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Abstract

Wave propagation in an isotropic elastic solid containing a slit is

studied. The slit is viewed as an open crack of finite width and infinite

length. In particular, the propagation of surface waves on the faces of the

slit is considered. Making use of a reflection law for the oblique reflection

of a Rayleigh wave from the tip of an open half plane crack, surface waves are

superimposed to form-guided surface waves in the slit. In order to carry out

the construction of dispersion relations, an assumption on the rate of decay

of body wave modes localized in the vicinity of the edges of the guide is made,

and the range of validity of the assumption is discussed. The dispersion re-

lations are obtained by geometrical construction, and representative dispersion

curves are shown.



Introduction

The subject of guided surface waves on elastic solids has been under study

for several years. The main thrust for research in this area is the potential

application of the theories to the design of electromechanical devices for

electronic circuitry. For example, see the review article by White [1]. Of

course, the results are also of interest in ultrasonics, geophysics, and other

areas. Most work in the area has been directed toward determining the disper-

sion characteristics of various guiding configurations. A very thorough analy-

sis of several configurations has been given by Tiersten [2], who modeled each

surface waveguide by an appropriately selected system of membranes. Several

other studies of the mechanical wave propagation process have appeared in the

literature, but most are based on the work of [2]. See [1] for an extensive

list of references. A method for studying the dispersion of guided surface

waves was recently introduced [3] which is essentially a generalization of the

scheme of superposition of plane waves for constructing guided waves. For any

particular guide, the scheme assumes a knowledge of the law governing reflec-

tion of a surface wave from a discontinuity in boundary impedance resembling a

single edge of the guide. The reflection problem must therefore be solved be-

fore guided waves can be constructed by superposition. The means of solution

of this auxiliary problem is discussed in [3].

Nearly all surface waveguides which have been proposed are formed by modi-

fying the plane surface of an elastic solid in some way. For example, a strip

of relatively dense, elastically weak material may be deposited on the surface,

or a relatively light, elastically stiff material may be deposited on the sur-

face everywhere except along a strip. In any case, the general idea behind

forming a surface waveguide on the surface of an elastic solid is to modify the

surface in such a way as to make the surface wave speed inside the guide less
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than the surface wave speed outside the guide. Since a heavy, weak film depos-

ited on a surface decreases surface wave speed, and a light, stiff film increases

surface wave speed [4], the two strip configurations mentioned above satisfy

this condition.

The necessary condition for the existence of a surface waveguide may be

generalized slightly. A strip of surface of an elastic solid will carry guided

surface waves, without attenuation, if the surface wave speed in the guide is

less than all other characteristic wave speeds of the configuration, including

both body waves and surface waves. Clearly, this condition is satisfied by a

slit (an open crack of finite width and infinite length) running through an

elastic solid. That is, the speed of surface waves on the faces of the slit is

less than all other characteristic speeds, namely, the body wave speeds. It is

the purpose of this paper to determine the guiding characteristics of this slit

waveguide configuration for the particular case of a homogeneous, isotropic

elastic solid.

From the practical point of view, the slit configuration has several

inherent advantages over other types of waveguides. Since it is made of a

single material, fabrication of actual devices might be easier. Also, once the

guide is constructed the air may be evacuated and the ends sealed to prevent

atmospheric contamination and energy loss due to air-coupling.

Consider an unbounded isotropic elastic solid containing an open slit of

constant width 2d and indefinite length. Let x. = (x,y,z) be a three-J

dimensional Cartesian coordinate system oriented so that the slit lies in the

plane z = 0. The edges of the slit are parallel to the y-axis and are defined

by the straight lines z = 0, x = ± d. In reality, if the faces of the slit

are to be separated, the opening must be of finite extent in the z-direction.
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It is assumed, however, that the dimension of the gap is negligibly small with

respect to d so that the slit may be viewed as a planar crack.

In the absence of body forces, the equation governing the components of

the displacement vector U.(x,y,z,t) (UVW) is

CijkZ Uk,j2. - p = 0 i = 1,2,3 (1)

where p is mass density. For the isotropic material being considered here,

C ijk may be expressed in terms of the Lam4 constants A and v as

Cijkk = A 6ij 6k + ( 6 ik6j + 6i 6 jk) . (2)

The boundary conditions which must be satisfied on z = 0 for the faces of the

crack to be traction-free are

Zi 3 (xy,0+,t) = 0 lxi < d , i = 1,2,3 (3)

+

where the notation 0- means that the stress components must vanish as z - 0

through positive or negative values. The stress matrix E.. is related to the1]

displacement components by

E.. = C.. U (4)
1] ijkt k,Z

The displacement is required to be continuous at all points of the solid and to

have a unique finite limit at all points of the boundary, in particular, along

the edges of the slit. The stress may be singular at the edges subject to the

condition that the strain energy density be integrable there.

It is desired to study the characteristics of the slit configuration when

it is viewed as a waveguide for surface waves. If the slit is to serve as a

waveguide it must satisfy the condition that the average energy flux through
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any cross section of the guide, due to passage of a time-harmonic wave, is a

fixed constant. In general, the energy exists in the form of surface waves on

both the z = 0+ and z = 0- faces of the crack, and a continual exchange of

energy takes place between the faces in such a way that the net energy is con-

served, that is, such that the net energy flux is the same for all sections.

It appears that a direct approach to the general problem in which the amount of

energy transfer between faces varies along the guide in some unknown way is

prohibitively complicated. Two particular problems may be considered, however,

the results of which can be combined to yield results for the general problem.

The two cases considered are guided waves for which the z-component of displace-

ment is an even function of z and the case for which it is an odd function of

z. The common attractive feature of these two cases is that the rate of energy

transfer from the face z = 0+ to z = 0- is exactly the same as the rate of

transfer from z = 0- to z = 0+. This can be seen from symmetry arguments or

directly from the subsequent analysis, along with the results of [5]. As

pointed out in [5], a surface wave for a given material is completely charac-

terized by a single component of surface displacement. Therefore, only the

z-component of surface displacement enters into the following discussion.

A solution of the equations of elasticity satisfying the boundary conditions

(3) is sought for wave motion in the slit waveguide in the form

+ i(wt-cy)
W(x,y,0+ ,t) = A(x) e (5)

where A(x) is the mode shape, w is the circular frequency, and 4 is the

real wavenumber of the guided wave. The displacement on z = 0 is given by

W(x,y,0-,t) = ± W(x,y,0+,t) , (6)
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the plus (minus) sign holding for the case in which W is an even (odd) func-

tion of z, which will henceforth be referred to as case E (case 0). It is

improbable that an exact solution of the form (5) can be found, and additional

assumptions must be made to obtain approximate results for the problem. To

this end, the following auxiliary problem is introduced.

The Associated Reflection Problem

In order to obtain approximate dispersion relations for the slit waveguide,

the simpler problem of the oblique reflection of a Rayleigh surface wave from

the tip of a half-plane crack is considered. This may be thought of as a spe-

cial case of the slit configuration with one edge of the guide moved off to

infinity.

Consider an unbounded homogeneous body of the same elastic material as

above containing a semi-infinite crack. Cartesian coordinates are prescribed

in the body in such a way that the crack occupies the half-plane z = 0, x < 0.

The faces of the crack are taken to be traction-free. The motion of the solid

is governed by (1), (2) and (4), which are now subject to the boundary

conditions

+

2i 3 (xyO-,t) r 0 , x < 0 , i = 1,2,3 . (7)

The excitation is taken in the form of a surface wave on the face of the crack

z = 0+. A steady-state situation is assumed to exist with the surface wave,

harmonic in time with circular frequency w, obliquely incident on the edge of

the crack at x = z = 0. The incident disturbance on z = 0 is written as

(Uj)inc" i(wt-ax-y) (8)

where A. is the amplitude, and a and a are components of the surface)
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wavenumber vector. If y is the wavenumber of Rayleigh waves, then a = y cos 8

and B = y sin 6 where 8 is the angle of incidence, that is, 6 is the

angle between the normal to the constant phase lines of (8) and the edge of the

crack. It can be shown that A1 and A2 may be expressed in terms of A [5].

A solution for the amplitudes and phase angles of the reflected surface

waves on z = 0+ and z = 0-, due to the incident wave (8), is given in [5].

Assuming that the scattered field has the same harmonic time-dependence as the

incident wave, and observing that the physical system is invariant with respect

to translation in the y-direction makes it possible to write the dependence of

any typical field variable O(x,y,z,t) on y in the explicit form

4(x,y,z,t) = 4(x,z) ei(WtSy) (9)

The problem is thus reduced to the determination of the amplitudes, such as

O(x,z), in the x,z-plane. The solution is derived by making use of a three-

dimensional displacement representation theorem due to deHoop [6] and by Laplace

transform methods. The exact Laplace transform (over x) of the complete dis-

placement field can be obtained. As is usually the case in problems of this

sort, however, the inversion process which must be executed to obtain the dis-

placement itself is prohibitively complicated. Fortunately, the parts of the
+

diffracted field representing the reflected surface waves on z = 0 can be

extracted. This is due to the fact that the reflected surface waves appear in

the transformed solution as simple poles, and may therefore be obtained by the

evaluation of the residues of these poles. This evaluation was carried out in

[5] and some of the main results are outlined here.

The ratios of the amplitudes of the reflected surface waves to the amplitude

of the incident wave versus angle of incidence 0 are shown in Fig. 2 for the
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representative case of Poisson's ratio equal to 0.25. The dilatational wave-

number Ka , the shear wavenumber Kb and the surface wavenumber y are then

related by K
2 = 3K 2  and y2 = 3.549 K2 . Figure 3 shows the phase change ex-b a a

perienced by the surface waves upon reflection. For 00 < 0 < 23.20 the appar-

ent wavenumber 8 of the incident surface wave along the edge of the crack is

greater than the larger of the two wavenumbers for body waves, that is, the

apparent wave speed of the incident along the edge is less than the slower body

wave speed. Consequently, the only body wave modes which are excited are those

which have an amplitude which decays with distance from the edge of the crack

in all directions and which have a wavenumber vector which has a real component

along the edge but an imaginary component normal to the edge. The modes are

said to be localized and nonpropagating, in the sense that they do not carry

energy away from the guide.

A parameter which is a convenient measure of the relative energy of a

surface wave is the square of the magnitude of the z-component of surface dis-

placement. Taking the energy of the incident wave to be unity, the relative

energy of each of the reflected surface waves is shown in Fig. 4. The sum of

the energies is also shown. It is clear from this figure that for 0 < 23.20

all the energy transported to the edge of the crack by the incident wave is

carried away by the reflected surface waves. When 8 < K b, however, the

apparent signal speed along the edge is greater than the shear wave speed.

Propagating shear wave modes are therefore excited, which carry energy away

from the edge. It is clear from Fig. 4 that this is indeed the case. In order

to have a "conservative" surface wave reflection process, the angle of incidence

must be restricted by 8 > Kb.

The results of Figs. 2 through 4 are directly applicable only for an inci-

dent surface wave on z = 0. Suppose instead that a surface wave is incident
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at angle 6 on z = 0 and, for definiteness, suppose the z-component of

surface displacement of the incident wave is the same as for the original prob-

lem. Then, letting u. and u. be the amplitudes of the reflected surface

waves in the original and modified problems, respectively, it can be shown

that [5]

a. +

u.(x,0) = ui(X,0 ) (10)

Similarly, if the incident surface wave on z = 0- is w radians out of phase

with the incident wave of the original problem, then

u.(x,0-) = -u.(, (11)
1 1

where u. is the amplitude of the reflected surface waves in the second modi-

fied problems. Relations (10) and (11) are quite useful in constructing disper-

sion relations.

Dispersion Relations for the Guide

The results introduced in the previous section are now used to construct

dispersion relations for guided surface waves in the slit configuration. As

stated before, exact dispersion relations cannot be derived from these results

and additional assumptions must be made in order to obtain approximate results.

The particular assumption which is introduced is based on the behavior of the

body wave modes near the edge of the crack for the surface wave reflection

problem discussed in the previous section. Whereas the reflected surface waves

appear in the transformed solution as simple poles, the body waves appear in

the form of branch line integrals [5], which are far too complicated to make

evaluation possible. The form of these integrals for z = 0, however, makes

them ideally suited for application of Laplace's method of asymptotic evaluation
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for lx1 - [7]. The dominant term resulting from this calculation is

u.(X9O) =A.KiKxl 3 / 2 e IAb , x-1 9 (12)

X = (y 2 cos 2e - K2)1/2
b b

where the repeated index does not imply summation. The quantity K. depends)

on e and is typically between zero and one. Equation (12) is a reasonable

approximation for values of lxi greater than five or six times l/Xb'

In view of (12), it is now assumed that the guided surface waves in the

slit may be constructed by superimposing solutions of the surface wave reflec-

tion problem, in much the same way as guided waves are constructed in the ele-

mentary theories by the method of superposition of plane waves. An equivalent

assumption is that the body wave disturbance localized in the vicinity of either

edge of the guide has negligible effect on the state of deformation at the other

edge. The result of this assumption is that, if a straight-crested surface wave

is incident on one edge of the slit, it is reflected as though the other edge

was absent, that is, it is reflected according to the reflection law depicted

by Figs. 2 and 3. It is clear that for a given value of d the assumption is

reasonable for sufficiently large values of w. It will be shown in the next

section that the lower bound of the range of values of w for which the assump-

tion is reasonable is sufficiently small so as to include almost the entire

range of values for which dispersion relations can be obtained.

The construction of approximate dispersion relations here is similar to

the method of [3]. It essentially consists of the superposition of wave trains

on the faces of the slit in such a way as to satisfy the appropriate boundary

conditions and, at the same time, to fit into either case E or case 0. For

the time being, attention is limited to those propagation modes which fit into
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case 0 and which are symmetric, that is, A(x) = A(-x).

Consider two trains of harmonic surface waves propagating on the face

z = 0+ of the slit with angles of incidence e and -e and with common fre-

quency w. Since only free waves are being considered here, admissible values

of e are restricted by the condition 8 > K b. Further, suppose the two waves

have the same amplitude, say unity, and are such that their crests intersect on

x = 0. A diagram of several lines of constant phase is shown in Fig. 5. For

definiteness, the solid lines are taken to represent crests, the dot/dash lines

to represent valleys, and the phase is assumed to increase in the direction

opposite to the direction of propagation. Diagrams for both faces of the slit

are shown as viewed in the direction of increasing z. A particular place

(value of y) locating the intersection of two crests on z = 0+ is marked off

and, since only case 0 is being considered, the same place locates the inter-

section of two valleys on z = 0-. A reference line representing zero phase

may be selected arbitrarily, and this line is identified with a particular

wave crest in Fig. 5.

The dashed lines on z = 0+ in Fig. 5 and the dotted lines on z = 0-

are reflected waves, which may be determined according to the reflection law

which was derived in [5] and which is represented in Figs. 2 and 3. Suppose

the amplitude and phase of the reflected wave on z = 0 shown in Figs. 2 and

3 are denoted by functions P(0) and 2rp(8), respectively. Similarly, let

the amplitude and phase on z = 0- shown in Figs. 2 and 3 be Q(6) and

2rq(O). The phase and amplitude of the dashed line on z = 0 are made up of

two contributions, one being the reflection of the zero phase line propagating

on z = 0+ and the other being the reflection of the w phase line propagating

on z = 0-. In view of (11), the amplitude and phase of the surface wave on

the dashed line is



w(dashed line) = P(e) e2•ip(e) - Q(6) e27iq(O) (13)

where the common factor exp i(wt-ay) has been omitted. From Fig. 3 it can be

seen that, in the range of interest, 2rq(O) = 2wp(e) + w/2. The quantity (13)

may therefore be simplified,

W = [P(e) - iQ(e)] e2wip(e) (14)

Writing the complex number in brackets in polar form, (14) becomes simply

w = e 2wim() , m(e) = p(e) - 1tan-1 [QO] (15)

The amplitude turns out to be unity because, as shown in Fig. 5,

P2 (e) + Q2 (6) = 1 in the range of interest. Since the dashed line is 2wm

radians out of phase with the solid line, the dashed line trails the solid line

by a distance 2rm/y. That is, the dashed line trails the solid line by the

fraction m(O) of a full wavelength 2ir/y. An expression similar to (15) for

the dotted line on z = 0 may also be derived.

The dispersion relation for case 0 and symmetric waves is now obtained
0+

[3]. The simplest situation, when any cross section of the surface z = 0 is

cut by at most two crests, is considered first. The dispersion relation is ob-

tained in parametric form, with parameter 6, by combining two pieces of infor-

mation. First, the wavelength of the guided wave £ = 2ir/C is the spatial

period of the superimposed surface wave fields. A wavelength is indicated in

Fig. 5, where the interval is determined by the intersection of crests on z =0

or the intersection of valleys on z = 0. Second, the phase velocity of the

guided surface wave is the apparent speed at which the point of intersection of

crests or valleys moves along the y-axis. Letting v denote the dimensionless

phase velocity, defined as the ratio of phase velocity to surface wave velocity,
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the two pieces of information may be expressed mathematically as

2d 2ir(l-m) (16)
cot 0 y cos e

v cos 0 = 1 (17)

Both (16) and (17) may be determined from the geometry of Fig. 5. The result

of eliminating 8 between (16) and (17) is

Ed - mn (18)(v2_I)1/2 (

where the relation L = 2WE/ has been used. In (15), m was defined as a

function of 8. In view of (17), m may also be expressed as a function of

v. Equation (18) is then the dispersion relation for the lowest symmetric

mode, for case 0, of guided surface wave propagation in the slit.

Dispersion relations for the higher symmetric modes and for the antisym-

metric modes, for case 0, are obtained in a similar way [3]. For the mth

symmetric mode

Ed = W(m÷M-l) m 1,2,3 ... (19)
(v2_l)l/2

aand for the Lth antisymmetric mode

Ed i(m-rL-l/2) L = 1,2,3 ... (20)(v2_i)'/ 2

The means of determining the corresponding mode shapes A(x) is discussed in

[2,3].

Up to this point only case 0 has been considered. The derivation of

dispersion relations for case E, however, proceeds in exactly the same way.
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The part of Fig. 5 representing z = 0+ need not be modified for this case.

The only difference is that, in view of (10), the phase and amplitude along the

dashed line is given by

w(dashed line) = [P(e) + iQ(e)] e2Wip(e) (21)

instead of by (14). The quantity (21) may be written as

= e2ain(e) 1 + 1 tan-(w) t L (22)

The dispersion relations for case E are then given by (19) and (20) with

m(v) replaced by n(v).

Discussion

Several dispersion curves for the slit waveguide are plotted in Fig. 6 for

the case of Poisson's ratio of 0.25. For waves with wavelengths which are short

with respect to the width of the slit, the phase velocity is very near the

Rayleigh wave velocity. The curves for all modes are asymptotic to v = 1

for ýd 1 -. As can be seen from the figure, each mode has a long wave cut-off

wavenumber. For wavelengths which are greater than the cut-off wavelength free

waves cannot exist. The cut-off wavenumber for each mode is determined as the

wavenumber at which the phase velocity of the guided wave equals the shear wave

velocity of the elastic solid. For wavenumbers below cut-off, or for phase

velocities greater than the shear wave speed, shear wave modes are excited which

carry energy away from the guide resulting in a decay of surface wave energy.

Note that the cut-off wavenumbers for corresponding modes in case E and case 0

are different.

The group velocities of the various modes may also be calculated, as was

done in [3]. It turns out that the group velocity is extremely close to the

TEOHNIOAL LIBRARY
BLDG 205
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phase velocity over almost the entire range of admissible wavenumbers.

With the introduction of the characteristic dimension d into the problem,

the range of validity of the fundamental assumption employed in deriving dis-

persion relations can be investigated to a limited extent by considering the

asymptotic forms of w as x - 0 and as x - - for the surface wave re-

flection problem discussed in the previous section. Only case 0 will be con-

sidered, with similar results holding for case E. That is, the particular

reflection problem in which incident surface waves of common amplitude (say

unity), frequency and angle of incidence propagate on z = 0+ and z = 0-, but

the waves are w radians out of phase, is considered. The net displacement is

then constructed according to the scheme suggested by (11).

The net surface displacement w, for the case being considered, has the

representation [5]

iOD

2+i f w(X) e x dA (23)
_iC-ioD

which arises naturally from solution of the problem by integral transform

methods. The relevant Tauberian theorem for Laplace transforms [8] states that

v+l-
lim w(x,O) lim (_-) w(A) (24)

x-o- lxi V r(l+v)

where r is the gamma function. Applying (24) to the explicit solution of the

reflection problem [5] shows that

+

w(x,0-) = ±C(O)jKa x11/ 2  x ., 0 . (25)a

The coefficient C(6) has been evaluated numerically for Poisson's ration of

0.25, and it is fit very closely over the full range of interest by the
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parabola C(e) = 2.71 82 where the angle of incidence 6 is measured in

radians. The total w near x = 0 is zero, because of the symmetry with

respect to z = 0. The contribution to the total w due to body waves near

x = 0 may then be computed by subtracting the surface wave contribution from

(25). Denoting the body wave contribution by wb and omitting a common phase

factor,

wb(XO+) + (2.71)021Kax 1112 - [1 + cos 2rm(6)] (26)

as x - 0-. The term in brackets in (26) is the net contribution due to the

incident and reflected surface waves on z = 0+.

The integrand w(X) of (23) has a simple pole at a point determined by

the surface wave speed, and branch points determined by the body wave speeds.

For x < 0 the path of integration may be deformed into the right half plane,

yielding a representation for w in the form of a residue of a pole, represent-

ing surface waves, and a branch line integral, representing body waves. The

form of the latter makes it well suited for application of Laplace's asymptotic

method of evaluation [7] as x + - =. As is indicated in (12), the result of

this calculation is

lwb(x,0+)l K(O)IKaxi-3/2 e (27)

as x ÷ - c. The amplitude K(M) has been evaluated numerically for Poisson's

ratio of 0.25, and it is closely fit over the full range of interest by the

straight line K(O) = 1.86 0 where 0 is measured in radians.

The result (26) then indicates how wb varies as x decreases from zero,

and (27) provides a bound for wb for values of IP aXI much larger than unity.

As an example, (26) and (27) are shown in Fig. 7 for the case of 0 150. The
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parabola (26) is continued beyond IK xj = 0.25 as a dashed line merely toa

indicate a possible form of wb. The important feature is that, as IKaXI

becomes large with respect to unity, 1Wb. is very small.

To see how the validity of the main assumption made in determining

approximate dispersion relations may be studied, consider a particular point on

the dispersion curve, for example, v = 1.035 and ýd 4.798. From (17) it

can be seen that this value of v corresponds to 8 = 150. For this point on

the dispersion curve, the value of Ka x may be determined for x = -2d. From
a

the identity v =y/• and the fact that y2 =3.549 ,c2, it follows that

[_i]2v d

IKIaXl x=-2d (3549)1/2 = 5.38

Going back to Fig. 7, it can be seen that for IK aXI = 5.38 the value of wb

is bounded by Jwbi < 0.010. That is, the magnitude of the body waves is less

than about 1% of the magnitude of surface waves. As 6 becomes larger the

error increases, and as 0 becomes smaller the error decreases.

As was remarked earlier, cases E and 0 may be combined by specifying

appropriate amplitudes to represent any guided wave in the slit. Because these

two cases have different wavenumbers for a given phase velocity v, a wave re-

sulting from the superposition of the two cases will exhibit the interesting

phenomenon of beats. Consider the simplest situation in which the two cases

have a common amplitude and the new guided wave is formed by subtracting the

lowest symmetric mode of case E from the lowest symmetric mode of case 0.

Then, at regularly spaced values of y, the net displacement on the faces of

the slit will be zero. The usual analysis of the intermittent vibration phen-

omenon leads to the result that the spacing of these zeros is

Ay/d 2n/I((d)E - (ýd) 0j
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where the subscripts E and 0 denote values of dimensionless wavenumber of

cases E and 0 at a given phase velocity v. For example, for v = 1.035

the spacing of the zeros is about Ay/d = 8. At any given station on either

face of the slit, of course, the period of the beat is exactly the time it

takes for the wave to travel a distance Ay.
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Figure Captions

Fig. 1. The slit viewed along the negative y-axis.

Fig. 2. The reflection coefficient versus angle of incidence for the

associated reflection problem.

Fig. 3. The phase change versus angle of incidence for the associated

reflection problem.

Fig. 4. Relative surface wave energies versus angle of incidence for the

associated reflection problem.

Fig. 5. Diagrams used to determine dispersion relations.

Fig. 6. Dispersion curves for first and second symmetric modes and first

antisymmetric mode, for both case E (dashed) and case 0 (solid).

Fig. 7. Bounds on body wave displacement on z = 0 for large IK aXIS

case 0.
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