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ABSTRACT 

A linearized perturbation analysis is used to determine if insta- 
bilities can occur in MHD accelerators.   When the electrical pertur- 
bations are assumed unaffected by the presence of conducting walls, 
the enthalpy wave has the largest growth rate.   The growth rate de- 
pends upon the orientation of the current vector to the wave front and 
the location within the accelerator.   When the electrical perturbations 
are influenced by the presence of the slanted conducting walls, the 
upstream-moving magneto-acoustic wave is amplified.   When steady- 
state gradients are neglected, the growth rate changes only slightly in 
both cases.   An elevated electron temperature increases the enthalpy 
wave growth rate in the absence of conducting walls, but has little 
effect when the conducting walls control the electrical perturbations. 
The linearized analysis indicates that instabilities can exist in MHD 
accelerators and the growth rate may be large in some cases. 
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SECTION I 
INTRODUCTION 

The prediction of magnetohydrodynamic (MHD) accelerator perform- 
ance requires an understanding of the basic flow phenomena and param- 
eters which affect their operation.    The presence of any disturbance which 
is significantly amplified can greatly affect the operation of these devices. 
Previous investigations considering the growth of disturbances in MHD 
generators have indicated that the growth can be significant in some 
cases.    The purpose of this investigation is to determine if disturbances 
can grow in MHD accelerators resulting in an instability which can affect 
the performance of the device. 

There are three types of disturbances which may result in an insta- 
bility in the high density, highly resistive plasmas utilized in MHD accel- 
erators.   The "electrothermal" (ionization) instability, first postulated 
by Kerrebrock (Ref.   1),  is the result of preferential heating of the elec- 
tron gas with the heavy gas species unaffected.   One necessary criterion 
for the amplification of these "electrothermal waves" is that the electron 
gas be loosely coupled to the heavy gas (Refs.   1 and 2).    The coupling 
between the electrons and heavy species in MHD accelerators using 
diatomic gases is quite strong and, hence, the electrothermal disturbance 
is not expected to lead to instabilities. 

The enthalpy wave is similar to the electrothermal wave but involves 
localized heating of the entire gas.   A localized "hot spot" in the gas is 
heated further because of the local increase in conductivity and hence in- 
creased joule heating.   The growth rate of an enthalpy wave will be much 
less than that of an electrothermal wave because of the larger specific 
heat of the gas.   However, in contrast to the electrothermal wave, the 
enthalpy wave can exist in the MHD accelerators of interest. 

The amplification of the magneto-acoustic disturbance is directly 
dependent on the fluctuations of the thermodynamic properties of the gas 
(Ref. 3) and has a large growth when the electrons and heavy species are 
strongly coupled (Ref.  2).    This type of instability, first postulated by 
Velikhov (Ref. 4), depends directly on the Hall effect in the first approxi- 
mation.    A simple physical model of this disturbance can be constructed 
in the following manner (Refs. 2 and 3).    Consider the case of the total 
steady-state current in the y direction and the magnetic field, B, in the 
z direction as shown in Fig.   1. 
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Fig. 1   Simple Model for a Magneto-Acoustic Disturbance 
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In the presence of a positive density perturbation propagating 
parallel or antiparallel to X,, an induced current, CT0(U x B), will flow. 
The resulting force cr0(u x B) x B will always oppose the propagation 
and, hence, damp the disturbance.   However, the positive density per- 
turbation results in a local decrease in the Hall parameter, ß.   The 
decrease in j3 means that the x component of the electric field has too 
large a value for the local conditions and therefore a perturbation 
current, J^, will flow in the positive x direction.   This current inter- 
acting with the magnetic field will amplify the disturbance moving anti- 
parallel to J0 and attenuate the disturbance moving parallel to J0.   The 
condition for instability,  given initially by Velikhov {Ref.  4),  is that 
Jh > a0 u B when there are fluctuations only in ß. 

Detailed analyses (Ref. 3), including perturbations in conductivity, 
pressure, density, velocity,  and Hall parameter, indicate that,  de- 
pending on the frequency, the initial steady state of the plasma,  and 
the orientation of the wave vector, waves can be amplified at a rate 
significantly higher than that indicated by Velikhov.    The analyses 
(Refs. 5, 6, and 7) of the transverse and longitudinal waves in a gener- 
ator operating in the Faraday mode indicate that the growth rate is 
small and the instability can be controlled by external circuitry.    How- 
ever, the growth of axial waves in a Hall-type generator was found to 
be significant (Ref.  8).    The growth rates of the waves have, in general, 
been found to increase with decreasing pressure (Ref.  9) or increasing 
specific heat ratio (Refs. 8 and 10).    The results of these investigations 
indicate that instabilities can exist in MHD generators. 

On the basis of the substantial evidence that instabilities can exist 
in MHD generators, there is reason to believe that instabilities can 
also exist in accelerators.    The investigation of magneto-acoustic and 
enthalpy disturbances in MHD accelerators is the primary concern of 
this report.    The method of analysis will be to assume that the steady- 
state flow is given by the solution of the usual quasi-one-dimensional 
gas dynamic equations with MHD terms.    The flow is subjected to a 
small perturbation, and the behavior of this distrubance is investigated 
using a linearized analysis. 

SECTION II 
MATHEMATICAL MODEL 

The equations describing the flow of an inviscid, nonheat- 
conducting,  slightly ionized gas in the presence of electric and mag- 
netic fields can be written in the form (Ref.   11): 
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Mass:     —2- + v . ov  = o (D 
dt 

Momentum:  p — + pv • vv = - vp + J x B     (2) 
at 

Energy:    p — + p*v • VH  = J * E*      (3) 
dt dt 

where p is the density,_^v is the velocity,  p is the pressure, J is the 
total current density, B is the applied magnetic field, E is the sta- 
tionary electric field,  and H is the total enthalpy given by 

H = h + Z-i-Z <4> 
2 

where h is the static enthalpy.    The electric current density is given 
by Ohm's law, including the Hall effect,  as 

J  = —-  {E +   VxB - £ [EXB +   (vxB)  x Bl> (5) 
1  + ß2   1 B i. " § 

where cr is the electrical conductivity and ß is the Hall coefficient. 

2.1   STEADY-STATE SOLUTION 

The steady accelerator flow is assumed to be given by the quasi- 
one-dimensional gas dynamic equations including MHD effects.    Using 
the quasi-one-dimensional approximations in Eqs.  (1), (2),  and (3), 
the equations for the steady state are 

P0V -A <« 
du             dp 

p  u    —- = 2 + j B ,-v M° o dx dx        y <7) 

p  u    —SL = J E    + J E /0. Ko o  dx x x y y (8) 
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where u is the velocity in the x direction and m is the mass flow rate. 

An MHD accelerator channel having slanted electrodes and con- 
nected in the two-terminal mode (Fig. 2 and Ref.  12) is to be considered. 

METALLIC 
ELECTRODES 

INSULATOR 

+       - 
Fig. 2 Slant-Wall Accelerator Connected for Two-Terminal Operation 

For this case the generalized Ohm's law can be written in component 
form as 

J* - 777^ {> " B°(Ey-u°B>} (9) 

E     -  u  B +  B   E y o Ko x } (10) 

Two additional relations exist between the electrical parameters when 
operating a slant-wall accelerator in the two-terminal mode; that is 

E    - *   E y ox (ID 

I - A(Jx + *0Jy) (12) 
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where 4>0 = tan 0,   I is the total current supplied to the channel, A is 
the channel cross-sectional area,  and 0 is the channel slant-wall angle. 
The voltage drop at the electrode surface has been neglected in this 
analysis.    Using Eqs.  (11) and (12) in Eqs.  (9) and (10) results in the 
following expressions for Jx, Jv,  and Ex: 

Jx . I  (l^o,  + _!°_ B 03) 

T    - *   t °        °\ o o I14' 

o o 

Ex = 

(I/A)(l +ßo»)   - aouoB(ßo - lo) 

ffo(1 + *o2> 

(15) 

Solutions to Eqs. (6) through (8) and (13) through (15) for given values 
of I, A, and B, which may vary with x, and with specified initial con- 
ditions have been obtained. The solution shown in Fig. 3 for potassium- 
seeded air in chemical equilibrium was used for the stability analysis 
presented here. Other operating conditions were considered, but the 
general criteria for instability did not change from the results obtained 
utilizing this solution. 

2.2   PERTURBATION EQUATIONS 

The response of the plasma to small disturbances will be investi- 
gated using a small perturbation analysis.    The externally applied 
magnetic field is assumed constant with respect to the perturbation 
and induced magnetic fields are neglected since the magnetic Reynolds 
number is small.    The velocity, thermodynamic,  and electrical param- 
eters are assumed to undergo a small perturbation; that is 

V  = TQ  + Vi = t(uQ  + Ul)   + j (vi) 

7 - 70 ♦ 7 - $ax ♦ Jx) ♦ ?<Jy ♦ i7)        («> 

E = Eä  + e  =  i(E    + e  )   + j(E    +  e  ) 
o x        x y        y 
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7.0 i        i        i 
m a 0.68 kg/sec 
X s 1600 amps 
a) s 1.8 

Sm « 0.005 
■H0* 8.8 xlo'mVstc* 

0- 

-1.0 

I-       • 
• 

/ 

"       ^-Jx xlO   , amp/m 

-L 1 
0.5 1.0 1.5 

x, meters 

2.0 2.5 

Fig. 3 Steady-State Solution for a Slant-Wall Accelerator 
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Substituting the perturbed variables into Eqs. (1), (2), (3), (9), and 
(10) and neglecting higher-order terms results in the following per- 
turbation equations: 

Continuity: 

dpi dp i du0 dpQ dui       dvi 

at °  dx dx dx O   dx dy 

x-Momentum: 

dm dui du0     Pi       ui dpi 
p      + p  u      + p  u„ -—  (— + —)   = - -— + j„  B   (18) M° dt ° ° dx ° ° dx      po      uo a>x y 

y - Momentum: 

dvi dvi dpi 
p     rr  +  p   u      = i      B (19) po öt *o o  äx Sy        Jx 

Energy: 

dHi dHL dH0     ui       pi dpi 
0 ■   ——   +   D   U          +   0   U       —   (    +  )    -     
Po  at ° °  dx Po  o dx       u0       Po'       dt (20) 

= E0-j   + e.JQ 

Ohm's Law: 

\ e    + v iB -  ß   (e     - u iB)   -  ß i(E    -  u B)f 
^   x Ko    y H      y        o    J 

+ Jx 

Jy  = CTef {ey  " UiB + ßo(ex + VlB)   +  ßlEx| 

+ Jy{^-2*ef^} 

(22) 

where 

=        o ß       .      po 
aef    ' 1  + ß0

2 ef       1 + ß0
J 
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This general form of the perturbed Ohm's law will be utilized in later 
sections when special forms of the perturbed equations are considered. 

The four partial differential equations (Eqs.  (17) through (20)). and 
the two algebraic equations (Eqs.  (21) and (22)) contain the twelve un- 
known perturbation quantities pi, p\, u^, vj, cri,  Hi,  ß\, jy, jx, ex, 
and ev.    The first four of these are taken as the primary dependent 

variables along with jx and jy. In order to obtain a closed set of equa- 

tions, additional relations are needed between these and the remaining 
perturbation quantities. 

The perturbed state properties are assumed to follow an ideal gas 
behavior, both calorically and thermally.    Based on this assumption, 
the perturbed enthalpy, pressure, density,  and temperature can be 
related in the following manner: 

Y       P0    Pi       Pi 
Hi 2  ( __)   + u  ui (23) 

y-lP       po       po ° o 

and 

Ti       Pi       Pi 

T P~~ "  P~~ 
(24) 

where y is the specific heat ratio which is not perturbed.   When making 
calculations, the specific\heat ratio was evaluated at the thermodynamic 
conditions given by the steady-state solution. 

The electrical conductivity, o\, and Hall coefficient, ß\, will now 
be related to the thermodynamic parameters, Ti, pj_,  pj,  Te±,  and 
nel.    The Hall coefficient is defined as 

eB 
ß   - m   = ^ T (25) 

where e is the electronic charge, me is the electron mass,  and T is 
the mean free-time between collision of electrons with other particles. 
In like manner the electrical conductivity can be written as 

a = -^  T (26) 
me 
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where n   is the electron number density.   Eliminating T between 
Eqs.  (25) and (26) and perturbing, the following relation between a\, 
ß\, and iig, results 

ßi      ui      nei 

r=7' ^r (27) p
o        o        eo 

Since the exact expression for the electrical conductivity is more 
complex than is necessary for this analysis,  a simpler form is used 

a B4 

L-T1 

.1/2    e 

S K        - 1 
a - -JS-r- T D e    Te (28) 

where Sm is the seed fraction on a mole basis and Te is the electron 
temperature.    The constants a, b,  and Bj can be picked from curve 
fits of the electrical conductivity for the range of seed fraction and 
temperature of interest.    The values used in this analysis were 
a = 0. 27, b = 0. 75, and Bj = 22, 180°K.   These correspond to a seeded 
air plasma dominated by electron-neutral collisions.    The perturbed 
conductivity can now be written as 

gi Pi       1 Pi       ( 
Bl  >   *ei 

»o " * Po " 2 Po Tec    T*o (29) 

where it has been assumed that the perturbation of the seed fraction 
follows the gas density; i.e.,  (SmJSm ) = (pi/p0)- 

The electron number density can be obtained from the Saha equa- 
tion evaluated at the electron temperature 

n a r2nn    kf/2 , « vi 

nK " ne 

[2TT in    k-r .  - 
-~~\ 1e

a/*  e" ^ (30) 

where nj£ is the number density of seed nuclei present (seed rate), 
k is Boltzmann's constant, h is Plank's constant,  and V^ is the ioni- 
zation energy of the seed.    For disturbances of reasonably low fre- 
quency (up to about a megahertz), the electrons are assumed to re- 
main in local Saha equilibrium and from Eq.  (30) the perturbed elec- 
tron number density can be expressed as 

nei 1 r w3      e Vi  x  Tei Pi\,    v 

10 
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where a0^s the steady-state ionization fraction.    Using Eqs.  (29) 
and (31) in Eq.  (27) results in the following expression for the per- 
turbed Hall coefficient 

Pi 1 Pi 3m0      .   Pi 
 + (a ü ) — + 

Po 2 Po 2 S™o - tto    po 
(32) 

t TD 2  Sm    - a_     2       kTB    J eQ *eQ m0 0 
eo 

The only variables remaining unspecified in Eqs.  (29) and (32) are 
the steady-state and perturbed electron temperatures (TeQ and Te]). 

Since the purpose of this analysis is to investigate the effects of various 
parameters on the stability of disturbances in the flow, the steady-state 
electron temperature will be specified by fixing the quantity (TeQ - T0). 

When the electrons are in thermal equilibrium (T0 = Te ) Eq.  (24) can 

be used for the perturbed electron temperature.   When thermal non- 
equilibrium exists, the perturbed electron temperature is determined 
from the electron energy equation.    Simplifying the electron energy 
equation by equating the energy input to the electron gas with the energy 
loss attributable to collisions of electrons with other species, we have 

^- = - k n    m      V (  S    eS)   (T    - T) (33) 
»        e    e   L*      nie 

°        2 s^e        s 

where 6S is the energy loss factor for electron collisions with species s 
and ves is the collision frequency of the electrons with species s. 

An effective electron energy loss factor can be defined as 

E    6    — V 

ef f E   v ste    s me    es 

s^e    es 

Then using Eq.  (26), Eq. (33) is written as 

jS - I * \^~ »e«<Te " W <34> 

11 
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Assuming 6eff is constant and using Eqs.  (29) and (31) the perturbed 
equation is 

«J       + J eo o       eo eo o    o 
X (35) 

+ c 2 Sm°    +    
T°   > ^ 

2  Sm     - a„       T0    -  T       p„ 
«IQ o e o     ro 

where 

Smo -OQ       3       eVi 
|i i =  ( ) (- +  ) 

2  Sm     - a      2       kTe mQ o eo 

Equation (35) is an implicit expression for Te^/Te    since jy 

and jx depend on Tel/Teo through <y\Io0 and ß\lß0.   An explicit 

expression will be obtained for the various cases considered in the 
following sections. 

The number of unknowns has been reduced to six:   p\, pi, u\, v\, 
e-y, and ex.   Additional conditions for the electrical properties must be 
obtained to form a closed set of equations.    In addition to Eqs.  (17), 
(18),  (19), and (20), the perturbation quantities must also satisfy,  in 
some sense, the following relations 

*ey        äex (37) 
7xe = 0 or 

äx dy 

fy = tl + f* 08) 
X E * E 

y       o 

T-J*+*oJy+4lJy (39) 

12 
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where 4>i and Ii are the perturbed tangent of the equipotential slant 
angle and total current, respectively.    Although the equipotential sur- 
face may remain fixed at the walls because of the presence of the 
slanted electrodes, the local equipotential surface within the gas may 
change if Ex and Ey are not perturbed in such a manner as to remain 
in the same ratio (ey ^= *oex^ 

In order to investigate the stability of the slant-wall MHD acceler- 
ator to small disturbances, three essentially different cases will be 
considered.   In two of the cases, it is assumed that the disturbances 
are planar waves moving in the axial direction.   The third case con- 
siders disturbances which can be a function of the transverse coordi- 
nate as well as the axial coordinate. 

SECTION III 
ONE-DIMENSIONAL PERTURBATIONS 

The perturbations are assumed to be in the form of one-dimensional 
plane traveling waves moving along the x axis and are dependent only on 
the x coordinate.   The time and spatial derivatives of the small disturb- 
ances are reduced by Fourier analyzing in time and space by assuming 
the waves are of the form 

i(kx-u)t) (40) 

where k is the wave number which is assumed to be real and 
u = ui + iu2 is the complex frequency.    The wavelength X = 2n7k and 
the frequency u are taken to be independent of x.   This requires that 
the wavelength must be short compared to the distance over which the 
steady-state parameters vary appreciably. 

The stability of the disturbance can also be investigated by assum- 
ing k complex and u real.   This is equivalent to investigating the growth 
of the disturbance as it propagates in the device at a given frequency,  in 
contrast to investigating the growth in time for a given wavelength (k). 
It was shown in Ref.  10 that a wave must grow in time and space simul- 
taneously if the instability is indicated in either case.    Equivalent re- 
sults were found in the cases considered here using either approach. 
In the following, k is assumed real and w is assumed complex. 

13 



AEDC-TR-70-290 

When the perturbations are independent of y, Eqs.  (36) and (40) re- 
duce to 

dx~ 
—- = 0 or j     =0 Jx 

(41) 

de 
—£ = 0 or  e    =0 
dx y 

This implies then that the perturbation current flows transverse to the 
wave front, and the electric field is perturbed normal to the wave 
front.    The plasma is infinite compared to the scale of the disturbance, 
and Eq.  (41) represents the additional relationship needed to complete 
the solution.   Equations (38) and (39) may be used to determine the local 
perturbations $i and Ii but are not necessary for completing the analysis. 
For the condition in Eq. (41), Eqs. (38) and (39) may be expressed as 

(42) 

• l eX 

*z "  Ex" 

1± 
A 

= *oJy + *iJy 

i. e., both the equipotential slant angle and total current are changed 
from their steady-state value. 

If it is assumed that the equipotential angle 0 is not perturbed and 
that the total current is constant, then from Eqs.  (38) and (39) it follows 
that 

e = •   e y ox (43) 

jx - - «c-Jy (44) 

This implies that the plasma is finite and the accelerator conducting 
walls have a considerable influence on the disturbance.   These relations 
together with the assumed form of the wave, Eq.  (40), are incompatible 
with Eqs. (36) and (37) which cannot be satisfied exactly.   This is anal- 
ogous to the ^steady-state quasi-one-dimensional solution where the 

14 
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equations are not satisfied in an exact sense.   The essential require- 
ment is that J and E are slowly varying functions of x so that the one- 
dimensional equations are approximately satisfied.    The same require- 
ment for the perturbation quantities ey and jx approximately satisfies 
the perturbation equations.    From Eqs.  (37) and (40) it can be seen 
that 

be 
—£ = i k e„ « 0 
bx y 

implies that the disturbance must necessarily have a long wavelength 
(k < 1) and/or the slant angle 0 is small so that ey = *0 ex is small. 

The requirement that the disturbance have a relatively long wave- 
length contradicts the earlier requirement that the wavelength should 
be short compared to the x variation of the various steady-state param- 
eters (uOJ  pOJ  p0).    It can be seen that these conditions cannot always 
be satisfied simultaneously and, hence, all of the equations are not 
satisfied exactly.    However, the analysis should indicate what effect 
boundaries have on disturbance growth.   Equations (43) and (44) repre- 
sent the additional relationships needed to complete the solution. 

Hence, two different cases can be considered:   (1)   the plasma is 
infinite compared to the scale of the disturbance,   and Eqs.  (38) and 
(39) are redundant; (2)   the plasma is finite compared to the scale of 
disturbance, and the boundary conditions of constant current and con- 
stant equipotential angle must be satisfied. 

3.1   DISTURBANCE IN AN INFINITE PLASMA (CASE I) 

Since the perturbation velocity field is approximately irrotational 
(vxv = 0), Ref.  8, the transverse perturbation velocity, vi, is approxi- 
mately zero.    Using this fact and the results from Eq.  (41) in Eq.  (19) 
shows that the perturbation pressure also depends only on the x coordi- 
nate.   The y-momentum equation has thus been approximately satisfied. 
The current density, jy, joule heating, jyEy + Jxex, conductivity, a\, 
Hall coefficient, ßi, and electron temperature can now be expressed in 
terms of pi, p\, and ui which are taken to be the independent variables. 

Using Eqs.  (21) and (22), noting jx = ey = 0, and eliminating ex 
yields the following expression for jy 

Ul (Jl ßi 
Jv   =  "   qa TT~  +  qa   T~  +  q*   ß~ (45* 3 o o po 
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where 
q2 = a u  B 

o o 

Q3    -  Jy   -   ß0Jx 

q*   =  ß0Jx 

The joule heating, Jxex + jyEy,  can be expressed as follows 

01 ßl Ui 
Jvev + Jv

Ev - n — + r« — + r» — (46) X X        y y a ß0 u o ° o 

where 

rx = (Jy - s0Jx)Ey - jx
2/,ef 

* - "ff (Jy + Vx + aoBy) 

ra   - - u    B(a E    + ß J  ) o o y ox 

The perturbed quantities ai/a0 
and ß\lßo can now De related to 

the variables u\,  pi,  and p\ by using the expressions developed in the 
preceding sections.   Arriving at the final expressions involves some 
tedious algebra,  and their development can be found in Appendix I 
along with the final coefficients.   Using the coefficients from Appen- 
dix I, j    and the joule heating can be expressed as 

pi               Pi Ui 
j„  = ai — +  a2 — + aa  — 

y         p          P u Ko              ^o o 
(47) 

Pi Pi Ui 
JV

E
V  + e J    -bi — + ba — + b3  — (48) 

y y Po Po uo 

The perturbed Eqs.  (17),  (18), and (20) can now be reduced to 
three homogeneous algebraic equations in the unknowns u\, pj_, and 
pj_.    Substituting Eqs.  (47) and (48) into Eqs.   (17),  (18),  and (20) and 
using Eqs. (23) and (40), the algebraic equations can be written in 
nondimensional form as 

16 
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Pi,-        7 
U* (uu.- k + id)   + -— (- k + iGi)   = 0 (49) p      *w- u Ko o 

Pi ui _      _  ,    P1 k 
— Ai + —  lA2 + i(- tu + k) J+ —  (- N2 +  i pp)   = 0    (50) 

—   [Bi + i(u> - k)]+ —   [B2  + i(uu -  k)(r -  1)M2] 
P« u Ko o 

+ —   [Ba   +  i(- - + k)] = 0 (51) 
Po r 

where 

Gi 
L dPo 

dx 

L dun 
Ga 

uo dx 

L    dp0 
G3 —-Ü 

Po  dx 

Ai - G2 - Ni 

fl2  = G2  +'N 

N = 
a  LB2 

o 
0   u Ko o 
aiBL 

Ni 
Pouo2 

a2BL 
N2 ~ 

p   u   a 
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Bi  = - G3   +  2Gi + Y "   1 -^—  (J'E -  bi) 
Y 0    U 
' MO   O 

Ba  = G2M2(y  -   1)   + ^ "  1 ——  (J.E -  ba) 
Y      P  u ' o o 

Y -   1     L Bg   = -  Gi - £ -   b3 

r    p0
uo 

(» ■ aui + iu)2 = 

k = kL 

uo 

and L is a characteristic length which is taken to be one meter for the 
cases considered.   In order for a nontrivial solution to exist for the 
set (49-51), the determinant of coefficients must equal zero.    This re- 
sults in a cubic equation in the complex frequency Ü,  i. e. 

[k2(3 -)   + C2  + ikC3     tt) 
M2 J 

i3   +   C-  3k +  iCi)üu2  +    k2(3 )   + C2  + 

+ P (— -   1)   + C4k +  ik2CB   +  iCs   = 0 
M2 

(52) 

where the C's are real and depend on the steady-state variables.    For 
a given steady-state solution satisfying Eqs.  (6) through (8),  and a 
given value of k ( the roots are determined using a computer program 
developed at AEDC for polynominals with complex coefficients.    The 
criterion for instability is that the imaginary part of the root, ü, be 
greater than zero; i. e., W2 > 0.    This implies that the disturbance 
can grow with respect to time at a given x station since 

i(kx-u)it) i(kx-u)it)     u)2t 
e = e e 

It can be shown that when the steady-state gradient terms are 
zero and when there are no electrical effects present in the perturbed 
equations, there are three real roots (Ref.  13) of Eq.  (52). 
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u> =  (u_ - ajk (53) o o 

in  = uQk (54) 

u) =  (uQ + aQ)k (55) 

The root (uQ - aQ)k corresponds to a wave moving upstream relative to 
the gas at the sound speed while (u0 + aQ)k is a wave moving downsteam 
relative to the gas at the sound speed.    The root Uok corresponds to a 
wave moving with the gas and is identified as a perturbation in enthalpy. 
Landau and Lifshitz, Ref.   14, show that the entropy, vorticity,  and 
enthalpy perturbations move with the gas velocity.    In the presence of 
electromagnetic effects, the disturbances are found to be propagated at 
the speeds implied by Eqs.  (53) through (55) when the wavelength is 
sufficiently short.    These will be referred to as the upstream, down- 
stream,  and enthalpy modes.   The disturbance velocity deviates from 
these values as the wavelength increases.   It should be noted that the 
analysis is not valid at extremely short wavelengths because of the 
upper limit placed on the disturbance frequency by the Saha equilibrium 
assumption. 

Using the steady-state solution shown in Fig. 3, the dispersion 
relation, Eq.  (52), was solved at various points within the channel. 
The variation of Ü2 with x is shown in Fig. 4 for the enthalpy, upstream 
and downstream wave.    Each point represents the local value of the 
growth rate and each point is calculated independent of the growth rate 
at any other x station.    It can be seen that the enthalpy wave exhibits 
the largest instability (<02 > 1) and Ü2 f°r all three waves shows a 
marked dependence on the x position in the accelerator.   Each x station 
corresponds to a different orientation of the wave front relative to the 
current vector as well as different values of the steady-state variables. 
The dependence of wave growth on wave orientation was indicated in 
Ref. 3 for the magneto-acoustic-type wave.   It can be shown (Section 3. 3) 
that the maximum joule heating occurs when the angle between the current 

vector and wave front is given approximately by emax = — tan"1 ß.    A 

plot of the angle between the wave front and current vector is shown in 
Fig. 5.   The disturbance is oriented near the angle for maximum ampli- 
fication at the channel entrance but the orientation becomes unfavorable 
for growth at subsequent downstream stations.    The decreasing growth 
rate (Ü2) of the enthalpy wave with increasing x (Fig. 4) lends credence 
to the dependence on orientation.   The strong variation of ü with x is 
apparently attributable to the variation of the electrical quantities 
rather than .the x dependence of the gas dynamic or thermodynamic vari- 
ables. 
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In order to determine the effects of the steady-state gradients, the 
quantities Gj_, G2, and G3 were set to zero and Eq.  (52) was solved for 
this case.   Neglecting the gradient terms increases the value of Ü2 
slightly for the enthalpy wave but does not change the general character 
of the x dependence as shown in Fig. 4.   Reference 13 found a decrease 
in the growth when gradients were neglected in the generator analysis. 
The increase in growth attributable to the presence of gradients was 
attributed to the mechanism described by Morse (Ref. 15) for a three- 
fluid partially ionized plasma.    This mechanism depends on the pres- 
ence of an electric field either parallel or antiparallel to a density 
gradient and also on the mobility and diffusion of the electrons and ions 
within the gas.   This mechanism is not dominant in accelerators or 
generators, but rather the gradients contribute convectively to the 
growth or decay of the waves.   The contributions of the steady-state 
gradients to the wave growth rate were shown in Ref. 8 to be approxi- 
mately 

_rl +  (r-  1 + M0)-|L    dp 

L 1  ± Ho J p„  dx 

M    L    du„ o - _o o 

p     dx 2    u    dx Ko o 

where the upper sign refers to downstream waves and the lower sign to 
upstream waves.   The contribution to the amplification or attenuation of 
a given wave depends only on the sign of the gradient. 

The wavelength dependence of Ü2 and the nondimensional wave 

speed (-=- = ) are shown in Figs. 6 and 7.   It is noted that the 
k uo 

waves travel at their nondispersive speeds for wavelengths less than 
approximately 0. 1 m. The wave speeds show a marked deviation from 
their small interaction values at the longer wavelengths; however, at 
the longer wavelengths, the linearized theory breaks down and the 
complex frequency ü can no longer be assumed to be, even approxi- 
mately, independent of the x coordinate.    The enthalpy wave Ü2 is noted 
to be almost independent of wavelength for short wavelengths, but then 
decreases for longer wavelengths.   This is contrasted to the results of 
Ref.  6 where, because of heat conduction losses, the growth increases 
with wavelength. 

The effect of thermal nonequilibrium on disturbance stability is 
investigated using the perturbation form of Te given in Appendix I. 
The results for values of Te up to 200°K higher than the gas tempera- 
ture are shown in Fig. 8.   The nonequilibrium effects are quite large 
at the entrance to the channel where the enthalpy wave shows the 
largest value of Ö2.   It was found that #1 is zero for Te - T between 
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185 and 190°K at x = 0. 02.   In this neighborhood the coefficients of the 
perturbed electron energy equation become unbounded and the linear- 
ized analysis breaks down.   The nonequilibrium effects are quite differ- 
ent at different points within the channel.    Reference 2 also showed that 
thermal nonequilibrium can markedly change the value of W2 for the up- 
stream and downstream waves. 

3.2  DISTURBANCE IN A BOUNDED PLASMA (CASE II) 

The stability analysis of MHD slant-wall-type accelerator flows, 
assuming that ey = jx = 0,  indicates that the enthalpy, wave can become 
unstable and the disturbance may become large.    The growth rate of the 
enthalpy wave is very dependent on the orientation of the current vector 
to the wave front.    However,  different assumptions within the stability 
analysis can lead to radically different results.    K different boundary 
conditions are imposed on the perturbed electrical quantities, even 
though the same steady-state flow exists,  different stability criteria 
will result. 

Considering the case where the plasma is finite compared to the 
scale of the disturbance, the current density, jy,  and the joule heating, 
E0* j + e* J0,  can again be related to ui, pi, and pi.    Making use of the 
conditions in Eqs.  (43) and (44) the coefficients for the jy expression 
given in Eq.  (45) are 

qa  = 
CToUoB 

1  + *0
2 

q3   = -  qa 

ß 
q* = 

o 

1 + *„2 A 
o 

The coefficients of the perturbed joule heating term, Eq.  (46), become 

u B(3„  - •   ) 
yi = 

T   r u ötß     - 9   ;n 

A   Lx 1 +•   2      J 

2"2 - I M— (i JÜSL - ß u B>1 
A  Ll  + f   2    A     aQ o o    J 
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ra     _   _    I    U0B(P0    -   *Q> 

A       1  + ft   s (56) 
o 

The coefficients for the perturbed electron temperature given in 
Appendix I are the same except for qj/which becomes 

2CJ     - Vx) 
qi  = ■ 

J   «  -  J   2 
x 

The development of the dispersion relation follows as before with the 
dispersion relation, Eq.  (52),  as the result. 

Using the steady-state solution shown in Fig.  3, ü is determined 
as before with the results shown in Figs.  9 and 10.   It is shown that 
the enthalpy and downstream waves are always damped whereas the 
upstream wave has a positive ü>2.    The corresponding wave speeds 
have their nondispersive values at short wavelengths but diverge from 
these at longer wavelengths.   The effects of thermal nonequilibrium 
are shown in Fig.   11.    The higher electron temperature appears to 
move Ü2 toward the neutral stability point (Ü2 = 0) in the case con- 
sidered. 

It is shown that instabilities may exist with the wave amplification 
depending on the assumptions used in the analysis.    When the pertur- 
bations in Ey and Jx were zero, the enthalpy wave was amplified and 
would grow by a factor of 105 in one meter if Ü2 remained constant at 
the initial value of 12.    When the perturbations in Ey and Jx were 
non-zero, the upstream wave was amplified and would grow by a factor 
of 103 in a distance of one meter if Ü2 had a constant value of six. 
These growth factors can be taken only as an indication of the possible 
amplification,  even at the short wavelengths,  since contributions from 
nonlinear effects could become large and Ü2 is not independent of posi- 
tion in the channel.   Electron thermal nonequilibrium is shown to have 
a marked effect on the growth when the plasma is infinite and very 
little effect when the accelerator walls influence the disturbance.   Neg- 
lecting contributions from the steady-state gradients changed the mag- 
nitude of Ü2 only slightly. 

3.3   APPROXIMATE ANALYSIS 

Some insight into the contributing factors to instability can be ob- 
tained from an approximate analysis similar to that used in Ref.  3. 
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Neglecting the steady-state gradient terms, the perturbed equations 
can be written as 

(i^I)   PJ:  .   «Ü  .  o (57) 

k Po      u0 

i  ^   P1 -        _.    «1 Jy   BL 

—- — -  i(d) - k) — = —  /,-o\ 
rM2 p0 u       p u 2 (58) 

' ° o       Ho  o 

!/-    TT%   
x   Pl     *   /-    -xpi    (r-DL f2(Jv + Jx T)jv -  i(ü) - k) + —  (uu  - k) —<■     '    \ J- ^-J#—£ 

}4I2 po      M2 P0      pua     1 a 
o o o 

J    2    +   J    2   £7 x     T     y n a a     J (59) 
o o 

where a different form of the energy equation is used.    In order to ob- 
tain an approximate expression for Ü2, the right-hand side (RHS) of 
Eqs.  (58) and (59) are computed using the adiabatic approximation 
Pi Pi 
— = 7—.    Assuming constant collision cross sections, the perturbed 
Po        Po 
conductivity and Hall coefficients can be written as 

Pi        r + i pi 

3„ 2        p^ o "o 

'o       L2kT 4      J po 

oi      |eVH v.  qlP, Pi 
= R   — 

Or,       L2kT 4 n_ CT   Pn 
(60) 

Using the adiabatic approximation and Eqs.  (57) and (60), the RHS of 
Eq.  (58) can be written as 

BL BL       f uT- Tc 
J, 2    -y 

Pouo -o-o 

BL        f ,w-"k\ 0 r +   HPi 
=  g «-  qa(    -    )   + q3R_ -  <U  —-— }- — 

°ouo     1 k * 2     J Po 

Pl v       Pl 

= F —  -   (Fr   +  IF   )   — 
Po Po (61) 
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The RHS of Eq. (59) can be written as 

(r-DL '      - ■■ 2 

u a   I BL       L y j        xj       CJ     x y    J po CT  p  u °    »» D±J       L Jy 

- D ~ -  (D    + ID )  ii po r i     po (62) 

Combining Eqs.  (57) through (62),  the condition for a nontrivial solu- 
tion is 

r + _iD_ + 2^! (iF _  g-R') . o 
(i> - k        k k 

Approximating (w - k) in the term iD/(ü - k") by iß/M (which is 
regarded as an iteration in solving the cubic in Ü) an approximate 
expression for Ü2 can be written as 

Dr    4.   M   ^ 

"a " 2y      2    P (63) 

The upper sign corresponds to the downstream wave and the lower 
sign refers to the upstream wave.    Because of the various approxi- 
mations, the root corresponding to the enthalpy wave has been elimi- 
nated. 

The expression for Ü2 when ey = jx = 0 can be written as 

_ anB2L   f J„M     r ,       0oMJ„ 
w«  = ~   \ -   1  ± —*—     (R„  - 2(y-l) J  ; -?-*   (R     + 21hl) 

2'ouo   1 CTouoB        a °o"oB      a        2 

M2Cr-D a „ 2ß^JwJvMa(r-l) r+i 
+ 

a 2u2 B2 <V  " Jx2>Ra  " "  *     , «a   + —>) 

(64) 

All terms in Eq. (64), except for the last term, are identified in 
Eqs.   (39) and (40) of Ref.  3.    The last term is a coupling term 
required by the presence of two components of current in the joule 
heating term, Dr.    A plot of Eq.  (64) using the steady-state solution 
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of Fig,  3 is shown in Fig.   12a.    Comparison of Fig.  12a with Fig. 4 
for the upstream and downstream wave shows that the simplifying 
assumptions and approximations made in arriving at Eq.  (64) affect 
the magnitude of Ü2 slightly but do not alter the character of the 
x dependence.    The growth or decay of the waves is shown to be very 
dependent on the magnitude (and sign) of Jx and Jy.    The largest con- 
tribution to instability comes from the third term which contains the 
axial current density, Jx.   As in previous analyses (e.g., Refs. 3 
and 7) the wave propagating antiparallel to the current vector is ampli- 
fied.    Since Jx goes through zero,  the downstream wave is amplified 
near the channel entrance, but the upstream wave is amplified near 
the exit. 

The angle between the current vector and the wave front (see 
Fig.  5) which gives the maximum growth rate can be calculated from 
Eq.  (64).    The body force terms (second and third terms of Eq.  (64)) 
are a maximum when 

RCT   + -g- 
tan  e  = ß( ) 

RCT  - 2(r-l) 

The joule heating terms (last two terms of Eq.  (64)) are a maximum 
when 

a         2 
tan   2e  - ß( ■■ ) 

ft 
a 

The maximum contribution from the body force terms occurs when the 
angle between the current vector and wave front is approximately 
86 deg.   Since the force terms are larger than the joule heating terms, 
this orientation will give the maximum growth rate.    As can be seen 
from Fig.  5, this optimum orientation is not present, and axially 
moving acoustic waves are not significantly amplified. 

The expression for Ü2 when ey = *I^ex and jx = -*oJy c&n be 
written as 

_ ao BaL r PQM 

2P0'lo(1+*o  >   L ° ° 
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 —  +i- «Ra - —— <7>J 
o  o w o  o ** 

M2(r_l)(l+Jo
2)(Jx

2 + Jy
2) 

a   au   2B2 

o    o 

R°} (65) 

The first three terms are related to fluctuations in the forcing term, 
Fr, and the remaining terms are related to changes in the joule heat- 
ing.   A plot of Ü2 versus x for this case is shown in Fig.  12b using 
the steady-state solution of Fig.  3.   The result is very similar to that 
obtained by solving the cubic dispersion relation (Fig.  9).   The largest 
contribution comes from the perturbation in the forcing term,  Fr, i. e., 
the second and third terms of Eq.  (65).   The body force term is inde- 
pendent of the orientation of the wave front to the current vector.   The 
contribution from joule heating decreases as x increases and is negli- 
gible at the end of the channel. 

The growth of the enthalpy wave can be calculated approximately 
by considering the growth of a stationary enthalpy disturbance attrib- 
utable to joule heating.   It is assumed that the disturbance is a plane 
wave so that ev = jx = 0 corresponding to Case I.    The perturbed 
energy equation takes the simple approximate form 

^3.       2jyJy       Ox 
Po ^ " - — J (66) dt a o CTo 

Using Eqs.  (9) and (10), the perturbed current density can be written 
as 

CTi Pi 
i     = —(J -  M )   + — B  J                            1&7) y        rr        y OX           o      MO  X                               l°" 

o po 

It is assumed that the electrical conductivity and Hall coefficient can 
be written as power law functions of the enthalpy; i. e. 

CTi hi 
 wi ■— (68) 

°n hO 
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_±   =   w2     ,      v 

ßo h0 
(69) 

Using Eqs.   (66) through (69), the perturbation energy equation can be 
written as 

L   d-Cnhj,       L      lv   y -  1 

lU     dt 

L    l   y - l       f    - w*   1 
—  (")  *   J J2  - V-  PoJxJv   (1 " -*> i u0cT^p      xly       x       ° x y wiJ 

(70) 

using perfect gas relations. 

The right-hand side of Eq.  (70) has been nondimensionalized using 
the free-stream velocity so that it now corresponds to the temporal 
growth rate, ü>2.    It is shown that the first term of Eq.  (70) is always 
destabilizing since Jy > Jx,  and the second term is destabilizing when 
Jx is negative since, in general, wi > W2-    Using wj = 6 and W2 = 1, 
the approximate enthalpy growth rate is calculated from Eq.  (70) using 
the steady-state solution of Fig. 3.    The growth rate is shown in 
Fig.  13.   A comparison of Fig.  13 with Fig. 4 shows that Eq.  (70) 
underestimates the value of the growth rate at the accelerator entrance 
but does qualitatively predict the growth rate distribution through the 
accelerator. 

The angle for maximum enthalpy growth can be found from Eq.  (70) 
by relating the current components to the angle between the wave front 
and current vector (defined in Fig.  5).    The current components can be 
written as 

J    = J cos  e (71) 

Jx = - J sin  e (72) 

Using Eqs.  (71) and (72) in Eq.  (70), the approximate expression for 
the growth rate can be written as 

L   d£nh,        L     J2    y  -  1 

uo     öt Uo    a rP 

.       r W2 ^ 
)  wiJcos 2e  + 0     sin  2e(l )  L 

1 ° wi   J 

(73) 
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The angle for maximum growth is then found from Eq.  (73) as 

tan 2e  = Bo(l - i) (?4) 

where the term W2/wi represents the contribution from the perturbed 
Hall coefficient which is stabilizing.    The orientation most favorable 
for growth is near the channel entrance,  and the wave orientation be- 
comes less favorable for growth as x increases.    This trend agrees 
with the growth rates predicted from the Case I analysis. 

The approximate results shown here, together with the results 
from the previous cases (ey = jx = 0 and ey = $bex; jx = - 3>oJy) indi- 
cate that instabilities may exist in slant-wall accelerators.   Although 
the linearized analysis is inadequate for predicting the disturbance 
growth and is restricted to short wavelength, insight is gained into 
the instability mechanism.   It is shown that different assumptions 
concerning the electrical boundary conditions give radically different 
results for stability criteria.   In an attempt to remove some of the 
restrictions in the analysis,  a two-dimensional perturbation model is 
considered in the next section. 

SECTION IV 
TWO-DIMENSIONAL ANALYSIS 

The perturbation variables must satisfy Eqs.  (17) through (20) 
together with the conditions imposed by Eqs.  (36) through (39).    Pre- 
viously, it has been assumed that the imposed disturbances are axial 
traveling waves which depend only on x and t.    This restriction will 
be relaxed to investigate the stability of traveling waves which are 
dependent on the transverse coordinate, y, as well as x and t.   This 
approach permits a more realistic treatment because the perturbed y 
momentum equation is not neglected and the waves are not restricted 
to propagate only in the x direction. 

The conditions V x e" = 0 and V x v = 0 imply that the perturbed 
electric field and velocity are derivable from potential functions. 
Hence 

e"= - W 
(75) 

v\= vep 
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It is assumed that 

i(k„x+k„y-uut) 

(76) 
V ~  e       X       y 

i(kxx+k y-uut) 
cp ~  e 

The components of perturbed electric field and velocity can now be 
expressed as 

e    .  -  ik V 
x x 

ey - - ik/ 

ui =  ikxcp 

Vl -   "V , (77) 

The conservation of current,  V j = 0, implies that j can be expressed 
as 

Jx       dy 

Jy 

(78) 

~  ox 

McCune (Ref. 3) usedEqs.  (75) and (78), together with Ohm's 
law and the momentum and continuity equations, to determine a set of 
differential equations which together with appropriate boundary condi- 
tions determine V, <f>, xjj, and p.   The energy equation was eliminated 
by noting that dissipation terms are much smaller than the body force 
terms for the case considered and, hence, the adiabatic approximation 

Y —) can be used.    The adiabatic approximation is not made in 
\Po        PoJ 
this analysis and conservation of current is not satisfied exactly. 
Ohm's law is used to establish the relation between 0, tf , V,  and p. 
Equations (17) through (20) can in principle be solved for <f>,  V, p, 
and p and then it can be determined from Ohm's law. 

The assumed form of the perturbations, Eq.  (76), implies that the 
medium is infinite, compared to the scale of the disturbance,  in both x 
and y direction.   It is not possible, then, to treat reflection or attenua- 
tion of a disturbance at the accelerator walls.   However, the initial 
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development of the disturbance can be investigated and the analysis 
can be used to determine if the necessary conditions for instability are 
present. 

The perturbed Ohm's law, Eqs.  (21) and (22),  can be .written as 

ßx     <79> 

+  i*efß0Bkxq> + Jx - -  3ef(Jy  + 0oJx)r 
o o 

jy  = ■ ^ = ~  iky°efV -  ikX
Baef^ -  ikxßo*efV 

+  "yPo^ef* + Jy T +  P«f(J* "  "OVJT     
m 

o ° 

The expressions for jx and jy are used together, with the perturbed 
joule heating 

(J«E)i  =Je     +Je     + E j     +  E j /Q1\ v x x y y xJx yJy 181) 

and the expressions given in Appendix I for the perturbed conductivity 
and Hall coefficient to express Eqs.  (17) through (20) in terms of $ , 
V, p,. and p. 

The perturbed equations can now be written as 

Ax — +  J-Aa   + ikPl — +   J i(N   „k    + k ß  N   _) I  
Po       I x J  P0        I       ef y x ° •*  J u0HL 

+ ik" w - k  2 -  i(ß N   _k    -  k A_)i-2- =   o \  x x vpo ef y x ^J u L (82) 

Ei — + J  Ea   +  ik" PI — +    Ji(ß  N   „k     -  k N   1    - 
P.        1 yjp0 \    po  ef  y x  erju oBL 

+ \wK  ~ k„k„  + i(kyNef  + kxE2)| -^ J uuk ^   . &, r \   y      x y y ef ■   x -j- u L <83) 
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{- ax + i(kx - .)J Ji + 21- {- kx* - ky= + ik>}- o (84) 

{B1 + Iü-V}^+{B= 
+i(^-7»}^ 

+ {- Kkybt + n,bB)J^. + {(irxsr - FX=) M=(y.i) 

-  i(kybs   -IxB2)j?l- . o (85) 

where the following new definitions are made 

*ef B2L „        Po N  P  = a 
e Pouo pouo 

Jv   BL J     BL 
p     _     y  p     _     A 

y       Pouoa X       Pouo2 

Ai -G2  -  Fy?2 -  ^3ßef(Fx -  ßoFy) 

A2  = G2  + Nef  -  Fy?3   - H40ef(Fx -   ßoFy) 

As   - V1+fX
2

ßef(Fx-0oFy) 

El = ^x " >**ef<Fy  + ß0Fx) 

Ea - PoNef  + V3   - ^ßef(Fy "  W 

E3   = ?iPx - ^0ef(Fy  + 0oFx) 
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L 
bi  -*= 

r 
l-^To   {

(^ -  Vef"»*7"1* Pef"-CVx "  ExV} 

b'"rr^{-B[J« + ff«rf(i« + ßoV]} 
b3   = *T 7JI { ( •" "  Mef"^7'" + Pef^^Vx -  ExJy>} 

} 
£li — (a       B(E    + BE )\ 
r  P0 I 

ef      x     ° y J 

b4   = 

bB   = '-Z±. -±—  1   (P3   -   9Ä0Ä,|i4)J-E + n4P_(EyJx  -   ExJy) 

o  o 

+ CTef   B %<*o*x -  E
y> 

b«   = 

—■ —r-1     L 
Bi = 2GL - G3   + J*E( )   -  bi 

Y      P   U '      Ho  o 

B2   =  M2(y-1)G2   + J-E(- )   -   bB 

r   Pouo 

Bg     =    -    Gl   -     b3 
(86) 

The dispersion relation is obtained by setting the determinant of 
coefficients of the algebraic set of equations, Eqs.   (82) through (85) to 
zero.   After considerable algebraic manipulations, the resulting dis- 
persion relation is of the form 

CAiüü3   +   (CA2  +   iCB2)üÜ2  +   (CA3   +  iCB3)üj +  CA4   +  iCB4   =  0 

(87) 
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The dispersion relation is again a cubic and in the absence of elec- 
tromagnetic effects reduces to the equations for traveling acoustic and 
enthalpy waves.    The steady-state solution shown in Fig.  3 is utilized 
with the investigation restricted to thermal equilibrium; that is, Te = T. 

It is seen from Fig.   14 that for wavelength in the y direction greater 
than 0.1m and for large values of kx,  the growth rate reduces to that 
obtained from the one-dimensional analysis with ey = ex = 0 (Fig.  4). 
This was expected since as ky-* 0 the gradients in the y direction are 
eliminated.    Also,  in both cases the perturbation of slant angle and 
total current are nonzero, whereas in the case where ey = *oex anc* 
jx = - <J>o3y» they were assumed zero.    However,  the two-dimensional 

perturbation analysis has jx^= 0, but this finite perturbation in the axial 
current does not change the stability results for short wavelengths. 

The growth rate for the various waves is plotted versus axial wave- 
length in Fig. 15 and versus ky in Fig. 16. The growth rate for the 
enthalpy wave is shown to decrease for increasing Ax and decreasing Ay. 
The growth rate for the upstream wave increases slightly for increasing 
Xx and decreasing Xy, but the opposite is true for the downstream wave. 
Changing A.x (or Xy) is equivalent to changing the wave orientation in the 
flow,  with the angle between the current vector and wave front given by 

.li .hi 
tan  e  =  2 Y. 

Then, at the accelerator entrance, increasing Ax/Ay corresponds to a 
decreasing angle and a less favorable condition for amplification of the 
enthalpy wave. 

The wave speed dependence on wavelength is shown in Fig.  17.    As 
before, the waves deviate from their nondispersive velocities at wave- 
lengths (A.x) on the order of 0. 1 m.    The wave speeds of the upstream 
and downstream waves deviate at smaller values of Ax as the wavelength 
in the y direction decreases below one meter. 
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SECTION V 
SUMMARY 

The linearized stability analyses indicate that axially moving 
magneto-acoustic and enthalpy waves can be amplified in slant-wall 
accelerators.   The stability and degree of amplification of any wave 
depend on the electrical boundary conditions and wave form utilized. 
The imaginary component of the complex frequency (Ü2,  which indicates 
the "degree" of instability) was found to be a strong function of the x 
coordinate.    The strong x-dependence was seen to be.related to the 
orientation of the wave with respect to the current vector.    The marked 
x dependence of Ü2 and the magnitude of the gradients of p0, uo, pQ 
indicate that the analyses are restricted to wavelengths of 0. 1 m or less. 
The disturbance traveled at the local sound speed (relative to the flow) 
or at the local fluid velocity for short wavelengths, but lost this char- 
acter as the wavelength increased.    In some cases (at wavelengths 
greater than 0.1 m) the upstream wave moved at a velocity greater 
than the fluid velocity,  and thus would appear to have a negative veloc- 
ity relative to a fixed observer.    However, the validity of the analyses 
is doubtful at the longer wavelengths. 

Table I (Appendix II) summarizes the results of the linearized 

analyses.   The quantity ew2T corresponds to the growth of a disturbance 
in the device one meter in length with Ü2 assumed constant. .This only 
provides an indication of the possible growth of a disturbance since non- 
linear effects will become important when the disturbance becomes 
large.    It is predicted, from both the one-dimensional and the two- 
dimensional analyses, that the enthalpy wave will have the largest 
growth. 

The enthalpy wave is more prone to becoming unstable in a large 
device (ey = jx = 0 or 2-D analyses) where the boundaries have no influ- 
ence on the disturbance.   The disturbance oriented at the most favor- 
able angle for amplification would grow.   This is not unlike the growth 
of ionization waves with the resulting striations.   The upstream acoustic 
wave, on the other hand, is more apt to be amplified in small devices 
where the boundaries have a marked effect on the disturbance (ey = <f>c,ex 

and jx = - $oJy)«   ■^n this case, the upstream wave is amplified regard- 
less of orientation. 

The linearized anlaysis indicates that instabilities can exist in MHD 
accelerators, but the analysis cannot predict the effect on device per- 
formance.   A linearized analysis cannot consider the long wavelengths 
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and aperiodic waves which may be present in MHD devices (Refs.  16 
and 17).   A more complete analysis which considers the perturbed 
differential equations subject to the proper boundary conditions is 
necessary to predict the effect of disturbance growth on accelerator 
performance. 
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APPENDIX I 
CURRENT AND JOULE HEATING PERTURBATIONS 

In order to relate the perturbed transport quantities (ßi and oi) to 
the perturbed thermodynamic properties, it is necessary to use the 
perturbed electron energy equation (Eq.  (35)) 

2  J j     +2 J  j T Te, T P;L 
 y_y £j£ = (2ui + ^_) — 2  

J   " + J   2 TeQ  - To    Teo       Te0 " ?0 P0 Ay U 

"      ,     2   Smo                   To       >   Pi +   C  +  )   — 
2 sm   -a Te    - T       P0 (1-1) mo       o eo o       u 

The perturbed Hall coefficient and electrical conductivity are related to 
Pi» PI* anc* Te. by the following expressions 

Cl           P*       l  Pi       rv.       Bi  ^  Tei n o\ — = a +  (b+  )   (1-2) 
°o Po      2 Po Te      Te o o 

Pi 1  Pi Sm#% pi       c B 
 + (a - - 
Po 2 pn 2  S, - a      p„       I        T m o       ° e„ o o 

- ( ) (- + ) r —    (i-3) 
2  sm    -a       2      kT6o J    Te        V 

m o o co 

Using Eqs.  (1-1), (1-2), and (1-3), an explicit expression for Tei/Te 

can be obtained 
TBi "I Pi Pi 
~    =   «P2       +   «P3       +   <¥>*     (1-4) 
Te0 

uo Po Po 
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where 

Te, 
Cpi =  " {:— ° + l^i(2   + q1q4) 

T        -   T eo o 
1   1 

- qi(q3 + q4)(b + —)  f 

cp„ = q q /cp ^2 12       1 

Sm 1    f     -o                     °mo ,„                 ,               ,                 v \ cpa   = —<  +   (2  +  q  q  )   -  aq   (q3   + q  )  l> 
3       ^^e, - To      2sra0 - a0 *                 x                    J 

1   f      T°             q^  , *\ 

1* - T \ 
J\ . ; q. - VoB;   q

3 - J
y - ßoJx;   <4 - ßoJx 

x    T    y 

Having determined the temperature perturbation, the expressions 
for the conductivity and Hall coefficient can now be written as 

<7i Pi Pi ui 
 ?i — + e2 — + ?s  — (1-5) 
ao Po Po uo 

81 Pi Pi "I 
 [12       +    (13    —   +   |i4    — (1-6) 

ßo Po po uo 
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where 

1 Bi 
?!   =   --   +   Cp4(b+  = ) 

2 TeD 

Bi 
2  = a  + cp3(b + -—) 

Bi 
?a   = «P2<b  +  ) 

T 
e0 

(12    -   Si   -   Hl«p4 

Ha   - 5 a  -   fxicp3   -   SmQ/(2   SmQ  -  aQ) 

H4     =   ^3     -    Hl<P4 

Substituting Eqs.  (1-5) and (1-6) into Eqs.  (45) and (46) gives the follow- 
ing expressions for the current and joule heating: 

Pi Pi Ui 
j     =  ai — +  a2 — + a3  — (1-7) 

y Po Po uo 

Pi ui Pi 
Ej     + J ew = bi — + b2 — + b3 — 

y y     x x        p0        uo        Po (i-8) 

where 

bi = r^2 + rsu-3 

b3 = ri§ i + ^2^2 

ai =  ^2Q3   + u3q4 

a 2    =    ? lQ3     +    V 2<l4 

a3   - - qa + SaQs   + |i4<U 
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APPENDIX II 
TABLE I 

SUMMARY OF RESULTS 

M 
to 
o 

it». 

Analysis x,m Enthalpy Upstream Downstream 

One-Dimensional 
Perturbation 
Case I 

e  = j  =0 y  Jx 

0.0 

0.76 

2.4 

Amplified eWsT  » 10e 

Neutral ws  « 0 

Attenuated 

Attenuated 

Attenuated 

Amplified e   « 25.0 

Neutral uus » 0 

Attenuated 

Attenuated 

One-Dimensional 
Perturbation 
Case II 

e  = *„e y   ox 

jx - " *oJy 

0.0 

0.76 

2.4 

Attenuated 

Attenuated 

Attenuated 

ÜU2T 
Amplified e   « 

.  , . _. .  uu2T Amplified e   « 

Amplified eWsT  « 

40 

300 

300 

Attenuated 

Attenuated 

Attenuated 

Two-Dimensional 
Perturbation 

X  = 1 m 
y 

0.0 

0.76 

2.4 

Amplified e^^  w 105 

Amplified cue «« 0.016 

Attenuated 

Attenuated 

Attenuated 

Amplified e^2"1" « 7 

.  ,.4,. 0  ou2T Amplified e   « 

Attenuated 

Attenuated 

4.4 

f - Time spent in device one meter in length 
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