HYPERVELOCITY IMPACTMATERIAL STRENGTH EFFECTS
 ON CRATER FORMATION AND SHOCK PROPAGATION IN THREE ALUMINUM ALLOYS

Ronald F. Prater, Major, USAF

Air Force Institute of Technology
Doctoral Dissertarion

TECHNICAL REPORT AFML-TR-70-295

This document has been approved for public release and sale, its distribution is unlimited.

> NATIONAL TECHNICAL
> INFORMATION SERVICE
> Sp.-cto: VA

Air Force Materials Laboratory
Air Force Systams Command Wright-Patterson Air Force Base, Ohic $\$ 5433$

When Covernment drawligs, specifications, or ot her data are used for any purpose other than in connection with a definitely related Goיernment procurement operation, the United States Government thereby incurs no responsibiity nor any obligation whatsoever; and the fact that the government may hute formulated, furnished, or in any way sirplied the said drawings, specifications, or other data, is nut to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless returr. is required by security considerations, contractual obligations, or notice on a specific document.

HYPERVELOCITY IMPACT -- MATERIAL STRENGTH EFFECTS ON CRATER FORMATION AND SHOCK PROPAGATION in Three aluminum alloys

Ronald F. Proier, Mcjor, USAF

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report is based upon a dissertation prepared by Major Ronald F. Prater for submission to the Air Force Institute of Technology as partial furlfillment of requirements for the degree of Doctor of Philosophy. The work was sponsored by the Material Physics Division, Air Force Niaterials Laboratory, under Project 7360, Chemical, Physical, and Thermodynamic Properties of Aircraft, Missile, and Spacecraft Materials, Task 736006, Impact Damage and Weapons Effects on Aerospace System Materials, and was performed during Major Prater's assignment to that division.

The author wishes to thong his AFIT faculty committee, headed by Prof. D. W. Breuer, for their guidance and assistance in completing this study. He also gratefully acknowledges the advice and assistance of the staff of the University of Dayton Research Institute, particularly Messes. H. F. Swift and D. D. Preonas, for their professional advice regarding the experiments and to Messes. H. Taylor, L. Shieverdecker, and E. Strader for their support in the operation of the AFML Hypervelocity Ballistic Range provided under Contract F33615-68-C-1 138, Response of Materials to Impulsive Loading,

The manuscript was released by the author in November 1970 for publication.

This technical report has been reviewed and is approved.

Abstract

ABETRACT The effects of material strength upon the transient response of thick aluminum targets to hypervelocity impact has been studied experimentally. Most experiments involved the normal impact of 2017 oluminum spheres at a velocity of about $7 \mathrm{~km} / \mathrm{sec}$. Material strength was varied by employing targets of 1100,6061 , and 7075 aluminum alloys. Flash x-ray techniques were used to measure accurately the rate af which the crater grew during the impact process. Definite material strength effects were defected, even between different heat treatments of the same alloy (7075-T0 and 7075-T6). Crater growth rates were also measured for 1100 aluminum in four separate ranges of projectile velocity from $2.3 \mathrm{~km} / \mathrm{sec}$ to $7.0 \mathrm{~km} / \mathrm{sec}$. Comparison of these results with available theory indicates general agreement, but demenstrutes that clterations to the theory will be required to obtain derailed agreement.

Free surface velocity and Hopkinson fly-off disk techniques were $\mathbf{c}=\mathrm{od}$ to measure values of the peak normal stress at various distances from the impact point (between 1 sm and 10 cm) at several related arigles away from the projectile trajectory. The results indicate propagation of a nearly spherical wave with constant stress amplitude out to 30° off axis. A large decrease in stress amplitude occurs at higher angles. The measurements of the variation of stress amplitude with distance into the target demonstrated significant nonhydradiynarnic stress attenuation believed to be associated with propczation of an elastic rolief wave from the rear of the impacting projectile. Comnorisons with one-dimensional theory olso indizate that the stress ottenuation is sensitive to the loading history in the c:resi: region. Numerical calculations yield reasoncble agreement with experimental results, but many of the details are in question. Measurement of shock arrival time with quartz disk sensors confirmed the elastic-plastic behavior of the target material.

Contents

Page
I. Introdiuction :
11. Background and Theory 4
Crater Formation and Shock Wave Propagation 5
Transient Stage 6
Penetration Stage 6
Cavitation 6
Elastic-Plastic Final Stage 8
Previous Experimental Studies. 8
Hypervelocity Impact Theory 12
Numerical Hydrodynamic Solutions 13
Numerical Methods Including Material Strength 14
Supporting Calculations 15
Summary 18
III. Crater Growth -- Experimental Techniques 19
Experimental Methods 19
$[$ esign and Censtruction of Experiments 21
Light Gas Gun Facility 21
Flash X-Ray and Target Geometry 22
Sequeneing and Timing 28
Framing Camera Experiments 30
Target Materials and Design 31
Target and Projectile Materials 31
Target Design 33
Data Reduction Metteds 35
Flash X-Ray Films 35
Framing Camera Film 38
Summary 40
IV. Crater Growth -- Experimental Results 41
Experimental Program. 41
Flash X-Ray Results 43
Airalysis 56
Velocity Dependence 56
Croter Shape 59
Target Strength 60
Croter Rebound and Previous Experimental Results 63
Framing Crmera Results 68
Correlation vith Numerical Results. 7
Results of Rosenblatt 71
Other Numerical Results 77
Summary 78
V. Shock Propagation -- Experimental Techniques 81
Experiment Selection 81
Requirements 81
Techniques 84
Naterials 85
Direct Free Surface Velocity Measuremenis 85
Split Cylinder Targets 86
Free Surface Trajoctory 83
Fly-Off Disk Technique 92
Techn:ique Evaluation Experiments 92
Development Results 94
Shock Arrival Time ikleasurement Techniques 99
Pin Probes 100
Piezoelectric Arrival Time Serisor 101
Optical Fiker Sensor 105
Muili-Faceted Targets 107
Summary 111
V1. Shork Propagation -- Experimental Results 113
Experimental Program 113
Stress Measyrement Results 118
Presentation of Results 119
Velocity-Distance Relations 120
Variations with Oif-Axis Angle 129
Previous Experimental Results 134
Results of Charest 134
Results of Billingsley 136
Effects of Material Properties on Stress Attenuation 140
Siress Attenuation Result: 140
One-Dimensional Plarar Stress Attenuation 144
Spherical Geometry 148
Comparison with Experimental Eesults 151
Shock Wave Arrival Time Results ? 53
Summary 159
VI!. Comparison of Experimental Shock Pressure Results with Hydrodynamic Theory and Numerical Results 161
Blast Wave Solutions to the Impact Problem 162
Similarity -- The Perfect Gas Solution 162
Application to a Solid - The Equation of State 167
Quasi-Steady Solution 168
Varying Energy Method 174
Quasi-Ster vo and Varying Energy Miadel Resijlts 176
Karpov Model 180
Other Results 182
Cylindrizal Blast Wave Miode! 182
Remarks 186
Comparison of Experimental and Numerical Results 187
Results of OIL/RPM Codes 188
Resulis of STEEP Code 191
Summary 199
Vill. Conclusions and Recommendatior:s 200
Conclusions 200
Recommendations 202
IX. References 204
Appendix A: Raduction of Data Obtained 'rom Crater Growth Flash X-Radic arophs 211
Appendix 8: Experimental Crater Growth Data 222
Appendix C: Determination of Geometry for Multi-Faceted and Half-Cylinder Targets 233
Appendix D: Pressure Measurements by Fly-Off Disks 244
Hopkinson Fly-Off Disks 244
Theory of Operation 244
Stress Wave Sinape 245
Free Surface Approximation 246
Hugoniot Data 247
Effects of Two-Wave Structure 248
Appendix E: Adjustment of Rear Surface Velocity Data for Variutions in Projectile Velocity ard Shock incidence Angle 257
Angle Variation 257
Prajectile Velocity Variation 258
Appendix F: Experimental Data on Shock Wave Arri:al Times and Fly-Off Disk. Velocities 264
Appendix G: Framing Camera instrumentation 283
Model 300 Camera 284
Dynafax Model 326 Camera 285
Appendix H: Dimensional Analysis 287

List of Figures

Figure Page
1 Hypervelocity Impact Crater in Soft Aluminum 5
2 Four Stages of Hypervelocity Impact Crater Formation 7
3 AFML Hypervelocity Ballistic Range 22
4 Opercting Cycle of Adiabatic Compression Light Gas Gun Hypervelocity Launcher 23
5 Typical Segmented Sabat Launch Packages with Aerodynamic Separation 23
6 Target Tank and instrumentation Area of AFML. Hypervelocity Range Showing Arrangement of Flash X-Ray Equipment 25
7 Geometricai Arrangement of Flash X-Ray Equipment and Film Holders 25
8 Target and X-Ray Cassette Mount 27
9 Typical X-Raciiographs of Growing Crater, Round 2692 27
10 Block Diagram of Flash X-Ray Electronics 29
11 Experimental Setup for Framing Camera Photographs and Flash X-Rediographs 31
12 Singie Frame from Framing Camers Secord of Round 2524 32
13 Typical Croter Growsh Study Target 34
14 Light Table for X-Ray Film Reading 37
15 Diagrams of Flash Radicgraphs of Craters 37
16 Primiry Features of Debris Plume 39
17 CASE 1. Normalized Crater Diameter vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projec:ile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 48
18 CASE 1. Normalized Crater Penetration vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 48
14 CASE 2. Normolized Crater [ameter vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile af $5.2 \mathrm{~km} / \mathrm{sec}$ iNominal Velocity 49
Figure Page
20 CASE 2. Normalized Crater Penetration vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projectile of $5.2 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 49
21 CASE 3. Normaiized Crater Diameter vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projectile at $4.2 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 50
22 CASE 3. Normalized Crater Penetration vs Normalized Time for 1 100-0 Aluminum Target and Aluminum Projectile at $4.2 \mathrm{kri} /$.sec Nominai Velocity 50
23 CASE 4. Normalized Crater Diameier vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projectile at $2.3 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 51
24 CASE 4. Normalized Crater Fenetrotion vs Normalized Yime for $1100-0$ Aluminum Target and Aluminum Projectile at $2.3 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 51
25 CASE 5. Normalized Crater Diameter vs Normalized Time for 1i00-0 Aluminum Target and Steel Projectile at 5.0 $\mathrm{km} / \mathrm{sec}$ Nominal Velocity. 52
26 CASE 5. Normalized Crater Penetration vs Normalized Time for 1100-0 Aluminum Target and Seeel Projectile at 5.0 $\mathrm{km} / \mathrm{sec}$ Nominal Velocity 52
27 CASE 6. Normalized Crater Diameter vs Normalized Time for 6061-T6 Aluminum Target and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 53
38 CASE 6. Nernalized Crater Penetration vs Normalized Time for 60́!-Tó Aluminum Target ond Aluminum Projectile ot $7.0 \mathrm{kri} / \mathrm{sec}$ Nominal Velccity 53
29 CASE 7. Normalized Croter Diameter vs Normalized Time for 7075-T0 Aluminum Target and Alumisum Projectiie at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 54
30 CASE 7. Normalized Crater Penetration vs Normalized Time for 7075-T0 Aluminum Target and Aluminum Projectile ai $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 54
Figure Page
31 CASE 8. Normalized Crater Diameter vs Normalized Time for 7075-T6 Aluminurn Target and Aluminum Pr jectile ot $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 55
32 C,ASE 8. Normalized Crater Panetration vs Normolized Time for 7075 -Tt Aluminum Torget and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity 55
33 History of Crater Diameter in 1100-0 Aluminum at Four Frojectile Velocities 58
34 History of Crater Penetration in 1100-0 Aluminum at Four Projectile Velocities 58
35 Crater Shape During Growth -- 1100-0 Aluminum Target at Four Projectile Velacities 60
36 Crater Shape During Growth -- $7.0 \mathrm{~km} / \mathrm{sec}$ Projectile Velocity with Four Aluminum Alloy Targets 01
3; Comparison of Crater Diameter Growth for Four Aluminum Alloys 61
38 Comparison of Crater Penetration Growth for Four Aluminum Alloys 62
39 Consparison of Experimental Flash X-Ray Crater Growth Dota with Gehring's Results (Scoled) 65
40 Comparison of Framing Camers and Flash X-Ray Data on Croter Growth -- Case 1. 67
41 Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 2. 67
42 Comparison of Framing Camera and Flash X-Ray Data on Crater Growth .-- Case 4. 68
43 Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 7. 38
44 Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 8. 69
Figure Page
45 Comparison of Numerical and Experimental Results on C.-oter Growih -- Case 1. 72
46 Comparison of Numericai and Experimental Results on Crater Growth -- Case 3. 72
47 Comparison of Numerical anid Experimental Results on Crater Growth ..- Case 8. 73
48 Crater in 7075-T6 Aluminum Alloy llisstrating Frocture Phenomena. 76
49 History of Crater Peneiration io Diameter Ratio ...
Numerical Resuits of Rosenblatt 77
50 Compar:son of Numerical Results of Croter Growth with Experimental Data 75
51 Calculation of Crater Growth -- impact of Cylinder on 6061 -Tb Aluminum at $7.35 \mathrm{~km} / \mathrm{sec}$ by Rosenblatt 79
52 Impact Generated Shock Wave Propagation in Solid Target 83
53 Typical Split Cylinder Target -- Before and After Impact 87
54 Holder for Split Cylinder Targets 87
55 Ärrangement for Free Surface Velocity Experiments 89
56 Round 2772. Expansion of Free Surface Dotcined with B \& W Model 300 Framing Camera 90
57 A Rear View of Flat Plate Target on ifolder with Fly-off Disks Attached 93
58 Diagram of Experimental Aprangement for Fly-off Disk Development Effort 93
$598 \&$ N Nodel 300 Comera Sequence Fiy-off Disi Motion on 2.54 cm Thick Torget -- Round 2618 96
60 Fly-off Essk Motion Observed with Matel 326 Comera 4.45 cm Thick Target -- Round 2641 96
Figure Page
61 Comparative Performance of Disks on Three Thicknesses from 4.5 cm Thick Flat Plate Targets Using Dynafax Madel 326 Camero 97
62 Comparative Performance of Disks of Two Thicknesses from 2.5 cm Thick Flat Plate Target Using Mcdel 300 Comera 98
63 Comparative Performance of Disks of Two Thickness-to- Diameter Ratios 98
64 Design of Pin Probes 102
65 Photograph of Pin Probe and Components 102
66 Block Diogram -- Pin Probe Circuit 103
67 Piezoelectric Arrival Time Sensor Configurction 104
68 Block Diagrarri -- Quartz Sensor Circuit 106
59 Records of Quartz Arrival Time Sensors, Round 2857. Sweep Speed 1 usec/cm with IMHzTime Mar-ks. 306
70 Optical Arrivai Time Sensor Concept 108
71 Opticai Time-of-Arrival Probe Streak Record Round 2837 108
72 Design of Multi-Faceted Targets -- End View 110
73 Dhotograph of 5-Faceted Target with Sensors Attached 110
74 Round 2779 Photo Sequence of Fly-off Disks on 3-Faceted Target 112
75 Variation of Free Surface Velocity with Shock Radius -- 1100-0 Aluminum Alloy 0 - 17.5° Off Axis 121
76 Variation of Free Surface Velocity with Shock Radius -- 1100-0 Aluminum Alloy 17.5-32.5 Off Axis 121
77 Variation of Free Surface Velocity with Shock Radius -- 1100-0 Aluminum Alloy 32.5-47.5 Off Axis 122
76 Variation of Free Surface Velocity with Shock Radius -- 1100-0 Aluminum Alloy 47.5-62.5 ${ }^{\circ}$ Off Axis 122
79 Variation of Free Surface Velocity with Shock Radius -- 1100-0 Aiuminum Alloy 62.5-90 Dff Axis 123

Figur̃e

80 Variation of Free Surface Velocity with Shack Radius --
6061-Tó Aluminum Alloy 0-17.5 Ofi Axis 123
81 Variation of Free Surface Velocity with Shock Radius -- 6061-T6 Aluminum Alloy 17.5-32.5 Off Axis. 124
82 Variation of Free Surface Velocity with Shock Radius -- 6061-T6 Aluminum Alloy 32.5-47.5 ${ }^{\circ}$ Off Axis 124
83 Variation of Free Surface Velocity with Shock Radius -- 6061-T6 Aiuminum Alloy 47.5-62.5 Off Axis 125
84 Variation of Free Surface Velocity with Shock Radius .-. 6061-T6 Aluminum Alloy 62.5-90 Off Axis 125
85 Variation of Free Surface Velocity with Shock Radius -- 7075-T6 Aluminum Alloy $0-17.5^{\circ}$ Off Axis 126
86 Variation of Free Surface Velocity with Shock Radius -- 7075-T6 Aluminum A!ioy 17.5-32.5 ${ }^{\circ}$ Off Axis 126
87 Variation of Free Surface Velocity with Shock Radius -- 7075-T6 Aluminum Alloy 32.5-47.5 ${ }^{\circ}$ Off Axis 127
88 Variation of Free Surface Veiocity with Shock Radius -- 7075-T6 Aluminum Allny 47.5-62.5 ${ }^{\circ}$ Off Axis 127
89 Variation of Free Surface Velocity with Shock Radius -- 7075-T6 Aluminum Alloy 62.5-90 Off Axis 128
90 Variation of Disk Velocity Decay as a Function of Angle Off Axis -- 1100-0 Alumi num 132
91 Variation of Disk Velocity Deccy as a Function of Angle Off Axis -- 7075-T6 Aluininum 132
92 Variation of Normalized Surface Velocity with Angle Off Axis for Three Shock Radii in 1100-0 Aluminum 133
93 Variation of Normolized Surface Velocity with Angle Off Axis for Three Shock Radii in 7075-T6 Aluminum 133
94 Comparisan of Data with Results of Charest (0 n Axis) 135
95 Comparison of Data with Results of Billingsley (On Axis) 138
96 Wide Rarige Comparison of Dain with Results of Billingsley (Gn Axis) 139
97 Comparisori of Stress Attenuation for Three Aluminum Alloys (O n Azis). 141
Figurie Page
78 Comparison of Stress Attenuation for Three Aluminum Alloys (25° Off Axis) 141
99 Comparisan of Stress Attenuation for Three Aluminum Alloys (40° Off Axis) 142
100 Comparison of Stress Attenuation for Three Aluminum Alloys (55° and 70° Off Axis) 142
101 Illustration of Wave Interactions in Elastic-Plastic Material Impacted by Flat Plate 146
102 Typical Results of One-Dimensional Attenuation Experiments in Aluminum 146
103 Shack Wave Attenuation Results for One-Dimensional Spherical Geometry According to Calculations by Mok 150
104 Shock Front Arrival Time Dopc, A!l Target Materials 155
105 Waveforms at Large Shock Radii Neasured with Quartz Crystal Frobes 158
106 Illustration of Method for Introducting Non-Similar Corrections for Applying Blast Wave Calculations in a Solid Material 172
107 Blast Wave Theory Results Obtained with Quasi- Sts ty and Varying Energy Models 178
108 Blast Wave Theory Results Obtained with Karpov Modification to Quasi-Steady Model 181
109 Behavior of Energy and \boldsymbol{y} in Blast Wave Similarity Models 183
110 Behovior of Shock Speed in Blast Wave Sirnilarity Models 183
111 Shock Trajectory Predicted Using Three Approximate Blast Wave Similarity Models 184
112 Results of Cylindrical Blast Wave Model (Heyda) 186
113 Comparison of On-Axis Experimental Resilts with OIL and RPM Code Results -- 1100 Aluminum 190
114 Comparison of On-Axis Exparimental Results with STEEP Code Results -. 1100-0 and 7075-T6 Aluminum 193
Figure Page
i15 Peak Normul Stress in 1100-0 Aluminum at Selected Shock Radii as a Function of the Angle Off Axis 195
116 Peak Normal Stress in 7075-T6 Aluminum at Selected Shock Radii as a Function of the Angle Off Axis 195
117 Comparison of Stress History from Quartz Gauge with STEEP Code Predictions -- 1100-0 Aluminuin 198
118 Comparison of Stress History from Quartz Gauge with STEEP Cade Predictions -- 7075-T6 Aluminum 198
119 Hypervelocity Impact ($7 \mathrm{~km} / \mathrm{sec}$) Crater Penetration versus Target Thickness in Scaled Coordinates for Aluminum Alloys 216
120 Hypervelocity Impact ($7 \mathrm{~km} / \mathrm{sec}$) Crater Diameter versus Target Thickness in Scaled Coordinates for Aluminum Alloys 216
121 Multi-Faceted Target Geometry 234
122 Rear Face Geometry 236
123 Typical Frame from Round 2730 240
124 Analysis of Debris Exprension -- Round 2730 240
125 Geometry for Data Reduction 242
126 Shock Interaction with Fly-Off Disk 245
127 Aluminum Hugoniot Data 248
128 Two Wave Structure 249
:29 Wave Interaction at Alaterial Interface 251
130×-1 Plot for Dual Wave interaction 252
131 Analysis of Dual Wove Reflection of Free Surface 254
132 Numerical Results -- Dual Wave Interaction from Ref. 6! 256
133 Variation of Fiy-Off Disk Velocity with Shock Rodius and with Projectile Velocity as a Parameter 260
134 Comparison of Flat Plats Fly-Off Disk Data with DnuAxis Results from Multi-Faceted Targets, Unscaled 262
135 Comparison of Flat Plate Fly-Off Disk Data with On-Axis Results from Multi-Faceted Targets, Scaled 262

List of Tables

Table Page
I Numerical Coticulations of Imoacts in Aluminum 17
II Properties of Materials Employed 33
III Classification of Crater Growth Experiments 43
IV Tabulation of Crater Growth Experiments 44
V Constants for Crater Growth Curves 47
VI Description of Fly-off Disk Developrnent Rounds 95
VII Tabulation of Shock Propegation Experiments 115
VIII Velocity-Distance Decay Low Parameters 130
IX On-Axis Stress Decay Lows 136
$X \quad$ Properties at impact 177
XI Standard Crater Dimensions for Aluminum Alloys - 1 215
XII Crater Dimension Data - 1 217
XIII Standard Crater Dimensions for Aluminum Alloys - 11 220
XIV Crater Dimension Data - 11 221
XV Fiash X-Ray Crates Growth Data 224
XVI Framing Camera Datc on Plume Diameter Minimum and Base Grewih 230
XVIi Results of Wove Interactions 253
XVIII Velocity Scaling Experiments 259
XIX Fly-Gff Disk Data from Flat Plate Development Rounds 265
XX Fly-Off Disk and Free Surface Velonity Data 271
XXI Shock Arrivai Time Data 279
XXII Framing Camera Characteristics 283
XXIII Blast Wave Probiem Variables 287

List of Symbols

a Constant used to fit anolytic curves to experimental data, defined separately for each application.

A Dimensionless constant used to fit exponential equation to crater growth data (equals final crater diameter or penetration divided by projectile diameter), or

Area (cm^{2})
b Constant used to fit analytic curves to experimental data, defined separately for each application.

B Dimensionless constant used to fit exponential equation to crater growth data.
$B_{\text {max }}$ Maximum Brinnell Hardness Number (BHN) in crater region.
c Bulk sound speed ($\mathrm{cm} / \mathrm{sec}$)
C Capacitance(farads)
d Projectile diameter (cm)
D Crater diameter (cm); also used as subscript to refer to the crater diameter, or

Shock speed $(\mathrm{cm} / \mathrm{sec})$
$D_{b} \quad$ Diameter (cm) of base of debris sproy plume
$\mathrm{D}_{\mathrm{f}} \quad$ Final crater diameter (cm) for given round
$D_{f} \quad$ Average finai crater diameter (cm) for a given target type
$D_{g} \quad$ Shock speed $(\mathrm{cm} / \mathrm{sec})$ in quartz disk.
$D_{m} \quad$ Diameter (cm) of minimum neck of debris spray plume.
e Specific internal energy (erg/gm),
$\hat{e}_{x^{\prime}} \hat{\varepsilon}_{v^{\prime}} \hat{e}_{z} \quad$ Uni‘ vectors in Cartesian cordinate system.

E Energy (ergs) in similarity blast wave theory.
$E_{0} \quad$ Projectile energy (ergs).
$E_{t} \quad$ Elostic modulus (dyries $/ \mathrm{cm}^{2}$) of target
f X-direction piezoelectric constant (coulombs/ $/ \mathrm{cm}^{2}$-kilobar), or Dimensionless similarity pressure variable (Eq. i3).
$9 \quad$ Dimensionless similarity energy variable (Eq. 13).
G Bulik Modulus (dynes $/ \mathrm{cm}^{2}$)
H Subscript, implies value on the Hugoniot.-
1 Subscript, implies value of impact point, or
I (γ) is integral defined in Eq. 22.
$k, \tilde{k} \quad$ Constant, defined by specific application.
$K \quad$ Bulk modulus (dynes $/ \mathrm{cm}^{2}$)
L Length (cm)
$M_{d} \quad$ Momentum of fly-off disk (gm-cmi/sec)
n Constant, defined by specific app!ication, or
As subscript, implies "normal to the shock front".
p Crafer penetration or depth (cm); also used as subscript to refer to crater depth, or
Pressure (dynes $/ \mathrm{cm}^{2}$).
Q Charge (coulombs).
r Radial coordinate in cylindrical of spherical coordinate system.
$r_{0} \quad$ Projectile (sphere) rodius (cm).

$r_{p} \quad$ In flot plate target, the distance from the intersection of the trajectory of the projectile with the rear surface of the target out to a point on that surface.
$\vec{R} \quad$ Vector from impact point to poini of interest on the torget rear surface.
$R_{0} \quad$ Scaling radius (cm) defined by Eq. 34 .
$R_{p} \quad$ Radius (cm) of cylindrical projectile, Heyda model.
$R_{s} \quad$ Shock radius, distance (cm) from impact point to point of interest on the shock front.
$R_{s} \quad$ Projectile radius (cri) for sphere.
$R_{s}^{\prime} \quad$ Adjusted shock radius (cm) for shifting coordinates in Karpov medel.
s As subscript refers either to "shock" or "scaled" depending on application, or

Constant in linear Hugoniot (Eq. 27).
$t \quad$ Time (sec).
T Thickness (cm).
$u \quad$ Particle speed ($\mathrm{cm} / \mathrm{sec}$) in the solid material; also the radial component of the velocity vector for a particle in a spinerical coordinate system.
$v_{1} v_{p} \quad$ Prcjectile velocity ($\mathrm{cm} / \mathrm{sec}$).
${ }_{d} \quad$ Fly-off disk velocity $(\mathrm{cm} / \mathrm{sec})$.
$v_{\text {fs }} \quad$ Freu surface velocity ($\mathrm{cm} / \mathrm{sec}$).
$V \quad$ Specific volume $\left(\mathrm{cm}^{3} / \mathrm{gm}\right)$, or
Electrical potential (volts).
x
Coordinate in Cariesian system.
y Coordinate in Car tesian system.
$Y \quad$ Yield strength (dynes $/ \mathrm{cm}^{2}$).
Yo Static yield strength (dynes $/ \mathrm{cm}^{2}$).
$z \quad$ Coordinate in Cartesian and Cylindrical systems.
$Z \quad$ Shock impedance ($\mathrm{gm} / \mathrm{cm}^{2}-\mathrm{sec}$)
Angle between trajectory and \vec{R} on five-facet target.
Angle befween trajectory and $\overrightarrow{\mathrm{R}}$ on three-facet target.
$y \quad$ Ratio of specific heats $c_{P} / c_{v} ;$ a constant in the perfect gas equation of state. Allowed to vary in some cpplications here.
r Gruneisen factor in solid equation of state.
$\delta \quad$ Angle beiween shock front and free surface at point of reflectior.
$\Delta(\rho) \quad$ Non-similar portion of solid equation of state (Eq. 26).
\}. Functional form of equation of state, such as $\mathrm{e}=\mathrm{p} \zeta(\rho)$, or
Proportionality constant in Eq. 59.
$\eta \quad$ Similarity variable, $\eta=r / R_{s}(t)$.
θ Angle off-oxis, ie the angle between the projectile trajectory and the line from the impoct point to the point of interest.
$\mu \quad$ Compression, $\mu=\rho / \rho_{0}-1$
$\rho \quad$ Density of compressed material $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$.
p Density of undisturbed material ($\mathrm{gm} / \mathrm{cm}^{3}$).
$\rho_{p} \quad$ Density of Projectile ($\mathrm{gm} / \mathrm{cm}^{3}$), uncompressed.
P_{t} Density of Target ($\mathrm{gm} / \mathrm{cm}^{3}$), uncompressed.
σ Standard deviation.
$\sigma_{\mathrm{n}} \quad$ Normal stress, usually of the shock front (dynes/ cm^{2}).
${ }^{\circ} \mathrm{H} \quad$ Peak stress at impact (one-dimensional plate impact equivalent, dynes $/ \mathrm{cm}^{2}$).

Exponential period for cr. er growth (sec), or
Shock transit time through quartz disk (sec).
T Time decay constant for quartz gauge (sec).
$\phi \quad$ Dimensionless similarity particle velocity variable (Eq. 13).
$\psi \quad$ Dimensionless similarity density variable (Eq. 13).

HYPERVELOCITY' IMPACT -- MATERIAL STRENGTH EFFECTS ON CRATER FORMATION AND SHOCK WAVE PROTAG:TION IN THREE ALUMINUM ALLOYS

I. Introduction

The phenomena of the very high speed coliision of solid projectifes with solid targets -- termed "hypervelocity impact" --. have been the subject of researsh for mor: than two decades. Only within the last few years, however, have the tools for really detailed study of such impacts been available. The advent of the modern, ultraspeed digital computers has made tine application of detailed theory to this problem practical, Likewise, the development of advanead projectite launching techniques, such as the light gas gun, and the availability of submicrosecond electronic and optical instrumentation have made experimental studies of the dynamics of the impact processes feasible. While "post moriem" studies of hyperveiocity impact abound in the literoture, experimental studies of the dynamics of the impact events are rother rare even though they represent the most fruitful area for direct verification of theory. Both the difficulty and cost of performing accurate dynamic e: periments have confributed to this situation. The direct correlation of theory with experiments has in the past coniributed the most to understanding the phenomeno involved and, hopefully, this trend will continue in the future.

In this dissertation one of the basic problems in hypervelocity impact -the perpendicular impact of a sphere onto a thick target of like material -- was selected for study. The emphasis was on experiments and was directed toword studying two rather distinct and separable aspects of the prublem -- the formation of the craier and the propagation of the induged shock wave into the target material. In particular, it was deemed important to investigate the effect of material strength upon the shock propagation phenomena since little dynamic information is available in this area and since only recently have the theoretical
techniquas been able to treat the effects of material strength. The turget meterial used was aluminum; a range of material strengths was obtained ty varyirg the alloy and heat treatment.

The experiments were conducted in two phases. The objective of the first was to measure the size and shape of the growing ciater as a function of time afler impact. Flash r--radiography and precise timing methods were employed to accomplish this. in the second phase, the objective was to measure the peak. stress in the shock wave as a function of position in the target and to monitor the time history of the shock front (shock trajectory). The development of accurate optical techniques and arrivai time gauges was required to obtain this deta. The results obtained have been analyzed in terms of the phenomenology occurring and detailed comporisons have been made with existing computer solutions to similar impact events.

While this study is concerned with a very basic physical phenomena, the results hove practical, although perhops somewhot irdirect, opplication in at least two areas. First, the effects of hypervelocity impact are important per se. A projectile moving of hypervelocity represents on extremely destructive device. It has a great amount of kinefic energy which, upon impact, is delivered in a concentrated form over a very small area vf the target. As such, hyperveiocity impacts represent a pctential damage mechanism of high effectiveness. Weapons designed specifically to produce hypervelocity projeciiles could represent a threat either to space vehicles or to ballistic missiJe reentry vehicles. Likewise, the nctural hypervelocity frogments, micormeteoroids, represent a hazard to unprotected space vehicles. Since both space, and reentry vehicles are important components in many of our military systems, the Department of Deferrse has sponsored broad research on hypervelocity impact effects for many years. Particularly good summaries of this resecrch up to 1965 are included in the various Hypervelocity Impact Symposium Proceečings \{Ref. 1 and 2). A good survey of hypervelocity impact research and its application to the hazards of micrometeroid impact is given by Ceshy and Lyle (Ref. 3).

Hypervelocity impocts onito thick metal targers represent one class of problems involving the formation of cavities and propagation of diverging shock woves in solid materials. Such problems as the surface cratering produced by nuclear or coriventional explosives, explosive forming for manufacturing cperation, the formation of lunar craters, ballistic impacts into armor, etc., are oll amenable to treatment by the numerical techniques originaily developed to solve the hypervelocity impact problem. To the extent that this effort coni-ibutes to better understanding of or to iricreasing the corfidence in the application of this body of theory, it also contributes to the study of these other important phenomena.

The remainder of this dissertation is devoted to c detailed discussion of the hypervelocity impact problem selected and the presentation of the results of the study. Chapter II discusses the physical phenomeno of the cratering process and the formation and propagation of the shock waves in the medium. The numerical techniques currently used to study this problem ore also discussed briefly. In Chapier III the experimental techniques and data handling for the crater growth studies are detailed. The results of the crater growth experi* ments are presented in Chapter IV along with an analysis of the results and correlation with available enmputer results. Chapter V contains a description of the experiments designed to study wave propagation while Chapter VI presents the results of this phase of the study and a discussion and analysis of the experimental data.

Existing and moaified analytical, similarity-like theories designed to study the hydrodynamic phase of the wave propagotion are presented in Chapter VII along with a detailed correlation of the experimental results with the analytical theories and the results of several numerical treatments of impact events. The conclusions and recommendations are summarized in Chapter VIII and the references are located in Chapter IX. The several appendices present the unprocessed experimental data and detail varicus aspects of the experiments.

II. Background and Theory

Probably the most fundamental multi-dimensional problem in impact physics is that of a compact projectile incident normal to the planar surface of an infinitely thick metal target of like material. If the projectile velocity is sufficiently high, say above the speed of sound in the target material, the impact results in the formation of a roughly hemispherical crater in the target and may be termed "hypervelocity" impact. An example is shown in Fig. 1 where the material was sufficiently ductile that lips or rims were formed on the crater. If the target is not infinitely thisk, the stress waves produced by the impact will be reflected off the back surface as tensile waves and can produce fracture of the moterial -- spall -- as shown near the rear and in the corners of the target. Targets of intermediate thickness still produce reflected tensile waves, but these wuves are attenuated to such an extent shat they do not produce spall and, fo: sufficient thickness, do not affect the process of creter formation. This is defined as a quasi-infinite thickness.

At somewhat lower velocities (Ref. 3:63) the craters tend to be less hemispherical with the depth greater than the crater radius. The projectile tends to retain its ideritity although it may deform or frayment into small pieces; this is in contrast to the hypervelocity case where the projectile tends to merge witt: the target material in the plastic flow thot occurs in the growing crater. In the limit of very low velocities, the more conventional ballistic effects such as deep penetration may be observed if the projectile strength is sufficiently high. These low veiosity phenomena have been excluded f-3m the research effort described here.

The final results of hypervelocity impocts, i, e. crater rodius, depth, lip height, spall effests, etc., hove been the subject of intensive experimenta! study over the past ten or mare years. Wide varieries of materials have been impacted by projectiles of many shapes, sizes, and matsrials at velocities as high as 15 $\mathrm{km} / \mathrm{sec}$ although data above $10 \mathrm{~km} / \mathrm{sec}$ is very scarce. The results (Ref. 4 and 5)

Fig. 1. Hypervelocity Impact Crater in Soft Aluminum
have been incorporated into several empirical equations relating crater depth to impact velocity, projectile and targer densities, material strengtn parameters, target tardness, and o host of other potential independent variables. These and a wide variety of other empirical laws represent impacts recsonably accurately over restricted ranges of the independent variables. When extrapolated outside these limited ranges, these formulae yieid widely divergent results.

The point of citing the vast empirical studies performed is merely to point out that post mortem studies of ercters do not lead to fundamental uncerstanding. These results cannot be confidently extrapolated to new situations or to new materials. Historically, this situation led to an emphasis on theory and fundomental understanding of the cratering process.

Crater Formation and Shack Wave Propagation

Recent studies (Ref. 3:64; 6:584-685; 7:1-3, 14) have yielded the following phenomenological picture of the crater formation process. The precess has been
divided into four phases for eaje of descriptioñ, bue it should he worite in mind that this division is arbirrary and that there is a smooth transition between phases. Figure 2 illustraies these phases.

Iransient Stage. (Stage 1 in Fig. 2) Immediately upon impact the presSures at the points of contcct are much greajer thon the moterial strength so that the material behoves as a compressible fluid and the pressures are the sume as those that would be produced by a one-dimensional impact (such as a flat plate impact). The initial pressure can reach several megabars for certain impacts. These pressures can be calculared by oppropriately appiying the Rankine-Hugoniot jump conditions if the equations of state of both target and projectile are known. Immediately, rarafaction waves originating at the projectile edge advance through the shocked region, decreasing the pressure and creating lateral flow. This phase ceases in a very short time, essentially when the projectile has contacted the target across its whole face and rarefaction waves have reached the shock generated by the original contcct. This phase generally lasts a small fraction of a microsecond during which strong shock waves propagate only a very shert distance irito the torget.

Penetration Stage. (Stage 2) During this stage the shock remains attached to the growing crater since the velocity of the incoming projectile is still greater than the shock velocity in the target material, i.e. on "equilibrium" condition is reached where the shock in the target is stationary with respect to the meving projectile-łarget interface. This shock front is thin and contains a very high energy density. This phase can still be considered hydrodynamic since the pressures are much greater than the material strengths. The penetration stage is of importance when the impact speed is several times the sound spead. in the range of projectile velocities accessible to experiments (in metal torgets) the duration of this phose is so short that it can generaily be ignored.

Cavitution. (Stgge 3) Release noves and lateral flow slow the projectile and cllow the shack wave tc detoch from the growing srater boundary and proceed into the target. The exact atructure of the shock wove so generated, i.c. the loading

Fig. 2. Four Stages of Hypervelocity Impact Crater Formation
history, is quite complicated since it is governed by events taking place in the region of the expanding covity. In addition, the shock wave is aftenuated rapidly due to the roughly spherical divergence created by the geometry. The net effect is that the impact creates a compressive stress wave with neither the constant amplitude nor well-defined duration that results from the impact of a flat plate on a flat surface.

In addition, the shock wnve generated by the impact travels through the projectile, reflects off its rear surface and creates unloading waves (elastic as well as plastic in a material with strength) which then propagate through the compressed material in the target. Even though the behavior of the compressed shock wave is essentially hydrodynamic at this point, material strengths cannot be neglected since the tensile yield strength determines the amplitude of the elastic unloading wave while the values of the bulk modulus, K, and shear modulus, G, in the compressed material determine the elastic wave velocity.

Meanwhile, the material near the crater face is subjected to strong shear forces in the presence of substantial heating or melting (or vaporization at very high impact velocities) which results in the ejection of much of this material from the crater at high velocity.

Elastic-Plastic Stage. (Stage 4) In this final phase, the crater growth and stress wave propagation become completely uncoupled. The crater continues to grow by plastic flow and elastic deformation. The crater growth is finally arrested by the strength of the target material. If there has been significant elastic deformation, it is possible for the crater tc recover (decrease in size) to its final size and shape. For certain types of materials, fracture and spall car, occur during this final phose. In extreme cases such as rocks, the fracture and spall can obscure the form of the crater.

In addition, the unloading waves generated in the region of the crater catch up with the compressive piastic wave front in this phase and contribute to further reduction of its amplitule. A combination of unloading and spherical divergence eventually reduces the shock wave amplitude to the point where it becomes an acoustic disturbance.

During these stages of growth the pressure in the region of the growing crater changes drastically. Upon impact the stresses become very high -megabars in many cases. During the second stage of growth the stresses are sustained at high, although not maximurr, level by the continued loading of the impacting projectile. During the third stage the stresses decay due to rarefaction processes and geametric atfenugrion in the material. Finally the stress may go into tension, creating spall and fracture phenomena, and perhaps some elastic recovery of the croter. For different impacts, the details may change drastically, but the overall processes are the same.

Previous Experimental Studies

The measurement of events occurring during the formation of an impact croter represents a very difficult task. In the typical impact, the complete
crater formation process lasts only several tens of microseconds. The initial propagation of the shock and early phases of the cratering last only a few microseconds or less. Most of the interesting phenomena occur either inside the solid target or are obscured by the ejecta from the crater. The piacement of measuring devices in the path of the shock or growing crater dis.upts the sratering process, sometimes making measurements imposs'ble to interpret. A_{i} the earliest times the pressures are so high that they cannot be measured directly. All of these difficulties explain, perhaps, why such a small number of experimental studies of transient cratering phenomena have baen performed.

Some of the earlizst studies of trarsient phenomena were corsiucted by Kineke and his coworkers at the Ballistics Research Laboratory. in Ref. 8 Kineke studied the exjernai ramifications of the impact of a 0.18 gram steel disk onto a lead target ot a velocity of $5.01 \mathrm{~km} / \mathrm{sec}$ by means of sequertial flash radiographs, Lead is so opaque to tine x-rays that only a "shadewgrcuh" of ejecta and growing crater lip costd be obtained. A crude estimate of ejecta velocity was obtained and crater growth was studied by measuring the minimum diameter of the apparent crater lip in each radisgraph. The rejults showed c : rapid increase in diameter for the firs ${ }^{*} 100 \mu 5 E$; followed by a slower rise to a peak at $400 \mu \mathrm{sec}$ and by a slight decline at laser times. No direct connection of these lip growth rates to crater growth rates was attempted. Additional measurements of crater growth rates under nearly identical impact conditions were made with 1100-0 aluminum (flash radiographs) and Lucite ${ }^{\circledR}$ istreak camera). The complete cratering process lasted about $10 \mu \mathrm{sec}$ in aluminum and cbout $50 \mu \mathrm{sec}$ in Lueite. ${ }^{\text {© }}$

In a later study (Ref. 9) additional data on steel disks impacting lead were presented. The studies appear to involve zonsiderabie errors in the determination of the time interval between impact and the x-radiograph. Projectile orientation at impact also may have influenced the scatter in the results. In addition the time of arrival of the shock front at various depths in the target was measured by means of a series of holes in the target perpendicular to
the impoct. These holes were back light and und uwed with a streak camera, Blanking of a hole indicated shock arrival. Again timing with respect to impact was somewtat inexact. Bort the response time of the pinholes and their effect upon the stress propagation must be determined before this technique could yield accurate data.

Frasier and Karpov lave studied impacts into wax targets. Wax has several advantages for this type of study: (1) can be internally instrumented; (2) has low dilatational wave velocity; and (3) acts like a very sofi, ductile metal under impact. Their initial studies (Ref. 10) involved using the emf generated by a wire moving in a magnetic field to monitor material motion within the target. Fine wires were imbedded in the wax and the output was monitored on oscilloscopes. This data allows calculation of the pressures within the target. Additional data resulted from continuing sfudies (Ref. 11) in wax, in which piezoelectric (tourmaline disks) pressure gauges and flash radiographic methods were employed in addition to the inciuction wire technique. This group was able to get peak. particle speed, shock propagation speed, and peak radial stress on oxis as a function of distance from impact using the wire induction gauges. In addition, wires along the target surface yieided displacement-time histories perpendicuiar to the target face. The piezoelectric gauges yielded qualitatively good results. Fiash radicgraphy was employed 'o obtain the crater growth history. The results of the wire gauge technique indicated gaod agreernent with theoretical predictions. Details of tine experimental techniques are contained in References 10 and 11.

The most complete (and nearly the only) dynarnic studies performed on hypervelocity impacts into metals were accomplished by Gehring and his coworkers at GN: Santa Barbara (Ref. 12). They employed both flash x-rays and optical measurements to follow the crater growit in 1100 aluminum arid several other metcis. These results are discussed in more detai! in Chapter IV. They also performed a series of ballistic pendulum experiments (where the ihick farget was mounted on the pendulum) to determine the momr ntum transfer to the yarget
 off disks" to measure the pressures at various depths in the material. This technique is described in Chapter V and Charest's results are described in Chapter VI.

More recertly Billingsley (Ref. 14 and 15) studied the axial pressure variation in 6061-T6 aluminum and copper in the hypervelocity impast region. He obtained the pressure indirectly by meosuring the free surface velocity at the target rear using a high speed framing comera. This technique imposes severe linits on the measurements, essentially restricting the acquisition of accurate data to the very high pressure (hydrodynamic behavior) regime. The experimental terhnique and results are discussed in detail in Chapters V and VI respectively. The results are not of sufficient accuracy, nor do they correspond to sufficient depth into the target for assessing the effects of material strength on. the shock wave propagation.

Other related studies, such as those of impacts and explosions in Lucite ${ }^{\text {© }}$ by Kinslow (Ref. 16) and impacts into water by Stepka (Ref. 17) have also yielded usefil information en transient impact effects. These efforis do not represent, 'sowever, the more extensive study of transient cratering phenomena that would seem to be so desircble for correlation with the sophisticated computer calculations of impacts now available. On the whole it appears that the amount of experimental information on transient cratering phenomena is rother limited, especially considering the many, many post morram studies that have been done in the field. The situation is about the same with tecard to experimental studies of hypervelocity impact generated shock wave prapagation in metals. Data are available in only very limited cases that involve on-axis measurements and are not sufficient to provide information on material strength effects.

As outlined in Chapter 1, the experimental program to be descrihed in detail later in this study was specifically designed to remove the major deficiencies noted above and to represent a significant new contribution to the area of Jynamic crotering experiments. The crater growih experiments reported here
yielded more new data on growth rates in metals than was avai iable, in toto, before and provide a significant increase in accuracy. This is the first stuay to employ a systematic variation of raterial strengths and projectile velocities. These datu are the first available where the effects of material strength on crater growth dynamics hove been studied experimentally.

In similar fashion, the experimental studies of shock wave attenuation were planned to provided more accurate data than has been available in the past and represents the first systematic experimental study of material strergth effrcts. They also represent the first reported direct experimental masurements of the angular variation of shock wave ottenuation in metals.

Hypervelocity Impact Theory

Early attempts to treat the cratering portion of the impuct process theoreticaliy were concerned with determining the final crater depth and not with the entire history of the process. Consequently these theories were rather crude and indeed many times were semi-empirical. In every case grossly simplifying assumptions were made to obtain results. In many cases the assumptions were not even physically correct, the only justifization for their use being that they yielded correct results over some restricted range of the independent variables. Herrmann and Junes (Ref. 4:7 ff) give a gcod summary of the various simplified theories fer predicting final crater size. The analytic treatment of the dynamic crater growth has proven intractable in general and extremely difficult in the few speciolized cases where any success has been achieved.

Several researchers have attempted to apply gas dynamic theory to the shock wave p,opagation pirt of the problem. In each case the problem has been considerably simplified by reducing is to a ane-dimensional radial geometry and assuming that the impact is simulated by a point source explusion at the origin. The material behovior is assumed to be purely hydrodynamic. Using these assumptions Rae and Kirchner (Refs. 18, 19, and 20) applié cimilarity theory to obtain a description of the shock wave propagation be'navior. Even here, however,
it was necessary to modify the theory since solid materials, even in the hydro.. dynamic regime, behave in a fundamentally nonsimilar fashion. Ever, though Rae and Kirchner's technique does nof yield particularly good agreement with theory, its development leads to good insight into the behavior of materials and the spherically expanding shock wave problem. Consequently, this theory is discussed in detail in Chapter VII and an alternative formulation designed to bring the results in closer agreement with experiments is discussed.

Another technique, similar to the above except that the density distribution behind the shock front is an assumed rather than derived quantity, was applied by Zaker (Ref. 21) and further developed by Bech and Lee (Ref. 22). An even more complicated biast wave theory was developed by Heyda (Ref. 23). Again, the theories are based on so many simplifying assumptions that they have only limited usefulness. None of these analytical approaches consider material strength effects.

Numerical Hydrodynamic Solutions. Not until the advent of the "hydrodynamic codes" did theory bagin to treat the complete history of cratering and shock propagation in any detail. This numerical technique involves solving the two-dimensional, oxisymmetric equations of compressible, inviscid fluid flow on a high speed digital computer using numerical finite-diffeperine methods. An artificial viscosity is introduced to spread any discontinuities, sush cs a shock front, out over a finite distance so that the numerical rechniques remain stable. The basic assumption is made that the pressures in the problem are sufficiently higher than material strengths so that the flow is Furely hydrodynamic. Thus the hydrodynamic codes treat the probler only through part of the cavitation phase of the crater formation process. Some auxiliary argument or assumption is necessary to lead to a fincl prediction of crater diameter.

The numerical hydrodynamic method was pioneered in the field of hypervalocity impact by Bjork (Ref. 24) as early as 1959. He applied the "particle-in-cell (PIC)" metnod that was introduced by the Los Alamos Scientific Laboratory in the early 1950's (Ref. 25), Other groups followed shortly in developing
this type of technique and applying it to a voriety of impoct problems, Notable among these groups were those of Walsh (Refs. 26 and 27) and Riney (Ref. 28) who performed extensive studies of hypervelocity impact problerrs using these numerical techniques. Since purely hydrodynamic behavior was a fundamental assumption of these codes, those aspects of crater formation and shock propagation that were strength dependent were necessarily ignored.

The most successful attempts to apply these codes to practical problems where final crater dimensions were of interest appealed to the principle of "late stage equivalence" first expounded by Walsh (Ref. 27:4) and Dienes (Ref. 29). The principle was developed from a combination of hydrodynamic code calculations and dimensional analyses. This principle states in effect trat if at any time during the formation of craters resulting from two different impacts, the pressure profiies (in scaled coordinates) are the same, then the resulting crater formation due to this pressure puise \{again in scalad coordinates) will be the same. The scaled coordinates arise from similari'; . n.: dimensional analysis arguments. Thus, if the pressure profile in a certain impact caiculation can be matched at some time with the profile in another calculation for which experimental determination of final erater size is available, then the final crater size may be determined for the first calculation by application of the late stage equivalence principle -the result is a combined theoretical experimental technique.

While the lats stage equivalence principle was a great step forward in the hypervelocity impact field, it has not represented a panacea. It requires the assumption that viscous effects and heat conduction are negligible (Ref. 26:4). Biork (Ref. 30:175-181) expresses some well reasoned reservations regardirg late stage equivalence, especially in the lower end of the hypervelocity regime where material strengths play a more important role. In addition, this approach does not specifically treat maleriai strength dependence, so the effects of material kehavior models cannot be explored.

Numerical Nethats Including Material Strenath. Since 1965 continued improvements have been made in the numerical treatment of hypervelocity
in pact problems. Far purpeses of exonomy and improved accuracy the particle-in-cell methods have generaliy been replaced by new computational methods. In addition all the codes now include a rather general oxisymmetric, two-dimensional treatment of the impact with material strength included. This work was pioneered by Wilkins (Ref. 31) who first formulated the mathematicul treatment of the two-dimensional elastic-plastic problem in Lagrangian caordinates using numerical techniques.

These calculations are very demanding upon the computer used; they require vast amounts of memory storage and a very fast machine to be considered praciical. The computers of the late 1960's have now met these requirements. Consequently many organizations are employing or developing this technology for application to a wide spectrum of problems. Codes have been writien in Euierian and Lagrangian coordinates and combinations thereof and three-dimensional codes are currently under development. Various models of material behavior have been incorporated in the codes.

The key to experimentally verifying the computer results lies in appropriate measurements of the transient phenomena thot occur during the event -- in this case the crater formation. At very high velocities there is general agreement that late stage equivalence holds. With the adyent of strength codes which can now follow crater growth to termination, experiments of transient phenomena at velocities near the lower end of the hypervelocity regime where material strengths play a dominant role have proved both feasible and fruitful.

Supporting Calculations

In view of the emphasis placed upon the comparisor of exveriments with numerical calculations in this study, a series of problems corresponding directly to portions of the experimental program was performed* by Shoch Hydrodynamics,

[^0]inc. (K ef. $\overline{\mathrm{J} Z 2}$). The caicuiations empioyed STEEF, a :no-dimensionai Euierian computer code that includes an elastic-plastic formulation of material strength effects. This sode is representarive of the currently available techniques. The material model used employs a sharply defined yield condition (von Mises), but allows the yieid strength and shear madulus to vary with temperature (thermal softening) and accounts for work hardening. Allowance is made for a pressure dependent phase change from solid to liquid. There was no consideration of strain rate effects. The hydrodynamic equation of state (the calculation divides the stress tensor into a hydrodynamic part and a deviatoric part) is that commonly known as the LASL equation of state (Reí, 32:4).

Three calculations were performed as indicated in Table I. In each case the projectile was a. 635 cm diameter aluminum sphere of the same alloy as the target impacring the target normally. The calculations were chosen such that a comparison of Cases A and B would reveai effects of material strength while a comparison of Cases A and C would indicate the effects of impact velocity.

In on Eulerion calculation such as this, the problem (in $\mathrm{r}-\mathrm{z}$ space) is broken into discrete elements called zones. l.i general, the use of finer zoning yields a more accurate calculation, but "ncreases computer storage requirements and running time. ' : this problem, the origin was located at the point of contact between the projectile and target at zero time. The coordinate system (zones) then remained fixed and the calculation allowed mass to flow from zone to zone.

The region of space within one centimeter of the origin was zoned quite finely $(\Delta r=\Delta z=.0635 \mathrm{~cm})$. Beyond this each Δz was made 2-1/2\% larger than ifs previous neighbor. This yielded good resolution in the immediate vicinity of the impact point while keeping the total number of zones in the problem to a managsable number. The coarse zoning that resulted at large radii had little effect upon the processes occurring in the region of the growing crater. Unfortunotely, it did contribute to somewhat poor resolution in the shock wave propagation data at the lerger radii.

Table I
Numerical Calculations of Impacis in Aluminum

Case	Projectile Velocity $(\mathrm{km} / \mathrm{ser}$)	Aluminum Alloy	Density (gm/cm)	Nominal Yield Stress (kilobars)	Nominal Shear Modulus (kilobars)
A	7.0	$1100-0$	2.71	0.31	259
B	7.0	$7075-16$	2.30	4.14	270
C	4.0	$1100-0$	2.71	0.31	259

The craters praduced in 1100-0 aluminum (Cases A and C) grew so slowly that the calculations were terminated before crater growth had completely ceased. For Cose A, the calculation was carried out to $14 \mu \mathrm{sec}$ after impact, for Case B to about $13 \mu s e c$, and for Case C to $5 \mu \mathrm{sec}$. For Case B, the 7075-T6 aluminum, the crater growth had essentially ceased by the time the calculation was terminated. In each case, the calculations showed substantial effects due to the material strength (and velocity) in the region of the growing srater. The effects of strength on shock wave propagation deep into the target were somewhat less conclusive due to the early termination of the calculations.

The calculations indicate the general existence of a three-peaked stress pulse propagating into the medium. The first pulse is clearly compressive and a result of the projectile-target impact. Rosenblatt (Ref. 32:47) suggests that the second peak is probably associated with a shear wave while the third peak may be created by the late time flow on the crater surface. While not experimentally verified, the possible existence of three waves in the moterial is an interesting phenomencn worthy of further investigation.

The details of the results of crater formation are discussed in Chapter IV in conjunction with related experimental results. Likewise, the results of
 in Chopter VII.

Summary

Hypervelocity impact in thick metal targets is an extremely compiex phenomenon. The several stages of impact commonly considered, initial, transient, cavitation, and elastic-plastic, allow a consistent phenomenological description of the impact effects.

Experiments to measure the dynamics of such an impact are very scarse. Almost without exception, those experiments that have been performed were used to explore the impact phenomenology, not to produce quantitative daty on such events as srater growth and shock wave propagation. This study was designed to at least partly fill this void by providing accurate measurements of crater growth and shock wave attenuation using refined experimental techniques. The effects of materia! strength upon the impact pherornena have been emphasized although the study also includes data on the effect of projectile velocity on crater growth and an the angular variation of the peak normal stress in the target.

Efforts to deveiop the theary of hypervelocity impact hove centered upon the use of numerical finite-difference techniques -- the so called hydrodynamic codes. Recent advances have allowed the inclusion of material strength effects in the numerical theory. Specific calculations, using a two-dimensional strength code, were performed by Shock Hydrodynamics, Inc., for direct comparison with several of the experiments inciuded in this study.

III. Erater Growth -- Experimental Techniques

The dynamics of hypervelocity impact cratering in solids involves two featiures -- cavitation and shock propagation -- which become remarkably separate and distinct pheriomena shortly after the initial cortact of the projectile and target. The earliest phase of the crater formation where the shock wave remains atrached to the growing cavity surface is of such short duration and oscurs at such high pressures that it is not amenable to direct experimental investigation. Following shock wave detachment, however, the cavitation region becomes clearly distinguishable; it represents a region of stress relaxation and gross material flow. The shock wave travels further into the target, is attenuated by geometric and rarefaction processes, and eventually becomes an acoustic wave. These phenomena are not really uncoupled physically since the state of the material in the cavitation region is determined by the passage of the shock wave, and the decay of the shack wave is largely dominated by rarefactions originating in the cavity region. Nevertheless, the phenomena are sufficiently different that each represents a fruifful field for experimental investigations of the impact process. The experimental study of impact cavitotion provides a good test of our theoretica! understarding of hypervelocity impact and, in particular, of the numerical techniques used to predict anolytically the dynamic croter formation.

Experimental Methods

In metals, craters produced by hypervelocity impacts grow very quickly. If a 0.318 cm diameter aluminum sphere with a velocity of $7 \mathrm{~km} / \mathrm{sec}$ normally impacts a flat aluminum target, all the essential features of the cavity formation are complete within about $20 \mu \mathrm{sec}$. Consequently the requirements on experiments to investigate this process are rather stringent. The experiments must provide a record of the position of ine free cavity surface to less than 0.1 cm even though the surface may be iraveling at velosities nearly as high as that of the insident projectile. Likewise the times of various events with respect io the time of
impact must be known to less than a microsecond.
During the crater formation, substantial quantifies of debris (the debris "plume") are thrown at high velocity out of the crater and obscure any atiempt to look directly into the growing crater by optical means. The most obvious way of "seeing" inside the target is with x-rays; a commercially available device. known as a "flash" x-ray unit provides a pulsed x-ray source of sufficient in:tensity and shart enough duration to fulfill the experimental requirements if properly employed. Niaterials such as copper, lead, iron, etc. have such high x-ray absorption cross sections that they cannot be used with x-ray equipment currently available to this investigator. The several alloys of aluminum, however, have crosssections sufficiently low that good flash radiographs can be obtained. In addition, aluminum is a relatively well characterized material, easily machinable, and inexpensive in tulk, so that it represents a neariy ideal material for this study.

Except for the work of Smith (Ref. 34) of AFML, only very limited studies of the internal crater growth in metals using flash x-radiography techniques have been discovered in the literoture - - those by Gehring (Ref. 33) and by Kineke (Ref. 8). Gehring initially produced data for the impact of a steel disk into 1100 - E aluminum. That data will be discussed in Chapter IV. Later Gehring and cyn -rkers at GMDRL (Ref. 12:201; employed a high speed framing camera to obtain backlighted silhouette (stadowgraph) photographs of the plume emitting from the front surface of the target. He theri used measurements of the base of this plume to infer the diameter of the crater as a function of time. Kineke also used flash x-radiography to examine the internal crater dimensions as well as the emitted debris plume and to infar crater growth rates from this dato (Ref. 8:399ff). His projectiles were steel disks accelerated by explosive techniques. Smith (Ref. 34) applied the flash x-radiograph technique to a study of crater growth in 1100-0 aluminum of the AFML facility. The relation of the crater dimensions to the characteristics of the debris plume was obtained from high speed framing camera records. Portions of the experimental and data reduction jechniques used were developed in collaboration with the author. Smith ubtained
enough crater growth data on 1100-0 oluminum to assign a smoath experimentai form to the crater growth; to suggest that Gehring's early data might be incorrest; and to indicate that the relation of ime base diameter of the debris plume to the crater diameter might not be as direct as was previously believed.

The crater growth experiments described here represerit a considerable extension of Smith's research in direct measurement of crater dimensions as a functivn of time. The work incorporates new or modified experimental and data reduction techriques, although it is based upon the techniques employed by S_{mi}.h. Enough daia was obtained to provide crater growth rates for several aluminum alloys of different static strengths and for 1100-0 aluminum at several projectite velocities and to explore further the correlation between the debris plume and the crater diameter. The techniques employed in obtaining this dara are detailed in the remainder of this section.

Design and Construction of Experiments

Light Gas Gun Facility. All of the experiment's reported here were performed at the Air Force Materials Laberatory Hypervelocity Ballistic Range which consists of a two-stage light gas gun with associated instrumentation and support equipment. The range is pictured in Fig. 3 and descrited in considerable detail in Reference 35 so that only the most essential information will be repeated here. The light gas gun is a device for ascelerating small projectiles to exceedingly high veiocities -- in this case 0.635 cm diameter aluminum spheres can be accelerated to a velosity of over $7.5 \mathrm{~km} / \mathrm{sec}$ and smaller projectiles car. be accelerated to ever higher velocities.

The gun provides the acceieration in a two-stage process. A shell containing conventional propellant accelerates a heavy piston down the 40 mm pump tube compressing hydrogen gas to extremely high pressures in tine central breech. When the compression becomes sufficiently high, a diaphragm in the central breech ruptures allowing the compressed hydrogen to expand into the lounch tube. The launch package, consisting of a spherical projectile and a fivepiece plastic carrier (sabot), is initially located in the launch tube ,lear the

Fig. 3. AFML Hypervelocity Ballistic Range
sentral breech. The expanding hydrogen pushes the launch package down the launch tube, accelerating the whole package to the desired velocity. The light gas guti oparating cycle is depicred schematizally in Fig. 4 and a typical leunch packoge is pictured in Fig. 5. The sabot pieces which have become slightly seporated from the projectile due is uerodynamic forces are stopped on the far side of the blast tank by allowing them to impact a steel plate while letting the projectile pass unhindered through a small hole in the plate. The projectile prozeeds down range past the instrumentation where its velocity and integrity are measured (Ref. 35::3-18) until it impacts the target locoted in the center of the target tank. The range is evacuatea' to a pressure of approximately 20 torr (20 mm of H_{3}) to prevent velocity degradation rad aerodynamic ablation of the projectile while maintaining prnper operation of the scbot stopping technigure,

Flash X-roy ond Target Geometry. The primary experiments conducted were designed to obtain flash rediographs of the growing crater in aluminum

Fig. 4. Operating Cycle of Adiabatic Compression Light Gas Gun Hypervelocity Louncher.

Fig. 5. Typical Segme,rred Sabot L.aunch Packoges with Aerodyanmic Separation.
rargeis such inai the iime dependence of tüth the civier humeter and dipith would be determined. The cost of operating the gas gun dictated that as many flash x-rcy data foints as pessible be obtained on each round. In additiori there is, historically, substantial scatter in cata obtained from hypervelocity irnpact experiments. It is aimost always advisable to obtain sufficient data for a statistical t-eatment of the results. Consequently, all availobie flash x-ray equipment, ten separute sources in all, was used in most experiments; the units were fired in a pre-determined time sequence. All of the x-ray units were of the type called Fexitror manufactured by the Field Emission Corporation. Each of the four available 300 kV (Model 2710) units produces enough integrated x-ray fitux and has enough penetrating power to provide a good radicgraph through severa' inches of aluminum. The remaining four 150 kV (Model 235) and two 105 kV (Model 231) units have considerably less penetrating ability and their use was limited to thinner target sections. Consequently the 300 kV units were locoted so as to produce profile views of the growing crater -- yielding both depth and diameter - - while the remaining x-ray sources were placed to produce views through the rear of the target. The four $300 \mathrm{kV} x$-roy sources were arranged around the target tank in circular fashion in a piane perpendicular to the projectile frajectory.

The six remaining lower energy x-ray units were attached to a mounting plate located on the rear of the farget tank as shown in Fig. 6. They were aimed nearly parallel to the projeciile trajectory such that the x-rays would penetrate the target and impinge upon film placed in front of the target. Plastic windows were used in the target tank to allow easy penetration by the x-rays, Since the x-ray units provide a rather broad beam, large quantities of lead and careful placement were required to provide shieldirg of the film for any given x-ray unit from the direci emissions of the remaining nine units. It was also necessary to provide some shielding from the scatiered x-roys produced by the 300 kV units. The geometric arrangement of the x-ray sources with respect to the target and film holders (cassettes) is iliustrated in Fig. 7. In the early experiments, the

Fig. 6. Target Tank and Instrumentation Arec of AFML Hypervelocity Range Showing Arrangement of Flask. XRoy Equipment.

Fig. 7. Geometrical Arrangement of Flash X-Roy Equipment and Film Holders .

150 kV units were not available, but the geomerry was essentially the same with that exception.

A special target and film sussette hoider described in detail by Smith (Ref. 34:34-37) and illustrated in Fig. 8 was used to insure proper and repeatable olignment of the target and film holders. Additional ccssette holders were instalied in the target tank to yield repeatable alignment of the films used with the 300 kV x-ray sources. The front panel (nearest the gun muzzle) holds the film cassette for the 105 kV and 150 kV x-ray sources. The panel and cassette each contain a 2.5 cm . diameter hole through which the projectile musi pass. This cassette is shielded from debris spray by a thin sheet of acrylic plastic. The rear pane! holds both the target (bolted to its front surface) and a lead shield on the rear. This lead shield has a 5.0 cm diameter hole at its center immediately behind the target; it is a shadow shield to prevent the 105 kV and 150 kV sources from interfering with the image produced by each of their neighbors. Most of the shielding for the 300 kV x-ray sources was arranged external to the target tank.

In most cases the targets to be radiographed were quite thick so that deposited x-ray energy was at a premium. Consequently pairs of ultrcfast experimental flourescent screens provided by E. I. du Pont de Nemours \& Co. were used in conilunction with Kodak Royal Blue ${ }^{\ominus}$ Medical X-ray Film to obtain maximum exposure. One screen was placed on each side of the film in intimate contact with the emulsion layer on that side. Development was performed with Kodak X-ray Developer and the process was menitored visually.

Two x-radiographs obtained during a cratering event are shown in Fig. 9 to illustrate typical results obtained with the techniques described above. Note that the silhouette radiograph, typical of channels 3 through 5 , yields rather clearly defined information on both crater depth and diameter. The rear itluminated radiograph, typical of channels 1,2 , and 7 through 10 , contains

Fig. 8. Target ard X-Ray Cassette Mount.

Fig. 9. Typical X-Radiographs of Growing Crater, Round 2692.
information on the crater diameter ~aly -- ond even thet is less woll defined because of the effect of the crater lips on the radiograph.

Sequencirg and Timing. The elecirical signal initiating all x-ray events for these experiments was derived from a thin switch placed directly upon the face of the target and activated by the projectile impact. The switch consisted of a $50 \mu \mathrm{~m} \mathrm{My} \mathrm{Mar}{ }^{\circ}$ sheet separating the grounded target from a 25 ; m thick aluminum foil electrode which was held at high electrical potential by a pulse forming network (PFN). Penefration of the Mylar ${ }^{\oplus}$ insulator by the projectile caused arc over to the target and the generation of a very fast rise time signal. This signal was used in activate a bank of time delay generators each of which created a pulse to fire one x-ray unit. Both the switch signal and signal to the x-roy pulser were delivered to the time recording system so that the time between impact and x-ra, firing was cccurately known.

In addition, to achieve even grec rer accuracy, special spark gap switches were mounted directly on the x-roy tube heads. These switches (Ref. 36) are activated by the ionization created by the actual x-ray beam and, when properly adjusted, produce signals accurately indicating the time of x-ray firing (15 ± 5 nsec delay after x-ray initiation).

A block diagram of the timing and synchronizing electronic:; for a single x-roy chonnel is shown in Fig. 10. The timing system used to recorc' the electrical signals supplied by the thyratron orivers has teen described in detail elsewhere (Ref. 35:18-19). It consists basically of a set of xenon flash tubes whose optical output is viewed with a 16 mm Fastax Oscillographic Camera operating in a streaking mode. The zenon tubes are driven far past their breakdown voltage by the signals provided to the timing system. The result is a light pulse with very fast rising intensity ($<0.1 \mu \mathrm{sec}$) which is viewed and recorded by the camera. Accurate timing marks are added to the film by a mechanical light chopper. The relative times betweer. any two events as indicated by flashes from the zeron tubes can then be computed to an accuracy of $\mathbf{t 0}$ nsec. In addition, the

Fig. 10. Block Diagram of Flash X-Ray Electronics.
velocity of the projectile can be recorded on this same film record by noting the times the projectile passed the two velocity recording slits whose images ore located perpendicular to the film travel (Ref. 35:13-16). The projectile velocity can be measured to an accuracy of $\pm 0.25 \%$.

Although the errors involved in recording the timing dato are small, the uncertainties introduced by time deloys in th- lectronic circuitry must be considered. Referring to Fig. 10, the switch pu...ng circcit and timing thyratron driver introduce a delay between the closure of the alumirum $/$ Mylar ${ }^{\ominus}$ switch (impast) and the signal A to the timing system. In a number of experiments this deloy was measured with a fast oscilloscope and a photomultiplier tube monitoring the output of the xenon flash tube and found to be nearly constant at $0.35+0.05$ μ sec.

Use of a colibrotion curve for the variable time deloy generator to deterinine the time between the input to the time delay and the output to the x-roy
pulser is a very unreliable and inoccurate procedure. Therefore two independent measurements of the time of x-ray firing were made for each chonnel, namely the signal B indicating the input to the x-ray pulser and the signal C derived from the x-roy head switch. The x-ray head switches proved considerably less than 100% reliable since the adjustment of the voltage and separation between the plates in the switch is eritical. Enough data was obtained over a number of shots, however, to determine the average delay between signals B and C for each x-ray channel. In several instances, neither signal B rior C was available on the ziming system record. The time between input and output of the time delay generator was used, with appropriate corrections, to obtain the time of the $x-r o y--a$ less exact procedure.

Framing Camera Experiments. A slightly modified experimental arrangement was necessary for those rounds where iraming camers records of the plume expanding off the front surface of the target were desired. In order to correlate the diameter of portions of this plume with x-ray records of the growing craters, it was necessary to obtain an unobstructed and back-lighted view of the target in silhouette. \dot{r} or these experiments, x-ray channels 3 and 4 were not used and the film cassette and holder for these channels were removed from the farget tank. A very high intensity spark light source (Ref, 37) was used in conjunction with a collimating lens to provide a back-lighted field of view of even illumination. The camera employed was a Beckman \& Whitney Model 300 rotating mirror high speed framing camera capable of recording 48 frames at a maximum framing rate of 4,5 million frames per second. The framing rate was determined by using an electronic counter to count the number of pulses per second generated by a magretic pickup on the mirror turbine shaft. The camera was located to view the taryet along a line from the camera to the light sourse as illustrated in Fig. 11. To obtain an unobstructed view of the target, it was olso necessary to move the impact switch about 10 cm in front of the target face and construct a switch consisting of two thin aluminum foil electrodes separated by a Mylar ${ }^{(0)}$ sheet. The time of impoct could then be colculated knowing the target-switch separation and the

Fig. 11. Experimental Setup for Framing Comera Photographs and Flash X-Radiographs.
projectile velocity. The resultant determination of impact time was slightly less accurate than when the switch was mounted directly on the target face.

With this arrongemert it was possible to obtain the framing cumera record and peight flash radiographs from one impaci event. The si-gle frame taken from the framing camera record of Rourd 2524 and shown in Fig. 12 is typical of the photographs generated by this technique and nicely illustrates the front surface plume phenomena. Methods of obtaining quantitotive dara from these films are described loter in this chapter.

Target Materiais and Design

Target and Proiectile Materials. As mentioned previous ' ; favorable x-ray absorption characteristics and other practical esinsiderations dictated the thoice of aluminum alloys as the target materials for this situdy. All the target

Fig. 12. Single Frame from Framing Camera Reco:d of Round 2524.
materials used except for the 6061-To were obtained from well characierized inillets (R-f 38). The materials used and their pertinent properties are shown in Toble 11. The 6061-Tb was obtained from local commercial sources. The varues shown for this alloy ore from the supplier.

The $1100-0$ is a very soft ductile alloy of nearly pure aluminum and therefore represents one end of the materia! strength regime. At the cther extreme, the $T 6$ heat treatment of the 7075 alloy is the hordest, most brittle aluminurn commonly available. The strength of the 6(161-T6 alloy lies nearly midway between these two extremes and consequently represents onother good test of the effects of marerial strength unon the hypervelocity impact processes. Finally, the T0 heat treat of the 7075 alioy provides o direct comparison between two cases of identical alloy composition. but substantially different strength properties. The moterials selected for the targets used in this study represerit a very wide range of moterial strengths -- as such the results obtained should prcvide a good test

Table II
Prrnerties of Moterials Employed

| Alloy | Static
 Yield Strength
 (psi) | Static
 Yield Strength
 (kilobars) | True Stress
 to | Bracture
 (psi) |
| :--- | :---: | :---: | :---: | :---: | | Hardnell
 kg $/ \mathrm{mm}^{2}$ |
| :---: |
| $1100-0 \mathrm{Al}$ |
| 30,800 |

of any strength dependent kypervelocity impact cratering thecry.
Finally, in all cases but one, projectiles were made from 2017 aluminum, a malleable alloy in common use for the production of high quality spheres. In this study it has been assumed that the strength of the projectile does not affect the impaci results. This assumption is conservative since the pressures felt by this projectile material are ait all points many rimes greater than the siatic yielcd strength. The density of the projectile does, however, affect the impact conditions. Therefore, one series of experiments used 0.18 gram spherical steei projectiles to duplizate the results obtained by Gehring (Ref. 12:201).

Target Design. The targets were cylindrical in shape as shown in Fig. 13 and had a small flange for mounting to th: ,et holder. The thickness and diameter of the target proper were variables that were chosen to be as large as possible while still wielding acceprabie radicgraphs. If the targets are too thin, reflections from the target rear will eventually interact with the growing croter ar.d affect its further growth. Likewise reflected waves from the sides of a target that is too small (or for an impact that is too far off center) con affect the growing crater. Targets were chosen such that the shock wave had to iraverse a sufficient distance so that its reflected componenis were very weak by the time they reached

Fig. 13. Typical Crater Growth Study Target.
the growing crater region. In most cases the target thickness was six projectile diameters or more -- othickness which can be defined as "quasi-infinite", meaning that the finaì crater appears as it would in an infinitely thick target. For further information on this phenomena, refer to Appendix A -- Reduction of Data Obtained from Crater Growth Flash X-Rays.

In several cases, it was necessary to use undersized targets to obtain good x-radiojraphs of very early-time craters where the crater dimensions were still quite small. For these rounds, the final crater was affected by teflected waves, and the data obtcined was valid only up to a time after impact corresponding to the start of the interaction of the reflected wave with the growing eroter. These special rouncs were treated separately in the data reduction process. Whenever possible, these thin targets were backed by a thin (0.625 cm) sheet of acrylic plastic which reduces the magnitude of the reflected wave without substantially attenuating the x-ray flux.

Flash X-ray Films. X-radiographs must be analyzed rarefully to obiain valid dimensional data. The most important factor to consider is that the geometry of each x-rcy chonnel is different; the varying distances between each source, target, and film result in a different magnification being recorded by each channel. Even for a given channel the geometry (ond magnification) was altered somewhat from round to round by changing torget sizes and exact location on the target holdar. It is not sufficient te merely calibrate each x-roy channel; the changing target requirements dictate that some dimensional reference be inciuded in the record of each round for each x-rcy charnel.

The inclusion of a length reference such as a rod or scale in each record was impractical since each channel viewed the scene from a difierent angie. A good distance reference in one charnel tended to shield all information from adjacent channels. For those chaniels (3 through 6) viewing the target in profile, there were occasions when the target did not completely fill the field of view of the x-roy. In these cases, the diameter of the target couli' be used as a distance reference. The results obtained ogreed well with the more general technique described below.

Based upon Smith's experience (Ref. 34:40) the best available reference points are the final dimensions of the crater themselves. After each experiment was conducted, but before the torget or holder were moved in any way (only the film cassettes were removed, reloaded, and repiaced in register with their original positions) a set of rodiographs of the final, static target was taken. Separate measurements were titen made of the crater depth and/or diameter on both sets of radiographs -- thase taken during the impact event and those taken later. The crater diameter or depth read from the films obtaired during the impact was then divided by the same dimension from the radiographs obtained after the event to obtain the appropriate ratio. In this fashion, no direct calculation of magnification factor for each channel was necessary.
in presenting the resuits of any set of experiments, the ratios obtained were multiplied by the mean final crater depth or diameter for that case. This procedure also results in some smoothing of the dota since the mean value of the final dimensions ore used to normalize the data. Small variations from the mean values actually realized in the final crater dimensiuns are averaged by this process of presenting the data. The method is discussed in mors detail in Appendix A - Reduction of Data Obtainea fron, Crater Grawth Flash X-Ruliographs.

Several techniques were atterpted to obtain the best method of making the required measurements on the x-ray films. The use of a stanning photodensitometer was attempted, but the lack of contrast in the films, the granularify introduced by the use of intensifying screens, and the type of measurement required precluded ihe effective use of this instrument. The best way to read the films was without magnification on a variable intensity light tatle as shown in Fig. 14, Attempts to magnify the images resulted in on unaccepteble loss of contrast and accompanying difficulty in interpreting the image.

Tne croter diameter and depth in the profile radiographs were measured with respect to the undisturbed target surface as illustrated in Fig. 15. The reference line $A A$ on the reader was aligned with the image of the undefcrmed target surface lying near the outer edges. Dividers and a scale were then used to determine visually the crater diameter as observed along the line AA and the depth as measured along the line $B B$ to the inrersection with line $A 4$.

For the radiographs taken through the target rear, two separate readings of the dicmeter were made olong the lines DD and CC on the reader as indicated in Fig. 15. The auther and af least two other operators read each film. The readings were averaged to obtain the final measurements and the multiple readings were used to determine the accuracy and reproducibility of this technique. In additinn, each radiogroph was assigned a subjective rating ef quality: good, fair, or poor. On x-radiographs with good image quality, dimensions could be measured reproduciuly to $\pm 0.5 \mathrm{~mm}$ while with poor images this error was increased to $\pm 1.0 \mathrm{~mm}$.

Fig, 15. Diagrams of Flash Radiographs of Craters.

Fig. 14. Light Table for X-Ray Film Reading.

Inaccuracies can arise through difficulties in interpreting the images. The use of the ratioing technique of presenting the data helos to allevicie this interpretation difficulty since a given operator tends to interpret botin the final radiographs and those taken during the event in the same fashion.

Framing Camera Films. B\&W Madel 300 froming camera photographs of the front surface debris plume were obtained in several experinents for comparison with croter diameter histories obtained from flash x-roy daia. These photographic records were read, i.e. translated into numerical data, in a special purpose automaied systern availabie of this facility (Ref. 39). In this opplization, the system produces the $x-y$ coordinates of yarious points selected in each frame. The film is placed upon a micrometer driven two-dimensional microscope stage located at the object plane of a projection microscope. The image is projected upori a ground glass screen that provides a pair of perpendicular cross hairs for a fixed reference position. The film is adjusted so that some reference line in each frame is aligned with the i:xed reference on the screen. The operator then selects points for reading, moves the point under the cross hair by turning the ricrometer dials, and records both the x and y coordinates (with respect to the reference chosen for each framei on IEM cards by activating a switch.

Corisiderable interpretation is required to obtain data from this type of experiment since the character of the debris pisme changes with target material. In sone coses, the general shape may even chonge as a function of time during an impact. Fig. 16 illustrates the major features of the sisbris plume and indicates the points at which measurements of $x-y$ ccordinaies were made on each frame. The point 9 at the target corner was chosen as the origin with the x-axis lying along the iarget surface. The distance between the markers 7 and 8 was measured before the experiment and used to determine the magnification in the framing camera record, Two separate pairs of points were obtcined from each frame, each pair yielding the diameter of a certain portion of the plume at that time. The diameter of each portion sould then be obtained as a function of time from all the frames.

Fîg. 16. Primary Features of Debris Plume.

The pair of points 1 and 2 represent the outer limits of the base of the Flume, probably corresponding to an outward propagating tulge in the targes material. In some experiments, it was difficuit to measure these positions accurately since the silhouetre of the plume base was nearly tangent to the target surface at these points. The character of the plume base varied considerably for the different torgets used in this study.

The points labeled 3 and 4 represent the minimum diameter of the stem as determined by the operctor. In general, the curve of the outline of the stem was such that these points were relctively tasy to determine. The height of this minimum dianeter point above the torget surface varies somewhat as a functic of time.

Two separate measurements of plume diameter as a function of time were thus obtained for each experiment. These measurements were judged to include
the most distinctive feaiures of the piume and probabiy represenied ine only dianmeters that could be magsured with any consistency from experiment to experiment.

Summary
Hypervelocity impacts into solids produce two featur es -- cavitation and shock propagation -- each of which is cmenable to separate experimental study. Experiments to study the cavitation or cratering processes have been described. Techniques were developed to provide up to ten sequential flash x-radiographs of growing cavities in several aluminurn allays; the required impacts were produced by a light gas gun at the AFML Hypervelocity Bailistic Range. Elecironic anci optical techniques were used to obtain accurate measurement of x-ray flash times with respect to the impact of the torget. Additional experiments were designed to yield ultra-high speed framing comera piciures of the debris plume that is emitted from the crater on the impacted side of the target. Dota reduction techniques were developed thas removed the distortion inherent in flash x-radiographs and which relieved difficulties in interpreting the radiugraphs. The flash x-rory experiments produced a record of crater depths and diameters as a function of sime. The framing camera record provided a time history of the diameter of two distinctive features related to the debris plume.

IV. Croter Growtin - Experimental Results

The experimental techniques described in the preceding chapier were enmployed in an extensive stracy of the growth of craters in aluminum alloys under hypervelocity impact conditions. Flash x-ray techniques were used to determine the dimensions of craters as a function of time after impact. A high speed framing camero was used to siudy the dynamics of the front surface plume created by a hypervelocity impact and to determine the relation of this phenomeron to the crater growth. The remainder of this chapter describes the results obtained and presents on anolysis of this data including comparisons with pravious experimental information and recent numerical calculations of hypervelocity impact events.

Experimental Program

The experiments were selected to study several effects. First and foremost was the effect of torget strength upon the crater growth. This was achieved by using three separate aluminum alloys with different heat treatments as targets while keeping the projectile velocity constant (see Table II). Numerical calculations employing a purely hydrodynamic flow model of material behovior will predict identical crater growth rates for all aluminum alloys. This is incorrect since the final sizes of the craters in these alloys are drasticaily differeni. The new numerical procedures that inciude material strength effects (described in Chapter II) do predict different crater growth rates for these alloys (Refs, 40:12, 41:18 and 4.2). The experiments described below are, to the author's knowledge, the first sef :onducted on several alloys of one basic moterial and are specifically applicable to direct correlatior, with the results of numerical calculations and to studying the effects of material strength upon crater growih.

Outside of this racility, the only reported flasin x-ray measurements of the internal dimensions of growing craters in metals are those by

Gehring (Ref. 33) whe firsi oppilied me fiash x-ray technique to hyperveizcity impact studies. Gehring's resuits indicate substantial rebound (elastic recovery) in the crater dimensions after growth, a process opened to question by Smith's results (Ref. 34). Consequently, one set of experiments in this study -- steel projectiles impacting aluminum targets at $5 \mathrm{~km} / \mathrm{sec}$-- was conducied to comsare directly with Gehring's results and investigate the ex'stence of crater rebound further.

It also appeared desirable to investigate the effects of pi jectiie velocity upon crater growth. therefore four sets of experiments using 1100 aluminum targets were performed at velocities ranging from $2.3 \mathrm{~km} / \mathrm{sec}$ to $7 \mathrm{~km} / \mathrm{sec}$. These experiments explore the regime wnere material strength effects are expected to dorrinate the cratering process more and more as the velocity is lowered. Table III describes the eight sets of crater growth data obtained with flash x-roy techniq:es.

Several authors, including Kineke (Ref. 8) and Gehring (Ref. 12) have measured the diameter of the front surface plume produced during an impact event and have inferred information regarding the crater diameter from these measurements. Smith (Ref. 34) found indications that the correlation between plume and crater diameter was not as good as might be expected. Therefore, it was decided to explore this correlation further and framing camera photographs of plume growth were obtained for coses $1,4,7$, and 8 .

The experimental progrom consisted of 39 new, successful rounds conducted in two phases. The first group of experiments employed 0.318 cm diameter spherical projectiles. After further launch technique development, the remainder of the experiments were conducted using 0.635 cm diameter proiectiles. The experiments are tabulated in Table IV.

In each case, the actual projectile velocity was held sufficiently ciose to the nominal velocity that no attempt has been made to scale the results

Tabie ill
Classification of Crater Growth Experiments

Case Number	Projectile Material	Nominal Projectile Velocity $(\mathrm{km} / \mathrm{sec})$	Aluminum Target Material
1	2017 Al	7.0	$1100-0$
2	2017 Al	5.2	$1100-0$
3	2017 Al	4.2	$1100-0$
4	2017 Al	2.3	$1100-0$
5	Tool Stes!	5.0	$1100-0$
6	2017 Al	7.0	$6061-\mathrm{Tb}$
7	2017 Al	7.0	$7075-\mathrm{TO}$
8	2017 Al	7.0	$7075-\mathrm{T} 6$

with velocity for any single case. This results in errors weli within the experimental errors that arise from other sources.

Flosh X-roy Results

Nearly two hundred flash x-radiagraphs of growing craters were obtained in this study. Ail data was analyzed according to the procedures described in Chapter III. Histories of crcter diameter, D, and penetration (depth), p, were obtained for each of the eight cases considered. The data was normalized with respect to the projectile diameter, d, to facilitate size scaling and comparisons of the results. Cases 1 and 8 contain information obtained from experiments conducted with both 0.318 cm and 0.636 cm diameter projectiles. When scaled in the manner described, the results are indistinguishable with respect to projectile size.

For each set of data a least squares technique was used to obrain an analytical representation of the form:

Toble IV
Tabulation of Crater Growth Experiments

Rou I Number	Projectile			Target		Number of Data Points
	Diameter (cm)	Moterial	Velocity (km^{\prime} ses)	Material (Aluminum)	Thickness (cm.)	
1043	0.3175	A!	2.22	1100-0	2.49	FConly
1044	0.3175	A!	2.34	1100-0	2.54	5
1045	0.3175	AI	2.32	1100-0	2.54	4
1049	0.3175	Al	2.3e	1100-0	2.27	5
2384 ${ }^{\text {² }}$	0.3175	Al	6.90	1100-0	3.38	5
23851,2	0.3175	Al	7.05	1100-0	2.38	-
2386 ${ }^{\text {a }}$	0.3175	Al	7.04	1100-0	2.38	5
$238 \chi^{\text {i }}$ >	0.3175	Al	7,0e	1100-0	3.18	3
2502	0.3175	A)	7.45	7075-70	2.54	2
2503	0.3175	Al	7.16	1100-0	2.54	3
2504	0.3175	A?	7.22	1100-0	2.54	4
2505	0.3175	Al	7.14	1100-0	2.54	4
2506	0.3175	A!	7.15	7075-10	2.54	2
2507	0.3175	AI	7.35	7075-T0	1.59	6
2508	0.3175	Al	7.16	7075-70	2.54	3
2509	0.3175	Al	7.29	70;5-16	2.54	4
2510	0.3175	Al	7.20	7075-16	2.54	3
2513	0.3175	Al	7.25	7075-T6	2.54	3
2515	0.3175	AI	5.40	1100-0	2.54	6
2516	0,3175	Al	5.03	110000	2.54	5
2517	0.3175	A!	5.07	1100-0	2.54	6
2519	0.3175	Al	7.27	7075-70	2.54	2
2523	0.3175	Al	7.27	7075-16	2.54	2 FC
2521	C.3175	Al	7.30	1100-0	2.54	2 FC
2523	0.3175	Al	7.28	7075-10	2.54	FConly
2524	0.3175	Al	5.16	1100-0	2.54	FC only
2525	0.358	Steel	4.92	1100-0	2.54	5
2526	0.358	Steei	5.26	1100-0	5.08	2
2527	0.358	Steel	5.03	1100-0	3.81	4
2529	0.358	Steel	5.13	1100-0	5.08	4
2884	0.635	A. 1	6.63	6061-T6	2.54	7
2685	0.635	Al	7.0e	6061-T6	4.13	8
2686	0.635	Al	7.01	6061-76	3.18	5

Table IV (Continued)

Round Number	Projectile		Velocity $\mathrm{km} / \mathrm{sec}$	Target		Number of Data Poirts
	Diameter (cm)	Material		Material (Aluminum)	Thickness (cm)	
$26883{ }^{3}$	0.635	Al	6.70	6061-T6	4.01	10
2689	0.635	Al	6.90	1100-0	4.44	6
2692	0.635	AI	6.98	7075-T6	2.16	9
20,	0.635	Al	5.98	7075-T6	3.56	3
2694	0,635	Al	6.80	6061-T6	3.56	8
$2699^{4}>$	0.635	Al	6.96	1100-0	5.08	7
2693	0.635	Al	4.19	1150-0	3.02	5
2700	0.635	AI	4.03	1100-0	4.45	7
2702	0.635	Al	4.08	1100-0	3.30	8
2704	0.635	Al	4.20	1100-0	3.30	7

e indicates estimated projectile velocity
FC indicates framing camera experiment
(1) Experiments performed by Smith (Ref. 34) at this facilizy.
(2) Time base very uncertain and data did not agree with other experimental results -- data not used.
(3) Time base incorrect. Each data point shifted by 5.08μ sec resulted in good agreement with remainder of experimental data.
(4) Small pieces of sabot cap hit srater area several misroseconds after projectile impact. Effects of cap impoct on srater farmation appear negiigible, be:ause they occur after the x-rays were obtained.
(5) All aluminum projectiles were 2017 alloy.

$$
\begin{equation*}
\left(\frac{D}{d}\right) \quad \text { or }\left(\frac{p}{d}\right)=A-B e^{-\frac{(t / d)}{(\tau / d)}} \tag{Eq.1}
\end{equation*}
$$

where A and B are dimensionless constants and $(, / d)$ is a quantity with dimensions usec/cm that represents an exponential period for the crater growth process, i.e., it indicates how fast the crater is approaching its fincl size. The values A and B were picked based upon the physical argument that, at the very earliest times, the projectile penetrates the parget with very littie deceleration.
 at $\mathrm{t} / \mathrm{d} 0.71 \mu \mathrm{sec} / \mathrm{cm}$. Consequently, on the saale shown, it is not unreasonable to assume that the D / d and p / d intercepts of $t / d \cong 0$ are 1.0 and 0.5 respectively. Likewise, at late ifmes the D / d or p / d ratios must assume a colistent value identified with the fina! crater diameter or depth respectively. Consequently the following values were selected:

```
    A: =(Final crater diameter or penetration)/(Projectile Diameter)
    B. \(\left\{\begin{array}{l}A-1 \text { for } D / d \\ A-1 / 2 \text { for } p / d\end{array}\right.\)
```

The constant (r / d) was then determined using the least squares criteria. A related form of analytical fit was used by Smith (Ref. 34). The values of these constants for each case and the standard deviation for each curve are given in Table V. The dashed lines in these figures give a measure of σ, the standard deviation of the fit in each case.

In several cases it was possibie to obtain slightly better fits to the dato with a Prony series expression in the form:

$$
\begin{equation*}
(D / d) \text { or }(p / d)=\sum_{i=1}^{n} a_{i} e^{k_{i}(t / d)} \tag{Eq.2}
\end{equation*}
$$

where the k_{i} are constants selected empirically and the a_{i} are determined using a computer and a generalized least squares technique. The fits achieved were not sufficienily better, however, to employ these rather complicated expressians in place of the very simple anolytic expression actually used.

The experimental data points obtained as well as the anaiytic curve fit to each set of data points are shown for Cases 1 through 8 in Figures 17 through 32. The data points shown as circles were derived from x-ray films rated as average or good. Those points marked with triangles were from the poorer x-radiograpis and were expected to show more scatter -- though little difference is actually noted. The detailed data from these experiments are included in Appendix B.

> Table V
> Constants for Croter Growth Curves
> $(\mathrm{D} / \mathrm{d})$ or $(\mathrm{p} / \mathrm{d})=\mathrm{A}-\mathrm{Be}-(\mathrm{t} / \mathrm{d}) /(\mathrm{z} / \mathrm{d})$

Case	A	B	$\begin{gathered} \mathrm{\tau} / \mathrm{d} \\ (\mathrm{sec} / \mathrm{cm}) \end{gathered}$	Standard Deviation of fit, σ
1-Diameter	5.20	4.20	15.6	\cdots
Penetration	2.89	2.39	14.5	. 08
2 - Diameter	4.42	3.42	14.9	. 13
Penetration	2.52	2.02	14.7	. 14
3-Dianmer	3.94	2.94	13.0	. 16
Penetration	2.27	1.77	18.2	. 18
4 - Diameter	2.60	3.60	14.7	. 11
Penetration	1.56	1.08	20.4	. 11
5 - Diameter	6.03	5.03	32.3	. 13
Penetration	5.02	4.52	21.3	. 18
6 - Diameter	4.14	3.14	8.6	. 12
Penstrotion	2.07	1.57	7.7	. 08
7- Diameter	4.2;	3.27	13.0	. 09
Penetration	2.48	!.98	14.4	. 13
8 - Diameter	3.38	2.38	7.9	. 10
Penetration	1.63	1.13	7.5	. 09

Fig. 17. CASE 1. Normalized Crater Diameter vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile of $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 18. CASE 1. Normalized Croter Penetrotion ys Normalized Time for 1100-0 Aiuminum Target and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 19. CASE 2. Normalized Crater Diameter vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projectile at $5.2 \mathrm{~km} / \mathrm{sec}$ Hor.inal Velocity.

Fig. 20. CASE 2. Normalized Crater Penetration vs Normalizerd Time for 1100-0 Aluminum Torget and Aluminur: Projectile of $5.2 \mathrm{~km} / \mathrm{sec}$ Nominal Velociry.

Fig. 21. CASE 3. Normalized Crater Diameter vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile at $4.2 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 22. CASE 3. Normalized Crater Fenetration vs Normalized Time for 1100-0 Aluminum Target and Aluminum Projectile at $4.2 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 23. CASE 4. Normalized Grater Diameter vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile at $2.3 \mathrm{~km} / \mathrm{sec}$ Norninal Velocity.

Fig. 24. CASE 4. Normaiized Crator Penetration vs Normalized Time for $1100-0$ Aluminum Target and Aluminum Projectile of $2.3 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 25. CASE 5. Normalized Crater Diameter vs Normalized Time for 1100 -0 Aluminum Target and Steel Projectile at 5.0 $\mathrm{km} / \mathrm{sec}$ Norninal Velocity.

Fig. 26. CASE 5. Normalized Crater Penetration vs Normalized Time for 1100-0 Aluminum Target and Steel Projectile at 5.0 $\mathrm{km} / \mathrm{sec}$ Nominal Velocity.

Fig. 27. CASE 6. Normalized Crater Niameter vs Normalized Time for 606i-T6 Aluminum Target and Aluminum Projectile of $7.0 \mathrm{~km} / \mathrm{sec}$ Nominn! 'velocity.

Fig. 28. CASE 6. Normalized Crater Penetration vs Normalized Time for 606:-T6 Aluminum Torget and Alumirium Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocily.

Fig. 29. CASE 7. Normalized Crater Diameter vs Normalized Time for 7075-70 Aluminum Target and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

Fig. 30. CASE 7. Normalized Crater Penetrotion vs Normalized Time for 7075-T0 Aiuminum Target and Aluminum Projectile at $7.0 \mathrm{~km} / \mathrm{sec}$: Jominal Velocity.

Fig. 31. CASE 8. Normalized Crater Diameter vs Normalized Time for 7075-T6 Aluminum Target and Aluminum Projectile ct $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Veiocity.

Fig. 32. CASE 8. Normalized Crater Penetraticn vs Normalized Time for 7075-T6 Aluminum Target and Aluminum Projectile of $7.0 \mathrm{~km} / \mathrm{sec}$ Nominal Velocity.

The datc of Case 1 (1100 Al target; was cbtained from the highest quality x-radiographs -- those showing the largest craters and highest contrast. As craters became smaller due to lower projectile velocities (Cases 2, 3 and 4), the x-radiograph quality decreased. This is most readily apparent in the data of Case 4 where the projectile velocity was very low, $2.3 \mathrm{~km} / \mathrm{sec}$, and the projectiles were all 0.318 cm spheres. The croters were small for these experiments and the dato shows considerable scatter. All data points obtained in the program ore reported except those tha; could be deleted for specific, identifiable causes or which exceeded three times the standard deviation of the anolytic zurves described below. Paints which lie outside the range of the plots are indicated by darkened circles.

The accuracy of the reported tis: from implact for any point is a function of the measurement technique used. If the timing signal was derived from the ionization switch or ithe x-ray source, the times ara accurate to approximately $0.2 \mu \mathrm{sec}$ while if the signal was derived from the x -roy source trigger signol, the accuracy was about $0.7 \mu \mathrm{sec}$. In a few cases, neither of these signals was available and on estimate of the time was made from other sources. Appendix B liss: the estimated accuracy of the tims as well as the source of timing signal for each flash x-ray data point.

Analysis

These results yieic' a good deol of quantitalive information about the crater growth process in aluminum and the qualitative model of the various prases of the growth discussed in Chapter 1i. In addition to the primary phenomeno of mate:ial strength effects, the experiments yielded data related to such effects α variation in the , roter growth with velocity, strength effects, and the evistence of rebound during the growth process. Each of these is discussed below.

Yeiocity Dependence. Everything else being constanf, it is expected that the final croter size will increase as a function of the projectile impoct
velocity since more energy is available to the process. A great deal of effort has been spent in studying this velocity scaling low, which is usually written in the form:

$$
\begin{equation*}
p / d=k v_{F}^{n} \tag{Eq.3}
\end{equation*}
$$

where k may describe properties of the target and projectile, but is not a function of v_{p}

It is usually assumed (in the hypervelocity regime) that the crater diameter, $D_{;}$is simply twice the penetration p. The values of the constant n range all the way from $1 / 3$ to $2 / 3$; from a momenium teparicitnce io an energy dependence. The most generaliy accepted value for impacts thrit are truly hypervelocity is $n=0.58$ based upon combined numerical and analytical studies by Walsh and Dienes (Ref. 42). Thus assuming that $n=.58$, the results of the present study for penetration into $1100-0$ aluminum yield $(\mathrm{p} / \mathrm{d})_{\text {final }}=$ $(0.96 \pm .03) v_{p} .58$ and $(D / d)_{\text {final }}=(1.66 \pm .06) v_{p} .58$ for the diameter. These relations are in agreement with Halperson's data ('Ref. 43). Nothing is revealed, of course, about the dynamics of the crater formation.

The results of Cases ? through 4 illustrate the growth of craters in 1100-0 aluminum created at four different projec:ite velocitites ranging from $7.0 \mathrm{~km} / \mathrm{sec}$ in the hypervel deity regime down to $2.3 \mathrm{~km} / \mathrm{sec}$, which is in the ballistic impact regime. The curves derived from these results are shown in Figs. 33 and 34. From these, three phases of crater growth can be discussed. At early times (roughly $t / d<10\rangle$ for the three higher velocity cases, the behavior is dominated by hydrodynamic processes and the crater grows at a high rate, Later $(10<t / d<40)$ the target strength becomes increasingly important and slows the crater growth completely.

At the lowest velocity, when the peak pressures are so low that no true hydrodynamic phase should be encounter d, target strength should affect crater growth from the onset. The data obtained at $2.3 \mathrm{~km} / \mathrm{sec}$ (see Figs. 23 and 24 , Case 4) is no: of sufficient accuracy to establish the behovior of early times --

Fig. 33. Hisiory of Crater Diameter in $1100-0$ Aluminum of Four Proiectile Velocities.

Fig. 34. History of Croter Penetration in 1 i $50-0$ Aluminum at Four Projectile Velocities.
in fact no readable data wes obtained at $t / d<18$. The exponential curve derived frowr this data is likely to be rather inaccurate and should not be taken to imply any more than a generul trend. Indeed, the justification for the use of the exponential from to fir the Case 4 data must be based upon analogy with the Case 1,2, and 3 data, not upon direct evidence.

The variation of the croter diameter growth cime constant ($\mathrm{T} / \mathrm{d})_{D}$ with projectife velccity is either smail or non-existent over the range of velocities considered here. Since this time constunt represents a measure of the relati ie growth rate, i.e., $E(t) / D_{\text {final }}{ }^{\text {this }}$ is a reasonable result. The absolute growth, as indicated in Fig. 33, is higher at the higher projectile velocities as expected.

The data indicates an increase in ($\tau / d)_{p}$ with decreasing projectile velocity, a somewhat unexpected result. Again, however, the absolute growth rates (see Fig. 34) appear in the corsect order. The data for Cases 3 and 4 are so sparse at early times for the penetration measurements that it is likely ihat large errors were associated with the determination of $(\tau / d)_{p}$ here. It is therefore possible that the values $\mathrm{ci} \% / \mathrm{d}$ do not depend upon the projectile $v \in$ lecity over the range considered.

Crater Shape. At hypervelocities there is a streng tendency for the craters formed to be approximately hemispherical in shape. Even though the experimients conducted here extend only into the lower end of the hypervelocity impact region (v_{p} was never more than fifty per cent above the sound speed in the target material) this trend is cleariy evident in the results of Fig. 35. The data are taken from the croter growth curves for Cases 1 through 4. A perfect hemispherical crater wouid grow along the dashed lire. For the $1100-0$ aluminum targets, there is a tendency for the penetration to exceed the crater radius by obout ten per cent. The dato for the $4.2 \mathrm{~km} / \mathrm{sec}$ projectile velosity case indicate that the crater shape changes during the growth process at the lower velocities. The growth data on the $2.3 \mathrm{~km} / \mathrm{sec}$ projectile velocity cose are sufficient to substantiote this trond. The data for Cases 1 and 2 (7.0 and 5.2

Fig. 35. Crater Shope During Growth -- 1100-0 Aluminum Target at Four Projectile Velocities.
$\mathrm{km} / \mathrm{sec}$ projectile velocity) lie along the same curve.
Figure 36 shows equivaient crater shape data for the four alloys of aiuminum used, all with a projectile velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ nominally. The harder alloys form more necrily hemispherical craters. At these velocities, the crater shope remains nearly constant during the growth process. On these figures, all craters "start" at the point $D / d=1, p / d=1 / 2$ corresponding to the projectile half imbedded in the target and continue along the lines shown to the end points marked with daza symbols.

Target Strength. Cases 1, 6, 7, and 8 were conducted to explore the effects of moterial strength upon the croter growth rates in aluminum. The curves derived from the experimental data ate redrcwrr in Figs. 37 and 38. The results agree quite well with the four phase description of impact cratering described previously. The earliest penetration phase \sim as short at the impact velacities studied her hat no information was acquired on this phase. The

Fig. 36. Crater Shape During Growth $--7.0 \mathrm{~km} / \mathrm{sec}$ Projectile Velocity with Four Aluminum Alloy Targets.

Fig. 37. Comparison of Croter Diometer Growth for Four Aluminum Alloys.

Fig. 38. Comparison of Crater Penetration Growth for Four Aluminum Alloys.
hydrodynamic phase, where pressures greatly exceed any material strength (specifically where the pressure is substantialiy greater than the deviotoric somponents of the stress tensor), is of relatively short duration, but definitely exists at the $7.0 \mathrm{~km} / \mathrm{sec}$ impact velocities. The peak pressure at impact is nearly one megabar. This phase is illustrated rather clearly on Fig. 37 whers the craters in all four alloy;s are shown to grow at necrly the same rate until $t / d \approx 8$.

In the region $8<t / d<25$, meterial strength begins to dominate, slowing the growth. Finally in the region $t / d>25$, the crater growth is arrested completely. As expecred, the stronger materials result in smal!er craters and the strength scems to affect the growth earlier in the process.

A brief examination of the variation of the final crater diameter and penetration with the yield strength, Y_{0}, of the target material yielded the following opproximate scaling laws for a projectile velocity of $7.0 \mathrm{~km} / \mathrm{sec}$.

$$
\begin{align*}
(D / d)_{\text {final }} & \cong 0.45 Y_{0}^{-.2} \\
(p / d)_{\text {final }} & \cong 0.23 Y_{0}^{-.2} \tag{Eq.4}
\end{align*}
$$

where Y_{0} is in kilobors.
These relations can be considered only approximate since the scatter of the experimental dato around the values predicted by these equations is relatively large and moy not be valid at other projectile velocities. Additional correlation of final crater size with material properties is discussed in Appendix A.

Likewise, it was determined that the time constants, τ / d, varied with the yield strength as follows: $(\tau / d)_{D} \cong(\tau / d)_{P} \cong 0.86 Y_{0}^{-.2}$. Hence

$$
\begin{align*}
& D_{\text {final }} / \tau \cong 0.39 \mathrm{~cm} / \mu \mathrm{sec} \\
& P_{\text {firal }} / \tau \cong 0.20 \mathrm{~cm} / \mu \mathrm{sec} \tag{Eq.5}
\end{align*}
$$

This implies th t, at least to first order, the growth speed, insofar as it is characterized by the time constant, τ, remains about the same independent of the material yield strength. This conclusion is consistent with the data shown in Figs. 37 ond 38. (See Appendix H for further discussion and dimensional analysis implications.) The greatest deviation from this resuli: is displayed by the 6061-T6 alloy which tends to grow slightly faster than these scaling laws would predict. The slightly higher density (-3%) of the $5061-T$ s may explain in part this tendensy toword fasjer croter growth.

Crater Rebound a d Previous Experimental Results. The application of flash x-ray techniques to the measurement of crater formation in solid materials has received only limited attention in the past. The earliest information was obtained by Gehring (Ref. 33) whio used 1i00-0 alumirum torgets. These datc as
well as new results in wax targets were reported in Ref. 8. Later studies by Holloway (Ref. 44) and by Frasier, Karpov, and Holloway (Ref. 11) were related to more exterisive studies of the hydrodynamic behovior of the crater formation and shock propagation in wak.

Each of these sets of data indicated that significant "rebound" occurred during the crater formation, that is the crater grew beyond its final dimensions during the middle stages of its growth process and relaxed to its final configuration at later time. Frasier's data indicates that, in wax there is little rebound in the crater diameter, but that the crater depth grows to 35% larger dimensions than its final configuration (Ref. 11:137-138). Frasier attributes this to the high compressibility of the wax, but indicates that the rebound in metals should be expected to be iess pronounced.

Gehring's data is shown in Fig. 39 and compared with the results obtained in this study for Case 5 , a steel projectile with $5.0 \mathrm{~km} / \mathrm{sec}$ velocity impacting on 1100-0 aluminum farget at normal incidence. Gehring's experiments, conducted in 1960 when hypervelocity projection techniques were not as well developed and when flash x-radiography was a relctively new technology, involved the impact of an 0.18 gram steel disk, traveling at $5 \mathrm{~km} / \mathrm{sec}$, upon a 25 aluminum (1100-0 aluminum equivalent) target. In attempting to compare the results, the diameter of an equivalent mess sphere of steel, $d=0.358 \mathrm{~cm}$, was used to scale the data. The differences in final penetration are rather large and apparently due to projectile shope -- a disk as opposed to a sphere. The disk impact results in rather significant attenuation of the on-uxis pressures in the target due to the rapid onset of rarefaction from the rear of the disk, thereby resulting in jecreased penerration. On the other hand, the crater dicmeter is determined largely by other processes such as the shear flow that occurs at late time and its final value appears not to be a sensitive function of the projectile shope.

Gehring's jata indicates substantial crater rebound both ir diameter and depth. The tata obtained here (Figs. 25 and 26) indicates no such trend.

Fig. 39. Comparison of Experimental Flash X-Ray Crater Growth Data with Gehring's Results (Scaled).

The impacts of aiuminum spheres into $1100-0$ aluminum targets at $7.0 \mathrm{~km} / \mathrm{sec}$ (Figs. 17 and 18) clearly indicate that no measurable sebound phenomena occurs for either the crater diameter or depth (penetration) to within the accuracy of these experiments, which is roughly $\pm 4 \%$. At lower velocities in this target material (Cases 2, 3, and 4) the data is less complete, but agnin there is no indication of any crater rabound. The dato for the harder ofu, inum alloy targets (Cases 8,7 , and 8) show definite evidence that no rebround occurs. Those results clearly indicate that crater rebounci is not a typical feature of the impact of spherica! projectiles into aluminum targets.

Tine only remaining explonation for the large rebound measured by Gehring and shown in Fig. 39 is the difference in the shape of the projectile used. No attempt was mode to explore projectile shape effects in this study.

Fromiag Somere Results

As mentioned before, several researchers have used froming camera messurements of the front surface plume to determine crater growth rates. It is very desiratle to have a jechnique such as this available since most metallic targets do not lend themselves to flash x-ray studies because of x-i'ay absorption properties. Smith (Ref. 34) obtained results with froming camera photographs that indicated a lack of good correlation between the growth of the plume or outside dimension of the crater lips and the growth of the inside diameter of the crater. Smith's work has been exiended here to additional impact situations and newly developed film reading and data reduction techniques have been applied to yield more accurate results.

The resilts obtained are presented in Figs. 40 through 44 for the five cases where data was obtained. For Case 1, Gehring's framing camera data employing .476 cm diameter spherical projectiles (from Ref. 12) is superimposed for comparison. They agree quite well with the framing camera dato obtained in this study for what was termed the "plume minimum". However, the agreement of framing camera data with the fiash x-ray dato :s only qualitative at best. Gehring obtained results out to luter times $(t) / d>100)$ which indicate that she "plume minimum" exhibits a rebound behavior of some five to ten percent. In the case of this very sof! and ductile 1100-0 aluminum target. the "plume minimum" seems io represent the outside diameter of the crater lips -- an exact correlation with the history of the inside crater diameter need not occur.

For the hardest material studied, Case 8, 7075-T6 aiuminum, shown in Fig. 44, the framing camera data extends to relatively late times when equilibrium values have been achieved. Here there is no evidence of any rebound phenomena. Also the correlation between framing camera and x-radiographic records of crater growth is quite poor. In this hard alloy, the croier lips actually fracture and are ejected oway from the target at late time although this does not seem to ccemplicate the interprefation of the framing camera

Fig. 40. Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 1.

Fig. 41. Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 2.

Fig. 42. Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 4.

Fig. 43. Comporison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 7.

Fig. 44. Comparison of Framing Camera and Flash X-Ray Data on Crater Growth -- Case 8.
records.
The remaining data presents essentially the same picture; it is possible to obtain good records of the growth of the front surface plume, but the correlation of this data with crater growth dato obtained using flash x-rays is only qualitative at best. The measurements of the "plume base", that is the diameter of the region of deformation on the target surface, show roughly the expected behavior, but little correlation with the croter diameter. There is not much likelyhood that any quantitative information regarding crater diameters can be obtained from measurements of the plume bose.

The ag eement between the framing camera data on the plume and the flash x-ray data or crater internal diameter may be improved by assumirig that both diameters grow according to the exponential low discussed previously with
the same time constant - . The magnitude of the diameter is found from (D / d) final. That is, assume that

$$
\begin{equation*}
\left(\frac{D}{d}\right) \quad 1 \cdot a\left(1-e^{-t / \tau}\right) \tag{Eq.6}
\end{equation*}
$$

and where the framing camera data takes the form

$$
\begin{equation*}
\left(\frac{D}{d}\right)_{\text {plume }}^{\text {diameter }} \quad 1: b\left(1-e^{-t / \tau}\right) \tag{Eq.7}
\end{equation*}
$$

In these equations the quantity $(1+a)$ represents the final measured value of J / d for the crater diameter and the quantity ($1+\mathrm{b}$) represents the very late time value of D / d for the plune minimum which can be obtained from the framing camera record. Eq. 7 is then solved for $\mathrm{e}^{-t / \tau}$ and substituted into Eq. 6 to obtain

$$
\begin{equation*}
\left(\frac{D}{d}\right)_{\text {adi }}=1+a\left[\frac{(D / d) \text { plume aiam }-1}{b}\right] \tag{Eq.8}
\end{equation*}
$$

When adjusted in this manner, the modified results lie within fifteen percent of the value calculated from the curve derived from flash x-ray daia. This indicates that, to first order, framing camera records of the plume growth can be used to infer the value of the exponential period τ / d, of the crater. This scaling technique is not completely successful since some minor differences are noied in the shapes of the x-ray and framing camera derived curves. Practical diaficulties exist in that son : "cquilibrium" or nearly final value of the "plume minimum" diameter must be known to apply the scaling. In Cases 2, 4, and 7 this information was not available.

All in all, the determination of crater growth rates from framing camera records leaves much to be desired, although for the aluminum alloys used here, this approach does yield at least a qualitative picture of the process. Under other conditions or with other materials, the correlation between the plume and crater diameter histories might be very different.

Correlation With Numerical Results

Only in recent years hav numerical schemes been ovailable for predicting the behavior of materials subjecied to hypervelocity impoct where the effects of material strength could be included. In foct, through the last (Seventh) Hyperveloci Impacit Symposium in 1965 no such results had been reporteci although several groups were developing the required techniques at that time.

Computer programs have since become available for handling this rype of problem (see Chapier 1I). Due largely to the expense involved, the number of thick Parget impact calculations performed has heen rather limitea. One set of calculations by Rosenblatt (Ref. S.) was commissioned to complement this research study. Results are available at this time on three separate problems, each involving the normal impact of an 0.635 cm diameter aluminum sphere onto a thick aiuminum target: (1) $7.0 \mathrm{~km} / \mathrm{sec}$ projectile velocity, $1100-0$ alloy torget; (2) $4.0 \mathrm{~km} / \mathrm{sec}$ projectile velocity, $1100-0$ alloy target; and (3) $7.0 \mathrm{~km} / \mathrm{sec}$ projectile velocity, 7075-T6 ailoy target.

The results of an earlier calculation by Rosenbiat (Ref, 41) for the impact of a large oluminum cylinder on a 6061-T6 aluminum iarget are also available as are two calculations by Dienes (Ref. 40) involving the impact of aluminum spheres onto two targets, $1100-\mathrm{F}$ and 2014 -T6 aluminum, at 7.35 km / sec velocity. In each of these cases only limited detail is available. Even though the latter two sats of calculations were not designed to match the experimental conditions reparted here, they still yield interesting resulis and are included, oppropriately scaled, for completeness. In the following sections, the portions of the calculations described above that deal with the dimensianal history of the crater are compared with experimenial results and discussed.

Rasults of Rosenblatt. The preliminary numerical results obtoined by Rosenblatt (Ref. 41) and specifically designed to correlate with the experimental rosults of Cases 1, 3 and 8 of this study are shown in Figs. 45,46 and 47 respectively. For comparison purposes, both the experimental points obtained in

Fig. 45. Comparison of Numerical and Experimental Results on Crater Growth -- Case 1.

Fig. 46. Comparison of Numerical and Experimental Results on Crater Growth -- Case 3.

Fig. 47. Comparison of Numerical and Experimental Results on Croter Growth -- Case 8.
this study and the curve fit to this data with an exponential form are shown on these plots -- see Table V.

Note that little claim is made for the sccuracy of the curve fit to the experimental data ot very early times when $t / d<4$ since it was very nearly impossible to obtain data during that phase. For Case 1, the agreement in penetration history out to the point where the calculations were terminoted is quite good. The divergence at early time may be due to a question of interpretation in the numerical calculations as to what constitutes the bottom of the crater until the projectile is completely consumed.

For the crater diameter, the agreement is considerably poorer, although that is not immediately obvious from the few data points shown. The doshed line is in fact, better because it is derived from dato that extends to much later times but winich is not shown. The final value of D / d for Case 1 is 5.20 experimentally and even though craters in 1100-0 aluminum continue to
grow for a very lions time ($\mathrm{t} / \mathrm{d}=\mathbf{0}=0$) the trend is clear -- the numerical caicuiation for D / d will likely not agree with the correct final value as evidenced by the slope of the growth lines at $i / d:=15$, and certainly the growth exponentiai period wit not be correct.

In the region of the croter lips and sides, there is considerable plastic flow and hence a great deal of plastic work with resultant material he _ring. It is possibie that t.is failure to predict the cort ent history of the crater diameter is due to a poor model for thermal softening in the computer program. Since little is known about thermal snftening (variation in yield strength with temperature) under these shock loading conditions, a simple model of the variction was used in the calculations. It was assumed that the yield strength, Y, varied linearly with tempercture between Y_{0} at room temperature ond zero at the melting temperature of the material. Calculations by Rosenblatt with a madified thermal softening mode! failed to confirm this explanation of the incorrect prediction of late time crater diameter history. It may be that the thermal softening properties of $1100-0$ aluminum are more non-linear than had been expected or that some other processes are affecting the caleulations.

At lower projectile velocity (Case 3, Fig. 47) the experimental data is less complete, but the trends are about the same. In the region $4<t / d<8$ the agreement between numerical culculations and experimenta! points is quite good. For these conditions, crater growth continues to as laie as $t / d=60-70$. Consequently, it is difficult to tell from the ovailable information whether crater firal dimensions will be predisted correctly.

In each of these calculations in 1100-0 aluminum it would have been better to carry the calculation to the point where crater growth was essentially complete. However, lack of funds dictared that the calculations be terminated as soon as the information on shock wave propagation required for the second phase of this effort was obtained.

The 7075-T6 aluminum alloy has such a high strength that the crater growth terminates relatively quickly as evidenced in Fig. 47. In this case,
the numerical calculations were carriej nearly to the point of compietion of the crater growth. The prediction of the final crater diameter of $D / d=3.25$ comparer! with the experimental value of $D / d=3.38$ is excellent. In fact the complete history of the croter diameier is good although there seem to be a slight tendency for the code to cverestimate the diameter in the region $5<t / d<15$. Several explanations are plousible, insiuding the possibility that the calculations are underestimating the effects of stroin rate or viscosity at early times. In any event, the difference is rather small ($<10 \%$) and is undoubtedly due in part to the lack of accurate knowledge about the properties of the target material.

The experimental penetration data need expianation. The 7075-T6 alloy is so brittle that the entire region of the crater displays fracture phenorrena after the impact event. A typical crater produced in this series is illustrated in Fig. 48. The crater lips are completely spalled and ejected from the target. Likevise the sides and brttom of the crater are rough and jaggen. Inside the crater, the deyree of surface roughness is typically two millimeters or so for craters produced by 0.635 cm diameter aluminum spheres impected at $7 \mathrm{~km} / \mathrm{sec}$.

After the impact, any measurement of final crater diameter by conventional means is meaningless since the whole lip region has spalled away. in contrast, the flash x-radiographs of craters in this material, even those taken after the impact, show a smooth wall appearance -- obviously the result of "nveraging" the mass in the fractured region of the croter walls. Consequently, the final crater diameter $\mathrm{D} / \mathrm{d}=3.38$ used to obtain a fit to the experimental data (Tabie V) was obicined by direct measurement of the final crater diameter in x-radiographs with the target diameter as a dimensional reference.

The same procedure was followed in obtaining the final $p / \alpha=1.63$ used in Table V. In this case independent measurenents of finai crater depth ure possible (Appendix A) and yield the average value $p / d=1.87$. For

Fig. 48. Crater in 7075-Th Aluminum Alloy lllustrating Fracture Phenomena.
these measurements, depths are measured to the deepest portion of the crater bottom -- nence the difference in p / d of 0.24 (1.5 mm for the .635 cm diameter projectile) obtained from these two techniques :s appare:tly due to the large fracture zone created in this alloy.

In view of these results, the history of crater depth in 7075-T6 aluminum predicted by numerical techniques and shown in Fig. 47 may not be as bad as it appears at first glance. It is likely that the x-radiographic data are related to the upper surface of the fracture zone on the arater floor while the numerical technique is predicting the deepest portion. The final value of $\mathrm{p} / \mathrm{d} \quad 1.95$ predicted numerically agrees quite well with measured results.

Another interesting result: of these calculations is the hisiory of the ratio of croter penetration to croter diameier illustrated in Fig. 49. Again the dashed line indicates how the crater would grow if it were perfectly hemispherical at all times. In the region $\mathrm{D} / \mathrm{d}>2.5$, the results for $1100-0$

Fig. 49. History of Crater Penetration to Diarneter Retio -- Numerical Results of Rosenolat!.
aluminum agree rather well with the experimental data (see Figs. 35 and 36). The results for 7075-T6 aiuminum displa; some minor lack of agreement; again probably related to the fracture zone in this hard alloy.

All in all, the numerical results of Rosenblett show relatively good agreement with the experimental crater growth data with a few exceptions. In the softer aluminum there appears to be c tendency to predict croter diameters that are toc small at late times. Aithough it is perhaps naive to generalize from the data available, there seerns to be a tendency for the computer results to yield crater growth rates that are somewhat too nigh or eurly times ($t / d<5$).

Other Numerical Results. In Ref. 40 Dienes presents the results of tro hypervelocity impact calculations performed with a strength version of the OIL code, c two dimensional Eulerian formulation that included perfectly plastic and viscous effects. The calculations invoived the normal impact of 0.4763 cm diameter spheres at a velcity of $7.35 \mathrm{~km} / \mathrm{sec}$ onto 1100 F and

2014-T6 aluminum torgets with vield strength onrresponding to 0,75 kilobars and 2.39 kilobars respectively. The results are presented in Fig. 50. The experimental data obtained in this study is represented by the solid lines. The final crater size for several alloys is also shown.

The crater growth (penetration) Dienes obtained for the 1100-F aluminum agrees well in shape but not in magnitude with the data of this study. The moterial reported by Dienes has a yield strength !arger than the 0.26 kb of the annealed 1100-0 alloy used here, yet he reports a larger value of D / d, 3.06 , opposed to the value of 2.89 obtained in Appendix. A. It appears therem fore that Dienes' calculations tend to underestimate the role of the material strengtt in halting the croter growth by almiust 20 percent, i.e., the crater penetrotion is about one fifth less than that predicted numerically.

The predicted behovior of the 2014-T6 alloy during the roughly hydrodynamic behavior phase, $t / d<15$, follows the experimental data for the 1100-0 aluminum very closely. The strength of the 2014-T6 olloy is just slightly less than that of the 6061 T6 alloy used in this study, so the general late time behavior of the crater formation is 2014-T6 aluminum predicted by Dienes is still somewhat high.

Finally, the results of one other calcuiation are available. Rosenblatt (Ref. 41) calculated the normal impact of an 8 cm diameter by 8 cm high right circular cylinder of 6061-T6 aluminum upon a thick target of like material. The projectile velocity was $7.35 \mathrm{~km} / \mathrm{s} 6 \mathrm{c}$. The diameter of an equivalent mass sphere was used to scale this data which is shown in Fig. 51. Again the general agreement with experimental data is relatively good ex:ept for the region $t / d<5$. The effects of the difference in projectile shape seem quite trivial for this situation.

Summary

Flash x-rcy techniques hove been used to obtain experimental neasuremenis of the growth of craters is aluminum targets subjected to hupervelocity

Fig. 50. Comparison of Numerical Results of Crater Growth with Experimenta! Data.

Fig. 51. Calculation of Crater Growth -- Impact of Cylinder on $6061-T 6$ Aluminum ot $7.35 \mathrm{~km} / \mathrm{sec}$ by Rosenblatt.
impacts. Data on both crater diameter and penetration (depth) were obtained for four alloys of widely verying static strength properties: $1100-0,6061-\mathrm{T} 6$, 7075-T0, and 7076-T6. In all rases the projectiles were aluminum spheres with velocities of approximately $7 \mathrm{~km} /$ sec. Additional data were obtained for 1100-0 Giuminum targets impacted by projectiles with velocities of $5.2,4.2$, and 2.3 $\mathrm{km} / \mathrm{sec}$. One additional combination, a steel projectile impacting an 1100-0 aluminum target at $5 \mathrm{~km} / \mathrm{sec}$ was studied to explore urater rebound phenomena. In each case a simple exponential growth lav whose coefficients could be related to the projectile size and final erater parameters was found to yield a good fit to the experimental dato.

Additional information was obtained in the form of high speed framing comera photographs of the expanding fronf surface debris plume produced during the impact process for four situations. Measurements were made of the history of the narrowest portion of this plume. When properly scaled, this data yields a rough correlation with the inside crater dismeter history as attained from the flash x-roy studies, but there is no gcod evidence that piume measurements can be used to obtain reiable measurements of the craier growth histories.

Finally, the experimental srater growth results are compared with the results of several numerical calculations of hypervelocity impact events. The results show generally good agreement betwe n theory and experiment, but point to several oreas where the theoretical behavior is in question.

V. Shock Propagation -- Experimental Techniques

While cavitation data is important to the understanding of crater formation in thisk metal targets, it represents or'y a part of the picture. The hypervelocity impact also generates 7 strong shock wave which propagates into the target. From a practical point of view, studies of impact damage are generally concerned with the effects that take place at material interfoces or the rear of the target, such as spall, debanding, or delamination, depending upon the character of the mate-ial. It is the characteristics of the shock wave that determine the mode and extent of this damoge.

The initial features of the shock wave are determined by the loading occurring in the region of the growing crater. The shock wave travels outward from that region through virgin mate-iai, changing in character as it moves. The shock wave decays in amplitude due to: (1) the roughly spherical divergence from the impact point, (2) release waves generated near the impact region, and (3) attenuation related to the strength properties of the torget matericl. Experimental date on shock propagotion variables provide addition:al understanding of the rverall impact processes and valuable information for correlation with theoretical predictiors of impact.

For these reasons, the second phase of this study is concerned with experiments designed to obtain data on selected features of the shock wave generated by hypervelocity impact. The remainder of this chapter describes several types of experiments and the techniques used to obt in data.

Experiment Selection

Requirements. In studying the propagation of shock waves created by by hypervelocity impact experiments, the vaiues of the flow quantities at the shock front are of particuiar interest. These values reflect the effects of all factors invoived -- divergence, reloxction, strength -- but involve mecsurements at unly one point as opposed to the measurement of a field quantity. If
the Hugoniot curve of the materiat is known, the measurement of any variable behind the shock front (such os ${ }^{o}{ }_{n}$, the normal stress; ${ }^{P_{H^{\prime}}}$ density; $U_{H^{\prime}}$ particle velocity; $D_{H^{\prime}}$ shock velocity; and ${ }^{n}{ }_{H^{\prime}}^{H}$, specific internal energy, where the subscript H refers to the Hugoniot values at the shock front) allows colculation of all the others through the Rankine-Hugoniot jump conditions. Likewise, the peak values of such quantities as normal stress generally occur r.i the shock front and tend to be most accurately predicted by available numerical techniques. it follows that measurement of one of the Hugoniot values is the most useful in studying shock propagation and in comparing theory with experiment.

Early analytical calculations (see Chapter VII) and a variety of two-dimensional numerical calculations have shown that, for a hypervelocity impact normal to a piane surface, the shock wave propagates in a nearly spherical fashion. The results obtained indicate that on the axis (i.e.,directly ahead of the projectile) the flcw quantities are little offected by the presence of the free surface of the torget front. The analysis of most numerical calculations and all experimental measurements heretofore has been restricted to the on-axis case. Clearly as the ongle off exis becomes large, the flow quantities will differ greatly from their on-axis values because of the free surface. Since this study is concerned with the two dimensional aspects of the impast problem, it is imperative that measurements be made as a funcion of angle awsy from the axis. The problem studied her- is restricted to normal impact on a plane surface and the results are assumed to be axisymmetric about the projectile trajectory. There is, consequently, no azimuthal variation in the above quantities. The geometry of the impects studied and the associated nomenclature are shown in Fig. 52.

In sulids, shock wave propagation is a non-iinear process. The shock front thanges speed as it progresses -a in a way inot is related to the peak pressure behind the shock. Consequertly, the pusition history of the shack front, shack rodius $\left(R_{s}\right)$ versus time (t), known as the shock trajestory is a usetul experimental quantity since it contcins mech of the history of the shock pre zotion. Unfortuncteiy, the behovior of most solids is such that the shock trajectory is a luss sensitive

Fig. 52. Impact Generated Shock Wave Propagation itt Sclid Target.
measure of the flow variables than is, say, the peak normai stress.
The number of rounds fired in any study musi be restricted because the light gas gun range is expensive to operate. Measurement of a quantity at a variet, of distonces from impact, ar severat angles, and tor several torget materials could quickly become prohibitive unless care were taken in the experiment design. Experience has olso indicaled that it is highly desirable to obtain enough data points that behavior trends can be established statistically. Consequently, it is essentiol that each experiment be designed to yield multiple data points.

In summary, the objective of this phase of the experimental program was to obtain direct measurements of of least one of the shock voriables directly behind the shock wave (Hiugoniot value) as a function of distance from the :mpact point (R_{s}) ond the angle off trajectory (e). A secondary objective was to obtain direct measurements of the shock trajectory. A normal impact and axial symmetry about the projectile trajectory were assumed.

Techniques. Many techniques hove been developed for measuring the flow properties during shock wave propagation in one-dimensional (flat plate) experiments. The existance of the curved wavefront and tangential stresses in the hypervelocity impact problem makes the opplication of most of these techniques infeasible. Techniques reported in the literature include quartz (piezoelectric) crystal gauges, Manganin wire, capcicitance probes, streak camera/reflected wire systems, and velocity interferometers. Each was rejected because the required development was prohibitive.

The method selecfed requires the measurement of the peak velocity of the target rear surface. It then yields a measure of the material velocity, $u_{H^{\prime}}$ behind the shock froni based upon the usual free surface approximation fic. plane waves:

$$
\begin{equation*}
v_{f s} \cong 2 u_{H} \tag{Eq.9}
\end{equation*}
$$

where $v_{f s}$ is the peak velocity of the free.. irice. Observation of the free surface velocity of some point on the rear surface of the target then allows a direci calculation of ail the material variables behind the shock iront through the RankineHugoniot relations and the equation of state.

In many of the experiments conducted, the free surface motion was observed directiy with a high speed framing camera and the surface velocity was deriyed from the framing camera record. In this applicotion, froming cameras lask Sifficient accuracy to follow the complete velocity history of the free surface; however, shey can yield good data on the final surface velocity when the sirface is accelepated to a high velocity quickly and does not then decelerate signif:contly. At high stresses (cbove about 70 kb in oluminum) the suritace is accelerated to $v_{\text {is }}$ and continues to move at this velocity, fracturing inte many small particles. At bower stresses, the residual sirergth of the material is such that the surface will slow down following its initial acceleration. The technique described above theri fails to yield accurote results.

A mocified technique based upon work by Hopkinson and described by Rinehart (Ref. 45:78-80) was required for the lower stress regions. This technique simply allows a thin disk of the same material as the target to substitute for the "free surface". An essentially zero sirength bond beiween the disk and target rear surface allows the disk to continue to travel with maximum velocity v_{fs} after the actual rear surface has begun to decelerate. This "fly-off disk", or "momentum trap," technique was first applied to hypervelocity impact problems by Charest (Ref. 13).

Several techniques for measuring the time between impact and the arrival of the shock front at a given point on the jarget were develaped with varying degrees of success. These include a high voltage contact pin, a quariz piezoelectric prote, and an optical fiber cut-off device. This portion of the experiments was considered secondary to the free surface velocity measurements.

Materials. The target materials selected were consistent with the matericls used in the crater growth portion of this effort. The experiments were conducted usi:1g three alloys of aluminum: $1100-0,6061$-T651, and 7075-T6. These materials should have nearly the same hydrodynamic behavior, but c wide range of strength properties varying from soft and ductile to hard and brittle. (See Table II). The projectiles were again 2017 aluminum spheres, all of 635 cm diameter in this case. The projectile velocity was nominally $7.0 \mathrm{~km} / \mathrm{sec}$.

Direct Free Surface Velocity Measuremenis

As mentioned previously, at sufficiently high stresses, an accurate measure of the material velocity behind the shock front can be obiained by directly monitoring the target free surfoce velocity of a point. This technique has been used many times for one-dimensional impact studies, although a framing camera is not a common instrument for measuring velocities in this application. Recently Billingsley (Refs. 14 and 15) has applied the technique to the determination of peak on-axis normal stress in aluminum and copper torgets. He used flat plates for the torgets, varying the plate thickness io obtain the stress (or material
velocity) at various radii from the impact point and measured free surface velocity from framing camera photcgraphs.

Split Cylinder Torgets. Because of the desire in this study to determine the shock decay as a function of angle off axis it was necessary to use c completely different target geometry. This new design consisted of a cylinder of material cut along the axis of the cylinder. The result is a "split cylinder" or halfcylinder which is then impacted in the center of the flat face. Typical splitcylinders before and after impact are shown in Fig. 53. In alt cases the cy'inder was quite smoll so that very good aiming accuracy was required to impact the terget near the correct point. Consequently, these experiments were conducted in a small target tank installed just behind the blast tank on the AFML Hypervelocity Ballistic Range; a procedure which allowed the target to be placed much nearer the gun barrel.

The target was mounted in a holder as illustrated in Fig. 54. The front of the holder and the flat side of the target faced the light gas gun muzzle. The holder was maunted directly on the bottom plate of the small torget tank for easy access. The sides of the holder were mode of transparent plastic and were replaced ofter ecch experiment. Lines for film reading reference and magnification determinotion were placed directly on the plastic. The Beckman and Whitley Model 300 camero used in these experiments was suffiziently far owoy from the target, about 10 meters, that no parallax corrections were required using this arrangement. The characteristiss of the Model 300 camera and associated data reduction techniques are described in Appendix G.

The target was back-lighted using a custom-made spark light source (Ref. 37) that provides a very intense light pulse of contrclled duration. In these experiments, the light duration was about $70 \mu \mathrm{sec}$, sufficiently short to prevent rewrite on the Model 300 camera film record. A lens placed between the light source and target was used to focus a large fraction of the available light into the camera lens, With this arrangement good results were ottained using Kodak Tri-X film with standard development in Acufine ${ }^{\circledR}$.

Fig. 53. Typical Split Cylinder Target -- Before and After Impact.

Fig. 54. Holder for Split Cylinder Targets.

The overall layout of this series of experiments is illustrated in Fig. 55. The placement of the target precluded using the normal range system for measuring projectile velocity, so another system was employed. A pair of flash x-rays were soken of the projectile in fight. The time between the x-rays was measured by using an oscilloscope to monitor the trigger signals to each x-roy unit. The distance the prujectile traveled between the two x-ray pulses was obtained from the double exposed x-ray film record. This system yielded velocity measurements accurate to about 5%. A thin foil switch (see Chapter III) consisting of two layers of $25 \mu \mathrm{~m}$ aluminum foil separated by a sheet of $50 \mu \mathrm{~m}$ Mylar ${ }^{\text {© }}$ was attoshed to the rear of the sabot stopping plate. The signal derived from this switch when the projectile penetrated it was used to trigger time delay generators which provided signals at the appropriate time to astcate the x-roy sourses and to turn the spark light source on. As with the crster growth experiments, all timing was critical since the events of interest were completed in a few tens of microseconds.

In most cases, the Model 300 camerc record of the event contained several frames showing the projectile approaching the target. This data was used to obtain another measure of the projectile velocity, again accurate to about 5\% (see Appendix G).

Free Surface Trajectory. The film records obtained from the experimental setup described above yielded a silhouette, back-lighted view of the curved target surface. The sequence of photos shown in Fig. 56 is typical of the type of informotion obtained. The films show the maximum dimension of the expanding surface. Therefore, the point of impact ciong the axis of the target is unimportant. The accuracy of impact in the vertical direction (perpendicular to the torget axis and the projectile trajectory) is quite important, however, since on off-center impact alters the distance from impact to the point upon the rear surface where motion is measured. Likewise, the direction in which a given particle leaves the rear surface is iess wall defined if the shock wave dioes not impact the rear surfoce almost normally. A detailed description of the effects of off-center impacts

Fig. 56. Round 2772. Erapension of Free Surface Obtoined With B \&W Model 300 Framing Comerc.
and methods for reducing the data from the spilit cyiinder targeis wre contained in Appendix C.

Briefly, the study of rear surface trajectories for slighily off-center :mpacts involved placing solid moterial barriers (rods or wires parallel to the target axis) in the path of the expanding rear surface such that points on the surface were "marked" and their subsequent motion could be determined. This technique is also described in Appendix C and is related to the debris cloud "dissection" techniques developed by Swift et ©!.(Ref. 46) to study the dynamics of thin plate impact. The results indicate that for relatively well centered impacts, the particle trajectories pass through the axis of the target. Distances from impact to the rear surface $\left(R_{s}\right)$ must, however, be calculated from the actual impact point.

Elen though sof histicated techniques have been developed for obtoining and reducing the data from the split cylinder targets, the data still shows some scatter. This is inevitable because these targets are quite small -- ranging in diameter fron، 2.0 to $3.2 \mathrm{~cm} \ldots$ and the Madei 300 camera records can provide position data accurate io only about $\pm 0.1 \mathrm{~cm}$ at the magnification employed under good conditions. On the smailer is gets t^{2} is can result in inaccuracies in measuring the impact to surface distance of as much as 20%. In a small number of cases, for shock radii of less than 1.25 cent'ineter, fiat plate targets were employed in a setup like that described above. Measurement of the leading edge velocity of the expanding rear surface then yielded a single value for free surface velocity on axis only.

The methods described ahove have resulted in a relarively accurate technique for measuring free surfoce velocities as a function of both shock radius and angle off ircjectory for those coses where the peuk of the stress pulse reaching at the rear surface unequivocably exceeded the dynamic yield strength of the moterial. At liwer stress levels, other techniques must be employed as described below,

Fly-off Disk Technique
The primary technique used for measuring peak shork wave properties af various points in the tr-get was the fly-off disk technique mentioned earlier. All measurements made in the region of pressures or stresses where material strengths might offect the orocesses were obtained with this technique. The basic theory of operotion of a fly-off disk is explained in Appendix \mathbf{D} which aljo includes a discussion of the validity of the free surface approximation, " $f_{s}=2 u$, the effects of the stress wave amplitude, shape, and duration on disk performance, and the Hugoniot data necessary to derive the material properties behind the shock front from the disk velocity.

Technigue Evaluation Experiments. The initial effort was cievoted to a short develument program to optimize experimental techriques and applications of instrumentation and to expiore the factors which might offect fly-off disk performance. A simpiified target geometry -- a flat plate -- was employed in: a configuration illustraied in Figs. 57 and 58. A row of disks was place!' on a vertical line on the torget rear surface directly behind the anticipated impact point. The bolt shown in Fig. 37 was used as an alignment and distance reference in reading the photographic record of the experiment. Both framing cameras (described in Appendix G) were used in the development tesis, always with the target back-lighted and with a pulsed light source to provide sufficieni illumination and prevent rewrite. With the Model 300 camera, the spark li, sht source mentioned befure was used. For use with the Dynafax Mbdel 32ϵ camera, a xenon flash tube source (Beckman \&. Whitriey Model 358) provided u nearly constarit intensi'ty light pulse of -2 milliseconds duration. Either light source was triggered by on upronge foil switch activated by projectile penetration. For a description of the froming comeros and techniques used to reduce the dara obtained, refer to Appendix G.

The purpose of these development experiments was to investigate: (1) fly-off disk aftachment, (2) disk diameter-tc-thickness ratin (i.e. edge) effects, (3) disk tumbling, (4) disk thickness effects, (5) projectile velocity scoling, and

Fig. 57. A Rear View of Flat Plate Target on Holder With Fly-off Disiss Aitached.

Fig. 58. Dicgram of Experimental Arralizement for Fly-off Disk Development Effort.
(6) :eproducibility. Due to tha geometry, shese experiments waie not expected to yield retocity data as r function of angle off axis since the leading edge of the shock tront did not intersect the rear surface normally. The data was interpreied by conparing the results of separcte rounds where parameters were varied. Fur those disks losated on axis, the shock impoct is narmol to the disk and vatid data is produced. The on-axis cata obtainad in this sequence is iricluded in the data reported in Chapter Vt.

A totol of cen successful impact evente were condested in this development series. The characteristics of each round fired gre descrifed in Table VI. The series successisily demonstrated the application of available instiumentom tion and the fly-off disk technique to the messurament of shock properties. The raw dara from this series has been inciuded in Appendix F for completeress along with several other flat plate impacis described icter.

Development Resulis. The froming camero sequences shown in Figs. 59 and 60 were typical of thase obscined in this experimentol program. The dato obtained from these and other photographs were used to evaluate various aspects of the performance of the fly-nff disk techn,que.

Data taken from Rounds 2619, 2520, 262], 2639, and 2640 were used to determine the effect of disk thickness on the meosured velocity. The results are shown in Fig. 61. The variable ${ }_{\text {F }}$. which represents the distance from the projection of the impact point onio the target reap suriace out to the location of the disk, yields a measure of both shock radilus and angle aff trajectory for each point -- consequently it is the comparison of the two curves that is important. The results show that the $600 \mu \mathrm{~m}$ (24 mils) thick disk is measuring reduced velocities -- due possibly to two effects: (1) edge effects c-eoted by the larger thickness-to-diometer ratio of the 600 fm disks, and (2) these thick disks may be averaging a rather sharply peaked stress pulse. This data as we!! as that obicined in Round 2642 (at reduced projectile impact velocity) indicates that $300 \mu \mathrm{~m}$ and $130 \mu \mathrm{~m}$ thick disks yield essentially the same performance to within experimental error. Similor results were obtained using 2.54 cm thick

Table VI
Description of Fly-off Disk Development Rounds

| Ruund
 No. | Projectile
 Velocity
 $(\mathrm{km} / \mathrm{sec})$ | Target
 Thickness
 (cm) | Camera
 Model | Number of
 Disks | Remarks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2587 | 6.69 | 4.51 | 326 | 5 | Exploratory
 shot |
| 2610 | 6.56 | 1.27 | 300 | 9 | |
| 2614 | 6.93 | 2.49 | 300 | 11 | |
| 2618 | 7.02 | 2.54 | 300 | 11 | Note (1) |
| 2619 | 7.20 | 4.42 | 326 | 9 | |
| 2620 | 7.03 | 4.42 | 326 | 10 | |
| 2621 | 6.93 | 4.42 | 326 | 10 | |
| 2638 | 7.14 | 4.45 | 326 | 12 | |
| 2640 | 7.07 | 4.45 | 326 | 6 | Note (2) |
| 2642 | 5.42 | 4.45 | 326 | 8 | Velociry |
| | | | | | Scaling |

(1) Sabot cap hit target -- datc did not appear to be affected.
(2) Included bent flyers to check performance of poor oftachment, etc.

Fig. 59. B \& W Model 300 Comera Sequence Fly-off
Disk Motion or 2.54 cm Thick Target -- Round 2618.

Fig. 60. Fly-off Disk Motion Observed with Mode! 320
Comera, 4.45 cm Thick Target -- Round 26il.

Fig. 61. Comparative Performance of Disks of Three Thicknesses from 4.5 cm Thick Flat Plate Targets Using Dynafax Model 326 Camerc.
targeps as shown in Fig. 62. In this case the disk velocity data was obtained using the Model 300 framing camera.

Figure 63 shows the effects of using disks with like thickness, but different thickness-to-diameter ratios. For this particular comparison, the data does not indicate a àgnificant difference in performance due to this effect. The somewhat larger scatter in the data is related to the greajer difficulties encountered in followitig the motion of the small .318 cm diameter disks during the film, reading.

On these same experiments, two different methads were used to attach the disk to the target: Dow Curning silican based high vacuum grease and Eastman 910°, a quick seiting adhesive with high tensile strength. Over the range of stresses seen in these experiments, the disk performance was unaltered by attachment method.

Fig. 62. Comparative Performance of Disks of Two Thicknesses from 2.5 cm Thick Flat Plate Tarrat Using Model 300 Camera.

Fig. 63 Comparative Performance of Disks of Two Thickness-to-Diameter Ratios.

A standard fly-off disk configuration was selected for the main experimental program on the bosis of the results presented above. The disk size selectea was.$~ 635 \mathrm{~cm}$ in diameter and $250 \mu \mathrm{~m}$ ' 10 mils) thick since the development program proved the performance of this size and also showed that smaller disks were difficuli to follow in the film reconds in some cases These experiments also demonstrated that the results were reproducible from round to round with a scatter of a few per cent. The vacuurni seal grease was used exclusively in the remainder of the program, providing a bond of essentially zero sti:ength.

Tumbling of the disks was observed in some of the experiments, particularly where the shock wave interacted with the disk at high angle. The maximum tumbling rate observed was 6000 radians per second. In that case the energy stored in the form of rotation was iquivaient to the translational kinetic energy corresponding to codisk moying at -10 meters $/ \mathrm{sec}$. Rotation rates of this magnitude were observed only when the disk velocity was relutively high (>150 meters/ second) so that the error introduced by tumbling could amount to only a few per cent as an upper bound. In practice, the tumbling observed in later experiments on multi-faceted targets was much lower -- more than an order of magritude less than that described above -- such that the effect on the measured disk velocity was negligible.

Comments regarding the scaling of the fly-off disk results with projectile velocity and on the effect of the angle of incidence of the strock wove with the disk upon its performance are contained in Appendix E.

The development experimenis resulted in confidence in the fly-off disk technique and well controlled procedures -- both in the experiment and in the data reduction -- for application of this technique to the main experimental prograir, that followed.

Shocl: Arrival Time Measurement Techniques
The second portion of this phose of the experimental effort invalved meosurement of the arrival time of the impact generated shock wave at selected dis-
tances from the impact point, The eollection of deto at yarious denthe yiolde the relation between the shock radius, $R_{s^{\prime}}$, and the time, t, known as the "shock trajectory". As with the other shock property masasurements, it was desirable to measure the shock trajectory as a function of ang!e off axis. The shock trajectory is an interesting quantity since it is one of the fundamental relations prodicted by certain theoreticai treatments of hypervelocity impact processes. Consequently an accurate measure of shock trajectory helps to verify the theoretical predictions. Since the shock irajectory is related to the variation in shock speed, it is not as sensitive a measure of the shock propagation os is the material velocisy or shock siress.

To be useful, it was necessary to measure the time between impast and shock arrival to an accuracy of a few tenitss of a microsecond. In eddition, it was necessary to be prepared for the existence of an elastic precursor for stresses below 100 kilobars in some of the materials used, and to insure that the fime of arrival of the plastic front was recarded. Firthermore, it was essential that the method used be relatively inexpersive since many measurements were contemplated. A: a result, two techniques were developed and used -- a high voltage discharge switch employed in the high stress regime and a piezoelectric probe used for the lower stress experiments. Exploratory research was performed on a third, optical technique.

Pin Probes. The primary range timing instrumentotion used a Fostox ${ }^{\circ}$ streaking camera to record optical signals derived from high voltage discharges through smali xenor flash tubes. Other applications of this timing system have already been discussed in Chapter III and Ref. 35:18-19. In this application, the :arget was electrically grounded and an electrode (a "pin") was placed against the rear surface, but separated from it by a $127 \mu \mathrm{~m}(5 \mathrm{mil})$ thick sheet of Mylar ${ }^{\oplus}$ insulation, at the point where the shock wave arrival time was to be monitored. The pin and targei were then connected to a pulse formir.g network and power supply which placed a potentiai of some 500 volts between the pin and target. Shock wave arrival at the rear surface moved this surface, puncturing the Mylar ${ }^{\circ}$
and causing an electrical dischorge between the pin and the target. The fast rise time signal produced was then monitered on an oscilloscope and, as a redundant measurement, with the range Fastax ${ }^{(\sqrt{0}}$ system. The target impact signal was obtained from a foil switch attached directly to the target face (as described for the x-ray experiments in Chapter III). This signal was recorded on the range Fastax ${ }^{(8)}$ sysiem and was used to trigger the scopes used to monitor pin probe signals.

At high stresses, the rear surface moves at velocities of roughly 0.1 $\mathrm{cm} / \mu \mathrm{sec}$ and the rear surface will contact the pin within less than $0.05 \mu \mathrm{sec}$ after the shock wave reaches the rear surface. Likewise the rise sime of the pulse generated by the pin circuit is less than $0.1 \mu \mathrm{sec}$. The impact switch measured impact to an accuracy of $\pm 0.05 \mu \mathrm{sec}$ as indicated in Chapter ll1. The net result is that this system is capable of measuring shock time-of-arrivals to an estimated accuracy of less than $0.2 \mu \mathrm{sec}$ not counting whatever errors might be introduced in the recording apparatus.

At lower stresses, two potential problems arise: (l) the wave may exhibit an elastic precursor whish could cause the pin switch so close early, and (2) the Mylar ${ }^{\circ}$ insulation will offer mechanical resistance to the movement of the target surface thereby slowing the time response of the system and destroying its accuracy. Ths upplication of this design was therefore restricted to those experiments where the expected stresses were above approximately 50 kilobars.

The design of the probes is illustrased in Figs. 64 and 65. They were manufactured from cloth phenolic and designed such that the pin was held against the Mylar ${ }^{\circledR}$ insulation by a spring. The head of the "pin" was relatively sharp to er.sure clean penetration of the Mylar ${ }^{\circledR}$. The pin probe was attached to the target with Eastman 910° adhesive. The block diagram of the discharge pin measuring system for shock wove arrival time is shown in Fig. 66.

Piezcelectric Arival Time Sensor. A shock wave orrival time sensor operating upon the piezozlectric effect in quartz was developed for application at lower pressures (Ref. 47). The probe is a simple, inexpensive, and easily

Fig. 64. Design of Pin Probes.

Fig. 65. Photograph of Pin Probe and Compenents.

Fig. 66. Block Diagram -- Pin Probe Circuit.
mounted device which produces a reai-time volitage output designed to yiela noi only timing information, but a qualitative indication of the normal stress during the critical rising portions of the stress pulse.

The sensor consists of an X-cut quartz crystal of 0.25 mm th ckness and 6.35 mm diameter cemented between a flat surface on the target and a short aluminum rod of like diame!er (isee Fig, o7). '. ression of the quartz disk by the shock wave produces a piezoelectric charge separation between the crystal faces that is proportional to the appined stress. The charge mignitude, Q (coulombs), can be computed from the following once the shock wave has rcached the second surface:

$$
Q=f A \sigma_{n}
$$

Where σ_{n} is the normal stress (kilobars), A is the arec of the crystal cm^{2}) and \hat{f} the X -direction piezoelectric constant (coulombs $/ \mathrm{cm}^{2}$-kilotars). The

Fig. 67. Piczoeiectric Arrival Time Sensor ©eifiguration.
resiltant open circuit voltage observed by an osc:lloscope whose inpur is connected beiween the target and rod beccmes:

$$
V=\frac{Q}{C}=\frac{f A \sigma_{n}}{C}
$$

where C is the capacitance (farads) of the crystat and detecting system.
The sensor praduces a finite rise time signal due to the time fequired for the shock wove to traverse the irystal thickness, T. This rise fime, $r^{\prime}{ }^{\prime}$ which represents the fundarnental sensor resolution time is then $\tau_{1}=T / D_{g}$ where D_{g} is the shock speed in quartz -.0 in this case τ was on the order of 50 nsec.

The length of the backup rod dete mines the time interval during which the pressure pulse can be recorded unar,abiguously. The aluminum rod was employed as the rear electrode of the sensor and, in addition, extended the recording time of the quartz disk. The recording time can ie calculated approximately
by calculating the double transit time of the shock wave through the rod, ossuming that it moves ot sonic velocity. For the 2.5 cm iong roo used here, the recording time is roughly $10 \mu s e c$, much longer than is required to obtain ar-ival time signals.

As a stress measuring device, this sensor yields only a qualitative picture of the stress variation. Rarefractions from the edges of the crystal, multiple reflections in the crystal, and any ccirbined stotes of stress that might exist in the crystal make a quantitotive interpretation of the rectits impractical. In addition, the exponential leakage of the charge on the crystal through the desecting circuit limits the accuracy of any pressure-time measurement -- although in this applicaion the decay time constant is so large ($-10^{-4} \mathrm{sec}$) that the leakage has little effect.

The production of these sensors was simple and inexpensive. One end of a;i aluminum rod was ground flat and a quartz crystal was cemented to the rod with Eastman 910° adhesive. A center conductor ois a cooxia! cable was aftacheá to one end of the rod and the outer conductor was grounded to the torget. The cumpleted rod and crystal assembly was then cemented to tive target. The crystals were ob:ained from Valpey-Fisher Corporation dollisten, Massachusetts. The cost of materials in each sensor was less than two dollars.

A block diagram of the electrical circuit employed is shown in Fig. 68. The signal for triggering the oscilloscopes was derived from a foil discharge switch as dessribed previous!y. A precision fime mark generator (Tektronix Type 184) was used to provide colibrated timing for each oscillossope trace. On each event, one ascilloscope was set up separately, using a fast sweep to measure precisely the time betweer the impact signal and the first time mark. Typical senser records are shown in Fig. 69, Reading accuracy for these records depends, of course, on the sweep speeds used in a given experiment. The accuracy was generally abcut 1% of full scale on the oscilloscope plus the response time of the sensor.

Optical Fiber Sensor. One additional shock arrival time measuring tech-

Fig. 63. Block Diagram -- Quartz Sensor Circuit.

Fig 69. Record of Quartz Arrival Time Sensors, Round 2857. Sweep Speed $1 \mu \mathrm{sec} / \mathrm{cm}$ with 1 MHz Time Marks.
nique was investigeted and pursued to the point where practical application is promising. This particular technique was, jowever, developed so late in the program that it was used on only two experiments. The technique is represented schematically in Fig. 70. One end of an optical fiber is illuminated with a strong light source while the other end is viewed with a streck camero. The light source is pulsed tc avoid rewrite on the camera record. The center portion of the optical fiber touches the target surface where an orrival time measurement is desired and is backed by a knife edge. Rear surface motion on the torget severs the fiber, extingui thing the light on the end vizwed by the streak camera. Impact time is recorded directly by another fiber viewing the irreact flash and monitorsa by the streak camero in the same mainer as the prob: fibers.

In principle, this technique is copable of measuring the arrival times quite accurately -- to better than 0.1μ sec. Several prastical problems, howaver, prevented successful application to this study. The major difficulty wos concerned with the control of the intensity of the light transmitted through the ribers. A record obiained during on impact event (Round 2837) is shown in Fig. 71. Agreement between this record and results obtained with quartz probes was promising, but not realiy satisfactory. The dissrepancy is apperently due to the lack of control over ihe intensity of the light from each fiber -- resulting in blooming or foding on the streak record. The use of glass instead of plastic fibers and increased mosjufucturing quality contral could hopefully aileviate these difficulties.

Multi-Faceted Targets

The bulk of the experiments in this series were performed at pressure levels where fly-off disks were required to obtain reliable peak rear surface velocity measurements. In this case, it was necessory to provide targets with flat surfaces at the paint where the disk (or arrival time probe) was to be mounted. Eash target was designed such that the distance from the nominal impact point to each of the flattened rear surfaces was equal. Surfaces were provided at selected angles off axis so that the angular variotion of surface velocities and arrival times could be determined.

Fig. 70. Optical Arrival Time Sensor Concept.

Flash Tube (impact)

Fig. 71. Optical Time-of-Arrival Probe Streak Record. Rounci 2837.

The target design is shown in Fig. 72. For the smaller radius targets only three facets were provided at the indicated angles because of the srrill width of the facer at these sizes. Each facet was machined parallel to the long axis of the terget and for the complete length of the terget to allow the framing carreras an unjbstructed side view of the disks.

This design ensures that the shoc'r wave impacts each free surface and disk normally, provided the actual impact is near the nominal impact point. Targets with three facets were used for those tcrge?s with radii between 1.45 cm and 1.9 cm . Targets win five facets ranged in radius from 1.75 cm to 10.0 cm , providing some overlof with the three-focet design.

The target in Fig. 73 is shown artached to a mounting plate which is installed vertically in the range. The projectile impacis the front of the target through a 7.8 cm diamsier hole in the mounting plate. Lfter installotion, the light gas gun was oligned with the nominal impact point marked on the target front ensuring impact near that point. The deteils of determining actual distances from the rear impact point to the point of rear surface mecsurement are described in Appendix C.

Also shown in in:s photograph are the installation of the fly-off disks erid quartz arrival time sensors on =ach facet. Before installation of these devices, the rear surface was prenared by carefully polishing and cleaning the area where the sensors were to be ottached. The fly-off disks were prepared from sheet alum: $n u m$ with a sheet metal punch. The disiss were then flatened in a custom built die. Finaily the disks were polished by hand, yielding a flat, smooth surface. A micrometer was used to sample the thickness of the disks, ensuring inat their thickness remained $250 \mu \mathrm{~m} \pm 20 \mu \mathrm{~m}$. After attachment, the positions of the disks and arrival time sensors were carefully measured and reco-ded.

Since the three-faceted targets were rather sinall and a clos 2 , controfled impact point was desired, these fargets were instofled in the smal! target tank on the AFML Hypervelocity Ballistic Rarge in a manner aimost identical to that described earlier in this chapter for the split cylinder targets

Fig. 72. Design of Multi-Faceted Targets -- End View.

Fig. 73, Photog, aph of 5-Facated Target With Sensors Attached.
 came, a. The light source and velocity measuring x-ray sources were triggered by a foil switch placed on the rear of the sabot stopping plate. Framing camera records of the incoming projectile were used to check the x-ray measurement of projectile velocity and to determine the vertical component of the impact coordinate of the target face. The impact coordinates were also cotained by measurement on the target after impact -- modestly accurate determination of the impact point ($\pm 2 \mathrm{~mm}$) could be made even on completely penetrated targets. Errors in these measurements undoubtedity contributed to the scatrer in the daia from these targets. A ivpical sequence of frames irom the Nodel 300 camera is shown in Fig. 74. Fly-off disk and arrival time experiments were performed stparately on these targets to avoid crowding the target rear and creating interactions between the two types of mecsurenents.

For the larger five-faceted torgets, the experiments were moved back to the mair target tank and set up in a geometry as shown in Fig. 58. The choice of camera-light source combination employed depended, of course, upon the radius of the target installed.

The framing camera setup and arriva! time sensor instrumentation for these experiments has been described previous'y. A foil switch directly on the target face provided a trigger signal for the camera light source and for the arrival time sensor instrumentation. The impact point was setermined by direct measurement on the recovered target (see Appendix C). Projectile velocity was measured on the standard range Fastax ${ }^{(0)}$ system.

Summary

The decay of the peak shock wave normal stress generated by hypervelocity impact is of great importance in understanding the impact dynamics and effects of material strength as well as deternining the validity of numerical solculations of impact events. Two techniques have been developed for measuring peak free surface velocity -- ond consequertly Hugoniot stress -- as a function

Fig. 74. Round 2779 Photo Sequence of Fly-off Disks on 3-Faceted Target.
of distance from the impact point and ungle off the target axis frojectile trajectory). Direct measurement of the rear surface motion of c "split-cylinder" target was employed when expected stresses were greater than approximately 50 kilobars. At lower stresses, thin "fly-off disks" were ottached to the target rear surface. The velocit, imparted to the disks by the shock wave interaction then yielded a measure of the peak free surface velociiy. In each case high speed framing cameras were employed to measure the velocity of the particles in question.

In addition, two methods were developed for determining the time between impact and artival of the shock wave at a given point on the target. One method -the pin probe -- employed a high voltage discharge through an insulating sheet penetrated by the shock wave to produce an arrival signal. The second technique -- a quartz piezoelectric sensor -- yielded a direct, active voltage signal that corresponded to shock arrival time. These arrival time sensors were employed in experiments to determine the shock wove trajectory, R_{s} vs t,

VI. Shock Propagation -- Experimental Results

The experimsenta: techniques described in the previous chapter have been applied to a study of shosk wave propagction in three aluminum cllcys. Major emphasis was placed in measuring the paak nurmi! stress across the shock front througn measurements of free surface velocities or fly-off disk velocities as appropriate. Considerable success was achieved in this endeavor. Secondary effort was placed upon measurement of the shock trajectary using time-of-irriyal probes. The remainder of this chapter presents a description of the experimenal program, the results obtained, and a discussion of the results. The comparison of the resulis with hypervelocity impact theory is contained in the foliowing chapter.

Experimental Program

The prin:ary experiments, those involving measurements of peak normal stress, were designed to study the effects of material strength upon the shock propagation and to explore the variation of stress as a function of angle off axis. Neither of these fectures of a normal hypervelocity impact has received systematic experimental study before. Onily with the advent of the numericul techniques thai include strength terins in a two atimensional geometry as described in Chapter it has it even been possible to calculate these effects -- and these numerical techniques are a elativety recent development, dating from about 1965 in their early forms. The experimental data obtained here provide a realistic test of the abilify of these numerical techniques to predict impact results.

The results of the crater growth experiments presented earlier provided data on the effects that occurred in the region of the crater and provided several useful comparisons with numerically generated results. The data described in this chapter yieids aralagous information on the behavior of the material in regions for removed from the arorer where the shock wave propagated onoy from the impact point at high speat. The combination of both types of results provides a more complete set of experimental impact data.

Preuinus studies of shoelk wove propagation in solids inder the twodimensional conditions created by hypervelocity impact have been performed by Charest (Ref. 13) and by Billings!ey (Ref. 14). Charest used techniques similar to those emp.oyed here to measure the on-axis normal stress in 1100-0 aluminum targets. Billingsley obtained limited stress datc in 6061-T6 aluminum as well as other metals using only measurements of free surface velocity. The lowest stresses he could accurately monitor were therefore restricted by the iechnique employed. The emphasis in his study wos on the very high stresses and the comparison of those data with numerical, pure hydrodynamic calculations. The present study extends the available data over a wider range of stresses for a wider variety of alumirum alloys in: addition to providing off-axis data. It is hoped also that the refined experimental techniques used have resulted in an improvement in the accuracy of the data produced.

The experimental program was performed at the AFML Hypervelocity Bollistic Range and consisted of over seventy successful rounds or, the light-gas gun. All experiments were conducted with a nominal projectile velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ clthough actual projectile velocities ranged from $5.8 \mathrm{~km} / \mathrm{sec}$ to $7.3 \mathrm{~km} / \mathrm{sec}$. In each case the projectile was a 0.605 cm diameter sphere of 2017 aluminum alloy. Three aluminum alloys were selected for target materials on the besis of their widely varying strength properties and the availability of quality material: 1100-0, 6061-T6, and 7075-T6. The pioperties of these maierials have been described in Chapter ! II in conjunction with the crater growth experiments (Table II). The experiments conducted in this portion of the program correspond to Cases 1,6 , and 8 of the crater growth experiments. Whenever the target configuration and available equipment would allow it, both stress and time-of-arrival experiments were performed on the same round. Those experiments inat yielded data are listed in Table VII.

Table VII
Tabulation of Shock Propagation Experiments

Round Number	Target Material	Target Type	Target Radius, (cm)	Projectile Velocity ($\mathrm{k} \cdot \mathrm{m} / \mathrm{sec}$)	Instrumentation
2719	1100-0	5	4.00	6.95 e	D-D
2720	1100-0	5	4.00	6.30	D-D
2726	1100-0	C	1.60	6.92 e	FS
2728	1100-0	C	1.60	6.95	FS
2727	1100-0	C	1.45	$\delta .89$	FS
2730	1100-0	C	1.25	6.82	FS
2733	1100-0	3	1.60	6.17	D-300
2734	1100-0	5	2.50	6.53	D-300
2750	7075-T6	C	1.00	6.09	FS
2752	7075-16	C	1.45	6.09	FS
2760	7075-T6	FP	1.25	5.80e	FS
2:63	1100-0	FP	1.25	6.56e	FS
2766	7075-T6	C	3.60	6.75	FS
2767	7075-T6	C	1.45	6.67	FS
2769	7075-T6	C	1.25	6.80	FS
2777	6081-T6	C	1.60	6.98	FS
2774	7075-T6	C	1.00	6.71	FS
2775	6061-T6	3	1.75	6.77	D-300
2776	6061-T6	3	1.90	6.92e	D-300
2777	7075-ij	3	1.90	6.77	D-300
2778	7075-T6	3	1.75	6.56	D-300
2779	1100-0	3	1.90	6.80	D-300
2780	1100-0	3	1.75	$7 .{ }^{1}$	D-300
2781	7075-T6	FP	1.25	7.01e	FS
2784	7075-T6	3	1.90	6,80e	ET
2785	(-)61-T6	3	1.90	7.05	ET
2787	7075-76	3	1.75	6.71	ET
2789	6061-T6	3	1.75	6.68	ET
2791	1100-0	3	1.75	6.71 e	ET
2796	6061-T6	5	1.75	7.05	- 300

Table VII (Cont'd)

Round Number	Target Material	Torget Type	Targe: Radius (cm)	Projectile Velocity ($\mathrm{km} / \mathrm{sec}$)	Instrumentation
2797	7075-T6	5	1.75	6.98	D-300
2798	1100-0	FP	1.25	6.70	FS
2799	6061-76	5	2.50	7.01e	D-300,QT
2801	7075-T6	5	2.50	6.46	D. 300
2804	7075-T6	5	4.00	6.70 e	QT
2806	6061-T6	5	4.00	6.70 e	QT
2807	1100-0	5	4.00	6.46	OT
2809	1100-0	5	4.00	6.77	D-D, QT
2811	1100-0	5	4.00	6.99	ET, QT
2815	1100-0	5	2.00	0.74	QT
2817	1100-0	FP	1.25	6.35	FS
2818	1100-0	5	2.50	6.89	D-300
2820	1100-0	c	1.60	6.19	FS
2821	7075-T6	5	3.00	6.85	QT
$28 \% 2$	7075-TS	5	2.00	6.98	D-300, QT
2823	7075-Tó	5	8.00	7.00	D-D
2824	7075-T6	5	8.00	6.95	D-D, QT
2825	7075-T6	5	6.00	6.41	D-D
2826	7075-T6	5	10.00	6.71	D-D, QT
2827	7075-T6	3	1.60	7.10	QT
2828	6061-T6	5	3.00	6.31	QT
2829	* $051-\mathrm{T} 6$	C	1.45	6.46	D-300
2831	7075-T6	C	1.60	7.10	D-300
2932	7075-16	5	3.00	6.95	GT
2833	1100-0	3	1.45	6.52	QT
2834	1100-0	5	3.00	7.12	D-300, QT
2836	1100-0	5	10.00	6.45	D-D, QT, OT
2837	6061-To	5	6.00	6.26	D-D, QT, OT
2838	6051 -T6	5	10.00	5.93	D-D, QT
2842	6061-T6	5	8.0	5.89	QT, OT

Table VII (Cont'd)

Round Number	Target Material	Target Type	Turget Radius (cm)	Projectile Velocity $(\mathrm{km} / \mathrm{sec})$	Instru- mentation
2851	$1100-0$	5	5.00	6.43	D-D, QT
2854	$7075-\mathrm{T} 6$	5	5.00	6.61	D-D
2857	$7075-\mathrm{T6}$	5	4.00	6.45	QT
2859	$7075-$ T6	5	4.00	6.44	D-D
2860	$1100-0$	5	8.00	6.77	D-D
2863	$6061-T 6$	5	8.00	6.70	D-D
2864	$1100-0$	5	6.00	\therefore.	D-D, QT
2865	$6061-$ T6	5	4.00	-2	D-D,QT
2867	$1100-0$	5	3.25	6.67	D-300
2869	$7075-T 6$	5	3.25	6.89	D-300

e -- Estimated projectile velocity.
D-D -- Fly-off disks measured with Dynafax framing camera.
D-300 -- Fly-off disks measured with B\&W 300 comera.
ET -- Electrical pin time-of-arrival probes.
QT -- Quartz time-of-arrival probes.
OT -- Optical fiber time-of-arrival probes.
FS -- Free surface motion measured with B\&W 300 camera.
Target Type: 5 -- Five faceted target.
3 -- Three faceted target.
C -- Split cylinder target.
FP -- Flat plate target.

Stress Measurement Results

Over 240 data points were obtained from either direct measurements of free surface velocity or fly-off disk velocity employing the techniques described in Chapter V. The experiments emphasized obtaining data on the two aluminum alloys 1100-0 and 7075-T6 which represent the lower and upper bounds of strength properties for the available materials. Somewhat less complete data was obtained on the 6061-T6 alloy which has intermediate strengtl: properties.

For each alioy, the disk velocities were measured at five different nominal angles, $0^{\circ}, 25^{\circ}, 40^{\circ}, 55^{\circ}$, and 70°, with respect to the trajectory (axis). Actual impact points did not generally correspond with the nominal impact point, $t_{\text {tence }}$ a distribution of angles was actually achieved.

The measurements of free surface velocity taken from the spiit cylinder targets were made of a variety of angles. The data for each alloy has been broken into five angle ranges for presentation. The ranges were determined by the actual angular distribution of the data and by consideration of the nominal angles. The ranges are: (!) $0^{\circ}-17.5^{\circ}$, representing points nearly directly behind the impact point; (2) $17.5^{\circ}-32.5^{\circ}$; (3) $32.5^{\circ}-47.5^{\circ}$; (A) $47.5^{\circ}-62.5^{\circ}$; and (5) $62.5^{\circ}-90^{\circ}$ with the mminal angles lying roughly in the ceniers of these ranges.

The method for calculating stress from the measured disk or free surface velocity and the assumptions employed in these calculations are discussed in derail in Appendix G. It consists essentially in ossuming that the disk or surface responds ultimately to the peak normal stress and in employing the velocity doubling rule, i.e., that the free surface (or disk) velocity is equal to iwice the material velocity $\left(v_{f 5} \cong 2 u\right)$. The aluminum Hugoniot data required for the calculation was obtoined from Ref. 48 which also corresponds very closely to the Hugoniot data used in the numerical calculations to be described in Chapter VII.

Presentation of Resulis. Each experiment was designed such that the nominal projectile velocity would be $7.0 \mathrm{~km} / \mathrm{sec}$ and so that the expanding shock front (assumed spherical) would strike the free surface or disk where measurements were being made at normal incidence (i.e. the incidence angle, δ, between the shock front and rear surface being zero). in no case were the nominal conditions achieved exactly. Every data point presented below was corrected for these deviations from nominal performance by means of the scaling relation

$$
v_{f s}{ }_{\text {scaled }}=\left(v_{f s}{ }_{\text {measured }} / \cos \delta\right) \cdot\left(3.471-0.353 v_{p}\right)
$$

where v_{p}, the actual projectiie velocity, was given in $\mathrm{km} / \mathrm{sec}$. This scaling low is largely empirical and is explained and justified in detail in Appendix E. The law is beiieved to be quite accurate over the small range of the variables employed in this study.

Measurement errors can crise from a variety of sources. While most of these sources have been discussed previously, the najor ones are summarized here for eomparison:
a. Impact Point. Can be determined to about $\pm .03 \mathrm{~cm}$ in larige targets, but to only about $\pm .05 \mathrm{~cm}$ in small targets where significont deformation of the whole target occurs. For the split cylinder targets, impact can be determined to approximately $\pm .1 \mathrm{sm}$.
b. Impact Point to Fear Surface. A physical ineasurement that can be made to an accuracy of about $\pm 0.3 \mathrm{~mm}$.
c. Framing Camera Spaed. Accurate to ± 1 count, amounting to a percentage error vorying from $=0.1 \%$ to $\pm 0.03 \%$ depending upon the camera speed.
d. Disk or Free Surface Velocity. Accuracy varies deperiding upon image quality, travil distance, comera speed, etc. An rms error is
cornouted in the data reduction program and varies from about $=0.5 \%$ to over -10% depending on circumstances. This rms error is reported for each data point in Appendix F.
e. Camera Magnification. A paiential systematic error estimated io amount to approximately 1.5% for those films taken with the B\&W 300 camera and approximately 2% for films taken with the B\&W 326 camera.
f. Conversion of Free Surface Velocity to Stress. Less than 1\% -see Appendix F.

The data obtained is shown in graphical form in Figs. 75 through 89 displaying both free surface velocity (or disk velocity) versus shock radius, $R_{s^{\prime}}$ and peak normal stress, $\sigma_{n^{\prime}}$ versus shock radius for the three aluminum alloys in five angle ranges. The detailed data from each round are included in Appendix F. Estimated errors have been calculated for several data points based upon the above sources and are shown in Fig. 75. These can be considered typical for the bulk of the data presented in the remaining figures.

Velocity-Distance Relations. The most obvious feature of the data is that the measured free surface or disk velocity decreases exponenfially with inereasing distance into the target and that the decoy law changes sharply at some distance : ato the target which varies with the target material. This behavior is emphasized ty the straight lines shown on each plot of velosity versus R_{s}. In each case the straight lines were obtained from a least squares fit to the daij in the region indicated. The consistency between all the sets of cistu is startling and strongly emphasizes the essential correctiness of this dual decay law behavior. The change in behovior of the decity low is believed to be ossocianed with release waves generated in the region of the crater. The different position of this knes in the carve for different alloys indicates that the effect is also materisl strength dependent, i.e., that non-hydrodyramic attenuation is occurring at this point. This aspest of the data is discussed in more detail later in this chepter.

[^1]

Fig. 87. Variation of Free Surface Velocity
with Shock Radius -- $7075-\mathrm{T} 6$ Aluminum Allay
$32.5-47.5^{\circ}$ Off Axis.

Fig. 89, Variation of Free Surface Velocity with Shock Radius -- 7075-T6 Aluminum Alloy 62.5-90 Off Axis.

If ihe velocity-distance relation is expressed in the form

$$
v_{\mathbf{f s}}=a R_{\mathbf{s}}^{b}
$$

then each set of data can be characterized by two sets of the constants a and b, each set applying to one section of the decay curve, and by the specification of the yalue of R_{s} at which the transition between the two decay laws takes place. This decay lovs data is shown in Tabie VIII. The parameter b.specifies ithe slope of the decay curve ard is the most imporiant parameter in these relations.
in the angle range $0-17.5^{\circ}$, the data indicates similar behavior for all three alloys for those portions of the curve corresponding to the higher free surfaca velocity; consequently the curve was derived from a composite of the data from all three alloys in this angle range. In this free surface velocity regirne, the carresponding peak normal stresses are quite high, ranging from 20 kbar to over 200 inbar. Therefore, it is not surprising that the three alloys
behave alike. The overall response of the materials is dominated by the hydrodynamic behavior -- and the strength properties of the different alloys do not offect hydrodynamic behovior.

In the angle range 17.5-32.5 degrees the datc indicate that the same phenomeran is also occurrir.g. To within experimental error, the slopes of the lines are same for all three olloys again and the curves shown were derived from data t in from all three olloys. For the remaining angle ranges, the data is consistent with nearly identical behavior by all three alloys in the upper pressure range, but there is insufficient data to be conclusive. In these remaining cases, the curv:s were derived separctely (whenever sufficient data was available) for each ailoy and angle range.

The tiugoniot relation between the stress and free surface (or disk) velocity is sufficiently non-linear that some curvaiure can be seen in the stressshock radius plots, especially in the higher stress range. Up to a siress of rcughly 50 kilcbars, the free surface velocity-stress relation is nearly linear. Consequently the log-log plots relating peak normal stress to shock radius yieid straight lines in ihe lower stress ranges. The slope of this line is identical to that given in Table VIII (the constant b_{2}) for the velocity-distance relations.

As on alternative, it is possible to obtain straight line fits to the \log stress-log shock radius data. Relatively small differences in the curves result if this approach is taken. In any event, it does not appear possible to make a clear choice of the two curve fitting approaches on the basis of the available data. The choice of the linearized log velocity-log shock radius relations user- was quite subjective and based on the opinion that slightly more consistent results were obtained. In addition, the disk velocity is the measured quantity, while stress is a derived quantity here.

Variations With Off-Axis Angle. It is a common observation that the shock wave produced by a hypervelocity impact exponds from the source in a neariy spherical manner, e.g., see Ref. 11. Empirical observations, such, as spall effects, also indicate that the stress in the expanding shock front must be a

Tübla vili

Velocity-Distance Decay Low Parameters

$$
v_{f s}\left(k r_{1} / \mathrm{sec}\right)=a R_{s}^{k}
$$

Targes Alloy	Off-Axis Angle Range (deg)	Multaplier ${ }^{2} 1$	Exponent b_{1}	Est Exponent Variance	Approximate $R_{c}(\mathrm{~cm})$ at Transitior.	Multiplier ${ }^{2} 2$	$\begin{gathered} \text { Exponent } \\ b_{2} \end{gathered}$	Est Exponent Variance
1100-0	0-17 5	0.345	-1.335	0.027	4.8	0.990	-2. 267	0.031
	17.5-32 5	G. 304	-1. 306	0.062	4.8	0.975	-2.312	0.047
	32.5-47.5	0.278	-1.346	0.035	5.0	1.191	-2.635	0.090
	47. 5-62. 5	0.107	-1.305	0.093	5.1	1. 517	-3.222	0.086
	62. 5-90	0. 176	-1. 587	0.178	-	-	-	-
0061-T6	0-17.5	0. 345	-1.335	0.027	2. 6	0.660	-2. 075	0.372
	17.5-32 5	C. 304	-1. 306	0.062	2. 5	0.602	-2. 037	0.038
	32.5-47 5	-	-	-	-	0, 549	-2.035	0. 143
	47 5-63. 5	-	-	-	-	0. 513	-2. 122	0.178
	62.5-40	-	-	-	-	0. 257	-2. 142	0.094
70:5-T0	0-37. 5	0.345	-1. 335	0.027	2.5	0.579	-1.922	0.052
	17.5-12.5	C. 304	-1.306	0.062	2.6	0.570	-1.943	0066
	32.5-47.5	0.211	-1. 157	0.232	2. 5	- c:	-1.960	T. 110
	47.5-62.5	0215	-1.416	0. 147	2.2	0.345	-1.863	i00
	62. 5-90	-	-1. 116	,	-	0.317	-2.623	0.180

relatively slowly varying function of angle off axis. These facts form the basis for attempts to simplify analytical studies of hypervelocity impact cratering by assuming that the problem has a one-dirriensional spherical geametry. T'...s suggests physically that a hypervelocity impact into a thick target is equivalent to a sudden, confined energy release in a small region of an infinite medium.

Using this type of assumption Rae (Ref. 18) oppriied point source blaet wave theory to studying the hypervelocity impact problem. His approximote methods for soiving the syrnmetric problem are discussed in Chapter Vif. In addition, he explored the effecis of esummetry (i.e. the existence of the free surface at the target face) and showed that, for this approximafe theory, the variations in shock variables such as peak pressure off axis had only a minor effect on thuse same variables measured on exis.

Physicaliy, it would be expected that the maximum peak normai stress would occur or -xis, that the stress would decrease slowly with increasing
angie off axis, ond that it wouid then drop more rapidiy to zers as the region of the free surface is reached. This general trend is confirined by the dara obtained here -- see Fig. 90 which compares the results of the experimental data reported earlier for 1100-0 aluminum for the various angle ranges and Fig. 91 which makes the same comparison for the 7075-T6 alloy. These rasuilts indicate that the velocity decay (or stress decay) does not charge with angle in the higher stress region to within the accuracy of the experimental data, although the absoiute velocity (stress) does drop in about the expected way as a function of arigle off axis. In the lower stress range, the magnitude of the curve varies with off~axis angle in roughly the same manner as before, but here the stress seems to decay at a higher rate as the off-axis angle geis large. There was not sufficient experimental data obtained to determine the desired decay curves for the large-angie case (-70° off-axis) for 1100-0 aluminum or for the high stress range of the 2075-T6 aluminum. The individual data points actually obtoined are plotted, with several typical error bars, to illustrote that the data follows the qualitative trend discussed.

The voriation of peak normal stress (normalized to the on-axis value) with ungle is shown in Figs. 92 and 93 for three shock radii, 2, 4, and 8 cm for $1100-0$ and $7075-$ T6 cluminum targets respectively. The approximate curves drawn through the data points show the type of behavior discussed earlier. The disk velocity (or peak stress) varies only a few percent from its on-axis value out to off-axis angles as high as 25-30 degrees. The stress ihen drops smoothly with increasing angle to zero of ninety degrees which corresponds to the free front surfcce.

An onomalous behavior is displayed by the data from the 1100-0 aluminum at a shock radius of 8 crr when the stress decreases towcrd zero with increasing angle very suddenly at about $\ddagger 0$ degrees. This peculiar behavior implies that the s! ress decay rate changes with the angle off axis at large shock radii. One explanation is that rurefaction waves originating along the free front surface have overtaken the shock wave by this time and are areating further attenuation. it is

Fig. 90. Variation of Disk Velocity Decay as a
Function of Angle Off Axis - $1100-0$ Aluminum.

Fig. 92. Variation of Normalized Surface Velocity with Angle Off Exis for Three Shock Radii in 1100-0 Aluminum.

Fig. 93. Variation of Normalized Surface Velocity with Angle Off Axis for Three Shock Radii in 70\%5-T6 Aluminum.
not clear why the other allays dio not show this behavior.

Previous Experimental Results

Results of Charest. The earliest direct measurements of stresses from hypervelocity impacts into a metallic target were those obtained by Charest (Ref. 13) who used a fly-off disk fechnique similar to the one described in Chapter V to obtain the measurements. All impacts were 0.476 cm diameter aluminum spheres into 1100-0 aluminum targets at a velocity of approximately $7 \mathrm{~km} / \mathrm{sec}$, and only on-axis measurements were made. For years, this has been the only direct experimental data on stresses in a metallic target available to researchers for correlation with theoretical or analytical studies. Chapest's data has been scaled linearly with size to the nominal 0.635 cm diameter projectile used here and has been scaled with projectile velocity to the nominal $7 \mathrm{~km} / \mathrm{sec}$ in accordance with the procedure of Appendix E. The scaled results are compared with those obtained i:1 this study in Fig. 94.

The agreement is quite good, especiaily at the higher stresses. In the shock radius range of $2.5<R_{s}<5 \mathrm{~cm}$, Charest's data tends to fall slighrly lower than that obtainea in this study. The net result is that the change in slope of the stress decay curve reported here is not apparent in Charest's data. The consistent results shown earijer for various angles with respect to the trajectory covering three separate atuminum alloys strongly substantiates the conclusion that the knee in the decay curve actually exists. Charest's results are consistent with the curve of Fig. 94, but displcy more scatter thon the data from which the curve was derived.

Bosed upo.r his dato, Charest derived the following expression for the decay of the peak normal stress, σ_{n} :

$$
\sigma_{n} / \sigma_{H}=1.234\left[\frac{R_{s}}{R_{s o}}\right]^{-1.6} \text { for } R_{s} \geq 1.14 R_{s o}
$$

Fig. 94. Comparison of Data with Results of Charest (Cn Axis).
where σ_{H} is the one-dimensional Hugoniot pressure of impact, and $R_{\text {so }}(=d / 2)$ is the projectile radius. The upper limit of validity was obtained by simoly extrapolating this equation to the point at which

```
\sigma
```

Expressed in the same form, the results of this study are as shown in Table IX. For these experiments, $\sigma_{H}=962$ kilobars and $R_{s \rho}=0.3175 \mathrm{~cm}$. To derive these decay Jows, the experimental data renorted eariier (Figs. 75, 80 anc 85) was converted to \log stress verses \log shock radius and straight lines were least squares fifted to these data points over the various ranges of interest. For the lower stresses, the results (i,e. the exponenis) compare closely with those obtained in Table VIII. For the higher stresses, the increasingly non-linear relation between disk (or free surface) velocity and peak normal stress leads to a slightly altered exponential decay law. The results of Table Vill displaying the velocity versus distance decay law is preferred here over the stress versus distance decay low since the former appears to be the more fundamental quantity.

Tabie ix

On-Axis Stress Decay Laws
1100-0 A!uminum

$$
\begin{gathered}
\left(\sigma_{\mathrm{n}} / \sigma_{\mathrm{H}}\right)=1.116\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)^{-1.464} \quad 2.1<\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)<15.1 \\
\left(\sigma_{\mathrm{n}} / \sigma_{H}\right)=11.29\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)^{-2.303} \quad 15.1<\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)<31
\end{gathered}
$$

6061-T6 Aluminum

$$
\begin{array}{ll}
\left(\sigma_{\mathrm{n}} / \sigma_{\mathrm{H}}\right)=1.116\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)^{-1.464} & 3.1<\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)<8.2 \\
\left(\sigma_{\mathrm{n}} / \sigma_{\mathrm{H}}\right)=4.54\left\langle R_{\mathrm{s}} / R_{\mathrm{so}}\right)^{-2.132} & 8.2<\left(R_{\mathrm{s}} / R_{\mathrm{so}}\right)<31
\end{array}
$$

7075-T6 Aluminum

$$
\begin{aligned}
& \left(\sigma_{n} / \sigma_{H}\right)=1.116\left(R_{s} / R_{s o}\right)^{-1.464} 3.1<\left(R_{s} / R_{s o}\right)<7.9 \\
& \left(\sigma_{n} / \sigma_{H}\right)=-3.125\left(R_{s} / R_{s o}\right)^{-1.975} \quad 7.9<\left(R_{s} / R_{s o}\right)<31
\end{aligned}
$$

Results of Billingsley. Mare recently Biliingsley (Ref. 14) reported oi-M axis measurements for the impart uf aluminum spheres onto 6061-T6 aluminum fargets. He obtained two sets of data, one involving 0.476 cm diameter projectiles with a nominal valocity of $7.32 \mathrm{~km} / \mathrm{sec}$, the other using 0.635 cm diameter projectiles with a nominal velocity of $7.63 \mathrm{~km} / \mathrm{sec}$. (Billingsley alss obtained data for impacts into 6051-T6 and 2024-0 aluminum at impact velocities of 4.42 $\mathrm{km} / \mathrm{sec}$ and $1.52 \mathrm{~km} / \mathrm{sec}$ respectively as well as data on copper onto copper impacts at $6.1 \mathrm{~km} / \mathrm{sec}$. Not being of direct interest here, this additional data will not be discussed.)

The jecinnique empioyed by itiiingsiey was to measure directiy the rear surface velocity of the flat plate rarget with a high speed framing camera. This procedure is valid for relatively thin targets, but at some point the strength of the maierial will retard the rear surface motion and destroy the validity of the experiment. In this study, experiments with fly-off disks showed clear separation between the target rear surface and the disk for shock radii as small as 1.75 cm . It therefore appears unlikely that the procedure employed by Billingsley can yield valid data for shock radii of greater than about 2 cm for a 0.635 cm diameter p ojectile. Applying linear size scaling to adjust the 0.47 dm projectile diameter data to the nominal 0.635 cm diameter, and rpplying velocity scaling in accordance with Appendix E, a portion of Billingsley's data is presented in Fig. 95 along with the on-axis 0061-Tio duminum alloy data obtained here and presented earlier in Fig. 80. A plot of all the 6061-T6 aiumintim onaxis data on a different seale is shown in Fig. 96 . In ench cose the curve is obtained from the decay low data of Table VIII.

For $R_{s}<1.0 \mathrm{~cm}$, Biilingsley's data agrees well enough with the expec' ed behavior of the decay curve, while for $R_{s}>2.5 \mathrm{~cm}$ the agreement with the results of this study is fair, with Billingsley's data tending to fall below the decay curve meosured here. This is as expected, since his measurement technique should lead to low results ar these shock radii. In the middle region, $1.0 \mathrm{sm}<R_{s}<2.5$ cm , where the ressilts should be at maximum accuracy the agreement is at its worst. The agreement with Charest's data is no better. Billingsley notes this latter difference (Ref. 14:8) and attributes the difference to maieriol strength effects. The cata obtained in this study on the 6061-T6 aluminum refute this interpretrtion and indicate that at least this portion of Eillingsley's data must be reevaluared.

Billingsley also peports the results of several numerical calculations corresponding to inis experiments performed with a pure hy irodynamic (no strength) formulation, These results will be discussed in Chapter VII.

Fig. 95. Comparison of Data with Results of Sillingsley (On Axis).

Effects of Material Properties on Stress Attenuation

The effect of material strength upon the propagation and attenuation of stress waves was of prime interest in this portion of the experimental program. Little experimental work on this subject has been accomplished previously in hypervelocity impact studies although considerable work has been completed in one-dimensional (plate slap) impact research. In the following section the results obtained in this aspect of the study are described, some of the implications of previous one-dimensional research are discussed, and finally an attempt is made to explain some of the effects evident in the two-dimensional hypervelocity impact case.

Stress Attenuation Results. For discussion purposes, curves derived from the experimental data presented earlier in this chapter (Figs. 75 through 89) are given here again in a form more convenient for direct comparisen of the behovior of the three aluminum alloys. The curves derived from on-axis data are shown in Fig. 97, while the curves for $25^{\circ}, 40^{\circ}$, and 55° off axis are snown in Figs. 98,99 , and 100 , respectively. Although the data is less reliable and exists for only the 6061-T6 and 7075-T6 alloys, the information for the 70° off-axis case is also shown in Fig. 100.
ihe main features of the stress decay are quite apparent for each alloy and show considerable similarity in the desay behavior for the various off-axis angles. In each case, the stress shows two distinct regions of different rotes of stress attenvation. In the upper region where the stresses are relatively high, the behavior appears to be hydrodynamic in the sense that the decay for the three alloys is identical to within experimental error. As mentioned previously, the curves in the higher stress region in Figs. 97 and 98 were derived from a composite of data from all three alloys. At the higher angles (Figs. 99 and 100) there was not sufficient data to justify this procedure and only the results of the data obtained from 1100-0 aluminum are shown.

Fig. 97. Comparison of Stress Attenuation Kar Three Aluminum Alloys (O_{n} Axis).

Fig. 99. Comparison of Stress Attenuation
for Three Aluminum Alloys (40° Off Axis).
 off exis (tu within experimental rccuracy) there is a distinct change in the shape of the decay curve for each alloy. Beyond this knee in the curve, the attenuation rate is then larger for each clloy, being greatest for the soft 1100-0 alloy and smallest for the very hara 7075-16 aluminum. It would afpear, therefore, that the experimental data snows significant non-hydrodynamic behavior in the attenuation of the shock wave produced in aluminurn by a hiypervelecity impact.

The effects of variation in the ong! off axis, briefly discussed before, are quite evident in the experimentai data. The net effect appears to be simply a shift (lowering) of the curve on the log-velocity/log-shock-radius plots as the off-axis angle is increased. To first order, the decay rates observed (the stope of the curve) do not cinange with increasing angle for the 6061-T6 and 7075-T6 alloys, but show a rather substantial increase with increasing angle for the 1100-0 alloy.

Several possible sources of error have been examined to ensure that the above phenomena really exist and are not simply created by the experimental methods:
a. Instrumentation. At a target thickness of approximarely $2.5 \mathrm{~cm}, \mathrm{~m}$ a transition was made from the use of the Model 300 camera to the Dynafax Model 326 camera for measuring the fly-off disk velccity. There was a region near $R_{s}=2.5 \mathrm{~cm}$ where there was overlup in the camera coverage and the results were consistent. The use of two cameras could not account for the knee in the curve for the $1100-0$ alloy since only the Dynafax camera was used in the region of $R_{s}=5 \mathrm{~cm}$.
b. Experimental Error. It is possible that scatter in the experimental data coupled with the error associated with each data point might lead to the tehavior shown. This is highly unlikely. The errors ossociated with each data point, particularl; at the lower pressures,
ore substuntiaily smailer than the differences in the curves noted. Likewise, the scatter of the data in this region is small and has been taken into account, at least partially, by the statistical technique used to derive the curves. The consistent behavior between the data taken at various angles -- which constitute essentially separate experiments -- also speaks strongly against random errore in the data leading to the observed behavior.
c. $\bar{r}!y$-Off Disks. The performance of the fly-off disk technique in the presence of a two-wave structure (i.e., on elastic precursor) has been questioned. This subject is treated in Appendix D and the twawave structure was found not to significently affect the fly-off sisk velocity. Likewise, spall in the rarget will not affect the measurement of peak rear surface veiocity by the fly-off disks since no tensile forces can be transmitted across the target-disk inferface.

Based on these facts, it is felt that the experimentai data obtained and the method used to present that data here represent an accurate portrayal of the true atienuation of the peak of the stress waves as they propagate into thick aluminum targets. It now remains to explain the various features of the results.

One Dimensional Planar Stress Attenuation. The attenuation of shock woves in a plonar, one-dimensional strain situation has been studied by various researchers in an effort to develop models of the material behavior under the shock looding conditions. Some of the bosic results of this research are reviewed here and will be used later in discussing the hypervelocity impact results.

The early models of shock loaded material behovior assumed furely hydrodynamic behovior, i.e., shat the material had no shear strength. Among the eariiest documented evidence of the elastic-plastic behovior of materials at high stress levels was the work of Fowles (Ref. 49) who performed plate slap experiments in aiuminum (2024) at stresses up to 200 kilobars. He used several techniques to monitor the velocity of the rear surface of the targe:. The results indicated an attenuation of the stress pulse that was premature when compared to
 sctisfactory agreement with experiment provided the yield strength of the material was allowed to be a linear function of the compression of the materiat.

The basic mechanismss by which this non-hydrodynamic attenuation occurs are illustrated in Fig. 101. Upon impact, both elastic and plastic waves of compression are created and travel in $t \cdot \geq x$-dirsction through the teryet and in the negative x-direction through the imoacting plate. Upon reflection off the free surface of the plate at A, an elastic unloading wave trovels baci into the torget at local sound speed in the compressed medium, which is higher than the speed of the compressive plastic wave in the target. Eventually, the elastic unioading wave catches the plastic compressive wave of the point B, unloading it partially and reflecting to the feft. In addition, a series of plastic unloasing waves whas created at the point A (the plastir rarefaction fan) and the components prapagate in the x-direction at velocities greater than that of the plastic compressive wave. Eventually, multipie reverberations of the elastic reliei wave occur between the head of the rarefaction fan and the plastic compression wave, further decreasing the amplitude of the latter in stepwise fashion.

Shortly thereafter, the head of the rarefaction fan cotches the plastic compression wave, resulting in further attenuation as more of the fan overtakes the wave. In the purely hydrodynamic case, nothing anologous to the elastic waves exists and attenuation does not commence until the head of the unloading wave from point A catches the compressive wave and starts to unload the pressure continuously.

The general situation encountered in terms of stress attenuation in the plenar one-dimensional situation is further illustrated in Fig. 102 which gives a general picture of the type of results obtained by Curran (Ref. 50) and others (Refs. 51 and 52). The figure is not intended to present any specific data, only to illusirate trends.

With this background, the basic effects can be understood, but further complications orise. Curran (Ref. 50) found that to predict correctly the magnitude of the experimentally observed attenuation using simple elastic-plastic

Fig. 101. Illustration of Wave Interactions in Elastic-Plastic Material Impacted by Flat Plate.

Fig. 102. Typical Results of One-Dimensional Attenuation Experiments in Aluminum.
theory, it was necessary to assume thar the yieid sirengrin of the $2 \hat{2} \hat{2} \hat{4}$ aluminum used varied with the compression of the maierin'. He proposed that the tensile yield strength varied linearly from its value of less then 1 kilobar at zero pressure to over 12 kifobars at an imposed pressure of over 200 kilobars. Similar results were olso reparied by Mader (Ref. 53) who ohtained good agreement between elastic-plastic colculations using a variable yield strength model and detailed measurements of the stress wave shapes obtained experimentaily with sapacitor gauge techniques.

Erkman, et al (Ref. 52) performed additional attenuation experiments in 2024 and 1060 aluminurr, and confirmed the essential correctness of an elast:cplasiic treatment of the shock wave attenuatior in addition tc exploring the effects of a shear modulus that varied with compression. As shown in Fig. 102, culculations with the usual elastic-plastic theory show a rounded, step-like decreose in the stress at the point where the elastic relief wave overtakes the plastic compression weve. Further, there is o region of constant stress associated with a distinct separation beiween the elostic relief wave and the plastic rarefaction fan that follows. Erkman et al., found no evidence of the existence of this step-like behavior in their experimental data. On the basis of his evidence, Erkman concluded that a Bauschinger effect (lack of distinct yield point upen relief) in the aluminum was spreading the elastic relief wave so that the oftenuation became one smooth process, In addition, Erkman discovered significant differences in the behavior of the 2024-T351 and 1060 aluminum alloys emplayed in the experiments. The 1060 alloy indicated o more fluid-like behavior of the higher pressures.

Somewhat better agreement between the theory and the experimentral determination of the point at which attenuation starts can be obtained by allowing the elastic modulii to vary as a function of the hydrostotic pressure (Ref. 54:86). This results in an increase in the bulk modulus, K, and consequently in the speed at which the elastic relief wave propagates.

More recent experiments by Seaman, et al (Ref. 55) were conducted in measuring the complete stress-time profile of the wave at vcrious positions
 concluded that (Refs. 55:92 and 98):
a. A pronounced Bauschinger effect in both alloys governed the speed of the rarefaction waves and the stress attenuation rate. A gradual transition from elastic to plastic behavior, rather than a specific yield point, was observed upon unloading, with a continuously decreasirig shear modulus.
b. No stress relaxation effects were observed, although this does not preclude their existence at early times.
c. A large elastic-plastic transition region was also observed upon loading for both alloys. This leads to a gradually rising non-i :eadystate profile between the precursor and main wave.

Th: variety of studies cited above serves to illustrate the complexity of the shock wave propagation and attenuation processes, evers in the simple, planar geometry of the plate impact experiment. It has been amply demonstrated thut elastic-plastic theory leads; a relatively good description of the propagation, but the details depend upon the behavior of the material. Even in such a simple material as aluminum, such things as the Bauschinger effecr, strain hardening, struin-rjie effects, and a nori-linear transition between elastic and piastic states moy affect the shock wave.

Spherical Geometry. The divergent geometry iypical of the hypervelocity impact of a compact projectile onto o large target severely complicates the situation. Here it is more difficult to yisualize the esents since the nearly spherical symmetry imposes a geometric attenuation on top of that produced by material effects. The initial loading conditions are also much mare complicated than in the plate impact case. In the latter, one-dimensional strain can be assuined, while a hypervelocity impact creates a crater that grows in the presence of flowing material right in the region where the loading that will create a shock wave is taking place. Few really complete unaiytical or nur eerical studies of
strength dependent shock wave propagation in this comn!icated hypervelocity case have been cerried out.

By making several simplifyirg assumptions regarding geometr', Mok. (Ref. 56) was able to provide some insight into the wave propagation pherromena. He assumed a one-dimensional, spherical yecmetry. The inside of a spherical cavity in the medium was assumed to be loaded t_{y} a pressure pulse of finite ampilitude and fixed duration. The equations of motion and an elastic-plastic matarial model were then solved numerically (finite difference techniques) to determine the subsequent materia! motion. In this situation it is, unforiunately, imercctical to construct a reaionably accurote r-t plot of the wave interactions to check the numerical calculations (as wos done b; Currar[Ref.50] in the planar case), since the characteristics of the equations of motion are curved paths due to the geometry.

The features of the stress oftenuation results obtainea' k:, Mok (Ref. 56:35) are illustrated in Fig. 103. No scales are shown since only the shape of the curves and relative slopes ore of intmrest. The upper portion of the decay curve represents the propaciation of the plastic (or hydrodynamic) wavefront prior to its being overtaken by unloading waves. In this region the slope of the curve is nearly -1, implying that the free surface velccity (or particle velocity, u) varies as $1 / R_{s}$. The approximate slopes of these curves are shown in porentheses.

Assume that the shock thickness remains constont in this regime and that the energy within the shock wave is conserved. If the shoik pulse is sufficiently uniform that it con be assumed to be at constant density, the specific, internal energy, e, of the shocked material is proportional to $1 / R_{s}{ }_{s}^{2}$. Likewise, it can be shown from the Rankine-Hugoniot jump conditions that, behird !he shock front, $e=(1 / 2) v^{2}$. Consequently

$$
\begin{equation*}
u=1 / R_{s} \tag{Eq.10}
\end{equation*}
$$

agreeing with the results of Mok's calculations. This result is also obtained ai much lower pressures, where acoustic approximasions may de employed.

Fig. 103. Shock Wave Atrenuation Results for OneDirmensionc! Spherical Geometry According to Caiculations by Mok.

The numerical results reported by Mok are, unfortunctely, not of sufficiently fine resolution that the betiavior of the stress waves in the region of the knee of the curve can be examined in detail. The change in slope at this point is clearly d. : to release woves catching the main compressive wave, but the distinction between the elastic and plastic unloadi.ig waves and the separation between the two are not apparent in the results reported. This might have been affected by the size of the zones used in the numerical calculations.

The lower portions of the attenuation curves show a substantial difference in slope due to the variation in the postulated material strength. Mok (Rei. 56:39) nores that: "This difference in pressure is about the same order as the yield stress of the material and appears to be nearly constant throughout the propagation. Accordingiy, the influence of the yield strength becomes more significant as the strength of the shock wave becomes weaker." This is apparently caused

Dy the faci thaf the sirength dependent arienuaion is caused by ine elusiic unloading wave and that the amplitude of this wave is related to the tensile yiald strength of the material.

The net affect is that for two materials with the same Hugoniots the material with greater yield strength exhibits a lower stress of large shock radii once the elastic rarsfaction wave has overtaken the plastic compression front.

Somparison with Experimental Results. In view of the descriptions of stiength dependent wave propagasion just given, the experimental shock attenuation results obtained here will be discussed in more detail. The reader is again referred to Figs. 97 through 100, particularly the first of these where the onoxis attenuction is disployed.

In the high stress region, the behavior of the attenuation is substantially different (more severe) than that calculated by Mok for his idealized one-dimensional simulation of a hypervelocity impact. The higher attenuation recorded in the experiments frobably indicates that the loading history is unlike that described by Mok due to the processes occursing in the aratering region. The ey-periments appear to produce a stress pulse whose amplitude drops sharply with distr,uce behind the shock front, whose components travel ai different velocities a,d which, hence, tends to spread out as it progresses, leading to increased attenuation. The two-dimensional aspects of the impact, the lateral flow in the crarer and rarefactions originating from the edges of the deformed projectile, are undoubtedly the source of these differences. The results indieste that constant pressu.e loading, such ás that studied by Mok, is not a good simulotion of the hypervelocity impact loading. The technique developed by Mok is, however, extremely useful in studying and understanding the hypervelocity impac: behavior. it would be very interesting to explore further the effects of different loading histories on the subsequent wave propagation and, with fixed loading history, to study the effects of different models of the materials behovior.

In eacin case, the change in slope of the stress attenuation curve appears to be due to the overtaking of the plastic compression wove by an unluading wave.

For the : ! ! Non aluminum, the strength is so smat! that the material apporently beheves piastically (nearly hydrodynamically) down to very low pressures. The pnint of catch-up is about 5 cm into the target. This corresponds to a time of ahout $8.3 \mu \mathrm{sec}$ after impact -- see Fig. 104 later in this chapter. Assumirig that during the impact the projectile deformed such that it was roughly 0.5 cm thick, the rurefaction must travel about 6 cm in the $8.3 \mu \mathrm{sec}$ period, representing an nverage velocity of about $7.2 \mathrm{~mm} / \mu \mathrm{sec}$. This is not an unreasonable number considering the highly compressed mater: al that the rarefaciion had to trayerse.

Similarly, it appears that the knee in the stress attenuation curves for the 6061-T6 alloy represents the arrival of the eiastic unloading wave at the compression front. In this case, the knee is about 2.5 cm into the target, requiring the slastic unloading wave to travel a distance of roughly 3.5 cm . According to Fig. 104 again, this occurs at a time of about $3.7 \mu \mathrm{sec}$ after impact. This represents an average elastic uniooding wave speed of slightly urder $10 \mathrm{~mm} / \mu \mathrm{sec}$, which again is reasonable (see Ref. 52:45).

Once unlagding has occurred, the slopes of the stress attenuation curves are more difficult to explain. In foci, the slopes lie in inverse order of what would be expected on the basis of Mok's results, i.e. the soft 1100-0 alloy shows the highest attenuation rate, while the strong 7075-T6 alloy shows the lowest attenuation rate. In all likelihood, this phenomena is reloted to the unicading history of the origial stress pulse in each material. The flow of material and two-dimensional rarefaction uffects in the region of the impact point vary greatly for the soft and hard alloys (see Chopter \mathbb{N}, for example) so that the siress unloading is also probably quife different. There does noi seem to be enough information available here, ai least without employing cdditional computer calculations, to verify the effecis of loading history on the wave propagation.

Note that in none of the dara is there any evidence of the ramp behavior (see Fig. 102) discussed eariier for the one-dimensional case. This seems to confirm the earlier findings that no specific yield point \cdots ists in unloading for these alloys.

The behovior of the atenuatint in the ! ! Mon nilloy ns a function of the angle off axis is remarkably different from the other alloys. This effect may be a: least parily related to the apporently unusual unloading history of the $1100-0$ material in the crater region, olthough it is unlikely that this unloading history continues in man:ifest itself at such large distances from the impact point.

The experimental results obtained in this study have led to a more thorough description of the attenuation process and their strength dependence in the hypervelocity impact situation. Certainly, not ali the observed behcviur has been satisfactorily explained. Mok (Ref. 56:39) pointed out that, due to the sensitivity to louding history, spherical shock wave experiments represent a complicated cunfiguration for examining the basic effects of moterial behovior upon shock wave propagation. The results prasented above confirm his proposition. I? must be pointed out, however, that experiments such as these are essential to the full understanding of two-dimensional wave propagation (as opposed to studies dealing solely with material models) where the load history is not known a eriori and it is in this context that the results are betieved to be ratuable. In reality, practical problems must employ computer codes that colculate all the processes, including the load history. and experimental confirmation of proper operation of these extremely corrulex codes must be available.

Shock Wove Arrival Time Results

The arrival time instrumentation described in Chapter V was applied to many of the experiments cited in Table VII, either as an add-on, or in some cases as the primary experiment. Some 28 experiments yieldied decipherable data. The data obtained is contained in Appendix F, Tabie XXI.

It was the original intent of these experiments to measure the shock trajectorits in each of the three cluminum target alloys, $1100-0,6061-\mathrm{Tb}$, and 7075-T6 and to use this data to study differences in the shock propagation behavior of these materials. In each case, it was desirable to measure the arrival ti.ne of the steep fronted plastic wave if a complex wave structure were present.

The results obtained have not been completely consistent with this objective, although much usefil information has been obtaineci.

The shock trajectory is not a sensitive ineasure of shock propagation phenomena (as will be discussed in Chapter VII), consequently extreme accuracy is required to separate the effects of alloys of the same basic material based upon the trajectory of the plastic front alone. It would not appear from the data obtained that such accuracy is possible with the techriques employed. In fact, it is probably impossible to perform this task with any realistic experimental technique that does not resolve the structure of the wave front.

A variety of phenomena, some experimental, some physical, affected the shock wave arrival time results. These effects are most easily discussed by inspecting the data obtained -- shown in Fig. 104. The data for all three alloys has been shown on one ploi to make the discussion easier. The solid line is the theoretical shock trajectory for a hydrodynamic shock wave as derived from a blast wave model of the impact due to hi $-v$-- see Chapter Vili and Ref. 11. This shock trajectory agrees weil with similar data obtained frorn the "variable energy" model developed in Chapter Vil. The shock trajectory data obtained from pure hydrodynomic (DIL code) numericel results from Ref. 14, and from the STEEP code calculasions of Ref. 32 also show good agreement, although reliable results are available only for the region $\mathrm{R}_{\mathrm{s}}<3 \mathrm{~cm}$. The dashed line indicates the approximate expected trajectory of an elastic precursor traveling at the acoustic sound speed in cluminum, approximately $6.40 \mathrm{~mm} / \mu \mathrm{sec}$.

If the instrumentation were properly sensing the arrival time of the piastic shock front at the target rear surface, the data should all fall near the hydrodynamic trajectory shown. Obviously, much of the data does not. Several different effects must be invoked to explain these discrepancies. First, the groups of data that lie to the left of the plastic wove trajectory of about $R_{s} \approx 2 \mathrm{~cm}$ and $R_{s}=4$ en wer: apparently caused by the early closure of the foil switch used to signal impact and to trigger the oscilloscopes. It is likely that small particulate debris hit the switch ahead ($<2 \mu \mathrm{sec}$) of the projectile. The quartz probe records of

Fig. 104. Shock Front Arrival Time Data, f.ll Target Materials.
several of these events yield some plousible confirmation of this phenomerion -a small pressure pulse (apparently) precedes the main pulse caused by the pro-jectile-generated shock wave. This debris may heve been caused by the worn gun parts employed during a portion of the experimental program.

The optical fiber probe data is internclly consistent, but does not agree well with quartz probe data obtained on the same round (2837). This is probably due to difficulties in interpreting what constitutes light cut-off from the fiber optic probe. Further development would be necessary before this type of probe could be used with confidence.

The remaining deta does indicate significant trends if certain assumptions are made regarding errors or inconsistencies in the oscilloscope records. First of all, the electrical pin switch probes yield data that is consistent with the theoretical shock trajectory and, also, the resuits of the quartz probes in the region $\mathrm{R}_{\mathrm{s}}<3 \mathrm{~cm}$ when those rounds involving gross early switch closure are rejected. The record obtained on round 2811 at $R_{s} \approx 4 \mathrm{~cm}$ where both electrical switch and quartz probes were mounted on the same target shows that, at this stress levil, the electrical switch probe is responding more slowly than it should. It yielded signals about $1 / 2 \mu \mathrm{sec}$ late with respect to the quartz probe signal. At higher stress levels, no such delay in closure was detected.

At small shock radii and high stress $\left(R_{s}<4 \mathrm{~cm}\right)$ the quartz probes generally yielded good data that is consistent with the predicted shock radius. There is seatter in the data in this region, probably due largely to errors in measuring the vaiue of the shock radius R_{s}. The exact impact point was hard to determine accurately for the small targets, all of which suffered severe deformation or penetration during the impact process. Errors in measuring R_{s} of ct leasi $=0.15 \mathrm{~cm}$ are quite realistic.

The quartz probe records af the larger shock radii are the most interesting. As explained earlier, the signal omitted by the quartz crystal is proportional to the stress induced in the arysial. The existence of edge effects, combined stotes of stress created by the divergent shock wove geometry, and
multiple reflections in the thin crystal all combine to preclude the use of the quartz probe device to measure directly the stress amplitude.

The probe does, however, give a qualitative picture of the stress amplitude history and yields surprisingly consistent results. Typical oscilloscope traces for each of the target materiais obtained at shock radii of $R_{s} \approx 10 \mathrm{~cm}$ are showr. in Fig. 105. The shape of the w veform is characteristic of the target alloy, although there is little difference befween the results for 6061-T6 and 7075-T6 aluminum. The shape of the waveform persists all the way down to the smaller shock radii. In particular, the voltage ramp that appears on the leading edge of the pulse in 1100-0 aluminum has the characteristics of an eiastic precursor: (1) the length of the romp increases with increasing shock radius; (2) the ratio of the amplitude of the ramp to the voltage peak increases with increasing shock radius and (3) the leading edge of the ramp travels of the acoustic wave speed in aluminum, $6.4 \mathrm{~mm} / \mu \mathrm{sc} \cdot \mathrm{c}$. The latter effect can be observed from those data points on Fig. 104 marked with the symbol Θ. Likewise, the dato for the leading edge of the main voitage spike, marked O, agrees well with the predicted shock trajectory, so that the main pulse is seen to correspond to the plastic wavefront.

The set of four pairs of dato points from Round 2851 lying to the right of the dashed line are believed to be uff by about one $\mu \mathrm{sec}$ based on other quartz data from the same round. When adjusted by this amount, the results are consistent with the remainder of the data on 1100-0 aluminum.

There is no evidence of any well defined "precursor" on the quartz probe records for the 7075-T6 and 6061-T6 alloy targets. The leading edge of the pulse rises quickly, but not discontinuously, to the peak value. The rise time is slighily faster in the 7075-T6 oluminum. For both alloys the rise time becomes longer as the shock radius inereases. The bulk of the data indicates that the trajectories of these waves lie somewhere between the calculated shock trajectory of a hydrodynamic wave ana an elastic wave. The data lying in the region $7.9 \mathrm{~cm} \leq \mathrm{R}_{\mathrm{s}} \leq 9.1$

6061-T6 ALUMINUM

Fig. 105. Waveforms at Large Shock Radii Measured witith Quariz Crystal Probes. $^{\text {P }}$
cm does not appear to be consistent with these conclusions, but is believed to be in error. No explanation can be derived from the available records.

The quartz probes have a good time response, and the slopes of the !eading edges of the stress pulses observed are probably realistic even though the crystal cannot reach stress equilibrium until the wave has traversed the crystal and reflected off the aluminum irterface at least once. The time resolution of these probes should have been about $0.1 \mu \mathrm{sec}$ and appeared to be that good. The leading edge of the stress wave in the 7075-T6 aluminum was charccterized by a very fast, almost discontinuous, rise to about half amplitude followed by a slower rise to tise peak value. In the 6061-T6 alloy, the rise was more continuous and smooth (and possibly slightly slower) to the full ampli,ude. The stress decay measured by the quartz probes is consistent with the general piciure of the wave shape expected from this type of impact, i.e., a roug. y triangular shaped wave. No attempt has been made to analyze the details of the stress history from these
records.
The difference in waveform detected for the three alloys is significant. The soft 1100-0 aluminum disploys a distinct elastic precursor while the hard alloys -- where any elastic component vould be expected to be of higher amplitude if present at all -- exhibit no precursor at all. The latter two do seem to exhibit some stress relaxation in the rising portion of the wavefront, however. Since the 1100-0 aluminum is considerably more strain rote sensitive than the other alloys, it may be that strain rate effects are influencing the structure of the rising portion of the stress pulse.

In any event, the quartz probe data has pointed out wave propagation phenomena that are worthy of additional study with more quantitative instrumentation. The experience gained in this study can furnish several valuable guidelines for such efforts: (1) the sensor chosen should have a small area to avoid errors in the calculation of the shock radius; (2) the sensor should be calibrated cuer a wide range of stress; (3) the sensor should be chosen, and he instrumentation designed, so that both shock time of arrival and stress history information are obtained; and (4) orthogonal image converter photographs (or similar arrangement) should be taken viewing the projectile at the time the impact switch closes, thereby yielding precise information on the impact point and precise timing of the impact with respect to the sensor signals. The most promising condidates for sensors at this time are either the laser velocity interferometer or the use of piezoresistive foil gauges compensated for divergent flow conditions if necessary.

Abstract

Summary A series of seventy hypervelocity impact experiments was completed in a program designed to study the propagation (trajectory) and attenuation of stress waves in aluminum alloys. Aluminum projectiles of .635 cm diameter were lounched at a velocity of about $7 \mathrm{~km} / \mathrm{sec}$ and allowed to impact targets of $1100-0$, 6061-T6, and 7075-T6 aluminum. Measurements were then made at various angles

and distances from the impact point of the wave arrival time and its peak amplitude employing the techniques previously described.

The variation of peak stress with angle off axis has been measured and found to be in general agreement with the qualitative picture of a hypervelocity impact as being similar to a point source wave expansion. Beyond 40° off axis, this picture breaks down rapidly.

Measurements of the attenuation of the peak normal stress in this wave with distance demonstrated the existence of a knee in the attenuation curves associated with significant non-hydrodynamic attenuation in the 6061-T6 and 7075T6 alloys. The 1100-0 alloy exhibits essentially hydrodynamic behavior down to relatively low stress levels. The behavior of these clloys is interpreted in terms of existing one-dimensional shock wave propagation theory and experiments,

Measurements of the shock wave arrival time at various distances, although not completely successful due to timing inaccuracies, yielded confirmation of the postulated elastic-plastic behavior of the materials. The data demonstrated the substansial difference in behavior among the three aluminum alloys employed.

VII. Comparison of Experimenial Shock Pressure Results with Hydrodynamic Theory and Numerical Results

The experimental program just described has yielded a large quantity of data relating the peak normal stress in the shock wave to the distance into the torget and the angle oway from the projectile trajectory. This information has been sufficientily complete to establish detailed stress decay lows for three aluminum alloys of widely varying strengrin: $1100-0,6061-\mathrm{T} 6$, and 7075-T6. Additional information has been obtoined on the shock wave trojectory and, in a very limited fashion, on the wave shape. The results have been interpreted in ferms of the physical processes occurring during the wave propagation. lit now remains to compare these results with selected theoretical predictions of this hypervelocity impact situation.

An impact such as that described here is quite complicated--as was discussed in Chapter il and elsewhere. Consequently, attempts to treat this problem with moderately simple anclytic theory have seer, either unsuscessful or of limited applicability. The most promising approach to treating the hydrodynamic portion of the impact hos been to use the similarity method for sciving the point source blast vave problem in a periust gas and to modify this method to make it more pertinent to the satual solid moterial of interest. This meihod is described in some detail in the first part of ihis Chapter, Modifisctions to the basic theory by several authors and a new modification proposed by Torvik and this aithor are discussed. The results are compared with the arailable experimental results.

Currently, the mosi complete way to treat the entire impact process is numerically, through the use of c computer program to solve the pertinent equations by applying finite difference techniques. The second portion of the Chopser is devoted to a comparison of the experimental results with the limited number of computer colculations that are avoilatle for direct comporison.

Emonasis is piuced upon the resulis of the STEEF code (wee Chupter ii) for thuse problems that were designed specifically to correspond to the experiments conruated in this study. The actual perfornmance of these computer calculations was not o part of this effort.

3 lost Wave Solutions to the Impoct Problem

Anolytical solutions of even the siimplest impact problems are most difficult because the equations are non-linear. One of the most detailed analytica! opproaches was taken by Rae and Kirchner (Ref. 18, 19, and 20) who adapted gas dynamic solutions of the point source blast wave problern to imsacts into solids. Their aptroach assumes that the materials invoived behave as perfect fluids (no heat cunduction, no viscosity) with a t.ydrodynamic equation of siate, and spherical symmetry. The hydrodynamic o-fluid-like tehavior of the materiol, at leasi during the eorly phases of a hypervelosity impact, is justified on the basis that the pressures greatly exceed the yield or shear strength of the material. During the later stages of ihe impaet frocess, this will not be true. A point sourse release of energy at the center of the coordinate system is then assumed to approximate an impact -- and the results are used to help justify this assumption. In the following sections, the essential elements of Rae and Kirchner's approach are outlined and the results are applied in the impact of a 0.635 cm , diameter aluminum projectile with a velocity of 7.0 $\mathrm{km} / \mathrm{sec}$ upon an infinite halfspace of oluminum. The discussion here is based primarily upan Ref. 18. Modificotions to Rae and Kirchner's app-oach are formulated and discussed and the results are compared with experimental data.

Similarity-The Perfect Gas Solution. The approach is founded upon the concept of similarity which states that (for certain problems) properily normalized quantities (pressure, density, etc.) at any instant are the same when viewed on a scale defined by the shack radius of that instant. That is, each quanlity depends upon the ratio

$$
\begin{equation*}
\eta=\frac{r}{R_{s}(t)} \tag{Eq.11}
\end{equation*}
$$

where. r is the distance from the impact point and $R_{s}(t)$ is the distance from the impoct point to the shock front, rather than upen r and t, the time, explicitly. The quantity η is called the similarity variable, and in certain cases may be used to eliminate the explicit time dependence from the problem.

The dynamical equations of motion in spherical coordinates with no angular dependance are:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial r}+f\left(\frac{\partial u}{\partial r}+\frac{2 u}{r}\right)=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+\frac{1}{\rho} \frac{\partial p}{\partial r}=0 \\
& \frac{\partial e}{\partial t}+u \frac{\partial e}{\partial r}-\frac{p}{\rho^{2}}\left(\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial r}\right)=0 \tag{Eq.12}
\end{align*}
$$

obtained from conservation of mass, : momentum, ond energy respectively and where

$$
\begin{aligned}
& \rho=\text { density } \\
& \mathbf{v}=r \text {-component of velocity vector for a particle } \\
& p=\text { pressure } \\
& e=\text { specific internal energy }
\end{aligned}
$$

In addition, an equation of state in the form $e=e(p, f)$ is required to complete the set of equations, and the Rankine-Hugoniot conditions ait the shock front represent a boundary condition on the problem.

Next, a set of dimensionless similarity functions is defined.

$$
\begin{aligned}
& \phi\left(\therefore, R_{S}\right)-u / \dot{R}_{2} \\
& f\left(\eta, R_{C}\right)=p / \rho_{0} \dot{R}_{S}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\psi}\left(\eta, R_{S}\right) \quad \varepsilon / \rho_{0} \\
& g\left(\eta, R_{S}\right)-\left(e-e_{0}\right) / \dot{R}_{S}^{2}
\end{aligned}
$$

(Eq. 13)
where $\dot{R}_{s} \cong \quad D$ the shock velocity. Substituting into Eq. 12 then:

$$
\begin{gather*}
(\phi-\eta) \frac{\partial \psi}{\partial \eta}+\psi\left(\frac{\partial \phi}{\partial \eta}+\frac{2 \phi}{\eta}\right)=-R_{S} \frac{\partial \psi}{\partial R_{S}} \\
\left(R_{S} \ddot{R}_{S} / \dot{R}_{S}^{2}\right) \phi+(\phi-\eta) \frac{\partial \phi}{\partial \eta}+\dot{r} \frac{1}{\psi} \frac{\partial f}{\partial \eta}=-R_{S} \frac{\partial \phi}{\partial R_{S}} \\
\left(2 R_{S} \ddot{R}_{S} / \dot{R}_{S}^{2}\right) G+(\phi-\eta) \frac{\partial g}{\partial \eta}-\frac{f}{\psi^{\psi}}(\phi-\eta) \frac{\partial \psi}{\partial \eta}=-R_{S} \frac{\partial g}{\partial R_{S}}+\frac{f}{\psi} R_{S} \frac{\partial \psi}{\partial R_{S}} \tag{Eq.14}
\end{gather*}
$$

For similarity to apply, the variables of Eq. 13 must not be a function of the scale of the probiem, R_{s}. The basic assumption of self-similar flow then requires that $\phi=\phi(\eta), f=f(\eta)$, etc. and consempuently that the right hand side of Eqs. 14 must be identically zero. In addition, to reduce this sei of partial differential equations to a set of ordinary differential equations there must be no explicit time dependence in the squations, hence in the similarity solution it is further assumed thest the term $\beta=R_{s} \ddot{R}_{s} / \dot{R}_{s}{ }^{2}$ must be constant. Double integration shows that this requires $R_{s} \sim t^{s} N_{\text {where }}^{s} N$ need not be an integer. For the similarity case, the final form of the ordinary differenticl equations of motion are:

$$
\begin{gather*}
(\phi-\eta) \psi^{\prime}+\psi\left(\phi^{\prime}+2 \phi / \eta\right)=0 \\
\left(\frac{N-1}{N}\right) \phi+(\phi-\eta) \phi^{\prime}+\frac{1}{\psi} f^{\prime}=0 \\
2\left(\frac{N-1}{N}\right) g+(\phi-\eta) g^{\prime}-\frac{1}{\psi^{2}}(\phi-\eta) \psi^{\prime}=0 \tag{Eq.15}
\end{gather*}
$$

where the prime denotes differentiation with respect to η. In terms of the similarity functions the Rankine-Hugoniot conditions become $\left[\psi_{H}=\psi\left(\eta=i, R_{s}\right)\right]$

$$
\begin{array}{lll}
\rho_{0} D=\rho(D-U) & \rightarrow & \psi_{H}\left(1-\phi_{H}\right)=1 \\
p-p_{i}-\rho_{0} D u & \rightarrow & f_{H}-\phi_{i I}+p_{0} / \rho_{o} R_{S}^{2} \\
e=\frac{p+\rho_{0}}{2}\left(\frac{1}{\rho_{0}}-\frac{1}{\rho}\right) & \rightarrow & g_{H}-\frac{f+f_{0}}{2}\left(1-\frac{i}{\psi_{H}}\right)
\end{array}
$$

($\mathrm{Eq}_{\mathrm{q}}, 16$)
In addition, when the equation of state has the general form $e=e(p, \rho)$, explicit sime deperidence may enter into the equation of state $\dot{R}_{s}{ }^{2} g=F\left(\rho_{o} \dot{R}_{s}{ }^{2} f\right.$, $\left.\rho_{0} \psi\right) \quad$ through the existence of the \dot{R}_{s} term. If the equation of state takes the form $\mathbf{e}=\boldsymbol{p} \zeta(\rho)$, then $g=\rho_{v} f \zeta(\psi)$ and the explicit time dependence disappears. in the case of a perfect gas, the equation of state satisfies this condition taking the form

$$
\begin{equation*}
e=\frac{P}{(r-1) \rho} \tag{Eq.17}
\end{equation*}
$$

where $\gamma=c_{p} / c_{v}$ is the ratio of specific heats of the gas. Explicit time dependence moy enter the problem also when the term $p_{0} \rho_{0} \dot{R}_{s}{ }^{2}$ is of the order of ϕ_{H}. Consequently at low enough pressure ratios, a gas dynamics problem is not similar.

In solids it is safe to assume that $p_{o^{\prime}}$ the pressure in the undisturbed material, is negligible compared to the pressure behind the shock wave. Eq. 17 san then be used in conjunction with Eqs. 16 to obtain

$$
\begin{align*}
& \psi_{H}\left(1-\phi_{H}\right)=1 \\
& { }_{H}=\phi_{H} \\
& \psi_{H}-\frac{1}{1-2 p_{\rho_{0}} \zeta(\psi)} \tag{Eq.18}
\end{align*}
$$

Given the function $\bar{S}(\psi)$ this set can be solved explicitly for $\phi_{H^{\prime}} \psi_{H^{\prime}}$ and ${ }_{F} \mathrm{~F}$: which means that the density ratio $\psi_{H}=\rho / \rho_{0}$ at the shock front is constant for the problem. This result is a consequence sf assumirg a similarity solution and implies thas the solution is exact only in the region of limiting compression, corresponding to a strong shock wave in a gas. The result is categoricaily not true for solids except at extreme pressures (tens of megabars).

Eq. 17 rewritten in similarity variables can be differentiated with respect to η and solved for g^{\prime}. This result can then be used to eliminate g^{\prime} from Eq. 15 reducing these to three linear equations in the three unknowns $\left.\psi^{\prime \prime},\right\}^{\prime}$, and f^{\prime}. The set can then be solved for the unknown derivatives in the form:

$$
\begin{align*}
& \psi^{\prime}=\psi^{\prime}(\eta, \phi, \dot{\psi}, f) \\
& \phi^{\prime}=\phi^{\prime}(\eta, \phi, \psi, f) \\
& f^{\prime}=f^{\prime}(\eta, \phi, \psi, f) \tag{Eq.19}
\end{align*}
$$

Using N as a parameter these equations may then be solved to determine ψ, $\dot{\phi}$, and f. For any value of γ, the equations may be integroted numerically using $\mathrm{Eq}_{\mathrm{q}} .18$ es starting conditions. The set of equations has an acceptable, single-valued solutior only for $N=2 / 5$ and, for that situation, on analytic solution has been worked out by several authors as discussed by Rae in Ref. 20:26. This is the classical blast wave problem as first described by G.1, Taylor. (Ref. 57).

The results for various values of γ ranging from 2 to 100 are disployed in Fig. 7 a-j of Ref. 20 and Fig. 12 a-c of Ref. 18.

The relation between R_{s} and t macy then be obtained as follows. The total energy in the system is (assuming only a hemisphere):

$$
\begin{equation*}
\varepsilon=2 \pi \int_{0}^{R_{s}}\left(e+\frac{u^{2}}{2}\right) \rho r^{2} d r \tag{Eq.2O}
\end{equation*}
$$

In terms of the similoriry variables this yields

$$
\begin{equation*}
E=2 \pi P_{0} \dot{R}_{s}^{2} R_{s}^{3} 1(Y) \tag{Eq.21}
\end{equation*}
$$

where

$$
\begin{equation*}
I(\gamma)=\int_{0}^{1}\left[\left(\frac{1}{\gamma-1}\right) \frac{f}{\psi}+\frac{\phi^{2}}{2}\right] \psi \eta^{2} \mathrm{~d} \eta \tag{Eq.22}
\end{equation*}
$$

Hence, once $f(\eta), \phi(\eta)$, and $\dot{\varphi}(\eta)$ are known for a give: γ, this integral may be evaluated for that value of γ. The shosk trajectory is then found by integraring Eq. 21 to obtain

$$
\begin{equation*}
R_{s}(t)=\left[\frac{25 E}{8 \pi \rho_{0} l(y)}\right]^{1 / 5} \tag{Eq.23}
\end{equation*}
$$

the ciassical result for a strong blasi wave in a perfect gas. Equation 23 also determines $\dot{R}_{s}(t)$ which, when combined with the equation of state and Eq. 18 allows a direct calculation of $\phi_{\mathbf{H}^{\prime}} \psi_{H^{\prime}}$ and f_{H}

Application to a Solid -- The Equation of State. As noted above, the use of similarity to treat the blast wave problem, implies that the density ratio across the shock front is a constant--a state which is known to be incorrect for shock ware propagation in solid materials. To see how the non-similar nature of flow in solids arises, consider the Mie-Gruneisen form of the equatic.n of state for solids:

$$
e(p, \rho)-e_{H}(\rho)=\frac{1}{\rho \Gamma(\rho)}\left\{\rho-p_{H}(\rho)\right]
$$

(Eq. 24)
where the Gruneisen factor $\Gamma(\rho)$ depends only weakly on o and the subsaript H refers to the value on the shock Hugoniot. This con be rewritten in the form:

$$
e=\frac{\rho}{\rho \Gamma(\rho)}-\Delta(\rho)
$$

(Eq. 25)
where

$$
\begin{equation*}
د(\rho)=\frac{P_{H}(\rho)}{\rho r(\rho)}-\mathbf{e}_{H}(\rho) \tag{Eq.26}
\end{equation*}
$$

Equation 25 has the desired form for a similarity treatment of the problem provided $د(\rho)$ is very small. Except at extreme pressures (many megabs:s) the term $د(\rho)$ is not small compored to $p / \rho I$ and consequently the problem of shock propagation in solids is characteristically non-similar. In a solid, the density rario across the shock front will vary considerably as the pressure change:s.

In what follows it will be convenient to employ a simplified form of the functional reiction that describes the Hugoniot or shock adiabat states of the materis!. This expression relates the shock speed to the particle speed in a linear manner:

$$
r=c+s u
$$

(Eq. 27)
Rae terms any matericl whose Hugeniat obeys shis relation a c,s medium. The relation itself is usually termed simply the "linear Hugoniot." A wide variety of materials have Hugoniots that are well approximated by this equation, although in every case the relation fails at very high pressures. In particular, Eq. 27 yields good results for aluminure at pressures up to rioughly 200 kilobars, and yields only modest errors up to pressures of a megabar. Physically, the con$s_{\text {tant }} \mathrm{c}$ represents the low pressure limit of the bulk sound speed of the material. The interpretation of s is more complicated, but it is related to the zero pressure Gruneisen perarreter, I_{0}.

Quasi-Steady Solution. One approximate method for treating the nunsimilar noture of impacts in solids is termed the "quasi-sieady" method and was developed by Rae and Kirchner (Ref. 19). The method smploys the
basic results of the similarity solution for a perfect gas, but forces the results to match properly the Hugoniof of the solid material at the shock front by letting the y of the "gas" vary as of function of shock radius. This varying γ introduces non-similar features into the results as desired and ensures that the flow variables take on mutually consistent values at the shock front.

An importon: result arising from the perfect gas ecs-ction of state is that, for any fixed value of γ, there is associated only one value of the density-shat is, the density across the shock front is constant and uniquely determined as mentioned before. Combining Eq. 17, the perfect gas equation of state, with the third member of Eq. 16 the Rankine-Hugoniot jump conditions:

$$
\begin{equation*}
\frac{p}{(\gamma-1 ; p}=\frac{p}{2}\left[\frac{1}{\rho_{0}}-\frac{1}{\rho}\right] \tag{Eq.28}
\end{equation*}
$$

If the compression, μ, is defined by

$$
\begin{equation*}
\mu \equiv-\frac{p}{p_{0}}-1 \tag{Eq.29}
\end{equation*}
$$

then the above san be solved to yiela the relation:

$$
\begin{equation*}
\gamma=\frac{\mu+2}{\mu} \quad \mu=\frac{2}{\gamma-1} \tag{Eq.30}
\end{equation*}
$$

One obvious woy to account for the varying comoression that occurs during the propagation of a shock wave in a solid is to let γ vary. Conversely, note that when γ is specified, Eq. 28 is indeterminate in the pressure, p. A perfect gas may have any number of pressure states corresponding to a given compression if the compression is created by a strong shock ($p_{0}=0$). This sort of behovior does not exist in a solid except at extreme pressures.

The employment of the linear Hugoniot form (Eq. 27) now allows the convenient use of dimensioniess flow variables which are defined as follows (see Appendix H for a dimensional analysis justification for these variables):
μ-- compression, reloted to derisity
u/c -- dimensioniess particie velocity
D/c -- dimensionless shock valocity
$\mathrm{p} / \mathrm{p}_{\mathrm{o}} \mathrm{c}^{2}$-- dimensionless pressure
$c t / R_{0}$ - dimensionless time, where R_{0} is a scale length defined below These arise naturally when the linear Hugoniot form is combined with the Rankine-Hugoniot jump conditions to obtain the following expressions which are termed the "Hugoniot values" and which are valid at the shock front in the solid:

$$
\begin{align*}
& D / c=\frac{\mu+1}{\mu+1-\mu s} \tag{Eq.31}\\
& v / c=\frac{\mu}{\mu+1-\mu s} \tag{Eq.32}\\
& \rho / \rho_{0} c^{2}=\frac{\mu(\mu+1)}{(\mu+1-\mu s)^{2}} \tag{Eq.33}
\end{align*}
$$

For a given value of γ, the most : mportant relation derived from similarity theory is Eq. 27:

$$
E=2 \pi \rho_{0} D^{2} R_{s}^{3} \mid(\gamma)
$$

If the projectice energy is defined as E_{0} and a scale length, $R_{o^{\prime}}$ is defined by

$$
\begin{equation*}
R_{0} \equiv\left[\frac{E}{2 \pi \rho_{0} c^{2}}\right]^{1 / 3} \tag{Eq.34}
\end{equation*}
$$

this relation can be written in dimensionless form as

$$
\begin{equation*}
\left(\frac{E}{E_{0}}\right)=\left(\frac{D}{c}\right)^{2}\left(\frac{R_{s}}{R_{0}}\right)^{3} \quad 1(\gamma) \tag{Eq.35}
\end{equation*}
$$

where E is the energy chosen for the similarity solution and where the option is left open here to let E differ from the actual projectile energy, E_{0}. This feature of the solution is new with this author's discussion of the problem. Its ramifications will be discussed laier.

The following description of the quasi-steady model represenis the author's interpretation of the processes involved and is believed to be consistent with Rae's presentation. This particular approuch to discussing the quasi-steady node! leads ..nveniently into the discussions of modifications to this basic model.

For a similarity solution, E / E_{0} and γ are constant, while D / c and R_{s} / R_{o} vary. Note that the shock speed veries even though the compression remains fiked. Combining the first and second Rankine-Hugeniot jump conditions across the shock front (of the perfect gas), the followirg is obtained:

$$
\begin{equation*}
\frac{p}{\rho_{0} c^{2}}=\frac{\mu}{\mu+1}\left(\frac{D}{c}\right)^{2} \tag{Eq.36}
\end{equation*}
$$

Now, since μ is assumed c coristant for this process, combining this with Eq. 35 yields

$$
\begin{equation*}
\frac{p_{0}}{\rho_{0}^{2}}=\text { constant }\left(\frac{R_{s}^{s}}{R_{0}}\right)^{-3} \tag{Eq.37}
\end{equation*}
$$

along the similar expansion. This shows that for fixed γ (or μ) the similar solution yields straight lines of stope -3 on a $\log \left(p / \rho_{0} c^{2}\right) v s \log \left(R_{s} / R_{0}\right)$ plot. These straight lines vary only in separation as μ or E / E_{0} are changed.

The methed developed by Ras for applying this perfect gas similarity solution in an approximate woy to a solid is illustrated in Fig. 106. Starting at some point A which corresponds to a compression μ_{A}, ihe shock front can be thought of as being aliowed to follow the path $A B$, at constant compression, obeying the similarity solution for a perfect gas and with a γ that corresponds to μ_{A} through Eq. 30. The values $\left(p_{1}^{\prime} \rho_{0} c^{2}\right)_{A}$ and $\left(p / \rho_{0} c^{2}\right)_{B}=\left(p / \rho_{0} c^{2}\right)_{C}$ ore found from Eq. 33 knowing μ_{A} and $\mu_{C}=\mu_{A}+1 \mu$.

Next the quantity $\left(R_{\Omega} / R_{0}\right)_{B}$ is determined from Eq. 3: which yields:

$$
\begin{equation*}
\left(R_{s} / R_{o}\right)_{B}^{3}=\left(R_{s} / R_{o}\right)_{A}^{3} \quad\left[\frac{\left(p / \rho_{o} c^{2}\right)_{A}}{\left(p / \rho_{0} \sigma^{2} j_{B}\right.}\right] \tag{Eq.38}
\end{equation*}
$$

Fig. lub. Illustration of Methad for Introducing NonSimilar Corrections for A.pplying Blest Wave Calculations ir a Solid Material.

The shock -f at at B is determined by using Eq. 35. Then the transit time for the shock wave between the points $\left(R_{s} / R_{o}\right)_{A}$ to $\left(R_{s} / R_{o}\right)_{B}$ is given approximctely by

$$
\begin{equation*}
\Delta\left(\frac{c t}{R_{0}}\right)_{A B} \cong\left\{\left(\frac{R_{s}}{R_{0}}\right)_{B}-\left(\frac{R_{s}}{R_{0}}\right)_{A}\right\}\left\{\frac{2}{\left(\frac{D}{c}\right)_{A}+\left(\frac{D}{c}\right)_{8}}\right\} \tag{Eq.39}
\end{equation*}
$$

At this stage, the process has followed a similar expansion at constant compression and now lies at a state B off the Hugoniot of the material. Rae and Kirchner then proposed to correct this false stote by forcing the process back to the Hugoniot along the path BC at constant pressure. In the pressure-shock radius plane this implies that the process is now moved along $B C$ to a new similarity surve characterized by a new γ_{C} derived from ${ }^{\mu}{ }_{C}$.

After adjustment clong the path BC, the new variables must satisfy the similarity Eq. 35, hut now with the new value ${ }^{\gamma}{ }_{C}$, yielding

$$
\begin{equation*}
\left(\frac{R_{s}}{R_{o}}\right)_{C}=\left[\frac{\left(E / E_{o}\right)}{(D / C)_{C}^{2} I\left(y_{C}\right)}\right]^{1 / 3} \tag{Eq.40}
\end{equation*}
$$

where $(D / C) C$ is obtained frori: Eq. 31 using the nevi value μ_{C} for the comnres.s: נn. If Eq. 40 is evaluated at $\left(R_{s} / R_{o}\right)_{B}$ using the new value $\gamma=\gamma_{C}$, the value for $(D / c)_{B}$ will, of course, not agree with that abtained previously when $\gamma=\gamma_{B}$. Hence, it can be said that the quasi-steady model leads to a variation in the shock speed over the patin BC. The time taken for the shock to "troverse" this path is given approximately by

$$
\begin{equation*}
\Delta\left(\frac{c+}{R_{0}}\right)_{B C}=\left\{\left(\frac{R_{s}}{R_{o}}\right)_{C}-\left(\frac{R_{s}}{R_{o}}\right)_{C}\right\}\left\{\frac{2}{\left(\frac{D}{C}\right)_{B}+\left(\frac{D}{C}\right)_{C}}\right\} \tag{Eq.41}
\end{equation*}
$$

The net result of this procedure is that the volue of y used is continuously changed to force the solution to lie on the solid maierial Hugoniot curve. The large variation in γ actually encountered is the result of accounting for non-similarity. The ocrual pressure variation calculated by this method is as indicated by the dothed curve in Fig. 106.

The results of one step as descr:bed above, then yield the necessary starting condition for the rext step. Except for the calculation of shock trajectory, the step size is unimportant because the flow quantities furn out to be dependent only upon the end points of the step.

The starting conditions for the firs :- an be obtained from the initial (one-dimensional) shocked states. For like moterial impact where the impoct velocity is given by v,

$$
\begin{equation*}
\left(\frac{u}{c}\right)=\frac{1}{2}\left(\frac{v}{c}\right) \tag{Eq.42}
\end{equation*}
$$

Applying the Rankine-Hugoniot equation at the shock front and using the linear Hugoriot for the material:

$$
\begin{equation*}
\mu_{\text {impact }}=\frac{(v / c)}{2+(s-1)(v / c)} \tag{Eq.43}
\end{equation*}
$$

Vaiues for the remaining flow quanities at tmpont :-7y then be obtcined from Eq. 31 and 33. The quasi-similar method will predict infinite shack speed and pressure of $R_{s}=0$, consequently this unrealistic situation can be avoided by assuming that the one-dimensional impact conditions described above are maintained out to that shock radius where the quasi-similar solution corresponds to these conditions. The st ock radius correspending to this transition can be obtained from Eq. 35 where the values of D / c ond y used are derived from Eq. 43.

Varying Energy Mettiod. The method iust described involves the selfconsistent joining of a sequence of similarity solutions i_{j}; varying the values of γ. The variation of the energy, E, driving the similarit; snition produces He same sort of effect. In fact, it seems reasonable that the quantity E / E_{0} is as valid on adjustable parameter as is γ. It is therefore proposed that on alternative development can be achieved by letting both γ and E / E_{0} vary in a plausible manner.*

Referring again to Fig, 106, the process starts at a given compression μ_{A} and a value of $\left(E / E_{0}\right)_{A}$ determined from the previous step. The first part of the process, from A to B, is the same as explained for the quasi-steac'y method.

In the varying energy method, the expunsion over the path B to C is calcaluated somewhat differently. It is assumed that ite shock velocity remains constant over the fath, assuming the value it must have at the point C to be consistent with the solid material Hugoniot, $(\mathrm{D} / \mathrm{C})_{C}$. A discontinuous change is made in the energy at the point B. Alony the path $A B$, the energy remains constant of the value ($\left.E / E_{\sigma}\right)_{A}$. At the point B, the energy is changed to $\left(E / E_{c}\right) C$ and remains of that value over the interval B to C. Applyi, g Eq. 35 at points B and C with $\left(E / E_{0}\right)_{B}=\left(E / E_{0}\right)_{C}$ and $(D / C)_{B}=(D / C)_{C}$ and noting that $y_{3}=\gamma_{A}$ the following expression for the shock radius of the point C is obtained:

[^2]\[

$$
\begin{equation*}
\left[\frac{R_{S}}{R_{O}}\right]_{C}=\left[\frac{R_{S}^{-}}{R_{0}}\right]_{\bar{B}}\left\{\frac{1\left(\gamma_{A}\right)}{1\left(\gamma_{B}\right)}\right\} \tag{Eq.44}
\end{equation*}
$$

\]

Once this is solved for ($\left.\mathrm{R}_{\mathrm{s}} / \mathrm{R}_{\rho}\right)_{C^{\prime}}$ Eq. 35 con be used to obtoii. the new value of $\left(E / E_{0}\right) C^{\text {. This }}$ new energy is then used to stort the nexi step in the solution of the probleri.

One additional alteration sffecting the selection of y for any given expression was made in arriving at the varying energy radel. It may be observed that the perfect gos equation of stote (Eq. 17j) when combined with the energy Rankine-Hugonict sonsition (Eq. 16) results in the elimination of both the specific internal energy and the pressure from the equation. This means that for a specified y and compression, μ_{r} the pressure is indeterminate; a number of pressure states may correspond to any given comoression. This is the some as stating that all strong shocks in a perfect gas, no matter what their pressure, propagate at the limiting compression of the merium. This feature of the perfect gas equation of state is distinctiy incorrect when opplied to solids. In a normal solid, the Hugeniot curve rapresents a unique, single valued functional relation between the pressure and the compression.

The use of an equation of state in other than the $e=p f(\rho)$ form would destroy the requirements for a similarity soiution in this development. There is, however, a simple way to ensure a one-to-one zorrespondence between the pressure and compression as is required for adequate treatment of a solid. In complete farm, the erergy Rankine-Hugeniot condition takes the form:

$$
\begin{equation*}
\left(e / c^{2}\right)-\left(e_{0} / c^{2}\right)=\left(p / p_{0} c^{2}\right)\left\{\frac{\mu / 2}{\mu+1}\right\} \tag{Eq.45}
\end{equation*}
$$

The second term on the ieft side has been ignored to this paint, but can be used to cccomplish the task described above. In this applization let e_{o} / c^{2} be defined as a parameter, A, and the normal physical interpretation is ignored. Given this form, the combination of $\mathrm{Eq}_{\mathrm{q}} 45$ with the perfect gas equation of state ;ields

$$
\begin{equation*}
\frac{\left(\mu / p_{o}{ }^{2}\right)}{(\gamma-1)(\mu+1)}=a+\left(p / p_{c} c\left[\frac{\mu / 2}{\mu+1}\right]\right. \tag{Eq.46}
\end{equation*}
$$

Although it may be necessary to change A as a function of μ, this equation can be soived uniquely for ($P / \rho_{o} \mathrm{C}^{2}$) in termis of μ when γ is given. In the opplication to the problem of an impact into a solid, the equation of the Hugoniot curve for the solid was known, and it wa, diesired to solve Eq. 4 f for γ when some value of μ was specified. To accomplish this, ance μ was specified the values of ($\mathrm{P} / \mathrm{P}_{0} \mathrm{C}^{\mathbf{2}}$) at the points $\mu=\mu+\delta_{\mu}$ and $\mu=\mu-\delta_{\mu}$ was calculated from the known Huzzoniot, keeping $\delta \mu$ very small. This yields two equations that son be solved simistaneously to yield approximate values of γ and A at the point μ. In perticular,

$$
\begin{equation*}
\gamma=\frac{h\left(\mu_{2}+2\right)-\left(\mu_{1}+2\right)}{h \mu_{2}-\mu_{1}} \tag{Eq.47}
\end{equation*}
$$

where

$$
\begin{equation*}
h=\frac{\left(P / P_{0} c^{2}\right)_{2}\left(\mu_{4}+1\right)}{\left(P / P_{0} c^{2}\right)_{1}\left(\mu_{2}+1\right)} \tag{Eq.48}
\end{equation*}
$$

The cbove revised method was used to calculate γ as a function of μ in the varying energy model. The result is that a local piecewise fit to the Hugoniot has been obtained in the perfect gas equation of state form.

Quasi-Steady and Varying Energy Model Resulis. The blasi wave expansion models discussed above were calculated with a digitol computer program. The values for I (r) used were obtained from Figure ll of Ref. 18 using a combination of tyble interpolation and algebraic functionai form to generate the desired values. The problem considered was the impact of a 0.635 cm diameter aluminum sphere traveling at $7,0 \mathrm{~km} / \mathrm{sec}$ and impacting on oluminum target. Oiher data is shown in Tabie X. The results of these calculations are shown in Fig. 307. The experimental results shown are those from Chapter VI for 1100-0 aluminum targets measured on-axis, see Fig. 75.

Table X

Properties at Impact

Aluminum Density	$2.785 \mathrm{~g} / \mathrm{cm}^{3}$
Linear Hugoniot Constants c s	$\begin{aligned} & 5.25 \times 10^{5} \mathrm{~cm} / \mathrm{sec} \\ & 1.3718 \end{aligned}$
Scoled Projectile Errergy, $E_{\delta} /=^{2}$. 332
Scaling Length, R_{0}	. 267 cm
Scaling Pressure, $\rho_{0} c^{2}$	768 kb
Impact Condifions D/c	1.915
נ'c	. 667
$p / p_{0} c^{2}$	1.376
$\underline{\mu}$. 534

The quasi-steady model produces results that do not agree pariicularly well with the experimentai results, especially in predicting the slope of the pres-sure-distance curve. Chonging the value of E / E_{0} used does not change the slope; it merely tronslates the curve to the right or left. Beyond the value of $R_{s} / R_{0}=20$, the experimentai results show that non-hydrodynamic behavior of the target is severely affecting the pressure decay. Since none of the similarity models discussed here include any non-hydrodynamic behovior, ne agreement with experiment in this region should be expected. The opparent agreement between the quasi-steady model resulis and experiments in the region $10<R_{s} / R_{o}<25$ is believed to be simply fortuitous and physicaliy without significance.

Some experimental evidence (see Fig. 96) suggests that the pressure curve slope becomes smaller (less steep) at values of $R_{s} / R_{0}<4$. Consequently, the results of the quasi-steady model ond experiments will differ ever more in the region $R_{s} / R_{0}<4$ than they do in the region shown. This is somewhat disappointing since the quasi-steady madel should work best in the higher pressure regime. Agreement at R_{s} / R_{0} less than roughly 2 should not be expecied since ct this sirall rudius the actual impact-generated stress field has not smoothed out

Fig. 107. Blast Wave Theory Results Obtained With Quasi-Steady and Varying Energy Niodel's.
to look like it was created by an capparent point saurce.
The varying energy model pieids imp-avad agreement between theory and experiment, although deviations ore apprirent ut either end of the pressure regime illustrated. The slope of the piessurentis: anc: curve (the pressure decay law) is improved over that produces by the quasi-stecdy model.

The appiication of the varying energy madel requires, as does the quasisteady method, a knowledge of the value of E / E_{0} used to start the problem. There is no clearcut physical basis fur choosing this parameter, unfortunately, other thas: empirically. For this colculation, the following line of rasoning wos used to select E / E_{c} : Consider the spherical projectile of radius r_{0} to be approximoted by an $L / D=1$ right circular cylinder of the same volume and equivalent radive ' c, that impacts the target end-on. At the center of the cylinder, the shocked stare is a region of one-dimensional flow until such time as rarefactions from the edge of the cylinder reach the axis of the propagating shock wave. It can the shown that for the impact condition treated here, the rarefaction starts to ottencate the on-axis pressure after the shock wave has reached a distance of $R_{s} / R_{0}=1.61$. If the one-dimensional impact conditions ure used to colculate D / C and γ, this corresponds to (E / E_{0}) initial $=0,87$. Because of the shape difference, rarefactions will start earlier in the process and the anaxis pressure should be affected at smaller radius for the spherical projectile actually used. Consequentiy, there is at least some justification in choosing an ($\left.E / E_{0}\right)_{\text {initial }}$ with a value less than 0.8.'. Based upon the agreement with the experimental data, (E / E_{0}) initial was chosen to be 0.5 , a number that is ot least plausible based uijon the above argument.

Even thougt, the selection uf the parameter (E / E_{o}) initial has to be chosen empirically, the varying energy model does succeed in improving the agreement between theory and experiment at the higher pressure region cud aields better agreement in the pressure-distance curve slope out to c shock rodius of about $R_{s} / R_{0}=18$ where non-hydrodinamic processes become imporiant. Further investigation of the selection of the starting energy parameter will be required
before this model can be used with any confidence for othsr materials or projectile velocities.

Karpov Miodel. In evaluating Rae ond Kirchner's quasi-stcady model, Karpoy (Ref. 11) examined Eq. 35 and noied that it involves a physically unrealistic singularity in the shock velocity of $R_{s} / R_{0}=0$. He therefore suggested that the coordinates be shifted such that the shock - jocity remains finite at $R_{s}=0$:

$$
\begin{equation*}
\varepsilon / E_{0}=(0 / c)^{2}\left[\frac{\lambda_{s}}{R_{0}}-\frac{R_{s}^{\prime}}{R_{0}}\right]^{3} 1(\gamma) \tag{Eq.49}
\end{equation*}
$$

where R_{s} / R_{0} is a ecnstont whose value is to be determined by the one-dimensional impact conditions, i.e.

$$
\begin{equation*}
R_{s /}^{\prime} / R_{D}=\sqrt[3]{\frac{E / E_{0}}{(D / C)_{i m p a c t}^{2} I\left(\gamma_{i m p o c t}\right)}} \tag{Eq.50}
\end{equation*}
$$

If the quantity R^{\prime} / $/ \mathrm{R}_{\mathrm{o}}$ is crilculated as indicated, and Eq. 49 is used in lieu of Ea. 35 in the quaci-steady model, the results of Fig. 108 are obtained for the impact problem defined in Table X. The reṣults are presented for several values of E / E_{0} since again this is a porameter that gon be varied, although once chosen it coes not chonge during the calculation. The "natural" value $E / E_{0}=1$ yieids poor resuits. The more or less arbitrary selection of $E / E_{0}=2$, however, ycelds surprisingly good resuits. The agreement between the $5 / E_{0}=2$ curve and the experimental results is excellent except at the high pressure end and, If cours., al radii of $R_{s} / R_{o}=20$ where non-hydrodynamic processes alter the behovior. Even in the region $R_{5} / R_{0}<4$, the agreement between this model and experiment is retatively zood since the few experimental points avalloble in this region predict rougnty the beinavior dsmonsiratsd by the $E / E_{0}=2$ surve.

Agcin, however, good egreement between experiment anci theory is obtained oniy when the porometer F / E_{0} is properly chosen empiricaily. Applicarions in

Fig. 108. Blast Wave Theory Results Obtained with Korpor Nodification to Quasi-Ste ady inladel.
different impact cases are required to establish a nore rational hasis for the selection of this parometer.

Other Results. in each of the similaritio models discussed, the value of γ used in the perfect gas equation of state has been allowed to vary io compensate for the fact that a solid does not really obey this form of the equation of state. Figure 109 illustrates the large changes in γ required by each of the models to ascount for, in on approximate way, the non-similar effects in the hydrodynamic fiow in a solid. Extremely large values of γ ore encountered in the Rae and Karpov solutions, while the varying energy model developed here exchanges a portion of the variation in γ for changes in the driving energy, E. In explanation of the variation in E / E_{0}, the interpretation is made that increases in E / E_{0} do not imply energy is being created, but that a similarity solution corresponding to a higher energy is necessary to match the behavior of the solid at larger shock radii.

Among the models, the behavior of the shock speed is different at small shock radii. As mentioned before, for the quasi-sieady and varying energy models, the shock speed is somewhat artifically limifed so that ir does not exceed the shock speed predicted at impact with one-dimensional theory. If left unconstrained, the shock speed in these models would tend toward infinity as R_{s} approaches zero -- a situation which does not occur in real impacts. The fundamental assumption of the approach taken by Karpov removes the singular behavior of the scund speed for this model. For each model, the shock speed approaches the bulk wave speed, c, af large shock radii as would be expected, These effects are shown in Fig. 110.

As shown in Fig. 111, the shock trajectories predicted by the various models are very similar. Measurements of shock trajectory do not, therefore, represent a very sensitive test of the relative merits of these models.

Cylindrical Blast Wave Model. An additional similarit,-type model was developed by Heydo (Ref. 23) based upon a semi-empirical combination of

Fig. 109. Behavior of Energy and γ in Blast Wave Similarity Mocis.

Fig. 110. Behavior of Shock Speed in Blost Wave Similarity Models.

Fig. 111. Shock Traiectory Predicted Using Three Appriximate Blast Wave Similarity Models.
cylindrical and spherical blast wave solutions. The model was derived on the basis of a cylindrical projectile of length L_{p} and radius R_{p} impacting the target normally. If it is assumed that $L_{p}=2 R_{p}$ and tiee resulting cylinder is replaced with a sphericel projectile of equal volume and dicmeter $d=\sqrt[3]{(P / 2} L_{P}$, then Heyda's results, in dimensioniess form, are as foliows:

$$
\begin{equation*}
D / c=4 \tilde{a} \tilde{k}\left(Z^{-1 / 2}-\tilde{k} / Z\right) \tag{Eq.51}
\end{equation*}
$$

where $Z=\frac{R_{s}}{R_{0}}-\frac{R_{s o}}{R_{0}}$

$$
\widetilde{c}=1.055\left(\frac{D}{c}\right)_{\text {impaci }} \text { as ubrained from the cate-itmerisional resuit }
$$

$\left(\frac{D}{c}\right)_{i m p a c t}=:+\frac{s}{2}\left(\frac{v}{c}\right)$ derived from Eq. 43

$$
\begin{align*}
& \tilde{k}=0.368\left[\frac{\left[\left(\frac{d}{R_{0}}\right.\right.}{6}\right]^{1 / 6}\left(\frac{v}{c}\right)^{-1 / 3} \tag{Eq.53}\\
& \frac{R_{s o}}{R_{0}}=\frac{R_{s i}}{R_{0}}-6.717 \tilde{k}^{2} \tag{Eq.54}\\
& \frac{R_{s i}}{R_{0}}=\left(\frac{r_{1}}{R_{0}}\right)\left(\frac{D}{c}\right)_{\text {impact }} \tag{Eq.55}\\
& \frac{c t_{1}}{R_{0}}=\frac{\sqrt[3]{2 / 3}\left(d / R_{0}\right)}{\left(c_{H} / c\right)^{2}-\left[(D / c)_{\text {impact }}-1 / 2(v / c)\right]^{2}} \tag{Eq.56}
\end{align*}
$$

${ }^{c}{ }_{H}=$ speed of the rarefaction wave behind the shock front at impact conditions.

The shock trajectory is given by

$$
\begin{align*}
& \frac{c t}{R_{0}}=\frac{1}{2} \tilde{a} \tilde{k}\left[z^{3 / 2} / 3+\frac{\tilde{k}}{2} z+\tilde{k}^{2} z^{1 / 2}+\tilde{k}^{3} \ln \left(z^{1 / 2}-\tilde{k}\right)\right. \\
& \left.\quad+2 \tilde{a} \tilde{k}\left(\frac{c t}{R_{0}}\right)-\tilde{k}^{3}(6.67 \ln 1.59 \tilde{k})\right] \tag{Eq.57}
\end{align*}
$$

The required empirical constonts were derived from the results of numerical calculation of hypervelocity impacts.

The results of the above method applied to the impasi described in Table X are shown in Fig. 112. Several values of c_{H} / c have been used since good data is not available on this parameter. The values obtained with $c_{H} / c=3$ eorrespond closely to those obrained by Billingsley (Ref. 14:23), although this appears to be physically unrealistic.

The results are clearly quite inaccurate for this impact s"tuation no matter what value of c_{H} is chosen. While the $c_{H} / c=3$ curve may provide a reasonably accurate fit of the data at very early times $\left(R_{s} / R_{0}<5\right)$ it fails

Fig. 112. Results of Cylindrical Blast Wave Model (Heyda).
catastrophicaliy at this point yielding unrealistic behavior in terms of the shock decay. It appears, therefcre, that this model does not properly describe the impact except possibly at very ecrly time and in regions of very high siress -a regime not investigated experimentally in this study.

Remarks. The similarity-like models are useful in understanding the processes involved in certain regimes of the shock propagotion -- and in determining it whot point and to whot extent some of the simplifying as:urnptions fail. The results obtained here describe the major features of the wave propagation phenomena out to a shock radius in the region of $R_{s} / R_{0} \approx 15$ or so relatively accurately and indicote the relevance of the hydrodynamic model of the behavior of this solid. The breakdo.in of ine model when strength and multi-dimensional factors became importan is also shown. The data has olso been valuable in the evaluation of the experimental shocik trajectory data -- see
chapter VI.
The three models described above clearly illustrate the difficulty in
 a hypervelocity impact into a thick torget. The quasi-steady solution first proposed by Rae and Kirchreer does not appear to yield accurate results, although it represents a dramatic imorovement over a straight similcrity solution (constant γ) to the problem. The modification of Karfov and the varying energy model proposed here yield substantially improved results, but each involves the use of an empirical constant to obtain good agreement. Alt of these models are based upon several simplifying assumptions discussed earlier. As pointed out, they cannot properiy predict (1) behovie. or the origin, (2) multidimensional effects such as the values of the variables off $\mathrm{t}:$. uxis or the results of oblique impact, (3) effects of rarefaction waves criginating at free surfases or material interkaces, (4) flow properties far behind the shock front, as is required to study srater growth, (5) any effects where material strength properties are important. The more complete description of the hypervelocity impact cratering and shock propagation problent: requires the application of modern finite difference numerical methods where many of the above restrictions can be removed. The price paid is very dear, though, since numerical solutions are orders of magnitude more complicated and expensive and are still subject to a variety of restrictions and uncertainties.

Comparison of Experimental and Nurrerical Results

The similarity theory develapments just discussed have clearly indicated the extremely difficult problem of describing the complex hypervelocity impact event using on analytic approach. When complex geometries and strength of materials are considered, the problem becomes absolutely intractable in that fashion. The alternative -- numerical solution of the equations of motion by finite difference methods -- has produred fruifful results and is the fevirdation: of much of our current understanding of hypervelocity impact ard multi-
dimensionai shock wave propagation phenomena. These numerical techniques are currently finding wide picctical application beyond the study of hyperveloci.y imoacts into thick targets. The concepts, applications and limitations of the computer programs based upon these numerical techniques have been discussed briefly in Chapter II and will not be repeated here. It is merely noted again that the ultimate sest of the numerical techniques is their correlation with experiments.

The remainder of this chapter deals with the comparisori of the experimental data on shock wave propagation and attenuation generated in this study with those few numerical results available in a form suitable for such direct comparison. These colcilations have already been examined to some extent in Chapter IV where comparisons with experimental grater growth were made. Here the region of interest is in the vicinity of the shock front and, except for a very short rime after impact, is far removed from the growing crater. The variation of the peak stress at the shock front as a function of shock radius is of primary importance because of the available experimental ciato and the overall check this provides on the performance of the numerical scheme. Additionai porameters, such as peak stress variation with angle off axis and the shape of the stre's pulse are discuised insofar as available data allows.

Resulfs of OIL/RPM Codes. The OIL code (Ref. 58) represented the firs" in a farsily of two-dimensional confinuum mechanics codes written in Eulerion coordinates and designed specifically to ca!culate irnpacts into solid materials. OIL is a one-material cade that treats only hydradynamic behavior. A later member of this farmily, called RPM, incorporated a rigid piastic model of strength behavior. Many of the best theoretical studies of hypervelocity impact phenomena by Waish, Dienes, and Johnson (Re؟. 8, 59, and 60) were based ypon the application of these codes.

Fortunately, two sets of calculations that sorrespond roughty to portions of the experiments conducted here have been reported in sufficient detail io cllow direct comparison. The first was an OIL code calculatic: (ReF. 14) of the
impact of a .435 cm aluminum sphere onto an aluminum target at a velocity of $7.63 \mathrm{~km} / \mathrm{sec}$. The results of the predicted variation of particle velocity (taken in the form $v_{f s}=2 u$) with distance into the target, $R_{s^{\prime}}$ on axis are shown in Fig. 113. In addition to applying linear size scailing, each point has been scaled to a projectile velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ by the technique developed in Appendix E. The on-axis experimental data is from Fig. 75 and Fig. 80 for impacts into $110 \mathrm{C}-0$ and 6061-T6 aluminum at a projectile velocity of 7.0 $\mathrm{km} / \mathrm{sec}$. Since this caiculasion was purely hyarodynamic and only extended to a shock radius of 2.15 cm , the choice of alloy for comparison is unimportant since the data from 1100-0, 6061-T6, and 7075-T6 alloys are indistinguishable in this region.

Although the OIL results lie slightly below the experimentally derived curve, they agree quite well with the experimental results, predicting both the magnitude of the particle velocity and the rate of decay with distance quite well. The behavior at $R_{s}<1 \mathrm{~cm}$ is roughly as expected, though no experimental data is available in this region. This comparison is quite pleasing in that the expected purely hydrodynamic behoviar at pressures above approximately 75 kilabars is verified.

The second set of results presented on the same figure are from an RPM calculation by Dienes (Ref. 40) of the impact of 0.4763 cm diameter aluminum sphere into an $1100-F$ cluminum terget at $7.39 \mathrm{~km} / \mathrm{sec}$. The results were linearly size scaled to the .635 cm diameter projectis size of the experiments and the data was adjusted as before to correspond to the $7.0 \mathrm{~km} / \mathrm{sec}$ projectile imoact velocity condition.

In ihe purely hydrodyramic regime, $R_{s}<2 \mathrm{~cm}$, only two calculated points are available, but the ogreement with the experimental data is excellent. At lower pressures $\left(R_{s}>3 \mathrm{~cm}\right)$ ste colculated values of the partisle velocity are snme 25-30 percent lower than the experimental values for the $1100-0$ alloy. However, the most striking Seature of the data is the apparen! agreement with he slope of the experimenial curves in the region $R_{s}>5 \mathrm{~cm}$. Not enough compu-

Fig. 113. Comporison of On-Axis Experimental Results with OIL and RPM Code Results -- 1100 Aluminum.
tational results were reported to determine the exact slope of the computer predicted curve in the region $2 \mathrm{~cm}<R_{\mathrm{s}}<5$ om or to determine if there is a relatively abrupt change in the slope of the curre in the region of $R_{s} \approx 5 \mathrm{~cm}$.

The yield itrength of the $1100-\mathrm{F}$ aluminum used in Dienes' calculations was paken to be 1.3 kilobars while the yield strength of the $1100-0$ (annealed) aluminum used in the experiments was 0.26 kilobars and that of the 6061-T6 alloy was 2.76 kilobars. Consequently, while the correlation is not perfect by any means, it does appear likely that the RPM code is predicting the strengthdependent attenuation in a fashion similar to that deseribed in Chapter VI. The sources of the somewhat large scatter in the region $\mathrm{R}_{\mathrm{s}}>4 \mathrm{~cm}$ of the computergenerated data points may be due partly to coarser zoning used in this region and is affected by this author's transcription of the data. It is somewhat unfortunate that more RPM deta points are shot available in the transition region, $2 \mathrm{~cm}<\mathrm{R}_{\mathrm{s}}<3 \mathrm{~cm}$, since this would help to decide just to what extent the RPM and experimentai results agree. indeed, additional calculations with altered material yield strength would be most useful in interpreting the meaiing of the numerical results.

Based upon the available information, however, the on-axis predictions of partic'e velocity (or pressure) as a function of shock radius by the OIL and RPM codes are quite good. There seems to be a slight (roughly 10 percent) tendency to underestimate the pressure at any given position. Later members of the OIL family of computer codes treat elastic as well as plastic materia' behavior and may be expected to yie!d even better results.

Results of STEEP Code. Anuther series of continuum mechanics codes based upon the numerical finite difference approach has been developed ard applied by Bi; गrk, Rosenblatr, Kryenhagen, and athers (P.ef. 41) to a variety of impac: problems. One me:nber of this grotip, the STEEP code, was used by Rosenblatt (Ref. 32) to calculate iripact crobiems for direct cornparison with the shock wave profagation experime::'s described terein. The STEEP code is written in a two-dimensional Eulerian coordinate system with cylindrical symmetry.

It includes an elastic-plastic model of material strength behavior and a variety of other advanced features related to models of material behavior. The general features of this code as weli as the problems calculated are described in Chapter 11.

Specifically, the STEEP results include the impact of .635 cm diameter spheres at a velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ onto both $1100-0$ and $7075-\mathrm{T} 6$ aluminum targets at normal incidence. The yield strength used in the calculations varied slightly from those reported in Table II: 0.31 kb instecd of 0.26 kb for the $1100-0$ alloy and 4.14 kb instead of 4.86 kb fo- the $7075-\mathrm{T} 6$ alloy.

The results obtained are shown in Fig. 114 which describes the posifion history of the peak normal stress in the target, on oxis. The experimental dota was derived from that presented in Fig. 75 and Fig. 85 of Chapter VI. In the high stress region, $R_{s}<1.1 \mathrm{~cm}$, the numerical results for the $1100-0$ ard 7075-T6 alloys are nearly identical, confirming the essentiatly hydrodynamic behavior of the materials at these stresses.

For the 1100-0 alloy, the STEEP code results tend to underestimate the measured peak normal stress by roughly 20 percent. Except for this offset, however, the agreement between the theory and experiment for this alloy is quite good for the on-axis data, i.e., the slope of the stress decay curve is predicted quite accu:ately out to $R_{s} \approx 5 \mathrm{~cm}$. At this point, o ahange in the slope of the decay curve is expected, but is not apparant in the numerical calculation. Unfortunatrily, the numerical calculation had to be terminated at $R_{5} \approx 6 \mathrm{~cm}$ for economic reasons and the zoning was rather course at this radius, so it is not possible to either confirm or deny the proper behovior of the code in this region.

In similar fashion, the STEEP results for the 7075-T6 alloy are off $;$ et from the experimental results by 10 to 15 per cent. Aside from this, the agreement with the experimental results is grod. Even the expected change in slope of the stress decoy curve at about 2.5 cm depth is predicted well, although the slope chaniges smoothly and not in the more abrupt manner indicated by the experiments. Again it would have been instructive to have corried the 7075-T6

Fig. 114. Comparisen of On-Axis Experimental Results with STEEP Code Results -- 1100-0 and 7075-T6 Aluminum.
celculation out to a larger shock radius. Since only partial results are available on the STEEP calculations at fhis time, it is not possible to interpret these celculations, other than in an overall sense, in terms of the behovior discussed in Chopitar VI.

Finally, the results of a very early strength code calcuiation by Read (Ref. 61) has been included for comparison. This calculation was performed for the impact of an oluminum projectile onto a hard (believed to have been $6061-\mathrm{T} 6$) aluminum target at $7.35 \mathrm{~km} / \mathrm{sec}$. The results have again been size scaled and adjustel to an impact velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ as before. The results show poor comparison with either the experiments of this study or the later, more sophisticated colculations by Rosenblatt shown on the same figure, at least in the region $R_{s}>1 \mathrm{~cm}$. It was, however, the comparison of the results of this calculation with the experimental results of Charest (Ref. 13: see also Fig. 94) that led Read to postulate that the existence of a two-wave structure in the target was causing the fly-off disk technique :o record a reduced and unrealistic stress meosurement. Had the more recent numerical results been available, the question ci the response of the fly-off disks to the two-wave siructure would probably never have been raised. This phenomenen is discussed from a different point .Jt view in Appendix D.

At this time, there are not sufficient details of the seteviations available to construct complete peak normal stress vs shock radius plots as ir, Fig. 114 for angles off the oxis. Results are available, however, at several selected shock radii and are presented for an 1100-0 aluminum target in Fig. 115 and for a 7075-T6 oluminum targat in Fig. 116. The light data points are from the numerical results, while the dark data noints we.e taken from the straight line fits to the experimental data. Where error bars are shown, the points have been obtained by extrapolation of these straight line fits info a region of nonexistent or unreliable experimental results. The error bars indicate a crude estimate of the reliability of these particular points, but are nat

$$
\begin{aligned}
& \text { (200 } \\
& \text { Fig. 116. Peak Normal Stress ir, 7075-T6 Aluminum } \\
& \text { at Selected Shock Radii as a Function of the Angle Off } \\
& \text { Axis. }
\end{aligned}
$$

Fig. 115. Proul: Normal Stress in $1100-0$ Aluminum at Selected Shock Radii as a Function of the Angle. $\frac{5}{x}$
$\frac{1}{4}$
0
intended to be typica! of errors as ;ociated with regions where actual data existed; there the errors are much smaller.

For the 1100-0 alloy, the results for the on-axis case again show the roughly constant percentage differenze between the experimental and numerical results previously indicated on Fig. 114. The percentage difference becomes somewhat larger at $R_{s} \approx 5 \mathrm{~cm}$ after the decay curve has changed slope. At the $25^{\circ}, 40^{\circ}$, and 55° stations the agreement between the numerical results and experiments is even betfer than it was on axis, except at the argest shock rudius where some deviation occurs. Since there seems to be no physical reason why the stress should ever be larger anywhere than it is on axis in this geometry, it moy be that the boundary conditions imposed at the position of the axis in the numerical calculation are disturbing the results slightly. in ony event, the effect is quite minor.
A_{i} the highest off-axis anyle measured, 70°, the experiments measured stresses substantialiy higher than those predicted numerically. This indicised that the code is not properly treating the effects of release waves in the problem. At the larger shock radii, 3 cm and 3 cm , this same type of deviation moy be accurring even at smaller off-axis ongles. More Jetails of the numarical results are required before this can be confirmed, however.

The results for the 7075-76 aluminum tragets tell cimost the same story and are surprisingly consistent. Again the agreement between theory and experiment is improved of the intermediate off-axis angles and again the code predicts results of large angles which are too low by a substantial margin. Ir. ihis case, the calculations were not carried oust to a shock radius of 5 cm , but the trend is clear and the experiments are consisterit.

Finally, an attempt has beer made in two cases to compare the complete stress inisiory obtained from the numerical calculations with the records obtained fram the quartz disk arrival time probes. Since the quartz probes were not calibratei for measuring stress, the results have been norrinalized to the
peak value in each case and should be viewed with some caution. The first case, involving measurements at 50° off axis in an 1100-0 alloy target is shown in Fig. 117. The agreement between theory and experiment in the central portion of the pulse is extremely good -- in fact, it is probably too good since there is a difference of about 4 mm between the positions at which calculations and rieasurements were made. Nevertheless, the agreement in waveform is quite encouraging, aspecially since the quartz probes were not designed with this type of measurement in mirat.

There is a substantial difference in the behovior of the precursor part of the stress puise. It is difficult to say which is more correct, the gauge or the calculation, since the uncalibrated gauge might be responding non-linearly in this region. On the other hand, it is at least equally likely that the code is incorrect. Finite difference schemes such as those used in STEEF tend to smear the leadirg edge of a pulse like this aver several zones, and here the zoning was large enough that this effect couid have produced the loniger precursor. Likewise, models of material behavior -- such as work hardening -- can affect the structure of the elastic precursor. Based upon the available dato it is not possible to assign reasons for the discrepane: 3s, but these records do point out the desirability of performing well cuntrolled stress history measurements for omparison with the calculations,

The second records compared are showr: in Fig. 118. Here, as indicated previously, no well defined elostic precursor is evident in the hord 7075T6 alloy. Th:; cgreement between the calzulations and gauge records is obviously not very good in this case. This is probably due to the fact that the probe measured the wave at 84° off axis, an exiremely high angle where the stress is substantially lower than that at 70° off axis. Rosenblatt (Ref, 32) notes the apparent existence of several weil defined and separated waves emanating from the region of the impact in the STEEP code results; this is rather obvious in tie code results shown in Fig. 118. The quartz record does indicare the possit!le existence of a second wave, although the behavior of these gauges upon stress relief is much in

Fig. 117. Comparison of Stress History from Quartz Gauge with STEEP Code Predictions --1100-0 Aluminum.

Fig. 118. Comparison of Stress History from Quartz Gauge with STEEP Code Predictions --7075-T6 Aluminum.
doubt. The quastion of whether the multiple waves are real or numerically generated oscillations is still unanswered, but worthy of further is:vestigation.

Summary

Existing analytical rechniques based upon the similarity theory of gas dynamics have been applied to the hydrodynamic behavior of sclids and the results have been compared to the experimental results of this study. The similarity-like models employed are useful in understonding the processes invalved in certain regimes of the shock propagation and in determining at what point and to what exteni some of the simplifying assumptions fail. In the intermediate stress regime, down to within roughly an order of magnitude of the material yield strength, either the Karpov or varying energy model yield respectable agreement with experiments, provided one constant in the calculation is correctly chosen. Extensive modifications to the basic theory were necessary to get even the most rudimentary agreement with experiments becouse of the basic nonsimilar behaviur of solid materials. Even so, the models describe purely hydradynamic behavior and are unable to account for any of the many potential effects of material strength upon the shock wave propagation.

Fairiy detailed comparisons have been made between ovailable numerical calculations (particularly the STEEP code) and the experiments with fayorable results. Although differences in stress mognitude exist, the numerical techniques were able to predict with fair accuracy the attenuation of the on-axis peak normal stress in the 'rget as a funciion of depth, including the effects of target strensth. The resulis were conpared for several angles off axis and found to be good except for the higher angles $\left(-70^{\circ}\right)$ where the code predicits stresses that are much too low. Two quartz probe records of stress history were compared to numerical results and found to be in good agreement, although these results must be considered preliminary.

VIII. Conclysions ond Recommendations

Conclusions

The primary objective of this research study, to determine mxperimentally the role played by material strength in an idealized hypervelocity impact situation, has been successfully accomplished. Experimental data regarding the phenomena associated with the region of the crater, including erater growth rates, have bsen obtained for three alloys of aluminum under varying conditions. Similarly, accurate experimental measurements of the propagation of the shock wave (the peak normal stress) ints the target have been made for the same three alloys. An analysis of the results has yielded reasenable explanations for the phenomena observed. Correlation with numerical calculations has shown that the computer codes produce generally valid results, but that many of the detoils are in question.

The following specific conclusions apply to the results of this research:

1. The experimental techniques develoned lave yielded highly accurate results describing the time variation of the geometry of craters produced in aluminum by hypervelocity impacts. The techniques are applicable to future studies with other geometries or meierials provided the target is sufficiently transparent to the x-rays to provide a good image.
2. The history of croter growth (either diemeter or penetration) in all the aluminum alloys studied can be approximoted quite accurately by a simple exponential growit, low of the form D / d or $p / d=A$ $8 \mathrm{e}^{-t / \tau}$ where τ is the exponential period characteristic of the impact such that, to first o.der, $\mathrm{D}_{\text {final }} /^{i+}$ and $\mathrm{P}_{\text {fincl }} /{ }^{1 \tau}$ are constonts independent of material strength.
3. In aluminum, rehound of the crater dirnensions at late times did not occur to within experimental error.
4. Alocsurement of the grouth of the sutside dimeter of the crater lip in the cases investigated yields an approximate measure of the exponential period, r, for that case, but caution is urged in applying this conciusion outside the range of velocities and materials investigated.
5. Computer calculations (STEEP) tended not to predict crater growth rates accurateiy, particularly at intermediate times. Predictions of final crater dimensions were generally not much better, yielding results in several cases that would appear to be in error by ter to twenty percent.
6. As expectec., the experiments show different crajer growth rates in moterials of different strengths. This is the first experimental evidence on transient cratering behavicr demonstrating the details of these growth, rate differences.
7. The fly-off disk technique coupled with a statistical treatment of the results yields an accurate, reproducible, and relatively convenient method for measuring peak normal stresses in solids. It can measure a wide range of stress levels, usually would not require direct calibration, and could be appilied to a variety of situations.
8. The results show that, for the cases treated, the peak normal stress varies $3 s$ the shock radius to some power to high accuracy once the initial projectile penetration has ceased. The stress varies only weakly with angle off oxis sut to about 30°. The stress then drops monotonically with increasing angle reaching the required value of zero at 90° off oxis.
9. Definite non-hydrodynamic stress attenuation has been detected in the experiments. To the author's knowledge, this is the first experimental evidence of such material strength dependence obtained in a diverging geometry 'the effect has been observed in plane geometry, see Ref. 49).
10. The quartz arrival timie probes proved effective and demonstrated the existence of considerable structure on the leading edge of the propagating stress pulses. The results obtained are consistent with the elastic-plastic model of wave propagation described in the text.
11. The comparison of Mak's one-dimensional calculations (Ref. 56) and the results sbtained here show that the stress attenuation is sensitive to the loading history in the crater region as well as to material effects.
12. The results of analytic methods (modified similarity theory) for calculating shock wave propagation in this impact situation have been compared with experimental results and found to yield good results only in timited regions.
13. Comparisons of numerical calculations of shock propagation have been made with the experimental results with generally acceptcble agreement. Again, many of the details are in question. In particular, the numerical calculations fail to predist correctly the stress attenuation at large angles off axis and do not cleariy indicate the point af which elastic or plastic unloading alters the stress attenuation. It is extremely difficult to determine why certain effects are (or are not) occurring when only a very few calculations gie available.

Fecommendations

Two types of additional studies are feasible and would contribute materially to extending the mainstrearn of the effort reported herein. The first is the development of techniques for monitoring the complete stress history (rather than merely the peak) at various positions in the target. Techniques which are at the forefront of the state of the art, such as compensated Mariganin wire gauges and laser velocity interferometers, have become ovailable only very recently and could be opplied direstly to this problem. Secendly, is would appear useful to
extend Mok's work (cne-dimensional spherical colculations) to explore the effects of both loading history arid vririous material models on the stress atterivation tistory. This type of study is far too complicated and expensive to perform using the two-dimensional computer codes. Theoretical parameter studies are very important in interpreting the rasults of experiments in this field.

In cadition, the following specific studies could be performed using the techniques developed hersin (or minor variations thereof):

1. Studies of oblique hypervelocity impacts could be performed and transient measurements taken. Very little is known about shock wave propagation under these conditions, yet the phenomeno are of practical interest.
2. Normal impacts into composite and/or porous materials could be studied. In many instances, it is the details of the shock wave propagation through materials such as these that is of prime interest.
3. Dynomic measurements of impacts with projectiles moving at ballistic velocities (armor impacts, etc.) are of increasing importance. Miany of the techniques described herein, both experimental and nurnerical, are directly applicable to such problems. in particuiar, one such study invslving the determination of the effects of projectile strength upon target response (at ballistic velocities) is already being performed under AFML and AFIT sponsorship.
4. Further experiments should be performed to determine if flat plate targets could be used when additional shock wave propagation experiments are desired -- see Appendix E.

IX. References

Much of the literature in the hypervelocity impact field is contained in the Proceedings of the various Hypervelocity Impact Symposia held from time to sime up through 1965. In particular, the material in the 6th and 7th Symposia, cited as References 1 and 2 below, is both abundant and useful. It has, therefore, been found convenient to abbreviate these references to the Symposia, e.g., HVIS7 , and to cite the individual contributions separately:

1. --m----. Proceedings of the Sixth Symposium on Hypervelocity Impact. Cleveland, Ohio: The Firestore Tire and Rubber Co., 1963.
2. --------. Proceedings of the Seventh Hypervelocity Symposium. Orlando, Florida: The Martin Co., 1965.
3. Cosby, W. A., and R. ט. L.yle. The Micrometeoroid Environment and Its Effect on Materials and Equipment. NASA SP-78. Washington: National Aeronautics and Space Administration, 1965.
4. Hermann, Waiter, and A. H. Jones. Survey of Hypervelocity Impact Information. ASRL 99-1. Cambridge, Mass: Massachusetts Institute of Technology, 1961.
5. Eouma, D. D., and W. C. Burkitt. Multivariable Analysis of the Mechanics of Penetration of High Speed Particles. NASA CR-664. Denver, Colo: The Martin Co., 1966.
6. Eichelberger, R. J. "Summary: Theoretical and Experimental Studies of Crater Formation" in HVIS-6, Vol. 11, Pt 2, pp. 683-705 (1963).
7. -----n---. Study of the Phenomena of Hypervelocity Impact. NASA CR55266 (N64-13393). Santa Barbara. Calif: General Motors Defense Research Laboratories, 1963.
8. Kineke, J. H., Jr. , "Observations of Craier Formation in Ductile Materials" in Proceedings of the Fifth Symposium on Hypervelocify Impact, Vol. 1, Part 2. Golden, Colo: Colorado Schowl of Mines, 1962.
9. Kineke, J. H., Jr., and R. Vitali. "Transient Observorions of Crater Formation in Semi-Infinite Targets" in HVIS-6, Vol. II, Part 2, p. 457-512 (1963).
10. Frasier, J. T., and B. G. Karpov. "Hypervelocity Impact Studies in Wax" in HVIS-5, Vol. 1, Port 2, pp. 371-388 (1961).
11. Frasier, J. T., B. G. Karpov, and L. S. Holloway. "The Behovior of Woix Targets Subjected to Hypervelocity Impacts" in HVIS-7, Vol. V, pp. 123160 (1965).
12. Gehring, J. W., C. L. Meyers, and J. A. Charest. "Experimental Studies of Impact Phenomena and Correlation with Theoretical Models" in HVIS-7, Vol. V, pp. 161-211 (1985).
13. Charest, J. A. Measurement of Shoik Wave Pressures Generated by tiypervelocity Impacts in Aluminum. NASA CR-78399 (N66-37523). Santa Earbora, Calif: Genercl Motors Defense Research Laboratories, 1964.
14. Billingsley, J. P. Comparison of Experimental and Predicted Axial Pressure Variation for Metallic Targets Impacted by Merallic Spheres. AEDC TR 69-49 (AD690192). Tallahoma, Tenn: ARO, Inc., 1969.
15. Billingsley, J. P. "Comparison of Experimental and Predicted Axial Pressure Variation for Semi-Infinite Metallic Targets" in Proceedings of the AILA Hypervelocity Impact Conference. Cincinnati, Ohio, 1969.
16. Kinslow, R. "Observations of Hypervelocity Impact of Transparent Plastic Targets" in HViS-7 Vol. VI, pp. 49-i07 (1965).
17. Stepka, F. S., et ol. Investigotion of Charccteristics of Pressure Waves Generated in Water Filled Tanks Impacted by High Velocity Projectiles. NASA TN-D-3143. (1965)
18. Rae W. J. Nonsimilar Solutions for Impact-Generated Shock Propagation in Solids. NASA CR-54251. Buffalo, N.Y.: Cornell Aeronautical Lab, Inc. (1965)
19. Rae, W. P., and H. P. Kirchner. "A Blast Wave Theory of Crater Formation in Semi-infinite Targets" in HVIS-6, Vol. II, Part 1, pp. 163-227 (1963).
20. Rae, W. J., and H. P. Kirchner. Final Report on a Stuady of Mieteoro:d Impact Phenomena. NASA CR-50171. Buffalo, N.Y.: Cornell Aeronautical Lab, Inc., 1963.
21. Zaker, T. A. Point Source Explosion in a Solid. ARF 4132-6. Chicago, III.: Armour Research Foundation, 1959.
22. Bach, G. G., and J, H. L.ce. "Shock Propagation in Solid Media" in Proceedings of the AlAA 5th Aerospoce Sciences Meeting (AIAA Paper 67-141), 1967.
23. Heyda, J. F., and T. D. Riney. "Peak Axial Fressures in Semi-Infinite Media Under Hypervelocity Impact" in HVIS-7, Vol. III, pp. 75-122 (1965).
24. Bjork, R. L. Effect of Meteoroid impact on Steel and Aluminum in Space. RAND Paper P-1662, Sania Monica, Calif,: The RAND Corp., 1959.
25. Evans, M. W., and F. H. Hariow. The Particle-in-Cell Method for Hydrodynamic Calculations. LA-2139. Los Alamos, N. Mex.: Los Alamos Scientific Laboratory of the University of California, 1957.
26. Walsh, J. M., and J. H. Tillotson. "Hydrodynamics of Hypervelocity Impact" in HVIS-6, Vol. II, Pari 1, pp. 59-104 (1963).
27. Walsh, J. M., and W. E. Johnson. "On the Theory of Hypervelocity Impact" in HVIS-7, Vol. II, pp. 1-75 (1965).
28. Riney, T. D. "Visco-Plistic Solution of Hypervelocity Impact Cratering Phenomena" in HVIS-6, Vol. II, Part 1, pp. 105-140 (1963).
29. Dienes, J. K. "Late-Siage Equivalence and Similarity Theory for OneDiniensional Imoacts" in HVIS-7 Vol. II, pp. 187-219 (1965).
30. Bjork, R. L., et al. Analytical Studies of Impact Effects as Applied to the Meteorcid Problem. NASA CR-757. Sherman Ooks, Calif: Shock Hydrodynamics, Inc., 1967.
31. Wilkins, M. L. Calzulations of Elastic-Plostic Flow. UCRL-7322. Livermore, Calif:: University of California Lawrence Radiaticn Loboratory, 1963.
32. Rosenblatt, M. Numerical Calculations of Hypervelocity impact Crater Forrmaxion in Hard and Soft Aluminum Alloys. (In Publication) Sherman Oaks, Calif.: Shock Hydrodynamies, Inc., 1970.
33. Gehring, J. W., Jr. "Observations of the Phenomenc of Hypervelocity Impact" in Hyperveiocity Impact: Fourth Symposium. Eglin AF E, Fis: Air Proving Ground Center, 1900.
34. Smith, R. H. Inveatigation of Crater Growth and Eiecta Cloud Resulting from Hypervelocity Impact of Aluminum Sphere on Thick Aluminum Targets. AFML TP. 68-175, prepared from thesis performed for the Air Force Institute of Technology. Wright-Patterson AFB, ©hio: ΔF Materials Laboratory, 1968.
35. Swift, H. F. The Air Foice Materials Laboratory Hyperve! ocity Ba!listic Ran ie. AFML TR 67-2. Wright-Patterson AFB, Ohio: University of Dayton Research Institute, 1967.
36. Swift, H. F., and E. Strader. "Flash X-Ray Actua!ed Trigger Switch." Review of Scientific instrurrents, 39 (5): 728-730 (May 1968).
37. Preonas, D. D., and H. F. Swift. "High Intensity Point Light Source" in Proceedings of the 9th interiational Congress on High Speed Photography. Denver, Colo., Aug. 1970.
38. Rolsten, R. F., and W. A. Dean. Metallurgiz of Aluminum Ingots for Hypervelocity Impact Targets. AFML TR á6-i09. Wright-Patterson AFB, Ohio: AF Materials Laborarory, 1966.
39. Preonas, D. D., H. F. Swift and G. S. Williams. "An Inexpensive Automatic Digital Film Reader." Journal of the SPIE, 8(5):184-186 (1970).
40. Dienes, J. Croiering Calculations with o Hydradynamic Strengith Code. GAND-7367. San Dieso, Calif.: Gulf General Atomic, i966.
41. Rosenblati, M, and R. Biork. Nulti-Dimensional and Multi-Material Analytical Methods for Computer Solution of Hypervelocity Impact and Wave Propagation Problems. Sherman Oaks, Calif.: Shock Hydrodynamics, Inc., undated.
42. Walsh, J. M., et al. Summary Report on the Theory of Hypervelocity Impact. GA-5119. San Diego, Colif.: General Atomic Div., 1964.
43. Halperson, S. M. "Comparison Between Hydrodynamic Theory arid impact Experiments" in HVIS-7, Vol. 5, pp. 235-257 (1965).
44. Holioway, L. S. Observations of Crater Growth in Wax. BRL MR-1525. Aberdeen PG, Md.: Beilistics Research Laboratory, 1963.
45. Rinehort, J. S. Practical Countermeasures for the Prevention of Spall. \triangle FSWC TR 60-7. Golden, Cola.: Colorado School of Mines, 1950.
46. Swift, H. F., D. D. Preonas and W. C. Turpin. "Dissection Methods for Measuring the Characteristics of Expanding Clouds." Review of Scientific Instruments, 41 (5): 746-751 (May 1970).
47. Prater, R. F., H. R. Tyylor and H. F. Swift. "Piezoelectric Shock Wave Arrival Time Sensor" in the proceedings of the Aeroballistic Range Association. Doyton, Ohio: University ni Dayton Research Irstituie, Nov. 1969.
48. Kohn, B. J. Compilation of Hugnnion Equatipis of State. AFWL TR 69-38. Kirtland AFB, N. Mex.: AF Weapons Laboratory, 1969.
49. Fowles, G. R. "Shock Wave Compression of Haraiened and Annealed 2024 - Aluminum." Journal of Applied Physics, 32 (8), 1475-1487 (1961).
50. Curran, D. R. "Nonhydrodynamic Attenuation of Shock Waves in Aluminum." Journal of Applied Physics, 34 (9), 2671-2685 (1953).
51. Erkman, J. O., and G. E. Duvall. "Elastoplasticity and the Aftenuation of Shock Waves" in Proceedings of 9 th Midwest Mechanics Conference. Modison, Wisc.: University of Wisconsin, 1905.
52. Erkman, J. O., A. B. Christensen and G. R. Fowles. Attenuation of Shock Waves in Solids. AFWL TR 66-12 (AD 482942). Menlo Park, Calif: Stanford Pesearch Institute, 1966.
53. Nader, C. L. One-Dimensional Elastic-Fiastic Calculations for Aluminum. LA-3678. Los Alamos, N. Mex.: Los Alames Scientific Laboratory of the University of California, 1767.
54. Keller, D. V. Shork Propagation in Solids and Foams and Studies of NonHydrodynamic Attenuation. ARD 66031 R (AD 63627!). Los Angeles, Calif.: Nortronics, Div. of Northrop Corp., 1966.
55. Seaman, L., et al. Classificction of Materials by Shock Properties. AFWL. TR 69-96. Menlo Park, Calif.: Stanford Research Institute, 1969.
56. Mok, C. H. The Effects of Solid Strer.jth on the Propagotion and Attenuation of Spherical and Flarie Shock Waves. BRL R-1375 (AD Sb3820). Aberdeen PG, Md.: Ballistic Research Laboratory, 1967.
57. Taylor, G. I. "The Formation of a Blast Wave by a Very Intense Explosion." Proceedings of the Royal Society, Series A, 201, pp. 1959 ff (i950).
58. Johnson, W. E. OlL, A Continuous Two-Dimensional Eulerion Hydrodynamic Code. GAMD-5580. San Diego, Calif.: General Atomic Div., 1964.
59. Dienes, 1. K. "Late Stage Equivalence and Similarity Theory, for OneDimensional Impacts" in HVIS-7, Vol. II, pp. 187-220 (1965).
60. Walsh, J. M., and W. E. Johnson. "On the Theory of Hypervelocity Impact" in HVIS-7, Vol. II, pp. 1-76 (1965).
61. Private Communication, Dr. H. Read (Eystems, Science and Software), San Diego, Calif.
62. Summers, J. L., and A. C. Charters. "High Speed Impact of Metal Projectiles in Targets of Various Warerials" in Froceedings of the Third Symposium on Hypervelocity Impact, Vol. 1, pp. 101-110. Chicago, 111.: Armour Research Four 'ation, 1958.
63. Clough, N., S. Lieblein, and A. R. McMillan. Crater Characteristics of 11 Metal Alloys Under Hyperveiocity Impcti $\operatorname{Including}$ Effects of Proiectile Density and Target Temperature NASA TN D-5135. Cleveland, Ohio: Lewis Research Center, 150%.
64. Christman, D. R. "Target Strength and Hypervelocity Impact." AIAA Journal, 4(10), 187̌-1973. (1966)
65. Denardo, B. P., J. L. Jommers and C. R. Nysmith. Projectile Size Effects on Hypervelc:il, irmpact. NASA TN D-4067. Ames Research Center, 1967.
66. Rinehart, J. S. and J. Pearsun. Behavior of Metols Under Impulsive Loods, New York: Dover, 1965.
67. Zeldoyich, Ya. B., and Yu. P. Firizer. Physics of Shock Waves and High Temperature Hydrodynamic Ph.nomena. Ed. by W. D. Hoyes and R.F. Probstein. New York: Academre Press, 1967. Vol. II.
68. Waish, J. M., and R. H. Christian. "Equation of State of Metals from Shrock Wave Measurements." Physical Review, 97 1544-1556 (1955).
69. Morgan, D. T., et al. Measurement of Gruneiser Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminum and Teflon. AVCO RAD TR 65-24. (AD 624320). Wilmington, Mass.: AVCO Corp., 1965.
70. Preonas, D. D., and R. F. Prater. "Quentitative Motion Analysis for Rotating Mirror Framing Camera Records." Journal of the Society of Motion Picture and Television Engineers, 79 (7), 586-585 (1970).
71. Bridgman, P. W. Dimensionai Analysis. New Haven, Conn.: Yale University Press, 1931.

Appendix A

Reduction of Data Obtained
 from Croter Growth Flash X-Radiographs

In this appendix, two problems associated with the reduction of x-roy data on crater growth are discussed. The first of these problems occurs because the x-ray source, torget, and film were not arranged identically for the various channels; consequently the apparent magnification in each radiograph was different and separote calibration was required. The second problem arises beccuse it war necessary to use smell, thin targets to obtain an accurate meesure of the crater size at early times. For such targets; the size can actually affect the crater growth process. Methods were devised as deseribed briow to properly account for each of these problems in the data reduction.

During each impact event in the crater growth study a sequence of flash radiographs was taken of predetermined times after impact. The difference in magnification on each x-roy created by the geometrical arrangement of the x-ray sources, target, and film hoiders was such that some distance reference in the field of view was necessary for calibrating each flash x--ay. Each x-roy channel had a substartially different magnification of the plane of the crater and small chonges in the placement of the target on the experiment tolder could change the magnification from round to round. The use of an x-roy of the final crater for each round ottained after the event, but before the target was moved in any woy, proved an expedient woy of obtaining the desired raference data. Whenever possible the dato fror the flash x-ray films was expressed as a ratio of the instantaneous crater dimensions to the dimensions measured in a post-event x-sadiograph. In certain cases where forget damage presluded obtaining valid post-event x-ray data, the diameter of the target in the instantaneous x-radiograph was employed os a distance reference.

An inherent problem in hypervalocity impact studies is that identical impacts into identical targets display a characteristic scotter in the final crater dimensions. The ratio jechnique of data reduction used also contributes to reducing such scatter in the croter growth data since the data for a given round is normalized to the actual final dimensions for that round.

Certain opptications require that the data be presented directly as the crater diameter, $D(t)$, or the crater depth, $p(t)$, as functions of time. These are usually ratioed to the projectile diameter, d , so that the impact of different sized projectiles can be compared. The procedure is to multiply the :ratio of the diameter $D(t) / D_{f}$, by a "standard" final diameter, $D_{f 0^{\prime}}$ for that material, i.e.

$$
\begin{equation*}
\frac{D(t)}{d}=\left[\frac{D\left(t_{t}\right.}{D_{f}}\right] \cdot \frac{D_{f_{o}}}{d} \tag{Eq.58}
\end{equation*}
$$

$D_{f c}$ is a mean value obtained from many micasurements. The use of D_{f} instead of $D_{f o}$ in this expression would fail to provide the reduction in scatter mentioned above. In addition, measurement of a single crater diameter D_{f} (or depth p_{f}) implies inherent inaccuracies due to the slight irregularities of individual craters coupled with the fact that for any given x-ray the D_{f} required would be that in the plane through the cioter center and perpendicular to the line between x-ray source and film holder. This is a different plane for each x-ray given round.

There are exceptions to the above procedure. In several cases it was necessary to use thin targets to obtain adequate contrast in the x-roy pictures at very early times when the forming crater was still quite small. In these coses, the final croter produced was not representative of craters in truly quasi-infinite targets. Absolute measurements of the instantaneous srater size were made and compared to a "standard" final diameter to obtain the ratio $D(t)$ / $D_{\text {fo }}$. Also for sufficiently smal! targets, edge effects moy alter $\mathrm{D}(\mathrm{t})$ efter
some sritical volue of t all deta after that time mist be dispegerded.
The situation described above required that a "standard" final or postevent depth and diameter be definea for each cluminum alloy tested. Over the years vast quanfities of experimental information has been gathered on impacts into auasi-infinite targets. Unfortunately, the descriptions of the exact experimental conditions and the characteristics of the target materials were many times not well documented. Certain empirical formulas that describe the croter depth have been developed. One of the earliest was that due is Charters (Ref. 62):

$$
\begin{equation*}
\frac{p}{d}=\zeta\left(\frac{\rho_{p}}{\rho_{t}}\right)^{2 / 3} \cdot\left(\frac{v}{\bar{c}}\right)^{2 / 3} \tag{Eq.59}
\end{equation*}
$$

where ρ_{p} and ρ_{t} are the projectile and target densities respectively, ψ is the projectile velocity and \bar{c}_{i} is the bulk sound speed in the material, $\left(E_{t} / F_{i}\right)^{1 / 2}$, where E_{f} is the target modulus of elasticity. The moterial cratering coefficient ζ varies slightly from material to material but always lies near the value of 2.0. Clough (Ref. 63) indicates that for 7075-T6 aluminum, $E_{i}=6.96 \times 10^{11}$ dynes $/ \mathrm{cm}^{2}$ and $\zeta=2.00$. Using these figures, for a 7075-T6 aluminum target, an aluminum projectile, and an impact velocity of 7.00 kry 'sec, p/'d assumes the value 2.50 .

Halperson (Ref. 43) develops the formula $p / d=2.36 v^{1 / 3}-1.60$ for $1100-F$ aluminum (Brinnell Hordness Number 25), however he onily claims goed results up to a projectile velocity of $6 \mathrm{~km} / \mathrm{sec}$. Indeed the $v^{1 / 3}$ is no longer the accepted scaling low for hypervelocity impacts although it may well fit the data in the range Halperson discusses. In any event, applization of this formula with $v=7.00 \mathrm{~km} / \mathrm{sec}$ yields $p / d=2.91$ for $1100-F$ aisminum.

More recently Christman (Ref. 64) obtained another relation where the target strength was accounted for by a parameter $B_{\text {max }}$ which is the maximum Brinnell Hardness Number (BHN) measured in the vicinity of the sectioned target croter after the impact:

$$
\begin{equation*}
\frac{\mathrm{p}}{\mathrm{~d}}-2.05\left(\frac{\rho_{\mathrm{p}}}{\rho_{t}}\right)^{2 / 3}\left[\frac{\rho_{t} v^{2}}{B_{\max }}\right]^{1 / 3} \tag{Eq.60}
\end{equation*}
$$

For $1100-0$ aluminum ($B H N 25$) the $B_{\text {max }}$ was found to be $45 \mathrm{~kg} / \mathrm{mm}^{2}$. Then for $7.00 \mathrm{~km} / \mathrm{sec}$ projectile velocity, a / d of 2.97 is obtained.

Unfortunctely, the material parameters for the other alloys in this study were not available in the literature surveyed ror was information on crater diameters. Consequently, it was decided to onalyze all the pertinent impacts that had been performed at the AFML fasility in order to determine reasonable a averages for crcter depths and diameters, to determine the scostter in this data, and to demonstrate the changes created by target thickness. Table XI shows the results obtained. Selected well documented results obtained by Cenordo (Ref. 65) and Halperson (Ref, 43) were added to the AFML data for analysis. Projectile sizes lay between 0.318 cm and 0.625 cm and velocities between 6.0 and $7.5 \mathrm{~km} /$ sec. In each case the projectile was aluminum. A scaling law of $v^{2 / 3}$ was used to adjust all of the data to a nominal velocity of $7.0 \mathrm{~km} / \mathrm{sec}$ while linear scaling was used to compare results obtained with different projectile sizes.

The quantities σ_{p} and σ_{D} represent the root mean square deviation from the mean for the ρ / d and D / d ratios respectively. The values in this table obtained from recent experimental data cgree safisfactorily with the yalues obtaired above from the relations of Halperson, ard Christmon for 1100 aluminum. The velue obtained using the Churters equation does r.ot agree well at all. Indeed, the value is more nearly that obtained at AFML for 7075-TO aluminum. Table XII presents the raw data upon which these averages are based. Targets disploying massive spall er complete penetration were not included.

Note also that for the case of 7075-T6 aluminum, the diameter is very difficuit to define cive to brittle fracture of the crater lips and adjecent material late in the crater formation. This same effect accounts for the large scatter in

Table XI
Standard Croter Dimensions for Aluminum Allays-1

Aluminum Alloy	Average P / d	σ_{P}	No. of Dota Points	Average D / d	${ }^{{ }^{\sigma} \mathrm{D}}$	No. of Dota Points
$1100-0$	2.99	0.08	49	5.20	0.08	48
$6061-\mathrm{T} 6$	2.07	0.06	8	4.14	0.31	8
$7075-\mathrm{TO}$	2.48	0.03	8	4.27	0.13	8
$7075-\mathrm{T} 6$	1.87	0.09	14	--	-	--

the 6061-T6 diameter data. For the 7075-T6 alloy, absolute values of the diameter were determined directly from eaci: x-ray.

Figures 119 and 120 present the data as a function of the iarget thickness, T. Whenever the target rear surface was not parallel to the frant surface, the distance from the impact point to the nearest paint on the rear surface was used. This data indicates that the target thickness has little effest upon the grater depth or diameter unti' some critical thickness is reached -- a thickness corresponding to massive rear surface spall or complete target penetration. For each of these aluminum alloys the threshold appears to lie near a T / d value of 6 , although the data is sparse in most cases.

Several other projectile and target combinations are required for this study although there is not sufficient dafa available to study the behavior of these materials as a function of target thickness. This additional data is presented in Tables XIII and XIV.

This data indicates that the use of the ratio technique of reducing the flasin x-roy photographs should remain valid down to the target thickness threshold point described above. For cases below this threshold, or for those events where massive target spall or complete penetration occurred an absolute measurement of the crater dimensions and separate evaluation of the validity of each x-ray must be made.

Fig. 119. Hypervelocity Impact ($7 \mathrm{~km} / \mathrm{sec}$) Crater Penetration versus Target Thickness in Scaled Coordinates for Aluminum Alloys.

Fig. 120. Hypervelocity Impact ($7 \mathrm{~km} / \mathrm{sec}$) Crater Diameter versus Target Thickness in Scaled Coordinates for Aluminum Alloys.

Table XI:
Crater Dimension Der x-l

Round Number	Projectile Velocity (km/seci)	```Projectile Diameter (cm)```	Scaled Depth (p_{s} / d)	Scaled Diameter $\left(D_{s} / d\right)$	Target Thickness (T/d)
1100-0 Aluminum					
2002	6.86	0.3175	2.93	5.21	20.0
2003	6. 69	0.3175	2.94	5.10	20.0
2004	6. 90	0.3175	2.96	5.25	20.0
2005	6. 69	0.3175	2. 92	5.33	20.0
2093	6.84	0.3175	2.75	5. 15	>20
2238	7.16	0.3175	2. 83	5.17	19.5
2239	7. 32	0.3175	2.87	5.17	20.0
2384	6.90	0.3175	2.87	5.26	10.5
2385	7.05	0.3175	2.92	5.24	7.5
2356	7. 03	0.3175	2. 90	5.17	7.5
2337	7.11	0.3175	2. 71	5.05	10.0
2455	7.10	0.3175	2. 83	5.10	12.0
2456	7.01	0.3175	2. 86	5.20	12.0
2457	7.01	0.3175	2. 74	5.24	12.0
2459	6.90	0.3175	2.90	5.17	12.0
2460	6.91	0.3175	2. 87	5.11	12.0
2461	6.80	0.3175	2. 84	5.15	32.0
2462	6.90	0.3175	2. 95	5.22	22.0
2463	6.76	0.3175	2. 91	5.25	12.0
2464	6.87	0.3175	2. 85	5.11	12.0
2503	7.16	0.3175	2.87	5.15	8.0
2504	7.22	0.3175	2. 84	5.16	8.0
2505	7.14	0.3175	2.94	5.23	8. 0
2521	7. 30	0.3175	2.96	5.22	8.0
2589	6.37	0.635	2. 94	5. 32	7.0
2639	7. 14	0.635	2. 92	5.19	7.0
2640	7.06	0.635	2. 37	5.23	7.0
2641	7.01	0.635	2. 94	5.12	7.0
2676	6. 80	0.635	3.02	5.32	5.75
2719	6. 96	0.635	3.00	5.17	14.0
2811	6. 99	0.635	2.86	5.18	6.3
2851	6.43	0.635	2. 92	5.23	7.9
2860	6.70	0.635	2. 33	-	12.6
2864	6.70	0.635	2.75	5.15	9.45

Table XII (Continued)

Round Number	Projectile Velucity ($\mathrm{km} / \mathrm{sec}$)	Projectile Diameter (cm)	Scaled Depth (p_{s} / d)	Scaled Diameter $\left(D_{s} / d\right)$	Target Thickness (T / d)
76*	6.85	0.4763	2. 86	5.29	t
7\%********	6.54	0.4763	$\because .90$	5.34	t
34*	7.20	0. 4763	2.95	5.22	\dagger
614**	7. 52	0.3175	2.71	5.02	\dagger
$615 *$	7. 02	0.3175	2.73	5.05	\dagger
620**	6.36	0.635	2. 90	5.21	\dagger
854*	6.90	0.3175	2.77	5.17	\dagger
900%	6.25	0.3175	2. 87	5.27	t
$44^{*} \times$	6.57	0.635	2. 98	5.30	\dagger
45\%	6.72	0.635	2. 85	5.22	\dagger
48**	6.87	0.635	2.97	5.30	\dagger
277**	6.74	0.4763	2. 98	5.22	t
278**	7.13	0.4763	3.03	5.17	t
280**	7.38	0.4763	2.96	5.16	\dagger
284**	7.01	0. 4763	3.02	5.29	t

6061-T6 A luminum

2006	7.18	0.3175	2.14	3.94	10.0
2007	7.14	0.3175	2.16	3.94	9.75
2008	7.19	0.3175	2.42	4.06	4.06
2012	6.50	0.3175	2.58	4.07	3.60
2014	6.67	0.3175	2.72	4.41	3.50
2688	6.70	0.635	2.63	3.60	6.32
2694	6.80	0.635	2.24	4.56	5.6
2806	6.70	0.335	2.06	-	6.3
2837	6.25	0.635	2.06	4.51	9.45
2838	5.93	0.635	2.09	-	15.75
2842	5.88	0.635	2.01	-	12.6
2863	6.70	0.635	2.01	-	12.6
2865	6.70	0.635	2.06	4.15	6.3

7075-T0 Aluminum
2240
6. 95
0.3175
2. 51
4.48
>20

[^3]
Tabie XII (Continued)

Round Numioer	Projectile Velocity ($\mathrm{km} / \mathrm{sec}$)	Projectile Diameter (cm)	Scaled Depth (r_{s} / d)	Scaled Diameter $\left(D_{\mathbf{s}} / d\right)$	Target Thickness (T / d)
2245	7.20	0. 3175	2.48	4. 41	>20
250?	7.45	0.3175	2. 43	4.17	8. 0
2506	7.15	0.3175	2. 52	4.10	8.0
2508	7.16	0.3175	2. 49	4. 23	8.0
2519	7. 27). 3175	2. 44	4.18	8.0
2522	7.34	0.3175	2.47	4.34	8.0
2523	7.28	0.3175	2.52	4.23	8.0

7075-T6 Aluminum

2242	7.15	0.3175	1.94	-	>20
2247	7.17	0.3175	1.99	-	>20
2509	7.29	0.3175	1.96	-	8.0
2510	7.20	0.3175	1.93	-	8.0
2511	7.24	0.3175	1.94	-	8.0
2693	6.97	0.635	1.82	-	5.6
2804	6.70	0.635	1.73	-	6.3
2823	7.00	0.635	1.90	-	12.6
2824	6.95	0.635	1.83	-	12.6
2825	6.41	0.635	1.88	-	9.5
2832	5.96	0.635	1.95	-	4.75
2854	6.61	0.635	1.74	-	7.9
2857	6.44	0.635	1.76	-	6.3
2859	6.44	0.635	1.32	-	6.3

Table XIII
Standard Crater Di. vensions for Aluminum Alloys-il

Mluminum Alloy	Projectile Material	Nominal Projectile Velocity (km/sec)	Average p/d	Average D/d
$1100-0$	2017 Al	2.30	1.56	2.60
$1100-0$	2017 Al	5.20	2.52	4.42
$1100-0$	2017 Al	4.10	2.27	3.94
$1100-0$	Steel	5.20	5.02	6.03

Table XIV
 Crater Dimension Data-ll

Round	Projectile	Projectile	Scaled	Scaled	Target
Number	Velocity	Diameter	Depth	Diameter	Thickness
$(\mathrm{km} / \mathrm{sec})$	(cm)	$\left(\mathrm{P}_{\mathrm{s}} / \mathrm{d}\right)$	$\left(\mathrm{D}_{\mathrm{s}} / \mathrm{d}\right)$	$(\mathrm{T} / \mathrm{d}\rangle$	

1100 Aluminum Target (Scaled to $2.30 \mathrm{~km} / \mathrm{sec}$)

1044	2.34	0.3175	1.49	2.62	8.0
1045	2.32	0.3175	1.53	2.57	8.0
1049	2.29	0.3175	1.67	2.61	7.1

1100 Aiuminum Target (Scaled to $5.20 \mathrm{~km} / \mathrm{sec}$)

2515	5.40	0.3175	2.53	4.39	8.0
2516	5.03	0.3175	2.49	4.43	8.0
2517	5.07	0.3175	2.59	4.40	8.0
2524	5.16	0.3175	2.52	4.40	8.0
2642	5.42	0.635	2.44	4.51	7.0

1100 Aluminum Target (Scaled to $4.10 \mathrm{~km} / \mathrm{sec}$)

2698	4.19	0.635	2.36	3.96	4.75
2700	4.03	0.635	2.14	3.96	7.0
2701	4.09	0.635	2.21	3.94	5.2
2702	4.08	0.635	2.30	3.94	5.2
2703	4.10	0.635	2.28	3.94	5.2
2704	4.23	0.635	2.35	3.87	5.2

1100 Aluminum Target--Steel Projectile (Scaied to $5.20 \mathrm{~km} / \mathrm{sec}$)

2526	5.26	0.358	4.96	6.02	14.2
2527	5.03	0.358	5.01	6.13	14.2
2528	5.13	0.358	5.08	5.95	14.2

Appendix 8

Experimental Crater Growth Dato

All the usable crater growth data acquired in this effort has been processed and is reported in this appendix. The results discussed in Chapter IV are based upon this data. The characteristics of each round fired may be obtained by referring to Table IV.

The data obtained from flash x-radiographs is shown in Table XV. In some cases, a given x-ray channel may have failed to yield useful results either because of unreadable x-radiographs or because of failure to record the timing signals. These points have been eliminated from the data presented. Likewise, the small percentage of rounds fired that failed to yield any useful information -usually due either to a broken projectile or a gross failure in the timing system -- are not reported.

In Table XV, the normalized time used, t / d, has units of $\mu \mathrm{sec} / \mathrm{cm}$. The timing method refers to the type of equipment generatirig the signal that indicated x-ray firing; H.S. refers to the "head switches," X-TRIG to the output from the x-ray thyrotrons, and OTHER to signals derived from less cccurate sowices, generally a measurement of the time between impact and the output of an electronic time deloy generator. The estimated accuracy of the x-roy firing time is based upon actual measurements of the relative times of activation of the switch, time deloy generator, x-ray thyratron driver, and x -ray tube head switches for those rounds where complete timing data was available. The data was averaged separately for each channel to orrive at an average time delay and rms deviation from this mean time delay. This rms deviation was used to obtain the estimated aceuracy of the timing signal.

The information on image quality is an overage of the subjective evaluation of each film by at least three readers. Even tr efilms rated noour yielded remarkedly consistert results.

The datc on the growth history of the front surface plume was acquired with a high speed framing camera. The brocessed results are shown in Tabie XV1. The column labeled "case" refers to the type of experiment -- the key is provided in Toble III.

 TiMing
nethoo
Estimated
acrumact

 $\stackrel{i}{5}$

 $x-k a y$
and PROJECTILE

管商

管 ．
 $\stackrel{\pi}{\dot{\circ}} \quad \frac{a}{\dot{\circ}}$
 $\stackrel{\Phi}{\underset{i}{i}}$ $\stackrel{\pi}{\stackrel{\pi}{i}} \underset{i}{i} \underset{i}{i}$

ROUND	PROJECTILE ORAMETEX (CM)
2904	0.193
3, 4 n	C.425
2nes	2. 35
2402	c.425
9*9	'.

$\stackrel{8}{5}$우N영cicis$\stackrel{\text { c }}{\stackrel{\circ}{2}}$へiccecoinococoron¢－NNNMNNNinm：23nime：－－NNN－
（At／d）$\overrightarrow{~-~}$$\vec{c}$ㅍ․ mios－nucc$\stackrel{\rightharpoonup}{5}$
TINING
MEYHOD x－prig niv
$\dot{1}$TINE15 did
2\％．79我我
DROJFCTILE
rlawfin
$\stackrel{8}{8}$
\vdots
0
0.835$\stackrel{\Sigma}{i}$$\stackrel{x}{6}$
\vdots
0

$\underset{\text { rivacin }}{ }$	DR Jjfitile Clanftek (CW)	Table XV (Continued)							iHAGE QUALITV
		$X-R A Y$. NUMAER	IIMF RAPIO (t/d)	$\begin{aligned} & \text { TIMING } \\ & \text { UFTHOD } \end{aligned}$	Estimaten accijracy (At/d)	$\begin{aligned} & \text { OIAMFTEH } \\ & \text { RAIIO } \\ & \text { (D/d) } \end{aligned}$	$\begin{aligned} & \text { IMAGE } \\ & \text { UUALIT } \end{aligned}$	$\begin{aligned} & \text { PENFTRATION } \\ & \text { AATiO } \\ & \text { (p/d) } \end{aligned}$	
36	0.635	5	37.78	H. S.	9.21	3.903	fair	2.250	FAIR
		6	12.4n	H. S.	0.31	3.040	fair	1.500	faik
		?		H. S.	3.31	3.630	fair		
		*	34.50	H. S.	2.31	3.890	fair		
		9	29.47	A. S.	C.31	3.050	fair		
		$\frac{2}{3}$	13.50	$x-\mathrm{trig}$	C. 79	2.440	fatr		
		3	11.70	H. S.	ก. 31	E. 760	Fair	1.390	fair
		4	11.70	H. S,	n. 32	$2.80 n$	G000	1.450	G000
		5		H. 5.	0.31	3.043	Gnod	1.500	G000
		5	S.83	${ }_{\text {H. }} \mathrm{S}$ S.	3.31	1.890 2.130	G000		
		-	7.69	x-trig	1.10	2.440	fask		
		10	8.98	x-taic	1.15	2.480	falr		
974	9.095	?	9.29	H. S.	3.31	2.459	falr		
		3	4.25	H. S.	6.31	1.380	PROR	0.610	pror
		4	5.83	H. S.	2.31	1.970	fair	0.660	Fals
		5	6.9a	H. S.	3.31	2.330	Gnod	1.070	G000
		7	13.113	H. S.	3.31	2.80n	falr		
		9	18.45	$x-$ trig	i. 1 l	3.310	fatr		

Table XVI
Framing Camera Data on Plume Diameter Minimum and Plume Base Growth

Round Number	Case	Projertile Diameter, d (cm)	Frame Number	$\begin{gathered} \text { Scaled Time, } \\ t / \mathrm{d} \\ (\mu \mathrm{sec} / \mathrm{cm}) \end{gathered}$	Scaled Plume Minimum. $\mathrm{D}_{\mathrm{m}} / \mathrm{d}$	$\begin{gathered} \text { Scaled Plume } \\ \text { Base } \\ D_{b} / d \end{gathered}$
1043	4	0.315	35	2. 39	1.38	1.53
			36	4.71	1.60	1.90
			37	7. 10	1.96	2.18
			38	9.46	2. 31	2.48
			39	11.83	2. 42	2.65
			40	14.00	2. 56	2. 84
			42	18.83	2. 80	3.07
			44	23.67	-	3. 28
			46	28.38	3.13	3.28
2520	8	0.318	27	7.27	2. 95	3. 84
			28	11.01	3.69	4.79
			29	14.71	4.15	5.21
			30	18. 26	4.45	5.25
			31	22. 14	4.65	5.31
			32	25.70	4.87	5.40
			33	29.55	4.96	5. 52
			34	33.04	4.95	5. 35
			35	36. 75	5.11	5.53
			36	40.34	5.04	5.57

Table XVI (Continued)

Round Number	Case	Projectile Diameter, d (cm)	Frame Number	```Scaled Time, t/d (\musec/cm)```	Scaled Plume Minimuri, $\mathrm{D}_{\mathrm{m}} / \mathrm{d}$	$\begin{gathered} \text { Scaled Plurae } \\ \text { Base } \\ D_{b} / d \end{gathered}$
2521	1	0.318	37	2. 80	1.88	2. 44
			38	4.63	2. 31	3. 30
			39	6.52	2. 70	4. 13
			40	8. 19	2.96	4. 35
			42	11.94	3.55	5.33
			44	15,69	-	6.03
			46	19.37	4. 46	6. 44
			2	25. 20	4.99	7.05
			4	28.88	5.25	7.68
			6	32.63	5.48	-
			8	36.75	5.72	8. 20
2523	7	0.318	13	1.41	1.49	1.64
			14	2.82	1.95	2. 29
			15	4.28	2.22	2.86
			16	5.61	2. 54	3. 36
			17	7.13	2.86	3.71
			18	8. 45	3.06	4. 00
			19	9.72	3. 31	4. 31
			20	11.33	3. 54	4. 57
			23	15.73	4.13	-
			26	19.92	4.62	6. 04

Table XVI (Continued)

Round Number	Case	Projectile Dhameter, a (crn)	Frame Number	$\begin{gathered} \text { Scaled } Y \text { ime }, \\ t / d \\ (\mu \mathrm{se} \% / \mathrm{cm}) \end{gathered}$	Scaled Firme Minımum. $\mathrm{D}_{\mathrm{m}} / \mathrm{d}$	$\begin{gathered} \text { Scaled Plume } \\ \text { Base } \\ D_{b} / d \end{gathered}$
2524			28	22.82	4.89	6. 11
			30	25.62	5.13	6.47
			32	28.49	5.35	9.64
			34	31.31	5.55	6. 38
			36	34.12	5.78	-
			38	36.97	5.92	-
			2	2. 14	1.74	2. 01
			3	3. 56	2.02	2. 59
			4	5. 01	2.38	3. 04
			5	6. 49	2.60	3.55
			6	7.91	2. 80	3. 81
			7	9. 35	2. 99	3.96
			8	10.65	3. 15	4. 24
			9	12.13	3. 35	4. 80
			10	13.54	3.51	5.03
			11	14.99	3.67	5.10
			12	16. 35	3. 84	5. 12
			13	17.76	3.88	5. 19
			15	20.43	4.02	5.69
			17	23.46	4.31	5.68
			19	26. 24	4. 47	-
			21	29.10	4.64	5. 97

Appendix C
 Determination of Geometry for Multi-Faceted and Half-Cylinder Targets

The experiments conducted on shock wave propagation into the aluminum targets required that an accurate determination be made of the various geometric foctors involved in cecurately describing the impact and the point at which a measurement was taken. Specifically it was necessary to determine the distance from the point of impact to the point of measurement, the angle between the prcjectile trajectory and the line connecting the impact point to the poi-t of measurement, and the angle between the shock front and the target surface at the point of measurement. This appendix describes the details of how these geom:etric measurements were made for the several types of targets used.

Each multi-faceted target was designed so that the distances from tne "nominal" impact point to each rear surface along the line perpendicular to that surface were identical. The thin aluminum fly-off disks were piaced on these rear surfaces at the points just described and time-of-arrival probes were slightly displaced from these points. It is a characteristic of light-gas guns that the point of impact cannot je predicted exactly a prior:. Consequertly the "nominal" impact point just described did not in general correspond to the real impact point. The actual measurement of required distaness and angles had to be performed after the round was fired. For these experiments the cctual impact point was clways within one projectile diameter of the nominal impact point and usually closer.

The geometry of the multi-faceted target is illustrated in Fig. 121. A system of isordinates is defined upon the target front face such that looking down the gun tarrel toward the torget, the x-axis is to the right, the y-axis up, and the z-axis back ulong the projectile trojectory. The origin is locoted at the

Fig. 121. Multi-Faceted Target Geumetry.
"nomina!" impact point (a); the actual impact point (b) has coordinates ($x_{1}, y_{1}, 0$). The compensent of the vectar from the origin to (b) that lies along ihe y-axis is called $\overrightarrow{\mathrm{ab}}$.
\vec{R} is the vector connecting the origin with the $i^{\text {th }}$ surface such that the vector is normal to the $i^{\text {th }}$ surface. $\overrightarrow{\mathrm{R}}$ intersects the $i^{\text {th }}$ surface at the point (c). The angle α_{i} refers to the angle between the y-axis and the vector \vec{R}, which lies in the $y-z$ plane. Then

$$
\begin{equation*}
\vec{R}=R \cos \alpha_{i}^{\hat{e}_{y}}-R \sin \alpha_{i} \hat{e}_{z} \tag{Eq.61}
\end{equation*}
$$

where \hat{e}_{x}, \hat{e}_{y}, and \hat{e}_{z} are unit vectors. Also the vestor $\overrightarrow{a b}=y_{1} \hat{e}_{y}$ so that

$$
\begin{equation*}
\vec{L}=\vec{R}-\overrightarrow{a b}=\left(R \cos \alpha_{i}-y_{i}\right) \hat{e}_{y}-R \sin \alpha_{i} \hat{e}_{z} \tag{Eq.62}
\end{equation*}
$$

Then the vector from the impact point to the point (c), namely \vec{D}, is given by

$$
\begin{equation*}
\vec{D}=-x_{1} \hat{e}_{x}+\left(R \cos \alpha_{i}-y_{1}\right) \hat{e}_{y}-R \sin \alpha_{i} \hat{e}_{z} \tag{Eq.63}
\end{equation*}
$$

and

$$
\begin{equation*}
|\vec{D}|=\sqrt{x_{1}^{2}+y_{1}^{2}+R^{2}-2 y_{1} R \cos \alpha_{i}} \tag{Eq.64}
\end{equation*}
$$

The unit vector along $\overline{\mathrm{D}}$ is $\overrightarrow{\mathrm{D}} /|\overrightarrow{\mathrm{D}}|$ while the unit vector along the direction $\overrightarrow{\mathrm{cd}}$ which is the norinal to the front surface, is $-\hat{e}_{z}$. Consequently the angle ϕ between the trajectory and $\overrightarrow{\mathrm{D}}$ is given by

$$
\begin{equation*}
\cos \phi=\frac{\stackrel{\rightharpoonup}{D}}{|\vec{D}|} \cdot\left(-\hat{e}_{z}\right) \tag{Eq.65}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi=\cos ^{-1}\left[\frac{R \sin \alpha_{i}}{|\bar{D}|}\right] \tag{Eq.66}
\end{equation*}
$$

In many cases, instrumentation was located other than of the nominol poir: " \bumpeq " on the target. Now consider a point p located at an arbitrary position on the $i^{\text {th }}$ surface. In a primed cocrdinate system lying on ihat surface with origin at c, the point p has coordinates ($x_{p}^{\prime}, y_{p}^{\prime}$):

From the geometry shown in Fig. $122 \angle c a d=\angle d:=x_{i}$ and the x^{\prime}-axis lies along the x-axis. Then the vector \vec{i} fom c to p lying in the $;$ th surface is

$$
\begin{equation*}
\vec{i}=x_{P} \hat{e}_{x}+y_{P}^{\prime} \sin \alpha_{i} \hat{e}_{y}+y_{P}^{\prime} \cos \alpha_{i} \hat{e}_{z} \tag{Eq.67}
\end{equation*}
$$

expressed in the unprimed system. The distance from the impact point b to the point on the $i^{\text {th }}$ surface is then given by $\vec{d}=\vec{D}+\vec{i}$ such that

$$
\begin{equation*}
d=|\vec{d}|=\sqrt{\left(x_{p}-x_{1}\right)^{2}+\left(R \cos a_{i}-y_{1}+y_{p} \sin a_{i}\right)^{2}+\left(y_{p} \cos a_{i}-R \sin \sigma_{i}\right)^{2}} \tag{Eq.68}
\end{equation*}
$$

and if θ is the angle between $\overrightarrow{\mathrm{d}}$ and the unit inward normal to the front surtace (i.e. the traiectory) then $\cos \theta=\frac{\mathrm{d}}{\mathrm{d}} \cdot\left(-\hat{e}_{z}\right)$ or

$$
\begin{equation*}
\theta=\cos ^{-1}\left[\frac{y_{p} \cos \alpha_{i} \dot{+} \cdot R \sin a_{i}}{d}\right] \tag{Eq.69}
\end{equation*}
$$

Fig. 122. Rear Face Geometry.

Likewise the angle β between the vector \vec{d} and the $i^{\text {th }}$ surface is given by $\cos \beta=(\vec{d} / d) \cdot \hat{n}$ where \hat{n}, the unit outward normal to the $i^{\text {th }}$ surface is

$$
\begin{equation*}
\hat{n}=\cos \alpha_{i} \hat{e}_{v}-\sin \alpha_{i} \hat{e}_{z} \tag{Eq.70}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\beta=\cos ^{-1}\left[\frac{R-y_{I} \cos \alpha_{i}}{d}\right] \tag{Eq.71}
\end{equation*}
$$

In practice, it was necessary to measure the placing of flyers and probes on the surfaces with respect to the "corner" f between the $i^{\text {th }}$ and $i^{+1} 1^{\text {th }}$ surfaces. In order to converi to the prirred coordinate systern centered at c , it is necessary to determine the distance $\overline{\mathrm{fc}}$. From the geometry:

$$
\begin{equation*}
\cos \left(\alpha_{i+1}-\alpha_{i}\right)=R /\left(R+\overline{c_{g}}\right) \tag{Eq.7?}
\end{equation*}
$$

since $\overline{\mathrm{a}}-\bar{x}-\mathrm{R}$ by construction. Then

$$
\begin{equation*}
\overline{c g}=\frac{R}{\cos \left(\alpha_{i}+1^{-\alpha_{i}}\right)}-R \tag{Eq.73}
\end{equation*}
$$

since $\overline{g h} \perp \overline{h a}$ and $\bar{f} \bar{c} \perp \overline{a c}, \xi=a_{i+1}-\alpha_{i}$. Consequently

$$
\begin{equation*}
\tan \xi=\frac{\overline{\bar{c}}}{\overline{f c}} \tag{Eq.74}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\overline{\mathrm{fc}}=\mathrm{R}\left(\frac{1-\cos \xi}{\sin \xi}\right) \tag{Eq.75}
\end{equation*}
$$

In practice, the measurements of the location of flyer disks and time-ofcrrival probes on the rear facets were made immediately ofter the target was prepared and were recorded on standard forms. Measurements were made carefully with a scale and are believed to be accurate to within about $\pm 0.2 \mathrm{~mm}$. After the round was fired, the coordinates of the impact were rneasursd with respect to the nominal impect point which was marked on the target prior to impact. The impact point was measured using a retic!e consisting of a series of concentric circles and perpendicular lines on a small transparent plastic piate.

The reticle was placed over the crater and moved manualiy unill the center of the crater was best determined visually. This simple method was chesked using a mere accurate method where cross hairs were opticaliy projected onto the target face. The techniques gave very consistent results. The accuracy of determining the impact point is estimated to be about $\pm 0.3 \mathrm{~mm}$, although the accuracy was sumewhat less in those targets which were badly deformed by the impact or where fracture, especially in the 7075-T6 aluminum, crecited uneven cratering.

The equations derived above were implemented in a computer program which used the coordinates of the impact point and of each flyer or probe as inputs. Additional data such as the angles α_{i}, the "radius" R, and other information identifying the shot and type of target were also required.

Calculation of the geometry for the cylindrical targets was somewhat less straightforward. These targets were used only for short impact-to-surface distance events where pressures were so high that free surface velocities could be monitored in place of loosely attached fly-off disks. In every case, the pressures were so high that the target was completely penetrated; it was impossible to determine the impact point by inspecting the torget remnants. In fact, all geometric meosurements were obtained from the Beckman \&Whifley Model 300 camera photographic records of the event.

The major features of the standard fruming camera data reduction program are described in Chapter V. in essence, it provides a statistical analysis tr, determine the velocity and direction of motion of some "particle" whase coordinates are obtained from several frames of the record. A subroutine was added which allowed the determination of the mean ccordinates of a fixed point whose casordinates are provided from several frames. This is considerably more accurate than data taken from a single frame. The results of a variety of tests indicated that the position of any clearly defined point could be determinad to within 0.1 cm with respest to a reference system included within the field of view, even when the camera was located more than 35 feet from the subject. By reading different points glong some st-cight line in space, the program is also able to provide accurate informction regarding the angular position of that line.

Wher a cylindrical target is impacted near its centerline, the entire rear surface expands at high velocity and in a very even and generally symmetric frshion, forming a cloud or bubble of debris. To determine the yeiocity of any point upon this surface, it is necessary to be able to follow the same point from frame to frame, i.e. to distinguish a given point on the rear surface from its neighbor through a sequence of photographs. In general, the smoothness of the expansion makes the identification of individucl points impossible. Fi!g. 56 shown previously illustrates a typical expanding cloud.

It was necessary, early in the program, to perform alfered experiments oimed of studying the characteristics of the expanding cloud and at identifying
the trajectory of individual small portions of the leading edge of the debris. The technique used was based upan a series of experiments conceived by Swiit, et al., (Ref. 46) at this facility and used in several studies to explore the expansion characteristics of debris clouds created by hypervelocity impocts into thin plate targets. The e:;sence of the technique is that solid material is placed in the path of the expanding debris, stopping some of the debris and allowing other portions to pass by unhindered -- that is, the debris is split into identifiable components without affecting their subsequent behovior. A variery of experiments have proved that the splitting process does not alier the debris cloud characteristics of inieresi here.

As implemented for this study, the "cylindrical" target is placed with its flat face toward the gun bci-rel and its long axis parallel to the optical axis of the camera which views the back-lighted farget in silhouette. A series of pairs of slosely spaied copper wires was then located on c circle centered on the target axis and placed parallel to the axis. The typica! frame from the record of Round 2730 is shown in Fig. 123 while a photograph of the target setup was given in Fig. 54. Photographs were obtained from 3μ sec before impact to about 35 μ sec after impact. For those frames taken prior to impact, points were read at the position of the corners and surfaces of the target, the position of each copper rod, and the position of the incoming projectile. After impact, the position of various identifiable points on the expanding debris front were recorded in as many frames as possible.

The computer program then yielded, in a coordinate sustem tied to the reference grid, the mean position of the corners of the targe' and each copper rod as well as the line representing the projectile trojectory. This dato was plotted and : sed to determine the point of impact on the target. Note that the position of impact along the axis of the cylinder is unimportant since both the target and expanding debris were viewed in silhouetie. Fig. 124 was generated from the computer printout of the dato read from the framing camera films.

Fig. 123. Typical Frame from Round $27 €$.

Fig. 124. Anolysis of Debris Expansion -- Round 2730.

In this figure the iocation of the target was determined from the mean soordinates generated by the data reduction program and the projectile trajectory was determined in like manner as were the noints 6-10 wh:ach represent the center of the pairs of wires placed in the path of the expanding debris. Points l-5 represent the mean position of the narrow "beam" of debris which passed through the center of each pair of wires. The doited lines then indicate the trajectory of the debris at each point. When extrapolated back toward the target, these trajectories appear to originate of a point near the axis of the target -- a fact which was used in the data reduction for later shots. The velocities obtained for portions of the debris cloud far awoy from ony wires when compared with the velocities for the debris beam that went between the wire pairs indiccted that the wires do not affect the velocity of this beam. The correspondence of the origin of particle trajectories with the target axis was tested in several other rounds including 2728 and 2729 where solid .16 em . diameter brazing rods were used to split the cloud in lieu of pairs of fine wires. The results obtained from these rounds was consistent with the trajectory origin discussed cbove within measurement error.

In later rouna's the splitting technique was replaced by simply placing a plastic sheet in front of the field of view with lines drawn emanating at predetermined angles from the target oxis. The camera to sibject distance was so large that parallax was no problem.

For either type of experimeni, the torget geometry factors of distance from impact to point of origin of a given particle on the back surface and of th. 2 angle between the projectile trajectory and the line from the impact point to the point on the rear surface were determined as follows:

Fig. 125. Geometry for Data Reduction.

The pu.-tion of the torget and the projectile trajectory, both obtained from computer output, were plotted to obtain the impact point " a ". The point " d " represents the mean position of a series of readings of a given particle whose motion was followed by the framing camera. Using the assumption that the particle trajectory passes through the axis of the target, a straight line extrapolation from " d " to " b " was used to obtcin the point " c " on the rear. surface of the torget at which the particle in question originated. The distance from impact to the particle origin was obtained by measuring the distance $\overline{\mathrm{ac}}$. The angle eac corresponds to the trojectory of the shock wave from the impact point to the particle of interest. The angle at which the shock wave impinges upon the rear suefoce of the point " c " is the angle acb.

The overall accuracy of determining the geometry of the zylindrical targets by this method is not as good as that used for the mu!!i-faceted targets.

Indeed, this undoubtedly accounts for a portion of the larger scctter abtcined in those experiments where the small half cylinders were used as targets. The camera yields position information which is on the average good to less than 0.1 cm . For those targets where the impact was near the axis, the final measurements of distances were probably good to about 0.1 cm , while angles could be measured to chout $\pm 1^{\circ}$. In a few rounds, the impact was more than one-third projectile diameter off dead center. In very small targets this resulted in a nu, -5ymmetric expansion of the debris cloud -- making the photographs mores difficuit to read and interpret -.. and possibly negating the assumption that partic'e trajectories pass through the target axis.

Appendix D

Pressure Measurements by Fly-off Disks

Hapkinson Fly-off Disks

The fly-off disk inethod of determining peak stress in a shock wave is based upor the technique developed by Hopkinson (Ref, 66:78-80) in 1914. The technique was first applie? to hyperve!ocity impact measurements by Charesi (Ref. 13) who obtained data describing the shock decay on-axis in 1100 aluminum. In essence, the disk is used to trap a portion of ithe momentum available in an incident stress pulse. The measured velocity of the disk is then sufficient to allow determination of the magnitude of the stress pulse incident on the disk. Errors in determining stresses frorn the disk velocity data can arise from several sourses including oblique wave incide.ice, edge effects, two-wave structures, etc. Each of these suhiects is discussed in Chapter V. Twe aspects are discussed in more detail heie: (1) the use of Hugoniot data to provide the relotion betweeri the disk velocity and the stress ar the rear surface of the target, and (2) the possible effects of a two-wave structure on the interpretation of the fly-off disk velocity.

Theorz of Operation. Assume that a plane wave of constant amplitude is incident upon a free surface to which a thin disk of thickness T hes been attached with a zero strength adhesive (see Fig. 126).

The :nomeritum per unit area M_{d} trapped in tine disk is then given by:

$$
\begin{equation*}
M_{p}=\int_{0}^{T} r_{n}^{(t) d t} \tag{두.76}
\end{equation*}
$$

where σ_{n} is the stress normal to the interface and $\tau=2 T / D$, twice the tronsit time of the wove through the disk because the wave reflecis off the iree surface at the right. Thi result assumes that the reflested relzase wave octs as a regative amplitude shock wave travelling at shock speed D for the short distance T in

Fig. 12s. Shock inferaction with Fly-0ff Disk.
question. Provided the pulse is of constant amplitude for time T, this becomes

$$
\begin{equation*}
M_{d} v_{d}=\sigma_{n}(2 T / D) \tag{Eq.77}
\end{equation*}
$$

where M_{d} and v_{d} are the mass par unit area and velocity of the fly-off disk respectively. Nore then that $i_{d}=f_{0} T$ and from conservation of momentum across the shock front $\sigma_{n}=\rho_{0}$ Du. These then yield the result

$$
\begin{equation*}
v_{d}=2 u \tag{Eq.78}
\end{equation*}
$$

that is, the disk velocity is twice the material velocity at the rear surface -- a well known approximate result.

Srress Wave Shape. This analysis essumed a constant stress behind the incident shock wove. In reality, the stress decreases behind the steep fronted shock. If the duration of the shock wave is less than twice the transit time through the disk, the toial momentum -- not the peak stress -- is actually measured. At the other extreme, for very thin disks, a good measure of peak strass
is obtainad. If the stress va ies sigriiicontly during the time if takes a shock wave to make a double transit throught the disk, an error will occur in the stress measurement since the avorage rather than $p=a k$ stress will te obtained As outlined in Chapter V, care was taken to keep the fly-off disks sufficientiy thin that the stress wave decayed only vary litt!e during a double shock transit across the disk, thereby assuring that peak stresses were measured.

Free Su, face Approximation. The aralysis above is simplified in that it treats the wove reflection by superposition (o linear process) and treuts a rarefaction wave as a shock wave. In reality, the process is non-linear ana the rarefaction is on isentrcpic relaxation prosess. The rear surface velocity is currectly given by (Ref. 67:718)

$$
\begin{equation*}
v_{d}=v+\int_{0}^{P} \frac{d \rho}{\rho c} \tag{Eq.79}
\end{equation*}
$$

unere c is the local sound speed and the integration takes place down an isentrope from the shocked state to zero pressure. At low fressures

$$
\begin{equation*}
\int_{0}^{p} \frac{d p}{p r}=\frac{p}{p_{0} c_{0}}=\frac{V_{b} p}{c_{0}} \tag{Eq.80}
\end{equation*}
$$

Buit the scund speed c_{0} is:

$$
\begin{equation*}
c_{0}=v_{0}\left(-\frac{\partial p}{\partial V}\right)_{s}^{1 / 2}=v_{0}\left(\frac{p}{v_{0}-v}\right)^{1 / 2} \tag{Eq.81}
\end{equation*}
$$

hence

$$
\begin{equation*}
\int_{0}^{p} \frac{d p}{\rho c}=\sqrt{\rho\left(v_{0}-V\right)} \tag{Eq.82}
\end{equation*}
$$

However, from the Rankine- Hugoniot condition at the shock fron:

$$
\begin{equation*}
u^{2}=p\left(v_{0}-V\right) \tag{Eq.8ङ}
\end{equation*}
$$

Consequently $\int_{0}^{p} \frac{d p}{\rho c} \approx u$ at low pressures and $v_{d} \approx 2 u$ as cited above. At
higher pressures, this opproximation fails and the velocity doubling rule must be treated in a more exact manner.

It is a remarkable fact, however, that for most raterials the velocity doubling rule holds to within a few percent up to very high pressures, generally several hundred' kilobars (Ref. 68). For aluminum, in particular, the error in using the velocity doubling rule amounts to less than 2% at a pressure of nearly 400 kilobars and is considerably better of lower pressures. In yiew of this result, the relation $v_{d}=2 u$ has been used throughost itis study. fhe errors crected by this approximation are less than one percent in anjof of the pressure measurements made.

Hugoniot Data

Given the velocity of ofly-off disk and the velocity doubling rule it is then possible to determine the stress magnitude (assumed to be the hydrodynamic pressure) if the Hugoriot curve of the material, $\mathrm{P}_{H}=\mathrm{p}_{H}(u)$ is known. Rether extensive data is evailable for severd of the aluminum alloys. The data used for the conversion of fly-off disk velocities to pressures in this study are shown as the solid fine in Figure 127. The broken lines indicate how little difference there :s between several aluminum alloys. Data from cther sinurces, for these olloys and for pure aluminum, agree very weil with the data plotted for 2024 aluminum. In particular, the Los Alamos equction of store used in the numerical crotering calculations described in Chopter VII oroduces Hegonio: data that differs from the 2024 aluminum Hugoniot by is then 0.1% up to 100 kilobars and 0.5% ot 250 k 'obars. In any event, the differences in H ugeniot data ore less than the experimental errors in measuring fly-off disk velocities.

All other quantities behind the shock frans, such as p_{H} and D , can then be colculated by applying the Rankine-Hugoriot equations.

Fig. 127. Aluminum Hugoniot Data.

Effects of Two-Wove Structure

Severol stulies (Refs. 49 and 50) indicate that a twes-wave structure may exist in aluminum due to elastic-plastic effects. There is a region of pressures above the Hugoniot elostic limit but below roughly 100 kb where the shock speed (piastic wave) is subsonic with respect to the undisturioed medisum through which it is propagating. This san lead to the type of situation cepicted in Fiy. 128 where on elastic "precursor" trovelling at sonic velocity zan lead the plastic portion of the wave. The amplizude of the precursor is determined by the dynamic yie!d strength of the material.

It has been suggested by Read (Ref, 61) that this two-wove structure might alter the performance of a fly-off disk used to measure pressures. This was proposed as a possible explanation of the diserepancy noted between the results

Fig. 128. Two Wove Structure.
of Charest (Ref. 13) and computer predictions of a similar problem. The purpose here is to perform a first order, simplified analysis of fly-off disk performance when subjected to a simpie two-wove input.

For this anclysis, the shock wove is assumed to be planar. All shocks are assumed to travel of the same speed. This is slightly i:accurate since elastic end plastic waves travel at different speecis. Howeve.; orily short shock travel distances are to be considered here, so the errors generated by this assumption are quite small. Waves reflezted in tension at an interface are assumed to travel as tei:sile shock woves. Referring to Fig. 128, the righttravelline: elastic precursor is reflected in tension from the free surface. The reflested te-sile wave then interocts with the oncoming compressive plastic front, producing reflected and transmitted waves. It is this and subsequent interattions that could affect the ultimate velocity of the rear surface (i.e., the disk.j.

In anclyzing the interaction of the tensile elastic woive and the plastic wave, it is assumed that to the incoming wave (either the plastic or elastic wove depending on the point of view), the other wave front merely represents a change in medium with a different density, sound speed, etc. The resulting interactions are then celculated using linear superposition, both for pressures and material velocities. Although shack propegation in solids is basiadly a nonlinear process, this procedure produces only small errors so long as the pressures are relatively low.

The interaction of a shock wave of the interface between two media is depicted in Fig. 129. The incident wave has amplitude $\mathrm{p}_{\boldsymbol{p}}$; its interaction with the interface creates reflected and transmitted w.v?s, p_{R} and p_{T}, respectively.

To avoid separation at the material boundary, the pressures must be equal on each side of the bourdary:

$$
\begin{equation*}
P_{1}+P_{R}=P_{T} \tag{Eq.84}
\end{equation*}
$$

and the material velocities must yield

$$
\begin{equation*}
u_{i}-u_{R}=u_{T} \tag{Eq.85}
\end{equation*}
$$

Defining the shock impedance by $Z=o_{0} D$ and applying the conservation of momentum relation $p=p_{0}$ Du at the stock front the foilowing are obtcined

$$
\begin{equation*}
\frac{p_{R}}{p_{1}}=\frac{Z_{B}-Z_{A}}{Z_{A}^{+Z_{B}}} \tag{Eq.86}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{T}}{P_{1}}=\frac{2 Z_{B}}{Z_{A}+Z_{E}} \tag{Eq.87}
\end{equation*}
$$

which are the well known impedance relations. Note that of a free surface, $Z_{B}=0$ yielding $P_{T}=0$ and $p_{R}=-p_{1}$ for the reflecied tensila wave. Likewise the following relations can be obtained for the material velocities:

Fig. 129. Wave Interaction at Naterial interface.

$$
\begin{align*}
& \frac{u_{R}}{u_{1}}=\frac{Z_{B}-Z_{A}}{Z_{A}+Z_{B}} \tag{Eq.88}\\
& \frac{u_{T}}{v_{1}}=\frac{2 Z_{A}}{Z_{A}+Z_{B}} \tag{Eq.89}
\end{align*}
$$

In this case, at a free surface with $Z_{B}=0, u_{R^{\prime}} u_{1}=-1$ implies thot the risterial velocity in the reflected tensile wave is opposite to the direction of the wave propagation while $u_{T} / v_{1}=2$ recovers the free surface approximation discussed above.

Now again consider the two-wave strusty-e pictured in Fig. 128. An x-t plot of the interactions of these waves is depicted in Fig. 130. Each wave is numbered and identified as to whether its arigin was elastic or plastic and to whether it is a compressive or tensile wove. Assuming that the amplitydes of

Fig. 130. $x-i$ Plot for Dual Wave Interaction.

Table XVII
Results of iweve :ateroctions

No.	Type	Pressure $\{\mathrm{kb})$	Moterial Velocity $(\mathrm{mm} / \mu \mathrm{sec})$
1	EC	7.000	.047
2	PC	23.000	.132
3	ET	-7.013	.047
4	ET	-.131	-.001
5	PC	19.526	.134
6	ET	-7.331	.046
7	PT	-.374	.002
8	EC	.131	-.047
9	PT	-19.626	.134

the incident elastic and plastic waves are 7 kilobars and 20 kilobars respentively (for a tctai stress of 27 kb) the values shown in Tabie XVII are obfuined for the wove inieracions.

The results of applying this analysis to the interacting wave system shown in Fig. 130 is that the fina! velocity of the free surface (or the fly-off disk) is altered very little by the presence of the elastic precursor. The final free surface relocity calculated is $.360 \mathrm{~mm} / \mu \mathrm{sec}$ as opposed to the value of $.358 \mathrm{~mm} / \mu \mathrm{sec}$ that would have been obtained if the elastic precursor did not exist. If no precursor had existed, the pressure near the rear surface weuid simply hove been cancelled by the reflected tensile wave. As panel D of Fig. 131 shows, the elastic procursor has drastically aijered the shape and amplitude of the pressure pulse in the region of the target reor, but has mode little if any change in the ultimate velocity of the rear surface. Provided the incident pressure puise monotonically increases to the peak, the ultimate rear surface veilocity will not be affected by the details of the shape of the rising part of the pressure pulse.

Fig. 131. Analysis of Duol Wave Reflection at Frea Suriace.

This effect is illustrored by a set of numerical calculations performed by Read (Ref. 61) alihough he interpreted the results differently. Several sketches of his computer output, corresponding roughly to the situations depirted in Fig. 131 are shown in Fig. 132. Note that Read's results show considerably more structure in the wave form. By Panel D again, the prossure pulse has been drastically altered by the presence of the elastic precursor. The last panel shows the time history of the velociry of the materia! in a zone near the target rear surface. The velocity increases monstonically, although with some structure, to a peak velocity that corresponds to that of the peak pressure in the incident weve.

Usirg an anc.'ytical approach, Fowles (Ref. 49:1481-1482) studied the effect of elastic-plastic bshavior on rear surfase motion due to a stress wave created by a planar impact. He approximated the release path of the material oric determined that the effect of elastic unloading on the rear surface velocity was quite small, a few percent in the worst case.

The above calculations and results strongly support the conclusion that a dual wave strucfure has little effect, if any, upon the pressure values obtcined from experimental fly-off disk dara. The discrepancies such as thasa cited by Read that exist between numerical and experimental results cannot be explainard on the basis of the mechanisms discussed here.

Fig. 1;2. Numerical Results -- Dual Wave interaction From Ref. 61.

Appendix E

Adjustment of Rear Sur :-se Velocity Dato for Variations in Projectile Velocity and Shock Incidence Angie

The experimental results described in Chapter VI were obtained under carefuliy controlled conditians where as many variables as possible were held fixed. However, there is inevitably some small scatter in the projectile velocities generated by the light-gas gun launcher. In each experiment, the nominal projectile velocity was $7 \mathrm{~km} / \mathrm{sec}$, but actual projectile velocities varied between $5.9 \mathrm{~km} / \mathrm{sec}$ and $7.3 \mathrm{~km} / \mathrm{sec}$ with nearly 75% of the experiments having projectile velocities in the range of $6.6 \mathrm{~km} / \mathrm{sec}$ to $7.2 \mathrm{~km} / \mathrm{sec}$.

Likewise the point of impact upon the target cannot be controlled exactly. The targets were designed so that, if the impact were of the nominal aiming point, the shock wave would be normally incident on each rear surface where a measurement was being made. This assumes, of course, that the expansion of the sheck wave is spherical and centered at the impact point. Wheriever the actual impact was off the aining point, the sheck wave was incident upon the rear surface at a slight engle. In each case this angle was measured (indirestly) again assuming a spherical shock front) after the event. The ongle was found to vary from zero degrees (normal incidence) to a maximum of 14°.

This appendix describes techniques for adjusting the experimental data to account for small variations in projectile velocity ana angle of incidence of the shosk wave with target free surfaces.

Angle Variation.

To obtain a first order correstion for the free surlace velocity produced by a shock wave impinging upon the surface at some angle, δ, consider the fotlowing situation. Assume that a plane wave is incidert upon a flat surface and that the wave has a particle velocity vector \vec{u} with direction oleng the divection of wave motion. The components of \vec{u} are $u_{T}=u \sin \delta$ anc $u_{n}=u \cos \delta$ representing
the projection of \vec{u} tangent to and nornal to the free surface respectively. In on experiment, the component $v_{f s}=2 u_{n}$ is actually measured, since aniy motion normal to the surface is monitored (see Appendix D for discussion of the velocity doubling rule). This is also true if fly-off disks are used since the exiremely low strength attachment of the disk to the target effectively prevents the transmission of the tangential component of the particle velocity, u_{T}. Experiments conducted where disks were placed on flat plate targets verify the statement that, even at rather high incidence angles ($>30^{\circ}$), the disk acquires c velocity almost normal to the rear surface. In sither case, a first order adjustment to the observed disk or free surface velosity can be obtained by simply taking the arjustment low to be:

$$
\begin{equation*}
u_{\text {adjusted }}=u_{\text {measured }} / \cos \delta \tag{Eq.90}
\end{equation*}
$$

This is, of course, only ofirst order correction since such effects as surface waves and shear waves generated upon reflection art ignored. In every case, the angle of incidence of the shock wave is nearly normal, so first order effects should dominate.

Reinhart (Ref. 60:11-14) considers a more accurate analysis of the reflection of a plane elastic wave incident upon a free surface at angle \&. His analysis includes consideration of the refiected shear wave and his results indicate that the "correction factor" due to oblique incidence lies within a few per cent of $1 / \cos \delta$ out to δ of sixty degrees wherespon the $1 / \cos \delta$ low fails. This conclusion applies only to a rraterial (such os aluminum) with Poisso: 's ritio near 0.34. Further investigation would be required before applying this simple ungle scaling law to materials whese Poisson's ratio differ substantially from 0.34.

Projectile Velocity Variation

Four rounds were fired at reduced velocity ($-5.5 \mathrm{krm} / \mathrm{sec}$) to provide data for the empirical odjustment of disk or free surface velocity as a function of projectile velocity. Each of these rounds consisted of a ceries of fiy-off disks placed upon the rear of a flat plate target in the ranner described in

Chapter V for the fly-cff disk development experiments. These results are then directly comparable with the results obtained in the development series at higher velocity ($7 \mathrm{~km} / \mathrm{sec}$). The charccteristics of these four experiments ore shown in Table XVill.

Table XVIII		
	Velecity Scaling Experiments	

The results of round 2642 were the most complete and hive therefore been used to establish the scaling low. The results of this round as well as the results of several of the experiments performed at higher velocity are shown in Fig. 133. The solid line is a least - squares fit to the data acquired from $-7 \mathrm{~km} / \mathrm{sec}$ impact experiments onto 1100-0 aluminum targets (Table XIX). To within the experimental error, the dashed line through the date from Round 2642 is parallel to the solid line. This indicates that an adjustment or scaling of the fly-off disk velocity data from the lower impact velocity $v_{p}(0)$ to the nominal velocity $v_{p}(b)$ can be accomplished by simple multiplication b; a scale factor:

$$
\begin{equation*}
v_{p_{\text {scaled }}}=v_{F_{\text {reeasured }}} \cdot h\left(v_{p}\right) \tag{Eq.91}
\end{equation*}
$$

where ihe scale factor k is a function of the projectile velocity, v_{p}. A simple linear variation of the scale factor with projectile velocity has been chosen for ease of application. At $v_{p}=5,48 \mathrm{~km} / \mathrm{sec}$, the data of Fig. 133 yields $k=1.537$

Fig. 133. Variation of Fly-Off Disk Veiocity with Shock Padius and with Projectile Velosity as a Parameter.
while of $v_{p}=7.0 \mathrm{~km} / \mathrm{sec}$, it must be true that $k=1$. The lirear function $k\left(v_{p}\right)$ is then defined by

$$
\begin{equation*}
k\left(v_{p}\right)=1+\left\{\left[7.0-v_{p}\right] /(7.0-5.48)\right\} \cdot 0.537 \tag{Eq.92}
\end{equation*}
$$

or

$$
\begin{equation*}
k\left(v_{p}\right)=3.47-0.353 v_{p} \tag{Eq.93}
\end{equation*}
$$

An expon'sntial functional form for k (linear in $\log _{10} k$) yields very similar results. In practice, this seale factor was applied to experimental data only irt the range $6.6 \mathrm{~km} / \mathrm{sec}<v_{p}<7.2 \mathrm{~km} / \mathrm{sec}$. It was assumed to apply to th. 3 se measurements made on free surface velocities as well as those made from flyoff disks.

The decrease in measured free surface or disk veiocity with increasing R_{s} disployed in Fig. 133 is due to three separate effects: (1) the usual decrease
of stress in the target with distance from impects; (2) the increasing angle of incidence, δ, between the expanding shock front and the free surface; and (3) the increasing angie off the trajectory, 8 . The slope of the line in Fig. 133 shouid not, then, be expected io correspond to the results of the on-axis measurements of Chapter V! (specifically Fig. 75) where the incidence angle δ was olways small and where the angle off trajectory, 9, was ciso near zero. As expected, the results do not agree as evidenced in Fig. 134 where the results of the impacts orto $1100-0$ aluminum on-axis are shown by the solid line. The data from the pertinent flat plate development rounds (2610, 2614, and 2618) are included for comparison as well as the data from the lower velocity romids described in Tabie XVIII.

The effectiveness of the incidence angle and projectile velucity scaling lows developed here are illustrated in Fig. 135 where the data of Fig. 134 has simply been scaled secording to the relation:

$$
v_{d_{\text {scaled }}}=\left[k\left(v_{p}\right) / \cos : \pi\right]_{d_{\text {measured }}}
$$

The agreement with the data obtained in Chapter $V 1$ is substantially improved. Those data points at the larger values of R_{s} for a given round correspond to iarge angles off axis and do deviate from the solid line as was expected since the scaling does not include ary consideration of this angle. The correlation, although not perfect, is substantially improved by this scaling procedure.

It should be noted that the development data of Fig. 135 has been scaled over a wide range of the variables v_{p} and δ. The final data of Chapter $V!$ has, however, been scaled over much smaller ranges of these variables. Consequently, errors in the scaling laws are less important for that application.

The unexpectedly good results obtained by correcting the dato for shock incidence angle with n simple cosine low raise an interesting possibility -- that of performing producion experiments in the future with flat plate targets instead of the multi-facerd zargets actually used. This would result in cuasiderably less

Fig. 135. Comparison of Flat Plate Fly-Off Disk Dato with On-Axis Results from Multifaceted Targets, Scaled.

Fig. 134. Comparison of Flat Plate Fly-Off Disk Data with On-Axis Results from Multifoceted Targets, Unscaled.
difficult and less expensive experiments. White the results described here are promising, they are not sufficient to justify such an approach. A srrall number of additional flat plate experiments might well provide convincing evidence for or against this proposition.

Appendix F

Experimental Data On Shock Wave

Arrival Times arid Fly-Off Disk Velocities

This appendix contains information on the experimental dato points generated during the phase of the program devoted to studying shock wave propagation. The details of the experiments used to acquire this data are in Chapter V. With that chapter as background, little further explanation of the data is required here.

Table XIX presents the data acquired ciuring the early development shots when only flat plate targets were used. In every case, the target was 1100-0 aluminum. The parameter r_{p} refers to the distance along the rear surface of the target between the cenier of the disk and the point at which thi: line representing the projectile trajectory would intersect the rear surface.

Table XK contains the production fly-off disk data analyzed in Chapter VI. Similariy, Table XXI presents the shock wave arrival data abtained during the production program. The numbers in parentheses in the "Arrival Time" column refer to the earliest signal (precursor), while the other numbers refer to the arrival time of the main signal.
Trble XIX
Fly-Off Disk Data Fro: : "lat Plate Development Rounds

Round No.	Proj. Velocity (imm/sec)	Target Thickness (cm)	Disk Veiocity (km/ser)	R_{s}, Inıpact to Disk Distance (cm)	```rp, Tra- jectory to Disk Distance (cm)```	Angle Off Axis (deg)	Flyer Thickress (cm)
2587	6.69	4.51	0.053	6.49	4.67	46.4	0063
			0.207	4.63	1.04	13.1	U. 063
			0.234	4.52	0.23	2.9	0.063
			0.220	4.61	0.94	11.9	0.063
			0.18'7	4. 95	2. 04	24.6	0.063
2610	6. 56	1. 27	0.015	4.43	4. 24	74.0	0.061
			0.148	3.61	3.38	70.0	0.061
			0.131	2. 88	2. 59	64.4	0.061
			0.289	2.19	1.78	55.0	0.061
			0.580	1. 56	0.91	35.9	0.061
			1. 486	1.30	0.30	13.4	0.030
			1. 350	1. 31	0.33	14.7	J. 030
			0.201	2. 27	1. 88	56.4	0. 030
			0.171	3.20	2. 94	67.2	0.030
2614	6.93	2. 49	0.093	4. 40	3.63	56.0	0.061
			0.145	3.78	2. 84	49.2	0.061
			0.233	3.21	2. 03	59.5	0.061
			0. 385	2.76	1.19	25.8	0.001

TABLE KIX (contmued)

Round No.	Proj. Velocity ($\mathrm{km} / \mathrm{sec}$)	Target Thickness (cm)	Disk Velocity ($\mathrm{km} / \mathrm{sec}$)	F_{s}, Impact to Disk Distance (cm)	${ }^{1}{ }^{1} p$, Trajectory to Disk Distance (cm)	Angle Uff Axis (deg)	Flyer Thickness (cm)
2618	7.02	2. 54	0.525	2.53	0.43	9.9	0.061
			0.621	2.53	0.46	10.6	0.030**
			0.551	2.65	0.91	20.3	0.030%
			0.448	2.86	1. 40	29.6	0.030%
			0.316	3.19	2.00	39.1	0.030*
			0.217	3.53	2.64	47.1	0. 30% \%
			0. 046	4.12	3.28	53.3	0.030^{*}
			0.024	4.67	3.92	57.6	0.061
			0.074	4.09	3. 20	52.0	0.061
			0.135	3.50	2. 41	43.9	0. 061
			0.268	2.99	1. 58	32.2	0. 061
			0.394	2.68	0.85	18.7	0.061
			0.624	2.56	0.29	6.6	0.030^{*}
			0.625	2.59	0.51	11.5	0.030*
			0.545	2. 70	0.93	25.3	0. 030 *
			0.434	E. \% $^{\text {c }}$	1.51	31.0	0.030%
			0.291	3.31	2.12	40.2	0.030^{*}
			0.123	3.73	2.73	47.5	0.030*
2619	7. 20	4. 42	0.033	6.01	4.07	4.3 .0	0.061
			0.112	5.47	3.22	36.4	0.061

T'ABLE XIX (continued)

Round No.	Proj. Velocity ($\mathrm{km} / \mathrm{sec}$)	Target Thickness (cm)	Disk Velocity ($\mathrm{krr} / \mathrm{sec}$)	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}, \text { Impact } \\ & \text { to Disk } \\ & \text { Distance } \\ & (\mathrm{cm}) \end{aligned}$	${ }^{r} p, T r a-$ jectory to Disk Distance (crn)	$\begin{aligned} & \text { Angle } \\ & \text { Off Axis } \\ & \text { (deg) } \end{aligned}$	Flyer Thickness (cm)
2620	7.04	4. 45	0.148	5.06	2.46	29.4	0.061
			0.195	4.74	1.71	21.3	0.061
			0.215	4.53	0.98	12.6	0.061
			0.235	4.43	0.27	3.5	0.061
			0.188	4.70	1.61	20.2	0.061
			0.163	4.98	2. 29	27.6	0.061
			0.119	5.43	3.15	35.8	0.061
			0.130	5.56	3.34	37.2	0.030
			0.149	5.15	2.59	30.5	0.061
			0.227	4.77	1.73	21.4	0. 030
			0.224	4.55	0.93	11.9	0.061
			0.284	4.46	0.25	3.2	0.030
			0.226	4.52	0.81	10.4	0.061
			0.237	4.71	1.54	19.3	0.030
			0158	5.00	2.29	27.5	0.061
			0. ${ }^{5} 5$	5. 45	3.14	35.5	0.030
			0.092	5.97	3. 98	42.2	0.061
2621	6.94	4.45	0.119	5.49	3.22	36.2	0.061
			0.183	5.15	2.59	30.5	0.030
			0.187	4.80	1.80	22.2	0.061

(panuizuos) XIX उTGBL

Round No.	Proj. Velocity ($\mathrm{km} / \mathrm{sec}$)	T'rget Thickness (cm)	Disk Velocity ($\mathrm{km} / \mathrm{sec}$)	R_{s}, Impact to Disk Distance (cm)	${ }^{r} p$, Trajectory to Disk Distance (cm)	\therefore ngle Off Axis (deg)	Flyer Thickness (cm)
2639	7. 14		0.257	4. 51	1.02	13.0	0.030
			0.295	4.46	0.30	3.9	0.015
			0.265	4.48	0.51	b. 6	0.030
			0.257	4.64	1.30	16.4	0.015
			0.198	4.91	2.08	25. 3	0.030
			0.178	5.25	2.79	32.4	0.015
			0.118	5.73	3.61	39.4	0.030
		4. 44	0.092	6.33	4.51	45.8	0.030
			0.116	5.88	3.86	41.4	0.030 **
			0.147	5.49	3.23	36.3	0.030
			0.188	5.12	2. 54	30.0	0.030%
			0.228	4.82	1.88	23.1	0.030
			0.278	4.47	0.48	6.2	0.030
			0.311	4.45	0.33	4.3	$0.030^{* *}$
			0.272	4.36	1.03	13.2	0.030
			0.218	4. 74	i. 65	20.6	$0.030 \% *$
			0.194	4. 94	2. 16	26.2	0.030% *
			0.174	5.26	2.82	32.7	0. 030
			0.134	5.65	3.50	38.6	$0.030^{* \%}$
2640	7.07	4.44	0.115	5.83	3. 86	4. 44	0.025

TABLE XIX (continued)

Rount? No.	Proj. Velocity (km, sec)	Target Thickness (cm)	Disk Velocity ($\mathrm{km} / \mathrm{sec}$)	R_{g}, Impact to Disk Distance (cm)	r_{p}, Trajectory to Disk Distance (cm)	$\begin{aligned} & \text { Angle } \\ & \text { Off Axis } \\ & \text { (deg) } \end{aligned}$	Flyer Thickness (cm)
2641	7.0	4.45	0.235	4.69	1.52	19.1	0.025
			0.231	4. 50	0.74	9.5	0.061
			0.280	4.44	0.20	2.6	0.025
			0.185	5.01	2. 33	27.9	0.025
			0.145	5.37	3.02	34.5	0.025
			0.087	6.19	4.32	44.6	$0.025^{* *}$
			0.096	5.77	3.68	40.0	0.055
			0.136	5.42	3. 10	35.2	$0.025 * *$
			0.148	5.08	2.46	29.2	0.055
			0. 195	4.80	1.83	22.6	0.025 **
			0.224	4.61	1.25	15.9	0.025**
			0.180	4.82	1.88	23.1	0.055
			0.165	5. 10	2.51	29.7	$0.025^{* *}$
			0.115	5. 42	3.10	35.2	0.055 **
			0.108	5. 80	3.73	40.4	$0.025^{* *}$
2642	5. 42	4. 44	0. vú3	5. 90	3.89	41.6	0.030
			0.090	5.46	3.18	35.9	0.030
			0.139	4.81	1.85	22.8	0.030
			0.160	4.65	1.37	17.3	0.030
			0.117	5.16	2.62	30.8	0.030

TABLE XIX (continued)

Round Nc.	Proj. Velocity ($\mathrm{km} / \mathrm{sec}$)	Target Thickness (cm)	Disk Velocity ($\mathrm{km} / \mathrm{sec}$)	R_{g}, Impact to Disk Distance (cm)	${ }^{r} p$, Trajectory to Disk Distance (cm)	Angle Off Axis (cog)	Flyer Thickness (cm)
			0.091	5.56	3.35	37.4	0.030
2870	5.22	6.83	0.062	7.27	2. 48	20.0	0.025
			0.076°	6.94	1.21	10.0	0.025
			0.086	6.83	0.06	0. 0	0.025
			0.077	6.96	1.33	11.0	0.025
			0.066	7. 31	2.60	21.0	0.025
2879	5.78	1.0	1. 330	1.00	0.0	0.0	0.025
2880	6.13	2. 54.	0.280	3.29	2.09	39.3	0.025
			0.500	2. 71	0.91	19.7	0.025
			0.510	2.61	0.60	13.3	0.025
			0.280	3.04	1.77	35.0	0.023
			0.130	3.94	3.02	49.0	0.025

[^4]

Table XX（Cont＇d．）									
	$\begin{gathered} \text { thogrp } \\ \text { wisolit } \end{gathered}$	chacfi	phifertille vflccity 	$\begin{aligned} & \text { SHLCK } \\ & \text { RADICS } \\ & \text { CQ } \end{aligned}$	6．AAGLE CGF Tansfrinnv （OFC）	－ $\operatorname{srCCK} / 5 \mathrm{~J}=\mathrm{CC}$ latedacticy angi？ （c¢c）	uversales risay suaface valirity （v）Stし）		
				1．30	S0． 6	5.4	94：	36	\therefore
？ 720	1！\times	mfecre	4．97	1．96	¢2．e	1.1	¢4：		
				1.49	30．	1.2	11460	12＊＊	7.4
				1.46	6.8	2.9	126．	liste．	3
				1.45	15.8	2.0	：28r．	1326．	$3 \cdot 7$
				1．9？	39.0 39.3	1.6 1.2	lies．	\22！	$3 .$.
				10：1	E90s	0.8	ser：		
272	$11^{\text {® }}$	hf－Cvi	Conl	1.37	－0．c	3.2	TES．	A1．	
				1.25	42.0	4.4	$\times 24{ }^{\text {¢ }}$	1？30．	
				lete	13.0 2.0		！ 44.0	1948.	－1
				1.19	${ }_{29}^{290}$	8．5	licco	\＄172．	2．3
				1.15	46.0	4.7	10c．）．	14Jt．	\％ 2.5
1733	119	P－FCP	6.17	1，tet	35．${ }^{5}$	6.0	$7+\mathrm{C}$	97.	10.6
				inet	90.4	6.3 ．	f15．	1343．	11.1
					76.3	8.7	Csc．	1161．	$1: 91$
2734	$110 n$	S－fCt	6．9？	2．78	5¢， 5	7.2	？ 25.	375.	
				？．el	23.0	7.2	810．	597.	7.1
				2.92	7.8	7.8	$84 C^{\circ}$	69390．	5.5
				2．34	$35 . ?$	7．2		3790	2.0
				2．25	67.7	5.7	$4 c^{\circ} \mathrm{C}$	4.97.	10.2
R880	7r9s－4\％	hfocris	enor	i．cs	\＄1．0	0.	515.		4.7
				1.65	3 n 0 ？	4.9	2350.	1702.	3.1
				1．c1	0.0	5.7	155c．	2J1c．	3.4
				2.55 $0 . ¢ 5$	15.0	5.8	1576．	2377.	3.3
				0.59	46.0	5.1	15？3．	2338.	1.5
2752	Trisete	nfecre	Call	1.30	34.0	5.6	197c．	1379.	0.2
				1.37 1.47	22.8	7.9	1120	1603．	3.0 3.2
				1.47	7.0	7.9	$16{ }^{\text {cic．}}$	1419.	3.2
				1．61	46.0	4.5	750	1279.	3.7 5.3
				1.67	ci．0	0.0	？ 36	417.	22.17
$274 n$	769－14	plate	9．79	1．3：	0.	0.	14cc．	2057.	0.9
2760	1199	plate	C． SH_{5}	1．2！	0.	\bigcirc ．	132e．	1616．	2.1

Toble \times（（Con＇t． d ）									
\％									
\％ 9	：＂	－cr	$\stackrel{\square}{ }$		$\frac{a b y y}{c}$				
m，	11．	${ }^{23}$	c．9	1．25	．	－	120	1，4\％	－．．
2 m	！＂	．－ct	（．）		\％	\％：\％			\％\％
\％	：－	\ldots	n－	\％	：1：\％				速
＇m＇	\％\％－16	－ct	c．se	1：62	\％itit	\％2	\％	\％	20，
2 m 3	${ }^{3} 3.5$	s－cr	ım	\％	2\％	\％			
				\％	\％：3	\％：	${ }^{2}$	\％	：$: 1$
${ }^{292} 4$	rento	ster	．．09	\％e	3：	$8:$		\％	¢：\％
				：3	\％	\％	\％	\％	：
m	routs	－－ct	．．．		3	\％	为	${ }_{\text {cole }}^{\text {lat }}$	\％
。	ers，om	，．．cr	${ }^{\text {c．}}$	10.1	\ldots	2．0	\ldots	\％．	

Toble XX (Cont'd.)

3
3
1
3
3

$\underset{\sim}{\cong} \quad \stackrel{\sim}{i}$
$\stackrel{\square}{\square}$
Ξ
$\begin{array}{ll}E & \vdots \\ \vdots & \vdots \\ i\end{array}$
4
\vdots
j
j
u
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
raocry
-ATALAL

能:

CNSCALE
SCOFACE
and
Table XX (Cont'd.)

$\begin{aligned} & \text { ampun } \\ & \text { Nin. } \end{aligned}$	TASfift Watfojal
2954	7era-th
Pn50	1235-TM
2 man	$11^{n n}$
29n3	a3at-ta
2584	11.0
2985	Eatura
2067	11 ¢
2880	18.75-7a

$\equiv \overbrace{0}^{\circ}: \because$
Table XX (Cont'd.)

$$
\begin{aligned}
& 5 \\
& \vdots \\
& \vdots
\end{aligned}
$$

言

Table XXI
Shock Arrival Time Data

Round	Target Alloy	Type Sencor	Shock Radius $\mathrm{R}_{\mathrm{s}}(\mathrm{cm})$	Arrival Time t ($\mu s \mathrm{sec}$)	$\begin{aligned} & \text { e Angle-Off } \\ & \text { Axis (deg) } \end{aligned}$
2784	7075-T6	E	1.93	4. 47%	26
		E	1. 95	4.52*	13
		E	1.99	4. 73%	58
2785	6061-T6	E	2.94	2. 58	26
		E	1.91	2. 51	6
		5	1. 85	2.58	55
2787	7075-T6	E	1.86	2. 45	31
		E	1.77	2. 45	8
		玉	i. 58	2.25	50
2789	6061-T6	E	1.78	2. 4.5	27
		E	1.80	2. 50	14
		E	1.84	2. 65	57
2791	1100	巨	1.78	2.75	27
2799	606i-T6	Q	266	3.60	20
2804	7075-T6	Q	3.83	8.22*	40
		Q	4.17	8.79*	16
		Q	4.28	9.00\%	34
2.807	1100	Q	4.27	(6.29)6.75	37
		Q	4.00	(5.95)6.35	8
		Q	3.79	$(5.65) 6.15$	48
2809	1100	Q	4.13	8. 33%	42
			4.09	8. 48%	12
		Q	4.09	8. 28%	51
2811	1100	Q	4. 10	7.74*	50
		Q	4.00	7.84*	6
		Q	4.01	8.04*	46

TABLE XXI (contanned)

Shock Arrival Time Data

Round	Target Alloy	Type Sensor	Shock Radius $R_{s}(\mathrm{~cm})$	Arrival Time Angle-Off t ($\mu \mathrm{sec}$) Axis (deg)	
		E	4. 62	8. $49 *$	-62
		E.	4.02	8. 34%	- 8
		E	4.02	8. 54%	- 32
2815	1100	Q	2. 25	3.06	77
		Q	2.03	3. 44	10
		Q	1.93	3.40	63
2821	7075-T6	Q	3. 04	4.60	47
		Q	3.00	4.76	11
		2	2. 98	4.78	84
2822	7075-T6	Q	2. 11	3.79	80
		Q	2. 09	3.52	19
		Q	2. 11	3.30	83
2824	7075-T6	Q	8.10	12. 50	10
		2	8.28	12.90	35
		Q	8.39	12.80	65
2825	7075-T6	Q	10.23	17. 00	60
		Q	10.16	16.96	32
		Q	10.05	16. 80	6
		Q	9. $9:$	16.45	34
		Q	9.88	16.50	64
28:7	7075-T6	Q	1. 66	7. 85 *	- 16
		Q	1. 36	2. 68%	- 44
2828	6061-T6	8	3.02	4. 75	70
		Q	3. 06	4. 50	16
2832	7075-T6	Q	2. 99	4. 33	70
		Q	2. 97	4. 33	33
		Q	3. 11	4.58	15

TABLE XXI (continued)

Shock Arrival Time Data

Round	Target Alloy	Type Sensor	Stuck Radius $\mathrm{R}_{\mathrm{s}}(\mathrm{~cm})$	Arrival Time t ($\mu \mathrm{sec}$)	Angle-Off Axis (deg)
		Q	3.15	4.53	28
2833	1100	Q	1.49	2. 34	51
		Q	1.52	2. 52	17
		Q	1.66	2.61	60
2834	1100	Q	2.95	(4.39) 4.60	73
		Q	3.12	4.65	18
		Q	3.26	(4.75) 5.05	85
2836	1100	Q	10.25	$(15.80) 18.10$	62
		Q	9.96	(15.65)17.50	32
		Q	9.88	(15.35) 17.70	63
2.837	6061-T6	Q	6. 24	9.97	50
		Q	6.10	9.85	L 8
		Q	6.02	9.47	9
		Q	5.91	9.28	2%
		Q	5.78	9.20	61
		OP	6.32	11.52	44
		OP	6.13	11.09	14
		OP	6.07	10.19	23
2838	6061-T6	Q	10.54	(17.70)18.00	65
		Q	10.31	17.45	34
		Q	10.04	(i7.10)17.45	7
		Q	9.67	16.30	44
		Q	9.58	16.05	63
2842	6061-T6	Q	9. 01	13.60	67
		Q	8.42	14.80	26
		Q	7.96	i3. 00	2
		Q	7.26	12.00	40
		Q	6.94	11.70	72

TABLE XXI (continued)

Shock Arrival Time Data

Round	Target Alioy	Type Sensor	Shock Radius $R_{s}(\mathrm{~cm})$	$\begin{aligned} & \text { Arrival Time } \\ & t(\mu s e c) \end{aligned}$		Angie-Off Axis (deg)
2851	1:00	Q	5.67		9.25	68
		Q	5.48	(7.30)	8.15	41
		Q	5.02	(6.75)	7.30	7
		Q	4.59	(6. 15)	6.73	42
		Q	4.96		7.87	19
		Q	4. 44	(5.80)	6.55	78
2857	7075-T6	Q	4.17		6.73	70
		Q	4.07		6.33	35
		2	4.10		6.46	14
		Q	3. 98		6.38	46
		Q	3.97		6.38	79
2864	1100	Q	6.83	(10.40)	11.70	70
		Q	5.95	(9.00)	9.80	2
2865	6061-T6	\bigcirc	4.01		6.55	69
		Q	4.07		6.80	13

E---Electrical Pin Switch
Q---Quartz Probe
OP--Optical Fiber Probe
*--- Apparent early trigger due to small fragments impacting target slightly ahead of projectile.

Appendix 6

Framing Comera instrumentation

The instruments used to measure the free surface velocity anci fly-off velocity of the targets employed in the second phase of this study were high speed framing cameras. Two types iwere used, a Beckmar. \& Whitley Model 300 and a Beckman \& Whitley Dyriafax Model 326. The basic operating features of these cameras ore listed in the table below while the remsinder of this appendix is aevoted to a discussion of the special data handling terinniques developed to obtain accurate data from the camera records. The details of the experimen that employed these cameras are contained in Chapter V.

Table XXII
Framing Camera Characteristics

	Model 300	Dynafax Model 326
Type	Fixed film with ultraspeed rotating mirror	Filin in rotating drum and rotating prism
Maxirnum Framing Rate	$4.5 \times 10^{6} \mathrm{fps}$	$2.6 \times 10^{4} \mathrm{fps}$
Minimum Framing Rate	$3 \times 10^{5} \mathrm{fps}$	200 fps
Min. Exposure Time at Max. Frarring Rate	45 nsec	$1.0 \mu \mathrm{sec}$
Ratio of Frome Exposure		
Nrax. Number of Frames	48	224
Nominal Frame Size	$1 \mathrm{~cm} \times 2 \mathrm{~cm}$	$.71 \mathrm{~cm} \times .99 \mathrm{~cm}$
Format	24 frames on each of two $8^{\prime \prime} x$ $10^{\prime \prime}$ sheets of film	Two staggered rows of frames on 35 mm film

The choice of comero was determined by the expected velocity of the object being photographed. The Madel 300 camera was used for all free surface measurements and for all experimenis where the maximum fly-off disk velocity was expected to exceed $0.4 \mathrm{~mm} / \mu \mathrm{sec}$.

Model 300 Camera. Studies of the Model 300 camera performance have been made at this facility by Preonas (UDRI) and the outhor (Ref. 70). Variations in the time batween frames in the camera have been detected and a calibration scheme developed. Likewise the variation in magnification f-om frame to frame has been calibrated. Optical distortion has been shown to exist, but is rather small and quite difficult to calibrate.

In practice, attempts to obtain velocity data irom two or three frames of position data have led to poor results. It appears that the small errors noted above are compounded by small film reading errors, resulting in inaccurate velosity calculations. This problem was effectively solved by using statistical anolysis of the position data. A coniputer program is now available to generate velocity data. The program processes the two-dimensional position data obtained from as mony photogrcohic frames as possible. Interframe times and individual frame magnifications are adiusted according to the calibrations mentioned above. A lecst-squares fit to the position points in $x-y-t$ space then yields a value for the velocity. The data is automatically plotted so that any deviations from unaccelerated rectilinear motion san be detected. In addition, the program can be used to determine the soordinates of a fixed point with respect to a fiducial point located in the field of view by averaging the coordinates from several fromes. The nief result of this statistical appreach is that, with proper techniques, positions can be determined to within the resolution of the camera: and velocities con be determined to within 1-5\% depending upon the quality of the film record. The computer program provides me rms deviation for the least-squares tit so that a measure of the velocity accuracy is availoble in each zase.

Almost as important as the data reduction scheme described above has been the development of an automatic digital film reader for accurately obtaining the position data from each frame. The details of this system ore described in Ref. 39. This device allows the reading of position points on each frame quickly and accurately, automarically !unching the coordinaies of each point read on an IBM card ready for use with the data reduction computer program. The net result is that it is fecsible to record accurately a large rumber of data points -a process which had beer. an extremely tedious manual procedure.

One potentially troublesome source of systematic error is determining the average magnification in a given event. This was done by placing a fiducial of known length in the field of view, reading position points for the fiducial, and normalizing the coordinates of all other points to the value obtained from the fiducial. The Model 300 camera was in a fixed location for this program asd the lens-to-subject distance remained fixed. Consequently a good decl of data on average magnification was obtaineci from a number of events. The resultant overage magnification obtained is felit to be accurate to better than 1.5%. One remaining source of systematic error -- interpreiotion of the film record -- is a funcrion of the quality of the film record and varied from round to rsund. In a few cases, errors due to interpretation probably dominated all other errors.

Dynafox Model 326 Camera. The optical design of this drum type framing samera is such that it does riot suffer some of the problems described above -such as variations in interframe time and changes in magnificatior between frames, Nevertineless, a statistical data reduction progre 1 similar to thas used with the Model 300 camera is used to reduce the data from this instrument.

The results obtained have been quite good. For gcod film records with ten or more usabie frames of data, velocities can be determined such that the standard deviation from the ieast-squares ft of position data in $x-y-t$ space is less than 1\%. !ikewise with a lens-to-subject distance of roughly 300 cm , the position of a fixed point in the field of view can be determined to an accuracy of less than $\pm 0.05 \mathrm{~cm}$.

With this camera, the lens-to-subject distance was generally changed with each event, resulting in a somewhat greater chance for error in determination of magnification. A fiducial in the field of view of each event was used to determine this magnification. Several tests indicated that the magnification factor was known *o an accuracy of approximately 2%.

The two cameras and associated data reduction techniques described above permitted the convenient and accurate determination of fly-off disk and free surface velocities in this study. The application of this instrumentation to the measurement of free surface velocity is described in Chapter V.

Appendix H

Dimsnsionai Analysis
It is usually instructive in the development of analytic theories such as the modified blast wave (similority) theories discussed in Chapter VII, to present the results in terms of either scaled or dimensionless variables so that the results cif one problem may be more easily compared with those o: another or so that scaling lows moy be explored more directly. The applicotion of the principles of dimensional analysis (Rer. 71 for instance) leads to the definition of ronsistent sets of such veriables cand nay be used to derive the set of variables employed in Cr apter VII.

Assuming that the problem is to calculate the spherical, one-dimensional expansion of a shock wave in a solid material created by a point source explosion (the solid material analogue of the blasi wave problem in gas dynamics), thes set of physical quantifies defined in Table XXIII was selected as being pertinent.

Toble XXIII
Blast Wave Problem Variables

Varable	Definition	Dimensions
R_{s}	Distance from source to shock front	L
R_{0}	A characteristic length	L
E	Energy characterizing the source	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
p	Pressure	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
ρ	Density	ML^{-3}
p_{0}	Undisturbed Density	NLL^{-3}
u	Porticle Speed	LT^{-1}
D	Shock Speed	LT^{-1}

Table XXIII (Cont'd.)

Variable	Definition	Dimensions
c	Bulk sound speed	$L T^{-1}$
s	Material constant in linear Hugoniot	---
1	Time	T

Applying the π-theorem of dimensional analysis described in Ref. 71 the following expression is obtained:

$$
\begin{equation*}
R_{s}^{a_{4}} R_{o}^{a_{2}} E^{a_{3}} p^{a_{4}} \rho^{a_{5}}{ }_{p_{0} \sigma^{o_{0}}} u^{a_{7}} D^{a_{8}} c^{a_{3}} s^{a_{10}} t^{a_{11}} \tag{Eq.94}
\end{equation*}
$$

Since π is dimensionless by the theorem, the right side of this equation leads to three !inear equations relating the exponents for each dimension M, L, and T.

$$
\begin{align*}
& a_{3}+a_{4}+a_{5}+a_{6}=0 \tag{Eq.95}\\
& a_{1}+a_{2}+2 a_{3}-a_{4}-3 a_{5}-3 a_{6}+a_{7}+a_{8}+a_{9}=0 \\
& -2 a_{3}-2 a_{4}-a_{7}-a_{8}-a_{9}+a_{11}=0
\end{align*}
$$

Elir:inating $a_{2^{\prime}} a_{6}$, and a_{9} between these equations, substituting the results back into the original π-equation, and collecting terms yields the following set of π-factors:

$$
\left(R_{s} / R_{0}\right),\left(E / \rho_{0} c^{2} R_{0}^{3}\right),\left(p / \rho_{0} c^{2}\right),\left(\rho / \rho_{0}\right),(v / c),(D / c), s,\left(c t / R_{0}\right)
$$

which represent a consi \equiv tent set of dimensionless groups that moy be used in this problem. The second term may be used to define the scaling length, R_{o}, through the relation

$$
\begin{equation*}
R_{0}^{3} \propto E / \rho_{0} c^{2} \tag{Eq.96}
\end{equation*}
$$

The term (R_{s} / R_{o}) implies geometric similarity, while those terms containing c indicate how the parameters vary with this fundamental material property. The direct cornection with R_{0} and E in Eq. 96 above is usually termed "energy scaling." Because of the direct implication that E a $v_{p}{ }^{2}$ here, cnergy scaling implies that

$$
R_{0} \propto v_{p} 2 / 3
$$

and that all the linear dimensions in the problem can be scaled in this manner. In the t:ue hypervelocity impact regime, where processes such as meltins and vaporization may be occurring, nemerical studies have shown that the relations $R_{o} \propto v_{p}{ }^{.58}$ is more nearly true.

The relation $\mathrm{ct} / \mathrm{R}_{\mathrm{o}}$ implies that for ixed material ($\mathrm{c}=$ constant), the time scales linearly with the characteristic dimensions of the problem. This resulf was used in Chapter IV in presenting the craker growth data, except the projectile diameter, $d_{\text {, was used }}$ in lieu of R_{o} since these two lengths are linearly related.

By adding the variable Y , the yield strength of the mateicial with dimensions $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, to the list of parameters above and by again applying the π-theorem, it is possit; to obtain the following dimer.sionless groups:

$$
\left(\frac{R}{R_{0}}\right),\left(\frac{E}{Y R_{0}^{3}}\right),\left(\frac{p}{Y}\right),\left(\frac{\rho c^{2}}{Y}\right),\left(\frac{R_{0} c^{2}}{Y}\right),\left(\frac{u}{c}\right),\left(\frac{D}{c}\right), s,\left(\frac{c t}{R_{0}}\right)
$$

The group that defines $R_{0}=E^{1 / 3} \quad Y^{-1 / 3}$ implies that the geometric and time scales in the problem are ofunction of $\mathrm{Y}^{-1 / 3}$. If this reasonirig is applied to the crater growth portion of the problem discussed in Chapter IV, the scaling implies that

$$
\begin{aligned}
& \left(p_{c} / d\right)_{\text {final }}{ }^{\alpha} Y^{-1 / 3} \text { where } o_{c} \text { is the crater penetration, and } \\
& r / d \propto Y^{-1 / 3} \quad \text { where } r \text { is the time constant for croter }
\end{aligned}
$$ growth as discussed in Chapter IV. The experimental results indicoted that for each case the exponent was approximately -0.2 . The result above is surprisingly close to the experimental value and expluirs the reasons why botil p / d and r / d vary as the same function of the yield strength.

- DESCRDRTIVE NOTES (Typr of repors and Inclusive dates)

Dissertation
5 aUTHORIS) (First name. middle initiai, last name)
Major Ronald F. Prater

This document has been approved for public release and sale; its distribution is unlimited.
supplementary notes
12. Sponsmaing MiLitury activitr
Air Force Materials Laberatory
Wright-Patterson AF Base, Ohio 45433

The effects of matarial itrength upon the transient response of thick aluminum targets to hypervelocity impact has been studied experimentally. Most experiments involved the normal impact of 2017 alurninum spheres at a velocity of about $7 \mathrm{~km} / \mathrm{sec}$. Material strength was varied by employing targets of 1100,5061 , and 7075 oluminum alloys, Flash x-ray fechniques were used to measure accurately the rate at which the crater grew during the impact process. Crater growth rates were also measured for 1100 aluminum in four separate ranges of projectile velocity from $2.3 \mathrm{~km} / \mathrm{sec}$ to $7.0 \mathrm{~km} / \mathrm{sec}$.

Free surface velocity and Hopkinson fly-off disk techniques were used to measure values of the peak normal stress at various distances from the impact point (between 1 cm and 10 cm int several related angies oway from the projectile trajectory. The measurements of the variation of stress amplitude with distance into the target demonstrated significent nonhydradynumic stress attenuation believed to be associafed with propagation of on elastic relief wave from the rear of the impacting projectile. Numerical calculations yield reasonable agreement with experimental results, but many of the details are in question. Measurement of shock arrival time with quartz disk sensors confirmed the elastic-plastic behavior of the target material.

Fに渢
1 Nu: 3

[^0]: *Sponsored as a subcontract by the University of Dayton Research Institute. Mr. M. Rosenbiatt was principle investigator for the subcontractor. Additional comparison of numerical and experimental results beyond those reported herein are planned as a iaint LDRI/AFML effort.

[^1]: Fi.g. 79. Variation of Free Surface Velocity with Shock Radius -- 1100-0 Alurninum Alloy 62.5 .. 90° Off Axis.

[^2]: *This approach was suggested by Prof. P. Torvik, AF Institute of Technology. Helpful discussions with him on this theory are hereby gratefully acknowledged.

[^3]: * Ref. 66
 ** Ref. 42
 \dagger Quasi-infinite, exact value not cited. Taken as $\mathbf{> 2 0}$.

[^4]: * 0.476 cm diameter.
 ** 0.318 cm diameter.

