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It is shown that for quasi-linear hyperbolic systems of the conservation

form Wt = - F = - AWE, it is possible to build up relatively simple finite

difference numerical schemes accurate to 3rd and 4th order provided that the

matrix A satisfies commutativity relations with its partial-derivative-matrices.

This requirement is not fulfilled by any known physical systems of equations.

These schemes generalize the Lax-Wendroff 2nd order one, and are written down

explicitly. As found by Strang, odd order schemes are ];nearly unstable unless

modified by adding a term containing the next higher space derivative. Thus

stabilized, the schemes, both odd and even, can be made to meet the C.F.L

(Courant-Friedrichs-Lewy) criterion. Numerical calculations were made with a

3rd order and a 4th order scheme for scalar equations with continuous and dis-

continuous solutions. The results are compared with analytic solutions and the

predicted improvement is verified.

The computation reported herein, were carried out on the CDC-3400

computer at the Tel Aviv University computation center.
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1. INTRODUCTION

When dealing with one-dimensional problems in continuum mechanics, and

in particular hydrodynamics, it is often necessary to solve non-linear hyper-

bolic systems of the form

SWt 0 (F)

where ( )t and ( )x denote, respectively, partial differentiation with

respect to the time and space coordinates. W is a vector whose components

are the unknown functions and F is a vector whose components are dependent

functionally on the components of W only. We consider the quasi-linear case

wherein F = AW , A being a matrix whose components depend on the unknown
x

functions only, and not on their derivatives. Since eq. (1) is assumed to be

hyperbolic, the eigenvalues of A are all real.

Systems of the form of equation (1) are called "Conservation Law Form"

systems. Various numerical schemes for their solutions have been developed

[1], [2], [3], [41, [51 starting with Lax and Wendroff [1].

Keeping in mind that ultimately the main interest will focus on multi-

dimensional systems (say x,y,z and t or x,r,4 and t) it is of obvious

importance to develop numerical schemes whose order of accuracy is highor

than one. A widely used 2nd order accuracy scheme is the one due to Lax and

Wendroff [1]. Their finite differences approximation is written thusly:

.n+l W- A n n A2 rAn (•n -Fn)- n( n n)] (2)

j j (j+l j- + -j+l/2 j+l j j-1/2j J-i



where

w= w(xj t ) (j = 1,2,..., J = Jmax)

J (n(n =0,1,2,... )

At
Ax

If the problem contains discontinuities (such as shocks which may develop

even if the initial conditions are smooth; see [61) the system may be handled

either by adding a non-linear artificial viscosity term [1] or by iterative

methods [4]. A stability criterion determines Atn for the predetermined and

fixed Ax.

With view in mind towards multi-dimensional computations, it is of

interest to consider 3rd order accuracy schemes for non-linear hyperbolic

equations of the type (i) where for the present we shall consider the scalar

case, i.e. a simple conservation-form equation. A first attempt in this direction
is due to Burstein [71 who developed a three-step approach in analogy to

Richtmyer's two-step method [3] which approximates the Lax-Wendroff 2nd order

scheme. We shall use the basic ideas of Lax and Wendroff [1] for estimating

truncation errors in order to construct a third order scheme.

2. DERIVATION OF THE METHOD

The Lax-Wendroff (LW) method is based on the fact that from the equation

Wt + Fx =0 one obtains

W Wtt =(AF x)x . (3)
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This allows the construction of a 2nd order scheme by developing W(xt, + At)

in a Taylor series which to order (At) 2  is given by

W(xt + At) = W(x,t) + (At)W + (At)2 ;t+ O(At3)
t 2! tt

and the time derivatives are replaced by space derivatives through the use of

equation-s (1) and (3). This allows the build up of a finite differences scheme

which steps up W in time by using only spatial differences.

Our first task is to construct a formula similar to equation (3) for

higher order time derivatives. We'make the following claim:

If the matrix A of the hyperbolic system (1) is commutative

with its partial-derivative-matrices then

SW (-I)n •n-I(A F) (4)

n _) zi (An-1l
atn xn--l x

for every natural number n.

The proof proceeds as follows:

Wtt (AF)x =A F + AF (5)

on the other hand,

tt =(-Ax) = -At t -XAxt =-AtWx +Ax (6)
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Comparing (5) and (6):

AW -A F =-A AW (7)
tx xX x x

With these preliminaries and with our assertion (4) known to be true for

n = I and 2 (even without the commutativity conaition), we now consider
the case n 3:

W [(AF) I [(AFx)t]x [AtFx + AFxtlx [AtAWx + A(-AFx)x x. (8)

Now substitute the commutativity restriction A A = AA into (8) to get
t t

= [AAtWx - A(AxFx + AFxx)]x

Using (7) we obtain (using A A AAx):
x x

W =[A(-AFx) - AAF - A2 Fx =[-2AAF - A2 Fttt X x Xx x x xA X

[(A) + A 2F - (A 2 F) (9)= - (2xx xx xXXX

We have thus verified our claim (eq.( 4 )) for the case n = 3. is easy to

show by induction that equation (4) is valid for all n.

With the aid of this result, we can construct a finite difference sche.mc

to any desired truncation-error by writing the required Taylor series:

M k-l
W(xt + At) = W(x,t + 7' (_)k (At) k -F k-Ikt-I k! ýxk--•T A F)*0 •tml] (0

One has only to take care to represent the various derivatives by a finite

differences expression which has the proper accuracy so that the overall

scheme retains the desired truncation error. It should be noted that by the

Cayley-Hamilton Thtrem it is possible to express Ak (k >_ r) in terms of

A, A2 ,..., Ar-I where A is of order r x r.



3. A THIRD ORDER FINITE DIFFERENCES SCHEME

We shall consider now the case of a system obeying the restriction

on A:

Wt = Fx = A(W)W (11)

with the initial condition

W(xo) = •(x) (12)

in order for all the terms in the finite differences representation to be of

at least of third order, it is necessary to improve the representation of

the first derivative thusly:

n _n n 2n n n

(V )f jZ - +2 jl iI j- hL (13)
Vx = 2h 12h

It should be noted that for a third order accuracy scheme one may still use

n +i
A / ' A4 L2) or something else equivalent; but for higher order
j+1/2

schemes it will be necessary to utilize a better interpolation.

We can now write down a f;iiite d'fferences scheme of third order

accuracy:
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+ + F? (F 2FF + 2F F
.j j ! -1 Fj2] - .. j+2 -2j+! + F ?~_ Fj2)]

.+ ;•x2 n n -nF) n n n'3]"n 2n -F)
S j+/2 j+ j -j _I2  j j+) + 2j+ Fj+2

fn " (A?)2n n(F F?) + A? 1 2 (F F?)
- (A2Ff " F- 1) ½A 4F. - 2 

(14)

with 6 1. If we set 6 = E 0 we get back to the 2nd order accuracy
scheme of Lax and Wendroff. As we shall see, the scheme (14) is unstable as
it stands, and in order to stabiiize it we have to add artificial viscosity
terms. This state of affairs is typical in schemes of odd order of accuracy.

4. THE STABILIZING ARTIFICIAL VISCOSITY

We propose an artificial viscosity term of the form

- • 2 h +()2A2 . vAA)W4 (VX4 4  w)
h4A- 4)4 W (15)

The part of (15) which is proportional to A2 A2 W4  is due to the expresbing
of W to a higher accuracy than OW). This improvement, if given in aconservation form, is written thusly:

=-TF)n n n n n ni•
[•CAF)x]? hrA (+ 12(F F?) -A? (FJ F._)] -4 A. (F - Fl+)h2 j h2' j+1/2 j+1 3 j-1_1( j jI 12h2  j+3/2 j+2 j+1

-3A. (Fn -F.) +3A (F F.1) A A 3 (F" ~Ff 1 (16)+*112 1+1 1/ 3/2 2
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It is the second term on the R.H.S. of (16) which gives rise to X2 A2 W4 x

(with A being taken constant, since the term is not needed for accuracy,

only for stability).

The A4A4 W4 . part of (15), however, is due to the extending of the

laylor series; i.e. it comes from

.4t (17) [
The finite difference representation of (17) is, to 3rd order accuracy,

[(A3 = ]n n )3(Fn F n ) ) 3 (F n -J1

-X hx . ( j+3/2 J+2 j+l jA+!/,2  F+I )

n3(An )3(F' - F' ) - ( 3(F n F n
+ V 12 1 j-3/2 -I Fj _2(

In practice we'll take the artificial viscosity term either in its conservation

form (i.e. use (16) and (18), or in the linear version where the finite

difference form of (15) is:

R )+ 2~ + ,j-4 "a'W Wn.,
.[,.2(An (A n j + 6 - 4 n + 4

If we examine the linear stability of the scheme in the usua! Von-sgeumann

fashion, then we find that fo' Q = - = 6 - v = I the criterion is Ac a 1

where a is the spectral radius of A. This result is also a special case of

Theorem I in Strang's paper of 1962.[8].

In principal, it is possible to build up in the above manner, numerical

schemes of any desired accuracy. It seems that such schemes of odd orders will

not be linearly stable unless an artificial viscosity term is added. The

artificial viscosity term that we have added contains a term which is
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proportional to the next higher even derivative of the Taylor series

development of W(x,t + At). Thus it might be possible to take just that

amount of artificial viscosity which will not only stabilize Zhe scheme, but

also will add one more order of truncation accuracy. Of course, when doing

this, care has to be taken that all the differencing is consistent with the

higher order accuracy. In effect, this is the case with the Lax-Wendroff

term, which might be considered as a stabilizing term added to a first order
At

2

scheme. If the coefficient of (AFW) is cleverly chosen to be - then
Xxx

an additional bonus is the 2nd order accuracy.

5. ANALYTIC SOLUTIONS FOR COMPARISON PURPOSES

Consider the single (scalar) equation ut + A(u)ux = 0, with the

initial conditions u(o,x) = 4(x). This hyperbolic equation has straight

characteristics whose slope is given by dt/dx = l/A(u). Since u is

known at t = 0, and since u remains constant along a characteristic,

it is easy to find analytic solutions to the above initial value problem with11!
A(u) = u and 0(x) = xa , = 0,1,2,1

- 0: u(x,t) - 1 (20)

a= 1: u(Xt) (21)

Q 2: u(x,t) = 2xt_+_1- + 1+ 1xt (22)
2t

2

au(xt) /t' + 4x - t (23)
2' 2

S= u(xt) = Z 2 / (Z + ) (24)
3- 2 + i 7



'7 -~10-1

We'll take these solutions at x 0 and x = 1 to serve as the boundary

conditions for the numerical work which is to be checked in 0 < x < 1

against the above analytic solutions.

The case of a solution containing a discontinuity which is created at

some t = t is demonstrated by taking the following initial conditions:c

- < x<

W= 2- x 20 (25)

0 20 <x<w

The solution is given by:

u(x,t) 20 - x t + 0 z x f 20 (0 < t < 0) (26)

0 ~20 <,x <

and for t : t =E

t t+30
2

u(x,t) = (t >, 0) (27)

t + 3_o._ <x<
0 <C x 1

1 2

The "shock-wave" is created at time tc = 0 and at the location x = 20,

and moves to the right with the speed Xs = 1/2. In the numerical com-

putations corresponding to this case, we shall examine the behavior of the

solution also across the discontinuity and compare it to both the analytic

solution and the results obtained from the standard Lax-Wendroff method.
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6. NUMERICAL RESULTS

In reporting on the numerical work, we shall compare the standard

Lax-Wendroff results with those of our third order scheme (eq. (14)),

either with the linear viscosity (eq. (19)) or with the conservation form

artificial viscosity ((16) + (18)).

6 a. AN EXAMPLE FOR SMOOTH SOLUTIONS

We took Ax : 0.005, u(x,o) = O(x) = x2 and, from (22),

u(o,t) = 0

u(It) = 2t ÷i-
2t

2

As expected, the maximum relative error using the scheme presented above

is about 100 times smaller than the one given by the standard Lax-Wendrcfe

method. This is the case when we use the linear artificial viscosity

(eq. (19)). When the conservation form of the artificial viscosity is used,

the ratio of the maximum relative errors decreases from about 1/100 to

about 1/1000.
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6b. AN EXAMPLE FOR DISCONTINUOUS SOLUTIONS

Here we took ut + uux = 0 with the initial distribution (25) and

boundary conditions according to (26) and (27). The results indicate that

the 3rd order accuracy scheme gives a slight improvement over the L-W

calculation in the large gradient region, in the sense that the *shock"

is slightly steeper and the post-shock oscillations are weaker and are

damped more quickly. On the other hand, unlike the L-W case, there is a

very small negative perturbation ahead of the "shock". The appearance of

this precursor perturbation is due to the fact that in the 3rd order

scheme one uses, in addition to u. and ujl, also uj+2.

"7. A FOURTH ORDER FINITE DIFFERENCES SCHEME

As was mentioned before, if in the term stemming from W/tt we represent

Anj+1/2 by a higher order interpolation formula, and if we take 12 = 1, then

our scheme becomes of fourth order accuracy. This is in line with the remarks

at the end of Section 3 - adding a stabilizing term to an odd order scheme

can raise the order of accuracy if the coefficients of this added derivaLive

are chosen properly.

In the present case, the fourth order finite difference scheme has

the following form:

t_
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4n+ In n 6 n n nF _
W. =W'j+,[-(F Fj) T(Fj+2 2F j+ + n F.2)

,2 n n Fn) n n n fln n n
F Aj12,•.ji2 (F FA2 F?+

T { j+1/2(j+ W - j-1/2Fj -j-1 2 +3/2 j+2 j+1

n ) n n n n n n

_3A. " -( ) + 3A'j (Fj - FnJ) - A_/(F_ - M
J+1/2 j+l j j-1/2ji i-I i -32iI j-2

A3 in 2  n n n An )2(Fn_ F? }

+ E3jf~-(A.4-1  (+F F,- (A¶')2(F - Fý~ i lj+2 j~ j+l - j i_

4(A )3(F¶ n F'~ n n( )3(F? F Fn) n (' )3(F?~ F?~

"h4j+3/2  j+2 j..l 3+1/2 j+I j j-1/2j i-

-(An 1 )3 (Fý2 1  n ' 1 (8

where

A -in nI A.) *(A - A + A? ) (29)
3±1/2 j+ I I j±2 j±_I j+ l

The scheme (28) meets the C.FAL stability criterion. Note that if j 0

then eq. (28) is the 3rd order scheme with the linear artificial viscosity

represented in a conservative form. If also 6 = c = 1 = 0, then we have

the Lax-.'Pidroff scheme. For the fourth order accuracy, we must use

6 = e =51= =1. We ran test runs with O(x) = x- in order to determine

"!r practice, and compare to prediction, the amount by which the grid can be

coarsened and still maintain the same maximum relative error as we go from

Lax-Wendroff to 3rd order and then 4th order schemes. The grid sizes (based



on Ax - .005 for the L-W s.:heme) were found to be, respectively:

AxL.W. = .1/200; Ax3rd order = .1/50; and Axkth order = .1/25. These

grids produce absolute errors of C-IO-6 where for a = 2 and t= 3.,

I < C < 5.

In conclusion, it may be stated that a 3rd or 4th order scheme, such

as the ones proposed in this paper, will in the smooth part of the solution

to a hyperbolic problem, yield in practice as well as in theory, one or two

orders of accuracy higher than, say, the Lax-Wendroff method. In the regions

near shock-like discontinuities, the improvement over the L-W scheme is not

as great. This opens up the possibility that in multidimensional cases we

shall be able in a practical manner to overcome partially the problems of

restricted machine memory by using coarser grids and higher order schemes.
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