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ABSTRACT 

The problem of the analysis of free turbulent mixing is 
complex, and some empiricism is always necessary to obtain a 
solution. This has led to a proliferation of experiments and 
of semi-empirical models for the turbulent shear stress. All 
of these models will correlate experimental data well in some 
region of a particular flow, but not in others. None has been 
tested over as broad a range as is possible. The ultimate 
goal of this study is to confront each important model for the 
turbulent shear stress with as broad a range of experimental 
data as possible. From this confrontation come two sets of 
conclusions—one detailing those models presently suitable for 
engineering use, and the second establishing the models which 
show promise of becoming more generally applicable with further 
development. 
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INTRODUCTION 

Free turbulent mixing may be defined as that class 

of turbulent flows in which there is no direct effect of 

solid boundaries on the flow.  There may be an indirect 

effect; the free mixing process may have been generated by 

the action of a solid boundary, as for example, in the wake. 

Although turbulent flows contained within ducts are 

included in this study, the turbulent flow cannot impinge on 

a wall.  The class of flows considered in this study is 

further restricted to coflowing streams, with zero axial 

pressure gradient. Thus the ducted flows covered must be 

contained within ducts sufficiently large for the pressure 

gradient to be negligible. 

The understanding of the process of free turbu- 

lent mixing is of fundamental importance to the description 

of the phenomena that occur in many devices of practical 

engineering interest.  Such phenomena include the fuel- 

oxidizer mixing processes in propulsive devices such as the 

scramjet and air-augmented rocket, in the combustion 

systems of turbojet engines, and the turbulent mixing 

processes in jet pumps and in wakes.  In another field, the 

study of the acoustic properties of jets itself involves 

the understanding of their turbulent structure.  In all of 

these flows, the fundamental problem remains the same: 

although the appropriate equations of motion can be 
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formulated, they cannot be solved in closed form; indeed, 

the mathematical statement always contains more unknowns 

than equations, and thus empirical information must always 

be included before the solution to the problem may be sought. 

Considerable experimental work has been done in 

recent years on various free turbulent mixing flows, both in 

the investigation of their mean flow field and, through the 

development of vastly improved hot wire anemometer equip- 

ment, in the investigation of their fine scale turbulent 

structure. The rapid development of computer technology in 

recent years has made feasible theoretical approaches to 

the problem which are capable of treating the problem of 

turbulent mixing in much more detail than has heretofore 

been possible.  But at the same time the recent appearance 

of these advances has pointed up the lack of any reliable 

guide to the available experimental results and theoretical 

models in the field. 

The earliest theoretical models of" turbulent flow 

sought to reduce the mathematical formulation of the 

problem to one similar to a laminar flow, since techniques 

were then known for the analytical treatment of laminar 

flow problems. The result of these attempts was the 

modelling of a turbulent flow as analogous to a laminar 

flow with the laminar viscosity, a function only of the 

fluid, replaced by an "eddy viscosity" which is a function 

only of the flow process. As information concerning the 
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unsteady structure of turbulent flows became available, it 

became increasingly apparent that turbulent flows behaved 

physically quite differently from laminar flows. Thus the 

analytical and experimental work proceeded in two separate 

directions—on the one hand theoretical treatments using 

eddy viscosity models and experiments in which the gross 

mean flow characteristics were measured for flows of 

practical interest, and on the other hand statistical 

theoretical treatments, which often were bereft of engi- 

neering usefulness, and experiments in which the turbulent 

fluctuations were measured in flows of purely academic 

interest. Further, theoretical treatments often tended 

towards the development of a model to fit one experiment 

without regard to its general implications and experiments 

often were made solely to test a specific model. 

After four decades of this sort of development, 

the field of free turbulent mixing presents a rather 

formidable maze of often conflicting models combined with 

many experimental investigations of different facets of the 

overall problem.  The practicing engineer, faced with this 

chaotic situation, can only investigate a small fraction of 

the available literature, and often does not have time to 

evaluate and compare the results he obtains with other 

results in the field.  In this study such an analysis and 

comparison of all of the major experimental work which has 

been done in the field of free turbulent mixing is 



AEDC-TR-71-36 

performed. From the results of this evaluation a group of 

reliable experiments covering the broadest possible range of 

turbulent free mixing flows is selected.  The second phase 

of this study then involves the selection of the most 

commonly used analytical models for the free turbulent eddy 

viscosity, as well as models which, while not commonly used 

as yet, appear to show some interesting aspects, and models 

in which the eddy viscosity is replaced by more direct 

relationships for the turbulent shear stress. 

All of the models selected, ranging from the 

classical mixing-length concept of Prandtl through the 

relatively recent displacement thickness eddy viscosity 

model and the kinetic energy theory, in which the turbulent 

shear stress is related directly to the turbulent kinetic 

energy, are then used to compute analytically the selected 

flow fields.  These computations are made using a recently 

developed finite-difference computational technique which 

has been modified and developed to allow calculations to be 

made of free mixing flows with arbitrary eddy viscosity 

models, Or with the use of the turbulent kinetic energy 

equation to evaluate the turbulent shear stress.  The 

results of these calculations are used to evaluate the per- 

formance of the various predictive models against a large 

cross-section of experimental information.  Because the 

same computational technique is used in all calculations, 
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the differences that remain between predictions must be 

caused by the eddy viscosity model chosen. 

The overriding consideration in the evaluation of 

these theoretical models is how well a given model stands up 

to the challenge of comparison of its predictions with 

experiments throughout the entire range of free turbulent 

flows.  Those models for eddy viscosity or turbulent shear 

that best meet this challenge are those which have the 

widest range of applicability and thus the greatest engi- 

neering usefulness.  In this study, specific recommenda- 

tions are presented concerning those models which appear to 

be most useful and reliable for engineering calculations of 

free turbulent mixing. 

The work described in this study can be divided 

into two main parts.  In the first part the review and 

evaluation of the experimental data are described. Because 

it is imperative for the confrontation of theory and experi- 

ment that follows in the second part that each experiment 

be closely examined, this first part is necessarily lengthy. 

However, in each Chapter the most.important conclusions of 

of the evaluation have been assembled in a summary section, 

which can be read independently, with each Chapter then 

serving to contain the supporting material for the conclu- 

sions stated in its summary. If only the summaries are 

used/ the reader will gain a reasonably quick overview of 

the experimental data on free turbulent mixing. 
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In the second part, experiments selected from 

those described in the first part are used to confront the 

predictions of various models. Once again, for a quick 

review of the various models to be considered, the summaries 

of the appropriate Chapters will suffice, but here it is 

recommended that- both the discussion of results in Chapter 9 

and the conclusions and recommendations in Chapter 10 be 

read in detail. Finally, liberal use of appendices is made 

in order to facilitate a detailed investigation of various 

facets of this study that do not conveniently fit into any 

particular Chapter. 

The material covered in this study involves work 

reported up to March, 1970. Because of this obviously 

arbitrary cutoff date, some interesting recent work has had 

to be neglected.  The reader will also note that there is 

little reference to the extensive Russian literature on the 

subject of free turbulent mixing. This is primarily caused 

by the demands of this study for extensive and detailed 

reporting of both experiments and theoretical treatments. 

The Russian literature, at least as it is available in this 

country, is in general not reported in sufficient detail to 

be used here. 
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CHAPTER 1 

METHODS OF ANALYSIS OF THE EXPERIMENTAL DATA 

General Criteria 

The first question in the evaluation of a given 

set of experimental data must obviously be "what experi- 

mental results are presented?" There can be a great 

variety of answers for any given flow. Most commonly in 

free mixing flow experiments the velocity profiles at 

several axial stations are presented, along with axial 

distributions of the centerline velocity. If the flow 

involves temperature or composition differences between two 

streams or between a single stream and its surroundings, 

lateral profiles and axial distributions of the centerline 

value of the temperature or composition are commonly 

presented. 

To define the minimum necessary amount of data 

for the purposes of this study, it is necessary to discuss 

the basic check which will be made on a given piece of 

data. The primary check, applicable to all free mixing 

flows, involves the momentum flow rate through any arbi- 

trary control volume enclosing the flow.  Figure 1.1 

depicts such a control volume schematically; it is taken as 

extending far enough into the external flow so that the 

axial velocity equals the constant external velocity. 
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Figure 1.1.  Control volume for free mixing, 
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Newton's second law for any control volume states that the 

net force acting on the surfaces of the control volume is 

equal to the change in momentum flow rate through the con- 

trol volume.  But none of the surfaces of this control 

volume (1-2-3-4 on Figure 1.1) are physical walls or 

boundaries of the flow; therefore, in the absence of a 

pressure gradient there can be no net force exerted on 

them.  The change in momentum flow rate in a free mixing 

flow must then be zero, so that at any lateral plane in the 

flow, such as 1-2, the momentum flow rate must equal that 

across any other section, i.e., 4-3 on Figure 1.1 If an 

axial pressure gradient exists in the flow then there must 

be a change in the momentum flow rate through the control 

volume of exactly sufficient magnitude to balance the pres- 

sure forces acting on the control volume; further, the 

external velocity U^ will no longer be constant. 

The primary test for a given set of zero axial 

pressure gradient free mixing data is then that it exhibit 

a constant value of momentum flow rate from one axial 

station to the next. In this study, the excess momentum 

flow rate is used instead of the total momentum flow rate. 

This parameter represents the increase in momentum flow 

rate of a particular flow over the momentum flow rate 

represented by the constant background velocity, and is a 

considerably more sensitive parameter than the total 
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momentum flow rate.  For a wake, in which velocities are 

lower than the background velocity, this parameter of course 

becomes a momentum deficit. 

To unequivocally evaluate the excess momentum 

flow rate, it is necessary to know lateral profiles of the 

velocity and density at several axial stations, as is shown 

in Appendix A, assuming constant static pressure.  This 

requirement may be eased slightly in an incompressible flow 

that exhibits geometric similarity, which is defined below. 

The evaluation of the excess momentum flow rate in this 

case is also described in Appendix A.  But in general, in 

order to judge the accuracy of a given experiment, the 

fundamental requirement is that it contain sufficient data 

to evaluate the excess momentum flow at several lateral 

cross sections.  (Because this quantity is evaluated by 

integrating the local excess momentum flow rate per unit 

area over the area represented by a lateral end of the 

control volume, with its edges taken to + «°, it is 

referred to in the following text as the excess momentum 

flux integral or simply momentum integral.) 

A second test of a given experiment is of course 

how well it compares with other similar experiments.  This 

is essentially a subjective test, but it is unlikely that 

two experiments with similar configurations will both 

satisfy the momentum integral criterion and yet show widely 

different behavior,  if something of this order occurs, it 

10 
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may indicate that one of the two flows is not really the 

same flow configuration as the other. An example of this 

situation might be two coaxial free mixing experiments, one 

of which shows a markedly greater initial rate of decay of 

centerline composition than the other.  If the different 

flows have markedly different jet-to-external-stream 

velocity ratios, such that the ratio in the case which 

shows a greater centerline decay is very much less than 

unity, then it may be that the much-less-than-unity case is 

exhibiting a somewhat wake-like behavior in the early part 

of the mixing region, while the other flow behaves more 

like an ordinary coaxial-jet free mixing process.  The wake- 

like behavior referred to may perhaps be manifested in 

strong pressure gradients and the existence of regions of 

local recirculation. 

In recent years a new approach to the theory of 

free turbulence has been developed which involves using the 

turbulent kinetic energy equation to evaluate the turbulent 

shear stress.  Such a method of course depends on the 

existence of a fairly general relationship between the 

turbulent shear stress, T, and the turbulent kinetic energy 

per unit mass, k.  Because of its importance in the kinetic 

energy theory, the existence of a relationship between T 

and k is evaluated in this study for all experiments which 

include sufficient data, and it is found that a linear 

relationship 

11 
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T - a.pk (1.1) 

where a, may be a function of the lateral coordinate is 

quite general. Further it is found that the shape of the 

lateral variation of a, is reasonably consistent from 

experiment to experiment in a given flow configuration. 

Thus Equation (1.1) and the consistent lateral behavior of 

a, provide additional criteria for judging those experi- 

ments for which sufficient data are available. 

Summarizing, the primary criteria are that the 

experimental results be complete enough for an unequivocal 

evaluation of the excess momentum flux integral, and that 

the value of this integral be nearly constant.  To further 

define the phrase "nearly constant," it has been observed 

in the course of this study that acceptable experiments 

generally show deviations from a constant value of the 

excess momentum integral of ten percent or less. A 

secondary criterion is that the results be consistent with 

other results for similar configurations. Further, the 

relationship between turbulent shear stress and turbulent 

kinetic energy can be used to provide additional evidence 

in those flows for which data is available. 

Methods of Presentation 

It has been commonly observed that if U repre- 

sents the centerline velocity, U the free stream velocity, 

and rl/2 fc^e lateral position at which U - U = 1/2(U - U ), 

12 
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then for all axial stations greater than a certain axial 

station (which varies with the type of flow), one can 

collapse the measured velocity profile data to a single 

function 

u " u„ 
Uc ~ Uo    pl/2 

This is true for two-dimensional and axisymmetric jets with 

still surroundings (U - 0), wakes, and for two-stream jets. 

With some modification an expression similar to Equation 

(1.2) can be written for two-dimensional mixing layers. 

Indeed, the function itself is grossly the same for all 

free mixing flows.  In cases in which temperature and con- 

centration differences appear between streams in a flow, it 

is observed that the total enthalpy and concentration 

ratios also exhibit geometric similarity. 

Because of this observation of geometric simi- 

larity, the axial decay curves, i.e., the curves of 

U - U /U. - U versus x/D, where U. is the nozzle exit c   o j   o j 

velocity and D the nozzle diameter (or width) become 

important parameters in comparing experiments with each 

other and in comparing the results of calculations with 

experiment.  There are a number of ways in which axial 

decay curves may be presented. As will be discussed below, 

all free-mixing jet flows can be divided into two mixing 

regimes, the first of which is called the potential core. 

13 
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It is empirically observed that downstream of the end of 

this potential core the decay curves for a given configura- 

tion tend to all have the same behavior, which may be 

described by a function of the form 

U - U      -n 
flf^-Mg) (1.3) 

where k is a constant for any given flow.  Therefore, if log 

(U - U /U. - U ) is plotted versus log (x/D), a family of 

straight lines of slope (-n) results.  This fact makes it 

particularly easy to compare various results with one 

another, and to determine for a theoretical analysis both 

its level of agreement with the data and the trend this 

agreement shows with increasing x; i.e., whether the agree- 

ment can be expected to improve or become worse with 

increasing axial distance.  Because of these advantages, 

logarithmic plots of axial velocity-, temperature-, and 

composition-ratio decay will be used as the primary medium 

for comparison of results. 

Since it is observed that all of the axial decay 

curves for a given configuration have about the same slope 

downstream of the end of the potential core, but that the 

potential core length x varies from experiment to experi- 

ment, it is natural to investigate how the potential core 
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effect may be removed from the results. Because of the 

logarithmic nature described above, this may best be done by 

plotting 

Uc " Uo     x _n 

- k0(^-) (1.4) U. - U    2vx„ J o      c 

where k, is another constant.  Indeed, it is shown in 

Appendix B that for certain simple flows, if geometric 

similarity is assumed, the integral momentum flux is 

constant, and the local width scale r.,, is assumed to vary 

proportionally to x , then the determining parameter for 

the flow is x /D.  However, even in the simplest flows no 

universal way is known to evaluate x /D.  Thus Equation c 

(1.4) does not provide any information of practical 

interest. 
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CHAPTER 2 

CONSTANT-DENSITY SINGLE-STREAM FLOWS: 

EXPERIMENTAL DATA 

Conceptually, the constant-density single-stream 

flow (sometimes referred to as the submerged jet) is, with 

the possible exception of the incompressible wake, the 

simplest class of free mixing flows. Thus it is no sur- 

prise that this class of flows is the most thoroughly 

investigated in the field of free turbulent mixing. 

Because there are no density gradients, and the flow 

velocities are low, the application of hot-wire equipment 

to the investigation of the turbulent structure in such 

flows is straightforward.  Most of the available informa- 

tion on turbulent structure is concerned with such constant- 

density single-stream flows as will be described in this 

Chapter.  The individual flows to be investigated include 

the two-dimensional and circular jet, and the two- 

dimensional mixing layer. 

The Two-Dimensional Jet 

The flow field produced by a two-dimensional jet 

exhausting into still surroundings can, in general, be 

broken into two regimes.  Where the jet exits from the 

nozzle, as shown schematically in Figure 2.1, regions of 

turbulent mixing are formed at either edge of the slot. 

16 



Figure 2.1.  2D jet with zero external velocity-definition 
sketch. 
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The width of the turbulent mixing region expands in the 

downstream direction, so that it encroaches both on the 

external still fluid and on the non-turbulent potential core 

region between the two mixing layers. At the point where 

the two mixing layers meet, the potential core disappears« 

and the potential core region, or first regime of mixing, 

undergoes a transition to the second regime in which turbu- 

lent flow is encountered all the way across the jet. 

The mixing model just described is idealized.  In 

reality, there is ordinarily some low level of turbulence 

existing in the potential core, and the lines of demarca- 

tion between the turbulent mixing region and non-turbulent 

fluid are not distinct.  If a fast response probe is held 

close to the edge of a turbulent jet, it will sense 

alternate periods in which both turbulent and non-turbulent 

patches of fluid are swept by.  This phenomenon, called 

intermittency, has been observed in all free turbulent 

flows (in the two-dimensional jet by Hannum and Griffith 

[1]).  The presence of intermittency means that the 

boundary between the turbulent mixing region and non- 

turbulent fluid is random? it "blurs" the lines of 

demarcation.  Further, the change from regime I to regime 

II is not abrupt, as idealized in Figure 2.1; rather there 

Numbers in brackets refer to similarly numbered 
references in the bibliography. 

18 



AEDC-TR-71-36 

is a transition regime where the behavior of the flow 

gradually changes from the characteristic behavior of the 

first regime to that of the second. Nevertheless, the 

idealized picture of Figure 2.1 is important in two 

respects:  as an aid to the understanding of the character- 

istics of the two-dimensional jet flow and as a model for 

the mathematical simulation of the flow. 

A truly two-dimensional flow is difficult to 

realize experimentally, as the physical necessity of 

limiting the length of the slot (L on Figure 2.1) 

unavoidably introduces three-dimensional end effects into 

the flow. A true two-dimensional flow can only be approxi- 

mated, and this only through the use of a suitably high 

aspect ratio, L/h on Figure 2.1. The maintenance of two- 

dimensionality also limits the downstream distance over 

which the jet may be measured. Van der Hegge Zijnen [2] 

states that the slot jet will approximate the true two- 

dimensional case in the plane of symmetry perpendicular to 

the slot provided that the downstream distance is not 

farther than 2L.  Newman [3] regards the end effects as 

distorting some experimental results by causing the rate of 

growth of the mixing layer to be too slow, presumably 

through the action of end vortices which induce spanwise 

flows and thus thin the mixing layer. An additional 

problem arises when the slot jet has to be for practical 

reasons enclosed in a duct. Care must be taken that the 
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duct be sufficiently large compared to the slot. Foss and 

Jones [4] report that the structure of a rectangular jet 

enclosed in a duct can be significantly different from that 

of a free jet. 

The ideal two-dimensional jet has no character- 

istic length (Townsend [5], page 173), which means not only 

that the fluid viscosity and jet velocity compl«i4-3ly 

specify the whole flow, but also that a characteristic 

Reynolds number for the whole flow cannot be defined. This 

in turn implies that all two-dimensional jets are dynami- 

cally similar. Under this condition it can be shown from 

the equations of motion (see for example, Newman [3],  also 

Appendix C) that in the self-preserving region, in which 

the profiles of velocity and shear stress exhibit 

similarity, the centerline velocity ratio U /U. varies as 

—1/2 1/2 (x/'h)  '  and the jet width is proportional to (x/h) ' . 

All of the two-dimensional jet experiments reported in this 

-1/2 Chapter exhibit over some region an "x ' " decay of 

centerline velocity, as is indicated by Figure 2.2.  The 

region beyond which similarity prevails is reported as 

x/h > 20 by Miller and Comings [6] but Heskestad [7] 

reports similarity occurring only for x/h > 65.  In this 

connection, however, the definition of "similarity" is 

important as the velocity profile is observed to take on a 

similar profile shape (i.e., one in which the velocity 

profile, plotted as U/u versus y/x, does not vary with x) 
C 
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Figure 2.2.  Axial decay of centerline velocity ratio, two- 
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earlier than the turbulent shear stress profile.  In addi- 

tion, Heskestad reported that a "subrange" existed in his 

jet in the region 10 _< x/h £ 30 in which the center line 

velocity decay approximated a self-preserving form, 

although a different form than that exhibited further down- 

stream. 

Although there can be no Reynolds number defined 

for the whole flow in an ideal flow, a Reynolds number for 

the actual jet can be defined at the jet exit, and in the 

early part of the flow some variation of centerline 

velocity decay behavior with this Reynolds number is 

observed.  From an examination of experimental data, 

Newman [3] concludes that there are no important variations 

due to changes in slot conditions beyond a few tens of slot 

heights downstream.  However, as Figure 2.3 shows, there is 

an apparently persistent data shift present between 

Heskestad's [7] data and that reported by Albertson, Dai, 

Jensen, and Rouse [8], As is shown in Table 2.1, the 

Reynolds number (based on the slot height) for the latter 

4 4 data ranged from 0.17 x 10 to 1.1 x 10 , while Heskestad's 
4 

measurements were made at a Reynolds number of 3.4 x 10 . 

There is thus a Reynolds number change of a factor of 

between 3 and 20 between the two experiments. Some recent 

work, by Flora and Goldschmidt [9] indicates that this type 

of shift may be not so much because of Reynolds number 

differences, but rather because of differences in initial 
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Figure 2.3. Comparison of axial decay data of Heskestad [7] 
with that of Albertson, et al.f [B]. 
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TABLE 2.1 

THE TWO-DIMENSIONAL JET-INTO-STILL-AIR 

Experimenter Ref. Year Rea x 10"4 
Slot Aspect 

Ratio 
Maximum 

x/h WL 
Momentum 

Check,. 
Percent 

Forthmann 3 1934 7.1 20 25 1.25 - 

van der Hegge 
Zijnen 2 1949 1.33 20 40 2.0 4 

Albertson, Daif 
Jensen, and Rouse 8 1950 0.17-1.33 288-2300 2000 0.87 10 

Reichardtc 3 1951 2.4 21 100 4.77 - 

Miller and Comings 6 1958 1.78 40 40 1.0 4.25 

Nakaguchic 3 1961 0.9-1.6 133 100 0.75 - 

Olsonc 3 1962 0.9 12 16 1.33 - 

Knystautasc 3 1964 0.7-1.3 98-195 350 3.57-1. 79 

Gartshorec 3 1965 1.7 167 200 1.20 - 

Heskestad 7 1966 3.4 120 162 1.35 6 

Prosser and Fisher 10 1966 — — 16 — — 

o 
o 

a 

u 

Based on slot height, h. 

Maximum deviation, percent of average. 

'Summarized in Newman [3]. 
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turbulent intensity. Presumably this would also explain why 
4 

there is less difference between the Re = 0.17 x 10 and the 
4 

Re = 1.1 x 10 measurements of Albertson, Dai, Jensen, and 
4 

Rouse [8] than between their Re = 1.1 x 10 results and 
4 

Heskestad's Re = 3.4 x 10 results. 

An interesting point raised by Figure 2.3 

involves the fact that the curves shown will collapse 

together if plotted versus x/x rather than x/d, providing 

that x  , the potential core length, is obtained by 
C 

-1/2 extrapolating the line U /U. « (x/d)  '  to the line 

U /U. = 1.0.  This implies that the effect of the condi- 

tions at the origin of mixing is felt at least as far down- 

stream as 100 slot heights. 

The important parameters of the available two- 

dimensional jet-into-still-air experiments are given in 

Table 2.1.  Some of these experiments have not been 

included in the discussion which follows; the data are from 

Newman [3] and are included here for completeness.  One 

item from this table worthy of note is that although the 

decay measurements of Albertson, Dai, Jensen, and Rouse [8] 

are carried down to x/h = 2000, the slit width used is so 

small that x  /L remains less than 1. Most of the measure- max 

ments can be seen to fall within the two-dimensionality 

requirement described by van der Hegge Zijnen [2] with the 

exception of those of Reichardt and of Knystautas, both 

reported by Newman [3].  It can also be seen from Table 2.1 
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that the Reynolds number range of the measurements is quite 

small, with only the measurements of Forthmann, reported by 

Newman [3] and Heskestad [7] being at a substantially 

different Reynolds number than the others. 

Two of the experiments to be considered in this 

section are primarily concerned with mean flow measurements 

(as opposed to measurements of the turbulent fluctuations); 

these are the experiments of van der Hegge Zijnen [2] and 

Albertson, Dai, Jensen, and Rouse [8].  Both of these 

experiments involved substantially the same Reynolds number 

range, and as would be expected, the axial decay of center- 

line velocity data from these two experiments agree quite 

well. This is shown in Figure 2.4, in which the axial 

range plotted is limited to 1 < x/h < 100. There is some 
4 

deviation between the results at Re. = 1.33 x 10 and Re. = 
4 

0.53 x 10 , but it is not sufficiently greater than the 

experimental scatter to be significant. The solid curve 

-1/2 indicates the x '  decay predicted by similarity con- 

siderations . 

Both van der Hegge Zijnen [2] and Albertson, Dai, 

Jensen, and Rouse [8] indicate that the velocity profiles 

obtained became approximately similar for x/h > 20, the 

approximation becoming better further downstream.  Indi- 

vidual profiles are not available from Reference [2] 

because of the small size of the figures in that reference. 
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It is possible to obtain similar data from Reference [8]. 

Representative profiles obtained from Reference [8] are pre- 

sented in Figure 2.5. 

Measurements of turbulence intensities are pre- 

sented in three of the papers considered. Experiments in 

which the turbulent intensity components u' and v' and the 

turbulent shear correlation uv were measured in a two- 

dimensional jet are presented by van der Hegge Zijnen [2]. 

These measurements were made in a jet from a 1.0 x 25 cm 

(0.394 x 9.84 inch) slot at U. = 2000 cm/sec (65.6 ft/sec). 

Miller and Comings [6] made measurements of the turbulent 

velocity fluctuation v', the mean velocity U and the 

average static pressure p in a 72 ft/sec jet from a 

0.5 x 20 inch slot.  From these measurements, v", Vf and 

the turbulent shear stress x were deduced using the 

integral forms of the continuity, x-momentum, and y- 

momentum equations.  Both van der Hegge Zijnen and Miller 

and Comings carried out lateral profile measurements at 

several downstream locations; the former at x/h = 17.5, 20, 

22.5, 30, and 35, and the latter at x/h = 10, 20, 30, and 

40.  On the other hand, Heskestad [7] measured the compo- 

nents of the turbulent kinetic energy equation (except for 

the pressure-velocity correlation) as well as u', v', w', 

and üv, providing more detail, but at only one station in 

the flow, x/h = 101. 
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Figure 2.5.     (continued) 
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Centerline velocity decay data are shown for these 

three experiments in Figure 2.6. As can be seen from Table 

2.1, page 24, the Heskestad data are at a jet exit Reynolds 
4 

nuiuoer of 3.4 x 10 , which is about twice the Reynolds 

number for the other two cases. As would be expected from 

the previous discussion of the persistence of the effect of 

-1/2 the initial conditions, lines of U /U. * x '  passed 
c J 

through the data exhibit a quite obvious shift with jet 

-1/2 exit Reynolds number.  The x '  proportionality is that 

demanded by conservation of momentum under the assumptions 

of similar velocity profiles and linear spread rate; both 

of these assumptions are borne out by the experimental data 

under consideration. 

Figures 2.7, 2.8, and 2.9 compare, respectively, 
2    ■"-   2 

profiles of u'/u_ , v'/U_ , and t/pU {= |uv|/U ) versus the 
CG C C 

nondimensional lateral coordinate r\, 

n = y/(x-xv) (2.1) 

where x is the virtual origin length.  This quantity arises 

from the classical model of a jet flow, in which the flow is 

characterized as emerging from a point source.  To relate a 

real flow to this classical model, it is necessary to define 

a point, usually upstream.of the actual physical origin of 

the jet (although it can also be downstream) from which an 

equivalent point source jet would have issued.  This is 

usually accomplished by extrapolating the observed 
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Figure 2.7. Axial turbulent intensity variation, 2D jet- 
into-still-air. 
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Figure 2.8. Lateral turbulent intensity variation, 2D jet- 
into-still-air. 
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Figure 2.9.  Turbulent shear stress variation, 2D jet-into- 
still-air. 
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downstream rate of spread back to the point of zero thick- 

ness. There are two profiles in each case for the van der 

Hegge Zijnen [11] measurements, one representing his 

"corrected" data and the other his "uncorrected" data. His 

correction brings the measured turbulent shear stress level 

up to that obtained by integration of the mean flow velocity 

profiles. Both the van der Hegge Zijnen measurements and 

those of Miller and Comings [6] were made at x/h - 20; 

Heskestad's measurements were at x/h - 101.  If similarity 

exists for the turbulent intensity and shear profiles by 

x/h = 20, all of the curves (excepting possibly the van der 

Hegge Zijnen "uncorrected" case) should coincide. Looking 

at the u'/U  , v'/U, , and |üv|/U^ plots (Figures 2.7 

through 2.9), it seems that complete similarity does not 

exist by x/h = 20.  This of course agrees with Heskestad's 

conclusion.  It must be noted in considering these figures 

that the only one of the three quantities depicted that was 

actually measured by Miller and Comings was u'/U  , and that 

the data of van der Hegge Zijnen can be obtained from the 

curves of Reference [11] only with great difficulty (and 

probably great error), because of the small size of the 

figures presented. 

From Figures 2.7 through 2.9, it appears that the 

data of Miller and Comings [6], obtained with a minimum of 

measurements, agree fairly well with that of Heskestad. 

There is, however, an alternate way of comparing these 
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experiments.  It has been shown in Reference [12] that an 

approximate linear relationship exists between the turbulent 

shear stress, T = puv, and the turbulent kinetic energy per 
2    2    2 unit mass k = 1/2[u'  + v'  + w" ] over a wide range of 

experimental conditions.  This relationship can be expressed 

as 

T = axpk (2.2) 

where a, is approximately constant over a portion of the 

flow field, but approaches zero on the centerline and at the 

outer edge.  If the data shown in Figures 2.7 through 2.9 

are used to obtain 

t/pU* 
a, =  ^- (2.3) 

k/U* 

as a function of n, Figure 2.10 results.  From Figure 2.10, 

it can be seen that both the uncorrected and the corrected 

van der Hegge Zijnen data agree well with the Heskestad 

data (the corrected better than the uncorrected), while the 

data of Miller and Comings deviate strongly, particularly 

for the large n.  Because both van der Hegge Zijnen and 

Heskestad made independent measurements of both turbulent 

intensities and the turbulent shear stress, while Miller 

and Comings did not, the deviation shown, in Figure 2.10 

indicates that the latter data should be treated witn some 

suspicion. 
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Figure 2.10.  Ratio of turbulent shear stress to turbulent 
kinetic energy, 2D jet-into-still-air. 
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Before leaving the subject of the two-dimensional 

jet into still air, one further experiment should be 

mentioned, although it does not add anything further insofar 

as experimental information is concerned.  This is the 

investigation into the structure of a two-dimensional jet 

carried out by Csanady [13].  Primarily aimed at the problem 

of jet noise suppression, it is one of a number of analyses 

which look for relationships between the sound produced by a 

jet and the turbulent intensity in the jet.  Of greatest 

interest to the present report is Csanady's conclusion, 

based on his own experiment and others', that the produc- 

tion, diffusion, and dissipation of turbulent energy may be 

expressed in terms of an eddy viscosity, eddy diffusivity 

of turbulent energy, and a turbulence microscale, respec- 

tively, all being constant for a given cross-section.  This 

conclusion is of some importance to the application of the 

turbulent kinetic energy method to free turbulent mixing. 

The Two-Dimensional Mixing Layer 

The ideal two-dimensional mixing layer is a 

hypothetical flow which can be visualized as occurring when 

a uniform semi-infinite stream, initially separated from a 

region at rest by an infinitesimal divider, mixes with a 

stagnant region. Then at x = 0, Figure 2.11 (a), a mixing 

region develops and propagates into both the stream at rest 

and the moving stream. Since boundary layer development on 

the dividing plate is unavoidable, the ideal two-dimensional 
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Figure 2.11.  Types of two-dimensional mixing layers. 
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mixing layer can in practice only be approximated.  There 

are a number of different ways in which the approximation 

can be done.  Four different approaches to it are described 

in this section. 

The flow from the edge of a boundary layer bump, 

as shown schematically in Figure 2.11 (b), will approximate 

a two-dimensional mixing layer for a part of the distance 

down to where the separated boundary layer reattaches to the 

plate.  Such a flow has been experimentally investigated by 

Mueller [14].  Another approximation with some of the 

characteristics of the configuration of Mueller is the flow 

of a boundary layer into a cavity, as shown schematically 

in Figure 2.11 (c).  In both of these flows there is a 

characteristic ratio, step height/distance to reattachment 

(h/£) in Figure 2.11 (b) and cavity height/cavity width 

(h/b) in Figure 2.11 (c), which determines to some extent 

the behavior of the flow; in both cases there also exist 

vortices (one or more) in the flow below the mixing region. 

Because of the existence of these vortices the mixing layer 

is not actually interacting with a stagnant flow. Haugen 

and Dhanak [15] have investigated the free mixing portion of 

a cavity flow in some detail. 

Somewhat better approximations to the ideal two- 

dimensional mixing layer are provided by the next two flows 

to be considered. The mixing layer at the edge of an 

axisymmetric jet flowing into still air will approximate a 
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two-dimensionai mixing layer as long as the jet radius r  , 

is sufficiently greater than the mixing layer thickness, 6, 

as shown in Figure 2.11 (d). Such a configuration was 

investigated by A. J. Chapman [16]. Finally, the closest 

approximation to the ideal mixing layer flow is achieved in 

the first regime of a two-dimensional jet. By dividing the 

jet with a splitter plate and investigating one side of the 

first regime, the "half jet" flow, investigated by Liepmann 

and Laufer [17] is formed.  Such a flow is shown schemati- 

cally in Figure 2.11 (e). 

In the ideal flow there can be no characteristic 

Reynolds number, as there is no characteristic dimension of 

the flow. On the other hand, in the real flows a charac- 

teristic dimension might be taken to be the boundary layer 

thickness at the start of the free mixing process, 6  , and 

a characteristic Reynolds number defined.  It is observed 

for the two-dimensional mixing layers formed in the first 

regime of both two-dimensional. [17] and axisymmetric [18] 

jet that by an x-Reynolds number (U.x/v) of 3.5 x 10 the 

velocity profiles have become fully developed; that is that 

the measurements collapse together when U/U. is plotted as 

a function of n = y/x. Based on the assumption of similar 

velocity profiles, it is shown in Reference [17] that the 

spreading rate of the two-dimensional mixing layer is linear 

with distance. 
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The separated boundary layer flow of Mueller [14] 

"and the cavity flow of Haugen and Dhanak [15] have certain 

superficial similarities, as described above, and thus they 

will be discussed together. Mueller measured the turbulent 

fluctuations u' and v' and the shear stress correlation Sv 

in ä flow configuration such as that sketched in Figure 

2.11 (b), page 40.  For a step height of 0.75 inch corre- 
4 

sponding to a Reynolds number Re. ■ 3.6 x 10 , he was able 

to achieve fully developed turbulent mixing in the free 
2 

mixing layer.  Mueller also experimented with step heights 

of 0.5 and 0.25 inch.  Presumably these did not produce 

free mixing layers long enough for fully developed mixing 

to occur. The boundary, layer thickness at the point of 

departure from the edge of the step was of the order of 

0.75 inch, so that the Reynolds number based on initial 
4 

boundary thickness was also 3.6 x 10 .  The length t  to 

reattachment was 5.15 inches. 

Haugen and Dhanak [15] investigated the flow into 

a cavity, such as sketched schematically in Figure 2.11 (c). 

Their apparatus enabled them to adjust both the cavity width 

b and the initial boundary layer thickness 6 . Measurements 

were made of the fluctuating velocity component in the 

2 
However, even at the point of reattachment, 

x/h = 6.8, the x-Reynolds number is 2.48 x 10 , somewhat 
lower than the Reynolds number required for a fully 
developed profile as described by Liepmann and Laufer [17] 
and Bradshaw, et al., [18]. 
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x-direction, u', and the turbulent shear stress üv.  These 

measurements were made at x/b = 0.50, so that with a cavity 
4 

width b of 2„50 inches, Re = 6.63 x 10 , which is far below 

the apparent requirement for a fully developed profile. 

The turbulence intensity measurements made by 

Mueller [14] indicate that in this configuration 

v'/U ~ 2 u'/U.  it is unlikely that the unmeasured fluctua- 

tion component w'/U would also be twice u'/U, so that for 

these data the following assumption has been made:  For 

Mueller's data 

k _ lr,u' 2   ,v'.2 , ,w'.2, 
JJ2 " 2[(Ü~)  + (y"">    <Ü") ] 

= X>2 + O2* #Vi 

„ l,v'.2 . ,u\2 ,, .. 
z   2(Ü"}  + (Ü~) (2,4> 

Because Haugen and Dhanak [15] use somewhat the same con- 

figuration, but measure only u'/U, the following assumption 

is made: 

^ s ![(»!,2 + (2ul,2 + (ul)2] = 3(ul,2      (2<5) 

2     — 2 Under these assumptions, calculations of k/U and uv/U ■ 
2 -x/pU result in Figure 2.12, which indicates that the 
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Figure 2.12.  Ratio of turbulent shear stress to turbulent 
kinetic energy, 2D mixing layer data of Mueller [14] and 
Haugen and Dhanak [15]. 
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average value of a^ = x/pk may be somewhat less here than it 

Is for other configurations, such as the two-dimensional jet 

into still air, and as will be seen, axisymmetric jets and 

wakes.  However, the experimental scatter and the assump- 

tions necessary to obtain Figure 2.12 preclude reaching any 

detailed conclusion from these data. Further, the extremely 

2 large values of k/U measured by Haugen and Dhanak, which 

arise from values of u'/U of 0.6 or more, cast serious 

doubts on the accuracy of these measurements. 

Chapman [16] experimentally investigated the 

approximately two-dimensional mixing layer, unbounded on 

both sides, found in the first regime of a circular free 

jet.  This configuration is similar to Figure 2.11 (d), 

page 40.  The jet diameter for most of his tests was 2.50 

inches (63.5 mm).  Various lengths of nozzle section, 

ranging from 9 to 65 mm were used to generate different 

initial boundary layer thicknesses and different exponents 

for the assumed power-law variation of velocity profile.  Of 

the sixteen different experiments, with different initial 
3 

thicknesses 5  and exponents m,  nozzle exit boundary layer 

data are given for three and velocity ratio plots at several 

downstream locations for five. Only two of the initial 

boundary layer plots are for tests for which the downstream 

data are given.  Tests for which velocity profile data are 

m is defined by the equation U/U = (y/50)1^m. 
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available are summarized in Table 2.2.  All profiles are 

presented by Chapman in transformed coordinates, U/U versus 

n = Xy/x where X is a constant, x is a coordinate measured 

along the free streamline, and y is a coordinate normal to x. 

Sufficient information to convert to physical coordinates is 

given only for the m = 4.0 and m = 7.0 cases.  Chapman 

encountered difficulty in converting the other cases, with 

large discrepancies appearing between the theoretically 

predicted conversion factor and the one necessary for good 

agreement with experimental data.  One possible explanation 

for some of these discrepancies is apparent in Table 2.2. 

If one very crudely relates the two-dimensionality of the 

flow to the error resulting from assuming that the flow 

area per unit length (circumference) is simply 6, the mixing 

layer thickness, it is quickly shown that the fractional 

error involved is of the order of 6/D, where D is the jet 

diameter.  From Table 2.2 it can be clearly seen that this 

ratio is substantial, for all but the m = 7.0 case, even at 

the initial station, indicating that the assumption of two- 

dimensionality for this flow is not particularly good. 

Interestingly enough, momentum checks (made without assuming 

two-dimensional flow) for the two cases which can.be con- 

verted to physical variables indicate that the more nearly 

two-dimensional flow measurements are also quite accurate. 
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TABLE 2.2 

TESTS FOR WHICH VELOCITY PROFILE DATA ARE GIVEN; A. J. CHAPMAN [16] 

Jet Velocity  6 
U  (cm/sec) (mm) 5 /D. 

o' D m 

4520 7.4 0.116 2.3 

4700 7.4 0.116 3.0 

4650 9.5 0.150 4.0 

4370 10.0 0.158 5.0 

6550a 3.0 0.068 7.0 

Axial Stations for Velocity 
Profile Data, x/6„ 

Initial 
Boundary 
Layer 
Profile? 

Momentum Check 
Percent of 
 Average 

00 

0.95, 2.7, 4.7, 7.4 

3.0, 7.0, 13.8 

1.6, 3.2, 6.4, 10.75 

2.0, 4.0, 6.0, 8.0 

2.0, 3.3, 4.7, 9.7 

yes 

no 

yes 

no 

no 

4.77 

0.37 

Used 0.875 inch (22.2 mm) nozzle exit. 
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Velocity profiles for the m = 7 case and the m = 4 case, con- 

verted to physical variables, are presented in Figures 2.13 

and 2.14, respectively. 

The two-dimensional half jet experiment of 

Liepmann and Laufer [17] was a configuration such as that 

sketched in Figure 2.11 (e), page 40.  Such a configuration 

is, with the closely similar first regime of a two- 

dimensional jet (the half-jet being as the name implies 

half of the two-dimensional jet), the closest approximation 

to the ideal two-dimensional mixing layer attainable.  The 

reason for the dividing plate which reduced the configura- 

tion to a half-jet is, according to Liepmann and Laufer, to 

reduce the influence of any draft in the room on the half 

jet and improve its two-dimensional character.  Csanady 

[13], however, cautions that it is conceivable that the 

presence of the divider could introduce a somewhat different 

large-eddy pattern to the flow than might be the case 

without it; however, Csanady's analysis indicates that even 

if so this would not introduce a significant influence. 

In Liepmann and Läufer's apparatus the jet emerged 

from a 7.5-inch by 60-inch slot, for an 8:1 aspect ratio, at 

59 feet per second. The boundary layer at the end of the 

slot was laminar, 0.1 cm thick; the mixing layer underwent a 

transition to turbulent flow at x ^ 6 cm and became fully- 

developed (based on velocity profile similarity) for 

x 2. 30 cm, or at a length Reynolds number of 3,7 x 10 . The 
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result that the flow was fully-developed at Re = 3.7 x 10 

was confirmed by Bradshaw, et al., [18] in the first regime 

of a circular jet. 

Liepmann and Laufer presented mean velocity pro- 

files, distributions of the longitudinal and lateral 

components of the fluctuating turbulent velocity, and of 

the turbulent shear, and distributions of correlation 

coefficients and terms of interest in the kinetic energy 

equation, at three axial stations:  x = 30, 54.3, and 75 cm. 

All distributions were presented with the lateral.coordinate 

y nondimensionalized by 6, where 

CO 

9 = J§-(1 - §-)dy (2.6) 
„ o     o — 00 

is the momentum defect thickness at the axial station. The 

exception was the mean velocity, which was presented both as 

a function of y/8 and of y. During the course of the 

present investigation, 6 was evaluated and the values 

obtained are given in Figure 2.15 along with a comparison of 

the velocity profiles obtained from the nondimensional 

profiles and the profiles given as a function of the 

physical variable y by Liepmann and Laufer. 

The linear relationship between turbulent shear 

and turbulent kinetic energy demonstrated in Reference [12] 

is well supported by this data, as shown in Figure 2.16, 

while a profile of the parameter a, versus the lateral 
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coordinate qualitatively similar to those already seen for 

the two-dimensional jet is also obtained. This is shown in 

Figure 2.17.  Results of the evaluation of the momentum 

deficit integral for this experiment indicate that these 

measurements achieved a good level of accuracy; the maximum 

deviation in the integral momentum deficit is 2.4 percent of 

its average value. 

Liepmann and Laufer compared the hot-wire shear 

stress profiles they measured with shear stresses calculated 

using an integral technique and assuming an error-function 

velocity profile, which is in good agreement with their 

experimental results. W. L. Chow [19] repeated these 

calculations, using the same form for the velocity profile 

and the same method for evaluation of the constants involved 

as Liepmann and Laufer used, and found that the latter work 

was in error. Furthermore, Chow stated that the value of 

the constant of integration chosen by Liepmann and Laufer 

was based on incorrect physics; the turbulent shear stress 

does not have its maximum at the inflection point of the 

profile for an error function profile.  Figure 2.18 illus- 

trates the results obtained by Liepmann and Laufer and by 

Chow., in comparison with, the experimental data.  It should 

be noted that discrepancies between the measured turbulent 

shear stress and that obtained from the mean flow profile 

are encountered in nearly every turbulent flow experiment. 
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The Circular Jet 

The largest single group of experiments in free 

turbulent mixing is that concerned with the circular jet 

into still air, as this configuration is probably the 

easiest to realize experimentally.  In general, the flow 

resembles the two-dimensional jet into still air already 

described. As shown in Figure 2.19, the flow can be divided 

into two major regimes, coupled together by one transition 

regime and separated from the nozzle by another transition 

regime. This first transition regime, in which the turbu- 

lent structure changes from a boundary-layer character to 

that of a free mixing layer, is usually small compared with 

the nozzle dimensions, probably comparable in length to the 

thickness of the boundary layer at the exit of the nozzle. 

It is followed by a quasi-plane mixing layer in which the 

flow is self-preserving, and velocity and intensity profiles 

are geometrically similar when plotted against 

(n =y - r_)/x [18].  This regime is called "Regime I" on 

Figure 2.19.  Departures from similarity begin as the 

thickness of the mixing layer becomes an appreciable frac- 

tion of the nozzle radius, and the flow enters a second 

transition region.  Some distance downstream a second self- 

preserving state is reached.  The distance from the nozzle 

exit to this region (Regime II in Figure 2.19) is given 

variously as 10 diameters [8] to 20 diameters [18]; 

Wygnanski and Fiedler [20], on the other hand, state that 
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"true" self preservation—i.e., geometrically similar pro- 

files of not only the mean flow quantities but also the 

turbulence intensities and the turbulent shear stress, as 

well as U /U. a x~ and lateral width scale proportional to 

x—is not reached until more than 70 diameters downstream. 

For the purpose of discussion, the beginning of the second 

regime will be taken to be at the point where the mean 

velocity profiles become geometrically similar, i.e., by 

x/D = 20. 

As for the two-dimensional jet, there is a scale 

effect of the jet Reynolds number which seems to persist 

quite far downstream, as shown in Figure 2.20 taken from 

Baines [21]. Newman [3] (see Appendix C), shows that for 

the circular jet in still surroundings under the assumption 

of similar velocity profiles in the variable 

n = r/b 

where b is the local width, U /U. « (x/D)   and b « x for c 3 

self-preservation.  It can be seen from Figure 2.20 that 

the data of Baines remain shifted as long as these relations 

hold.  Indeed it can be shown (Appendix B) that under the 

assumption of similar profiles the equations for the decay 

of mean flow quantities can be written for the circular jet, 

as for the two-dimensional jet, in terms of one parameter, 

the nondimensionalized core length, x/D.  It can also be 

shown (as in Appendix B) that for incompressible coaxial 
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jets, similar profiles and the equation of conservation of 

momentum lead to expressions for the velocity decay con- 

taining only the potential core length and the stream 

velocity ratio. 

This dependence of the downstream decay rates on 

the potential core length makes the flow visualization 

experiment performed by Binnie [22] of some interest.  By 

using a jet of a mixture of a solution of iodine in 

potassium iodide with a solution of starch, a deep blue 

color is obtained.  The jet drops through a short airspace 

into a tank, filled with a solution of sodium thiosulfate 

("hypo"), which instantly removes the color. By this means 

the potential core region is selectively visualized. 

Although the experiment is flawed by the density dis- 

continuity that the jet undergoes in passing from air to 

liquid, not to mention the free-surface effects, the obser- 

vation that the core ends in a "wagging tail" is of 

interest. This may indicate the presence of alternating 

vortices at the end of the core.  It may also be, as far as 

free mixing is concerned, an entirely spurious effect of the 

peculiar geometry used; however, the technique appears to be 

worth adapting to a true free mixing flow. 

Table 2.3 gives the important parameters for the 

circular jet experiments included in this section.  All of 

the regimes of interest have been investigated, with the 

exception of the first transition regime.  Diameter Reynolds 
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TABLE 2.3 

THE CONSTANT-DENSITY CIRCULAR JET INTO STILL AIR 

Investigator Ref. Year ft/sec 
D3 
in. **  a xl0-4a 

Maximum 
x/D 

Momentum 
Check,. 
Percent 

Corrsin 23 1943 32.7 1.0 1.75 40 35 at x/D=4 0 

Hinze and van der 
Hegge Zijnen 24 1949 131.0 1.0 6.7 40 - 

Baines 21 1950 - - 2.1 
7.1 

58 
60 

- 

Albertson, et al. 8 1950 102.5 
165.0 
170.0 

1.0 
0.5 
0.25 

5.45 
4.38 
2.26 

65 <10 at x/O=60 
120    (author's 
250 measurement) 

Corrsin and 
Uberoi 25 1950 65-115 1.0 3.4-6.1 25 <10c 

Taylor, et al. 26 1951 390.0 0.9 18.6 31.5 < 4 

Alexander, et al. 27 1953 49.0 
57.0 
92.0 

104.0 
177.0 
363.0 
403.0 
803.0 

0.898 2.33 
2.71 
4.38 
4.95 
8.43 

17.25 
19.18 
38.22 

30 
30 
30 
30 
30 
30 
30 
30 

<4 at x/D=10d 

Davies, et al. 28 1963 (M=0.2) 1.0 - 10 - 

Brads haw, et al. 18 1964 (M=0.3) 2.0 35.0 7.5 <1 at x/D=7.5 

Sand 29 1966 35.0 12.0 22.0 10 5 at x/D=10 

Wygnanski and 
Fiedler 20 1969 236.0 

167.0 
1.04 13.0 

9.24 
97.5 
97.5 

7 at x/D=45e 

8 at x/D=97.! 

Reynolds number based on jet diameter, D.. 

Momentum check in maximum percent deviation from average. 

'Calculated using similarity expressions and measured width. 

Author's measurement. 

BTwo sets of curves, one 30 < x/D < 50, second 60 < x/D < 97.5. 
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numbers range from 2.3 x 10 to 3.8 x 105, with measurements 

being carried to 250 diameters downstream. Axial and radial 

distributions of the mean flow velocity have been obtained 

by a number of investigators, as summarized in Table 2.3. 

Centerline velocity ratio decay data taken from these 

experiments are summarized in Figure 2.21, from which it can 

be seen that all of the experiments adhere fairly closely to 

the family of curves U /U. « (x/D)" as demanded by con- c 1 
servation of momentum under the assumption of self- 

preservation of velocity profiles.  The two lines drawn 

indicate the limits of nozzle' exit Reynolds number 

encountered in these tests.  It can be seen that the length 

of the velocity potential core increases with increasing 

Reynolds number.  This curve does not, however, take into 

account the effects of turbulent intensity level at the 

nozzle exit, as these data are not generally reported. 

Changes in the level of turbulent intensity at the jet exit 

may also have an influence on the length of the potential 

core, äs described by Flora and Goldschmidt [9]. 

The experiments of Taylor, Grimmett, and Comings 

[26] are reported in terms of the ratio of the square root 

of the momentum flux density to the densityy pU /p, rather 

than the normally reported velocity. This is due to 

questions that arise when a total head tube is used in a 

turbulent flow concerning the effect of instantaneous turbu- 

lent velocity fluctuations on the pressure reading.  In an 
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incompressible flow if the instantaneous velocity is written 

as the sum of an average velocity Ü and a fluctuating 

velocity u (whose time-average is zero), one has 

U = U + U 

SO 

2   —2    —     2 
IT - IT + 2Uu + u"5 

Taking the time average 

"~2~     ^3"      ~~Z~      ~~2~      —2      T        — Ü    - U    + 2Uu + u    = U    + u    as u =  0 

Thus, in incompressible flow, p ■ p and 

pU2 = p U2 + p 7 (2.7) 

so that 

pU2 = p U2 

Equation (2.7) implies that the reading of a total head tube 

will increase with increasing turbulent intensity.  However, 

as reported by Hinze [30, page 135], when this effect was 

investigated by Alexander, Baron and Comings [27] , they 

found that the total head tube reading decreased markedly 

with increasing relative turbulent intensity.  Because of 

observations such as this, and the fact that from Equation 

(2.7) 
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pÜ7 = p U2[l + (7/U2)] (2.8) 

so that for 

u'/U =yu2/U = 0.: 

T       -2 pU  = 1.04 plT 

the deviation of the total head tube reading caused by 

changes in turbulent intensities are commonly ignored. 

Hinze and van der Hegge Zijnen [24] present their 

data both in uncorrected form and using a correction similar 

to Equation (2.8) with intensity data taken from Corrsin 

[23]. There is no significant difference between the 

results, particularly at the scale represented by the 

figures in Reference [24].  In addition to measuring the 

momentum flux in the jet, they also made measurements of 

temperature distribution in a jet heated to approximately 

30°C above the surroundings, and mass transfer measure- 

ments in a .jet seeded with town gas at an initial concen- 

tration of one percent by volume. These measurements 

indicate that heat and mass mix appreciably faster than 

momentum, and that the rates of spread of temperature and 

concentration are equal. They find that the temperature 

spreading rate is slower than that reported by Corrsin [23]; 

however, the accuracy of the experiments of Reference [23] 

must be seriously questioned, as will be discussed below. 
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Albertson, Dai, Jensen, and Rouse [8] measured the 

axial decay of centerline velocity in a circular jet down to 

250 diameters from the jet exit.  Data taken from their work 

are shown in Figure 2.22, from which it can be seen that 

these data follow the "x  " decay characteristic of flows 

with similar profiles quite well. 

Alexander, Baron, and Comings [27] measured center- 

line velocity ratio decays for a 0.898 inch diameter jet 

over the Reynolds number (based on jet diameter) range from 

4 5 2.3 x 10 to 3.8 x 10 .  In their experiments their pitot 

pressure measurements were assumed to represent the quantity 

pU ; in the following discussion, the assumption U =y pU /p 

has been made, which from the work of Hinze and van der 

Hegge Zijnen [24] introduces very little error, especially 

on the centerline.  Table 2.4 lists the centerline velocity 

ratios measured by Alexander, Baron, and Comings for seven 

tests in the Reynolds number range listed above.  These data 

are plotted in Figure 2.23, in which straight lines repre- 

senting the relation U/U « (x/D)~ have been drawn through c 

the data.  The intersections of these lines with the line 

U/U. = 1 defines the length of the potential core. These 

data have been used in this study to obtain an empirical 

relation for the core length as a function of jet Reynolds 

number, which is given by 

g0- = 2.13 (Red)
0,097 (2.9) 
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TABLE 2.4 

VELOCITY DECAY DATA FROM REFERENCE [27] 

UQ(ft/sec) 49 57 92 104 177 403 803 

ReD (xlO"4) 2.33 2.71 4.38 4.95 8.42 19.18 38.22 

^o 
x/D 

10 0.620 0.608 0.556 0.567 0.664 0.683 0.716 

12 0.521 0.510 0.477 0.484 0.559 0.585 0.604 

14 0.449 0.440 0.422 0.424 0.484 0.509 0.527 

16 0.392 0.383 0.374 0.379 0.431 0.445 0.465 

18 0.346 0.338 0.331 0.334 0.389 0.396 0.414 

20 0.315 0.307 0.298 0.302 0.346 0.352 0.370 

25 0.249 0.243 0.231 0.237 0.272 0.274 0.288 

30 0.210 0.202 0.202 0.200 0.226 0.232 0.237 
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A comparison of the core lengths predicted by Equation (2.9) 

with those obtained from the experimental data in the same 

manner is presented in Table 2.5; in all but one case the 

empirical relation comes within 10 percent of the actual 

core length and it is generally considerably better. 

This empirical correlation can be carried one step 

further.  Baines [21] and Albertson, et. al., [8] show that 

under the assumption of similar velocity profiles and linear 

spreading rate, conservation of momentum leads to the result 

==■ ■ 1 for x < x u.        - c 

uc  xc 
irarforx>xc 

(2.10) 

Combining (2.9) and (2.10), 

u, 

u 

for jj < 2.13 (Red) 0.097 

U. = 2.13 (Red)
0'097 (i)"1 

(2.11) 

These relations are also derived in Appendix B.  Figure 2.24 

shows a comparison of these relations with one set of the 

experimental data of Reference [27].  It should be noted that 
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TABLE 2.5 

COMPARISON OF CORE LENGTH PREDICTIONS 

ui 

Turbulence xc/D 

Predicted 

xc/D 

Measured Investigator Ref. 
Intensity, 
Percent ReDxl0 

4 Error 
Percent3 

Baines 21 0.008 7.0 6.35 7.0 io.o 
0.004 7.0 6.35 6.05 5.0 
0.008 3.0 5.85 6.05 3.33 
0.004 3.0 5.85 5.60 4.46 

Corrsin 23 0.005 1.75 5.4 5.6 3.56 

Hinze and van 
der Hegge 
Zijnen 24 n * b n.a. 6.7 6.25 6.5 3.85 

Taylor, et al. 26 n.a. 1.86 5.45 6.5 15.8 

Albertson, 
n.a. et al. 8 5.45 6.2 6.2 0 

Corrsin and 
n.a. Uberoi 25 3.55-6.1 5.9-6.3 6.5 3.1-9.25 

Wygnanski and 
Fiedler 20 n.a. 9.24 6.6 6.4 3.2 

Percent of measured value. 

"n.a." indicates data not reported. 
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equations such as (2.11) are unable to represent the actual 

centerline decay behavior in the transition region from 

x/D = 2 to about x/D = 10. 

Similarity of mean velocity profiles is always 

observed in the circular jet into still air.  For large 

x/D, these profiles take on a self-preserving shape 

becoming a function only of the self-preserving coordinate 

r/x.  Figure 2.25 provides an example of the shape of the 

velocity profile encountered. 

Axial mean velocity decay data from three experi- 

ments concerned with measurements of the turbulence 

structure are shown in Figure 2.26. The axial decay curve 

for the data of Baines [21] is also shown.  The convergence 

of the data of Wygnanski and Fiedler [20] and that of 

Baines [21] , despite the wide variation in jet exit Reynolds 

number, is not easily explained. The turbulence intensities 

(u'/U) at tne Jet exit were reported by Wygnanski and 

Fiedler to be 0.001 and by Baines to be 0.004.  If, as 

reported by Flora and Goldschmidt [9], the effect of 

increasing turbulence intensity is to enhance the mixing, 

decreasing the length of the potential core, while by 

Equation (2.9) the effect of increasing jet exit Reynolds 

number is to increase the length of the potential core, one 

would expect the data of Wygnanski and Fiedler to be con- 

siderably shifted relative to that of Baines.  It must be 

noted that the effect of either the jet exit Reynolds number 
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or the initial level of turbulence intensity on the length 

of the potential core is very incompletely understood. 

It can clearly be seen from Figure 2.26 that the 

axial decay data of Corrsin deviate markedly from the- trend 

established by all of the other data for this configuration. 

This deviation is consistent with the fact that the 

momentum integral is not satisfied for this flow.  Table 2.6 

below lists in detail the results of the calculation of the 

parameter M, where 

CO 

2 
) rdr (2.12) 

D 

TABLE 2.6 

MOMENTUM INTEGRAL RESULTS FOR 
DATA OF CORRSIN 

x/D M 

5 0.5304 

10 0.7223 

20 0.4118 

30 0.3652 

40 0.2995 

The values of M shown in Table 2.6 were calculated using the 

measured velocity profiles of Reference [23] ; the continual 
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decrease in the value (which to satisfy the criterion of 

conservation of momentum should be constant) agrees with the 

data of Figure 2.26 which show a continual decrease in the 

value of U/U. on the centerline for the Corrsin data com- 

pared to other available data for this flow. 

Further evidence of the existence of this 

discrepancy is shown in Figure 2.27 which compares with the 

axial turbulent intensities measured by Corrsin [23] with 

those measured by Corrsin and uberoi [25] in a similar 

apparatus.  The investigation of Corrsin and Uberoi *as 

primarily concerned with the flow of a highly-heated jet 

into still surroundings; however, some check data were taken 

in a one inch jet with only a small temperature difference 

(15°C).  These latter data were used in constructing Figure 

2.27.  Comparison of the original Corrsin data with that of 

Corrsin and Uberoi shows that there is substantial dis- 

agreement, despite the similarity of conditions and axial 

position.  If, however, the value of the centerline velocity 

ratio is adjusted from the value of 0.255 measured at 

x/D = 20 by Corrsin, to the value of 0.33 measured at 

x/D = 20 by Corrsin and Uberoi (whose data satisfy the 

criterion of the constancy of the momentum integral to 

within ten percent—Table 2.3, page 65), the curve labeled 

"corrected U " on Figure 2.27 is obtained. This curve is 

seen to provide much better agreement with the data of 

Corrsin and Uberoi. 
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Two of the turbulence structure experiments were 

concerned primarily with the first regime of mixing—those 

of Davies, et al.r [28] (also Davies [31]) and Bradshaw 

et al./ [18].  The first of these is primarily an investi- 

gation of the noise production of a turbulent jet and hence 

provides little experimental information of interest in this 

study.  The description provided by Davies, et al., [28] of 

the flow in the first regime is however of some interest: 

. . . there is an initial zone in which the turbu- 
lence intensity grows rapidly.  The extent of this 
is only a few inches and depends on the dimensions 
of the boundary layer flow at the jet orifice. 
Beyond this is a region extending well past the end 
of the potential core in which the intensity is 
constant and the flow is in equilibrium. . . . 
The present results indicate that a . . . self- 
preserving region extends from eight or so 
diameters to close to the jet orifice. . . . 

Two points are of interest in this description.  One is that 

a self-preserving region exists well past the end of the 

first regime (the length of the potential core in this 

experiment was 4.5 diameters) through the transition region 

and into the second regime.  The other is the description of 

an "initial zone in which the turbulent intensity grows 

rapidly." This phenomenon will be encountered again in the 

study of the developing wake flow behind a flat plate. 

An investigation of the same flow region, from 

x/D = 0 to x/D = 7.5 was performed by Bradshaw, et al., 

[18].  In this case profiles of the three components of the 

turbulent intensity and the turbulent shear stress were 

measured at three stations:  x/D =2,4, and 7.5. Sami [29] 
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performed a detailed study of this region, measuring at 

axial locations x/D ■ 1, 3, 6, and 10, all three intensity 

components, the turbulent shear stress, and all of the terms 

encountered in the turbulent kinetic energy equation except 

the pressure-velocity correlation. A not completely 

successful attempt was made to measure this quantity also. 

Sami's work thus complements that of Bradshaw, et al., [18] 

and extends it somewhat farther into the second regime.' 

Results of these two experiments will be seen to agree quite 

well. 

The detailed experiments of Wygnanski and Fiedler 

[20] may well be the most significant of this section.  In 

these experiments a linearized constant-temperature hot- 

wire anemometer was used to probe the flow in the "truly 

self-preserving" region of a jet into still air.  The "truly 

self-preserving" region is that in which not only the mean 

velocity profiles but also the turbulent intensity profiles 

exhibit self-preservation.  In addition to measuring 

profiles of the turbulent intensities and shear stress, as 

well as the spectral quantities and distributions of the 

terms of the turbulent kinetic energy equation, Wygnanski 

and Fiedler critically examined the assumptions underlying 

the use of hot-wire anemometry.  This examination may have 

solved one of the most vexing problems in the use of hot- 

wire anemometry, which is the apparent inability of the hot- 

wire anemometer to accurately measure the level of the 
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turbulent shear stress as compared to values of the turbu- 

lent shear stress obtained from the mean-flow velocity and 

density profiles. 

The apparent inability of the hot-wire anemometer 

to measure accurately the turbulent shear stress level has 

been mentioned before and will be encountered in later 

discussions. Most commonly this discrepancy arises when the 

measured turbulent shear stresses are compared with those 

calculated by integration of the mean flow velocity profile 

(see for example, Reference [24]), but it has also appeared 

in the comparison of measurements made by two or more 

methods. Thus Jezdinsky [32] in comparing the results 

obtained from hot-wire probes and pressure probes of a novel 

design in the same flow, finds that the hot-wire measurement 

of the turbulent intensity is lower than the pressure-probe 

measurement by 10 percent and the discrepancy in shear 

stress is 13 percent in the same direction. Wygnanski and 

Fiedler [20] attribute this type of error to low-frequency 

response errors in the hot-wire equipment previously used. 

Their results indicate that if the hot-wire signal is 

clipped at 2 Hz, an error of 27 percent will result in the 

measurement of u with corresponding errors in the other 

quantities.  It should be noted here that the turbulent 

shear stress profiles are measured using a x-wire array, 

which is also used to obtain the intensity profiles, by 

appropriate manipulation of the hot-wire output signal. 
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Thus, if as Wygnanski and Fiedler indicate, errors are 

encountered due to electronic clipping of the signal, it 

would be expected that these errors would be found in all 

components of the turbulence measured.  The error in the 

shear stress measurement would be the most obvious, as this 

quantity, unlike the turbulent intensities, can also be 

obtained from mean-flow measurements. The fact that, given 

the Wygnanski and Fiedler hypothesis, similar errors would 

be made in all turbulence components as well as in the 

turbulent shear stress measurement is of obvious importance 

in the interpretation of the calculation of the parameter 

al• Wygnanski and Fiedler [20] quote a comparison between 
—7 

their measurements of u at x/D =20 (using a correlator of 

their own design tested for linearity to 0.05 Hz) and those 

of Corrsin and Uberoi [25] at the same point (using equip- 

ment whose frequency response was not tested below 7 Hz) ; 

the measured values of Corrsin and Uberoi are 25 percent 

lower than those of Wygnanski and Fiedler. Further results 

obtained by Wygnanski and Fiedler using "standard" 
T 

equipment—linear response to 5 Hz—showed u profiles 

"significantly lower" than those measured with the equipment 

linear to 0.05 Hz and thus in better agreement with the 

Corrsin-Uberoi data. 

In an attempt to investigate this result further. 

Table 2.7 was constructed from the available data for a 

number of configurations. While the evidence is not 
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TABLE 2.7 

CORRELATION BETWEEN LOW-FREQUENCY LIMIT AND ERROR IN 
MEASUREMENT OF TURBULENT SHEAR STRESS 

. Estimated 

Investigator Year Ref. 
Flow 

Configuration 
Error in Shear 
Measurement3 

Low Frequency 
Limit, Hz 

Corrsin and 
Uberoi 1950 25 Axi symmetric 

Jet 
12%, low 7 

Sami 1966 29 Axisymmetric 
Jet 

15%, low n.a. 

00 

van der Hegge 
Zijnen 1958 12 Plane Jet 20%, low b n.a. 

-J Carmody 1964 33 Wake 30%, low b n.a. 

Bradbury 1965 34 Plane Jetc 0%, slightly low 0d 

Zawacki and b n.a. Weinstein 1968 35 Coaxial Jets 20%, low 

Wygnanski and 
Fiedler 1970 36 Mixing Layer 0%, slightly low 0.05 

In percent of mean flow shear, 

'indicates data unavailable. 
> 
m 
o 
a 

'Nonzero secondary. 30 

Quoted as "d.c." U 
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overwhelming, due to a conation lack of information about the 

low-frequency limit of the equipment used, there is nothing 

in Table 2.7 to contradict the conclusion of Wygnanski and 

Fiedler. Clearly hot-wire experiments in which care is 

taken to provide linear frequency response to the lowest 

limit possible would be of interest in a variety of con- 

figurations. 

Figures 2.28 through 2.30 compare the measurements 
__ 2 

of u'/U  , v'/U  , and uv/U made by Corrsin [23], Corrsin 

and Uberoi [25] (u'/U only), Sami [29], Bradshaw, et al., 

[18], and Wygnanski and Fiedler [20] for the circular jet 

into still air. Except in Figure 2.28, Corrsin's data are 

shown both in "corrected U " and "uncorrected U " forms. c c 

Possible corrections to account for low-frequency errors as 

described above have not been made; they would not change 

the general conclusions. From these figures it is clear 

that there is a steady increase in the values of all of 

these quantities (over most of the profile) with x/D.  Since 

if similarity existed for the turbulent components the 

curves would collapse together, the conclusions of Reference 

[20] regarding "true self-preservation" seem substantiated. 

There is, however, a general similarity of profile shape in 

the "grossly self-preserving" part of the second regime, for 

x/D > 20. 

Figure 2.31 shows that the linear relationship 

between turbulent shear stress and turbulent kinetic energy 
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already described, Equation (2.2) , is well substantiated by 

these data, although there appears to be a drift of the 

average value of the parameter a-, from a value of 0.3 in the 

early part of the second regime to 0.2 in the later part. 

Figure 2.32 illustrates that, allowing for some scatter in 

these measurements, the parameter a, keeps qualitatively the 

same sort of profile throughout the second regime, rising 

from zero at the centerline to its peak value around 

Ti = 0.10 and then decreasing slowly. The same behavior is 

observed in the two-dimensional jet. The measurements of 

Bradshaw, et al., [18], at x/D = 7.5, may well be in the 

transition region between the first and second regimes; this 

may explain the shape discrepancy that these data show. 

Summary 

The velocity decay predicted by self preservation 

considerations for the two-dimensional jet, ü /U. « (x/D)~ ' c 3 

is closely followed in the second regime of mixing by all of 

the two-dimensional jet results investigated.  Comparison of 

the centerline velocity decay curves over a range of 

Reynolds numbers (evaluated at the nozzle exit) indicates 

that a definite shift in the curves of U /U. versus x/D c j 

occurs, with the higher Reynolds number results exhibiting 

an earlier drop from a unity value of U /U..  This indicates c 1 
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that the potential core (or first regime) length decreases 

with increasing Re.. Flora and Goldschmidt [9] give 

evidence that the potential core length is a function of the 

turbulence intensity at the jet exit, and that this parameter 

may indeed be more important than the jet exit Reynolds 

number in some circumstances.  For the circular jet, for 

which considerably more data is available, the data show an 

increasing potential core length with increasing Reynolds 

number. Thus the variation observed for the two-dimensional 

jet may be entirely a result of the turbulent intensity. 

Geometric similarity for the mean-flow velocity 

profiles in the two-dimensional jet is achieved by x/h = 20 

[6, 8] but complete self-preservation, involving the 

profiles of u' and üv as well as the mean velocity U does 

not appear to be achieved before x/h =65 [7]. Turbulence 

data are obtained in both the similarity region [12] and the 

self-preserving region [7]. These data exhibit comparable 

behavior of the parameter a, , which is the ratio of the 

turbulent shear stress to the turbulent kinetic energy, with 

an average value of about 0.3 being appropriate. 

Only a limited amount of data is available for the 

two-dimensional turbulent mixing layer. Two of the avail- 

able experiments concern free mixing layers developed from 

boundary layers [14, 15] and are relatively limited both in 

number of measurements and spatial extent of these measure- 

ments.  The third is the classic two-dimensional half jet 
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experiment of Liepmann and Laufer [17]. The half jet 

measurements are carried into the region of fully-developed 

flow, which occurs by a length Reynolds number Re of 

3.7 x 105. 

In contrast to the situation for the two- 

dimensional mixing layer, a great deal of experimental 

information is available for the circular jet into still 

air. These data all support the centerline velocity 

expression U /U. « (x/D)~ quite well in the second regime c J 

of mixing. Geometric similarity of velocity profiles is 

achieved between ten [8] and twenty [18] diameters, but 

full self-preserving behavior (of turbulent components as 

well as mean flow quantities) is not achieved until some 

seventy diameters [20]. Unlike the two-dimensional jet, 

the length of the potential core increases for increasing 

jet Reynolds number [27].  There is sufficient data 

available in the case of the circular jet into still air to 

determine an empirical correlation for the core length as a 

function of jet Reynolds number Re,; the result is 

^=2.13<Rea)°-°
97 

It is also possible, given geometric similarity and assuming 

a self-preserving form for the axial variation of the local 

length scale, to show that the axial decay of centerline 

velocity depends only on the length of the potential core. 
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This is demonstrated in Appendix B, following References 

[8] and [21].  The results are 

Ü7 = X for D ± D- 

ÜT  2'13<Red)     %)   for D > D" 

which gives fairly good results for this simple configura- 

tion. 

The first regime of the constant-density jet-into- 

still-air has been extensively investigated [18, 28, 29, 31], 

These investigations have produced a relatively detailed 

description of the initial development of a free turbulent 

mixing layer, which is probably valid for other configura- 

tions as well. There is seen to be an initial region, of 

the order of a few thicknesses of the initial nozzle wall 

boundary layer, in which the turbulent intensity (and 

turbulent shear stress) increases rapidly.  Beyond this a 

region in which the turbulent intensity is constant exists, 

and extends "well past the end of the potential core" [28]. 

A transition follows to a situation in which turbulent 

mixing occurs from the centerline to the edge of the jet. 

All of the experiments on two-dimensional jets 

into still surroundings that were evaluated showed good 

agreement with the criterion that the momentum integral be 
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constant, as well as showing satisfactory two-dimensionality. 

The results of Albertson, et al., [8] are noteworthy in that 

the measurement of profiles and axial decays was carried out 

to x/h = 2000.  Turbulence structure investigations were 

carried out by both van der Hegge Zijnen [11] and Heskestad 

[7]; however, the former results are spoiled somewhat by the 

extremely small plots presented in Reference [11], while the 

latter measurements were performed at only one axial 

station. Heskestad's results are, however, quite detailed, 

including an analysis of the terms of the turbulent kinetic 

energy equation.  Miller and Comings [6] present relatively 

few measurements for comparison with other results—their 

emphasis was primarily on the pressure field in the two- 

dimensional jet—and their use of the conservation equations 

to obtain unmeasured quantities complicates analysis of 

their data. 

As mentioned above, experimental information on 

the two-dimensional mixing layer is relatively limited. 

Both Mueller [14] and Haugen and Dhanak [15] investigated 

mixing layers formed by boundary layers; Mueller studying 

the free mixing layer formed from the boundary layer over an 

obstruction on a plate and Haugen and Dhanak studying a 

cavity-flow free mixing layer. Their data are relatively 

limited and exhibit considerable scatter. The two- 

dimensional mixing layer measured by Chapman [16] is such 

only in an approximate sense, as it is formed on the edge of 
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a circular jet. However, at least part of Chapman's results 

exhibit two-dimensional behavior reasonably well.  Chapman's 

work is also noteworthy because of the documentation of the 

initial boundary layers at the nozzle lip.  The half-jet of 

Liepmann and Laufer [17] while subject to some criticism 

regarding the applicability of the results to a full two- 

dimensional jet flow [13], is both accurate and detailed. 

Chow [19] has shown that their calculation of turbulent 

shear stress results for comparison with their experimental 

results is incorrect.  The actual measurements of turbulent 

shear stress are themselves accurate within the usual 

limitations of hot-wire shear stress measurements of that 

time. 

The circular jet into still surroundings is 

probably the single most extensively studied free mixing 

flow, as the eleven experiments listed in Table 2.3, page 

65, indicate.  With one exception, all of the experiments 

for which the momentum integral can be calculated provide 

satisfactory agreement with the momentum integral criterion. 

This exception is the early (1943) data of Corrsin [23] 

which fails to hold a constant value of the momentum 

integral by some 35 percent. 

As in the case of the two-dimensional jet into 

still surroundings, the data of Albertson, et al., [8] are 

again noteworthy for the extreme axial distance to which 

measurements of profiles and axial decays are carried—in 
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this case 250 diameters. Alexander, et al., [27] and 

Baines [21] both demonstrate variations in the length of the 

potential core with the jet Reynolds number, the former 

investigating this effect over a Reynolds number range' of 
4 5 

2.33 x 10 to 3.82 x 10 .  Corrsin [23], Hinze and van der 

Hegge Zijnen [24], Corrsin and Uberoi [25], Bradshaw, et al, 

[18], Sami [29], and Wygnanski and Fiedler [20] all present 

measurements of the turbulence structure; Bradshaw, et al., 

and Sami in the first and transition regimes, Hinze and van 

der Hegge Zijnen in the second regime, and Wygnanski and 

Fiedler in the second regime past the onset of self- 

preservation.  The work of Hinze and van der Hegge Zijnen 

again suffers from the very small plots presented in 

Reference [24]. 

Perhaps more important than their detailed 

structural measurements is the possible solution that 

Wygnanski and Fiedler [20] give to the vexing problem of 

turbulent shear stress measurement.  Their conclusion that 

the reason that hot-wire turbulent shear stress measurements 

commonly are some twenty percent lower than the shear 

stresses obtained by other means is that a large portion of 

the turbulent shear stress is at the very low frequency end 

of the spectrum (and therefore involved with the very 

largest eddies) clearly should be further investigated. 

The greatest need in the investigation of the 

mixing of a circular jet with still surroundings is of an 
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experiment in which detailed profiles in the first regime of 

mixing are followed by careful axial decay measurements in 

the second regime. This problem is lessened somewhat by the 

relatively narrow band in which most axial decay of center- 

line velocity curves fit (Figure 2.21, page 67), and by the 

typical (x/D)~ decay behavior of all of the curves repre- 

sent. Using these observations, the experiment selected 

from the circular-jet-in-still-surroundings to be used in 

confrontation with theory to follow is then made up from the 

initial conditions measured by Bradshaw, et al., (at 

x/D = 1) [18] followed by an essentially arbitrary (x/D)~ 

decay curve.  Sand's [29] profiles at x/D = 1 could also be 

used. 
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CHAPTER 3 

CONSTANT-DENSITY TWO-STREAM FLOWS: 

EXPERIMENTAL DATA 

While the jet into still air is the simplest con- 

ceivable free mixing jet flow, embedding the jet in a moving 

secondary stream has distinct advantages.  The primary 

advantage of this technique is that it simplifies measuring 

the very small mean velocities that exist near the edges of 

a jet-into-still-air.  In particular, measurement of the 

turbulent fluctuations, which is extremely difficult when 

the fluctuating velocities approach the order of magnitude 

of the mean velocity, is considerably simplified.  This is 

because the assumptions made in relating the heat-transfer- 

rate fluctuations of the hot-wire to the velocity fluctua- 

tions break down when the fluctuations are of the same order 

of magnitude as the mean velocity, rendering the interpreta- 

tion of the measurements difficult if not impossible. 

Embedding the jet in a moving stream reduces the importance 

of the problem, as there is always a significant "background" 

velocity level. Much the same advantages are apparent in 

the measurement of pitot pressure in a two-stream flow. 

The price paid for easing the measurement problem 

is the introduction of an additional parameter into the 

experiment, which is the velocity ratio between the two 
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streams.  In addition, because of the finite size and 

capacity of laboratory equipment, it is often necessary to 

enclose the outer stream in a duct.  This in turn means that 

great care must be taken to minimize the effect of the axial 

pressure gradient if the results are to be meaningful as an 

approximation to free mixing. 

In addition to free mixing between a two- 

dimensional stream and a moving secondary and an axisym- 

metric stream and a moving secondary, wakes, which can be 

considered as two-stream mixing with zero primary velocity, 

will also be covered in this section.  In the case of wakes, 

there is of course no velocity ratio parameter encountered, 

but there are differences in wake development depending on 

the shape and type of body that produces the wake. 

Two-Dimensional Jet with Nonzero Secondary 

A schematic representation of a two-dimensional 

jet embedded in a moving secondary is shown in Figure 3.1. 

As for the zero-secondary case, the jet emerges from a 

rectangular nozzle of length L and width h.  Also as for the 

zero-secondary case, the aspect ratio of the nozzle, L/h, 

must be large to insure two-dimensionality.  Above and below 

the center or primary jet a secondary stream emerges.  The 

length of the secondary-stream nozzle is ordinarily the same 

as the primary nozzle; the width is ordinarily considerably 

greater.  In the true free mixing case two mixing processes 

occur simultaneously as the jets leave the nozzle, one 
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between the primary and secondary streams and the other 

between the secondary stream and the surroundings.  The 

process of greatest interest is the mixing between the 

primary and secondary streams.  Like the two-dimensional 

jet-into-still-surroundings this mixing process can be 

divided into two regions. In the first regime, or poten- 

tial core, the region of turbulent mixing expands both 

inward and outward, until the inward expansion reaches the 

centerline.  At this point the second regime begins.  In the 

true free-mixing case, the outer stream also mixes on its 

outer edge with the quiescent surroundings.  This mixing 

region also expands downstream, until some distance down- 

stream the outer edge of the mixing region between primary 

and secondary streams intersects with the mixing region 

between the outer stream and the quiescent surroundings. 

At this point the third regime begins and the character of 

the flow changes, becoming gradually more like the mixing of 

a jet-into-still-surroundings.  Generally, only the first 

and second regimes are of interest. 

The length of the second regime can be increased 

by increasing the width of the secondary stream, at the cost 

of increased mass flow requirements, or it can be increased 

by enclosing the outer stream in a duct.  In the latter case 

the second regime length is increased as the boundary layer 

that forms on the duct wall increases in width much more 

slowly than would a free-mixing region.  However, the 
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ducting of the flow induces an axial pressure gradient 

which, if of- sufficient magnitude, can distort the flow from 

its free-mixing (and zero pressure gradient) form. 

Figures 3.2 and 3.3, taken from the data of 

Weinstein, Osterle, and Forstall [37] illustrates the evolu- 

tion of the velocity profile in a two-dimensional two-stream 

mixing flow. 

Table 3.1 lists the important parameters of the 

two-stream two-dimensional flows considered.  The Weinstein, 

Osterle, and Forstall data represent a series of mean flow 

measurements for several secondary-stream-to-primary-stream 

velocity ratios ranging from 0.33 to 0.67.  Both Bradbury 

[34] and Bradbury and Riley [38] present turbulent structure 

measurements in relatively low velocity ratio flows, where 

the introduction of a non-zero secondary stream velocity is 

aimed at improving the accuracy of hot-wire measurements. 

It should be noted that the data appearing in Bradbury and 

Riley [38] are presented in nondimensional form without 

sufficient information to convert to the parameters used 

here.  However, the same data (presumably) are presented in 

Bradbury [39] in a somewhat more suitable form; the data 

from the latter paper have been used in the present work. 

Axial decay curves for the centerline velocity 

ratio for a number of the tests considered here are plotted 

in Figures 3.4 and 3.5.  The data of van der Hegge Zijnen 

[2] for a two-dimensional jet with zero secondary velocity 
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TABLE 3.1 

THE TWO-DIMENSIONAL CONSTANT-DENSITY JET WITH NONZERO SECONDARY 

Investigator Year Ref. 
Slot Width 

(in.) 
Aspect 
Ratio 

U. 
3 

ft/sec v3 
Re 
_Aa 

xlO 
Maximum 

x/L 

Momentum 
Check, 

Percent" 

-4 

Weinstein, 
et al. 1956 37 0.5 

0.5 
0.5 
0.5 

24 
24 
24 
24 

120 
140 
100 
120 

0.33 
0.50 
0.50 
0.67 

3.2 
3.7 
2.6 
3.2 

2.5 
2.5 
2.5 
2.5 

6.5 

V£> Bradbury 1965 34 •0.375 48 155 0.16 3.0 1.425 4 

Bradbury and 
Riley 1967 38 0.375 

0.125 
0.125 

48 
144 
144 

155C 0.07 
0.16 
0.31 

3.0C - 5d 

Reynolds number based on slot height h. 

Maximum deviation from average. 

'Presumed for the aspect ratio 48 case to be equal to Bradbury (1965). 

Author's measurement. 
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is included for comparison. From these figures the quite 

definite influence of the jet velocity ratio is clearly 

apparent.  No Reynolds number effect such as was found for 

the jet in still surroundings is observed.  However, any 

shift with primary jet Reynolds number would be masked by 

the velocity ratio effect in these experiments. 

As is demonstrated by Figure 3.6, downstream of 

the potential core region the mean velocity profiles for the 

two-stream two-dimensional jet can be fit quite well with a 

function of the similarity variable n = y/b-i/2* 
The 

parameter b,/2 is the ordinate at which the mean velocity 

U = U + (U - U )/2. Newman ([3], see Appendix C) shows 

that true self-preservation—in which the whole flow scales 

with two parameters, a width scale and a velocity scale— 

only exists in an approximate sense for the two-dimensional 

two-stream jet, when the velocity increment U - U is large 

compared to U  , or in the opposite case, when U - U is 

small compared to U .  For the two-dimensional jet, self- 

preservation in the large velocity increment case requires 

that the velocity ratio (U - U )/(U. - U ) be proportional 

to x"1/2.  Assuming that (U - U_)/(U. - U ) °c x'1^2, as 

required for self-preservation, and that (U - U )/(U - U ) o    c    o 

= f(n), as experimentally observed, Bradbury [39] shows that, 

with the additional assumption that the flow in the down- 

stream region is dependent only on the overall excess 

momentum flux in the jet, equations can be written for the 
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axial decay of centerline velocity ratio and the increase of 

width of the jet, in terms of the virtual origin x and the 

ratio of velocities X = U./U . Axial decay equations can be 

written in the same manner for the circular jet with nonzero 

secondary. Further, Bradbury [39] recommends taking x =0, 

which results in equations which are functions only of the 

parameter X.  Thus: 

Uc " Uo _ -, K-\EL_  fX^-1/2 
■5   -o     ^ E 
U. - u  = 2-5~\k=T   £> X/" O.I) 

and 

.-^ = 0.109 £  ^  (3.2) 

Vx(x-i) Vh 

Figure 3.7 shows a comparison between the velocity 

decays predicted by Equation (3.1) with experimentally 

measured decays.  For x/h > 10, Equation (3.1) provides a 

reasonably good prediction of the centerline velocity decay 

for X = U./U > 2.0.  The prediction improves as U./U 

increases, as would be expected as the criteria for approxi- 

mate self-preservation is that U - U /U -*■ «. coo 

The measurements of turbulent intensities and 

turbulent shear stress carried out by Bradbury [37] were 

made in the self-preserving, region of the jet.  In 

Bradbury's usage, the condition for self-preservation is 
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-1/2 taken to be that (U - U ) * x ' ; this is observed to c   o 

occur for x/h > 30.  Bradbury notes that the empirical 

expression which fits his velocity decay curve implies, 

given conservation of momentum, that the width is not 

exactly proportional to x, as self-preservation would 

require.  However, the departure from self-preservation is 

small. 

Calculations of the turbulent shear stress and 

turbulent kinetic energy were made from the data presented 

in Reference [34] , in the self-preserving region.  Figure 

3.8 shows that the ratio of turbulent shear stress to turbu- 

lent kinetic energy follows the linear relationship 

encountered earlier quite well.  The lateral variation of 

the parameter a, as shown in Figure 3.9 is also at least 

qualitatively in agreement with measurements made in other 

flows. 

Bradbury also presents measurements of turbulence 

structure in the self-preserving region.  His measurements 

show that a significant amount of the turbulent shear stress 

is tied up in the large eddies.  This conclusion is contrary 

to Townsend's [5] large eddy hypothesis (which in part pre- 

dicts that the majority of the turbulent shear stress is 

tied up in the smaller eddies of the flow); however, it does 

agree with some of the measurements of Wygnanski and Fiedler 

[20] in the axisymmetric jet into still surroundings.  In 

this latter work, as discussed in Chapter 2, it was found 
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that a significant portion of the shear stress occurs in the 

lowest frequency part of the turbulence spectrum, which 

implies the largest eddies. In this connection it is note- 

worthy, in light of the discussion of the measurement of 

turbulent shear stress in Chapter 2, that Bradbury's 

measurements of turbulent shear stress agree quite well 

([34], Figure 13) with the turbulent shear stress calculated 

by integration of the mean velocity profiles. 

Axisymmetric Jets with Nonzero Secondary: 
Coaxial Jets 

As can be seen from the flow schematic of Figure 

3.10, the idealized coaxial mixing flow is quite similar to 

the idealized two-dimensional two-stream mixing flow, and 

the same description applies. Thus there are three flow 

regimes: the potential core, the region of complete mixing 

of the primary and secondary streams, and the region of 

complete mixing of both streams and the surrounding 

quiescent fluid. As for the two-dimensional case, in the 

idealized flow the surrounding stream extends to + °°, and 

the surrounding stream velocity U remains constant for all 

x.  This ideal is of course not realizable in practice; two 

representative actual approaches are shown in Figure 3.11. 

Figure 3.11 (a) represents a common experimental 

approach to coaxial free mixing, exemplified by the appa- 

ratus used by Forstall [40, 41].  In this apparatus the 

secondary air stream is drawn through a duct surrounding the 
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E 

Figure 3.10.  Idealized coaxial mixing. 
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a. Apparatus of Forstall (Schematic) 

All Dimensions in Inches 

b. Apparatus of Paulk (Schematic) 

Figure 3.11. Experimental approximations to true coaxial 
free mixing. 
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primary jet. While ensuring a relatively long second regime 

and providing an experimental setup requiring only a modest 

flow capacity, this type of apparatus has the disadvantage 

of involving nonzero pressure gradient effects, which can 

distort the flow from a true free mixing flow.  Figure 3.11 

(b) represents a configuration in which the zero pressure 

gradient criterion can be closely approached.  The particu- 

lar apparatus sketched is that used by Paulk [42].  The 

advantage of a nearly constant-pressure flow is obtained in 

this apparatus at the cost of a drastically reduced second 

regime.  This is caused by the fact that the outer stream, 

mixing with quiescent air, mixes faster than the inner 

stream, mixing with a moving stream. Thus, for realistic 

outer jet sizes the second regime of mixing is abbreviated. 

The concepts of local similarity of mean flow 

profiles and of self-preservation of the coaxial jet flow 

are both useful in the analysis of coaxial free mixing. Of 

the two, the former is far more widely applicable. To test 

for local similarity the question asked is whether the mean 

flow velocity profile (or profile of some other quantity) is 

reducible to a function of the lateral coordinate divided by 

some suitable local reference length. The local reference 

length is commonly taken to be the half radius of the 

particular profile:  for the velocity profile r,,- ^s the 

ordinate at which U = U + (U - U )/2. Paulk's data for a o    c   o 

122 



AEDC-TR-71-36 

velocity ratio U /U. = 0.125 [42] is reducible in this form 

as Figure 3.12 shows. 

Self-preservation of the flow is shown by Newman 

([3], see Appendix C) to exist for a coaxial free mixing 

flow only in an approximate sense, when (U - U )/U >> 1 or 

(U - ü )/U << 1. The first case represents a high ratio coo 

of primary to secondary velocity, and the second a jet with 

primary velocity very much less than the secondary.  The 

criteria for self-preservation in the first case are that 

the centerline velocity difference U - U be proportional 

to 1/x while at the same time the width scale is propor- 

tional to x. Thus self-preservation for coaxial jets 

requires that the velocity profiles be reducible as a 

function of n = r/x.  Figure 3.13 shows that the same data 

shown to exhibit local similarity in Figure 3.12 does not 

exhibit self-preservation.  The conclusion is clearly that 

local similarity may be exhibited where self-preservation is 

not. 

Table 3.2 lists the important parameters for the 

coaxial free mixing tests to be considered in this section. 

Of these tests, those of Paulk [42] are the only ones in 

which the outer stream was not ducted.  In four of these 

experiments the density ratio was not unity.  Forstall [40], 

Fejer, et al., [45], and Paulk [42] used a trace gas, using 

helium, argon, and hydrogen, respectively, in order to 

investigate the transfer of mass, while both Landis and 
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Figure 3.13.     Test for self-preservation:    Paulk   [42], 
UQ/U.  =  0.125,   P.i/P0 =  0.93. 
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TABLE 3.2 

COAXIAL CONSTANT-DENSITY JETS 

Investigator Year Ref. 
"1 
(in.) 

DUCt 
Dia, (in.) 

Re 

(ft/sec) V"l xlO •4
a ,  Last 

pi/po x/P 

Momentum 
Check,. 
Percent 

Forstall 1950 40 0.25 4.0 180 0.5 2.38 0.92 120 - 
(Forstall (41) 0.25 4.0 225 0.2 2.98 0.92 80 10 
and Shapiro) 0.25 4.0 120 0.25 1.59 0.92 80 8 

0.25 4.0 90 0.5 1.19 0.92 135 23 
0.25 4.0 120 0.75 1.59 0.92 130° - 

Landis and 1951 43 0.5 4.0 200 0.25 5.3 0.92 32 10d 

Shapiro 0.5 4.0 220 0.46 5.84 0.92 32 - 
0.5 4.0 180 0.75 4.77 0.92 32 - 

Curtet and - 1964 44 0.48 3.22 125 0.49 3.2 1.0 50 le 

Ricou 0.48 3.22 226 0.27 5.8 1.0 - 

Fejer, et al. 1967 45 1.0 6.0 50-400 1.0 2.7-21 1.0 48c - 
1.0 6.0 200 0.5 10.6 1.0 36 - 
1.0 6.0 300 0.33 15.9 1.0 36 - 
1.0 6.0 300 0.67 15.9 1.0 36 - 
1.0 6.0 400 0.25 21.2 1.0 36 - 

Zawacki and 1968 35 0.356 8x8 f 14.1 3.4 0.8 1.0 21.0 5? 
Weinstein 0.356 8x8f 6.0 8.0 0.34 1.0 14.1 5.5 

0.356 8x8 f 3.0 16.0 0.17 1.0 14.1 6.5 
0.356 8x8f 1.69 28.5 0.095 1.0 11.2 17.0 
0.356 8x8 f 1.21 39.5 0.069 1.0 11.2 5.5 

Paulk 1969 42 0.50 none 401.0 0.477 10.65 0.89 18 2.0 
405.0 0.125 10.75 0.93 14.5 5.0 

> 
m 
O 
O 
■H 
3J 

CO 
O) 

Based on jet diameter Dj and velocity Uj. 

Maximum deviation from average. 

Centerline concentration measurements only. 

Assumes similarity of velocity profiles. 

elncludes axial pressure gradient term; author's measurement. 

Square duct. 

^Momentum check calculation begins at first "jet-flow" station. 
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Shapiro [43] and Paulk [42] used a heated central stream to 

investigate the transfer of heat. In all cases the small 

deviations from unity density ratio do not seem to influence 

the results. 

The effects of ducting of the outer stream can be 

seen in the momentum check for Forstall's data. Forstall's 

data are carried to much larger x/D than the other experi- 

ments, and as was pointed out by Maczynski [46] the data for 

large x are apparently influenced by the presence of the 

walls.  It would be expected that the influence of the 

presence of the walls (and the pressure gradients thereby 

generated) would be greater for the more nearly equal 

velocity ratio cases, for in these tests the level of turbu- 

lent shear stress is lower than in cases in which there is 

a large velocity difference between the streams.  Such an 

effect shows up in the momentum check.  Thus the U /U. = 0.5 
o j 

case, which is the highest velocity ratio case for which 

sufficient data are provided by Forstall [40] to perform a 

momentum analysis, is much further out of momentum balance 

than the U /U. = 0.2 and 0.25 cases.  It is also notable 

that in the experiments of Landis and Shapiro [43] which 

used substantially the same type of apparatus as was used 

by Forstall, measurements were not reported beyond x/D = 32. 

In all of these calculations the axial pressure gradient was 

assumed zero; no pressure measurements were presented by 

Forstall or by Landis and Shapiro.  The apparent lack of a 

127 



AEDC-TR-71-36 

wall effect in the Curtet and Ricou [44] momentum balance Is 

explained by their measurement of the axial pressure 

gradient and inclusion of the appropriate term in the 

momentum balance. 

The data of Zawacki and Weinstein is interesting 

because of the very high velocity ratios U_/U, measured; 

however, the behavior of these flows involves large regions 

of recirculating flow, as has been described by Rozenman 

[47]. 

Of the experiments' listed in Table 3.2, only 

those of Forstall [40] (and not Reference [41]) and Zawacki 

and Weinstein [35] include measurements of profiles at 

x = 0, and as will be discussed below, both of these experi- 

ments are in certain ways beset by problems. 

Figure 3.14 presents measured axial decay of 

centerline velocity curves selected from the experiments 

considered in this section in which the outer stream was 

enclosed in a duct. As for the two-dimensional case, a 

strong dependence on the velocity ratio parameter can be 

seen; the decay beginning progressively later as the 

velocity ratio increases.  Forstali's data exhibits a 

somewhat anomalous behavior which will be gone into in more 

detail below. 

Certain of the ducted mixing experiments are 

compared in Figure 3.15 with the zero pressure gradient 

Paulk [42] data.  No strong conclusions can be reached 

128 



AEDC-TR-71-36 

1.0 

0.8 

0.6 

0.4 

C     O 

0.2 

0.10 

o.oe 

0.06 

0.04 

Sym 

O 

A 

♦ 

a 
o 
a 
0 

0.2 

0.25 

0.27 

0.46 

0.49 

0.50 

0.50 

0.67 

ft/sec D, 

225 

120 

226 

220 

228 

180 

90 

300 

T 

in. 

0.25 

0.25 

0.476 

0.50 

0.476 

0.25 

0.25 

1.0 

-4P-T 

x 10" 

2.98 

1.59 

3.2 

5.84 

5.77 

2.38 

1.19 

16.0 

Investigator Ref. 

Forstall 40 

Forstall 40 

Curtet and Ricou 44 

Landls and Shapiro 43 

Curtet and Rlcou 44 

Forstall 40 

Forstall 40 

Fejer et al. . 45 

■  'ill' J I  l  I I I 
8  10 

x/D 

20 40 60  80  100 

Figure 3.14.  Comparison of centerline- velocity decays; 
coaxial axisymmetric jets. 

129 



1.0 

0.8 - 

0.6 - 

0.4 - 

üJ-üo 

Lü 
O 

0.2 - 

0.1 

1 T"         1 ID  1 ÖI      U   ♦ V  1- 1             1 1         1       1 1     I 

- 
a   X°   ^ 

- 

- a      >^ \^ - 

- a \j - 

- a 
•^ - 

- 

Sym Vj °4' ft/sec DJf   in. 

ReDj 

x   10-4 Investigator Ref. 
sX - 

D 0.125 405 1.50 10.8 Paulk 42 

- • 0.20 225 0.25 2.98 Forstall 40 - 
• 0.27 226 0.476 3.2 Curtet  and Ricou 44 

o 0.37 412 0.50 10.9 Paulk   ' 42 

0.46 220 0.50 

J L 

5.8 Landls and Shapiro 

I     i    i    I 

43 

1 I             ' 

• 

 1        1       1 I     l 

> 
m 
a 
o 

en 

10 
x/D 

20 40 60 80     100 

Figure 3.15.  Comparison of axial decays measured by Paulk 
(unducted) with those measured in various ducted 
experiments. 



AEDC-TR-71-36 

because of the extremely short second regime investigated by 

Paulk; however, the data fall in the appropriate region 

compared to the ducted data, exhibiting a lengthening 

potential core as the velocity ratio approaches unity. 

Forstall's experiments [40, 41] involved the 

mixing of two coaxial streams of air at low velocities, with 

the center jet incorporating about ten percent by volume 

helium as a tracer. As shown in Table 3.2, page 126, both 

Forstall's U /U. =0.2 and U/U. =0.25 cases show only 

moderate deviation from momentum balance. His U /U. =0.5 

case deviates substantially, while for the U /U. = 0.75 case 

there is not sufficient information available to perform a 

momentum check.  Closer inspection of Forstall's U /U. = 0.5 

case shows several features that are unfortunately not at 

all uncommon and which deserve further discussion. 

As Figure 3.16 shows, there are at least two 

different axial decay curves presented in Reference [40] for 

the U /U. = 0.5 case.  Two of these represent different o ] 
nozzle (and secondary stream) velocities, and thus different 

primary jet Reynolds numbers.  Figure 3.16 can thus be taken 

as evidence for the same sort of shift of the decay curve 

with primary jet Reynolds number as is seen in the circular 

jet-into-still-surroundings.  In addition. Forstall per- 

formed measurements with two different nozzles, one 1/4 inch 

diameter and the other 1 inch diameter, with the larger 

nozzle being used for the near field investigation. 
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Forstall's U /U. =0.5 decay data also show, besides the two 

distinct curves already mentioned, what appears to be the 

beginning of a third decay curve, marked "?" on Figure 3.16. 

Since these data only extend to x/D = 16, presumably they 

represent data from the one inch diameter nozzle, and thus 

data at a nozzle Reynolds number Re, = 47,700.  This con- 

jecture is strengthened by comparison with the data of 

Landis and Shapiro [43] at Re, = 53,000. 

As was mentioned above, Forstall in Reference [40] 

presents initial velocity profiles at the jet exit, x/D = 0. 

These profiles are not presented in Forstall and Shapiro, 

Reference [41].  If finite-difference techniques are to be 

used for comparison with the downstream decay rates, these 

profiles (and measured boundary layer thicknesses) are 

important, particularly so as the stream velocity ratio 

approaches unity.  (This is because as the stream velocity 

ratio approaches unity the free mixing turbulent shear 

stress level decreases and the details of the initial con- 

ditions of the flow become more important.)  Unfortunately, 

the initial profile data presented by Forstall [40] show a 

marked asymmetry; further, for the U /U. = 0.5 case, initial 

profiles are presented only for the 0.25 inch nozzle.  The 

effect of the resulting uncertainty in the initial boundary 

layer thickness is shown in Figure 3.17, in which the 

results of a finite difference calculation of Forstall's 

U /U. = 0.5 case are presented as a function of the initial o 3 
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boundary layer thickness. The calculations for this example 

used the Frandtl eddy viscosity model—although the par- 

ticular eddy viscosity model used is unimportant—and used 

the numerical technique described in Appendix E.  The 

influence of the choice of initial boundary layer thickness 

is apparent. Further, it can be seen that beyond a certain 

value of the initial thickness, the results are unchanged, 

as would be expected.  The "negligible thickness" curves 

also show essentially the same slope as predicted by the 

Squire and Trouncer [48] integral (and hence zero initial 

boundary layer thickness) calculation at this velocity 

ratio.  The difference in potential core lengths is due to a 

different choice of shear stress model—Squire and Trouncer 

use Prandtl's mixing length to evaluate the shear stress at 

the half-velocity radius.  In the second regime both the 

Prandtl eddy viscosity model and the Prandtl mixing length, 

with the constants used here, give substantially the same 

value for the shear stress at the half-velocity radius. 

Experimental evidence for the importance of 

initial conditions as the velocity ratio approaches unity is 

strikingly illustrated by Figure 3.18. This figure shows 

centerline composition (of argon tracer) decay profiles from 

the data of Fejer, et al., [45] for a velocity ratio u_/U. 

of 1.0.  The different curves are a result of changes in the 

center jet velocity U. (and obviously of concomitant changes 

in the external velocity U ) from 50 ft/sec 
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(Re = 2.65 x 104) to 400 ft/sec (ReD = 21.2 x 10
4).  Apart 

from the anomalous behavior of the 400 ft/sec case—which it 

is argued in Reference [45] is caused by boundary layer 

transition effects increasing the mixing rate for all other 

cases—there is a steady progression toward increased mixing 

rates at increased velocities. This progression is sur- 

prisingly counter to the trend observed in both the jet into 

still air and the U /U. =0.5 data of Forstall [40], Figure 

3.14f page 129, for which an increase in core length and 

decrease in extent of mixing (at a given axial station) with 

increase in velocity is shown. Fejer, et al., [45] report 

no correlation between turbulent intensity level in the jet 

and the rate of mixing.  Further, the effect of the ducting 

of the outer jet on the mixing rate at this velocity ratio 

is unknown, so that the cause of the variation both in core 

length and in mixing rate (as evidenced by the increasing 

slope of the decay curves with increasing velocity) must 

remain mysterious. It may be that effects of a laminar- 

turbulent transition are included in the observed behavior. 

Figure 3.18 does, however, illustrate the need for an 

adequate understanding of the initial region in flows which, 

because of their near-unity velocity ratio, are dominated by 

their initial conditions. 

Landis and Shapiro [43] extended the work of 

Forstall [40, 41] to the case in which the central stream 

temperature is heated above the outer stream temperature, 
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thus complementing the mass transfer measurements of 

Forstall with measurements of the diffusion of heat. Most 

of the data of Reference [43] was taken at temperature 

ratios large enough to influence the mixing process; 

however, as listed in Table 3.2, page 126, some of the data 

are at temperature (and thus density) ratios not much 

different from unity.  Figure 3.19 shows a comparison of the 

data of Landis and Shapiro with that of Forstall.  As might 

be expected from the discussion above, the Landis and 

Shapiro U /U. = 0.75 case shows a strong deviation from a 

linear decay curve.  However, considering only the early 

region of the curve, it is evident that a strong shift with 

velocity ratio exists, as has already been pointed out. 

Figure 3.19 also shows further evidence of a shift in the 

data with the primary-jet Reynolds number in the comparison 
4 

of Landis and Shapiro U /U. = 0.25 data (at Re = 5.3 x 10 ) 

with Forstall's UQ/U. =0.25 data, taken at ReD - 1.6 x 10
4. 

In addition to the velocity ratio 1.0 case, Fejer, 

et al. , [45] measured centerline velocity de,cay data for 

several other velocity ratios, ranging from 0.25 to 0.67. 

Figure 3.20 shows a comparison between their centerline 

decay data and those measured by other investigators at 

different primary-jet Reynolds numbers.  In this case, the 

data of Fejer, et al., which in each case is at a larger 

primary-jet Reynolds number than the data with which it is 
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compared, can be seen to indicate a decrease in the amount 

of mixing at a given axial station with increase in primary 

jet Reynolds number. 

It should be noted that for UQ/U. = 0.2, 0.25, and 

0.33, Fejer, et al., [45] present the radial variation of 

the eddy viscosity, e, defined by 

3r 

These values are obtained in a manner similar to that used 

by Paulk; i.e., through integration of the measured profiles 

to various stations, to evaluate the shear stress from the 

integral momentum equation.  The value of shear stress at a 

given radial location is then divided by the value of 3u/3r 

obtained using a finite-order polynomial fit to the radial 

velocity profile.  Surprisingly, however, Fejer, et al., 

[45] do not report velocity profiles corresponding to the 

eddy viscosity profiles they report. 

Paulk's measurements [42] have already been 

described briefly.  His apparatus consisted of a central jet 

of air with a hydrogen tracer surrounded by a coaxial jet of 

air.  The outer flow was not ducted, which resulted in an 

extremely short second regime.  In addition to profiles of 

mean flow velocity and concentration, Paulk obtained the 

turbulent shear stress through use of the integral mean flow 
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momentum equation and the measured mean flow velocity, con- 

centration, and enthalpy profiles. 

All of the data considered to this point indicate 

that the mean velocity decays approximately as x  , as is 

required by self-preservation considerations. The velocity 

profiles are locally similar, and can be fit by error func- 

tion or cosine profiles, although with some inaccuracy [41, 

42, 43].  The experiments run with trace gases or tempera- 

ture traces indicate that both.mass and heat diffuse more 

rapidly than momentum and that the turbulent Prandtl and 

Schmidt numbers are both approximately equal to 0.70. 

Curtet and Ricou [44] and Zawacki and Weinstein 

[35] both investigated the turbulence structure in coaxial 

free jets. An additional study was made by Kobashi [49]; 

however, in this case mean velocity profixes are given for 

one jet, turbulent fluctuation profiles for a second, and 

turbulent shear stress profiles for still a third. Thus, 

this experiment can add little to the former two. 

The axial decay of centerline velocity for two of 

the cases investigated by Curtet and Ricou [44] is presented 

in Figure 3.21. Measurements of two other velocity ratios 

were made by Curtet and Ricou, but in these cases the effect: 

of the pressure gradient due to ducting of the jet was sub- 

stantial. Of the two cases presented here, the 

U /U. = 0.267 case is nearly constant-pressure, and the 

U /U. = 0.494 flow is in a slightly favorable pressure 
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gradient.  This difference in pressure gradient is probably 

the explanation for the apparent slight difference in slope 

of the decay curve for the two runs.  Measurements of turbu- 

lent intensities and turbulent shear stress were made by 

Curtet and Ricou for the U /U. ■ 0.267 case; as for other 

hot-wire measurements discussed, the turbulent shear stress 

measured is some 20 percent lower than predicted by integra- 

tion of the mean flow profiles. 

Axial decays for the data of Zawacki and Weinstein 

[35] are presented in Figure 3.22.  Rozenmann [47] has 

investigated the flow in the initial region of this con- 

figuration in detail, and he states that for a velocity 

ratio ü /U= greater than 13 a recirculation region forms in 

the primary jet.  Thus, it might be expected that for 

velocity ratios greater than 13 the axial decay data of 

Zawacki and Weinstein [35] will not look like other coaxial 

free jet decay data, and from Figure 3.22 this can be seen 

to be the case.  Zawacki and Weinstein measured the three 

components of the turbulent intensity fluctuation and the 

turbulent shear stress, using a hot film probe, for all of 

the velocity ratios listed in Figure 3.22 (and Table. 3.2, 

page 126).  Like Curtet and Ricou [44] their measured shear 

stress profiles disagree with those obtained through inte- 

gration of the mean flow momentum equation, being some 20 

percent low. 

144 



1.0 

0.8 - 

0.6 " 

0.4 - 

tn 0.2 - 

0.1 

—0— —Sh s^ 1 1       T 1     I-T T   1  —1  —1 1 1 -1 1—1— 
- 9 - 
— Sym Ü«/ÜJ 

39.5 

Rej 
— 

- a <N. O 689 - 

- 
A 
O A 

a 
28.5 
16.0 

954 
1700 

- 

O 0 8.0 

3.4 

3400 

8000 
D    > 

O 

8s 

o 
o      0s 

s
     ^ 

' ' 1         1        1 1    1   1 ' 1 1 1          1        1 1      1     1 
10 

x/D 

20 40 60 80  100 

Figure 3.22.  Axial decay of centerline velocity, data of 
Zawacki and Weinstein [35]. 

> 
m 
O 



AEDC-TR-71-36 

Figure 3.23 shows that the linear relation between 

the turbulent shear stress and the turbulent kinetic energy 

holds for both the data of Curtet and Ricou and that of 

Zawacki and Weinstein.  Figures 3.24 and 3.25 show that the 

details of the lateral variation of the ratio of turbulent 

shear stress to turbulent kinetic energy are qualitatively 

similar, but also show some interesting differences.  In 

Figure 3.24, the parameter a, is plotted versus the non- 

dimensional radius—the physical radius divided by an 

"effective radius," defined in Reference [44] as the radius 

of a cylinder with a volume equal to the excess flow rate 

q - 2TT  /(U - UQ)ydy 

o 

where r is the xadius at which U = U  , and a height equal 

to U - U .  This definition, of "effective radius" precludes 

direct comparison of the radial variation obtained by Curtet 

and Ricou [44] and Zawacki and Weinstein [35]. Figure 3.24 

shows that the lateral profiles of a, are.quite similar in 

shape at various downstream stations, as is also the case, 

although not nearly so strikingly, for the data of Zawacki 

and Weinstein [35], Figure 3.25.  However, in the coaxial 

jet of Curtet and Ricou, at U /U. = 0.267, the peak value of 

a, increases from x/D = 5 to 15, and then decreases from 

x/D = 15 to 20, while the peak for the Zawacki and Weinstein 

data occurs at x/D = 3.4 and then continually decreases.  The 
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difference between the flows is quite probably due to the 

strong changes in behavior of the flow as U_/U. becomes 

greater than unity, while the behavior of the data of 

Reference [44] may reflect a change from the first regime of 

mixing to the second. 

Two-Dimensional Wakes 

When a uniform flow passes over a two-dimensional 

body, that is, one which is essentially infinite in one 

direction, the action of viscosity in the fluid layers 

closest to the body causes those layers to slow.  Thus, the 

flow leaving the body is no longer uniform but has a 

velocity gradient.  If the characteristic Reynolds number 

U d/v, where d is some characteristic dimension of the body, 

is high enough, the flow leaving the body will be turbulent 

and the velocity deficit caused by the retarding action of 

the body will become smoothed out due to the action of 

turbulent mixing. 

The three flows listed in Table 3.3 all represent 

two-dimensional wakes; they differ in the shape of the body 

used to create the wake.  In the classic experiment of 

Townsend [5, 50] the two-dimensional wake is created by a 

0.0625 inch diameter circular cylinder spanning a 15 x 15 

inch wind tunnel through which flows a 42 ft/sec stream. 

Lee [51] generates an effectively two-dimensional wake by 

passing a nominally 100 ft/sec stream over an aerodynamic 
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TABLE 3.3 

TWO-DIMENSIONAL WAKES 

en 

Investigator Ref. Year Type 

Character- 
istic 

Re x lO-3 Basis 

Measure- 
ment 
Range 

Momentum 
Check 

Townsend 50 1949 Circular 
Cylinder 

1.36 
4.0b 

Cylinder 
Diameter 

500-950 
1120-2280° 

- 

Lee 51 1966 Aerodynamic 
Body 

24.0 Momentum 
Thickness0 

0-120 4% 

Chevray and 
Kovasznay 52 1969 Flat 

Plate 
1.6 Momentum 

Thickness0 
0-414 1.6% at 

x/6 = 86 ' o 

Basis same as Re. 

From Newman [3]. 
00 

cDefined as 6 = / ^-(1 - jr-Jdy. 
l     l o ± ± 

a 
o 
H 

u 
0» 
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body.  The two-dimensional wake investigated by Chevray and 

Kovasznay [52] is formed by passing a 13 ft/sec stream over 

a flat plate. 

Newman ([3], see Appendix C) shows that the small 

increment wake, i.e., the wake for which u - U << U  , is c   o    o 

approximately self-preserving, and that for a two-dimensional 

self-preserving wake the velocity deficit U - U « x~ ' 

and the width scale b « x ' .  Townsend [50, 5] finds that 

self-preservation in the two-dimensional wake is only 

achieved for x/d > 500, where d is the cylinder diameter, 

and his measurements are carried out downstream of this 

point. 

On the other hand, both Lee [51] and Chevray and 

Kovasznay [52] made detailed investigations of the initial 

region of a two-dimensional wake.  Both investigators found 

that there is an extremely rapid increase in velocity on the 

wake centerline starting immediately at the trailing edge 

of the body.  This increase is so rapid that both Lee [51] 

and Chevray and Kovasznay [52] found a finite velocity on 

the wake centerline as near as they were able to get to the 

trailing edge, as shown in Figure 3.26. 

Because of its simplicity, and the fact that there 

is a finite background velocity on which the turbulent 

motion is superimposed, the two-dimensional wake has been 

extensively used for studies of the structure of turbulent 

flow [5, 53, 54]. All of the experiments considered here 
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involved measurements of the turbulent intensities and 

turbulent shear stress; Townsend also measured the terms of 

the turbulent kinetic energy equation in the self-preserving 

region.  Figures 3.27 and 3.28 show that the linear rela- 

tionship between turbulent shear stress and turbulent 

kinetic energy observed in all other flows considered to 

this point holds also for the two-dimensional wake. 

However, Figure 3.28 shows that in the self-preserving 

region the average value is considerably different than in 

the initial region.  It might be noted that the behavior 

exhibited in these two figures is somewhat anomalous; one 

would expect a decrease in turbulent shear stress downstream 

in the wake as the flow approaches isotropic conditions 

without perhaps an equivalent decrease in turbulent kinetic 

energy, and thus a decrease in the value of a, rather than 

the observed increase. 

As described before, self-preservation requires 

that u - n * x"1/2 and b « x1^2.    Thus to test for self- c   o 

preservation the lateral variable should be (y/d)//(x - x )/d 

or y//(x - x )d where x is the virtual origin of the flow. 

If similarity is assumed, then 

(u1)2 = (uc - uQ)
2g(n) ; Ti = y/b 

from Newman ([3] , Appendix C), and 
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i 1%2   U - U 2 

but 

Ü  - U0 « (x - Xv)"1/2 

so 

a - u    _ /x - x 

u    ^ V  d 

and thus 

„.  2 X - X     •, 

The same development can be used for any other component of 

the turbulence structure.  Thus, if the flow is self- 

preserving, it should be possible to plot any mean flow or 

structure quantity <J> on a single curve of 

x - x 
<j> (—a ) versus 

• <x - xv)d" 

Figures 3.29 and 3.30 show that this is indeed the case for 

both the turbulent kinetic energy k and the parameter a, for 

Townsend's data. 

That the initial region of a two-dimensional wake 

is not self-preserving is clearly shown by Figure 3.31 and 
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Figure 3.32.  Figure 3.31 shows the axial component of the 

turbulent intensity from Chevray and Kovasznay's [52] data 

plotted in similarity variables, while Figure 3.32 shows the 

turbulent shear stress plotted the same way.  Clearly these 

profiles do not reduce to one curve, and self-preservation 

is not achieved. 

Chevray and Kovasznay's data [52] incorporates a 

number of closely spaced profiles, from which, as shown in 

Figure 3.33, a very interesting picture of the development 

of the parameter a, can be obtained.  In Figure 3.33, this 

parameter can be seen evolving rather rapidly from a profile 

quite like the boundary^layer profiles of this parameter 

shown by Bradshaw, et al., [55] to a profile characteristic 

of a free mixing process, and in particular, to a profile 

qualitatively quite similar to the self-preserving profiles 

seen in Figure 3.30.  This of course is the sort of process 

that the flow must undergo as it changes in character from a 

boundary-layer to a free-mixing flow. 

Axisymmetric Wakes • 

Axisymmetric wakes are formed by two types of 

bodies, either circular or square disks, the latter in the 

far field, or axisymmetric solid bodies, immersed in a 

uniform stream. The disks are mounted perpendicular to the 

mean flow direction.  Axisymmetric bodies, if they are not 

spherical, are mounted with their longer axis parallel to 

the mean flow direction. As for the two-dimensional wake, 
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if the characteristic Reynolds number U d/v, where d is here 

a characteristic dimension such as the diameter of a 

circular disk or sphere, the length of the short axis of an 

ellipsoid of revolution, or the edge length of a square, 

disk, is large enough, the axisymmetric wake will be turbu- 

lent. 

The principal characteristics of the wakes to be 

considered in this section are listed in Table 3.4. Not 

included in Table 3.4 is the axisymmetric wake experiment 

reported by Hwang and Baldwin [60]. This paper is not 

included as it deals solely with some details of the 

structure of turbulence, without reporting any of the 

details of the flow necessary for this study. 

There is only one axisymmetric wake experiment, 

that of Cooper and Lutzky [56], which is carried far enough 

downstream to investigate the existence of self-preservation. 

Like the two-dimensional wake, self-preservation for an 

axisymmetric wake exists only in an approximate sense, when 

(U - U )/U << 1. This restricts self-preservation to 

large x/D, where the velocity deficit has been reduced to 

the point that (U - U)/U = u'/U where u' is the axial * o   •  o      o 
component of the turbulent intensity.  For such a case, 

Newman ([3], Appendix C) shows that the mean flow velocity 

deficit profiles should collapse when plotted as 

(1 - U/Uo)[(x-xv)/b)]
2/3 versus y/[(x - xv)b

2]1/3 where xv 
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TABLE 3.4 

AXISYMMETRIC WAKES 

Coeff. 

Investigator Ref. Year 
Dla. 
(in.) 

Ul 
(ft/sec) 

Reynolds No. 
-4 U.D/v xlO 

Drag Momentum 
*D     Check, 

(Meas.)  Percent8 _Ty£e_ 

Cooper and    56 
Lutzky 

Carmody 

Chevray       58 

Gibson, 
Chen, and Lin 59 

1955 

57  1964 

0.2 35-140 0.362-1.485 
0.2b 80-140 0.85 -1.485 
0.2*> 80-140 0.85 -1.485 
0.2b 80-140 0.85 -1.485 
0.2b 80-140 0.85 -1.485 

2.0 75 7.0 
6.0 25 7.0 
0.9 75 3.2 

1968  10.0 90 

1968   1.5   0.13-13.1 

275.0 

0.10-10 

1.40 

1.14 

0.06 

10 

13c 

10 

Disk 
Square 
£/D= 3 
£/D= 5 
£/D=10 

Disk 

Aerodynamic 
Body, £/D=6 

Sphere 

Maximum deviation from average. 

Width. 

'At x/D = 2. 

For x/D > 6. 

D 
n 
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is the distance front the physical origin of the wake to the 

virtual origin, and b is a characteristic body dimension. 

Figure 3.34 shows that self-preservation is not 

achieved by the wake data of Cooper and Lutzky [56] at least 

up to x/b = 381, and only marginally, if at all, by 

x/b =681.  In this particular case the wake was produced by 

a square disk, and b is the length of an edge of the disk. 

It should however be noted that considerable error is likely 

to be inherent in obtaining the data shown in Figure 3.34 

from the data of Reference [56] , so that firm conclusions 

regarding the onset of self-preservation for this data 

cannot be drawn. 

Self-preservation also requires that (U - U_)/U 

-2/3 be proportional to (x/d)  '  ([3], Appendix C). -Figure 3.35 

compares the centerline velocity decay data for three of the 

experiments considered, with a line representing an 

(x/d)- '  decay.  The data can be seen to approach such a 

decay, with the approximation becoming considerably better 

as x/D increases.  The deviation of the data of Chevray [58] 

from the majority of the other data may represent the same 

sort of Reynolds number shift as observed in other con- 

figurations; however, the situation is somewhat clouded by 

the differences in the type of bodies used to generate the 

wake. 

Both Carmody [57] and Cooper and Lutzky [56] used 

bluff bodies, thin in the dimension parallel to the flow, to 
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generate their wakes, while Chevray [58] used an aerodynamic 

body.  Thus, there are fundamental differences in the manner 

in which the wake is formed.  In the case of a bluff body, 

the wake is generated from the vortices which emerge from 

the edge of the disk; initial boundary layers are negligible. 

On the other hand the wake of a symmetric body of revolution 

such as Chevray's is formed from the large turbulent, 

viscous region created by the separation of the boundary 

layer from the surface of the body of revolution.  In 

Chevray's case this separation always occurred upstream of 

the end of the body.  Hence the basic mechanism for the 

formation of the wake is different in the two cases.  If the 

same sort of effect of initial conditions observed for other 

configurations is to be expected in this case, then a shift 

of the decay curves such as observed in Figure 3.35 may be 

due primarily to the change in wake formation mechanism. 

Carmody [57], Chevray [58], and Gibson, et al., 

[59] all investigated in some detail the turbulence 

structure of the axisymmetric wake.  The last mentioned 

investigation was primarily aimed at measurement of the 

dissipation rate of turbulent kinetic energy by viscosity, 

and of "thermal variance by conduction." To this end 

measurements were made in the middle region of the wake of a 

sphere in a water tunnel.  Both dissipation rates were found 
-2 4 

to decrease with streamwise distance approximately as x 
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for up to 60 diameters.  No details of the turbulence 

structure other than these measurements of kinetic energy 

dissipation rate were presented. 

Both Carmody [57] and Chevray [58] made detailed 

measurements of turbulent intensity and turbulent shear 

stress in the early region of the wake, in the former case 

the wake of a bluff disk and in the latter of a body of 

revolution.  Carmody found that his mean flow profiles 

became geometrically similar at x/D = 20 while Chevray's 

became geometrically similar much earlier, at x/D = 10. 

Both Carmody and Chevray noted discrepancies between their 

hot-wire turbulent Shear measurements and those obtainable 

from integration of the mean velocity profiles; neither 

reported the lower frequency limit of their hot-wire 

equipment. 

The ratio of turbulent shear stress to turbulent 

kinetic energy for both of these wakes agrees well with the 

linear relationship, as for other flows:  Figure 3.36. 

Figure 3.37 depicts the evolution of the lateral profiles of 

the parameter a, in the middle region of Carmody's axisym- 

metric wake; the early region is not included because of the 

recirculating flows and complex velocity field involved. 

However, the velocity fields involved in Chevray's experi- 

ments were somewhat less complex and the evolution of the 

parameter a, is shown in Figures 3.38 and 3.39 from an axial 

position upstream of the end of the wake-producing body to a 
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Figure 3.37. Evolution of the parameter a^ in the middle 
region of the axisymmetric wake of a disk. Data from 
Carmody [57]. 
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position well downstream of the body. As observed in the 

two-dimensional wake, the parameter a, evolves rapidly from 

values and profiles characteristic of the separating 

boundary layer on the body to profiles characteristic of a 

free shear layer. Especially interesting is the extreme 

peak of the parameter a^ at x/D = 0, resulting from very 

high turbulent shear stresses near the centerline; it is 

apparently this sudden jump in turbulent shear stress level 

that is responsible for the initial very rapid changes in 

mean flow velocity.  Also of interest is the fact, observed 

here as in the two-dimensional wake [52] that the peak value 

of a, decreases from x/D = 0 to x/D = 1.0.and then increases 

to x/D = 12; it decreases again for the axisymmetric wake at 

x/D = 18.  This last profile is generally similar to pro- 

files measured by Carmody [57] at x/D = 6 and x/D = 9. 

One further experiment of interest which is not 

included here because of its specialized nature is the 

axisymmetric wake investigated by Naudascher [61].  By 

flowing a jet through the center of a wake-producing disk 

and carefully balancing the momentum flux, Naudascher was 

able to approximate the wake of a self-propelled body.  This 

was done in order to generate a shear field that changes 

into a shear-free field, in order that the approximations 

used in isotropic turbulence can be expected to hold.  How- 

ever, the interest in the present work is primarily in 
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relatively strong-shear fields, so the wake of a self- 

propelled body will not be pursued further. 

Two-Stream Two-Dimensional Mixing Layers 

The single stream two-dimensional layer, as 

described in Chapter 2, is formed when a two-dimensional 

stream mixes with a fluid at rest.  The two-stream two- 

dimensional layer, on the other hand, forms between two 

streams when they merge after an initial separation.  When 

the two streams are at the same velocity, the resulting 

mixing layer is a two-dimensional wake, such as those 

investigated by Chevray and Kovasznay [52] and by Lee [51]. 

When the two streams are of different velocities, the result 

is a two-dimensional two-stream mixing layer.  As in the 

case of the two-dimensional two-stream jet, the primary 

reason for investigating this particular flow is that the 

existence of a finite level of mean velocity everywhere in 

the flow makes hot-wire measurements of turbulent fluctua- 

tions easier. 

The two-stream two-dimensional mixing layer was 

investigated by Lee [51] and Watt [62].  Both investigators 

measured the turbulence intensities and turbulent shear 

stresses; in addition. Watt [62] measured the various terms 

of the turbulent energy equation. Lee's measurements were 

made in the initial region of the formation of a mixing 

layer from the boundary layers on the sides of the divider. 

Figure 3.40 shows the development of the mean velocity 
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profile from one characteristic of that created by the 

merging of two boundary layers to one characteristic of a 

turbulent two-stream two-dimensional mixing layer. Watt 

[62] on the other hand made his measurements in the fully- 

developed region.  His Reynolds number (based on axial 

distance x and the velocity of the high-speed stream) ranged 

from 5.6 x 10  to 1.73 x 10 , while Lee's ranged to 

1.6 x 10 .  Watt shows that his velocity profiles exhibit 

geometric similarity for Re > 5.6 x 10 , which agrees with 

the observations made by Leipmann and Laufer [17] in a 

single-stream two-dimensional mixing layer.  Lee's measure- 

ments, on the other hand, do not exhibit geometric 

similarity, even for Re = 1.6 x 10 as is shown by Figure 

3.41, despite the great difference in velocity between the 

two streams.  This deviation from geometric similarity may 

be caused by the rather large initial boundary layers 

obtained by Lee, as well as by the initial angularity of the 

flow—the streams are separated by a 10 degree included 

angle wedge.  Because of this angularity, it is also 

possible that the initial region of this flow is not at 

constant pressure.  Figures 3.42 and 3.43 indicate that in 

Watt's experiment, both the turbulent kinetic energy and the 

turbulent shear stress are geometrically similar to a 

reasonable degree. 

The linear relationship between the turbulent 

shear stress and the turbulent kinetic energy observed in 
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many other flows is also found satisfactory for this type of 

mixing layer.  Figure 3.44 includes both Lee's [51] and 

Watt's [62] data; the relationship can be seen to hold both 

in the initial region and in the region of geometric 

similarity.  For these calculations it was assumed for Lee's 

data that w' = v', as w' was not measured by Lee; this 

assumption was also made for Watt's data at x = 44 inches. 

The lateral variation of the parameter a, for the 

two-stream two-dimensional mixing layer in the fully- 

developed regime is quite similar to that observed for the 

single-stream two-dimensional mixing layer in the fully- 

developed regime, as Figure 3.45 demonstrates.  In the 

initial region the lateral behavior of a, shows considerable 

scatter, as seen in Figure 3.46.  However, a trend toward a 

development from a boundary layer profile such as was found 

by Chevray and Kovasznay [52] can be discerned on Figure 

3.45, with a little imagination.  Comparison of Figure 3.46 

with Figure 3.33, page 163, is helpful in this regard. 

Summary 

In the two-dimensional, two-stream jet, self- 

preservation can exist only in an approximate sense ([3], 

Appendix C) for U /U. << 1.0.  If self-preservation exists, 

the velocity, turbulent intensity, and turbulent shear 

stress profiles will be functions only of the parameter 

y/b(x), b(x) will vary as (x/h) , and (U = U MU. - U ) will c    o        o 
-1/2 vary as (x/h)  ' . For flows that satisfy the condition 
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that U/U. << 1.0, self-preservation is achieved for 

x/h > 30 [37].  But even for flows that do not satisfy this 

condition, the axial variation of the centerline velocity 

-1/2 appears to decay as (x/h)  '  [36, 37] as shown on Figure 

3.4, page 110.  For x/h > 15, geometric similarity of 

velocity profiles appears to be achieved [36], where for 

geometric similarity (U - UQ)/(U " ü ) = f (y/bi/o)»^1/2 """s 

the value of y for which U = U + (U - U )/2.  This is ■" o    c   o 

shown by Figure 3.6, page 113.  Figure 3.4 also demonstrates 

that the length of the velocity potential core increases as 

the ratio U /U. increases towards unity.  There is not 
03 ■* 

sufficient data available to evaluate any Reynolds number 

shift in these decay curves that may exist. 

For two-dimensional two-stream jets, Bradbury [39] 

gives the semi-empirical relations (based on similarity con- 

siderations and conservation of momentum) 

U„ - U        r-r-        -1/2 

^ . 0.109 x   + _±i55^f^]-
1 

h E /X(X-l) Vh 

where 

x = u./u0 

The expression for centerline velocity decay gives fairly 
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good results for X > 2 and x/h > 10, and improves for 

Increasing X. As with all relations based on similarity 

considerations, these should be used with caution. 

Self-preservation for coaxial mixing, as for two- 

dimensional two-stream mixing, only exists in an approximate 

sense for U /U. << 1 ([3], Appendix C); for this case self- 

preservation involves profiles which are functions only of 

r/x and axial decays (U - U)/(U. - U_) proportional to 
C     O     j     o 

(x/D)~ .  Geometric similarity involves velocity profiles 

that are functions only of r/r. ,~   , where r, ,~ Is the value 

of r for which U = U+ (U - U 1/2.  Figure 3.12, page 124, 

indicates that geometric similarity exists when Figure 3.13, 

page 125, shows true self-preservation does not.  However, 

as Figure 3.14, page 129, shows, axial decays approximately 

proportional to (x/D)   are commonly achieved.  Also from 

Figure 3.14 it can be seen that as for the two-dimensional 

two-stream jet, the coaxial jet shows an increase in the 

length of the potential core with increase of the velocity 

ratio U /U. toward 1.0.  Unlike the two-dimensional two- 
o 3 

stream jet, there is evidence for a shift in the position of 

the axial decay of centerline velocity curves with jet 

Reynolds number for this configuration.  Part of this 

evidence comes from a comparison of the results of Forstall 

[40] and of Landis and Shapiro [43], shown on Figure 3.15, 

page 130.  This figure indicates a definite increase in 

potential core length with primary jet Reynolds number for 
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jets with the same primary-to-secondary velocity ratio. 

Additional evidence for the effects of initial conditions is 

presented by the centerline composition results of Fejer, 

et al., [45] at a velocity ratio U /U. of 1.0: Figure 3.18, 

page 136. Unfortunately the trend of these data runs 

counter to the trend exhibited by the comparison of Figure 

3.16, page 132. The reason for this anomaly is not known; 

there may have been effects of laminar to turbulent transi- 

tion involved. 

As for the two-dimensional case, Bradbury [39] has 

obtained algebraic relations for velocity decay and width 

increase for coaxial jets. Again, these are limited to 

large values of X and x/D > 10; they are 

u_ - u      rr   .. -i 
u^Tr=6-82"V^<§» 

-±ß- = 0.089 £ [1 +  °'27  £] D D     •X(X-l) D 

-1/2 

Turbulence results for both the two-dimensional 

two-stream jet [37] and coaxial jets [44, 35] indicate 

average values of the parameter a, for all cases of about 

0.30. Other experimental results for the diffusion of trace 

gases [40, 41], and temperature [42, 43] in essentially 

constant density coaxial flows indicate Schmidt numbers of 

approximately 0.7 and Prandtl numbers ranging from 0.5 [43] 
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to 0.7 [42].  It should be noted that spatial distributions 

of the turbulent Prandtl number are presented by Paulk [42]; 

such distributions are not available in the other works. 

There are two possible experimental methods of 

developing two-dimensional wakes in the laboratory—either 

through the use of a cylindrical obstacle [50] or an aero- 

dynamic body [51, 52],  In the latter case, both a flat- 

plate [52] and a wedge-shaped body [51] have been used. 

Both of these experiments show finite levels of velocity on 

the centerline as near as can be measured to the edge of the 

wake-producing body, indicating an extremely rapid energiza- 

tion of the boundary layer on the edges of the body. 

Calculations of the parameter a, for these data indicate an 

average value of 0.3 in the early region of the wake [51, 

52] rising to 0.4 in the self-preserving region [50].  Self- 

preservation is shown in [50] to occur for x/D > 500.  The 

initial region is of course not self-preserving.  Detailed 

measurements of shear stress and kinetic energy show a 

fairly rapid change from profiles of the parameter a. 

characteristic of a boundary layer, where a. is about 

constant [55], to profiles characteristic of free mixing 

layers (Figure 3.33, page 163). 

Axisymmetric wakes may also be formed in two 

ways—either by a disk-shaped obstacle [56, 57] or by an 

axisymmetric aerodynamic body [58].  The different 

approaches lead to different initial conditions for the two 
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types of flow, as in the latter case thick boundary layers 

may be built up, and the wake develops from the separation 

of these boundary layers from the body. Again self- 

preservation can exist only in an approximate sense ([3], 

Appendix C). For the axisymmetric wake the data [56] do not 

indicate that a self-preserving state has been reached prior 

to x/D = 600, but this value may be in doubt. Self- 

preservation leads to an axial decay of centerline velocity 

ratio (U - U )/U proportional to (x/D)~2/; Figure 3.35, 

page 168, indicates that beyond x/D = 10 such a decay curve 

is followed fairly well.  Both the wakes of a disk [57] and 

of an aerodynamic body [58] produce values of the parameter 

a, of about 0.3.  The rapid increase in the value of a, near 

the trailing edge of an aerodynamic body as measured by 

Chevray [58], Figure 3.38, page 173, is noteworthy. 

For the two-stream mixing layer, Watt [62] finds 

that self-preserving velocity profiles are attained at 
5 

Re = 5.6 x 10 , which agrees well with the single stream 

value of Re = 3.7 x 10 shown by Liepmann and Laufer [17] 

for the achievement of self-preservation.  Self-preservation 

is not achieved in the experiments of Lee [52];  probably 

because of initial condition effects. Again 0.3 appears to 

be a good value for the parameter a,. 

Table 3.1, page 109, lists the two-stream, two- 

dimensional constant-density flows considered in this 

Chapter. All of these flows are in satisfactory agreement 
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with the momentum flux criterion. The range of parameter 

values (U /U. , Re. ) considered is quite limited, but the 

coverage is probably adequate considering the somewhat 

academic nature of the flow. Of the three experiments 

listed, Weinstein, Osterle, and Forstall [36] is restricted 

to mean-flow measurements, while Bradbury [37] and Bradbury 

and Riley [38] include turbulent structure measurements. 

The latter work is presented only in similarity variables; 

however, the mean-flow data of [39] appear to be from the 

same experiments. 

Coaxial mixing of constant-density streams is one 

of the more important free-mixing phenomena. Table 3.2, 

page 126, shows that the experimental coverage of this 

phenomena is fairly broad, with velocity ratios U /U. 

ranging from 0.125 to 39.5 and Reynolds numbers (of the 

2 5 primary jet) ranging from 6.9 x 10 to 2.12 x 10 .  Of the 

data listed, that of Paulk [42] is the only set in which the 

outer stream was not ducted, although the ducts used by 

Fejer, et al., [45] and Zawacki and Weinstein [35] appear to 

be large enough not to affect the flow.  The same cannot be 

said of the work of Forstall [40, 41] particularly at the 

higher values of U/U..  Here the effect of the walls 

appears to have shown up in the momentum integral for the 

U /U. =0.5 case. 

Initial velocity profiles are presented only by 

Forstall [40, not 41] and Zawacki and Weinstein [35].  Shear 
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stress profiles are presented by Curtet and Ricou [44], 

Zawacki and Weinstein [35] (both obtained from hot-wire, 

measurements), and by Paulk [42], obtained from integration 

of the mean flow profiles.  Fejer, et al., [45] also present 

radial profiles of the eddy viscosity for 1 <_ x/D ^15, for 

velocity ratio U /U. = 0.25; in the range 2 <_ x/D <_ 15 for 

ü /U. = 0.33, and in the range 2 <_  x/D <^ 24.5 for 

ü /U. = 0.20.  However, they do not report corresponding 

velocity profiles.  The Zawacki and Weinstein data were 

obtained at very high values of the ratio U_/U. , with 

center jets that were, in all but the U /U. = 3.4 case, 

laminar, and these data suffer from effects introduced by 

the recirculation phenomena that have been shown to exist 

[47] in these flows.  Further, the Curtet and Ricou data 

[44] were obtained in a duct with a measurable axial pres- 

sure gradient.  Since free mixing analyses generally take 

the axial pressure gradient to be zero, they cannot be used 

for direct comparison with these data. 

Because of the importance of the coaxial jet 

configuration, some data for this configuration should be 

selected for comparison with theoretical predictions. 

Because the initial profiles are reported in Forstall1s 

thesis [40], the U /U. = 0.20 and U /U. = 0.25 cases from 

these data will be used.  For comparison with theoretical 

approaches which need initial shear stress profiles, the 

data of Paulk [42] will be used. This situation is clearly 
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not very satisfactory, as only a relatively small range of 

U /U. can be investigated (0.2 to 0.477).  Some higher 

velocity ratio data has been obtained by Paulk [42] and 

Fejer, et al., [45]; however, further experimental work is 

clearly needed for jets with velocity ratios in the range 

0.5 to 1.0.  But it is in this region that the effects of 

the initial condition for such flows be carefully measured 

and carefully documented.  This indeed is true for any free- 

mixing experiment. All theoretical treatments depend to 

some extent on the initial conditions that are assumed, and 

it is to be expected that the better theories will demand 

more detail in the initial conditions.  The detail now 

available is at best fragmentary, and at worst nonexistent. 

A clear need for more experimental research exists in this 

area. 

Although there are not many experiments on two- 

dimensional wakes, as Table 3.3, page 151, shows, those that 

exist are very detailed and provide a wealth of information 

about the flow.  The experiments of Townsend [5, 50] are 

well known, and those of Lee [51] and Chevray and Kovasznay 

[52] provide needed detail on the initial development. 

Because the initial development of a wake-flow from the 

turbulent boundary layer flow is a technically interesting 

flow, which is also of great value to the understanding of 

turbulent free-mixing layers, the data of Chevray and 
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Kovasznay [52] has been selected for use in comparison with 

theoretical predictions. 

The development of an axisymmetric wake is also of 

great technical interest. Although there are a number of 

experiments available for the incompressible axisymmetric 

wake, the majority of them either concern wakes of disks 

[56, 57] or do not contain sufficient information for com- 

parison with calculations [59]. The wake of a disk in 

general includes a large recirculation region immediately 

behind the disk, which is not easily amenable to analysis. 

However, the wake of the aerodynamic body investigated by 

Chevray [58] includes only a small recirculation region, 

which may be (to a first approximation) ignored.  Thus, this 

experiment also has been selected for comparison with 

theoretical predictions. 

194 



AEDC-TR-71-36 

CHAPTER 4 

VARIABLE-DENSITY SINGLE-STREAM FLOWS: 

EXPERIMENTAL DATA 

Flows with density variations are probably more 

common in practical engineering applications than the 

constant density flows considered in the previous two 

Chapters.  The density variations involved may be produced 

by virtue of compressibility effects, if the flow velocity 

(and Mach number) are sufficiently high, or they may be 

produced in low-speed flows by variations in temperature 

between a flow and its surroundings, or by the use of 

different gases.  In the most complex cases, compressibility, 

temperature, and concentration effects may combine. 

Because of the variation in density, the vast 

majority of experiments in this area involve only mean-flow 

measurements.  The heat transfer rate from a hot-wire 

depends not only on its temperature, but also on the thermo- 

dynamic properties of the gas.  If the gas composition (for 

two gases), temperature (for a heated single gas system) , or 

density (in a compressible flow, as well as in the preceding 

two cases) has a fluctuating component, the interpretation 

of the results of a hot-wire measurement in terms of the 

fluctuating velocity components becomes exceedingly 

difficult.  Those measurements which have been made, such as 
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in a two-gas system by Zawacki and Weinstein [35] and in a 

heated single-gas system by Corrsin and Uberoi [25] have 

been of the simplest components of turbulence, such as the 

axial fluctuation u' and the temperature-velocity correla- 

tion ÜTT. 

Even mean-flow measurements are more complicated 

in a variable-density flow; measurements of additional 

quantities, such as the gas composition and temperature, 

need to be made, and corrections applied, such as those for 

the pitot pressure in a supersonic flow. For this reason 

the range of parameters to be determined in a given experi- 

ment is greater,, which leads to increased complication in 

evaluation of the experiment and comparison of it with other 

experiments. 

The Compressible Circular Jet 

One of the simplest of the variable density flows 

to achieve experimentally, the supersonic jet into quiescent 

surroundings, has been the most exhaustively studied.  Even 

so, the state of knowledge about this flow does not compare 

with that for the constant-density jet into still 

surroundings.  Both two-dimensional and circular supersonic 

jet experiments exist, but the two-dimensional jets [63, 64] 

are of such low aspect ratio as to be more likely three- 

dimensional in character than two-dimensional.  Thus, 

primary attention will be paid to the circular supersonic 

jet. A schematic of the circular supersonic jet is shown in 
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Figure 4.1. As in the constant density jet, the mixing can 

be divided into two distinct regions, one in which the 

turbulent mixing layer is expanding into both the quiescent 

surroundings and the essentially nonturbulent potential core 

of the jet, called regime I, and the other in which turbu- 

lent mixing extends from the outer edge of the jet to its 

centerline, called regime II. Providing that the potential 

core of the jet is shock-free, the length of the potential 

core, x    , will be greater in a supersonic jet than in a 

low-speed jet of the same gas; a linear increase in 

potential core length with Mach number has been often 

observed, e.g., Broer and Rietdijk [65] and Anderson and 

Johns [66]. 

To obtain a disturbance-free, uniform, parallel 

flow at the jet exit, the nozzle must be properly designed 

and operated fully-expanded, i.e., so that Pe = Pa on 

Figure 4.1.  The only jets to be considered here are those 

that are fully expanded and shock-free.  The effects on the 

mixing phenomena of the wave phenomena that occur in 

improperly expanded nozzles are not clear.  Two investiga- 

tions have looked at this problem in detail.  In one, 

Donaldson and Gray [67] , neither over- or under-expansion 

was found to have a "first-order" effect on the mixing 

phenomena.  Johannesen [68] on the other hand, experimenting 

with nozzles having fairly strong shock waves in the core of 

the jet found that jets with a given exit Mach number and 
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strong shocks spread very much more rapidly than jets with 

the same exit Mach number and no shocks. The jet with 

strong shocks was also unsteady; Donaldson and Gray note 

that their conclusion applies only when the shock structure 

"does not flap." 

Table 4.1 presents the important parameters for 

the single-jet flows considered in this section. As 

mentioned above, both Gooderum, Wood, and Brevoort [63] and 

Bershader and Pai [64] performed experiments on flows which 

probably suffer from three-dimensional effects.  Gooderum, 

et al., reported geometric similarity (based on a local 

width scale) for their velocity profiles. The Bershader and 

Pai data [64] in addition to being probably three- 

dimensional, suffers somewhat from extreme nondimensionali- • 

zation:  the data presented are shifted both axially (by use 

of a virtual origin) and laterally, and are further multi- 

plied by a scale factor. 

Warren's work [70] represents an extensive 

investigation of the supersonic jet, at four Mach numbers 

and three ratios (for the subsonic Mach numbers) of jet 

total (or stagnation) temperature to ambient temperature, 

T_ /T  (see Figure 4.1). The portions of Warren's work 
°j a 

considered in this section involve jets for which 

T /T = 1; those for T /T ^ 1 will be considered in the o.  a o. a 

following section. 
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TABLE 4.1 

COMPRESSIBLE JET INTO QUIESCENT AIR o 
o 

o 
o 

Investigator Ref. Year Type M_, 
D.     ReD 
(in.)  xl0"5a 

Momentum 
Check, 

Largest  Percent 
x/D of Avg. 

Gooderum, 
Wood,and 
Brevoort 

Bershader 
and Pai 

Warren 

Pitkin and 
Glassman 

Broer and 
Rietdijk 

Johnnesen 

Eggers 

63 

64 

70 

71 

65 

68 
69 

72 

1949 2D 1.6 3x3 — 2 

1950 2D 1.7 0.394 
xO.788 

~ 

1957 Circ. 0.69 
0.97 
1.51 
2.60 

2.554 
2.554 
2.526 
2.554 

16\3 
23.5 
41.5 
90.5 

25 
30 

20 

1958 Circ. 2.60 M _ 20 

1960  Circ.  1.74   0.704  13.2   25 

1962  Circ.  1.40   0.75   10.7   93.5 

1966  Circ.  2.22 1.007  26.5 75 

4 
4 

30 

4* 

Range of 
Momentum 

Check 

4<x/D<15 
4<x/D<20 
~ b~ 

10<x/D<20 

x/D=21.4c 

x/D<53.5 

x/D<45 

« 

Reynolds number estimated assuming T0. 

«o velocity profiles presented. 

d 

'Jet shows marked change in decay at x/D 

Author's measurement. 

= T, = 530°R if not specified. 
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Jets with T /T = 1, as all of those in this o.  a 
3 

section, are commonly considered to be isoenergetic, i.e., 

T = T  everywhere in the flow.  This assumption is made by 
j 

Warren [70], Pitkin and Glassman [71], Johannesen [68, 69], 

and Eggers [72] ; however, it has been questioned by Broer 

and Rietdijk [65] who measured a five percent axial , 

variation in T in their experiment on a M = 1.74 jet.  The 

error that a five percent deviation of total temperature 

introduces in a velocity calculation is easily estimated. 

For a perfect gas 

u = /ygR v"r M (4.1) 

where 

^=  Y-l 2 1/2 <4*2) 

so that 

U = ln(/ygR) + ln{ -jL    ,,)   + 
[1 + I^M^]1/^ 

+ | ln-To (4.3) 

from which the error in the determination of ü is obtained 

by standard techniques (assuming that Yf 9» and R are known 

exactly) 
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M At 
AU tl + *jV)1/2 1  ATQ       &f(M) AT0 

U     " M ^ To     "  ~TmT       2  To 
(1+ 1^,1/2 

Assuming for the purposes of this discussion that the Mach 

number is known exactly,  Af(M)   =  0 and 

AT 
M=il£ (4  5) 
U 2   T l   *   ' o 

so that a five percent error in T leads to a 2.5 percent 

error in the determination of U.  Thus taking the total 

temperature to be a constant would appear to introduce only 

a small error in the calculation of velocity. 

All of the investigators in this section assume 

that the static pressure is constant and equal to the 

ambient pressure throughout the flow field. The static 

pressure field was measured by Warren [70, 73], who found 

that the static pressure is not constant either axially or 

laterally.  The variation in static pressure appears to 

increase with jet Mach number; at M = 2.6 the variation 

along the jet axis is four percent, with a ten percent 

lateral variation at x/D = 15.  One can here perform an 

exercise, similar to that performed above to investigate the 

effect of total temperature variation, to investigate the 

effect of static pressure variation on the determination of 

Mach number.  Then, starting with 
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Hi 
_° = (1 + I^M2) Y (4.6) 

one gets, assuming that P is accurate 

A[1 + ^   l^AP 
1 ; iziw2  " Y P 

(4.7) 

which leads to 

(Y-DMAM = i^l(l + IZ1M2)|P (4.8) 

or 

1 + ^2 Ap 

'M '      YM
2    P 

(4.9) 

Warren [70, 73] indicates that AP/P = 0.10 at x/D = 15. 

From Reference [70], at x/D = 15, M = 2.3 and 
C 

|A£| = 0.28 1?-= 0.028 

indicating a three percent error in Mach number due to the 

static pressure variation.  Warren [70, page 59] concluded 

that the static pressure variations 

. . . although they provide information concerning 
the jet structure, do not have a large effect upon 
the velocity calculations. . . . Therefore, for 
calculation of the jet velocity characteristics. 
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the static pressure was assumed to be constant in 
the subsonic cases.  In the M^ = 2.60 series, the 
static pressure variations were included for 
velocity calculations. 

Since all other jets considered were at Mach numbers less 

than 2.60, the assumption of constant pressure commonly used 

by the other investigators is probably justified. 

The question of a turbulence correction to the 

total and static pressure measurements used in these experi- 

ments is considered by both Warren [70] and Johannesen [69]. 

As for the constant-density jet discussed in Chapter 2, the 

approach to making the correction is unclear; in the 

variable-density case it is complicated further by density 

fluctuation effects.  Thus, no corrections have been applied 

to any of the measurements considered. 

The turbulent Prandtl number is evaluated for this 

configuration by Broer and Rietdijk [65] who report 

Pr. = 0.7.  Warren [70] concludes that the turbulent Prandtl 

number is not unity, but his method of evaluation of the 

turbulent Prandtl number is such that he is unable to 

establish a meaningful numerical value for it.  In con- 

sidering the work of Broer and Rietdijk, it should be noted 

that the momentum integral for this work could only be 

evaluated at x/D > 20, a region where the axial decay curve 

begins to deviate strongly from the slope established 

upstream.  Thus the value listed for the deviation of the 

momentum integral from a constant value for this data is 

probably worse than the actual overall deviation. 
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A note should be added regarding the evaluation of 

the momentum integral. The requirement is, from Appendix A, 

that 

/ 
2 

pU rdr = constant (4.10) 

2 
Except for Eggers [72] who presented profiles of pU , this 

was evaluated through use of the perfect gas law, P = pRT, 

thus: 

PU2 = |^U2 = >gPa JL_ = YgPaM2 

where P has been taken as constant and equal to P .  Thus, 
cl 

.the conservation of momentum requirement for this flow 

becomes 

2 .' M rdr = constant (4.11) 
o 

The Mach number was evaluated from the velocity profiles 

available assuming constant total temperature:  thus for the 

centerline Mach number 

M c 

U c 

49 M/T" c 

T c = 

T 
O c 

1 Y-l„2 
2    c 

(4.12) 

(4.13) 
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so that 

uc 
Mc =  2  v-1 2 1/2 f4'14' C   [149.1) T  - 2_-iu 1 o   2  c 

and similarly at any axial station 

U/U 
M = 7l lEITi ,u  ,2nl/2 <4'15> 

{-2 I" -2"[1 " (—) ]} 
M c c 

Figure 4.2 shows a comparison of the centerline 

axial velocity decay curves for the compressible flow 

experiments of Warren [70] and two of the jets measured by 

Alexander, et al.f [27]-  Over the relatively short axial 

distances involved, Warren's data can be seen to follow the 

U /U. « (x/D)" decay rate established for the incom- 

pressible jet relatively well.  The length of the potential 

core, as defined by the intercept of the «x/D)~  line 

characteristic of a given set of. data and the line 

U/U, = 1.0, can be seen to increase with Mach number»  If c 3 

these core lengths, as well as those from other experiments 

at different ]et Mach numbers are plotted, as in Figure 4.3, 

they can be seen to group along two lines with the break 

between groups occurring at about M. = 1.0. 

Figure 4.4 shows the axial decay of centerline 

velocity for several experiments with Mach numbers ranging 

from 1.40 to 2.60. As was discussed above, calculations of 
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Figure 4.3.  Variation of core length with Mach number, 
compressible jet-into-still-air. 
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the momentum integral for the data of Broer and Rietdijk 

[651 indicate that its value deviates quite strongly from a 

constant value for x/D > 20; this behavior is borne out by 

the strong deviation from the upstream decay behavior shown 

on Figure 4.4 for x/D > 20.  On the other hand, 

Johannesen's data [69] follows a straight line decay (on a 

log-log plot) quite well, except for very large x/D. 

The behavior of Egger's data [72] is somewhat 

different.  As can be seen from Figure 4.4, the data cannot 

be fit by a line segment-of the form U /U. « (x/D)  , c  D 
although each segment of the data can be, the line segments 

used being different for each data segment.  Reference to 

Table 4.1, page 198, shows that Egger's data satisfies the 

momentum integral criterion to about the same degree as does 

Johannesen's, for about the same axial distance.  Two 

reasons for the decay behavior of Egger's data are possible— 

either the data should be fit by an x  line, which would 

indicate an origin shift between each set of data, or the 

data should not be fit by an x  line, but by a line having 

a different slope.  The first possibility seems unlikely for 

two reasons—first the relatively good agreement with the 

momentum integral requirement, and secondly, by the fact that 

with a supersonic nozzle flow such as this, the only 

parameter that can conceivably change between runs is the 

jet total temperature.  Increase of the jet total tempera- 

ture to ambient air temperature ratio could cause a shift in 
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the decay curves, at least for subsonic flow, as will be 

seen in the following section, but whether the same effect 

occurs to the same extent in a supersonic flow has not been 

determined.  Eggers [72] does not report whether or not all 

the data were taken in a single test, so the question of 

whether or not a change occurred in jet stagnation condi- 

tions, and the effect this might have had on the velocity 

decay curves cannot be answered. 

The U /U, * (x/D)   curve is found universally in 

the constant density low speed jet. When coupled with a 

spreading rate proportional to x/D, and velocity profiles 

which are functions of the parameter r/x, this indicates, 

for the axisymmetric ;jet, that self-preservation has been 

achieved.  Because of the effect of density gradients, it is 

not possible to define self-preservation in a compressible 

jet in the same manner.  One might expect an approach to 

self-preserving behavior far enough downstream, as the 

centerline Mach number approaches zero.  But from 

Johannesen's observations [69] 

. . . the results presented in the present paper 
suggest that full self-preservation may never in 
practice be reached at measurable velocities. 
Put another way, it may not be reached until the 
velocities are so low that they are of the same 
order as the random velocity fluctuations in the 
"still" air into which the jet is issuing. 

In the incompressible jet, axial velocity decays inversely 

proportional to x/D are obtained, as well as geometric 

similarity of the profiles, before true self-preservation is 
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reached.  As can be seen from Figure 4.5, geometric 

similarity is adequately obtained for the compressible jet 

into still air, with velocity profiles well fit by an 

equation of the form 

U r  2 

£- = exp [-0.6932 (~r—)   ] (4.16) 
c rl/2 

However, the fairly limited information available suggests 

that for Mach numbers greater than about two, axial velocity 

decays inversely proportional to x/D should not be expected, 

and that any eventual transition to behavior such as found 

for the constant density jet-into-still-air may occur so far 

downstream as to be not in practice measurable. 

Circular Jets with Density Differences Caused by Temperature 

and Composition Differences 

The jets to be considered in this section are 

generally low speed flows, but with significant density 

differences caused by heating the jet or by using a jet of a 

different gas from that of the surroundings.  There are 

numerous practical applications of such jets, one of the 

more interesting being the orchard heater as discussed by 

Cleeves and Boelter [75]. 

Table 4.2 lists the important parameters for the 

experiments considered in this section. As mentioned above, 

the experiments of Cleeves and Boelter [75] were designed to 

investigate the flow field of a configuration representing an 
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Figure 4.5.  Similarity plot, jet-into-still-air 
(T0./Ta = 1.0) and comparison with commonly used 
profiles. 
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TABLE 4.2 

CIRCULAR JETS INTO QUIESCENT AIR WITH TEMPERATURE 
OR CONCENTRATION DIFFERENCES 

> 
m 
o 
o 
H 
30 

to 

Investigator Ref. Year 

ü*a (Mj)3 Jet 
Gas 

To./Ta 
(Ho/V Largest 

x/D 

Momentum Check 
Percent of 
Average 

Cleeves and 
Boelter 

75 1947 21.6 
21.6 

Air 
Air 

1.0 
3.09 

41.0 
15.2 

Keagy and 
Weiler 

76 1949 400 
400 
400 

He 
N2 
co2 

™ 48 * 
48 
48 

+60,-38,16<x/D<48 
7,8<x/D<42 

10f8<x/D£43 

Corrsin and 
Uberoi 

25 1950 65-115 Air 1.47 
1.91 

27 
24 

- 

Warren 70 1957 (0.69) 
(0.68) 
(0.967) 
(0.97) 

Air 
Air 
Air 
Air 

1.242 
1.429 
1.240 
1.428 

25 
20 
20 
25 

Not Calculated 
Not Calculated 
Not Calculated 
Not Calculated 

Donaldson 
and Gray 

67 1966 (0.75) Methane 

co2 

(1.702) 
(0.871) 
(0.699) 

17 
34 
31 

- 

O'Connor, 
Comfort, 
and Cass 

77 1966 (0.782) »2 
(8% dissoc.) 

19.45 21 10b 

u 
en 

aft/sec. 

Author's measurement. 
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orchard heater, so that very high temperature ratios and low 

jet velocities were used, giving rise to significant 

buoyancy effects. 

Keagy and Weiler [76] on the other hand investi- 

gated the effects of density gradients on free mixing of 

single jets with quiescent surroundings, and chose a jet 

velocity such as to minimize the buoyancy effects.  In their 

analysis they give the integral momentum equation including 

the buoyancy term as (the jet issues vertically; x is 

measured axially) 

J  PU
2rdr = g J    J (p -p)rdrdx + constant   (4.17) 

o o o 

where 

P = P0 + (Pj-P0>c (4.18) 

and c represents concentration of jet gas.  Following their 

analysis, the importance of the buoyancy term may be 

assessed as follows.  Using (4.18) in the buoyancy term 

X   °° X  <=° 

crdrdx   (4.19) 

X  °° X  <» 

J J (p -p)rdrdx = -g(p.-p )J J ■ 
o o J   o o 

Following Keagy and Weiler (4.10), assume 
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n = y/x 

-ykn' 
c = c e c 

c = kD/x c 

(4.20) 

and 

-kn 
U - U e c 

which, after some algebra gives for the buoyancy term B 

B  = -g(pj- 

X          oo 

p   )  /       jcrdrdx 
o       o 

— -gkD(p ,x2    fW 2 dn (4.21) 

NOW 

00 00 00 

JpU2rdr =  po Ju2rdr +   (p--p  )  JU2crdr (4.22) 

which, using Equation (4.20) becomes 

oc 

pU rdr = p •) ndn + 

+ ( 

00 

Pj-'o,ccücx2/(ü->  c"ndT1' 

CO 

= P0»c*
2 /-"ltn2 + o 

00 

♦ <Pu-P0>^y/ne-(1+W,kn: dn    (4.23) 
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so that the ratio of the momentum flux term to the buoyancy 

term, R, is, noting that 

0 

2 
-an  a 1 

,222 
n22w ,k DUc 

B _  poUcx    +   (Pl-Po)-TMi— R _  

or 

2uUc  po  1    k2D 

^   po"Pj D   (l+y)x2 

2yUc  po   k2 D 2 ■[^—4- + TT^) ] (4.24) go P0-PJ  i+y x' 

The buoyancy effect should be greatest for the helium jet. 

From Keagy and Weiler [76] , for this case 

k = 57 

U = 0.50 

Po = 0.076 lbm/ft
3 

p. = 0.011 lbm/ft3 

D = 0.0106 ft 
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and, evaluating (4.24) 

R = 484 

which indicates that the buoyancy effect is indeed 

negligible.  The momentum integral was evaluated incor- 

porating the buoyancy term for these data, using Equations 

(4.17) and (4.20), and the results indicate that even with 

the inclusion of this term, the experimental results of 

Keagy and Weiler using helium fail to satisfy constancy of 

momentum by a wide margin.  This difficulty is most probably 

caused by inaccuracies in the low pitot pressures involved 

with helium jets at the relatively low velocities used here. 

The experiments of Corrsin and Uberoi [25] are 

some of the few experiments in non-constant-density flows in 

which some details of the turbulence structure were 

measured.  Thus they provide one of the few available 

measures of the effect of a fluctuating temperature (or 

density) field on a fluctuating velocity field. Figure 4.6, 

taken from the data of Reference [25] , shows that at a given 

axial station, the intensity of the axial velocity fluctua- 

tion is decreased in a hot jet compared to a cold jet at 

substantially the same nozzle exit velocity. For the 

particular case shown here, the centerline velocity ratio 

U„/U. at x/D = 20 was 0.30 for the hot jet as compared to 

0.33 for the cold jet. The.linear relationship between 

turbulent shear stress and turbulent kinetic energy 
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established in constant-density flow is followed satis- 

factorily by these data, as shown by Figure 4.7, although 

the constant a, , which was seen to have an average value of 

about 0.3 in the constant-density case, here appears to be 

0.25.  There is not, however, sufficient data to completely 

establish the particular average value of a, for this flow. 

Figure 4.8 shows that the lateral distribution of the 

parameter a, agrees favorably with the constant density data 

of Sami [29], especially when it is remembered from Chapter 

2 that the peak value of a, tends to decrease slowly with 

axial distance. 

Warren's data [70] are a continuation of the 

experimental work discussed in the preceding section and 

thus do not need to be reintroduced.  Donaldson and Gray 

[67] carried out measurements similar to those made by 

Keagy and Weiler [76], at somewhat higher velocities, and at 

different temperature ratios (although no temperature ratios 

are reported by Keagy and Weiler).  However, no velocity 

profiles are reported by Donaldson and Gray, so that no 

momentum check can be made.  Finally, O'Connor, et al., [77] 

carried out an extensive investigation of a high-enthalpy 

jet of partially dissociated nitrogen, measuring axial and 

lateral profiles of velocity, total enthalpy^ and concen- 

tration. 

Figure 4.9, incorporating data from Cleeves and 

Boelter [75] and Corrsin and Uberoi [25] illustrates the 
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effect of initial temperature differences on the axial decay 

of centerline velocity.  It can easily be seen that 

increasing the ratio of jet temperature to the temperature 

of the surroundings decreases the length of the potential 

core, while except for the high-temperature-ratio, Cleeves 

and Boelter data, which is probably strongly affected by 

buoyancy, the velocity data all exhibit a decay inversely 

proportional to x/D.  It can also be noted from Figure 4.9 

that the Corrsin and Uberoi near-isothermal data are shifted 

compared to the Cleeves and Boelter data, as would be 

expected from the discussion of Reynolds number effects in 

Chapter 2. 

Corrsin and Uberoi [25] report that the tempera- 

ture field spreads faster than the velocity field.  Figure 

4.10 demonstrates that the centerline temperature ratio also 

decays faster than the centerline velocity.  In this case 

the best fit to the data not affected by buoyancy appears to 

be a line for which T - T /T. - T « (x/D)~ ' . coj   o 

When the velocity half-radius (defined as the 

radius at which U/U =0.5) is used as a non- c 

dimensionalizing parameter, the lateral temperature ratio 

distributions do not appear to exhibit geometric similarity, 

as seen from Figure 4.11.  If on the other hand, a new half 

radius, r,/2T * is defined—as the radius at which 

(T - T )/(T - T ) = 0.5—and this radius is used as a non- o   c   o 

dimensionalizing factor, Figure 4.12 shows that the data 
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collapse together reasonably well, especially so considering 

the limited range of axial distance. 

A comparison of Warren's [70] M = 0.69 data at 

various jet-stagnation to ambient temperature ratios 

indicates, as in Figure 4.13, that a nonunity temperature 

ratio does not affect the existence of local geometric 

similarity. The data of O'Connor, et al., [77] for the very 

high enthalpy jet indicates, Figure 4.14, that even in this 

extreme case, geometric similarity of the velocity profiles 

is a reasonably good assumption.  However, the axial decay 

of centerline velocity measured by O'Connor, et al., does 

not follow a line of ü /U, <* (x/D)~ . This is shown by. 

Figure 4.15.  Such behavior might be expected given the 

apparent deviation from such a line shown by the axial decay 

data of Eggers [72] (Figure 4.4, page 209) for the super- 

sonic jet, which could be taken to indicate that such 

deviations in that case increase with the jet Mach number. 

Figure 4.15 also shows that the centerline enthalpy for 

these data appear to decay the same rate as the centerline 

velocity, while the centerline composition of jet gas 

follows a different rate, approximately inversely propor- 

tional to x/D.  This disagrees with lower-temperature 

experiments which commonly show that the rates for total 

enthalpy and composition are equal.  The composition results 

here may have been affected by the existence of partial 

dissociation at the high temperatures involved.  Comparison 
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of the centerline velocity ratio decay data of Warren [70] 

with that of O'Connor, et al., [77], Figure 4.16, shows as 

expected that the length of the potential core decreases 

with an increasing ratio of the jet stagnation temperature 

to the ambient temperature, T /T .  Further, for the very 
°j a 

high temperature ratio case, the slope of the velocity curve 

changes from the U /U. « (x/D)~ character observed by 
c 3 

Warren to a greater slope.  Figure 4.17 illustrates that the 

same sort of comparison holds true for the centerline 

enthalpy ratio decay.  Warren's data is at low enough 

temperatures for the assumption of constant specific heat to 

be valid, and thus (T -T )/(T -T ) = (H -H )/(H.-H ) for 
0__   3.     O •   3        CO     J   O 
C ] 

Warren's data. 

For low speed jets of different gases, the data of 

Keagy and Weiler [76] exhibit an increase in potential core 

length with an increase in jet molecular weight (or jet 

density).  In this case, as in all others in this section, 

the surrounding gas is air.  This is in agreement with the 

results for a heated jet, which indicate that the length of 

the potential core increases as the jet-to-surroundings 

temperature ratio decreases (and thus the jet-to- 

surroundings density ratio increases). Figure 4.18 illus- 

trates this fact, as well as showing that except for the 

helium jet, the results for which are questionable (see 

Table 4.2, page 214), the axial velocity decay is again 

inversely proportional to x/D.  The centerline composition 
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decay results are somewhat different as Figure 4.19 shows. 

In this case there is a behavior that is the reverse of that 

observed for the velocity decay; the centerline composition 

of jet gas curves show that at a given axial station the 

value of the ratio C /C. (where C. = 1 by definition) is c j J 

greater the lower the molecular weight of the gas.  This 

would imply concentration potential core lengths that 

decrease with increasing jet gas molecular weight.  The 

reasons for this anomalous behavior are not clear. 

The behavior of the centerline velocity decay 

curves measured by Keagy and Weiler [76] is substantiated by 

the results of Donaldson and Gray [67].  Here, too, the 

length of the velocity potential core increases with 

increasing jet gas molecular weight.  This is shown in 

Figure 4.20.  Further, these results, at higher jet Mach 

numbers than those of Keagy and Weiler, show longer core 

lengths than Keagy and Weller's data, as would be expected.' 

Other Flows 

A number of experiments have been made in 

variable-density flows with zero secondary-stream velocity 

that do not conveniently fit into the categories discussed 

above.  Such flows include the circular jet formed by the 

exhaust of a rocket nozzle, and two-dimensional cavity flows 

and mixing layers. The special nature of these flows makes 

the calculation of the momentum integral difficult; because 

of this difficulty and the relatively specific nature of the 
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individual experiments, the momentum integral has not been 

evaluated for these flows and they will not be discussed in 

detail. 

Table 4.3 lists the important characteristics of 

the flows considered.  Anderson and Johns [66] made the most 

fundamental investigation of this group, using for their 

experiments two air jets, one at H - 1.4 and T = 1960°R and 

the other at M = 1.84 and T = 1960°R.  In addition, experi- 

ments were made using three solid propellant rockets, with 

exit Mach numbers of 2.82, 3.42, and 3.53, and chamber 

temperatures of the order of 4000°R.  No details are given 

as to the composition of the exhaust product. 

Anderson and Johns [66] present radial profiles of 

pressure and temperature for the similarity region for all 

five jets, observing geometric similarity in all cases. 

Because their theoretical analysis can handle only subsonic 

flows, they break the air jets, which are the most exten- 

sively investigated, down into two parts, defining the 

"supersonic core" to be the distance until the centerline 

Mach number drops to unity.  They find that, to a good 

approximation, the length of this "supersonic core" for all 

of the jets considered increases linearly with jet (exit) 

Mach number.  Axial decay results are presented for the 

centerline velocity for the two air jets.  However, these 

results are nondimensionalized with respect to the 
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TABLE 4.3 

OTHER VARIABLE-DENSITY FLOHS WITH ZERO SECONDARY VELOCITY 
□ 
o 

to 
■a» o 

T_ A. 

Investigator Ref. Year 
Type of 
Flow "1 

Jet 
Gas 

Largest 
X/D 

Moflientufli 
Check, 
Percent 

Anderson 
and Johns 

66 1955 Circular Jet 

Rocket 
Exhaust 

1.40 
1.84 
2.82 
3.42 
3.43 

Air 

n.a » 
n.a.» 
n.a.b 

3.73 
3.73 
7.55 

n.a.. 
n.a.» 
n.a.» 
n.a.» 
n.a.» 

Not 
Calculated 

Frauenberger 
and 

Forbister 

78 1961 Rocket 
Exhaust 

2.69 Specified 
Mixture 

8.35 40 

Maydew and 
Reed 

79 1963 First 
Regime of 

Jet 

0.7 
0.85 
0.95 
1.49 
1.96 

Air 
Air 
Air 
Air 
Air 

n.a.r. 
n.a.» 
n.a» 
n.a.» 
n.a.» 

3.84 
3.84 
3.84 
3.84 
3.84 

Hill and 
Nicholson 

80 1964 2D 
Mixing 
Layer 

1.48 
2.61 
4.04 
6.07 
9.63 

N2,He 
N2,He,SF, 
N2,He,SF| 
N2,He,SF6 

N2 

n.a.» 
n.a.» 
n.a.» 
n.a.» 
n.a.» 

- 

Hill 81 1968 Cavity 2.1 
3.2 
3.5 
3.7 

Air 
Air 
Air 
Air 

n.a.» 
n.a.» 
n.a.» 
n.a.» 

5.7" 

Ron 82 1968 Circular Jet 
3D Jet 

n.a.» 
n.a.» 

N2+Air 
N2+Air 

15-20 
15-20 

10A 10« 

u 
0> 

aPercent of average. 

Indicates data unavailable. 
ex/6 where 6 - initial boundary layer thickness. 

x/h-where h- jet width. 
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"effective diameter at the M = 1 point;" the writer does not 

understand Anderson and Johns' explanation of how to obtain 

this quantity. 

Frauenberger and Forbister [78] made an extensive 

experimental investigation of a supersonic jet emerging 

from a solid propellant rocket motor into air at rest.  The 

exit Mach number was 2.69 and the jet was underexpanded. 

The mixture composition was specified by Frauenberger and 

Forbister, and the chamber conditions were P. = 70 atm. and o 

T = 4500°R.  Measurements included the distribution of o 

total pressure and stagnation temperature in the subsonic 

region. 

Maydew and Reed [79] investigated the mixing layer 

formed in the first regime of a supersonic jet into still 

air.  This experiment is thus analogous to the 

incompressible-flow work of A. J. Chapman [16] discussed in 

Chapter 2; it was designed to investigate the variation of 

the parameter a, which occurs in the similarity analysis of 

two-dimensional mixing layers/ with Mach number.  To do 

this, experimental velocity profiles in the first regime 

were measured at Mach numbers of 0.7, 0.85, 0.95, 1.49, and 

1.96, and the best fit of the function U/U. = f(ay/x) to 

these profiles was obtained by varying the value of a.  From 

this method, Maydew and Reed found that at M = 0.7, 0.85, 

0.95, 1.49, and 1.96, c = 10.5, 10.8, 11.0, 15.0, and 20, 

respectively. 
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An alternate approach, involving the relationship 

of the growth of the mixing layer to the amount of fluid 

entrained by the mixing layer, was used by Hill and 

Nicholson [80] to investigate the variation of a  with Mach 

number.  Using a number of different gases at several Mach 

numbers ranging from 1.48 to 0.63, they find 

TQ 0.29 

a =  9.1(£-£) (4.25) 
c 

where T  is the stagnation temperature at the high velocity 
c 

edge of the mixing layer, and T the static temperature. 

The parameter a  in Equation (4.25) is related to the 

incompressible-flow velocity profile, as is o  in the work of 

Maydew and Reed.  Figure 4.21 shows a comparison of this 

function with Maydew and Reed's experimental results (4.16). 

The calculations are based on the isentropic relation 

T 
-2=1 + I^M2 (4.26) 

for Y ■ 1.4. Figure 4.21 clearly shows that the results of 

Hill and Nicholson [80] fall well below those of Maydew and 

Reed [80] . 

W. G. Hill [81] investigated the development of 

the free shear layer formed by the flow over a cavity at 

Mach numbers from 2.1 to 3.7 (see Table 4.3, page 238).  The 
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boundary layer at the cavity edge had a momentum thickness 

of 0.30 in. and a velocity profile of the form 

1/8 
U_ = (Y_) Uo   V 

where 6, is the physical boundary layer thickness, which was 

found to be independent of Mach number.  Hill's results 

indicate that a  = 16 for M > 2.  However, as at M = 3.5, 

x/6. = 5.7, the mixing zone width was 2.4 in. in a 4 x 4 in. 

wind tunnel, these results may suffer somewhat from three- 
4 

dimensional effects. 

The final entry in Table 4.3, page 238, concerns 

the jet-mixing experiments reported by Rom [82].  This work 

involved jets from a high temperature arc source, in both 

circular and three-dimensional (square and low aspect ratio 

rectangular) cross-section.  Under the assumption that the 

nondimensional density and velocity profiles can both be 

expressed in similarity form, i.e., as functions of n = y/x, 

-(K+l)/2 Rom finds that assuming that U « x       , the centerline 

-(K+l)/4 Mach number M « x    ''     in the near jet and c J 

— (K+l)/2 M ■ x     '  in the far jet.  K = 1 for axisymmetric flow 

and 0 for two-dimensional flow.  These, assumptions are some- 
\ -i 

what questionable, and Rom's results ;[82], given in terms of 

the Mach number, are not in good agreement with his analysis. 

4 
An empirical relationship, a =  12 + 2.758M has 

been given by Korst and Tripp [138]. 
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Summary 

Practically all of the circular jet experiments 

investigated have shown that geometric similarity of the 

velocity profiles, defined by a relation of the form 

H-- £<—E-> 
Uc    rl/2 

is achieved in the variable-density jet into still air 

within five diameters of the end of the potential core 

[67, 70, 71, 73, 79].  For the supersonic jet, Figure 4.5, 

page 219, shows that the velocity data are very well fit by 

the function 

2 
f(zr^~)   = exp[-0.6932(—£-) ] 

rl/2 rl/2 

which also provides a fairly good representation of the very 

high enthalpy data of Reference [79], Figure 4.14, page 230. 

Temperature profiles also exhibit geometric similarity 

within about five diameters of the end of the potential 

core, provided that the half radius r,/2 is used where 

r, .0m is defined as the radius at which T-T/T -T =0.5, 1/2T o'   c   o 

rather than r.,2 , which is defined as the radius at which 

U/U = 0.5.  Figures 4.11, page 226, and 4.12, page 227, 

illustrate this.  For concentration profiles, Keagy and 

Weiler show that the profile of C/C is a function only of 

n = y/x for x/D = 16. This is a more stringent requirement 
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than the usual definition of (local) geometric similarity, 

as this requirement demands that r,,2 = x.  Geometric 

similarity of composition and total enthalpy profiles is 

observed for the high-enthalpy jet [77] as well as for 

rocket exhausts [66, 78]. 

Similar profiles are also found in the first 

regime of supersonic jets.  In this region the profiles can 

be fit with a function of the form [79, 80] 

§7 - *<F> 

where the parameter o varies with the Mach number. The 

variation of this parameter with Mach number has been fairly 

extensively investigated [79, 80, 81] but the form of its 

variation is still not well known. 

For subsonic and low supersonic Mach numbers, the 

centerline velocity ratio U /U. appears to vary as 1/x. c D 
This is observed in Reference [70] as shown in Figure 4.2, 

page 207.  For Mach numbers greater than about 2.0 this 

variation no longer seems to hold [72]—see Figure 4.4, 

page 209, while the decay of centerline velocity seems to be 

faster than the 1/x function predicts for subsonic high- 

enthalpy jets as well [77]; see Figure 4.15, page 231. 

Self-preservation can be defined as the state in 

which the profiles of the dependent variables are functions 

only of a variable n = r/b(x), when nondimensionalized by 
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their centerline values. Thus 

U = Uc(x)f (n) 

T - TQ = [Tc(x) - TQ]g(n) 

C = Cc(x)h(n) 

etc. For the incompressible jet-into-still-air, it was 

shown further that under self-preservation U « 1/x and 

b * x (Reference [3], also Appendix C).  Self-preservation 

has not been observed in the supersonic jet-into-still-air, 

and the indications are that it may not be reached within 

practical distances [69]. For subsonic jets with jet-to- 

surroundings temperature or concentration differences, 

insufficient information is as yet available to evaluate the 

approach to self-preservation. 

The effect of decreasing the jet-to-surroundings 

density ratio whether by temperature differences or 

differences in gas composition seems always to be to reduce 

the length of the potential core.  This effect can be 

observed in Figures 4.9, 4.16, 4.18, and 4.20, pages 223, 

233, 235, and 238.  In the case of extreme temperature 

differences, the slope of the decay curve is also increased, 

as Figure 4.15, page 231, shows.  The potential core length 

is defined here as the axial distance to the intersection 

of the line representing the axial decay of centerline 

velocity with the U_/U. = 1.0 line on a log-log plot. 
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Since the turbulent Prandtl number is not generally 1.0 for 

the supersonic jet [65] and for subsonic compressible jets 

[70], being 0.7 in the former case, the potential core 

length for temperature will not in general be the same as 

that for velocity.  No measurements of the turbulent Schmidt 

number are available for the jet-into-still-air, but 

evidence in coaxial mixing which will be discussed below, 

and some evidence with effectively constant-density flows 

with trace gases indicates that it, too, is not unity, so 

that the concentration core length will also in general be 

different from the velocity core length. 

The length of the velocity potential core 

increases with Mach number, as shown on Figure 4.2, page 

207, using the data of Reference [70].  Comparison of these 

data with other data indicates, as shown by Figure 4.3, page 

208, that the variation in core length is linear with Mach 

number, with one relationship holding for M < 1.0 and a 

second for M > 1.0. 

There is very little data on turbulent fluctua- 

tions in a variable density flow.  The only experiment in 

which u1, v1, and üv have been measured in such a flow is 

the heated jet of Corrsin and Uberoi [25].  Investigation of 

these data—Figures 4.8 through 4.10, pages 222, 223, and 

225—does not show any substantial differences in behavior 

between these results and those of a similar constant 

density experiment. 
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There are a number of valuable experiments which 

are concerned with the variable density jet-into-still-air, 

but because of experimental difficulties the coverage of the 

phenomenon is not nearly as complete as it is for the 

constant-density jet-into-still-air.  Warren [70] has 

investigated the broadest range of Mach numbers and tempera- 

ture ratios (Tables 4.1 and 4.2, pages 203 and 214).  His 

experimental results satisfy the momentum integral require- 

ment quite well.  Warren's results include jet-exit velocity 

and temperature profiles, but no shear stress profiles are 

given.  The axial range is limited to a maximum of thirty 

diameters. 

The work of Broer and Rietdijk [65] does not 

satisfy the momentum integral requirement.  However, their 

presented profiles (of M/T/(M/T)C) are sketchy at best, and 

so the evaluation of the momentum integral is possibly 

overly pessimistic. As in all other supersonic jet experi- 

ments, Broer and Rietdijk do not present profiles of 

velocity ratio (here M/T ratio) below a value of ~ 0.1 for 

large x/D, presumably due to experimental difficulties.  To 

evaluate the momentum integral for these flows, the profiles 

presented have been extrapolated to U/U = 0, which is 

assumed to occur at r/r,/2 ~  2.5. 

Both Johannesen [69] and Eggers [72] present axial 

and radial velocity profiles to large x/D, and both sets of 

results agree favorably with the momentum integral criterion. 
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In these cases, there exists an axial distance beyond which 

velocity profiles are only incompletely presented; that is, 

velocity ratios U/U below 0.1 are not measured. The 

momentum check has been carried as far as this axial 

distance. Both Johannesen and Eggers investigate one 

particular facet of the flow in particular detail. 

Johannesen [69] presents his measured velocity and static 

pressure profiles in detail from x/D = 0 to x/D = 10.67. 

Eggers [72] presents eddy viscosity distributions, where the 

eddy viscosity is defined by 

e   3u/3r 

at six axial locations downstream of the end of the 

potential core. Because these data are at high Mach number, 

include tabulated velocity profiles, and include these eddy 

viscosity distributions, from which the shear stress 

profiles may be evaluated, Eggers' data [72] have been 

selected for use in the confrontation between theory and 

experiment. 

The only data on turbulent fluctuations for a 

heated jet into still air is that of Corrsin and Uberoi 

[25]. This is clearly an area requiring considerable addi- 

tional study.  Because no mean velocity profiles are 

presented by Corrsin and Uberoi [25] for their heated jet, 

no evaluation of the momentum integral can be made. 
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However, on the assumption of geometric similarity the 

momentum integral can be evaluated for the cold-jet, 

incompressible flow; this has been done in Chapter 2 and the 

results, presented in Table 2.3, page 65, indicate that the 

cold jet satisfies the momentum criterion within 10 percent. 

For flows in which the jet gas is different from 

the surroundings, data are presented by Keagy and Weiler 

[76] and by Donaldson and Gray [67].  The latter work 

includes only axial velocity profiles for subsonic jets, so 

that no momentum check can be made, and the utility of the 

data is seriously limited.  Keagy and Weiler [76] present 

considerably more detail, but their radial profiles (of 

velocity and concentration) are available for only two 

stations.  All of Keagy and Weiler's data are limited to the 

second regime of mixing.  As Table 4.2, page 214, shows, 

both the N2 and CO- results of Keagy and Weiler are in good 

agreement with the momentum criterion; however, their He 

results seem to be too far out of agreement to be of any 

practical use. 

Finally, O'Connor, Comfort, and Cass [77] have 

provided a very detailed investigation of a high enthalpy 

jet.  Their results include profiles in physical coordinates 

as well as in similarity coordinates, which is commendable. 

However, no initial conditions are included, which hampers 

confrontation of theory and experiment, and the behavior of 
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the centerline concentration profiles does not agree with 

other experiments at lower temperatures. 
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CHAPTER 5 

VARIABLE-DENSITY TWO-STREAM FLOWS: 

EXPERIMENTAL DATA 

The most complex flows to be considered in this 

study are the variable-density two-stream flows: two- 

dimensional and axisymmetric coaxial jets, and two- 

dimensional and axisymmetric wakes.  The density variations 

are caused, as in the single-stream flow cases, by tempera- 

ture or composition variations between the streams, or by 

compressibility effects, or by combinations of these 

phenomena. 

Because of the complexity of the flow systems 

involved (and the severity of the environments in which such 

flows are produced), the experimental data for flows in this 

section is not very detailed.  There is only one experiment 

[35] in which turbulence intensities have been measured in 

a two-gas coaxial stream flow, and even in this experiment 

the only measurement is of the axial component of the 

turbulent intensity, u'.  Clearly the subject of turbulent 

structure in a variable-density flow remains to be explored, 

but this must await the development of more sophisticated 

instrumentation. 

The author has not encountered any experimental 

work in the literature on variable density two-dimensional 
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two-stream flows—the coaxial configuration is both easier 

to achieve experimentally and more practical.  The same 

situation appears to exist for the variable-density wake. 

Thus the first section of this Chapter will cover variable- 

density coaxial free mixing, and the second the axisymmetric 

variable-density wake. 

Coaxial Jets 

As Table 5.1 shows, a number of variable-density 

coaxial jet mixing experiments have been reported in recent 

years. There is only one [43] appearing in Table 5.1 which 

was reported prior to 1962.  The experiments listed in Table 

5.1 may conveniently be broken down into three groups, which 

are:  (a) the mixing of two streams of air, possibly with a 

temperature tracer or trace gas, (b) the mixing of two 

streams of different gases, with both streams subsonic, and 

(c) the mixing of two streams of different gases, with one 

stream supersonic and the other stream subsonic.  Category 

(a) includes mixing in which both streams are subsonic, but 

with a substantial amount of trace gas in one stream (suffi- 

cient to produce a relatively large density ratio) [43], 

mixing in which both streams are subsonic but at a 

relatively high Mach number so that compressibility effects 

may enter [91], and mixing in which one air stream is super- 

sonic and the other subsonic [87, 91]. 

Past the end of the potential core, the center- 

line velocity decay curves for compressible coaxial air-air 
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TABLE 5.1 

VARIABLE-DENSITY COAXIAL MIXING 

Investigator Ref, 

Landis and 
Shapiro 

in 

Alpinieri 

Zakkay and 
Krause 

43 

Ferri,        83 
Libby, and 
Zakkay 

84 

85 

P u 

Year 
Configu- 
ration P /p ■ VUp 

*o o 
pjui Profiles 

Axial 
Decay 

Momentum 
Check 

1950 la,air 1.3 
1.3 
1.19 
1.19 
1.19 

0.25 
0.50 
0.50 
0.50 
0.50 

0.325 
0.650 
0.595 
0.595 
0.595 

similar yes no 

1962 2, H2 n.a.b 2.78 n.a. at x/D= CC no 
1.43 16.2 only 
1.0 
0.75 

1964 2,   Ho 16.7 1.51 25.2 C at C no •<* 
16.8 1.05 17.65 x/D=10.5, only 
16.9 0.80 13.50 15, 20 

2, C02 0.72 2.13 1.52 C,U at CfU <1% 
0.68 1.54 1.05 - x/D=15, <1% 
0.67 1.28 0.85 20, 25 <2% 

1964 2, H2 8.15 0.88 7.15 no C no 
8.12 1.32 10.65 
8.10 2.38 19.25 
9,10 5.0 45.5 

19.10 2.38 45.5 
3.85 5.0 19.25 

> 
m 
G 
o 

u 
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TABLE 5.1 (continued) o o 

P u Ko o 
u 

0\ 

Investigator Ref. Year ration P /p • U /U. 9fi 
Zakkay, 86 1964 2, H2 7.2 1.3 9.35 
Krause, and 31.05 0.69 21.30 
Woo 23.5 

19.45 
0.59 
0.41 

13.90 
8.05 

2, He 2.96 
3.82 

10.7 
9.05 

2.20 
0.91 
0.91 
0.60 

6.5 
3.47 
9.72 
5.41 

2, A 0.36 
0.29 

5.54 
3.23 

2.01 
0.94 

3, A 0.23 
0.17 

2.31 
1.94 

0.54 
0.34 

2, A 0.90 
0.71 
0.63 

1.89 
1.78 
1.62 

1.70 
1.27 
1.03 

Bluston 87 1965 2,air 0.44 2.28 1.01 

Forde 88 1965 3, C02 0.76 1.32 1.0 

Ragsdale 89 1965 If Br2 0.18? 1.25 0.23 
and 0.97 0.18 
Edwards 0.83 0.15 

Profiles 
Axial Momentum 
Decay   Check 

no 
Ce 

no 

U, 
Ce 

yes 

yes 

no 

no 
U,C 
vs 

x/xc
J 

no 

U,C 
vs 

x/xc
r 

yes 

no 

yes 

no 

no 

no 

no 



TABLE 5.1 (continued) 

Ul 

P ö„ 

Ref. Year 
Configu- 
ration P /p ■ U /U. 

0'    1 

Ko 0 

Profiles 
Axial 
Decay 

Momentum 
Check Investigator efi 

Chriss 90 1968 1/ H2 11.1 0.16 1.79 u, u. 13h 

11.1 0.23 2.57 c. c, 7.3 
12.5 0.26 3.12 H, also 5 
12.5 0.33 4.16 T T 10 
12.5 0.42 5.25 - 
7.1 0.22 1.61 9 
7.7 0.31 2.44 17i 
8.3 0.40 3.33 10 

Zawacki and 35 1968 l,Freon 0.25 20.3 5.1 u, yes3 40 
Weinstein 

0.14 

0.25 

11.6 
9.2 
5.6 
5.4 
7.6 
3.6 

11.5 
5.8 
8.9 

36.8 
26.5 
9.3 
5.4 

2.9 
2.3 
1.4 
1.35 
1.9 
0.9 
1.64 
0.83 
1.27 
9.2 
6.63 
2.33 
i.35 

P 

u, 
P 

13 
23 
15 

12 

Eggers and 91 1969 2,air 1.13^ 1.36 1.54k u,c U,C no^- 
> 
m 
0 

Torrence 
l,air 

1.17 
1.02 

1.54 
1.21 

1.80 
1.24 

O 

JD 

- Al 

u 
01 



TABLE 5.1 (continued) 

to 
in 
CO 

P u 
Configu-    . . ° ° Axial Momentum 

Investigator Ref. Year ration   po/pj  o/ j   pj j   Profiles  Decay   Check 

Fejer, et al.  92   1969  l,Freon-  1.0 0.26 0.26      no      U,C     no 
air     0.67 0.26 0.13     U,C 

1.0 0.18 0.18      no 
1.0 0.18 0.18 
1.0 0.13 0.13 
0.51 0.25 0.13 
0.69 1.0 0.69 
1.0 1.0 1.0 

Codes:  1 - subsonic primary, subsonic secondary; 2 - subsonic/supersonic; 
3 - supersonic/supersonic.  Gas is listed for primary jet, secondary is in all cases 
air. 

Indicates data unavailable. 

C - concentration; U - velocity; p - density; H - enthalpy; T - turbulent 
shear stress. 

Maximum percent deviation from average value (range for Alpinieri data: 
7.5 < x/D < 12.5). 

6 Presented nondimensionalized in terms of unstated parameters. 

x is core length, obtainable from other results. 
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TABLE 5.1 (continued) 

"Estimated. 

Range for all of Chriss' data: 4.5 <^ x/D <_ 16. 

Data shift apparent for these results. 

-'Obtainable from, profiles presented. 

Derived value. 

N> Lack of density profiles makes calculation impossible. 
VO i 
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mixing all appear to follow a (U - U )/(U. - U ) « (x/D)-1 
C     O     jjl     o 

line fairly well, as shown by Figure 5.1, despite the wide 

variation in Mach numbers involved. However, the behavior 

of the results of Eggers and Torrence [91] in the region 

upstream of the beginning of this "x~ " decay is somewhat 

unusual. The configuration used by Eggers and Torrence 

involves a coaxial two-stream mixing system in which the 

outer stream is at a greater velocity than the inner. Thus 

the decay curves shown on Figure 5.1 indicate that the 

centerline velocity for the central jet decreases for some 

distance downstream after it leaves the nozzle, despite the 

greater free-stream velocity, and then after some distance 

begins to reaccelerate towards the free stream velocity. 

This behavior has been observed in very low-speed flows by 

Zawacki and Weinstein [35], and was investigated in detail 

by Rozenmann [47] in a low speed flow.  In this case it was 

found that the apparent decrease in centerline velocity was 

brought about by the existence of a recirculation pattern in 

the jet.  However, this effect was not observed to occur 

below a velocity ratio U /U. of 13; Eggers and Torrence do 

not report velocity ratios greater than 1.56. 

In this case the effect apparent ir> Figure 5.1 

appears to be related to the persistence of the initial 

boundary layer profiles. The deceleration of the jet 

centerline velocity caused by the existence of the initial 

thick boundary layers appears to be initially a more 
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^  Landis and Shapiro1 

Notes: 
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0.58 
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1.30 

1.27 
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1.54 

- 0 
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1.38 

1.56 

1.23 
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aVelocity Decay Obtained from Modified 
Profiles of Ref. 91 

bDecay Curve Presented in Ref. 
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from Fig. 21, Ref 

Helium Tracer 

cgre- 
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Figure 5.1.  Axial decay of centerline velocity, 
compressible coaxial   (air-air)   jets. 
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important phenomenon than the acceleration of the boundary 

layers by the higher-velocity outer flow.  Bluston's work 

[87], which is the only directly comparable work, does not 

include centerline velocity measurements in the potential 

core region. His results for centerline velocity decay are 

in fact given in terms of the parameter x/x   ; an 

"estimated" potential core length which Bluston reports 

([87], Figure 21) has been used in constructing Figure 5.1. 

As Figure 5.2 shows, despite the anomalous 

behavior of the centerline velocity in the potential core 

region, the velocity data reported in Reference [91] fits a 

local similarity plot fairly well. Although detailed 

velocity (and trace-gas composition) profiles are given in 

Reference [91], no density profiles or temperature profiles 

are available and so the momentum integral has not bjeen 

evaluated. Eggers and Torrence report a mass-flow check on 

their data; the results are not conclusive. Further work on 

coaxial air-air systems with supersonic outer streams would 

appear to be necessary. 

Coaxial mixing of two subsonic streams, with 

temperature or concentration differences between the streams 

has been investigated by Landis and Shapiro [43] who studied 

the mixing of coaxial low-velocity streams with a tempera- 

ture difference between the streams, Zawacki and Weinstein 

[35] and Fejer, et al., [92] who studied coaxial mixing of 

low velocity Freon-air streams, and by Alpinieri [84] and 
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Chriss t90] who studied relatively high velocity coaxial 

mixing between hydrogen and air. Alpinieri [84] also •. 

studied carbon-dioxide-air mixing, and bromine-air mixing 

was studied by Ragsdale and Edwards [88]. 

Axial decays of centerline velocity ratio and 

centerline temperature ratio for the data of Landis and 

Shapiro [43] are shown in Figure 5.3; axial decays of 

centerline velocity, temperature, and composition ratio are 

shown in Figure 5.4.  The apparatus used by Landis and 

Shapiro [43] has already been described in Chapter 3; 

briefly, it comprises a 1/2-inch diameter nozzle and a 

4-inch duct. The jet velocity in all cases reported here 

was 200 ft/sec.  It can be seen from Figures 5.3 and 5.4 

that the axial decays of velocity, temperature, and con- 

centration are all fit reasonably well by lines of 

$ « (x/D)~ , where <J> represents the particular ratio in 

question.  Readers familiar with the work of Landis and 

Shapiro may recall that these authors report various 

different slopes for the different curves—thus in Reference 

[43] they give, if n is defined as the exponent in the 

expression <|> <= (x/D) n, n = 1.04 for both velocity and 

temperature for the U /U. = 0.25 case, n = 1.03 for velocity 

and n = 1.08 for temperature for the U/U. =0.50 case 

(Figure 5.3), and n = 1.22 for velocity, temperature, and 

composition for the U /U. = 0.50, p U /p.U. = 0.515 (Figure o j        o o 3 ] a 

5.4) case.  In each case these exponents have been obtained 
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Figure 5.3. Axial decay of centerline velocity and 
temperature ratio, subsonic/subsonic coaxial jets. 
Data from Landis and Shapiro [43]. 
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by Landis and Shapiro by taking the best-fit curve to all of 

their data. It is the author's experience that this is in 

general not a good practice for the velocity decay curves, 

as evaluation of the momentum integral for a number of con- 

figurations has shown that the apparent error for the 

velocity measurement in general increases with axial 

distance.  This is particularly true with the kind of 

apparatus used by both Forstall [40, 41] and Landis and 

Shapiro [43], as was discussed in Chapter 3.  It will be 

seen from Figures 5.3 and 5.4 that curves of <|> « (x/D)~ 

adequately describe the data, particularly if the last 

points (at x/D = 32) are discounted.  The author does not 

believe that attempts at fitting the data any more closely 

are justified. 

Landis and Shapiro [43] demonstrate that as for 

coaxial air-air mixing, the velocity profiles can be shown 

to be geometrically similar, when (U - U )/(U - U ) is 

plotted versus r/ri/2 » wnere ri/2 *s the value of r for 

which U ■ U+ (U - u )/2. Further, the temperature 

profiles are also geometrically similar, when 

(T - TQ)/(TC - TQ) is plotted versus r/'i^T / where r^2T 

is the value of r for which T = T + (T - T )/2. This is 
O      CO 

shown in Figure 4 of Reference [43] .  Because the velocity 

profiles are presented only as data bands on normalized 

plots, no momentum check can be made on these data. How- 

ever, sufficient information was given in Reference [43] for 
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a momentum check to be made on a coaxial air-air mixing 

case; this check showed that the momentum integral was 

satisfied within 10 percent, and the cases considered here 

are probably similar. 

Freon-air mixing, in a coaxial subsonic-stream 

configuration has been studied by Zawacki and Weinstein [35] 

and Fejer, et al., [92]. The apparatus used by the former 

investigators was described in Chapter 3; it consists of a 

0.712 inch diameter jet in an 8 x 8 inch square surrounding 

stream. Fejer, et al., [92] used a one inch inside diameter 

jet in a six inch diameter duct.  Both experiments thus 

could involve pressure gradients, although it does not 

appear that they were carried out to a large enough number 

of diameters for these to be important. No measurements of 

static pressure distribution are reported. 

Figures 5.5 and 5.6 show the axial decay of 

centerline velocity measured in selected experiments from 

Reference [35] and in the experiments of Reference [93], 

respectively. The major point of difference between the two 

sets of experiments lies in the mass-flow-per-unit-area 

ratio, P0
U
0/P-

U4«  Tne experiments of Reference [35] had a 

sufficiently large ratio of free-stream to jet velocity 

U /U. so that even though the jet was denser than the 

secondary stream, the mass flow per unit area ratio (which 

will be called simply the "mass flux ratio" in the following) 

remained greater than 1.0. On the other hand, the work of 
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Fejer, et al.r with jet velocities greater than that of the 

surrounding stream, produces mass flux ratios always less 

than one. 

As Figures 5.5 and 5.6 show, the axial decay of 

centerline velocity is in every case well represented by a 

line of the form (U - U )/(U. - U ) <* (x/D)"1.  Figure 5.5 

also shows that the length of the velocity potential core 

decreases as the mass flux ratio p U /p.U. (or alternately, 

because the density ratio is constant, the velocity ratio 

U /U.) increases from 1.0.  The actual length of the 

velocity potential core for these data may, however, be 

somewhat doubtful; see the discussion of recirculation in 

this flow in Chapter 3. 

Figure 5.6 also illustrates a decreasing velocity 

potential core length with increasing mass flux ratio, for 

the Freon-air data, but the air-air data show an increasing 

velocity potential core length as the mass flux ratio 

increases towards 1.0. Further, the Freon-air data at a 

mass flux ratio of 0.128 shows a considerably longer 

potential core than the air-air data at pJO/p.U.  = 0.131. r o o j j 

As the behavior of the air-air data—increasing potential 

core length with increasing U /U.—is consistent with that 

observed in Chapter 3, and the behavior of the Freon-air 

data is consistent both with that of the data of Zawacki and 

Weinstein [35], Figure 5.5, and Landis and Shapiro [43], 
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Figure 5.3, page 265,  it would appear that the addition of 

Freon to an air jet decreased the mixing. 

Figure 5.7 illustrates the axial decay of center- 

line concentration for the data of Fejer, et al., [92]. 

Again a line of the form (C /C.) « (x/D)~ is a good c 3 
i 

approximation to most of the data, except for 

p U /p.U. ■ 1.0. The effect of changing mass flux ratio is 

not nearly so apparent on the concentration profiles as it 

is on the velocity profiles. 

Hydrogen-air mixing, with two subsonic coaxial 

streams, has been investigated by Chriss [90] and by 

Alpinieri [84].  The investigation performed by Chriss was 

quite extensive, covering eight mass flux ratios in the 

range 1.61 to 5.25 with a 0.5-inch diameter primary jet and 

a 3.5-inch diameter secondary jet. The outer stream in this 

flow was not ducted.  Because of the very low density Ipf.. 

hydrogen, it is quite difficult to obtain a mass fli^x; ratio 

p U /p .U. of less than one in a coaxial hydrogen air system 

even with U. > U .  Figure 5.8 shows the axial decay of 

centerline velocity ratio for these data. Except for the 

U /U. - 0.4, p^U /p.U. = 3.33 case, all of these data can be o j       o o j j 

fit reasonably well by lines of the form 

(U - U )/(u. - u ) * (x/p)~2, although if the last points 
C     O     j     o 

of a given set are discounted, the exponent may be somewhat 

less than two. Further, it can be seen that, except for one 

case, the length of the velocity potential core decreases as 
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the mass flux ratio p U„/p.U. increases from 1.0; no such 
o o 2   J 

correlation is possible with the velocity ratio U0/U. 

5 alone.  This trend agrees well with the data of Zawacki and 

Weinstein [35] for Freon-air mixing. 

Figure 5.9 shows the axial decay of centerline 

composition for the coaxial mixing experiment of Chriss 

[90]. Again the concentration data are reasonably well 
_2 

fitted by a line of the form C_/C. « (x/D)  , and the data c J 

show a decreasing potential core length (for concentration) 

with increasing mass flux ratio p«U /p.U.. 0033 

Figures 5.10 through 5.12 show radial profile data 

obtained from the experiments of Chriss [90]. Figure 5.10 

shows that for axial stations downstream from the end of the 

potential core, the experimental data for hydrogen-air 

mixing shows good profile similarity. For this case, the 

"cosine function" 

U - g = r'l + cosJ(r/r1/2)] (5.1) 
CO 

provides a good representation of the data. A cosine 

function.can also be used in the first regime, as is shown 

by Figure 5.11.  In this figure, r. g represents the radius 

The one case that does not fit well for these 
data may be taken as indicating that it may not be possible 
to completely characterize such flows with any simple 
parameter. 
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I 

for which U = 0.9 (U - U ).  Geometric similarity for the co ■* 
composition profiles in the second regime is demonstrated by 

Figure 5.12.  If the Prandtl number, which is the ratio of 

the transport coefficients for momentum and energy, is 

unity, then the nondimensional velocity profile 

<(>.. = (U - U )/(U - U ) should at every point be equal to 

the nondimensional enthalpy profile <f»„ = (H - H )/(H - H ). 
£1 O      G      w 

That this is not in general the case is shown by Figure 

5.13.  From this figure, an empirical relationship 

♦H - *u (5'2) 

was developed by Chriss [90] for hydrogen-air mixing. 

As well as hydrogen-air mixing, Alpinieri [84] 

also studied carbon-dioxide-air mixing.  He does not present 

axial velocity decay for his hydrogen-air mixing experi- 

ments; however, it is presented for CO^-air mixing.  As can 

be seen from Figure 5.14, these experiments, which involve a 

2-inch diameter inner jet and an 8-inch diameter duct, 

indicate a centerline velocity decay proportional to (x/D)~ . 

Further, the velocity potential core length can be seen to 

decrease with increasing mass flux ratio, p u /p.u.. 
o o 3 3 

Centerline concentration decays from both the 

C02-air and H2~air experiments of Alpinieri are presented in 
_2 

Figure 5.15. Again, it may be seen that C « (x/D)  , and 

that the length of the concentration potential core 
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decreases with increasing mass flux ratio. The very short 

potential cores of the hydrogen-air experiments are, however, 

worthy of some comment.  It will be noted from Figure 5.15 

that the mass flux ratios for the hydrogen-air experiments 

of Alpinieri [84] range from 13.5 to 25.2.  It will be 

recalled from the discussion of Chapter 3 that in the Freon- 

air configuration of Zawacki and Weinstein [35], Rozenmann 

[47] found that recirculation occurred for a velocity ratio 

U /u. greater than 26 (which implies a mass flux ratio 

P~U /P-U. of the order of 10); for air-air this was observed o o j 3 

to occur for U_/U. greater than 13. The mass flux ratios 

involved in Alpinieri's hydrogen-air experiments [84] are in 

every case greater than either of these numbers. A second 

piece of evidence can be obtained from Figure 9 of Reference 

[84], reproduced here as Figure 5.16. From this figure it 

can be seen that although in every case the velocity ratio 

U /u. at x/D = 2.5 is approximately 1.0 on the centerline, c 3 
the centerline value of composition ratio C /C. is nowhere 

greater than 0.6.  Taken together, these pieces of evidence 

seem to the author to clearly indicate the likelihood of 

recirculation phenomena in Alpinieri's hydrogen-air 

experiments. 

One other subsonic/subsonic coaxial mixing of 

dissimilar gases experiment is listed in Table 5.1, pages 

255-259.  This is the bromine-air mixing experiment of 
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Ragsdale and Edwards [89].  However, as can be seen from 

Figure 5.17, the limited data presented is too scattered to 

draw any conclusions from it. 

There are a number of different experiments on 

turbulent coaxial mixing in which one or both of the streams 

are supersonic, but despite the number of experiments the 

available data are very limited.  This is because little 

information is given in the reports listed. The experiment 

discussed in Ferri, et al., [83] involved a subsonic 

hydrogen jet exhausting into a surrounding M = 3 airstream, 

the entire flow contained within a duct. No dimensions 

are given for the apparatus in Reference [83]. Axial 

distribution of centerline composition for four velocity 

ratios are given in Reference [83], as well as radial con- 

centration profiles for x/p = 16.2.  However, comparison of 

these two figures (III-8 and III-9 of [83]) will show that 

there is a discrepancy between the centerline compositions 

shown on III-8 of [83] at x/D »16.2 and the value of the 

composition at r = 0 from III-9 of [83]. 

The hydrogen-air mixing data of Zakkay and Krause 

[85] is somewhat more detailed.  Here the primary subsonic 

jet nozzle diameter is given as 0.6 inch, and the. outer 

M = 1.55 nozzle diameter as 3.44 inches.  Both jets exhaust 

into a 12 inch diameter tube.  The only measurements 

reported in Reference [85] are of the axial decay of center- 

line composition.  These data are shown in Figure 5.18, 
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from which it can be seen that the centerline composition 

decay for these tests follows a line proportional to 

(x/D)  , as for the hydrogen-air data of Chriss [90] .  Also, 

as was previously observed, the length of the potential core 

(for composition) can be seen to decrease with increasing 

values of p U /p.U..  Figure 5.18 shows some particularly 

short composition potential cores.  In the light of the 

discussion of recirculation phenomena above, it would appear 

likely that some sort of recirculation phenomenon or a sub- 

stantial deflection of outer-flow streamlines toward the 

centerline is responsible for the very short composition 

potential core lengths shown in Figure 5.18. 

Much the same comment can probably be made about 

at least a part of the hydrogen-air mixing data presented in 

Zakkay, et al., [93], and shown in Figure 5.19.  Reference 

[94] reports some results of both subsonic/supersonic and 

supersonic/supersonic mixing experiments, carried out with 

several primary stream gases. The primary jet diameter was 

0.3 inch; it exhausted into a M = 1.6 secondary stream 

flowing through a 3.44 inch diameter duct. As can be seen 

from Figure 5.19, all of the decay of centerline composition 
_2 

curves appear to fit a (x/D)  decay line fairly well. 

The data shown in Figure 5.19 as well as addi- 

tional data are also presented by Zakkay, et al., in another 

reference [86]. A number of conclusions are reached in 

Reference [86] that are worthy of some discussion. The 
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_2 
first is that centerline composition decays as (x/D) 

This conclusion seems to be well supported by subsonic/ 

supersonic and supersonic/supersonic jet data (Figure 5.20, 

also Figure 5.19, and Figure 5.18, page 288).  However, all 

of these data are for p U /p.U. > 1.0.  For subsonic/ o o 3 j 
supersonic data, the conclusion is supported by Alpinieri 

[84] for P0U/P.:U. > 1.0, and by Chriss [90] for 

p U /p.U. > 1.0, as shown by Figure 5.21, and also by 

Figures 5.14, page 282/ and 5.9, page 276. However, for 

p u /p.U. < 1.0, the data of Landis and Shapiro [43], ro o' Kj 2 ' F 

Figure 5.22, do not support this relation. Further, the 

data of Fejer, et al., [92], Figure 5.7, page 273, also do 

not support this relation; these latter two experiments both 

display curves of the form C /C. « (x/D)" . From the data 
c j 

observed in this Chapter, it appears that in the mixing of 

two subsonic streams, the centerline concentration ratio 

C /C. is proportional to (x/D)~ for p.U /p.U. < 1.0, and 
C  j O O  j j 

_2 
C /C. is proportional to (x/D)  for p_U /p.U. > 1.0. For 
C  J O O  j    j 

supersonic/subsonic or supersonic/supersonic data, the 

centerline composition ratio appears always to be propor- 
_2 

tional to (x/D) 

Zakkay, et al., [86] note that the centerline 

composition data for a number of tests (all supersonic/ 

supersonic or supersonic/subsonic—primary jet/secondary jet) 

all collapse together on a single line if plotted versus 

x/x . This is not particularly surprising, as it is shown c 
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in Appendix B that in simple flows under some somewhat 

restrictive assumptions, the sole parameter in a coaxial 

free mixing flow is the core length ratio x /D. Since there 

is no composition boundary layer (the initial condition for 

the composition is a step function), the composition mixing 

problem treated independently of the momentum mixing problem 

can be considered as such a simple flow. However, knowing 

the value of C /C. as a function of x/V. is of little use c j c 
unless x is known as well, c 

Recognizing this problem, Zakkay, et al., set out 

to find an empirical expression for the core length as a 

function of some quantity known a priori. The expression 

that they settled on was 

5°- = 11A (5.2) 

where 

x = PJU./P0UO 

This expression was obtained by plotting the concentration 

potential core length for a number of coaxial subsonic/ 

subsonic, supersonic/subsonic, or supersonic/supersonic tests 

as a function of X. The concentration potential core length 

is obtained from the intersection of the line through the 

decay data with the C /C. = 1.0 line. ■■ c ] 
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The author has obtained these core lengths for a 

number of flows, including those investigated by Zakkay, et 

al. , and incorporating some which were not. The results are 

shown on Figure 5.23, from which it can be seen that the 

line given by Equation (5.2) is in error for all but a few 

points.  The magnitude of the errors involved are given in 

Table 5.2 for a few cases. 

It should also be noted that a combination of 

Equation (5.2) and the assumed expression for axial decay 

of centerline composition 

T£ - (|-)"2 (5.3) 
Cj   xc 

leads to a general expression for concentration decay 

jja - i § < li/r 

(5.4) 

C 
^ = 121 x(g)'2 j£ > liA 

j 

Figure 5.24 shows a comparison between the results of 

Equation (5.4) and some of the data of Reference [90].  From 

Table 5.2 and Figure 5.24, it can be seen that this correla- 

tion cannot be recommended for general engineering use. 

The data of Reference [86] also shows a variation 

in the turbulent Schmidt number ranging from 0.3 to 2.3, and 
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coaxial mixing. 

297 



AEDC-TR-71-36 

TABLE 5.2 

COMPARISON OF MEASURED CONCENTRATION POTENTIAL 
CORE LENGTHS WITH THOSE PREDICTED 

BY EQUATION (5.2) 

Investigator Ref. X 
c  m 

Meas. 

(VD>p 
Equation 
(5.2) 

Percent 
Errora 

Chriss 90 0.19 
0.30 
0.57 

2.5 
4.0 
5.2 

4.79 
6.05 
8.3 

91.6 
50.6 
59.5 

Zakkay, 
et al. 

93 0.072 
0.185 

3.85 
6.3 

2.45 
4.8 

23.4 
31.2 

Alpinieri 84 0.04 
0.66 
1.17 

1.3 
4.05 
7.5 

2.2 
8.9 

11.9. 

69.4 
120.0 
58.7 

L{[(xc/D)p-(xc/D)m]/(xc/D)m> x 100. 
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that the turbulent Lewis number ranges from 0.4 to 1.0. 

Reference [94] reports values of both the turbulent Prandtl 

number and the turbulent Schmidt number of about 0.85 for 

hydrogen-air mixing with the turbulent Lewis number being 

1.0. 

Zakkay and Krause [95] present further results 

obtained from the data partially reported in [86], in this 

case reporting the radial variation of the eddy viscosity in 

the flow.  The profiles of velocity used are fitted with a 

cosine profile, and experimental values for the half-radius 

rl/2 an^ t*ie centerline decay of velocity ratio as functions 

of x/D are used.  As was pointed out by Fejer, et al.f [45] 

the axial decay curve and the specification of the cosine 

profile automatically determine the axial variation of the 

half-velocity radius.  Thus the problem as established by 

Zakkay and Krause is overspecified.  The results of 

Reference [95] show e ■+• °° as r/r, ,- ■*• 2; this behavior is 

due to the overspecification referred to. 

The final piece of experimental work referred to 

in Table 5.1, pages 255-259, is the supersonic/supersonic 

CO_-air mixing experiment carried out by Forde [88] . As 

listed in Table 5.1, this work includes some measurements of 

radial profiles of mean flow quantities and of spread rates; 

however, no axial decay curves are presented. 
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Axisymmetric Wakes 

One of the most complex of free mixing flows is 

the axisymmetric compressible wake.  The complexity of the 

flow involves primarily its formation; since a compressible 

wake is in general formed behind a body traveling at super- 

sonic speed, the initial part of such a wake involves the 

interaction between inviscid flow shock phenomena and the 

viscous turbulent mixing flow.  This complex interaction is, 

however, outside the scope of this study.  In this work 

attention will primarily be focused on the mixing charac- 

teristics of such wakes. 

As can be seen from Table 5.3, the study of 

compressible axisymmetric wakes began only fairly recently, 

and to the present time the most extensive investigations 

have been of wakes of relatively high supersonic Mach 

numbers. The work of Zakkay and Fox [96] involves the wake 

behind a flat-faced cylindrical body mounted by wire 

supports in a Mach 11.3 wind tunnel.  The body L/D was 24; 

measurements of the axial decay of centerline Mach number 

difference ratio for this flow are shown in Figure 5.25. 

This figure shows an initial slow period of decay followed 

by a more rapid (and linear on a log-log plot) period, which 

undergoes transition to another slower decay region. 

The only other experiment which goes to relatively 

large x/D is that of Demetriades [99]. As shown on Figure 

5.26 the velocity ratio decay data for this experiment—at 
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TABLE 5.3 

AXISYMMETRIC COMPRESSIBLE WAKES 

> m 
o 
o 

30 

u 
01 

Investigator Ref, M Year   o xlO3 
D 
in. 

Radial Profiles Axial Distributions 
M U  M T U s 

U) 
o 
to 

Zakkay and 
Fox 

96 1966 11.8 

3.89 

4.5 

350.0 

0.25 
0.50 
1.0 
2.0 
1.4 

X 

X 

X X X 

X 

Demetriades 97 1967 3.0 15.25a 0.156a xb xb 

Fox, Zakkay, 
and Sinha 

98 1967 3a 
4 
5 

12 

X 

X 

x 

x 
X 

X 

X 
X 

X 
X 
X 
X X 

Demetriades 99 1968 3.0 15.25 0.156 X X X 

Sinha and 
Zakkay 100 1968 3.92 385.0 1.4 X X 

Obtained from Reference [99]. 

Normalized profiles only. 
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very much lower free-stream Mach number (M = 3) and higher 

free-stream Reynolds number/foot (15.25 x 10 compared to 
5 

4.5 x 10 for Reference [96])—also show a steepening of the 

decay curve followed by (possibly) a gradual decrease in 

slope.  Figure 5.26 compares the data of Demetriades [99] 

with that of Carmody [57] for a subsonic wake.  The x~ ' 

slope required for self-preservation does not seem to be 

overwhelmingly supported by either data. However, a better 

check for approximation to self-preservation relations, is to 

plot the data using as axial coordinate the parameter 

(x - x )/D, where x is the virtual origin. This is 

especially important in the near- and mid-ranges, where x 

may be a significant fraction of x. The approach of the 

axial velocity profiles measured by Demetriades to a decay 

-2/3 proportional to [(x - x )/D]  '  is shown in Figure 5.27; 

the fit is somewhat better. Figure 5.27 also shows that the 

axial decay of centerline temperature ratio is apparently 

approaching an [ (x - x )/D.]~ '  decay, while the centerline 

density ratio is not. 

At first glance it may seem as if the centerline 

density ratio should decay at the same rate as the center- 

line temperature ratio.  However, a simple development using 

the perfect gas equation of state will show that this is not 

so, for if 

« 

p = P/RT 
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then 

o    c 

Pp - PC .. RTQ " RTC 

RT o 

assuming constant pressure and gas molecular weight, then 

po - pc  ^o ^c  Tc - To 
Po       J-       T° To 

T  - T   T 
- (Jj ->(^) (5.5) 

o     c 

Thus Equation (5.5) shows that the centerline density ratio 

decay will behave as the centerline temperature ratio only 

for T /T a 1.0, thus at large x/D. o c 

Demetriades [97] presents fully-normalized lateral 

velocity ratio and lateral temperature ratio data for a 

M = 3 axisymmetric wake for the range 17 <_ x/D < 68.3. 

These data are reproduced schematically in Figure 5.28. 

From this figure it appears that geometric similarity for 

the temperature profiles is achieved rather quickly while 

the velocity profiles exhibit considerably more scatter. 

The initial region of a compressible wake has been 

investigated by Zakkay and Fox [96] at M = 3.89 and by 

Sinha and Zakkay [100] at M ■ 3.92; centerline Mach number 

data from these investigators is shown in Figure 5.29. 
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Sinha and Zakkay [100] also report that the centerline 

velocity ratio decays as x  in the initial region.  Their 

data are shown on Figure 5.30, along with that of 

Demetriades [99] for comparison.  If it is concluded from 

Figure 5.30 that the mid-region of the Demetriades data 

_2 supports an x  decay of cente/rline velocity ratio, then 

Figure 5.30 would also imply that the mixing for 

Demetriades' data [99] was very much slower than that shown 

by the data of Sinha and ZakKay [100].  This is supported by 

the increase in free-stream Reynolds number between the two 

sets of data; an increase in free-stream Reynolds number 

implies a greater value of the velocity difference U - U 

so that the faster mixing indicated by these decay curves 

seems reasonable. 

Summary 

Although in many cases the closest to practical 

configurations, variable-density two-stream flows have not 

been extensively studied.  In large part, this is due to the 

complexity of the flows involved, which gives rise to the 

need for complex and sophisticated instrumentation, while on 

the other hand the sheer number of variable parameters makes 

it impossible, or at least highly unlikely, to cover the 

complete range of possible flow conditions. 

Again, basically because of its complexity, this 

category of flows has only been extensively studied in 

recent years, as the entries in Table 5.1, pages 255-259 , 
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and Table 5.3, page 302, show. The jet flows listed in Table 

5.1, pages 255-259, include supersonic coaxial air jets (one 

or both streams supersonic) supersonic and subsonic coaxial 

jets of different gases, and subsonic jets with relatively 

large gaseous or temperature tracers.  The results for the 

air-air mixing case indicate that for velocity ratios U /U. 

both greater than and less than 1.0, the centerline velocity 

ratio (U - U„)/(U. - U ) is, outside the potential core, c   o   j   o 

proportional to (x/D)~  [87, 91, 43]—see Figure 5.1, page 

261. As there are only two experiments available on 

compressible coaxial air-air mixing, in both cases with a 

subsonic jet and a supersonic outer stream, further experi- 

mentation would seem to be indicated.  There is no available 

work in which the inner stream is supersonic and the outer 

stream subsonic, and this lack would seem to require 

immediate attention. 

Experiments on subsonic coaxial streams with 

temperature or concentration differences between streams, or 

with both temperature and composition different, have been 

reported by many investigators [35, 43, 84, 89, 90, 92]. 

For low speed flows these experiments show that the center- 

line velocity and temperature ratios both decay as (x/D)~ , 

and that both velocity and temperature profiles show 

geometric similarity [43].  In cases with large density 

differences between streams the controlling parameter seems 

to be the mass flux parameter p U /p.U.; see for example, 
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Figures 5.8 and 5.9, pages 274 and 276. For low subsonic 

speeds, both centerline concentration and centerline 

velocity ratio decay as (x/D)~  (Figures 5.5 through 5.7, 

pages 269, 270, 275) for p U /p.U. < 1; velocity ratio goes 

as (x/D)~ for P0
U /p.U. >  1 also.  For coaxial air-air 

mixing at low speeds, it was seen in Chapter 3 that the 

length of the velocity potential core increased as the ratio 

U /U. approached 1.0 from below.  In these flows 

U /U. = p U /p.U.. But for Freon-Air flows, Figure 5.6, 

page 270, shows a decrease in the length of the potential 

core as P0
U
0/P^

U^ increases towards 1.0.  Figure 5.8, page 

274, shows that for hydrogen-air flow with p U /p.U. > 1.0, 

the length of the velocity potential core decreases as 

p U /p.U. increases. This, however, is consistent with the o o j 3 

air-air result, as one might expect the greatest core length 

for p0u0 = PjUj. 

For hydrogen-air the velocity ratio decay is 
_2 

proportional to (x/D)  —Figure 5.8. Figure 5.9 shows that 

this is also true for composition. Also for this case [90] 

radial profiles of velocity and composition show geometric 

similiarity (Figures 5.10, page 277 and 5.12, page 279). 

The axial decay of velocity and concentration for CO, [84], 
_2 

for P0
U
0/P^

U^ > 1*0, is also proportional to (x/D) 

Coaxial mixing of two air streams, one subsonic 

and one supersonic, has been investigated by Eggers and 

Torrence [91] and by Bluston [87].  Unfortunately, both 
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experiments have substantial flaws. The behavior of the 

flow in the potential core region in the investigation of 

Eggers and Torrence [91] is somewhat strange—the centerline 

velocity, which is initially lower than the outer stream, 

velocity, at first decreases and then begins to increase. 

Possibly this phenomenon is a manifestation of something not 

too unlike the recirculation phenomena discussed before. 

Another possibility was thought to be expansion of the 

outer stream caused by an underexpansion of the outer jet in 

the nozzle, however, as the effect encountered seems to be 

largest when the outer stream is subsonic, this must be 

ruled out. Blustpn's experiment [87] suffers from the 

presentation of the data in terms only of the parameter 

x/x ; the problems with this formulation have been pointed c 

out in the text. 

Mixing of two subsonic streams with temperature or 

composition differences (or both) was studied by Landis and 

Shapiro [43] , temperature differences and trace gas addi- 

tion; Zawacki and Weinstein [35], Freon-air; Fejer, et al., 

[92], Freon-air; Alpinieri [84], H2-air and C02-air; Chriss 

[90], H2~air; and Ragsdale and Edwards [89], bromine-air. 

Initial conditions are completely reported only by Zawacki 

and Weinstein [35] and even in this case the recirculation 

phenomena discussed in the text cloud the results somewhat. 

Landis and Shapiro [43] used essentially the same apparatus 

as did Forstall [40, 41], but avoided some of the problems 
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involving the duct used evident in Forstall's experiments by 

limiting the axial traverse to 35 diameters.  Fejer, et al., 

[92] only report complete axial and radial profile data for 

one condition, while Alpinieri [84] does not present any 

lateral profiles for his H_-air results.  Chriss* results 

[90] are the most complete, including tabulated axial and 

radial profiles of enthalpy, velocity, and concentration; as 

well as calculated profiles of turbulent shear stress and 

eddy viscosity.  However, Chriss was unable to get good 

profile definition in the potential core region. 

Coaxial two-gas mixing with one or both streams 

supersonic was investigated by Zakkay, Krause, and Woo [86], 

Ferri, Libby, and Zakkay [83], and Zakkay and Krause [85]. 

The report by Ferri, et al., [83] presents too little data 

to be of great use, and as is explained in the text, the 

data that is presented is inconsistent.  Somewhat more 

detail is given by Zakkay and Krause [85], but here only 

axial decays of centerline composition are given.  However, 

it must in fairness be pointed out that the presentation of 

mixing data in both References [83] and [85] is incidental 

to the main purpose of each of these papers. 

Considerable data and data correlation is pre- 

sented by Zakkay, et al., [86].  These results include 

experiments with several gases, as described in the text. 

No initial condition data are given, and the results are 

presented in general in nondimensional form. One of the 
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conclusions of Zakkay, et al.r is that the centerline compo- 

sition is proportional to (x/D)  . The results of this 

Chapter show that this is indeed true in all cases for.flows 

with subsonic primary stream and supersonic secondary 

stream, and for supersonic/supersonic flows. For subsonic/ 
_2 

subsonic flows, C « (x/D)  appears to be valid for 

poUo/pjUj > 1*0' but for poUo/pjUj < 1'°» Cc "   (^/D)"1 

(Figures 5.7, page 273 and 5.22, page 294). 

Zakkay, et al., [86] also develop a relation for 

the potential core length (for composition), x , as a 

function of p U /p.U.. As shown in the text, this rela- Ko o'Kj j 

tionship is not in general satisfactory. 

The compressible axisymmetric wake has only been 

investigated in recent years (Table 5.3, page 302); these 

investigations have been carried out by Zakkay and Fox [96], 

Demetriades [97, 99], Fox, Zakkay, and Sinha [98], and 

Sinha and Zakkay [100], at free stream Mach numbers from 3 

to 12. Apart from the evidence presented by Sinha and 

-2 Zakkay [100] for a velocity decay proportional to (x/D)   in 

the initial region of the wake, and the evidence presented 

by Demetriades [97, 99] for approximate geometric similarity 

of velocity and temperature profiles, the information on 

axisymmetric compressible wakes as free mixing flows remains 

somewhat sketchy. 

Compressible coaxial flows are of sufficient 

importance that a flow of this type should be selected as a 
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test case for comparison with the predictions of calculation 

methods. As discussed above, the only experiment for which 

initial conditions are reported is the Zawacki and Weinstein 

[35] Freon-air experiment, but this experiment does not 

include initial shear stress profiles.  In any event, it is 

a sufficiently unusual flow to mitigate against its being 

used for this study. 

The most completely reported two-gas mixing 

experiment is by far that of Chriss [90] which includes data 

for eight different mass flux ratios. As this experiment 

includes shear stress profiles, as well as profiles of 

velocity, enthalpy, concentration, and other derived 

parameters, it has been chosen as the coaxial two-gas mixing 

experiment with which to compare the results of various 

calculation methods. 
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CHAPTER 6 

LOCALLY-DEPENDENT THEORETICAL MODELS IN 

CONSTANT DENSITY FLOW 

Introduction 

Ever since the derivation of the momentum equation 

for turbulent flow by Reynolds (see Reference [30], pages 

13-24), the fundamental problem of the analysis of turbulent 

flow has been that of closing the system of governing 

equations. This is caused by the fact that even in its 

simplest form the turbulent flow momentum equation contains 

a "Reynolds stress" term made up of a correlation of the 

fluctuating components of the turbulent velocity field which 

acts as an apparent stress.  Since the momentum equation is 

the governing equation for the mean velocity field, the 

presence of this apparent stress term introduces additional 

unknowns into the problem, and any equation derived without 

further assumptions to characterize these unknown quantities 

will in turn introduce other unknown quantities. One method 

of closing the system of equations is to formulate models 

for the turbulent shear stress in terms of already known (or 

knowable) quantities. This formulation of models can be 

handled in one of two ways—either some model can .be 

postulated for the turbulent shear stress itself, or, in 

analogy to a laminar flow, the turbulent shear stress can be 
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assumed to be given by some effective viscosity multiplied 

by a local velocity gradient.  In practice, models have been 

developed in both ways, and since an effective viscosity can 

always be defined as the local shear stress divided by the 

local velocity gradient, such models can often be used 

interchangeably. 

Both the mixing-length theory of Prandtl, 

described by Schlichting ([101], page 477) and the vorticity- 

transport theory of Taylor ([102] and [101], page 482) are 

attempts to relate the turbulent shear stress directly to 

the mean flow velocity gradient.  By contrast, in 

Reichardt's inductive hypothesis [103], a direct model for 

the turbulent shear stress in incompressible flow* üv, is 

avoided by choosing a model for the term ÜV = (T3 v* + uv) . 

The model used is chosen so as to lead to a form of the 

governing equation known to have solutions which agree with 

experimentally measured velocity profiles.  Other approaches 

to the theory of free turbulence involve relating, the 

turbulent shear stress to the kinetic energy.  The turbulent 

kinetic energy, and thus the turbulent shear stress, is 

then solved for simultaneously with the mean velocity field, 

using the transport equation for the turbulent kinetic 

energy.  These approaches will be discussed in Chapter 8. 

The alternate approach is to relate the turbulent 

shear stress to the mean velocity gradient through the 

medium of an effective, or eddy, viscosity.  This then 
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requires some formulation for the eddy viscosity.  Such an 

approach was first described by Boussinesg (see [101], page 

475); models for the eddy viscosity itself have been pro- 

posed by many investigators.  Commonly, the eddy viscosity 

is taken to be a function of the axial coordinate only, so 

that the momentum equation takes a form similar to that used 

in laminar boundary layer analyses.  The eddy viscosity may 

be taken as a locally-dependent quantity, i.e., it may be 

evaluated at given points in the flow from already-known 

mean flow quantities.  Such locally-dependent eddy viscosity 

models are discussed in this and the following chapters. 

Alternately, as is discussed in Chapter 8, a transport 

equation may be written for the eddy viscosity, to be solved 

along with other equations describing the flow.  However, 

this equation is an artificial one, while the turbulent 

kinetic energy equation may be derived' from physical 

principles. 

Mixing Length Theory 

One of the earliest formulations for the turbulent 

shear stress is the mixing-length theory developed by 

Prandtl in 1925.  The development of this theory (which is 

somewhat analogous to the development of simple kinetic 

theory of gases) is described in detail in many texts, as 

for example, Schlichting ([101], page 477).  Thus only a 

brief description will be given here. 
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The fundamental idea of mixing length theory is 

that turbulent mixing can be thought of as taking place 

between discrete "lumps" of turbulent fluid.  These "lumps" 

are envisaged as leaving a region of the flow with a 

velocity (and therefore momentum) characteristic of that 

region, and then moving a certain lateral distance, called 

the mixing length, as a discrete particle before suddenly 

mixing with other fluid of different velocity.  The actual 

mathematical development of this idea is gone into in 

detail by Alexander, et al., [27] who show that necessary 

assumptions in the development are that the turbulence 

intensity and mixing length are isotropic.  Since a 

turbulent shear flow is of course anisotropic, this is a 

rather crude assumption; it can, however, be rationalized 

by assuming that the differences between the fluctuating 

coefficients are of second-order effect compared to the 

degree of correlation of the shear stress [27]. 

In its final form, which strictly is valid only 

for two-dimensional or axisymmetric flow [27] , the Prandtl 

mixing length theory gives the relation 

_ _ n02,3Ui3U ,, .. T " pZ "äyläy (6'1) 

where 

A = cb (6.2) 
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The term £ represents the mixing length, c is an empirical 

constant, and b is a measure of the width of the mixing 

region.  Equation (6.1) has been used in the calculation of 

a variety of flows, using a number of analytical methods. 

Taking for example the jet-into-still-air, if 

self preservation of the flow is assumed, then all 

parameters become functions of the variable n = y/x, and 

the partial differential equations of motion reduce to 

ordinary differential equations which may then be solved 

using analytical or numerical techniques.  An approximate 

analytical solution technique assuming self-preservation 

was described by Tollmein for the circular jet into still 

surroundings ([101], page 607), the two-dimensional jet 

into still surroundings ([101], page 605), and the two- 

dimensional two stream mixing layer ([101], page 598). 

Prandtl's mixing length theory was used to evaluate the 

turbulent shear stress.  The two-dimensional wake was 

handled in the same fashion by Schlichting ([101], page 

600), with c = 0.18, and the axisymmetric wake by Swain 

[104] with c left to be empirically evaluated. Acharya 

[105] recalculated Tollmein's results, for the two- 

dimensional and axisymmetric cases, using a simplified 

analysis. Kuethe [106] extended Tollmein's mixing layer 

solution to the case where the two streams have different 

velocities, using I =  ex and c = 0.0174. 
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An alternate approach to the solution of a given 

free mixing problem is to assume local similarity, i.e., 

that the dependent variables are functions only of the 

variable C «■ y/b (x) ,  and solve the integrated form of the 

equation of motion written in terms of £.  This was'done by 

Kuethe [106] for the initial region of the circular jet into 

still surroundings, and by Squire and Trouncer [48] for 

axisymmetric coaxial jets.  Kuethe [106] used c = 0.0705 

(and Si  = c b) while Squire and Trouncer [48] chose c = 0.082. 

Vorticity Transport Theory 

As in the mixing length, or "momentum transport" 

theory, the vorticity transport theory envisages discrete 

"lumps" of turbulent fluid.  However, in the vorticity 

transport theory these lumps are thought of as transporting 

vorticity, whereas in the mixing length theory they are 

considered to transport momentum.  This is the key 

supposition of Taylor's theory [102] which, in its "modified" 

form also supposes that the vorticity is conserved over a 

certain mixing length I    before it is mixed with fluid in a 

region of different vorticity [107]. 

A number of the assumptions which underlie the 

Taylor vorticity transport theory have been brought out by 

various writers. First, it is assumed that the motion is in 

Clearly the assumption of self preservation 
involves postulating a functional relationship for b(x), 
while the assumption of local similarity does not. 
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two dimensions [102] which means ([101], page 483) that all 

of the vortices in the stream have axes normal to the main 

flow direction'. Then it is assumed that the fluctuating 

components of the vorticity are isotropic [27]. According 

to Reference f27] ,  in order to write the turbulent shear 

stress in terms, of a mixing length, it is necessary also to 

assume that the turbulence intensity is isotropic. The 

mathematical development of the vorticity transport theory 

is given in References [101] and [102], and in greater 

detail in Reference [27]; the result is the expression 

T = PM"5yl-5y (6'3) 

where 

*T = /2~A (6.4) 

(& being the Prandtl mixing length). 

The Taylor theory has been used in the solution 

(in self-preserving coordinates) of the momentum equation 

for the circular jet by Tomotika [108], for the plane and 

circular jet by Howarth [109], and it has also been used by 

Grodzovskiy [110] for coaxial axisymmetric jets. 

Both the momentum transport theory of Prandtl and 

Taylor's vorticity transport theory share the objection 

raised by Squire [111] that the mixing length, assumed small 

in the development of the model, is found in the course of 
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calculation not to be small.  In addition, the number of 

assumptions involved in these models is, especially in the 

case of Taylor's model, somewhat intimidating.  Such con- 

siderations have led to interest in other approaches. 

The Inductive Hypothesis 

The turbulent shear stress model proposed by 

Reichardt [103] is obtained in an entirely different manner 

from the models described above; like Taylor's theory (see 

Reference [101], page 485) it is applicable only to free 

turbulence.  The development of Reichardt's model begins 

2 with the observation that the "momentum" profiles (pU ) 

observed in free mixing take the form of exponential 

functions, such as the error function.  Thus, he reasons, 

the partial differential equation describing the free mixing 

process must have the form of a he'at conduction equation, 

i.e. , 

||= K<x) li| (6.5) 
9x       3yZ 

In order that the.momentum equation take this form, it is 

necessary that 

2 
DV = - A |S- (6.6) 
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where 

UV = (U + u) (V + v) 

= U V + uV + vU + uv 

= uv + üv (6.7) 

Note that in this hypothesis no direct model has been used 

for the turbulent Reynolds stress üv. Equation (6.6) is 

obtained as the form of ÜV necessary to put the time average 

of the x-momentum equation (neglecting viscosity): 

!x-<! + ?) + hm = 0 (6*8) 

(for constant pressure) into the form of Equation (6.5) as 

an equation for the parameter U . 

A number of calculations of various free mixing 

flows have been made using Reichardt's inductive hypothesis. 

Alexander, et al., [27] have used it in the calculation of 

an axisymmetric jet into still surroundings, Weinstein, 

et al., [36] for concurrent plane jets, and Vulis, et al., 

[112] have used the hypothesis in a number of different 

flows.  Recently, its use was reproposed by Sforza, et al., 

[113].  However, the Reichardt hypothesis has been objected 

to by Prandtl [114] on the grounds that Equation (6.5) 

overemphasizes the axial variation in the flow at the 

expense of the lateral variation. 
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Constant Exchange Coefficient Models 

The exchange coefficient models can all be traced 

back to the original Boussinesg concept mentioned in the 

introduction to this chapter. The concept of an exchange 

coefficient is based on the expression for the shear stress 

in a laminar flow, 

xL = pv |£ (6.9) 

and it is postulated that the turbulent shear stress can be 

written in terms of an effective exchange coefficient or 

eddy viscosity so that in a turbulent flow 

T - pe |2 (6.10) 

The most commonly used eddy viscosity formulation is the 

model proposed by Prandtl [114] which may be written 

e = K_b U   - U . (6.11) P ■ max   mm1 

Here K is a constant, b a measure of the width of the 

mixing region, and U   and U .  the maximum and minimum 3  3        max    min 

values, respectively, of the axial component of the mean 

velocity.  Note that in this formulation, e = e(x) only. 

The first use of Equation (6.11) in the calcu- 

lation of free mixing flows was the work of. Gortler, 

described by Schlichting [101].  Gortler's calculations, 
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based on the assumption of self-preservation, included the 

two-dimensional free jet boundary ([101], page 598) for 

which K- = 0.014, with b defined as the width between the 

point where the velocity is 0.1 of the stream velocity and 

that where it is 0.9 of the stream velocity, and the two- 

dimensional jet ([101], page 605), with K_ = 0.037, and b 

the half-velocity width; i.e., the width from the centerline 

to the point where u = 1/2 u . He further assumed a linear 

growth rate, i.e., b = ex. A similar analysis of the 

circular jet, with Kp = 0.0256, is also reported by 

Schlichting ([101], page 608). 

Later calculations using the constant-exchange- 

coefficient model of Prandtl include the coaxial jet 

calculations of Szablewski [115] (K = 0.01) and Weinstein 

and Todd [116] (Kp = 0.0047).  Szablewski's analysis assumes 

local similarity and uses the integral form of the equations 

of motion while Weinstein and Todd report a numerical 

solution of the governing partial differential equations. 

A numerical solution of the governing equations for the 

mixing of a round cold-air jet with ambient hot air at rest 

is also performed in a later work by Szablewski [117] in 

which K is taken to be 0.0082 in the first regime and 

0.0085 in the second.  The papers listed here do not by any 

means cover the entire range of reports of calculations 

using the Prandtl eddy viscosity model; they are, however, 

representative. 
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Other constant-exchange coefficients models have 

been proposed.  One such is that proposed by Pai and used by 

Chapman and Korst [118], in which the eddy viscosity is 

written as 

£ = eo (|) (6.12) 

where e  is a constant and L a length scale.  In their o 

analysis. Chapman and Korst [118] find that for a two- 

dimensional shear layer, in the range 1 < x/6  < 10 (6 

being the initial boundary layer thickness), n = 0.7. 

However, e  is found to depend on the initial conditions. 

Summary 

Of the shear stress and eddy viscosity models 

proposed for use in incompressible flow calculations, the 

two credited to Prandtl are by far the most commonly used. 

These are the mixing length theory, Equation (6.1), and the 

Prandtl eddy viscosity model, Equation (6.11). Taylor's 

vorticity transport theory, Equation (6.13) as Alexander, 

et al., [27] point out, requires many more assumptions than 

the Prandtl mixing length model without any apparent 

increase in validity. 

Reichardt's inductive hypothesis, Equation (6.3), 

is no longer as attractive as it once was, as the 

availability of large scale computing machines removes the 

advantages of using a heat-conduction type equation. 
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Further, Equation (6.6) involving as it does an empirical 

relationship for both the Reynolds stress uv and the cross 

velocity product UV seems to the author to be suspect.  This, 

and the fact that the consistent use of the Reichardt 

hypothesis involves the use of a heat-conduction equation 

rather than the boundary-layer form of the momentum equation 

used elsewhere in this work, rule out the use of the 

Reichardt hypothesis in this study. Pai's model, from the 

work of Chapman and Korst [118], does not seem to the author 

to be of a generally useful nature. 

Thus the mixing length theory and the Prandtl eddy 

viscosity model will be used in this study. As the dis- 

cussions above have shown, the values of the constants used 

in these models vary from investigator to investigator.  One 

of the ground rules of this study is that the same constants 

must be used in all calculations, and it might seem that the 

choice of constant would be difficult to make.  In actual 

fact, however, the choice is not very critical, since a wide 

enough range of experimental conditions is being used to 

give each model selected a good chance of representing the 

experimental results for some flow. The constant selected 

for use with the Prandtl mixing length, Equation (6.1}, is 

c = 0.082, as was obtained by Squire and Trouncer [48] from 

an experiment on a circular jet into still surroundings, and 

used in their calculations of coaxial mixing. 
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For use with the Prandtl eddy viscosity model, the 

set of constants used by Peters [119] will be used here. 

Thus, for regime I, K = 0.007 while in regime II, 

K- = 0.011.  It is worth noting that for the cosine profiles 

that Peters [119] used in his integral analysis in the 

second regime of mixing, the constant K = 0.011 used with 

the Prandtl eddy viscosity model predicts the same value of 

T at the half-velocity point as does the constant c = 0.082 

used in the Prandtl mixing length model. 
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CHAPTER 7 

LOCALLY-DEPENDENT THEORETICAL MODELS IN 

VARIABLE DENSITY FLOW 

Introduction 

As problems in which turbulent mixing occurs 

between two streams of different densities are of great 

practical importance, the development of shear stress and 

eddy viscosity models for use in a variable density flow 

has been of considerable interest.  The most obvious 

approach is to take one of the models described in Chapter 6 

and simply apply it directly, perhaps with a change in 

constant, to a variable density flow.  This method has not 

been very successful, which has led to the investigation of 

other models. 

There are four approaches that can be taken to the 

establishment of shear stress models in a variable-density 

flow. The direct one is to attempt to develop a model for 

variable-density flows by correlating variable-density flow 

experimental data.  Such an approach has been used by Ferri, 

et al., [83], Alpinieri [84], and Zakkay, et al., [86].  In 

each case the result is a modification to a constant-density 

model, which reduces to the appropriate form for constant 

density flow. Another approach is to attempt to derive a 

model in such a manner that the effects of variable-density 
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are included, so that both constant-density and variable- 

density flows can be calculated.  The displacement thickness 

model developed by Schetz [120, 121] falls into this class. 

The empirical constant established in this model is 

evaluated in an incompressible flow and it is expected to 

apply to variable-density flow as well. 

In the third approach to models for the eddy 

viscosity in a variable-density flow an incompressible eddy 

viscosity model is made applicable to a compressible flow by 

the use of an empirical correction factor, commonly related 

to some characteristic Mach number. Examples of such 

correction factors and their use are given by Warren [70], 

Donaldson and Gray [67], and Peters [119]. 

The fourth approach is to attempt to find a 

transformation of the compressible-flow governing equations 

that will convert them to the appropriate constant-density 

form.  The transformed equations can, in principle, then be 

solved using an eddy viscosity model developed for constant- 

density flow, and the results transferred back into physical 

coordinates. Commonly the time-averaged equations of motion 

are transformed into an incompressible form using the 

Howarth transformation [122], but it has been suggested 

[123] that the transformation be applied to the instan- 

taneous equations and the resulting equation time-averaged. 

Solutions using such transformations have been obtained by 

Channapragada and Wooley [124] and Libby [125] among others.. 
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Ferri Eddy Viscosity Model 

The development of the Ferri model for the eddy 

viscosity proceeds from the realization that the Prandtl 

eddy viscosity model, Equation (6.11), predicts that no 

mixing will take place when the streams are of equal 

velocity, even if substantial temperature or density 

differences exist between the streams. Quoting Reference 

[83], "this is not consistent with the fact that in these 

cases a dissipative mechanism still exists due to heat con- 

duction or concentration changes that would sustain 

turbulence." To circumvent this problem, Ferri, et al., 

[83] propose the modified model 

p£ = (p.)c = KFr1/2|poUo-pcUc| (7.1) 

where r, ,2 is the radial location at which 

PU = |[PcUc+P0Uo] (7.2) 

Ferri, et al., recommended for K a value of 0.025.  Note 

from Equation (7.1) that the Ferri model requires that 

pe = constant laterally; i.e., that the product pe = pe(x) 

only. 

Alpinieri Eddy Viscosity Model 

In his experiments, Alpinieri [84] established a 

flow in which the ratio pÄU /p U. was near unity. For this o o c c 
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case, the Ferri model, Equation (7.1) predicts a vanishing 

eddy viscosity coefficient, yet Alpihieri's experiment 

indicated substantial mixing.  Since both the Prandtl model, 

Equation (6.11), and the Ferri model, Equation (7.1), were 

known to giye reasonably good results for some flows, 

Alpinieri reached the conclusion that the proper eddy 

viscosity formulation must contain a term that becomes 

important when U = U and PQU = Pc
ue* This reasoning, 

coupled with a correlation of his experimental results, led 

Alpinieri to an eddy viscosity formulation given by the 

equation: 

pe = (pe)0 = KAr1/2P0(uc + A (7.3) 

where U. is the primary jet velocity and r. ,, is the radius 

at which U = 1/2 (U + U ). Alpinieri reported a value for 

K of 0.025. Again note that the formulation implies that 

the product pe is a function only of x. 

Zakkay Eddy Viscosity Model 

Zakkay, et al., [86] obtained an asymptotic form 

for the eddy viscosity through use of an asymptotic, 

linearized solution of the transformed governing equations 

with turbulent Prandtl and Lewis numbers of unity.  The 

solution used was that obtained by Libby [125]; one of the 

necessary assumptions of this solution is that e = e(x) (in 
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the incompressible, transformed plane).  This asymptotic 

solution and the requirement that the potential core length 

x /r. , be given by the expression 
c J 

xc/rj - K[PjUj/poUo]
1/2 (7.4) 

led to an asymptotic eddy viscosity form 

E = KZrl/2Uc (7-5> 

where r-,/2 *~8  tne half velocity radius, and K = 0.011 [86] 

Two things ought to be mentioned in regard to Equations 

(7.4) and (7.5):  first, that the potential core x is the 

concentration potential core length which is equal to the 

velocity potential core length only under the assumption 

that the turbulent Prandtl and Lewis numbers are unity; 

secondly, Equation (7.4) itself is not entirely accurate— 

see the discussion of this relationship in Chapter 5.  It 

should also be noted that Equation (7.5) indicates 
7 

e = constant laterally; i.e., e = e(x). 

Schetz Displacement Thickness Model 

Taking a different approach than those described 

7 
To be strictly accurate, Equation (7.5) is 

obtained in Reference [86] using an analysis which evaluates 
the eddy viscosity only along the centerline.  No restric- 
tion on Equation (7.5) is stated in Reference [86], and it 
has been assumed herein that it can be used throughout the 
flow field. 
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above, Schetz [120, 121] sets up a model that incorporates 

the effect of density variations in a more fundamental 

manner.  After noting that for a planar flow, the Prandtl 

model. Equation (6.11), and the Clauser model 

e - 0.018 UQ6* (7.6) 

where 6* is the displacement thickness 

00 

6* =   |1- g-|dy (7.7) 

'—00 

are equivalent, Schetz proposes an extension of the Clauser 

model to a compressible flow simply through an extension of 

the definition of the displacement thickness, which becomes 

00 

. In - -fig 
J O i 

«* - /I1 - T^TH^Y (7-8> 

and so 

pe - KcpoUo6* (7-9) 

That the incompressible Clauser model is equivalent to the 

Prandtl eddy viscosity for a planar flow is easily shown. 

Consider for example a planar wake.  It is shown in Chapter 

3 that for such a wake, the velocity profiles may be written 
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u   - u 
ü2-r-ö-» *(n> 

o        c 

where 

n = y/b(x) 

Then 

6* = b(x)   ||l - g-|dn = b(x)   /|-2- |dn 

u    - u 
b(x)|-2ü—£|   |f,(n)dn 

— 00 

O 

so that from the Clauser model 

I   = K2b|UQ  -  Uc| (7.10) 

which is formally the equivalent of the Prandtl model, 

Equation (6.11). 

All this, however, suffices only for planar flow. 

For axisymmetric flow the compressible displacement 

thickness must be redefined.  This Schetz does, defining a 

new displacement thickness by the equation 
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»P0V{
2
 

=/lpouo " pu'27Tydy . <7-xl> 

and the new eddy viscosity model becomes 

yT(x) - pe - rT
(poV6?2) (7,12) 

for Kgir, Schetz gives the value 0.018. 

One objection to this can immediately be raised, 
2 

which is that the definition of 6* is {as it must be) 

indeterminate for the jet-into-still-air.  Moreover, if one 

assumes similar profiles of the form 

U-u 

tr=8--f(,,) 
c o 

where (7.13) 

n = y/b(x) 

then (7.11) becomes for incompressible flow 

Trtr o r IV "Uo '/'»A J      c    o 
o 

00 

|b2 Jf(n): 
o 

= IV. "V 2ndn 

=.K3|UC-U0|b
2 
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so that 

K K 
yT(x) = pe = -f-2- pb

2|üc-Uo| 

which, for a given flow, implies 

e = c1b
2|uc-U0| (7.14) 

whereas the Prandtl model, Equation (6.11), states 

e = Kpb|Uc-U0| (7.15) 

Thus, for U ■*• 0, where models such as Equation (7.15) are 

known to provide good results, Equation (7.12) will clearly 

predict an eddy viscosity which will increase too rapidly 

as the mixing zone thickness increases. 

Compressibility Corrections 

The "compressibility correction" approach to the 

problem of obtaining an eddy viscosity model valid for a 

variable-density flow assumes that the influence of variable 

density in the mixing layer can be accounted for by 

correcting the empirical constant in an incompressible eddy 

viscosity model.  This correction—to the constant K_ in the 

Prandtl eddy viscosity model—was evaluated by Donaldson and 

Gray [67]; their evaluation was extended by Peters [119]. 

Donaldson and Gray found that the influence of variable 
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density in the mixing layer could be generalized if the 

constant K^ was taken to be a function of the Mach number at 

the half-velocity radius,  M . Peters [119] extended the m 

correlation and found a curve-fit for it: if IL is the 
o 

value of the constant in the Prandtl eddy viscosity model 

for constant-density flow, then 

K 
=~- = 0.66 + 0.34 exp(-3.42 M?) (7.16) 
K.p m 

o 

Compressibility.Transforms 

For Prandtl number of unity and for viscosity 

variation proportional to temperature, it is well known that 

the laminar, compressible boundary layer form of the 

equation of motion for zero pressure gradient can be 

transformed to the incompressible form by defining a new 

lateral coordinate Y by the equation 

= \ P/PQdy Y = Jp/p„dy (7.17) 
o 

where y represents the physical lateral coordinate. This is 

the Howarth transformation for a laminar boundary layer. 

Although the application of the Howarth transfor- 

mation directly to the instantaneous equation of motion has 

been proposed by Snyder [12 3], in general the application of 

the Howarth transformation to turbulent flow has followed 
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the approach of Mager [122] in which it is applied to the 

time-averaged equations, coupled with some assumptions 

regarding the invariance of the shear stress. 

Application of the Howarth transformation leads to 

equations for the transformation of the eddy viscosity which 

are different for two-dimensional or axisymmetric flows. 

These expressions, which were first developed by Ting and 

Libby [126] , are derived in Appendix D.. The results are: 

Two-Dimensional Flow 

p2e = p2e* (7.18) 

where the asterisk refers to the incompressible eddy 

viscosity and p is a reference density, and 

Axisymmetric Flow 

r2p2e = 2p2je* f (£-)r'dr' (7.19) 

r 

/(L-jr'dr1 

° 

where the asterisk and p have the same meanings as above. 

In both cases, r, p and e refer to the radius, density, and 

eddy viscosity in the compressible flow.  Both Equation 

(7.18) and (7.19) involve the definition of a reference 

density. The choice of this reference density is one of the 

more important problems of the transformation theory, as the 

lateral and axial variation of the transformation depends on 

the definition.  Unfortunately, theory gives no guidance for 

the choice. 
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A two-dimensional compressible flow solution using 

Equation (7.18} has been performed by Channapragada and 

Woolley [124].  In two-dimensional flow, Deverall and 

Channapragada [127] have shown that the assumption regarding 

the invariancy of the shear stress under the transformation 

(see Appendix D) is superfluous, as under the Howarth 

transformation the shear stress 

T =J[PU|^+ pv|£]dy + Ao(x) 
o 

is invariant across any axial section. 

The Ting and Libby form of the eddy viscosity for 

axisymmetric flow has been used by Libby [125] in a 

linearized analysis of free mixing processes.  It has also 

been used by Kleinstein [128] in a similar analysis. 

Summary 

It is interesting to note that the five models 

proposed in this section for the calculation of a variable 

density flow (discounting for the moment the Donaldson and 

Gray correction) incorporate three different expressions for 

the variation of e.  Thus, the Ferri model [83] and the 

Alpinieri model [84] require that the product pe be constant 

laterally while the Zakkay model [86] implies that e is 

constant laterally.  The Schetz model again requires that 

pe be constant laterally, but the two-dimensional Ting-Libby 

transform says that given e = e(x) in the incompressible 
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2 
flow, then p e is constant laterally for the compressible 

flow.  This prescription does not hold for axisymmetric flow 

under the Ting-Libby transform, as Equation (7.19) shows.. 

It seems curious that the axisymmetric Ting-Libby transform 

does not reduce to the two-dimensional transform.  However, 

as shown in Appendix D, different assumptions are required 

in the derivation of each version. 

Since the practical effects of the various eddy 

viscosity formulations are of interest in this study, the 

Ferri model, Equation (7.1), the Alpinieri model, Equation 

(7.3), the Zakkay model, Equation (7.5), and the Schetz 

model, Equation (7.9) will all be compared in detail to the 

range of selected experiments.  The Donaldson and Gray 

correction [67] is primarily of interest at higher Mach 

numbers than are included in this study; however, calcu- 

lations for a few flows were made using this correction. 

Libby [125] gives a solution in terms of tabulated 

functions for a general coaxial mixing flow using the 

Prandtl eddy viscosity model, through use of the Ting-Libby 

eddy viscosity transformation under the assumption that the 

Prandtl and Lewis numbers are both unity.  The solution is 

in the transformed plane; to get back to the compressible 

plane the transform must be inverted using the parameters of 

the particular experiment in question.  As part of this 

study, a computer program has been written to perform this 

inversion.  The mathematical details of the program follow 
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Libby [125].  The results of these calculations for several 

of the hydrogen-air experiments of Chriss [90] will be 

compared with the results obtained through use of other eddy 

viscosity models. 
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CHAPTER 8 

HISTORY-DEPENDENT THEORETICAL APPROACHES 

Introduction 

In recent years methods of calculating turbulent 

flows which involve the consideration of the physical 

mechanism by which the turbulent shear stress is created 

have become of interest.  The reason for this interest has 

been well put by Bradshaw [129] with reference to boundary 

layer flow; his statement also holds true for free mixing 

flows: 

No great advance in boundary-layer prediction can 
be made without in some way considering the 
mechanism by which turbulent shear stress is pro- 
duced, and in particular allowing for the fact 
that the shear stress at a point depends on the 
upstream history of the flow and not only the 
local mean flow, because the lifetime of the. 
stress-producing eddies may be many times the 
boundary layer thickness. 

Two ways of including the history of the flow in 

computing its development have been described to date.  One 

method, described by Nee and Kovasznay [130], involves the 

development of a rate equation for the turbulent eddy 

viscosity.  This rate equation is then solved simultaneously 

with the other equations describing the flow.  The other 

approach is to use the turbulent kinetic energy equation as 

a means of obtaining the turbulent shear stress.  The 
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rationale for this approach is also described by Bradshaw 

[129]: 

The shear stress is almost a by-product of the 
turbulent fluctuations and it seems inevitable that 
to derive the shear stress we require some know- 
ledge of the processes which determine the 
turbulent intensity together with a relation 
between the intensity and the shear stress.  The 
chief merit of examining the turbulent intensity 
rather than the shear stress is that turbulent 
intensity amounts to a kinetic energy per unit mass 
of the fluctuation and obeys a conservation equa- 
tion which is more tractable than the related 
Reynolds equation for the shear stress. . . . 

This method clearly requires that a relationship exist 

between the turbulent shear stress and the turbulent kinetic 

energy.  The data described in Chapters 2 and 3 show that 

a relation does exist between these two quantities; other 

evidence is to be found in References [12], [55], and [132]. 

The existence of such a relationship and the availability of 

high-speed computing machines have stimulated interest in 

this approach, as is evidenced by the work of Bradshaw, 

et al., [55] on boundary layer flows, and Laster [131] and 

Lee and Harsha [132] on free mixing flow. 

Eddy Viscosity Rate Equation 

As will be discussed in the following section, the 

formulation of the turbulent kinetic energy equation as 

developed by Bradshaw, et al., [55] and Laster [131] 

requires the specification of three empirical relationships, 

one for the diffusion of turbulent kinetic energy, one for 

the dissipation of turbulent kinetic energy, and one for 
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the relationship between the turbulent shear stress and the 

turbulent kinetic energy.  The approach used'by Lee and 

Harsha [132] specifies the form of the diffusion function, 

but this method then requires the specification of a 

diffusion coefficient for the turbulent kinetic energy.  Nee 

and Kovasznay [130] devise a rate equation for the turbulent 

eddy viscosity which involves only two empirical constants, 

but which, like the turbulent kinetic energy approach, 

includes the past history of the flow, through the medium of 

a convective term. 

Nee and Kovasznay start by defining a turbulent 

eddy viscosity using the expression 

* - WSy (8-1) 

in this formulation e is a scalar quantity.  They next note 

that in general, any transportable scalar quantity F subject 

to the conservation laws is transported according to the 

equation 

3P 
~ + (U*V)F = V*<J>_ + production - decay      (8.2) 

where the underscore indicates a vector quantity and the 

term $_ represents the flux of F due to diffusion.  Assuming 

that the total turbulent viscosity n = e + v is also a 

transportable scalar quantity that obeys the conservation 
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laws and that the turbulent motion diffuses by itself, so 

that the diffusion coefficient for n is n, then Equation 

(8.2)'becomes 

|g + (U-V)n = V- (nVn) + G - D (8.3) 

Expressions for the production term G and the decay term D 

are also devised by Nee and Kovasznay.  The chosen 

expressions are 

G = A(n-v)||2| 

D = —=■ n(n-v) 
IT 

(8.4) 

where A and B are universal constants and L is a length 

scale which depends on the flow.  The resulting system of 

equations solved by Nee and Kovasznay [130] are 

<*v|2 1 dP       3   ,   3u\ 
pdx+  3ym3y; (8.5) 

3U+ IX =   o 
3x       9y       u (8.6) 

«i+vw |y<»g» + a<"-"> I If I 

 a- n(n-v) 
IT 

(8.7) 
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which embody the assumption of two-dimensional steady quasi- 

parallel flow. 

Solutions of Equations (8.5) and (8.6) were 

obtained in Reference [130] for several turbulent boundary 

layer flows, with reasonable results.  However, at the 

recent Stanford Symposium [133] the Nee and Kovasznay 

approach did not compare favorably with other approaches— 

including the kinetic energy calculations of Bradshaw, 

et al., [55].  In fairness, the unfavorable rating given 

this method was primarily a result of excessive computing 

time, which may be correctable. 

A more fundamental objection to the Nee and 

Kovasznay method is that it is essentially a sophisticated 

technique for obtaining an imaginary quantity. The produc- 

tion and dissipation terms cannot be based on physical 

arguments, as they can, at least in principle, when the 

turbulent kinetic energy equation is used to evaluate the 

turbulent shear stress, for the turbulent eddy viscosity is 

an imaginary quantity.  Thus, the economy of having only two 

empirical constants seems to the author to be offset some- 

what by the lack of any real physical knowledge of two of 

the terms of the governing equation.  Again in fairness, 

however, it will be seen below that the terms of the kinetic 

energy equation are themselves only loosely related to the 

physics of the flow. 
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The Turbulent Kinetic Energy Approach 

In order to use the turbulent kinetic energy 

equation to calculate the turbulent shear stress in a free 

mixing problem, it is necessary that there exist a relation- 

ship between the turbulent shear stress and the turbulent 

kinetic energy. One such relation was proposed by Glushko 

[134] and by Patankar and Spalding [135]; it involves 

defining an eddy viscosity by the equation: 

UT - AkPk" 
1/2 (8.8) 

2    2    2 where k = 1/2 [u + v + w ] , and SL.   is a length scale for 

the turbulent kinetic energy.  The overscore represents a 

time average.  The turbulent shear stress is then given by 

T = Akpk- 1/2 JS (8.9) 

A more direct relation was described by Dryden [136] in 

discussing the work of Nevzgljadov.  This relationship, 

which relates the shear stress directly to the turbulent 

kinetic energy, 

T = a^k (8.10) 

where a, may be a function of the lateral coordinate, has 

been used by Bradshaw, et al., [55], Laster [131], and Lee 

and Harsha [132]. A correlation of this relationship with 
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available experimental data has been carried out by Harsha 

and Lee [12]. This correlation shows that (1) a. can be 

considered to be constant over a significant lateral region 

in any given flow, and that (2) in the region where it can 

be considered constant, a value of 0.3 is appropriate. As 

implied by (1) and (2) above, there is a lateral variation 

of a.. Equation (8.10) implies that the shear stress is . 

always of the same sign as the kinetic energy. However, it 

is known that at the centerline of a symmetric flow the 

turbulent shear stress is zero, while the turbulent kinetic 

energy is not, and that there exist flows, such as jets, in 

which the turbulent shear stress is negative while the 

kinetic energy is positive.  The modification of Equation 

(8.10) to account for these regions has been handled 

differently by different investigators.  Thus, Bradshaw, 

et al., [55], being concerned with a boundary layer flow in 

which the shear stress is positive and drops to zero only 

where the kinetic energy does also, were able to assume a 

constant value of a, , equal to 0.3, with the definition of 

a, used here.  Laster [131] and Lee and Harsha [132] on the 

other hand were both faced with both regions of zero shear 

stress and nonzero kinetic energy and with regions of 

negative shear.  Laster [131] ichose to handle the former 

problem with an empirical (polynomial) fit for the radial 

variation of a, , so that 
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a, = constant 
*<!> 

(8.11) 

where f(r/b) ■ 0 for r = 0.  Laster did not consider 

problems in which the sign of the shear stress changed; thus 

he was able to arbitrarily establish the sign of a. before 

starting a calculation.  Lee and Harsha [132], on the other 

hand, chose to give the turbulent shear stress the same 

sign as the velocity gradient, and to model the radial 

variation of a, in terms of the velocity gradient so that, 

for axisymmetric flow 

»i - 0.3 S / |*rl   ° I r i rm 3r ' '3r' max 

n  0 9U .   I3Ui 
r™ < r m 

►   (8.12) 

where |3U/3r|   is the maximum value of the velocity J     'max J 

gradient in a profile and r is the radial location of this 

maximum.  For planar flow, the correction was applied only 

near maxima or minima within the profile where 3U/3y ~  0, 

so that 

a, = 

a, - 

'  3y '   'ay1   3y * ° ■*    •* max ■* 

0.3 IS/ |1£, 
3y .'ay' 

elsewhere 

(8.13) 
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The region in which the correction was applied ordinarily 

encompassed of the order of 5% of the total mass flow of the 

stream. 

Given some relationship between the turbulent 

shear stress and the turbulent kinetic energy, the problem 

becomes one of establishing the appropriate form of the 

turbulent kinetic energy equation.  Using the turbulent 

kinetic energy equation to evaluate the Reynolds stress term 

of the momentum equation does not itself solve the turbulent 

closure problem.  Indeed, the turbulent kinetic energy 

equation incorporates two terms involving unknown quantities 
i 

and their derivatives.  In block diagram form the turbulent 

kinetic energy equation can be written, for steady flow, as 

CONVECTION = DIFFUSION + PRODUCTION - 

- DISSIPATION        (8.14) 

or, in words, the net convection of turbulent kinetic energy 

through a volume element in the fluid is equal to the 

diffusion of turbulent kinetic energy into the volume plus 

the production of turbulent kinetic energy in the volume 

minus the amount of turbulent kinetic energy dissipated (by 

viscosity, into heat) within the volume. The formal repre- 

sentation of the terms of Equation (8.14) can be obtained 

from the time-averaged turbulent momentum equation in a 

rigorous manner. Thus, Hinze [30] shows that (using 

Cartesian tensor notation) 
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CONVECTION - U.3k"/3x. 

DIFFUSION " " 3x. <Vp + k)1 + v 3x^4 

3U. 
PRODUCTION = - U.U. -s—"■ i 3 3x± 

3u. <Tü. 
DISSIPATION V 3xA 3xi 

(8.15) 

where the last term is strictly equal to the dissipation 

only for an isotropic flow. The lower case letters refer to 

turbulent fluctuations, while upper case indicates mean flow 

values.  The convection and production terms give no 

problems, as they are both defined in terms of known (or 

knowable) quantities.  However, some approximations must be 

made for the diffusion and dissipation terms to get them 

into a form suitable for computation. 

All approaches to date that use the turbulent 

kinetic energy equation have used essentially the same form 

for the term representing the dissipation of turbulent 

kinetic energy. This term, which is recommended by 

Patankar and Spalding [135] as "in accordance with dimen- 

sional analysis," is: 

a2pir V2 
DISSIPATION = -=—0  (8.16) 

where a~ is a parameter which may vary spatially and SL.   is a 
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"mixing length" for turbulent kinetic energy.  Bradshaw, 

et al., [55] define a parameter L by the relation 

3/2 
L = (£)   /e (8.17) 

where x = a, pic; this parameter is then modeled as a function 

of the lateral coordinate using experimental data for a flat 

plate boundary layer.  Lee and Harsha [132] took the 

parameter a, in Equation (8.16) as a constant, which was 

determined by trial and error in the calculation process; 

the value obtained was 1.5.  This is equivalent to setting 

L in Equation (8.17) equal to a^/JL where JL was taken as 

the width of the mixing region b. 

In contrast to the formulation of the dissipation 

term, considerable controversy surrounds the choice of a 

diffusion term. As the rigorous expression for the 

diffusion term in Equation (8.15) shows, the diffusion of 

turbulent kinetic energy contains both a convective 

diffusion term u.k and a gradient term 3k/3x..  The gradient 

diffusion term is commonly considered to be small in 

comparison to the convective diffusion term.  These two 

modes of diffusion can also be thought of in relation to the 

turbulent eddies in the flow.  Thus if diffusive processes 

are carried out by the action of the large eddies, mixing 

fluid on a large scale, the diffusion ought to be convective 

in nature while if the diffusion is carried out within the 
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smaller eddies in the flow, then it should appear to be a 

gradient diffusion process.  Some observations of turbulent 

flows favor the hypothesis that the turbulent energy is 

distributed by the large eddies—see, for example, Grant 

[53]—but some of the other limited evidence available on 

the relative importance of the two terms, e.g., Watt [62], 

seems to favor gradient diffusion. 

The entire controversy might be somewhat moot were 

it not that the choice of diffusion function leads to two 

quite different formulations of the mathematics of the free 

mixing problem.  If one chooses a convective diffusion 

model, which relates the diffusion of kinetic energy to a 

"diffusion velocity," ft, one is led, as shown by Bradshaw, 

et al.f [55] and Laster [131] to a system of equations— 

continuity, momentum, and kinetic energy—which is 

hyperbolic.  If, on the other hand, one chooses a gradient 

diffusion model, i.e., one in which the diffusion of 

turbulent kinetic energy is proportional to the kinetic 

energy gradient, 

DIFFUSION oc -|lS (8.18) dy 

the resulting system of equations can be made parabolic. 

In the hyperbolic formulation, Bradshaw, et al., 

[131] neglect the term 

3x±3xi 
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in Equation (8.15) and use as the diffusion term: 

DIFFUSION = pkfl.  They establish the convection velocity ß 

by relating it to the maximum shear stress across a layer, 

i.e. , 

a = (-S^)    G(y/<5) (8.19) 

where G(y/5) is modeled from experimental data for the ratio 

   T    V2 
G = (v|) + vk)/(-SS)    £ (8.20) 

This formulation has been used by Laster [131] in a free 

mixing system, with fairly good results.  Laster [131] 

extended the work of Bradshaw, et al., to compressible flow, 

as well as extending it to a free-mixing flow.  The details 

of this calculation are described in Reference [131] and 

will not be repeated here. 

The greatest disadvantage of the hyperbolic 

formulation of the problem is that it becomes exceedingly 

complex when applied to a complex problem, which requires 

the solution of the energy and/or species equations as well 

as the momentum, continuity, and kinetic energy equations. 

This is because in a hyperbolic formulation each new 

dependent variable introduces an additional characteristic 

direction. Thus a problem with five dependent variables— 

axial and lateral velocity components, U and V, turbulent 

kinetic energy k, total enthalpy H, and jet species 
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concentration c—involves five characteristic directions, 

and the numerical problem of searching for the intersection 

of the five characteristic lines involved becomes formidable. 

For this reason the writer feels that the parabolic approach 

has greater overall promise than the hyperbolic approach. 

As an example, the author has successfully used the para- 

bolic turbulent kinetic energy formulation in the 

calculation of a number of turbulent, coaxial, hydrogen-air 

mixing flows with nonunity Prandtl and Schmidt numbers, for 

which the continuity, momentum, total (mean-flow) energy, 

species, and kinetic energy equations are solved simul- 

taneously. As of yet, this has not been attempted using the 

hyperbolic formulation.  Because of its greater flexibility, 

and in the author's opinion, greater promise, the parabolic 

formulation of the turbulent kinetic energy solution of a 

turbulent free mixing problem will be described in detail. 

Like the approach of Nee and Kovasznay [130], the 

parabolic formulation of the turbulent kinetic energy 

problem proceeds from the definition of a parameter 

c - -üv = T/P ,P 91» e " Wäy  3U/8y IB.ZJ.J 

In analogy to the formulation of the conservation equations 

for the mean flow, the diffusion term for the turbulent 

kinetic energy, for two-dimensional or axisymmetric flow, is 

defined as 
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DIFFUSION:  - ±- i-[p $£  §|] (8.22) 
y  *    k ■* 

where a = 0 for plane flow and a = 1 for axisymmetric flow. 

The term Pr, in the diffusion expression plays the same role 

for the kinetic energy of turbulence as does the turbulent 

Prandtl number in the mean flow energy equation.  It too is 

a ratio of the turbulent eddy viscosity to a coefficient for 

energy transfer.  Thus, Pr. is termed a "Prandtl number" for 

turbulent kinetic energy. 

With this expression for the diffusion term, the 

conservation equation for turbulent kinetic energy becomes 

«TT3k J.  „w3k -13 rpy
a „ 3k, 

pUäx" + pV-§7 ■ "a 37[PT^ e 3y] 

3U 2 k  3/2 

+ f>e v - a2pV- (8'23) 

when (8.16) is used for the dissipation term and (8.21) for 

the production term.  The primary reason for formulating the 

turbulent kinetic energy equation as a parabolic equation is 

to enable it to be solved simultaneously with the other 

parabolic equations governing the flow.  Under the boundary 

layer assumptions, and further assuming that the gas mixture 

is at most two gases, and that there are no chemical 

reactions occurring, the remaining equations are 
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y     * 
9£ =  0 (8.24) 

Momentum 

rT3U _,     „3U       1     3   r     ot     3U, 
pu33E + pv37 = ^ ^ytpY e ^7] (8.25) 

Total   (Mean-Flow)   Energy 

pü3^ +   pV3y" 

.a. i_ jL{pyl£rM 
a  By1  Pr   l3y 

+   ( Pr 
Pr, 

1J§+   »«-l>fe(§-)]> (8.26) 

Species 

a 
.TT3C _73C  _   1     3   rpy  e   3C, 
PUH +   pV3y" " IT  3y [Sc- *y] (8.27) 

where 

and 

where 

U,V - components of mean-flow velocity 

H  - total enthalpy 

C  - mass fraction of jet gas 

Pr - turbulent Prandtl number = pC e/ic 
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and 

C  - specific heat 
P 

K  - thermal conductivity 

Sc - turbulent Schmidt number = e/D 

With the additional relations 

e =  V? 
3U/3y 

and 

T = alPkf (^) 

and incorporating the modifications given by Equations (8.12) 

and (8.13) , Equations (8.23) through (8.27) represent a 

system of five equations in five unknowns, U, V, H, C, and k. 

The solution to this system is obtained using a modified and 

extended version of a program written by Patankar [135] for 

the solution of an arbitrary number of simultaneous para- 

bolic partial differential equations.  This numerical 

procedure has also been used to make all other calculations 

described in this study with the exception of the inversion 

of the Libby solution [125] described in Chapter 7.  The 

details of the numerical procedure are given in Appendix E. 

It should be noted that the formulation of the 

turbulent kinetic energy equation, Equation (8.23), is 

strictly valid only for an incompressible flow.  Laster 
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[131] has derived the appropriate equation for a com- 

pressible flow, including density fluctuations, and has 

shown that the effect of these density terms is to add 

another term to Equation (8.23).  His calculations, however, 

showed that this term was very small, and hence the formu- 

lation given by Equation (8.23) would appear to be adequate 

for a compressible flow. 

Summary 

The realization that a promizing line of approach 

to the calculation of turbulent flows is opened by the 

inclusion of the history of the turbulent structure in the 

shear stress formulation has led to the development of two 

types of methods of including flow history. The first 

method is the rate equation formulation of Nee and Kovasznay 

[130] in which an equation is devised describing the con- 

servation of the total turbulent viscosity n = e + v. This 

equation is obtained from consideration of the general form 

of the equation of conservation for a transportable scalar 

quantity and from consideration of reasonable forms for 

terms describing the production and dissipation of the 

turbulent eddy viscosity. The resulting equation is then 

solved simultaneously with the momentum and continuity 

equation to obtain the velocity field. 

This method has been used in the computation of 

turbulent boundary layer flows [130] and [133], but to the 

writer's knowledge it has not been applied to free turbulent 
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mixing. Further, this approach seems to the author to have 

been overtaken by the development of the turbulent kinetic 

energy approach, for this latter approach can be looked on 

as utilizing a rate equation for the turbulent shear stress, 

one which can be derived on a somewhat more rigorous 

physical basis. 

The turbulent kinetic energy approach involves the 

use of an empirical (and apparently quite general) relation- 

ship between the turbulent shear stress and the turbulent 

kinetic energy. Given such a relationship, the turbulent 

kinetic energy equation can be used to provide a rate 

equation (in Nee and Kovasznay's terms) for the turbulent 

shear stress. This formulation does not of course solve the 

familiar closure problem, as the turbulent kinetic energy 

equation itself involves unknown correlations of the 

fluctuating velocity components and their derivatives.  Some 

recent work has been done on obtaining approximate relations 

for these unknown terms in a semi-rigorous manner [137], but 

calculation methods using the turbulent kinetic energy 

equation have to date all used empirical approximations. 

Approximations are necessary for both the 

diffusion and dissipation terms of the turbulent kinetic 

energy equation. All calculations made to date have used 

essentially the same formulation for the viscous dissipation 

of turbulent kinetic energy.  The diffusion term has, 

however, been modeled in two ways.  If one assumes that the 
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diffusion process is primarily carried on by the large 

eddies of the flow, one is led to a convective formulation 

of the diffusion term. This approach was followed by 

Bradshaw, et al., [55] and by Laster [131]. On the other 

hand, one can assume that diffusion is carried on by the 

smallest eddies, and thus that the diffusion process itself 

is a gradient diffusion process.  Such an assumption has 

been used by Lee and Harsha [132]. 

The difference between the two assumptions is 

primarily mathematical—convective diffusion leads to a 

hyperbolic system of equations and gradient diffusion to a 

parabolic system. For a simple flow the hyperbolic system 

of equations allows the use of an efficient computational 

technique, the method of characteristics. However, the 

simplest flow involves three characteristics (one normal, 

as in boundary layer flows the static pressure is assumed 

constant laterally), and thus consideration of flows with 

variable temperature and concentration can become 

exceedingly difficult. The parabolic system on the other 

hand, is easily extended to the computation of more complex 

flows.  Thus, this approach, described in Reference [132] 

for a simple flow, has been extended in this study to the 

calculation of more complex flows involving temperature and 

concentration gradients. Calculations have been made of all 

of the flows considered, ranging from two-dimensional wakes 

to coaxial variable density jets. These calculations, 
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together with those based on other transport models, will be 

described in the following Chapter. 
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CHAPTER 9 

CONFRONTATION OF THE THEORETICAL MODELS WITH 

THE EXPERIMENTAL DATA 

Resume of the Selected Experiments 

The experimental data with which the predictions 

of the various shear stress models will be: compared can be 

put into six categories.  The first of these is the circular 

jet-into-still-air.  To confront the theoretical models with 

a more complex but still relatively simple flow, two-stream 

air-air coaxial mixing has been chosen.  The-effeet of 

density differences on the predictions made by the various 

models in a coaxial mixing system is investigated using a 

hydrogen-air coaxial mixing experiment, while compressi- 

bility effects are represented by an experiment on a super- 

sonic jet-into-still-air.  Finally, two examples of wake 

flows have been chosen, one axisymmetric and the other 

two-dimensional.  Table 9.1 presents the important 

parameters for the experiments selected for use in this 

confrontation. 

The incompressible circular jet-into-still-air is 

the most widely investigated flow configuration, as was seen 

in Chapter 2.  Thus, there exists a large body of data, 

including both mean flow and hot-wire (turbulence structure) 

measurements.  Although there is a scale effect of the 
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CHARACTERISTICS OF THE SELECTED EXPERIMENTS 

> 
m 
o o 

to 

oo 

Ref. Type 

U. 
3 

ft/sec V°j 
"0
D0 Re 

xlO-4 
Basis 
of Re 

Initial 

U   H 

Profiles 

C     T Investigator »o°j Location 

Bradshaw, 18 Circular (M= _ 35.0 U.,D. X X x/D= 2.0 
et al. Jet 0.03) 3     3 

Paulk 42 Coaxial 412 0.371 0.417 10.9 U.,D. X X X x/D= 8.5 
Jet 405 0.125 0.138 10.75 3     3 X X X x/D= 6.8 

Forstall 40 Coaxial 225 0.20 0.217 2.98 U.,D. X x/D= 0 
Jet 120 0.25 0.272 1.59 3     3 x/D= 0 

Chriss 90 Coaxial 3300 0.158 1.785 11.65 U.,D. X X X X x/D= 5.4 
Jet 3200 0.227 2.57 11.30 3     3 X X X X x/D= 4.6 

3050 0.263 3.12 10.75 X X X X x/D= 4.6 
2400 0.333 4.16 8.48 X X X X x/D= 4.0 
1900 0.416 5.25 6.71 X X X X x/D= 4.8 
3100 0.218 1.61 10.95 X X X X X/D= 5.9 
2450 0.312 2.44 8.65 X X X X x/D= 5.3 
1950 0.400 3.33 6.89 X X X X x/D= 4.8 

Eggers 72 Circular 1765 - - 265.0 VDj X X X x/D=14.5 
Jet 

Chevray and 52 2D Wake - - - . 0.16 Veoa X X x« 0 
Kovasznay 

Chevray 57 Circular 
Wake 

90 275.0 VD X X x= 0 

u a 

6 - momentum thickness at x = 0. o 
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nozzle exit Reynolds number, as was described in Chapter 2, 

all of the data available for the circular jet-into-still- 

air fall into a relatively narrow band of U /U. versus x/D. 
c  j 

The mean flow profiles are commonly found to exhibit 

geometric similarity a short distance from the end of the 

velocity potential core. There are a number of experiments 

available in which the turbulence structure of the near 

field was investigated, and a number of other experiments in 

which the mean flow profiles were investigated far from the 

origin.  However, there is no single experiment which covers 

the whole range from very near to very far field.  Thus, the 

following approach was decided upon:  a specific detailed 

near-field experiment, which included turbulent shear stress 

measurements, would be chosen to start the calculations, and 

a composite of the far-field experiments would be used to 

compare with the resulting far-field prediction.  The 

initial condition is taken from the experiment of Bradshaw, 

Ferris, and Johnson [18]; this paper presents profiles of 

the mean velocity U and the turbulent fluctuations u', v*, 

and w1 at x/D = 2.0. From these latter quantities the 

profiles of the turbulent kinetic energy per unit mass k can 

be calculated. The profiles at x/D = 2 are used for all 

calculations made comparing the predictions of the various 

models with the jet-into-still-air data; the k profile is of 

course suppressed when eddy viscosity models are used. 

369 



AEDC-TR-71-36 

The coaxial air-air mixing system is the next 

simplest system and it is thus a logical next step in the 

confrontation of theory and experiment. While at first 

glance there would seem to be a number of experimental 

results available for a fairly wide variety of outer-to- 

inner stream velocity ratios, closer inspection, as in 

Chapter 3, shows that experiments with U /U. of 0.5 and 

above are generally not reliable. The reliable data seem, 

with some exceptions, to be limited to U /U. <_ 0.5. 

Turbulent structure data is available for two coaxial air- 

air mixing flows.  However, as was discussed in Chapter 3, 

both of these experiments involve phenomena which make them 

unsuitable for use in this study. Except for the data of 

Paulk [42], all of the coaxial flows available have been 

ducted. Paulk's is an unducted free mixing flow but has 

only a very short second regime. On the other hand, the 

velocity ratio U/U. =0.2 and 0.25 data of Forstall [40] 

both exhibit long second regimes, and do not seem to be 

substantially affected by any pressure gradient within the 

duct. However, Forstall's data are limited to profiles of 

the velocity and trace-gas composition, while Paulk's 

include both turbulent shear stress, velocity, and total 

enthalpy profiles, the latter because the outer stream was 

slightly heated. Both Paulk's and Forstall's experiments 

have been selected for use in this confrontation. Calcu- 

lations for the Forstall case are started at the nozzle 
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exit, x/D = 0, using the velocity boundary layer thickness 

shown in Forstall's thesis [40] and an assumed 1/7 power law 

profile for all but the kinetic energy calculations. These 

are begun at x/D = 0 using the measured velocity profiles 

and shear stress profiles obtained from these velocity 

profiles using the Prandtl eddy viscosity model, with 

K = 0.007. The flow in all cases is assumed to be incom- 

pressible without a trace gas; i.e., p./p - 1.0. Eddy 

viscosity calculations (and the mixing-length model) for the 

data of Paulk are begun with a 1/7 power law profile for the 

velocity and a 2/7 power law profile for the total enthalpy. 

The mixing layer thickness is assumed to be 0.0015 ft on a 

0.0416 ft diameter nozzle. Although the density ratio for 

this flow is not much different from one, this density ratio 

is preserved in order to bring out whatever effect this 

might have on the predictions made by the various models. 

The kinetic energy calculations for Paulk's experiment start 

downstream from x/D = 0 (but still within the potential core 

region). This is done to allow these calculations to begin 

with a reasonably accurate measured turbulent shear stress 

profile. The turbulent Prandtl number was assumed to be 

0.60 for all calculations. 

In order to test the effects that the hypotheses 

for the variation of the parameter pc that are inherent in 

various models for c (or pc) have on the predictions made by 

these models, a series of coaxial hydrogen-air mixing 
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experiments are used. Although there are a number of 

coaxial hydrogen-air mixing experiments available, as well 

as experiments involving other gases, such as C02 or Freon 

and air, none is nearly as detailed as the hydrogen-air 

mixing work of Chriss [90], which includes profiles of mean 

velocity, hydrogen concentration, and total enthalpy. 

Turbulent shear stress data from these experiments are 

reported in Reference [94].  All eight cases from these data 

are used in this study, encompassing a range of the mass 

flux parameter p U /p.U. of 1.61 to 5.25.  Although no data 

at x/D = 0 are reported by Chriss (except for a limited 

boundary layer survey which indicates that the boundary 

layers were "thin") eddy viscosity (and mixing length) 

calculations are started at x/D = 0, assuming 1/7 power law 

profiles for U, 2/7 power law profiles for H, and linear 

profiles for C, ranging from one at y = 0 to zero at the 

maximum value of y.  The mixing layer thickness is assumed 

to be 0.0013 ft (on a 0.0416 ft diameter nozzle).  This 

assumption is based on the limited initial boundary layer 

data presented in Reference [90].  Kinetic energy calcula- 

tions are started downstream of the potential core to insure 

reliable initial shear stress profiles; the measured 

profiles of the velocity, concentration, total enthalpy, and 

turbulent shear stress are used.  All calculations of this 

hydrogen-air data have assumed that the turbulent Prandtl 
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number is 0.85 and the turbulent Lewis number equals 1.0. 

These values are consistent with the experimental data. 

The available data on compressible flows is 

relatively limited, but an experiment involving a com- 

pressible flow is needed to test both compressibility 

corrections and the eddy viscosity models expected to apply 

to a compressible flow.  Since one of the latter is the 

kinetic energy theory, such an experiment should include 

measured shear stresses.  There is only one available 

experiment from which experimental shear stresses can be 

obtained—this is the M. = 2.22 jet-into-still-air experi- 

ment of Eggers [12].     This experiment is quite completely 

reported, including profiles of U, pU, pe(= x/3U/3y) and e. 

The values of £ were obtained by Eggers by integrating the 

mean flow momentum equation to various control surfaces, 

smoothing curves through the resulting shear stress data, 

and differentiating the results.  This is essentially the 

same technique used by Paulk [42] and Chriss (described in 

Reference [94]), but Eggers [72] gives no details of how the 

smoothing was carried out. To check Eggers1 results, a 

version of the Patankar program used in this study (see 

Appendix E) which uses an arbitrary spatial distribution of 

eddy viscosity in tabular form rather than an eddy viscosity 

model was run using Eggers' measured eddy viscosities and 

starting with his measured velocity and total enthalpy 

profiles at the first axial station (x/D = 14.5) for which 
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an eddy viscosity profile is available.  The results 

reproduced the experimental distributions of velocity satis- 

factorily, indicating that Eggers' eddy viscosities are 

consistent, within the experimental accuracy, with the 

remainder of his data.  This method of recomputation has 

also been applied to the data of Paulk [42] and of Chriss 

[90]; the results in every case have been satisfactory. 

Calculations using locally-dependent models were 

started using measured velocity and total enthalpy profiles 

at x/D = 0.  Kinetic energy calculations were begun at 

x/D = 14.5, using,the measured eddy viscosity, velocity, 

and total enthalpy profiles at this station. A turbulent 

Prandtl number value of 0.6 was used in all calculations. 

Incompressible wake flows are of considerable 

academic and practical interest.  Because of this, two 

types of wakes have been selected. Both wakes are incom- . 

pressible, and both experiments involve the initial region 

of the wake, in which the centerline velocity ratio U /U 

ranges from zero to 0.90.  The axisymmetric wake is repre- 

sented by the data of Chevray [57] and the two-dimensional 

wake by the data of Chevray and Kovasznay,[52].  Both 

experiments include detailed (hot-wire) turbulent shear 

stress profiles, and calculations of both of these flows are 

begun at x = 0 using measured velocity and, where necessary, 

shear stress profiles. 

374 



AEDC-TR-71-36 

Resume of the Selected Theoretical Models 

The theoretical models for the turbulent shear 

stress that are considered in this study have been described 

in detail in Chapters 6, 7, and 8.  Table 9.2 summarizes the 

models that will be used.  The parameter b appearing in 

Table 9.2 is the width of the mixing layer, which is ordi- 

narily defined as the distance from the point where the 

axial mean velocity ratio equals 0.1 to the point where the 

velocity ratio equals 0.9.  The term r, ,- is the half- 

velocity width, defined as the value of the lateral 

coordinate for which U - U = 1/2(U - U ). o       c   o 

The first model listed in Table 9.2 is the 

classical Prandtl mixing length model, the expression for 

which is given in Schlichting [101].  In calculations made 

with this model, the same expression is used for both the 

first regime (potential core) and the second regime. The 

constants chosen for use in this study are those reported by 

Squire and Trouncer [48]. This choice allows a comparison 

to be made between the predictions made by the finite 

difference program' used in this study and the similar- 

profile, integral analysis used by Squire and Trouncer. 

Figure 9.1 shows the results of this comparison. The most 

important points of comparison are the asymptotic slopes of 

the predicted decay curves; these should agree irrespective 

of the predicted potential core length. From Figure 9.1 it 

can be seen that this is indeed the case.  It can also be 
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Figure 9.1.  Comparison of predicted axial decay of center- 
line velocity using Prandtl mixing length:  integral 
analysis and finite-difference analysis. 
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seen from Figure 9.1 that the finite difference approach 

(which starts with a finite initial boundary layer thick- 

ness) predicts shorter potential core than the integral 

approach; it also is capable of predicting a gradual 

transition from the potential core region to the second 

regime, which the integral technique cannot, because of its 

reliance on geometrically similar profiles. 

Prandtl's eddy viscosity model, the second model 

listed in Table 9.2, is probably the most widely used eddy 

viscosity model.  The form listed in Table 9.2 is that given 

by Prandtl [114].  Two constants are used for this model, 

one for the potential core region and one for the second 

regime. This approach was suggested by Peters [119] who 

also suggested the values of the constants listed in the 

table. 

The displacement thickness model proposed by 

Schetz [120, 121] is of recent origin and thus has not been 

widely used.  It has been developed in order to incorporate 

density differences between mixing streams in a somewhat 

more rational manner than is possible for other eddy 

viscosity models, and is based on an eddy viscosity model 

used in two-dimensional boundary layer work. 

Schetz [121] has shown that this model is equiva- 

lent to the Prandtl eddy viscosity model for a two- 

dimensional mixing layer and he used it for both the first 

and second regimes of mixing.  However, in the present study 
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the Prandtl mixing length theory was used for the core 
o 

region.  The effects of this difference on the predictions 

made by the Schetz model are shown in Figure 9.2, which 

compares calculations made in this study with those 

presented by Schetz [121]. As for the comparison of the 

calculation of the present study with those of Squire and 

Trouncer using the mixing length model, it is to be expected 

that the trends of the axial decay of centerline velocity 

curves will be similar.  For the air-air calculation, with 

U /U. = 0.50, a small difference in the predicted slopes is 

evident.  The reason for this difference is unknown, but it 

does not appear to be significant.  On the other hand, the 

slope agreement for the hydrogen-air calculation also shown 

on Figure 9.2 is quite good.  Schetz' work described in 

Reference [121] did not include a calculation of the 

potential core region for this flow. 

The Ferri [83], Alpinieri [84], and Zakkay [86] 

models are all efforts to generalize the Prandtl eddy 

viscosity model to a variable density flow.  However, they 

differ from each other in a number of details.  The Ferri 

model is a relatively straightforward adaptation of the 

Prandtl model:  the mass flux difference |p U - p U I is 1 c c   o o' 

substituted for the velocity difference [U — U |.  In 

o 
This was done because Schetz, in Reference [120], 

did not make clear the application of his model to the first 
regime of mixing.  His work in Reference [121] has since 
clarified this point. 
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Figure 9.2.  Comparison of calculated velocity decay using 
Schetz theory: Schetz calculation [121] and present 
study. 
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keeping with this substitution, the half-radius is defined 

as the lateral coordinate at which pU = 1/2[p U + p U ] c c   o o 

rather than the usual half-radius definition. This evalua- 

tion of the half-radius is unique to this model.  The Zakkay 

model [86] was obtained from asymptotic expressions for the 

far-downstream velocity profile and thus in this model the 

velocity difference |u - U | is replaced by the centerline 

velocity U alone. Alpinieri [84] derived his model to c 

match experiments in which, as is discussed in Chapter 5, 

the flow may have been more like a wake in character than a 

jet.  Thus it is not to be expected that this model will 

agree well with experiments in which this is not the case. 

The kinetic energy theory is conceptually quite 

different from any of the eddy viscosity models previously 

discussed.  Instead of evaluating ehe shear stress or eddy 

viscosity based on some locally-dependent quantity such as 

the mean-velocity gradient, the kinetic energy theory 

relates the turbulent shear stress to the turbulent kinetic 

energy per unit mass.  This method has been discussed in 

detail in Chapter 8; briefly, it rests upon a relationship 

between the turbulent shear stress and the turbulent kinetic 

energy which has been shown from experimental data to be 

quite general [12].  Given this relationship, the turbulent 

shear stress is solved for simultaneously with the other 

dependent variables in the flow field using the turbulent 

kinetic energy equation in parabolic form. However, using 
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this equation involves developing expressions for certain of 

its terms, as has been described in Chapter 8.  In an 

alternate form, the turbulent kinetic energy method has been 

applied to boundary layers by Bradshaw, et al., [55] and to 

free mixing flows by Laster [131].  An application of the 

method used here to two simple flows has also been reported 

[132].  However, none of the calculations reported in this 

study have been previously reported. 

In this section the prediction of the Ting-Libby 

eddy viscosity transform [126] as used by Libby [125] will 

be compared with selected hydrogen-air mixing experiments. 
• i 

The Donaldson and Gray |compressibility correction [67] as 
|        I 

modified by Peters [119] will al'so be used in conjunction 

with the Prandtl eddy viscosity model in comparison with 

selected hydrogen-air experiments and the compressible jet 

experiment. 

The comparison which follow will primarily be 

made on the basis of curves of the predicted axial decay of 

centerline velocity.  The reasons for using such a 

comparison have been discussed in Chapter 1; here some 

further comments are made.  Figure 9.3 shows a comparison of 

fully-normalized radial profiles predicted by all of the 

models considered herein for one of the coaxial air-air • 

mixing experiments of Forstall [40],  It can be seen that 

when the profiles are presented in this manner, there is 

little to choose between them as far as accuracy is 
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Figure 9.3.  Comparison of fully-normalized profiles 
predicted by various models with coaxial air-air mixing 
data.  Data from Forstali 140], U /U. = 0.2, x/D = 24. 
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concerned.  If, on the other hand, semi-normalized radial 

profiles such as those shown in Figure 9.4 are used for the 

same data, incorrect conclusions can be drawn.  This can be 

explained as follows:  if a given calculation satisfies the 

requirement that the value of the momentum integral remain 

constant, and if the calculations result as they normally do 

in geometrically similar profiles, then the axial decay of 

centerline velocity and the axial variation of the velocity 

half-width r, ,~ cannot be specified independently.  If the 

axial decay is predicted to occur at too great a rate, so 

that at a given axial station the predicted centerline 

velocity is too low, then the half-width at the same station 

must appear to be too large in order that the momentum 

requirement be satisfied. Thus either the centerline 

velocity or the half-width distribution would in principle 

serve for purposes of comparison, but the centerline 

velocity is more commonly reported. 

Centerline velocity decay curves are unequivocal; 

they do not depend on the definition of any other quantity. 

Further, as was described in Chapter 1, in logarithmic form 

they indicate not only the error at a given axial station, 

but also the trend of the error.  For these reasons, center- 

line axial decay of velocity curves are used in the 

following confrontation; there will, however, also be a 

brief presentation of some pertinent profile data. 

384 



AEDC-TR-71-36 

Figure 9.4. Comparison of semi-normalized velocity profiles 
predicted by various methods with coaxial air-air mixing 
data of Forstall [40]:  U /U. = 0.2, x/D = 24. 
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The system of equations solved in this study is 

given by Equations (8.24) through (8.27), page 361.  These 

equations are derived under the standard boundary layer 

assumptions, and further assume a two-gas mixture (for the 

dissimilar-gas calculations), and that no chemical reactions 

occur.  The various turbulent shear stress models are 

incorporated into this system through the eddy viscosity, 

e, except in the case of the turbulent kinetic energy 

method.  In this case, Equation (8.23), page 360, is solved 

simultaneously with Equations (8.24) through (8.27) .  The 

numerical technique used is described in Appendix E. 

Confrontation I;  The Mixing Length Theory 

Despite the widespread use that the Prandtl mixing 

length theory has seen, when it is applied to a variety of 

flows with a single constant for all calculations its 

predictions are poor.  This conclusion is not particularly 

surprising, for it has long been known that good results 

with the Prandtl mixing length theory can only be achieved 

through a judicious juggling of constants. 

As shown by Figure 9.5, the asymptotic slope of 

the decay curve predicted by mixing length theory is 

inaccurate for both incompressible and compressible jet- 

into-still-air flows.  With a constant of 0.082, the 

prediction of the core length is fairly good for the 

incompressible case, but inaccurate for the compressible 

flow.  The situation is much the same for coaxial air-air 
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Figure 9.5. Comparison of prediction of mixing length theory 
with jet-into-still-air data. 
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mixing, as can be seen from Figures 9.6 and 9.7.  Here again 

the slope is too low, but a reasonably good prediction of 

the velocity potential core length is made. 

For hydrogen-air coaxial mixing, the mixing length 

theory still underpredicts the.rate of decay by a sub- 

stantial amount, and this underprediction increases as the 

ratio p U /p.U. increases from 1.0.  This is shown by 
o o 3 j ■* 

Figure 9.8, which also shows that the previously good record 

this model has shown for the prediction of the velocity 

potential core length is spoiled by the data for 

p U /p.U. > 2.  Overall, the level of agreement for the 

hydrogen-air data, as for the air-air data, is unsatisfactory. 

On the other hand, the mixing length model does 

rather well in predicting the early velocity increase on theJ 

centerline of a wake.  This is shown by Figures 9.9 and 9.10, 

for an axisymmetric and a two-dimensional wake, 
9 

respectively.  Note, however, that the downstream predic- 

tions of the mixing length theory deteriorate for both two- 

dimensional and axisymmetric wakes. As for two-stream jets, 

the asymptotic trend of the prediction is wrong. 

Confrontation II:  Prandtl Eddy Viscosity Model 

The Prandtl eddy viscosity model is probably the 

single most widely used eddy viscosity model.  But just as 

g 
Note that 6Q on Figure 9.10 is the boundary 

layer thickness at the edge of the flat plate forming the 
wake. 
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Figure 9.6.  Comparison of predictions of mixing length 
theory with coaxial air-air data of Paulk [42]. 
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Figure 9.9.  Comparison of prediction of mixing length 
theory with data for the initial region of an 
axisymmetric wake.  Data of Chevray [58]. 
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the mixing length theory, it is commonly used with constants 

selected in such a way as to properly predict a given flow; 

these constants are different from investigator to investi- 

gator, and even for different configurations in a given 

study. 

Figure 9.11 illustrates the performance of the 

Prandtl eddy viscosity model with the constants chosen for 

use in this study in predicting the two jet-into-still-air 

experiments selected.  It can be seen that the prediction in 

the incompressible case is reasonably good, with a good 

prediction of the potential core length and a fair level of 

agreement with the asymptotic slope of the decay data. 

Clearly the trend is to underpredict the rate of decay.  The 

situation is not as good in the compressible case, also on 

Figure 9.11; here both the core length and the rate of decay 

predicted by the Prandtl eddy viscosity model are clearly 

considerably in error. 

Again as for the mixing length model, the 

predictions made by the Prandtl eddy viscosity model for the 

velocity potential core length in coaxial air-air mixing are 

reasonably good.  This is shown by Figures 9.12 and 9.13. 

The slope prediction made by the present model is con- 

siderably better than that made by the mixing length theory 

for these flows, but the rate of mixing as measured by the 

decrease in centerline velocity is still underpredicted. 
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Figure 9.11.    Comparison of predictions of Prandtl eddy 
viscosity theory with jet-into-still-air data. 
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Figure 9.12.  Comparison of predictions of Prandtl eddy 
viscosity theory with coaxial air-air data of Paulk [42] 
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Note also that the core length prediction for the Forstall 

"run E" case (Figure 9.13) is not quite as good as that of 

the mixing length theory. 

The prediction of mixing made by the Prandtl eddy 

viscosity model for a coaxial hydrogen-air system is not 

satisfactory, and it becomes more unsatisfactory as the mass 

flux ratio p U /p.U. increases from unity. This is depicted 

in Figure 9.14.  The theory predicts that as the ratio 

p U /p.U. increases, the length of the velocity potential 

core increases, while the rate of decay remains essentially 

the same.  The data, on the other hand, indicates a 

decreasing core length with increasing mass flux ratio, and 

an increasing rate of decay of centerline velocity with 

increasing P0
U
0/P^

U«  Tne prediction of the axisymmetric 

and two-dimensional wake data made by the Prandtl eddy 

viscosity model is quite similar to the prediction made by 

the mixing length theory.  Figures 9.15 and 9.16 illustrate 

the predictions of the Prandtl eddy viscosity model for 

these flows. 

Confrontation III;  Schetz "unified Theory" 

The displacement thickness model proposed by 

Schetz [120, 121] is one of the very few recently proposed 

nrtbdels for the eddy viscosity for a free turbulent flow 

which is not merely a restatement of the Prandtl eddy 

viscosity model, although some of the ideas behind the 

Prandtl eddy viscosity model are inherent in this model 
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Figure 9.14.  Comparison of Prandtl eddy viscosity theory 
with coaxial H2-air mixing data of Chriss [90). 
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Figure  9.14.      (continued) 
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Figure 9.15.  Comparison of prediction of Prandtl eddy 
viscosity theory with data for the initial region of an 
axisymmetric wake.  Data of Chevray [58]. 
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x/6. 

Figure 9.16.  Comparison of prediction of Prandtl eddy 
viscosity theory with data for the initial region of a 
two-dimensional wake.  Data of Chevray and Kovasznay [52] 
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also.  Unlike most other locally dependent models, Schetz 

has formulated his model incorporating a single and 

hopefully universal constant. 

Application of the Schetz model to the jet-into- 

still-air case is not really fair, since the displacement 

thickness is not readily defined in this case.  However, 

since finite-difference calculations of free mixing flows 

often approximate a single-stream flow by incorporating a 

small but finite velocity at the outer edge of the mixing 

layer (as does the technique used in this study) it is of 

interest to observe the behavior of the model as U o 

approaches zero. Figure 9.17 illustrates this behavior. As 

was pointed out in Chapter 7, for the case U -*■  0, the 

Schetz model behaves like the Prandtl model with the width 
2 

scale b replaced by b /r.. This explains the drastic drop 

of the centerline velocity curve and the extreme over- 

prediction of the mixing at any given axial station apparent 

in Figure 9.17.  Because this calculation, like all of the 

others made in this study, conserves momentum and predicts 

geometrically similar profiles, the predicted jet width at 

x/D - 20 is huge compared to the predictions of other 

models.  Figure 9.18 illustrates this fact well; even for 

r/r. = 15, the local velocity ratio U/U is still equal to 
D c 

0.8. Returning to Figure 9.17, the prediction of the Schetz 

model for the compressible jet-into-still-air can be seen to 

also be very inaccurate.  The slope is not as wrong as for 
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Figure 9.17.  Comparison of predictions of Schetz "Unified 
Theory" with jet-into-still-air data. 
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r/r. 

Figure 9.18.  Comparison of semi-normalized velocity 
profiles predicted by various theoretical models for 
the jet-into-still-air at x/D = 20. 
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the incompressible jet.  However, this apparent improvement 

may be an artifice of the calculation procedure.  In the 

case of the incompressible jet, the chosen ratio of jet 

centerline velocity to the edge velocity was 0.01, while for 

the compressible jet this ratio, U /U. was taken to be 0.07, 

as this was the lower-velocity limit of the data presented 

in Reference [72]. At x/D = 15 for the incompressible jet, 

U /U is still equal to 9.  But for the compressible jet at 

x/D = 20, the ratio U /U =2.6.  This is because the jet co J 

velocity U. = 1785 fps, so U ■ 0.07 U. = 125 fps.  Thus by 

x/D = 20, or earlier, the compressible jet calculation may 

be behaving like a coaxial mixing calculation. 

The Schetz model (used here only in the first 

regime) performs much better for coaxial air-air mixing 

systems than for the jet-into-still-air case.  Figures 9.19 

and 9.20 illustrate this.  However, the predicted asymptotic 

slope of the decay curve is, in all but one case, too large. 

The case for which the slope prediction appears to be good 

is the U /U. = 0.371 data of Paulk [42], Figure 4.19, page 

237.  The constant in the Schetz model was evaluated by 

Schetz [120, 121] from considerations of the best fit with 

Forstall's U /U. = 0.5 data. While these data have not been 

used in this confrontation because of their lack of agree- 

ment with the momentum integral criterion, and because of 

problems related to their initial conditions, it seems quite 
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possible that the Schetz model will agree best in the 

coaxial air-air mixing case when the velocity ratio is in 

the neighborhood of 0.5. 

The Schetz model provides a better prediction of 

the hydrogen-air mixing data used in this study than any 

other locally-dependent eddy viscosity model.  It is also 

the only locally-dependent model which predicts an 

increasing centerline velocity decay rate as the ratio 

p U /p.U. increases from 1.0, which may indicate that the Ho o'Kj ] x 

method which Schetz uses to include the effect of density 

differences is fundamentally more sound than that used in 

the other eddy viscosity models. Figure 9.21 illustrates 

the behavior of the Schetz model in comparison with experi- 

mental data.  It can be seen from Figure 9.21 that the axial 

decay curve slope predicted by the Schetz model is in all 

cases reasonably close to the slope experimentally measured. 

The deviations in the velocity potential core length from 

the experimental values seen in Figure 9.21 cannot be 

charged to the Schetz model as Prandtl mixing length was 

used for the core region in all of these calculations.  In 

his comparison with some of these same data [121], Schetz 

does not start the calculations at x = 0 but rather begins 

them using experimental profiles downstream of the end of 

the experimental velocity potential core. 

From Figure 9.21 it can be seen that there is a 

progressive change in the character of the axial decay 
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Figure 9.21.  Comparison of Schetz "Unified Theory" with 
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417 



AEDC-TR-71-36 

1.0 

0.8 

0.6 

0.4|- 

Vc ~  OQ 

0.2 

1.0 

Uc - "c 
Uj - u0 

0.8h 

0.6| 

0.4 

9 

O 

0.2 

0.1 

J—IT 1  T~ T   1 T  1  T  

a \ 

Run 18B 

- 

V 
a 

a 

VUj  - 0.33, 

Po/Pj  - 12.3, 

PoVPjOj  " 416 

- 

o \ Sun  17A 

°\ U^Uj - 0.416, 

po/Pj  - 12.5, 

o> PoV^j - 5" 
- 

J L J. 
6   8 10 

x/D 

20 

1     ' L 
40   60  80 100 

Figure 9.21.  (continued) 

418 



AEDC-TR-71-36 

curves of the Schetz model from the linear (on a log-log 

plot) character at low values of p U /p.U. which is also 

characteristic of other models at all values of this 

parameter—to a shallow s-curve shape which becomes quite 

pronounced at larger p U /p.U. values.  Figure 9.22 shows 

the fully-normalized velocity and shear stress radial 

profiles calculated at two axial stations for the data of 

Chriss, run 17A, which had the most pronounced change in 

slope.  The calculations, which of course use the Schetz 

model, show that there is no pronounced change in the 

velocity profiles between the two stations, although the 

farther downstream station shows a quicker velocity profile 

cutoff.  Since the fully-normalized velocity profiles were 

shown in Chapter 5 to follow a "cosine" velocity profile, 

which gives (U - UQ)/(Uc - UQ) = 0 at r = 2r1/2 , the cutoff 

shown for the x/D = 12.8 profile on Figure 9.22 represents 

an inaccuracy; the cutoff is also reflected in the shear 

stress profiles (T/T  ) also shown on the figure.  However, * max 

experience has shown that these effects at the calculated 

edge of the mixing layer do not exert a substantial effect 

on the calculations, leading to the conclusion that the 

s-curve shape shown in Figure 9.21, pages 415-418, reflects 

a change both in velocity decay slope and in half-width 

growth.  The reasons for this change remain obscure. 

Figures 9.23 and 9.24 depict the performance of 

the Schetz model as compared to data for the increase of 
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Figure 9.22. Comparison of calculated velocity and shear 
stress profiles at two axial stations:  coaxial 
H2-air mixing, Schetz model. 
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Figure 9.23.  Comparison of prediction of Schetz "Unified 
Theory" with data for the initial region of an 
axisynvmetric wake.  Data of Chevray [58]. 
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Figure 9.24. Comparison of prediction of Schetz "Unified 
Theory" with data for the initial region of a two- 
dimensional wake.  Data of Chevray and Kovasznay [52]. 
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centerline velocity in axisymmetric and two-dimensional 

turbulent wakes.  Interestingly, the behavior of the calcu- 

lations is different for the two wakes, with the initial 

increase in velocity being overpredicted for the two- 

dimensional wake and underpredicted for the axisymmetric 

wake.  Schetz [121] points out that in a two-dimensional 

flow his model reduces to the Prandtl eddy viscosity model, 

which gives a similar prediction.  This is not the case for 

the axisymmetric flow, and this difference may explain the 

observed difference in the calculations. 

The two-dimensional wake provides a good test of 
i 

the conclusion reached by Schetz [121] that in a two- 

dimensional flow the predictions made by this model and that 

of the Prandtl eddy viscosity model are similar.  Figure 

9.25 illustrates a comparison of these two predictions for 

this data; also included is the mixing length theory which, 

as has been shown above, shows a similar behavior to that of 

the Prandtl eddy viscosity model for this flow.  Figure 9.25 

shows that the predictions of all three models are virtually 

identical for the two-dimensional wake. 

Confrontation IV:  Ferri Model 

The eddy viscosity model proposed by Ferri [83] is 

a first-cut try at modifying the Prandtl eddy viscosity 

model already discussed so that it will apply to a variable- 

density flow.  To make this modification, Ferri simply 

substituted the mass-flux difference Ip U - p U I for the 1 c c   o o ■ 
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equivalent expression p|u - U | in the Prandtl model.  This 

change has the implication that the product pe is constant 

across a lateral profile, rather than e, for comparing 

expressions one has for the Ferri model 

pE = KFr1/2|pcUc - poU0| (9.1) 

and for the Prandtl model 

pG = Kpr1/2 p|Uc - Uo! (9.2) 

Two additional changes were introduced by Ferri:  first, the 

parameter r, ,„ is defined as the radius for which 

pU = 1/2[p U + p U ] rather than the radius for which " '    lKc c   Ko o 

U = 1/2[U + U ]; second, the value of the constant K„ was 
CO F 

changed. 

The constant K was chosen by Ferri, et al., [83) 

as 0.025 in order to agree with experimental data for the 

incompressible jet-into-still-air.  Here of course the Ferri 

model reduces to the Prandtl eddy viscosity model.  Because 

the constant was so chosen, it is not surprising that the 

agreement of this model with the data is quite good, as 

shown on Figure 9.26; however, the slope is still not quite 

correct as compared with the mean of the data.  It is in 

fact identical to the slope predicted by the Prandtl model. 

Since the Ferri model reduces to the Prandtl eddy 

viscosity model for an incompressible flow, a comparison of 
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Figure 9.26.  Comparison of predictions of Ferri model with 
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calculations made with these two models will indicate the 

effect of changing the constant on the Prandtl model.  The 

constant used in the Ferri model is 0.025; it will be 

recalled that the Prandtl model as used here has K = 0.007 

in the first regime and 0.011 in the second.  Figure 9.27 

presents a comparison of the calculations, from which it is 

easily seen that for both single-stream and coaxial mixing 

the effect of the change in constant (which of course 

represents a change in shear stress) is to change the 

predicted length of the velocity potential core while 

preserving the predicted slope of the decay curve. 

Returning to Figure 9.26, it can be seen that the 

prediction made by the Ferri model for the compressible jet- 

into-still-air is poor, with a highly underpredicted core 

length and asymptotic decay curve slope.  This character- 

istic, which causes the predictions of the Ferri model to 

intersect the experimental data rather than paralleling it, 

will be seen to be characteristic. 

Figures 9.28 and 9.29 illustrate the behavior of 

the Ferri model when it is applied to coaxial air-air mixing 

problems.  As was discussed just above, the predicted slope 

of the axial decay of the centerline velocity curve is the 

same as that of the Prandtl eddy viscosity model, but the 

predicted velocity potential core length is smaller. This 

combination improves the level of accuracy of the prediction 

somewhat in the range of axial distance considered, since 

427 



AEDC-TR-71-36 

1.0 

0.8 |- 

0.6 

0.4 

0.2 

^ 

T 1 r 

"X 
(a) InconpreBBlble Jet-Into-Still-Air V 

•Prandtl Eddy Viscosity, 
e - Kpi|Uc - U0|,  Kp -  .007 -  .011 

1.0 

0.8 

0.6 

0.4 

2    ——— Ferrl, pe - KFp|pUc - pU0| Kp - .025 
\ 

Uc-Uo 

"j " «o 

0.2 

0.1 

(b)    Incompressible Coaxial Nixing, 
Uo/Uj  - 0.25 

—.— Prandtl  Eddy Viscosity, 
e - Kpje|l)c - U0| ,  Kp -  .007 -  .011 N; 
Ferri, pe - KFp|pUc - pU0| , KF - .025 

J I I L J I L 
8  8  10 

x/D 

20 40    60  80 100 

Figure 9.27.  Effect of change of constant in the Prandtl 
eddy viscosity model. 

428 



AEDC-TR-71-36 

1.0 

0.8 

0.6 - 

0.4 - 

üc - Oo 

0.2 - 

.0.8 

0.6 

0.4 - 

0.2 - 

0.1 

- 
 1     b-**^«JLr~ —1 1 1 1 

G 

N.    a 
1 "■  1 1  

- \D - 

- 
A-13 

- 

f 

Uo/Uj  - 0.125 
po/pj  " °-93 

- 

- 

- 
A-17 

- 

- 

Oo/Uj  - 0.371 

Pj/p0 - 0.89 ■ 

- 

 1 1  ...1 1— 1                   1  L._ 1        1 
6   8 10 

x/D 

20 40    60  80 100 

Figure 9.28. Comparison of predictions of Ferri model with 
coaxial air-air data of Paulk [42]. 

429 



AEDC-TR-71-36 

1.0 

0.8 

0.6 " 

0.4 
Uo/Dj - 0.20 

«J -Ho 

0.2 

1.0 

0.B 

0.6 

0.4 

üc - Uo 

0.2 

0.1 

Run G 

Both Calculations Begin at x/D - 0 «1th 
Measured Initial Velocity Profiles 

Run E 

Uo/Uj - 0.25 

J I L 
8  10 

x/D 

20 
J I L 
40    60  80 100 

Figure 9.29. Comparison of predictions of Ferri model with 
coaxial air-air mixing data.  Data from Forstall [40]. 

430 



AEDC-TR-71-36 

the decay curves now intersect the data. However, it is 

clear that as for the Prandtl eddy viscosity model, the 

trend of the prediction is wrong. 

The same characteristics appear in the Ferri model 

predictions of hydrogen-air coaxial mixing as shown on 

Figure 9.30. The velocity potential core length is under- 

predicted, in the high p U /p.U. cases grossly so.  The 

slope of the decay curve is also underpredicted, so that as 

described above the prediction intersects the data curve at 

some point.  Since a change in the constant would only 

change the predicted velocity potential core length and not 

the asymptotic slope of the decay curve, it is clear that 

the density-variation modification proposed by Ferri is 

fundamentally unsound. 

The Ferri model will again reduce to the Prandtl 

model for the two wakes considered in this study, with a 

different eddy viscosity constant.  The behavior of the 

calculation will be thus similar to that using the Prandtl 

model.  Figures 9.31 and 9.32 indicate that this is the 

case, and that the increased constant improves, in the 

axisymmetric case, the initial velocity rise prediction and, 

in the two-dimensional case, the middle-range velocity 

prediction.  But once again (and of course like the Prandtl 

model) the trend of the prediction is wrong (too small a 

rate of increase of centerline decay is predicted) and it is 
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not possible to correct this merely by a reasonable change 

in the constant selected. 

Confrontation V:  Zakkay Model 

As was described at the beginning of this Chapter, 

the model here called the "Zakkay Model," reported by 

Zakkay, Krause, and Woo [86], was obtained from considera- 

tions of the asymptotic behavior of coaxial jets.  The 

Zakkay model was also designed to satisfy the empirical 

observation made in Reference [86] that the axial decay of 

concentration along the centerline of coaxial two-gas jets 
_2 

decays as x  ; this conclusion has been discussed in 

Chapter 5 in which it has been shown that under some circum- 

stances the decay is actually proportional to x 

For the jet-into-still-air, the Zakkay model is 

identical to the Prandtl eddy viscosity model.  However, as 

the width as defined for the Zakkay model is one-half of the 

width definition used in the Prandtl model, the effective 

value of the eddy viscosity at any point is lower in the 

Zakkay model than it is in the Prandtl eddy viscosity model, 

despite the larger numerical value of the constant used in 

the first regime.  Figure 9.33 illustrates the effects of 

this change in constant for both the incompressible and the 

compressible jet-into-still-air. As would be expected, the 

reduction in eddy viscosity (and thus the turbulent shear 

stress) compared with the Prandtl model results in a 

lengthened velocity potential core region.  Comparison of 
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the Zakkay model calculation of the incompressible jet-into- 

still-air with that of the Prandtl eddy viscosity and Ferri 

model (Figure 9.27, page 428) shows that this calculation 

predicts the same asymptotic slope as both the other models, 

as would be expected from the discussion of the previous 

section.  This is true also for the compressible jet case. 

With the exception of one case, the level of 

agreement of the Zakkay calculation with the coaxial air- 

air mixing data is relatively poor, as shown by Figures 9.34 

and 9.35.  The exception is the U /U. = 0.371 case repre- 

sented on Figure 9.34.  However, the velocity potential core 

length prediction of the Zakkay model is relatively good for 

these data. 

Since the Zakkay model was designed to handle 

coaxial hydrogen-air mixing, its performance when compared 

with the hydrogen-air mixing data used in this study is of 

interest. As shown on Figure 9.36, the performance of this 

model in comparison with these data is unsatisfactory. One 

major failing, common however to the other eddy viscosity 

models similar to this model, is that the Zakkay model 

fails to predict the increase in decay rate observed with 

increasing p U /p.U. ratio observed for these data.  It is 

of interest that despite the apparently substantial 

differences in the formulation of the Zakkay eddy viscosity 

model as compared to the Prandtl eddy viscosity model, the 

behavior of the predictions of the former model is quite 
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similar to that of the latter, as comparisons of Figure 9.36 

with Figure 9.14, pages 402-405, will show. 

Figures 9.37 and 9.38 show the predictions of the 

Zakkay model as compared to the data for an axisymmetric 

wake and a two-dimensional wake.  The Zakkay model predicts 

e = 0 at x = 0 where U =0, and if the Zakkay model 

prediction is compared to the Prandtl model one finds that 

ep    U -U 
^=21-2-?-! (9.3) 
eZ      uc 

so that when U = U /2, both models predict the same eddy 

viscosity value.  Aa U increases, the Prandtl model 

predicts that as U -*■  U  , e -*■  0, while the Zakkay model 

predicts that as U -*■  U  , e ■*  constant.  Thus the Zakkay 

model will underpredict the rate of increase of centerline 

velocity in the very early region of the wake, compared to 

the Prandtl model.  However, in the asymptotic region, since 

experimental data show that e ■* constant is a proper 

assumption, one would expect the Zakkay model to exhibit the 

proper trend.  Figures 9.37 and 9.3 8 show that this is 

indeed the case; the agreement for the case of the two- 

dimensional wake being quite good. 

Confrontation VI:  Alpinieri Model 

The Alpinieri model [84] was devised to produce 

predictions agreeing with coaxial hydrogen-air mixing 
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experiments which as described in Chapter 5 had a strongly 

wake-like character.  This character manifested itself in a 

very rapid decrease of centerline velocity, and in particular 

centerline composition, when compared to other coaxial 

hydrogen-air mixing experiments.  To produce agreement with 

these experiments, Alpinieri had to devise a model which 

indicates a level of eddy viscosity which- is several times 

larger than other models would predict.  For example, 

consider the Alpinieri model and the Ferri model applied to 

a hydrogen-air system with U /U. = 0.33 and P^/PQ = 0.08. 

The ratio of the two eddy viscosity models is 

(P£)Alpinieri  ^V^V 
(P£) Ferri    lpoVpcUc"l 

u +uj?/u. c  o/ j 
|U -p U /p I o c c o' 

Now consider an x-station at the end of the potential core, 

where U = U..  Then 
c   3 

(P£>a-|T^n-i*r-i 1+(U /U.)2 
Alpinieri _ on                 ,a  ~» 

—TPTTT—!  |u /u.-p./P  I     .                        (9,6) H    Fern '   o'   j    y   o' 
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so that for the example cited 

(pe) Alpinieri  1.11 = 4 44 ,g 7) 
TpTT^——  0.25  4'44 <9;7> 

For an air-air mixing case, with p. = p and U /U. ■ 0.2, 

Alpinieri  1.04  . - .  . 
—FFl TTfl 1*3 (9.8) (e,Ferri    °*8 

while for the incompressible jet-into-still-air, 

Pj = P0 t  UQ = 0, and 

(£)Alpinieri „ 1Q (9>9) 
1 JFerri 

Note also that for a wake, U. = 0 and the Alpinieri model 

yields infinite eddy viscosity. 

As has just been shown, for the incompressible jet- 

into-still-air the Alpinieri model is identical to the Ferri 

-model, and thus predicts the same potential core length and 

centerline velocity decay.  This is shown in Figure 9.39. 

For the compressible jet-into-still-air the Alpinieri model, 

because of its treatment of the density variation, predicts 

a slightly greater eddy viscosity in the ratio 

H Fern    vc 
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and so, as shown on Figure 9.39, the Alpinieri model 

indicates a shorter potential core length and greater 

velocity decay than the Ferri model. As was shown above 

(Equation (9.11)) the eddy viscosity predicted by the 

Alpinieri model is greater than that predicted by the Ferri 

(or Prandtl eddy viscosity) models, and this has the 

expected influence on the velocity potential core length 

predictions and on the centerline velocity decay for both 

sets of coaxial air-air mixing data used in this study. 

Figures 9.40 and 9.41 show this.  In no case is the pre- 

diction of the Alpinieri model satisfactory. 

The great overprediction of the eddy viscosity by 

the Alpinieri model for the hydrogen-air mixing data used in 

this study is apparent in the prediction shown in Figure 

9.42.  The Alpinieri model is completely unable to predict 

these data.  Interestingly, the model does predict in a 

general manner the decrease in potential core length with 

increasing mass flux ratio observed for these data; however, 

the trend predicted by the Alpinieri model is not simply a 

decrease with increasing P0
U
0/P-;

U-; *>ut appears to be more 

complexly related to the parameters P /p• and U /U.. 

As was described above, the Alpinieri model 

predicts an infinite eddy viscosity for a wake calculation, 

for which U. = 0.  Thus, no comparisons with turbulent wake 

data will be shown. 
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Figure 9.41. Comparison of predictions of Alpinieri model 
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Confrontation VII;  Turbulent Kinetic Energy 

Because it attempts to include more of the actual 

physics of the flow in the modeling of the turbulent shear 

stress, the turbulent kinetic energy approach is more 

complex both in concept and in application than any of the 

eddy viscosity models described above.  In addition to 

requiring the solution of an additional simultaneous partial 

differential equation, the method also involves the speci- 

fication of three parameters.  As was described in Chapter 

8, one of these parameters involves the ratio of the 

turbulent shear stress to the turbulent kinetic energy per 

unit mass, another is used in the model chosen for the 

dissipation of turbulent kinetic energy, and the third 

represents a Prandtl number for the turbulent kinetic 

energy, i.e., a ratio of the transport coefficient for 

turbulent kinetic energy to that for momentum.  But since 

these parameters relate to more fundamental turbulence 

structure quantities than the mean-flow velocity and density 

gradients, there is some hope that the constants chosen may 

prove to be universal. 

One of the ground rules for this study has been 

that the constants used in the various models not be changed 

from calculation to calculation.  Thus for the kinetic 

energy model, the constants chosen are a. = 0.3 for the 

ratio of turbulent shear stress to turbulent kinetic energy, 

a2 = 1.5 for the dissipation constant, and a value of the 
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turbulent kinetic energy Prandtl number Pr. of 0.70. As 

described in Chapter 8/ the modeling of the turbulent shear 

stress involves a parameter based on the local velocity 

gradient both to give the turbulent shear stress the proper 

sign (the turbulent kinetic energy is always positive) and 

to approximate the observed variation of the ratio of 

turbulent shear stress to the turbulent kinetic energy in 

regions where the turbulent shear stress approaches zero 

while the turbulent kinetic energy does not. Thus, for two- 

dimensional flow, in regions where (3U/3y) ~ 0 

T " °-3 pkTwil  (9*11) 1
  ' J 'max 

where (3U/3yl _„) is the absolute value of the local maximum 
IuclX 

value (at the given cross-section) of the mean velocity 

gradient, and 

T ■ °-3 ekTw!yr (9-12) 

elsewhere; for axisymmetric flow 

T" °-3 *\$A*\m 
l9-13) 
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from the centerline to the value of r for which 

9U/3r = (3u73r>max 
and 

T= °-3 ^TWIFT (9-14) 

elsewhere. 

Whereas techniques which use locally dependent 

models require velocity profiles and if necessary enthalpy 

and species concentration profiles to begin a finite- 

difference calculation such as is used here, the kinetic 

energy method must also have a turbulent kinetic energy or 

turbulent shear stress profile.  As was described in the 

introduction to this Chapter, these profiles have been 

obtained in a number of ways.  The particular method used 

for a given calculation will be described when the calcu- 

lation in question is discussed. 

The incompressible jet-into-still-air calculations 

made using the kinetic energy method begin using turbulent 

kinetic energy profiles measured by Bradshaw, et al., [18] 

at x/D = 2,  while the compressible jet-into-still-air 

calculations begin at x/D = 14.5 using turbulent shear 

stress profiles generated from the velocity and eddy 

viscosity profiles presented by Eggers [72].  The results of 

these calculations are given in Figure 9.43.  The agreement 

with the data is reasonably good.  For the incompressible 

jet case the agreement is not as good as the best locally- 

dependent model (the Ferri model), but it is not as bad as 
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the worst (the Schetz model); for the compressible jet-into- 

still-air case the agreement is better than that shown by 

any other model. 

Calculations of the coaxial air-air mixing data of 

Paulk [42] using the kinetic energy method were begun at the 

first station for which reliable shear stress profiles were 

available.  In this case, the shear stress profiles were 

obtained by Paulk through integration of the mean flow 

momentum equation.  The results of the kinetic-energy model 

calculations are shown on Figure 9.44 from which it can be 

seen that the agreement with the experimental data is 

excellent for both velocity ratios used over the limited 

axial distance for which data is available. 

Figure 9.45 shows the results of calculations of 

the air-air coaxial mixing data of Forstall made with the 

kinetic energy method.  In this case a different technique 

was used to generate the initial shear stress profiles:  the 

velocity profiles presented in Forstall's thesis [40] were 

used in conjunction with the Prandtl eddy viscosity model 

(with K = 0.007) to establish the initial shear stress 

profiles. As can be seen from the figure, the results of 

the calculation are in excellent agreement with the experi- 

mental data, even to x/D = 56.  It must be emphasized, 

however, that there is no a priori justification for 

believing that this method of establishing the initial shear 
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stress profiles will work in other cases.  Indeed, in the 

course of this study the same technique was attempted for 

the.coaxial hydrogen-air mixing experimental data, with 

wholly unsatisfactory results. What Figure 9.45 does 

demonstrate is that such an approach can work, if some 

rational technique for obtaining a shear stress profile can 

be devised. 

Figure 9.46 demonstrates the performance of the 

turbulent kinetic energy method when compared to coaxial 

hydrogen-air mixing data.  In all cases the calculations 

shown in this figure were started at a station downstream of 

the end of the velocity potential core at which an accurate 

shear stress profile was available. As in the case of the 

coaxial air-air data of Paulk [42], the shear stress profile 

was obtained by integration of the mean flow momentum 

equation. The point at which the calculation was started 

is signaled on Figure 9.46 in one of two ways:  if open 

symbols are used the initial condition is shown cross- 

hatched, while if closed symbols are used for the data the 

initial condition is shown as a flagged symbol. 

In general the results of these calculations are 

extremely good.  The calculation for "Run 21A" of the data 

of Chriss [90] shows a curious discontinuity in slope 

between x/D = 5 and x/D = 8; the reason for this is not 

known to the author, although it may be related to an 

initial overprediction of the shear stress level.  This 
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slope discontinuty appears also on axial profiles of the 

composition decay and the half radius growth which are not 

shown here, but which will be discussed in Chapter 10 

following. One fact worthy of note from Figure 9.46 is 

that these kinetic energy theory calculations {all made 

with the same set of constants) predict the centerline 

velocity decay equally well irrespective of the value of 

velocity ratio, density ratio, or mass flux ratio. 

The performance of the kinetic energy theory in 

predicting the centerline velocity increase in the initial 

period of an axisymmetric wake is shown in Figure 9.47. 

These calculations were begun using profiles of the 

turbulent shear stress measured with hot-wire equipment at 

x = 0.  At this location, the velocity profiles from 

Reference [58] showed the presence of a small recirculation 

region; this region has been ignored in making these 

calculations.  Especially to be noted in Figure 9.47 is the 

apparent good agreement of the-asymptotic trend of the 

kinetic energy calculation (x/D >_ 16) with that of the data. 

Although several of the locally-dependent models have 

produced a better level of agreement for (x/D) < 16, none, 

with the possible exception of the Zakkay model, has shown 

a better level of asymptotic agreement, and the kinetic 

energy prediction for (x/D) < 16 is considerably better than 

the Zakkay predictions. 
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Figure 9.47.  Comparison of prediction of kinetic energy 
theory with experimental data for the initial region of 
an axisymmetric wake.  Data of Chevray [58]. 
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The results of a kinetic energy calculation of the 

two-dimensional wake data of Chevray and Kovasznay [52] is 

shown on Figure 9.48.  The level of agreement, both for the 

early period and the asymptotic behavior, is very good. 

These calculations were begun at x = 0 using the turbulent 

shear stress profiles measured at this point by Chevray and 

Kovasznay. As was shown in Chapter 3, the shear stress 

profile at this point shows a large peak, apparently related 

to the energization of the inner region of the boundary 

layer which has just left the plate at this point.  It is 

the high level of shear stress here which causes the rapid 

centerline velocity increase shown, and the fidelity of the 

kinetic energy approach in reflecting both this early rapid 

rise and the later asymptotic behavior is remarkable. 

Confrontation VIII:  Compressibility Correction 

Several of the eddy viscosity models described 

above are attempts to generalize an incompressible eddy 

viscosity model to a compressible flow by developing a model 

for the parameter pe rather than the eddy viscosity e.  An 

alternate approach is to assume that the parameter c can be 

modeled in a compressible flow by using the incompressible 

model multiplied by a compressibility correction.  Such an 

approach was taken by Donaldson and Gray [6 7] who evaluated 

the magnitude of the correction for a number of flows, all 

of them jets with still surroundings.  This evaluation was 
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x/6. 

Figure 9.48.  Comparison of prediction of kinetic energy 
theory with data for the initial region of a two- 
dimensional wake.  Data from Chevray and Kovasznay [52] 
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extended to higher half-velocity Mach numbers by Peters 

[119], who also established an analytical relation, Equation 

(7.16), for the correction. 

Calculations using this correction have been made 

for several flows in this study.  The eddy viscosity model 

used was the Prandtl eddy viscosity model, with K_ = 0.007 

in the first regime and Kp = 0.011 in the second.  As a 

check case, a clearly incompressible flow was calculated. 

The case chosen was the incompressible coaxial mixing 

experiment of Forstall [40] for which U /U. = 0.25.  As 

Figure 9.49 shows, the correction for this flow is 

negligible, had no effect on the calculation.  The 

expression for the correction is 

KP 2 =£- = 0.66 + 0.34 exp(-3.42 M~) r\— m 
o 

where K  is the incompressible value of the constant in 
o 

the Prandtl eddy viscosity model and K  is the value for a 

compressible flow; M is the Mach number at the half- 

velocity radius.  Thus for this flow, M =0, and K_ = K_ . 
o 

The next set of calculations was made of the 

coaxial hydrogen-air mixing data of Chriss [90].  Two cases 

were chosen, one at each extreme of the variation of 

p U /p.U. he investigated.  The results of these calcula- 

tions are shown on Figure 9.50 compared to the predictions 

made with the uncorrected eddy viscosity model taken from 
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Figure 9.14, pages 402-405. The uncorrected Prandtl eddy 

viscosity model underpredicts the rate of decay of the 

centerline velocity data. As can be seen from the equation 

above, the effect of the Donaldson and Gray correction is 

to reduce the value of the constant in the eddy viscosity 

model as the half-radius Mach number increases.  It would 

be expected that this correction would have the effect of 

increasing the predicted value of the centerline velocity 

ratio at any given axial station, and Figure 9.50 shows 

that this is indeed the case.  Because the uncorrected 

Prandtl model itself overpredicts the centerline velocity 

ratio, the Donaldson and Gray correction does not in this 

case improve the level of agreement. 

.Figure 9.51 compares the performance of the 

Prandtl model with and without the Donaldson and Gray 

correction for the supersonic jet-into-still-air data of 

Eggers [72].  Again the effect of the correction is to 

reduce the predicted centerline velocity ratio value.  In 

this case, however, there appears to be a slight increase 

in the calculated rate of decay using the correction as 

opposed to that obtained without a correction; the other 

data, at lower half-radius Mach numbers, does not show this 

effect.  It should be noted that there appears to be an 

improvement in the prediction of the velocity potential core 

length using this correction. 
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Confrontation IX:  Compressibility Transforms 

In the discussion of the various compressibility 

transforms in Chapter 7, it was pointed out that the basic 

idea of the compressibility transform is to avoid the 

problem of specifying a compressible eddy viscosity model by 

transforming the mathematical statement of the compressible 

flow problem into a coordinate system in which the density 

is no longer a variable.  However, in practice such trans- 

formations are highly complex and can usually only be 

performed under rather restrictive assumptions.  In this 

section the results of one such transformation, that 

proposed by Libby [125] will be explored for a limited 

number of flows.  The predictions will be compared to those 

made in the same flow situation by the Donaldson and Gray 

model just discussed and by the incompressible Prandtl eddy 

viscosity model, upon which both the Donaldson and Gray 

correction and the Libby transform are based. 

Using the eddy viscosity transformation developed 

by Ting and Libby ([126], see Appendix D), and with the 

assumptions that the turbulent Prandtl and Lewis numbers are 

both unity and that the eddy viscosity is a function of the 

axial coordinate only, Libby [125] obtains a closed form 

solution for the compressible coaxial turbulent mixing 

problem in terms of a grouping of Bessel functions described 

by Libby as the ". . .so called offset circular probability 

function P . . . ." An additional assumption which 
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basically bears on the radial variation of the compressible 

eddy viscosity is necessary to obtain this solution, but it 

is not of great importance to this study; the reader is 

referred to Equation (10) of Reference [125]. In order to 

return from the transformed coordinates to the physical 

coordinates, it is necessary to specify the incompressible 

eddy viscosity, which in turn requires the value of the 

parameter f. , where 

»a - r.lp.ü./p^)
1/2 (9.15) 

and to specify the value of £  , the transformed x-coordinate c 

at which the potential core ends.  Libby uses the Prandtl 

eddy viscosity with K = 0.0125 in the form used in this 

study (i.e., for b = 2r,/?).  Libby takes for this last 

parameter £ = 0.05 f. ; this and the coordinate trans- 

formation expression 

x 

J    po  Vj 
)dx (9.16) 

specify x as a function of the velocity ratio U./U . 

Consider, from Equation (9.16) 

(9.17) 
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For 0<x<x  , p =p.= constant, and p  and U are —  — c   c   j o     o 

constant for free mixing.  Thus 

x. 

«C-^TTT: '£ dx (9-18) Ho  o J 

For the first regime, Libby ([125], Equation (18)) specifies 

e = 0.00137 x|UQ-U.| (9.19) 

so that, substituting (9.19) into (9.18), and noting that 

2   2 T. = r.(p.U./p U )f one gets for the potential core 

length x 

xc  2xc       Ui/Uo 
r    D    0.0137|1-U./U | 1»-*UJ o '   3 ° 

Note that Equation (9.20) specifies a core length variation 

independent of the density ratio. 

In order to test the predictions of the Libby 

transform against some of the variable density data used in 

this study, a computer program was written to invert the 

Libby transform solution to real coordinates.  Figure 9.52 

shows the prediction of the Libby transform as compared to 

three of the coaxial hydrogen-air mixing experiments of 

Chris's.  As can be seen, both the core length prediction and 

the downstream decay prediction are in each case erroneous. 

Further, the Libby transform predicts an increase in core 
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length with increase of U /U. , while the data indicate the 

opposite; the transform solution also predicts an increase 

in the rate of centerline velocity decay with a decrease in 

the parameter p U /p.U. which is also opposite to the trend 

of the data. 

Figure 9.53 compares the results predicted by the 

Libby transform for one of'these coaxial hydrogen-air mixing 

cases with the Donaldson and Gray correction calculation 

made in this study for the same case, and with the Prandtl 

eddy viscosity calculation, also made in this study.  As was 

pointed out above, in the notation of this study the 

constant K  used by Libby in the second regime is 0.0125, 

while the Prandtl constant is 0.011 for the second regime; 

the Donaldson and Gray correction is perhaps approximately 

0.7 for these data.  Somewhat surprisingly, Figure 9.53 

indicates that the unadorned Prandtl model gives the best 

fit to this to this particular data. 

The Libby transform requires that the turbulent 

Prandtl and Lewis numbers be unity, while the experimental 

data of Chriss, described in Reference [94], indicates that 

the proper value of the turbulent Prandtl number is 0.85. 

The turbulent Lewis number was found to be 1.0 for the same 

data.  Because it assumes Pr. = 1, the Libby transform 

predicts the same decay for centerline jet species concen- 

tration as it does for centerline velocity.  Figure 9.54 
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demonstrates the difference between the two predictions for 

centerline species concentration. 

Because of the assumptions embodied in the use of 

Equation (9.20), the primary effect of the Libby transform 

on the velocity calculation is on the predicted potential 

core length, with only a small secondary effect on the decay 

rate.  This is shown by Figure 9.55, which also again 

emphasizes the effect of the unity Prandtl number assumption. 

Summary 

From the experimental data examined in Chapters 2 

through 5, six experiments have been selected. These 

experiments include the jet-into-still-air, coaxial air-air 

jets, coaxial hydrogen-air jets, the compressible jet-into- 

still-air, and two-dimensional and axisymmetric wakes. The 

important parameters for the selected experiments are given 

in Table 9.1, page 368. 

A total of nine theoretical models for the 

turbulent shear stress are considered in this study.  Seven 

of these are confronted with the entire range of experiments 

discussed above.  The other two are of somewhat more limited 

applicability and have only been compared to a portion of 

the range of experimental flows.  Table 9.2, page 376, lists 

the seven models that have been confronted with the entire 

range of experiments.  These are the Prandtl mixing length 

[101], the Prandtl eddy viscosity theory [114], the dis- 

placement thickness model of Schetz [120, 121], the eddy 
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viscosity models of Ferri [83], Alpinieri [84], and Zakkay 

[86], and the kinetic energy theory [131-133].  The values 

of the constants used with these models were obtained from 

several sources.  Thus, the constants used with the mixing 

length theory were taken to be those given by Squire and 

Trouncer [48] , while the constants used with the Prandtl 

eddy viscosity model were those given by Peters [119].  In 

the remainder of the cases listed, for the locally-dependent 

models, the constants used were those recommended by the 

developer of the model in question.  In the case of the 

Schetz displacement thickness model or "Unified Theory" 

[121], the Prandtl mixing length was used for reasons of 

convenience to calculate the first regime of mixing for the 

jet-flows.  This introduces only small differences in the 

results compared to those given by Schetz, and does not 

affect the conclusions drawn.  In the case of the kinetic 

energy theory, the constants used were those given in 

Reference [133]. 

The remaining two models can both be considered 

in effect to be corrections to the Prandtl eddy viscosity 

theory.  For the Donaldson and Gray Mach number correction 

[67], the constants used were those of Reference [119], 

while the constants used in the Libby transformation were 

given by Libby [125]. These two corrections were applied to 

only a limited number of flows; the Donaldson and Gray 

correction to coaxial air-air, coaxial hydrogen-air and the 
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compressible jet, and the Libby transform to only coaxial 

hydrogen-air mixing.  The results of these confrontations, 

as well as the other more extensive ones are summarized in 

the remainder of this section. 

Prandtl mixing length.  For this model the con- 

clusion of the confrontation must be that when it is applied 

to a variety of flows with a single "universal" constant, it 

performs poorly.  In general, the mixing length theory 

underpredicts the rate of decay of centerline velocity quite 

substantially, for coaxial hydrogen-air mixing and the 

compressible jet-into-still-air.  However, it does predict 

well the length of the velocity potential core for the 

incompressible jet-into-still-air and coaxial air-air 

mixing.  The mixing length theory provides a good prediction 

of the initial centerline velocity increase for both two- 

dimensional and axisymmetric wakes, but it is not capable of 

predicting the asymptotic rate of increase of velocity in 

these flows.  Thus the mixing length theory cannot be 

recommended except for the early portion of wakes, and 

for such flows there are other models that do as well or 

better. 

Prandtl eddy viscosity.  This model does a fairly 

good job on the incompressible jet-into-still-air, although 

the value of the slope of the centerline velocity decay 

curve is somewhat too low.  The prediction of the 

491 



AEDC-TR-71-36 

compressible jet is not satisfactory, as the slope here is 

much too low.  The core length prediction of the Prandtl 

eddy viscosity model is good for the incompressible jet- 

into-still-air and also coaxial air-air mixing, but the rate 

of mixing is still underpredicted in this latter case.  For 

hydrogen-air mixing the predictions are not satisfactory. 

The model predicts an increase in velocity potential core 

length for increasing mass flux ratio p U /p.U. while the 

data indicate the opposite.  Further, the Prandtl eddy 

viscosity model shows little or no change in the rate of 

centerline velocity decay with increasing p U /p.U. ; the 

data show an increase.  Use of the Prandtl eddy viscosity 

model cannot be recommended for these flows.  The wake 

predictions of this model are quite similar to those of the 

mixing length theory; they are nearly identical for the two- 

dimensional wake.  For the axisymmetric wake, the Prandtl 

eddy viscosity model predicts a better asymptotic behavior 

than the mixing length, but here as for the two-dimensional 

wake the trend is still to underpredict the velocity rise. 

Overall, the Prandtl model can be recommended for engi- 

neering use, with a change of constant (see the summary of 

the performance of the Ferri model below) for the jet-into- 

still-air, coaxial air-air mixing (U /U. <_ 0.5) and for the 

axisymmetric wake.  In all of these cases, use cannot be 

recommended in flows with large density gradients. 
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Schetz "unified theory".  The Schetz model, as is 

described in this Chapter, cannot rigorously be used for the 

jet-into-still-air, as a displacement thickness cannot be 

defined.  However, because calculations of such flows may be 

carried out assuming a.small but finite velocity at the edge 

of the jet, it can conceivably be used for computational 

purposes in a jet-into-still-air calculation.  Thus, its 

behavior in this case is of interest.  As was pointed out in 

the text, for the jet-into-still-air the Schetz model can be 

shown to have the same behavior as the Prandtl eddy 
2 

viscosity model with the width scale b replaced by b /r.. 

Noting this, it is not surprising that the decay rate 

predictions of the Schetz model for the jet-into-still-air, 

both incompressible and compressible, are wholly inaccurate. 

For coaxial air-air calculations the Schetz model over- 

predicts the rate of centerline velocity decay, although the 

overprediction seems to lessen as the velocity ratio U /U. 

increases.  For comparison, the predictions of the Prandtl 

eddy viscosity model appear to diverge more greatly from the 

data as U /U. increases toward 1.0.  On the other hand, the 

predictions of the Schetz "unified theory" for coaxial 

hydrogen-air mixing are better than those of any other 

locally dependent model.  In some cases the level of 

prediction is quite good; indeed it appears that the 

asymptotic slope prediction is improving with increasing 

p U /p.U. , and the Schetz model, unlike other locally o o j 3 
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dependent models, shows an increase in the slope of the 

velocity decay curve with increasing p U /p.U..  The 

prediction for the axisymmetric wake is not particularly 

good, with the initial increase in velocity being under- 

predicted.  For the two-dimensional wake, "the Schetz model 

prediction is nearly identical to that of the Prandtl eddy 

viscosity and mixing length models. 

Ferri eddy viscosity model.  The Ferri eddy 

viscosity model reduces to the Prandtl eddy viscosity model, 

with a change in constant, for an incompressible flow.  This 

change in constant improves the level of accuracy for these 

flows.  Thus for the jet-into-still-air, the level of the 

prediction is quite good (although the asymptotic trend is 

to underpredict the centerline decay of velocity). 

Obviously the character of the Ferri model is to always 

intersect the data at some point.  This character improves 

the Ferri prediction over the Prandtl eddy viscosity pre- 

diction for the coaxial air-air flows over part of the range 

of the data, but the asymptotic trend remains to under- 

predict the centerline velocity decay.  Despite the fact 

that it was specifically developed for variable-density 

flows, the performance of the Ferri model for coaxial 

hydrogen-air mixing is unsatisfactory.  Here the core is 

always underpredicted, as is the slope of the decay curve. 

The result is the character alluded to above.  For the wake 

data, the behavior of the Ferri model is again like that of 
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the Prandtl eddy viscosity model, but the changed constant 

serves to improve the predictions.  For the axisymmetric 

wake the Ferri model prediction is the best of the locally 

dependent eddy viscosity models. Again, no recommendation 

can be made for wakes with significant density gradients. 

Zakkay eddy viscosity model.  The Zakkay model 

cannot satisfactorily predict the behavior of the jet-into- 

still-air, either incompressible or compressible.  For this 

case it overpredicts the velocity potential core length, 

but underpredicts the slope of the centerline velocity decay 

curve.  For coaxial air-air mixing the velocity potential 

core prediction is reasonably good, but the slope prediction 

is still too low.  The behavior of the Zakkay model for 

hydrogen-air mixing is also incorrect.  Although the 

velocity potential core length prediction is fairly good, 

the downstream axial decay curve slope is underpredicted. 

Further, the Zakkay model does not predict an increase in 

this slope with increasing p U /p..U..  The axisymmetric wake 

prediction of this model is very poor—the initial increase 

in centerline velocity is underpredicted and the asymptotic 

trend seems to be to an eventual overprediction of the 

centerline velocity.  But the Zakkay model prediction for 

the centerline velocity variation in the two-dimensional 

wake is the best of the locally dependent models. 
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Alpinieri eddy viscosity model.  As described in 

the text, the Alpinieri model was designed to agree with 

coaxial hydrogen-air experiments which showed an extremely 

(and anomalously) high mixing rate.  It was also designed to 

reduce to the Ferri (Prandtl eddy viscosity) model for the 

incompressible jet-into-still-air.  Thus, it is not 

surprising that the prediction of the Alpinieri model for 

the incompressible jet-into-still-air is good.  In all other 

jet flows the Alpinieri model grossly underpredicts the 

velocity potential core length and underpredicts the rate of 

decay of centerline velocity.  This is essentially the 

behavior of the Ferri model, but in this case the core 

length is so underpredicted that the theoretical curve does 

not intersect the data anywhere in the region of interest. 

The Alpinieri model cannot be applied to the wake flows 

considered, as it predicts infinite eddy viscosity for zero 

jet velocity. 

Kinetic energy theory.  The kinetic energy theory 

in general appears to be capable of providing predictions 

that are as good as or better than those of any other model 

for all of the data considered here.  The worst predictions 

of the kinetic energy theory are for the compressible and 

incompressible jets-into-still-air.  In both cases the 

theory overpredicts the velocity decay slope, although in 

the latter case the prediction is still better than that 

provided for any other model.  For all of the other jet 

496 



AEDC-TR-71-36 

flows considered, air-air and hydrogen-air, the kinetic 

energy theory in general predicts the centerline velocity 

decay quite accurately, and usually better than any other 

model.  For the two wakes considered the kinetic energy 

theory is the only model (except possibly for the Zakkay 

model in the case of the two-dimensional wake) capable of 

predicting both the initial velocity rise and the asymptotic 

trend.  But this excellent agreement with a broad range of 

data is not bought without cost.  Specifically, such results 

can only be obtained if accurate initial shear stress 

profiles are known.  This has restricted the.use of this 

theory to the region downstream of the end of the velocity 

potential core in some cases, which may have given the 

approach an unfair advantage in this confrontation when 

compared-to other models.  The need for an initial shear 

stress profile remains a serious barrier to routine use of 

this model. 

Donaldson and Gray correction.  The Donaldson and 

Gray correction to the Prandtl eddy viscosity model has 

been compared with coaxial hydrogen-air mixing data and with 

data for the incompressible jet-into-still-air.  In general, 

the effect of this correction is to decrease the value of 

the constant in the Prandtl eddy viscosity model for Mach 

numbers greater than zero.  This does not improve the level 

of the prediction of the downstream behavior; however, it 

does improve the near-field prediction for high Mach number 

jets. 
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Libby transform. While it in effect behaves like 

a compressibility correction to the Prandtl eddy viscosity 

model, the Libby transform solution arrives at the correc- 

tion in a significantly different way.  The equations of 

motion for a turbulent axisymmetric flow with Pr. = Le. = 1 

are transformed using the Ting and Libby [126] eddy 

viscosity transformation (which requires e = e(x)) .  Then 

under a further assumption described in the text, a solution 

in closed form is obtained.  Returning this solution to the 

physical plane requires the knowledge of the experimental 

parameters; i.e., the inversion is specific.  Such an 

inversion has been performed for several of the coaxial 

hydrogen-air flows considered here.  The results indicate 

that the effect of this transformation is, like the 

Donaldson and Gray correction to reduce the value of the 

constant in the Prandtl eddy viscosity model.  This and the 

restriction to Pr. = Le. = 1 make the predictions of this 

model unsatisfactory. 
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CHAPTER 10 

RESULTS AND RECOMMENDATIONS 

The aim of this study has been to select from the 

available experimental literature a set of reliable experi- 

ments covering as wide a range of conditions as possible, 

and to then confront the predictions of the various 

available models for the turbulent shear stress with these 

experimental results. All of the calculations used in this 

confrontation, with a single exception, were made using the 

same computer program, effectively removing any program 

dependencies from the results.  The behavior of the various 

models for the turbulent shear stress in the different flows 

has been discussed in Chapter 9.  In this Chapter, the most 

appropriate model for a given class of flows will be 

selected, and recommendations for the use of various models 

and the further development of some will be made.  The work 

performed in this study has exposed the need for further 

experimentation in some areas.  Reversing the procedure 

followed in the earlier chapters, the theoretical models 

will be discussed first, followed by discussion and 

recommendations for the experimental work.  This is done 

because certain things will become apparent in the dis- 

cussion of the theoretical results which have great 

importance for the experimental recommendations. 
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Selection of Theoretical Models 

As would perhaps be expected, there is no one 

locally-dependent theoretical model for the turbulent shear 

stress capable of producing satisfactory predictions for the 

entire range of free turbulent flows considered.  Certain 

models do, however, perform fairly adequately over a limited 

range of experimental conditions, and these models and the 

appropriate limits for their use will be described here. 

Further, the history-dependent turbulent kinetic energy 

approach has shown that it can produce reasonably accurate 

predictions over the entire range of flows, but only when 

some knowledge of the initial turbulent shear stress is 

available. 

Figure 10.1 illustrates the behavior of the Ferri 

model [83J (which is equivalent for this flow to the Prandtl 

eddy viscosity, Reference [114]) and the kinetic energy 

theory for the incompressible jet-into-still-air.  These 

two models provide the best predictions for this flow.  It 

can be seen from Figure 10.1 that the Ferri model predicts a 

relatively gradual transition region, but that beyond 

x/D = 10, the prediction follows the mean of the experi- 

mental data.  The kinetic energy theory, on the other hand, 

appears to overpredict the velocity potential core length 

{although the core length portion of the data is not 

apparent on Figure 10.1) and to then overpredict the rate of 

decay, resulting in a prediction 15 percent high at x/D = 8 
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and 16 percent low at x/D = 40; these percentages are 

calculated from the mean of the experimental data. 

On the other hand, the kinetic energy theory pro- 

vides the only reasonable prediction for the compressible 

jet-into-still-air.  Figure 10.2 shows this prediction as 

well as that for the Prandtl eddy viscosity model [114] , 

which is one of the better eddy viscosity predictions.  As 

was shown in Chapter 9, neither the Ferri model [83] nor 

the Donaldson and Gray correction [67] produces an improved 

prediction over the Prandtl eddy viscosity model.  The 

kinetic energy calculations, however, could not be started 

before x/D = 14.45, because of a lack of shear stress 

profiles before this point. Even with a start at 

x/D = 14.45, as shown by Figure 10.2, the kinetic energy 

theory results in a centerline velocity prediction that is 

24 percent low by x/D =60.  On the other hand, the Prandtl 

eddy viscosity prediction of the centerline velocity, is 

35 percent low at x/D = 15 and 29 percent high at x/D = 60. 

Clearly the kinetic energy theory provides the better 

prediction. 

The best predictions for the coaxial air-air 

mixing data shown in Figures 10.3 and 10.4 are made by the 

kinetic energy theory and, depending on the axial distance 

desired, the Prandtl eddy viscosity [114] or the Ferri eddy 

viscosity [83],  Taking the latter two first, it will be 

recalled that for incompressible flows, the Ferri model is 
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equivalent to the Prandtl model with a larger constant. 

Since both models predict the same slope of the axial decay 

of centerline velocity, and this predicted slope is smaller 

than the observed slope, both models tend to intersect the 

data.  Because of its higher constant, the Ferri model 

predicts that velocity decay will begin sooner, and thus 

that the point of intersection will appear farther down- 

stream.  Hence, Figures 10.3 and 10.4 show that the Prandtl 

model provides a better prediction for x/D < 20. 

The kinetic energy theory does quite well for 

these data.  For the Paulk data [42] , the calculations were 

begun at the first station at which a reliable turbulent 

shear stress profile was available.  On the other hand, for 

the Forstall data [40] , the calculations were begun at 

x/D = 0, using Forstall's measured boundary layer thickness, 

a one-seventh power law velocity provile, and a turbulent 

shear stress profile obtained from this velocity profile 

using the Prandtl eddy viscosity model with K = 0.007.  No 

claim can be made for using this method to generate initial 

conditions; on the other hand, the good agreement with the 

data is indicative of the results obtainable with the 

kinetic energy theory when the proper initial conditions are 

used. 

For the Paulk data, the Prandtl eddy viscosity 

model shows a maximum error of 16 percent at x/D = 14 for 

U /U. = 0.125 and 26 percent at x/D = 18 for U /U. = 0.371. 
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Both of these represent overpredictions of the experimental 

centerline velocity.  For these same data, the Ferri model 

underpredicts the centerline velocity by 21 percent at 

x/D = 6 for the U_/U. ■ 0.125 case; the theoretical curve 

intersects the data at x/D = 14.5.  For the U /U. = 0.371 

case, the Ferri model underpredicts the centerline velocity 

by 11.5 percent at x/D = 10.5, and intersects the data at 

x/D = 16.  In both of these cases the error in the pre- 

diction of the kinetic energy theory is no more than 10 

percent for the U /U. = 0.125 case and 7 percent for the 

U /U. = 0.371 case, 
o ■ j 

For the Forstall data (Figure 10.4, page 505), 

for x/D > 20, the prediction of the Ferri model is better 

than that of the Prandtl eddy viscosity model.  For example, 

at x/D =56, the Ferri model overpredicts the centerline 

velocity for U /U. = 0.2 by 40 percent, while the Prandtl 

model overpredicts it by nearly 60 percent.  The error in 

the prediction made by the kinetic energy theory is 

negligible.  The results of the comparison for the 

U /U. = 0.25 case are similar.  Clearly the kinetic energy 

theory provides the best level of prediction, provided that 

some knowledge of the initial shear stress level is 

available.  But since this is not always the case it would 

appear that when initial shear profiles are not available, 

the Prandtl eddy viscosity model formulation is adequate, 

with K = 0.007 in the first regime and K = 0.011 in the 
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second, when axial distances less than twenty diameters are 

of interest; for axial distances greater than twenty 

diameters the Ferri [83] choice of constant, 0.0125 in both 

regimes, seems to produce better results. 

For hydrogen-air mixing there seem to be only two 

models which show the proper behavior. These are the 

kinetic energy theory and the Schetz displacement thickness 

model [121]. It will be recalled from Chapter 9 that there 

were two features of the hydrogen-air data used here which 

most turbulent shear stress models could not predict. These 

were the decrease in velocity potential core length with 

increasing outer-stream-to-jet mass flux ratio and the 

increase of slope of the decay curve also observed with 

increase of this ratio. Figure 10.5 illustrates the per- 

formance of the two recommended models. Both of these 

models exhibit an increase in velocity decay curve slope 

with increasing P0
U
0/P^

U-«  It is not possible to determine 

whether these models will also predict a decrease in 

velocity potential core length as p u /p.U. increases, as 

the Schetz model as used here used the mixing length model 

for the core region, and it was not possible to start the 

kinetic energy calculations at x/D = 0. 

Figure 10.5 illustrates that the level of agree- 

ment of the kinetic energy theory with the data is better 

than that of the Schetz theory, with the maximum deviation 

of the kinetic energy theory being of the order of 23 percent 
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Figure 10.5.  Comparison of best predictions with coaxial 
hydrogen-air mixing data of Chriss [90]. 
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Figure 10.5.  (continued) 
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at x/D = 15 (for the p U /p.U. = 1.785 case), representing 

an overprediction of the centerline velocity, while the 

Schetz model underpredicts the centerline velocity by a 

maximum of 40 percent at x/D = 10.4, also for 

p U /p.U. = 1.785.  Clearly substantial error is inherent in 
o o    3   j J 

using the Schetz model (as compared to the kinetic energy 

theory), but the behavior of the model is such as to be 

recommended for further development.  Also, as will be 

described below, there are certain anomalies in the 

comparison of these predictions which render difficult the 

interpretation of the actual magnitudes of the errors 

involved. 

The predictions for the two wake flows are quite 

interesting as there are two points of comparison.  In the 

early portion of the wake, the centerline velocity rises 

extremely rapidly.  This rapid rise is followed by a portion 

in which the centerline velocity increases more gradually, 

eventually approaching an asymptote.  Figures 10.6 and 10.7 

depict the performance of the best performing models for 

these flows. It can be seen from these figures that the 

kinetic energy model again performs quite well for both the 

initial and asymptotic portions.  For the axisymmetric wake, 

the Ferri version of the Prandtl eddy viscosity model 

provides a good prediction, although it appears that the 

asymptotic trend of this model is to underpredict the center- 

line velocity (note again the character of this model as it 
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Figure 10.6.  Comparison of best predictions with 
axisymmetric wake data of Chevray [58]. 
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intersects the data), while for the two-dimensional wake the 

Zakkay model [86] provides a good prediction—including an 

apparently good level of agreement with the asymptotic trend 

of the data. 

Additional Results for Coaxial Hydrogen-Air Mixing 

Typical velocity profiles for the various models 

are compared with some representative hydrogen-air data in 

Figure 10.8.  Because these profiles are typical, it was 

considered more informative to look at other axial 

parameters for the hydrogen-air data.  Figure 10.9 illus- 

trates the velocity decay predictions of the Schetz model 

and kinetic energy theory for two cases of the hydrogen-air 

data of Chriss [90].  Figure 10.10 illustrates the center- 

line composition decay and half-radius growth for these 

same data.  (C is the centerline mass fraction of hydrogen.) 

Returning to Figure 10.9, it can be seen that for the "Run 

17B" case the kinetic energy theory overpredicts the center- 

line velocity for x/D > 6.  It would be expected, as these 

calculations were made with Pr. = 0.85 and Le. = 1.0, that 

the kinetic energy theory would also overpredict the center- 

line concentration of jet species.  Further, given profiles 

that normalize as Figure 10.8, i.e., as functions of 

r/r... , it would be expected that the calculated half- 

radius would be smaller than the measured.  Figure 10.10 

shows that both of these expectations are confirmed.  On the 

other hand, the centerline velocity for the same data is 
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Figure 10.9. Velocity decay predictions for coaxial 
hydrogen-air mixing using Schetz model and kinetic 
energy theory.  Data from Chriss [90], 
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kinetic energy theory with hydrogen-air''data.  Data 
from Chriss [90]. 
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underpredicted by the Schetz model.  Figure 10.10 shows a 

slight overprediction of the centerline composition, which 

indicates that the value of the Schmidt number used—0.85— 

was possibly too large for these data.   As would be 

expected, Figure 10.10 shows a half-radius prediction larger 

than measured. 

Figure 10.11 shows the centerline velocity 

according to the predictions of the Schetz and kinetic 

energy models, and Figure 10.12 shows the associated center- 

line concentration of jet species and half-radius curves for 

additional coaxial hydrogen-air data.  In the case of the 

kinetic energy calculation these curves show the expected 

behavior.  But for the Schetz calculation, these two figures 

show an overprediction of both the centerline velocity and 

the half-radius. 

There are two ways that such an apparent dis- 

crepancy can occur.  One is for the velocity profiles to 

deviate markedly from the typical shape.  The other is for 

the integral.momentum for the calculation to deviate 

strongly from that for the experiment.  Investigation shows 

that the latter is the case. For Run 17B, the kinetic 

energy calculation was started at x/D =4.7 using measured 

velocity, concentration, total enthalpy, and shear stress 

profiles.  At this point the value of the momentum parameter 

Turbulent Prandtl number was 0.85 and turbulent 
Lewis number was 1.0. 
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Figure 10.11.  Comparison of predicted centerline velocity 
decay according to Schetz model and kinetic energy 
theory with hydrogen-air mixing data.  Data from 
Chriss [90]. 
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oc 

pUr(U - UQ)dr (10.1) 

was 9.15 in arbitrary units.  On the other hand, the 

calculations using the Schetz model were started at x/D = 0 

using a 1/7 power law velocity profile, a 2/7 power law 

enthalpy profile, and a linear concentration profile.  The 

initial boundary layer thickness was taken from Chriss [90]; 

it was not reported specifically for this case but it was 

assumed to be approximately the same for all cases.  This 

assumption was naive, for the value of the momentum 

parameter obtained in this manner was 8.50 in the same 

arbitrary units, which is greater than that for the data. 

Given the typical profiles, if a flow calculation over- 

predicts the centerline velocity and uses a too great value 

of the momentum parameters, it can also overpredict the 

half-radius.  It is clear that this is the case for the data 

in question.  Clearly a more sophisticated approach would 

have been to take the boundary layer thickness such as to 

provide at x/D = 0 a value of Equation (10.1) equivalent to 

that obtained from the downstream data.  As the comparisons 

made and the conclusions reached in this study are based 

primarily on the trend of the prediction and not the actual 

values predicted, this problem is not extremely serious.  It 

does point out a major need in future experimental work, 

which is an accurate measurement and careful reporting of 
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the flow initial conditions. Such data could prevent 

serious deviation of the type described from occurring. 

Recommendations for Future Experimental Work 

For the single gas jet into still surroundings, 

the asymptotic far-field behavior appears to be very well 

known, and no additional work would appear to be necessary. 

However, for the very near-field (the "first transition 

regime" in Chapter 2), there are no measurements.  This is 

the region at the edge of the nozzle in which the flow 

undergoes transition from a boundary-layer character to a 

free-shear layer.  Investigation of this region would 

require the development of quite small instrumentation (or 

large test apparatus which might be beyond the capabilities 

of most research organizations), but should be rewarding in 

developing descriptions for the transition of a flow from a 

boundary layer flow to a free-shear layer.  Of secondary 

importance is an investigation in which careful measurements 

in the first regime are extended downstream far enough into 

the Second regime to establish the appropriate axial decay 

curve.  This would obviate the need for using composite data 

as was done in this study. 

The situation with regard to coaxial air-air jets 

is similar.  However, in this case the first mixing regime 

itself needs to be more extensively investigated in greater 

detail than has been common in the past.  The necessity for 

ducting the outer stream is understood if far downstream 
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measurements are to be made, but such a duct must be large 

enough so as not to interfere with the free-turbulent 

character of the flow.  To this end the axial pressure 

gradient ought to be monitored and reported.  The influence 

of the duct becomes more important as the outer stream to 

inner stream velocity ratio U /u. approaches unity because 

the wall shear becomes larger in relation to the free- 

turbulent shear; indeed this is the primary reason that few 

reliable measurements exist for U /U. >_ 0.5.  This situation 

should be rectified with appropriate care to insure a zero 

axial pressure gradient and with careful reporting of the 

initial conditions of the flow.  The importance of the 

latter cannot be overemphasized. 

The lack of reliable and complete reports of the 

initial conditions of the flow is especially noticeable in 

the case of mixing of dissimilar gases.  For the case of 

hydrogen-air mixing the lack of adequately reported data is 

especially noteworthy.  Detailed structural measurements in 

such flows must await the development of radically improved 

instrumentation, but in the meantime much valuable infor- 

mation can be obtained through mean-flow measurements.  In 

particular, flows with outer-to-jet mass flux ratios 

p U /p.U. less than unity should be investigated.  Again if 

a duct must be used to insure an adequate second regime, it 

must be so designed that it does not influence the develop- 

ment of the flow. 
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Turbulent wakes, both axisymmetric and two- 

dimensional, have been investigated in some detail.  However, 

as for the jet into still surroundings, there are no experi- 

ments in which near-field and far-field measurements are 

made in the same flow'. Also as for the jet-into-still-air, 

the transition from a boundary layer to a free-shear layer 

needs to be extensively investigated. 

The author was somewhat surprised to find that 

there was no data avilable on a flow configuration in which 

the outer stream is subsonic and the inner supersonic.  This 

would seem to be a problem of both academic and practical 

interest.  Again the same comments as made above with regard 

to the initial conditions and the use of an outer duct 

should apply. On the other hand, the author does not feel 

that at the present time any basic information on turbulent 

mixing processes can be obtained from very high speed flows. 

Such flows may be useful for testing the predictions of a 

mixing model in extreme situations, but such a model will 

have to be developed from more basic flows. 

The tremendous importance of the measurement of 

the initial conditions of the flow cannot be overemphasized. 

This is obviously true when history-dependent models such as 

the turbulent kinetic energy approach are being used, but 

accurate knowledge of the initial condition of the flow is 

important for the testing of any turbulent shear stress 

model, even if it is locally-dependent. The only fair way 
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to test a model is to remove all other uncertainties from 

the calculation. 

Recommendations for Turbulent Shear Stress Models— 

Present Use 

If initial profiles of the turbulent shear stress 

are known or they can be reliably calculated, none of the 

locally-dependent methods considered in this study is nearly 

as powerful as the turbulent kinetic energy method.  The 

capabilities of this method warrant its use wherever 

possible.  However, there are many flow phenomena for which 

turbulent shear stress profiles or even levels are unknown. 

For these flows locally dependent models must be used, 

although the user must recognize that in some cases 

significant errors can result.  Table 10.1 lists the 

locally-dependent eddy viscosity models (recall that the 

turbulent shear stress, T, is given by T = pe 3U/9y) 

that are recommended from the results of this study.  The 

numbers in the column labeled "Observed Error" should not be 

taken as the maximum error to be expected.  Rather, they 

represent typical maximum errors in centerline velocity 

predictions encountered in the course of this study; they 

should represent the approximate order of magnitude of the 

errors to be expected.  The most widely applicable model is 

the Prandtl eddy viscosity model [114] using the constant 

reported by Ferri [83]; the Ferri model, however, does not 

work for the dissimilar gas case for which it was designed. 
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TABLE 10.1 

RECOMMENDATIONS FOR THE USE OF LOCALLY-DEPENDENT 
TURBULENT SHEAR STRESS MODELS 

Type of 
Flow 

Recommended 
Model 

Form of 
Expression Constant 

Recommended 
Range 

Typical 
Observed Error 

this Studya 

Jet-into-still 
surroundings 

Ferri e=KFrl/2 <Umax-Umin> 0.025 all 15% low tran- 
sition region) 

Coaxial air-air Prandtl e=KPb(Umax-Umin) 

b^2r1/2 

0.007b 

0.011c 
0<x/D<20 26% high(x/D=18) 

m 
ro 

Ferri e=KFrl/2(Umax-Umin) 0.025 x/D>20 40% high(x/D=56) 

Coaxial H2~air Schetz e£=VP0Vr
2>/r0 

0.018 all 40% low (x/D= 
10.4) 

Axi symmetri c 
wake 

Ferri e=Vl/2{Umax-Umin) 0.025 all small 

2D wake 

Compressible 
jet 

Zakkay 

Prandtl 

e=Vl/2UCL 

b=2r1/2 

0.011 

0.007b 

0.011c 

all 

20<x/D<60 35% 

30% 

small 

low (x/D=15) 

high(x/D=60) 

Error in prediction of centerline velocity. 
> 
m 

First regime. 30 

■il 

'Second regime. u 
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Note also that the Prandtl model is listed in Table 10.1 for 

the compressible jet-into-still-air, although the error 

involved in its use is very nearly prohibitive. 

Recommendations for Turbulent Shear Stress Models— 

Further Development 

In the author's opinion, arrived at as a result of 

this study, further attempts to modify the basic Prandtl 

eddy viscosity model or the mixing length theory to make 

them apply to more complex flows is a fruitless avenue of 

attack. The results of this study have shown that none of 

the modifications of the Prandtl eddy viscosity model, 

including the Donaldson and Gray compressibility correction 

[67] are capable of greatly altering the basic shape of the 

axial centerline velocity decay curve, and the shape pre- 

dicted by the Prandtl model and all of its derivatives is 

incorrect for complex (two-gas) flows.  The Libby transform 

[125], which includes a form of the Prandtl eddy viscosity 

model, has also been found not to represent any improvement 

over the basic Prandtl model in its prediction of the 

centerline velocity decay.  The restriction of this approach 

to unity turbulent Prandtl Lewis numbers makes it less 

attractive still. 

On the other hand, the displacement-thickness 

model proposed by Schetz [121] is the only locally dependent 

model to show the proper behavioral trends for hydrogen-air 

mixing. Because of this, its use should be investigated in 
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other dissimilar-gas flows.  Further work should be done in 

applying this model or a modification of it to coaxial 

single-gas flows as well to establish an approach for use in 

the first regime of mixing.  Further investigation of this 

model and its implications is recommended. 

Given some knowledge of the turbulent shear stress, 

the turbulent kinetic energy method is capable of providing 

better and more uniform pj.ed.ictions of a wider range of 

flows than any other model.  Because of this, it clearly 

holds the greatest promise for future development.  The 

most important area for future work is in establishing 

methods for 'the generation of the proper initial conditions. 

The comparison with the data of Forstall, Figure 10.4, page 

505, shows how good the predictions of this method can be, 

given appropriate initial conditions.  One suggested 

approach to this problem is to develop a technique whereby a 

boundary layer calculation is allowed to proceed from the 

edge of a nozzle to a fully-developed free shear layer. 

Another area for further work involves the establishment of 

better models for the terms of the turbulent kinetic energy 

equation, or in obtaining better values for the constants in 

the models now in use. The models and constants used in 

this study have been developed rather crudely—they seem to 

work well, but that does not mean that there is no room for 

improvement. 
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It is somewhat disturbing that after all of the 

effort expended on research on free turbulent mixing, there 

is still no reliable way to make engineering calculations of 

any but the most basic free turbulent flows.  In part this 

situation is a result of the diffuse nature of free 

turbulence research, with many workers in many laboratories 

investigating different facets of the problem.  Their work 

is often not widely reported, with the result that new 

workers in the field all too often have to repeat all of the 

previous mistakes in order to become aware of the 

deficiencies of the various models for the free turbulent 

shear stress.  The lack of a reliable way to make engi- 

neering calculations is also in part caused by attempts to 

analyze complicated flow systems while simple ones are not 

understood, although this is often due more to necessity 

than desire.  Such analyses bury the turbulent shear stress 

models so deeply under assumptions for the other variables 

in the problem that when they fail, as they all too often 

do, their failure sheds no light on the turbulent shear 

stress model involved. 

The purpose of this study was to establish the 

state of the art in free turbulent mixing.  This involved a 

critical analysis of the available free turbulent mixing 

experiments and of the available models for the free 

turbulent shear stress.  One result of this study is the 

establishment of limits within which various shear stress 
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models may be used, although often with considerable error. 

But a potentially far more important result is the demon- 

stration of the accuracy of the history-dependent methods. 

As the work described in this report has shown, the methods 

of analysis which take into account the structure of the 

turbulent flow seem to offer the hope of breaking away from 

the previous situation.  Such methods offer the possibility 

of being able to predict reliably a broad range of free 

mixing flows.  It is doubtful whether methods which fail to 

take into account the fact that the flow is turbulent, and 

not laminar with some badly behaving viscosity, can ever be 

made to agree with more than a small range of experiments. 

It is clearly time that the methods of analysis of turbulent 

flow recognize that it is indeed turbulent. 
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APPENDIX A 

EVALUATION OF THE MOMENTUM INTEGRAL 

Axisymmetric Flow 

Consider a generalized axisymmetric flow, Figure 

A.l.  Along the centerline, r = 0, V = 0, and T ■ 0 by 

symmetry. For constant pressure the mean-flow momentum 

equation is 

pUr^ + pVr^ - -5J— (A.l) 

where T = -puv.  Here the instantaneous velocity U = Ü + u, 

Equation (A.l) is appropriate for incompressible flow, under 

the assumption of constant pressure (as well as the usual 

boundary layer assumptions).  For compressible flow, use of 

Equation (A.l) implies the approximation p1 << p, as well as 

assumptions involving turbulence terms such as p'uv which 

enter the definition of T.  Laster [131] has shown that 

these "compressibility" terms are negligible for the types 

of flow to be considered here. 

The equation of continuity 

3 (pur)   3 (pVr) 
5x  +  3r  = u 

may be integrated to obtain 
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Figure A.l.  General axisymmetric flow. 
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pVr » - üf2£^r. (A. 3) 

Substituting this expression into Equation (A.1) and inte- 

grating r = 0 to r = R yields 

R r 

Pür|£ar - i^*' &- - «. 
(A. 4) 

o o 

where T_ = T at r = R.  If R is taken sufficiently far into 

the secondary flow so that U = U = constant (where U may 

be zero) then 

R r 

pur$2dr-f/^§^r- |2ar 3x 

o      ö o 

3r" = 0 (A. 5) 

Integrating the second term by parts 

R r 

itejgOte. Sir = W* uu£^r. 
o    o 

R 

/• 

r. - Jn^f^r = 0o jüf^r - joi<^r (A.,, 
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jL<P»>>dr - u0 J&JfBä dr - 0 (A.7) 

Using Liebnitz1 rule, Equation (A.7) becomes 

R 

k h*2*r - uo k /»Urdr - ° (A.8) 

or 

d 
Hx- fpU(U - UQ)rdr = 0 (A.9) 

where it has been assumed that dU /dx = 0.  This is equiva- 

lent to the already stated assumption that the pressure is 

constant, as the external flow has also been assumed to be 

inviscid (T = 0).  Thus the momentum integral requirement 

is that 

ß pU(U - U )rdr = constant (A.10) 

for an axisymmetric flow. 
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Symmetric Two-Dimensional Flow 

Here the momentum equation is 

PU!£ + P^ - ly- <A'1:L> 

and the continuity equation is 

ififOL + y&   .  0 (A.12) 

again assuming constant pressure,  and subject to the same 

remarks about the influence of compressibility effects as 

were made above for the axisymmetric flow. Because the flow 

is symmetric, a centerline exists (at y ■ 0) for which V = 0 

and T ■ 0. Thus, integrating the continuity equation (A.12) 

gives 

Y 

py - - /i^2iay (A.i3) 
O 

Performing the same operations as for axisymmetric flow 

leads to the equation 

d_ 
dx 

,- Y 

- 0 (A. 14) Jt (pU(U - UQ)dy 

° J 

again assuming that the integral is carried to a Y suffi- 

ciently large so that U = U = constant (which may be zero) 
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so that at y = Y, T = 0.  Thus the momentum integral require- 

ment for two-dimensional symmetric flow is 

\ 

> 
pU(U - UQ)dy - constant (A.15) 

Non-Symmetric Two-Dimensional Flow 

Figure A.2 illustrates a non-symmetric two- 

dimensional flow; a two-dimensional mixing layer is an 

example.  As before, the momentum and continuity equations 

are 

and 

P«ü+^.|2 (A.16, 

lftB- ♦ W©. = 0 (A.17) 

Here/ however, the integration on y must be taken from 

y = -Y, where U = U, and V = Vy_ to y - Y, U = U and 

V - Vv.  Thus, the integral from (A.17) from -Y to Y is 

'Y- Y- PV " PV_VV. = - /i^dy, (A. 18) 
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y = Y, U = U( 

U0 _L„J 

U - U, 

u - un 

k—ui A 

y - -Y, U - U, 

Figure A.2. Non-symmetric two-dimensional flow. 
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and Equation (A.16) becomes, after integration from -Y to Y 

Y       Y  y 

-Y       -Y  -Y 

6» * py.vY_ fey - 

TY " TY- 
(A.19) 

where Ty ■ T_ - 0.  Integrating the second term of (A.19) 

by parts 

Y Y 

+ PY-V
(0

O " °i> 

so that Equation (A.19) becomes 

/fed»2)* - o0 ji ̂ W 

* PY-
VY-(U0 " ül) = ° 

(A.20) 

(A. 21) 
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Using Liebnitz* rule; 

d 
ax 

-Y 

JpUtU - U0)dy - PY_Vy„(U0 - Ux) - 0    (A.22) 

or 

JpU(U - U0)dy + 
-Y 

x 

+ (üx - UQ) /py_Vy-dx' - constant       (A.23) 

o 

so that some knowledge of the behavior of p„ and V„ is 

necessary to evaluate the momentum integral for a non- 

symmetric two-dimensional flow. 
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APPENDIX B 

EVALUATION OF AXIAL DECAY OF CENTERLINE VELOCITY 

FOR INCOMPRESSIBLE FLOW 

Consider an axisymmetric flow as in Figure B.l. 

Assume constant pressure and constant density. Then from 

Appendix A, 

R 

I U(U - UQ)rdr = constant (B.l) 
o 

For an ideal flow, atx = 0, U = U. = constant, 0 <_ r <_ r. , 

and U = U = constant, r. < r < R. Then o 3    - 

R 

JU(U - U )rdr, = r?U. (U. - U ) (B.2) 
o 

and at any position x,  x  < x 

K 

JU(U - U0)rdr = rjüj<Üj  - UQ) 

I-j »*j       ~o 

At x = x    ,  r_ ■ 0,  and 
C X 

+ r?U.(U.   - U ) (B.3) 

U(U - UQ)rdr o rjujtuj   " u
0> <B*4> 
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u - u. 

U - UH 

Figure B.l.    Nomenclature. 
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For x > x . assume c 

Ü - U 
__§_= f(|) - f(n, (B.5) 
c   o 

so 

ü = uo + (uc - uo)f(n) (B.6) 

so that 

a  - C,x (1-X) (B.7) 

This expression was quoted by Forstall [40, 41] for coaxial 

jets; it reduces to a  * x for the jet-into-still air, for 

which A ■ U /U. = 0. Note that at x - x . a  = <r and 03 00 
uo - Y 

The constant C^ is evaluated by evaluating 

Equation (B.4) at x - x . Thus, using 

u - uo » (Uj - uQ)f (n) 

(B.8) 

r = an 
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noting that U ■ U. at x - x 

00 

o  (Uj " u0
)f(n)3(Uj " Uo)f(Tl)0 ndn 

A 
- -P<u-J - V (B.9) 

so 

es 00 

f f 1   '2 /uQfndn +   J(Uj - u0)f2ndn   = ^v^ (B.IO) 
*- o 

or 

$i 
uo /nfdn + (UJ-UQ) /nf dn 

o J o 

(B.ll) 

J F(n)ndn = k1? Jf
2'- — - -       — -2> - ~2--2 

Now   j F(n)ndn 
o 

f  (n)ndn - k2 , and o  |x-x   - CJxJ, 
o c 

(1-X) 

so 

2  2 

^!^ "oki♦ k - ^q (B.12) 

for x > x. 

u "  Uo -   (Uc - Uo>f(n) (B.13) 
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and Equation (B.4) yields, after some algebra, using (B.13) 

<_£ o* .    /  o  x /_c o)k VU. - U '     2   lu. - u ' *u. - ü ' 1 
30        DODO 

r?U, 
—0  3 3  = 0 (B.14) 
20 <uj " Uo) 

letting 

* = u . u (B.15) uj   uo 

X =  ü /U. (B.16) 
o D 

and solving Equation (B.14) 

2       1/2 
1 kl  X  2  4ri  1  1 

Z z     0 

" 7<E7> «FX> <B-17) 

where the plus sign has been taken for the square root to 
2   2 ensure proper behavior for X -*■  0. Now o = C,x 

(B.7) so, using (B.12) and (B.16), 

2=r2v2(l-X) from 

kl  X 
T     ET(rr) + L ,      -2d-x) 
1  =-^_—_ 2 (|_} (B#18) 
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which when substituted into   (B.17)   gives 

üc- uc 
Uj   -   U 

1 
2~ 

kl 2     X 2 _     -2(1-X> 
+ 4<§-> 

xc 

f 7^ (T=X) (B.19) 

so that under the assumptions of this section, 

(u - U_)/(U4 - U.J can be written as a function only of the c   o   3   o * 

velocity ratio U /U. and the potential core length x . 

Note that for the special case of a jet-into-still 

air, X ■ 0, and 

°j   V 
-1 

(x > xc) (B.20) 
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APPENDIX C 

CONDITIONS FOR SELF-PRESERVATION 

The conditions under which a two-dimensional or 

axisymmetric flow may be self-preserving have been 

identified by Newman [3]. This development is followed here, 

with some changes of notation. For a symmetrical, two- 

dimensional or axisymmetrical jet or wake (Figure C.l) the 

time-averaged boundary layer equation in the x- (downstream) 

direction is 

Uo ox" + "r 3y(y W (C,1> 

Here constant-density has been assumed, but constant 

pressure has not; Equation (C.l) makes use of the approxi- 

mate equation in the y-direction. The term v is the 

physical kinematic viscosity of the fluid; u and v are the 

turbulent fluctuations associated with the average 

velocities U and V.  The time-averaged continuity equation 

is 

33+ ;? k(vyr> = ° (c-2) 
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1/2 UD 

Figure C.l.  Symmetrical jet with arbitrary secondary- 
stream velocity. 
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where 

r = 0 for two-dimensional flow 

r = 1 for axisymmetric three-dimensional flow 

For self-preserving flows, for all x: 

U - U0 + UDf<y/L0) (C.3) 

7 - üjgn (y/LQ) 

^ = "0*22(y/Lo} 

uv = ü2g12(y/LQ) 

(C.4) 

where L is the value of y for which U = U + U^/2, a o o   D 

function of x.  Substituting (C.3) in (C.2) , noting that if 

n = y/L0(x) 

3__ 
3x 

3_ 
3y 

3   3  3n - 3 JL 
3x   3n 3x " 3x  L, 

dL _o 3_ 
dx 3n 

i_ in 
3n 3y 

1_ 3_ 
LO 3n 

(C.5) 

ST ♦ fei V 
dL 

L_ ax" V + 
L^n

r Lo 3n   ° 
= o 

or 

dU«   dUn  O .  D - 
air + air f 

dL. 
- U„f '±- D  L_ dx 

Lon 
= 0 
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SO 

d      rTr,. _ Tr+1 r dUD   .   Tr+1 r- dUD 
an n Lov - Lo  n air + Lo  n f air 

„  r+lTr 
dLo 

" u-f,T1    L- air o 

where the prime indicates d/dr). 

Integrating 

n n 

-nVv = L^+1 g^ |r,-dn + L™ ^ In'f (n)dn 
o 

n 
dL 

~ UDLSdir     nr+1f (n)dn 

n 
Lo+1    r+1 aDo  .  Lr-1 anD     / r..n,. 

o 

dL , / dL 

- U
D

L
O air fT1     + (r+1) j^rfd^DLo air 

6 

Lr+1 du 

ST "I+1 ST + fe«WS>   /•>*«- - 

dL 
TT Tr      ° *«r+1 
UD

L
O air fX] 
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so that 

Now 

and 

so 

L i) dD     ,    , 

dLo 
- UDnf g^ (c.6) 

an 3ü«   3U«  n dL« u 4Ü = (u + u f) ( °- + f 2. _ n_ _o u f i) u Jx       luo  uDr' *3x + r3x   L SIT uDr ' o 

dU« dU« n       dL« 
= u    _o + Uf_0-B_oUtxuf'  + o dx o    dx        L    dx      D o o 

dU , dU_ dL       , 

IS- i-u f 
3y       L     UDE 

■* o 

„  3U n    FT o   -i D      d   /T1 _ r\ / r__   ~. V  3y = " -Eh UD dlT f    " ^T? E(DDLo,J1'  fdTlf    + 

O o 

uh        dLo 
+ !TTlff'dx£ (c'8> 

O 
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— 2 

o 

2 

o 

yr ^ (L n)r Lo  3n ° 

Ü2 

= ^L;§n(T>r9i2> (C'11J 

v     9   , „r  3U,   _      v 1     3   r,T   n,r 1_   .,, 

o 

= rAlr[T1 f,] (c-12) 
L
on 

Substituting Equations   (C.6)   through   (C.12)   into  (C.l) 

yields the equation 

dU_ dL du , dUD _ 
uofd5T - h srW'  + VffiT + V    =" o 

n     dL_  , _ dU 

L    dx^D r+l^D dx o 
n 9 

C A r fr- Un dLo 
- TTTTT b<v5> f1 £dri + Cff' air + 
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+ ir dir(n gi2} + gn 5T   rärt^ii no o 

du2.     .n    dL    , 
D      n        o 2.  , 

g22  dlT + L~ dx"~UDg22  " o 

*-Vn 3r(nrf)   =  0 (C.13) 
LV 

D dT1 
o 

2 
Multiplying through I«0/UD and rearranging yields: 

{!Tdir>tf    +  2<*11 " *22>>   +   ^|f(0ouD))[£] 
° UD 

r+1 TT _ r ax    o o 
UDL0 

UDL
° '    o 

dLn 

+   ljrln(l»r»12>]   " 

- {irur}[1Fan-(Tirf,)1 " ° <c'14) 
o D   n 
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The arrangement of the curly ({}) and square ([]) brackets 

is purposeful: all quantities in the curly brackets are 

functions of x only and all quantities in the square 

brackets are functions of y only.  Since the next to the 

last term has no curly bracket, self-preservation is 

possible only if the terms in the six curly brackets are 

constant. For sufficiently large U L /v, the last term may 

be neglected. The remaining terms are constant if 

dLo 
dx~ = constant 

=j—    = constant (C.15) 
o 

L dU 
_ _ = constant 

Thus for true self-preservation, L varies linearly with x, 

and both U_ and U are proportional to (x + x )m where x is po o        o 
the virtual origin which is constant for a particular flow> 

The exponent m is not arbitrary but varies with U_/U. As 

in Appendix A, integrating Equation (C.l) from y = 0 to y 

very large (so üv = 0) yields 

!£(er+1U^) + (6*)r+1 Uo ^2. = o (C.16) 
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i.e. 

r+1  H+2 
9   uJJ  - constant for constant H        (C.17) 

where 

er+1 uo - rrr lu<u - v*** 
(C.18) 

(6*)3C+1 Ul = rTT    l(U " V^ 
o 

and 

H = (6*/e)r+1 

From Equation   (C.17)   using the assumption of similar 

profiles   (C.3) 

er+1 C2 - Uo<rTT>   K + V' IVlLo+1 ^ 

o      o o r+i) 

00 

[l + ^ f][f]n'dn (c.19) f- 
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For self-preservation, UD/
U
Q 

= constant, and 

or 

Tr+1 „H+2 
o   o 

_r+l „H+2 
L0  UD 

- constant 

= constant 

(C.20) 

Now from the condition for self-preservation 

But 

so 

so 

L    dU 
=7- -3— = constant ■ C, UD dx 1 

Lo " C2X 

1    dUD„VC2 
UD dx x 

(cx/ca)& 

therefore 

.m 
UD « x m - £±/C>2 

But 

uH+2  . L-(r+l) 
D O 
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So, given 

L «x o 
r+1 

UD - x 

and 

m = - (r+l)/(H+2) (C.21) 

For the jet into still surroundings UQ/U ■+ °°f and since for 

self-similar profiles 
00 

/ ■ 
(i + jp f)fnrdn 

o 

|- — =:  «c-22) 

/fnrdn 
o 

for U_/ü    * .» 
D      O 

H +  0 

and 

n.   -      1+r m - —j- 

Therefore, for the jet into virtually still surroundings, 

true self-preservation requires 
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L    *   (x +  x  > o o 

UD  -   (x +  xo) -1/2 
for  two-dimensional 
flow (C.23) 

L     *   (x  +  x_) o o 

UD «   (x + xo) -1 
>   for axisymmetric 

flow (C.24) 

The small increment jet, for which UQ/U ■+ 0, 

H ■*■  1 is the opposite extreme.  For this case 

Lo  cc   (x  +  xo) 

UD   a   lX  +   Xo)_1/3 

L     «   (x  +  xj o o 

UD   «    (X   +   X0)_2/3 

>   two-dimensional 

> (C.25) 

> axisymmetric 

For a jet or wake in a zero pressure gradient, the 

requirement UQ/U = constant precludes exact self- 

preservation.  However in this case, if UjVU is << 1, 

Equation (C.14) becomes 

D 
<rTT^fe<üoLo+1>}^f,l  + 

UDL0 

+ ^a^(nrg12)] =o (C.26) 

574 



AEDC TR-71-36 

when both the normal turbulent stress term and the viscous 

term are neglected.  The requirement becomes 

U L du     U dL 
72T- alT and 0" clx" = constant 
u_ o 

(C.27) 

while Equation (C.16) gives 

r+1 8   = constant 

so 

ri Tr+1 . U_L        = constant D o (C.28) 

Substituting (C.28) into (C.27) 

., dL „ r   r+1  o      , U L„   3-— = constant o o   ax 

or 

Lo cc (x + Xo) l/(r+2) 

therefore 

UD " L0 
-(r+1) 

so 

UD « (x + xo)-^r+D/(r+2)] 
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So that, for UD/U0 = U - UQ/Uo « 1, 

L0 . <X ♦ *e,V"2 

U - (x + x )-t(r+D/(r+2)] 
o       o 

r = 0        r = 1 

1/2   and    1/3 

-1/2   and   -2/3 
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APPENDIX D 

DETAILS OF THE TING-LIBBY TRANSFORMATION IN 

TWO-DIMENSIONAL AND AXISYMMETRIC FLOW 

Two-Dimensional Flow 

Following Mager [122], the Howarth transformation 

for two-dimensional turbulent flow, with the molecular 

viscosity neglected, is, with X, Y transformed (incom- 

pressible) coordinates, and x, y physical (compressible) 

coordinates: 

X = x (D.l) 

Y - F  IpQ dV' (D'2> 

so that 

1_ = F(£_)i_ 3y  FlP0
,3Y 

Still following Mager [122] , we postulate that 

1.  The stream function is invariant under the 

trans formation, i.e., 

f = Y* (D.3) 

where the * indicates the transformed (incompressible) value. 
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2. The total amount of shear associated with an 

elemental fluid mass is invariant under the 

transformation: 

(p uv)pdxdydz ■ (p uv)*p dXdYdZ (D.4) 

Now in the physical plane the stream function H* is defined 

by 

Pu = p03V3y 

(pV + p'v) = po3V3x 

(D.5) 

while in the transformed plane 

U* = 3Y* 9Y~ V* = - 3V* (D.6) 

Now 

U   3Y   3Y   3y 3Y ~ p  F 3y 
U 
F (D.7) 

The infinitesimal element is transformed: 

dXdY = 

3(X,Y) . , 
TRxTyTdxdY 

(D.8) 
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,3X  3Y.        3Y   3Xv ,   , = {n 37" Tx 3y)dxdy 

= F2(p/po)dxdy (D.9) 

so 

   2 
(p uv)pdxdy = (p uv*)F pdxdy 

or 

p uv = F p uv* (D.10) 

Now 

p uv = pe3U/3y 

p üv*" - pQe*3U*/3Y (D.ll) 

so that 

pe |H = F2POE*3U*/3* 

= F2Q e* *_(D, * PoE  3YV 

= F
2p e* L° ± a (S) r poe  p F 3yV 

which leads to 

p2e - p2e* (D.12) 
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Axisymmetric Flow 

Here the transformation becomes 

X = x (D.13) 

R2 = F / (£-)r'dr' (D.14) 
po 

Again the capital letters refer to the transformed (incom- 

pressible) coordinates and lower case letters refer to the 

physical coordinates. 

From Equation (D.14) 

For axisymmetric flow, we again assume 

4» = V* (D.16) 

where the * refers to the transformed (incompressible) 

coordinate, but we now make the assumption [126] that the 

"moment of the turbulent shear about an axis of the fluid 

element is conserved": 

(rp uv)p(rdrdx) » (Rp uv*) p (RdRdx)        (D.17) 
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The Jacobian of the transformation of the element is 

J - F(p/p0)r/2R (D.18) 

so (D.17) becomes 

or 

Now 

so that 

and 

(rp uv)p(rdrdx) = 

         r2 

= (RpQ uv*)poF(p/p0)2R drdx 

p UV = po ÜV* F/2 (D.19) 

pUr = p03V/3r 

U*R - 3¥*/3R 

3*     3**    _ p  r  3V* 
PUr=poEBPo3rspoFr^3F o 

P- *_ „*. ■ poF r IR U*R 

o 

FU* 
U =  ^- (D.20) 

581 



AEDC-TR-71-36 

further 

p uv = per3U/3r 

Poü^ - P0
£*R3U*/3R 

Substituting (D.19) into (D.21) 

(D.21) 

3U     *„3U* F 
per3r- " po£*R3R- 2 (D.22) 

Using (D.20) and (D.15) 

nc-r-F    P r  3U* perT" p^ 2R 3R- Po**4 ff 

so 

2  0 2 tr i p e = 2p0e*-y F (D.23) 

So, substituting (D.14) for F into (D.23) 

r2p2e - 2p*e* j   (Ppjr'dr' (D.24) 
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APPENDIX E 

THE NUMERICAL SOLUTION TECHNIQUE 

The numerical method used to make all of the 

calculations reported in this study (with the exception of 

the calculations made to invert the Libby solution [125] 

back to to the real plane) is based on the technique 

developed by Patankar [139]. This procedure is valid for 

the numerical solution of an arbitrary number of simul- 

taneous parabolic partial differential equations.  It is an 

implicit technique, which embodies a variable grid size, 

each lateral increment essentially being a given fraction of 

the total mass flow in the flow field. This use of a 

variable grid, combined with the use of a standard form for 

the parabolic partial differential equations in non- 

dimensional stream function coordinates results in a 

considerable economy in computer time for a large scale 

calculation.  For example, a calculation involving the 

simultaneous solution of three equations (momentum, energy, 

and species) for a two-gas nonreacting mixture with non- 

unity turbulent Prandtl and Schmidt numbers, using a forty- 

point lateral grid and involving of the order of 150 

downstream steps, requires approximately four minutes on an 

IBM 360/50. 
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This economy of execution time and the accuracy 

permitted by the variable grid size are the primary factors 

which allowed the calculations made in this study to be 

performed in a reasonable time.  However, to adapt the 

Patankar program for the purposes of this study, several 

major modifications were necessary.  The first involves the 

definition of the turbulent eddy viscosity, e.  Patankar 

[139] wrote the program using the Prandtl mixing length 

model for the turbulent eddy viscosity.  As will be seen, 

this simplifies the definition of one of the important 

parameters in the formulation of the problem.  Since this 

study requires the use of a number of models for the 

turbulent eddy viscosity, the restriction to the Prandtl 

mixing length model inherent in the definition of the 

parameter in question had to be removed. Secondly, although 

the structure of the program written by Patankar allows an 

arbitrary number of simultaneous parabolic equations to be 

solved, the actual number allowed in the programming by 

Patankar was three.  Since the most complex problem solved 

in this study using the turbulent kinetic energy equation 

involves four governing equations (with the continuity 

equation absorbed into the momentum equation)—momentum, 

energy, species, and kinetic energy, this restriction on 

the number of equations had to be lifted. Additionally, the 

turbulent kinetic energy equation was written in a form 

suitable for inclusion in the program, transformed into 
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.nondimensional stream function coordinates, and the 

appropriate terms were added to the program.  This also 

involved a modification to the mean flow energy equation. 

A third modification involves the accuracy of the 

computations.  Some of the calculations involved in this 

study proceed to large values of axial distance, which 

involves a large number of calculations. As will be seen in 

this section, one of the functions chosen by Patankar to 

control the variation of the grid size (which also enters 

the definitions of the coefficients of the equations) proved 

inaccurate when used for a large number of calculation 

steps.  Thus, this function had to be changed and an 

alternate one which proved considerably more accurate (but 

which is limited to free mixing problems) was substituted. 

Because a complete description of the basic 

program is given by Patankar [139], the details will be only 

briefly discussed in this section.  The modifications that 

have been made will of course be discussed in detail. 

Formulation of the System of Equations 

In his formulation of the problem, Patankar first 

converts the system of governing equations from the physical 

coordinates to the von Mises stream-function coordinate 

system, where the stream function V is defined so as to 

satisfy the continuity equation: 

» . p„. . |I = - pVy« «,.„ 
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The parameter a is unity for axisymmetric flow and zero for 

plane flow.  Consider now the X-direction momentum equation, 

written, incorporating the Boussinesg assumption for the 

turbulent shear stress: 

„TT3U . „„3U _ 1  3 ,„oi 3ü\   dP ,_, 0. pU3x" + pVW  7 3y(y eW} " dx" tE-2) 

and the kinetic energy equation in parabolic form (see 

Chapter 8) 

,.3k .  „3k _ 1  3 /y
ae  3k. , 

pU^x" + pV3y ~ "a 3y"(PrT" Jy} y      K~ 

+ «(|2)2 - Dk (E.3) 

The energy and species equations are developed in the same 

manner as Equations (E.2) and (E.3); their development is 

not given here. 

Equations (E.2) and (E.3) are now transformed into 

the von Mises coordinate system, i.e., 

(x,y) -> (x,¥) 

where x ■ x.  Noting that 

3   3  , 3  3^  9   „„„a 3, ,_ .. 
3^ = -= + PF-^ = ^-pVy  W (E'4) 3x 3x 
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3  _ 3  3* _ nIlva 3 (v  r» 
^y " ff  37 " pUy If (E"5) 

and setting x = x, the transformed momentum and kinetic 

energy equations become 

3 _ 3 , ,2a T. 3u»   1 dP ,„ c. 
3"x = -3¥(y P^-ST5 " pu 3x (E'6) 

3k _   3   ,  2a  pUe   3k,    ,     __ 2a   ,3U\2    Dk ,„  ,v 
3lE=-3T(y      Pr^I5E)+pUy    c(3¥>  "  pTJ (E*7) 

Now define 

u "  w—w- tE.8) 
E     I 

where T_ is the value of the stream function ¥ on the outer E 

or "external" edge of the mixing layer, and 7_ is the value 

of the inner or "internal: edge. Thus, the value of u will 

be from zero to one.  The coordinate system transformation 

{x,¥) +   (x,w) 

where x = x is now performed. The transformation equations 

are 

3x       a-      V-.-VT- 
L~  dx    "     *--*,' ldx    '  dx  n3ci) 

OX Hi J. CJ i 

3 3     du 13 
3*        3(ü   3¥       V™-¥_   3d) E      I 
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The terms ¥_ and ¥ are functions only of x; using the 

continuity equation (E.l) 

"■    .. _ A 
cGT " "EVE " rE*E <E-9» 

d¥ 
dST = Piviri4ri*i (E-10) 

where m_ represents the mass flow rate per unit area 

entrained at the outer edge of the layer and m_ the same 

quantity at the inner edge, the transformation equations 

become 

k= h+ v*7[rA+ w(rEÄE"rA) ^   (E,11) 

9* ■  ?_-*_   3w (E.12) 
E     I 

Using Equations (E.ll) and (E.12), Equations (E.6) and 

(E.7), as well as the energy and species equations all 

transform to a standard form which can be written, taking 

x = x again, 

n+ <•♦»»>£ - y^+ * «•«> 
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where 

a = rIAI/{¥E-'FI) (E.14) 

b - (rgAj, - rIAI)/(VE-¥I) (E.15) 

c = y2apüe/a(¥E-¥I)
2 (E.16) 

and where, for various $, the values of a  and d are as given 

in Table E.l. 

In forming the expressions that appear in Table 

E.l, it has been assumed that no chemical reactions occur, 

and that a two-gas mixture which can be characterized by the 

concentration of a single species C is involved.  It should 

be noted that the term (1/Pr. - 1/Pr) 3k/3u> included in the 

expression for d for the total enthalpy equation (H) in 

Table E.l was not included by Patankar [139] as he did not 

consider the kinetic energy equation.  Pr represents the 

turbulent (mean-flow energy) Prandtl number, Sc the 

turbulent Schmidt number, and Pr. the turbulent kinetic 

energy Prandtl number, described in Chapter 8. 

Development of the Auxiliary Relations 

It is in the evaluation öf the terms (H* -¥_) , 

r^m^, , and r m that substantial differences have evolved 

between the formulation used by Patankar 1139] and that were 

589 



* 

u 

> 
m o o 

w 
01 

TABLE E.l 

SOURCE TERMS IN THE TRANSFORMED EQUATIONS 

1_ dP 
pU dx 

S k    Pr (y2oW) ,3U 2  Dk 
VTE  i' 

C      Sc 

H     Pr-      3 r y2apue r/, .1,3 /U2. . / 1 _ 1 v3kn 



AEDC-TR-71-36 

used in this study.  The terms used by Patankar and the 

modifications made to them in this study are described in 

this section. 

The terms r-j-A- and r^rtu can be evaluated from the 

axial momentum equation.  Consider the axial momentum 

equation applied along a free boundary, denoted by the 

subscript G.  Just outside of the G boundary 

,3U.  _   ,1 dP. ,„ T-. 
(^}

G    
(pÜdx->G 

(E'17) 

from the inviscid Bernoulli equation.  If it is assumed that 

this relation also holds just inside of the G boundary, the 

axial momentum equation becomes 

OT[ri*I + (rE*E'rI*I,wG1l£,
r 

= 

3,0 (Vfi>   U=
"G 

For w_ -*■ 1, this becomes 
(j 

2a 
3U,yG  PEUEE   3u. 

rEAE = £im [ w^ ] 
u+u>G 

(E.19) 
while for u)_ -»■  0 

V3 

2a TT 
3 ,?G PIUI£ 3U 
3ü3 

l  Y -V   3t*)' 
rl*I = llm [ 3Ü73^ 1 u)-u)G 
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For the Prandtl mixing length model 

,.pl»l«!|.fi-a£}-.|jfl| „.,., 

and the limit in Equation (E.19) is finite.  This remains 

true as long as e « 3U/3y.  However, most eddy viscosity 

models considered in this study do not have this feature, so 

that it is necessary to evaluate r_mG in some other manner. 

If the axial momentum equation is evaluated some- 

where away from the edge of the mixing layer, say at u = u. , 

then 

3 ry "pUe   3U, 
■5S[7V*,)2 W 

rl*I + WB(rE*E " rl*I) ' { 3Ü73S }
B " 

V -V    dll E  I  ,  B .  1   dP. ,„   ,n 
(3U/3a))B 

{dlT+ ^E1 (E-21) 

In practice, dF/dx is taken to be zero for the free mixing 

flows considered in this study.  A value of w_ , say 

u- = 0.95 is then selected and it is demanded that at 

w ■ u  , UB = UB = 0.99 UE.  The term dUß/dx is then 

evaluated by comparing the value of U_ obtained with that 

desired at the downstream station U_ , so that 

dUB   ,.  VUB 
mr   xD-Xu 

(E.22) 
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In practice the value x_ - xn is not yet known, so the value 

of x - x from the preceding step must be used.  If one 

boundary is free, the known value of the entrainment from 

the other boundary is used with (E.22) in (E.21) to obtain 

the free-boundary entrainment; if both boundaries are free 

the entrainment rate must be obtained at both boundaries 

simultaneously, perhaps taking <*)_, = 0.005 and U_, = 0.99 UT 

at the inner edge. 

In the numerical procedure devised by Patankar 

[139], the coefficients a, b, and c are all defined at the 

upstream station, denoted by subscript U.  For an arbitrary 

dependent variable <J>, the term at the downstream station, 

subscript D, is evaluated using the expression 

dD = dU+ (i?Y*D- V (E*23) 

Using the coefficients a^. , b  , c , and d , the value of 

<j>_ is then obtained by a simultaneous solution of the 

governing equations, written in the form of Equation (E.13) 

at the downstream station.  This technique puts considerable 

emphasis on the proper definition of the terms a , bv  , 

c , and d , which in turn emphasizes the terms r-iLp , 

r rtu ,  and T - ¥_. The method of obtaining r m_ and rEA_ 

has already been shown.  Patankar obtains '■¥„ -  ^T from 

Equations (E.9) and (E.10): 
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<VVD 
S (ri*I - W^D - V (E-24) 

where r m_ and r m_ are evaluated at the upstream station 

and x - xu is the x-step used to get to the upstream 

station from the one preceding it.  The next step length is 

obtained by requiring that the step length be such that a 

given fraction of the total mass flow at the upstream step 

is entrained.  Using the data at the former downstream 

station, which now becomes the upstream station for the next 

calculation, the entrainment terms r üi    and r flu are defined, 

and the step length is taken as 

xD - xö = Ax = c • (fg-Vj) /(r^-r^)     (E.25) 

The effect of a very high predicted entrainment will be to 

decrease the step length, but there is no way in this 

formulation to correct the effect that an erroneous pre- 

diction of the entrainment has on the specification of 

(Y.. - ¥_)  for the next step. The effect that manifested 
E   T  U 

itself in the course of this study was a steady deviation 

from the requirement, true for a free mixing flow, that the 

value of the momentum integral be a constant.  Since devia- 

tions of from 30-40 percent were found, the situation was 

clearly unacceptable.  However, for a free mixing flow, one 

can write for the momentum integral 
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I 

/ 
O 

pU(U - U_)yady = constant 

or 

00 

J (U - uT .„Id* = constant 
o 

which becomes 

1  E -  4f  )    jXV - UE)du = constant 

Thus,   instead of Equation   (E.24),   the  equation 

[  /   (Ü-U  )dto] 
<¥E  -   Tj)     = -2-I ~    <VV (E*26) 

D        [   /   (U-UF)da)] U 

° E D 

was used in this study.  This results in a definition of 

(V„ -  ¥_) which is not directly dependent on the entrain- 

ment flow rates evaluated upstream, and which serves to keep 

the value of the momentum integral constant.  Few calcula- 

tions made with Equation (E.26) have been found to deviate 

more than 6 percent from the criterion that the momentum 

integral be a constant, and most have been considerably 

better.  As important, the deviations oscillate slowly about 

zero rather than monotonically increasing, as they do when 

(E.24) is used. 
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The plan of the calculations is thus as follows: 

given a set of profiles of dependent values, <J>, at the 

downstream station, a value of (*„ - V-)   is calculated from 

Equation (£.26).  The entrainment rates are calculated from 

Equation (E.21), and these define the constants a, b, and c 

in Equations (E.14) to (E.16), and the x-step length Ax from 

Equation (E.25), where C is commonly taken to be 0.05. The 

constants a, b, and c, and the value of d computed from 

the upstream profile are used to calculate the values of <f> 

at the downstream station, and the process is repeated. 

The Numerical Procedures 

The details of the numerical procedures are given 

by Patankar [139].  However, his formulation of the 

difference equations is sufficiently different from other 

fomulations to warrant a brief description.  Consider the 

numerical grid shown on Figure E.l.  The points U-, U, and 

U+ correspond to three values of üJ, W  , u    ,  and w... ; 

the corresponding downstream points, which have the same 

values of u> are denoted by D-, D, and D+.  It is assumed 

that between grid points the dependent variables <f> vary 

linearly with w, and that along the x-coordinate between 

x and x the value of <j> is <f> except at x= t , where it 

becomes, with a step change, <J> .  The values of if at x = JL 

are all known, and the values of <J> at x = x are to be 

solved for simultaneously, using these values; the method is 

thus implicit.  If a linear variation in $  from x to x_ is 
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DD+ 

x - x U x - xD 

Figure E.l. Finite-difference grid. 
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assumed, the method would correspond to the Crank-Nicholson 

technique.  To formulate the difference equation, the values 

of the derivatives are obtained as the mean values inte- 

grated over the control volume shown cross-hatched in Figure 

E.l.  The points UU-, UU+, DD-, and DD+ are all located 

halfway between their respective data points on an x-w grid. 

In keeping with this formulation of the difference equation 

as a "miniature integral equation," the fundamental 

derivatives are expressed as 

XD ^DD+ 

CD""U  "DD4 kzff* 3* * te=xT> (^—== > I     I  *&** (E'27> 
XU WDD- 

?DD+ 
|i-« (—i—) f |id 3W    UDD+-WDD- J     3W 

u (E.28) 
gui 

UDD- 

The integrals are evaluated using the assumed linear 

profiles between grid points; thus 
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XU JÜDD+ ?DD+ f
XD 

XD  UDD- WDD-   XU 

%D+ 

(♦p-^dw 

"üD- 

)dw 

"DD- MI 

=  /   ^(ujdw + /   f 2 (a )dw (E.29) 

ti) w DD- 

where, in general 

^DD- - W - WD * = fl(w) = *DD- + Kl(ü5~ü)DD-)  <E*30> 

W
D 1 

u 1 WDD+ * 
= f2^w) = *D + k2^W"ü)D)     (E.31) 

Substitution of Equations (E.30) and (E.31) into (E.29) 

leads to the expression 

3£ _   VVVW+  3   |W 
3x  -   4(xD-xu)((üD+-toD_)        T   (xD-Xu) 

(*D+~*U+) (WD+"U)D)      • +  T7i£l y+  üt id- (E.32) 
4CxD-Xu)(a)   -  V) 
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For 9<j)/9w, evaluation of (E.28) yields 

r
UDD+ 

5i = ( *  / d<|> 

DD- 

^DD+"^DD- 

"DD-T^DD- 

so that 

£ * ^^ ».33) 3OJ  WD+-ü)D_ 

Concluding Remarks 

As described in the introduction to this section, 

the program written by Patankar [139] provides an economical 

means for the solution of an arbitrary number of parabolic 

partial differential equations. However, the version 

prepared by Patankar for the calculation of turbulent mixing 

problems is valid only for the Prandtl mixing length theory. 

The modifications described in this section have 

considerably broadened the range of applicability of this 

technique, and have improved its accuracy.  The definitions 

of the entrainment and the parameter ¥_ - ¥_ have been 
A   J. 
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generalized and it becomes a simple matter to include any 

arbitrary eddy viscosity model. The only model used in this 

study which requires an important further modification is 

the Schetz "unified theory" model [120, 121] which requires 

the calculation of the displacement thickness: 

00 00 

1 

-i ) fii !_ s V \ 'pu     pEu. - (W /lfu-o;ldw    (E-34> 

All the other eddy viscosity models considered require no 

significant changes to the program. 
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APPENDIX F 

INITIAL CONDITIONS FOR THE CALCULATIONS 

The initial conditions used to begin the finite- 
difference calculations made in this study are listed in 
the following sixteen tables. The data in the tables are 
largely self-explanatory; where they are not, nomenclature 
sketches are included. 
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TABLE  F-1 

INITIAL PEOriLES FOR INCOMPRESSIBLE JET-INTO-STILL AIR 
DATA FROM BRADSHAW,  et al (18) 

x/D = 2.0        r0 = 0.0833 ft       Tj =» 0.0333 ft       U. = 100 ft/sec  (nominal) 

y/rb .     U/Uj k/U; 

0 1.0 2.8 
0.01 0.998 3.1 
0.02 0.996 3.5 
0.03 0.991* 3.8 
o.oit 0.992 *t.i 
0.05 0.990 1+.5 
0.06 O.987 **«9 
0.07 O.98U 5.3 
0.08 O.98O 5.7 
0.09 0.976 6.1 
0.10 O.972 6.6 
O.ll O.968 7.1 
0.12 O.96U 7.5 
0.13 O.96O 8.1 
O.lU 0.955 8.6 
0.15 0.950 9.3 
O.16 0.9*tO 10.0 
0.17 0.930 10.6 
0.18 0.920 11.3 
0.20 0.910 ■ 12.8 
0.22 0.900 lU.5 
0.2U ■ 0.880 16.7 
0.26 0.850 18.8 
0.30 0.780 22.lt 
0.35 0.710 25.2 
0.U0 0.630 27.2 
0.50 0.500 26.7 
0.60 O.36O 22.k 
0.80 0.l60 9.8 
1.0 0.060 2.3 
1.2 . 0.010 0 

See Figure F-1 for Nomenclature 

2 
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u 
x = 0 

a.  Two-Dimensional Flow 

x = 0     uo 

b.  Axisyrametric Flow, First Regime 

x = 0      u 

c.  Axisymmetric Flow, Second Regime 

Figure F-l Nomenclature for Initial Profile Tabulation 
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TABLE  P-2 

INITIAL PROFILES FOR COMPRESSIBLE JET-IHTO-STILL AIR 
DATA FROM EGGERS  (72) 

A.    Profiles for Eddy B.    Profiles for Kinetic 
Viscosity Calculations Energy Calculations 

x/D "  0 

rx - 0.0034 ft 

rQ = O.OU19 ft 

Uj = 1765 ft/sec 

x/D = 14.45   rQ »O.OU19 ft 

U = 1765 ft/sec 

.^0 
u/u. r/r     U/U     e/u r 

0      J      3   ° 

0 1.0 
0.002 0.995 
0.004 0.991 
0.006 O.988 
0.008 O.983 
0.010 O.98O 
0.012 0.977 
o.oi4 0.972 
0.016 O.968 
0.018 O.961 
0.020 0.956 
0.022 0.948 
0.024 0.938 
0.026 O.926 
O.O28 0.917 
0.030 O.908 
0.032 0.895 
0.034 0.885 
0.036 0.875 
0.038 0.865 
o.o42 0.844 
0.046 0.820 
0.050 0.790 
0.054 O.760 
0.058 0.732 
0.062 0.700 
0.066 0.675 
0.070 O.615 
0.074 O.565 
0.076 0.535 
0.078 0.370 
0.079 0.250 
O.O8O 0.070 

0 0.9077 1.00 
0.1225 0.9049 2.10 
O.2218 O.8956 1.75 
0.3078 0.8846 1.55 
0.3774 O.8787 1.35 
0.4800 0.8476 1.35 
O.566O 0.8200 1.39 
0.6489 O.7886 1.40 
0.6951 0.7715 ■ 1.45 
0.7414 0.7534 1.50 
0.8044 0.7336 1.57 
O.8606 0.7128 1.63 
O.9269 O.6898 1.70 
0.9964 O.665O 1.81 
1.0592 0.6432 1.90 
1.1255 0.6195 1.97 
1.2050 0.5928 2.05 
1.2975 0.5628 2.15 
1.3968 0.5278 2.21 
1.4632 0.5077 2.25 
1.5293 0.4860 2.25 
1.6022 0.4613 2.20 
1.7047 0.4337 2.12 
1.8139 0.4026 2.03 
I.8802 O.3851 1.93 
1.9597 O.3663 1.85 
2.O234 0.3456 1.80 
2.1186 0.3235 1.70 
2.2111 0.2975 1.60 
2.3303 0.2688 1.48 
2.4628 0.2355 1.35 
2.6316 0.1938 1.20 
2.8367 O.1385 1.05 
3.0453 O.0988 0.90 
3.2109 O.0698 0.80 
3.2900 0.0570 0.70 
3.3800 0.0450 O.65 
3.4650 O.0325 0.60 
3.5600 0.0200 0.50 
3.6450 0.0100 0.48 
3.7000 0.0040 ' 0.40 

See Figure F-l for Nomenclature 
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Nozzle Wall 

Figure F-2 Nomenclature for Coaxial Mixing, 
Using Power-Law Profiles 
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TABLE F-3 

INITIAL PROFILES FOR COAXIAL AIR-AIR MIXING 
DATA FROM FORSTALL (Uo) 

U /U. = 0.25 
o' 3 

a. Locally Dependent Models 

Assumed profile: l/7 power law. Thus Figure F-2 

1/7 

U -U. + (U. -U.) (— j    osy<r  (F-l) 1        3  * V ri / J 

'y-ri 

1/7 

U - Ux + (Uo - Ux) ^ j r^ysj (F-2) 
.6 - r2 

U - 30 ft/sec 
o 

Ü - 120 ft/sec 
J 

U = 16.05 ft/sec 

r - 0.01*17 ft 
o 

rj »0.0113 ft 

5 = 0.0258 ft 

Tt = constant = 5^0 
UR 
o_ 

b. Kinetic Energy Calculation 

As Table F-3a, with turbulent shear stress profile obtained from 

T = 0.007 P 6 U. - 1L ■22—     (F-3) 
3T 
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TABLE  F-4 

INITIAL PROFILES FOR COAXIAL AIR-AIR MIXING 
DATA FROM PORSTALL (kO) 

VUj - 0.20 

a.    Locally Dependent Models 

Assumed Profile:    Equations (F-l) and (F-2) 

U    = U5 ft/sec o ' 

U    = 225 ft/sec 
J 

UL.= 7.2 ft/sec 

r    = O.OIOU ft 
o 

r    = 0.0010 ft 
I 

5 = 0.0072 ft 
T.   = constant = 5U0    R 

b.    Kinetic Energy Calculation 

Turbulent shear stress obtained from data 
of Table T-ka using Equation (F-3) 
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TABLE F-5 

INITIAL PROFILES FOR COAXIAL AIR-AIR MIXING 
DATA FROM PAULK (42) 

U0/Uj = 0.125 

 a.    Locally Dependent Models  

Assumed Velocity Profile:   Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: 
linear (see Figure F-2, page 607) 

Tt = Tt    + fat    -T\     (y/80 (F-4) 

U0 ■ 50.5 ft/sec 

U. = U05 ft/sec 

UL = 1.0 ft/sec 

r    = 0.0208 ft 
o 

r   = 0.0013 ft 

6 = 0.0030 ft 

Tt    = 530.5 °R 
o- 

Tt    - 569.6 °R 
d 
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TABLE F-5  Concluded 

B.    Kinetic Energy Calculation (Fig. F-l  ) 

X/D = 6.94 rQ = 0.0208 ft U    = 1*05 ft/sec 

r,  ft U, ft/sec T, lbf/ft2 H , Btu/lbm 
a t 

X 10^   

0 367 0 137.1 
1 366.5 0.3 137.06 
2 366 0.55 137.0 
3 361+ O.76 136.91 
1+ 362 1.0 136.83 
5 359 1.23 136.70 
6 355 1.45 136.55 
7 351 1.67 136.40 
8 3I+6 1.90 136.20 
9 340 2.13 136.02 

10 33*+ 2.34 135.85 
11 329 2.55 135.60 
12 322 2.73 135.ko 
13 315 2.85 135.20 
14 308 2.98 135.0 
15 300 3.08 134.75 
16 293 3.17 134.5 
17 285 3.24 134.3 
18 277.5 3.30 134.0 
19 270 3.33 133.8 
20 263 3.37 133.55 
21 254 3.39 133.25 
22 249 3.40 133.0 
23 239 3.37 132.8 
24 230 3.3^ 132.5 
26 215 3.23 132.05 
28 200 3.08 131.6 
30 186 2.96 131.1 
32 173 2.80 130.65 
36 1U7 2.50 129.8 
ko 123 2.22 129.0 
kk 103 1.92 128.25 
1*8 85 I.65 127.55 
52 72    • 1.33 126.95 
56 63 1.04 126.6 
60 59 0.77 126.4 
6k 56 0.54 126.3 
68 55 0.31 126.2 
72 54 0.13 126.13 
76 53 0.05 126.1 
78 52.5 0.01 126.1 
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AEDC-TH-71-36 

TABLE F-6 

INITIAL PROFILES FOR COAXIAL AIR-AIR MXING 
DATA FROM PAULK (k2) 

U0/Uj = 0.1*77 

a. Locally Dependent Models ' 

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-1*) 

UQ - 191 ft/sec 

U. - UOl ft/sec 

U = 1.0 ft/sec 

r = 0.0208 ft 
o 

r ■ 0.0013 ft 

5 = 0.0030 ft 

T. = 510.3 °R 
u 
0 

T.  - 563.2 °R 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-6  Concluded 

 B.    Kinetic Energy Calculation (Fig. F-lc)  

X/D = 8.4 r    = 0.0208 ft U    = 401 ft/sec 

r, ft U, ft/sec T, lbf/ft2 H , Btu/lbm 
■2 t 

X 103  

o 136.3 
0.03 136.2 
0.08 136.2 
0.13 136.1 
0.19 136.0 
0.25 135.8 - 
0.33 135.6 
o.4i 135.4 
0.51 135.2 
0.63 134.9 
0.76 134.5 
0.87 134.2 
0.99 133.9 
1.08 133.5 
1.16 132.8 
1.23 132.3 
1.29 131.9 
1.33 131.5 
1.37 130.6 
1.44 130.0 
1.40 129.3 
i.4o 128.6 
1.38' 127.9 
1.33 127.4 
1.28 126.8 
1.22 126.1 
1.16 125.4 
1.09 124.8 
1.02 124.2 
0.93 123.6 
0.83 123.1 
0.74 122.5 
0.64 122.3 
0.58 122.0 
0.49 121.8 
0.42 121.6 
0.35 121.5 
0.29 121.4 
0.15 121.3 
0.05 121.2 
0.01 121.0 

0 381 
1 . 380 
2 380 
3 379 
4 378 
5 376 
6 374 
7 372 
8 369 
9 366 
10 363 
11 358 
12 353 
13 345 
14 337 
15 329 
16 321 
17 313 
18 306 
19 297 
20 290 
21 283 
22 276 
23 269 
24 263 
25 257 
26 251 
27 245 
28 240 
29 234 
30 227 
31 223 
32 218 
33 213 
34 209 
35 204 
36 200 
37 197 
38 195 
39 191 
40 188 
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AEDC-TR-71-36 

TABLE F-7 

INITIAL 'PROFILES FOR COAXIAL Hg - AIR MIXING 

DATA FROM CHRISS (90) 
pouo/pj0j = 1.61 

 a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-U) 

Assumed Concentration Profile: 
C » 1 - y/6   (F-5) 

Uo = ■ 673 ft/sec 

V 1 3100 ft/sec 
ul = : 1.0 ft/sec 

r = 
0 

» 0.0208 ft 

rI = 1 0.0013 ft 

6 = 0.0030 ft 

**, 
= 1050 °K 

\ 
= 550 °R 

V '1.0 (hydrogen jet) 
c =3.^2 Btu/lbm °R 

C  = 0.2l* Btu/lbm °R 
o 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-7 Concluded 

B:    Kinetic Energy Calculations 

X/D ■ U.59 r    = 0.0208 ft U    = 3100 ft/sec 
o j 

r,  ft U, ft/sec T, lbf/ft2 H . Btu/lbm C 

X 103 

0 3070 0 1900 O.^S 
1 3065 2.1* 1890 0.91*2 
2 3060 1+.8 1885 0.91*0 
3 3050 7.k 1870 0.932 
h 3030 9-6 1850 0.921+ 
5 3020 11.7 1830 0.905 
6 2990 13.7 1800 0.890 
7 2970 15.5 1775 0.865 
8 2930 17. u 1755 0.81+2 
9 2880 18.8 1700 0.820 

10 2820 20.3 1650 0.800 
11 2770 21.7 1590 0.765 
12 2730 23.2 1510 0.730 
13 2680 21*.1+ 11*70 0.700 
lit 2580 25.7 1U00 0.665 
15 2520 26.8 1330 0.630 
16 2i*60 28.0 1270 O.6OO 
17 2350 29.2 1230 0.565 
18 2250 29.9 1170 0.530 
19 2lU0 30.1+ 1110 0.1+90 
20 201+0 30.5 1050 0.1+52 
21 1930 30.2 990 0.1+20 
22 181+0 29.7 930 0.390 
23 17*10 28.1+ 860 0.355 
2k 16U0 27.3 800 0.325 
25 1530 25.6 750 0.300 
26 11+70 2U.8 700 0.272 
27 1390 23.3 650 0.255 
28 1290 21.6 602 0.230 
29 1230 20.0 580 0.208 
30 1150 18.2 550 0.192 
31 1080 16.5 510 0.170 
32 10l*0 lit. 7 1*90 0.155 
33 970 12.8 1*60 0.11*0 
3* 930 11.6 U39 0.128 
35 870 10.3 1*10 0.110 
37 800 7.8 380 0.081* 
39 730 5.7 350 0.065 
la 690 3.8 310 0.01+5 
h3 650 2.3 290 0.038 
k5 61+0 1.0 270 0.018 
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AEDC-TR-71-36 

TABLE F-8 

INITIAL PROFILES FOR COAXIAL iL - AIR MIXING 

DATA FROM CHRISS (90) 

a. Locally Dependent Models 

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-k) 

Assumed Concentration Profile: Equation (F-5) 

U = 526 ft/sec 
o 

U. = 3300 ft/sec 
J 

U = 1.0 ft/sec 
1 

r = 0.0208 ft 
o 

r = 0.0013 ft 

6 = 0.0030 ft 

T  = 650 °R 
t 
0     o 

Tt = 550 °R 
3 

C. = 1 (hydrogen jet) 
U 

C  =3.^2 Btu/lbm °R 
PJ 
C  = 0.21+ Btu/lbm °R 
P 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 
TABLE F-8 Concluded 

B.    Kinetic Energy Calculations 

X/D = 5.34 r    - 0.0208 ft U    = 3300 ft/sec 

r,  ft U, ft/sec T, lbf/ft2 H , Btu/lbm C 

X 103 

0 3050 0 1570 0.822 
1 3050 2.8 1560 0.820 
2 3040 5.5 1550 0.817 
3 3010 7.5 1530 0.808 
it 298O 9.8 1510 0.799 
5 29UO 12.2 1480 0.780 
6 2870 l4.3 1450 0.756 
7 2840 16.3 1400 0.730 
8 2780 18.0 1350 0.700 
9 2720 19.8 1290 O.669 
10 2630 21.7 1250 0.645 
11 2540 23.4 1190 0.615 
12 2440 25.5 1130 0.585 
13 2370 26.5 1080 0.545 
14 2260 27.8 1030 O.508 
15 2170 28.9 970 0.470 
16 2070 29.7 910 0.435 
17 1940 30.2 850 0.395 
18 1840 30.6 770 O.365 
19 1740 30.8 710 0.330 
20 1630 31.6 670 0.300 
21 15U0 30.0 610 0.275 
22 1U51 29.5 580 0.255 
23 1380 28.7 530 0.231 
24 1279 27.5 500 0.212 
25 1220 26.3 465 0.190 
26 1130 24.8 430 0.170 
27 1070 23.3 4oo 0.153 
28 1010 21.7 380 0.140 
29 947 20.2 350 0.125 
30 920 17-9 330 0.112 
31 850 16.3 310 0.100 
32 810 14.2 290 0.082 
33 750 12.3 270 O.O78 
34 720 10.3 260 O.O68 
35 670 9.3 250 ' 0.057 
36 640 6.4 240 0.049 
37 610 5.5 230 0.030 
38 590 3.8 210 0.020 
140 570 2.9 180 0.008 
1*3 540 1.8 160 0.001 
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AEDC-TR-71-36 

TABLE F-9 

INITIAL PROFILES FOR COAXIAL Kg - AIR MIXING 

DATA FROM CHRISS (90). 

 a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (T-h) 

Assumed Concentration Profile: Equation (F-5) 

U = 765 ft/sec 

Ü. - 2U50 ft/sec 

Ux ■ 1.0 ft/sec 

r = 0.0208 ft 
o- 

r - 0.0013 ft 
I 

8  = 0.003 ft 

T  = 1050 °R 
t 
o 

T. - 550 °R 

C. = 1.0 (hydrogen Set) 
J 

C  - 3.*t2 Btu/lbm °R 

C  = 0.2U Btu/lbm °R 
P 
o 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 
TABLE F-9  Concluded 

B.    Kinetic Energy Calculations 

X/D = 5.2 r    = 0.0208 ft U    = 2l*50 ft/sec 
° J 

2 
r, ft    U, ft/sec    T, lbf/ft     H , Btu/lbm 

X 103 

0 2010 0 1290 0.565 
1 2008 1.5 1280 O.562 
2 2000 3.2 1270 0.553 
3 1980 U.5 1240 0.51*5 
k I960 5.8 1200 0.532 
5 19l*0 7.3 1178 0.523 
6 1910 8.2 lll*5 0.508 
7 1880 9^ 1113 0.1+91* 
8 i860 10.3 1085 0.1*78 
9 1820 11. k 1055 O.U63 

10 1790 12.3 1025 0.1*50 
11 1760 13.0 990 0.1*25 
12 1720 13.8 965 0.1*07 
13 1680 ik.e 932 0.390 
lit 161*0 15.2 910 0.373 
15 1595 15.6 875 0.355 
16 1550 16.3 81*0 0.3*t2 
17 1510 16.5 810 0.325 
18 1U70 16.8 770 0.308 
19 ll+10 16.8 7U0 0.295 
20 1350 16.8 710 0.275 
21 1330 16.5 685 0.263 
22 1280 16.2 650 0.250 
23 1230 15.7 625 0.232 
2k 1190 15.2 600 0.218 
25 1130 ll*.8 570 0.203 
26 1090 13.9 5^0 0.192 
27 1050 13.3 520 0.173 
28 1010 12. k 1*95 0.153 
29 970 11.5 1+65 0.11*2 
30 9U0 10.5 **35 0.225 
31 910 9.U 1*05 0.217 
32 880 8.3 385 0.200 
33 860 6.9 365 0.092 
3* 850 5.7 350 0.081 
35 835 M 328 0.069 
36 825 i*.i 306 0.058 
37 815 3.3 284 0.0U8 
38 810 2.1* 262 0.036 
39 805 1.8 258 O.O25 
ko 800 1.2 252 O.Oll* 
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A^DC-TR-71-36 

TABLE F-10 

INITIAL PROFILES FOR COAXIAL H - AIR MIXING 
2 

DATA FROM CHRISS (90) 
pU/pU = 2.57 

a. Locally Dependent. Models 

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-4) 

Assumed Concentration Profile: Equation (F-5) 

U =727.5 ft/sec 

V 3300 ft/sec 
ul = 

1.0 ft/sec 

r ■ 
0 

O.0208 ft 

r = 
I 

0.0013 ft 

S = 0.0030 ft 

T - 
t 
0 

650 °R 

T 
0 

= 550 R 

C =1.0 (hydrogen jet) 
J 

C  =3.^2 Btu/lbm R 

j 

C  = 0.2»4 Btu/lbm °R 
P 
0 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-10 Concluded 

B.    Kinetic Energy Calculations 

X/D = 4.55 r   = 0.0208 ft U   = 3300 ft/sec 
o j 

ft U, ft/sec T, lbf/ft2 H , Btu/lbm C 

X 10- 
t' 

0 2720 0 H85 O.615 
1 2700 3.3 1175 O.615 
2 2675 6.5 1155 0.605 
3 2650 9-3 1135 0.590 
4 2610 12.3 1105 0.575 
5 2575 15.0 1080 0.555 
6 2520 17.7 1050 0.535 
7 2U75 20.5 1020 0.520 
8 2U30 23.0 990 0.500 
9 2380 25.0 950 0.475 
10 2320 27.5 915 0.455 
li 2270 30.0 875 0.425 
12 2200 32.5 835 0.400 
13 213O 33.3 800 0.375 
14 2040 35.2 755 0.350 
15 1950 36.3 710 0.325 
16 l840 37.3 665 0.300 
17 17^0 38.0 620 0.280 
18 1650 38.3 580 0.260 
19 1560 38.0 535 0.243 
20 1480 37.6 510 0.220 
22 1350 36.0 450 0.190 
24 1230 33.5 400 0.155 
26 ll40 30.5 340 0.125 
28 1050 26.0 300 O.O98 
30 970 20.3 265 0.072 
32 900 14.5 235 0.050 
34 850 10.0 215 0.033 
36' 810 7.0 195 O.O65 
38 775 4.0 185 0.018 
40 755 2.2 175 0.011 
1*2 745 1.0 170 0.008 
45 7^0 0 160 0.001 
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AEDC-TR-71-36 

TABLE F-11 

INITIAL PROFILES FOR COAXIAL Hg - AIR MIXING 

DATA FROM CHRISS (90) 

"oV'^d " 3'12 

 a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-U) 

Assumed Concentration Profile: Equation (F-5) 

U0 = 803 ft/sec 

U. - 3050 ft/sec 

U -1.0 ft/sec 

r ■ 0.0208 ft 
0 

r = 0.0013 ft 

8 ■ 0.0030 ft 

T  - 650 °R 

0 

T  = 550 °R 

d 
C. = 1.0 (hydrogen det) 

C  = 3.*t2 Btu/lbm 
P 
d 

°R 

C  ■ 0.24 Btu/lbm 
p 

°R 
0 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-11  Concluded 

B.    Kinetic Energy Calculations 

X/D = 4.65 r   = 0.0208 ft U   ■ 3050 ft/sec 

r, ft U, ft/sec r, lbf/ft2 H , Btu/lbm C 
X103 t 

0 2300 0 940 0.460 
1 2290 3.8 939 0.460 
2 2280 7.0 925 0.460 
3 2250 9.8 914 0.452 
4 2200 12.1» 890 0.443 
5 2175 14.9 857 0.431 
6 2130 17.3 830 0.415 
7 2080 20.0 802 0.400 
8 2040 21.8 770 0.384 
9 1970 24.0 7U0 0.365 

10 1930 25.7 710 0.347 
11 1890 27. k 685 0.327 
12 1830 28.8 655 0.303 
13 1770 30. k 625 0.298 
14 1720 31.7 600 O.209 
15 1670 32.7 570 0.250 
16 1605 33-1* 5U5 0.235 
17 1550 33.8 525 0.215 
18 IU90 34.0 495 0.205 
19 IU30 33.8 463 0.188 
20 1380 33.5 l+i+3 0.172 
21 1320 32.7 415 0.161 
22 1270 31.7 395 0.142 
23 1230 30. k 370 0.130 
24 1170 29.7 345 0.120 
25 1120 26.8 320 0.105 
26 1110 24.7 300 0.098 
27 1080 22.5 280 0.083 
28 1030 20.0 265 0.075 
29 985 17.3 250 O.O65 
30 930 13.8 235 0.058 
31 910 11.6 220 0.047 
32 890 9.5 210 o.o4i 
33 870 8.2 200 0.037 
34 850 6.7 190 0.030 
35 830 5.4 180 0.025 
36 820 4.4 179 0.015 
37 818 3.6 171 0.011 
38 810 2.7 167 0.007 
39 805 2.3 160 0.005 
ko 802 1.6 152 0.003 
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AEDC-TR-71-36 

TABLE F-12 

INITIAL PROFILES FOR COAXIAL Hg - AIR MIXING 

MTA FROM CHRISS (90) 

PoWd " 3'33 

 a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-U) 

Assumed Concentration Profile: Equation (F-5) 

U = 780 ft/sec 
o 

U = 1950 ft/sec 
i 

U = 1.0 ft/sec 

r = O.0208 ft 
o 

r = 0.0013 ft 

6 = 0.0030 ft 

T  = 1050 °R 

o 

Tt = 550 °R 

C = 1.0 (hydrogen jet) 
i 

C  = 3.^2  Btu/lbm °R 

i 
C  = 0.2U Btu/lbm °R 
P 
o 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-12 Concluded 

 B.   Kinetic Energy Calculations  

X/D = 4.82 r   - 0.0208 ft U   = 1950 ft/sec 
o 3 

r, ft    U, ft/sec     T, lbf/ft2    H , Btu/lbm    C 
3 r lo          

0 1725 0 1380 0.635 
1 1723 0.9 1370 0.633 
2 1719 1.9 1365 0.627 
3 1702 2.6 1350 O.615 
4 1690 3.4 1330 0.602 
5 1670 4.2 1300 O.588 
6 I65O 5.0 1270 0.570 
7 1630 5.7 1250 0.555 
8 1609 6.4 1200 0.530 
9 1575 7.0 1150 0.515 

10 15^ 7.6 1100 0.495 
11 1510 8.2 1060 0.470 
12 1480 8.6 1000 O.450 
13 11*40 9.0 970 0.430 
14 i4oo 9.4 930 0.405 
15 1365 9.7 890 0.385 
16 1320 10.0 850 O.360 
17 1285 10.0 800 0.335 
18 1245 10.0 780 0.315 
19 1200 ' 10.0 730 0.290 
20 1170 10.0 69O 0.262 
21 1120 10.0 650 0.295 
22 1085 9.5 630 0.225 
23 1035 9.2 590 0.200 
24 975 8.8 550 0.175 
25 . 950 8.4 520 0.159 
26 940 7.7 490 0.140 
27 900 7.3 460 0.120 
28 880 6.7 430 0.105 
29 862 6.2 500 0.090 
30 845 5.5 380 0.080 
31 835 5.0 350 0.070 
32 825 4.4 330 0.054 
33 812 3.8 300 0.045 
31+ 802 3.4 290 0.037 
35 795 2.8 280 0.030 
36 789 2.4 270 0.029 
37 788 2.1 260 0.020 
38 782 1.7 255 0.012 
39 780 1.2 250 0.007 
4l 775 1.0 250 0.001 
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AEDC-TR-71-36 

TABLE F-13 

INITIAL PROFILES FOR COAXIAL H    - AIR MIXING 

DATA FROM CHRISS (90) 
pü/pU   = **.16 
° o   i d 

a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-4) 

Assumed Concentration Profile: Equation (F-5) 

U - 800 ft/sec 
o       ' 

U = 2U00 ft/sec 
u 

U =1.0 ft/sec 

r = 0.0208 ft 
9 

r = 0.0013 ft 

6 = 0.0030 ft 

T  - 650 °R 
t 
o 

T+ - 550 °R 

C = 1.0 (hydrogen jet) 
u 

C  * 3.^2 Btu/lbm °R 

C m 0.2U Btu/lbm °R 
P 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-13 Concluded 

B.    Kinetic Energy Calculations 

X/D =3.98 rQ = O.O208 ft U    « 21*00 ft/sec 

r,  ft U, ft/sec T, lbf/ft H , Btu/lbm C 
X 103 

0 19^5 0 1125 O.565 
1 19^2 2.2 1121+ 0.565 
2 1938 U.3 1118 0.560 
3 1915 5.6 1090 O.5I+8 
It 1870 7.2 1055 0.520 
5 1830 9.0 1020 0.500 
6 1775 10.6 975 0.1+75 
7 1735 12.0 935 0.14*48 
8 1675 13.3 880 0.1+18 
9 1625 1U.5 830 0.375 

10 1565 15.6 775 0.336 
11 1500 16.5 710 0.305 
12 1450 17.5 660 0.280 
12.5 1U20 17.9 635 0.270 
13 1385 18.2 610 0.255 
13.5 1365 18.1» 585 0.21+0 
lit 1330 18.6 570 0.230 
1U.5 1300 18.7 550 0.220 
15 1265 18.8 520 0.205 
16 1210 19.0 1+80 0.190 
17 1175 18.7 1+50 0.175 
18 1130 18.2 1*20 0.155 
19 1082 17.6 395 0.11+5 
20 1050 16.8 365 0.130 
21 1000 15.6 330 0.115 
22 955 lU.H 305 0.100 
23 920 13.0 265 O.O9O 
2U 880 11.5 2lt5 0.075 
25 852 9-9 230 0.065 
26 835 8.0 218 0.055 
27 820 6.5 202 0.01+5 
28 813 U.9 190 0.030 
29 808 3.0 18U 0.020 
30 803 1.5 175 0.010 
31 800 0.3 170 0 
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AEDCTR-71-36 

TABLE F-14 

INITIAL PROFILES FOR COAXIAL H_ - AIR MIXING 

DATA FROM CHRISS (90) 
p U /pU. = 5.25 

 a. Locally Dependent Models  

Assumed Velocity Profile: Equations (F-l) and (F-2) 

Assumed Total Temperature Profile: Equation (F-U) 

Assumed Concentration Profile: Equation (F-5) 

U = 792 ft/sec 

U = 1900 ft/sec 
3 

U =1.0 ft/sec 
1 

r = O.O208 ft 
o 

r = 0.0013 ft 

5 = O.OO30 ft 

T  ■ 650 °R 
o 

Tt = 550 °R 

J 
C = 1.0 (hydrogen jet) 
J 

C  =3.^2 Btu/lbm °R 
P 

1 ,   ,  o C  = 0.2U Btu/Ibm R 
P 

Nomenclature Defined by Figure F-2, page 607 
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AEDC-TR-71-36 

TABLE F-14 Concluded 

B.    Kinetic Energy Calculations 

X/D = U.67 rQ ■ 0.0208 ft U. = 1900 ft/sec 

r,  ft U, ft/sec r,  lbf/ft2 H , Btu/lbm C 
X 103 

0 1260 0 605 0.265 
0.6 1257 1.0 600 0.264 
1.2 1253 2.0 594 O.263 
1.8 1250 2.7 589 0.260 
2.1» 1244 3-5 584 O.258 
3.0 1237 1+.0 575 0.254 
3.6 1228 It.5 568 0.251 
4.2 1223 4.9 563 0.246 
U.8 1212 5.4 552 0.240 
5-4 1204 6.0 543 0.235 
6.0 1194 6.5 536 0.230 
6.6 1183 6.9 523 0.225 
7.2 1172 7.3 512 0.220 
7.8 1162 7.5 500 0.210 
8.6 1143 7.7 483 0.200 
9-2 1129 8.1 473 0.194 
9.8 1113 8.3 462 0.186 

10.1» 1099 8.4 ' 450 0.178 
11.0 1082 8.6 437 0.173 
12.0 1057 8.8 4l7 0.159 
13.0 1033 9.0 397 0.148 
l4.0 1004 9.1 379 0.134 
15.0 977 9*2 362 0.133 
16.0 952 9.2 345 0.112 
17.0 932 9-2 327 0.110 
18.0 910 9.1 310 0.090 
18.6 897- 8.9 303 0.088 
19.2 886 8.8 288 0.082 
19.8 874 8.7 280 0.076 
20.4 862 8.5 268 0.074 
21.0 850 8.4 258 0.064 
21.6 838 8.3 248 0.058 
22.2 828 8.0 237 0.054 
22.8 813 7.8 232 0.049 
23. 4 802 7.6 223 0.044 
24.0 794 7-3 214 0.040 
21+.6 788 7.2 208 0.038 
25.2 782 6.9 202 0.035 
25.8 776 6.5 198 0.025 
26.4 774 6.1 193 0.021 
27.0 772 5.8 188 0.017 
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TABLE F-15 

INITIAL PROFILES FOR THE. AXISYMMETRIC WAKE 
 DATA FROM CHEVRAY ($8)  

r^ = 0.0832 ft U    - 90 ft/sec p - 0.073 lbra/ft3 

U, ft/sec T/Pur,2 x 10 

o o 

r, in. 

0 0 
0.025 0.5 
0.05 1.25 
0.075 2.50 
0.10 i+.oo 
0.125 6.50 
0.150 10.0 
0.175 ll+.O 
0.20 18.0 
0.225 23.5 
0.25 29.0 
0.275 31*.5 
0.30 1*0.5 
0.325 1*6.5 
0.35 52.0 
0.375 56.5 
O.itO 60.5 
0.1+25 61*.0 
0.1*5 70.5 
O.U75 7h.O 
0.50 76.5 
0.525 79.0 
0.55 81.0 
0.575 82.8 
0.60 81*.1+ 
O.625 85.3 
O.65 86. k 
0.675 87.0 
O.70 87.6 
0.725 88.0 
0.75 88.5 
0.775 89.O 
0.80 89.1 
0.825 89.3 
O.85 89.1* 
0.875 89.5 
0.90 89.6 
0.925 89.7 
0.95 89.8 
0.975 89-9 
1.0 90.0 

0 
0.555 
0.770 
0.905 
1.000 
1.075 
1.130 
1.180 
1.220 
1.21+0 
1.220 
1.165 
1.105 
1.035 
0.950 
0.850 
0.730 
O.56O 
0.1*1*0 
0.355 
0.290 
0.230 
0.185 
0.11+5 
0.115 
0.085 
0.060 
0.050 
0.0U0 
0.035 
0.025 
0.019 
0.012 
0.010 
0.005 
O.OOl* 
0.003 
0.002 
0.001 
0 
0 

629 



AEDC-TR-71-36 

. TABLE F-16 

INITIAL-PROFILES FOR THE TWO-DIMENSIONAL WAKE 
DATA FROM CHEVRAY AND KOVASZNAY (52) 

Uo = 13.07 ft/sec p = 0.073 lbm/ft3 

y, ft 
X 10 

U, ft/sec rfpU  2 x 10^ 

0 0 0 
0.095 7.123 2U.00 
0.190 8.23U 22. UO 
0.285 8.979 20:95 
0.381 9.567 19.30 
0.U76 10.170 17.50      ■ ■ 
0.571 10.530 15.55 • 
0.667 IO.9UO I3.5O 
0.761 11.305 11.80 
0.856 11.620 10.15 
0.952 II.89O 8.05 
0.105 12.130 7.25 
0.11U 12.350 6.00 
0.12U 12.530 U.85 
0.133 12.680 3.85 
0.ll*3 12.810 2.95 
0.152 12.930 2.15 
0.162 13.000 1.50 
0.171 13.0^0 0.95      . . 
0.181 13.060 0.1*5 
0.190 13.070 0.15 
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