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Preface

Thege notes are intended for students with no previous experience
with Green'’s functions. A knowledge of applied mathematics at an advanced
undergraduate level is assumed; for example, it is assumed that the reader
will be familiar with contour integration and with expansions of functions
of several variables in the usual sets of orthogonal functions. A knowledge
of integral transform methods would also be useful, However, a brief
introduction to the Fourier and Laplace transforms is given in one of the
appendices, Since a wide variety of conventions is in use this also serves
to define the conventions and notations used in the text.

This work was sponsored by the Institute of Ocean Science and
Engineering at The Catholic University of America for use by workers in
acoustics., This interest is reflected in the chapter on the Helmholtz
equation (Chapter 5) where the applications are all chosen from acoustics.
For readers with an interest in this field but with no previous knowledge
of Green's functions it is suggested that the notes be read from the
beginning with the possible exception of the chapter on the diffusion
equation {Chapter 3).

The material in its present form is considered to be a preliminary
presentation. It was felt that it would be desirable to make this available
fairly quickly and to write a second edition after some feedback had been
obtained. Consequently, the author will be especially grateful to any
readers who will take the time to offer criticisms and corrections,

The author acknowledges with gratitude the support of the Office of
Naval Research {Code 468).
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I. INTRODGCTIORN

We will introduce Green's function by means of a simple example, and in

later chsrcters discuss some particular equations iz detail. To explain our choice

we first review some general properties of second order linear partial diffevential
equations,

1.1 Clarsification of partial differentiesl equations

&ny discussion of secoad order egquatioms must degin with their

classification as elliptic, parabolic, or hyperbolic, and the prototypes of these

categories, the Laplace, diffusicn, and wave equations:

v2¢ =0
2 _ 1 3
ve T T
2
2 . 1 3% .4
7%
22 3l

Mathsmatically, the classification arises from questions of existence, the problem

being to determine boundaries and boundary conditions such that existence theorems

can be established. We review only the generel ocutlines of this scheme here, and

leave more precise statements for later chapters.

A condition which specifies the values of a function on a boundary is

called a Dirichlet condition. If the derivative ( CI v ) of the
I =1

function in a direction n normal to the boundary is given the condition is called

a Neumann condition. A linear combination of the function and its normal derivative

i3 called a mixed condition_ while specifying these independently 1s called a
Cauchy conditicn,

Por an elliptic equation Dirichlet, Neumann, or mixed conditions on a

B L/



closed boundary® are appropriate. For example, the steady state temperature
distribution in a solid satiafies Laplace's equation. A Dirichlet conditisn would
give the temperature on the surface, while a Neumann condition would give the heat
flux through the surface. (By Fourier's law the heat flux is given by H =kVT, k
constant. Therefore, the normal component of 1 is Hn = kneVT = k 3T/on.)

If a Neumann condition is given it is evident that an additional condi-
tion must be imposed, for if the heat flux were everywhere into the body it is
clear that a steady state could not be reached and the boundary value problem
would have no soclution. Therefore, we impose the sdditional condition that the net
heat fiux through the surface vanish, i.e.,

3T

ds-é'g- 0

For a hyperbolic equation an open boundary is needed. Cauchy conditions
are usually appropriate over at least part of the boundary, while Dirichlet,
Neumenn, or mixed conditions may be given over the remainder., For example, the
displacement of a vibrating string, V¥ say, satisfies the wave equation.

If the string is clamped atx.= +1 £
then the boundary is an open rectangle ‘
in the x-t plane with Dirichlet con-

ditions (¥= 0) givenon x = #1, £t > 0

and Cauchy conditions (the initifal values

I

ofzb,-g-%- Ygivenont =0, -l <x<1 _———— } ‘L'—-—-x
' -
!

yner

%A region with a closed boundary is completely enclosed., The boundary may be
closed at infinity. If the solutiom is required to vanish at infinity this is
equivalent to imposing a Dirichlet condition on a sphere and taking the limit asg
its radius becomes infinite. Closed boundary should not be confused with the term
closed region, by which we mean that the region includes its boundary.

“De



Parabolic equations represent an intermediate case between the elliptic
and the hyperbolic., A Dirichlet condition over at least part of an open boundary
is usually appropriate, with Dirichlet, Neumann, or mixed conditions on the
remainder. For example, the transient temperature distribution in a rod is

governad by the diffusion equation

2
-8-%- - -%--g—%- = 0, o constant.
ax a

If the rod lies between X ™ +1, the boundary in the X~t: plane is an open rec-
tangle with a Dirichlet condition (initial temperature) given on t = 0, -1 < x < 1,
On the remainder of the boundary ¥ =+ 1, t >0 a Dirichlet condition (temper-
ature at ends), a Neumann condition (heat flux through ends), or a combination of
these may be given,

In addition to existenze there are two other requirements for a well
posed problem: uniqueness and stability. By stability we mean that the solution
depends ccntinuously on tke boundary conditions, i.e., 8 small change in the
boundary conditions implies a small change in the solution. The above rough sketch
of appropriate boundary conditions has taken these requirements into account.

For a discussion of the concept of a well posed problem see Courant and Hilbert
(1962, pp. 226-232),

Equations may also be characterized by their effect on the boundary con-
ditions. The elliptic operator is a smoothing operatdr:: any discontinuities in
the boundary condition, as well as its general form, are smoothed when continued
away from the boundary. In contrast with this type of behavior, the hyperbolié
operator has propdgdtion properties: any discontinuities and the general form of
the boundary conditions persist, are propagated, when continued away from the
boundary. Again, the parabolic equation is an intermediate case. In the example

given above the initial condition is smocthed while the boundary conditions are
propagated.
-3-

D T S i by S B ™



Physically, elliptic equations usually describe static phenomena. For
exemple, electrostatics, magnetostatics, steady'state temperatures are governed
by Laplace's equation. Hyperbolic equations describe dynamic, time dependent,
pheno;ena, e.g., electromagnetic and acoustic radiation. Parabolic equations are
often very useful as an approximation, e.g., circuit theory, but their appearance
in physics is always suspect. In the example given changes in the boundary con-
ditions are propagated instantaneously, which is decidedly unphysical.

1,2 Introductory example

To introduce the Green's function associated with a second order partial

differential equation we begin with the simplest case, Poisson's equation

V2¢ = =47p
which is simply Lasplace's equation with an inhomogeneous, or source, term. A
convenient physical model to have in mind is the electrostatic potential
¢(x,y,2) which arises from a source p(X,y,2) which is a volume
distribution of charge (charge per unit volume)., We imagine that a point charge
of unit magnitude (unit source) is at a point ;O(XO,YO:ZO) (source point)
and that the potential is measured at a point ¥(x,7,2) (field point).
From Coulomb's law the potential is just the reciprocal distance between the two
points (Gaussian units are being used). Written as a function of ¥ and T

(o]

we call this potential the Green's function
> > 1
G(r,ro) - =
|t-r, ]|
In general, a Green's function is just the response or effect due to a unit point

source, We also note the symmetry property (reciprocity relation)

-+ > + >
P G(r,ro) = G(ro,ro

~
-

Suppose that there is a charge distribution p(T) in a certain region

-
R of space. The potential at a point T inside or outside of KN can be written

wlym



-> [e} - > >
¢{r) J dro ';_¥ - J dro p(ro) G(r,ro)
o R
(d= = dx dy dz ) This results from simply treasting each element
of charge D(;o) dTO as a point charge and taking the sum of the con-

tributions from all elements. The integrand is singular if T is in R, but the
integral ie convergent. Thus, wa have obtained a 3olution of Poisson's equation by
means of G.

So farthis is intuitively obvious and, therefore, unremarkable. But
what comes next is quite remarkable. We now imagine that in additiom to the
source P we also have present certain boundaries on which boundary conditions
are specified. Since Poisson's equation is elliptic, we know thet, for example,
a Dirichlet condition is appropriate. Therefore, let us suppose that the
equation holds in a closed regio. R and that the value of ¢ is specified as
a continuous but otherwise arbitrary function on the surface g of R, We assume
a continuous boundary condition for simplicity inm this introductory example;
later we will be interested in relaxing this condition.

We anticipate two very surprising and pleasing resulta, The first is

-
that the definition of G ( r,; ), given above in the boundary-free case, can be

)
extended simply and used to obtain a solution of the boundary value problem; the
-> > ~>
second is that the reciprocity relation G ( r,ro) =G ( ;o’r ) continues to hold
for the Green's fuuction so defined.
We have defined G in the boundary-iree case as the response to a unit

point source. This implies that the equation

V2 GF,F) = —bm 8(-F) (1)

) 0

is satisfled, and we assume that it continues to be satisfied when boundaries are

present. This will be part of the definition of G. The source term, our unit point

-5
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source, is & delte tunction

6(?¥?o) = G(x-xo)s(y-yo)s(z—zo)

> - ->
In our electrostatic model 5(r~To) is the volume distribution P(£} of
a point charge at ;o . We shall use delta functions freely as the simplest formal
device for menipulating Green's functions. An introduction to the formalism of

delta functions is given in Appendix I. We recall the formael rules

6(x—xo) = X ¥R

o
I £(x) G(x-xo)dx = f(xo)

where £ (x) is 2 continuous function. The latter is the so-called "sifting property”.
-

Thus, we may say loosely that 6(?—?0) is zero except at T = ¥, where it is

infinite in such a way that

-> > >
J dro G(r—ro) = 1

and hence, represents a unit source.

We have emphasized the word formal because within the context of the
classical theory of real variables there is no function with these properties., A
function is defined only if it has e definite value for each point in its range
(infinity is not a definite value). Therefore, to make the use of these
functions rigorous 2 broader mathematical context is needed. The best known of
these is the theory of distributicns. An sdmirable introduction to this theory

is the book of Lighthill (1958).

We shall not bz concerned with justifying the use of delta functions

R e e e o v
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because all of ocur results can be cbieined more laboriously without their use.®
Morecver, we regard the delta function not only v+ & conwvenient shorteut, but also
as gsupplving useful insight becanse of its interpretation &s & unit point source.

Of central importence in cur work wili be Green's theorem

!dr {ovdy - v = }[ds iu%‘é-—v-g%}

R g
which is velid if U and V are continuous with continuocus pertial derivatives up to
->
the second order in the closed region R. ¢ is the unit cuiward normel to R and
35 : nev is the derivative in this directicn. This follows frox the
divergence theorem (Gsuss' theorem)
-> > >
dr div F n*F ds

4

R ]

by substituting

and expanding

div (UTV) = VUV + UV

by the well known vector identity, interchanging U eand V,and subtreacting.

Returning now to our boundary velue problem we write

2 - -] ; :: 2)

V°® 4T p(so) (
2 - > - - —)-_*)' 3
v G(r,ro) 4n 8(r ro) (3)

wvhere
2 32 2% 32
v o + +
° . ay> 3zl
% Yo °

®az an example :f this approach we cite the book of Sommerfeld (19%9); concise,
rigorous procfs of the theorems needed are given by Titchmarsh (1958, chap. 21).

- T~
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- ->
In the first equetion we have simuly repleced r by B The second follows from
eg. (1), the sycmetry of the Green's function, snd the fect that the delte function

is aven,

S(x-xo) a G(xo—x)

Bowever, since we have npot fully defined, let alone proved thz symmetry, of Green's
functicn, we nmight do better to simply interchange the roles of T end ;o in our
interpretation of the ¢ in eg. (3) and regerd it as the response at ;O tc a source
at T , Really, an inferpretation st this point is not necessary, since vwhat
follows is simply formsl menipulation. We could just as easily teke eq. (3) as
part of the definiticn of G and later prove the reciprocity reletion and
derive eq. {1).

Maltipiying eq. {2) oy G, eq. (3) bty ¢ , integrating and subtracting
w= oblain

2

[ dt {szc - &¥
(] (o) [o]

J
R

G + 4m Gp(;o) - 476 6(;4;0)} = 9

By Green's theoren

_ 2 2 [ 3o 3G
I dv_ {GV 6 - ¢V G} f ds {6 o ¢ &“o}
R a
and by the sifting property
-» > > >
I dro ¢(rc) G(r-ro) a &(x)
Therefore, we have
-+ > __]_-_ _3_9___ _8.9.... {
é(x) = J dTQ p(ro)G(r,to) + e J dso {G ano ? ano } (4)



which expresses ¢ in terms of its values and the walues of its normal
derivative on the surface. This is not a sclution of the boundary value problem
because both ¢ and 23%/3n are not given on the surface, However, if we can
impose a further condition on G, viz., thet it vanish on 0, we can eliminate the
term involving a¢/an0 . This additicnal condition completes the definition

of G. We would then have

-+ -> + > 1 >
¢(r) = ;[ dro p(ro)G(r.ro) iy f dso ¢(ro

) —g-f;; (5)
R o
which expresses ¢ in terms of its boundary values. We have obtained this
relation assuming that ¢ is a solution of Poisson's equation. We may now ask
if we substitute for ¢ in the surface integral an arbitrery continuous function
does this relation give a solution of the boundary vslue problem? It does if a
solution exists, for if it exists it must satisfy this relation. It is
inportant fur us to be aware of the appropriate existence theorems. We may
conclude that eq. (5) gives a solution of the Dirichlet problem because there
is an existence theorem (cf.chap. 2), but eq. (4) does not give a solution of
the Cauchy problem for Poisson's equation because, in general, a solution does
not exist.

We have reduced the original problem to the simpler problem of finding
the Green'’s function, i.e., of finding the potential of a point change subject
to the condition of zero potential on the boundaries (grounded boundaries).
There are two general methods of constructing Green's functions, which we will
explore in the next chapter. They are the method of expansion in eigenfunctions
and the method of reflection or imaeging. The latter method works only for some
rather special geometries, but when it is available it provides a simple

analytical expression for the solution, with obvious advantages over an infinite

series.

-9 -
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Having interpreted G as the potential of a point charge in the presence
of grounded conductors, we can illustrate the reciprocity relation G(;’;o) - G(;o,?)
as follows., Imagine that a point chaxge is placed at ;o near & grounded
conductor and that the potential is measured at T . This potential is due to the
point charge and a surface distribution of charge on the conductor which is
brought up from the earth and distributed so as to maintain the potential of
the conductor at zero. If now the point chaxge is moved to r and the
potential measured at ;o , the surface charge on the conductor will be
rearranged so thet the two measurements are identical.
To summarize, the solution of Dirichlet's problem for Poisson's
equation is given by
0@ = J dt_ p(F )GGE,E ) - ZH ds_ 0(F) %—ﬁ-;
R c
where the Green's function is defined by
V%6 = 4t 8(F-T)
with the condition that G vanish on the boundary. We emphasize that & Green's
function is defined not only with respect to an equation and its boundary

conditions, but also with respect to a particuler region.

- 10 -



II. LAPLACE'S EQUATION
The theory of Laplace's equaticn is usually called potential theory. The
classic work is Kellogg's "Foundetions of Potential Theory"', where rigorcus proofs of

the following existence theorems may be found (chap. 11).

2.1 Existence theorems

By an interior problem we shall mean the problem of finding & solution of
Laplace's equatlion, VZ@ = 0 , within a eclosed finite region R (the region
includes its surface ¢ ) which satisfies boundary conditions on U. By an exterior
problem we mean the proble: of finding a sclution in the infinite region outside
of & surface subject to the additional condition that ¢ venish at ieast as fast
as r &8s r » ©, This condition is needed for uniqueness. Physically, it means
that at sufficiently lerge distances the source distribution should look iike &
peint source. We have the following theorems.

There are unique solutions of the interior and exterior Dirichlet
problems and of the exterior Neumann problem for continucusibourdary- values.

There is a soluticn of the interior Neumenn problem, unique to within

an additive constant, for continuous boundary values provided

)
I ds 55;45 0 .
G

To give rigorous proofs of these theorems one must impose certain
conditions on the shape of the region R. For & thorough discussion Kellogg's
book may be consulted. The conditions are very weak from the point of view of
physical applications and we may assume that physical boundaries are alwsays

sufficiently regular.

- 11 -
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The theorenms apply to Poisson'’s equaticn if the source term is piecewise
differentisble. (This is not the weakest possible condition, but it is 2
convenient one.)

2.2 Method cof reflection

Ve consider the Dirichlet problen first. We heave seen that there is

a solution

- > zx 1 G
¢ = J dz, p(to)c(r"o) b on
% o

i -
J dso G(to)
G

of Poisson's equation provided we can find a Creen's furction wkich setisiies

vl = -tx S(E-%)

and vanishes on the toundary. For extericr problems we edd the condition that G
venish as ¥ for large T in order to setisfy the conditions cof the existence

* » =1
theorem, A particuler solution is lr-t°| to which we mey add any solution of

the homogeneous eguetion, F say,

-
x-r
o

and hope to chocse F so that the boundery condition is sstisfied.
The method of reflection consists of choosing for F sclutions of Poisson's
equation corresponding to point sources at positions nutside of the region of
2

interest R. Within R these ere solutions of the homogeneous eguation, ¢ 6 =0 .

For example, suppose that <& is given on the plane z = ¢ and ve wish

a solution for the hslf-space z »0. -
AL e — =~ — e o
G can be written as the potentisl of “ -3, }o °
a positive point change at éo (xo,yo,zo) 3§
plus the potential of a negative point

change at an "image point" ;i (xo,yo,-zo)obtained by reflecting ;o in tre plane

Z = O,
- 12 -



a {(x-xc)2 + (y-ya)2 + (z«zo)z}-ll 2

- (et oyt ez )Ty
o o
The boundary condition is obviously satisfied on 2z = o.

This trick is well known in electrostatics end cen be used for other

regions bounded by planes. For exeample, consider the guarter-spece X >0, y>0 .

- -
We piece imege sources cutside this region at “t, 3 T,
*
-} T.(-x (-) S @)
( 7 rl( 6°ay°=z°)9
->
(#) r(=x_,-y .2}, and (+) ¢-) ¥
-+ b e
- { - ~ 4L
-) r3\xoa Yos‘-o)' ,tz_ /53

The signs of the sources are indicated. It is easily verified thet the boundary
cordition is setisfied on both of the boundary plenes.

We can think of this as a process cf successive imaging, eech
reflection involving a sign chenge, until we recurn to ;o . As & further
example (Sommerfeld, p.80) consider 2 60° wedge.

There are five imeges, formed by

successive reflections as shown

in the figure. Cbviously, the

/ )
method is useful only if there is a finite number of imeges, i.e., if we do

eventually return to the starting point ;o . Por a wedge this will be so if
the wedge angle is 7 times & rational number.

2.3 Neumsnn's problem

An obvious starting point is eq. (1.L)

- > 10 30 3G
¢(x) = J dro p(ro)G(r,ro) + I J dso {6 el $ ano}

Our firs:t thought would be to proceed as we did for Dirichlet's problem end

- 13 -
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impose =a condition on G, this time requiring thst 3G/3a = 0 on the boundary.
Howewver, for the interior Feumann problem this 1s not possible. We can see this
as foilows.

In Green's theorem let U =1, V=G.
[ ds -3-5 = J dt V6 = -4 J dv §(r-r ) = -4
Obviously, 3G/3n  cannot vanish everywhere on the surface. However, we can set

3G/on = const. = =47/

on the surface, where I is the totsl surface area. Then from eq. {1.h) we

have the solution

->. ,f -> > - 1 ad
¥z) = J dr a(ro)c(r.ro) + 7. j d’o G 3;; + const.

which reflects the fact thet unigueness 1s proved only tc within er additive
constant for the interior Neumann problem.

The method of reflection in & plane works for Reumann's problem if
it works for Dirichlet's problem. The only diffesrence is that there is no
sign change under reflection.

2.4 Reflection in a sphere

For a spherical boundary there is an imaging principle for Dirichlet's

-
problem but not for Neumann's. The N %,
- “;
image ¥; ic on the same radius as v
| . 2 1/
the wnit source Y, . Let rito a

vnere a8 is the radius of the sphere and let the strength of the image source

be —a/ra. .
Then
alr
G 1 _ 0
> <> - a 2+
|2~z It - &%,
0
- 14 -



vhich is velid inside or outside of the sphere,

2.5 Expansion in orthogonal functions

The method of reflection may produce an infinite number of images. As

an exsmple, suppose Laplace’s equation is satisfied in the rectangle bounded by

X = 0,8 and y= O,b. ];. | * %‘ ! *Tﬂ
i I " < - }-—-
To satisfy the condition on ' ¥ . *lrT ¥ | 2
-26 - a ks
x=0 we reflect in this line. » j ; * I ¥ |
A reflection in x=a satisfies the 1® ¥ ___: . t;r

condition on this line but now the condition on x=0 is no longer satisfied so the
second image is reflected in x=0, etc. In this way we completely fill the plene
vith images. For detailed examples of this approach see Courant and Hilbert
(1953, pp. 378-386).

A more reasonable approach is to satisfy the boundery conditions at
the ovtset by asttempting an expansion in orthogonal functions each of which
satis{ies the conditions. These are obtained by the separation of variables

method. TFor the present example they are sines and the expansion

6 = ] ] A sin T gy B
m=l n=l 0 a b

is a double Fourier sine series.

Substituting into the equation

2
VG = =21 G(x-xo)é(y-—yo)

which we adopt for G in two dimensions, and using the orthogonality relation

a

mrx m'nx a
Jsin a gin - dx 3 Gmm'
0

- 15 -
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and the sifting property to determine the coefficients Amn we obtain

sin mmx/a sin mﬂxola sin any/b sin nﬂyolb

mab Lo (@/2)? + (n/b)?

Since we know that G is singuiar at x = Xys ¥ = Yy we are inclined to

G = (l)

ask in vhat sense it can be represented by an ordinary Fourier series, dJustification
can be found in the theory of distributions or generalized functions (Lighthill,
1958). We only remark that as the delta function has a well known representation

as a Fourier integral

6(x~xo) L vie

? 1k (x-x )
1 [e]
o J dk e

03
so a row of delte functions (an infinite array of sources) can be represented by

s Fourier series, e.g.,

-]

m 2 ° mrxo nrx
! D7 8(x-x —ma) = =2 I sin — sin == (2)
@ n=0

(cf. Lighthill, chap. 5)
It may also occur to the reader to wonder how the expanded G when

substituted into*

1 oG
¢ -—-2-‘1;§dso¢an (3)

can give a solution which satisfies the boundary condition when each term in the

expansion vanishes on the boundary.

*We have ad%pted the convention of writing Poisson's equation in two dimensiors in
the form V<¢ = -2mp. Therefore, in this formula we have a factor of 2r instead
of by and a line integral in place of the surface integral.

- 16 -




The answer is that the boundary must be approached from inside the region. To

take & simple example, suppose the potential is £ (x) ony =0 0 < x < a and zero

on the rest of the rectangle. Then eq. (3) becomes

a
1 3G
? 27 J dxo f(xo) [ay ]
0

(4)
o YouO
(the outward normsl is in the - y_ direction}).
From eq. (1),
mx
3G . 8 mrx oy n_sin any/b
[ay y =0 a z sin a sin a 2 nb, 2 (5)
oo m nooat+ ()

It can be verified that the expansion

5 sinh kn(l-y/b) _ Z n sin any/b

2 sinh kn n n2 + k2

is velid for 0 < y < b, Hence, as ¥y * O+ the inner sum in eq. (5) approaches
m/2 , Therefore,

G 47 mrx
{ayo y4=0 p g sin == sin
y*0+

jukip'9

a

= 2m 6(x—xo)
from eq. (2). Substituting into eq. (4) we see that the boundary condition is

satisfied.

(x,y>0F) = J dxo f(xo)é(x—xo) = f(x)

2.6 Discontinuous boundary conditions

Our formules have been derived under the assumption that ¢ is a
solution in a closed region R (the region includes its boundary). This implies
continuous values of ¢ on the boundary and this condition also appears in the

existence theorems quoted. However, we notice that the suwrface integrals which

- 17 -
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occur in the formulas may exist even when the boundary conditions ere discontinuous,
and so it is natural to agk if they can, in some sense, represent a solution.

It is clesr in this case thet there cannot be a solution in the
closed region. However, we can re-define the boundery value preoblem so that we

seek a solution in the open region which approaches the (possibly discontinuous)

-boundary values ss the surfece is approachad, and an existence theorem can be

proved for pilecewise continuous boundary velues (Tychonov and Samarski,

p. 261 ff.).

This may actuelly be a more reasonsble way to state the problem

for certain physical applications. For example, across & surface charge

distribution o there is & jump condition on the normal derivative of the

potential
39 30
G~ Godp = 4

the subscripts indicating that ihe surface is approached from one side or the
other. 9¢/3n is not defined on the surface itself.
To justify our derivations, the conditions impcsed on surface velues
of functions for the validity of Green's theorem {or Gauss' theorem, on which it
is based) must be weskened. This can be done; see Kellogg (p. 119).
Ve now give an example to show how the boundary condition is approached

at a point of discontinuity. Suppose that Laplace's equation is satisfied in the

upper half-plane y > o and that on y = o we impose
0 ~@ < x <0

4>(x,0)= 1 0<x<1
l<x<oo

We first construct Green's function for this region by the method

of reflection. Since this is a two dimensional problem, the potential of a

- 18 -
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4.t o oint cnange is - log Ir-ro .

X
W
g
3
-y

e,

i A
S = -log /(x—xo) 2+(y-yo)2 + log \{Z“'xo)"*'(ﬁ'yo)z '

[36_.] - 3G = =2
t - 9 2
3a° boundary Byo Yo 0 (x_xo).. + 3

(&a 15 the outvard normal)

1
-1 { 3G 1 v
4 o — | Y ——— = -
3 ) %0 3n % I dx, (xx )2 +
0 o

ILet us consider the approech  tc the discontinuity at the origin along
ey ¥ = 8 X 1#
zeiing an angle 9

with the x - axis, 8

'.‘.d-
®

a:tanén

The integral can be performed giving

1 -1 xo-x 1
> = T tan pe
(]
Taking the limit x + ¢
1 [« -1 -8
d =+ “{2+tan cotd} = -

We see Lu.: the discontinuity is not continued away from the boundary,
tat is immediately smoothed, and that all wvalues in the range of the jup are
approached as 8 varies over 180°,

The approach of this and the previous section can be used to justify
s method which is given in meny textbooks. Suppose we wish a solution of
Leplace's eguation In e rectangle which satisfies a Dirichlet condition on the

:.undary. We treak the problem up into four parts in each of which a condition

- 19 -




is given on one side cf the rectangle with zerc on the other sides. The

separgte problems can be solved by the separation of varisbles method and it is
clairmed that the solution of the original problem is just the sum of the separate
solutions.

However, the separate solutions are given as infinite series whose
uniform convergence can only be estsblished if the boundery cordition is
continuous, &nd, therefore, zero at the corners. But we know from the existence
theorsms thal the boundary condition for the originsl problem need not vanish
et the corners.

We can justify a diccontiruous boundary condition et the coruers
for the separete problems by means of the expanded Green's function of 382.5.

If 0(x,0) = £(x) 0 <x<a , for exemple, with ¢ = 0 on the rest of the

“
boundary, it can be shown thet et the origin ¢
¢ + £{0) elong A B\(
$->0 along B {A : X

and that ¢ approaches intermediate vaiues continuously along rays between A

and B.

The method can be used for other regions with corners, such as boxes

and cylinders.
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2.7 Exercises

ll

10.

Prove the reciprocity relation for Dirichlet's problem. Hint: Mulitiply
the equation for G(;,;l) by G(¥,;2) and vice versa. Subtract the
eguations, integrate, and use Green's theorem.
Show that for Neumann's problem the reciprocity relation n2y always be
imposed as a separate condition,
Find the solution of Laplace's eguation, ¢xx + ¢yy = O, in the half-gpace
y > 0 which satisfies ¢y(x,0) = g{x). (Subscripts indicate partial
derivatives.)
Replace the boundary condition of #3 by ¢(x,0) = £(x) .
Find the solution in the quarter-space % > 0, ¥ > 0 vwhich satisfies
$(x,0) = 0 ¢_(0,y) = g(y).
Replace the boundary conditions of #5 by

¢(x,0) = £(x) $,.(0,y) = 0 .

Find the solution of Laplace's equation, ¢ . + ¢yy te,," 0, in the half-

x
space 2 > 0  vwhich satisfies ¢(x,y,0) = £(x,y) .
Replace the boundary condition of #7 by ¢, (%,y,0) = g(x,y) .
Find the solution in the quarter-space x > 0, y > 0, —» < z < = which
satisfies ¢(0,y,2) =0 z > 0 ¢(x,0,2) = £(x,2) x > O,
Replace the boundary conditions of #9 by

¢x(0,y,z) = g(y,2z) y >0 ¢(x,0,2) = £(x,2) x>0

An infinite plane has a hemispherical

Find
1
boss of radius a. Find Green's Green s
Function
function for the half-space for which this o for this
region.

surface is convex (see diasgram). Assume
that Dirichlet conditions are given on
the surface.

- 21 -



12. Assuming that Dirichlet conditions are given find Green's function for

the region hetween concentric cpheres of radii b > a. Hint: Write

1

> >
|-z |

+ P(%)

Expand F in spherical harmonics and use the well known expansion
2
1 (-mP1 < *
|;_¥ I =1 (2+|mi)! 21 g (859 Ymﬁ(eo’¢o)
[o) >

vhere r_ (r ) is the smaller (larger) of r,r,  end¥  (8,0) = P?(cose)eim¢.

IIT. THE DIFFUSION EQUATION
We must now have a unit point source in time, as well as in space.
Therefore, we write

2 3

1 - o - +_+ -
{ve - ;5 2} G(r,r 5t,t)) b §(x-z )8 (t=t )

ot

We shell see that G = 0 t < t, holds as well as the reciprocity relatioen:
> >

stst ) = G(r ,ri-t ,-t)

We emphasize that these are not imposed conditions, but are derived. They
are usually described by the word causality, from the interpretation of G
as the rasponse or effect due to & cause represented by the source term (a

pulse at t = t, ). Thus, the first relation says that the effect

o

cannot precede the cause, and the second shows the following symmetry
between cause and effect with respect to the time scale
causge effect | cause effect
t + ‘ t t

-t -t t t
o o

It is quite reasonasble to make this interpretetion because time's
arrow is built into the diffusion equation: it is not invariant under time

- 02 -
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reversal. This can also be understood in terms of stability, which we
mentioned in the introduction as one of the requirerents for a well posed
problem. The problem of centinuing an initial condition into the future is
steble, vwhereas continuation into the past is unstable. We chall see that the
causal interpretation is somewhet more arbitrary when spplied to the wave
equation, which is invariant under time reversal.

3.1 The Boundary value problem

Ve begin by writing

2, 1 3% _ >
vov 2 3t bn p(ro’to) ¢
o o
2 1 3G + >
ch + az 3‘0 47 G(r-ro)é(t-to) ¥

The second equation follows frcm the reciprocity reletion. The operator on the
left hand side is the adjoint of the diffusion operator. (The Laplace and
wave equations are self adjoint.) We multiply the first eguation by G, the

second by V¥ , integrate and subtract, giving

t+

2, yolo - L (p 26 4 g 2 . @
J dt J dr {Gvow -y G - 2 ¢ At + G ato) + 4up G} 4n P(x,t)
0

where t + indicates the limit as € >0+ of t +€ ., We write

3G & . 3
Vo T8 5e. (V)
) o 0
perform the t, integration for this term,
t+ -
[GWJO = -[Gwlt 0 since G(t,t+) 0

(o)

and using Green's theorem obtain

- 23 -



t+
C 1 { 2 36
Yo |9, ] ds_ {5 o " ¥ ano}
0
1 :
+ : 7 dto [G\’;,t 0
i o

We impose the vanishing of G on the boundary if Pirichlet conditions
are given, and of 3G/3a for Neumarmconditions. Thus, the first term repre-
sents the contrivuticn from the source, the second from the boundary conditions,
end the third from the initisl condition.

3.2 Boundary-free case

We consider first the case in wnich there are no boundaries end
no initial conditicn. Then, having cbtained this solution, we can construct
other Green's funciions using the method of reflection. For Laplece's
equation we were gble to write this solution irmediately be appealing to
Coulomb'’s law, but here the answer is not so obvious. Let us begin with
the one dimensional equation

2

36 _1_
2
a

axz

I

= —4n 6(x—x°)5(t‘to)

o

t

Taking a Fourier K-transform on x and & Fourier w-trensform on t,

the equation becomes (see Appendix IT)

ikx  iwt
(- +i-‘§)ckw - -4re %e ©
o

ka ; which is a function of the tramnsform verisbles k and w, is the

transform of G, i.e.,

ka = J dx J dt G(x,xo;t,to) e

-C

ikx dwt
e

- 24 -
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Solving the transformed equation

ikx  iwt 1kxo iwt
n ¢ 2, ¢ e
Oy = 1Y cie— = 4ua’i
kea
¢ E%'- k2 w + iazkz
Qa
Inverting the w-transform
2 7 ikxo —im(t«ta)
. 4na”3 2] e
Gy lt,t,) 5 J du AN
w + 3a°k
-l

The integranal hss a simple pole in the

-

w - dzgv_,*,

& -t,<0

lower half of the complex w-plane. We
may complete the contour in the upper

(1ower) half-plene for t-t S0 .

, 2
¥ -col K-

The integral is zero for t—to < 0 since no singularity is enclosed. For

-t >0

t-t > 0 we have -2r{ times the residue at the pole (the path of integration

is in the negative sense):

2,2
ikxo -a K (t—to)

Gy = 4ma” e e (t > to)

Finally, inverting the k-transform

2,2
2 —ik(x-&o) -a"k (t-to)

¢ = 4ra I dk e a
2n

-0

2 7 -azkz(tﬂto)
= 2a J dk cos k(x—xo)e

-0

20/

u = exp - (x—xo)z/éuz(t»to) (t - to)

t-t
o]

'

N

i
[



We see that st any instant after t, the effect of the pulse is feil everywhere,
propegation is instantaneous.
The method is trivialiy extended to n dimensjions. We simply take Fourier

traensforms on ajl varisbles and obtein
¢ = 4ma’ (2u/n(t-to))-n U{e-t ) exp - l?—?ci‘/AQZ(t-to)

The unit Punction U, which is equal to one (zero) for positive (negative)
argument, appears because G vanishes for t <t, . In the older literature these
are called the heat poie sclutions.

3.3 Method of reflection

We are now in a positicn to use the method of reflection just as we did

for Laplece's equation. For example, consider the three dimensional problem in
D. ’ I

-
which Dirichlet conditions are given on s plane. ’//’/3/’,,’,r:;7”t
We reflect the source &t ;D in the plane K % "N

% 1 -,
{with a sign change) and write ]
-3/2 -
(et )72 S Yt ) -[EE [Pt (et )
G = ————— U(t-t ) {2 - e }
20 v

Unfortunately, there is nc principle of reflection in a sphere for the
diffusion and wave equations,

3.4 Expansion in eigenfunctions

Iet us take a Fourier w-transform on t and transform the equation

2 1 3G + =+
VG - az At ~4n 6(r-:°)6(t~to)
to
i it
‘ vie +386 w 4rsEtre ©
F w o w (¢]

- 26 -
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Assume that wn(r) are orthorormal eigenfunctions, i.e.,

*
I ds Ynt Yy 6nn
curresponding to eigenvalues k of the problem vzw + sz = 0 plus vhatever boundary
conditvions we wish 1o impose on G {any weighting function can be absorbed by &
suitable definition of wa ). The subseript 2 is intended to be a generic
symbsi which stands for whatever indices may pe present.
We substitute the expansion
Gm N Z ®n wn(;)

into the equation for Gw :

Ta (<k2+2) , (3) = -4r 837 )eimt
A n 27 "a° o
From the orthogonality .« ot
v (r Je
a = =47 n9
n v 2
32 n
Inverting the transform o —iw(twto)
2 -> X o &
G = 21" J ¥ (r)u (r) de’-—--—-——-—-
n noe w + iazki

The integrand has & simple pole in the lower half cf the w-plane. We may complete
the contour in the upper (lower) half-plane for t-t_ S0 . Thus, G venishes

for t-t < 0 . We obtain

N ok (et )

¢ = wnaulet) fy D Gye *°
In a rectengle, for example, with Dirichlet conditions the

eigenfunctions are

2 it I L5 ]
wmn 7ab sin " sin b
with
2 mn, 2 nr, 2
kmn = a) + ¢ b) ’
- 27 -
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3.5 Exercises

1.

10,

11.

Find the solution of the one dimensicnal diffusion equation for t > ¢  which
setisfies the initial condition
$(x,0) = £(x) e <X <
Find the solution forx > 0, t > 0  vwhich satisfies ¥(x,0) = £(x) v(0,t) = g(t).
Replace the boundary conditions of #2 by y(x,0) = £(x) wx(O.t) = g(t)
Find the solution of the two dimensional diffusion equation for t > 0 which
satisfies the initial condition %(x,y,0) = f(x,y) -2 < x < ® -»<y<
Find the solution of the two dimensional equation for x > 0  which satisfies
Y(x,y,0) = £(xy)  v(0,y,t) = gly,t)
Replace the boundary conditions of #5 by ¥(x,y,0) = £(x,y) v (0,7,t) = gly,t).
Find the solution of the three dimensional diffusion equation fort > 0 which
satisfies the initial condition ¢(x,y,2,0) = £(x,y,2) -® < X <@ -2 <y <o

-t < 2 < ®,
Find the solution of the three dimensional equation forx > 0 wvhich satisfies

w(x,y,z,O) = f(x,y,z) ¢(09yazot) = 8(Y’Z9t)

Replace the boundary conditions of #8 by ¢(x,y,2,0) = £(x,y,2) wx(o,y,z,t) =
g'(y»’z’\,t,:)\f AT o
Find the solution for
x>0, y20, =<z<e, t20
which satisfies
¥(x,y,2,0) = £(x,y,2)
¥(0,y,2z,t) = g(y,z,t)
Y(x,0,z,t) = 0
Find the solution of the two dimensional diffusion equation in & rectangle

of sides a and b which satisfies

v(x,y,0) = £(x,y) ¥ =0  on boundary.

- 28 .
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12. Replace the boundary conditions of #l1 by
4 (x,y,0) = ‘l‘(oa)':t) = yla,y,t) = w(x’bat) a 0
\b(x”)’t> = f(x,t)

13. Pind the solution inside a sphere of radius a which satisfies

v(a,0,¢,t) = £(6,¢,t)
‘b(r,e\%o) = 0

- 29 -




IV. THE VAVE EQUATICN

Green's function for the wave equation satisfies

{v2 1 32} T 7 >y
-5 ;:5 G(r,ro,t,to) = 4% 6(r—ro)o(t—to) (1)
c

Let us try to obtain a golution in the boundary-free case as we did for the

diffusion equation. We take Fourier k1 s k2 s k3 transforms*og X, ¥, 2z and a
2 tker dwt
Fourier @ - trangsform: on t obtaining {-k2 + EE}ka = 47 e e ©
-
where, as before, k = (k,,k,,k;) and the subscript k indicates a

function of k and k,.

1 2 kz’
However, we find when we try to inverthaayb the w-transform,

> -+
o - :ﬁﬂﬁi 4 e-iw(t-to) 1k°r0 »
K g | Ty e 2

w~k"c
The integral does mot exist since there are poles at w = tkc on the path

of integration (the real axis of the w - plane). At this point many writers
|
circumvent the difficulty by saying that ! t-t, <0
the path of integration must detour -—-Ji;l-t—£52x-a>——
N —Ke s
t-¢, >0

around the singularities in such a
way as to satisfy the physical principle of causality. If the ¢ - functiorn in
eq. (1) represents a pulse at ¥o’ tG then we must have G = 0 ¢t < to
since the effect cannot precede the cause. Therefore, the path is chosen as
shown in the diagram and completed by a large semi-circle in the upper (lower)
half-plane for t - to S 0 . The Green's function vanishes for t <t, since in
this case the path encloses no singularities.

There are two criticisms we can make of this approach. First, it is
not clear by what authority one is allowed to push the path of integration off

the real axis. Secondly, since the problem is purely mathematical (finding a

solution of a differential equation), the resolution of the difficulty should

-30-




s tratical It is not necesssry to introduce a phvsical principle,
, . 18 msleading to do sc since, ss8 we shall see, this really has
© «:1’° causality. While it is often helpful to thirnk cof the
. s+ - -w=pr 1 2 differential equation as a gource (the ''cause" of the
- .t.dr, thig is not at all 2 necessary interpretation.*

- o

~ % a. eesily think of the § - function in eq. (1) as &

¢ uwTer whic

3
t
e
(1]
]
(o)
[¢]
(e}
[}
[72]
<
B
[})
jog

. xier trarnsforms hes failed vecause of & siapgularity on the
s+ . - ntegrel. Llet us, therefore, try & L2plece transiorm
e 7020ty cannot possibly arise since the inversion contour
- oo .f ell singuiarities in the complex plene.
- +.i5; the inversion integrel of the Laplace traasform
c-: el the function only for positive values of its ergument,
s ztr> for the range { - =,0 )
£(x) x>0

2w = |
0 x <0

"4 . {5 more reasonable for Poisson's equation, Tor it can he
- e . mogeneous equetion (Laplace's equation) is satisfied
<+ +:.e only solution is the trivial one {a constant). There are
v sources”. But this is not so for the weve equetion. There
slutions, e.g., plane waves, even when the homogeneous
0 fled everywhnere - effects without causes! This is an indicaticn
©» .1 “reury described by hyperbolic equations the fields, e.g. &
or r 311 of the prcperties of, and are larzely independent of,
{(~=~er).
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Therefore, since G mey be taken to be & function of t - t,, we must assume that

k G (¢ - t,) venishes for negative values of its argument. This additional

A condition is, of course, just the ceusality condition esgain:

G = 0 t<t 2
o (3}

#s we shall see in the next section, the Green's function so-defined is
E ~uitsble for a perticuler type of initial value problem, viz., one in which the
E initial conditions ere to te projected inte the future. Other Green's

functions can te defined for other problems, e.g., projecting the initial

.. conditions into the past, in which case the causality condition is not

gppropriate.

Since G is 2 Tunciion of % - iy which venishes for negative values of this

&

argument, we mey assume t > t_ > 0, Taking Fourier ky, kz, k3

transforms on X, ¥, z and a Leplace s - transform on t, we obtein from eg. (l)

i 2 2. 92 1k°ra —stD
3 {-k"-g“/c"} Gbs = =47 @ e

since G = G, = 0, T =0, t,> O by condition (3).

: Inverting the s - transform, s-plane

; G = 43:2 e-i';o [ ds eS(t-to) . A
k 2ni & w2 + k_29'2 Lke X

3 The integrend has simple poles at - ike %

w =+ ike . By evelueting the g

recidues at these poles we cbtain: -
sin kc(t-to) ik-ro

w e
0 t <c

4nc

cr
A4
(nd

Now inverting the ki’ kz, k3 transforms we have, for t > t,:

e




sia ke(t-t ) -1’&’(}‘-’{0)

4ne [{I
¢ = dk, dk, dk, ——————2" o
(23)3,J p dky 2kg X

Tre integral is evalusted by means of the following trick. We introduce

spherical coordinates in the kl’ k2’ k. space so that

3

. i 2
dal dk2 dk3 a k" 5inb d8 d¢ dk

-
and we orient the coordinate system K
so thst & is measured from the =
Sy — RR\ 4
->
direction of r-ro . The

P integration can be performed

immediately, giving

w T - >
4me -1k|r—rolcose
G = ——L—E I kdk sinkc (t—co) ! d6 sind e
(2n) 0 0
The §integration is also readily performed:
j -ikl?—; | cos6 2 sink I?—; |
o o
J d6 sinb e = .
0 k |r~r°|

We express the sines as exponentrals, and since the integrand is even we may

write
) Y tke(e-t )  -ike(t-t )
G = ST Idk{e ° e '}
r_ro - > > - >
iklr-r |  ~ik|r-r
o 0
« {e - e

Recalling the wellknown representation of the delta function

s(p) = 5% Jeip" dx

we have
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-2,
-+ ,
+ 6[-|r~ro| - ct-t )]
-
- 6[|r-roi - C(t-to)]
> >
- 8l-[7F_|+ e(t-t )] ]
Since we have assumed t > to >0 the argunents of the first two delta functions

cen never be zero and, therefore, these functions vanish. The other delta

functions are identical vecause the function is ever. Making use of the

identity

§(ax) = 1 &(x)
Tal
we have
t-% |
1 0
= =5 Slt-t - ——] (3a)
|t-z_|

We have obtained this expression assuming t > t, > 0 . However, we now notice
thet the expression automatically gives zero for t < t  and, therefore, is correct
for ell t, to.

If we think of G as the response to a pulse at ?o’ tc , then we see that
this resporse is itself a (spherical) pulse expanding with a velocity c and
damped by the reciprocal of its radius.

In the boundary-free case with no initial conditi-ns (i.e., assuming the
sources vanish sufficiently far in the past) a solution of the inhomogeneous
wave equation

82

1
~
c2 at”

2

{v* - o= =41 £(%,t)

- 34 -
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May be writiten
- - - >
y(r,t) = J‘ dt J dto f(ro,to) G(r,ro,t,to)

and using the sifting property of the delta function to perform the to integration

we have

, - J o f(?o,t—l?-?ol/c)
5|

This solution is sometimes called the retarded solution. It is an integration

over the sources evaluated not at t but at a certain time before t, the retarded

time t - I?—?ol/c . The dependence on the retarded time reflects

the finite velocity of propagation. Any change in the source at ;o is not

felt at ¥ until a time I;u;ol/c later.

Iet us eagain emphasize that the above is an interpretation of the purely
mathematical problem: find a solution which venishes es ¢t » -« of the
wave equation with an inhomogeneous term which is non-zero in a finite region
of space-time. The interpretation consists of identifying the inhomogeneous
term as the source, or cause, of the solution. We can also find a solution
which vanishes as t + « by using a different Green's function, the so-called

advanced Green's function (see §L.3).

4.2 The initial vslue problem

We now assume that we seek a solution for t > 0 which satisfies initial
conditions at ¢ = O as well as boundary conditions on whatever surfaces may be

specified. The wave equetion is symmetric with respect to past and future, but
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the ststement cf the initial value problem introduces asymmetry: we wish to
continue the initial conditions into tha future rather than into the past. The
agymmetry is, for this problem, appropriately introduced into the Green's
function by imposing the causality condition (3).

We first establish the reciprocity relation
- > 5 >
G(r,ro,t,to) = G(ro,r,-to,-t)

The relation beiween t and to would hold for any function of t - to, while the
relation between P and ;o is stronger, expressing the equivalence of scurce and

field points. We first write

2
p_ 135 o e
{v¢ - :§~;:§} G(r,r ,t,t,) =br 8 (r-r )6 (t-t )
(v¢ - L 32}@(** s =t.) 4n 8(t-r,)6
- = atz T,5 -ty ~47 (r-—r1 (t—tl)

We multiply the first equation by G(;,;l,—t,-tl), the second by G(;’go’t’to)’

subtract and integrate over t and whatever volume is of interest.

> > 2 <> >
I dt [ dt {G(r,rl,-t,—tl)V G(r,ro,t,to)

- > 2 + >
- G(r,ro,t,to)V G(r,rl,-t,-tl)}

o0
1 3 > ) > >
- :5 J dt J drt 5t {G(r,rl,-t,—tl) 5t G(r,ro,t,to)

<> > ] > >
- G(r,ro,t,to) 3t G(r,r1,~t,—tl)}

4 {G(¥l,?o,tl,to) - G(¥°,¥1,-to,-tl)}
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By Green's tieorem “he first integral is

o0

r - - .a .J.\b
J dt X ds {G(r,tl, :,—tl) 5 G(r,ro,b,to)
a = D a2
- G — G{z¢ -t -
b(r,ro,t,to) in ( 1r1’ L, tl)}

We now impose the condition that G satisfies homogeneous boundary conditions of
the type given on the surface. For example, if Dirichiet conditicns are given
G must vanish on the surfece; if Neumann conditions are given 2G/3n must
vanish on the surface. 1In the letter case there is no grbitrery additive
constant as there was for Laplece's equation because any such constent wrald
be fixed by the initisl conditions. HKaving imposed this additional cendition

the surface integral vanishes. The second integral

> - ] -+ -
! dz {G(r,rl,—t,—tl) Y G(r,ro,t,to)

2

G(r,r ,t,t )
T BT o’ 3t

+> > .
G(rprla't9-tl)j_m (h)
vanishes because of the causalivy condition and, therefore, the thecrem is
proved.

To solve the initial value problem we write

el
2 1 3%, ,» >
{vo - —5—-5} vlr .t} = -bn f(ro,to)
c Bt8
2 1.3 > > >
(ve - 2 at?_} G(r,r ,t,t ) =4m §(z-r )8(x-t )
o]

The second equation follows from eq. (1) by the reciprocity relation. We

->
multiply the first equation by G, the second by ¥ (ro’to ), subtract and

integrate over the volume of interest and over 0 < t < = . Now,
T 2% _3_3_‘2 3G W e
b dt {y —2 -G b= [W— -G ]
J o at2 ac2 ot ato 0
4] o o
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which vanishes at the upper limit because of the causality condition. Using

Green's theoren

+
e ?d ra £(¥ ,t ) G(¥,7 )
(r,t) = J to J L ro,t° r,ro,r_,t0
0
ot [
1 ¥, 3G
+ o J dto i ds {G ano U] ano}
0

(5)

Because of the causality condition the integrels over t have reduced to integrels
over [0, t +] where, as before, t + indicates t + ¢ in the limit ¢ + O+ .

Eq. (5) is a solution of the boundary velue problem. The boundary corditions
enter trrough the surface integral in the second term. We recall that we have
assuwned that G staisfies homogeneous boundery conditions of the type imposed on
¥ . If Dirichlet conditions are given then G vanishes on the surface and the

integrand is ¥ 36/3n_ .

If Neumann conditions are given the integrand is G aw/ano . If mixed
conditions specifying ¢ + o 3¢/9n on the surface are imposed then G
satisfies

G+a—g~§- =

on the surface and the integrand may be written

¢ an v & Cly+a on }

n_
o}
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The effect of the initial (Cauwchy) conditions which specify ¥ and its time

derivative at t = O is conteined in the third integral in eq. (5).

4.3 Other Green's functions

The Green's function of the last two sections is sometimes called the

retarded Green's function, G If, given the initial conditions, we wish to

ret,

find the solution at scme time in the past Gre is no longer appropriate,

te
Instead we must use the advanced Green's function, Gadv” which is obtained
by immosing the condition

G = 0 t>t (6)

vhich we might cell the "anti-causality condition". We see that auxiliery
conditions such as {3) and (6) are only devices used to obtain solutions of
certain types of problems, and need not be given a causal interpretation.
Indeed, in the case of eq. (6) such an interpretation would say that the effect
precedes the cause!

In the boundary-free case G can be calculated by the methods of § 4.1

adv.p
giving
|z |
G - L s[e-t_+ o
adv. |;_; | o c
0

The initial value problem is solved as in § 4.2, integrating t, over [- =, 0].
Finally, we note that Cadvl satisfies the same recipreocity relation as Gretl\for
condition (6) also causes the integral (4) to vanish.

A Green's function which is symmetric in the time can also be constructed.
We have noted the difficuity associated with the integral {2) due to the simple

poles on the path of integration. By using the theory of distributions it
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cen be shown that it is correct to take the principal value of this integral

(Iighthill, 1958, p.31). It is readily shown that the Green's function obtained

in this way, G say, is

{G + }

G
ret. adv.

[rp]
#
N

This Green's function is useful in problems which are symmetric in the time, for
example, in Dirac's theory of the electron and in certain problems in quantum

field theory. See also § 5.3.

4.4 Method of reflection

We turn now to the problem of constructing Green's functions which satisfy
homogeneous boundary conditions on surfaces. For the wave equation the method
of reflectim is unfortunately limited to conditions on plenes. For example,
suppose we seek a saqlution in the half-space x > 0 with Dirichlet {Neumann)
conditions on the plane x = 0, We must construct a Green's function which

satisfies G = 0 (3G/dn =0 )onx =0,

This can be eccomplished by placing B S
'y (Y
an imege at ¥i = { - % Yoo zo) which
is the reflection of r, in the plane.
-7 | -1 |
1 o'y = 1 0
6 = ——§(t-t - —0) F S b (-t - )
lr—ro ]r-ri

The upper sign is used for Dirichlet conditions, the lower for Neumann.

If we think of the first term as a spherical wave spreading out from the

-

point T, then we may think of the second term as a wave reflected from the

plane.

- ko -
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4.9 Method of eigenfunction expaunsions

This methicd is more general and more complicated than the method cof reflection.

We operate on eq. (1) with & Laplace s-transform on t obtaining

-8t

2 2 r > ] .
(Vo + k )GS ~4T G(r~ro)e t, > 0 N

-

-
wher: k= i s/c. Let &n(r) be ortho-normal eigenfunctions of the

homogeneous equeation

b2 2
{7 +k)y = 0

(the Helmholtz equation) which satisfy the btoundary conditions mposedi on G.
For the eigervalues kn and the eigenfunctions #h the subscript n is a generic
symbol which stands for whatever indices may be present.

For example, for the interior of a unit sphere the (unnormalized)

eigenfunctions which vanish on the surface are

= m im¢
wnlm(r,6,¢) = J 1 (kznr)Pg(nose) e

L+ E

where the eigeuvalues Ik, are the roots of
J l(k) = 0
L+ E
vhich can be shown to be real. Here 1 and m are integers and the subscript n
is used to number the infinitely many roots of the 1th equation.

We substitute the expansion

GS -t an wn

- b1 -
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-st
o]

into eq. (7) obtaining
'2 2 [/ -
Za{-k +k }wn(r) 4 8(r ro)e

and since by our assvmption of ortho-normalized eigenfunctions

[ - -k
Y ! £
j dr wn(r)un.(r) ¢ n
we obtain X . st % ~st
v (r de ) vn(ro)e
a = -4n sy = 4re s
n k“-k s” + ke
n n
Inverting the s-trensform
1 st
G 7l J Gs e ds
¢
[
4ﬁcz . +>'* > N eS( to) ;
271 (PALZAMC e 2. 229
s  + k¢
n
ingWlarities (in cur example of

where the contour ¢ is to the right of all
the sphere, these are on the ‘imaginary axis of the s-plane).
ixnc(t—co) —iknc(t—to)

Evaluating the residues,
e -e
20 k¢
n

2 - >
4rne” ¢ wn(r)wn(ro)

gin k¥ c(t-t ) *
n o . -> ->
wn(ro)wn(r)

L ¥
n

4.6 Exercises -
Obtain the boundary-free retarded and advanced Creen's functions

1.
for the one dimensional wave equation:

- Lo -




5, v rrain T' Alemtert's solution of the initial

xtct
e ixea,0) + L(ere,0) k= | g (5,0048)
' xct
- viel 14 or rtoth »nositive end negative 0 Hint:

« o.ln function is a delta funcnion, dlfdx

‘.
)
pay
Yoo
i1
13
s
[71]
[
Q
~
i

. Yiwg (%,0) = g(x) $(0,£) = h(c)

R (60 = glx) v (0,1 = Rh{z)

, o
R - -2
- - ‘r-r_|
3 o
s-lace transforms lead to & difficult

~int source in two dimensions is
wree in three dimensions. Therefore,
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5 cen te optaired from the * -ee dimensiornal Green's function

S0l

.

that no toundariel are present,

-

. Fird a solution of the three dlme-.>.rel weve eqa2tion .or

2z >0 which satisfies

VAT L R Ay IAT I A28 & bym kbt

v{x,y,0,t) = £(x,y,t) -= 4 L < x

D

. Eigenfunctions such es those given in §4.5 for tre [nterior of e

sphere sare nct glways svellarle. TFor exarple, for tre exterior

e’

of & sphere we require functions whicrh give only outgcing waves

4

ar infinity. 2is Is the so-called radietion condit

]
.

equivelent 1o the ceusaiity condition. Trerefore, instesd of
(1)

ire 2essel function we would heve To use H

il ). - P s > : s
3t ﬂ(°) nss no reel zercs and, thersfore, cannot satisfy the

Al 4 &

¥nen an expancsion of the fundamentel colution (such as that

wsed ir protlem 2.12) ic xnown, ihe following arproach may ce

1Y

GO ol K

nsed. Let G = Gg €Xp 87, , Show Thatl Iin the toundery-free case

I

¥

singwierity at -

SN D

Therefore, write

ikR
e

+ F(;)
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wrere 7 (t ) is regular in the region of interest. By expending

app

rroyriate eigenfunctions end making use of the expansion

{(¥orse end Ingard . p. 352)
1kR

& Lo e DU g s ey .Y (6 L6 )
R - S EY DN IR AR A AP SR ARSI AP AP

corsiruct & . fur the exterior of a sphere cf radius s which
vanishes on the surface. In the sbove expension jz and h’, are

cprericel essel end Hankel functions, r < ) is the larger

I's
{r
(smeller) of r,r e ¥ . 78,6 ) =P (cose)el™
£y mes_ €7 - ,-o, - —mi Py = i -




V. ACOUSTIC RADIATION AND SCATTERING
our purpose in this chapter is not to give a general introduction to
acoustics, but simply to give some examples of the use of the Green's function
for the scalar wave equatiun. Keaders seeking a general background in ecoustics
or examples with more coupliceted phycics than those presented Lere are refered
to Morse and Ingard (1963).

5.1 Basic Eguations of Acoustics

For simplicity we &stine 8 homogeneoue, inviscid, compressible fluid.
The conservation cf mesc is expresscd ty the continuity equation
1o} -
= =+ div pu =
it 1

-

where p, M, and q are the derzity. ~elocity, and source strength (rate at which
fluid is "created" (introduced icoto the flow field from outside) per unit volume.

The force equation (Newton's secord law) for fluids is usually called Euler's

equation:

Q2>
=i

+ pJ-VE = —-Vp + F

kel
(%]

t
where p is the pressure and F the external force ver unit volume. The field
variables (unknowns) sre 5, r, and . Therefore, another relation is needed
to complete the above equations. For this we assume adisbatic motion (which is
quite reelistic for sound) so that

p = const. o
where y = cp/cv , the ratio of specific heats at constant pressure and
constant volume.

The basic equations of acoustics are obtained by lineearization.

We write

p = o +¢' p = p +p' F = F + ¢
o] *0 (s}

it d

-»>
+ t a + 1]
uo ] q qo q

-
|9
where the quantities with subscriirte are mean or equilibrium valiwes, vhich

~46-
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caticfy the equations .eparslely, and the primed quantities are fluctustions
assumed Small oith re.pect to mean values. We assume that there is no mean flow
5o that w_ =0 and substitute these relations into the above equations

o)

neglecting quadratic terms in the primed variables. From the adisbatic law

we cu.ain
ot = o2
1/2 . - s .
where ¢ = (Ypo/oo) is the velocity of sound. Using this relation to
etiminate p', we obtain by linesarization of the first two eguations the

basic field equations of acoustics:

2 9t po

c (1)
a‘?

po-—):--f-Vp = F (2)

where for cunvenience the primes have been dropped from perturbation gquentities.
We now note two conseguences of these equations. By multiplying the
-
first Ly p, the secornd by ue and adding we obtain the conservation of energy
ow -> >
-+ s = + Fo
T pq/po u
vhere v i5 the energy density
1,2 2 2
= = ™+
W > (p7/p, M)
+ 2
and s (the Poynting vector) is the energy flux density (energy/cm” sec )
s = pu (3)
The terms on the right hand side represent dissipaticn.

-
By eliminating 1 between eqns. (1-2) we obtain a wave equation for the

rressure:

2 Lap F-29
v P -5 = UVeF -
2,02 3t (%)
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5.2 Multipole Fields

We will not be concerned with the mechanism of radistion in this section,

AT RO

but will simply assume that there is a finite source region, i.e., a region in
which energy is somehow intrcduced into the acoustic field. The wmechsnism, for
example, could be a vibrating swrface or turbulence. We further assurie a har-
monic time dependence. A typical time dependent quantity ic then written
p(£,t) = pw(;)e_iwt

This assumption is, of course, equivalent %o teking e Fourier transform.

We write the source term in the wave equation as a funrction _
(E,0 = £ (He " ‘
Then the wave equstion (&) for p becomes the Helmholtz equation for P,

v2p 4+ kPp = -4n f kK = w/c
w w (]

Solving the wave equation by means of the boundary-free Green's function (4.3a)

gives
-iwt
-iwt o
P B2 = J dro dto fw e G
1k}?-¥°|
-iwt ‘e e
e [ v — f (r)
Ir-r
or o

> - >
P, = J dro Gw(r,ro) fw(ro)

where G, is the boundary-free Green's function for the Helmholtz equation.
'kl* Ed I
exp ik|r-r

> -y
=X

We assume that the origin of our coordinate system is somewhere with-
in the souce region and that we wish to calculate the field far from this region

so that ¥ is large compared with the valves of r within its range of

)
) . > >
integration., We expand lr-rol in a Taylor series in TS about the origin
> -
rer
> - o
3% | = r-—2 4+ ...
0 x




N

ik o! ikr - T 1
e = e exp 1kr_ ¢ (=<4 ...}

0 r 3
> > E

ikr o' T

= e ) {l+ ik + 000}
r
is valid provided we maxe tle further assumption kro <«< 1 . This means that

073

we assume the dimensions of the souurce small compared with the wavelength A

-
(k = 2n/}) . With this assumption we mey expand G, in & Taylor series in L
>

ik|r-r |

eikr oo e l o!
G = + - X, + ..
w r L (ax > r =0 “oi
i oi l - o' °

-
Py J dTo fw(ro)Gw
we obtain
eikr N eikr
P = S - D9 + .
w r

where we might call S the monorole strength

"

[ S
TN

dt £ ()
o w o

since, as we sec from the Green's function, the first term is the field of a

S =

point source al the origin.

i

In writing the second term we have used the fact that 9/3x 4 = -3/3x,

> >
when these operate on functions of Ir‘fof only. The second term is a dipole
field with dipole moment

D. = J dr x_, £ (£)

PR RRN PRI CRLRT

o ol "wio

——

Higher nrder terms in the eypansion represent quadrupoles, octupocles
D L )

etc. Thece terms reflect the symmetries of the source. For example, a sphere

vivrating purely radially has only a monupols term, which is the only spherically
symuetric multipole. The dipole term reflects symmetry about an axis and the

higher order mullipoles sre correspondingly more complicated.

_);9_
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5.3 Radiation Calculations

We will discuss two methods of calculating the energy radiated by sources.

The first and best known of these we call the far field method. It consists of :
integrating the Poynting vector s (3) over a sphere whose radius is arbitrarily
large. Thus, it represents only energy which is ultimately lost by the systen,
i.e., rediated away. Since the element of surface area in spherical coordinates

2 -+
is r” sin€ dé d¢ where ¥ is the radius of the sphere, and since S
is quaedratic in the fields, onily terms of order 1/r will contribute to this integral
in the limit r + = . These terms are called the radiation fields.

For example, the field of & dipole along the 2 - direction is

|~

ai(kr—wt) z .
e - w53
r r

ei(kr—mt)

(3]
N

The first term gives the radiastion field since it is the only term of order 1/x.

ik cos® ei(kr—wc)

prad. T

The velocity u in the radiation field is obtained from eq. (2) 3

Lo Po "rad. ~ Prad. (1kz/r)

and the time-averaged Poynting vector is
s = <Re p

in the radial direction. This shows the directional properties of the radiation..
The total power may be obtained by integration.

In addition to the radiant energy in the field there is also reactive
energy, energy which fluctuates between the source and field. The second

method, the neer field method, consists of integrating the energy flux density
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over the source. This has the advantage of giving the reactive as well as the ;
radlant ererygy, and, therefore, the mechanical impedance.
- . . + -+ ~iwt
For example, essume the normel velocity u(r)e i1s specified on a
vibrating curfece. vy eq. (2) this is equivalent to giving the normal derivative

of the pressure (we arc 5111l acsuming harmonic time dependence). Assuming the ;

(retarded) Green's function is known we may substitute

iwp
1 9p . o + | —iwt
P 4r J on Gret. dSo dto 4n J u(ro)e Gret. dto dso
into the expression for the total power i
P o= pua
pRRes (6)

We may now write

= WAL

Gret. = G+ H
- 1 ‘
¢ =3 {Gret. + Gadv.}
1
o= 3 {Gret. - Gadv.}

where G is the time symmetric Green's function of §4%.3. H is not a Green's
function since it is a sclution of the homogeneous wave equation, as we can see by

subtracting the equations for G and G8

dv.’
After substituting into eq. (6) we find that if the sign of t is changed

ret.,

the part involving G changes sign and the part involving H is unchanged Therefore,
the former vepresents reactive power and the latter resistive or radiant power.

This elegant method was perhaps first used by Schwinger (1949) in connection

with electromegnetic rediation.

As an example consider an infiniteplane z= 0 on vwhich u = O except for a
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small portion O which vibrates. The Green's functions are easily obtained by

-
the method of reflection with en imege ppint ¥, = (x,¥ ,=2) . The
effect of the harmonic time dependence is to replace G’ret.,édv; by

AT | ik]r-F |
e e
G = +
wret.,adv. I;_; | I;_; I
o i
> - - -
On the plane lr-rol = ir-ril . We have for the time-averaged
radistive power
> -
3 4 we @) sin klr-roi . :
Prad. u(r) ds 2m M\ > > %o (7
[r-z |
o g 0
and for the reactive power
>
wp cos k]r—r !
_ _ ‘_9_ b d ~> (s}
P, = P J ds J dso u(r) u(ro) 33
o o 0

The integrand in the last equation is singular, but by a well known theorem for
improper integrals (Kellogg, p. 149) the integral is convergent.

Detsiled calculations are available for the case in which 0 is circular.
If, further,‘ W is constant {circular piston) then the coefficients of uzin the
expressions for P.., . and P, give the resistive and reactive parts of the
complex mechanical impedance. For further details see Bouwkamp (1946) and
Morse and Ingard (p. 381 ff.).

If directional properties of the rauiation are desired we can make use of

the relation { §4.1)

sin k|;-;o] X ik;°(;—¥o)
|e-r |
0
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R ->
where d. 15 tie element of sulid angle about the unit vector R . Then from eq.

(7)

p = J dQ p{6,¢)

rad.
whore

> >
wook r N -ikn'ro 2
p(8,9) = —> J dso u(ro)e }
8n”

is the power radiated into d@ . If 6,¢ are spherical angles with the normal

to the plane as the z - direction and ¢o is the azimuthal angle in the plene,

then

> - > >
n'r = r cos (n,r)
o o 0

= T sind cos(¢-¢o)

in the above formula.

5.4 Mechaniegms of Rediation

Let us n~w take a closer lock &t the source terms in eq. (4). We shall add

to thewve a term from the stress te sor which is of the order neglected in the

derivation. Lighthill (l952,l95h) has shown that this term may not be of

secona order, at least for turbulence in air. Therefore, we write

2
2 z = )
Vp +kp = iwq +VF - ] z=—=—op u _u
w w w w 1 axiaxj o wili wj
Solving by means of the Creen's function (5) we have
[4c ¢ @) (tuq + 0 -F ) ch
Py T To GytTetys e ERARDNEE P oMt

D B S\

Py
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where V , = Blaxoi .

Let us look at the terms in this integral separately. If we expand the
Tirst integral, the one containing q,, as in § 5.2 the first term in the
expansion will be a monopole field. For this reason q, (or 3q/dt) is
called a monopole source. It represents the rete at which fluid is added or
withdrawn. A vibrating surface is a source of this iype, for its effect is
as if fiuid were alternately injected and withdrawn. An example is tne
cavitation behind a pivr=ller. A collapsing bubble is cushiocned by vepor inside
it causing a bouncing effect. OFf course, ~. ~hould keep in mind that the field is
not a pure monopole field, but rather the monopole term is the -dominant term in a
multipcle ~xpension.

The second integral may be transformed through the identity
[d? 9 ¢ F =Jd’r’ GV F +Id; Fev o6
c 0 Wuw 0O Wo w o W o W

We have assumed that the sources are non-zero in a finite region. The left hand
side may be written as a surface integral by Grauss' theorem, but since the
volume integral is over all space the limit must be taken as the surface goes to
infinity. As the limit is taken the surface will eventually lie in a region
vhere gw vanishes. Hence, the left hand side is zero and the contribution to

the pressure is
-
J dt F *V G
o 'w 0 w

Tt 2 leading term of a multipole expansion of this integral will contain

>
derivatives of € : it is a dipole term end, therefore, "'F  is called a
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dipole source. An example is the sound field due to the fTorss exerted on & fiaid

by a propeller bdlade.

—-  -The-third integral in eq. {8) cen be transfémedp‘byatwo integrations by

perts giving

2
.9
J oij o wi w) oniaxoj W

The leading term in a multipole expansion contalns se~ond derivatives of G,3
consequently, it is a quadrupole term. Thus , for example, s turbulent region is a

source of quadrupcle radiation.

5.5 Scattering and Diffraction

Scattering and diffraction refer to the same phenomenon, the interaction of &
wave with an obstacle. The word diffraction is usually used when the dimensions
of the obstatle are large compared with the wavelength, as, for example, when sound
passes through an aperture in an infinite screen. The obstacle need not be a solid
body. It may, for example, be a region of turbulence or inhomogeneity. A
Green's function is used in these problems to transform the boundary value
problem into an integral equation. Let us consider the case of & solid body.
For harmonic time dependance and with no sources present a solution is gliven by the

surface integral

1 aGm

apw
Py ¥ deso {EGm'pw?ﬁ:

(9)

This is not a solution of the boundary value problem since it is not proper to

specify both B, and its normal derivative on the surface. However, instead of
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nov imposing & boundary condition on © 62 we have in previous problems, we msy
instead regard eq. (9) as sn integrsl eguation for B,. The solution is not
_ unigue since we have not yet imposed any boundary conditions. We may add to it

eny sclubtion of the homogeneous wave equation. Therefore, we write

e al (g QR 9%
P Py T 80{9% L %a‘no

vhere p 1 is a given incident wave. The integral represents the scattered wave if

we use the retarded Green's function
> &
ik!r—ro
e

G =

» ¥
*

which gives oubgoing waves, The boundery condition may now be imposed. For &
rigid body we would set the normal derivative of the pressure egusl to zero on
the boundary. For & compliant body a linesr combination of p " and its normsl
derivative would be specified.

For simple geometries the integral equation can often be solved by expanding
I P and Gw in appropriate orthogonal functions, fixing undetermined coefficients
by evalueting Pw on the surface. Such problems can be solved by direct methods,
so that nothing is really gained by the transformetion to an integral eguation.
When an exact solution is not possible, however, the integral equation suggests
an approximation scheme based on iteration (Born approximstion). In general, this

should succeed if the scattered wave is small, as, for example, when*the wavelength

¥ With our choice for the time dependence, (exp * ikr-iwt)/r represents
outgoing (incoming) spherical waves.
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{8 large compared with the dimensions of the scatterex.
- -As & simple example we calculate the radiation f£ield-of the scattored wave-
from a rigid sphere in this appro:imation with the assumpuvion & << i , & UEidg

the radius of the sphere. After one iteration the scatiered wave is given approx-

imately by
1K|T-7
p »—-"’-3][&9 (o, 2) 2 &
s ~ 4m o 1o 3r l;"‘gol r =2

where p N is the incident wave, which we assume to be plane

>
pi - Aeiﬁ-r

There are two approximetions. We keep only the%- terms (the radiation field)

and we expand in powers of ka keeping only the first non-zero coutribution.

82 { iﬁ-;o 3 QXP ik(;;;'?o + .oo)
o °)
ikr '
= %?f er: ” dﬂo {1 + ika cosy + ...}{-ika cos¢ - (k&)zcos?':b-!-...}
where
Cos¢ - COS(;,;O) cosy = cos(i’go)

Carets indicate unit vectors. To perform the integral we substitute y = 8-¢
vhere § is the angle of; measured from the direction of the incident wave, k .
The first non-vanishing integral gives

Aa ikr

Pg * _:_3______er (ka)2 {1~cogbd}
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A typiesl diffrsetion prodism 16 that of a wave pessing SEwough sn mertize
in an infinite screen. Eq. {9) 15 usually used for the field behind the screen
together with the Kirchhoff approximastion which assumes that the vslues of p ”
and apw/an on the &perture ere just what would be given by the incident wave
if the screen were not present. Then the integral equation is well-defined.
Methods of solution are discussed in most books on acoustics, optics, and
electromagnetic theory.

Apggndix I ¢+ The Delta Function

The delts function is sometimes "defined" by the relations

§(x) = 0 x$0

b

J 6(x) dx = 1 a,b>0 (1)
-a

from which immediately follows the so-called sifting property:
b .
f f(x)&(x-xo)dx = f(xo) a<x<b5b
a .
Intuitively, it is a function which is zerc everywhere except at ¥ = O where it

is infinite in such a way that its integral is unity. It is clear that within the
context of ordinary real variable theory there is no such function, for a function
is defined cnly if it is essigned a definite value for every point within its
range (infinity is not a definite value). Moreover, the area under a point is
always zero.

However, *ne behavior described by eqns. (1) can be approximated with

arbitrary sccurascy by ordinary functions. For example, consider the sequence

£ 5\, n- "l " N

R~
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I

£ (x) =

The ares under fy’ is always unity and the meximum at x = O becomes arbltrarily

sharp as A 1s made large.

Therefore, we let & (x) represent the limiting behavior of suca & s'equenée ang

write, symbolically
8(x) = 1lim fx(x)
A

IQen*bities involving derivatives and integrais of & (x), €.g.; the siﬁ:ing
property, can te proved provided thet the interchange of theése operations with
the .limit can be justified., dJustification can only be fouﬁd' within a brosder
ma’phematical context than the ordinary theory of real varisbles. Several such
contexts are availsble, of which the best known is probably the theory of distribu-
tions as presented by Lighthill (1958), whose book can be read with a knowledge
of calculus only. For an intuitive approach we also recommend the book of van dex
Pol and Bremmer (1964, chap. 5‘). Our pugpose in this appendix is not to supply
rigor, but only to discuss the formal manipulation of delta functions'.

The derivative of f is a function having /i

A
two sharp and arbitrarily close extrema as ) —~ "

is made large. It too has a sifting property.

It picks the values of a function at two points which are arbitrarily close and,

therefore, produces the derivative. By a formel integration by parts we have
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2 o }f\t(z:}i’f;;"iiék;r' dx = <f'(x) :
v -”:/7-5 - H v:’.
- and, generally, I 3

[ 20 s e = 0 (@

B} - ‘ =S i
" .The Pollowing ave-useful identities;

] six) = §(x) :
8(ax) = Far 6(0) :

T Taf o :

. 73

x8(x) = 0 4

x 8T = =6(x)

SGPad) = 5 (60ema) + §(eta)) ‘
. 1 x>0 4
v ..
- w §(x) U(x) = {
dx 0 x<0 1

By the equslity in these relations we mean thet the right and left hand sides give
the same result when substituted into an integral. ° Thus, to "prove" the second
relation we form the integral of &(ax) with an arbitrary continuous funetion,

f(x) say, and show, by a simple change of the varisble of integration, that the

result 15 |a|™ £(0) , which is what is given by the right hand side of the
, identitiy.
This interpretation of the equality is sufficient for our purposes, since our ‘_
delta functions always ultimately disappear by being substituted into integrals and,
/ thus, do not appear in the final results of our calculetions. Their use can be -
3
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regerded as an intermediate shortcit. For example, eq. {1.4) can be derived without
The use of the delta function as follows. Tet G be: a harmonic function in &

region v except for a singularity 6f the type l’r’&b]-l at one point.
Green's theorem can be epplied to the regionv - v o wh;f.ch excludes from V a smell

sphere v, of radius R, centeréd at the singuler point T .

; 2. 2 Lot 9¢ 3G
J d-to {GVOQ-@VOG} " J dso {G Qno ® ano}

-V o+s
v-v, 7 °

In the 1limit Ro + 0 we have

22 it 99 3G L
lim I - dﬂo {c a:‘o - *'af;o“} w =41 9(r)

where only the second term has contributed, and the result is estsblished by

substituting V§<I> = —47 p(;o), V¢2>G = 0 in the volume integral over \?i—v,o,. '

Appendix II: Fourier and Leplace Transforms

The Fourier integral theorem

£(x) = -2% Jdp Jac £¢t) o P (x-t) (1)
may be written in two steps:

f(x) = = J F(p) e 2PX gp

-0

(3)
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Mese for a transforn patr, The funstion ¥ () is called the Fourier transformof
t (x), and the operator in-éq. (3) through which the: or{gingl fuiiction 18 récovéred -
is callsd '‘the "inverds ﬁ&ﬁiier'tgaqsfém, The folléwing haﬁéﬁ;én is dlso used: N
Fp) = RiF} = £ ‘ -
-F“L{-f-p,}' w £(x) |

In forming the transform pair thé position of the factor of 27 ‘and: O‘f the plus.
and-minus signs in the »exponéﬁf;’iéls is arbitrery. Since &1l possible :dombinations
are in use in the literature, definitions should be carefully checkéd vhen using
tebles of Fourier transforms.

The classical theorem for the validity of eq. (1) is the Plancherel
tl_;‘“gpgeni/ which states, essentially; that e sufficient condition is the eiis”ﬁef;g@»bf

pRahed

soxen
J‘ x| £ (]2 » Ory.mdre precisely, that. £ (x) is: Lebesgie Square integrable.

(£ € 12 (==,2)) . However, this theofem is too restrictive if we wish to
admit generalized functions, such as- the delte function and’ its -derivatives.
Therefore, we shall use, instead, a sufficient condition givén by Lighthill (1958;.
& £0x) i ' 4 o
p.21), viz., the existence of I dx -—L%‘-}%- for some inteéger N,
e (14x5)
This- allows functions bounded by polynomizls as |x| + =

For example,

Fliemt = gb [P o - 5

or
F{1} = 27 6(p)

Integrating by parts we have

Ft {8'"(p)} = ix/2n
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or
Fi{x} = -2ri &'(p)

and, in genersal,

F{x"} = 21\'(-:[)n 6(“) (») n = integer > 0

Perhaps the most important property of the Fourier transform for our purposes

is the way it operates on derivatives. Operating on eq. (3) with the derivative

we have
: -1 )
£t = ¥ ~isf '}
{ gfp} k
or
F{f'} = -ipf.
{£'} ip b
-and by repetition
F{£"} = épzfp oL,

Thus, & differential equation is transformed to en algebraic one.

These and some additional properties are summarized in the following teble.
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-] o«

I ~ipx ipx
£(x) 5 J dp = fp fp - j dx # £(x)
ra n = integer > 0 2n(-i)n$(n)(p)

d
= £(x) ip fp
d
ix £(x) a’; fp
ixpo .
e £(x) p+p°
-ipxo
f(x&xo) e fp
i -ipb/a _
f(axi-b) P p/a
£(x) g(x) Sf kg
g 2t °p P
£(x) * g(x fp g

The star indicates the convolution of two function, which is defined by

£(x)*g(x) = J £(8) g(x-§) d& = g * £

Our sufficient condition does not admit functions which are exponentially
large as x + = . We can allow such functions, and in the process
define the Laplece transform, if we are willing to throw away half of the function

and assume it to venish for x <0 | Thus, we assume
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f(x) = 0 x<0

£y < e** x>x >0 a>0

ks the Fourler transform of £ (x) may not exist, we define a new function

d(x) = f(x)e“bx where b>a

whixd A4 exponentially small as .x +.o » If we- .first re~define the

frugier transform pair by interchanging  thersigns-inthe: exponentials of

ena. (2, 3) ve may write

F{¢} = J ea“:"pt o(t)dt = J ‘-(b-H.p)t £(t)de
0 0 .
it seb+dip . As a function of p F{¢} is the Fourier

traneform of ¢ . As a function-of .s we define it to-be ther Laplace transform of f:

Z{E@)) = Je"s" £(t)dt
0

¥We obtain the inversion theorem through the inversion theorem for the

Faurier transform according .o which

¢ "b 1 i
$L0) = f£(x)e ¥ = Tn Idpepx ¢p
o -® b
1 (b+ip)x R sx
f(x) = 5 Idpe ¢p Tnl J ds e Z{f}
-0 o

There was originally no upper limit for b so that the contour for the inversion

integral, C say, which is a straight line parallel to the imaginary axis of the

- 65 -

S B s Gt i g DY o v




s-plane, is arbitrarily £far to the right of the origin, but by Cauchy's theorem

is equivalent to any straight line to the right of all singularities.

For x> 0

the integral can be evaluated in terms of contributions from the poles, branch

cuts, etc. to the left of C. For x < 0the inversion integral automatically

gives zero since the integrand vanishes as ¢ 1is moved to the right.

Integration by parts gives the effect of the Laplace transform on

derivatives, which we include in the following table.

£(x) Lif} = £y
4 £x) sf - £(0)
dx 8
a2 2
) £(x) s“f - s£(0) - £'(0)
s
dx
a
X £(x) n = integer > 0 n° -4 ¢
) de® 8
% £(x) j £ ds
x 8
1
I £(g)dg ;‘fs
0
£f(x~b) where f(x) = 0 x < 0 e DS £
%_ebx/a f(x/a) fas-b
f*g fs gs
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For the Laplace transform convolution is defined by
x

frg = jdﬁf(s)g(x-i) = g*f
0
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2.

3.

4.

3.

6.

7.

9.

10.

Suppose J {G(;’;l) - G(;,;o) }ds * 0. Since G is determined to within

an additive constant, let F(;l) w J ds G(.;,-x’:l) and replace G(;,'x*‘l) by

SOLUTIONS

Chapter II

G(;’;l) - F(?l)/s where s is the total area.

+

.
27

- E%- J dxo g(xo) log {(x—xo)2 + yz}
;] —5—
- dx f(x)
b4 J (e) (e} (x-xo)z + y2
LT x* + (y+y°)2
# [ o, 50 18—
0 x“ + (y-yo)
1 b y
= J dx £(x) { + 5 2}
0 y o+ (x-x) y + (x-l-xo)

[ax)? 4 (5-y )2 + 22172

_2-1]? J dx J dy, g(xo,yo) [(x_xo)z + <y'Y°)2 . 22]_1/2
'é‘,]f ” dxodzo f(xo,zo){y[(x_xo)?- + y2 + (z-—zo)z]"3/2

- }'[(x*'xo)z + yz + (2_20)2]"3/2}
'5'1]? ” dy dz  g(y ,2,) {[x2 + (y..yo)fl + (2_20)2]-1/2}

- 0+ )+ (eer ) 272

” dx dz f(xo,zo) y{[(x-xo)2 + }'2 + (z—zo)zl-?’/2

L) +y0 + (22 )?)
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2.
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e

1 1 a 1 a 1

6(T,r) = - +8 13

° TR RS ] % R

T _ + 2 2 + - 2+ ,2
T, ( xo’yo’zo) r, = a ro/r° r, a r3/r3

*
G(;’;o) - E (3=|m|)! le(e’¢)Ym2(eo’¢o)

2=0 me-g GFIRDT ey 24
2041 e

(% - ) o - TgL
X, r, b

Chapter III

Yy = 1 j dxo f(xo) exp ~ (x~xo)2/4a2t

ZaJFE'-w
2 2
. ) (x~xo) ) (x+x°)
2 2
p = 1 [ dx_ £({x ) {e bt _ Iy ba"t }
2av/7t 6 ° °

t
+ X I dt_ g(to)(t-tc)-slz exp - x2/4a2 (t~t )
0

20vxR
2 2
) ) (x—xo) ) (x+x°)
2 2
T jdx £(x.) {e bot o ATt
2a/mt 0 °

-1{2 exp %2/ 4a? (t-t,)

t

[0 3

+ I dt s(to)(t-:o)
0

(x—xo)2 + (y-yo)2

o
1
) = 5 J[ dxodyo f(xo,yo)e

1

4u2t
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wx )2+ gyt o) Aoy’

2 2
5. Y = 4&2:1: “ dx _dy f(xo,yo) {e o t‘ — e 4a“t
. _ x? + (:4'-yc,)2
* 4:0;2 (J) dtO j dya S(yo:t°> (t""t:o)—2 e 462(1:-?.0)
) (x-xo)2 + (y-yo)z ) (X'*'xo)z-l-(y-yo)z
ooV 4a12b1rt ” dxodyo f(xo,yo)' {e 4a2t + e lmzt

%+ (sr-'yo)2

t -
2
Y e L ba”(t-t )
+ 5 f dto J dyo g(yo,to) (t to) e )
0
+ <+ 12
1 4ot

v m s [|] s tone

vhere IZ‘-?:’olz - (ex)?+ (y-y ) + (z-z°)2

2
[7-%,)2 33,
-— - —
1 > 40t 4ot
oo ey [[[es e
sa3 ()2 o o
X i -5/2 '92/4G2(t-t°)
+ 8“31\’3J2 J dto JJ dyodzo g(yoszooto) (t"to) e
0

vwhere l;-;ilz - (mo)?‘ + (y--}ro)2 + (z--zO)2

2 2 2 L2
p° = x4+ (y-yo) + (z-..o)
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> <+ 12 + 4+ ;2
. |-z -t | ,’

- -—-2———- - --—2—-—"- i
1 -+ ba”t 4ot :
9. ¢8——“IIIdT f(r ) e + @ } :
8a3(1rt)3/2 0 ) |
L _ajg P liat(e-t) |

+--~375 I dto IJ dyodzo g(yo,zo,to)(t-to) e :

b4or 0 .

t

- X ~-5/2

10. ¢ . 3372 j dto ” dyodzo g(yo,zo,to) (t"to)
o 0

{exp - pf/daz(t~t°) - exp - 9%/462(trt°)}

3
. 1 [ I J -+ i >+ 12, 2
o ————e _dT f(r ) (_1) exp - |r-r I /4a t

8a> (rt) /2 oo 1§o l. 1

og = X4 )it 2?02 e w2 iy )P 4 (a2

XY B X W Ry WK, VRV Vg UV, Zp Mgy ™z

t

2
ok -
11, ¢ = -;tf:- ) sin-g—?ssin-g{le u(t) 4

mn

m,n
nrx T C
any, .
= :

a
. J x| dy f(xo,yo) sin — 2 sin
0

2 mw, 2 nw, 2
wherekmnﬂ(a) +(b)

O
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12, ¢
3. ¢
3. v
be Y

)

lmzﬂ mrx any

- n in-——-ainb

ab2 m,n

t a mrX -azkfm(t-to)
. J dto j dxo f(xo,t:o) gin e
0 0

a

¢£mn(;) f 2
—-—-——-———-I dt:‘J ” a sinGo deo d¢° f(6°,¢°,to)

L,m,n chm 0

3.1 -
a1l Wi Oty e - o (et
o W5 3

boua® = 72 31 ) YOI
2
a 1 2%
Comn ™ J r2dr J sind de l dé % J':+ 1 (kznr) IYzm(e,” l2
0 0 2

k

on 8¢ the roots of J“ 1(k£ n.) =0

2
Chapter IV

xtet

= -— {f(xtct) + £(x-ct)} + 21‘ J d¢ g(&) + h{t-x/e)U(t-x/c)
|x-ct]

where £(x) ic defined for negative argument by f£(-x) = -£(x)

t-x/c
- —;— {E(xtct) + £(x-ct)} - cU(t~-x/c) J h(§)de

0
ct-x xtct

+%U(ct-x) J dg g(&) +2—1' J dg g(g)
0 |x-ct|

where £(x) is defined for negative argument by f(-x) = f(x)
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6.

7.

-8,

» ; 1 “‘ "’ (x 2 30)61 dy
Ky ¥,t) =

2re /cztz _ (8_%)2 - (y_yo)i

1 _2_[ I ¢(xo,y°,0)dx°§yo '
2nc ot Vfcth - (X-xq)z - (y_yo)z

where thes integration is over a circle of radius ct caentered at (x,y).

Hint: ac/ato = -3G/ot.

1 © 12
= 5T JI dxodyo {;—5 f(xo,ya,t - Rolc) 2 t:(x Yyt - Rolc)}
o o

2 2 2 2
where Ro = (x-xo) + (y—ya) + z

o
B = LD A B0

(5= }ml)z 3 (ka)
= ~ik(284+1) h (kr )! 6 ,¢ )
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