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ABSTRACT?®

] It is shown that for quasi-linear hyperbolic systems of the conservation
g: form Nt = - Fx = - wa, it is possible to build up relatively cimple finite
difference numerical schemes accurate to 3rd and Utk orcer provided that the
matrix A satisfies commutativity relations with its partial-derivative-matrices.
This requirement is not fulfilled by any known physical systems of equations.
These schemes generalize the Lax-Wendroff 2nd order one, and are written down
explicitly. As found by Strang, odd order schemes are linearly unstable unless
3 modified by adding a term containing the next higher space derivative. Thus
stabilized, the schem=s, both odd and even, can be made to meet the C.F.L
(Courant-Friedrichs-Lewy) criterion. Numerical calculations were made with a
3rd order and a ith order scheme for scalar equations with continuous and dis-
continuous solutions. The results are compared with analytic solutions and the

predicted improvement is verified.

TP

The computation reported herein, were carried out on the CDC-3400

computer at the Tel Aviv University computation center.

E * THIS RESEARCH HAS BEEN SPONSORED !N PART BY THE AIR FORCE OFFICE OF
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i, INTROGUCTION

When dealing with one-dimensional problems in continuum mechanics, and

in particular hydrodynamics, it is often necessary to solve non-linear hyper-
bolic systems of the form

W +F =0 (1)

where ( )t and ( )x denote, respectively, partial differentiation with
respect to the time and space coordinates. W is a vector whose components
are the unknown functions and F is a vector whose components are dependent
functionally on the components of W only. We consider the quasi-linear case
wherein Fx = wa, A being a matrix whose components depend on the unknown
functions only, and not on their derivatives. Since eq. (1) is assumed to be
hyperbolic, the eigenvalues of A are all real.

Systems of the form of equation (1) are called ""Conservation Law Form'
systems. Various numerical schemes for their solutions have been developed
{11, {21, [3], [4], [5] starting with Lax and Wendroff [1].

Keeping in mind that ultimately the main interest will focus on multi~
dimensional systems (say x,y,z and t or x,r,» and t) it is of obvious
importance to develop numerical schemes whose order of accuracy is higher
than one. A widely used 2nd order accuracy scheme is the one due to Lax and

Wendroff [1]. Their finite differences approximation is written thusly:

1 X )
u'“’ 3‘ 3Fla - I) + %—[ 1/2“‘ F;) - A},VZ(F}‘ - F}'_]H (2)
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(nh=0,1,2,... )

_ At
A= ax

If the problem contains discontinuities (such as shocks which may develop
even if the initial conditions are smooth; see [6]) the system may be handled

either by adding a non-linear artificial viscosity term [1] or by iterative
3] methods [4]. A stability criterion determines ot for the predetermined and
fixed Ax.

With view in mind towards multi-dimensional computations, it is of

;Q interest to consider 3rd order accuracy schemes for non-linear hyperbolic
E equations of the type (1) where for the present we shall consider the scalar

case, i.e. a simple conservation-form equatiorn. A first attempt in this direction

is due to Burstein [7] who developed a three-step approach in analogy to
Richtmyer's two-step method [3] which approximates the Lax-Wendroff 2nd order
scheme. We shall use the basic ideas of Lax and Wendroff [1] for estimating

truncation errors in order to construct a third order scheme.

2. DERIVATION OF THE METHQD

The Lax-Wendroff {LW) method is based on the fact that from the equation
W_+ F =0 one obtains
t x

wtt = (AFx)x : (3)
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This allows the construction of a 2nd order scheme by developing W(x,t, + At)

in a Taylor series which to order (At)2 is given by

Wix,t + 88) = W(x,0) + (Be)W, + -(-gg-)fwtt + 0(at?)

and the time derivatives are replaced by space derivatives through the use of
equation: (1) and (3). This allows the build up of a finite differences scheme

which steps up W in time by using only spatial differences.

Our first task is to construct a formula similar to equation (3) for
higher order time derivatives. We 'make the following claim:

!f the matrix A of the hyperbolic system (1) is commutative

with its partial-derivative-matrices then

n ~n-1 -
?—%‘-‘ (-l)n g—;-:]-(An }Fx) (4)
at 3x

for every natural number n.
The prcof proceeds as follows:
W, = (AF) =AF +AF . (5)

on the other hand,

wtt = (-m:x)t = ~Ath - wat = —Ath + AFxx . (6)
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Comparing (5) and (6}:

AM, = -AF = -AA . (7)
With these preliminaries and with our assertion (&) known to be true for

n=1 and 2 (even without the commutativity conacition), we now consider
the case n = 3:

3
2
N

wttt = [(AFx)x]t = [(AFx)t]x = [AtFx + AF,

xt}x = [Atwa + A(-AFx)x]x. (8)

Now substitute the commutativity restriction A A = AA_ into (8) to get

t
Wopp = [RAW - A(AF +AF )] ;
Using {7) we obtain (using AA = AAX): E
4
= - - - A2 1 =1- - a2 1 :
L [A( Axe) AAF - A°F 1 [ 2AAF - A%F 1
= - 2y £ 2 1oL o 2 5
[(af) £, + A%F ] (A2F) . (9) ;
We have thus verified our claim {eq.(4)) for the case n = 3. it is easy to '

show by induction that equation (4) is valid for all n.

With the aid of this result, we can construct 2 finite difference scheme

to any desired truncation-error by writing the required Taylor series:

m K k-1
Wix,t + at) = Wix,t) + 7 () (at) -31134Ak £y + 0{(at)m*'] . (10)
k=1 Kkt 3xK x

One has only to takea care to represent the various derivatives by a finite
differences expression which has the proper accuracy so that the overall

scheme retains the desired truncation error. It should be noted that by the

PACITROTeY

Cayley-Hamilton The~rem it is possible to express Ak (k 2 r) in terms of
A, Az,..., Ar-' where A is of order r x r,
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3. A THiRD ORDER FINITE DIFFERENCES SCHEME

We shall consider now the case of a system obeying the restriction
on A:

W, =F = A(w)wx

t (1)
with the initial condition
W(x,0) = #(x) . (12)
in order for all the terms in the finite differences representation to be of
at least of third order, it is necessary to improve the representation of
the first derivative thusly:
n n 0 n n n
v, -V, ' -2y, , +2v -V,
(v )'3 = i+l Fidl - _J*2 Jtl j-1 j-2 + O(h") (13)
x’j 2h 12h

it should be noted that for a third order accuracy scheme one may still use
W

A;+‘,2 = A —1:1—5——1 or something else equivalent; but for higher order

schemes it will be necessary to utilize a better interpolation.

We can now write down a finite differences scheme of third order
accuracy:




+ _.n len
w:.. = wj + A[?(Fj"'l

n S,en n n _ .n
th._I)--'-Z-(:-"“2 2F") +2Fj§, Fj_z)]

J+,
Az n n n n n n )\3 ] n 2 n ) a
* iu{AJ+l/2(Fj+l h Fj) Aj_‘/z(Fj - Fj_])] + € 54Aj+1) (F}+2 F.)
~ (AM2(eg"  _ en Va0 y20en _ o0

with 6 =e =1, |fweset §=¢ = 0 we get back to the 2nd order accuracy
scheme of Lax and Wendroff. As we shall see, the scheme (14) is unstabie as
it stards, and in order to stabiiize it we have to add artificial viscosity

terms. This state of affairs is typical in schemes of odd order of accuracy.

L, THE STABILIZING ARTIFICIAL VISCOS|TY

We propose an artificial viscosity term of the form

- 82 u(y2p2 upls 2 3%
?l-h(AA "’\)lA)whx (wl‘x—-a‘;: . ('5)

The part of (15) which is proportional to AZAzwhx is due to the expressing

of W ., toa higher accuracy than 0(h2).

This improvement, if given in a
conservation form, is written thusly:

re n _ “lj n n
L\AF*)x]j A (F,

n n n n 21 n n_ .n
w2 w2 i T F) - Ao (R - R D] T hie3r2F ez~ Fia)
n n n n n n n n
- - - - - . 16
3850172 F 1 F’Jf) MELRPLGAEN A3 (F ) Flg)] (16)
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It is the second term on the R.H.S. of (16) which gives rise to AzAzwu

(with A being taken constant, since the term is not needed for accuracy,
only for stability).

The A“A“whx part of (15), however, is due to the extending of the
laylor series; i.e. it comes from

= 3
Wi (A rx)xxx ] an

The finite difference representation of (17) is, to 3rd order accuracy,
3 :f 3 n - n 3N _ g
(A%, ) 15 o (Aly32) 3(Flpg = Flyg) = 3(RL,, ) 3(FY, - F)

In practice we'll take the artificial viscosity term either in its conservation

form (i.e. use (16) and (18), or in the linear version where the finite
difference form of (15} is:

s8R 20aM2 o b (aMuy? - " n_ 0 n
ks (Aj) + ui (Aj) ][wj+2 ij+l + 6wj huj_' + “3-2] . (19)

If we examine the linear stability of the scheme in the usua! Von-ieumann
fashion, then we find that for fN=¢g=6 =-v =1

the criterion is Aa < 1
where o is the spectral radius of A. This result is also a special case of
Thecrem 1 in Strang's paper of 1962.[8].

In principal, it is possible to build up in the above manner, numerical
schemes of any desired accuracy. It seems that such schemes of odd orders will
not be linearly stable unless an artificial viscosity term is added. The
artificial viscosity term that we have added contains a term which is
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proportional to the next higher even derivative of the Taylor series
development of W(x,t + At). Thus it might be possible to take just that
amount of artificial viscosity which will not only stabilize ihe scheme, but
also will add one more order of truncation accuracy. Of course, when doing
this, care has to be taken that all the differencing is consistent with the
higher order accuracy. In effect, this is the case with the Lax-Wendroff
term, which might be considered as a stabilizing term added to a first order
schame. iIf the coefficient of (AFx)x is cleverly chosen to be %%33 then

an additional bonus is the 2nd order accuracy.

5.  ANALYTIC SOLUTIONS FOR COMPARISON PURPOSES

Consider the single (scalar) equation u, + A(u)ux = 0, with the

t
initial conditions u{o,x) = ¢(x). This hyperbolic equation has straight
characteristics whose slope is given by dt/dx = 1/A(u). Since u is

known at t =0, and since u remains constant along a characteristic,

it is easy to find analytic solutions to the above initial value prcblem with

A{u) = u and o(x) = x®, a-= 0,1,2,%3%-:
a=0: u(x,t) =1
a=1: uix,t) = Té?'
w = 2: ulx,t) = 2xt + 1 -~ /1 + hxt
2t2
a= -%-: u(x,t) = _t_:__-_zix .
a=% u(x, t) =zll3--%-z.1/3 , (z=-’2-(-+ -’5(3+-it-;)

(20)

(21)

(22)

(23)

(24)
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We'll take these solutions at x =0 and x = 1 to serve as the boundary
conditions for the numerica! work which is to be checked in 0 < x < 1

against the above analytic solutions.

The case of a solution containing a discontinuity which is created at

some t =t is demonstrated by taking the following initial conditions:

1 - o< X g0
(x) =q2 - & 0 < xg<20
LO 20 ¢ X ¢ @
The solution is given by:
r
i -2 <x g t+9
u(x,t)=<-2—(§-é—3t(— t+0 < xg 23 (0 < t<?)
0 28 ¢ X <@
\
and for txt =0 :
c
H -c:()({t;3e
ulx,t) =< (t > 0)
0 .E%.3_‘-”1<x5]
\

The Yshock-wave' is created at time t. = © and at the location x = 2@,
and moves to the right with the speed is = 1/2. In the numerical com-
putations corresponding to this case, we chall examine the behavior of the
solution also across the discontinuity and compare it to both the analitic

solution and the results obtained from the standard Lax-Wendroff method.

(25)

(26)

(27}
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6.  NUMERICAL RESULTS

In reporting on the numerical work, we shal! compare the standard
Lax-Wendrof f results with those of our third order scheme (eq. (14)),
either with the linear viscosity (eq. (19)) or with the conservation form
artificial viscosity ((16) + (18)).

6a. AN EXAMPLE FOR SMOOTH SOLUT!IONS

We took Ax = 0.005, u(x,0) = ¢{x) = x2 and, from (22),
u(o,t) = 0
U(l,t) = 2t+ l - Vl + Et

2t2

As expected, the maximum relative error using the scheme presented above

is about 100 times smaller than the one given by the standard Lax-Wendrct{
method, This is the case when we use the linear artificial viscosity

(eq. (19)). When the conservation form of the artificial viscosity is used,

the ratio of the maximum relative errors decreases from about 1/100 to
about 1/1000.
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6b. AN EXAMPLE FOR DISCONTINUOUS SOLUTIONS

Here we tcok u, +ouy = 0 with the initial distribution (25) and
boundary conditions according to (26) and (27). The results indicate that
the 3rd order accuracy scheme gives a slight improvement over the L-W
calculation in the large gradient region, in the sense that the ®shock"
is slightly steeper and the post-shock oscillations are weaker and are
damped more quickly. On the other hand, unlike the i-W case, there is a
very small negative perturbation ahead of the ''shock'. The appearance of
this precursor perturbation is due to the fact that in the 3rd order

scheme one uses, in addition to u, and u,. ,, alsc u..,.
j §E3] i2

7. A FOURTH ORDER FINITE DIFFERENCES SCHEME

As was mentioned before, if in the term stemming from wtt we represent
A;t)/2 by a higher order interpolation formula, and if we take =1, then
our scheme becomes of fourth order accuracy. This is in line with the remarks
at the end of Section 3 - adding a stabilizing term to an odd order scheme
can raise the order cf accuracy if the coefficients of this added derivaiive
are chosen properly.

In the present case, the fourth crder finite difference scheme has
the following form:
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n+l _eh _ G0 - n n _ N
W= w + [z (FJH Fj_]) -,-T(Fﬁ2 2P + 2F) FJ._Z)]
n N n Q.0 n n
_ aaP n n n _ AP n _n
3Aj+|/2 Fil ~ F " + 3A ,/Z(F rj_‘) Aj_3/2(Fj_, Fj_z)]}

%—{ TR 2, - FD - (WD, - FY )+ AT D2(F] - Fl o))
A4
+ 95-{( +3/2) (F' F?+l) - 3(A?+l/2)3(F?+l - FE) + 3‘“?-1/2)3(F? -

- (A"

3¢ .
j-3s2) (Fjoy = Fip)!

where

MY

Agtl/z = %(Agzl * A;) B T%(A;zz B A?:l B A? * A;;I)

The scheme (28) meets the C.F.L stability criterion. Note that if p =0
then eq. (28) is the 3rd order scheme with the linear artificia! viscosity
represented in a conservative form. If also 8§ = ¢ = 2 = 0, then we have
the Lax~-.'edroff scheme. For the fourth order accuracy, we must use
§=c=Q=mp=1. We ran test runs with %(x) = x* in order to determine
in practice, and compare to prediction, the amount by which the grid can be
coarsened and still maintain the same maximum relative error as we go from

Lax-Wendroff to 3rd order and then 4th order schemes. The grid sizes (based

n
Fj l)

(28)

(29)
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on Ax = .005 for the L-W s:heme) were found to be, respectively:
AxL.w' = ,1/200; Ax3rd order = .I/SO;- and Axbth order = .1/25. These
grids produce absolute errors of €10  where fora =2 and t = 3.,
1<C<65,

in conclusion, it may be stated that a 3rd or 4th order scheme, such
as the ones proposed in this paper, will in the smooth part of the solution
to a hyperbolic problem, yield in practice as well as in theory, one or two
orders of accuracy higher than, say, the Lax-Wendroff method. In the regions
near shock-like discontinuities, the improvement over the L-W scheme is not
as great. This opens up the possibility that in multidimensional cases we
shall be able in a practical manner to overcome partially the problems of

restricted machine memory by using coarser grids and higher order schemes.
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