = 2.6 the variation
along the jet akis is four percent, with a ten percent
lateral variation at x/D = 15. One can here perform an
exercise, similar to that performed above to investigate the
effect of total temperature variation, to investigate the
effect of static pressure variation on the determination of

Mach number. Then, starting with
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-1

o

53 = (1 + Iilmz)

one gets, assuming that Po is accurate

-1,2
AlL + 52u ] 1y e

1 + 151”2 vy P

which leads to

(Y-1)MAM = 1—;1(1 + Yg—lmz)éﬁ

or
y-1,2

|24 . e BV

M w2 P

Warren [70, 72] indicates that AP/P = 0.10 at x/D =

From Reference [70], at x/D = 15, M_ = 2.3 and

(4.6)

(4.7)

(4.8)

(4.9)

15.

indicating a three percent error in Mach number due to the

static pressure variation.

that the static pressure variations

Warren [70, page 59] concluded

« « « although they provide information concerning
the jet structure, do not have a large effect upon

Therefore,

the velocity calculations.

for

calculation of the jet velocity characteristics,
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the static pressure was assumed to be constant in

the subsonic cases. In the M; = 2,60 series, the

static pressure variations wefe included for

velocity calculations.
Since all other jets considered were at Mach numbers -less
than 2.60, the assumption of constant pressure commonly used
by the other investigators is probably justified.

The question of a turbulence correction to the
total and static pressure measurements used in these experi-
ments is considered by both Warren [70] and Johannesen [69].
As for the constant-density jet discussed in Chapter 2, the
approach to making the correction is unclear; in the
variable-density case it is complicated further by density
fluctuation effects. Thus, no corrections have been applied
to any of the measurements considered.

The turbulent Prandtl number is evaluated for this
configuration by Broer and Rietdijk [|65] who report
Pr, = 0.7. Warren [70] concludes that the turbulent Prandtl
number is not unity, but his method of evaluation of the
turbulent Prandtl number is such that he 1s unable to
establish a meaningful numerical value for it. In con-
sidering the work of Broer and Rietdijk, it should be noted
that the momentum integral for this work could only be
evaluated at x/D > 20, a region where the axial decay curve
begins to deviate strongly from the slope established
upstream. Thus the value listed for the deviation of the

momentum integral from a constant value for this data is

probably worse than the actual overall deviation.
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A note should be added regarding the evaluation of
the momentum integral. The requirement is, from Appendix A,

that
o0
j—pUZrdr = constant (4.10)
o

Except for Eggers [72] who presented profiles of pU2, this
was evaluated through use of the perfect gas law, P = pRT,

thus:

where P has been taken as constant and equal to Pa. Thus,
.the conservation of momentum requirement for this flow

becomes

N8

M~"rdr = constant (4.11)

ou____

The Mach number was evaluated from the velocity profiles
available assuming constant total temperature: thus for the

centerline Mach number

Uc
Mc = — (4.12)
49.1/T
c
T
oc
T = (4.13)
c 1+ Y—1“2
2 ¢C
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so that

UC
M = (4.14)

S [149.1)%7 - Yz1y?%1/2
o 2 C

and similarly at any axial station

U/Uc

1 vl _ U (2,,1/2
{7 + "—2—'[1 (U—) 1}

M c
(o}

M =

(4.15)

Figure 4.2 shows a comparison of the centerline
axial velocity decay curves for the compressible flow
experiments of Warren [70] and two of the jets measured by
Alexander, et al., [27]. Over the relatively short axial
distances involved, Warren's data can be seen to follow the

1

UC/Uj « (x/D) — decay rate established for the incom-

pressible jet relatively well. The length of the potential

1 line

core, as defined by the intercept of the (x/D)
characteristic of a given set of. data and the line
Uc/Uj = 1.0, can be seen to increase with Mach number. If
these core lengths, as well as those from other experiments
at different jet Mach numbers are plotted, as in Figure 4.3,
they can be seen to group along two lines with the break
between groups occurring at about Mj = 1.0,

Figure 4.4 shows the axial decay of centerline

velocity for several experiments with Mach numbers ranging

from 1.40 to 2.60. As was discussed above, calculations of
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Figure 4.2. Comparison of compressible free jet data with
effectively incompressible data; decay of centerline
velocity.
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Figure 4.3. Variation of core length with Mach number,
compressible jet-into-still-air.
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the momentum integral for the data of Broer and Rietdijk
[65] indicate that its value deviates quite strongly from a
constant value for x/D > 20; this behavior is borne out by
the strong deviation from the upstream decay behavior shown
on Figure 4.4 for x/D > 20. On the other hand,
Johannesen's data [69] follows a straight line decay (on a
log-log plot) quite well, except for very large x/D.

The behavior of Egger's data [72] is somewhat
different. As can be seen from Figure 4.4, the data cannot
be fit by a line segment.of the form Uc/Uj x (x/D)_l,
although each segment of the data can be, the line segments
used being different for each data segment. Reference to
Table 4.1, page 198, shows that Egger's data satisfies the
momentum integral criterion to about the same degree as does
Johannesen's, for about the same axial distance. Two
reasons for the decay behavior of Egger's data are possible--
either the data should be fit by an x-l line, which would
indicate an origin shift between each set of data, or the
data should not be fit by an x_l line, but by a line having
a different slope. The first possibility seems unlikely for
two reasons--first the relatively good agreement with the
momentum integral requirement, and secondly, by the fact that
with a supersonic nozzle flow such as this, the only
parameter that can conceivably change between runs is the
jet total temperature. Increase of the jet total tempera-

ture to ambient air temperature ratio could cause a shift in
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the decay curves, at least for subsonic flow, as will be
seen in the following section, but whether the same effect
occurs to the same extent in a supersonic flow has not been
determined. Eggers [72] does not report whether or not all
the data were taken in a single test, so the question of
whether or not a change occurred in jét stagnation condi-
tions, and the effect this might have had on the velocity
decay curves cannot be answered.
The Uc/Uj « (x/D)-l curve is found universally in

the constant density low speed jet. When coupled with a
spreading rate proportional to x/D, and velocity profiles
which are functions of the parameter r/x, this indicates,
for the axisymmetric jet, that self-preservation has been
achieved. Because of the effect of density gradients, it is
not possible to define self-preservation in a compressible
jet in the same manner. One might expect an approach to
self-preserving behavior far enough downstream, as the
centerline Mach number approaches zero. But from
Johannesen's observations |69]

. » « the results presented i1n the present paper

suggest that full self-preservation may never in

practice be reached at measurable velocities.

Put another way, 1t may not be reached until the

velocities are so low that they are of the same

order as the random velocity fluctuations in the

"still" air into which the jet is issuing.
In the incompressible jet, axial velocity decays inversely

proportional to x/D are obtained, as well as geometric

similarity of the profiles, before true self-preservation is
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reached. As can be seen from Figure 4.5, geometric
similarity is adequately obtained for the compressible jet
into still air, with velocity profiles well fit by an
equation of the form

2

= exp[—0.6932\rr/ ) ] (4.16)
1/2

u
U
c
However, the fairly limited information available suggests
that for Mach numbers greater than about two, axial velocity
decays inversely proportional to x/D should not be expected,
and that any eventual transition to behavior such as found

for the constant density jet-into-still-air may occur so far

downstream as to be not in practice measurable.

Circular Jets with Densitﬁ Differences Caused by Temperature

and Composition Differences

The jets to be considered in this section are
generally low speed flows, but with significant density
differences caused by heating the jet or by using a jet of a
different gas from that of the surroundings. There are
numerous practical applications of such jets, one of the
more interesting being the orchard heater as discussed by
Cleeves and Boelter [75].

Table 4.2 lists the important parameters for the
experiments considered in this section. As mentioned above,
the experiments of Cleeves and Boelter [75] were designed to

investigate the flow field of a configuration representing an
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Sym Investigator Ref. M. x/D

J

A Eggers 72 2,2 23.9

O  Eggers 72 2.2 45.5

o Warren 70 0,97 12.5

D  wvarren 70 0.97 20

O Warren 70 2.6 20
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