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Preface

These notes are intended for students with no previous experience

with Green's functions. A knowledge of applied mathematics at an advanced

undergraduate level is assumed; for example, it is assumed that the reader

will be familiar with contour integration and with expansions of functions

of several variables in the usual sets of orthogonal functions. A knowledge

of integral transform methods would also be useful. However, a brief

introduction to the Fourier and Laplace transforms is given in one of the

appendices. Since a wide variety of conventions is in use this also serves

to define the conventions and notations used in the text.

This work was sponsored by the Institute of Ocean Science and

Engineering at The Catholic University of America for use by workers in

acoustics. This interest is reflected in the chapter on the Helmholtz

equation (Chapter 5) where the applications are all chosen from acoustics.

For readers with an interest in this field but with no previous knowledge

of Green's functions it is suggested that the notes be read from the

beginning with the possible exception of the chapter on the diffusion

equation (Chapter 3).

The material in its present form is considered to be a preliminary

presentation. It was felt that it would be desirable to make this available

fairly quickly and to write a second edition after some feedback had been

obtained. Consequently, the author will be especially grateful to any

readers who will take the time to offer criticisms and corrections.

The author acknowledges with gratitude the support of the Office of

Naval Research (Code 468).
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We will introduce Green's function by means of a ui le e l~e, and inIlater chan-ters discuss some particular equations in detail. To explain our choice

we first review soce general properties of second order linear partial differential

equations.

1.1 Clar-sification of par'tial differential e~jltons

Any discussion of second order equations must begin with their

classification as elliptic, parabolic, or hyperbolic, and the prototypes of these

categories, the Laplace, diffusion, and wave equations:

2 - 1

2 rj
C at

M atheatically, the classification arises from questions of existence, the problem

being to determine boundaries and boundary conditions such that existence theorems

can be established. We review only the general outlines of this scheme here, and

leave more precise statements for later chapters.

A condition which speciftes the values of a function on a boundary is

called a Dirichiet condition. If the derivative C v )of the

function in a direction n normal to the boundary is given the condition is called

a Neumann condition. A linear combination of the function and its normal derivative

is called a mixed condition. while specifying these independently is called a

Cauchy condition.

For an elliptic equation Dirichlet, lieumann, or mixed conditions on a



closed boundary* are appropriate. For example, the steady state temperature

aistribution in a solid satisfies Laplace's equation. A Dirichlet condition would

give the temperature on the surface, uhile a Neumann condition would give the heat

flux through the surface. (By Fourier's law the heat flux is given by H =kVT, k

constant. Therefore, the normal component of R is H = kn.VT - k aT/3n.)

if a Neumann condition is given it is evident that an additional condi-

tion must be imposed, for if the heat flux were everywhere into the body it is

clear that a steady state could not be reached and the boundary value problem

would have no solution. TPherefore, we impose the additional condition that the net

heat flux through the surface vanish, i.e.,

(ds~ -_ 0
an

For a hyperbolic equation an open boundary is needed. Cauchy conditions

are usually appropriate over at least part of the boundary, while Dirichlet,

Neumann, or mixed conditions may be given over the remainder. For example, the

displacement of a vibrating string, i say, satisfies the wave equation.

If the string is clamped at x.0 +1

then the boundary is an open rectaugle

in the x-t plane with Dirichlet con-

ditions (i= 0) given on x - +1, t > 0

and Cauchy conditions (the initial values

of )given on t = 0, -<x <

*A region with a closed boundary is completely enclosed. The boundary may be

closed at infinity. If the solution is required to vanish at infinity this is
equivalent to imposing a Dirichlet condition on a sphere and taking the limit as
its radius becomes infinite. Closed boundary should not be confused with the term
closed region, by which we mean that the region includes its boundary.



Parabolic equations represent an intermediate case between the elliptic

and the hyperbolic. A Dirichlet condition over at least part of an open boundary

is usually appropriate, with Dirichlet, Neumann, or mixed conditions on the

remainder. For example, the transient temperature distribution in a rod is

governed by the diffusion equation 2T 1 T

- 00 a constant.
ax2  a2 Bt

If the rod lies between x - + 1, the boundary in the X-t: plane is an open rec-

tangle with a Dirichlet cndition (initial temperature) given on t - 0, -1 < X < 1.

On the remainder of the boundary x - + l t > 0 a Dirichlet condition (temper-

ature at ends), a Neumann condition (heat flux through ends), or a combination of

these may be given.

In addition to existenoe there are two other requirements for a well

posed problem: uniqueness and stability. By stability we mean that the solution

depends ccntinuously on the boundary conditions, i.e., a small change in the

boundary conditions implies a small change in the solution. The above rough sketch

of appropriate boundary conditions has taken these requirements into account.

For a discussion of the concept of a well posed problem see Courant and Hilbert

(1962, pp. 226-232).

Equations may also be characterized by their effect on the boundary con-

ditions. The elliptic operator is a smoothing operatar:" any discontinuities in

the boundary condition, as well as its general form, are smoothed when continued

away from the boundary. In contrast with this type of behavior, the hyperbolic

operator has propdgtion properties: any discontinuities and the general form of

the boundary conditions persist, are propagated, when continued away from the

boundary. Again, the parabolic equation is an intermediate case. In the example

given above the initial condition is smoothed while the boundary conditions are

propagated.
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Physically, elliptic equations usually describe static phenomena. For

example, electrostatics, magnetostatics, steady state temperatures are governed

by Laplace's equation. Hyperbolic equations describe dynamic, time dependent,

phenomena, e.g., electromagnetic and acoustic radiation. Parabolic equations are

often very useful as an approximation, e.g., circuit theory, but their appearance

in physics is always suspect. In the example given changes in the boundary con-

ditions are propagated instantaneously, which is decidedly unphysical.

1.2 Introductory example

To introduce the Green's function associated with a second order partial

differential equation we begin with the simplest case, Poisson's equation

V 2 - 47.p

which is simply Laplace's equation with an inhomogeneous, or source, term. A

convenient physical model to have in mind is the electrostatic potential

O(x,y,z) which arises from a source p(x,y,z) which is a volume

distribution of charge (charge per unit volume). We imagine that a point charge

of unit magnitude (unit source) is at a point r (xoyoZ ) (source point)

and that the potential is measured at a point r(x,y,z) (field point).

From Coulomb's law the potential is Just the reciprocal distance between the two

points (Gaussian units are being used). Written as a function of r and r0

we call this potential the Green's function
1G(r,r o 0 = 4or-rol

In general, a Green's function is just the response or effect due to a unit point

source. We also note the symmetry property (reciprocity relation)

G(rr 0 G(ror)

Suppose that there is a charge distribution p(I) in a certain region

R of space. The potential at a point r inside or outside of X can be written



[ d ° p( o ( o)
R 0  R

(d. ° = dX dY ) This results from simply treating each element

of charge p(r ) dT as a point charge and taking the sum of the con-

tributions from all elements. The integrand is singular if r is in R, but the

integral is convergent. Thus, we have obtained a solution of Poisson's equation by

means of G,

So farthis is intuitively obvious and, therefore, unremarkable. But

what comes next is auite remarkable. We now imagine that in addition to the

source P we also have present certain boundaries on which boundary conditions

are specified. Since Poisson's equation is elliptic, we know that, for example,

a Dirichlet condition is appropriate. Therefore, let us suppose that the

equation holds in a closed regio. R and that the value of ' is specified as

a continuous but otherwise arbitrary function on the surface a of R. We assume

a continuous boundary condition for simplicity in this introductory example;

later we will be interested in relaxing this condition.

We anticipate two very surprising and pleasing results. The first is

that the definition of G ( r,r0  ), given above in the boundary-free case, can be

extended simply and used to obtain a solution of the boundary value problem; the

second is that the reciprocity relation G ( r,ro) G ( ro ,r ) continues to hold

for the Green's function so defined.

We have defined G in the boundary-free case as the response to a unit

point source. This implies that the equation

V2 G(rr o) -4 6(r-') (1)

is satisfied, and we assume that it continues to be satisfied when boundaries are

present. This will be part of the definition of G. The source term, our unit point

-5-



source, is a delta iunction
( - o) _ 6(x-x )6(y-y)(z-z)

6rr0 0 0 0

In our electrostatic model 6(r-'" ) is the volume distribution P of

a point charge at r . We shall use delta functions freely as the simplest formal
0

device for manipulating Green's functions. An introduction to the formalism of

delta functions is given in Appendix I. We recall the formal rules

6(x-x) 0 X YtX0 0

f f(x) (X-Xo)dX f(X)

where f (x) is a continuous function. The latter is the so-called "sifting property".

Thus, we may say loosely that 6(r-r ) is zero except at r - 0 where it is

infinite in such a way that

and hence, represents a unit source.

We have emphasized the word formal because within the context of the

classical theory of real variables there is no function with these properties. A

function is defined only if it has a definite value for each point in its range

(infinity is not a definite value). Therefore, to make the use of these

functions rigorous a broader mathematical context is needed. The best known of

these is the theory of distributions. An admirable introduction to this theory

is the book of Lighthill (1958).

We shall not be concerned with justifying the use of delta fanctions

-6-



because all of our results can be obtained mare laboriously without their use.*

More-ver, we regard the delta function not only % a convenltnt ahortcut, but also

as supplying useful insight because of its interpretation as a unit point source.

Of central importance in our work -Jill! be Green's theorem

I anfd (u2 ~ - J od, a
R a

which is valid if U and V are continuous with continuous partial derivatives up zo

the second order in the closed region R. n is the unit outward normal to R and

n.V is the derivative in this direction. This follows from the

divergence theorem (Gauss' theorem)

[cdT div J n-ds

R

by substituting

F - UvV

and expanding

div (UWV) - VU'VV + UV2V

by the well known vector identity, interchanging U and V, and subtracting.

Returning now to our boundary value problem we write

v2  - () (2)
00

V G(r,r ) -4,T 6 (r-r ) (3)

where

2 
2 +a

2  a2

ax 2 y 2 az 2

0 0 0
*As an example -f this approach we cite the book of Sommerfeld (1949); concise,
r--:r. us procfs f the theorems needed are given by Titchmarsh (1958, chap. 21).
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In the first equation we have si-lm;y replaced r by r . The second follws from

eq. (!), the syetry of the Green's function, end the fact that the delta function

is even,

6(x-x) - a(x-x)

Hoever, since we have not fully defined, let alone proved the sym-etry, of Green's

function, we ight do better to simply interchange the roles of r and r in our

interpretation of the G in eq. (3) and regard it as the response at r to a source

at r , Really, an interpretation at this point is not necessary, since what

follo-s is sinrly f:or=-. maniulaton. We could Just as easily take eq. (3) as

nart of the definition of G and later prove the reciprocity relation and

derive eq, (1).

Maltiplying eq. (2) by G, eq. (3) by 0 , integrating and subtracting

we obtain

d T° {GV2* _ 072 G + 4w Gp( o - 4ro 6(r-:;) 0
J 0 0 0 0 0
R

By Green's theorem

SGV2  - OV2G )o  ds {G o - G

0R 0 0 dR

and by the sifting property

f d-o 0(o 06(0 64 0) ,M de(r

Therefore, we have

d ° P(r )G(r,r + 1 ds °  - 0 'G (4)
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wh4ch exlresses P in terms of its values and the values of its normal

derivative on the surface. This is not a solution of the boundary value problem

because both 0 and 3S/an are not given on the surface. However, if we can

impose a further condition on G, viz., that it vanish on 0, we can eliminate the

term involving 3/an . This additional condition completes the definition0

of G. We would then have

- ° )  d 1 )  
°  (5)

"(,) fdT p('r )G('r,' )s -P (r~o an)0 0 0 41 0 0
R a

which expresses P in terms of its boundary values. We have obtained this

relation assuming that 0 is a solution of Poisson's equation. We may now ask

if we substitute for 0 in the surface integral an arbitrary continuous function

does this relation give a solution of the boundary value problem? It does if a

solution exists, for if it exists it must satisfy this relation. It is

important for us to be aware of the appropriate existence theorems. We may

conclude that eq. (5) gives a solution of the Dirichlet problem because there

is an existence theorem (cf.chap. 2), but eq. (4) does not give a solution of

the Cauchy problem for Poisson's equation because, in general, a solution doeE

not exist.

We have reduced the original problem to the simpler problem of finding

the Green's function, i.e., of finding the potential of a point change subject

to the condition of zero potential on the boundaries (grounded boundaries).

There are two general methods of constructing Green's functions, which we will

explore in the next chapter. They are the method of expansion in eigenfanctions

and the method of reflection or imaging. The latter method works only for some

rather special geometries, but when it is available it provides a simple

analytical expression for the solution, with obvious advantages over an infinite

series.
-9-"



Having interpreted G as the potential of a point chaxge in the presence

of grounded conductors, we can illustrate the reciprocity relation G(rr 0 G(r ,r)

as follows. Imagine that a point charge is placed at r0 near a grounded

conductor and that the potential is measured at r . This potential is due to the

point charge and a surface distribution of charge on the conductor which is

brought up from the earth and distributed so as to maintain the potential of

the conductor at zero. If now the point chaxge is moved to r and the

potential measured at r0 , the surface charge on the conductor will be

rearranged so that the two measurements are identical.

To summarize, the solution of Dirichlet's problem for Poisson's

equation is given by

O() dT0 P(ro)G(r,r 0 - ds 0 $(ro) B

R 0

where the Green's function is defined by

V2G - )-4 6(+-+ 0

with the condition that G vanish on the boundary. We emphasize that a Green's

function is defined not only with respect to an equation and its boundary

conditions, but also with respect to a particular region.

- 10-



U. LAPLACE'S EQUATION

The theory of Laplace's equation is usually called potential theory. The

classic work is Kellogg's "Foundations of Potential Theory", where rigorous proofs of

th, following existence theorems may be found (chap. 11).

2.1 Existence theorems

By an interior problem we shall mean the problem of finding a solution of

Laplace's equation, V2 - 0 , within a closed finite region R (the region

includes its surface a ) which satisfies boundary conditions on 0. By an exterior

problem we mean the problei. of finding a solution in the infinite region oatside

of a surface subject to the additional condition that 4F vanish at least as fast
-i

as r as r - . This condition is needed for uniqueness. Physically, it means

that at sufficiently large distances the source distribution should look lixe a

point source. We have the following theorems.

There are unique solutions of the interior and exterior Dirichlet

problems and of the exterior Neumann problem for continou sibouidry-values.

There is a solution of the interior Neumann problem, unique to within

an additive constant, for continuous boundary values provided

ds ' - 0

To give rigorous proofs of these theorems one must impose certain

conditions on the shape of the region R. For a thorough discussion Kellogg's

book may be consulted. The conditions are very weak from the point of view of

physical applications and we may assume that physical boundaries are always

sufficiently regular.
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The theorems apply to Poisson's equation if the source term is piecewise

differentiable. (This is not the weakest possible condition, but it is a

convenient one.)

2.2 Method of reflection

We consider the Dirichlet problen first. We have seen that there is

a solution

0 J dT° p(ro)G(r, - daso 0(-r -
R

of Poisson's equation provided we can find a Green's fun-tion "&ich satisfies

V G - -4v 6('- ' )

and vanishes on the boundary. For extericr problems we add the condition that G

-1
vanish as r for large r in order to satisfy the conditions cf the existence

theorem. A -articular solution is Ir-r 0 to which we may add any solution of

the homogeneous equation, F say,

G - ) + F(,)

and hope to choose F so that the boundary condition is satisfied.

The method of reflection consists of choosing for F solutorns of Poisson's

equation corresponding to point sources at positions outside of the region of

interest R. Within R these are solutions of the homogeneous eTuaTion, V2G = 0

For example, suppose that c§ is given on the plane z c &nd we vi-r

a solution for the half-space z >o.

G can be written as the potential of

a positive point change at r° (xoYoz o)

plus the potential of a negative point

change at an "image point" r i (Xoyo,-z) obtained by reflecting in ice p0ane

Z = 0.
- 12 -



G( rr) -

{(x-x) 2 + ( y. 2 + (Z-z 0 ) 2 }-l 2

-{(X-Xo)
2 + (y-yo)2 + (z+Zo)2}-112

The boundary condition is obviously satisfied on z = o.

This zrick is well knowm in electrostatki and can be used for other

regions bounded by planes. For example, consider the quarter-space x > 0, y , 0

We place image sources cutside this region at ,C.

r1(-X 1o )

(+) r2 (-X0,-Yozo), and (.)

( X- )
3-) (x o'-Yo z ) .

The signs of the sources are indicated. it is easily verified that the boundary

corlition is satisfied on both of the boundary planes.

We can think of this as a process of successive imaging, each

reflection involving a sign change, until we return to r o  . As a further

example (Sommerfeld, p. 8 0) cbnsider a 60 wedge. I

There are five images, formed by L _

successive reflections as shown
(-) / ~ -)

in the figure. Obviously, the /

method is useful only if there is a finite number of images. i.e., if we do

eventually return to the starting point r . For a wedge this will be so if

the wedge angle is i times a rational number.

2.3 Neumann's problem

An obvious starting point is eq. (1.4)

d(r) d ° P(ro)G(r,ro) + ds {G - -}

Our first thought would be to proceed as we did for Dirichlet's problem and

- 13 -



impose a condition on G, this time requiring that aG/en - 0 on the boundary.

Howeer, for the interior Neumann problem this is not possible. We can see this

as follows.

In Green's theorem let U = 1, V = G.

Sds  d-r VG - -41I dT 6 (-'r) -4v

Obviously, aG/an cannot vanish everywhere on the surface. However, we can set

aG!/n - const. - -4./E

on the surface, where Z is -he total surface area. Then from eq. (1.4) we

have the solution

- r 10 -1.G~L
O =r) dT p(r )G(rro) + , dec Ga + const.

which reflects the fact that uniqueness is proved only to within an additive

constant for the interior Neumann problem.

The method of reflection in a plane works for Neumann's problem if

it works for Dirichlet's problem. The only difference is that there is no

sign change under reflection.

2. Reflection in a sphere

For a spherical boundary there is an imaging principle for Dirichlet's

problem but not for Neumann's. The

image ri is on the same radius as
-~2

the unit source ro . Let firo

where a is the radius of the sphere and let the strength of the image source

be -a/r.

Then a/r
l at

Ir- I;o  ,r- -)r
r o
0

-14 -



which is valid inside or outside of the sphere.

2.5 Expansion in orthogonal functions

The method of reflection may produce an infinite number of images. As

an example, suppose Laplace's equation is satisfied in the rectangle bounded by

x = o,a and y= O,b. -T

To satisfy the condition on

x=o we reflect in this line. I

A reflection in x=a satisfies the _L -_ - - - -r

condition on this line but now the condition on x=o is no longer satisfied so the

second image is reflected in x-o, etc. In this way we completely fill the plane

with images. For detailed examples of this approach see Courant and Hilbert

(1953, pp. 378-386).

A more reasonable approach is to satisfy the boundary conditions at

the outset by attempting an expansion in orthogonal functions each of which

satisfies the conditions. These are obtained by the separation of variables

method. For the present example they are sines and the expansion

G = I IA sin R-'sin wry
m-l n-l b

is a double Fourier sine series.

Substituting into the equation

S2G - -2v 6(x-x)6(y-y)

which we adopt for G in two dimensions, and using the orthogonality relation

aI m~x m' ir x asin MI sin a x " 6,
a a -2 M

0
-15-



and the sifting property to determine the coefficients Amn we obtain

8 sin mirx/a sin mirx /a sin nny/b sin nrY lb

mi n (m/a)2 + (n/b)2

Since we know that G is singular at x = xop y = Yo, we are inclined to

ask in what sense it can be represented by an ordinary Fourier series. Justification

can be found in the theory of distributions or generalized functions (Lighthill,

1958). We only remark that as the delta function has a well known representation

as a Fourier integral

6(x-x dk eik(x-xo)

so a row of delta functions (an infinite array of sources) can be represented by

a Fourier series, e.g.,

CC nrx
(1 )m 6(x-x -ma) = 2 1 sin 0 sin nrx (2)

0 a a a

(cf. Lighthill, chap. 5)

It may also occur to the reader to wonder how the expanded G when

substituted into*

- d 0G (3)
21 a an

can give a solution which satisfies the boundary condition ;.hen each term in the

expansion vanishes on the boundary.

*We have adQpted the convention of writing Poisson's equation in two dimensiors in
the form V4 - -2vp. Therefore, in this formula we have a factor of 21T Instead
of 4w and a line integral in place of the surface integral.
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The answer is that the boundary must be approached from inside the region. To

take a simple example, suppose the potential is f (x) on y = o 0 < x < a and zero

on the rest of the rectangle. Then eq. (3) becomes

a
1 rdx f(Xo) (4)

21r fJ 0 l U
0 0

(the outward normal is in the - yo direction).

From eq. i),
[3G 8. 'ai m__x i -- x n sin n~ry/b

~sin m'a sin ~r/ (5)o a a a 2 nb 200m n n+

It can be verified that the expansion

T, sinh kiT(l-y/b) n sin niry/b

2 sinh kir L 2 2n n + k

is valid for 0 < y < b. Hence, as y 0+ the inner sum in eq. (5) approaches

i/2 . Therefore,
[ ] = i47T x- 0~ l

o, sin sin -
[ay Y0=o a - a a0 M

2r 6(x-x 0)

from eq. (2). Substituting into eq. (4) we see that the boundary condition is

satisfied.

f J dx0 f(x0)6(x-x 0 ) - f(x)

2.6 Discontinuous boundary conditions

Our formulas have been derived under the assumption that $ is a

solution in a closed region R (the region includes its boundary). This implies

continuous values of 1 on the boundary and this condition also appears in the

existence theorems quoted. However, we notice that the surface integrals which

- 17 -



occur in the formulas may exist even when the boundary conditions are discontinuous,

and so it is natural to ask if they can, in some sense, represent a solution.

It is clear in this case that there cannot be a solution in the

closed region. However, we can re-define the boundary value problem so that we

seek a solution in the open region which approaches the (possibly discontinuous)

-boundary values as the surface is approached, and an existence theorem can be

proved for piecewise continuous boundary values (Tychonov and Samaiski,

p. 261 ff.).

This may actually be a more reasonable way to state the problem

for certain physical applications. For example, across a surface charge

distribution w there is a Jump condition on the normal derivative of the

potential

the subscripts indicating that the surface is approached from one side or the

other. DO/3n is not defined on the surface itself.

To justify our derivations, the conditions imposed on surface values

of functions for the validity of Green's theorem (or Gauss' theorem, on which it

is based) must be weakened. This can be done; see Kellogg (p. 119).

Ve now give an example to show how the boundary condition is approached

at a point of discontinuity. Suppose that Laplace's equation is satisfied in the

upper half-plane y > o and that on y = o we impose
'0 -00< x<O0

5(x,O) 1 0 < x < 1
0 1< X<

We first construct Green's function for this region by the method

of reflection. Since this is a two dimensional problem, the potential of a



- C

-J-ref-re

-log i(x-xo ) 2 
( y ) 2 + log (x-x )2+(y+yo)

[.. .n]oundary = y y 0
0

I  = 2
Gr -, -2oy _

) oudr9Y0Y (X- o)" + y"

( j the outvward normal)

1-JI X " 3 I [dx

0 0 (X-X) 2 + y

0 0
Let u consider the approach to the discontinuity at the origin along

ma.Ing an angle 8

with the x - axis,

t ~ ~ .tan 6

The integral can be performed giving

-1 '-1x°-x 1

Taking the limit x - o

1 +  t a n - ' cote)
Tr 2T

We see ti.1  the discontinuity iis not continued away from the boundary,

but is immediately smoothed, and that all values in the range of the jumn are

approached as 8 varies over 1800.

The approach of this and the previous section can be used to justify

a method which is given in many textbooks. Suppose we wish a solution of

La lace's equation in a rectangle which satisfies a Dirichlet condition on the

. ir.dary. We treak the problem up into four parts in each of which a condition
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is given on one side of the rectangle with zero on the other sides. The

separate problems can be solved by the separation of variables method and it is

claimed that the solution of the original problem is just the sum of the separate

solutions.

However, the separate solutions are given as infinite series whose

umiform convergence can only be established if the boundary condition is

continuous, and, therefore, zero at the corners. But we know from the existence

zheorems that the boundary condition for the original problem need not vanish

at the corners.

We can justify a discontinuous boundary condition at the corners

for the separate problems by means of the expanded Green's fanction of §2.5.

If 0(x,0) - f(x) 0 < x <_a , for example, withe 0 on the rest of the

boundary, it can be shown that at the origin

0 f(O) along A

Slong B

and that 0 approaches intermediate values continuously along rays between A

and B.

The method can be used for other regions with corners, such as boxes

and cylinders.
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2.7 Exercises

1. Prove the reciprocity relation for Dirichlet's problem. Hint: Multiply

the equation for G(r,r 1 ) by G(r,r 2 ) and vice versa. Subtract the

equations, integrate, and use Green's theorem.

2. Show that for Neumann's problem the reciprocity relation ray always be

imposed as a separate condition.

3. Find the solution of Laplace's equation, xx + *y 0, in the half-space

y > 0 which satisfies #y (xO) g(x). (Subscripts indicate partial

derivatives.)

4. Replace the boundary condition of #3 by O(x,0) - f(x)

5. Find the solution in the quarter-space x >. 0, y ! 0 which satisfies

O(x,O) - 0 x(O,y) - g(y).

6. Replace the boundary conditions of #5 by

4(XO) = f(x) Ox (0,y) - 0

7. Find the solution of Laplace's equation, xx + *yy + -zz " 0, in the half-

space z >. 0 which satisfies O(x,y,O) - f(x,y) .

8. Replace the boundary condition of #7 by cz(X,y,0) - g(x,y) .

9. Find the solution in the quarter-space x > 0, y > 0, - < z < w which

satisfies 0(0,y,z) - 0 z > 0 O(x,0,z) - f(x,z) x _ 0.

10. Replace the boundary conditions of #9 by

Px(0,y,z) = g(y,z) y > 0 (x,0,z) - f(x,z) x > 0

11. An infinite plane has a hemispherical Find

boss of radius a. Find Green's Green's
Function

function for the half-space for which this for this
region.

surface is convex (see diagram). Assume

that Dirichlet conditions are given on

the surface.
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12. Assuming that Dirichiet conditions are given find Green's function for

the region between concentric spheres of radii b > a. Hint: Write

G + I?+

Expand F in spherical harmonics and use the well known expansion
Z

1 (-m < )I + m ) Y*(8
" r-ro (.+mI r,

where r (r>) is the smaller (larger) of r,r and Y m(e, ) - Pm(cose)e .

III. THE DIFFUSION EQUATION

We must now have a unit point source in time, as well as in space.

Therefore, we write

{2 _1 3 + 4. _o
2 12 at G(,r 0;tto) 0 -47r 6(r-r 0 (t-t )

We shall see that G 0 t < t holds as well as the reciprocity relation:
o

G(r,0o;t,t )  = G(ror;-t0 ,-t)

We emphasize that these are not imposed conditions, but are derived. They

are usually described by the word causality, from the interpretation of G

as the rasponse or effect due to a cause represented by the source term (a

pulse at t - t ). Thus, the first relation says that the effect
C

cannot precede the cause, and the second shows the following symmetry

between cause and effect with respect to the time scale

cause effect cause effectI I I

-t -t t t
0 0

It is quite reasonable to make this interpretation because time's

arrow is built into the diffusion equation: it is not invariant under time
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reversal. This can also be understood in terms of stability, which we

mentioned in the introduction as one of the requirements for a well posed

problem. The problem of continuing an initial condition into the future is

stable, whereas continuation into the past is unstable. We shall see that the

causal interpretation is somewhat more arbitrary when applied to the wave

equation, which is invariant under time reversal.

3.1 The Boundary value problem

We begin by writing

2 1 !-- - = -4v p(-',t)G

o 2 at 0 0
a 0

7 G +2 at G -4t 6(r-r )6(t-t )
at O

The second equation follows from the reciprocity relation. The operator on the

left bend side is the adjoint of the diffusion operator. (The Laplace and

wave equations are self adjoint.) We multiply the first equation by G, the

second by P , integrate and subtract, giving

t+

dt ~{V2p *2
dt dT - (' !-+ G at + 41rp G) 41 '(rt)

f o o t a

where t + indicates the limit as c of t +€ . We write

a! +GG - a (iG)
at at

0 0 0

perform the t. integration for this term,

(Gflt+ = -[Gflt 0 since G(t,t+) - 0
0

and using Green's theorem obtain
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t+

(,t) - f dt° J dxo p( oto)G

0
t+

+ -1 dto dso { a-

42 J 0 ~0an n
0

4,r. 2 dj [G0 to 0

We impose the vanishing of G on the boundary if Dirichiet conditions

are given, and of aG/an for Neumamconditions. Thus, the first term repre-

sents the contribution from the source, the second from the bou-ndary conditions,

and the third from the initial condition.

3.2 Boundary-free case

We consider first the case in which there are no boundaries and

no initial condition. Then, having obtained this solution, we can construct

other Green's functions using the method of reflection. For Laplace's

equation we were able to write this solution immediately be appealing to

Coulomb's law, but here the answer is not so obvious. Let us begin with

the one dimensional equation

a 2G 1 G _4v 6(x-x )t-t
2 3t oax2

Taking a Fourier k-transform on x and a Fourier -transfozin on t,

the equation becomes (see Appendix II)

i- = -4 e i 0

Gko , which is a function of the transform variables k and w, is the

transform of G, i.e.,

w 0

Gkw " f dx f dt G(xx0;t,t0) eikx eiwt

-00 -0
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Solving the transformed equation

e 4 2e e 0

k _ 2  W + a i 2 k 2

2a

inverting the 0-transform
CO ikx -iw(t-t)

G k(tto ) = 4Tra _ d a_ e 0
k 0 21r + ia 2k 2

The integranal has a simple pole in the

lower half of the comprle. -plane. We

may complete the contour in the upper

(lower) half-plane for t-t0  0

The integral is zero for t-t < 0 since no sineilarity is enclosed. For

t- t  > 0 we have -2vi times the residue at the pole (the path of integration

is in the negative sense):
ikx° -c 2 k2 (t-ro)

Gk - 4 a2 e e (t > to)

Finally, inverting the k-transform

CO --ik(x-x°) -2k 2(t-to)G-4'Ta2 dk e e

2722
CO 2 2

r k(t-t o,)
= 2a2  r dk cos k(x-x)e

-CO

2c_ exp - (x-x ) 2 /4a 2 (t-t0 (t > t )
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We see that at any instant after t o the effect of the pulse is felt everywbhere,

propagation is instantaneous.

The method is trivially extended to n dimensions. We simply take Fourier

transforms on all variables and obtain

G 4.2 (2Az-))(t-t U(t-t) exp- -4. (t-t ° )
0 0 0 0

The unit function U, which is equal to one (zero) for positive (negative)

argument, appears because G vanishes for t < t o  in the older literature these

are called the heat nole solutions.

3.3 Method of reflection

We are now in a position to use the method of reflection just as we did

for Laplace's equation. For example, consider the three dimensional problem in

which Dirichlet conditions are given on a plane.

We reflect the source at r in the plane0
(with a sign change) and write

a _(t-to- -) - 21/4a 2(t-t0) -e -r-r2/4a t-to)
G"U(t-t){e - e I

2 a V-7

Unfortunately, there is no principle of reflection in a sphere for the

diffusion and wave equations.

3.4 F- pansion in eigenfunctions

Let us take a Fourier w-transform on t and transform the equation

V2 G 1 AG -4 0 -+) -
V 2 t=_4t6r 0M -0

to

V2G +--) G -- 4Tr 6(r-r o ) e
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Assume that C() are ortho-rormal. eigenfunctions, i.e.,n

f di ipn ' n = 6nn '

2 2
corresponding to eigenvalaes kn 41f the problem V2 + ki = 0 plus whiatever boundary

conditions we wish Lo impose on G (any weighting function can be absorbed by a

suitable definition of 'M ). The subscript n is intended to be a generic

cndbU:i which stands for whatever indices may De p-esent.

We substitute the expansion

G a n a n ~

into the equation for G W
iWt

2 i0-
a {-k +- } , () - -4r )e
n n 2 n 0

From the orthogonality imt

a -4Tr n(r
)e

an i - k 2a2 .2

Inverting the transform a -(to-t )

G , 2ic 2 7. n(r) n r) fd W + ia2k
-- U n

The integrand has a simple pole in the lower half of the W-plane. We may complete

the contour in the upper (lower) half-plane for t-t o ! 0 Thus, G vanishes

for t-t < 0 . We obtain
0

-2 k (t-t)

G = 4nc 2  U(t-t ) ('r),n ro )  e

In a rectangle, for example, with Dirichlet conditions the

eigenfunctions are
2 msi _x sin My

mn = a b

with

k 2  (mi) 2 nT 2
mn a) b)
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I
3.5 Exercises

1. Find the solution of the one dimensional diffusion equation for t > 0 which

satiafies the initial condition

i(X,O) = f(x) -3 < X <

2. Find the solution for x > 0, t > 0 which satisfies (x,0) n f(x) *(0,t) = g(t).

3. Replace the boundary conditions of j2 by'4(x,0) - f(x) x(0.t) - g(t)

4. Find the solution of the two dimensional diffusion equation for t > 0 which

satisfies the initial condition (x,y,0) - f(x,y) -- < x < w - < y <

5. Find the solution of the two dimensional equation for x > 0 which satisfies

(x,y,0) - f(x,y) *(O,y,t) - g(y,t)

6. Replace the boundary conditions of #5 by (x,y,0) - f(x,y) x(0,yt) - g(y,t).

7. Find the solution of the three dimensional diffusion equation for t > 0 which

satisfies the initial condition r(x,y,z,0) = f(x,y,z) -w < x < c - < y <0
-w < Z < W.

8. Find the solution of the three dimensional equation for x > 0 which satisfies

*(x,y,z,0) - f(x,y,z) p(0,y'z,t) - g(y,z,t)

9. Replace the boundary conditions of 08 by 4(x,y,z,0) - f(x,y,z) p X(0,ytz~t)

g.(y,zt). ;
10. Find the solution for

x > 0, y > 0, -C0 < Z < C, t > 0

which satisfies

C(x,y,z,0) = f(x,y,z)

W(O,y,z,t) = g(y,z,t)

(x,O,z,t) - 0

11. Find the solution of the two dimensional diffusion equation in a rectangle

of sides a and b which satisfies

(x,y,0) - f(x,y) -= 0 on boundary.
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12. Replace the boundary conditions of #11 by

¢p(x,y,O) = (O,y,t) - p(a,y,t) = (x,bt) 0

f(x,t)

13. Find the solution inside a sphere of radius a wvhich satisfies

ip (r,Op,0) 0

I
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IV. THE WAVE EQUATION

Green's function for the wave equation satisfies
{ 2  1 a 2 -1 42 ,t,t o )  -4 (r-r )6(t-t ) (1)

c aro

Let us try to obtain a solution in the boundary-free case as we did for the

diffusion equation. We take Fourier kI , , k3 transforms_ ,on x, y, z and a
2 ikr iu:

Fourier w - transform: on t obtaining {-k2 + w2)Gk -a e 0 0

C
where, as before, k = (kl,k2,k3) and the subscript k indicates a

function of kI , k2 and k3 .

However, we find when we try to inverta.,y., the u-transform,
->4

d4wc2 e-! (t-to) ik.r (k 2:j d C2 -22 e (2)G k

The integral does riot exist since there are poles at w = +kc on the path

of integration (the real axis of the w - plane). At this point many writers

circumveht the difficulty by saying that t-, <

the path of integration must detour

around the singularities in such a < j - t, >o

way as to satisfy the physical principle of causality. If the c - function in

eq. (1) representa pulse at r0 , t then we must have G - 0 t < t

since the effect cannot precede the cause. Therefore, the path is chosen as

shown in the diagram and completed by a large semi-circle in the upper (lower)

half-plane for t - t0 > 0. The Green's function vanishes fort <t, since in

this case the path encloses no singularities.

There are two criticisms we can make of this approach. First, it is

not clear by what authority one is allowed to push the path of integration off

the real axis. Secondly, since the problem is purely mathematical (finding a

solution of a differential equation), the resolution of the difficulty should
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r' a'.a It is not necessary to introduce a physical principle,

is mi~sleading to do so since, as we shall see, this really has

-:' causality. While it is often helpful to think of the

rr i a differential equation as a source (the "cause" of the

tdt. this is not at all a necessary interpretation.*

it-, easily thirnk of the 6 - function in eq. (1) as a

.xi'c'r th-e fields are building up throughout

tif er ;ehch the fields vanish.

k ~ function

- . r transforms has failed because of a singularit-y on the

-. %tzegral . Let us, therefore, try a Laplace 't.ransform

I :-f-:"lty cannot possibly arise since the inversion contou r

-;~ f-al singularities; in tecomplex pliane.

*:::the inversion integral of the Laplace transfo

-:~~': hec f-~unction only for positive values of it s argument,

z'.r) *or the range(- % '

-'f(x) X 'O
/ {fx) W

0 x< 0

I,,z more reasonable for Poisson's eauation, o tcnb

_"xgeneous equation (Laplace's equation) is satisfied
:i± only soluti oa is the trivial one (a constant). Th1ere are

-:urcs".But this is not so for the wave equation. There
)1-tions, e.g., plane waves, even when the homogeneous

f~ed everywhere -effects without causes! This is an indication
-ejry described by hyperbolic equations the fields, e.g. a

I; r all of the properties of, and are largely independent of,
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Therefore, since G may be taken to be a Pwunction of t - to,. we must assame that

G (t - to) vanishes for negative values of its argument. This additional

condition is, of course, lust, the causal~ity condition again:

0 I

Aswe shall see in tChe next. section, the Green's function so-defined is

.. uitable for a particualar type of inijtial value problem, viz., one in which the

ini'tial conditions are to be -orojected into the future. Orther Green's

functions can be defined for other problems, e.g., pro.tecting the initial

conditions into the Dast, in iehich case the caus-ality condition is not

aunroDriate.

Since G is a function of t- to wnhich vanishes for negative values of this

ar-gument, we may assume t > t 0 0 . Taking- Fourfer k, k 21k3

transforms on. x, y, z and a L-aplace s -transform on t, we obtain from eq. (3-)

2_ 2 2 ik .r -st
{-k- /c ) G~, -~ e e

since G = G,. = 0, z , 'E0 > 0 by condition (3).

Inverting the s - trwnsform, s-plane

2 ~S(t-t)

k 2zni 2 + 2 2 ______ x=~ __
The integrand has simple poles at

w= + ikc . By evaluating the

residues at these poles we cbtain:

4csin kc(t-t 0) e kr0

0 0

Now inverting the k1, 12, k3 transforms we have, for t >to
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sin kc (t-t ) -i(r-r)
G 4iTc dk dk 2 k 0

)3 1 2k3

The integral is evaluated by means of the following trick. We introduce

spherica! coordinates in the kl, k k space so that

dk dk dk3  
2 iededdk

and we orient the coordinate system

so that e is measured from the

direction of r-r The
0

q9 integration can be performed

immediately, giving

G - 4 c kdk sinkc (t-t0) do sine e 0  cos6

(2T) 0 0

The 6integration is also readily performed:

do in e-iklr-r 0lcose w2 sink r-r 01[ IdO sine ef k I -r'o-II
00

We express the sines as exponentrals, and since the integrand is even we may

write

ikc(t-to  -ikc(t-t )

G c/47r dk {e - e 0

*I - i, I }
-e

Recalling the wellkwwn representation of the delta function

6(P) ip dx

%e have
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G - -c/2 {,Sir(-rI + c(t-to)1
0 0

+ 6[-I -ro - c(t-t)]

- 6[tI-r I - c(t-to )]

- 61 -rI-o0+ c(t-t)) 0
Since we have assumed t > t > 0 the argixnents of the first two delta functions

0

can never be zero and, therefore, these functions vanish. fThe other delta

functions are identical because the function is even. Making use of the

identity

6(ax(x)

we have
____4 +

G6t-t 0 0 (3a)

We have obtained this expression assuming t > t0 > 0 However, we now notice

that the expression automatically gives zero for t < to and, therefore, is correct

for all t, t0

If we think of G as the response to a pulse at r 0 , t 0 then we see that

this resporse is itself a (spherical) pulse expanding with a velocity c and

damped by the reciprocal of its radius.

In the boundary-free case with no initial conditions (i.e., assuming the

sources vanish sufficiently far in the past) a solution of the inhomogeneous

wave equation

2 1 a2

C 2 2t 2 -4n f(r,t)
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May be ritten

r f [ dto f(rt 0 (r rt,t)J(t j 0 0

and using the sifting property of the delta function to perform the t integration

we have

f It r 1/0

This solution is sometimes called the retarded solution. It is an integration

over the sources evaluated not at t but at a certain time before t, the retarded

time t - rr ol/c . The dependence on the retarded time reflects

the finite velocity of propagation. Any change in the source at r0  is not

4..
felt at r until a time Ir-r 0I/c later.

Let us again emphasize that the above is an interpretation of the purely

mathematical problem: find a solution which vanishes as t ; - of the

wave equation with an inhomogeneous term which is non-zero in a finite region

of space-time. The interpretation consists of identifying the inhomogeneous

term as the source, or cause, of the solution. We can also find a solution

which vanishes as t - - by using a different Green's function, the so-called

advanced Green's function (see §4.3).

4.2 The initial value problem

We now assume that we seek a solution for t > 0 which satisfies initial

conditions at t = 0 as well as boundary conditions on whatever surfaces may be

specified. The wave equation is symmetric with respect to past and future, but
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the statement of the initial value problem introduces asymmetry: we wish to

continue the initial conditions into the future rather than into the past. The

asymmetry is, for this problem, appropriately introduced into the Green's

function by imposing the causality condition (3).

We first establish the reciprocity relation

G(r,r ,t,to) m G(ro,r,-t ,-t)
0 00 0

The relation between t and t 0would hold for any function of t - t , while the

relation between r and r is stronger, expressing the equivalence of source and0

field points. We first write

2 -2) G(r,ro,t,t o) -4r 6(,- o)6(t-to)

v2 1 o G(r,rl-t,_tl -4Tr 6(r-rl)6(t-t, )2 t2

--+. -*4+

We multiply the first equation by G(r,r1 ,-t,-t1 ), the second by G(r,rot,t),

subtract and integrate over t and whatever volume is of interest.

CO

f~ dt f dtr {G(r,r1,-t,-t 1)V2 G(r,r 0t,t)0

G(r,r ,t,to)V G(r,rl-t,-tl }

t4 {G(rd,ro,tl,t) - G(ro,rl,-to,-t 1 )}
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By Green's theorem --he first integral is

Dn 0
G(rr 0 ,t 0t) r 1

We now imp oze the condition that G satisfies homogeneous boundary conditions of

the ty-ne given on the surface. For example, if Dirichiet conditions are given

G must vanish on the surface; if Neunann conditions are given -G/Zn must

vanish on the surface. in the latter case there is no arbitrary additive

constpnt as there was for Laplace's equation because any such constant wr"1id

be fixed by the initial conditions. Having imposed this additional condition

the surface integral vanishes. The second integral

d [G(rr -t,-t) G(rr ttJ-0

- G(r,r ,t,to) 0 G(r,r,-t,-ti)j (4)

vanishes because of the causality condition and, therefore, the theorem is

proved.

To solve the initial value problem we write

2 1 a_ - - ) (r o t o  -4 1T f( 'ro t o >

0 2at2 0 0

0 t 0,
c 

0

The second equation follows from eq. (1) by the reciprocity relation. We A

multiply the first equation by G, the second by P (r 0 to), subtract and

integrate over the volume of interest and over 0 < t < . Now,

at°  LG G G2±_} L [ G- - G !t 0
0 0 0
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I

which vanishes at the upper limit because of the causality condition. Using

Green's theorem

*(rt) = dt J dT f(ro,to) G(r,rot,t )

0

dt Ids In-n

0

41c 0 0 0
2 i j d [0 - (5-)

4rc2  o o to0

Because of the causality condition the integrals over t have reduced to integrals

over [o, t ] where, as before, t + indicates t + c in the limit c -* 0+

Eq. (5) is a solution of the boundary value problem. The boundary conditions

enter through the surface integral in the second term. We recall that we have

assumed that G staisfies homogeneous boundary conditions of the type imposed on

. If Dirichlet conditions are given then G vanishes on the surface and the

integrand is ' 3G/an 0

If Neumann conditions are given the integrand is G a'/an 0 If mixed0

conditions specifying y, + a 3 /3n on the surface are imposed then G

satisfies
30

G+ n 0
an

on the surface and the integrand may be written

G 3---- aG  i G 1 + ---
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11e effect of the initial (Cauchy) conditions which specify ' and its time

derivative at t = 0 is contained in the third integral in eq. (5).

4.3 Other Green's functions

The Green's function of the last two sections is sometimes called the

retarded Green's function, Gret. If, given the initial conditions, we wish to

find the solution at some time in the past G ret is no longer appropriate.

Instead we must use the advanced Green's function, G which is obtained"adv'

by imposing the condition

G -0 t t (6)
0

which we might call the "anti-causality condition". We see that auxiliary

conditions such as (3) and (6) are only devices used to obtain solutions of

certain types of problems, and need not be given a causal interpretation.

Indeed, in the case of eq. (6) such an interpretation would say that the effect

precedes the cause!

In the boundary-free case Gadv. can be calculated by the methods of § 4.1

giving

G - 6(t-t +-- ,]

adv. -o

The initial value problem is solved as in § 4.2, integrating t. over [- e, 0].

Finally, we nose that Gadv' satisfies the same reciprocity relation as G ret, for

condition (6) also causes the integral (4) to vanish.

A Green's function which is symmetric in the time can also be constructed.

We have noted the difficulty associated v'.th the integral (2) due to the simple

poles on the path of integration. By using the theory of distributions it
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can be shown that it is correct to take the principal value of this integral

(Lighthill, 1958, p.31). It is readily shown that the Green's function obtained

in this way, G say, is

{G + G }
2 ret. adv.

This Green's function is useful in problems which are symmetric in the time, for

example, in Dirac's theory of the electron and in certain problems in quantum

field theory. See also § 5.3.

4.4 Method of reflection

We turn now to the problem of constructing Green's functions which satisfy

homogeneous boundary conditions on surfaces. For the wave equation the method

of reflecti)n is unfortunately limited to conditions on planes. For example,

suppose we seek a solution in the half-space x > 0 with Dirichlet (Neumann)

conditions on the plane x - 0. We must construct a Green's function which

satisfies G =0 ( ;G/3n =0 ) on x =0 .

This can be accomplished by placing ...

an image at~i = ( - o o .o ) which

is the reflection of r in the plane.

Ir ro01 Ir-ril o c

The upper sign is used for Dirichlet conditions, the lower for Neumann.

If we think of the first term as a spherical wave spreading out from the

point r 0 , then we may think of the second term as a wave reflected from the

plane.
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h.5 Method of eigenfunction expansions

This method is more general and more complicated than the method of reflection.

We operate on eq. (1) with a Laplace s-transform on t obtaining

2 2 - -st
(V + k )G -4TY 6(r-r )e 0 t >0 (7)

S O

where k = i s/c. Let 'n (r) be ortho-normal eigenfunctions of the

homogeneous equation

2 20 + k2)n - 0

(the Helmholtz equation) which satisfy the boundary conditions k'Uosedi on G.

For the eigervalues k ned the eigenfunctions *, the subscript n is a genericnn

symbol which stands for whatever indices may be present.

For example, for the interior of a unit sphere the (unnormalized)

eigpnfunctions which vanish on the surface are

wnne (rrt Oe) = J I (knr)P(ctose) a

where the eigenvalues -in are the roots of

J 1 (k) = 0

which can be shown to be real. Here 1 and m are integers and the subscript n

is used to number the infinitely many roots of the ith equation.

We substitute the expansion

G s a nn
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into eq. (7) obtaining

2 2 -St
Z a{-k + kp(r -47 6(r-r 0e) 0

and since by our assvmintion of ortho-normalized eigenfunct-ICns

fdr (r)&In n' nn'

we obtain * -St 0 -St 0
n (0 )e 0 0 )

a =-4-T 2i 22 41c s2 + c
k -k s+kC

n n

Inverting the s-transform

G G J e s ds

2 r s s(f-t)

Eir + *(r) tp (r ) 2 d27ri n n o' s 2 + kc2
Cn

where the contour c is to the right of all singularities (in our- exam-ole of

the sphere, these are on t.he *ixag4.nar)T, axis of the s-plane).

Evaluating the residues,

in ct 0 -knCt 0

G = 4vrc Z n r n r) 21ik c
n no

sin k c(t-t )
= 47rcX k 0C ~(r) (r)

no

4.6 Exercises,

1. Obtain the boundary-free retarded and advanced Green' s functilons

for the one dimensional wave equation:
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£

-.x + C(t-t,.]}

0Ix o

19 x'-OI

" tain 71 Alembert's solution of the initial

x+c t1f

, x-zt,O) + ,(X+ct,0) + - t (. ,O)d

X-ct

, z..- Pnc-on is a delta function, dL/dx

.:e i,-eor.a! s.i.. wave equation for x >0, t > 0

1 -(x,O) = g(x) ,(O,t) - h(c)

".n." f 3 by

t rx (0,0 %)t,, , (x,O) ' .<)( ,. ' h =

-4 iDmdary-free Green's function for the two

•' i ot!,.& is given by

i /C}.

0

" -, - r- r o i 2

.I-ace transforms lead to a difficult

--irn source in two dimensions is

-.arce in tImee dimensions. Therefore,
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'can be obtained Y'rom the ' -ee dimensional Green' functionI

by integration o,,rer ZO

6.Solve the initial vah'-e ivrotlem ir two dimensi*ons assuming

that no bCoundariez are --re-zent.

7.Find a solution of the three d_*e-.: ;x&.a_ wave eqolaia.or.,)r

z >0 wh-ich satisfies

(X,Y, 0, 0) 4(X,Y,t) t~r'

PEizenfunct ion s such as -* hoz e i ven in 54 fror -:r,.e .n-eri or oaf aJ

s-phere are not, alwa':s ava-late. For exarnxle, for the exterior

of a s~nere -we reauire fun-ctions ehc ive only outgoing wa-:es

at infinity. 7"hIs 4s -,he so-called radiation conditi'on; 4t is

eauivalent to the causality condition. Therefore, inst.ead Qf

the 3essel function -.e would h-ave to use F (r

But H~)has no rea-I zeros and, ztherefo~re, cannot satisfy heI

bondntary 0- --h 2ez ere.

~h en n ezcoansion off the Pxnckamental ;olution (such as tnat_

u.sed in pirol-lem 2.12) is- --nown, th oloin roahmyh

used. Let GI = Gex-D sto Show that_ --" the ltolndry- free caseI

stht G. 1 ieikR where R = I~-_
s .htgenerally Grk beh-av.es as (exp R.k ) rear the

singularity at r
0

Thnerefore, rt

ikR

k RA
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---ere 7( )is re~ular in the region of interest. By expanding

- aprc~p Lae igenfwnctions and making use of the expansion

(Mreand :rgard , p.- 352)

ikR (2.+) -I mJ)! (kr,,k (kr )y (6.)Y* (eR ik: 241)T+ImI)t 9. j z > m2. . o )o)

co.- r- ruc t a 'k- t",e exterior of a sphere of radius a which

vaz.i.3he: on .the surf'ace. Tin zhe above expansion jRand h X are

cnerical Bessel ard Wanke1 fuctions, <(r )i telre

(sm af0ler) of r,r, ard Y '8, ) = P 2.  (Cos@ e im

4L,



V. ACOUSTIC RADIATION AND SCATTERING3

Our purpose in this chapter is not to give a general introduction to

acoustics, but simply to give some examples of the use of the Green's function

for the scalar wave equatiun. Readers seeking a general backgrou.nd in acoustics

or examples with more cosiplicated p1hyni(,s than those presented' here are refered

to Morse and Ingard (1965).

5.1 Basic Equations of Acous-%i-,;

For simplicity we assxne a L,.1mo;eneous, inviscid, compressible fluid.

The conservation of mass is exr:'essd by the continuity equation

8 -t div P qat
where P, ji, and q are the dersi-.y, velocity, and source strength (rate at which

fluid is "created" (introdaced *,-.to the flow field from outside) per unit volume.

The force equation (Newton's second law) for fluids is usually called E-uler's

equation:

P a -t- P -7V1 -VP +F

where p is the pressure and F tne external force rer unit volume. The field

vrariables (unknoirns) are , pr, and ,j. Therefore, another relation is needed

to complete the above equations. -cr thio we assume adiabatic motion (which is

quite realistic for sound) so that

p = const. p

where y = c /c , the ratio of speciffc heats at constant pressure andp v

constant volume.

The basic equations of ac-oustics are obtained by linearization.

We write

p= 0 + p' p = P + p' F = F +F'
0 0

+ q qo + q'0 00

where the quantities with subscri-Lts are mean or equilibrium vals, which
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sat-L'it', tLe eqiat'*,n., ,evarately, and the primed quantities are fluctuations

assuimed jnall wit!. r1e., ect to mean values. We assume that there is no mean flow

so that P0 = 0 and ,,ubstitute these relations into the above equations

neglecting quadratic terms in the primed variables. From the adiabatic law

we oLain
p' = 2 p

'here c = Opo/P )1/2 is tne velocity of sound. Using this relation to

eliminate p', we obtain by linearization of the first two equations the

basic field equations of acoustics:

I p+ Po div ij - q
2 at 0o(1)

O at + 0p = F (2)

where for cunvenience the primes have been dropped from perturbation quantities.

We now note two consequences of these equations. By multiplying the

first by p, the second by '. and adding we obtain the conservation of energy

+ div s = Pq/Po F

where w is the energy density

w ~1 (p 2  2 2)
L 0 0

-~ 2and s (the Poynting vector) is the energy flux density (energy/cm sec

S = p4 (3)
The terms on the right hand side represent dissipaticn.

Iy eliminating P between eqns. (1-2) we obtain a wave equation for the

pressure:

2 2C9 t2 F at (4)
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5.2 Multipole Fields

We will not be concerned with the mechanism of radiation in this section,

but will simply assume that there is a finite source region, i.e., a region in

which energy is somehow introduced into the acoustic field. The mechanism, for

example, could be a vibrating surface or turbulence. We further assurie a har-

monic time dependence. A typical time dependent quantity i then written

p(,t) = -p (r)e t

This assumption is, of course, equivalent to td<ing a Fourier transform.

We write the source term in the wave equation as a function

-rwe

Then the wave equation (4) for p becomes the Helmholtz equation for p:
2 k2
V p + kp = -4r f k - w/c

Solving the wave equation by means of the boundary-free Green's function (4.3a)

gives
-iwt -iwt

p = p e = d dt f e G
(4r ff

o 0
or-iAt f e~?I~

P 1 dT 0 G ( ,r ) 0

where G. is the boundary-free Green's function for the Helmholtz equation.

exp ikjr-r Io ( ,=0 (5)

W 0)

We assume that the origin of our coordinate system is somewhere with-

in the souce region and that wem wish to calcailate the field far from this region

so that r is large compared with the values of r o within its range of

integration. We expanud j r-r o  in a Taylor series in r about the origin
0O

0
r~r

o r__- +..o r I
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I
Then the expaisi:.

ik 0 ikr er
ee exp ikr • + ..

o r

ikr r 0 r
e ( + 1k -- ..

r

i : valid rovided we mae the further assumption kr 0 1 This means that

we asosyne the dimensions of the .-ource small compared with the wavelength

(k 2r/) With this as.uption -e may ex-pand G. in a Taylor series in r0

ikr ikI- °
G = e +y(d e X +

I oi -r ro

Substituting into the integral

Pw = d~ro fr)G

we obtain
ikr ikrp S -t- -. D e - +""

PWr r

where we might call S the monopole strength

S = dt f ()

since, as we see from the Green's function, the first term is the field of a

point source at the origin.

~in writinMg the second -.em we have used the fact that iDXo -a/axi

when these operate on functions of Jr- o only. The second term is a dipole

field with dipole moment

Di = dT xf (ro Xoi fW(ro

Higher order terms in the expansion represent quadrupoles, octupoles

etc. These terms reflect the symnetrie3 of the source. For example, a sphere

vibrating purely radially has only a mon,.,pole term, which is the only spherically

symmetric multipole. The dipole term reflects symmetry about an axis and the

higher order nrwltipoles are correspondingly more complicated.
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5.3 Radiation Calculations

We will discuss two methods of calculating the energy radiated by sources.

The first and best known of these we call the far field method. It consists of

integrating the Poynting vector s (3) over a sphere whose radius is arbitrarily

large. Thus, it represents only energy whicr is ultimately lost by the system,

i.e., radiated away. Since the element of surface area in spherical coordinates

2
is r sine de d where r is the radius of the sphere, and since s

is quadratic in the fields, onlj teims of order 1/r will contribute to this integral

in the limit r - o These terms are called the radiation fields.

For example, the field of a dipole along the z - direction is

Uikkr 2) - z3)e eM~rt)

az r 3
r r

The first term gives the radiation field since it is the only term of order 1/r.

grad. - ik cosO ai(kr-wt)

The velocity u in the radiation field is obtained from eq. (2)

i W P oadrad. ad. (ikz/r)

and the time-averaged Poynting vector is

Srad. <Re prad. Re Prad.>
1 k2 cos 2 e
2p 0c r22 o r 2

in the radial direction. This shows the directional properties of the radiation.,

The total power may be obtained by integration.

In addition to the radiant energy in the field there is also reactive

energy, energy which fluctuates between the source and field. The second

method, the near field method, consists of integrating the energy flux density
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over tc,( :ourcr i... has the advantage of giving the reactive as well as the

radiant enerfgy, and, therefore, the mechanical impedance.

For example, assume the nurmal velocity j(r)e is specified on a

vibrating :,urface. t3y eq. (2) this is equivalent to giving the normal derivative

cf the pressure (we arc z, ill azsuiLng harmonic time dependence). Assuming the

(retarded) Green's ftunction is known we may substitute

1 G ds dt r -- G dt ds
4r 3 4 n ret. d o 4 fret. o o

into the expression for the total power

i P ds (6)

We may now write

Gret.

Ge {G + 
2 ret. adv.

H = -G1
2 ret. adv.

where G is the time symmetric Green's function of §4.3. H is not a Green's

function since it is a solution of the homogeneous wave equation, as we can see by

'ubtracting the equations for Gret' and Gadv"

After substituting into eq. (6) we find that if the sign of t is changed

the part involving G changes sign and the part involving H is unchanged Therefore,

the former represents reactive power and the latter resistive or radiant power.

This elegant method was perhaps first used by Schwinger (1949) in connection

with electromagnetic radiation.

As an example consider an infinite plane z = 0 on which p = 0 except for a
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small portion e which vibrates. The Green's functions are easily obtained by

the method of reflection with an image ppint ri = (Xyo ,-z) . The

effect of the harmonic time dependence is to replace G ret.,adv. by

+ikjr-ro I +iklr-r l
G wret.,adv. + e +,adv lr- ro 01 ir-r il

On the plane Ir-roI Ir-ri] We have for the time-averaged

radiative power

rsPo sin kir- i
Prad. v() ds 2n 1i a (r °)0 +-0 0 (7)

a C0r- 01

and for the reactive power

WP 0 cos klr-r 01
° ds ( ds k(o

a 0 0 0

The integrand in the last equation is singular, but by a well known theorem for

improper integrals (Kellogg, p. 149) the integral is convergent.

Detailed calculations are available for the case in which C is circular.
J 2

If, further, P is constant (circular piston) then the coefficients of I2 in the

expressions for Prad" and Px give the resistive and reactive parts of the

complex mechanical impedance. For further details see Bouwkamp (1946) and

Morse and Ingard (p. 381 ff.).

If directional properties of the raiation are desired we can make use of

the relation (§4.1)

sin kl -r I k e eik~n.( r~ d s

52

52-



where IL. ; the element of solid angle about the unit vector nl Then from eq.

grad. dil p(O,' )

where

wpktk-ikn-r02

p8e,42 ds 0 I 0)

is the power radiated into dQ -if 64~ are spherical angles with the normal

to the plane as the z -direction and is the azimuthal angle in the plane,

then0

nr 0= r 0cos (n,r )

=ro sine cos(4 -)

in the above formula.

5.4 Mechanis3ms ofL Radiation

Let us n-v take a closer look at the source terms in eq. (4f). We shall add

to these a term from the stress te 3or which is of the order neglected in the

derivation. Lighthill (1952,1954~) has shown that this term may not be of

seconi order, at least for turbulence in air. Therefore, we write

2 2
VP + k P = iwq W+ V-F 0- P 0 1 i P0 ' jj

Solving by means of the Green's function (5) we have

WrrF- 
1

PdT G~rr (iwq + V oP 11
0 W 0 W W ii axofa- oj iW

(8)



where V 0 -s/axoi

Let us look at the terms in this integral separately. If we expand the

first integral, the one containing q. , as in § 5.2 the first term in the

expansion will be a monopole field. For this reason q (or 3q/lt) is

called a monopole source. It represents the rate at which fluid is added or

withdrawn. A vibrating surface is a source of this type, for its effect is

as if fluid were alternately injected and withdrawn. An example is tne

cavitation behind a p±L;1-1er. A collapsing bubble is cushioned by vapor inside

it causing a bouncing effect. Of course, . -hould keep in mind that the field is

not a pure monopole field, but rather the monopole term is the-dominant tlerm in a

multipole xpansion.

The second integral may be transformed through the identity

df "G F = dr G V *F + d F .V G
0 0 W W f 0 W 0 W f 0 W0 0 W

We have assumed that the sources are non-zero in a finite region. The left hand

side may be written as a surface integral by Grauss' theorem, but since the

volume integral is over all space the limit must be taken as the surface goes to I
infinity. As the limit is taken the surface will eventually lie in a region

where F vanishes. Hence, the left hand side is zero and the contribution to

the pressure is

f dT °  F oV

Tl a leading term of a multipole expansion of this integral will contain

derivatives of G. : it is a dipole term and, therefore, V.F is called a
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dipole source. An exmple is the sound field due to the fome exerted on a fluid

by a propeller blade.

- - -The- third integral in equ -(8) -can be transfbrmed-by- two integrations by

parts giving

JdT0  ~P~i G
f i0 0±~ a OaxjW

The leading term in a multipole expansion contains seond derivatives ofG;

consequently, it is a quadrupole term. Thus, for example, a turbulent region is a

source of quadrupole radiation.

5.5 Scatteri d Diffraction

Scattering and diffraction refer to the same phenomenon, the interaction of a

wave with an obstacle. The word diffraction is usually used when the dimensions

of the obstable are large compared with the wavelength, as, for example, when sound

passes through an aerture in an infinite screen. The obstable need not be a solid

body. It may, for example, be a region of turbulence or inhomogeneity.

Greent s function is used in these problems to transform the boundary value

problem into an integral equation. Let us consider the case of a solid body.

For harmonic time dependance and with no sources present a solution is given by the

surface integral

p~ ~ a 9Ge{---pW - f dso { w G - pw n
o (9)

This is not a solution of the boundary value problem since it is not proper to

specify both PR and its normal derivative on the surface. However, instead of
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now iposag 4 boundary condition on 0 as we bave in eviou problems, w W

instead regard eq. (9) as an integral equation for P.. The solution is not

unique since we have not yet imposed any boundary conditions. We may add to it

any solution of the homogeneous wave equation. Therefore, we write

where is a given incident wave. The integral represents the scattered wave if

we use the retarded Green's function
A 0

-

*

which gives outgoing waves. The boundary condition may now be imposed. For a

rigid body we would set the normal derivative of the pressure equal to zero on

the boundary. For a compliant body a linear combination of p and its normal

derivative would be specified.

For simple geometries the integral equation can often be solved by expanding

and G in appropriate orthogonal functions, fixing undetermined coefficients

by evaluating P on the surface. Such problems can be solved by direct methods,

so that nothing is really gained by the transformation to an integral equation.

When an exact solution is not possible, however, the integral equation suggests

an approximation scheme based on iteration (Born approximation). In general, this

should succeed if the scattered wave is small, as, for example, when'the wavelength

* With our choice for the time dependence, (exp ± ikr-iwt)/r represents

outgoing (incoming) spherical waves.
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is large ccapared with the dimensions of the satterer.

As a simple example we calculate the radiation field of the scattered vave-

from t rigid sphere in this appro:Imation with tii auUron " I_ , 3 n

the radius of the sphere. After one iteration the scattered wave is given approx-

imately by

where Pi is the incident wave, which we assume to be pl.ane

444.

-iT A e i '

There are two approximations. We keep only the 1 trsthradiation fild)

and we expand in powers of ka keeping only the first non-zero contribution.

2i. exp ik(r-r~r + ... )

ar0  + ... rosa 1
aeirr (a 2o2 +.

= ir dfl° {1 + ika cosy + ... 1{-ika 0054 - ()con+..})

a a

where]

cos4 - cos(rr o) cosy - cos(kro)

Carets~~~ indcat untvctr.T Pfoh

Cares idicte nitvecors Toperform the integral we substitute y - e-4

where p is the angle of r direction of the incident wave, k

' ikr

Thd e fistnoan shingwrso integra igives hfrtnn-eocntiuin

Aaei (k)2  -cosW
A3 r6
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A typicol difr ticn pvhl~m to thA~ 0~ A va osn an- ".rW

in an infinite screen. Eq. (9) is usually used for the field behind the screen

together with the Kirchhoff approximation which assumes that the v *_-1 ntf-brV
and 3pw/8n on the aperture are just what would be given by the incident wave

if the screen were not present. Then the integral equation is well-defined. 1
Methods of solution are discussed in most books on acoustics, optics, and
electromagnetic theory.

Appendix I : The Delta Function

The delta function is sometimes "defined" by the relations

6Wx - 0 x 0

b

6 (x 1 a,b>0 )
-a

from which iumediately follows the so-called sifting pr:pert

b

f(x)6(x-x 0 )dx 0 a < x < b

a

Intuitively, it is a function which is zero everywhere except at k = 0 where it

is infinite in such a way that its integral is unity. It is clear that within the

context of ordinary real variable theory there is no such function, for a function

is defined cnly if it is assigned a definite value for every point within its 1.

range (infinity is not a definite value). Moreover, the area under a point is

always zero.

However, the behavior described by eqns. (1) can be approximated with

arbitrary accuracy by ordinary functions. For example, consider the sequence
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f°

rT

The area under -P is always unity and the maximum at x = 0 becomes arbitrarily

sharp as X is made large. t

Therefore, we let 6 (x) represent the limiting behavior of such a sequence and

write, symbolically

6(x) - lm f (x)

Identities involving derivatives and integrals of 8 (x), e.g.,, the siing

Propqrty, can be proved provided that the interchange of these operations with

the limit can be justified. Justification Can only be found-within a broader

mathematical context than the ordinary theory of real variables. Several such

contexts are available, of which the best known is probably the theory of distribu-

tions as presented by Lighthill '(1958), whose book can be read with a knowledge

of calculus only. For an intuitive approach we also recommend the book of van detr

Pol and Bremmer (1964., chap. 5). Our putpose in this appendix is not to supply

-igor, but only to discuss the formal manipulation of delta functions.

The derivative of fX is a function having

two sharp and arbitrarily close extrema as X

is made large. It too has a sifting property.

It picks the values of a function at two points which are arbitrarily close and,

therefore, produces the derivative. By a formal integration by parts we have
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A

ax

J 0

& - generally,

f~ (~ )~Jf f(fl)

i . --The to1I& ig -eueful identities;

[~~ 6Wx -06x

x 64(x) -(

W Ix. x >O

d-' " (x) u(x)-
-0 x<O0

By the equality in these relations we mean that the right and left hand sides give

the same result when substituted into an integral. -Thus, to "prove" the second

relation we form the integral of 6 (ax) with an arbitrary continuous function,

f(x) say, and -sow, by a simple change of the variable of integration, that the

result is 1a - f(O) , which is what is given by the right hand side of the

identltiy.

This interpretation of the equality is sufficient for our purposes, since our

delta Panctions always ultimately disappear by being substituted into integrals and,

thus, do not appear in the final results of our calculations. Their use can be
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4 regarded as im interme~diate shortcut. For -exMple,4 eq. (1.4)-con be derive& oitbout

the use of the delta function ais foliows. 14G be- it harmonic function in a

region v, except for a singularity of the type F*r F2 at one point.
0

speeG ~ o aisRcnee ttesnua on~reen I s theorem can be applied to the region v - V0which excludes from V a smallii

dT {GV _0 G) -1. G
f1 0 0 0 -

V-v~
00

In the limit R +0 we have

'0 -0 0

where only the second term has contributed, and the result is established by

substituting V2  
..0 -41 ~ 0 $n the volumne integtal'over 1-v..

0 0 0 0

Apendix II: Fourier and Laplace Transforms

The Fourier integral theorem

f~x W dp f dt f (t) e±P(X-t)()

may be written in two steps:

F(P) - Jf(t) e iPt dt(2

-f (3)

f (x)f .7Px d



rhb-.ormx~ti~hfompair. The fuiicti~x s i~dteintisd-i

f the~g which th'd rinal fujtion is eoee

is caled';the. "nvej~s6 Frierc- transform4 The f 631oing noaion Is ailso used:;

-F {f f W ~x

In-forming the-transform .pair the position of the factor of 2-i -and- of the plus.

ahd--minus signs in the -exponent ils is arbitrary. Since all po ssible ;comibinationis

f. ~ ~are in- use in the literature., definitions. should be carefullyhckdweuin

[ tables of Fourier transforms.

The classical theorem for the validity of eq. (1) is- the, Pisnoherel

theorem thich sta.tes., esse-ntially, that. a sufficient condition is the existenice-of

di f -,.or,) mokrepiecd'sely, tX# f- (X'* i s_- L;6be~u 6 qr snte*rle,

(f - t 2 .O0) Hoverk, -this theorem is too- restiictive6 if we, ish t[admit generalized- funictions, such, as- the delita fun~ction and? its derivatives.

Therefore, we shall use, instead, a -sufficienit condition- given -by Lighthill U (1958,

p.21)) viz-., the existence of j ~dk " foil sme inte-ger' t

[ This- allows functions bounded by polynomials as lxi J

For example,I, 1.1 -ipx1

or

* F{lI w 2w S(p)

Integrating by parts we ha-ve

F WWIp~ ix/27i

-62-



or i
F{x} - -2vi 6'(p)

and, in general,

F{xn. - 2 r(-i) n S(n)(p) n - integer > 0

Perhaps the most important property of the Fourier transform for our purposes

is the way it operates onderivatives. Operating on eq. (3) with the derivative1

we have

or

-anid by -repetition
{fp 2f etc.

Thus, a differential equation is transformed to an algebraic one.

These and some additional properties are summarized in the following table.
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f(x) - dp - JdxaPX fW

x n - integer > 0 21(-i)a (p)

df(x) -iP f
dx p

ixf(x) df
iXP 

dp p

e f(x) fP+P

-ipx
f(x+x o) 0 f0 D-

f(ax+b) 1 e-ipb/a f
fxb)TaT * p/a

f(x) g(x) 2IT gp p

f(x) * p(X f

le star indicates the convolution of two function, which is defined by

I.

f(x)*g(x) " f( ) g(x- ) d - g * f

Our sufficient condition does not admit functions which are exponentially

large as x . We can allow such functions, and in the process

define the Laplace transform, if we are willing to throw away half of the function

and assume it to vanish for x < 0 Thus, we assume
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f(x) 0 x < 0

jf(x) j < e ax x > ° X ,0a,

-4 te Fourier transform of f (x) may not exist, we define a new function

4(x) = f(x)ebx where b > a

tU iA exponentially small as. *x . . If we,.f-irst re-define the

t*rur1 transform pair- by' interthan in-.th .rsins *.£nrthe- exponentials of

ete. (2. 3) we may write

F{O) - J'-ipt gt)dt - e -b+'P)t f~t)dt

-o 0

1*:s a b + ip As a function of p F{0k is the Fourier

v% =naform of * . As a function-of.s we.define it-to-be the' Laplace transform of f:

CO

{f(x)} f Ca-t f(t)dt

0

We obtain the inversion theorem through the inversion theorem for the

rzurier transform according Lo which

21 dp e 
ipx

S-0 b+i
f(x) - - dp e(b+ip)x esx

2It f p 27ri io

rhere was originally no upper limit for b so that the contour for the inversion

integral, C say, which is a straight line parallel to the imaginary axis of the
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s-plane, is arbitrarily far to the right of the origin, but by Cauchy's theorem

is equivalent to any straight line to the right of all bingularities. For x > 0

the integral can be evaluated in terms of contributions from the poles, branch

cuts, etc. to the left of C . For x < 0 the inversion integral automatically

gives zero since the integrand vanishes as C is moved to the right.

Integration by parts gives the effect of the Laplace transform on

derivatives, which we include in the following table.

s

df(x) sfs - f(O)

f(x) s2f - sf(O) - f'(O)dx2  s

n
xn f(x) n integer > 0 (-1)n fdn s

f(x) f ds
S

X1 SBf(Od s s
0

if(x-b) where f(x) -0 x < 0 e -bs fs

1 bx/a f(x/a) fas-b
a

f*g fs gs

I6

__ i _



For the Laplace transform convolution is defined by

f g d& Mdf()(X~)-0 g

0
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SOLUTIONS

Chapter II

2. Suppose {G(r,r1) - G(r,r )}ds # 0. Since G is determined to within

an additive constant, let F(r1 ) f ds G(r,r and replace G(r,rI) by

G( , I) - F(r)/s where s is the total area.

3. 0 - 2 dx° g(xo) log {(x-xo)2 + y2}
Co

1I dx f(x) Y
7. (xXo) 2 + 2

5. 2  2i Ix + (y+yo
5. "2 dyo g(yolo 22

21r fY 0(0) log 2 2
0 x + (y-yo)

- dx f(x +6. f 0" 0 (2 2) 2

0 Y + (X-Xo0 ) y 2 + (y 0)

7. 2 dx , f d yo (x-x) 2  2  213/2f [d fx ) +)y xx + z

S8. f "x 2-f dYo g(x°SY° [(x-x°) 2+ (Y-yO) 2+ z 21-1/2

iII (X-Xo) 2 (Zo 2] 3 / 2  ;
9. 21r " f dx 0dz0 f(xoZo){Y[ + y + ( 0

S- y[(x+x 2 + y2+ (Z-Z 2]-3/2}
0 0

10. " dZ g(yoZo) {Ex2 + (y-y )2 + (Z-zo)2]112 ]
ff 0 00 0 0

- [2+ (Y+Yo)2 + (z-z0)2]-/2

+ + J dXodZo f(xozo) y{[(xxo)2 + y2 + (zzo)2]-3/2

+ [(X+Xo 2 + y2 + (ZZo2]-3/2 -

0 70
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ii. Grr 0

F-0  IrI r-r1 0Ir-rI

r t ( -x O Y O z ) r m a r / r 2  0 r 42 2 r I/

3 0m01 0P 0 2 0 3 r

12. G~r,'r0) 1 2 1

9, 29+1( r

Chapter III

1.dx f (x) exp - (x-x0)2/4t2 t

co ~~~ (x-x0) (X0

2. ii--- rdx f(x){e 4a2t -e 4a2

0cd 0 0 0

0

4ct

3 - /2 2 2
+7 f-L dt g(t)(t-t) exp -x 4c (t-t

0

Go ~ (x-x 2+X 0)

4a 02 04

4. i - H dxdy f(x {a )+ ac
4c2 rt f 0 0 0

-01

t* -3.



(xx2  2 2 2

a~ff0 
0

x 2 +2Yyo

+- 2 1 dto dyo 0~0 t)t- 0

0

2 2 2 2
(x-x) + (y-y0 ) (X+X +(y-y)

00 0

2~~ 02(cy{

4a + e4a)t

2 2

0

2

7.dx dy dz0 f(x0,y0 z )e

-.- 122 2 2
where I r-'r0i (x-x 0) + (y-y0 ) + (Z-z 0)

4. 2

____ 4a2 t4a2t

8. T3 ff JJ 0 -~ 0e }

2 2
____ r rr-/2p /4c (t-t)

+ j-3. dtof dyodzo g(y ~z ,to)(t-to) -52e

8(x3/ 7JJ 00

where Ir~±I r (cx ) 2.+ (Y-y0 ) 2+ (z-Z 0 )

p 2 x2+(y-y)2 + (z-z 2
0 0
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22 2.

10. -ff dT. (y +a

2 t 2 2
1ex 3/2c -p- /4%4c (tt-t0

0

8a I(7T)f 0 f~f d 0 f(0) -) x

2 2 2 2 2 2 2 '
Po + (y-y 0 ) + (Z-z) p x + (y+y) + (Z-z0)

X 1 X x 2 in 3 -x 0 Yl Y 2  IsYo zl z 2  z 3  Zo0

sin Ilw si MY sin "n_ U~

ma n a bniy m

a bmwx airy
fI f dyo f(x0,y) sin Sin 0,

0 0

wherek 2 (-2 + )2
an b
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2a b
4 a r 2k2n n

Idofdx 0 f (x 0 to) sinaa

0 0

4. t

13. i~--a' 2 Imdt ffa2sin6 de df(e ' t
[ J JJ00 000 0

C2 2

r- j1(t 1)Y9 000 exp -a 2k z(t-t 0)
0 0 +

~~m(r) - 1 (ket flr)

2y

c f rsn dO (,Jrimn f J f
0 0u2

kn are the roots of J i(k~tna) -0

x+ct

~.~ -A{f (X+ct) + f (X-ct)1 + J dt g(,r.) + h(t-x/c)U(t-x/c)

where f (x) ic defined for negative argument by f (-x) *-f (x)

t-x/c

4. ~p- {f(x+Ct) + f(x-ct)} cU(t-x/c) hCd

0
ctx X+ct

+1 r~tx d 1~)+- d& ~c f 2cf

where f(x) is defined for negative aruetby f(-x) -f(x)
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6. '(x,y,t) -arcj vcYt 2 2
2ri ff It ) ,

1 ~0 0

21catJ/C 2t2 - Ixx 
-~)

where the integration is over a circle of radius at centered at (x,y).

Hint: aG/ato a -at.

7.dxdozf (x0,y0, t - c) ft (x 0 ,t -RO/c))

where R2  (xx) 2 + (y-y) 2 +
0 00

-8. F(r) A~ h (kr)Y mt(0.*
£-0 rn--P.

A -ik(21+1) h£m) k h(Ur jt(O,*
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